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Abstract

Health economic evaluations, developed for the purposes of informing technology adoption

decisions in publicly-funded health care systems, should strive to make use of all relevant

evidence. Any failure to meet this objective will result in a partial representation of the

evidence base and, consequently, there is a potential risk of obtaining misleading results.

Unfortunately, a lack of comparability amongst the alternative measures of health-related

quality of life (HRQoL) complicates the synthesis of this type of evidence. One solution

to this problem is to specify a reference case measurement to promote comparability,

although this may provide an incomplete representation of HRQoL effects or, in some

cases, no evidence at all.

The application of mapping functions – statistical algorithms that link HRQoL measures –

might provide a means to incorporate a broader range of heterogeneous outcome measures

for evidence synthesis. One method in particular, known as the common factor model

(CFM), has been proposed in this regard due to its coherent mapping properties. Research

involving the CFM has been conceptual to date and only a handful of case studies have

ever been conducted. However, this method can be formulated as a structural equation

model (SEM), an approach that has benefited from extensive application in other areas

of research.

The primary aim of this thesis is to investigate the plausibility of SEM methods serving

as a generalised framework for the handling of HRQoL evidence. SEM methods are tested

across scenarios involving aggregate data, individual patient data and a combination of

both; in each case, a comprehensive synthesis of heterogeneous HRQoL outcomes using

the SEM approach is compared against a restrictive synthesis involving a reference case

measurement. In addition, the implications of these alternative approaches are explored

from a decision-making viewpoint.
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Chapter 1

Introduction

This thesis looks at some of the methodological issues encountered in the analysis of

health-related quality of life (HRQoL) data for the purposes of health economic evaluation

(HEE). In recent years, this has become an important area of research for two reasons:

first, because policy-makers around the world are increasingly looking at HEE as a tool

to inform the reimbursement decisions in health care (Drummond, 2013a,b); and second,

because researchers and policy-makers alike have recognised the importance of valuing

changes in HRQoL when conducting these evaluations.

The purpose of this chapter is to provide some necessary context relating to the topics

covered in this thesis. A description of HEE is provided along with an outline of its role

in health policy. An outline of the methods used for measuring and valuing HRQoL as a

part of the evaluation process is then provided. This is followed by a description of the

role that modelling techniques play in the consolidation of evidence for HEE. The final

section of the chapter provides an overview of the content of each of the chapters covered

in the thesis.

1.1 Health Economic Evaluation

Health policy-makers around the world are faced with the fundamental economic problem

- how to allocate finite resources when there are (potentially) infinite, competing demands

for those resources. Health economic research strives to address this problem by producing

evidence which can be used to guide the efficient and equitable allocation of healthcare

resources. HEE is a branch of health economics that examines the costs and benefits

of alternative healthcare interventions (e.g. services, drugs, devices) in order to inform

decisions about the reimbursement of those services.

12



Economic evaluation is an umbrella term covering a range of methodologies, the alternative

forms of which differ chiefly in two regards: firstly, the way in which the benefits from

health care services are measured and valued; and second, the assumptions made with

regards to the changes in welfare occurring as a result of a policy change. Outside the

field of health care, cost-benefit analysis (CBA) has been the most prominent method of

economic evaluation, with notable applications having been conducted in the evaluation

of public investments in infrastructure and transportation (Fuguitt and Wilcox, 1999).

This branch of evaluation involves placing a monetary value upon the costs and benefits

attributed to the alternative courses of action available. Sometimes, these values can be

determined using data from real world markets, however, such values will not always be

available. In these cases, analysts typically go about deriving non-market values by other

means, principally using stated preference or revealed preference techniques.

Thus far, application of the CBA approach for the evaluation of health care services has

been rare in practice. A body of methodological research exists in this area, particularly

willingness to pay studies (Baker et al., 2014), although there have been reservations

expressed regarding the appropriateness of measuring the benefits attributable to health

care services in monetary terms. The willingness to pay approach has attracted criticism

over concerns that individuals’ responses are influenced by their ability to pay which could

skew valuations disproportionally in favour of health care services that improve the health

of wealthier respondents. Above all, this type of approach is unlikely to serve a publicly-

funded health care system seeking to deliver health care services for all, irrespective of

ability to pay (e.g. the National Health Service in the United Kingdom).

Another approach, more commonly used, is broadly referred to as cost-effectiveness anal-

ysis (CEA). Historically, the application of CEA has, for the most part, focused upon the

identification of health care services expected to deliver maximum health improvements

for a given budget (Dolan and Tsuchiya, 2006). Note that the exact measurement of

health has yet to be specified; in practice, there are a number of ways in which one might

go about quantifying the health effects of a given intervention including patient survival,

clinical endpoints or through patients’ responses to self-assessed questionnaires.

A critical aspect of the CEA methodology is the selection of an outcome measure capable

of capturing all of the aspects of health considered to be relevant to the decision problem.

In publicly-funded health care systems, reimbursement decisions need to be made across a

broad spectrum of disease areas and consequently the outcome measure selected should be

sufficiently broad to account for the health domains encompassed across this spectrum. To

meet this requirement, the health economics research community developed the quality-

13



adjusted life year (QALY), a measure of health that combines survival and HRQoL into

one numeraire. QALYs are estimated by adjusting the length of time alive by valuations

of HRQoL typically ranging between 0 and 1, where 1 reflects perfect health and 0 reflects

death (the methods for valuing HRQoL are discussed in the next section). For example,

four years spent in a health state with an associated HRQoL value of 0.5 would be equiv-

alent to two QALYs. The generic nature of the QALY enables policy-makers to compare

the estimated health effects stemming from policy decisions across-the-board of disease

areas.

The investigations carried out in this thesis are focused exclusively upon the application

of economic evaluation where the benefits of health care are captured by the QALY. This

approach is consistent with the methods employed in practice. Economic evaluation with

the QALY has been adopted as a key tool in health technology assessment (HTA), a

multi-disciplinary process aiming to inform best practice and, in some cases, reimburse-

ment decisions in health care. Following the establishment of the Pharmaceutical Benefits

Advisory Committee (PBAC) in Australia over 20 years ago, many countries have set

up HTA agencies applying the QALY-based approach to economic evaluation to inform

health policy decisions.

The generic nature of the QALY facilitates informed decision-making in the reimbursement

of services across the entire spectrum of health care. However, HEE involving QALYs

require decision rules in order to determine whether or not services are considered to be

welfare improving. For instance, the simple rule of dominance states that any policy that

generates more health benefits and lower costs than the alternative options dominates

those options and represents an improvement in welfare. In reality, many decisions need

to be made in relation to the adoption of expensive new technologies that result in more

QALYs as well as increased costs relative to standard practice. With this in mind, the

optimal bundle of services could theoretically be determined by ranking all of the services

according to their incremental cost-per-QALY and then select those that make the best

use of the budget available.1 Given that this is not a feasible task in practice, many

decision makers have adopted an alternative solution which involves setting a (arbitrary)

cost per QALY threshold below which new technologies could be considered to be cost-

effective (for examples see Cleemput et al. (2008)). This threshold should represent the

cost-per-QALY of the marginal technology currently being reimbursed, thus representing

the opportunity cost in any decision involving the reimbursement of a new technology.

1That is, maximizing population net (of costs) health benefits (as measured by QALYs), given existing

constraints

14



Identification of the true threshold is a challenging task and work in this area has only

recently been undertaken (Claxton et al., 2013).

Despite having a central role in HEE, it is important to recognise that there are on-going

methodological issues that have yet to be resolved regarding the use of the QALY, as

well as normative issues to consider that are often overlooked. In particular, the often-

quoted mantra ‘a QALY is a QALY is a QALY’ – used in reference to the assumption

that all health gains captured by the QALY should be valued equally – has been subject

to considerable scrutiny (Dolan et al., 2005; Rawlins and Culyer, 2004). Amongst other

things, debates have revolved around claims that the QALY is ageist (Harris, 2005; Paulden

et al., 2010) and questioned whether society might value health improvements differently

depending upon severity of illness (Shah, 2009) and remaining life expectancy (Shah et al.,

2014). Whilst work in this area is still ongoing, these questions fall outside the scope of

this thesis.

Moving forward, it is important to recognize the normative underpinnings associated with

the cost-per-QALY approach to evaluation and to understand where these fit in relation

to the foundations of welfare theory in economics. The conventional approach to welfare

economics, often referred to as the welfarist approach, assumes that social welfare is op-

timised according to policies that maximize the sum of individual utilities, where utility

represents an individual’s preferences for different states of the world (Brouwer et al., 2008;

Hurley, 2014). The term extra-welfarism is used to describe any approach that deviates

from the assumptions of the welfarist approach (Brouwer et al., 2008; Hurley, 2014). As we

shall see in the next section, CEA with QALYs might be seen as being an extra-welfarist

approach owing to the fact that the preferences beyond those of the individual are seen as

being important when valuing health. Although these concepts might be beyond the scope

of this thesis, a pragmatic perspective is assumed to be the most appropriate standpoint

for the purposes of decision-making in health policy: that the assumptions required for

the welfarist approach to be valid are unnecessarily restrictive for this to be a requirement

(i.e. that the extra-welfarist approach is acceptable).

1.2 The Measurement and Valuation of HRQoL

Having established the rationale for using QALYs to capture health benefits when evaluat-

ing health care interventions, this section considers some of the competing approaches for

the measurement and valuation of HRQoL. The development of techniques for the valua-

tion of HRQoL has been one of the critical areas of research in health economic evaluation.
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In particular, efforts have focused upon techniques that enable the quantification of peo-

ples’ preferences for specific health states. Valuation exercises that have predominated

– the Standard Gamble (SG) and Time Trade-Off (TTO) – obtain values by exploring

the willingness of respondents to accept increases in the risk of death or decreases in life

expectancy (Gafni, 1994; Gudex et al., 1994). The origins of these valuation exercises can

be traced back to attempts to derive health-related utility scores with methods similar to

those in the expected utility theory framework. It is for this reason that many people still

refer to SG and TTO values as being utilities despite both measures having been shown to

produced biased estimates that violate expected utility theory (Bleichrodt, 2002). How-

ever, the question over whether or not HRQoL values should constitute utilities in the true

sense is not a priority for research in this thesis. Instead, a pragmatic stance is assumed,

one that sees SG and TTO values as being acceptable for the purposes of the application

at hand.

Another source of debate in the methodological literature has been the question of whose

values should be used. Arguments in favour of the use of patient values typically point

to the fact that patients have first-hand experience of the condition and so have the best

understanding of the impacts upon HRQoL (Menzel, 2014). An opposing view to this is

that, for a government-provided health care system, values from the general population

should be used on the basis that provision of health care should reflect the preferences

of the tax-payer (Gold and Siegel, 1996). What makes this debate more complicated is

the fact that the general population tends to value the HRQoL of a given health state

lower than patients experiencing that health state (Menzel, 2014). This phenomenon is

sometimes attributed to the idea that patients adapt to their condition over time and,

accordingly, don’t see the negative aspects.

The debate over whose values should be used in economic evaluation has largely been put

to one side since the development and adoption of preference-based measures (PBMs) of

HRQoL. This might be partly due to the fact that these measures involve both patients

and the general population in the valuation exercise. There are two components to these

methods, the first being a multilevel descriptive system designed to cover the core dimen-

sions of health and the second being a pre-specified set of values associated with each

of the states in the descriptive system. The value set is usually derived from a random

sample of the general population using valuation techniques such as the standard gamble,

time trade off or visual analogue scale (Brazier et al., 2002; Dolan, 1997; Feeny et al.,

2002).
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PBMs are widely used thanks to their relative ease of use, the relatively low burden for re-

spondents and their claimed generic properties (Brazier, 2007). The collection of HRQoL

values using PBMs is straightforward because it simply involves asking patients to rate

their own health using the descriptive system and then assigning the pre-specified value set.

Despite the advantages of these instruments, research has shown that there are important

differences in the values derived using the different instruments available (Conner-Spady

and Suarez-Almazor, 2003). The lack of comparability amongst the instruments available

has led some policy-makers to recommend that all studies should use the same generic

measure - a reference case measurement - in order to promote comparability across stud-

ies (NICE, 2013). However, the downside to this approach is that it may result in an

incomplete representation of HRQoL effects or, in some cases, no evidence at all. This

thesis will focus attention upon the notion of setting a reference case instrument and the

challenges that the challenges this poses around the use of available evidence.

1.3 Decision Analytic Modelling

As previously mentioned, CEA is used to inform reimbursement decisions in health care.

Informing such a decision requires appropriate consideration of all relevant treatment

options, inclusion of all relevant evidence and an appropriate time horizon (Drummond,

2005). It is unlikely that one source of evidence, such as a clinical trial, will provide all of

the evidence necessary to derive a relevant estimate of cost-effectiveness (Sculpher et al.,

2006). Instead, Sculpher and colleagues recommended an evidence synthesis and decision

modelling approach to CEA for decision-making (Sculpher et al., 2006). The decision

modelling approach provides a framework to incorporate evidence form a range of sources

in order to address a specific policy decision. More specifically, decision models estimate

outputs, in the form of expected costs and QALYs for different treatment strategies, using

model inputs that relate to patient survival, treatment effects, HRQoL, resource use and

costs. These models are typically structured to reflect some underlying biological or clinical

process that characterises patients’ movements between defined health states using clinical

evidence (Briggs et al., 2006).

In principle, all of the parameter types employed in decision analytic models for CEA

should make comprehensive use of relevant evidence (Sculpher et al., 2006). Any failure

to meet this objective will result in a partial representation of the evidence base bringing

with it the potential risk of obtaining misleading results. One of the main challenges for

researchers undertaking this task is the matter of how to utilize the available evidence
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when there are multiple studies addressing the same research question. A large body of

methodological research can be found concerning the synthesis of clinical evidence from

published studies using statistical methods, a practice broadly known as meta-analysis

(Sutton et al., 2012). Meta-analysis can be defined as a statistical analysis that combines

or integrates the results from several independent studies (Egger and Smith, 1997). One

of the main reasons for implementing this type of procedure is the possibility of attaining

increased statistical power for the estimation of parameters (Higgins et al., 2009). This

thesis will explore how these methods can be used to incorporate HRQoL evidence within

the decision modelling framework.

1.4 Economic Evaluation in Policy

Health technology assessment (HTA) is a multi-disciplinary process that involves the eval-

uation of evidence of health care services in order to inform the reimbursement of those

services (Hutton et al., 2006). Economic evaluation has come to play an important role

in HTA, along with evidence on clinical effects and safety. The routine application of

economic evaluation in some countries has led to the production of guidance outlining

recommendations for best practice in the methods employed (CADTH, 2006; NICE, 2013;

PBAC, 2008). This followed advice from Gold and colleagues proposing the implemen-

tation of a methodological reference case to ensure consistency and comparability across

cost-effectiveness studies (Weinstein et al., 1996). Many agencies have specified a prefer-

ence for the submission of economic evidence with QALYs, although there is variation in

the degree to which this is a requirement. One agency – the National Institute for Health

Care Excellence (NICE) in England and Wales – has gone as far as recommending a refer-

ence case measure for the valuation of HRQoL, the EQ-5D, due to the inconsistences that

can arise between the different measurement options (NICE, 2013).

1.5 Thesis Overview

The broad aims of this thesis are to explore the methodological issues in the analysis of

HRQoL for cost-effectiveness analysis. More specifically, this thesis is concerned with sta-

tistical methods for incorporating HRQoL evidence within the decision modelling frame-

work. The objectives of this thesis can be set out into four research questions:

• Research question 1: Evaluate the current state of practice with respect to the sta-

tistical methods used to analyse HRQoL data in health economic modelling (chapter

2).
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• Research question 2: Evaluate the methods and guidance currently available, offer

further guidance where possible and identify areas where future research would be

worthwhile (chapters 3 and 4).

• Research question 3: Undertake a series of empirical case studies to test the method-

ological issues identified in research question 2 (chapters 5 – 7).

• Research question 4: What recommendations can be made on the basis of the find-

ings in this thesis? (chapter 8).

In Chapter 2, a review of submissions to NICE is carried out to characterise the statistical

methods used to incorporate HRQoL evidence in HEEs. The findings show that statistical

methods are used on an irregular basis and, as a result, there are fundamental inconsis-

tencies with respect to the use of HRQoL evidence. Chapter 3 reviews the methodological

literature and policy guidance relating to the methods for synthesising HRQoL evidence.

The review finds the policy guidance in this area to be vague and the statistical methods

available to be inadequate for researchers seeking to make comprehensive use of HRQoL

evidence. One of the key challenges in this regard is the issue of between-instrument het-

erogeneity. A recent study has suggested that this problem may be circumvented through

the use of mapping techniques. Chapter 4 reviews some of the statistical issues associated

with the development of mapping algorithms. A handful of studies are found to show that

structural equation modelling (SEM) techniques exhibit a great deal of promise when it

comes to the synthesis of HRQoL evidence involving heterogeneous outcome measures. In

light of these findings, investigations throughout the remainder of the thesis focus upon

the application of these methods.

Chapters 5 to 7 present a series of case studies applying SEM methods across the range

of plausible scenarios that researchers might expect to encounter in practice :

• Chapter 5 looks at the synthesis of multiple sources of evidence in the aggregate for-

mat;

• Chapter 6 looks at the synthesis of multiple sources of patient-level evidence;

• Chapter 7 looks at synthesising a combination of aggregate and patient-level studies

Chapter 8 provides a discussion that relates the findings of the thesis to the original aims

and objectives. Furthermore, the work covered in the thesis is considered in relation to

the broader implications for cost-effectiveness research in practice for policy-makers.
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Chapter 2

Taxonomy and Review of Current

Practice

The previous chapter argued that HRQoL evidence, along with other parameters used in

CEA, should be identified and synthesised from all available studies in order to avoid the

bias in the selection of evidence and to ensure that uncertainty surrounding the HRQoL

parameter estimates is fully characterised (Sutton et al., 2000). Yet this would rarely

appear to be the case in practice when compared to the synthesis of clinical evidence

(Cooper et al., 2005). The objective of this chapter is to review the current state of practice

with respect to the use of HRQoL data in health economic modeling and consider this in

relation to the evidence space that a researcher might plausibly encounter (Saramago

et al., 2012). A review of NICE technology appraisals is carried out in order to explore the

methodological landscape in this area. Existing research has found considerable variety

in the methods used to select and incorporate evidence into cost-effectiveness models for

NICE appraisals (Tosh et al., 2011). This chapter looks more closely at how the format

and diversity of the available HRQoL evidence influences the statistical methods employed

to derive model inputs. The methods are categorised using an existing taxonomy outlining

the possible scenarios faced by the analyst when dealing with available evidence (Saramago

et al., 2012). The original study focused mainly upon available techniques for the statistical

synthesis of clinical evidence given that the majority of the methodological developments

have taken place in this area. The review in this chapter looks at two of the key issues

from the study by Saramago and colleagues – the format of the evidence and the number

of data sources – with the objective to explore how the choice of methods for analysing

and synthesising the available HRQoL evidence depend upon these issues. An additional

data feature considered in this chapter is the instrument(s) used to measure HRQoL and
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how that might affect the choice of analytical method.

2.1 Methods

This chapter looks to characterize the methodological landscape with regards to the tech-

niques for analysing and synthesising HRQoL evidence for the purposes of health economic

evaluation. This section provides a description of the following: the process of selecting

NICE technology appraisals for review; the taxonomy employed to categorise methodolog-

ical approaches for the analysis of HRQoL data; and the process of identifying, selecting

and critically appraising information from the NICE technology appraisals.

Selection of NICE Technology Appraisals

The decision to look specifically at evidence submitted to NICE was predicated by two

key factors. Firstly, the methodological issues under investigation are only relevant insofar

as they have important implications for health policy decision-making. Given that NICE

submissions are used to inform real-world policy decisions, these were considered on the

grounds that they would provide an understanding of current practice in this context.

The second reason for looking at submissions to NICE was more practical; whilst there

might be other organisations with a similar remit to NICE, none are as transparent or

comprehensive in the reporting of evidence used to inform decisions. Despite focusing

upon NICE in this review, it is important to note that the thesis is not solely concerned

with NICE but rather deals with issues that are relevant to any organization interested in

the evaluation of technology adoption decisions using QALYs.

The sample of NICE technology appraisals selected for review in this chapter includes all

Single Technology Appraisals (STA) with recommendations issued in 2012. STAs consider

technology adoption decisions for a single health technology, typically a branded pharma-

ceutical scheduled for release, and differ from Multiple Technology Appraisals (MTA) that

evaluates technology adoption decisions for multiple competing health technologies devel-

oped for the treatment of patients in the same clinical indication. The STA process was

established in 2006 and involves the submission of an evidence dossier, including a health

economic evaluation, by the manufacturer of the technology. This differs from the MTA

process where there are multiple submissions from each of the relevant manufacturers as

well as the submission of a health economic evaluation from an Evidence Review Group

(ERG). The decision to focus solely upon STAs was pragmatic and taken in light of the

differences that exist in the public availability of reports (www.nice.org.uk) for the two
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processes, specifically: (i) the reporting of manufacturers’ submissions in the MTA pro-

cess is extremely limited and (ii) the format selected for the reporting of AGs’ submissions

differed from that in manufacturers’ submissions in the STA process.

Taxonomy

Given that this task is largely a qualitative exercise, a taxonomy has been employed in

order to categorise the methods used to analyse and synthesise HRQoL data, as well

as identifying areas requiring further research. The taxonomy has been adapted from

an existing study that categorised methods according to the possible scenarios that an

analyst might encounter when seeking to populate a cost-effectiveness model (Saramago

et al., 2012). The original study put forth three factors for consideration when choosing a

method for estimating model parameters describing clinical effects.

The first factor to consider is the number of sources of evidence available. Often, the

analyst might encounter a scenario where there are multiple studies available addressing

the same research question. Where this is the case, Saramago and colleagues emphasized

the importance of combining all relevant evidence in order to avoid a biased selection of

evidence (also known as evidence synthesis). Meta-analytic techniques are typically used

to pool data from multiple (reasonably homogeneous) studies and obtain more precise

treatment effects, which is particularly important when these effects are small (Egger and

Smith, 1997). Meta-analytic techniques have proved to be extremely popular with regards

to the synthesis of clinical evidence for health economic evaluation (Cooper et al., 2005).

A second factor considered as being an important determinant of the statistical methods

employed to analyse evidence for the purposes of HEE and included in Saramago and col-

leagues’ taxonomy is the format of the available evidence. The evidence may be available

either 1) in aggregate form only (also known as summary data), 2) at the individual-patient

level only, or 3) in a combination of aggregate- and individual-level data. Whichever sce-

nario applies, the researcher will typically require a mean estimate of the parameter(s)

of interest in order to calculate expected cost-effectiveness, and an associated measure

of uncertainty with a view to understanding the uncertainty associated with the decision

at hand (Briggs et al., 2006). Individual patient data (IPD) holds a number of advan-

tages over aggregate data (AD). With AD, the validity of the results is constrained by

the statistical methods undertaken in the original study; in contrast, access to IPD al-

lows researchers to use a wider range of methods for the analysis and synthesis of the

data. Furthermore, there may be the option to explore statistical heterogeneity in the

cost-effectiveness results using IPD by controlling for variables describing patient char-
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acteristics. This capability means that cost-effectiveness research with IPD can result in

more appropriate decision-making when compared to research with AD, particularly when

there are substantial differences in the estimated cost-effectiveness for a given intervention

across different patient subgroups.

The third and final factor in the taxonomy developed by Saramago and colleagues relates

to the number of parameters scheduled for estimation (single or multiple). This feature

bears particular relevance to the application of MCMC methods, conducted to explore

the uncertainty surrounding the cost-effectiveness results. Where possible, researchers

should seek to account for correlation between the various model input parameters when

conducting this type of exercise (Ades and Sutton, 2006); otherwise, they risk simulating

implausible combinations of input parameters that lead to a misrepresentation of the

uncertainty surrounding the cost-effectiveness results and decision problem.

For the purposes of this chapter, it was felt that the contribution by Saramago and col-

leagues lacked a crucial focal point in the process of utilizing HRQoL evidence for cost-

effectiveness analysis; namely, the type of instrument or process for deriving preference-

based HRQoL scores. In the interest of promoting the comparability of evidence across

technology appraisals, NICE has specified a preference for the valuation of HRQoL us-

ing the EQ-5D measurement in cost-effectiveness submissions (NICE, 2008, 2013). The

taxonomy has been extended to investigate whether statistical methods are being used to

promote consistency in the use of HRQoL evidence. Table 2.1 shows the modified tax-

onomy for the purposes of the review in this chapter. Note that it no longer accounts

for the number of parameters to be estimated; whilst this is still a relevant factor with

regards to the analysis of HRQoL data for cost-effectiveness analysis, it has been excluded

to prioritize the key factors without overcomplicating the taxonomy.

Data Extraction

The following documents outlining cost-effectiveness studies submitted to NICE were

downloaded from its website (www.nice.org.uk) for review:

• Manufacturer’s Submission This provides detailed information about the cost-effectiveness

model submitted by the sponsor to NICE as part of the STA process.

• Full Guidance This document outlines the whole appraisal process including the evi-

dence submitted, assessment of this evidence by the nominated ERG and the reim-

bursement decision taken by the NICE appraisal committee.
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Table 2.1: Modified Taxonomy

Single Source Multiple Sources

EQ-5D Alternative Homogeneous Heterogeneous

Outcomes Outcomes

Aggregate A1 B1 C1 D1

Data

Individual A2 B2 C2 D2

Patient Data

Combination - - C3 D3

• ERG Report This provides an overview of the ERG’s assessment of the evidence sub-

mitted to NICE and includes any additional analyses or modifications requested by

the group.

Data was extracted to classify the evidence used to derive model inputs according to

the gallery of scenarios in table 2.1. Information about the statistical methods employed

within each of those scenarios was also extracted. The review was primarily concerned

with the data and methods at the parameter level in line with the taxonomy although a

series of items were extracted at the model level, particularly with regards to the avail-

ability of patient-level data for each appraisal and the consistency of HRQoL evidence in

a given model. Table 2.2 outlines the items to be identified and extracted chiefly from the

Manufacturer’s Submission documents although the other two documents were checked to

see if there were any subsequent modifications in the analytical techniques employed. The

process of identifying information for extraction was relatively straightforward due to the

consistent and well-defined formatting in the NICE documentation.

2.2 Results

Sample Description

A total of 19 NICE STAs are reviewed in this chapter, the details of which are provided

in table 2.3. All of the cost-effectiveness analyses identified in the review were model-

based rather than trial-based, reflecting NICE methods guidance (NICE, 2013). One

appraisal surveyed two models corresponding to different indications (TA252). The models

differed in terms of the HRQoL evidence used so each was considered separately. The
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Table 2.2: Information Extracted

Model-level findings: issues concerned with format

- Evidence available: was there HRQoL data collected in a clinical trial?

- Evidence employed: was IPD used when available? If not, justification?

- Evidence employed: was the same source of evidence used to populate all of the

parameters in the model?

Model-level findings: HRQoL instruments

- Evidence available: where IPD was available, which instrument was collected?

- Evidence employed: where IPD was used, what was the HRQoL instrument?

- Evidence employed: was there consistency in the valuation methods for a given

model?

Parameter-level findings: issues concerned with format

- Evidence employed: how many sources of evidence were used to derive the param-

eters?

- Evidence employed: what was the format of the available evidence?

- Evidence employed: provide a description of the methods employed to analyse the

available evidence and derive parameter estimates.

- Evidence available: where available evidence wasn’t used, was a justification pro-

vided?

Parameter-level findings: HRQoL instruments

- Evidence employed: which instruments were used to measure and value HRQoL?

generalizability of the sample seems to be reasonable given that it covers a range of disease

areas, with cancer treatments being the most prevalent.

Model-Level Results

Table 2.4 shows a number of statistics related to the availability and use of HRQoL evidence

at the model-level. Almost all of the appraisals acknowledged the availability of HRQoL

data in the clinical trial associated with the treatments under investigation; however, only

around sixty percent of those submissions with such data utilised it to derive HRQoL model

input parameters. Where HRQoL data from clinical trials was disregarded, the following

justifications were provided: the data was not collected using the reference case instrument,

the EQ-5D (TA250), or similarly that the data collected did not include a preference-based

measurement (TA269); there were insufficient numbers of patients experiencing the defined

health states set out in the cost-effectiveness model (TA248); there was a low proportion

of patients completing the questionnaire (TA269); EQ-5D available but only available in

patients representing a subset of health states encountered in the cost-effectiveness model
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Table 2.3: List of STAs in the review

STA Disease Area

244 Respiratory

245 Cardiovascular

248 Endocrine, nutritional and metabolic

249 Cardiovascular

250 Cancer

252 Digestive system/Infectious diseases

253 Digestive system/Infectious diseases

254 Central nervous system

255 Cancer/Urogenital

256 Cardiovascular

258 Cancer/Respiratory

259 Cancer/Urogenital

260 Central nervous system

261 Cardiovascular

263 Cancer

266 Digestive system/Respiratory

267 Cardiovascular

268 Cancer

269 Cancer

(TA254). Two additional studies did not provide any justification, although in both cases

it would appear that the data was disregarded on the grounds that the HRQoL outcomes

were non-preference-based (TA258, TA261). Interestingly, even when trial evidence was

used, it was rarely suitable for estimating all of the HRQoL input parameters in a given

model; only two submissions relied entirely upon trial data for the estimation of the HRQoL

parameters (TA260, TA267). One notable issue was the inability of clinical trials to capture

the HRQoL effects of acute health events represented in the cost-effectiveness model, e.g.

stroke or myocardial infarction (TA244, TA249, TA266). Clinical trials developed to

capture data at defined time points may struggle to capture the HRQoL impact of acute

health events if the effects have elapsed between fixed follow-up visits (Bansback et al.,

2008).

