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Abstract 
Clinical studies suggest that platelet P2Y12 inhibitors reduce mortality from sepsis, 

although the underlying mechanisms have not been clearly defined in vivo. It was 

hypothesised that platelet P2Y12 inhibitors may improve survival from sepsis by 

suppressing systemic inflammation and its prothrombotic effects. It was therefore 

determined whether clopidogrel and the novel, more potent P2Y12 inhibitor, 

ticagrelor modify these responses in an experimental human model. 

In a randomised controlled trial, thirty healthy volunteers were allocated to ticagrelor 

(n=10), clopidogrel (n=10) or no antiplatelet medications (controls; n=10) for 1 week. 

Systemic inflammation was then induced by intravenous injection of E.coli 

endotoxin. Both P2Y12 inhibitors significantly reduced platelet-monocyte aggregate 

formation and peak levels of major pro inflammatory cytokines, including TNFα, 

interleukin-6 and chemokine (C-C motif) ligand 2. In contrast to clopidogrel, 

ticagrelor also significantly reduced peak levels of interleukin-8 and granulocyte 

colony-stimulating factor and increased peak levels of the anti-inflammatory cytokine 

IL-10. Both P2Y12 inhibitors suppressed D-dimer generation and scanning electron 

microscopy revealed that ticagrelor also suppressed prothrombotic changes in fibrin 

clot ultrastructure. There was a marked 6-fold expansion of the intermediate 

monocyte population at 24 hours after endotoxin administration. Platelet P2Y12 

inhibitors potentiated the increase in intermediate monocyte count, suggesting that 

platelet-monocyte interactions play an important role in regulating intermediate 

monocyte mobilization. Ticagrelor, but not clopidogrel, also inhibits cellular uptake 

of adenosine and thereby increases extracellular levels of adenosine. In-vitro 

experiments showed that this mechanism potentiates the stimulatory effect of low 

concentrations of adenosine on neutrophil phagocytosis. Additionally, this 

mechanism potentiated the suppressive effect of high concentrations of adenosine on 

FMLP-induced leukocyte activation. 

Potent inhibition of multiple inflammatory and prothrombotic mechanisms by P2Y12 

inhibitors demonstrates critical importance of platelets as central orchestrators of 

systemic inflammation induced by bacterial endotoxin. This provides novel 

mechanistic insight into the lower mortality associated with P2Y12 inhibitors in 

patients with sepsis in clinical studies.   
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 1 

1 Introduction 
1.1 Cardiovascular Disease 

Coronary artery disease continues to be the commonest cause of death worldwide 

(World Health Organization, 2012). Acute coronary syndrome (ACS) refers to a 

group of conditions that arise when there is acute obstruction to blood flow in the 

coronary arteries, leading to an impairment of the blood supply to the myocardium of 

the heart. ACS is subdivided on the basis of electrical abnormalities detected on the 

electrocardiogram and detection of myocardial proteins that are indicative of 

myocardial infarction (Roffi et al., 2015). Partial obstruction often leads to unstable 

angina or non-ST-elevation MI (NSTEMI), whereas total obstruction of the larger 

coronary arteries normally leads to ST-elevation myocardial infarction (STEMI).  

It is well-established that platelets play a central role in the formation of a thrombus 

in the coronary arteries after atherosclerotic plaque rupture or erosions. Platelets, 

which are discoid-shaped fragments derived from bone marrow megakaryocytes, 

have a major physiological role in maintaining vascular integrity and haemostasis. 

They are released under the regulation of thrombopoietin and circulate for 

approximately 7-10 days (Kaushansky, 2005). At rest, the human body produces 

approximately 200 billion platelets per day (Harker & Finch, 1969). Platelets can 

synthesise a limited number of proteins, since they contain messenger RNA (mRNA) 

but not a nucleus and therefore do not contain DNA (Italiano & Shivdasani, 2003). 

Platelets do, however, contain a vast number of pre-formed megakaryocyte-derived 

molecules in their granules that can be released upon activation. 

The recognition of the importance of platelets in ACS has led to some of the most 

successful pharmacological therapies in cardiovascular medicine. However, it is 

becoming increasingly clear that platelets also have a major role in inflammation 

(Semple et al., 2011). This is relevant to coronary artery disease, which is a chronic 

inflammatory disease, but may also be of consequence in infections, particularly 

sepsis, which is defined by systemic inflammation.   
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1.2 Platelets in Acute Coronary Syndromes 

Coronary artery disease may not cause symptoms for decades and the formation of an 

intracoronary thrombus by platelets is the pivotal moment that initiates ACS, which 

can be fatal (Falk et al., 2013). Platelets are involved in advanced atherosclerosis and 

their role intensifies following atherosclerotic plaque rupture or erosion. This exposes 

platelets to multiple thrombogenic substrates, such as collagen, von Willebrand factor 

(VWF) and fibronectin, to which platelets adhere, mediated by glycoprotein (GP) Ib-

V-X, GPIa/IIa and GPVI (Li et al., 2010). This initiates platelet activation and cross-

linking of fibrinogen between platelet GPIIb/IIIa receptors, which causes platelet 

aggregation. Platelet activation is amplified by platelet release of dense granules and 

interactions with the coagulation cascade and leukocytes. Of these responses, platelet 

release of adenosine diphosphate (ADP) from dense granules and subsequent 

activation of platelet P2Y12 receptors has a particularly important role in amplifying 

the response of platelets to other agonists (Storey et al., 2000). 

Aspirin was the first medication to demonstrate the dramatic benefits of antiplatelet 

therapy in patients with ACS, which has led to the now routine strategy of dual 

antiplatelet therapy (Grove et al., 2015). However, patients with ACS continue to 

have increased risk of mortality, highlighting the need for further refinement of 

treatment strategies. 

1.2.1 Platelets and the Pathogenesis of Acute Coronary 

Syndromes 
Platelets appear to have a limited role in early atherogenesis (West et al., 2014), but 

play an increasingly important role during the lead up to atherosclerotic plaque 

rupture (Li et al., 2012) (Figure 1.1). The development of an advanced atherosclerotic 

plaque is characterised by chronic inflammation, driven primarily by macrophages 

and T-cells (Falk et al., 2013). There is increasing evidence that rupture and erosion 

of advanced plaques are relatively frequent and do not result in ACS unless other 

thrombogenic factors are present (Arbab-Zadeh et al., 2012). Multiple asymptomatic 

plaque ruptures and erosions appear to lead to an increase in plaque volume and the 

development of high-grade coronary artery stenosis (Arbab-Zadeh et al., 2012). 

Throughout these processes, platelets promote the underlying inflammatory processes 
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by direct interactions with the cells involved or by releasing pro-inflammatory 

cytokines. 
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Figure 1.1 The role of platelets in forming a thrombus following atherosclerotic plaque rupture  
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1.2.1.1 Platelet-Endothelial Interactions Promote Monocyte 

Recruitment 
Although platelets do not normally adhere to endothelium that is intact, they are 

capable of adhering to activated endothelium (Massberg et al., 2002). Many 

conditions related to atherosclerosis, such as hypercholesterolaemia, smoking and 

oxidative stress, induce endothelial dysfunction and activation, resulting in 

expression of adhesion molecules, such as vascular cell adhesion molecule (VCAM)-

1, intercellular adhesion molecule (ICAM)-1 and E-selectin (Liao, 2013). 

Additionally, atherosclerosis increases endothelial VWF, further promoting platelet 

adhesion and activation (De Meyer et al., 1999). Adhesion of platelets to these 

adhesion molecules and the endothelium is mediated by a variety of corresponding 

platelet adhesion molecules and receptors, including P-selectin, GPIbα, GPVI and 

GPIIb/IIIa (Bültmann et al., 2010; Huo et al., 2003; Massberg et al., 2002). Depletion 

of these adhesion receptors reduces leukocyte accumulation within the arterial vessel 

wall and reduces plaque formation in animal models (Bültmann et al., 2010; Huo et 

al., 2003; Massberg et al., 2002), demonstrating an important role of platelet adhesion 

in the pathophysiology of advanced atherosclerotic plaques. 

Adherent platelets form bridges between the endothelium and leukocytes, which 

facilitates the recruitment of monocytes to the atherosclerotic plaque where they take 

up cholesterol and become a type of macrophage known as a foam cell (Randolph, 

2014). Activated platelets release cytokines, including platelet factor (PF) 4 and 

Regulated on Activation Normal T Expressed and Secreted (RANTES), which are 

released from α–granules and also act synergistically to promote recruitment of 

monocytes to the endothelium (Hundelshausen et al., 2005). Platelets are a major 

source of both PF4 and RANTES and mice that are deficient in either PF4 or 

RANTES demonstrate attenuated development of atherosclerosis and reduced 

macrophage infiltration into atherosclerotic plaques (Koenen et al., 2009). Activated 

platelets also promote leukocyte recruitment by upregulating endothelial expression 

of ICAM-1 and release of monocyte chemotactic protein (MCP)-1/CCL2 (Gawaz et 

al., 2000). In addition, platelets facilitate T cell adhesion to the endothelium and 

CD4+ T cells actually appear to be incapable of sustaining adhesion with the 

endothelium under arterial flow conditions in the absence of platelets (Solpov et al., 

2006). This enhancement of lymphocyte adhesion by platelets is mediated by P-
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selectin, GPIIb/IIIa and CD40L (Spectre et al., 2012). Platelets interact directly with 

monocytes and macrophages that are present in the atherosclerotic plaque to alter 

their phenotype and function. Platelet-derived PF4 prevents monocyte apoptosis and 

induces a phenotype in macrophages that is functionally distinct to both M1 and M2 

macrophages and displays altered matrix metalloproteinase (MMP) gene expression 

(Gawaz et al., 2000). Platelets are activated by OxLDL, mediated by CD36 and 

nicotinamide adenine dinucleotide phosphate oxidase (NOX)-2 (Magwenzi et al., 

2015). This induces the formation of platelet-monocyte aggregates, which in turn 

induces phenotypic changes in monocytes, promoting monocyte extravasation and 

enhancing foam cell formation (Badrnya et al., 2014).  

1.2.1.2 Platelets are the Central Mediators of the Progression from 

Ruptured Atherosclerotic Plaque to Subsequent Thrombus 

Formation 
ACS is largely a stochastic event and it is therefore particularly difficult to make 

physiological assessments immediately prior to the onset of ACS to determine 

possible triggers.  However, various different triggers have been described, such as 

physical activity, emotional stress and infections. It has been suggested that the 

underlying mechanisms of these triggers may include autonomic activation, 

vasoconstriction and systemic inflammation, which are all mediated by platelets and 

point to possible triggers of platelet activation (Boyle et al., 2003). Vulnerable 

plaques that are prone to rupture are associated with a thin fibrous cap, high 

leukocyte content and a large necrotic core (Silvestre-Roig et al., 2014). Apoptosis of 

vascular smooth muscle cells (VSMC) in the fibrous cap destabilizes the plaque and 

is promoted by macrophage release of tumour necrosis factor (TNF)-α (Boyle et al., 

2003) and MMP-mediated degradation of collagen within the fibrous cap (Silvestre-

Roig et al., 2014). In addition, CD40L, which is derived from T-cells and platelets, 

also promotes macrophage production of collagen-degrading MMPs (Libby, 2013a). 

Although platelets may play a role in these processes (Thomas & Storey, 2015b; 

Libby, 2013a; Seizer & May, 2013), direct evidence for a role of platelets in plaque 

rupture is limited. However, it is clear that platelets have a central role in mediating a 

pro-thrombotic state, which appears to be the key requirement for progression of 

plaque rupture or erosion towards thrombus formation and subsequent ACS.  
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1.2.2 Platelet Adhesion in Acute Coronary Syndromes 
Following atherosclerotic plaque rupture or erosion, circulating blood is exposed to 

the highly prothrombotic necrotic core of the plaque and subendothelial components, 

such as VWF, collagen, fibronectin and laminin (Falk et al., 2013). Exposed 

macrophages express tissue factor, which is a potent stimulus for thrombin generation 

and activation of the extrinsic coagulation cascade. Platelet interactions with 

mononuclear phagocytes further upregulates tissue factor expression (Lindmark et 

al., 2000), thus increasing thrombin generation. Atherosclerotic plaques also narrow 

the arterial lumen, thereby inducing haemodynamic disturbances and increasing shear 

stress (Crea & Liuzzo, 2013). Under these conditions, platelet adhesion to exposed 

subendothelial components is critically dependent upon adhesion to VWF and 

collagen.  

1.2.2.1 Initial Adhesion to the Vessel wall is Mediated by the GPIb-V-IX 

complex 
The initial adhesion of platelets to exposed subendothelial components is primarily 

mediated by the platelet GPIb-V-IX complex, which binds to exposed and 

immobilized VWF (Delaney et al., 2012) (Figure 1.1). Downstream signaling, 

mediated by Src family kinases (Figure 1.2), results in activation of GPIIb/IIIa, which 

causes platelet aggregation (Delaney et al., 2012). VWF-mediated pulling of the 

GPIb unit induces the unfolding of a mechanosensitive domain, which induces 

platelet activation in response to high levels of sheer stress (Zhang et al., 2015). 

Platelet GPIb also adheres to VWF that has bound to immobilized collagen or 

fibrinogen, which allows platelets to bind to collagen and fibrinogen under high shear 

stress (Crúz et al., 2013). In addition, GPIb-V-IX signaling can be initiated by a 

direct action of thrombin on the GPIb-V-IX complex, which is synergistic with 

thrombin’s activation of protease activated receptor (PAR)-1 (Estevez et al. 2015).  
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Figure 1.2 Intracellular signaling of platelets  
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1.2.2.2 GPIa/IIa Mediates Early Adhesion to Collagen 
The integrin GPIa/IIa is present in a low affinity state on resting platelets. Following 

initial adhesion, interaction of platelet GPIb with VWF mediates activation of 

GPIa/IIa (Crúz et al., 2005), which facilitates platelet adhesion and initiates rolling. 

Even in its inactive form, GPIa/IIa contributes towards adhesion by binding to 

collagen, although inside-out signaling changes its conformational shape, thereby 

increasing its affinity for collagen (Lecut et al., 2004; Z. Wang et al., 2003). GPIa/IIa 

then acts synergistically with GPVI to reinforce collagen-mediated platelet activation 

(Kuijpers et al., 2003; Jarvis et al., 2002). GPIa/IIa deficiency in mice does not affect 

the bleeding time and GPIa/IIa deficient platelets can still aggregate and adhere, 

although this is delayed, demonstrating that GPIa/IIa is not essential in the adhesion 

process (Nieswandt et al., 2001). However, in the absence of both GPIa/IIa and 

GPVI, platelet adhesion to collagen under flow is completely abolished (Sarratt, 

2005). 

1.2.2.3 Firm Adhesion and Platelet Activation is Mediated by GPVI 
In distinction to many platelet receptors that are G-protein-coupled receptors, GPVI 

belongs to the immunoglobulin superfamily (Clemetson et al., 1999) and its 

downstream signaling pathways involve Src family kinases (Figure 1.2). GPVI is 

thought to be exclusive to platelets and megakaroycytes and it has been estimated 

that there are approximately 9,600 copies per platelet (Burkhart et al., 2012). GPVI is 

the major receptor for collagen, but is also activated by other endogenous ligands, 

including laminin (Inoue et al., 2006) and adiponectin (Riba et al., 2008), and the 

exogenous ligand collagen-related peptide (Knight et al., 1999). GPVI also 

potentiates platelet activation in response to thrombin by mechanisms that are 

independent of Src kinases and Syk (Hughan et al., 2007). Platelets that lack either 

GPVI or a functional FcRγ-chain display severely impaired thrombus formation at 

high shear stress (Best et al., 2003), suggesting that it is likely to have an important 

role during the high-sheer conditions of ACS. GPVI is present as a monomer on the 

resting platelet membrane and becomes a dimer on platelet activation, thereby 

increasing its affinity for collagen (Loyau et al., 2012). There is an increase in levels 

of the GPVI dimer in response to ADP and VWF and the levels of GPVI dimers 

correlates with P-selectin expression (Loyau et al., 2012). It has recently been 

demonstrated that GPVI is also a receptor for fibrin, which explains why deficiency 
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of GPVI increases time to occlusion following arterial injury as well as inhibiting 

initiation of thrombus formation in animal models (Alshehri et al., 2015). Binding of 

GPVI to fibrin promotes thrombin generation and thus amplifies platelet activation 

(Mammadova-Bach et al., 2015), which demonstrates an important role of GPVI in 

thrombus growth and stability. Inhibition of GPVI also decreases platelet responses 

to ADP, thrombin and epinephrine by approximately 20% (Boylan et al., 2006), 

which suggests that GPVI is involved in amplifying platelet responses to these 

agonists. 

GPVI appears to also have an important role in maintaining vascular integrity during 

inflammation, whereas G protein-coupled receptors, such as the ADP receptors and 

TPα appear to be dispensable in this process in animal models (Boulaftali et al., 

2013). However, this role of GPVI appears complex and in some respects 

paradoxical. Platelet GPVI appears to enhance injury of the vessel wall caused by 

neutrophils, but also supports subsequent platelet adhesion, promoting repair of 

neutrophil-induced vascular breaches in animal models (Gros et al., 2015).  

1.2.3 Platelet Activation and Aggregation in Acute Coronary 

Syndromes 
Following initial adhesion to the endothelium, platelets become activated by a 

number of specific intracellular signaling pathways (Figure 1.2), resulting in 

activation of the GPIIb/IIIa receptor on the surface of platelets (Figure 1.3). 

Fibrinogen then cross-links activated GPIIb/IIIa receptors on adjacent platelets, 

which causes platelet aggregation. There are a number of mechanisms by which the 

platelet activation is amplified, involving the release of dense granules and 

interactions with leukocytes and the coagulation system. 
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Figure 1.3 Platelets are activated by multiple agonists, which act on surface receptors, leading to 

platelet activation, secretion of granules and generation of thrombin and thromboxane A2. 
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1.2.3.1 GPIb and GPVI Initiate Platelet Activation During Acute Coronary 

Syndromes 
Following plaque rupture, platelet adhesion to collagen is a potent stimulus for 

platelet activation. Activation of GPVI by collagen initiates platelet activation and 

induces conformational changes in GPIa/IIa and GPIIb/IIIa that increases their 

affinity for adhering to collagen and other platelets respectively (Lecut et al., 2004). 

VWF and soluble agonists induce dimerization of GPVI and thereby increase its 

affinity for collagen, further potentiating platelet activation (Loyau et al., 2012). The 

GPVI receptor is upregulated in response to pathological sheer and by components of 

the coagulation cascade, particularly factor Xa (Naitoh et al., 2015; Al-Tamimi et al., 

2012; 2011). The receptor is shed upon platelet activation, mediated by a disintegrin 

and metalloproteinase (ADAM) family of metalloproteinases, which also mediate the 

shedding of many other platelet membrane receptors (Bender et al., 2010). Surface 

expression of the collagen receptor GPVI is upregulated during ACS and correlates 

with expression of platelet P-selectin (Bigalke et al., 2006) suggesting that it may be 

a marker of platelet activation.  

1.2.3.2 Platelet Activation Leads to GPIIb/IIIa Activation and Platelet 

Aggregation 
GPIIb/IIIa is an adhesion receptor that belongs to the integrin superfamily and is a 

heterodimer composed of an α (αIIb) and a β (β3) transmembrane subunit (Coller & 

Shattil, 2008). In the resting state there are approximately 40,000 to 80,000 

complexes present on the platelet membrane and GPIIb/IIIa is only able to weakly 

bind fibrinogen, which is sufficient to allow uptake of fibrinogen into α-granules 

(Coller & Shattil, 2008). The number of GPIIb/IIIa receptors on the surface 

membrane rapidly increases following platelet activation, which also induces 

conformational changes in the receptor allowing it to bind fibrinogen, VWF and 

fibronectin (Coller & Shattil, 2008). Fibrinogen molecules have two binding sites for 

GPIIb/IIIa and act as bivalent ligands, forming cross-links between activated 

GPIIb/IIIa receptors on different platelets, resulting in platelet aggregation (Coller & 

Shattil, 2008). This inside-out signaling has been described as the final common 

pathway of platelet activation as it is downstream of all other platelet activation 

signaling pathways and mediates platelet aggregation (Coller & Shattil, 2008). In 

addition, platelet GPIIb/IIIa receptors are activated by ligand binding, resulting in 
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outside-in signaling, which is mediated by Src family kinases (Figure 1.2) and causes 

platelet activation (Coller & Shattil, 2008). 

Intravenous platelet GPIIb/IIIa inhibitors are potent inhibitors of platelet aggregation 

and have been used for the treatment of ACS (Grove et al., 2015). However, platelet 

inhibition during ACS has increasingly focused on the use of platelet P2Y12 inhibitors 

(Roffi et al., 2015). As GPIIb/IIIa antagonists increase the risk of major bleeding, 

their use is now largely limited to high-risk situations during PCI such as primary 

PCI for STEMI or as a “bailout” therapy for procedure-related thrombus formation 

(Grove et al., 2015). 

1.2.3.3 Platelet Release of ADP and Subsequent Activation of Platelet 

P2Y12 Receptors is a Central Amplification Process 
Platelet response to ADP is mediated by two ADP receptors, namely P2Y1 and 

P2Y12. P2Y1 is coupled to Gq (Figure 1.2) and initiates calcium mobilization, platelet 

shape change and transient platelet aggregation in response to ADP (Gachet, 2012). 