Parameter-Level Results

Table 2.5 shows the use of HRQoL evidence in the sample categorised according to the

taxonomy. In the majority of cases, individual parameters (e.g. HRQoL values for a given
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Table 2.4: Results at the model level

Evidence available Frequency

Was there HRQoL data collected in a clinical

trial?

16/19 (84%)

Where IPD was available, which instrument was

collected?

- EQ-5D 8/16 (50%)

- Alternative PBM 1/16 (6%)

- Disease-specific patient-reported outcome 7/16 (44%)

Evidence employed

Was IPD used when available? 10/16 (63%)

Where IPD was used, which instrument was

used?

- EQ-5D 6/10 (60%)

- Alternative PBM 1/10 (10%)

- Disease-specific patient-reported outcome 3/10 (30%)

Was the same source of evidence used to popu-

late all of the parameters in the model?

4/19 (21%)

Was there homogeneity in the valuation methods

for a given model?

- Yes 7/19 (37%)

- No 10/19 (53%)

- Unclear 2/19 (11%)

health state in the model) were informed by a single source of evidence and heavily reliant

upon aggregate data from existing studies. Table 2.6 provides a more detailed breakdown

of the evidence according to the method of valuation. Despite NICE having specified a

preference for EQ-5D data, a large proportion of parameters employed alternative outcome

measures.

2.3 Taxonomy

This section outlines the analytical methods employed for the derivation of HRQoL inputs

across the range of scenarios set out the taxonomy in Table 2.1.

Scenarios A1 and B1

This section includes those scenarios where only one relevant source of aggregate data

has been identified for the purposes of informing a model input parameter. The review
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found, perhaps unsurprisingly, that there were no analytical methods employed in such

scenarios for the derivation of model estimates. Typically, mean estimates of HRQoL

associated with health states in the model (along with evidence to account for uncertainty

surrounding these values) were selected from an existing study, usually in the published

literature, and used directly in the cost-effectiveness model. For example, one model in

the review (TA249), evaluating treatments for the prevention of stroke and systemic atrial

fibrillation, used HRQoL estimates for three health states (mild, moderate and major

post-stroke health states) that were directly extracted from one study. Ideally, estimates

selected for use in the cost-effectiveness model should be based upon mean values in line

with a rationale set out in the cost literature which says that summary statistics other

than the arithmetic mean are inappropriate for health policy decisions because they don’t

take all of the observations in the sample into account (Thompson and Barber, 2000).

Moreover, the population average impact of a strategy is required for policy decisions,

which can only be obtained by multiplying the mean treatment effect by the number of

individuals that need treatment (Briggs and Gray, 1999).

Table 2.6: Parameter-level results

Instrument

EQ-5D (reference case) 84/193 (44%)

EQ-5D (Non-UK value set) 1/193 (<1%)

EQ-5D (mapping) 17/193 (9%)

Alternative Generic PBM 5/193 (3%)

Disease specific PBM 1/193 (<1%)

Valuation exercise (TTO, SG, VAS)

- General public valuing vignettes

(UK population)

19/193 (10%)

- General public valuing vignettes

(non-UK population)

5/193 (3%)

- Patient values 16/193 (8%)

- Health professional values 2/193 (1%)

- Lack of information 12/193 (6%)

Combination

- Homogeneous (EQ-5D) 15/193 (8%)

- Homogeneous (Other) 3/193 (2%)

- Heterogeneous 7/193 (4%)

- Unclear 2/193 (1%)

Not explicitly stated 4/193 (2%)
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Scenarios A2 and B2

Evidence available at the IPD level might come from a randomised controlled trial (RCT),

observational study or clinical registries. These data may have either been collected at a

single point in time (cross-sectional data) or across multiple time points for each individual

(repeated measures data). In total, there were sixteen cases in the review, relating to four

separate cost-effectiveness models that could be categorised as being either in scenario A2

or B2 (TA249, TA255, TA266, TA267).

The simplest approach in these scenarios involved the calculation of mean preference-based

HRQoL scores in a patient population or in patients groups relevant to the model input of

interest. One model (TA266), evaluating treatments for cystic fibrosis, used patient-level

HRQoL data from a clinical trial to populate model input parameters. First, baseline

HRQoL in the model was estimated on the basis of the mean score at baseline in the trial.

In addition, the data was used to provide estimates of change in HRQoL at week 14 relative

to baseline for each of the treatments under consideration. Mean estimates of change in

HRQoL were calculated for those patients who experienced an improvement in respiratory

symptoms as well as for those patients who did not experience an improvement.

There was one example identified in the review where regression methods were applied

to IPD to estimate multiple HRQoL input parameters (TA267). The cost-effectiveness

model, evaluating treatments for chronic heart failure, had a Markov cohort structure

with two health states (alive and dead) and captured HRQoL using a measure of disease

severity (the New York Heart Association classification or NYHA). All of the HRQoL

evidence used in the model came from one study, a subset of a clinical trial. In the study,

where patients were treated with either of the therapies under evaluation in the model,

EQ-5D data was collected at repeated time points.

Model inputs were derived from this dataset by analysing the impact of NYHA upon

EQ-5D using a mixed regression model specifically designed to handle multilevel data.

The analysis also accounted for the effect of patients’ baseline characteristics, the rate of

hospitalisation and the impact of the treatment group. The methodology employed for the

derivation of model inputs in this particular model was notable because it accounted for the

impact of treatment upon HRQoL over and above that explained by the model structure.

Typically, HRQoL inputs are associated with health states or events and assume that

these estimates are independent of the treatment that patients are receiving. The methods

employed in NICE appraisal 267 show that, with suitable evidence, this assumption can be

tested. Furthermore, regression methods might be considered for the analysis of HRQoL
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data at the IPD level for a number of other reasons. As previously mentioned, one of

the benefits of having access to IPD is the potential to explore heterogeneity in cost-

effectiveness estimates across patient subgroups. Whilst there were no such examples

in the review, others can be found in the published literature (Henriksson et al., 2008).

Alternatively, one might use regression methods to analyse HRQoL data in order to identify

and control for confounding factors that mask the true estimates of interest.

Scenarios C1 - C3 and D1 - D3

The review identified three types of methods involving the use of multiple sources of evi-

dence for the estimation of HRQoL parameters. Despite the extensive use of meta-analytic

methods for the synthesis of clinical evidence (Cooper et al., 2005), only two models in the

review were found to employ similar methods for the synthesis of HRQoL evidence (TA244,

TA255). Four of these cases pertained to a model evaluating treatments for metastatic

hormone-refractory prostate cancer (TA255) that accounted for the impact of several ad-

verse events upon HRQoL, including pulmonary embolism, febrile neutropenia, fatigue

and nausea. A literature search identified two studies with HRQoL estimates associated

with the impact of pulmonary embolism and two separate studies both providing HRQoL

estimates associated with the impact of febrile neutropenia, fatigue and nausea. For three

of the health states (febrile neutropenia, fatigue and nausea), the decision to synthesise

evidence from multiple studies looks justifiable on the grounds that the valuation methods

were homogeneous. Unfortunately, it was not possible to ascertain the homogeneity of the

evidence for the pulmonary embolism health state due to a lack of reporting.

Provided that patient-level datasets are sufficiently homogeneous, they can be pooled using

evidence synthesis methods for the derivation of HRQoL model inputs (either scenario C2

or D2). As with a single source of IPD, pooled IPD requires some form of analysis to

derive model inputs with the same analytical techniques being applicable. There were

two cases in the review where model inputs were derived using patient-level datasets that

pooled multiple sources of data, although unfortunately the analytical methods used for

the derivation of the model inputs were not specified (TA244).

There were a number of cases where a single source of evidence was employed when in fact

multiple sources were available with no obvious grounds for the restricted approach. One

noteworthy example of this can be found in TA254, an appraisal evaluating treatments

for multiple sclerosis. In here, EQ-5D data was collected in the clinical trial but this was

discarded from the model in the original submission on the grounds that the study popula-

tion only captured a subset of the health states set out in the model; instead, evidence was
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derived from a published study. However, experts reviewing the cost-effectiveness model

on behalf of NICE (the ERG) felt that the original submission had excluded potentially

relevant evidence, including the trial data, and so conducted an additional analysis that

involved taking the average of estimates from the trial data combined with those derived

from the published study. There were further examples in the review where analysts ap-

peared to have access to multiple sources of evidence but only opted to select a single source

with no discernable justification for doing so (TA244, TA245, TA249, TA256, TA263). In

many cases, alternative sources of evidence were utilized in sensitivity analyses.

Another method involving the use of multiple sources of evidence for the estimation of

HRQoL parameters is the adjustment of HRQoL values (twenty-three cases in total).

Given that HRQoL evidence is rarely collected specifically for the purposes of informing

a cost-effectiveness model, analysts often rely upon evidence collected in patients whose

characteristics do not exactly match those set out in the model. In such circumstances,

analysts might consider combining multiple HRQoL scores to adjust for factors such as

comorbidities or age (Ara and Wailoo, 2011). In most cases of adjustment, the evidence

being combined appeared to be homogeneous in terms of the valuation methods employed.

However, there were five cases of adjustment involving heterogeneous HRQoL values, all

in TA 256, two of which combined EQ-5D and standard gamble valuation and three that

combined EQ-5D valuations derived using different value sets.

There were nine cases in the review which employed adjustment techniques to account for

comorbidities, five of which applied a multiplicative approach, two that applied an additive

approach, whilst the remaining cases were unclear. For example, there was one case in

the review where literature searching was unable to identify HRQoL values for patients

in a post myocardial infarction (MI) health state with atrial fibrillation (AF). However,

there was one estimate for post-MI patients without AF (data in AD format) and another

for patients with AF without an MI (data also in AD format). An adjusted value was

then estimated by multiplying these two values together, also known as the multiplicative

approach. In contrast, the additive approach involves applying the estimated decrement in

HRQoL associated with one of the comorbidities to the absolute HRQoL value associated

with the other health state. Unfortunately, the choice of approach was not justified by

the authors. There were a further twelve cases of adjustment to account for the direct

effect of different treatments (all in TA252). In each case, the baseline value in the cost-

effectiveness model was adjusted (using the additive approach) according to the treatment

received. In addition, there were two cases of adjustment for age but unfortunately the

methods weren’t clearly specified (TA268).
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A third methodology observed in the review that involved the combination of evidence

from multiple sources was the use of mapping techniques for the indirect estimation of

model input parameters. Mapping, also known as cross-walking, refers to the prediction

of HRQoL values from an alternative outcome measure (Longworth and Rowen, 2011).

Relevant PBM values are not always available for the derivation of model inputs, especially

where a reference case measurement has been nominated, as is the case with NICE. In

this type of situation, analysts may turn to using evidence measured with an alternative

outcome measure in combination with a mapping algorithm, derived using an external

dataset, that links the reference case measure (as the dependent variable) to the outcome

measure available (the explanatory variable(s)). This algorithm might have either been

derived by the analyst using patient-level data or have come from an existing study in the

aggregate data format.

In total, there were seventeen model parameters spanning three separate models derived

via mapping techniques in the review. Owing to the fact that there is more than one

outcome measure involved when mapping, all of these cases have been categorised in

scenarios D1-D3. In two of the models, the input parameters were derived by applying

mapping algorithms to disease-specific patient-reported outcomes collected in clinical trials

(TA259 and TA260). In each case, the algorithms were predicted from IPD using ordinary

least squares (OLS) estimation techniques. The third model utilized a disease-specific

patient-reported outcome measure from a clinical trial (IPD) but the mapping process

was slightly different (TA268). Instead, a set of values (AD) associated with the disease-

specific measure was identified in the published literature (Rowen et al., 2011). This last

case does not constitute mapping in the traditional sense but rather the use of disease-

specific preference weights.

2.4 Discussion

The review in this chapter set out to identify the statistical methods employed to derive

HRQoL parameters for cost-effectiveness models and explore the factors influencing the

approach employed. The review identified four separate applications involving the use

of statistical methods to analyse HRQoL evidence for the purposes of cost-effectiveness

analysis. The first application concerns the methods employed when the analyst has IPD,

specifically in scenarios A2 or B2 of the taxonomy. Unfortunately, the methods employed

to derive model parameters in these scenarios were rarely set out explicitly, although

there was one notable exception, the NICE appraisal TA267. Despite the majority of
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appraisals having accessible trial data with HRQoL outcome measures, IPD played a

limited role in the population of the associated parameters in the cost-effectiveness model.

Two issues related to the collection of HRQoL data in clinical trials underpin this finding.

Firstly, just under half of the trials with HRQoL evidence collected measures without

associated preference weights, necessary for the estimation of HRQoL values. Whilst

some of the submissions overcame this problem by employing mapping procedures, for

others this provided sufficient grounds for discarding the evidence. Another observed

flaw with trial data contributing to this low usage was the inability of trials to capture

HRQoL effects – those typically associated with defined health states and events – captured

within the cost-effectiveness models. More generally, this points to a broader problem

regarding the collection of HRQoL data for cost-effectiveness models; such data is typically

collected as a secondary outcome measure, along the lines of clinical outcome measures,

with the intention to estimate the effects of the treatments under evaluation. These

findings would suggest that more consideration should be paid to the HRQoL requirements

of cost-effectiveness models in practice.

Another application requiring statistical methods to derive HRQoL parameters for cost-

effectiveness analysis is the use of pooling or meta-analytic techniques to combine HRQoL

evidence from multiple sources. As previously mentioned, these methods enjoy widespread

usage for the synthesis of clinical evidence (Cooper et al., 2005). Only a handful of cases

were identified in this review and those conducted synthesised evidence either by pooling or

calculating the mean. The lack of more formal synthesis techniques applied in this context

could be interpreted in two ways. Firstly, this could be viewed as being a consequence

of a limited evidence base; that is, meta-analytic techniques are rarely ever necessary

because analysts typically only have access to a single source of HRQoL evidence, at best.

However, there were many cases in the review where multiple sources of evidence were

available and synthesis techniques were not considered. This points to a second possible

explanation – a lack of recognition that HRQoL evidence, as with all other parameters,

should be identified and selected in a comprehensive manner to avoid bias. This second

point would also indicate a lack of exemplars and guidance with regards to the synthesis

of HRQoL evidence.

The third and fourth applications requiring statistical methods to derive HRQoL param-

eters – mapping and adjustment techniques – are similar in that they both seek to derive

inputs where there is no evidence of direct relevance to the cost-effectiveness model. The

relevance of the evidence depends upon a number of factors including: (a) the instrument

used to value HRQoL, especially where a reference case measurement has been specified;
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(b) whose values were used (patients, general population, other) and whether they re-

flect the jurisdiction in question (e.g. country-specific values); (c) the degree to which

the patient population (or health state description) in the study corresponds to that in

the model. Whilst analysts might not have access to HRQoL evidence fulfilling all of the

desired criteria, statistical methods may be employed to derive indirect estimates using

evidence satisfying at least some of the criteria.

One approach involved the adjustment of HRQoL values from studies where the patient

characteristics did not correspond to those set out in the model, particularly with regards

to factors such as age and comorbidities. The findings of the review would suggest that

there is no consistency with regards to the application of adjustment techniques. Where

adjustment techniques were used there were no justifications provided for the specific

approach selected (either additive or multiplicative). More generally, these techniques did

not appear to be employed routinely throughout the appraisals in the review. Many of

the models reviewed accounted for the effects of changes in health status by applying a

‘disutility’ – that is, a decrement in HRQoL – to the baseline HRQoL value. Despite

this, only there were only a handful of cases recognizing that found to have explicitly

acknowledged this issue.

Another approach involving the indirect estimation of model inputs is the combination

of evidence from multiple sources using of mapping techniques. As with the utilization

of adjustment techniques, there did not appear to be consistency regarding the usage of

mapping techniques. Of the seven appraisals that reported having access to a disease-

specific measure of HRQoL in the IPD format, only three made use of this evidence using

mapping techniques. For the remaining appraisals, this evidence was typically discarded

despite the fact that there appeared to be relevant mapping algorithms available in two of

these cases.1 However, neither of the two appraisals in question utilized values derived by

the reference case measurement, the EQ-5D. Whilst NICE has stated that mapped EQ-

5D values are regarded as being “second-best” when compared to EQ-5D scores derived

directly, it is unclear whether they are also inferior to values obtained via other means.

1TA250 reported having access to data for the EORTC-QLQ C30 and two studies were found containing

relevant mapping algorithms (Crott and Briggs, 2010; McKenzie and Van Der Pol, 2009). TA 269 reported

having access to data for the FACT-M and one study was found containing a relevant mapping algorithm

(Askew et al., 2011).
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Limitations

Whilst the sample selected for review in this chapter would appear to be generalizable in

the sense that it covers a range of disease areas, it is not without limitations. Firstly, the

review only considers cost-effectiveness evidence developed by pharmaceutical manufac-

turers seeking a positive adoption decision from NICE with regards the health technology

under review. It may be the case that manufacturers have a propensity to use different

methods from those that might be used by an independent assessment group; in particu-

lar, one could argue that manufacturers may have an incentive not to be comprehensive

in the selection of evidence. Whilst the review might only provide a partial viewpoint of

methodological practice in terms of the groups developing cost-effectiveness models, this

is not to say that it is unusable. In fact, the main finding of this chapter – the inconsistent

application of statistical methods – transcends the issue of which group was responsible for

submissions in the review and points to a broader issue regarding a lack of methodological

guidance.

Another issue concerning the generalizability of the findings in this chapter is the exclusive

focus upon NICE and cost-effectiveness evidence in the UK setting. As such, these results

are not necessarily indicative of practice globally. Nevertheless, NICE appraisals were

viewed as representing the best resource for the purposes of the review given the compre-

hensiveness in the reporting of the methods. Even so, the reporting of the evidence review

process was limited and this meant that it was difficult to ascertain whether all relevant

evidence was put into practice.

Finally, one might question whether the scope of the review is limited given that it deals ex-

clusively with model-based cost-effectiveness studies and there may be plausible scenarios

involving trial-based cost-effectiveness studies. The fact that all of the cost-effectiveness

submissions in the review employed a model-based approach is unsurprising given that

this method is considered to be the best method for adequate representation of costs and

outcomes of interest to policy makers.

Priorities for Future Research

The review of NICE technology appraisals outlined in this chapter has highlighted a num-

ber of fundamental inconsistencies regarding the application of statistical methods for the

analysis of HRQoL evidence. Synthesis, mapping and adjustment techniques were em-

ployed on an ad hoc basis and this raises concerns over the degree of comparability across

cost-effectiveness studies. Although HRQoL evidence should be identified and synthesised
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comprehensively to avoid biased selection of evidence, as well as adequately characteriz-

ing the associated uncertainty, the results in this chapter would suggest that this is not

the case in practice. Regardless of whether there are AD or IPD, from a single study or

multiple ones, researchers will often have to deal with a HRQoL evidence base that is het-

erogeneous in terms of the patient-reported outcomes available. As such, the development

of methods for the comprehensive utilization of HRQoL evidence, particularly in the face

of heterogeneous outcome measures, should be a priority for future research. The next

chapter looks at the existing methodological literature in this area to explore the statistical

techniques available for the synthesis of HRQoL evidence. A second issue established in

the review is the problem of data collection. One of the key factors complicating the use

of HRQoL data is the fact that evidence is rarely collected specifically for the purposes of

populating a cost-effectiveness model, i.e. so that one could estimate the HRQoL effects

associated with defined health states and events. Although further work is required in

relation to this issue, it will not be a research priority in this thesis.
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Chapter 3

Review of the Methodological

Literature

3.1 Introduction

The previous chapter identified a number of inconsistencies in the use of statistical methods

to derive HRQoL parameters for CEA. One trend of particular concern was the utilization

of a single source of evidence in scenarios where multiple sources were in fact available,

with no obvious grounds for the restricted approach. This approach implies a partial repre-

sentation of the evidence base and increases the risk of obtaining misleading results. This

chapter aims to evaluate the methods and guidance relating to the synthesis of HRQoL

evidence in HEE, to offer guidance where possible and identify areas where future research

would be worthwhile. A citation-search strategy is employed in order to identify any rel-

evant studies in this area. In addition, documents containing methodological guidance

issued on behalf of bodies employing health economic evaluation are also selected.

3.2 Literature Review: Methods

Following recommendations from Hinde and Spackman, a citation searching approach

was considered to be most appropriate approach for identifying relevant literature given

the discursive nature of the review (Hinde and Spackman, 2015). This recommendation

was based upon an illustrative methodological review showing that a citation-searching

approach, specifically bidirectional citation searching to completion (BCSC), was able to

identify a larger number of relevant studies that the standard Boolean logical approach,

based upon a keyword search.
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For the purposes of this review, the BCSC approach was employed, starting with four

studies as the initial pearls (Ara and Wailoo, 2011; Papaioannou et al., 2011; Peasgood

and Brazier, 2015; Saramago et al., 2012). These studies were selected based on prior

knowledge of their relevance to the review. The next step involved appraising the studies

referenced by the initial pearls, as well as the studies found to cite the initial pearls, and

selecting those studies identified as being relevant to the review. This process was repeated

until no additional studies were identified.

Additional search techniques were required in order to capture relevant information in the

grey literature (i.e. information outside of academic publishing), specifically any method-

ological guidance issued by policy-making bodies utilising economic evidence to inform

health technology adoption recommendations. The documents were identified from an ex-

isting review conducted on behalf of the International Society for Pharmacoeconomics and

Outcomes Research (ISPOR) (Eldessouki and Dix Smith, 2012). This was considered to

be a credible source given the important role that ISPOR has played globally in advancing

the science and practice of CEA in health policy over the past twenty years.

3.3 Literature Review: Results

In total, the review found nineteen potentially relevant studies, in addition to the four

references used as the initial pearls. These studies can be divided into two categories:

(i) applied meta-analytic studies involving the synthesis of HRQoL evidence, and (ii)

methodological studies providing discussion without any empirical evidence. The grey

literature review identified thirty-eight methodological guidance documents.

3.3.1 Applied Studies

A total of seventeen applied meta-analytic studies were identified as being potentially

relevant. One study was excluded on the grounds that it only provided a protocol outlining

plans for a systematic review and meta-analysis of HRQoL values associated with diabetic

retinopathy health states (Sampson et al., 2015). Another study was excluded given that

it did not pertain to the synthesis of preference-based HRQoL values (Kinney et al., 1996).

It would appear that all of the remaining studies synthesised aggregate data only (i.e. no

IPD), given that they referred to the identification and selection of evidence from the

published literature. Only two out of the fifteen remaining studies examined the direct

effects of health care interventions upon HRQoL (Cheng and Niparko, 1999; Wyld et al.,

2012). The remainder of the studies instead focused upon the estimation of HRQoL
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values associated with defined health states or events; for example, Lung and colleagues

combined evidence using a meta-regression approach to explore the impact of diabetes

and its related complications upon HRQoL values (Lung et al., 2011). The fact that

the majority of studies deal with defined health states and events (rather than treatment

effects) is unsurprising given that most cost-effectiveness studies are model-based and

estimate QALYs via surrogate health outcomes (see Chapter 2).

A descriptive outline of each of the applied studies is provided in table A.1 (see Appendix

A). One of the most notable observations in this review is the issue of how to handle

heterogeneity when dealing with different outcome measures. A selection of studies might

be considered to be homogeneous if they are all capturing a common parameter estimate.

However, this assumption relies upon the studies being identical in terms of the factors that

may influence the dependent variable, including the patient populations involved and the

exposures or interventions under investigation. In practice, some degree of heterogeneity

is inevitable and, provided that the studies are assumed to be sufficiently similar for meta-

analysis to be considered viable, two methods have been proposed to deal with this: (i)

the inclusion of study-level covariates, also known as meta-regression, and (ii) embracing

a random effects modeling approach (Higgins et al., 2009).

Meta-regressions seek to explain heterogeneity in parameter estimates obtained through

the synthesis of evidence from multiple studies in relation to one or more characteristics

of the studies involved (Thompson and Higgins, 2002). This approach featured in the

majority of applied studies identified in the review as a means to explore variations in

HRQoL values according to disease stage or health state. Covariates were also included

to control for imbalances in study-level characteristics such as age and gender. A large

proportion of studies also included dummy-variable covariates in an effort to overcome

the lack of comparability existing between alternative instruments for valuing HRQoL

(Conner-Spady and Suarez-Almazor, 2003). Two studies took a different approach and

selected a reference case measurement, the EQ-5D, and exclusively synthesised evidence

pertaining to this measure (Doth et al., 2010; Peasgood et al., 2009). Although this method

might alleviate concerns about a lack of comparability between instruments, restricting

searches to a reference case measure may provide an incomplete representation of HRQoL

effects or, in some cases, no evidence at all. Two further studies opted to undertake

separate analyses for different outcome measures (Liem et al., 2008; Mohiuddin and Payne,

2014).

The random-effects approach to evidence synthesis is often utilized as a means of control-

ling for unobservable heterogeneity between studies (Higgins et al., 2009). In a Bayesian
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context, the concept of exchangeability is often used to consider the a priori judgments

regarding the similarity of evidence (Lunn et al., 2012). A large proportion of applied

studies identified in the review were found to employ random-effects models to synthesise

HRQoL evidence. Another trend with important methodological implications is the fact

that many of the applied meta-analytic studies used values obtained from the same study.

The standard approach to meta-analysis, which assumes that all data points are indepen-

dent of one another, is inappropriate when observations are in fact correlated; specifically,

this can lead to biased estimation of the standard errors associated with the parameter

estimates. As such, it would seem incorrect to assume independence between values when

some have been obtained from the same study and so different assumptions are necessary.

A number of studies employed a clustering approach that treats the data clusters (i.e.

values from the same study) as being independent of one another (Djalalov et al., 2014;

Peasgood et al., 2010; Wyld et al., 2012). Other studies chose to employ hierarchical

modelling techniques (McLernon et al., 2008; Sturza, 2010; Tengs and Lin, 2002, 2003).

This method is considered to be more flexible than the clustering method given that it

allows for some exchangeability between the clusters (Baio, 2012).

3.3.2 Methodological Studies

The BCSC search strategy identified two methodological studies (Ara and Wailoo, 2012;

Papaioannou et al., 2013), although both of these were adapted versions of references

used as the initial pearls (Ara and Wailoo, 2011; Papaioannou et al., 2011). There were

two additional methodological studies also used as initial pearls (Peasgood and Brazier,

2015; Saramago et al., 2012). A report commissioned by NICE recognised that whilst

NICE does not require a formal quantitative synthesis of HRQoL evidence, there may

be situations where the use of such methods is warranted (Ara and Wailoo, 2012). The

same report recommended that where HRQoL values are sufficiently homogeneous then

pooling should be considered as a way to improve the precision of the estimates of the

mean utility values and their variances. Although the report does not provide an explicit

clarification regarding the necessary degree of homogeneity, it does suggest that this could

refer to those scenarios where values have been “collected in the same patient population

using the same instrument and using the same UK value (set)”, which may only apply in

a selected number of scenarios. Another report issued by the DSU identified the challenge

of synthesizing HRQoL evidence in practice given the heterogeneity that is often observed

between studies (Papaioannou et al., 2011). The authors noted that the methods for

undertaking this type of synthesis are unclear and that further research is necessary.

41



Much of the methodological discourse regarding the synthesis of HRQoL evidence focuses

upon the issue of between-study heterogeneity. Saramago and colleagues identified three

challenges in this regard: (i) variation in the instrument used to derive HRQoL values;

(ii) variation in the population whose values are used; (iii) inadequacy of the available

statistical methods in the handling of these issues (Saramago et al., 2012). The authors

recommended the prioritisation of future research efforts concentrated on the development

of methods for synthesising heterogeneous PRO measures. This call is echoed by a recent

study by Peasgood and Brazier (2015); they argue that the inclusion of covariates to

account for differences in valuation methods (in a meta-regression) is unlikely to pick up the

relative weights attributed to the different domains. The differences between alternative

preference-based measures of HRQoL can be attributed to a number of factors – differences

in their descriptive systems, as well as the techniques used to obtain the associated value

sets – and it is unlikely that a dummy variable will be able to characterise these differences.

Peasgood and Brazier (2015) point to the use of mapping techniques as a potential means

of resolving the differences between values from heterogeneous outcome measures (Peas-

good and Brazier, 2015). As previously mentioned, mapping involves the prediction of

HRQoL values for a reference case instrument using scores or responses to some other

outcome measure in combination with a mapping algorithm linking the two outcome mea-

sures. Another appealing prospect associated with the use of mapping techniques would

be the ability to draw upon non-preference-based measures of HRQoL, which could un-

cover a much greater evidence base for researchers to draw upon. Despite the potential

of the mapping approach, Peasgood and Brazier (2015) are careful to acknowledge that

these techniques have a number of limitations, especially the prediction errors that oc-

cur as a result of their usage. There is already a significant body of literature devoted to

methodological issues associated with the development of mapping algorithms (Longworth

and Rowen, 2011). The next section outlines some of these issues and considers them in

relation to a methodology for evidence synthesis.

3.3.3 Grey Literature

There was only one document found in the grey literature that made a reference to the

synthesis of HRQoL evidence, issued on behalf of the Health Intervention and Technology

Assessment Program in Thailand (Sakthong, 2008). However, the reference was limited to

a single remark recognising the need for “a systemic approach including meta-analysis. . . to

combine utilities taken from different studies”. Whilst NICE makes no reference to the

synthesis of HRQoL evidence in its ‘Guide to the methods of technology appraisal’ (NICE,
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2013), further guidance developed by the Decision Support Unit (DSU) – a body commis-

sioned by NICE to provide research and educational activities – makes recommendations

with regards to this matter. One of the reports written by the DSU recognised that whilst

NICE does not require a formal quantitative synthesis of HRQoL evidence, there may be

situations where the use of such methods is warranted (Ara and Wailoo, 2011). The same

report recommended that where HRQoL values are sufficiently homogeneous then pooling

should be considered as a way to improve the precision of the estimates of the mean utility

values and their variances. Although the report does not provide an explicit clarification

regarding the necessary degree of homogeneity, it does suggest that this could refer to

those scenarios where values have been “collected in the same patient population using the

same instrument and using the same UK value (set)”, which may only apply in a selected

number of scenarios. Another report issued by the DSU identified the challenge of synthe-

sising HRQoL evidence in practice given the heterogeneity that is often observed between

studies (Papaioannou et al., 2011). The authors noted that the methods for undertaking

this type of synthesis are unclear and that further research is necessary.