Few attempts have been made to target P2Y1 receptors pharmacologically since they 

are expressed in many tissues throughout the human body, including the heart, blood 

cells, neural tissues and other organs, making off-target effects very likely (Gachet, 

2012). Platelet P2Y12 receptors are coupled to Gi and inhibit adenylyl cyclase activity 

(Figure 1.2), thereby decreasing levels of cyclic adenosine monophosphate (cAMP) 

(Gachet, 2012). P2Y12 also activates the phosphoinositide 3-kinase signaling 

pathway, which mediates robust platelet aggregation (Cosemans et al., 2006). Platelet 

activation in response to ADP triggers release of platelet dense granules, which also 

contain ADP. The released ADP has autocrine effects that amplify the response of the 

activated platelet and paracrine effects that stimulate other platelets (Gachet, 2012). 

Amplification of platelet activation by the P2Y12 receptor has a central role in 

amplifying the response of platelets to other agonists (Storey et al., 2000). In 

addition, P2Y12 receptors are expressed in few cell types other than platelets (Gachet, 

2012), which makes them an attractive target for antiplatelet pharmacotherapy. Many 

successful platelet P2Y12 inhibitors have been developed and now rank amongst 

some of the most commonly used medications worldwide (Storey, 2011). Platelet 

P2Y12 inhibitors are capable of inhibiting the response of platelets to ADP and 

multiple other agonists, as they inhibit a central amplification pathway (Storey et al., 

2000). The potent P2Y12 inhibitors prasugrel and ticagrelor are currently 
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recommended as first-line treatments for patients with ACS, in addition to aspirin 

(Roffi et al., 2015). 

1.2.3.4 The Platelet Agonist Thromboxane A2 is Synthesized upon 

Platelet Activation 
Arachidonic acid is formed by phospholipase A2, which hydrolyses membrane 

phospholipids. Arachidonic acid is then rapidly converted by cyclooxygenase (COX-

1) in platelets into prostaglandin G2, which is then converted into prostaglandin H2 

(PGH2) by peroxidase (Patrono et al., 2005). Thromboxane synthase converts PGH2 

into thromboxane A2 (TxA2), which can diffuse out through the platelet membrane to 

then act upon platelet TP receptors to amplify platelet activation (Patrono et al., 

2005). Aspirin inhibits COX-1, thereby reducing the synthesis of TxA2, which 

strongly inhibits arachidonic acid-induced platelet aggregation and moderately 

inhibits collagen-induced platelet aggregation (Storey et al., 2000). In citrate-

anticoagulated platelet-rich plasma, aspirin also inhibits ADP- and adrenaline-

induced platelet aggregation (Storey et al., 2000). However, these effects are not seen 

at physiological levels of calcium, which suggests that the arachidonic acid pathway 

has a limited role in platelet activation under physiological conditions (Heptinstall & 

Mulley, 1977). 

The antiplatelet properties of low-dose aspirin are of great benefit in patients with 

ACS (Antithrombotic Trialists' Collaboration, 2002). Since the successful 

introduction of aspirin, it is now used routinely in combination with platelet P2Y12 

inhibitors (Storey, 2011). Further studies are therefore needed to determine optimal 

usage of aspirin when it is used on a background of potent P2Y12 inhibition (Thomas 

& Storey, 2014b).  

1.2.3.5 Amplification of Platelet Activation by Protease-activated 

Receptors 
Platelets express two different receptors for thrombin, namely PAR1 and PAR4 

(Leger et al., 2006). Thrombin is the most potent activator of platelets and is thought 

to exert the majority of its effects through PAR1 (Leger et al., 2006). PARs have an 

unusual mechanism of action, in that a cryptic ligand within the receptor is unmasked 

by proteolytic cleavage and the tethered ligand then interacts with the receptor 

moieties (Leger et al., 2006). PAR1 activates G12/13, resulting in marked shape change 
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and formation of pseudopodia, as well as dense granule release (Figure 1.2). PAR1 is 

also linked to Gq, which increases intracellular calcium and activates GPIIb/IIIa 

(Leger et al., 2006). Whilst PAR1 has a high affinity for thrombin and is activated at 

subnanomolar concentrations of thrombin, PAR4 has a lower affinity and is cleaved 

more slowly (Leger et al., 2006). Despite this, PAR4 is able to mediate robust 

increases in intracellular calcium and platelet aggregation, mediated by Gq (Leger et 

al., 2006). 

The PAR1 receptor antagonist vorapaxar initially showed great promise in early 

phase studies as it appeared to reduce platelet aggregation without adversely affecting 

haemostasis. However, in patients with ACS, vorapaxar increased the risk of bleeding 

and only showed a trend for cardiovascular benefits (Tricoci et al., 2012). Vorapaxar 

did significantly reduce the incidence of adverse cardiovascular events in patients 

with stable coronary artery disease with a prior history of MI and has recently been 

licensed for this indication (Morrow et al., 2012). 

1.2.4 Platelet-Leukocyte Interactions 
There are a number of mechanisms by which activated platelets interact with 

leukocytes and the endothelium. Activated platelets express the adhesion molecule P-

selectin on their surface membrane, which interacts with its corresponding ligand, P-

selectin glycoprotein ligand (PSGL)-1, on monocytes, neutrophils and eosinophils 

(Semple et al., 2011). This mediates the formation of platelet-leukocyte aggregates 

and circulating levels of platelet-monocyte aggregates have been shown to be 

increased in patients with ACS (Michelson et al., 2001). Increased platelet expression 

of P-selectin despite antiplatelet therapy has been shown to be associated with a 

higher incidence of adverse cardiovascular events in patients with ACS (Thomas et 

al., 2014). Inhibition of P-selectin reduces the formation of platelet-monocyte 

aggregates in vivo (Tardif et al., 2013). A novel specific antibody against P-selectin, 

inclacumab, lowers levels of soluble P-selectin and shows trends towards reduced 

myocardial damage in patients with ACS, presumably mediated by reducing platelet-

leukocyte interactions (Tardif et al., 2013). 

Platelets also express CD40L on their surface membrane when activated. CD40L has 

a similar structure to TNFα and has effects that are similar (Henn et al., 1998). 

Platelet CD40L acts on monocyte CD40 to increase monocyte expression of tissue 
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factor, which exerts prothrombotic effects by activating the extrinsic coagulation 

cascade (Lindmark et al., 2000). CD40L is also an important mediator of adaptive 

immune responses and the regulation of T-cells in particular (Elzey et al., 2008). 

Patients with ACS have an increased plasma level of soluble CD40L, which is 

thought to derive from platelets since they are the main source (Blanchet et al., 2014). 

Reflecting high levels of platelet activation, elevated levels of CD40L are associated 

with an increased risk of mortality in patients with ACS (Blanchet et al., 2014). 

1.2.4.1 Platelets Interact with Monocytes, Promoting the Release of 

Pro-Inflammatory Cytokines  

As well as containing many mediators of coagulation, platelet α-granules contain a 

large number of inflammatory mediators that serve no role in haemostasis. Upon 

activation, platelets release cytokines such as interleukin (IL)-1β, chemokine (C-X-C 

motif) ligand (CXCL) 1, PF4, CXCL5, CXCL7, IL-8, CXCL12, macrophage 

inflammatory protein (MIP)-1α and RANTES (Semple et al., 2011). PF4, RANTES 

and MIP1α are important promoters of monocyte chemotaxis and adhesion to the 

endothelium and have been directly implicated in atherogenesis (Maurer & Stebut, 

2004). Levels of PF4, RANTES and MIP1α are increased during ACS (Blanchet et 

al., 2014) and high levels of RANTES are associated with more rapid subsequent 

progression of atherosclerotic plaques (Blanchet et al., 2014). Increased levels of 

RANTES and MIP1α are also both associated with a three-fold increase in risk of 

mortality (Blanchet et al., 2014; de Jager et al., 2012). 

The formation of platelet-monocyte aggregates increases monocyte release of pro-

inflammatory cytokines, such as TNFα, CCL2 and IL-8 (Bournazos et al., 2008; 

Neumann et al., 1997), which represents a mechanism by which platelets amplify 

systemic inflammation during ACS. Patients with ACS who have high levels of 

baseline inflammatory markers have an increased risk of subsequent adverse 

cardiovascular events and mortality (Blanchet et al., 2014). Platelet P2Y12 inhibitors 

have been shown to reduce systemic inflammation and also lower levels of 

inflammatory markers during ACS, which may contribute to their clinical benefit 

(Gurbel et al., 2006). 
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1.2.4.2 Platelets Interact with Neutrophils, Resulting in the Formation of 

Neutrophil Extracellular Traps 
Neutrophil counts are often raised in patients with ACS and there is evidence for a 

rapid burst of neutrophil activation and release of myeloperoxidase (MPO) in the first 

few hours of ACS, which is associated with platelet-neutrophil aggregate formation 

(Maugeri et al., 2012). Platelets interact with neutrophils to promote the formation of 

neutrophil extracellular traps (NETs), mediated by the platelet TLR4 receptor (Clark 

et al., 2007). NETs are normally extruded by neutrophils as a means of ensnaring 

bacteria and consist of cytoplasmic proteins and nuclear contents (Brinkmann & 

Zychlinsky, 2012). Whilst this may be beneficial to aid the clearance of bacteria, it is 

becoming increasingly clear that these NETs also play a significant role in 

pathological inflammation and thrombosis. In patients with STEMI, it has recently 

been demonstrated that a significant proportion of coronary thrombus is actually 

made up of NETs in close relation to platelets (Maugeri et al., 2014). Furthermore, it 

has also been shown that coronary NET burden is a predictor of subsequent infarct 

size (Mangold et al., 2015). Deoxyribonuclease hydrolyzes the DNA scaffold of 

NETs and has been shown to accelerate the lysis of coronary thrombi ex vivo, 

suggesting that NETs could be a pharmacological target for the treatment of ACS 

(Mangold et al., 2015). 

1.2.4.3 Platelets Release Microparticles, which are Important Mediators 

of Inflammation and Coagulation and also Contain microRNA 
Platelets release small membrane vesicles upon activation, known as microparticles 

(Biasucci et al., 2012). Platelets are a major source of microparticles, but other cell 

types, including endothelial cells, leukocytes and VSMCs all release different types 

of microparticles as well (Vajen et al., 2015). Microparticles mediate pro-

inflammatory and pro-coagulant interactions between many different cell types and 

have effects that include increasing the thrombogenicity of platelets and promoting 

monocyte interactions with the endothelium. Levels of platelet-derived microparticles 

are increased during ACS (Biasucci et al., 2012), suggesting their potential use as a 

biomarker or as a pharmacological target in patients with ACS. 

miRNA are small non-coding RNA, which function as translational repressors to 

modulate gene expression (Willeit et al., 2013). They have a diverse range of effects 
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across a range of cell types and have been shown to have important roles in 

modulating endothelial cell function and inflammatory responses. Interestingly, 

platelet microparticles appear to be a predominant source of miRNA in the plasma 

(Willeit et al., 2013). MiR-126 and miR-223 are particularly abundant within 

platelets and their release can be inhibited by platelet P2Y12 inhibitors and aspirin 

(Willeit et al., 2013). In patients with ACS, levels of miR-126 and miR-223 both 

correlate with indices of platelet reactivity, which suggests that they may be useful as 

a novel marker of platelet activation in plasma (Mayr et al., 2014).  

1.2.5 Platelet Mediated Formation of a Stable Thrombus 
In their resting state, platelets have an asymmetrical phospholipid membrane that is 

maintained by translocase. Upon activation, increased levels of cytoplasmic calcium 

inhibit translocase and activate scramblase, which enhances the expression of 

negatively charged phosphatidylserine on the outer membrane. This allows factor Xa 

and Va to form a prothrombinase complex on the surface membrane, which converts 

prothrombin into thrombin (Solum, 1999). The produced thrombin activates platelet 

PARs and also leads to fibrin formation, which binds the developing clot together. In 

addition, platelets synthesise large quantities of plasminogen activator inhibitor 

(PAI)-1 and release this from α-granules upon activation (Brogren et al., 2004). The 

balance between clot formation and lysis is closely regulated by the fibrinolytic 

system and tissue plasminogen activator (tPA) in particular plays an important role 

on clot lysis. PAI-1 inhibits the fibrinolytic action of tPA and thereby increases 

resistance to clot lysis, particularly in arterial thrombosis (Brogren et al., 2004). High 

plasma concentrations of PAI-1 have been demonstrated in patients with ACS and 

increased levels are associated with an increase in mortality (Collet et al., 2003). 

Platelet-monocyte aggregate formation has also been linked with altered fibrinolytic 

status during ACS, which may be related to the intermediate monocyte phenotype in 

particular (Shantsila et al., 2012). In patients with ACS there is a dynamic cycle 

between prothrombotic and prothrombolytic processes, which occur simultaneously 

(Falk et al., 2013). This leads to intermittent flow obstruction and distal embolization, 

which may contribute towards myocardial microvascular obstruction and is more 

common following plaque erosion rather than rupture (Falk et al., 2013). 
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1.2.6 Platelet Contribution Towards Subsequent Adverse 

Cardiovascular Events 
After atherosclerotic plaque rupture, the thrombus rapidly grows in size and may 

obstruct, or partially obstruct, the coronary artery, leading to myocardial ischaemia 

that may be fatal. Acute total occlusion of a coronary artery by thrombus usually 

results in STEMI and contemporary management of this revolves around emergency 

primary percutaneous coronary intervention (PCI) to re-open the affected artery. The 

aim is to achieve this as quickly as possible, to minimize the duration of myocardial 

ischaemia. However, even when successful primary PCI is prompt and potent 

antithrombotic agents are administered, myocardial ischaemia persists in a significant 

proportion of patients due to microvascular obstruction further downstream of the 

initial obstruction (Niccoli et al., 2015). Platelets contribute towards some of the 

main mechanisms of microvascular obstruction, which involve ischaemia, 

reperfusion injury and distal embolization (Niccoli et al., 2015). Platelet-neutrophil 

aggregates damage the endothelium of the microvasculature by releasing 

inflammatory mediators and vasoconstrictors (Niccoli et al., 2015). Additionally, 

platelet NOX-2 is upregulated during microvascular obstruction, which exacerbates 

the underlying pathophysiology by promoting phospholipase A2 activity and 

generating TxA2, a potent vasoconstrictor and platelet agonist (Niccoli et al., 2013). 

Patients with STEMI that is complicated by microvascular obstruction have higher 

levels of platelet-monocyte aggregates, platelet-neutrophil aggregates and activated 

GPIIb/IIIa than those without microvascular obstruction (Zalewski et al., 2012). 

Furthermore, levels of platelet-derived microparticles have been shown to be 

increased at the site of coronary plaque rupture and higher levels are associated with 

microvascular obstruction in patients with STEMI (Porto et al., 2012). In animal 

models, neutrophils release NETs during myocardial ischaemia-reperfusion, which 

contributes to the pathophysiology of the condition (Brinkmann & Zychlinsky, 2012). 

Interestingly, deoxyribonuclease is able to degrade the backbone of NETs and is 

effective at reducing the ischaemic region and infarct size in this situation (Ge et al., 

2015). 

Following atherosclerotic plaque rupture, there is evidence to suggest that platelets 

play an important role in progression of atherosclerotic plaques. By forming a 

thrombus over the site of atherosclerotic plaque rupture, platelets may contribute 
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towards atherosclerosis by releasing pro-inflammatory mediators and enhancing the 

recruitment of monocytes (Libby, 2000). In an animal model, P2Y12-deficient mice 

displayed a significant reduction in thrombus and neointima formation following 

arterial injury (Evans et al., 2009). Further bone marrow transplantation experiments 

suggested that the reduction in neointima formation was primarily due to platelet 

P2Y12 deficiency rather than VSMC P2Y12 deficiency (Evans et al., 2009). This 

demonstrates a mechanism by which platelet P2Y12 inhibitors may reduce restenosis 

following PCI in patients with ACS. In addition, platelet activation and secretion of 

dense granules releases ATP, which may act on VSMC P2X receptors, thereby 

promoting VSMC proliferation and migration (Erlinge, 1998). 

Treatment with a P2Y12 inhibitor, in addition to aspirin, is recommended for at least a 

year after ACS (Roffi et al., 2015). The more recent and potent P2Y12 inhibitors 

ticagrelor and prasugrel are recommended as first-line treatments for patients with 

ACS (Roffi et al., 2015). It has become clear that approximately a third of patients do 

not display adequate inhibition of platelet reactivity whilst on treatment with the 

older P2Y12 inhibitor clopidogrel (Aradi et al., 2015). The reasons for this poor 

response to clopidogrel are multifactorial and incompletely understood, but in part 

relate to genetic polymorphisms (Thomas & Storey, 2014a) and drug-drug 

interactions amongst other factors (Thomas & Storey, 2011). High platelet reactivity 

to ADP despite treatment with clopidogrel is associated with an increased risk of 

subsequent adverse cardiovascular events in ACS patients (Aradi et al., 2015). 

Studies have investigated whether this poor response to clopidogrel can be 

ameliorated by increasing the dose or changing to prasugrel, but unfortunately have 

not shown any significant benefit so far (Collet et al., 2015). However, even with the 

use of potent platelet P2Y12 inhibitors, patients with ACS continue to have an 

increased risk of mortality, demonstrating the need for novel developments in 

antithrombotic strategies. 

1.2.7 Summary 
Platelets are central to all stages of the pathophysiology of ACS (Table 1.1). Platelets 

release many pro-inflammatory mediators, such as PF4, RANTES and sCD40L, 

which have been implicated in the progression of advanced atherosclerotic plaques. 

Following plaque rupture or erosion, platelets bind to exposed VWF and collagen, 
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mediated by GPIb, GPIa/IIa and GPVI. Initial platelet activation is then amplified by 

platelet release of soluble agonists, such as ADP, TxA2 and thrombin, which 

stimulates further platelet activation in an autocrine and paracrine manner. Fibrinogen 

cross-links activated platelet GPIIb/IIIa receptors, causing platelet aggregation and 

the pro-coagulant activities of platelets drive the development of a stable fibrin-

bound clot. Emerging evidence also suggests that platelet-leukocyte interactions have 

an important role in clot formation and microvascular obstruction. Aspirin and P2Y12 

inhibitors have made a tremendous impact on improving outcomes from ACS, which 

paves the way for novel antiplatelet strategies to further benefit patients with ACS by 

targeting currently unexploited mechanisms. 
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Table 1.1 Summary of the Major Roles of Platelets in the Pathophysiology of ACS 

Process Platelet involvement 

Progression of advanced 

atherosclerotic plaque 

Activated platelets promote leukocyte recruitment to the endothelium by 

upregulating expression of ICAM-1 and release of CCL2  

Platelet release of PF4, RANTES and CD40L promotes macrophages to 

infiltrate atherosclerotic plaques, change phenotype and produce collagen-

degrading MMPs  (Libby, 2013b; Hundelshausen et al., 2005; Gawaz et al., 

2000) 

OxLDL induces the formation of platelet-monocyte aggregates, which 

promotes monocyte extravasation and enhances foam cell formation (Badrnya 

et al., 2014) 

Platelets adhere to 

exposed subendothelial 

components, initiating 

thrombus formation 

Platelet GPIb initiates platelet adhesion and activation by binding exposed 

VWF (Delaney et al., 2012) 

Platelet GPIa/IIa mediates adhesion by binding exposed collagen (Kuijpers et 

al., 2003; Jarvis et al., 2002) 

Platelet GPVI acts synergistically with GPIa/IIa to facilitate adhesion and 

potently activates platelets in response to collagen (Kuijpers et al., 2003; Jarvis 

et al., 2002) 

Activated platelets 

aggregate at the site of 

plaque rupture 

Fibrinogen cross-links activated GPIIb/IIIa receptors on adjacent platelets, 

causing aggregation (Coller & Shattil, 2008) 

Platelet activation is 

amplified in an autocrine 

and paracrine manner 

Platelets release ADP from their dense granules, which activates platelet P2Y12 

ADP receptors, causing further activation (Storey et al., 2000) 

Platelets synthesise thromboxane A2, which acts on platelet TP receptors 

(Patrono et al., 2005) 

Stable thrombus occludes, 

or partially occludes, the 

coronary lumen 

 Platelets activation induces the formation of a prothrombinase complex on 

their surface membrane, which converts prothrombin into thrombin (Solum, 

1999) 

Thrombin activates platelet PAR receptors and also promotes fibrin generation, 

which consolidates clot formation (Leger et al., 2006) 

Inflammation induced by 

ACS is mediated by 

platelet-leukocyte 

interactions 

Platelet-monocyte aggregate formation promotes monocyte release of pro-

inflammatory cytokines (Thomas & Storey, 2015b) 

Platelet-neutrophil interactions induces NET formation and may play an 

important role in the pathophysiology of microvascular obstruction  
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1.3 The Role of Platelets in Inflammation 

Platelets were traditionally considered to purely have a role in the maintenance of 

haemostasis. However, there is growing recognition that they also have a critical role 

in inflammation and immune responses. Indeed, some have even argued that this role 

may be as important as their role in haemostasis (Semple et al., 2011) (Figure 1.4 and 

Table 1.2). Interest in the role of platelets in inflammation and immune responses has 

recently returned to the forefront. Findings from the PLATelet inhibition and patient 

Outcomes (PLATO) study suggested that the novel antiplatelet medication ticagrelor 

might reduce the incidence of pulmonary infections and infection-related deaths 

compared to clopidogrel, the previous standard treatment for patients with acute 

coronary syndromes (ACS) (Varenhorst et al., 2014; Storey et al., 2014; Varenhorst 

et al., 2012). Epidemiological evidence also supports the hypothesis that antiplatelet 

medications affect host immunity, since a recent review of observational studies has 

suggested that antiplatelet medications are associated with a reduction in mortality 

from sepsis, without causing an excess of bleeding (Akinosoglou et al., 2014). There 

are many potential mechanisms for a clinical benefit of antiplatelet medications in 

systemic inflammation related to infection, which justifies detailed examination of 

the role of platelets in inflammation and immune responses. The purpose of this 

section is therefore to summarise the role of platelets in inflammation, with a focus 

on their role in innate immune responses. 

 



 24 

 

Figure 1.4 Platelet-monocyte interactions.  

After platelet activation, platelets release α-granules containing soluble P-selectin, soluble CD40L, 

RANTES, MIP-1α and IL-1β, which act on monocyte receptors to upregulate proinflammatory 

functions. In addition, platelet expression of P-selectin mediates formation of platelet-monocyte 

aggregates, thereby upregulating monocyte release of pro-inflammatory cytokines and adhesion to the 

endothelium. 
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Table 1.2 Summary of the major platelet mechanisms that modulate inflammation and 

immunity 

Mechanism Main actions of mechanism 

Platelet α-granule release Platelet α-granules contain multiple mediators of inflammation (see Table 
1), which have a diverse range of mostly pro-inflammatory effects. 

Platelet P-selectin 
expression 

Platelet P-selectin interacts with leukocyte PSGL-1, which is critical to the 
formation of platelet-leukocyte aggregates. Additionally, forms cross-links 
between leukocytes and the endothelium, thereby facilitating adhesion (Ma 
et al., 2004). 

Platelet-leukocyte 
aggregate formation 

Upregulates a wide range of pro-inflammatory functions of leukocytes, 
including release of pro-inflammatory cytokines, reactive oxygen species 
production, phagocytosis and endothelial adhesion (Semple et al., 2011). 

Platelet expression of 
CD40L 

Interacts with leukocyte CD40 and induces monocyte expression of tissue 
factor and activation of the coagulation system (Lindmark et al., 2000). 
Influences several important T cell functions, including antigen presenting 
cell activation.  

Platelet TLR4-mediated 
NET formation 

Emerging evidence suggests an important role of platelets in the formation 
of NETs (Clark et al., 2007), which aid the clearance of bacteria. However, 
NETs also have prothrombotic effects and contribute to the scaffold of a 
thrombus (Mangold et al., 2015; Maugeri et al., 2014). 

Platelet P-selectin-
mediated activation of the 
complement system 

Platelets releases chondroitin sulfate, which activates the complement 
system (Hamad et al., 2008). This may have an important role in the 
clearance if microbes, but may also contribute towards vascular 
inflammation. 

Platelet release of 
HMGB1 

Platelets present HMGB1 to neutrophils, which induces the formation of 
NETs (Maugeri et al., 2014). Additionally, HMGB1 is a potent 
inflammatory stimulus that activates MAP kinases and NF-κB (Orlova et al., 
2007). 

Platelet activation in 
response to binding of 
GPIb and GPIIb/IIIa by 
bacteria  

Platelets aggregate, in response to bacteria directly or indirectly binding 
GPIb and GPIIb/IIIa (Cox et al., 2011). This may contribute towards 
thrombocytopenia and may allow bacteria to become surrounded by platelets 
and inaccessible to leukocytes. 

Platelet expression of 
TREM1 ligand 

Mediates leukocyte activation and engagement of leukocyte TREM1 
induces secretion of IL-8, TNFα and CCL2 (Bouchon et al., 2000) 

Platelet release of 
microparticles 

Presents IL-1β and RANTES (Mause et al., 2005) to the endothelium. Plays 
a key role in signaling between platelets and the innate immune system 
(Vajen et al., 2015; Italiano et al., 2010) 
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1.3.1 Platelet Granules 
Supporting the important role of platelets in inflammation, activated platelets secrete 

a vast number of inflammatory mediators that have no identifiable role in 

haemostasis (Coppinger et al., 2007). Platelets possess three major types of storage 

granules: dense granules, lysosomes and α-granules, of which the α-granules are the 

most abundant. Dense granules contain small non-protein molecules that have 

important roles in the amplification of platelet responses, such as ADP, ATP and 

serotonin. Recently platelet serotonin has been shown to have an important role in 

neutrophil rolling and adhesion to the endothelium (Duerschmied et al., 2013). 

Platelet lysosomes contain proteases, glycosidases and other proteins that have a 

bactericidal effect (Rendu & Brohard-Bohn, 2009). Platelet α-granules contain a large 

number of varied proteins that are released during platelet activation and act on 

thrombosis and haemostasis, inflammation, host defenses and atherosclerosis 

amongst other effects (Blair & Flaumenhaft, 2009). 

1.3.1.1 α-granules 
There are approximately 50-80 α-granules per platelet, which have heterogeneous 

contents consisting of membrane-bound proteins that are either expressed on the 

platelet surface or released upon activation (Blair & Flaumenhaft, 2009). Of the 

membrane-bound proteins, most are already present on the resting membrane, whilst 

others, such as the adhesion molecule P-selectin, are only minimally expressed prior 

to platelet activation.  

Many of the proteins contained within platelet α-granules have an important role in 

haemostasis. However, α-granules also have a significant role in innate immunity, 

mostly either by modulating the expression of platelet adhesion receptors that interact 

with leukocytes or by releasing cytokines that affect leukocyte function. Detail of the 

full contents of α-granules is incomplete, but they are known to contain a diverse 

range of chemokines, including CXCL1, platelet factor 4 (PF4; also known as 

CXCL4), CXCL5, CXCL7, interleukin (IL)-8 (also known as CXCL8), CXCL12, 

macrophage inflammatory protein (MIP)-1α (also known as CCL3) and RANTES 

(also known as CCL5) (Blair & Flaumenhaft, 2009). The predominant effect of these 

cytokines is to regulate leukocyte movement, migration from the vasculature into the 

tissues and other pro-inflammatory functions, such as phagocytosis and generation of 
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reactive oxygen species (Table 1.3). This affects the recruitment of leukocytes to sites 

of inflammation and mostly upregulates their pro-inflammatory functions. In 

addition, α-granules also contain small, cationic microbicidal proteins that can 

directly disrupt the membrane of S. aureus (Yeaman et al., 1998). 
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Table 1.3 Main platelet-derived mediators of inflammation 

Mediator      
(Also known as) 

Type Main Source Main 
interactions 

Main role in inflammation 

P-selectin 
(CD62P) 

Adhesion 
molecule 

 

α-granules 

Expressed on 
surface membrane 
or released in 
soluble form 

PSGL-1 on: 

Monocytes 

Neutrophils 

Formation of platelet-leukocyte 
aggregate (Evangelista, Manarini, 
Sideri, Rotondo, Martelli, Piccoli, 
Totani, Piccardoni, Vestweber, de 
Gaetano, & Cerletti, 1999a) 

Formation of bridges between 
leukocytes and endothelium (Mine 
et al., 2001) 

CD40L     
(CD154) 

Member of 
TNF family 

α-granules 

Expressed on 
surface membrane 
or released in 
soluble form 

CD40 on: 

T cells 

B cells 

Monocytes 

Dendritic cells 

Important mediator of T cell 
immune responses (Elzey et al., 
2008) 

Link between innate and adaptive 
immune responses (Elzey et al., 
2008) 

Promotes leukocyte recruitment to 
the endothelium (Henn et al., 1998) 

Platelet factor 4 
(CXCL4) 

CXC 
chemokine 

α-granules CXCR3 on: 

Monocytes 

Neutrophils 

Induces leukocyte pro-
inflammatory cytokine release, 
phagocytosis, chemotaxis, 
generation of ROS (Kasper et al., 
2007; Hundelshausen et al., 2005; 
Scheuerer et al., 2000) 

Inhibits leukocyte apoptosis 
(Scheuerer et al., 2000) 

MIP-1α      
(CCL3) 

CC 
chemokine 

α-granules CCR1 on: 

Monocytes 
and 
macrophages 

 

Promotes monocyte and 
macrophage migration (Maurer & 
Stebut, 2004) 

Upregulates monocyte and 
macrophage release of pro-
inflammatory mediators (Maurer & 
Stebut, 2004) 

RANTES   
(CCL5) 

CC 
chemokine 

α-granules 

 

CCR1, CCR3 
and CCR5 on: 

Monocytes 
and 
macrophages 

T cells 

Promotes monocyte, macrophage 
and T cell chemotaxis and 
recruitment to the endothelium 
(Mause et al., 2005; la Motte et al., 
2004) 

 

IL-1 Cytokine α-granules 

 

Wide range of 
effects on 
leukocytes and 
endothelium 

Central to pro-inflammatory 
cytokine cascade and vascular 
inflammation (Lindemann et al., 
2001) 

Microbicidal 
proteins 

Cationic 
proteins 

α-granules Bacteria Disrupt cell membrane (Yeaman et 
al., 1998) 
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1.3.1.2 Major platelet-derived cytokines 
Many of the major platelet-derived cytokines affect monocytes in particular (Table 

1.3 and Figure 1.4). PF4 is one of the most abundant proteins contained in platelet α-

granules. PF4 is a CXC chemokine which shares sequence similarities with the 

chemokine IL-8, albeit with different functional effects (Nesmelova et al., 2005). As 

well as having a role in thrombosis and haemostasis, PF4 has a broad range of 

activities related to innate immunity, including effects on monocyte and neutrophil 

chemotaxis (Deuel et al., 1981). PF4 promotes neutrophil granule release and 

adhesion to endothelial cells, mediated by L-selectin and leukocyte function-

associated molecule 1 (LFA-1) (Petersen et al., 1998). In addition, PF4 prevents 

monocyte apoptosis, promotes monocyte differentiation into macrophages and 

induces phagocytosis and generation of reactive oxygen species (Scheuerer et al., 

2000). PF4 induces monocyte release of cytokines (including CXCL8, CXCL3, IL-

1α, IL-1β, IL-6, IL-19, tumour necrosis factor (TNF) -α, CCL2, CCL3 and CCL22) 

(Kasper et al., 2007). In combination with regulated on activation, normal T cell 

expressed and secreted (RANTES), PF4 also promotes monocyte arrest on the 

endothelium (Hundelshausen et al., 2005) and may upregulate endothelial E-selectin 

expression (Yu et al., 2005). RANTES is a chemokine that has a role in 

atherosclerosis and is found in large quantities in platelet α-granules. Platelets either 

directly release RANTES or form microparticles containing RANTES, which can be 

immobilized on activated endothelium and promote monocyte recruitment, mediated 

by P-selectin (Mause et al., 2005). T cells that express CD40L can also induce 

platelet RANTES release, which promotes T cell recruitment to the endothelium in a 

process that is amplified by RANTES (la Motte et al., 2004). 

Activated platelets release the pro-inflammatory cytokine IL-1β in vitro (Lindemann 

et al., 2001), although it has been suggested that this may be at least partly dependent 

on contaminating leukocytes  (Pillitteri et al., 2007). IL-1 is central to the cytokine 

cascade and has a major role in vascular inflammation (Loppnow & Libby, 1990). 

Activated platelets induce IL-6 and IL-8 release from vascular smooth muscle cells, 

mediated by release of IL-1 (Loppnow et al., 1998). In addition, IL-1 is known to 

mediate vascular NO production (Ignarro et al., 2001) and promote neutrophil 

adhesion to endothelial cells (Bevilacqua et al., 1985). Activated platelets have also 

been shown to induce CCL2 secretion and intercellular adhesion molecule (ICAM-1; 
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also known as CD54) expression in endothelial cells in a process mediated by IL-1 

(Gawaz et al., 2000). CCL2 is the major chemokine that regulates monocyte and 

macrophage chemotaxis and acts on monocyte CCR2 receptors (Deshmane et al., 

2009). 

1.3.1.3 Adhesion molecules 
One of the key constituents of platelet α-granules is P-selectin (also known as 

CD62P), which has a key role in linking thrombosis and haemostasis and 

inflammation. P-selectin and P-selectin ligand-1 (PSGL-1) are a receptor and its 

respective ligand that have a central role in the interaction between platelets, 

leukocytes and endothelial cells (Blann, 2003). α-granules also contain other 

adhesion molecules, such as platelet endothelial cell adhesion molecule-1 (PECAM-

1), GPIIb/IIIa and vWF (Rendu & Brohard-Bohn, 2009). 

1.3.2 Direct Platelet-Leukocyte Interactions 

1.3.2.1 P-selectin and PSGL-1 

P-selectin is contained within the α-granules of platelets and is expressed on the 

surface membrane upon platelet activation (Stenberg et al., 1985). Monocytes, 

neutrophils, eosinophils and haematopoietic progenitor cells have all been shown to 

possess the corresponding ligand, PSGL-1 (Spertini et al., 1996; Symon et al., 1996). 

P-selectin cross-links platelets and leukocytes and is therefore a major mediator of 

platelet-leukocyte aggregate formation and its action is described in more detail in the 

following sections. 

1.3.2.2 CD40 and CD40L 
CD40 and CD40L (also known as CD154) are a receptor and its respective ligand 

that are important mediators of interactions between lymphocytes and antigen-

presenting cells (Grewal & Flavell, 1998) and have also been shown to have a role in 

atherothrombotic disease (Anand et al., 2003). Activated platelets express CD40L, 

which has a similar structure to TNF-α and a similar effect. Platelet CD40L 

expression induces monocyte expression of tissue factor, which in turn initiates the 

extrinsic coagulation cascade (Lindmark et al., 2000). Platelet-expressed CD40L has 

also been shown to affect dendritic cells as well as B lymphocytes and T 

lymphocytes, suggesting that it provides a communicative link between innate and 
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adaptive immunity (Elzey et al., 2008). In addition to its direct effects on leukocytes, 

platelet-expressed CD40L also interacts with CD40 on endothelial cells to promote 

secretion of chemokines, such as IL-8 and CCL2, and express adhesion molecules, 

such as E-selectin (also known as CD62E), vascular cell adhesion molecule 1 

(VCAM-1; also known as CD106) and ICAM-1 (Henn et al., 1998). This promotes 

migration of leukocytes to the site of vascular injury and subsequent adhesion. As 

well as expressing CD40L on their surface membrane, platelets also release soluble 

CD40L, which can induce vascular cells to express E-selectin and P-selectin and 

release IL-6 (Henn, 2001; Déchanet et al., 1997). Indeed, it has been suggested that 

activated platelets are the predominant source of soluble CD40L (Lim, 2004; Henn, 

2001). A role of CD40 and CD40L in ACS has been suggested by reports of 

increased levels in patients with ACS (Garlichs et al., 2001; Aukrust et al., 1999). 

1.3.2.3 TREM1 
Platelets interact with triggering receptor expressed on myeloid cells 1 (TREM1) that 

is primarily expressed on monocytes and neutrophils, although the natural ligand of 

TREM1 is unknown (Klesney-Tait et al., 2006). Platelets have been shown to express 

a ligand for TREM1, which potentiates lipopolysaccharide (LPS) -induced neutrophil 

respiratory burst and IL-8 release but does not mediate platelet-leukocyte aggregate 

formation (Haselmayer et al., 2007). 

1.3.3 Platelet-Leukocyte Aggregate Formation 

1.3.3.1 Binding of Platelets to Leukocytes 
The initial binding of platelets to leukocytes is mediated by platelet P-selectin 

binding to leukocyte PSGL-1. This is followed by firm adhesion, which is mediated 

either by leukocyte CD11b/CD18 binding to platelet GPIb or platelet-bound 

fibrinogen, or by platelet ICAM-2 binding to leukocyte CD11a/CD18 (Evangelista et 

al., 1999a). The initial capture and rolling of leukocytes on the endothelium is largely 

mediated by endothelial selectins. In addition to the direct effect of platelet P-selectin 

on promoting leukocyte adhesion to endothelium, endothelium-bound immobilised 

platelets can also bind leukocytes via P-selectin, acting as a bridge and further 

promoting leukocyte adhesion (Mine et al., 2001). Therefore, P-selectin/PSGL-1 

interaction has a functionally important role in leukocyte rolling and adhesion to 

platelets and endothelium, which are critical steps in the process of leukocyte 
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extravasation (Moore et al., 1995; Yeo et al., 1994; Buttrum et al., 1993; Doré et al., 

1993). 

1.3.3.2 Effect of Platelet-Leukocyte Aggregate Formation on Leukocyte 

Function 
The interaction between platelet P-selectin and PSGL-1 increases the adhesive 

properties of monocytes, by promoting expression of beta integrins and adhesion to 

fibronectin, VCAM-1 and ICAM-1, and promotes transendothelial migration (da 

Costa Martins et al., 2006). Similarly, P-selectin interaction with neutrophil PSGL-1 

increases the adhesive properties of neutrophils by upregulating CD11b/CD18 and 

promoting adhesion to fibrinogen and ICAM-1 (Ma et al., 2004; Blanks et al., 1998). 

Neutrophils that have formed platelet-neutrophil aggregates shed L-selectin, show 

increased phagocytic activity and produce more reactive oxygen species (Peters et al., 

1999). Interaction between P-selectin and PSGL-1 also regulates monocyte cytokine 

production. P-selectin potentiates monocyte secretion of CCL2 (also known as 

monocyte chemotactic protein-1) and TNFα in response to platelet activating factor 

(PAF), possibly by upregulating nuclear translocation of nuclear factor- κB (Weyrich 

et al., 1995). Monocytes and neutrophils roll over long, negatively-charged platelet 

flow-induced protrusions (FLIPRs) in a P-selectin/PSGL-1 dependent manner, which 

induces leukocyte CD11b and L-selectin shedding; the leukocytes retain fragments of 

the FLIPRs as microparticles on their surface (Tersteeg et al., 2014). Monocyte-

platelet aggregate formation also appears to induce a change in monocyte phenotype 

to the CD14++ CD16+ intermediate monocyte phenotype (Passacquale et al., 2011). 

1.3.3.3 In-vivo Sequelae of Platelet-Leukocyte Interactions 
The innate immune system is essential for the resolution of microbial infection. 

However, in sepsis, excessive innate immune activation can cause excessive 

collateral tissue damage and, in particular, neutrophils have been implicated in the 

microvascular pathology that results in multi-organ failure (Brown et al., 2006). 

Platelet P-selectin has been shown to mediate leukocyte recruitment into post-

ischaemic tissue, due to its effects on transendothelial migration (Salter et al., 2001), 

and blocking platelet P-selectin reduces post-ischaemic neutrophil infiltration of 

kidneys and subsequent acute kidney injury (Singbartl et al., 2001). Platelets appear 

to have a particularly prominent role in pulmonary neutrophil sequestration. In an 

animal model, blocking P-selectin reduces pulmonary neutrophil recruitment during 
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abdominal sepsis (Asaduzzaman et al., 2009). Acute lung injury also appears to be 

mediated by P-selectin in a murine model; inhibiting P-selectin expression and the 

subsequent formation of platelet-neutrophil aggregates improves gas exchange, 

decreases neutrophil recruitment and improves survival (Zarbock et al., 2006).  

In ACS, plaque rupture induces the formation of platelet-monocyte aggregates and 

platelet-neutrophil aggregates by both P-selectin- and non-P-selectin-dependent 

mechanisms, although the physiological role of these aggregates is not clearly 

established (Sarma et al., 2002). In patients with ACS, the platelet P2Y12 inhibitor 

clopidogrel reduces levels of CRP and TNFα (Gurbel et al., 2006), which may be 

related to a reduction in P2Y12-mediated platelet-leukocyte interactions or may be 

related to reduced myocardial necrosis secondary to the antithrombotic effects of 

clopidogrel. Patients with ACS who have high platelet reactivity, as shown by 

increased expression of platelet P-selectin despite treatment with clopidogrel, have 

been shown to have a higher risk of adverse cardiovascular events (Thomas et al., 

2014). At antiplatelet doses, aspirin also has anti-inflammatory effects that appear to 

be mostly related to its inhibition of platelet thromboxane A2 synthesis, by inhibiting 

COX-1 (Hohlfeld & Schrör, 2015). Since thromboxane A2 is a potent platelet agonist, 

this may indirectly reduce inflammation that results from thrombosis. Additionally, 

thromboxane A2 and other thromboxane prostanoid receptor agonists mediate 

vascular inflammation (Capra et al., 2014), which may also be to some extent 

inhibited by aspirin. Even antiplatelet doses of aspirin may have additional anti-

inflammatory effects mediated by COX-2, especially when used at higher doses, as 

reviewed by Hohlfeld and colleagues (Hohlfeld & Schrör, 2015). Stable coronary 

artery disease and atherosclerosis are also associated with low grade inflammation, 

which in turn is associated with an increase in platelet reactivity, as reviewed by 

Larsen and colleagues (Larsen et al., 2015). It has also been suggested that platelet-

leukocyte interactions, mediated by platelet-expressed P-selectin and CD40L, may 

contribute to the pathogenesis of a number of other inflammatory conditions 

(Schrottmaier et al., 2015). In addition, cross-talk between monocytes, neutrophils 

and platelets activates the extrinsic coagulation cascade, which is a critical mediator 

of the initiation and propagation of deep vein thrombosis (Brühl et al., 2012). 
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1.3.4 Role of Platelets in Sterile Inflammation 
Tissue damage and cell death are major initiators of sterile inflammation, which is 

central to a number of pathological processes, including ischaemia, atherosclerosis, 

gout and Alzheimer’s disease (Rock et al., 2010). Cell death, particularly necrosis, 

initiates the release of damage-associated molecular patterns (DAMPS), which act on 

monocyte/macrophage intracellular and extracellular receptors, thereby triggering an 

inflammatory response. The most clearly characterized DAMPs include high-

mobility Group Box-1 (HMGB1), IL-1α, S100 proteins, heat shock proteins (HSPs), 

dsDNA and uric acid (Zheng et al., 2011). HMGB1 is released extracellularly upon 

cell necrosis, but it has also been shown that platelets contain HMGB1 and express it 

on their outer membrane upon activation (Cognasse et al., 2015). HMGB1 is a highly 

potent inflammatory mediator that acts on the receptor for advanced glycation 

endproducts (RAGE), which activates a number of signaling pathways, including 

MAP kinases, and activates NF-κB (Orlova et al., 2007). It has recently been shown 

that activated platelets present HMGB1 to neutrophils, which induces the formation 

of neutrophil extracellular traps (NETs) (Maugeri et al., 2014), which are discussed 

in more detail in later paragraphs. Platelets also express receptors for other DAMPS, 

including the heat shock protein Gp96 (Hilf et al., 2002). These receptors appear to 

have an important role in mediating dendritic cell activation, although the mechanism 

is unclear and appears to be independent of soluble platelet factors and cell-to-cell 

contact (Hilf et al., 2002). 