3.4 Discussion

Researchers undertaking economic evaluations may find that they have more than one

relevant source of HRQoL evidence for the estimation of QALYs. Ideally, HRQoL evidence

should be identified and synthesised from all available studies in order to avoid bias in

the selection of evidence and to ensure that uncertainty surrounding the estimates is fully

characterised (Sculpher et al., 2006). However, chapter 2 found that there are fundamental

inconsistencies regarding the use of statistical methods for the purposes of achieving this

objective. Guidance on this matter – typically issued on behalf of the policy-making

bodies that use economic evaluation to inform health technology adoption decisions – was

found to be severely lacking. In the case of NICE guidance, synthesis of HRQoL evidence

from multiple sources is recommended but only where studies are sufficiently homogeneous

(Ara and Wailoo, 2011). Observing this recommendation in the strictest sense would imply

synthesis should only be considered in HRQoL values captured using the same instrument

given the lack of comparability in values derived via different instruments (Conner-Spady

and Suarez-Almazor, 2003).

A review of the methodological literature found that researchers looking to synthesise

HRQoL evidence have struggled contend with two competing objectives. A review of the

methodological literature found that researchers looking to synthesise HRQoL evidence
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have struggled to strike a balance between achieving both completeness – that is, making

use of all available HRQoL evidence, irrespective of the outcome measure – and compara-

bility – where HRQoL effects can be compared on a common scale. This situation is far

from ideal as it brings a potential risk of obtaining misleading results as a consequence

of the partial representation of the evidence base. A recent study has suggested that this

problem might be circumvented through the use of mapping techniques (Peasgood and

Brazier, 2015). There is already a significant body of literature devoted to methodological

issues associated with the development of mapping algorithms (Longworth and Rowen,

2011). The next chapter outlines some of these issues and considers them in relation to a

methodology for evidence synthesis.
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Chapter 4

Methods for Synthesising

Heterogeneous HRQoL Evidence

4.1 Introduction

Traditionally, mapping has been seen as a second-best option for the estimation of preference-

based HRQoL values, when compared to the collection of values first-hand (NICE, 2008).

As such, the application of mapping techniques has only been advocated in those scenarios

where direct evidence is unavailable and, even with these restrictions, concerns exist about

the validity of mapped estimates of HRQoL (Longworth and Rowen, 2011). However, a

recent study has proposed their usage more broadly as a means of making comprehensive

use of available evidence whilst also capturing HRQoL effects on a comparable scale (Peas-

good and Brazier, 2015). This chapter considers the potential role of mapping techniques

in combination with evidence synthesis techniques. It starts by reviewing some of the

statistical issues associated with the development of mapping algorithms. It then consid-

ers the bias introduced when mapping algorithms do not account for measurement error

across all outcome measures and how this can be avoided by employed structural equation

modeling techniques. Finally, the structural equation modeling framework is described in

relation to the challenges involved in the analysis of preference-based measures of HRQoL

4.2 Statistical Methods for Mapping

Much of the methodological debate in this area has revolved around the development of

statistical methods capable of overcoming the shortcomings of standard regression meth-

ods for the analysis of preference-based measures of HRQoL. Despite the popularity and

simplicity of the ordinary least squares (OLS) approach to regression analysis, the main
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drawback of this method is that it does not guarantee that predictions will lie within a

plausible range – OLS can lead to the prediction of values greater than 1, the highest value

achievable (Chuang and Kind, 2009).

The methodological literature aimed at overcoming this problem can be broadly cate-

gorised into two groups. The first of these groups has focused upon the development of

methods better suited to characterising the distribution of HRQoL index values. Regres-

sion models based upon the beta distribution have been put forward to account for the

bounded nature of health index values (Basu and Manca, 2012; Hunger et al., 2011). The

rationale for the beta regression is that the dependent variable is assumed to be restricted

between 0 and 1. A simulation exercise showed these methods to be more robust for the

estimation of covariate effects compared to OLS (Basu and Manca, 2012). However, em-

pirical studies have shown this approach to be comparable to OLS in terms of predictive

performance (Basu and Manca, 2012; Hunger et al., 2011).

Hernandez Alava and colleagues developed a model to capture some specific distributional

features of the EQ-5D (with a UK value set) (Alava et al., 2012, 2014). This model

incorporated an adjusted limited dependent variable model to deal with the gap in EQ-5D

values between 0.883 and 1, as well as restricting values above 1. For the remainder of the

distribution, a mixture model was employed to account for the multimodality observed

in the EQ-5D values, in part explained by the weightings assigned to the N3 term in

the UK value set. This model was defined as the adjusted limited dependent variable

mixture model (ALDVMM) and the initial studies indicate that it performs well in terms

of predictive performance (Alava et al., 2012, 2014). Whilst other methods have been

employed to analyse HRQoL index values, on-going research in this area has indicated

that the Beta and ALDVMM approaches hold the most potential.1.

An alternative strand of mapping research, known as response mapping, analyses responses

to the health state descriptions of preference-based measures as opposed to the health index

values predicted using such responses. Response mapping has an intuitive appeal because

it deals directly with subjects’ responses and therefore ensures the prediction of feasible

health index values. Another advantage is that the predicted response values can be used

in different countries with country-specific valuations (Rivero-Arias et al., 2010).

The modelling approach required for response mapping is fundamentally different from the

previous techniques dealing with index values given that it involves analysing categorical

outcomes. In many of the existing response mapping studies, a separate analysis was

1See research grant http://gtr.rcuk.ac.uk/project/5A46044C-DC5B-4A0D-B21E-863FCFF87114

46



conducted for each of the different dimensions of the health state descriptive system with

modelling techniques including multinomial logit (Gray et al., 2006), ordered logistic (van

Hout et al., 2012) and ordered probit (Alava et al., 2014). There have been concerns

raised over whether or not response mapping should account for correlations between

dimensions (Alava et al., 2014). A recent study by Coniglian and colleagues (2015) has

demonstrated that dependences between dimensions can be modelled using a multivariate

approach (Conigliani et al., 2015).

The outputs of these models are not especially intuitive given that the outcomes have to

be transformed to facilitate their analysis. In the case of the logistic models, parameter

estimates show the impact of predictors upon the log-odds of a given response level whilst

the ordered probit captures effects in terms of the standard normal distribution. However,

these outputs can be converted into probabilities such that there is a probability associated

with each of the potential responses within a given dimension according to a given set of

predictors. With these probabilities, one can predict HRQoL values by combining them

with the associated value sets either using an expected utility approach, using the response

with the highest probability or using Monte Carlo procedure (Gray et al., 2006).

The evidence pertaining to the predictive performance of response mapping techniques is

mixed but overall comparable performance to OLS (Chuang and Kind, 2009; Gray et al.,

2006; McKenzie and Van Der Pol, 2009; van Hout et al., 2012). Hernandez-Alava and

colleagues found that predictive performance of the generalized ordered probit model was

worse than the ALDVMM (Alava et al., 2014). Despite this, one advantage of the response

mapping approach over the ALDVMM is that, unlike the ALDVMM, it does not apply to

a single instrument and value set. Furthermore, response mapping ensures the prediction

of feasible health index values whilst also providing a more detailed understanding of the

relationships between different outcome measures (Dakin et al., 2013).

4.2.1 Measurement Error and Mapping

Although conventional wisdom holds that mapped estimates of HRQoL are second-best

to observed estimates for use in cost-effectiveness studies, recent studies have proposed a

rationale for the use of mapped estimates of HRQoL in cost-effectiveness analysis (Lu et al.,

2013). This concept relies upon an alternative mapping approach, known as the common

factor model (CFM), which characterises the relationship between outcome measures in

terms of a shared, latent factor. Not only does this approach potentially pave the way

towards the synthesis of heterogeneous HRQoL outcome measures (Lu et al., 2014), it

is also claimed to potentially deliver more efficient HRQoL estimates than those derived
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directly (Ades et al., 2013).

Lu et al. (2013) were the first to put forward the CFM for the purposes of mapping in

CEA. Their study developed a mapping algorithm to predict generic HRQoL scores from

disease-specific measures (DSM) based upon the assumptions (a) that both measures share

some underlying construct, known as the common factor model, and (b) that the DSM

is a pure measure of the variability of interest with the exception of measurement error.

These assumptions were set out in formulaic terms by splitting the measures into separate

components, as represented by the equation below:

DSMi = α1 + β1CFi + ε1i (4.1)

Geni = α2 + β2CFi + β3Otheri + ε2i (4.2)

Based upon the equations above, the authors postulated that a coherent mapping between

the two measures should be realized in terms of the common factor, specifically the ratio

of the coefficients upon this factor, β1/β2. The authors demonstrated that this term

can be derived by re-parameterizing the common factor model in terms of reliability and

responsiveness. In practice, estimation of this term requires external information about

the reliability of the DSM as well as the covariance structure associated with the DSM

and generic measure (or patient-level data from which this can be estimated).2

The authors proposed three key properties for a mapping system to be considered coherent:

invertability, transitivity and scale invariance. A case study was conducted using trial data

with three outcome measures – EQ-5D, SF-12 and the Beck Depression Inventory – that

demonstrated the adherence of the CFM to each of these properties. A range of other

regression techniques were conducted, including OLS, but none were shown to consistently

possess all of these properties. The geometric mean regression was the only method, other

than the CFM, shown to be capable of possessing all three properties, although only in

specific circumstances.

Lu and colleagues have recently claimed that the CFM framework would be well placed

to synthesise evidence from multiple heterogeneous HRQoL outcome measures (Lu et al.,

2014). The CFM approach assumes that these different measures capture alternative real-

isations of the same underlying construct(s). In doing so, this method avoids disregarding

2Note that the authors show another method that does not require external information about reliability

but instead uses information for two generic measures and one DSM. However, the methods associated

with this approach are not considered in this chapter.
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potentially relevant evidence, simply because it has not been produced using the bench-

mark PRO instrument chosen by the decision maker (e.g. in the case of NICE, the EQ-5D)

or a commonly reported outcome in the disease area.

The CFM developed by Lu and colleagues (2013), whilst promising, is not without limita-

tions; thus far, research has been conceptual and only a handful of case studies have been

conducted (Lu et al., 2013). First, the CFM applications to date have been concerned

with the synthesis of HRQoL evidence relating to treatment effects. In practice, most

cost-effectiveness models require HRQoL parameters associated with defined health states

and events, rather than just treatment effects and, as a consequence, require baseline

HRQoL values associated with not experiencing the event or health condition (Ara and

Wailoo, 2012). Given that the CFM in its current form is only capable of synthesising

evidence capturing relative effects, further research is required to determine if and how

one could go about synthesising evidence associated with absolute values.

Another limitation of the methods currently available is that they assume that the common

factor representing treatment effects can be captured by a unitary construct. Lu et al.

(2013) noted that certain disease areas might not be characterised by a single construct.

The paper does not suggest how one might go about extending the CFM to deal with

multiple health domains. This would seem particularly important given that many DSMs

are composed of several subscales capturing different dimensions of health.

Finally, the CFM developed by Lu and colleagues (2013) employed a simple linear esti-

mation procedure that does not take into account some of the unique features of HRQoL

data. This approach does not guarantee that predictions will lie within a feasible range,

nor does it adequately account for the unique distribution of health index values. As such,

the CFM would benefit from further research to generate methods better suited to the

handling of these features.

The next section considers many of the issues raised in the context of the structural equa-

tion model framework given that the CFM developed by Lu and colleagues (2013) can

be formulated as a structural equation model (SEM). SEMs have enjoyed extensive ap-

plication in other areas of research, particularly psychometrics research, which has seen

significant methodological advances to contend with the complex relationships often hy-

pothesized in terms of latent variables. The descriptive systems of preference-based mea-

sures of health share a likeness with the outcome measures used in psychometrics in that

they are both attempting to measure human perceptions of subjective concepts. As such,

the capability of SEMs opens up a range of opportunities for effectively contending with
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the challenges of analysing preference-based measures to derive HSVs for the estimation

of QALYs.

4.3 Structural Equation Models

The term structural equation model refers to a broad family of related statistical models

rather than a single specific technique (Kline, 2006). In fact, many well-known statistical

techniques, such as variance and regression analysis, can be undertaken within the SEM

framework. One of the distinguishing features of SEM’s is that they allow an explicit

representation of observable and latent variables. These relationships are commonly ex-

pressed in algebraic form or in a graphical format (Moon-Ho et al., 2012). An abstract

example is provided in Figure 3.1 to explain some of the concepts further.

SEM diagrams typically employ circles to represent latent variables and rectangles to

represent observed variables (Moon-Ho et al., 2012). In Figure 4.1, there is one variable

representing a hypothetical construct of interest, labelled “CF” representing a “common

factor”, and a further four latent variables representing error terms. The relationships

between variables are represented using arrows, with each starting at the independent

variable and ending at the dependent variable.

The model in Figure 4.1 assumes that the observed variables, indicators 1 to 4, are related

due to the action of the unobserved construct, CF. Any observed correlations between the

indicators are assumed to occur as a result of this construct. The relationship between the

construct, CF, and the indicators is represented by the coefficients on each of the arrows

(λ1,λ2,λ3 and λ4), known as factor loadings. It is also assumed that the observed variables

are partly determined by other factors and this is captured in the model with the error

terms (ε1,ε2,ε3 and ε4). As such, the model has decomposed the variance of each of the

observed variables into two parts: a shared part (CF) and a unique part (εi).

Figure 4.1: Graphical Example of a Structural Equation Model
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The model in Figure 4.1 can be tested provided that there is data available containing

each of the variables of interest, specifically a variance-covariance matrix. The analysis

undertaken, known as a confirmatory factor analysis (CFA), aims to identify a set of

parameters, or more specifically the factor loadings, that minimize the difference between

the observed and estimated data (Lei and Wu, 2012). This method for deriving parameter

estimates is very similar to that with an OLS regression analysis.

An important assumption made in SEMs, such as the one in Figure 4.1, is that of model

identification. There are two key conditions that must be satisfied for a model to be

identified. First, the amount of unknown information in the model should be less than or

equal to the amount of observed information available. The term unknown information

relates to the number of free parameters in the model, which may include factor loadings,

factor variances and error terms3. The amount of observed information refers to the

number of elements in the variance-covariance matrix. For example, the model in Figure

4.1 has ten pieces of information – four observed variables with four variances and six

covariances4.

The second condition for model identification is that every factor must have a scale.

Latent variables are not directly measured and require a scale so that their variances are

interpretable. This can be achieved in two ways. The first involves fixing the variance of

a factor to equal a constant (e.g. equal to 1). Alternatively, one might fix a factor loading

for one of the indicators to equal 1, effectively scaling the variance of the latent variable

to equal that of the indicator variable.

The two aforementioned conditions represent the minimum theoretical requirements for a

model to be correctly identified5. Where these conditions are not met, the model is said

to be under-identified and the analyst should consider an alternative specification. The

first condition implies that a standard CFA requires at least three factors in order to be

correctly identified. Interestingly, the CFM developed by Lu and colleagues (2013) would

have been under-identified were it not for the addition of external information relating

to the reliability of the DSM. This model, represented in equations (1) and (2), is set

out graphically in Figure 4.2. Note that the latent factor, Otheri, has been incorporated

within the error term, εi. The following sections will consider the extension of this model

3It is worth noting that not all model parameters will necessarily be free; sometimes parameters are

constrained to a specific value, also known as fixed parameters.
4In general, for k observed variables, there are k(k + 1)/2 pieces of information (Kenny and Milan,

2011).
5Note: models that are theoretically identified are still prone to empirical under-indentification due to

data related problems (Kline, 2006).

51



to handle DSMs with multiple constructs and dealing with item-level responses rather

than the index values from generic instruments.

Figure 4.2: Graphical Representation of the Common Factor Model

4.3.1 Dealing with Multi-Construct Outcome Measures

The model set out in Figure 4.2 assumes that the observed DSM is represented by a single

score. In practice, DSMs are often composed of many multi-choice questions, known as

items, and these items may be organised into groups that measure separate constructs.

For example the cancer-specific questionnaire, the European Organization for Research

and Treatment of Cancer Quality of Life Questionnaire Core 30 (EORTC QLQ C-30),

has 30 items that cover several health domains including five functioning scales, a global

QoL scale and nine symptom scales (Fayers et al., 1999). As such, analysts may wish to

characterise DSMs within SEMs at the item-level or sub-score level and, in some cases,

this might be necessary where there is no overall summary score.

First, let us consider the scenario of a DSM with several sub-scores, each measured on

a continuous scale, and the summary scores for a generic measure, also measured on

a continuous scale. In practice, the sub-scores of DSMs are often designed to capture

different aspects of the condition of interest. For example, the EORTC QLQ-C30 covers

five functioning scales, including physical, role, social, emotional and cognitive functioning.

For this reason, it will often be more appropriate to assume that the separate sub-scores

are explained by different factors. Figure 4.3 illustrates a model with separate factors

corresponding with the different sub-scores.

This model assumes that the sub-scores, DSM1 and DSM2, are explained by separate

underlying constructs. As with the CFM set out in Figure 4.2, the sub-scores here can

be assumed to be “pure” measures of these constructs with the inclusion of external

information about the reliability of the sub-scores. However, the model in Figure 4.3 relies

upon a strong assumption that the error terms (ε1,ε2,ε3) are uncorrelated. In practice,

this might be too strong an assumption given that there may be remaining shared variance

between the sub-scores of the DSM, beyond that explained by the model. Where there
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Figure 4.3: Graphical Example of a Structural Equation Model with a Multi-Construct

Disease-Specific Measurement

are concerns that this might be the case, one solution would be to introduce an additional

factor into the model that accounts for the shared variance between the sub-scores of the

DSM.

4.3.2 Dealing with Item-Level Responses

SEMs are capable of analysing item-level responses to both generic measures and DSMs

thanks to methodological advances in the way that categorical data is handled (Edwards

et al., 2012). However, this raises a number of challenges in relation to the application

of the CFM, all of which relate to the question of how many latent factors should be

specified. First, suppose that we have item-level responses for the DSM and index values

for the generic measure; should we specify a different latent factor for each of the items, in

a similar fashion to the model in Figure 4.3? It will often be the case that different items

on the same measure will be specified to capture different aspects of the same construct.

As such, one would expect to specify a model such as the one in Figure 4.4.

Figure 4.4: Graphical Example of a Structural Equation Model with Multiple Categorical

Items Loading on the Same Factor

This model represents an important departure from the original CFM because it no longer

assumes that we have one pure measure of the construct of interest. Instead, it assumes

that there are several items that capture slightly different aspects of the construct and
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that we are interested in the variability that is shared between these items6. This raises

the question of whether we really need external information about the reliability of the

items. Unlike the models in Figures 4.2 and 4.3, this model is correctly identified thanks

to the additional items on the latent factor.

The benefits of having access to IPD for the purposes of synthesising HRQoL data with

structural equation modeling techniques – in particular, the ability to exploit item-level

information – have yet to demonstrated in the context of HEE. Only one study has been

found to employ an SEM-type approach, specifically a multidimensional item response

theory (IRT) method, to analyse preference-based measures of HRQoL at the item level

(Gibbons et al., 2014). This study showed that the multidimensional IRT model performed

well in terms of its ability to predict EQ-5D scores compared to traditional regression

methods. Despite showing early promise, the predictive performance of this approach

has yet to be externally validated. These issues are explored further in the case study

presented in chapter 6.

4.4 Priorities for Future Research

Although promising, early research involving SEM techniques for the synthesis of HRQoL

evidence has been conceptual and lacking in generalisability. Critically, most of these

studies do not even involve preference-based measures of HRQoL. Further research ex-

ploring the application of SEM methods in a greater range of scenarios is required to

inform policy makers and the research community alike about the likely implications of

adopting such methods. The primary objective for the remainder of the thesis is to in-

vestigate the plausibility of the SEM framework serving as a generalised framework for

the handling of HRQoL evidence. SEM methods are tested across each of the scenarios

illustrated in the taxonomy in Chapter 2; in each case, a comprehensive synthesis of het-

erogeneous HRQoL outcomes using the SEM approach is compared against a restrictive

synthesis involving a reference case measurement. Whilst the methods for identifying and

selecting HRQoL evidence for CEA are not the primary concern of this thesis, it is impor-

tant to distinguish between the alternative inclusion criteria for study selection that may

be specified. For convenience, the term “reference case” approach is used to refer to a

systematic review of HRQoL evidence with the inclusion criteria restricted to select only

those studies that collecting the reference case measurement (e.g. the EQ-5D for NICE).

6This model is said to be uni-dimensional because it assumes that there is a single factor loading on all

of the item responses.
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The term “all-inclusive” approach is used to refer to a systematic review that incorporates

a range of outcomes beyond the reference case measurement. The additional measures

could potentially include any of the following: alternative generic preference-based mea-

sures, condition-specific preference-based measures, generic PROs (non-preference-based)

or disease-specific PROs (non-preference-based). Assuming that the “reference case” and

“all-inclusive” approaches are identical in all other aspects of the inclusion criteria (i.e. the

population characteristics of interest), the studies selected in the former approach should

always either be the same as or a subset of those studies selected in the latter approach.

In addition, the implications of these alternative approaches will be explored in the con-

text of a cost-effectiveness model. The thesis also looks to investigate the advantage for

researchers having access to patient-level data, rather than aggregate data.
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Chapter 5

Case Study I: Synthesis of

Aggregate Data

5.1 Introduction

Chapter 3 identified the SEM framework as a potential avenue for the synthesis of het-

erogeneous HRQoL in CEA. It was decided that further empirical research was required

in order to evaluate the feasibility of this methodology in practice. This chapter focuses

upon scenario D1 from the taxonomy in Table 2.1 where researchers, seeking to estimate

HRQoL parameters for CEA, are faced with an evidence base involving multiple sources

of evidence in the AD format. One study has been identified to date as having used SEM

techniques in this context although it did not involve preference-based HRQoL values

(Lu et al., 2014). Furthermore, this study did not consider the implications of using the

SEM approach for CEA in comparison to current methods. As such, this chapter seeks

to (a) identify the methodological challenges unique to scenario D1, and (b) to compare

HRQoL parameter estimates, derived using an “all-inclusive” approach to evidence syn-

thesis with SEM methods, against those obtained using a “reference case” approach to

evidence synthesis with standard meta-analytic methods.

5.2 Background

This section provides context in relation to the application of SEM techniques using evi-

dence in the AD format.
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5.2.1 Evidence Synthesis via Standard Meta-Analytic Methods

In this chapter, the meta-analytic approach used to synthesise the “reference case” evi-

dence includes both covariates, for explained heterogeneity, and random effects, for resid-

ual heterogeneity. This method is implemented using a Bayesian approach and the model

specification is illustrated in Equations 5.1 – 5.5. The Bayesian approach to evidence

synthesis assumed that model parameters are random quantities and a likelihood function

is defined to reflect the plausibility of the data given the model parameter values (Sutton

and Abrams, 2001).

Equations 5.1 – 5.2 represent the likelihood function. The term HRQoLi represents the

observed mean HRQoL value in study i with the associated standard error represented

by the term SEi. A covariate, Eventi, has been included in order to explore differences

between patients’ reported HRQoL values depending upon whether or not they have ex-

perienced a health event. In addition, study specific random effects have been included in

order to capture unexplained heterogeneity between values coming from different studies.

These random effects are captured by the term θz and are assumed to be samples from a

normal distribution with mean µ and and variance τ2z

HRQoLi ∼ Normal(θ[studyi] + β · Eventi, SEi) (5.1)

θz ∼ Normal(µ, τ2z ) (5.2)

A defining feature of the Bayesian approach to evidence synthesis is the specification of

prior distributions for the unknown model parameters. Prior distributions can be based

upon external evidence (so-called “informed” priors) or subjective a priori beliefs (Lung

et al., 2011). Equations 5.3 – 5.5 illustrate the prior distributions for all of the unknown

parameters in this model.

µ ∼ Uniform(0, 1) (5.3)

β ∼ Normal(0, 0.1) (5.4)

τ2z ∼ Uniform(0.001, 0.2) (5.5)

In this chapter, it is assumed that there is no external evidence available to inform the prior

distributions. Instead, “reference” priors have been specified which are assumed to fulfill
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some basic desirable properties associated with the parameters under evaluation (Lunn

et al., 2012). The constant term has been assigned a uniform distribution, ranging between

0 and 1, based on the fact that this typically reflects the plausible range of HRQoL values.1

The coefficient β has been assigned a normal distribution with a mean at zero to reflect

the fact that the impact of the health event is unknown. Finally, the variance component

τ2z requires a prior distribution that guarantees non-negative values and a decision was

made to use the uniform distribution.

5.2.2 Evidence Synthesis via SEM Methods

The linear structural equation modeling approach, also known as the LISREL method,

readily lends itself to the analysis of data in the AD format. This is because the parameter

estimation procedure typically involves minimizing some form of discrepancy between a

sample variance-covariance matrix and a model-implied covariance matrix (Lei and Wu,

2012). In addition to the sample variance-covariance matrix, researchers might consider

the inclusion of sample means for all of the outcome measures involved as intercepts in

the model. If this doesn’t happen, as was the case in the study by Lu and colleagues (Lu

et al., 2014), then there are no intercepts and the means scores for each of the outcomes are

assumed to equal zero. This approach was reasonable in the study by Lu and colleagues

given that the main objective was to synthesise evidence relating to treatment effects

for six measures of HRQoL. However, supposing that one wants to synthesise evidence

pertaining to baseline or absolute HRQoL values, then inclusion of the sample means is

necessary.

Aside from the work by Lu and colleagues (Lu et al., 2014), the intuition behind the

intersection of SEM and meta-analysis has only come about very recently and the early

work in this area has put forward two distinctive applications: (i) the implementation

of standard multivariate meta-analyses (MVMA) in a SEM framework (Cheung, 2013,

2014b); (ii) a meta-analytic SEM approach that involves pooling correlation (or covariance)

matrices (Cheung, 2014a). The former deals only with the structural part of the SEM

framework, rather than the measurement part. The motivation behind this approach is the

promise of ‘borrowing of strength’ across mean outcomes and the potential for subsequent

reductions in uncertainty surrounding parameter estimates. MVMA has been put forward

as a means of incorporating evidence from several correlated outcome measures for the

1Note that this range will vary depending upon the instrument under evaluation. For example, a range

between -0.594 and 1 would be appropriate for the EQ-5D with population weights from the study by

Dolan (1997).
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purposes of populating input parameters in cost-effectiveness models (Bujkiewicz et al.,

2013). Although very similar to the model by Lu and colleagues in terms of the evidence

requirements, the MVMA approach does not produce coherent mappings between the

various outcomes under evaluation.

The meta-analytic SEM approach involves two steps: first, a synthesis of multiple correla-

tion or covariance matrices is performed and then an SEM is fitted to the output (Cheung,

2014a). This approach is potentially useful for researchers interested in the synthesis of

multiple sample covariance matrices involving HRQoL outcome measures. However, ap-

plications involving the meta-analytic SEM method are not investigated in this chapter

for two reasons. First, the likelihood of researchers managing to obtain a single sample

covariance matrix, let alone multiple matrices, from the published literature is contested in

this chapter. Second, the meta-analytic SEM method is currently unable to accommodate

the synthesis of mean scores in addition to covariance matrices.

The chapter considers two separate approaches involving SEM techniques for the synthesis

of heterogeneous HRQoL evidence: (i) a two-step method with mapping undertaken sepa-

rately from evidence synthesis, and (ii) an integrated approach that undertakes these steps

simultaneously. These methods are implemented in conjunction with the “all-inclusive”

approach to evidence identification and selection, i.e. there will be HRQoL values from

multiple instruments. A prerequisite for the implementation of either method is the avail-

ability of covariance matrix data, capturing all of the relevant outcome measures. For the

purposes of this case study, we will consider a scenario where researchers obtain a sample

covariance matrix for one of the studies identified in the review.2

Equations 5.6 – 5.16 illustrate the first step of the two-step method for evidence synthesis

involving SEM techniques. A confirmatory factor analysis (CFA) modeling approach is

shown in equations 5.6 – 5.9; this model specifies the relationships between observed values

for different HRQoL instruments according to an underlying latent factor, LF. The CFA

falls within the broad family of SEM methods and estimation of this model provides the

parameter estimates (λ2 and λ3) necessary for mapping between the different instruments.

Equations 5.10 – 5.12 show the model-implied covariance matrices, which are a product

of the factor loadings and factor variance score (Brown and Moore, 2012). The parameter

estimation procedure typically involves minimizing some form of discrepancy between the

sample covariance matrix and the model-implied covariance matrix.

2That is, one study provides mean HRQoL values associated with one of the defined health states for

all of the relevant instruments, as well as providing a sample covariance matrix.
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EQ5Di = µEQ5D + LFi (5.6)

SF6Di = µSF6D + λ2 · LFi (5.7)

HUI3i = µHUI3 + λ3 · LFi (5.8)

LFi ∼ Normal(0, 1) (5.9)

Cov(EQ5D,SF6D) = 1 · λ2 · 1 (5.10)

Cov(EQ5D,HUI3) = 1 · λ3 · 1 (5.11)

Cov(SF6D,HUI3) = λ2 · λ3 · 1 (5.12)

Once the factor loadings (λ2 and λ3) have been obtained, HRQoL values can be predicted

on the scale of the reference case instrument (in this case, the EQ-5D) for all of the studies

available. Equations 5.13 – 5.16 show how mean SF-6D and HUI-3 values, along with the

associated standard errors, can be mapped onto the EQ-5D scale. Once all of the evidence

has been mapped onto the EQ5D scale (if it wasn’t already), the evidence synthesis step

can be undertaken using the methods from equation 5.1 – 5.5.

Mapped EQ5Di = µEQ5D +
SF6Di − µSF6D

λ2
(5.13)

Mapped EQ5Di = µEQ5D +
HUI3i − µHUI3

λ3
(5.14)

SE(Mapped EQ5Di) =
SE(SF6Di)

λ2
(5.15)

SE(Mapped EQ5Di) =
SE(HUI3i)

λ3
(5.16)

The so-called integrated method aims to use a single model to explain all aspects of the

available data. The motivation behind this method is that it should, theoretically, provide

a more logical approach to evidence synthesis compared to the two-step method given that
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all of the observed evidence is interpreted in a consistent manner. However, the process

of developing a more logical approach to evidence synthesis brings greater complexity in

terms of the model specification required to implement this technique.

Equations 5.17 - 5.40 illustrate the mathematical notation for the integrated method. This

approach relies heavily upon an assumption of fixed factor loadings across studies given

that there is only a single study containing the sample covariance information (Equations

5.17 and 5.18). The factor loadings (λ2, λ3) are estimated using the steps outlined in

Equations 5.6 – 5.12, along with the associated standard errors (SE(λ2), SE(λ3)). Estima-

tion of the standard errors is an important step as it allows the uncertainty surrounding

the factor loadings to be captured.

λ2t ∼ Normal(λ2, SE(λ2)) (5.17)

λ3t ∼ Normal(λ3, SE(λ3)) (5.18)

Although most of the studies are missing information for some of the outcome measures,

this problem is circumvented by the fact that all of the outcomes are related to each other

via the latent factor. As such, if a study is missing sample statistics for one outcome (e.g.

EQ-5D) then information can be borrowed from another measure (e.g. SF-6D) through

the relationships set out in Equations 5.25 – 5.30. Note that this borrowing of information

applies to standard errors (5.28 – 5.30), in addition to mean values (5.25 – 5.27).

EQ5Di ∼ Normal(θ1i, SE(EQ5Di)) (5.19)

SF6Di ∼ Normal(θ2i, SE(SF6Di)) (5.20)

HUI3i ∼ Normal(θ3i, SE(HUI3i)) (5.21)

SE(EQ5Di) ∼ Normal(φ1i, ψ1) (5.22)

SE(SF6Di) ∼ Normal(φ2i, ψ2) (5.23)

SE(HUI3i) ∼ Normal(φ3i, ψ3) (5.24)
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The scale of latent factor is fixed to that of the EQ-5D, which is illustrated by the fact that

there is no factor loading in Equation 5.25 (i.e. the factor loading is equal to one). Random

effects are included to capture any unexplained heterogeneity between latent factor scores

coming from different studies (Equation 5.31). The term υ captures the mean population

HRQoL for patients with no previous experience of an MI. This parameter is scaled in

a way such that deviations from zero on the latent factor scale reflect deviations from

µEQ5D on the EQ-5D scale. As such, we should add µEQ5D to our estimate of υ in order

to interpret it on the EQ-5D scale.

θ1i = µEQ5D + LFi (5.25)

θ2i = µSF6D + λ2t · LFi (5.26)

θ3i = µHUI3 + λ3t · LFi (5.27)

φ1i = SE(LFi) (5.28)

φ2i = λ2t · SE(LFi) (5.29)

φ3i = λ3t · SE(LFi) (5.30)

LFi ∼ Normal(δ[studyi] + β · Eventi, ε) (5.31)

δz ∼ Normal(υ, τ2z ) (5.32)

υ ∼ Normal(0, 0.1) (5.33)

β ∼ Normal(0, 0.1) (5.34)

ε ∼ Uniform(0.001, 0.2) (5.35)

SE(LFi) ∼ Uniform(0.001, 0.2) (5.36)
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ψ1 ∼ Uniform(0.001, 0.2) (5.37)

ψ2 ∼ Uniform(0.001, 0.2) (5.38)

ψ3 ∼ Uniform(0.001, 0.2) (5.39)

τ2z ∼ Uniform(0.001, 0.2) (5.40)

5.3 Methods

An empirical case study was conducted in order to compare HRQoL parameter estimates

obtained using standard meta-analytic methods against those obtained using each of the

proposed SEM methods. The standard meta-analytic approach draws solely upon HRQoL

evidence for a reference case measurement, the EQ-5D. In contract, the SEM methods

exploit HRQoL evidence from a broader range of measurements. The case study also

explores the implications of using the different methods in terms of the impact upon

cost-effectiveness results. The case study selected investigates the cost-effectiveness of an

early surgical intervention compared to medical management for the treatment of acute

coronary syndrome in a patient subgroup with diabetes.

5.3.1 HRQoL Evidence

Health state valuations were extracted from an existing meta-analytic study exploring the

effects of diabetes and related complications upon HRQoL. Lung and colleagues performed

a search and review of published databases to identify studies containing relevant values,

the details of which can be found in the original study (Lung et al., 2011). The criteria

for study selection was not confined to any one HRQoL instrument and no efforts were

made to adjust values from alternative instruments onto the same scale. The studies were

grouped according to the type of complications experienced by patients that included

the following: no complications, stroke, myocardial infarction, end-stage renal disease,

blindness, amputation and ulcers. In total, Lung and colleagues identified forty-six health

state values, along with associated standard errors. Not all of these values were used for

the purposes of this chapter given that they varied not only in terms of the instruments

used but also the population index values for a given instrument. It is well established

that different population index values for a given same instrument can result in different
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valuations and, hence, undermine the comparability (Kharroubi et al., 2010, 2014). For

this reason, specific preference weights were defined for each instrument and health state

values were extracted if they were met any of the following criteria:

• EQ-5D values derived using population weights from the study by Dolan (1997).

• SF-6D values derived using population weights from the study by Brazier et al. (2002).

• HUI-3 values derived using population weights from the study by Feeny et al. (2002).

For those values meeting the inclusion criteria, the following information is extracted:

mean value; standard error; publication author; publication year; preference-based instru-

ment; information regarding any diabetes-related complications; the number of patients

in the sample.

A variance-covariance matrix relating to the three instruments was obtained from the

National Health Measurement Survey (NHMS). The NHMS was conducted in the United

States and collected a variety of measures of HRQoL, including the EQ-5D, HUI-3 and

the SF-36, in a sample of the general population. Further details about this dataset can

be found elsewhere (Fryback et al., 2007). The variance-covariance matrix was derived in

a subset of patients recorded as having diabetes. In addition, the mean values for each

of the measures are extracted so that they can be included in the synthesis. Whilst the

individual-patient data might have been available to estimate this matrix, we assume that

the statistics have been identified in the aggregate format.

5.3.2 Health Economic Model

The health economic model has been derived from an existing study, the details of which

can be found elsewhere (Henriksson et al., 2008). The expected costs and QALYs for

competing interventions are estimated indirectly as follows: (i) modeling the impact of

treatments upon the probability of a given patient either experiencing a myocardial in-

farction or dying; (ii) linking these intermediate endpoints to the ‘final’ endpoints, namely

length of life, HRQoL and costs. This chapter is solely concerned with the estimation of

HRQoL inputs for this model, referred to as the RITA-3 model, so the remaining param-

eters have been left unchanged from those in the original study.

The HRQoL input parameters employed in this case study have been simplified from the

original study. Specifically, the model not longer accounts for the impact of a myocardial

infarction in the last twelve months. Instead, the model in this study only contains three
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health states that differentiate between HRQoL – one for patients with diabetes who have

yet to experience a myocardial infarction; another for patients with diabetes who have

experienced a myocardial infarction; and finally, death (assumed to equal zero).

5.3.3 Estimation of Parameter Inputs

The following statistical procedures for evidence synthesis will be compared:

• Hierarchical Meta-Regression (Model 5.1): health state values derived using the EQ-5D

are analysed using the model set out in Equations 5.1 – 5.5. Note that the Equation

5.3 is modified to account for the range of EQ-5D values as follows:

µ ∼ Uniform(−0.594, 1) (5.41)

• CFA-Approach to Evidence Synthesis (Model 5.2): the confirmatory factor analysis, set

out in Equations 5.6 – 5.12, is fitted using the sample statistics from the NHMS. The

parameter estimates from this model (λ2 and λ3) and the mean values (µEQ5D, µSF6D

and µHUI3) are then used to map health values for the HUI-3 and SF-6D onto the EQ-

5D scale. Health state values derived using the EQ-5D, including those that have been

mapped onto the EQ-5D scale, are then combined using the hierarchical meta-regression

method.

• SEM-Approach to Evidence Synthesis (Model 5.3): the confirmatory factor analysis set

out in Equations 5.6 – 5.12 is fitted using the sample statistics from the NHMS. Using

the parameter estimates for the factor loadings, the health state values derived using

the EQ-5D, SF-6D and HUI-3 are synthesised using the model set out in Equations 5.17

– 5.40.

For any statistical analysis, it is important to assess how well the estimated model fits the

observed data. As such, the posterior mean of the residual deviance has been estimated,

given that this method is recommended for the assessment of model fit in evidence synthesis

applications involving Bayesian methods (Sutton et al., 2012). In addition, cross-validation

of the results has been undertaken in order to assess the degree to which the data from

different evidence sources are consistent. If there are prominent differences between the

results from different studies, then this may reduce confidence in the conclusions draw

from a synthesis of these results. Cross-validation involves omitting an individual study

from the analysis and then comparing the findings from the omitted study against the

predictive distribution from the analysis (Sutton et al., 2012). If the omitted data point
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is shown to lie within the random effects distribution obtained from the analysis, then it

is reasonable to assume that it is consistent with the remaining data.

5.3.4 Statistical Software

The meta-analytic models are estimated using the JAGS software, which is run through

the R program using the R2jags package (Su and Yajima, 2012). Each model is run with

three Markov chains over total of 10,000 iterations, the first 1,000 of which are discarded

as the burn-in period. For each method, the posterior distribution is fed directly into the

health economic model for the probabilistic sensitivity analysis. The factor loadings are

estimated using the Lavaan package in R (Rosseel, 2012). The relevant code for each of

the different methods can be found in Appendix B.

5.4 Results

Of the original forty-six values with health state description in the original study by Lung

and colleagues, five values were identified as meeting the inclusion criteria for the “reference

case” approach. An additional four values were identified as meeting the inclusion criteria

for the “all-inclusive” approach. These values are shown in Table 5.1. Note that additional

values were extracted from the NHMS study.

5.4.1 Evidence Synthesis

Three alternative methods for synthesising evidence were implemented to estimate HRQoL

parameter inputs. Model 5.1 combined evidence from six separate studies, all of which

collected EQ-5D values (the “reference case” approach). Models 5.2 and 5.3 used evidence

from an additional four studies that collected alternative PBMs (the “all inclusive” ap-

proach). The forest plot in Figure 5.1 provides a graphical representation of the summary

statistics from all of the studies selected for synthesis, as well as summary measures for

each of the synthesis methods evaluated. All of the estimates are on the EQ-5D scale,

including those from Glasziou et al. (2007), Maddigan et al. (2005) and Wee et al. (2005).

The parameter estimates obtained using the “all-inclusive” evidence (Models 5.2 and 5.3)

are consistently higher than those obtained using the “reference case” evidence (Model

5.1). In addition, the estimated impact of a MI upon HRQoL is reduced when the “all-

inclusive” evidence is used instead of the “reference case” evidence. This is likely to be

explained by the additional evidence from the study by Maddigan et al. (2005). The
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Table 5.1: HRQoL Values extracted from the study by Lung and colleagues (2011)

Study Sample Patient Instrument Mean Standard

Size Subgroup Estimate Error

UKPDS62 2,636 Diabetes, no EQ-5D 0.785 0.005

(2002) complications

Morgan et al. 360 Diabetes, no EQ-5D 0.735 0.015

(2006) complications

Redekop et 1,136 Diabetes, no EQ-5D 0.810 0.007

al. (2002) complications

Glasziou et 210 Diabetes, no SF-6D 0.780 0.009

al. (2007) complications

UKPDS62 200 Diabetes, EQ-5D 0.719 0.020

(2002) Post-MI

Morgan et al. 172 Diabetes, EQ-5D 0.676 0.042

(2006) Post-MI

Glasziou et 183 Diabetes, SF-6D 0.764 0.010

al. (2007) Post-MI

Wee et al. 46 Diabetes, SF-6D 0.770 0.019

(2005) Post-MI

Maddigan et 172 Diabetes, HUI-3 0.770 0.015

al. (2005) Post-MI

NHMS 479 Diabetes, no EQ-5D 0.712 0.014

complications SF-6D 0.755 0.007

HUI-3 0.675 0.015

parameter estimates obtained using the “all-inclusive” evidence also exhibit reduced un-

certainty when compared to those obtained using the “reference case” evidence. This

finding is particularly encouraging given that one of the main reasons for synthesising

evidence is the possibility of attaining increased statistical power for the estimation of

parameters (Higgins et al., 2009). Models 5.2 and 5.3 produce similar results with one

exception being the uncertainty surrounding the parameter representing the health state

’No Previous MI’. One possible explanation for this finding could be the fact that Model

5.3 has a larger number of unknown parameters.

The residual deviance for Model 5.1 has a posterior mean equal to 5.09 which is close

to the number unconstrained data points (N =5) used in the estimation of Model 5.1.

Similarly, the posterior mean of the residual deviance for Model 5.2 (D̄RES=9.12) is close

to the number unconstrained data points (N =10) used in the estimation of Model 5.2.
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These results do not indicate a lack of fit for Models 5.1 and 5.2. Residual deviance was

not estimated for Model 5.3 given that there are three dependent variables with lots of

missing data. For all three models, cross-validation of the results found the data from

different evidence sources to be consistent.

Figure 5.1: Forest Plot

5.4.2 Cost-Effectiveness Results

Tables 5.2 – 5.4 show the implications of using the different methods in terms of the

impact upon the expected cost-effectiveness results. Ideally, HEE for decision-making

purposes should investigate (a) whether a health intervention is expected to be cost-

effective based on existing evidence, and (b) whether or not additional evidence is required

to support its use (Griffin et al., 2011). In order to inform the first objective, researchers

can present probabilistic results from their cost-effectiveness model in a cost-effectiveness

acceptability curve (CEAC) (Briggs et al., 2006). The CEAC shows the probability of

an intervention being cost-effective for a given threshold value when compared to other

strategies. Figure 5.2 shows a series of CEACs associated with the various parameter

estimation methods assessed in this chapter. Comparison of the curves shows that the

choice of methodology has a negligible impact upon decision uncertainty for this particular

case study. This information is also presented in terms of error probabilities in Table 5.5,
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assuming threshold values of £20,000 per QALY and £30,000 per QALY respectively.

These results present the probability of making an incorrect decision, for a given patient,

on the basis of the expected cost-effectiveness results.

Table 5.2: Cost-Effectiveness Results Using Model 5.1 Parameter Estimates

Treatment Comparator
Incremental

Difference

Costs (discounted) £36,940 £32,188 £4,752

QALYs (discounted) 12.83 12.70 0.12

Cost-per-QALY - - £38,306

Table 5.3: Cost-Effectiveness Results Using Model 5.2 Parameter Estimates

Treatment Comparator
Incremental

Difference

Costs (discounted) £36,940 £32,188 £4,752

QALYs (discounted) 13.07 12.95 0.12

Cost-per-QALY - - £38,179

Table 5.4: Cost-Effectiveness Results Using Model 5.3 Parameter Estimates

Treatment Comparator
Incremental

Difference

Costs (discounted) £36,940 £32,188 £4,752

QALYs (discounted) 13.03 12.91 0.12

Cost-per-QALY - - £38,444

In order to inform the second objective, researchers can use their probabilistic results

to estimate the expected value of perfect information (EVPI). The EVPI puts an upper

bound estimate on the value of resolving the decision uncertainty. Figure 5.3 shows that

the choice of methodology also has little impact upon the EVPI. However, the additional

evidence exploited with the “all-inclusive” approach appears to have slightly reduced the

cost of the decision uncertainty over the threshold range associated with NICE decisions

(i.e. 20, 000−30,000 per QALY (NICE, 2013)). Despite the lack of variability in the

cost-effectiveness results, it is important to remember that these findings are case study

dependent. Additional analyses in Appendix C show that the impact of HRQoL is rela-
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tively modest in the RITA-3 model.

Table 5.5: Error Probabilities

Threshold = £20K Threshold = £30K

Model 5.1 0.070 0.262

Model 5.2 0.057 0.265

M0del 5.3 0.051 0.276

Figure 5.2: Cost-Effectiveness Acceptability Curves

5.5 Discussion

The aims of this chapter were to (a) identify the methodological challenges unique to

scenario D1, and (b) to compare HRQoL parameter estimates, derived using an “all-

inclusive” approach to evidence synthesis with SEM methods, against those obtained using

a “reference case” approach to evidence synthesis with standard meta-analytic methods.

Two separate approaches involving SEM techniques for the synthesis of heterogeneous

HRQoL evidence were proposed, both of which rely upon the assumption of fixed factor

loadings across studies. The two methods differed in terms of the point at which these

factor loadings were applied to map between outcomes. A two-step method separated

the mapping and evidence synthesis procedures, while an integrated approach conducted

these tasks simultaneously. Of the two methods proposed, the integrated method would
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Figure 5.3: Expected Value of Perfect Information

appear to be the logically correct approach insofaras it employs a single model to explain

all aspects of the available data. The implementation of this method was made possible,

in large part, thanks to the flexibility allowed by the Bayesian framework. However, the

integrated approach has a greater number of unknown parameters and so is more likely to

be affected by the choice of priors. Moreover, the additional complexity with the integrated

method may create problems when it comes to the interpretation of results.

The additional evidence incorporated with the “all-inclusive” approach in this study did

not have a substantial impact upon the parameter estimates compared to the “reference

case” approach. However, it is important to acknowledge that these findings are case study

dependent and, thus, should not be used to make conclusions about the benefits of the

SEM evidence synthesis methods in general. These methods are likely to be particularly

important where generic instruments, such as the EQ-5D, are subject to measurement error

in the estimation of population parameters. For instance, HRQoL parameter estimates

may be susceptible to noise occurring as a result of unrelated comorbidities. In scenarios

such as these, parameter estimates derived solely using evidence pertaining to the reference

case measure may exhibit a high degree of imprecision depending upon the combined

sample size of patients. Increasing the sample size, through the inclusion of evidence

relating to alternative HRQoL measures, provides greater statistical power to detect the

true population values. Consequently, any improvements in the precision with which these

parameters are estimated could potentially result in reduced decision uncertainty.
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A key priority for future research will be to undertake simulation exercises to fully under-

stand the mechanisms at work. The benefit of simulation exercises is that the researcher

has full control over all of the underlying parameters feeding into the model. However, even

if the “all-inclusive” approach had shown a more substantial impact upon the parameter

estimates compared to the “reference case” approach, this would not have necessarily had

an impact upon the cost-effectiveness results. The EVPPI results presented in Appendix

C show that the impact of HRQoL is modest in the RITA-3 model. This means that the

choice of method for the estimation of HRQoL parameters is unlikely to have a substantial

impact upon the decision uncertainty for this study and, thus, would be unlikely to have

any implications for policy decision-making. It is important to note that the influence of

HRQoL parameters within a given decision model is a function of the model structure,

as well as the other model parameters, and is therefore also case study dependent. In

practice, researchers are unlikely to know the extent to which HRQoL parameters will

influence cost-effectiveness prior to construction of a model. As such, this issue would

not constitute grounds for assessing whether or not to pursue implementation of these

methods.

Thus far, the discussion around uncertainty has focused upon the implications for pa-

rameter estimation of conducting evidence synthesis with SEM methods. The adoption

of these methods also has important implications for structural uncertainty and method-

ological uncertainty in decision modeling for health economic evaluation. Methodological

uncertainty occurs when there is disagreement over the most appropriate methodological

approach (Briggs and Gray, 1998). One issue contributing to methodological uncertainty

regarding the use of the SEM approach to evidence synthesis is the lack of consensus

regarding the indirect estimation of HRQoL effects (i.e. mapping). As previously men-

tioned, mapping has traditionally been seen as a second-best option for the estimation

of preference-based HQRoL values, when compared to the collection of values first hand

(NICE, 2008). Taking this stance would imply that non-reference case HRQoL evidence

should only be considered where directly relevant reference case evidence is not available.

Of course, there are counterarguments that could be made against this position, not least

the potential benefits of estimating parameters with greater precision. Moreover, one

could point to the fact that there are other parameter estimation techniques employed in

health economic evaluation that rely upon indirect evidence, i.e. treatment comparisons

(Sutton et al., 2012).

Structural uncertainty refers to forms of uncertainty characterised in other ways from those

already mentioned (i.e. not parameter or methodological uncertainty), including the sta-

72



tistical methods selected to estimate model parameters (Bojke et al., 2009). The LISREL

approach, employed in Models 5.2 and 5.3, assumes that outcome measures are linearly

related to one another and that the outcomes are normally distributed. It is important

to recognise that the validity of these structural assumptions has been questioned in the

context of HRQoL research (Alava et al., 2012; Basu and Manca, 2012). However, there

is currently a lack of clarity as to the methods that should be used to evaluate structural

uncertainties (Bojke et al., 2009). Future research should investigate the plausibility of

alternative model specifications that are better suited to the handling of HRQoL outcome

measures.

It is important to consider that the evidence selected for synthesis in this chapter was ob-

tained from an existing review. This limited the case study to a synthesis exercise involving

three preference-based measures of HRQoL. In theory, the SEM methods for evidence syn-

thesis would allow researchers to draw upon the wealth of non-preference-based HRQoL

measures available. As well as synthesising a broader range of outcome measures, the SEM

methodology is capable of estimating parameters with greater precision by incorporating

disease-specific outcome measures. A recent study by Ades and colleagues illustrated how

this might be achieved using SEM-type mapping techniques (Ades et al., 2013). Of course,

the inclusion of disease-specific measures would have important implications for the identi-

fication of HRQoL evidence given that the range of outcomes would vary according to the

patient population of interest. Further empirical research is needed to demonstrate this

potential and also establish how these considerations would be integrated within a search

strategy. For instance, this could encompass a scoping process prior to the commencement

of the literature search to identify all relevant outcome measures. For certain conditions,

research may have even been conducted already to determine which patient-reported out-

comes are appropriate for the measurement of HRQoL (Gibbons et al., 2014; Hadi et al.,

2010; Mackintosh et al., 2009).

The empirical work outlined in this chapter is not without limitations. The case study in

this chapter assumes a scenario where researchers can obtain a sample covariance matrix

from an existing study. The plausibility of such information being readily accessible in the

published literature has been debated elsewhere (Riley et al., 2014; Wei and Higgins, 2013).

In practice, implementation of the SEM meta-analytic techniques is likely to rely upon the

availability of IPD containing all of the relevant outcomes of interest. The availability of

evidence in IPD format affords researchers analytical opportunities beyond the LISREL

method. These opportunities are considered further in chapters 5 and 6.
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Chapter 6

Case Study II: Synthesis of

Individual Patient Data

6.1 Introduction

The previous chapter demonstrated how to use structural equation modeling techniques

for the synthesis of heterogeneous HRQoL evidence from the published literature. An em-

pirical case study showed that the SEM approach was able to exploit additional evidence

compared to the ‘reference case’ approach, and, consequently, reduce the uncertainty sur-

rounding the HRQoL parameter estimates. This finding was encouraging given that one

of the main reasons for synthesising evidence is the possibility of attaining increased sta-

tistical power for the estimation of parameters (Higgins et al., 2009). This work raises

important questions regarding the appropriate range of outcome measures to consider

when searching for HRQoL evidence. Given that Chapter 5 only considered scenarios

involving aggregate data, the analytical techniques were limited to the use of summary

scores or index values.

The benefits of having access to individual-patient data for the purposes of synthesising

HRQoL data with SEM techniques – in particular, the ability to exploit item-level informa-

tion – have yet to be demonstrated in the context of health economic evaluation. Only one

study has been found to employ an SEM-type approach, specifically a multidimensional

item response theory (IRT) method, to analyse preference-based measures of HRQoL at

the item level (Gibbons et al., 2014). This study showed that the multidimensional IRT

model performed well in terms of its ability to predict EQ-5D scores compared to tradi-

tional regression methods. Despite showing early promise, the predictive performance of

this approach has yet to be externally validated.
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This chapter presents an empirical case study involving the estimation of HRQoL input

parameters for a decision model derived through the analysis of heterogeneous PROs at

the item-level data using SEM techniques. The aims of the chapter are threefold: first, to

provide an outline of the factors that require consideration when utilizing these techniques

specifically for the purposes of CEA. The second aim is to demonstrate how parameter

estimates derived using heterogeneous outcome measures differ from those solely relying

upon the reference case. And finally, this chapter looks to explore how parameter estimates

derived via item-level analyses compare to those from analyses involving index scores at

the aggregate level.

6.2 Background

There are several factors motivating the decision to focus on the development of meth-

ods that make use of item-level responses to PROs rather than index or summary scores.

First, it has been suggested that item-level analyses are superior on the grounds of their

interpretability; in contrast, analyses involving index values have been criticized because

they conflate information about patient responses with the preference weightings (Parkin

et al., 2010). Second, and related to the previous point, is the fact that item-level analyses

exploit the detail of the available data. In particular, it would seem preferable to acknowl-

edge impacts occurring at the item level that could be easily overlooked when dealing with

index or summary scores. Finally, item-level analyses would be preferable for the purposes

of this chapter in the interests of developing a generalizable framework. Although a range

of sophisticated analytical approaches have been developed for the analysis of index values,

these may need to be tailored to handle the specific characteristics of the instrument and

value set under evaluation (Alava et al., 2012).

The primary interest of this chapter lies in the development of methods capable of han-

dling ‘Likert-type’ responses to descriptive questionnaires that ask individuals to select

one category form several options available (e.g. strongly disagree, agree, neither agree

nor disagree, disagree, strongly disagree). With this in mind, it would seem logical to

investigate methods for analysing ordinal variables given that these responses exhibit a

natural ordering. The assumption of linear dependence between observed variables and

a latent factor, made in the previous chapter, is no longer appropriate in this context

since it does not account for the discrete nature of the data. This problem can be circum-

vented, however, by looking at the item responses in terms of the probability or odds of a

particular response being selected.
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When thinking about the development of structural equation models for the investigation

of ordinal, categorical variables, a useful starting point is to consider the latent factor.

Despite the observed variables being categorical, it is often more convenient to treat the

latent factor as being a continuous variable and to assume a non-linear relationship with

the observed variables. This relationship is built upon an assumption that each of the

observed categorical variables, known as indicators, has a separate underlying continuous

scale (referred to here as the latent response scale). For a given indicator, each individual

is assumed to lie somewhere on the latent response scale and it is the location on this

scale that determines the observed category selected. Each of the latent response scales

are assumed to have an associated distribution and the aim of the model is to investigate

the extent to which a hypothesized latent factor accounts for correlations between these

distributions.

Correlations between ordinal variables, such as those involving Likert-type responses to

questionnaires, can be estimated using polychoric methods (Edwards et al., 2012). The

latent response scales are assumed to follow a normal distribution, where the area under the

curve represents the proportion of patients realizing a given response level. Distributions

are constructed for each of these scales by assigning threshold values defining the point

at which people change their selected response category. These values typically represent

points on the standard normal distribution and can be used to approximate the proportion

of patients in each category using the cumulative distribution function.

6.2.1 Model Specification

In the previous chapter, the process of model specification was simple to the extent that

it only entailed a single latent factor. With the additional item-level information that is

gained from having access to patient-level data, there is potential for greater complexity

when specifying the underlying constructs. In order to consider the issue of latent factor

specification, let us consider an illustrative example. Supposing that we are interested in

developing an SEM to capture the shared variance between two outcome measures, the

EQ-5D and a hypothetical disease-specific measure with five indicators, each with three

category responses. To start with, consider the assumptions implied by a model with

containing a single latent factor defined by all of the indicators across the two instruments,

shown in Figure 6.1. The variability of each indicator is separated into two components:

1) the variability due to the latent factor and 2) unexplained error variance (represented

by the ε terms).
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Figure 6.1: Graphical Representation of a Unidimensional Model

For estimation involving a probit link, the model can be represented using the following

formula from Bovaird and Koziol (2012):

Pr(yij = 1) = Φ(−τ1,j + λj · fi) (6.1)

Pr(yij = 2) = Φ(−τ2,j + λj · fi)− Φ(−τ1,j + λj · fi) (6.2)

Pr(yij = 3) = 1− Φ(−τ2,j + λj · fi) (6.3)

Where yij represents individual i’s response to item j, fi is individual i’s latent factor

score and λj is the factor loading for item j. The τk,j terms are thresholds indicating the

point on the latent factor response scale where individuals switch their item response. Φ

is the standard cumulative distribution function. These formulae show the probability of

an individual selecting each of the possible item responses.

Crucially, this model in Figure 6.1 assumes that the error terms are independent of one

another. One might question this assumption if there are concerns about multidimen-

sionality especially in the presence of well-defined clusters of items. An alternative model

specification that researchers might consider for scenarios involving multidimensionality in

addition to a common trait is the bi-factor model (Reise, 2012). An example is provided

in Figure 6.2 that assumes clustering is present at the instrument level. Conceptually,
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Figure 6.2: Graphical Representation of a Bifactor Model

this model posits that one general variable explains common variance in all of the items

but beyond that there is some instrument-specific variability left over. The variability

of each indicator is now separated into three components: 1) the variability due to the

general factor, 2) the variability due to the measure-specific factor (EQ5D or DSM), and

3) unexplained error variance.