1.3.5 Response of Platelets to Pathogens 

1.3.5.1 Bacterial Interaction with Platelets 
The immediate activity of platelets at the site of a wound also means that they are 

ideally located to act as first-responders to invading microbes. Bacteria interact 

directly with platelets causing platelet activation, which allows platelets to release 

pro-inflammatory mediators and act as sentinel cells. However, this also directly 

contributes to the pathology of disseminated intravascular coagulation and infective 

endocarditis (Cox et al., 2011). Bacteria, such as Streptococcus pyogenes, bind 

fibrinogen that can then interact with platelet GPIIb/IIIa to trigger platelet activation 

(Shannon et al., 2007), whilst other bacteria such as Streptococcus epidermidis are 

capable of interacting directly with platelet GPIIb/IIIa causing platelet activation 
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(Brennan et al., 2009). Similarly, Staphylococcus aureus can bind VWF, which can 

then interact with platelet GPIbα (O'Seaghdha et al., 2006), whereas some species of 

streptococcus interact directly with platelet GPIbα to cause platelet activation 

(Plummer et al., 2005). The knowledge-base regarding platelet signalling after the 

adherence of bacteria is relatively incomplete (Cox et al., 2011). Platelet activation by 

Streptococcus sanguinis and Streptococcus gordonii results in platelet aggregation 

and release of α-granules (containing RANTES, PF4, sCD40L, soluble P-selectin and 

platelet-derived growth factor (PDGF)-AB) and dense granules (containing ADP and 

ATP) (McNicol et al., 2011; Herzberg & Krishnan, 1993). Thrombocytopenia is 

common in patients with sepsis and is associated with increased mortality 

(Baughman, 1993). Patients with sepsis have higher levels of platelet P-selectin 

expression and leukocyte CD11b and there is some evidence that levels of these 

markers correlate with severity of sepsis (Russwurm et al., 2002). 

1.3.5.2 Platelet TLR 
Toll-like receptors (TLR) are a major family of receptors that recognise pathogen-

associated molecular patterns (PAMPs). It has been demonstrated that platelets 

possess TLR4 (Aslam et al., 2006), as well as TLR2, TLR3, TLR7, TLR8 and TLR9 

(Koupenova et al., 2014). TLR4 mediates leukocyte response to the bacterial product 

lipopolysaccharide (LPS), which is a classical initiator of innate immune responses 

(Lu et al., 2008). However, LPS has not been consistently demonstrated to have a 

clear effect on traditional aspects of platelet function, such as platelet aggregation and 

P-selectin expression or cytosolic concentrations of calcium (Ward et al., 2005). 

Conversely, other studies have shown that activation of platelet TLR4 by LPS may 

increase platelet adhesion to fibrinogen (Andonegui, 2005) and the formation of 

neutrophil extracellular traps (NETs) that ensnare bacteria in sepsis (Clark et al., 

2007). NETs, which are composed of cytoplasmic proteins and nuclear contents, 

including DNA, are expelled by activated neutrophils into the extracellular space, 

possibly as a last resort to control bacterial infections (Brinkmann & Zychlinsky, 

2012). Important roles of NETs have been identified in a number of pathological 

processes, including autoimmune disorders, chronic lung diseases and vascular 

disorders (Kaplan & Radic, 2012). Recent studies have demonstrated an additional 

platelet-dependent component of NET formation that is mediated by platelet 

chemokines, including RANTES and PF4 (Rossaint et al., 2014; McDonald et al., 
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2012; Caudrillier et al., 2012). There is also an increasing recognition of a major role 

of NETs in the pathophysiology of thrombosis, particularly DVT (Martinod & 

Wagner, 2014). However, very recent studies also demonstrate a major role of NETs 

in coronary thrombosis (Mangold et al., 2015; Maugeri et al., 2014). Coronary 

thrombus from patients with acute myocardial infarction (MI) contains numerous 

neutrophils and high levels of NETs, which contribute to the thrombus scaffold 

(Maugeri et al., 2014). Additionally, there are increased levels of NETs at the site of 

coronary plaque rupture during ST-segment elevation myocardial infarction and the 

NET burden predicts infarct size (Mangold et al., 2015).  

1.3.6 Conclusion 
Platelets have a major role in coordinating inflammation and immune responses. 

Platelet P-selectin expression and subsequent formation of platelet-leukocyte 

aggregates upregulates leukocyte pro-inflammatory functions. In addition, platelet α-

granules contain a wide range of cytokines that have a predominantly pro-

inflammatory effect (Table 1.3). It is known that platelet P2Y12 inhibitors reduce 

platelet P-selectin expression, platelet-leukocyte aggregate formation and release of 

α-granule contents. However, the effect of this on host immunity is not yet 

established. The major role of platelets in inflammation and immune responses 

(Table 1.2) provides a clear rationale for further studies to determine whether 

modulation of platelet function can improve patient outcomes in inflammatory 

disorders, particularly inflammation related to infection. 
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1.4 Effect of P2Y12 inhibitors on inflammation and immunity 

1.4.1 Introduction 
Platelet P2Y12 inhibitors are now some of the most commonly used medications 

worldwide, due to their established benefit in the management of atherothrombosis 

(Grove et al., 2015). The PLATO study showed that ticagrelor reduces the incidence 

of adverse cardiovascular events in patients with ACS compared to clopidogrel, 

which was previously the standard treatment (9.8% vs. 11.7%; HR 0.84; p<0.001) 

(Wallentin et al., 2009). Ticagrelor provides faster, greater and more consistent 

platelet P2Y12 inhibition than clopidogrel (Storey et al., 2010) and so the observed 

reduction in recurrent myocardial infarction was predictable. However, ticagrelor was 

also associated with an even larger reduction in all-cause mortality compared to 

clopidogrel (HR 0.78; 95% CI 0.69-0.89; p<0.001). This was unexpected and 

prompted speculation that some of the benefit of ticagrelor may be due to 

mechanisms unrelated to P2Y12 receptor inhibition. Although ticagrelor is now 

recommended in ACS patients as first line antiplatelet therapy by the European 

Society of Cardiology (Roffi et al., 2015), it remains of great importance that its 

mechanisms of action are fully elucidated in order to guide the development of new 

antithrombotic strategies. 

In PLATO, ticagrelor was associated with significantly fewer pulmonary infections 

and deaths related to infection than clopidogrel (Varenhorst et al., 2014; Storey et al., 

2014; Varenhorst et al., 2009). In distinction to clopidogrel, ticagrelor additionally 

inhibits cellular uptake of adenosine by inhibition of equilibrative nucleoside 

transporter 1 (ENT1) (Armstrong et al., 2014). ENT1 is almost ubiquitously 

expressed in human cells, although its abundance varies between tissues (Baldwin et 

al., 2004). The main role of ENT1 is to transport nucleosides, such as adenosine, into 

and out of cells (Baldwin et al., 2004). A number of inhibitors of ENT1 have been 

identified and it has been shown that they increase extracellular levels of adenosine, 

which has a wide range of modulatory effects on inflammation as well as potentially 

cardioprotective properties (Baldwin et al., 2004; Cattaneo et al., 2014). There are 

therefore many mechanisms by which ticagrelor and clopidogrel could differ in their 

effects on inflammation and immune responses. This section of the introduction 

summarises the current evidence for the effects of P2Y12 inhibitors on inflammation. 
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Of the currently used platelet P2Y12 inhibitors, clopidogrel has been available for the 

longest. Therefore the majority of the currently available evidence regarding the 

effects of P2Y12 inhibition on inflammation derives from studies of clopidogrel. 

1.4.2 Effect of P2Y12 inhibition on inflammation 
P2Y12 inhibitors are amongst some of the most commonly prescribed medications 

worldwide. The platelet P2Y12 receptor has a central role in amplification of platelet 

activation in response to a number of different agonists (Storey et al., 2000). Platelet 

activation increases levels of cytosolic calcium and activates specific signaling 

pathways, which leads to the release of platelet α-granule contents. These granules 

contain many mediators of thrombosis, inflammation and host defenses (Rendu & 

Brohard-Bohn, 2009).  By inhibiting platelet reactivity to ADP and a broad range of 

other agonists, P2Y12 inhibitors reduce the release of pro-inflammatory mediators 

from platelet α-granules (Xiao & Theroux, 2004). The pro-inflammatory mediators 

contained within platelet α granules are not exclusive to platelets, but some, such as 

CD40L, are thought to mostly derive from platelets (Henn, 2001). Consequent 

platelet expression of platelet P-selectin also mediates the formation of platelet-

leukocyte aggregates (Evangelista et al., 1999b). It is well established that P2Y12 

inhibitors inhibit these platelet-leukocyte interactions (Storey et al., 2000) but it is 

less well known how this affects more downstream inflammatory pathways. 

Inhibition of platelet P2Y12-mediated platelet-leukocyte interactions is generally 

thought to be one of the main mechanisms by which P2Y12 inhibitors affect 

inflammation. However, other cell types, including dendritic cells and vascular 

smooth muscle cells, have also been shown to express P2Y12 (Gachet, 2012) and it is 

also therefore possible that P2Y12 inhibitors may also affect inflammation by direct 

effects on these cell types, which will be covered in later pararaphs. 

1.4.3 Clopidogrel 
Clopidogrel is a second-generation thienopyridine, the active metabolite of which 

covalently binds to the platelet P2Y12 receptor. Clopidogrel, in addition to aspirin, 

has been shown to reduce the incidence of adverse cardiovascular events compared to 

placebo in patients with non-ST elevation ACS (NSTE-ACS) (Yusuf et al., 2001), 

ST-elevation MI (STEMI) (Sabatine et al., 2005) and following PCI (Steinhubl et al., 

2002). In patients with atherosclerotic disease there is considerable variation in 
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response to clopidogrel, in part due to polymorphisms of CYP2C19, which encodes 

for the main enzyme responsible for its metabolism (Thomas & Storey, 2014a), and 

in part due to drug-drug interactions (Thomas & Storey, 2011), age, weight and co-

morbidities such as diabetes mellitus (Bonello et al., 2010). Interestingly, it has also 

been shown that cytochrome p450s are downregulated by inflammation, which may 

reduce the formation of the active metabolite of clopidogrel (Aitken & Morgan, 

2007). 

1.4.3.1 Effect of clopidogrel on inflammation related to 

atherothrombosis 
Inflammation is, at all stages, an important component of the pathophysiology of 

coronary artery disease and atherothrombosis, including the initial development of a 

coronary plaque and during acute coronary syndromes (Libby, 2002; Mulvihill & 

Foley, 2002). Antiplatelet medications may influence inflammation relatively 

directly, by modulating leukocyte responses for example, but are also likely to 

indirectly influence inflammation by reducing myocardial necrosis, due to their 

antithrombotic effect. 

1.4.3.2 Effect of clopidogrel on mediators that are contained within 

platelet α granules 
In patients with ACS, it has been shown that soluble P-selectin and CD40L levels 

decrease after a loading dose of clopidogrel (Xiao & Theroux, 2004). Whilst a higher 

clopidogrel loading dose (600 or 900 mg) further decreased platelet aggregation 

responses, it did not appear to further lower levels of sCD40L, PAI-1 or vWF 

compared to a 300 mg loading dose in the ALBION study (Montalescot et al., 2006). 

Clopidogrel treatment prior to PCI decreases platelet P-selectin and CD40L 

expression after PCI (Vivekananthan et al., 2004). Heitzer et al also showed that 

clopidogrel, in addition to aspirin, reduced levels of sCD40L and RANTES in stable 

coronary artery disease patients (Heitzer, 2006). However, clopidogrel monotherapy 

did not appear to change levels of soluble P-selectin, sCD40L, transforming growth 

factor (TGF)-β or CCL2 compared to aspirin monotherapy in stable coronary artery 

disease patients in the ASCET study (Solheim et al., 2003). 
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1.4.3.3 Effect of clopidogrel on pro-inflammatory cytokines and CRP 
Ruptured plaques contain activated leukocytes and, in particular, 

monocytes/macrophages have been implicated in mediating systemic inflammation 

related to ACS (Libby et al., 2009; Mulvihill & Foley, 2002). In addition, platelet-

monocyte aggregates form after ACS (Michelson et al., 2001) and upregulate 

monocyte pro-inflammatory functions, such as the release of pro-inflammatory 

cytokines including TNFα, interleukin (IL)-1β, IL-8 and CCL2 (Bournazos et al., 

2008; Weyrich et al., 1995). Pro-inflammatory cytokines such as these induce CRP 

production by the liver, leading to increased levels (Yeh, 2004). Clopidogrel has been 

shown to reduce markers of systemic inflammation, including TNFα and CRP, in 

patients with ACS (Table 1.4, Table 1.5 and Table 1.6) Levels of TNFα are 

significantly higher in patients with ACS than in healthy volunteers (Chen, Xu, et al., 

2006). Clopidogrel, in addition to aspirin, significantly decreases levels of TNFα and 

CRP compared to aspirin alone in patients with ACS (Chen, Xu, et al., 2006). An 

increased maintenance dose of 150 mg of clopidogrel, compared to 75 mg, in 

addition to aspirin, led to approximately 50% lower levels of CRP at 1 week in 

STEMI patients, although this was not statistically significant (p=0.06) (Palmerini et 

al., 2010). Neither the CLEAR-PLATELETS (Gurbel et al., 2006) nor the ALBION 

study showed an effect of increasing the loading dose of clopidogrel on subsequent 

levels of CRP (Montalescot et al., 2006), perhaps suggesting that higher levels of 

P2Y12 inhibition must be sustained to achieve a reduction in CRP. The CADET study 

showed that clopidogrel monotherapy does not appear to significantly differ in its 

effects on CRP compared to aspirin monotherapy in patients with ACS (Woodward et 

al., 2004).  

It is apparent from these studies that changes in levels of CRP at the time of ACS are 

more subtle than might be anticipated. To show an effect of clopidogrel on these 

small changes, it appears it was necessary to use clopidogrel in conjunction with 

aspirin, whereas replacing aspirin with clopidogrel does not have a significant effect. 

Studies may also need a large sample size to demonstrate significant differences in 

these small changes in CRP. It is possible that more upstream mediators of 

inflammation, such as TNFα, may be more able to demonstrate an effect of P2Y12 

inhibition. Pretreatment with clopidogrel before PCI is associated with significantly 

lower subsequent levels of IL-1α, IL-2, IL-6, IL-13 and TNFα than no pretreatment 
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(Antonino et al., 2009). Whilst this study only showed a non-significant trend 

towards lower levels of CRP, another study has shown that pre-treatment with 

clopidogrel prior to PCI was associated with lower levels of CRP (Vivekananthan et 

al., 2004). In addition, in the CLEAR-PLATELETs study, an increased loading dose 

of clopidogrel significantly reduced subsequent levels of TNFα in PCI patients 

(Gurbel et al., 2006). Of course, it is unknown whether these changes reflect a direct 

effect of clopidogrel on inflammation or an indirect effect through reduction in 

periprocedural MI.  

Compared to ACS and PCI, the inflammation related to chronic atherosclerosis 

involves distinct molecular and cellular pathways (Libby, 2012), with a less well 

recognised role of platelet P2Y12. Despite this, in patients with stable coronary artery 

disease, and hence no significant myocardial necrosis, high levels of P2Y12 reactivity 

during treatment with clopidogrel correlates with increased levels of CRP and WBC 

(Bernlochner et al., 2010). Heitzer et al. also showed that levels of CRP, sCD40L and 

RANTES reduced after the initiation of clopidogrel, in addition to aspirin, in patients 

with symptomatic stable coronary artery disease (Heitzer, 2006). The ASCET study 

did not show any difference between clopidogrel monotherapy and aspirin 

monotherapy on levels of CRP, TNFα, IL-6, IL-10 and CCL2 in patients with stable 

coronary artery disease (Solheim et al., 2006). 
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Table 1.4 Effect of clopidogrel on CRP 

Study population Treatment Timing of 
measurements 

Difference between 
treatment groups 

Chen et al. (Chen, 
Xu, et al., 2006) 

115 NSTE-ACS 
patients 

Clopidogrel + aspirin vs.  

aspirin alone 

Baseline, 1 week 
and 1 month 

Significantly lower:  

2.40 vs 3.49 at 30 days 
(p<0.05) 

DOUBLE study 
(Palmerini et al., 
2010) 

54 STEMI patients 

 

Clopidogrel maintenance 
dose: 150 mg vs. 75 mg 

Baseline, 1 week 
and 1 month 

Trend for lower levels:  

1.7 vs 3.1 at 1 week 
(p=0.06) 

ALBION study 
(Montalescot et al., 
2006) 

103 NSTE-ACS 
patients 

Clopidogrel loading dose: 

 900 mg vs. 600 mg. vs 
300 mg 

Baseline, 6 hours 
and 24 hours post 
PCI 

NS 

CLEAR-
PLATELETS study 
(Gurbel et al., 2006) 

60 elective PCI 
patients 

Clopidogrel loading dose: 

600 mg vs. 300 mg 

Baseline and 18-
24 hours post 
PCI 

NS 

CADET study  

184 ACS patients 

Clopidogrel vs. aspirin Baseline, 1 
month, 3 months 
and 6 months 

NS 

Vivekananthan et al. 
(Vivekananthan et 
al., 2004) 

833 PCI patients 

Clopidogrel pretreatment 
vs.  

no clopidogrel 
pretreatment 

Baseline, 
immediately after 
PCI and 18-24 
hours after PCI 

Significantly lower: change 
from baseline of 0.15 vs. 
0.43 (p=0.03) 

ASCET study 
(Solheim et al., 2006) 

206 SCAD patients 

Clopidogrel vs. aspirin Baseline, 1 
month and 1 year 

NS 

Heitzer et al. 
(Heitzer, 2006) 

103 SCAD patients 

Clopidogrel + aspirin vs.  

aspirin alone 

Baseline and 5 
weeks 

CRP decreased in patients 
treated with clopidogrel but 
did not in those treated with 
aspirin alone (p<0.01) 

Azar et al. (Azar et 
al., 2006) 

73 SCAD patients 

Clopidogrel + aspirin vs.  

aspirin alone 

Baseline and 8 
weeks 

NS 
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Table 1.5 Effect of clopidogrel on TNFα 

Study population Treatment Timing of 
measurements 

Difference 
between 
treatment groups 

Chen et al. (Chen, 
Xu, et al., 2006) 

115 NSTE-ACS 
patients 

Clopidogrel + aspirin vs.  

aspirin alone 

Baseline, 1 week 
and 1 month 

Significantly 
lower: 44 vs 63 at 
30 days (p<0.05) 

CLEAR-
PLATELETS 
(Gurbel et al., 
2006) 

60 elective PCI 
patients 

Clopidogrel loading dose:  

600 mg vs. 300 mg 

Baseline and 18-
24 hours post PCI 

Significantly 
lower: approx. 
35% decrease from 
baseline vs. 30% 
increase from 
baseline (p<0.001) 

ASCET study 
(Solheim et al., 
2006) 

206 SCAD patients 

Clopidogrel vs.  

aspirin 

Baseline, 1 month 
and 1 year 

NS 

 

Table 1.6 Effect of clopidogrel on IL-6 

Study population Treatment Timing of 
measurements 

Difference 
between 
treatment 
groups 

Quinn et al. (Quinn 
et al., 2004) 

74 PCI patients 

Clopidogrel pretreatment vs.  

no clopidogrel pretreatment 

Baseline, 
immediately after 
PCI and 18-24 
hours after PCI 

NS 
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1.4.4 Effect of clopidogrel in other types of inflammation 
Bacterial lipopolysaccharide (LPS), also known as endotoxin, is a potent activator of 

the innate immune system. During LPS-induced inflammation in mice and rats, 

clopidogrel appears to have a number of beneficial effects, including a reduction in 

levels of IL-6 and TNFα and a reduction in liver and lung injury (Hagiwara et al., 

2011; Winning et al., 2009). However, in a pig model, clopidogrel did not 

significantly affect LPS-induced increases in levels of IL-6 or TNFα (Lipcsey et al., 

2005). A study of pigs whose coronary arteries were injured by angioplasty or 

irradiation showed that three months of clopidogrel treatment was associated with 

development of significantly fewer proliferative cells and inflammatory cells 

compared to 1 month of treatment (Pels et al., 2009). 