In the study by Gibbons and colleagues, a bi-factor IRT model was specified containing one

primary dimension, loading on all of the items, and two scale-specific dimensions, loading

on EQ-5D and SF-12 items respectively. The same study also conducted a separate analysis

using a unidimensional model (i.e. without the scale-specific latent factors) and compared

the fit of the two models using a likelihood ratio Chi-squared statistic. This test found an

improvement in fit with the bi-factor model compared to the unidimensional model.
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6.2.2 Estimation of Parameter Inputs

As with the previous chapter, there are two plausible approaches for the estimation of

CEA inputs, a CFA method and a SEM method. Once again, the former is essentially a

mapping procedure that aims to predict the reference case outcome measure in datasets

where this measure has not been collected. However, the task of deriving predictions with

a CFA mapping algorithm is far more complex when dealing with item-level responses,

compared to index/summary scores. This is because the availability of multiple observed

items, representing a given construct of interest, introduces a dimensionality problem.

Latent variable scoring methods are required in order to reduce the dimensionality and

obtain a unique factor score for each individual. Using the parameter estimates from the

CFA model, one can predict the position of a patient on the latent factor scale even if there

is only a subset of the items in the original model. Subsequently, one can then use the

factor score estimate in combination with the parameter estimates for the missing items

to predict responses for those items.

While there are a range of alternative methods for assigning values to latent variables, the

most popular is the Empirical Bayes (EB) method (see for instance, Skrondal and Rabe-

Hesketh (2004)), also known as the ‘expected a posteriori’ (EAP) predicator. This method

can be implemented in the Mplus software package (Muthén and Muthén, 2010), using the

GSEM package for Stata (StataCorp, 2013) and using the Lavaan package for R (Rosseel,

2012). The EB method derives a posterior mean prediction of the latent variable (f̂i) for

each individual in the sample using their observed responses to each of the indicators (yij)

in combination with parameter estimates from the CFA (λj ,τk,j) as follows:

f̂i = E(fi|yij ;λj ; τk,j) (6.4)

Whilst this method is actually a Frequentist technique, its name refers to the fact that it

utilizes Bayesian principles when interpreting the latent variable in terms of a posterior

distribution. A fully Bayesian approach differs from the EB method given that it would

interpret both the latent variable and the parameter estimates in terms of a posterior

distribution.

Another challenge associated with the CFA prediction method is the fact that most soft-

ware packages are set up to obtain factor scores in the same sample used to fit the original

model. Although this makes the task of obtaining predictions for individuals missing the

reference case items more complicated, there are two ways in which this problem can be

circumvented. The first, implemented by Gibbons and colleagues, involves combining all
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of the datasets of interest before fitting the CFA under the assumption of missing data

for those individuals for whom the reference case items have not been collected. The full

information maximum likelihood (FIML) estimation method ensures an efficient and un-

biased utilization of all of the available information when fitting the CFA (Graham and

Coffman, 2012).1 By fitting the model with data that includes observations missing the

reference case items, it is possible to estimate factor scores for these cases.

Although the FIML-estimation method provides an elegant and efficient solution for the

utilization of observations with missing data, the software options currently available do

not enable an adequate characterization of parameter uncertainty. Cost-effectiveness mod-

els are typically expected to use probabilistic sensitivity analysis (PSA) to capture the

impact of parameter uncertainty upon the cost-effectiveness results (Briggs et al., 2006).

HRQoL parameter estimates derived using the techniques considered in this chapter are

subject to two sources of uncertainty: the unexplained heterogeneity surrounding the un-

derlying latent factor, and the uncertainty surrounding the factor loadings. In principle,

both forms of uncertainty could be captured within a PSA but, unfortunately, none of the

software options available are capable of incorporating the latter.

Given the current software available, a second-best approach for obtaining factor scores

is required to capture all of the possible sources of parameter uncertainty. An alternative

method would be to fit the CFA using only the complete case observations and then,

with the incomplete data, fit subsequent models with parameter estimates fixed to those

from the first analysis. Crucially, the subsequent models need to have free parameters

associated with the latent variable (mean and variance) in order to permit the estimation

of factor scores. Once factor scores have been obtained for those observations missing the

reference case items, they can be used to predict the expected responses to these items

using the relevant factor loadings and threshold values from the complete case analysis.

The previously mentioned issues in dealing with categorical data mean that item-level

responses are predicted in terms of the probability of a particular response being selected.

These probabilities can then be used, in combination with the index weightings of the

associated instrument, to estimate the expected HRQoL index scores for each patient (Le

and Doctor, 2011). In order to capture uncertainty surrounding the factor loadings and

threshold values, the process of obtaining factor scores and then using these scores to

predict the expected HRQoL index values must be incorporated within the probabilistic

sensitivity analysis. A stochastic process is employed using the standard errors associated

with the CFA parameter estimates.

1Assuming that data are missing completely at random
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The SEM approach to parameter estimation differs from the CFA approach in that it is

not concerned with the prediction of factor scores at the observation level. It employs

almost exactly the same model specification as the CFA approach but with the addition

of a structural component capturing the impact of covariates upon the latent variable (also

known as a path analysis). As such, the SEM approach to HRQoL parameter estimation is

possible via prediction of the expected latent factor distribution conditional upon patient

characteristics. Given that the SEM approach is not concerned with the prediction of

scores at the observation level, the model can be fit to a combined dataset that includes

incomplete cases using the FIML estimation procedure. This approach allows the predic-

tion of a latent factor distribution for a given patient profile, as specified by the covariates

in the SEM.

Using the latent factor distribution, item-level responses can be predicted for a given

patient profile. In this chapter, a Monte Carlo simulation procedure will be employed in

order to predict item-responses using the parameter estimates obtained from the SEM. As

with the CFA approach, it is important to ensure that the uncertainty surrounding the

parameter estimates in the statistical model has been acknowledged. A stochastic process

is implemented involving all of the parameters involved in the SEM. The simulation sample

should be sufficiently large to ensure that the latent factor distribution is adequately

represented. Once the simulation sample has been predicted the valuation weights can

be assigned in order to derive HRQoL index values, after which one can calculate the

associate mean and standard deviation.

6.3 Methods

The case study in this chapter is composed of two stages. In the first stage, HRQoL param-

eter inputs are derived using one of the alternative estimation techniques. In the second

stage, the parameter estimates are fed into the model and cost-effectiveness estimates are

obtained for each of the alternative methods. The case study selected investigates the

cost-effectiveness of an early surgical intervention compared to medical management for

the treatment of acute coronary syndrome in a patient subgroup with diabetes.

6.3.1 HRQoL Evidence

As with the previous chapter, this case study aims to estimate HRQoL values associated

with two defined health states: one for patients with diabetes who have yet to experience

a myocardial infarction and another for patients with diabetes who have experienced a

81



myocardial infarction. Data from four studies that collected PROs for the measurement

of HRQoL in relevant patient subgroups were obtained.

The National Health Measurement Survey (NHMS) was conducted in the United States

and collected a variety of measures of HRQoL, including the EQ-5D, HUI-3 and the SF-

36, in a sample representative of the general population (Fryback et al., 2007). The

Medical Expenditure Panel Survey (MEPS) data collected the EQ-5D and the SF-12 in

a nationally representative sample of the United States in 2003 (Sullivan et al., 2011).

The Welsh Health Survey (WHS) collected the SF-36 in a representative sample of people

living in private households in Wales in 2013 (NatCen Social Research, 2013). Finally,

the Randomized Intervention Trial of unstable Angina (RITA-3) collected the EQ-5D in

a sample of patients diagnosed with acute coronary syndrome (Kim et al., 2005).

Whilst the EQ-5D may have been collected in the MEPS dataset, we will be assuming that

it is not available for illustrative purposes. Instead, EQ-5D responses will be predicted

using the available SF-12 data via the SEM approach. The reasoning behind this approach

is that it allows us to test the external validity of the SEM predictions (i.e. compare the

predicted EQ-5D scores against the actual scores).

6.3.2 Health Economic Model

The health economic model employed is the same as that used in Chapter 4, where further

details describing this model can be found.

6.3.3 Estimation of Parameter Inputs: CFA Approach

The CFA approach is implemented by first fitting a bi-factor model to the NHMS data.

This dataset is selected on the grounds that it is the only one containing all of the PRO

items of interest. The bi-factor model contains three latent variables: a common factor

explaining all of the items for the EQ-5D and the SF-12; an EQ-5D-specific factor explain-

ing the EQ-5D items; and a SF-12-specific factor explaining the SF-12 items. Once this

model has been fitted, the resulting parameter estimates are used in subsequent analyses

to obtain latent factor scores in the datasets without the EQ-5D as follows:

• In order to estimate factor scores for patients in the MEPS dataset a single factor model

explaining all of the SF-12 items is specified. Estimated factor loadings that explain SF-

12 item responses in terms of the common factor are taken from the NHMS analysis and

used as fixed parameters in this model, which is then fitted to the MEPS dataset. Once

this model has been fitted, latent factor scores can be predicted using the Empirical
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Bayes (EB) method. These factor scores, in combination with the parameter estimates

from the NHMS analysis, can be used to predict the expected EQ-5D responses and

index values.

• In order to estimate factor scores for patients in the WHS dataset a single factor model

explaining all of the SF-12 items is specified. Although SF-36 responses were collected

in this dataset, there were concerns that differences in the items responses between the

NHMS and WHS datasets would lead to invalid predictions. There were substantial

differences between the NHMS and WHS datasets in terms of subjects’ responses to

questions 33 through to 36 on the SF-36. In the NHMS data, fewer than 2% of subjects

were found to select a “Don’t know” response in these questions; in contrast, between

15 – 35% of subjects selected this response in the WHS data. For this reason, it was

felt that it would be more appropriate to select the items corresponding to the SF-12

instrument and employ the same method as that with the MEPS data.

The predicted EQ-5D values can be used to derive inputs for the cost-effectiveness model.

These are the sample moments (mean and standard deviation) associated with the two

health states captured in the cost-effectiveness model: one for patients with diabetes who

have yet to experience a myocardial infarction and another for patients with diabetes

who have experienced a myocardial infarction. Note that the aforementioned methods

only provide parameter estimates for a deterministic cost-effectiveness analysis. For the

purposes of a probabilistic analysis, the steps undertaken to estimate latent factor scores

and, subsequently, predict EQ-5D responses need to be implemented via a stochastic

process.

6.3.4 Estimation of Parameter Inputs: SEM Approach

The model specification of the SEM approach is essentially the same as that in the CFA

approach with the addition of a structural component capturing the impact of patients

having experienced a MI. In contrast to the CFA approach, this model is fit to a sample

combining the all of the datasets. In order to make use of observations that have missing

data, a FIML estimation procedure is employed. The estimated model captures a latent

factor distribution associated with each of the health states of interest, which can be

subsequently used to predict item-level responses using Monte Carlo simulation methods.

As with the CFA approach, a stochastic process is necessary in order to capture the

uncertainty surrounding the factor loadings and threshold values. Moreover, to ensure

that the predicted item responses reflect the latent factor distribution, a large number of
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simulations are run (100,000 for each health state). Model inputs can then be obtained

by calculating the means and standard deviations for each of the simulated samples.

6.3.5 Estimation of Parameter Inputs: Reference Case Approach

An additional analysis was undertaken to estimate HRQoL parameter inputs solely using

EQ-5D. Estimation of the HRQoL input parameters simply involved calculating the means

and standard deviations for the two groups of patients in a sample comprised of data from

the RITA-3 and NHMS studies.

6.3.6 Statistical Software

The CFA approach to parameter estimation was implemented in the R software program

using the Lavaan package. For the SEM approach, the initial model was fitted using

Mplus software package and implemented using the FIML procedure for handling missing

data. The cost-effectiveness model inputs were subsequently obtained by simulating the

expected responses to the EQ-5D based upon the initial model using the Simsem package in

R (Pornprasertmanit et al., 2013). For each of the different methods, a stochastic process

was implemented to capture the uncertainty surrounding these estimates. The subsequent

parameter estimates are then fed into the RITA-3 health economic model, also built in

R. A total of 3,000 simulations are run in the probabilistic sensitivity analysis to derive

the probability of the intervention being cost-effective for a given threshold. Measures for

comparison of model fit, such as the Akaike information criterion, are unsuitable in this

case study given that these methods are used to compare model fit for a given dataset.

Even though the alternative SEM approaches are applied to the same data, information

criteria comparisons would not be of any use given that one approach uses a single model

to simultaneously map and synthesise evidence whilst the other does this in two separate

stages.

6.4 Results

6.4.1 Descriptive Statistics

Table 6.1 provides descriptive statistics for each of the datasets used in this empirical

exercise. There are noticeable discrepancies between the samples grouped according to

health state description (i.e. whether or not patients have experienced a previous MI),

both in terms of the age and gender composition. If there is reason to believe that such

imbalances may bias the parameter estimates, it is important that statistical techniques are
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employed to control for them. Previous research has shown that HRQoL varies according

to both age and gender (Ara and Brazier, 2010; Kind et al., 1999).

Table 6.1: Descriptive Statistics

NHMS MEPS WHS RITA-3

No MI No MI Post MI No MI Post MI No MI Post MI

Total

Sample

552 1,335 189 875 150 156 88

Analysis

Sample

520 1,228 175 729 105 156 88

Age 63.6 58.9 67.9 61.8 68.6 64.2 63.9

% Male 0.41 0.40 0.58 0.56 0.64 0.57 0.66

6.4.2 Model Results: The CFA Approach

The factor loadings for the bi-factor CFA model, fitted to the NHMS data, are presented in

Table 6.2. These values show the extent to which each of the items are correlated with the

associated latent factor; a higher factor loading estimate corresponds to a higher degree of

correlation with the factor loading. For the purposes of HRQoL parameter estimation, the

loadings on the CF latent variable are of primary interest. Increases on the latent factor

scale reflect decreases in HRQoL. As such, items with responses ordered in a way to reflect

diminishing health – e.g. the items of the EQ-5D having the best health states coded as

1 and the worst as 3 – are shown to have positive factor loadings. Conversely, those items

with responses ordered to reflect improved health have negative factor loadings.

The item threshold values for the bi-factor CFA model can be found in Appendix E. These

estimates can be interpreted as reflecting the item difficulty; how far away from the mean

on the latent factor scale, at zero, does an observation need to be to give rise to a change

in the item response. Whilst interpreting these estimates might be challenging, especially

given that they reflect values on the standard normal distribution, they can be converted

into probabilities using the cumulative normal distribution function.

A chi-squared test of model fit was employed to explore whether or not the multi-dimensional

assumption seems reasonable. The result (p=0) suggests that it would be reasonable to
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assume that the bi-factor model fits the data better than a uni-dimensional approach.2 To

ensure comparability of the modelling techniques explored in this chapter, the bi-factor

CFA model was run in Mplus, as well as R, and the results were shown to be equivalent.

Table 6.2: CFA Approach - Factor Loadings

Indicator Latent Factor 1 Latent Factor 2 Latent Factor 3

(CF) (SF-12) (EQ-5D)

SF36 Q1 0.55 0.14 0.00

SF36 Q2 -0.84 -0.24 0.00

SF36 Q3 -0.77 -0.19 0.00

SF36 Q4 -0.72 -0.34 0.00

SF36 Q5 -0.82 -0.37 0.00

SF36 Q6 -0.81 0.30 0.00

SF36 Q7 -0.76 0.29 0.00

SF36 Q8 0.83 0.06 0.00

SF36 Q9 0.58 -0.35 0.00

SF36 Q10 0.69 -0.05 0.00

SF36 Q11 -0.76 0.40 0.00

SF36 Q12 -0.77 0.80 0.00

EQ5D Q1 0.75 0.00 0.41

EQ5D Q2 0.77 0.00 0.25

EQ5D Q3 0.87 0.00 0.38

EQ5D Q4 0.74 0.00 0.37

EQ5D Q5 0.81 0.00 -0.25

6.4.3 Model Results: The SEM Approach

The model specification for SEM approach is essentially the same as that for the CFA

approach except for the addition of a structural component included to capture the im-

pact of a myocardial infarction upon the common factor CF. Following initial concerns

that imbalances in patient characteristics might bias the estimated impact of a MI, three

additional control variables were included in the structural component: one for gender

and two dummy variables for age categories (one for subjects between 50 and 80 years old

and another for those patients over 80 years old).

Table 6.3 shows the factor loadings and regression coefficients capturing the impact of

the aforementioned covariates upon the latent factor CF. Increases on the scale of the

2We can reject a null hypothesis that inclusion of instrument-specific factors does not significantly

improve model fit.
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latent variable CF reflect improvements in HRQoL. The factor loadings have remained

remarkably similar to those obtained with the CFA approach. The latent factor CF is

estimated to be over half a standard deviation lower in those subjects who have previously

had an MI compared to those subjects who have never experienced an MI. Moreover, factor

scores are estimated to be higher in men and lower with increasing age. An additional

model was fitted that did not control for age and gender to compare the coefficients for

the MI variable.

Table 6.3: SEM Approach - Factor Loadings

Indicator Latent Factor 1 Latent Factor 2 Latent Factor 3

(CF) (SF-12) (EQ-5D)

SF36 Q1 -0.70 0.07 0.00

SF36 Q2 0.86 -0.23 0.00

SF36 Q3 0.83 -0.26 0.00

SF36 Q4 0.89 -0.19 0.00

SF36 Q5 0.93 -0.20 0.00

SF36 Q6 0.80 0.48 0.00

SF36 Q7 0.78 0.39 0.00

SF36 Q8 -0.81 0.11 0.00

SF36 Q9 -0.59 -0.30 0.00

SF36 Q10 -0.71 -0.04 0.00

SF36 Q11 0.66 0.39 0.00

SF36 Q12 0.82 0.11 0.00

EQ5D Q1 -0.72 0.00 -0.52

EQ5D Q2 -0.71 0.00 -0.31

EQ5D Q3 -0.80 0.00 -0.40

EQ5D Q4 -0.61 0.00 -0.08

EQ5D Q5 -0.68 0.00 0.24

MI -0.67 0.00 0.00

Age (50 - 80) -0.16 0.00 0.00

Age (80+) -0.41 0.00 0.00

Gender (Male) 0.36 0.00 0.00

As with the CFA approach, a chi-squared test of model fit was employed to explore whether

or not the multi-dimensional assumption seems reasonable. Once again, the result (p=0)

suggests that it would be reasonable to assume that the bi-factor model fits the data better

than a uni-dimensional approach.
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6.4.4 Parameter Estimates

Table 6.4 shows the estimated HRQoL parameter inputs for the cost-effectiveness model

derived. There are clear differences between the estimates derived using heterogeneous

outcome measures (Models 6.2 and 6.3) compared to those that solely relied upon the

reference case measurement (Model 6.1). The parameter inputs derived for Model 6.1 show

that increases in age are associated with improvements in HRQoL. This counterintuitive

finding is likely to be caused by the unusual associations between age and HRQoL in the

RITA-3 data (Mahon, 2014). In addition, this finding may go some way in explaining why

these estimates are so much higher than those for Models 6.2 and 6.3.

Although similar, the discrepancies between estimates from Models 6.2 and 6.3 are likely

to be driven by the different methods used to account for covariates. In Model 6.2, EQ-

5D predictions were obtained for the MEPS and WHS datasets before the impact of the

covariates (MI, age and gender) were derived using a pooled sample using these predicted

values in combination with the observed EQ-5D values (from the RITA-3 and NHMS

datasets). In contrast, Model 6.3 accounted for the impact of the covariates upon the

latent factor first and then EQ-5D predictions were derived for each patient profile.

Table 6.4: Mean HRQoL Parameter Inputs

No Previous MI Post MI

50 - 80 years 80 years + 50 - 80 years 80 years +

Model 5.1 0.742 0.759 0.574 0.592

Model 5.2 0.671 0.593 0.502 0.424

Model 5.3 0.640 0.605 0.533 0.480

Model 5.4 0.647 0.513

In addition to looking at the expected EQ-5D values for model inputs, it is important

to also consider the impact of the alternative synthesis methods upon the uncertainty

associated with these values. In the case of the inputs derived via Models 6.1, 6.2 and

6.4, the uncertainty associated with the expected values is a function of the standard

errors surrounding the parameter estimates listed in Tables 6.2 and 6.3 (i.e. those for the

factor loadings, threshold values and structural components). The forest plot in Figure

6.3 provides a graphical representation of the estimated EQ-5D distributions for all of the

patient profiles defined in the RITA-3 model, which were obtained in the probabilistic

sensitivity analysis.
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Figure 6.3: HRQoL Parameter Estimates

Whilst the figures suggest that the uncertainty associated with the model inputs is lowest

when statistical Model 6.4 is employed, the results from this model are not directly compa-

rable to the other methods given that there were fewer covariates utilized (age and gender).

It may be that the lack of adjustment for these covariates partially explains the reduced

uncertainty compared with the other methods presented. The simulations obtained from

statistical Model 6.2 exhibited reduced uncertainty compared to those from the reference

case approach (Model 6.1). This was particularly pronounced for the inputs associated

with patients aged 80 years or older. However, comparison of the results for Models 5.1

and 5.3 would suggest that the impact of additional, non-reference case evidence has an

ambiguous effect upon the uncertainty surrounding the HRQoL inputs.

6.4.5 Predictive performance

The external validity of Model 6.2, estimated using the NHMS data, was verified by

comparing EQ-5D predictions against observed EQ-5D values in the MEPS dataset. Table

6.5 shows that the predictive performance of Model 6.2, measured using the mean squared

error, is superior overall to that of the common factor model approach, first proposed by

Lu and colleagues (2013), across most of the EQ-5D distribution.

6.4.6 Cost-Effectiveness Results

The differences between parameter estimates obtained via the different synthesis tech-

niques only really matter if they give rise to substantial differences in the cost-effectiveness

estimates used to inform the associated reimbursement decisions. In view of that, parame-

ter estimates from statistical Models 6.1 to 6.4 were utilized in the RITA-3 model in order

to explore the impact of the methodological differences upon the cost-effectiveness results.
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Table 6.5: Mean Predictive Performance (MEPS data)

CFM Bi-factor CFA

Whole Sample 0.059 0.046

EQ-5D ≤ 0 0.096 0.084

0 < EQ-5D ≤ 0.25 0.053 0.075

0.25 < EQ-5D ≤ 0.5 0.063 0.072

0.5 < EQ-5D ≤ 0.75 0.064 0.049

0.75 < EQ-5D ≤ 1 0.049 0.028

Tables 6.6 – 6.9 show the implications of using the different methods in terms of the im-

pact upon the expected cost-effectiveness results. In addition, four separate probabilistic

sensitivity analyses were run, one for each of the statistical models, the results of which

have been presented in the form of cost-effectiveness acceptability curves in Figure 6.4. .

This information is also presented in terms of error probabilities in Table 6.10, assuming

threshold values of £20,000 per QALY and £30,000 per QALY respectively. These results

present the probability of making an incorrect decision, for a given patient, on the basis of

the expected cost-effectiveness results. Finally, the expected value of perfect information

was estimated for each of the statistical models and curves presenting this information can

be found in Figure 6.5.

Table 6.6: Cost-Effectiveness Results Using Model 6.1 Parameter Estimates

Treatment Comparator
Incremental

Difference

Costs (discounted) £39,940 £32,188 £4,752

QALYs (discounted) 12.34 12.21 0.13

Cost-per-QALY - - £36,163

Table 6.7: Cost-Effectiveness Results Using Model 6.2 Parameter Estimates

Treatment Comparator
Incremental

Difference

Costs (discounted) £39,940 £32,188 £4,752

QALYs (discounted) 11.00 10.88 0.12

Cost-per-QALY - - £39,960
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Table 6.8: Cost-Effectiveness Results Using Model 6.3 Parameter Estimates

Treatment Comparator
Incremental

Difference

Costs (discounted) £39,940 £32,188 £4,752

QALYs (discounted) 11.12 11.00 0.12

Cost-per-QALY - - £39,198

Table 6.9: Cost-Effectiveness Results Using Model 6.4 Parameter Estimates

Treatment Comparator
Incremental

Difference

Costs (discounted) £39,940 £32,188 £4,752

QALYs (discounted) 10.76 10.65 0.11

Cost-per-QALY - - £42,054

One notable observation in each of these figures is the close proximity of the curves involv-

ing heterogeneous HRQoL evidence (Models 6.2, 6.3 and 6.4). Moreover, Figure 6.4 shows

that the uncertainty surrounding the decision in question is reduced in these cases when

compared to the results obtained using the homogeneous HRQoL evidence (statistical

Model 6.3). This is because the probability of the early intervention being cost-effective is

reduced, i.e. we can be more confident that it is not cost-effective. Figure 6.5 also shows

that, over a threshold range between £20,000 and £30,000 per QALY, the cost associated

with the decision uncertainty is greater for the scenario involving homogeneous HRQoL

evidence compared to the scenarios with heterogeneous evidence.

6.5 Discussion

The primary objective of this chapter was to explore the benefits of having access to IPD

– specifically, item-level data – when synthesising HRQoL evidence for the purposes of

cost-effectiveness analysis. Investigations were focused on the use of methods capable of

handling item responses given that this would apply to all PRO measures involving likert-

type questionnaire responses. Moreover, item-level analyses allow researchers to make

greater use of the available information and, unlike analyses involving summary scores,

avoid overlooking item-level effects.

Structural equation modelling with categorical item variables is possible thanks to the

development of polychoric methods. These methods are extremely flexible and typically
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Table 6.10: Error Probabilities

Threshold = £20K Threshold = £30K

Model 6.1 0.083 0.340

Model 6.2 0.046 0.253

Model 6.3 0.049 0.277

Model 6.4 0.033 0.224

Figure 6.4: Cost-Effectiveness Acceptability Curves

assume that item responses correspond to points on an underlying latent factor with a con-

tinuous scale. There is only one existing study known to have implemented these methods

in the context of HRQoL evidence synthesis for CEA. Gibbons and colleagues employed

a bi-factor IRT model and found that this approach showed good predictive performance

when compared to other mapping techniques (Gibbons et al., 2014). Unfortunately, the

study by Gibbons and colleagues only demonstrated the predictive performance of the

bi-factor IRT approach in terms of its internal validity. Moreover, their study did not con-

sider some of the challenges likely to be encountered by researchers implementing these

methods in conjunction with a cost-effectiveness model, principally of how to account for

the uncertainty surrounding the parameter estimates.

Whilst fitting SEM models is relatively straightforward, the prediction of PRO responses

via latent factor variables is made more challenging by the need to predict latent factors.

Furthermore, there is additional complexity involved in the process of accounting for

parameter uncertainty. In this chapter, two alternative approaches have been put forward

for the prediction of PRO responses. The first method involved fitting a CFA-type model

to data containing all of the items of interest and then using the output to estimate latent

factor scores in data that only collected a subset of the items. The second method involved
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Figure 6.5: Expected Value of Perfect Information

fitting an SEM-type model with an additional structural component in order to control for

the variables of interest in the cost-effectiveness model. Once this model was fitted, the

predictors assigned values to reflect the patient profiles of interest in the CE model. For

each of the aforementioned prediction methods, it is vital that researchers take account

of the uncertainty surrounding the factor loadings and threshold values. Otherwise, they

might risk underestimating the uncertainty that is introduced by using indirect estimates

of HRQoL.

Of the two item-level methods put forward in this chapter, the SEM approach offers a

more computationally efficient approach to the prediction of PRO responses. This method

simply involves fitting the specified model to a dataset combining all of the relevant data

and then using the output of this analysis to predict PRO responses. The CFM approach

involves two stages before PRO responses can be predicted: first, fitting a model to the data

that collected all of the items of interest and, second, using the output of this analysis in a

subsequent model that is then fitted to the dataset(s) containing a subset of the items in

the original model. Unfortunately, the SEM approach cannot currently be implemented in

the R software package. Instead, this approach requires software, such as Mplus, capable of

deriving latent factor scores following the implementation of a FIML-estimation procedure.

The case study in this chapter did not show any clear impact of incorporating a broader

range of HRQoL measures in terms of either parameter or decision uncertainty. However,

it is important to acknowledge that these findings are case study dependent. While the ‘all-

inclusive’ approach can potentially lead to increased statistical power for the estimation of

HRQoL parameters compared to the ‘reference case’ approach, this does not guarantee that

the decision uncertainty will be reduced. For instance, the gains from having an increased

sample size might be offset by the uncertainty introduced as a result of the additional
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parameters included to estimate factor scores and to predict HRQoL responses (i.e. factor

loadings and threshold values). Several of the issues pertaining to uncertainty around cost-

effectiveness results obtained using SEM methods from the previous chapter also apply

to this chapter. The ‘all-inclusive’ approach to evidence synthesis with SEM methods is

likely to be most beneficial when the reference case measure (e.g. EQ-5D in the UK) is

subject to large amounts of measurement error in the estimation of population parameters.

There is also methodological uncertainty stemming from the indirect estimation of HRQoL

effects (i.e. mapping).

As with the methods in the previous chapter, there is uncertainty regarding the structural

assumptions made in the specification of the SEM models in this chapter. One might

question whether it is appropriate to assume that all of the HRQoL effects of interest

should be captured on a single health domain (i.e. CF). Depending upon the condition

under evaluation and the outcome measures available, it may be necessary to employ

more complex model specifications in order to disentangle HRQoL effects. For instance,

it may be more appropriate to model physical and mental health effects separately from

one another (Gibbons et al., 2014). Although this potential complexity may seem overly

burdensome, it could also present additional opportunities in the modeling of HRQoL

effects. For certain disease areas, such as psoriatic arthritis (Kavanaugh et al., 2016),

patients may experience several distinctive morbidity effects that need to be captured in a

cost-effectiveness model. The flexibility of SEM methods means that it would be possible

to explicitly account for these morbidity effects in the modeling approach. Future research

is required to explore the issue of structural uncertainty in the specification of SEM models

for the purposes of evidence synthesis. Existing research from the field of psychometrics

would be well placed to inform these investigations given that there have been significant

methodological advances to contend with the complex relationships often hypothesized in

this field.

The empirical exercise conducted in this chapter demonstrated that parameter estima-

tion involving the synthesis of heterogeneous HRQoL evidence with SEM techniques is

preferable using IPD, rather than AD, for several reasons. First, IPD allows researchers

to control for covariate imbalances in the data that would otherwise bias the parameter

estimates of interest. Related to this is the fact that IPD facilitates the exploration of

heterogeneity according to patient characteristics, which can reduce the uncertainty sur-

rounding cost-effectiveness results. Although covariate adjustment can also be conducted

using aggregate data, there is always a danger of bias (Piantadosi et al., 1988). Further-

more, access to IPD ensures that any correlations between covariates can be accounted for
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in the probabilistic sensitivity analysis. IPD also allows researchers to conduct analyses at

the item level, rather than having to rely upon linear analyses of summary scores, which

have been shown to be superior in terms of predictive performance.

The models employed in this chapter assume that observations obtained from different

studies can be treated as being random samples from a single population. Given that the

datasets in this chapter differ in a number of respects – in terms of patient demographics,

inclusion criteria, study setting and study design – it may be more appropriate to treat

the data as being heterogeneous with observations being drawn from different groups, i.e.

a hierarchical structure. Unfortunately, the fact that the datasets also differed from one

another in terms of the item variables collected meant that a hierarchical model could not

be implemented in Mplus.3 Further research around this issue is necessary, particularly

in relation to the use of a Bayesian multi-level approach (Lee, 2007).

Finally, the results of this chapter cannot be extrapolated should not be extrapolated to

scenarios beyond the synthesis of heterogeneous generic PRO measures. While it is an-

ticipated that the same methods could be employed in other scenarios, the implications

of incorporating disease-specific measures in addition are unclear. Existing research has

shown that mapping via disease-specific measures generally tends to exhibit a worse pre-

dictive performance than that via generic measures (Brazier et al., 2010). Comparatively,

recent work has proposed that mapping via disease-specific measures has the potential to

improve the precision of parameter estimates (Ades et al., 2013). Further research should

prioritize the application of these methods in scenarios involving disease-specific measures.

3Lavaan does not currently include a hierarchical SEM estimation procedure.
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Chapter 7

Case Study III: Synthesis of

Aggregate and Individual Patient

Data

7.1 Introduction

Chapter 6 demonstrated that the availability of HRQoL evidence at the IPD level offers

substantial benefits for researchers seeking to synthesise that evidence with SEM tech-

niques. Access to IPD permits the analysis of PBMs in terms of their item responses

- rather than their index values - yielding parameter estimates that exhibit lower lev-

els of prediction error compared to the estimates that would have been obtained from

AD. Furthermore, IPD allows researchers to adjust for covariate imbalances and explore

heterogeneity according to patient characteristics. Unfortunately, it is unlikely that re-

searchers will be able to obtain raw data for all of the studies that are relevant to their

cost-effectiveness model and instead will have to rely upon a combination of IPD and AD.

This poses the question over how such evidence should be combined given that it will be

composed of summary scores and/or index scores (in the case of AD), as well as item-

level evidence (in the case of IPD). A simple solution would be to obtain summary scores

and/or index values from the IPD studies available and to synthesise these in the AD for-

mat, along with the remaining AD studies (using one of the methods outlined in Chapter

5). However, the downside of this approach is that it fails to exploit the aforementioned

advantages of having access to IPD. The objective of this chapter is to explore how re-

searchers might simultaneously address the challenges encountered in this scenario: on the

one hand, using methods that exploit the benefits of having access to IPD, whilst on the
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other, ensuring that parameter estimates make comprehensive use of the available data.

An empirical case study is conducted that investigates the use of a multistage Bayesian

approach to evidence synthesis for the estimation of HRQoL inputs.

7.2 Background

The aforementioned challenges associated with the synthesis of evidence comprised of both

IPD and AD can be circumvented through the application of Bayes’ theorem. There are

two steps involved in this approach, which is illustrated in Equation 7.1: (1) the evidence

in the IPD format is used to estimate the unknown HRQoL parameter estimates, θ, which

are subsequently used as informed priors; (2) the evidence in the AD format is used in

the likelihood function, L(θ; y), to obtain an updated posterior distribution, p(θ|y), for

the HRQoL parameter estimates. The main strength of this approach is that it allows

researchers to exploit the SEM techniques capable of handling item-level responses and to

combine the output with evidence in the AD format.

p(θ|y) = L(θ; y) · p(θ) (7.1)

Whilst the Bayesian approach might allow researchers to exploit item-level responses for

the synthesis of IPD, it does not get away from the fact that the subsequent synthesis of

evidence at the AD level involves HRQoL index values. However, any concerns regarding

the plausibility of the LISREL method can be avoided if researchers have access to a

dataset containing all of the PRO measures found in evidence available in the AD format.

The availability of IPD containing all such measures enables the prediction of the reference

case PRO measure at the item level using evidence from alternative measures in the

AD format, thus ensuring the prediction of feasible HRQoL index values. As such, an

SEM model is specified to include a mixture of both categorical and continuous indicator

variables.

An illustrative example is shown in Figure 7.1 depicting a SEM incorporating information

from three PRO measures. Two of the measures are represented in terms of their index

values (SF-6D and HUI-3), and thus captured as continuous variables. The reference

case measurement, the EQ-5D, is represented in terms of the item-level responses to its

descriptive system (i.e. categorical variables).
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Figure 7.1: Graphical Representation of a Mixed Outcome SEM Model

7.3 Methods

The case study in this chapter seeks to combine evidence from the motivating examples

used in Chapters 5 and 6 for the estimation of HRQoL input parameters in the RITA-

3 cost-effectiveness model. The primary aim of the case study is to demonstrate how

Bayesian methods can help to facilitate the synthesis of heterogeneous HRQoL evidence in

both IPD and AD formats, via SEM techniques. Two alternative techniques for combining

AD will be compared: one using the LISREL method (see Chapter 5) to map between

outcome measures and another using a novel mixed outcomes SEM approach. In addition,

parameter estimates obtained using the two methods for combining IPD and AD evidence

will be compared with those derived using the EQ5D IPD alone (i.e. the methods observed

in the previous chapter). Once again, the parameter estimates are fed into the RITA-3

model and cost-effectiveness estimates are obtained for each of the alternative methods.

7.3.1 HRQoL Evidence

PRO evidence in the IPD format was obtained from four studies: the National Health

Measurement Survey (NHMS), the Medical Expenditure Panel Survey (MEPS), the Welsh

Health Survey (WHS) and the Randomized Intervention Trial of unstable Angina (RITA-

3) trial (Fryback et al., 2007; Kim et al., 2005; NatCen Social Research, 2013; Sullivan

et al., 2011). Further details describing these datasets can be found in chapter 6. Evidence
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in the AD format was extracted from an existing meta-analysis that assessed the effects

of diabetes and related complications upon HRQoL (Lung et al., 2011). Further details

describing this data can be found in Chapter 5.

7.3.2 Health Economic Model

The health economic model employed is the same as that used in Chapter 5, where further

details describing this model can be found.

7.3.3 Estimation of Parameter Inputs

As with the previous two chapters, the aim of this empirical exercise is to estimate HRQoL

values associated with two defined health states: one for patients with diabetes who have

yet to experience a myocardial infarction and another for patients with diabetes who have

experienced a myocardial infarction. A “reference case” approach is conducted to estimate

HRQoL parameter inputs solely using the EQ-5D evidence in both IPD and AD formats

(Method 7.1). This involves aggregating the IPD evidence and then synthesising it in

combination with the AD evidence using Model 5.1.1

An alternative method is considered for the synthesis of evidence selected as part of the

“all-inclusive” approach (i.e. including evidence beyond the reference case measurement).

This method (Method 7.2) conducts the mapping and evidence synthsis procedures sepa-

rately. HRQoL evidence in the IPD format is mapped onto the EQ-5D scale using Model

6.2 from Chapter 6. A regression analysis is then implemented using all of the IPD

observations available to obtain two parameter estimates, an intercept and a coefficient

capturing the impact of an MI on HRQoL.2 The parameter estimates obtained from the

IPD analysis will then be combined with evidence in the AD format through the specifi-

cation of a Bayesian meta-regression model. However, before this task can be undertaken

all of the evidence in the AD format has to be mapped onto the scale of the reference case

measurement.

The availability of IPD linking all of the relevant outcomes means that we are no longer

restricted to using the LISREL method as in Chapter 5. A mixed outcomes SEM approach,

illustrated in Figure 7.1, is fitted to the NHMS dataset and the resulting output used to

1Note that sample statistics obtained from the IPD data are split according to the patient health state

(i.e. no MI versus post MI) and study.
2Although the case study in Chapter 5 also included covariates for age and gender, these are removed

for illustrative purposes to show a scenario with corresponding parameters across the evidence formats.
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convert SF-6D and HUI-3 scores in the AD format onto the latent factor (CF) scale. This

model is represented in Equations 7.2 - 7.6.

Pr(EQ5Dij = 1) = Φ(−τ1,j + λj · fi) (7.2)

Pr(EQ5Dij = 2) = Φ(−τ2,j + λj · fi)− Φ(−τ1,j + λj · fi) (7.3)

Pr(EQ5Dij = 3) = 1− Φ(−τ2,j + λj · fi) (7.4)

SF6Di = αSF6D − λSF6D · fi (7.5)

HUI3i = αHUI3 − λHUI3 · fi (7.6)

Where EQ − 5Dij represents individual i’s response to the jth item of the EQ-5D, fi

is individual i’s latent factor score and λj is the factor loading for EQ-5D item j. The

τk,j terms are thresholds indicating the point on the latent factor response scale where

individuals switch their item response. Φ is the standard cumulative distribution function.

The SF6Di and HUI3i terms represents individual i’s valuations for the SF-6D and HUI-3

instruments. These measures have intercepts represented by the terms αSF6D and αHUI3,

and factor loadings represented by the terms λSF6D and λHUI3.

EQ-5D responses first need to be predicted before values can be obtained. A simulation

exercise is implemented to this extent that predicts EQ-5D responses using the latent

factor statistics in combination with the relevant factor loadings and threshold values

from Equations 7.2 - 7.4. Once a sufficiently large number of simulations have been run,

the UK EQ-5D population value set is applied to the predicted responses and sample

statistics derived for the resulting values. The Bayesian meta-regression approach used to

synthesise evidence in the AD format is the same as Model 5.2 (see Equations 5.1 - 5.5)

with exception of the priors specified. Whilst Model 5.2 used plausible but uninformed

priors (Equations 5.3 and 5.4) for the parameter estimates of interest, the priors used in

this chapter are informed by the IPD analysis. A different assumption is needed regarding

the distribution of the constant term, µ, given that the uniform distribution is no longer

applicable. Instead, a beta distribution is assumed and, as such, the parameter estimates

100



obtained from the synthesis of IPD evidence need to be modified via methods of moments

calculations (see Briggs et al. (2006)).3

7.3.4 Statistical Software

The meta-analytic models are estimated using the JAGS software, which is run through

the R program using the R2jags package (Su and Yajima, 2012). Each model is run with

three Markov chains over total of 10,000 iterations, the first 1,000 of which are discarded

as the burn-in period. For each method, the posterior distribution is fed directly into the

health economic model for the probabilistic sensitivity analysis. The factor loadings are

estimated using the Lavaan package in R (Rosseel, 2012).

7.4 Results

7.4.1 Parameter Estimates

Table 7.1 shows the estimated HRQoL parameter inputs for the cost-effectiveness model.

This shows that there are substantial differences between the estimates derived using

heterogeneous outcome measures (Model 7.2) compared to those that solely relied upon the

reference case instrument (Model 7.1). The forest plot in Figure 7.2 provides a graphical

representation of the estimated EQ-5D distributions for all of the patient profiles defined

in the RITA-3 model, which were obtained in the probabilistic sensitivity analysis. The

parameters derived by taking an “all-inclusive” approach to evidence synthesis exhibit

significantly reduced uncertainty.

Table 7.1: Mean HRQoL Parameter Inputs

No Previous MI Post MI

Model 6.1 0.736 0.667

Model 6.2 0.623 0.466

Model 6.2 0.778 0.713

(No IPD Prior)

Model 6.2 0.620 0.457

(IPD Only)

3Note that there is still a discrepancy between the EQ-5D and the beta distribution in terms of their

ranges; transformations are required to account for these differences in scale.
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The evidence used in Model 7.2 has been split up according to the format (i.e. IPD and

AD) in an effort to understand the parameter estimates. The estimates labelled ‘Model

7.2 (No IPD Prior)’ show the results form an additional scenario analysis performed using

Model 7.2 but with the priors set to be the same as those in Model 5.1. The estimates

labelled ‘Model 7.2 (IPD only)’ show the parameter estimates obtained using the IPD

only. These results clearly demonstrate that the IPD evidence is the main driver behind

the results. This can be explained by the fact that the parameter estimates derived from

the IPD exhibit far greater precision when compared to those derived from the AD.

Figure 7.2: HRQoL Parameter Estimates

7.4.2 Cost-Effectiveness Results

HRQoL parameter inputs obtained via Models 7.1 and 7.2 were utilized in the RITA-3

model in order to explore the impact of the methodological differences upon the cost-

effectiveness results. Tables 7.2 – 7.3 show the implications of using the different methods

in terms of the impact upon the expected cost-effectiveness results. In addition, prob-

abilistic sensitivity analyses were run, the results of which are presented as CEACs in

Figure 7.3. This information is also presented in terms of error probabilities in Table

7.4, assuming threshold values of £20,000 per QALY and £30,000 per QALY respectively.

These results present the probability of making an incorrect decision, for a given patient,

on the basis of the expected cost-effectiveness results. Finally, the EVPI was estimated

for each method and curves presenting this information can be found in Figure 7.4.

102



Table 7.2: Cost-Effectiveness Results Using Model 7.1 Parameter Estimates

Treatment Comparator
Incremental

Difference

Costs (discounted) £36,940 £32,188 £4,752

QALYs (discounted) 12.36 12.24 0.12

Cost-per-QALY - - £39,495

Table 7.3: Cost-Effectiveness Results Using Model 7.2 Parameter Estimates

Treatment Comparator
Incremental

Difference

Costs (discounted) £36,940 £32,188 £4,752

QALYs (discounted) 10.32 10.21 0.11

Cost-per-QALY - - £42,549

Table 7.4: Error Probabilities

Threshold = £20K Threshold = £30K

Model 7.1 0.006 0.139

Model 7.2 0.005 0.098
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Figure 7.3 shows that the uncertainty surrounding the decision in question is reduced

when the “all-inclusive” approach to evidence selection is employed as opposed to the

“reference case” approach. This is because the probability of the early intervention being

cost-effective is reduced, i.e. we can be more confident that it is not cost-effective. Figure

7.4 shows that, over a threshold range between £20,000 and £30,000 per QALY, the

cost associated with the decision uncertainty is greater for the “reference case” approach

compared to the “all-inclusive” approach.

Figure 7.3: Cost Effectiveness Acceptability Curves

Figure 7.4: Expected Value of Perfect Information
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7.5 Discussion

The primary objective of this chapter was to explore methods for the synthesis of hetero-

geneous HRQoL evidence in both IPD and AD formats, via SEM techniques. The main

challenge in this task is finding a means to exploit the benefits of having access to item-

level responses in the IPD, whilst also ensuring that the AD evidence is used to inform

parameter estimates. This chapter proposes the combination of evidence in multiple steps

through a process of Bayesian updating and an empirical case study was also conducted to

explore the use of this method for the estimation of HRQoL inputs. The case study showed

this multi-stage method to be successful in making optimal use of the available evidence

and found that parameter uncertainty was dramatically reduced when a combination of

IPD and AD evidence was used compared to IPD alone.

In addition to the multi-stage approach to parameter estimation, the case study in this

chapter also illustrated how IPD can be used for the prediction of item-level responses

on the reference case measurement using evidence from alternative measures in the AD

format. This method is preferable for mapping from AD given that it ensures the predic-

tion of plausible item responses. Given the concerns regarding use of LISREL methods

in Chapter 4, this exercise illustrates the benefits of having access to IPD in terms of the

opportunities it affords researchers seeking to synthesise heterogeneous AD evidence. The

methods considered in this chapter are particularly relevant given that a scenario involv-

ing some combination of IPD and AD probably reflects that most plausible situation in

practice. This is partly due to the fact that implementing SEM methods for the synthesis

of HRQoL evidence is likely to rely upon the availability of IPD in order to estimate factor

loadings (see chapter 5 for further details). However, researchers are unlikely to be able

to obtain all relevant evidence in IPD format and, thus, will have to make do with results

in AD format for many studies.

The case study in this chapter found clear evidence that parameter uncertainty was re-

duced using the ‘all-inclusive’ approach to evidence synthesis (Model 7.2) compared to

the ‘reference case’ approach (Model 7.1). Furthermore, HRQoL estimates obtained with

the ‘all-inclusive’ approach were considerably reduced compared to the ‘reference case’

approach’. However, these differences would appear to be largely explained by the addi-

tional IPD employed in the ‘all-inclusive’ approach, given the similar parameter estimates

obtained from Model 7.2 with and without the AD evidence. This raises doubts over the

consistency of the results from the non-reference case IPD data compared to the remaining

evidence, which begs the question of whether or not they should be included in the synthe-
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sis. It may be reasonable to distinguish the non-reference case IPD data, taken from the

WHS and MEPS studies, from the remaining studies given that the patient populations

were selected on the basis of their self-reported comorbidities. As such, these patients may

not be directly comparable to patients identified by clinicians.

It is important to acknowledge that the case study in this chapter is subject to a number

of limitations. Unlike the previous chapter, the model specified for the meta-regression

in this chapter did not include covariates for age and gender. Although the age and

gender covariates were removed in this chapter for illustrative purposes, the findings from

Chapter 6 indicated that these are important predictors. Given that the decision problem

of interest relates to a male patient population aged 52 years old, a failure to control for

these variables may distort the estimated cost-effectiveness results. There are likely to be

many cases, such as this one, where it would be more appropriate to disregard the AD

evidence for the sake of exploiting additional covariates from the IPD.

Even where covariates are found to be important predictors of cost-effectiveness, this does

not necessarily imply that the results should be used to make stratified health care deci-

sions. This is because there may be transaction costs associated with the stratification of

patients that outweigh the benefits accrued from having controlled for additional covari-

ates (Basu and Meltzer, 2007; Espinoza et al., 2014). Espinoza and colleagues developed

a framework to estimate the value of heterogeneity in order to determine the optimal

level of stratification (Espinoza et al., 2014). This framework could potentially be used

to determine whether it would be better to use IPD evidence alone or in combination

with AD evidence depending upon the value of heterogeneity. Note that this concept is

not unique to HRQoL parameters – the same idea applies to other parameters including

clinical evidence, resource use and costs.

Another issue regarding the inclusion of covariates is that of omitted variable bias. The

validity of the approach in this chapter, as with any model, relies upon an assumption

that there are no confounding variables that could give rise to biased parameter estimates.

Researchers will often find that the existing studies from which their AD evidence was ob-

tained did not analyse the raw data using a method in-keeping with the needs of their

decision model, e.g. controlling for variables such as age or gender. There are several

options to consider pursuing in this type of situation. First, one could consider extending

the meta-regression to control for additional covariates although there is an additional risk

of obtaining biased estimates when exploring statistical relationships between variables at

the aggregate level (Piantadosi et al., 1988). Instead, one could employ a strict study se-

lection strategy and disregard such evidence; however, this could prove to be inappropriate
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if the IPD is subject to some alternative form of bias.

A third possibility would be to employ an evidence discounting method (Lunn et al., 2012).

This method allows researchers to discount biased evidence – specifically, where there are

concerns about bias either in terms of relevance or methodological rigor – such that it

does not carry a full weighting compared to evidence assumed to be free of bias. However,

this approach has yet to be explored in the context of HRQoL parameter estimation and

it is unclear as to how one would go about quantifying these biases. Further research is

required for this method to be considered for use in practice.

Although the specification of Model 7.2 might be preferable to the LISREL method in

terms of its ability to predict plausible responses for the reference case measurement, this

approach is still subject to flaws regarding the specification of the remaining outcome

measures. Model 7.2 assumes that the SF-6D and HUI-3 are both continuous variables,

and are linearly related to the latent factor. Given that both instruments exhibit a bounded

range of plausible values and non-normal error terms, the assumptions necessary for this

approach to be valid are likely to be violated. Further research is necessary to develop

novel methods for handling this issue. However, it should be noted that – as with the

empirical applications in Chapters 5 and 6 – there is additional structural uncertainty

introduced with the ‘all-inclusive’ approach to evidence synthesis given that it requires a

modelling approach to incorporate multiple HRQoL outcomes.
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Chapter 8

Discussion and Conclusions

“...and all the pieces matter”

Lester Freamon, The Wire

8.1 Summary of the thesis

One of the main tenets of the decision analytical modeling approach to CEA is that

researchers should aim to make comprehensive use of all relevant evidence to minimize the

potential risk of obtaining misleading results. In this regard, there has been a large body

of methodological research devoted to the statistical methods used to synthesizing clinical

evidence in CEA (Sutton et al., 2012). However, this issue has been largely overlooked in

the context of HRQoL evidence. As such, the main purpose of this thesis was to contribute

to the understanding of statistical methods for incorporating HRQoL evidence within the

decision-analytic modelling framework. The thesis addressed this overall aim by exploring

four research questions, set out in Chapter 1.

The first research question sought to evaluate the current state of practice with regards

to the use of statistical methods to incorporate HRQoL data in applied cost-effectiveness

studies. A review of NICE technology appraisals was conducted to evaluate the use of

statistical methods to incorporate HRQoL evidence in applied cost-effectiveness studies

(Chapter 2). The results of the review found that the following statistical procedures were

used on an irregular basis: pooling techniques for the synthesis of evidence from multi-

ple studies; mapping techniques for the prediction of reference case HRQoL values using

alternative outcome measures; adjustment techniques used to combine HRQoL values for

comorbidities. These findings suggest that there are fundamental inconsistencies regard-

ing the utilization of HRQoL evidence for the purposes of informing technology adoption
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decisions. In light of these findings, a decision was made to focus research efforts upon

the identification of statistical methods capable of utilizing HRQoL evidence in both a

comprehensive and consistent manner.

The second research question of the thesis sought to evaluate the guidance currently avail-

able with respect to the use of statistical methods for the synthesis of HRQoL evidence in

CEA. A review of the policy guidance and published literature was conducted to evalu-

ate the methodological guidance currently available (Chapter 3). Recommendations from

policy-makers regarding the synthesis of HRQoL evidence were found to be lacking. Chap-

ter 3 concluded that taking a vague stance on this issue might actually risk promoting

future inconsistencies in the utilisation of HRQoL evidence. This conclusion has impor-

tant implications for policy makers as it suggests that more prescriptive methodological

guidance may be required.

A frequently observed issue in the published literature was the predicament of how to

deal with between-study heterogeneity (i.e. a lack of comparability amongst the alter-

native instruments for measuring and valuing HRQoL). Some studies attempted to get

around this problem by restricting syntheses to only include evidence for a reference case

instrument to ensure that the evidence being incorporated is comparable. However, this

approach may provide an incomplete representation of HRQoL effects or, in some cases,

no evidence at all. One of the studies identified in the review in Chapter 3 proposed the

use of mapping techniques as a means to resolve the issue of between-instrument hetero-

geneity (Peasgood and Brazier, 2015). Chapter 3 concluded that incorporating mapping

procedures within a broader evidence synthesis framework could potentially pave the way

towards a more appropriate utilisation of HRQoL evidence for CEA. In particular, it was

felt that this suggested approach would avoid researchers having to make a compromise

between thoroughness and comparability in the selection of HRQoL evidence.

Chapter 4 explored the potential role of mapping techniques in combination with evidence

synthesis techniques. It began by reviewing some of the statistical issues associated with

the development of mapping algorithms. SEM techniques were identified as exhibiting a

number of important characteristics with regards to the analysis of HRQoL data, most

notably their ability to account for measurement error in applications involving multiple

outcomes (Lu et al., 2013). Next, a detailed outline of the SEM framework was provided

with particular emphasis upon the opportunities and challenges involved in the analysis

of preference-based measures of HRQoL. This description constitutes a valuable contribu-

tion on the grounds that it provides the health economic evaluation community with an

introduction to the use of the SEM framework, a methodology not traditionally associated
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with this discipline.

Despite the early promise exhibited by the SEM methodology however, it was felt that

further empirical research should be undertaken before any recommendation with regards

to their use in applied research could be made. It was decided that this should include

the following: (i) validation of this approach across the variety of plausible scenarios that

researchers might encounter, (ii) comparison of the methods against those employed in

the present circumstances, and (iii) demonstration in the context of a cost-effectiveness

model involving HRQoL parameters associated with defined health states and events.

The third research question of the thesis sought to determine the plausibility of the SEM

approach serving as a generalised framework for the synthesis of heterogeneous HRQoL

evidence in CEA. A series of empirical case studies were conducted to explore the method-

ological challenges associated with the use of these methods, and to compare parameter

estimates obtained via the synthesis of heterogeneous HRQoL evidence with SEM tech-

niques against those obtained via synthesis of homogeneous HRQoL evidence with stan-

dard synthesis techniques. The latter method was selected as being representative of cur-

rent practice based upon an assumption that cost-effectiveness evidence developed for the

purposes of policy decision making should strive to incorporate HRQoL effects captured

using some reference case measurement.

The SEM approach to evidence synthesis was employed in three separate scenarios that

differed in terms of the format of the available evidence. Each of these scenarios revolved

around an existing cost-effectiveness model comparing an early surgical intervention to

medical management for the treatment of acute coronary syndrome in a patient subgroup

with diabetes. This case study was selected for two reasons: (i) there were a range of

freely-available HRQoL studies pertaining to this case study and these studies facilitated

methodological investigations for each of the scenarios considered; (ii) the availability of

an existing model meant that the competing methods could be compared in terms of

their impact upon the cost-effectiveness results. The case study stands out as the first

application to date involving the use SEM methods to derive HRQoL parameter estimates

for a cost-effectiveness model.

Chapter 5 focused upon a scenario where researchers, seeking to estimate HRQoL param-

eters for a CEA, are faced with an evidence base involving multiple sources of evidence

in the AD format and composed of a variety of instruments. HRQoL evidence in the

AD format was obtained from an existing meta-analytic study and two approaches were

considered with regards to the selection of evidence: (i) a “reference case” approach, that

110



only used evidence from studies that collected the reference case measurement, and (ii) an

“all-inclusive” approach, that incorporated a range of other outcome measures in addition

to the reference case measurement. For the “reference case” scenario, a hierarchical meta-

regression method was used to synthesise the available EQ-5D evidence. Two methods

were proposed for the synthesis of evidence in the “all-inclusive” scenario, both of which

utilized SEM techniques to map between the different outcome measures. One of the

methods involved a two-step procedure, starting with the mapping of outcomes onto the

same scale followed by the evidence synthesis. The other, so-called integrated approach

conducted these tasks simultaneously.

The parameter estimates derived using the two-step synthesis approach exhibited confi-

dence intervals that were noticeably reduced when compared to those obtained by synthesis

of the reference case evidence. This finding was encouraging given that it would seem to

validate the rationale for embracing the “all inclusive” approach to evidence synthesis; that

is, by incorporating more relevant evidence, we increase the chances of gaining statistical

power for the estimation of parameters (Higgins et al., 2009). However, it is important

to acknowledge that other forms of uncertainty are introduced into the CEA when these

methods are adopted. There is additional methodological uncertainty due to the lack of

consensus regarding validity of using indirect estimates of HRQoL (i.e. mapped values).

Furthermore, structural uncertainty is also introduced given that the validity of the statis-

tical methods has been questioned in the context of HRQoL research (Alava et al., 2012;

Basu and Manca, 2012).

Overall, decision uncertainty in the RITA-3 model did not vary greatly when different

HRQoL parameter estimates, derived using the alternative methods considered in this

chapter, were employed. A supplementary analysis was conducted to estimate EVPPI

and this showed that the impact of HRQoL is modest in the RITA-3 model compared to

other parameters. For this reason, Chapter 5 concluded that the choice of method for

the estimation of HRQoL parameters would have been unlikely to impact upon a policy

reimbursement decision for this specific application. However, it was also recognised that

the role of HRQoL parameters within a given decision model is case study dependent. As

such, this finding would not constitute grounds for making a recommendation about the

implications of the SEM methodology for policy-making more broadly.

In Chapter 6, a scenario involving multiple sources of heterogeneous HRQoL evidence

in the IPD format was considered. As well as comparing an “all-inclusive” approach to

evidence synthesis to a “reference case” approach, the investigations in this chapter focused

on the potential benefits of adopting synthesis techniques capable of exploiting item-level
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responses. The latter point was considered to be particularly important given that this

pertains to all PRO measures involving likert-type questionnaires.

An empirical case study was conducted using evidence in the IPD format from several

freely available studies, in addition to data from a clinical trial associated with the cost-

effectiveness model. Two methods for synthesising evidence were proposed using SEM

methods, both of which specified the HRQoL measures in terms of item-responses using

polychoric methods. Once again, a distinction was made between the “reference case”

approach to evidence synthesis and an “all-inclusive” approach. As with Chapter 5, two

methods were proposed for the synthesis of evidence in the “all-inclusive” scenario, both

of which utilised SEM techniques to map between the different outcome measures.