Ticlopidine, the first thienopyridine P2Y12 inhibitor to be used in clinical practice, 

was associated with neutropaenia, which limited its use.  Clopidogrel, a second 

generation thienopyridine, can also rarely cause neutropaenia, which, according to a 

case report, resolves after switching to ticagrelor (Shah et al., 2014). This suggests 

that the neutropaenia may not be mediated by platelet P2Y12 receptors.  In the 

PLATO study, neutrophil counts appeared to increase slightly 1 month after 

discontinuing clopidogrel (Storey et al., 2014). This was not seen in ticagrelor-treated 

patients and suggests a subtle suppression of neutrophil counts by clopidogrel that is 

likely to be independent of its effects on platelet P2Y12 receptors. 

Interestingly, there are also at least 9 case reports of clopidogrel inducing a 

characteristic form of arthritis associated with a rash (Kanadiya et al., 2011). 

Similarly, a rat model has also previously shown that clopidogrel may potentiate 

peptidoglycan polysaccharide-induced arthritis (Garcia et al., 2011). If clopidogrel 

does rarely cause arthritis, it would appear that prasugrel may not have the same 

effect (Kanadiya et al., 2011). This suggests that this is not due to P2Y12 inhibition or 

the active metabolite of clopidogrel, which is structurally very similar to the active 

metabolite of prasugrel. 

1.4.4.1 Summary of the effect of clopidogrel on inflammation 
In patients with ACS and stable coronary artery disease, clopidogrel reduces levels of 

CRP when it is used in addition to aspirin compared to aspirin alone (Heitzer, 2006; 

Chen, Xu, et al., 2006). Increasing the maintenance dose of clopidogrel in patients 
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with STEMI has also previously shown a trend towards lower levels of CRP 

(Palmerini et al., 2010). However, the balance of evidence does not suggest 

additional anti-inflammatory effects of clopidogrel monotherapy compared to aspirin 

monotherapy. There is also limited evidence that clopidogrel may have off-target 

effects on inflammation that are not mediated by P2Y12. 

1.4.5 Prasugrel 
Prasugrel is a third-generation thienopyridine that inhibits platelet P2Y12 receptors 

more potently than clopidogrel (Michelson et al., 2009). Prasugrel has been shown to 

reduce the incidence of adverse cardiovascular events compared to clopidogrel in 

patients with ACS who are planned to undergo PCI (Wiviott et al., 2007). 

1.4.5.1 Effect of prasugrel on markers of platelet-leukocyte interactions 
Prasugrel active metabolite potently inhibits ADP-induced platelet P-selectin 

expression and platelet-leukocyte aggregate formation in vitro (Totani et al., 2012; 

Judge et al., 2008; Frelinger et al., 2007) (Table 1.7). Inhibition of platelet-neutrophil 

aggregate formation by prasugrel active metabolite has been shown to decrease 

neutrophil activation, as demonstrated by lower expression of Mac-1 (Totani et al., 

2012). Prasugrel has a greater inhibitory effect on platelet CD40L and P-selectin 

expression than clopidogrel in patients undergoing PCI (Serebruany, 2006). 

Prasugrel, in addition to aspirin, reduces ADP-induced platelet P-selectin and 

platelet-monocyte aggregate formation compared to clopidogrel in addition to aspirin 

in patients with stable coronary artery disease (Braun et al., 2008). 
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Table 1.7 Effect of prasugrel on inflammatory markers 

Study population Treatment Timing of 
measurements 

Difference between 
treatment groups 

JUMBO study 
(Serebruany, 2006) 

9 PCI patients 

Prasugrel + aspirin vs.  

clopidogrel + aspirin 

Baseline, 4 and 
24 hours after 
PCI 

Platelet expressed sCD40L 
and P-selectin significantly 
lower at 4 and 24 hours 
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1.4.6 Effect of prasugrel in other types of inflammation 
In mice, prasugrel attenuates LPS-induced increases in TNFα and thromboxane B2 

(Totani et al., 2012). In a human model of LPS administration, prasugrel inhibited 

platelet reactivity according to a number of measures; however there was a 

suggestion that VWF release after endotoxin administration might antagonize the 

inhibitory effect of prasugrel (Spiel et al., 2012). There has also been a suggestion 

that prasugrel metabolites may directly affect neutrophil function, in a process that is 

not mediated by platelet P2Y12 receptors (Liverani et al., 2013). 

1.4.6.1 Summary of the effect of prasugrel on inflammation 
Prasugrel inhibits platelet-leukocyte interactions more potently than clopidogrel, as 

would be expected from its greater inhibition of platelet P2Y12 receptors. It remains 

to be established whether this has an additional anti-inflammatory effect during ACS 

or other models of inflammation. 

1.4.7 Possible mechanisms for effects of P2Y12 inhibitors on 

inflammation 

1.4.7.1 Platelet P2Y12-mediated mechanisms 
As has been previously been discussed, the predominant mechanism of effect of 

P2Y12 inhibitors on inflammation is generally presumed to be mediated by a 

reduction in platelet P2Y12-mediated platelet-leukocyte interactions (Figure 1.5). 

Inhibition of platelet P2Y12 reduces the release of pro-inflammatory cytokines from 

platelet α granules and reduces the formation of platelet-leukocyte aggregates (Storey 

et al., 2002; 2000). α granules contain the cytokines soluble P-selectin, soluble 

CD40L, PF4, RANTES, IL-1β and MIP-1α amongst others, which generally 

upregulate a wide range of pro-inflammatory functions of leukocytes, particularly 

monocytes and macrophages. P-selectin-mediated platelet-leukocyte aggregate 

formation also upregulates leukocyte release of pro-inflammatory cytokines IL-1β, 

IL-8, TNFα and CCL2 (Neumann et al., 1997; Weyrich et al., 1995) and expression 

of adhesion molecules (da Costa Martins et al., 2006). 



 48 

 

Figure 1.5 Effect of platelet P2Y12 inhibitors on platelet-leukocyte interactions 
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1.4.7.2 Non-platelet P2Y12-mediated mechanisms 
When P2Y12 was originally cloned in humans in 2001, it was thought to be 

predominantly expressed on platelets, with a lesser expression in certain brain cells 

(Hollopeter et al., 2001). It has since become apparent that P2Y12 receptors are also 

expressed on murine dendritic cells, which are antigen-presenting cells that are 

related to monocytes (Ben Addi et al., 2010). The function of dendritic cell P2Y12 is 

not well defined, but may regulate dendritic cell endocytosis and IL-12 production 

(Ben Addi et al., 2010; Schnurr et al., 2005; Marteau et al., 2004). It has also been 

shown that lymphocytes may contain mRNA for P2Y12 although the functional 

consequence of this is unknown and could be related to possible platelet 

contamination (Wang et al., 2004). So, whilst these studies show that dendritic cells 

and lymphocytes may express P2Y12, they do not appear to play as important a role 

as platelet P2Y12. 

Vascular smooth muscle cells (VSMC) also express P2Y12 and ADP stimulation 

causes vasoconstriction in rat tails, which can be inhibited by ticagrelor, but not 

clopidogrel or prasugrel treatment (Grzesk et al., 2012). The mechanism for this has 

not been established, but ticagrelor has a longer half-life than the active metabolites 

of clopidogrel and prasugrel (Siller-Matula et al., 2010) and may therefore have a 

greater effect on nucleated cells that can potentially recover from P2Y12 inhibition. 

The active metabolite of prasugrel is able to inhibit ADP-induced CCL2 expression 

by VSMCs in culture, which is also mediated by P2Y12 (Satonaka et al., 2015). In 

addition, vascular P2Y12, as opposed to platelet P2Y12, has a role in atherogenesis and 

transplant arteriosclerosis in mouse models (West et al., 2014a; Harada et al., 2011). 

However, despite this clear role of vessel wall P2Y12 in atherogenesis, administration 

of P2Y12 inhibitors failed to inhibit atheroma formation. 

There is also accumulating evidence that P2Y12 receptors play a regulatory role in 

pulmonary inflammation induced by leukotriene (LT) E4, which is a potent pro-

inflammatory lipid mediator involved in asthma (Cameron, 2012). In particular, 

clopidogrel and platelet depletion reduce LTE4 mediated expression of mRNA 

encoding IL-13 and MUC5AC and accumulation of airway eosinophils (Paruchuri et 

al., 2009) in mice. In humans, however, prasugrel was associated with a slight 

reduction in airway reactivity in patients with asthma that was not statistically 

significant (Lussana et al., 2015). 
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1.4.8 Effect of Combined P2Y12 and ENT1 inhibition on 

Inflammation 

1.4.8.1 Clinical effects of ticagrelor 
Ticagrelor is a novel class of antiplatelet medication that potently inhibits platelet 

P2Y12 receptors and also inhibits cellular uptake of adenosine by inhibiting ENT1 

(Armstrong et al., 2014). In the PLATO study, ticagrelor reduced the incidence of 

adverse cardiovascular events in patients with ACS compared to clopidogrel 

(Wallentin et al., 2009). However, ticagrelor also unexpectedly reduced all-cause 

mortality to a greater degree than would be expected from previous trials of P2Y12 

inhibitors. This has raised the question as to whether or not ticagrelor has additional 

beneficial pleiotropic effects, such as modulation of host immunity (Storey et al., 

2014). 

In PLATO, ticagrelor was unexpectedly associated with fewer pulmonary infections 

and deaths related to infection than clopidogrel (Varenhorst et al., 2014; Storey et al., 

2014; Varenhorst et al., 2012). Also, surprisingly, ticagrelor was associated with 

slightly higher levels of IL-6 and CRP at discharge than clopidogrel in PLATO, 

converse to what would be expected from a more potent P2Y12 inhibitor (Storey et 

al., 2014) (Table 1.8). This demonstrates a differential effect of the medications on 

inflammatory responses, although the mechanisms have not yet been fully explained. 

It is likely that the smaller DISPERSE 2 study was underpowered to demonstrate 

these subtle effects and the differences in levels of CRP, IL-6, MPO and CD40L in 

ACS patients treated with ticagrelor or clopidogrel were not significant in this study 

(Husted et al., 2010). 
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Table 1.8 Effect of ticagrelor on inflammatory markers 

Study population Treatment group 
comparison 

Timing of 
measurements 

Difference between 
treatment groups 

PLATO study 
(Storey et al., 
2014) 

18,421 ACS 
patients 

Ticagrelor + aspirin vs. 
clopidogrel + aspirin 

Baseline, 
discharge, 1 
month and 6 
months 

CRP significantly higher at 
discharge: mean 28 vs 26 
(p<0.001) 

IL-6 significantly higher at 
discharge: mean 5.4 vs 4.9 
(p<0.001) 

DISPERSE 2 
study (Husted et 
al., 2010) 

990 NSTE-ACS 
patients 

Ticagrelor + aspirin vs. 
clopidogrel + aspirin 

Baseline, 
discharge and 1 
month 

No significant difference in 
CRP, IL-6, MPO or 
sCD40L 

Median CRP at discharge:       
14 vs. 11 

Median IL-6 at discharge:      
5.8 vs. 5.0 
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1.4.8.2 Potential adenosine-mediated effects of ticagrelor on 

inflammation 
The adenosine-mediated effects of ticagrelor are still relatively unexplored, since this 

mechanism has only been identified relatively recently (Armstrong et al., 2014; van 

Giezen et al., 2012). Ticagrelor has now also been shown to increase extracellular 

levels of adenosine in patients with ACS (Bonello et al., 2014). This appears to have 

clinically relevant effects, since ticagrelor potentiates adenosine-induced coronary 

vasodilation and dyspnoea (Alexopoulos et al., 2013; Wittfeldt et al., 2013). 

Adenosine is a major modulator of inflammation and innate immune responses that 

acts on 4 different receptors (A1, A2A, A2B and A3), which are differentially 

expressed in different cell types (Haskó & Cronstein, 2013). Adenosine is a 

degradation product of ATP, ADP and AMP that is leaked into the extracellular space 

in pathological conditions that exert cellular stress, such as ischaemia and infection 

(Eltzschig et al., 2012). Possible adenosine-mediated effects of ticagrelor are complex 

and may be technically difficult to characterise. At low concentrations, adenosine 

predominantly acts on high affinity leukocyte A1 receptors (Figure 1.6) (Barletta et 

al., 2012; Haskó & Pacher, 2012). This has mostly pro-inflammatory effects, 

including potentiation of neutrophil chemotaxis and phagocytosis and macrophage 

phagocytosis (Barletta et al., 2012; Haskó & Pacher, 2012). At higher concentrations, 

adenosine predominantly acts on lower affinity leukocyte A2A and A2B receptors 

(Figure 1.6). This has mostly anti-inflammatory effects, such as downregulation of 

the release of pro-inflammatory cytokines, including IL-6 and TNFα (Barletta et al., 

2012; Haskó & Pacher, 2012). In keeping with this, dipyridamole, another inhibitor 

of cellular uptake of adenosine, inhibited the release of IL-6 and TNFα in a model of 

human sepsis (Ramakers et al., 2011). This may limit excessive innate immune 

activation during conditions of severe cellular stress, such as sepsis, which may 

prevent collateral damage from innate immune responses. In summary (Figure 1.6), 

possible adenosine-mediated effects of ticagrelor on inflammation may be pro-

inflammatory or anti-inflammatory, depending on the context. 
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Figure 1.6 Adenosine-mediated effects of ticagrelor on leukocytes 
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1.4.8.3 Summary of the effect of ticagrelor on inflammation 
The possible effects of ticagrelor on inflammation are complex, due to its dual 

inhibition of platelet P2Y12 receptors and ENT1. PLATO showed that ticagrelor was 

associated with slightly higher levels of IL-6 and CRP than clopidogrel at discharge 

and the mechanism underpinning this remains to be established. PLATO suggests 

that the relative difference between ticagrelor and clopidogrel on inflammation might 

be associated with a beneficial effect on host immunity however. 
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2 Hypotheses and Objectives 
2.1 Summary of evidence and unanswered questions 

It has been established that platelet P2Y12 inhibitors reduce platelet-leukocyte 

interactions in vitro. However, innate immune activation in humans is complex and 

dynamic and it has not previously been demonstrated whether platelet P2Y12 

inhibitors have an important direct effect on systemic inflammation in vivo. Whilst 

studies of patients with ACS have suggested anti-inflammatory effects of P2Y12 

inhibitors, these studies are confounded by the antithrombotic effects of the 

medications. Although it has now been established that ticagrelor is a weak inhibitor 

of adenosine uptake, the effects of this on inflammation have not yet been 

characterized. 

2.2 Hypotheses 

Ticagrelor and clopidogrel differ in their effect on innate immune activation in 

humans, due to P2Y12 and non-P2Y12 dependent mechanisms. 

2.3 Objectives 

1.) Determine the in-vivo effect of ticagrelor and clopidogrel on systemic 
inflammation in an experimental human model. 
 

2.) Determine the effect of ticagrelor and clopidogrel on the prothrombotic 
effects of systemic inflammation in an experimental human model. 
 

3.) Determine the effect of ticagrelor and clopidogrel on activation and 
mobilization of classical, intermediate and non-classical monocytes during 
systemic inflammation in humans. 
 

4.) Determine the modulatory adenosine-mediated effects of ticagrelor on 
leukocyte activation in-vitro. 
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3 Methods 
3.1 Study of the effect of ticagrelor and clopidogrel on the 

immune response of healthy volunteers 

The results of this study are presented in Chapter 4 Platelet P2Y12 inhibitors reduce 

systemic inflammation and its prothrombotic effects in an experimental human model 

and Chapter 5 Platelet P2Y12 Inhibitors Potentiate the Expansion in Intermediate 

Monocyte Population that Occurs after Endotoxaemia. 

3.1.1 Study design 
This was a randomized, single-centre, open-label, parallel-group study assessing the 

modulatory effect of ticagrelor and clopidogrel on the immune response of healthy 

volunteers. In total, there were 3 groups: ticagrelor (n=10), clopidogrel (n=10) and no 

antiplatelet medication (control; n=10). 

3.1.2 Plan of investigation 
Healthy volunteers received a loading dose of antiplatelet medication followed by 

maintenance therapy for a total of 7 days of treatment. The study used the well-

established method of intravenous injection of E.coli lipopolysaccharide (LPS) into 

healthy volunteers to induce systemic inflammatory response syndrome (SIRS) 

(Suffredini et al., 1999). The study was approved by the Sheffield Research Ethics 

Committee (UK) and the Medicines and Healthcare products Regulatory Agency 

(UK) and was conducted in accordance with Good Clinical Practice guidelines. 

Subjects provided written informed consent. The study was registered at 

https://clinicaltrials.gov (unique identifier NCT01846559).  
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3.1.3 Study visit schedule 
Visit 1: Screening (Day -7 to -21) 

Visit 2: Initiation of randomized treatment (ticagrelor, clopidogrel or control) – Day 1 

Visit 3: Intravenous endotoxin challenge – Day 7 

Visit 4: Follow up and repeat blood test at 24 hours – Day 8 

 

 

Figure 3.1 Study flow chart 
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3.1.4 Study population 
Subjects were recruited from the area local to the Northern General Hospital, 

Sheffield. This included members of staff and students from universities in Sheffield 

and from Sheffield Teaching Hospitals. Volunteers were given at least 24 hours to 

consider taking part in the study prior to signing informed consent. Subjects who 

withdrew from the study prior to endotoxin were replaced. 

3.1.4.1 Inclusion criteria 

• Healthy male subjects, or female subjects not of childbearing potential (either 
surgically sterile or post menopausal) 

• Age between 18 and 65 years inclusive 

• Non smokers 

• Body mass index (BMI) between 18 and 28 kg/m2 inclusive, with a body 
weight between 60-100 kg 

• Subjects are to be in good health as determined by a medical history, physical 
examination, vital signs and clinical laboratory test results including renal and 
liver function and full blood count 

• Subjects have given their informed consent before any trial-related activity 

3.1.4.2 Exclusion criteria 

• In the opinion of the investigator, subjects with, or a history of, cancer, 
diabetes or clinically significant cardiovascular, respiratory, metabolic, renal, 
hepatic, gastrointestinal, haematological, dermatological, neurological, 
psychiatric, or other major disorders 

• Subjects with a history of significant multiple drug allergies or with a known 
allergy to the study drugs or a medicine chemically related to the trial product 

• Subjects who have had a clinically significant illness within 4 weeks of 
dosing 

• Subjects taking regular medicines including NSAIDs, antibiotics, aspirin or 
anticoagulant therapy 

• Any clinically significant abnormal laboratory test results at screening 

• Subjects who have a supine blood pressure at screening, after resting for 5 
minutes, higher than 150/90 mmHg or lower than 105/65 mmHg 

• Subjects who have a supine heart rate at screening, after resting for 5 minutes, 
outside the range of 50-100 beats/min 

• Subjects who have received any prescribed systemic or topical medication 
within two weeks prior to the start of dosing. Limited use of paracetamol or 
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non-steroidal anti-inflammatory drugs (NSAIDs) prior to the initiation of the 
study will not necessarily require exclusion unless there is an ongoing 
requirement for these medications. 

• Subjects who have received an investigational medicinal product within the 
previous four months (new chemical entity) or three months (licensed 
product) or subjects who have received a vaccine within three months 
preceding the start of dosing 

• Subjects who have donated any blood or plasma in the month preceding the 
start of dosing 

• Subjects who have a history of alcohol or drug abuse  

• Subjects with mental incapacity or language barriers which preclude adequate 
understanding 

• Subjects with a contraindication to ticagrelor (as listed in the SmPC – 
hypersensitivity to the active substance or any of its excipients, active 
pathological bleeding, history of intracranial hemorrhage, moderate to severe 
hepatic impairment and co-administration with strong CYP3A4 inhibitors) 

• Subjects with a contraindication to clopidogrel (as listed in the SmPC – 
hypersensitivity to the active substance of any of its excipients, severe hepatic 
impairment, active pathological bleeding such as peptic ulcer or intracranial 
haemorrhage) 

3.1.5 Dietary and fluid restrictions 
Whilst in the study, subjects were allowed to drink freely and received a light 

breakfast and light lunch on the day of the endotoxin challenge. Subjects were 

required to avoid consumption of caffeine for the duration of the study as it is an 

adenosine receptor blocker. Volunteers received a total of 750 ml of 0.9% saline 

during the endotoxin challenge. 

3.1.6 Experimental protocol 
Volunteers were randomized to receive one week of ticagrelor 90 mg twice daily 

(n=10), clopidogrel 75 mg once daily (n=10) or no antiplatelet medication (controls; 

n=10). Ticagrelor and clopidogrel-treated subjects received loading doses of 180 mg 

and 300 mg respectively. All studies were started between 08:00 and 09:00 AM in a 

clinical research facility with full resuscitation facilities. One venous cannula was 

inserted into an antecubital vein in each arm. One cannula was used for blood 

sampling and the other for administration of LPS and intravenous fluid (250 ml 0.9% 

saline over 30 minutes prior to LPS administration, then 500 ml 0.9% saline over 4 
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hours after LPS administration). 2 ng/kg E. coli O:113 LPS (Clinical Center 

Reference Endotoxin, National Institutes of Health, Bethesda, MD) was administered 

over 1 minute at t = 0 hours. Venous blood samples were collected at baseline (prior 

to any randomized medication), prior to LPS administration and at the following time 

points after LPS administration: 5, 15 and 30 minutes and 1, 1.5, 2, 4, 6 and 24 hours. 

All laboratory measurements were performed by staff blinded to treatment allocation. 

3.1.7 Plasma levels of cytokines 
Blood samples for isolation of plasma were collected into tubes containing trisodium 

citrate dihydrate (3.13% w/v), centrifuged immediately at 1,500 g for 10 minutes and 

the supernatant stored at -80°C. Plasma levels of cytokines were measured by 

cytometric bead array at the University of Sheffield Core Facility using standardised 

kits (BD™ Cytometric Bead Array, Becton Dickinson [BD], Oxford, UK). High-

sensitivity C-reactive protein (hsCRP) was measured by nephelometry according to 

manufacturer’s intrstructions using a Siemens BN II Nephelometer (Siemens, UK). 

3.1.8 Platelet aggregation 
Blood was collected into tubes containing trisodium citrate dihydrate (3.13% w/v) for 

measurement of platelet aggregation.  Platelet-rich plasma (PRP) was prepared by 

centrifugation of whole blood at 200 g for 10 minutes at room temperature and 

removal of supernatant. Platelet aggregation induced by 20 µM ADP was assessed in 

PRP by light transmission aggregometry (LTA) using a BioData PAP-8E optical 

aggregometer. Maximum and final platelet aggregation after 6 minutes were 

recorded. 

3.1.9 Platelet P-selectin expression 
Blood was collected into trisodium citrate dihydrate (3.13% w/v) for measurement of 

platelet P-selectin expression by flow cytometry. Forty µl of citrate-anticoagulated 

whole blood was added to a combination of saline or ADP (final concentration 30 

µM), allophycocyanin (APC)-conjugated CD61 (104316, BioLegend, London, UK) 

and PE-Cy5-conjugated CD62P (551142, BD, UK) and incubated in the dark for 20 

minutes. Platelets were gated on morphological characteristics and expression of 

CD61 and median fluorescence of CD62P was used to determine platelet P-selectin 
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expression. All flow cytometric analysis was performed with an Accuri C6 multi-

color flow cytometer (BD, UK). 
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Figure 3.2 Gating strategy for platelet P-selectin measurement 
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3.1.10 Platelet-leukocyte aggregate formation 
Blood was collected into trisodium citrate dihydrate (3.13% w/v) for measurement of 

platelet-leukocyte aggregate formation by flow cytometry. 480 µl of citrate-

anticoagulated whole blood was added to saline or ADP (final concentration 30 µM) 

and stirred for 10 minutes. Two ml diluted FACSlyse solution (BD, UK) was then 

added to 180 µl of blood to simultaneously lyse erythrocytes and fix the leukocytes. 

This was centrifuged at 300 g for 5 minutes and the pellet was resuspended in 100 µl 

PBS + 10% bovine serum albumin. This suspension was then stained with PE-

conjugated CD14 (555398, BD, UK) and fluorescein isothiocyanate (FITC)-

conjugated CD42a (558818, BD, UK). Monocytes were gated based on 

morphological characteristics and expression of CD14. Neutrophils were gated based 

on morphological characteristics and exclusion of monocytes. Platelet-leukocyte 

aggregate formation was determined by monocyte or neutrophil median fluorescence 

of the platelet marker CD42a. Samples were processed for analysis by flow 

cytometry immediately after blood was sampled. Samples from all treatment groups 

were analysed within the same time frame. Flow cytometry was performed with an 

Accuri C6 (BD, UK) multi-color flow cytometer and data analysis was performed 

using FlowJo software (Oregon, USA). 
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Figure 3.3 Gating strategy for measurement of platelet-leukocyte aggregate formation 
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3.1.11 Leukocyte count and differential count 
Blood was collected into EDTA anticoagulant tubes prior to cell counting according 

to manufacturer’s instructions using an automated Sysmex cell counter (XN-9000, 

Sysmex, Milton Keynes, UK). 

3.1.12 Fibrin clot structure and D-dimer 
Blood samples for isolation of plasma were collected into tubes containing trisodium 

citrate dihydrate (3.13% w/v), centrifuged immediately at 1,500 g for 10 minutes and 

the supernatant stored at -80°C. Fibrin clot characteristics were studied in each 

individual at 4 time points using plasma and a validated high-throughput 

turbidimetric assay (Carter et al., 2007).  In duplicate in a 96-well plate, 25 µl of 

plasma was added to 75 µl of assay buffer (0.05 mol/L Tris-HCl, 0.1 mol/L NaCl, 

pH7.4). At 10 second intervals, 50 µl of activation mix (final concentrations: 0.03 

U/ml thrombin [Calbiochem] and 7.5 mmol/L Ca diluted in assay buffer) was added 

to each column of the 96-well plate. The 96-well plates were then shaken and optical 

density at 340 nm was recorded every 12 seconds for 1 hour in a BIO-TEK ELx-808 

microplate reader. Maximum absorbance was recorded as a measure of the density of 

the fibrin clot that is formed. 

To further visualise fibrin networks, fibrin clots were prepared from pooled plasma of 

10 volunteers from each treatment group, as previously described (Hooper et al., 

2012). Fibrin clot structure was assessed using scanning electron microscopy. All 

clots were prepared in duplicate at 4 different time points and photographed at 

x5,000, x10,000 and x30,000 magnifications in 4 different areas using a field-

emission scanning electron microscope (Quinta 200F FEG ESEM, FEI company, 

Netherlands). In each of these photographs, fiber diameter (n=40) was determined 

using image analysis software (ImageJ 1.48; National Institutes of Health, USA). 

Fibrin network density was also determined using ImageJ, by converting all images 

to binary using a fixed threshold and calculating the percentage of white pixels. To 

exclude bias, all clots were viewed by 2 operators blinded to the type of sample.  

D-dimer was measured by a Sysmex 2100i (Sysmex, UK) using the INNOVANCE 

D-dimer assay. 
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3.1.13 Monocyte phenotype and expression of adhesion 

molecules, chemokine receptors and toll-like receptors 
Blood was collected in tubes containing citrate anticoagulant (3.13% w/v) and 

monocyte phenotype was assessed by flow cytometry according to recognised 

conventions (Ziegler-Heitbrock et al., 2010). 100 µl of blood was added to the 

following antibodies; FITC-conjugated anti-human CD14 (Biolegend, UK; 325604), 

R-phycoerythrin (PE)-conjugated anti-human CD11b (Biolegend, UK; 301306), 

peridin chlorophyll protein (PerCP)-conjugated anti-human CCR2 (Biolegend, UK; 

357204) and APC-conjugated anti-human CD16 (Biolegend, UK; 302012). Another 

100 µl was added to the following antibodies; FITC-conjugated anti-human CD14 

(Biolegend, UK; 325604), PE-conjugated anti-human CXCR2 (Biolegend, UK; 

320706) and PerCP-conjugated anti-human CD16 (Biolegend, UK; 302030). A 

further 100 µl was added to the following antibodies; FITC-conjugated anti-human 

CD14 (Biolegend, UK; 325604), PE-conjugated anti-human TLR4 (Biolegend, UK; 

312806), PerCP-conjugated anti-human CD16 (Biolegend, UK; 302030) and Alexa 

Fluor 647-conjugated anti-human TLR2 (Biolegend, UK; 400234). In separate tubes, 

blood was also added to matched isotypes (Biolegend, UK). The blood was incubated 

in the dark for 20 minutes. Then 1 ml of FACSLyse (BD) was added to each tube and 

each tube was vortexed twice. The samples were then centrifuged at 300 g for 5 

minutes and the pellet was resuspended in FACSFix or PBS prior to analysis by flow 

cytometry. Samples were processed for analysis by flow cytometry immediately after 

blood was sampled. Samples from all treatment groups were analysed within the 

same time frame. Flow cytometry was performed with an Accuri C6 (BD, UK) multi-

color flow cytometer and data analysis was performed using FlowJo software 

(Oregon, USA). 
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Figure 3.4 Gating strategy for assessment of monocye phenotype and expression of CD14, CD16, 

CD11b, CCR2, CXCR2, TLR4 and TLR2 
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3.1.14 Effect of ticagrelor and cangrelor on classical, 

intermediate and non-classical monocyte expression of 

CD14, CD16, CCR2, CD11b, CXCR2, TLR4 and TLR2 ex 

vivo 
Blood was collected in tubes containing citrate anticoagulant (3.13% w/v). The blood 

was incubated at 37°C for 30 minutes with the following: 0.04 % DMSO (vehicle 

control), 1 µM ticagrelor, 10 µM ticagrelor or 1 µM cangrelor. The blood was then 

incubated with PBS (vehicle control) 1 ng/ml or 100 ng/ml LPS for 1 hour at 37°C. 

In experiments where CD14, CD11b and CD16 were measured, 100 µl of blood was 

added to the following: FITC-conjugated anti-human CD14 (Biolegend, UK; 

325604), PE-conjugated anti-human CD11b (Biolegend, UK; 301306) and APC-

conjugated anti-human CD16 (Biolegend, UK; 302012). In experiments where CD14, 

CD16, CCR2, CD11b, CXCR2, TLR4 and TLR2 were measured, blood was added to 

3 different tubes containing combinations of antibodies. 100 µl of blood was added to 

the following antibodies; FITC-conjugated anti-human CD14 (Biolegend, UK; 

325604), PE-conjugated anti-human CD11b (Biolegend, UK; 301306), PerCP-

conjugated anti-human CCR2 (Biolegend, UK; 357204) and APC-conjugated anti-

human CD16 (Biolegend, UK; 302012). Another 100 µl was added to the following 

antibodies; FITC-conjugated anti-human CD14 (Biolegend, UK; 325604), PE-

conjugated anti-human CXCR2 (Biolegend, UK; 320706) and PerCP-conjugated 

anti-human CD16 (Biolegend, UK; 302030). A further 100 µl was added to the 

following antibodies; FITC-conjugated anti-human CD14 (Biolegend, UK; 325604), 

PE-conjugated anti-human TLR4 (Biolegend, UK; 312806), PerCP-conjugated anti-

human CD16 (Biolegend, UK; 302030) and Alexa Fluor 647-conjugated anti-human 

TLR2 (Biolegend, UK; 400234). In separate tubes, blood was also added to matched 

isotypes (Biolegend, UK). The blood was incubated in the dark for 20 minutes. Then 

1 ml of FACSLyse (BD) was added to each tube and each tube was vortexed twice. 

The samples were then centrifuged at 300 g for 5 minutes and the pellet was 

resuspended in FACSFix or PBS prior to analysis on an Accuri C6 flow cytometer. 

3.1.15 Statistical analysis 
Parametric data are presented as mean ± standard error of the mean (SEM) and non-

parametric data are presented as median (interquartile range). An independent 
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statistician designed the statistical analysis plan prior to the commencement of the 

study. Area under the curve of hsCRP over a 24-hour period following LPS 

administration was compared between treatment groups using ANOVA. More 

complex variables, such as WBC, were compared using repeated measures two-way 

ANOVA with Dunnett’s correction or Bonferroni correction for multiple 

comparisons as appropriate. The specific tests that have been used are described in 

each figure legend. P<0.05 was considered to be statistically significant. Analyses 

were performed using SPSS 21 (Chicago, Illinois) and GraphPad Prism 6 (San Diego, 

CA). 

The state-of-the-art statistical method Random Forests (Breiman, 2001) was used to 

investigate the relationship between the intermediate monocyte count at 24 hours and 

the other variables in the dataset. The advantage of this method over traditional 

methods is that it is robust at determining non-linear, non-parametric relationships 

between variables and inherently accounts for complex interactions (Breiman, 2001). 

This validated method has been shown to be as accurate or more accurate than 

traditional regression models in the context of data from the life sciences (Hsich et 

al., 2011; Ishwaran et al., 2009; 2008). Analyses were performed using R (R 

foundation for statistical computing, version 3.2.2) and the randomForests package. 

P-values were ascertained by permutation testing using the rfPermute and rfUtilities 

packages. The R code and corresponding R markdown document are provided in the 

appendix. 
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3.2 Study of the effects of ticagrelor on innate immune 

activation in vitro 

The results of this study are presented in Chapter 5 Platelet P2Y12 Inhibitors 

Potentiate the Expansion in Intermediate Monocyte Population that Occurs after 

Endotoxaemia and Chapter 6 Adenosine-mediated effects of ticagrelor on innate 

immune activation in vitro. 

3.2.1 Healthy volunteers 
The study had ethics approval from the University of Sheffield Ethics Committee and 

was conducted in accordance with Good Clinical Practice guidelines. All volunteers 

for blood donation provided written consent and had no regular or recent use of 

medications. 

3.2.2 Neutrophil and erythrocyte isolation 
Blood was collected in tubes containing trisodium citrate dihydrate (3.13% w/v). The 

blood was centrifuged at 260 g for 20 minutes at room temperature and PRP was then 

discarded. Dextran (6%) was added to the blood for 30 minutes at room temperature 

to sediment erythrocytes. The resultant leukocyte-rich plasma was then withdrawn 

and layered gently over 15 ml Histopaque 1077 (Sigma, UK), prior to centrifugation 

at 400 g for 25 minutes at room temperature. The supernatant was discarded and 25 

ml of hypotonic saline (0.2% NaCl) was added to lyse residual erythrocytes. 25 ml of 

hypertonic rescue buffer (1.6% NaCl and 0.1% glucose) was then added to correct the 

concentration of saline to 0.9%. The suspension was then centrifuged at 280 g for 7 

minutes at room temperature. The supernatant was removed and the resultant isolated 

neutrophils cells were resuspended in RPMI buffer (Life Technologies Ltd, UK) with 

10% fetal calf serum (FCS) (Sigma, UK). 

Erythrocytes were isolated in parallel. The blood was centrifuged at 260 g for 20 

minutes at room temperature and PRP was then discarded. Instead of dextran, normal 

saline (0.9%) was added to the blood for 30 minutes at room temperature. The blood 

was then layered gently over 15 ml Histopaque 1077 (Sigma, UK), prior to 

centrifugation at 400 g for 25 minutes at room temperature. The supernatant was 

discarded and 50 ml of normal saline (0.9%) was added. The suspension was then 
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centrifuged at 280 g for 7 minutes at room temperature. The supernatant was 

removed and the resultant erythrocytes were resuspended in RPMI buffer (Life 

Technologies Ltd, UK) with 10% fetal calf serum (FCS) (Sigma, UK). 

3.2.3 Preparation of heat-killed opsonized Streptococcus 

pneumoniae 
Heat-killed S.pneumoniae (D39 strain) were centrifuged at 6,000 rpm for 3 minutes 

and the bacteria were then resuspended in RPMI with 10% serum from donors who 

had been vaccinated against pneumococcus. The bacteria were then shaken for 30 

minutes. 

3.2.4 Assessment of the effect of adenosine on neutrophil 

phagocytosis 
Neutrophils were isolated as described in 3.2.2 and resuspended in RPMI (10% FCS) 

at a concentration of 5 x 106/ml (to provide a final concentration of 2.5 x 106/ml) and 

then added to a 96-well plate. Adenosine (final concentrations: 10-8 M or 10-5 M, in 

RPMI) or RPMI were then added to each of the wells immediately prior to the 

addition of opsonized pneumococcus that had been prepared according to the 

protocol described above. The cells were then incubated for 30 minutes (37°C, 5% 

CO2). A Cytospin machine (Shandon, Thermo Scientific, Waltham, MA) was then 

used to prepare cytocentrifuge slides from the cell suspension. The cells were stained 

using modified Giemsa-based stains (Differentiation-Quik, Reagena, Toivala, 

Finland). The percentage of neutrophils that had phagocytosed bacteria was 

calculated by assessment of 300 neutrophils by light microscopy. The phagocytic 

index of the neutrophils was calculated using the following formula: (total number of 

phagocytosed bacteria / total number of counted neutrophils) x (number of 

neutrophils containing phagocytosed bacteria / total number of counted neutrophils) 

(Sano et al., 2003). 
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3.2.5 Assessment of the effect of adenosine on LPS-induced 

changes in isolated neutrophil expression of CD11b, 

CXCR1 and CD16 
Neutrophils were isolated as described in 3.2.2. The neutrophils were resuspended in 

4 ml RPMI (10% FCS) at 2.5 x 106/ml. Then 490 µl of neutrophils were added to 10 

µl of RPMI (vehicle control) or adenosine for 4 minutes at the following final 

concentrations: 10-9 M, 10-8 M, 10-7 M, 10-6 M, 10-5 M or 10-4 M. Then 90 µl of 

neutrophils were incubated with 10 µl of PBS (vehicle control) or LPS (1, 10 or 100 

ng/ml) for 30 minutes at 37°C in a water bath. Then 75 µl of the cell suspension was 

added to the following antibody combination: PE-conjugated anti-human CD11b 

(Biolegend, UK; 301306). APC-conjugated anti-human CXCR1 (Biolegend, UK; 

320612) and PerCP-conjugated anti-human CD16 (Biolegend, UK; 302030). In 

separate tubes, blood was also added to matched isotypes (Biolegend, UK). The cells 

were incubated in the dark for 20 minutes. Then 1 ml of FACSLyse (BD) was added 

to each tube and each tube was vortexed twice. The samples were then centrifuged at 

300 g for 5 minutes and the pellet was resuspended in FACSFix or PBS prior to 

analysis on an Accuri C6 flow cytometer. 

3.2.6 Assessment of the effect of adenosine on FMLP-

induced changes in isolated neutrophil expression of 

CD11b, CXCR1 and CD16 
Neutrophils were isolated as described in 3.2.2. The neutrophils were resuspended in 

4 ml RPMI (10% FCS) at 2.5 x 106/ml. Then 490 µl of neutrophils were added to 10 

µl of RPMI (vehicle control) or adenosine for 4 minutes at the following final 

concentrations: 10-9 M, 10-8 M, 10-7 M, 10-6 M, 10-5 M or 10-4 M. Then 90 µl of 

neutrophils were incubated with 10 µl of PBS (vehicle control) or FMLP (10-8 M, 10-

7 M or 10-6 M) for 30 minutes at 37°C in a water bath. Then 75 µl of the cell 

suspension was added to the following antibody combination: PE-conjugated anti-

human CD11b (Biolegend, UK; 301306). APC-conjugated anti-human CXCR1 

(Biolegend, UK; 320612) and PerCP-conjugated anti-human CD16 (Biolegend, UK; 

302030). In separate tubes, blood was also added to matched isotypes (Biolegend, 

UK). The cells were incubated in the dark for 20 minutes. Then 1 ml of FACSLyse 

(BD) was added to each tube and each tube was vortexed twice. The samples were 
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then centrifuged at 300 g for 5 minutes and the pellet was resuspended in FACSFix 

or PBS prior to analysis on an Accuri C6 flow cytometer. 

3.2.7 Assessment of the effect of erythrocytes on the effect of 

adenosine on FMLP-induced changes in isolated 

neutrophil expression of CD11b, CXCR1 and CD16 
Neutrophils and erythrocytes were isolated as described in 3.2.2. The neutrophils 

were resuspended in (10% FCS) at 2.5 x 106/ml either without erythrocytes or with 

erythrocytes at 12.5 x 106/ml or 2,500 x 106/ml (5:1 and 1000:1 erythrocyte to 

neutrophil ratio respectively). Then 490 µl of the cell suspensions was added to 10 µl 

of RPMI (vehicle control) or adenosine for 4 minutes at the following final 

concentrations: 10-8 M and 10-5 M. Then 90 µl of the cell suspension was incubated 

with 10 µl of PBS (vehicle control) or FMLP (10-7 M) for 30 minutes at 37°C in a 

water bath. Then 75 µl of the cell suspension was added to the following antibody 

combination: PE-conjugated anti-human CD11b (Biolegend, UK; 301306). APC-

conjugated anti-human CXCR1 (Biolegend, UK; 320612) and PerCP-conjugated 

anti-human CD16 (Biolegend, UK; 302030). In separate tubes, blood was also added 

to matched isotypes (Biolegend, UK). The cells were incubated in the dark for 20 

minutes. Then 1 ml of FACSLyse (BD) was added to each tube and each tube was 

vortexed twice. The samples were then centrifuged at 300 g for 5 minutes and the 

pellet was resuspended in FACSFix or PBS prior to analysis on an Accuri C6 flow 

cytometer. 

3.2.8 Assessment of the effect of dipyridamole on adenosine-

mediated changes in FMLP-induced neutrophil 

expression of CD11b, CXCR1 and CD16 in whole blood 
Blood was collected in tubes containing trisodium citrate dihydrate (3.13% w/v). 