The first of the proposed SEM methods implemented mapping and synthesis procedures

in separate stages, while the second method combined these procedures into a single

modelling approach using an FIML estimation method. Despite offering a more computa-

tionally efficient approach, the latter method could only be implemented in one software

package, Mplus (Muthén and Muthén, 2010). It was felt that the lack of alternative soft-

ware options represents a significant obstacle for the uptake of this method. As such, it is

hoped that this capability will be extended to other software packages in the future.

The HRQoL parameter estimates derived using the SEM methods were noticeably lower

than those obtained using the reference case data. The discrepancies appear to have

been caused by differences in the estimated impact of age upon HRQoL. One possible

explanation for this finding might be that the additional evidence incorporated in the

“all-inclusive” scenario was able to offset the spurious covariate associations between age

and HRQoL in the “reference case” scenario. The case study in Chapter 6 did not show

any clear impact of incorporating a broader range of HRQoL measures in terms of ei-

ther parameter or decision uncertainty. As with the scenario considered in Chapter 5,

parameter estimation with SEM methods introduces both methodological and structural

uncertainty.

Chapter 6 concluded that there are substantial benefits to be gained from synthesising

heterogeneous HRQoL measures using item-level responses rather than summary scores

and/or index values. Unlike the LISREL methods considered in the Chapter 5, item-level

SEM methods ensure the prediction of plausible HRQoL responses. The empirical case

study conducted in Chapter 6 found that the item-level approach had a superior predictive

performance when compared to the LISREL approach. IPD evidence brings additional

benefits including the ability to produce HRQoL parameter estimates stratified according
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to patient characteristics, which is needed to explore heterogeneity in cost-effectiveness

estimates. Furthermore, IPD allows researchers to control for covariate imbalances in the

data that would otherwise bias the parameter estimates of interest.

Chapter 7 examined the application of SEM methods in a scenario involving a combination

of evidence in the IPD and AD formats. This chapter sought to develop an SEM-based

approach to evidence synthesis capable of both exploiting the benefits of having access

item-level responses in the IPD, whilst also ensuring that the AD evidence is used to

inform parameter estimates. Of all of the scenarios considered in the thesis, this one was

considered to be particularly important given that it probably reflects the most plausible

situation encountered in practice. This is partly due to the fact that implementing SEM

methods for the synthesis of HRQoL evidence is likely to rely upon the availability of

IPD in order to estimate factor loadings (see Chapter 5 for further details). However,

researchers are unlikely to be able to obtain all relevant evidence in IPD format and, thus,

will have to make do with results in AD format for many studies.

A method was proposed that involved combining evidence in multiple stages via a Bayesian

updating process. Heterogeneous IPD evidence would be synthesised first using either

of one the item-level SEM techniques proposed in Chapter 6. The resulting parameter

estimates from this first step would then be used as informed priors in a subsequent

synthesis of the heterogeneous AD evidence. Assuming that there is IPD linking all of the

relevant outcome measures in the AD format, then the synthesis of evidence in the AD

format is no longer restricted to the use of the LISREL methods employed in Chapter 5.

Instead, Chapter 7 proposed that the IPD evidence could be used to predict item-level

responses on the reference case measurement using evidence from alternative measures

in the AD format. This method is preferable to the LISREL approach given that it

guarantees the prediction of plausible HRQoL responses (unlike the LISREL approach).

The proposed method was employed to estimate HRQoL parameters in an empirical case

study using the AD evidence from Chapter 5 and the IPD evidence from Chapter 6.

These estimates were then compared to parameter estimates obtained via a “reference

case” approach to evidence synthesis. The case study showed this multi-stage method to

be successful in making optimal use of the available evidence and found that parameter

uncertainty was dramatically reduced when a combination of IPD and AD evidence was

used compared to IPD alone. However, there were doubts raised over the comparability of

the IPD and AD evidence given that there were large differences observed in the HRQoL

estimates. Chapter 7 suggested that these differences might have been explained by dif-

ferences in the way that the patient populations were defined. This finding illustrates the
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importance of considering the consistency of the evidence when combining the results from

multiple studies.

8.1.1 Original Contributions

Chapter 2 of the thesis provides three important contributions. Firstly, there is no pub-

lished article, to the author’s knowledge, to have explored the consistency with which sta-

tistical methods are employed in applied CEA research to incorporate HRQoL evidence.

To this end, Chapter 2 can be considered as being a contribution to the field. Secondly,

the findings in Chapter 2 indicate that there are fundamental inconsistencies regarding

the utilisation of HRQoL evidence for the purposes of informing technology adoption deci-

sions. This has important implications for policy-making given that these inconsistencies

undermine the comparability of evidence used to inform different reimbursement decisions.

Finally, the methodological inconsistencies indicate that there may be deficiencies in the

published literature and policy guidance pertaining to the statistical methods employed

in applied CEA research to synthesise HRQoL evidence.

An important contribution of the research in this thesis is the fact that the investigations

reflect a range of scenarios that might be encountered in practice. Overall, the empirical

research conducted in this thesis has shown that the “all-inclusive” approach to evidence

selection, via SEM methods, can potentially improve precision in the estimation of HRQoL

parameters for CEA compared to an approach relying on evidence collected using some pre-

specified reference case measurement. Relevant code has been provided with instructions

on how to implement the methods in each scenario in open source software (Team, 2014).

It is hoped that this will facilitate the use of these methods and encourage future research

efforts in this area.

Chapter 7 represents the first known study to have considered the synthesis of hetero-

geneous HRQoL evidence in both IPD and AD formats. This chapter presents a novel

multi-stage method for incorporating HRQoL evidence in a way that exploits the benefits

of having access to item-level data, whilst also incorporating AD evidence. Furthermore,

it illustrates how researchers can exploit available IPD evidence to predict item-level re-

sponses for a reference case measurement using evidence from alternative measures in

the AD format. Previous research exploring the use of SEM methods for the analysis of

HRQoL evidence has relied on LISREL methods (Lu et al., 2013, 2014), despite the fact

that linear modeling techniques such as these have been shown to be inappropriate for

the analysis of HRQoL preference values (Alava et al., 2012; Basu and Manca, 2012). The

item-level approach is preferable for mapping from AD given that it ensures the prediction
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of plausible item responses.

Although a previous study was found to have employed SEM techniques for the synthesis

of HRQoL evidence in the AD format, this did not involve HRQoL preference values (Lu

et al., 2013). Chapter 5 is the first study, to the author’s knowledge, to have employed SEM

techniques for the synthesis for the synthesis of HRQoL preference values. There is only

one existing study known to have implemented item-level SEM methods for the analysis

of HRQoL evidence (Gibbons et al., 2014). However, this study did not consider some

of the challenges likely to be encountered by researchers implementing these methods in

conjunction with a cost-effectiveness model. Another original aspect of the research in this

thesis is that it considers the implementation these methods in the context of an associated

cost-effectiveness model, principally of how to account for the uncertainty surrounding the

parameter estimates.

8.1.2 Limitations

Although the investigations in this thesis provide a number of valuable contributions to the

field of health economic evaluation, it is important to acknowledge the limitations of the

research. The limitations chiefly pertain to the difficulties in forming methodological rec-

ommendations on the basis of empirical findings that are case study specific. The benefits

of adopting a more comprehensive approach to evidence synthesis, via SEM methods, are

likely to differ depending upon the condition under evaluation. To this end, a key priority

for future research will be to undertake simulation exercises to test the implications of

using competing methods across a variety of scenarios. The benefit of simulation exercises

is that the researcher has full control over all of the underlying parameters feeding into

the model to understand the mechanisms at work.

Another limitation of the case studies in this thesis is that they are solely concerned with

a limited number of preference-based measures of HRQoL. In theory, the SEM methods

for evidence synthesis would allow researchers to draw upon the wealth of non-preference-

based HRQoL measures available. As well as synthesising a broader range of outcome

measures, the SEM methodology is capable of estimating parameters with greater preci-

sion by incorporating disease-specific outcome measures. The latter point has important

implications for the identification of evidence given that the range of relevant outcomes

would vary according to the condition under evaluation. Further research is needed to

establish how researchers would go about identifying the range of outcomes that might

potentially be considered within a search strategy.
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By only focusing upon applications involving generic measures of HRQoL, this thesis

also overlooks the potential complexities involved in the specification of models that also

incorporate disease-specific measures. The case studies in this thesis dealt purely with

models assuming that HRQoL effects could be captured by a unitary construct. For certain

disease areas, such as psoriatic arthritis (Kavanaugh et al., 2016), patients may experience

several distinctive morbidity effects that need to be captured in a cost-effectiveness model.

To this end, additional exemplars are required to explicitly demonstrate the modeling

techniques that might be performed.

The cost-effectiveness study selected in this thesis was flawed for the purposes of explor-

ing the implications of employing alternative methods for synthesising HRQoL evidence.

Taken at face value, the findings would suggest that the methodological issues are unim-

portant from a policy-maker’s perspective, given that there was no observable impact

upon decision uncertainty. However, a supplementary analysis to estimate EVPPI results

in the RITA-3 model showed that the impact of HRQoL is modest compared to other

parameters. As such, it is unlikely that the choice of method for the estimation of HRQoL

parameters would have had a substantial impact upon the decision uncertainty.

8.2 Recommendations

8.2.1 Recommendations for researchers and decision makers

Researchers are advised to consider using SEM techniques for the synthesis of evidence

involving multiple heterogeneous outcome measures. Empirical research conducted in this

thesis has shown that this “all-inclusive” approach to evidence selection can potentially

improve precision in the estimation of HRQoL parameters for CEA compared to an ap-

proach relying on evidence collected using some pre-specified reference case measurement.

Relevant code has been provided with instructions on how to implement the SEM-based

synthesis techniques in open source software (Team, 2014). It is hoped that this will fa-

cilitate the use of these methods and encourage future research efforts in this area. It

is vital that researchers take account of the uncertainty surrounding the factor loadings

and threshold values. Otherwise, they might risk underestimating the uncertainty that is

introduced by using indirect estimates of HRQoL.

Researchers should be aware that access to IPD containing all of the measurements of in-

terest is likely to be a pre-requisite for the implementation of SEM-based methods. While

these methods can also be employed using sample covariance data (as in Chapter 5), it is

doubtful that this information can be obtained from published studies. Researchers are
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advised to take advantage of having access to IPD wherever possible. The availability

of IPD enables investigations into patient heterogeneity as well as allowing analyses to

control for missing data or covariate imbalances. Significantly, HRQoL evidence in the

IPD format also permits the implementation of SEM techniques that exploit item-level

responses. The analysis of item responses, rather than index or summary scores, is prefer-

able on the grounds that it ensures the prediction of plausible HRQoL values. Moreover,

analyses involving item responses have been shown to exhibit lower levels of bias than

those involving summary scores.

Decision makers are recommended to consider providing more prescriptive methodological

guidance in relation to the methods employed to synthesise HRQoL evidence. Chapter

3 found the recommendations currently on offer to be lacking in this regard. In partic-

ular, decision makers are advised to consider recommending a more inclusive approach

with regards to the synthesis of HRQoL evidence, i.e. consider the use of non-reference

case HRQoL evidence, even where directly relevant, reference case evidence is available.

Although concerns may exist in relation to the use of indirect estimates of HRQoL (i.e.

mapped estimates), there are other examples in the field of health economic evaluation

where indirect evidence is employed in evidence synthesis for parameter estimation, i.e.

treatment comparisons (Sutton et al., 2012).

8.2.2 Recommendations for future research

Further research is needed to establish the precise set of circumstances in which the meth-

ods for synthesising heterogeneous HRQoL evidence via SEM techniques are likely to be

most important. The most appropriate approach for handling investigations on this mat-

ter would be to undertake simulation exercises to test the implications of using competing

methods across a variety of scenarios. This approach would permit the analyst to both

specify and vary some of the key assumptions underlying the data including the pop-

ulation distribution of HRQoL responses/values for the parameters of interest and the

measurement error associated with alternative HRQoL measures.

Although the case studies in this thesis dealt exclusively with generic, preference-based

measures of HRQoL, it is anticipated that the SEM framework is sufficiently flexible for

use in other scenarios. However, additional empirical research is needed to demonstrate

the use of these methods in a wider range of scenarios, particularly those involving disease-

specific measures of HRQoL. As previously mentioned, disease-specific measures sometimes

capture distinctive morbidity effects with separate domains and this would bring additional

complexities into the model specification process. Existing research from the field of
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psychometrics would be well placed to inform these investigations given that there have

been significant methodological advances to contend with the complex relationships often

hypothesized in this field.

If policy makers were to endorse an “all-inclusive” approach to evidence synthesis, then

this would have important implications for the methods used to identify HRQoL evidence.

Further research is needed to establish how these considerations would be integrated within

a search strategy. For instance, this could encompass a scoping process prior to the

commencement of the literature search to identify all relevant outcome measures. For

certain conditions, research may have even been conducted already to determine which

patient-reported outcomes are appropriate for the measurement of HRQoL (Gibbons et al.,

2014; Hadi et al., 2010; Mackintosh et al., 2009).

Chapter 6 identified a number of deficiencies in the statistical software considered regarding

the implementation of SEM models for evidence synthesis involving IPD. Unfortunately,

the methods employed could not incorporate hierarchical structures to reflect heterogeneity

existing between different studies. This was considered to be a simplifying assumption and

further research was recommended, particularly in relation to the use of a Bayesian multi-

level approach (Lee, 2007). Another issue was the fact that the FIML estimation method

proposed in Chapter 6 could only be implemented in a single software package (Mplus).

As such, this constitutes a significant obstacle in the implementation of this methodology.

Further developments are recommended to facilitate the implementation of this method

in other software packages.

8.3 Conclusions

This thesis set out to explore the plausibility of the SEM approach serving as a generalised

framework for the synthesis of heterogeneous HRQoL evidence in CEA. The research

has demonstrated that this methodology can, theoretically, be implemented to synthesise

evidence in a range of formats and has the potential to deliver more precise estimates of

HRQoL. However, the research has also recognised that the fact that a scenario solely

involving evidence in the AD format is unlikely to occur in practice given that covariance

data are rarely available in the published literature. As such, a pre-requisite for the

implementation of the SEM approach is that researchers have access to at least one source

of IPD evidence capturing all of the HRQoL measures of interest. It is hoped that the

findings of the thesis will encourage health economists to consider implementing the SEM

approach in order to synthesise HRQoL evidence in a more comprehensive and transparent
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manner. It is also hoped that this research will prompt further discussions amongst policy

makers in regards to the methods for synthesising HRQoL evidence.
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Appendix A

List of Studies Identified in the

Published Literature
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Appendix B

Chapter 5 Code

#####################

# R Code ############

# Model 4 . 1 #########

#####################

l i b r a r y ( R2jags )

l i b r a r y ( coda )

l i b r a r y ( l a t t i c e )

l i b r a r y (R2WinBUGS)

l i b r a r y ( r j a g s )

# Data Inputs #######

EQ5D #mean va lue s

EQ5D. SE #standard e r r o r s

p r e c i s i o n <− 1/(EQ5D. SEˆ2)

MI #dummy v a r i a b l e f o r prev ious MI

N #the number o f va lue s being synthe s i z ed

Nstudy #the number o f s t u d i e s invo lved

study #study r e f e r e n c e number

data . inputs <− l i s t (”EQ5D” ,” p r e c i s i o n ” ,

”MI” ,”N” ,” Nstudy ” ,” study ”)

# Model s p e c i f i c a t i o n

model <− f unc t i on ( ){

f o r ( i in 1 :N){

EQ5D[ i ] ˜ dnorm(THETA[ i ] , p r e c i s i o n [ i ] )

THETA[ i ] <− theta [ study [ i ] ] + beta ∗MI[ i ]
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}

f o r ( z in 1 : Nstudy ){

theta [ z ] ˜ dnorm(mu, tau . z )

}

mu ˜ duni f (−0.594 ,1)

tau . z <− 1/( s i g . z ˆ2)

s i g . z ˜ dun i f ( 0 . 0 0 1 , 0 . 2 )

beta ˜ dnorm (0 , 10)

}

# Parameters o f i n t e r e s t

combined . params <− c (”mu” , ” beta ” , ” s i g . z ”)

# I n i t i a l va lue s

i n i t s<− l i s t (

l i s t (mu=c ( 0 . 8 ) , beta=c (−0.05) , s i g . z=c ( 0 . 0 0 1 ) ) ,

l i s t (mu=c ( 0 . 6 5 ) , beta=c (−0.1) , s i g . z=c ( 0 . 0 1 ) ) ,

l i s t (mu=c ( 0 . 5 ) , beta=c (−0.2) , s i g . z=c ( 0 . 1 ) ) )

# Run Model

model . f i t <− j a g s ( data = data . inputs , i n i t s = i n i t s ,

n . cha ins = 3 , n . i t e r = 9000 ,

parameters . to . save = combined . params ,

n . burnin = 1000 , model . f i l e = model )
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#####################

# R Code ############

# Model 4 . 2 #########

# Step 1 ############

#####################

l i b r a r y ( lavaan ) #f o r more i n f o : http :// lavaan . ugent . be/

# Data Inputs #######

N #Number o f p a t i e n t s in the mapping study

EQ5D. mean #EQ−5D mean from the mapping study

SF6D . mean #SF−6D mean from the mapping study

HUI3 . mean #HUI−3 mean from the mapping study

means <− c (EQ5D. mean , SF6D . mean , HUI3 . mean)

COV.EQ5D. SF6D #Covariance term #1 from the mapping study

COV.EQ5D. HUI3 #Covariance term #2 from the mapping study

COV. SF6D . HUI3 #Covariance term #3 from the mapping study

EQ5D. var #EQ−5D var iance from the mapping study

SF6D . var #SF−6D var iance from the mapping study

HUI3 . var #HUI−3 var iance from the mapping study

# Formulate covar iance matrix

lower <− ’

EQ5D. var

COV.EQ5D. SF6D SF6D . var

COV.EQ5D. HUI3 COV.EQ5D. SF6D HUI3 . var ’

covar iance . matrix <−

getCov ( lower , names = c (”EQ5D” ,”SF6D” ,”HUI3”) )

# Model S p e c i f i c a t i o n

model <− ’CF =˜ EQ5D + SF6D + HUI3 ’

# Run Model

f i t <− sem( model ,

sample . cov = covar iance . matrix ,

sample . mean = means ,

sample . nobs = N,

meanstructure=TRUE)

param . e s t imate s <− parameterEst imates ( f i t )

# Note s tep 2 uses the same model s p e c i f i c a t i o n as Model 4 . 1
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#####################

# R Code ############

# Model 4 . 3 #########

#####################

l i b r a r y ( R2jags )

l i b r a r y ( coda )

l i b r a r y ( l a t t i c e )

l i b r a r y (R2WinBUGS)

l i b r a r y ( r j a g s )

# Data Inputs #######

EQ5D. i n t #EQ5D i n t e r c e p t − der ived us ing Model 4 . 2 − Step 1

SF6D . i n t #SF6D i n t e r c e p t − der ived us ing Model 4 . 2 − Step 1

HUI3 . i n t #HUI3 i n t e r c e p t − der ived us ing Model 4 . 2 − Step 1

lambda2 #This i s der ived us ing Model 4 . 2 − Step 1

lambda2 . SE #This i s der ived us ing Model 4 . 2 − Step 1

lambda2 . p r e c i s i o n <− 1/( lambda2 . SEˆ2)

lambda3 #This i s der ived us ing Model 4 . 2 − Step 1

lambda3 . SE #This i s der ived us ing Model 4 . 2 − Step 1

lambda3 . p r e c i s i o n <− 1/( lambda3 . SEˆ2)

EQ5D. mean [ i ] #mean va lue s ; NA where miss ing

EQ5D. SE [ i ] #standard e r r o r s ; NA where miss ing

SF6D . mean [ i ] #mean va lue s ; NA where miss ing

SF6D . SE [ i ] #standard e r r o r s ; NA where miss ing

HUI3 . mean [ i ] #mean va lue s ; NA where miss ing

HUI3 . SE [ i ] #standard e r r o r s ; NA where miss ing

MI #dummy v a r i a b l e f o r prev ious MI

N #the number o f va lue s being synthe s i z ed

Nstudy #the number o f s t u d i e s invo lved

study #study r e f e r e n c e number

data . inputs <− l i s t (” lambda2 ” ,” lambda2 . SE” ,

” lambda3 ” ,” lambda2 . SE” ,

”EQ5D. i n t ” ,”SF6D . i n t ” ,”HUI3 . i n t ” ,

”EQ5D. mean [ i ] ” , ”EQ5D. SE [ i ] ” ,

”SF6D . mean [ i ] ” , ”SF6D . SE [ i ] ” ,

”HUI3 . mean [ i ] ” , ” HUI3 . SE [ i ] ” ,
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”MI” ,”N” ,” Nstudy ” ,” study ”)

# Model s p e c i f i c a t i o n

model <− f unc t i on ( ){

FL2 ˜ dnorm( lambda2 , lambda2 . p r e c i s i o n )

FL3 ˜ dnorm( lambda3 , lambda3 . p r e c i s i o n )

f o r ( i in 1 :N){

EQ5D. se [ i ] ˜ dnorm( theta1 . se [ i ] , phi1 . prec )

SF6D . se [ i ] ˜ dnorm( theta2 . se [ i ] , phi2 . prec )

HUI3 . se [ i ] ˜ dnorm( theta3 . se [ i ] , phi3 . prec )

var1 [ i ] <− EQ5D. se [ i ] ˆ2

var2 [ i ] <− SF6D . se [ i ] ˆ2

var3 [ i ] <− HUI3 . se [ i ] ˆ2

prec1 [ i ] <− 1/( var1 [ i ] )

prec2 [ i ] <− 1/( var2 [ i ] )

prec3 [ i ] <− 1/( var3 [ i ] )

EQ5D. mean [ i ] ˜ dnorm(THETA1[ i ] , prec1 [ i ] )

SF6D . mean [ i ] ˜ dnorm(THETA2[ i ] , prec2 [ i ] )

HUI3 . mean [ i ] ˜ dnorm(THETA3[ i ] , prec3 [ i ] )

THETA1[ i ] <− Int1 + LF[ i ]

THETA2[ i ] <− Int2 + lambda2∗LF[ i ]

THETA3[ i ] <− Int3 + lambda3∗LF[ i ]

theta1 . se [ i ] <− LF. se [ i ]

theta2 . se [ i ] <− FL2∗LF. se [ i ]

theta3 . se [ i ] <− FL3∗LF. se [ i ]

LF [ i ] ˜ dnorm( de l t a [ i ] , phi . prec )

d e l t a [ i ] <− SLE [ study [ i ] ] + beta ∗HA[ i ]

LF . se [ i ] ˜ dun i f ( 0 . 0 0 1 , 0 . 2 )

}

f o r ( z in 1 : Nstudy ){
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SLE [ z ] ˜ dnorm(mu, tau . z )

}

phi1 . se ˜ dun i f ( 0 . 0 0 1 , 0 . 2 )

phi2 . se ˜ dun i f ( 0 . 0 0 1 , 0 . 2 )

phi3 . se ˜ dun i f ( 0 . 0 0 1 , 0 . 2 )

phi1 . prec <− 1/( phi1 . se ˆ2)

phi2 . prec <− 1/( phi2 . se ˆ2)

phi3 . prec <− 1/( phi3 . se ˆ2)

phi . se ˜ dun i f ( 0 . 0 0 1 , 0 . 2 )

phi . prec <− 1/( phi . se ˆ2)

mu ˜ dnorm (0 ,10 )

beta ˜ dnorm (0 ,10 )

tau . z <− 1/( s i g . z )

s i g . z ˜ dun i f ( 0 . 0 0 1 , 0 . 2 )

}

# Parameters o f i n t e r e s t

combined . params <− c (”mu” , ” beta ” , ” s i g . z ”)

# I n i t i a l va lue s

i n i t s<− l i s t (

l i s t ( phi1 . se=c ( 0 . 1 ) , phi2 . se=c ( 0 . 1 ) , phi3 . se=c ( 0 . 1 ) ,

mu=c (−0.05) , beta=c (−0.05) , phi . se=c ( 0 . 1 ) ,

s i g . z=c ( 0 . 0 0 1 ) ) ,

l i s t ( phi1 . se=c ( 0 . 0 1 ) , phi2 . se=c ( 0 . 0 1 ) , phi3 . se=c ( 0 . 0 1 ) ,

mu=c (−0.1) , beta=c (−0.1) , phi . se=c ( 0 . 0 1 ) ,

s i g . z=c ( 0 . 0 1 ) ) ,

l i s t ( phi1 . se=c ( 0 . 0 0 1 ) , phi2 . se=c ( 0 . 0 0 1 ) , phi3 . se=c ( 0 . 0 0 1 ) ,

mu=c (−0.2) , beta=c (−0.2) , phi . se=c ( 0 . 0 0 1 ) ,
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s i g . z=c ( 0 . 1 ) ) )

# Run Model

model . f i t <− j a g s ( data = data . inputs , i n i t s = i n i t s ,

n . cha ins = 3 , n . i t e r = 9000 ,

parameters . to . save = combined . params ,

n . burnin = 1000 , model . f i l e = model )
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Appendix C

Expected Value of Perfect

Information for Parameters

The expected value of perfect information for parameters (EVPPI) is conceptually similar

to the EVPI and represents the value of reducing uncertainty around specific parameters

(Briggs et al., 2006). Traditionally, the rationale for estimating the EVPPI has been to

identify the priority areas for further research. However, the EVPPI is also a useful method

for exploring the extent to which different parameters contribute to the final outputs and

impact upon the decision uncertainty (i.e. expected costs and QALYs). As an additional

exercise, the EVPPI was estimated for each of the parameters in the RITA-3 model in order

to evaluate the relative contribution of the HRQoL parameters. Figure C.1 illustrates the

relationship between EVPPI for the model parameters and the cost-effectiveness threshold.