Then 2.94 ml of whole blood was incubated with 60 µl of 0.1% DMSO (vehicle 

control) or dipyridamole (10 µM final concentration) for 5 minutes at room 

temperature. 980 µl of this blood was incubated with 20 µl of PBS (vehicle control) 

or adenosine (10-5 M) 4 minutes prior to incubation with FMLP or immediately prior 

to incubation with FMLP. 95 µl of blood was incubated with 5 µl of PBS (vehicle 

control) or FMLP (10-7 M final concentration) for 5 or 30 minutes. Then 75 µl of the 
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cell suspension was added to the following antibody combination: PE-conjugated 

anti-human CD11b (Biolegend, UK; 301306) and APC-conjugated anti-human 

CXCR1 (Biolegend, UK; 320612). In separate tubes, blood was also added to 

matched isotypes (Biolegend, UK). The cells were incubated in the dark for 20 

minutes. Then 1 ml of FACSLyse (BD) was added to each tube and each tube was 

vortexed twice. The samples were then centrifuged at 300 g for 5 minutes and the 

pellet was resuspended in FACSFix or PBS prior to analysis on an Accuri C6 flow 

cytometer. 

3.2.9 Assessment of the effect of timing of pre-incubation of 

adenosine on subsequent response to FMLP in the 

presence of ticagrelor in whole blood 
Blood was collected in tubes containing trisodium citrate dihydrate (3.13% w/v). 

Then 2.94 ml of whole blood was incubated with 60 µl of 0.1% DMSO (vehicle 

control) or ticagrelor (10 µM final concentration) for 10 minutes at room 

temperature. 95 µl of this blood was then incubated with PBS (vehicle control) or 

adenosine (10-5 M final concentration) for 0, 15, 30 or 60 seconds prior to incubation 

with FMLP (10-7 M final concentration) for 5 minutes at 37°C. Then 75 µl of the cell 

suspension was added to the following antibody combination: PE-conjugated anti-

human CD11b (Biolegend, UK; 301306) and APC-conjugated anti-human CXCR1 

(Biolegend, UK; 320612). In separate tubes, blood was also added to matched 

isotypes (Biolegend, UK). The cells were incubated in the dark on ice for 30 minutes. 

Then 1 ml of FACSLyse (BD) was added to each tube and each tube was vortexed 

twice. The samples were then centrifuged at 300 g for 5 minutes and the pellet was 

resuspended in FACSFix or PBS prior to analysis on an Accuri C6 flow cytometer. 

3.2.10 Assessment of the modulatory effect of ticagrelor, 

cangrelor and dipyridamole on the effect of adenosine 

on response to FMLP in whole blood 
Blood was collected in tubes containing trisodium citrate dihydrate (3.13% w/v). 

Then 2.94 ml of whole blood was incubated with 60 µl of 0.1% DMSO (vehicle 

control) or ticagrelor (10 µM final concentration), cangrelor (1 µM final 

concentration) or dipyridamole (10 µM final concentration) for 10 minutes at room 
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temperature. 95 µl of this blood was then incubated with PBS (vehicle control) or 

adenosine (10-5 M final concentration) at the same time as PBS (vehicle control) or 

FMLP (10-7 M final concentration) for 5 minutes at 37°C. Then 75 µl of the cell 

suspension was added to the following antibody combination: PE-conjugated anti-

human CD11b (Biolegend, UK; 301306) and APC-conjugated anti-human CXCR1 

(Biolegend, UK; 320612). In separate tubes, blood was also added to matched 

isotypes (Biolegend, UK). The cells were incubated in the dark on ice for 30 minutes. 

Then 1 ml of FACSLyse (BD) was added to each tube and each tube was vortexed 

twice. The samples were then centrifuged at 300 g for 5 minutes and the pellet was 

resuspended in FACSFix or PBS prior to analysis on an Accuri C6 flow cytometer. 

3.2.11 Statistical Analysis 
Data are presented as mean ± SEM. Comparisons between samples are made by one- 

or two-way ANOVA as appropriate. Multiple comparisons were corrected for by 

Dunnett’s correction or Bonferroni correction as appropriate. The specific statistical 

tests that have been used are described in the figure legends. Analyses were 

performed using GraphPad Prism 6 (San Diego, CA). 
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4 Platelet P2Y12 inhibitors reduce systemic 
inflammation and its prothrombotic 
effects in an experimental human model 

4.1 Introduction 

Sepsis is one of the most devastating clinical syndromes in medicine and severe 

sepsis still has a mortality rate of 20-30% and remains resistant to specific 

pharmacological therapy (Angus & van der Poll, 2013). Sepsis is characterized by 

dysregulated systemic inflammatory response to bacterial components, such as 

endotoxin (lipopolysaccharide; LPS) (Angus & van der Poll, 2013). Excessive innate 

immune activation causes a pro-inflammatory cytokine storm, extravasation of 

activated neutrophils and disturbances of the coagulation system, leading to collateral 

host tissue damage and increased mortality (de Stoppelaar et al., 2014; Angus & van 

der Poll, 2013). A number of pathological processes, such as sepsis, involve the 

formation of platelet-leukocyte aggregates. These platelet-leukocyte interactions have 

a potentially important role in the pathogenesis of inflammation as they augment 

leukocyte production of pro-inflammatory cytokines, leukocyte recruitment and 

activation of coagulation (Semple et al., 2011). However, the overall magnitude of 

the contribution of platelets to systemic inflammation and the pathophysiology of 

human sepsis is not well defined.  

Platelet P2Y12 inhibitors, such as clopidogrel and ticagrelor, inhibit a central ADP-

mediated amplification pathway and therefore blunt a broad spectrum of platelet 

functions (Storey et al., 2000). It is well established that the antithrombotic effect of 

this is beneficial for patients with atherothrombosis, which has led to P2Y12 

medications becoming some of the most commonly prescribed medications 

worldwide. However, in addition, this inhibits the formation of platelet-leukocyte 

aggregates, which is primarily mediated by inhibition of platelet expression of the 

adhesion molecule P-selectin (Semple et al., 2011). A very recent cohort study of 

683,421 patients with sepsis has shown that current use of antiplatelet therapy is 

independently associated with a significant reduction in mortality from sepsis (odds 

ratio [OR] 0.78; 95% confidence interval [CI] 0.76 – 0.79; p < 0.001) (Tsai et al., 

2015). This also corresponds with previous observational studies that suggest that 
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clopidogrel reduces mortality from sepsis (Akinosoglou et al., 2014; Gross et al., 

2013). However, the mechanisms underpinning this reduction in mortality have not 

been clearly demonstrated in vivo, since animal models of sepsis conflict regarding 

the immunomodulatory effects of clopidogrel, which may be species dependent 

(Liverani et al., 2014; Winning et al., 2011; Hagiwara et al., 2011; Lipcsey et al., 

2005). 

Ticagrelor is a novel P2Y12 inhibitor that causes more potent and consistent P2Y12 

inhibition than clopidogrel (Storey et al., 2010) and also weakly inhibits cellular 

uptake of adenosine (Bonello et al., 2014). In the PLATO study of over 18,000 

patients with ACS, ticagrelor reduced all-cause mortality compared to clopidogrel 

(HR 0.78; p<0.001), which was out of proportion to its incremental cardiovascular 

benefit (Wallentin et al., 2009). Intriguingly, ticagrelor was associated with lower 

mortality related to infection (HR 0.67; p<0.05) (Varenhorst et al., 2014; 2012) and 

fewer deaths following sepsis and pulmonary infections than clopidogrel (Storey et 

al., 2014). 

The mechanistic impact of P2Y12 inhibitors was determined on pathophysiological 

processes that are central to sepsis responses in humans. It was hypothesized that 

P2Y12 inhibitors may reduce mortality from sepsis by suppressing systemic 

inflammation and its prothrombotic effects, mediated by inhibition of platelet-

leukocyte interactions. It was hypothesized that the more potent P2Y12 inhibitor, 

ticagrelor, suppresses these responses more potently than clopidogrel. To test these 

hypotheses in humans, a well-established model of systemic inflammation was used, 

which involves intravenous injection of E.coli endotoxin (lipopolysaccharide; LPS) 

into healthy volunteers (Suffredini et al., 1999). The particular strength of this unique 

model is that it allows direct assessment of dynamic cellular and molecular pathways 

that are also major mediators of the pathophysiology of sepsis in humans. 
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4.2 Results 

Thirty healthy volunteers underwent LPS administration (see CONSORT flowchart 

Figure 4.1). To avoid any possibility of administering intravenous E.coli LPS to a 

pregnant female, volunteers were only included if they were not of childbearing 

potential. No eligible female subjects volunteered and so all recruited volunteers were 

male. Compliance was assessed from a diary and pill-count and all subjects were 

>90% compliant. There were no unexpected adverse reactions. 

Baseline characteristics were comparable in all of the treatment groups (Table 4.1). 

The median age was 22.5, 21 and 21.5 in the control, clopidogrel and ticagrelor 

groups respectively. The mean duration of treatment was 7.1 ± 0.1 days in the 

clopidogrel group and 6.7 ± 0.3 in the ticagrelor group respectively (Table 4.1). 
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Figure 4.1 CONSORT flow diagram  

Presenting the enrolment, intervention allocation, follow-up and data analysis with number of subjects 

for each group. 
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Table 4.1 Baseline and treatment characteristics 

 Control 

n=10 

Clopidogrel 

n=10 

Ticagrelor 

n=10 

Age - median years 

(interquartile range) 

22.5 (21.0 – 

24.25) 

21.0 (20.50 – 

22.50) 

21.5 (20.0 – 

22.0) 

Male sex – no./total no. 

(%) 

10/10 (100) 10/10 (100) 10/10 (100) 

Weight (kg) – mean 

(SEM) 

76.4 (2.7) 75.0 (3.2) 74.2 (2.5) 

Body mass index (kg/m2) 

– mean (SEM) 

23.0 (0.6) 22.7 (0.5) 23.2 (0.8) 

Race – no./total no.    

White (%) 10/10  (100) 8/10 (80) 9/10 (90) 

Black (%) 0/10 (0) 1/10 (10) 0/10 (0) 

Asian (%) 0/10 (0) 1/10 (10) 1/10 (10) 

Duration of clopidogrel 

treatment – days (SEM) 

0 (0) 7.1 (0.1) 0 (0) 

Duration of ticagrelor 

treatment – days (SEM) 

0 (0) 0 (0) 6.7 (0.3) 

There were no significant differences in baseline characteristics between groups. 
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4.2.1.1 Haemodynamic effects 
After LPS administration, all subjects developed anticipated flu-like symptoms and 

signs of sepsis that peaked at 90 - 180 minutes and resolved within 6 hours (Table 

4.2). After LPS administration, there was a significant increase in the heart rate in 

each of the treatment groups from approximately 70-74 bpm to approximately 93-94 

bpm (all p <0.05), which was not significantly different in each of the treatment 

groups. There was a numerical reduction in the mean arterial blood pressure, but this 

was not statistically significant and did not differ between treatment groups. 
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Table 4.2 Haemodynamic parameters before randomized treatment, after treatment and 3 hours 

after LPS administration 

 Baseline Before LPS 3 Hours After LPS 

Heart rate (bpm)    

Control 72±4 70±2 94±4* 

Clopidogrel 70±5 68±4 94±4* 

Ticagrelor 74±2 71±3 93±3* 

Mean arterial blood 

pressure (mm Hg) 

   

Control 87±2 88±3 84±2 

Clopidogrel 89±3 88±3 82±3 

Ticagrelor 87±3 87±3 80±2 

Temperature °C    

Control 36.1±0.1 35.9±0.1 37.9±0.2* 

Clopidogrel 36.0±0.1 36.0±0.1 38.1±0.2* 

Ticagrelor 36.0±0.1 36.0±0.1 37.7±0.2* 

Data are mean ± SEM. * = P<0.05 compared to value before LPS administration. 
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4.3 Both Ticagrelor and Clopidogrel Reduce Peak Levels of 

IL-6, TNFα and CCL2, whilst Ticagrelor Additionally 

Reduces Peak Levels of IL-8 and G-CSF and Increases 

Peak Levels of IL-10 

Systemic inflammation in response to LPS administration was assessed by measuring 

the release of major pro-inflammatory cytokines and the modulatory effects of P2Y12 

inhibitors were determined. Plasma levels of interleukin (IL)-6, TNFα, IL-8, 

chemokine (C-C motif) ligand (CCL)-2, granulocyte colony stimulating factor (G-

CSF) and high sensitivity C-reactive protein (hsCRP) significantly increased after 

LPS administration (all p<0.001). Compared to control, both P2Y12 inhibitors had a 

marked effect on the pro-inflammatory cytokine response, reducing peak levels of 

TNFα (66% reduction [p<0.001] and 60% reduction [p<0.001] respectively; Figure 

4.2A), IL-6 (47% reduction [p<0.001] and 28% reduction [p=0.001] respectively; 

Figure 4.2B), and CCL2 (38% reduction [p<0.001] and 19% reduction [p=0.049] 

respectively; Figure 4.2C). In addition, ticagrelor, but not clopidogrel, significantly 

reduced peak levels of G-CSF (51% reduction; p<0.001; Figure 4.2D) and IL-8 (29% 

reduction; p=0.001; Figure 4.2E) compared to control. Ticagrelor, but not 

clopidogrel, also significantly increased peak levels of the anti-inflammatory 

cytokine IL-10 compared to control (54% increase; p=0.02; Figure 4.2F). Neither 

drug significantly modified the hsCRP response (Figure 4.2G). 
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Figure 4.2 Levels of cytokines TNFα (A), IL-6 (B), CCL2 (C), G-CSF (D), IL-8 (E), IL-10 (F) and 

hsCRP (G) 

Before and after 1 week of antiplatelet treatment and following LPS administration (t = 0 hours). Data 

expressed as mean ± SEM (n=10 in each group). The overall effect of LPS and the effect of ticagrelor 

and clopidogrel (both compared to control at each time point) determined using 2-way ANOVA with 

Dunnett’s correction for multiple comparisons for the cytokines (*p<0.05, **p<0.01 and ***p<0.001). 

For hsCRP, the effect of ticagrelor and clopidogrel compared to control was determined using 

ANOVA of AUC. 
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4.4 Ticagrelor Inhibits LPS-induced Platelet-Monocyte 

Aggregate Formation  

Formation of platelet-leukocyte aggregates (defined as leukocyte expression of the 

platelet marker CD42a) amplifies leukocyte release of pro-inflammatory cytokines 

(Suffredini et al., 1999). It was therefore investigated whether this is a mechanism by 

which P2Y12 inhibitors reduce systemic inflammation. Ticagrelor significantly 

reduced formation of platelet-monocyte aggregates compared to control (21% vs 

36%; p<0.001) that occurred 6 hours after LPS administration (Figure 4.3A). 

Clopidogrel also significantly reduced the formation of platelet-monocyte aggregates 

compared to control (23% vs 36%; p=0.04; Figure 4.3A). A similar pattern of effect 

of LPS and modulation by the antiplatelet medications was seen in platelet-neutrophil 

aggregate formation, but the effects on platelet-neutrophil aggregate formation were 

not statistically significant (Figure 4.3B). Platelet P-selectin expression did not 

significantly change after LPS administration (Figure 4.3C). 

Inhibition of platelet P2Y12 ADP receptors was also assessed by measuring platelet 

aggregation, platelet-leukocyte aggregate formation and platelet P-selectin expression 

in response to ADP added ex vivo. Ticagrelor and clopidogrel inhibited ADP-induced 

platelet aggregation, platelet-monocyte aggregate formation, platelet-neutrophil 

aggregate formation and platelet P-selectin expression compared to control at all time 

points (all p<0.001; Figure 4.3). After randomized treatment, platelet aggregation 

responses following 5 minutes exposure to ADP (final platelet aggregation response) 

were 2±1%, 14±6% and 70±11% in the ticagrelor, clopidogrel and control groups 

respectively. This indicates that clopidogrel achieved satisfactory P2Y12 inhibition, in 

contrast to its effect on patients, which is variable and often incomplete (Breet et al., 

2010). Final platelet aggregation responses did not significantly change following 

LPS administration in any of the treatment groups (all p>0.05). 
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Figure 4.3 Platelet-monocyte (A) and platelet-neutrophil (B) aggregate formation and platelet P-

selectin expression (C) 

At baseline, immediately before LPS administration and 6 hours after LPS administration, in 

unstimulated samples and samples stimulated by 30 µM ADP ex vivo. Data expressed as mean ± SEM 

(n=10 in each group). The overall effect of LPS and the effect of ticagrelor and clopidogrel (both 

compared to control at each time point) were determined using 2-way ANOVA with Dunnett’s 

correction for multiple comparisons (*p<0.05, **p<0.01 and ***p<0.001). 
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4.5 Ticagrelor Increases Neutrophil Counts and Alters 

Monocyte Dynamics During Systemic Inflammation 

Since the formation of platelet-leukocyte aggregates facilitates adhesion of 

leukocytes to the endothelium and subsequent extravasation, it was investigated 

whether inhibition of these processes by P2Y12 inhibitors affects leukocyte 

trafficking. Ticagrelor potentiated the increase in neutrophil count, which was 

significantly higher than controls 2-4 hours after LPS administration (p<0.05; Figure 

4.4B) and may have been due to inhibition of non-specific sequestration of 

neutrophils. Clopidogrel did not have a significant effect (Figure 4.4B). Similarly, 

subjects receiving ticagrelor showed altered monocyte dynamics. Transient monocyte 

sequestration was observed after LPS administration in all volunteers, but recovery 

from this was significantly greater in the ticagrelor and clopidogrel groups (Figure 

4.4C). Neither P2Y12 inhibitor significantly affected the decrease in platelet count 

that occurred after LPS administration (Figure 4.4D). 
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Figure 4.4 Leukocyte (A), neutrophil (B), monocyte (C) and platelet (D) counts  

Before and after 1 week of antiplatelet treatment and following LPS administration (t = 0 hours). Data 

expressed as mean ± SEM (n=10 in each group). The overall effect of LPS and the effect of ticagrelor 

and clopidogrel (both compared to control at each time point) were determined using 2-way ANOVA 

with Dunnett’s correction for multiple comparisons (*p<0.05, **p<0.01 and ***p<0.001). 
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4.6 LPS Induces Prothrombotic Changes in the Fibrin 

Network that are Attenuated by Ticagrelor 

The development of a stable fibrin clot represents the critical final stage of 

thrombosis and has the potential to be modified by systemic inflammation. 

Turbidimetric assays of individual samples showed that fibrin clot maximum 

absorbance (a measure of clot density) and lysis area (a complex measure that 

assesses both clot formation and lysis) increased after LPS administration (p<0.001) 

(Figure 4.5). Ticagrelor significantly reduced the rise in maximum absorbance after 

LPS administration compared with control (percentage increase from baseline of 33% 

vs. 109%; p=0.02; Figure 4.5A). Similarly, ticagrelor also reduced the increase in 

lysis area after LPS administration compared with control (percentage increase from 

baseline of 46% vs. 147%; p=0.02; Figure 4.5B). Clopidogrel had a similar, less 

potent effect that was not statistically significant (Figure 4.5). 
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Figure 4.5 Levels of D-dimer (A) and fibrin clot maximum absorbance (B) (a measure of clot 

density) and lysis area under the curve (C) (a complex measure that assesses both clot formation 

and lysis) determined by turbidimetry (expressed as percentage change from baseline value) 

following treatment and LPS administration.  

Data expressed as mean ± SEM (n=10 in each group). The overall effect of LPS and the effect of 

ticagrelor and clopidogrel (both compared to control at each time point) were determined using 2-way 

ANOVA with Dunnett’s correction for multiple comparisons (*p<0.05, **p<0.01 and ***p<0.001). 
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More detailed analysis of clot ultrastructure using scanning electron microscopy of 

pooled plasma samples demonstrated that LPS administration resulted in more 

compact clot formation (Figure 4.6), shown by a significant increase in fibrin clot 

density (p=0.02) and a decrease in fibrin fibre diameter (p=0.01) (Figure 4.7). These 

changes have been shown to increase clot stability and confer resistance to 

fibrinolysis, both of which contribute to a prothrombotic state (Undas & Ariens, 

2011). Ticagrelor significantly reduced LPS-induced changes in fibre density and 

fibre diameter (Figure 4.7), whereas clopidogrel had a similar less potent effect that 

was not statistically significant. LPS induced a marked increase in D-dimer (Figure 

4.5), which peaked at 4 hours (p<0.001). Ticagrelor significantly reduced peak levels 

of D-dimer by 48% compared to control (p<0.001) and clopidogrel significantly 

inhibited peak levels by 19% compared to control (p=0.01). 
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Figure 4.6 Representative electron microscope images of fibrin clots formed from plasma ex 

vivo.  

in each treatment group immediately before and 6 hours after LPS administration. Clots were prepared 

in duplicate and 4 photographs were taken of each clot at each time point. In the control group, there is 

an increase in fibrin network density following LPS whereas in the clopidogrel and ticagrelor groups 

this is not apparent. 
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Figure 4.7 Fibrin fibre diameter (A) and fibrin network density (B) (determined by electron 

microscopy) following LPS administration.  