Figure C.1: Expected Value of Perfect Information for Parameters
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These results show that additional HRQoL evidence would not be valuable given that

it would be unlikely to change the decision. This provides important context for the

findings in Chapter 5 (as well as the subsequent chapters) because it illustrates the fact

that there is little scope for the methodological differences to have an impact upon the

decision uncertainty for this particular case study. In conclusion, the impact of differing

HRQoL synthesis techniques upon the expected cost-effectiveness is likely to be case study

dependent (i.e. it will also depend upon other factors such as the model structure and

evidence on the other parameters).
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Appendix D

Chapter 6 Code

#####################

# R Code ############

# Model 5 . 2 #########

# Step 1 ############

#####################

l i b r a r y ( lavaan ) #package r equ i r ed f o r SEM a n a l y s i s

Model <− #This i s the bi−f a c t o r model s p e c i f i c a t i o n

#e x p l a i n i n g SF−12 and EQ−5D re sponse s

”CF =˜ SF36 .Q1 + SF36 .Q2 + SF36 .Q3 +

SF36 .Q4 + SF36 .Q5 + SF36 .Q6 +

SF36 .Q7 + SF36 .Q8 + SF36 .Q9 +

SF36 . Q10 + SF36 . Q11 + SF36 . Q12 +

EQ5D.Q1 + EQ5D.Q2 + EQ5D.Q3 +

EQ5D.Q4 + EQ5D.Q5

EQ =˜ EQ5D.Q1 + EQ5D.Q2 + EQ5D.Q3 +

EQ5D.Q4 + EQ5D.Q5

SF =˜ SF36 .Q1 + SF36 .Q2 + SF36 .Q3 +

SF36 .Q4 + SF36 .Q5 + SF36 .Q6 +

SF36 .Q7 + SF36 .Q8 + SF36 .Q9 +

SF36 . Q10 + SF36 . Q11 + SF36 . Q12

CF ˜ 0∗EQ

CF ˜ 0∗SF

EQ ˜ 0∗SF

SF36 .Q1 | t1 + t2 + t3 + t4
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SF36 .Q2 | t1 + t2

SF36 .Q3 | t1 + t2

SF36 .Q4 | t1 + t2 + t3 + t4

SF36 .Q5 | t1 + t2 + t3 + t4

SF36 .Q6 | t1 + t2 + t3 + t4

SF36 .Q7 | t1 + t2 + t3 + t4

SF36 .Q8 | t1 + t2 + t3 + t4

SF36 .Q9 | t1 + t2 + t3 + t4

SF36 . Q10 | t1 + t2 + t3 + t4

SF36 . Q11 | t1 + t2 + t3 + t4

SF36 . Q12 | t1 + t2 + t3 + t4

EQ5D.Q1 | t1 + t2

EQ5D.Q2 | t1 + t2

EQ5D.Q3 | t1 + t2

EQ5D.Q4 | t1 + t2

EQ5D.Q5 | t1 + t2 ”

Dataset [ , # d e f i n e the datase t as being o r d i n a l

c (” SF36 .Q1” ,” SF36 .Q2” ,” SF36 .Q3” ,

”SF36 .Q4” ,” SF36 .Q5” ,” SF36 .Q6” ,

”SF36 .Q7” ,” SF36 .Q8” ,” SF36 .Q9” ,

”SF36 . Q10” ,” SF36 . Q11” ,” SF36 . Q12” ,

”EQ5D.Q1” ,”EQ5D.Q2” ,”EQ5D.Q3” ,

”EQ5D.Q4” ,”EQ5D.Q5” ) ]

<− l app ly ( Dataset [ ,

c (” SF36 .Q1” ,” SF36 .Q2” ,” SF36 .Q3” ,

”SF36 .Q4” ,” SF36 .Q5” ,” SF36 .Q6” ,

”SF36 .Q7” ,” SF36 .Q8” ,” SF36 .Q9” ,

”SF36 . Q10” ,” SF36 . Q11” ,” SF36 . Q12” ,

”EQ5D.Q1” ,”EQ5D.Q2” ,”EQ5D.Q3” ,

”EQ5D.Q4” ,”EQ5D.Q5” ) ] , ordered )

f i t <− #now f i t the model

sem( Model , data = NHMS, std . l v=TRUE,

ordered=c (” SF36 .Q1” ,” SF36 .Q2” ,

”SF36 .Q3” ,” SF36 .Q4” ,

”SF36 .Q5” ,” SF36 .Q6” ,
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”SF36 .Q7” ,” SF36 .Q8” ,

”SF36 .Q9” ,” SF36 . Q10” ,

”SF36 . Q11” ,” SF36 . Q12” ,

”EQ5D.Q1” ,”EQ5D.Q2” ,

”EQ5D.Q3” ,”EQ5D.Q4” ,

”EQ5D.Q5”) )

# Same r e s u l t s as that in Mplus

model . 5 . 2 . output <−

parameterEst imates ( f i t ) #capture the model output

parameter . covar iance <−

lavaan : : vcov ( f i t ) #covar iance matrix f o r parameters

vars <− c ( 1 : 1 7 , 3 5 : 8 8 ) # s e l e c t v a r i a b l e s r equ i r ed

model . 5 . 2 . vcov <− parameter . covar iance [ vars , vars ]

model . 5 . 2 . cho l e sky . decompos it ion <−

cho l ( model . 5 . 2 . vcov ) #cho le sky decomposit ion

model . 5 . 2 . cho l e sky . decompos it ion <− #transpose cho le sky decomp

t ( model . 5 . 2 . cho l e sky . decomposit ion )

model . 5 . 2 . s p e c i f i c a t i o n <− parTable ( f i t )
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#####################

# R Code ############

# Model 5 . 2 #########

# Step 2 ############

#####################

l i b r a r y ( lavaan )

# Analyse MEPS & WLS

# Need model with f i x e d parameters

# We s e t up a model template us ing

# parameters obta ined in prev ious s tep

model . 5 . 2 . s p e c i f i c a t i o n $ u s t a r t [ 1 : 1 7 ] <−

model . 5 . 2 . output$est [ 1 : 1 7 ]

model . 5 . 2 . s p e c i f i c a t i o n $ u s t a r t [ 3 8 : 9 1 ] <−

model . 5 . 2 . output$est [ 3 8 : 9 1 ]

# Only i n t e r e s t e d in SF−12 rows

vars <− c ( 1 : 1 2 , 3 8 : 81 , 1 0 9 , 12 9 )

model . 5 . 2 . s p e c i f i c a t i o n . SF12 <−

model . 5 . 2 . s p e c i f i c a t i o n [ vars , ]

model . 5 . 2 . s p e c i f i c a t i o n . SF12 [ 5 7 , 8 ] <− NA

model . 5 . 2 . s p e c i f i c a t i o n . SF12 [ 5 8 , 8 ] <− NA

model . 5 . 2 . s p e c i f i c a t i o n . SF12[58 ,3]<− ”˜”

model . 5 . 2 . s p e c i f i c a t i o n . SF12[58 ,4]<− 1

# The next s tep trans forms t h i s i n to an

# s p e c i f i c a t i o n that Lavaan can i n t e r p r e t

model . 5 . 2 . s p e c i f i c a t i o n . SF12 <−

paste0 ( model . 5 . 2 . s p e c i f i c a t i o n . SF12$lhs ,

model . 5 . 2 . s p e c i f i c a t i o n . SF12$op ,

model . 5 . 2 . s p e c i f i c a t i o n . SF12$ustart ,

”∗” , model . 5 . 1 . s p e c i f i c a t i o n . SF12$rhs ,

c o l l a p s e = ”\n”)

# Now take the MEPS/WLS [ Dataset2 ]

Dataset2 [ , # d e f i n e the datase t as being o r d i n a l

c (” SF36 .Q1” ,” SF36 .Q2” ,” SF36 .Q3” ,

”SF36 .Q4” ,” SF36 .Q5” ,” SF36 .Q6” ,

”SF36 .Q7” ,” SF36 .Q8” ,” SF36 .Q9” ,
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”SF36 . Q10” ,” SF36 . Q11” ,” SF36 . Q12 ” ) ] <−

l app ly ( Dataset2 [ ,

c (” SF36 .Q1” ,” SF36 .Q2” ,” SF36 .Q3” ,

”SF36 .Q4” ,” SF36 .Q5” ,” SF36 .Q6” ,

”SF36 .Q7” ,” SF36 .Q8” ,” SF36 .Q9” ,

”SF36 . Q10” ,” SF36 . Q11” ,” SF36 . Q12 ” ) ] , ordered )

f i t <− #now f i t the model

sem( model . 5 . 2 . s p e c i f i c a t i o n . SF12 ,

data = Dataset2 , std . l v=TRUE,

ordered=c (” SF36 .Q1” ,” SF36 .Q2” ,” SF36 .Q3” ,

”SF36 .Q4” ,” SF36 .Q5” ,” SF36 .Q6” ,

”SF36 .Q7” ,” SF36 .Q8” ,” SF36 .Q9” ,

”SF36 . Q10” ,” SF36 . Q11” ,” SF36 . Q12”) )

# This w i l l g ive us a model with parameter

# es t imate s the same as those from the NHMS

# a n a l y s i s . The next s tep i n v o l v e s p r e d i c t i n g

# l a t e n t f a c t o r s c o r e s

Datase t2$ la t ent <− p r e d i c t ( f i t )

# With these l a t e n t f a c t o r s c o r e s we

# now must trans form these in to re sponse

# p r o b a b i l i t i e s f o r the EQ−5D items .

Dataset2$Pred .EQ5D.Q1 . L1 <−

pnorm( model . 5 . 2 . s p e c i f i c a t i o n $ u s t a r t [82]−Datase t2$ la t ent )

Dataset2$Pred .EQ5D.Q1 . L2 <−

pnorm( model . 5 . 2 . s p e c i f i c a t i o n $ u s t a r t [83]−Datase t2$ la t ent ) −

pnorm( model . 5 . 2 . s p e c i f i c a t i o n $ u s t a r t [82]−Datase t2$ la t ent )

Dataset2$Pred .EQ5D.Q1 . L3 <− 1 −

pnorm( model . 5 . 2 . s p e c i f i c a t i o n $ u s t a r t [83]−Datase t2$ la t ent )

Dataset2$Pred .EQ5D.Q2 . L1 <−

pnorm( model . 5 . 2 . s p e c i f i c a t i o n $ u s t a r t [84]−Datase t2$ la t ent )

Dataset2$Pred .EQ5D.Q2 . L2 <−

pnorm( model . 5 . 2 . s p e c i f i c a t i o n $ u s t a r t [85]−Datase t2$ la t ent ) −

pnorm( model . 5 . 2 . s p e c i f i c a t i o n $ u s t a r t [84]−Datase t2$ la t ent )

Dataset2$Pred .EQ5D.Q2 . L3 <− 1 −

pnorm( model . 5 . 2 . s p e c i f i c a t i o n $ u s t a r t [85]−Datase t2$ la t ent )

136



Dataset2$Pred .EQ5D.Q3 . L1 <−

pnorm( model . 5 . 2 . s p e c i f i c a t i o n $ u s t a r t [86]−Datase t2$ la t ent )

Dataset2$Pred .EQ5D.Q3 . L2 <−

pnorm( model . 5 . 2 . s p e c i f i c a t i o n $ u s t a r t [87]−Datase t2$ la t ent ) −

pnorm( model . 5 . 2 . s p e c i f i c a t i o n $ u s t a r t [86]−Datase t2$ la t ent )

Dataset2$Pred .EQ5D.Q3 . L3 <− 1 −

pnorm( model . 5 . 2 . s p e c i f i c a t i o n $ u s t a r t [87]−Datase t2$ la t ent )

Dataset2$Pred .EQ5D.Q4 . L1 <−

pnorm( model . 5 . 2 . s p e c i f i c a t i o n $ u s t a r t [88]−Datase t2$ la t ent )

Dataset2$Pred .EQ5D.Q4 . L2 <−

pnorm( model . 5 . 2 . s p e c i f i c a t i o n $ u s t a r t [89]−Datase t2$ la t ent ) −

pnorm( model . 5 . 2 . s p e c i f i c a t i o n $ u s t a r t [88]−Datase t2$ la t ent )

Dataset2$Pred .EQ5D.Q4 . L3 <− 1 −

pnorm( model . 5 . 2 . s p e c i f i c a t i o n $ u s t a r t [89]−Datase t2$ la t ent )

Dataset2$Pred .EQ5D.Q5 . L1 <−

pnorm( model . 5 . 2 . s p e c i f i c a t i o n $ u s t a r t [90]−Datase t2$ la t ent )

Dataset2$Pred .EQ5D.Q5 . L2 <−

pnorm( model . 5 . 2 . s p e c i f i c a t i o n $ u s t a r t [91]−Datase t2$ la t ent ) −

pnorm( model . 5 . 2 . s p e c i f i c a t i o n $ u s t a r t [90]−Datase t2$ la t ent )

Dataset2$Pred .EQ5D.Q5 . L3 <− 1 −

pnorm( model . 5 . 2 . s p e c i f i c a t i o n $ u s t a r t [91]−Datase t2$ la t ent )

# Note that we w i l l e s t imate expected HRQoL va lue s so need

# p r o b a b i l i t y o f be ing in f u l l hea l th and N3 term

Dataset2$Prob . Fu l l . Health <− Dataset2$Pred .EQ5D.Q1 . L1∗

Dataset2$Pred .EQ5D.Q2 . L1∗Dataset2$Pred .EQ5D.Q3 . L1∗

Dataset2$Pred .EQ5D.Q4 . L1∗Dataset2$Pred .EQ5D.Q5 . L1

Dataset2$Prob . No . N3 <− Dataset2$Prob . Fu l l . Health +

Dataset2$Pred .EQ5D.Q1 . L2∗Dataset2$Pred .EQ5D.Q2 . L1∗

Dataset2$Pred .EQ5D.Q3 . L1∗Dataset2$Pred .EQ5D.Q4 . L1∗

Dataset2$Pred .EQ5D.Q5 . L1 +

Dataset2$Pred .EQ5D.Q1 . L1∗Dataset2$Pred .EQ5D.Q2 . L2∗

Dataset2$Pred .EQ5D.Q3 . L1∗Dataset2$Pred .EQ5D.Q4 . L1∗

Dataset2$Pred .EQ5D.Q5 . L1 +

Dataset2$Pred .EQ5D.Q1 . L1∗Dataset2$Pred .EQ5D.Q2 . L1∗
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Dataset2$Pred .EQ5D.Q3 . L2∗Dataset2$Pred .EQ5D.Q4 . L1∗

Dataset2$Pred .EQ5D.Q5 . L1 +

Dataset2$Pred .EQ5D.Q1 . L1∗Dataset2$Pred .EQ5D.Q2 . L1∗

Dataset2$Pred .EQ5D.Q3 . L1∗Dataset2$Pred .EQ5D.Q4 . L2∗

Dataset2$Pred .EQ5D.Q5 . L1 +

Dataset2$Pred .EQ5D.Q1 . L1∗Dataset2$Pred .EQ5D.Q2 . L1∗

Dataset2$Pred .EQ5D.Q3 . L1∗Dataset2$Pred .EQ5D.Q4 . L1∗

Dataset2$Pred .EQ5D.Q5 . L2 +

Dataset2$Pred .EQ5D.Q1 . L1∗Dataset2$Pred .EQ5D.Q2 . L1∗

Dataset2$Pred .EQ5D.Q3 . L2∗Dataset2$Pred .EQ5D.Q4 . L2∗

Dataset2$Pred .EQ5D.Q5 . L2 +

Dataset2$Pred .EQ5D.Q1 . L1∗Dataset2$Pred .EQ5D.Q2 . L2∗

Dataset2$Pred .EQ5D.Q3 . L1∗Dataset2$Pred .EQ5D.Q4 . L2∗

Dataset2$Pred .EQ5D.Q5 . L2 +

Dataset2$Pred .EQ5D.Q1 . L1∗Dataset2$Pred .EQ5D.Q2 . L2∗

Dataset2$Pred .EQ5D.Q3 . L2∗Dataset2$Pred .EQ5D.Q4 . L1∗

Dataset2$Pred .EQ5D.Q5 . L2 +

Dataset2$Pred .EQ5D.Q1 . L1∗Dataset2$Pred .EQ5D.Q2 . L2∗

Dataset2$Pred .EQ5D.Q3 . L2∗Dataset2$Pred .EQ5D.Q4 . L2∗

Dataset2$Pred .EQ5D.Q5 . L1 +

Dataset2$Pred .EQ5D.Q1 . L2∗Dataset2$Pred .EQ5D.Q2 . L2∗

Dataset2$Pred .EQ5D.Q3 . L1∗Dataset2$Pred .EQ5D.Q4 . L1∗

Dataset2$Pred .EQ5D.Q5 . L1 +

Dataset2$Pred .EQ5D.Q1 . L2∗Dataset2$Pred .EQ5D.Q2 . L1∗

Dataset2$Pred .EQ5D.Q3 . L2∗Dataset2$Pred .EQ5D.Q4 . L1∗

Dataset2$Pred .EQ5D.Q5 . L1 +

Dataset2$Pred .EQ5D.Q1 . L2∗Dataset2$Pred .EQ5D.Q2 . L1∗

Dataset2$Pred .EQ5D.Q3 . L1∗Dataset2$Pred .EQ5D.Q4 . L2∗

Dataset2$Pred .EQ5D.Q5 . L1 +

Dataset2$Pred .EQ5D.Q1 . L2∗Dataset2$Pred .EQ5D.Q2 . L1∗

Dataset2$Pred .EQ5D.Q3 . L1∗Dataset2$Pred .EQ5D.Q4 . L1∗

Dataset2$Pred .EQ5D.Q5 . L2 +

Dataset2$Pred .EQ5D.Q1 . L2∗Dataset2$Pred .EQ5D.Q2 . L1∗

Dataset2$Pred .EQ5D.Q3 . L1∗Dataset2$Pred .EQ5D.Q4 . L2∗

Dataset2$Pred .EQ5D.Q5 . L2 +
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Dataset2$Pred .EQ5D.Q1 . L2∗Dataset2$Pred .EQ5D.Q2 . L1∗

Dataset2$Pred .EQ5D.Q3 . L2∗Dataset2$Pred .EQ5D.Q4 . L1∗

Dataset2$Pred .EQ5D.Q5 . L2 +

Dataset2$Pred .EQ5D.Q1 . L2∗Dataset2$Pred .EQ5D.Q2 . L1∗

Dataset2$Pred .EQ5D.Q3 . L2∗Dataset2$Pred .EQ5D.Q4 . L2∗

Dataset2$Pred .EQ5D.Q5 . L1 +

Dataset2$Pred .EQ5D.Q1 . L1∗Dataset2$Pred .EQ5D.Q2 . L2∗

Dataset2$Pred .EQ5D.Q3 . L2∗Dataset2$Pred .EQ5D.Q4 . L1∗

Dataset2$Pred .EQ5D.Q5 . L1 +

Dataset2$Pred .EQ5D.Q1 . L1∗Dataset2$Pred .EQ5D.Q2 . L2∗

Dataset2$Pred .EQ5D.Q3 . L1∗Dataset2$Pred .EQ5D.Q4 . L2∗

Dataset2$Pred .EQ5D.Q5 . L1 +

Dataset2$Pred .EQ5D.Q1 . L1∗Dataset2$Pred .EQ5D.Q2 . L2∗

Dataset2$Pred .EQ5D.Q3 . L1∗Dataset2$Pred .EQ5D.Q4 . L1∗

Dataset2$Pred .EQ5D.Q5 . L2 +

Dataset2$Pred .EQ5D.Q1 . L2∗Dataset2$Pred .EQ5D.Q2 . L2∗

Dataset2$Pred .EQ5D.Q3 . L1∗Dataset2$Pred .EQ5D.Q4 . L1∗

Dataset2$Pred .EQ5D.Q5 . L2 +

Dataset2$Pred .EQ5D.Q1 . L2∗Dataset2$Pred .EQ5D.Q2 . L2∗

Dataset2$Pred .EQ5D.Q3 . L1∗Dataset2$Pred .EQ5D.Q4 . L2∗

Dataset2$Pred .EQ5D.Q5 . L1 +

Dataset2$Pred .EQ5D.Q1 . L1∗Dataset2$Pred .EQ5D.Q2 . L1∗

Dataset2$Pred .EQ5D.Q3 . L2∗Dataset2$Pred .EQ5D.Q4 . L2∗

Dataset2$Pred .EQ5D.Q5 . L1 +

Dataset2$Pred .EQ5D.Q1 . L1∗Dataset2$Pred .EQ5D.Q2 . L1∗

Dataset2$Pred .EQ5D.Q3 . L2∗Dataset2$Pred .EQ5D.Q4 . L1∗

Dataset2$Pred .EQ5D.Q5 . L2 +

Dataset2$Pred .EQ5D.Q1 . L2∗Dataset2$Pred .EQ5D.Q2 . L2∗

Dataset2$Pred .EQ5D.Q3 . L2∗Dataset2$Pred .EQ5D.Q4 . L1∗

Dataset2$Pred .EQ5D.Q5 . L1 +

Dataset2$Pred .EQ5D.Q1 . L1∗Dataset2$Pred .EQ5D.Q2 . L1∗

Dataset2$Pred .EQ5D.Q3 . L1∗Dataset2$Pred .EQ5D.Q4 . L2∗

Dataset2$Pred .EQ5D.Q5 . L2 +

Dataset2$Pred .EQ5D.Q1 . L1∗Dataset2$Pred .EQ5D.Q2 . L2∗

Dataset2$Pred .EQ5D.Q3 . L2∗Dataset2$Pred .EQ5D.Q4 . L2∗
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Dataset2$Pred .EQ5D.Q5 . L2 +

Dataset2$Pred .EQ5D.Q1 . L2∗Dataset2$Pred .EQ5D.Q2 . L1∗

Dataset2$Pred .EQ5D.Q3 . L2∗Dataset2$Pred .EQ5D.Q4 . L2∗

Dataset2$Pred .EQ5D.Q5 . L2 +

Dataset2$Pred .EQ5D.Q1 . L2∗Dataset2$Pred .EQ5D.Q2 . L2∗

Dataset2$Pred .EQ5D.Q3 . L1∗Dataset2$Pred .EQ5D.Q4 . L2∗

Dataset2$Pred .EQ5D.Q5 . L2 +

Dataset2$Pred .EQ5D.Q1 . L2∗Dataset2$Pred .EQ5D.Q2 . L2∗

Dataset2$Pred .EQ5D.Q3 . L2∗Dataset2$Pred .EQ5D.Q4 . L1∗

Dataset2$Pred .EQ5D.Q5 . L2 +

Dataset2$Pred .EQ5D.Q1 . L2∗Dataset2$Pred .EQ5D.Q2 . L2∗

Dataset2$Pred .EQ5D.Q3 . L2∗Dataset2$Pred .EQ5D.Q4 . L2∗

Dataset2$Pred .EQ5D.Q5 . L1 +

Dataset2$Pred .EQ5D.Q1 . L2∗Dataset2$Pred .EQ5D.Q2 . L2∗

Dataset2$Pred .EQ5D.Q3 . L2∗Dataset2$Pred .EQ5D.Q4 . L2∗

Dataset2$Pred .EQ5D.Q5 . L2

# And f i n a l l y apply EQ−5D weights

Dataset2$constant <− (1−Dataset2$Prob . Fu l l . Health )∗0 .081

Dataset2$N3 <− (1−Dataset2$Prob . No . N3)∗0 .269

Dataset2$decrement mob <− ( Dataset2$Pred .EQ5D.Q1 . L2 ∗0 .069) +

( Dataset2$Pred .EQ5D.Q1 . L3 ∗0 .314)

Dataset2$decrement sc <− ( Dataset2$Pred .EQ5D.Q2 . L2 ∗0 .104) +

( Dataset2$Pred .EQ5D.Q2 . L3 ∗0 .214)

Dataset2$decrement usual <− ( Dataset2$Pred .EQ5D.Q3 . L2 ∗0 .036) +

( Dataset2$Pred .EQ5D.Q3 . L3 ∗0 .094)

Dataset2$decrement pain <− ( Dataset2$Pred .EQ5D.Q4 . L2 ∗0 .123) +

( Dataset2$Pred .EQ5D.Q4 . L3 ∗0 .386)

Dataset2$decrement anx <− ( Dataset2$Pred .EQ5D.Q5 . L2 ∗0 .071) +

( Dataset2$Pred .EQ5D.Q5 . L3 ∗0 .236)

Dataset2$eq5d <− 1

Dataset2$eq5d <− 1 − Dataset2$constant − Dataset2$decrement mob −

Dataset2$decrement sc −

Dataset2$decrement usual − Dataset2$decrement pain −

Dataset2$decrement anx − Dataset2$N3
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#####################

# Mplus Code ########

# Model 5 . 3 #########

# Step 1 ############

#####################

TITLE : t h i s i s an example o f a th r e sho ld

s t r u c t u r e CFA f o r c a t e g o r i c a l f a c t o r i n d i c a t o r s

DATA: FILE IS Data . dat ;

VARIABLE: NAMES ARE HA sex SF36 Q1 SF36 Q4 SF36 Q6

SF36 Q14 SF36 Q15 SF36 Q18 SF36 Q19 SF36 Q22

SF36 Q26 SF36 Q27 SF36 Q28 SF36 Q32 EQ5D Q1

EQ5D Q2 EQ5D Q3 EQ5D Q4 EQ5D Q5 age1 age2 ;

CATEGORICAL ARE SF36 Q1 SF36 Q4 SF36 Q6

SF36 Q14 SF36 Q15 SF36 Q18 SF36 Q19 SF36 Q22

SF36 Q26 SF36 Q27 SF36 Q28 SF36 Q32 EQ5D Q1

EQ5D Q2 EQ5D Q3 EQ5D Q4 EQ5D Q5 ;

MISSING = . ;

ANALYSIS :

TYPE = gene ra l miss ing h1 ;

MODEL: f1 BY SF36 Q1∗ SF36 Q4 SF36 Q6

SF36 Q14 SF36 Q15 SF36 Q18 SF36 Q19 SF36 Q22

SF36 Q26 SF36 Q27 SF36 Q28 SF36 Q32 EQ5D Q1

EQ5D Q2 EQ5D Q3 EQ5D Q4 EQ5D Q5 ;

f2 BY SF36 Q1∗ SF36 Q4 SF36 Q6

SF36 Q14 SF36 Q15 SF36 Q18 SF36 Q19 SF36 Q22

SF36 Q26 SF36 Q27 SF36 Q28 SF36 Q32 ;

f 3 BY EQ5D Q1∗ EQ5D Q2 EQ5D Q3 EQ5D Q4 EQ5D Q5 ;

f1@1 ;

f2@1 ;

f3@1 ;

f 1 WITH f2@0 ;

f 1 WITH f3@0 ;

f 2 WITH f3@0 ;

f 1 ON HA sex age1 age2 ;
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[ SF36 Q1$1 SF36 Q4$1 SF36 Q6$1

SF36 Q14$1 SF36 Q15$1

SF36 Q18$1 SF36 Q19$1 SF36 Q22$1

SF36 Q26$1 SF36 Q27$1 SF36 Q28$1

SF36 Q32$1

EQ5D Q1$1 EQ5D Q2$1 EQ5D Q3$1 EQ5D Q4$1 EQ5D Q5$1

SF36 Q1$2 SF36 Q4$2 SF36 Q6$2 SF36 Q14$2 SF36 Q15$2

SF36 Q18$2 SF36 Q19$2 SF36 Q22$2 SF36 Q26$2 SF36 Q27$2

SF36 Q28$2 SF36 Q32$2

EQ5D Q1$2 EQ5D Q2$2 EQ5D Q3$2 EQ5D Q4$2 EQ5D Q5$2

SF36 Q1$3 SF36 Q14$3 SF36 Q15$3

SF36 Q18$3 SF36 Q19$3 SF36 Q22$3

SF36 Q26$3 SF36 Q27$3 SF36 Q28$3 SF36 Q32$3

SF36 Q1$4 SF36 Q14$4 SF36 Q15$4

SF36 Q18$4 SF36 Q19$4 SF36 Q22$4

SF36 Q26$4 SF36 Q27$4 SF36 Q28$4

SF36 Q32$4 ] ;

OUTPUT:

Standardized TECH3;

SAVEDATA:

D i f f t e s t i s d i f f t e s t f i l e . dat ;
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#####################

# R Code ############

# Model 5 . 3 #########

# Step 2 ############

#####################

l i b r a r y ( MplusAutomation ) #use t h i s command to run models

# from R and then e x t r a c t the model output

l i b r a r y ( simsem ) # requ i r ed f o r s imu la t i on s

# In order to make conduct s imu la t i on s we need a

# ” template ” model to which we can add parameter

# es t imate s from the mplus output

# We run ana ly s e s on RITA data to obta in t h i s template

RITA[ , c (”EQ5D.Q1” ,

”EQ5D.Q2” ,

”EQ5D.Q3” ,

”EQ5D.Q4” ,

”EQ5D.Q5” ) ] <−

l app ly (RITA[ , c (”EQ5D.Q1” ,

”EQ5D.Q2” ,

”EQ5D.Q3” ,

”EQ5D.Q4” ,

”EQ5D.Q5” ) ] , ordered )

model <− ’ l a t e n t =˜ EQ5D.Q1 + EQ5D.Q2 + EQ5D.Q3 +

EQ5D.Q4 + EQ5D.Q5

EQ5D.Q1 | t1 + t2

EQ5D.Q2 | t1 + t2

EQ5D.Q3 | t1 + t2

EQ5D.Q4 | t1 + t2

EQ5D.Q5 | t1 + t2 ’

l i b r a r y ( lavaan )

f i t <− sem( model ,RITA,

ordered=c (”EQ5D.Q1” ,
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”EQ5D.Q2” ,

”EQ5D.Q3” ,

”EQ5D.Q4” ,

”EQ5D.Q5”) )

model . 5 . 3 . s p e c i f i c a t i o n <− parTable ( f i t )

# Next the appropr ia te parameter e s t imate s

# from the mplus model are a s s i gned to t h i s

# template . These w i l l vary depending upon

# the pa t i en t p r o f i l e . Now s imulate datase t

s imu la t i on <− data . frame ( sim (1 ,100000 ,

model . 5 . 3 . s p e c i f i c a t i o n ,

model = model , dataOnly = TRUE) )

# EQ5D va lue s then as s i gned to the s imu la t i on s
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Appendix E

Chapter 6 Results

Table E.1: CFA Approach - Threshold Values

Indicator Threshold 1 Threshold 2 Threshold 3 Threshold 4

SF36 Q1 -1.59 -0.70 0.23 1.21

SF36 Q2 -0.89 -0.40

SF36 Q3 -0.60 0.11

SF36 Q4 -1.37 -0.72 -0.04 0.51

SF36 Q5 -1.35 -0.83 -0.18 0.28

SF36 Q6 -1.59 -1.15 -0.60 -0.26

SF36 Q7 -1.84 -1.28 -0.72 -0.40

SF36 Q8 -0.05 0.48 0.91 1.54

SF36 Q9 -0.65 0.56 1.10 1.51

SF36 Q10 -1.21 -0.12 0.64 1.15

SF36 Q11 -1.90 -1.29 -0.72 -0.25

SF36 Q12 -1.57 -1.09 -0.50 0.00

EQ5D Q1 0.20 2.27

EQ5D Q2 1.23 2.34

EQ5D Q3 0.32 1.57

EQ5D Q4 -0.35 1.30

EQ5D Q5 0.42 1.56
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Table E.2: SEM Approach - Threshold Values

Indicator Threshold 1 Threshold 2 Threshold 3 Threshold 4

SF36 Q1 -1.84 -0.82 0.21 1.23

SF36 Q2 -0.96 -0.22

SF36 Q3 -0.74 0.06

SF36 Q4 -1.34 -0.78 -0.13 0.33

SF36 Q5 -1.37 -0.87 -0.27 0.15

SF36 Q6 -1.30 -0.84 -0.31 0.05

SF36 Q7 -1.39 -0.93 -0.39 -0.02

SF36 Q8 -0.36 0.24 0.69 1.41

SF36 Q9 -1.36 -0.12 0.61 1.25

SF36 Q10 -1.52 -0.41 0.40 1.01

SF36 Q11 -1.39 -0.83 -0.05 0.62

SF36 Q12 -1.35 -0.81 -0.20 0.24

EQ5D Q1 0.29 2.04

EQ5D Q2 0.90 2.13

EQ5D Q3 0.14 1.36

EQ5D Q4 -0.33 1.33

EQ5D Q5 -0.10 1.12
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Appendix F

Chapter 7 Code

#####################

# R Code ############

# Model 6 . 2 #########

# Mixed outcomes ####

# model #############

#####################

Model . 6 . 2 <−

”CF =˜ s f6d + hu i3 s co r e +

EQ5D.Q1 + EQ5D.Q2 + EQ5D.Q3 + EQ5D.Q4 + EQ5D.Q5

EQ5D.Q1 | t1 + t2

EQ5D.Q2 | t1 + t2

EQ5D.Q3 | t1 + t2

EQ5D.Q4 | t1 + t2

EQ5D.Q5 | t1 + t2 ”

NHMS[ , # we need to d e f i n e the datase t as be ing o r d i n a l

c (”EQ5D.Q1” ,”EQ5D.Q2” ,

”EQ5D.Q3” ,”EQ5D.Q4” ,

”EQ5D.Q5” ) ] <−

l app ly (NHMS[ , c (”EQ5D.Q1” ,

”EQ5D.Q2” ,”EQ5D.Q3” ,

”EQ5D.Q4” ,”EQ5D.Q5” ) ] ,

ordered )

f i t <− #now f i t the model
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sem( Model , data = NHMS, std . l v=TRUE,

ordered=c (”EQ5D.Q1” ,

”EQ5D.Q2” ,”EQ5D.Q3” ,”EQ5D.Q4” ,

”EQ5D.Q5”) )

param . e s t imate s <− parameterEst imates ( f i t )
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