Data expressed as mean ± SEM (n=8 in each group). The overall effect of LPS and the effect of 

ticagrelor and clopidogrel (both compared to control at each time point) were determined using 2-way 

ANOVA with Dunnett’s correction for multiple comparisons (*p<0.05, **p<0.01 and ***p<0.001). 
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4.7 Discussion 

Sepsis is a devastating syndrome for which therapeutic options remain limited. In 

addition to the immediate collateral host tissue damage and mortality caused by 

sepsis, there is a 20-fold increase in risk of myocardial infarction and stroke 

following sepsis by mechanisms that are not fully understood (Dalager-Pedersen et 

al., 2014). Data from clinical studies of platelet P2Y12 inhibitors suggest that their use 

improves mortality from sepsis (Tsai et al., 2015; Akinosoglou et al., 2014; Gross et 

al., 2013). However, animal models of sepsis have conflicted regarding the 

immunomodulatory effect of platelet P2Y12 inhibition on sepsis responses (Liverani 

et al., 2014; Winning et al., 2011; Hagiwara et al., 2011; Lipcsey et al., 2005), which 

may be species dependent. The mechanistic impact of P2Y12 inhibitors on key 

molecular and cellular pathways that are central to sepsis responses in humans was 

determined. Effects of P2Y12 inhibitors on leukocyte responses, interactions with 

platelets that may govern such interactions, and with activation of the coagulation 

system were determined. These data point to a substantial modulatory effect of 

ticagrelor in particular and place the regulation of platelet activation at the heart of 

systemic inflammation induced by LPS in humans. 

To our knowledge, this is the first study to demonstrate marked suppression of 

response to bacterial endotoxaemia by platelet P2Y12 inhibitors. Both P2Y12 

inhibitors potently reduced peak levels of D-dimer and major pro-inflammatory 

cytokines, including IL-6, TNFα, CCL2. In contrast to clopidogrel, ticagrelor also 

significantly reduced peak levels of IL-8 and G-CSF and increased the peak level of 

IL-10 compared to control. Additionally, ticagrelor reduced platelet-leukocyte 

aggregate formation, altered leukocyte trafficking and suppressed prothrombotic 

changes in fibrin clot ultrastructure. Since these changes in fibrin clot structure have 

been shown to shift the haemostatic balance towards thrombosis (Undas & Ariens, 

2011), this represents a novel mechanism by which ticagrelor inhibits the 

prothrombotic consequences of systemic inflammation. 

Inhibition of platelet-monocyte aggregate formation demonstrates a mechanism by 

which platelet P2Y12 inhibition reduced systemic inflammation, as the formation of 

platelet-monocyte aggregates amplifies monocyte release of pro-inflammatory 

cytokines, including TNFα, CCL2 and IL-8 (Bournazos et al., 2008; Neumann et al., 
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1997). Levels of residual platelet P2Y12 reactivity before endotoxin administration 

significantly correlated with subsequent inflammatory and prothrombotic responses, 

suggesting that the responses were P2Y12-mediated. Ticagrelor and clopidogrel 

belong to different chemical classes, inhibit platelet P2Y12 receptors by different 

mechanisms, and do not have any structural similarities or shared metabolites. From a 

pharmacological perspective, shared non-P2Y12-mediated effects are therefore 

unlikely. P2Y12 receptors were originally identified to be almost exclusive to 

platelets, although they have now also been identified on a limited number of other 

cell types (Gachet, 2012). The extent to which leukocytes express P2Y12 still remains 

unclear, particularly as platelets often contaminate isolated leukocyte preparations. In 

mice, dendritic cells express P2Y12, which appears to mediate the secretion of certain 

cytokines, such as IL-12 (Gachet, 2012). This offers an additional mechanism by 

which P2Y12 may mediate inflammatory responses, although it has not been 

established whether dendritic cells function in the same way in humans. Recent 

studies have demonstrated that vascular smooth muscle cells (VSMC) also express 

P2Y12, which mediates CCL2 release (Satonaka et al., 2015). This may have 

contributed to the modulatory effect of P2Y12 inhibition on inflammation, although it 

has been shown that clopidogrel does not inhibit VSMC P2Y12 in rats, possibly due 

to the potential for nucleated cells to regenerate P2Y12 (Grzesk et al., 2012). 

Ticagrelor is also a weak inhibitor of cellular uptake of adenosine, which increases 

extracellular levels of adenosine (Bonello et al., 2014). Since adenosine can increase 

macrophage production of IL-10, which is associated with a reduction in TNFα and 

IL-6, this offers a further mechanism by which ticagrelor may modify systemic 

inflammation (Haskó & Pacher, 2012). 

LPS administration induced platelet-leukocyte aggregate formation, which was 

inhibited by ticagrelor in particular. Platelet-monocyte aggregate formation 

potentiates monocyte release of pro-inflammatory cytokines, including TNFα, CCL2 

and IL-8, mediated by NF-κB (Bournazos et al., 2008; Neumann et al., 1997). 

Additionally, platelet-neutrophil aggregates have been implicated in the 

pathophysiology of acute lung injury (Zarbock et al., 2006) Therefore greater 

inhibition of the formation of platelet-leukocyte aggregates represents a mechanism 

by which ticagrelor may have conferred greater protection against excessive innate 

immune activation during sepsis compared to clopidogrel in the PLATO study. Our 
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data show that LPS administration induced an initial neutropaenia and 

monocytopaenia, which is held to be due to rapid sequestration of leukocytes to the 

endothelium (Coughlan, 1994). This was then followed by a rapid increase in 

neutrophil count due to bone marrow mobilization. It is notable that neutrophil counts 

were consistently higher in the ticagrelor group compared to the control group, 

despite lower overall levels of pro-inflammatory cytokines. This was apparent from 

very early time points onwards, which suggests that this was due to inhibition of 

leukocyte sequestration, rather than increased bone marrow mobilization, which 

would tend to have a more delayed effect. It is logical that inhibition of platelet-

leukocyte aggregate formation reduces leukocyte sequestration, as formation of 

platelet-leukocyte aggregates upregulates leukocyte expression of adhesion molecules 

and facilitates adhesion to the endothelium (da Costa Martins et al., 2006). 

In this study, and in other studies, platelet-expressed P-selectin was not increased at 

30 minutes or 6 hours after LPS administration. This is likely to be due to the 

transient nature of platelet expression of P-selectin, which is shed by degranulated 

platelets, although they continue to function normally and aggregate (Michelson et 

al., 1996). It has been asserted that the formation of platelet-monocyte aggregates is 

therefore a more reliable marker of platelet activation in vivo (Michelson et al., 

2001). The precise cause of thrombocytopenia related to systemic inflammation has 

still not been clarified and the relative contribution of platelet activation is unclear. 

Neither ticagrelor nor clopidogrel significantly attenuated the LPS-induced reduction 

in platelet count. The findings of our study therefore suggest that thrombocytopenia 

is not entirely mediated by platelet activation or the formation of platelet-monocyte 

aggregates, as P2Y12 inhibitors inhibit these processes. The formation of platelet-

neutrophil aggregates, or other processes where platelet P2Y12 has a less prominent 

role, may therefore have a greater contribution towards thrombocytopenia.  

This study provides a number of novel insights into potential mechanisms for 

increased risk of atherothrombotic events following bacteraemia and sepsis (Dalager-

Pedersen et al., 2014). Although a prothrombotic state is well recognized in sepsis 

(Donzé et al., 2014), the underlying mechanisms are incompletely understood and the 

relative role of platelets has not been well defined. For the first time, this study 

demonstrates that exposure to bacterial LPS directly causes prothrombotic changes in 

the fibrin network that increase clot stability and confer resistance to fibrinolysis, 
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both of which shift the haemostatic balance towards thrombosis (Undas & Ariens, 

2011). Platelet P2Y12 inhibitors inhibited these prothrombotic effects of LPS and 

these results suggest that this may have been due to a reduction in levels of pro-

inflammatory cytokines, as TNFα in particular has been shown to be a potent 

activator of the coagulation system in vivo (van der Poll et al., 1990). The greater 

overall effect of ticagrelor on these pathways compared to clopidogrel suggests a 

mechanism by which ticagrelor reduced cardiovascular death following infection in 

the PLATO study. The combined effect of ticagrelor, in particular, on leukocyte 

production of cytokines, leukocyte sequestration, platelet-leukocyte aggregate 

formation and subsequent changes in fibrin clot ultrastructure point to a substantial 

role for platelets in orchestrating the innate immune response to LPS. This suggests 

potential for timed platelet P2Y12 inhibition in patients with infection to modify the 

risk of sepsis and associated thrombotic complications. In this study and in 

observational clinical studies, subjects were already taking P2Y12 inhibitors at the 

onset of systemic inflammation and sepsis respectively. However, no studies have 

established the effect of administration of P2Y12 inhibitors to patients with 

established sepsis. The greater infectious and inflammatory burden of established 

sepsis presents a different balance of risks and benefits and it is critical that any 

studies that investigate these medications in the context of sepsis carefully address 

the optimal timing of administration. In sepsis, excess fibrin deposition and impaired 

anticoagulant mechanisms lead to exhaustion of the coagulation cascade, causing 

coagulopathy and bleeding (Angus & van der Poll, 2013). Although antiplatelet 

medications normally exacerbate bleeding, this may therefore be counter-balanced by 

attenuating the prothrombotic state that drives the development of coagulopathy 

during sepsis. In support of this, antiplatelet medications are not associated with 

excess bleeding in patients with sepsis in observational studies (Akinosoglou et al., 

2014). However, it is important to recognize that patients with established 

coagulopathy may have their antiplatelet medications discontinued in these studies 

and are less likely to benefit from these agents. 

Ticagrelor and clopidogrel are some of the most commonly prescribed medications 

worldwide, due to their established benefit in the management of atherothrombosis. 

The results of this study therefore have potentially important clinical implications for 

millions of patients who are currently treated with these medications. In addition, 
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there is great interest in the use of specific immunomodulatory therapy for the 

treatment of acute coronary syndromes (Ridker & Luscher, 2014). The results of this 

study elucidate the background anti-inflammatory effects of medications that are 

already used for ACS. This is crucial information for determining the most 

appropriate inflammatory targets in the design of novel treatment strategies. 

A limitation of this study is that clopidogrel has a less potent inhibitory effect in 

patient populations compared to its effects in healthy volunteers (Breet et al., 2010). 

This is not the case for ticagrelor, which has a consistently potent effect in patient 

populations (Gurbel et al., 2009). Therefore the results of this study may actually 

underestimate the additional efficacy of ticagrelor compared to clopidogrel in 

suppressing systemic inflammation in patients. Whilst this study demonstrates the 

key cellular and molecular pathways by which platelet P2Y12 inhibitors could reduce 

mortality from sepsis, further randomized human studies are needed to determine 

whether this improves outcomes in patients. 

In conclusion, this study demonstrates for the first time that clopidogrel and 

ticagrelor have a marked effect on multiple critical mechanisms involved in the 

pathophysiology of sepsis. This suggests a promising line of investigation for novel 

applications of P2Y12 inhibitors in a syndrome that has proved elusive to almost all 

previous pharmacological strategies. The greater overall effect of ticagrelor compared 

to clopidogrel also provides critical mechanistic insight into the lower mortality 

following sepsis observed in the ticagrelor group compared to the clopidogrel group 

in the PLATO study. 
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5 Platelet P2Y12 Inhibitors Potentiate the 
Expansion in Intermediate Monocyte 
Population that Occurs after 
Endotoxaemia 

5.1 Introduction 

Monocytes originate from the bone marrow and have major roles in inflammation 

and atherosclerosis. They replenish tissue macrophage and dendritic cell populations 

and also have phagocytic activity, release cytokines and are involved in antigen 

presentation and tissue repair (Ziegler-Heitbrock et al., 2015). Classical monocytes 

(CM) constitute approximately 80-90% of the monocyte population and have high 

expression of the LPS co-receptor CD14 but do not express the FcγIII receptor CD16 

(CD14++CD16-) (Ziegler-Heitbrock et al., 2010). In contrast, intermediate and non-

classical monocytes both express CD16. However, intermediate monocytes have high 

expression of CD14 (CD14++CD16+), whereas non-classical monocytes have low 

expression of CD14 (CD14+CD16+). Gene expression profiling and functional 

investigations have now identified distinct and often opposing roles of intermediate 

and non-classical monocytes (Wong et al., 2011). Prior to the revised definition in 

2010 (Ziegler-Heitbrock et al., 2010), older studies defined monocytes only on the 

basis of whether they expressed CD16 or not and did not distinguish between 

intermediate and non-classical monocytes. This has led to many contradictory reports 

in the literature. Although still controversial, more recent evidence is converging to 

support roles of intermediate monocytes in producing the anti-inflammatory cytokine 

interleukin (IL) -10 (Shantsila et al., 2011) and non-classical monocytes in producing 

pro-inflammatory cytokines, such as TNFα (Mukherjee et al., 2015; Wong et al., 

2011; Belge et al., 2002). 

Specific expansion of the intermediate monocyte population has been identified in 

sepsis and other disorders involving systemic inflammation, which may be due to 

their mobilization from the marginal pool (Ziegler-Heitbrock, 2015; van Furth & 

Sluiter, 1986). Thrombotic conditions, such as acute coronary syndromes, are also 

associated with increased levels of intermediate monocytes (Tapp et al., 2012). 

Although levels of intermediate monocytes have been associated with tissue damage 
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and mortality (Rogacev et al., 2012; Tapp et al., 2012), it is unclear whether their role 

is deleterious or whether they may in fact be bystanders involved in tissue repair 

(Wong et al., 2012). 

In addition to their central role in thrombosis, it is increasingly recognised that 

platelets also have a major role in systemic inflammation and innate immunity 

(Semple et al., 2011). Acute coronary syndromes, sepsis and many other 

inflammatory disorders induce the formation of platelet-monocyte aggregates. 

Platelet-monocyte interactions have a potentially important role in limiting monocyte 

mobilization from the marginal pool as they facilitate leukocyte adhesion to 

endothelium and upregulate monocyte expression of adhesion molecules (da Costa 

Martins et al., 2006). Platelet P2Y12 receptor antagonists, such as clopidogrel and the 

more potent agent ticagrelor, inhibit platelet-monocyte interactions by down-

regulating a central amplification pathway in platelets (Thomas & Storey, 2015a; 

Storey et al., 2000). The functional consequences of interactions between platelets 

and monocytes can therefore be investigated by using platelet P2Y12 inhibitors. This 

offers potential insight into the pathophysiology of a rapidly increasing number of 

diseases where intermediate monocytes have been identified to play an important 

role, including sepsis, ACS, heart failure and a number of autoimmune conditions. 

It was hypothesized that platelet-monocyte interactions regulate intermediate 

monocyte mobilization. Platelet-monocyte interactions were inhibited using platelet 

P2Y12 inhibitors and the effects of this on intermediate monocyte mobilization were 

investigated during systemic inflammation in humans. A well-established 

experimental human model was used, which involves intravenous injection of 

Escherichia coli endotoxin (lipopolysaccharide; LPS) into healthy volunteers. To our 

knowledge, the effect of LPS on intermediate monocyte populations has not 

previously been established.  
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5.2 Marked expansion of the intermediate monocyte 

population following administration of LPS 

Firstly, the effect of LPS administration on intermediate monocyte trafficking was 

characterized in subjects that did not receive antiplatelet medications (Figure 5.1). At 

90 minutes there was a marked reduction in the total monocyte count and monocytes 

were almost undetectable in the peripheral blood, which is related to non-specific 

sequestration to the endothelium (Figure 5.1D). At six hours after LPS 

administration, the classical and intermediate monocyte counts returned to baseline 

levels, whereas there was still a significant reduction in the non-classical monocyte 

count (0.007 vs. 0.027 x 106/L; p=0.01; Figure 5.1D). At 24 hours, there was a 

marked 6-fold increase in the number of intermediate monocytes compared to 

baseline, 0.176 vs. 0.029 x106/L; p<0.001; Figure 5.1C and D). 

  



 102 

 

Figure 5.1 Monocyte phenotype and count over a 24-hour period after LPS administration. 

Data expressed as mean ± SEM (n=10 in each group). Monocyte phenotype was not available at 1.5 

hours and the total monocyte count as determined by the Sysmex automated cell counter is displayed 

instead. The overall effect of LPS and the effect of ticagrelor and clopidogrel (both compared to 

control at each time point) determined using 2-way ANOVA with Dunnett’s correction for multiple 

comparisons (*p<0.05, **p<0.01 and ***p<0.001  
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5.3 Expanded population of intermediate monocytes has 

similar expression of adhesion molecules, chemokine 

receptors and toll-like receptors compared to the 

baseline population 

Next, phenotypic differences between intermediate monocytes and classical and non-

classical monocytes at baseline were determined in the subjects who had not received 

antiplatelet therapy. Intermediate monocytes expressed significantly lower levels of 

the chemokine receptors CCR2 and CXCR2 than classical monocytes (6,386 vs. 

18,340 MF; p<0.001; Figure 5.2A and 3,068 vs. 6,916 MF; p<0.001; Figure 5.2B 

respectively). Intermediate monocytes expressed higher levels of the adhesion 

molecule CD11b and the toll-like receptor TLR2 than classical monocytes (25,250 

vs. 14,713 MF; p=0.01; and 23,739 vs. 17,161 MF; p=0.04 respectively; Figure 5.2). 

Non-classical monocytes displayed significantly lower levels of CCR2, CXCR2, 

CD11b and TLR2 than intermediate monocytes (all p<0.05; Figure 5.2). 

It was then demonstrated that the newly expanded intermediate monocyte population 

at 24 hours displayed similar expression of adhesion molecules, chemokine receptors 

and toll-like receptors as the baseline intermediate monocyte population (no 

significant difference in levels of CCR2, CXCR2, TLR2, TLR4, CD11b, CD14 and 

CD16). 

By definition, if classical monocytes express CD16 at a higher level than the isotype 

threshold, then they are classified as intermediate monocytes. After LPS 

administration, there was a slight, but significant, overall increase in median 

fluorescence of CD16 in classical monocytes that were below the isotype threshold 

(Figure 5.1D). This level of CD16 expression was by definition still far lower than 

seen in intermediate monocytes, but may indicate that classical monocytes had started 

to express CD16 to some extent. 
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Figure 5.2 Monocyte expression of CD14, CD16, CD11b, CCR2, CXCR2, TLR2 and TLR4 

before and 24 hours after LPS administration. 

Data expressed as mean ± SEM (n=10 in each group). The effect of LPS and the differences between 

monocyte phenotypes were determined using 2-way ANOVA with Bonferroni correction for multiple 

comparisons (*p<0.05, **p<0.01 and ***p<0.001). 
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5.4 Platelet P2Y12 inhibition augments the expansion of the 

intermediate monocyte population 

Platelet-monocyte interactions potentiate endothelial adhesion of monocytes by 

forming P-selectin-mediated bridges between monocytes and the endothelium and by 

upregulating monocyte expression of adhesion receptors. Since platelet P2Y12 

receptors have a central role in platelet activation and platelet-monocyte interactions, 

it was investigated whether platelet P2Y12 inhibitors affected the expansion of the 

intermediate monocyte population. At 24 hours after LPS administration, there was a 

striking 9-fold increase in the intermediate monocyte population in subjects treated 

with clopidogrel (0.344 vs. 0.038 x 106/L; p<0.001; Figure 5.3) and a 7-fold increase 

in subjects treated with ticagrelor (0.279 vs. 0.038 x 106/L; p<0.001; Figure 5.3) 

compared to the baseline timepoint. These increases were significantly greater than 

seen in the group that did not receive P2Y12 inhibitors (p<0.001 and p=0.005 for 

clopidogrel and ticagrelor respectively; Figure 5.3). 

In the clopidogrel group, 24 hours after LPS administration, there was a slight, but 

significant increase in classical monocyte expression of CD16 (Table 5.1), although 

this was by definition far lower than the level of CD16 expression in intermediate 

monocytes (Table 5.1). There were no other significant effects of clopidogrel or 

ticagrelor on classical, intermediate and non-classical monocyte expression of CD14, 

CD16, CD11b, CCR2, CXCR2, TLR4 or TLR2 (all p > 0.05; Table 5.1 and Table 

5.2). 
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Figure 5.3 Effect of platelet P2Y12 inhibitors, clopidogrel and ticagrelor, on monocyte phenotype 

and count before and 24-hours after LPS administration.  

Data expressed as mean ± SEM (n=10 in each group). The overall effect of LPS and the effect of 

ticagrelor and clopidogrel (both compared to control at each time point) were determined using 2-way 

ANOVA with Dunnett’s correction for multiple comparisons (*p<0.05, **p<0.01 and ***p<0.001). 
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Table 5.1 Effect of clopidogrel and ticagrelor on classical, intermediate and non-classical 

monocyte expression of CD14, CD16 and CD11b 24 hours after LPS administration. 

 Control Clopidogrel P value for 
clopidogrel 
vs. control 

Ticagrelor P value for 
ticagrelor 
vs. control 

Classical 

CD14 (MF) 

33498 ± 3588 

 

34943 ± 1778 0.91 

 

36906 ± 2100 

 

0.60 

 

Intermediate 

CD14 (MF) 

35299 ± 2255 

 

32955 ± 1521 

 

0.71 

 

35887 ± 1997 

 

0.98 

 

Non-classical 

CD14 (MF) 

9323 ± 841 

 

9688 ± 519 

 

0.87 

 

9074 ± 427 0.93 

 

Classical 

CD16 (MF) 

862 ± 82 

 

1073 ± 46 

 

0.0057 

 

921 ± 72 

 

0.61 

 

Intermediate 

CD16 (MF) 

16257 ± 1868 

 

23272 ± 1765 

 

0.12 

 

22285 ± 2748 0.20 

 

Non-classical 

CD16 (MF) 

32980 ± 7168 54819 ± 731 0.21 

 

54767 ± 10760 0.21 

 

Classical 

CD11b (MF) 

14449 ± 1306 

 

15841 ± 1521 

 

0.89 

 

13929 ± 1246 

 

0.98 

 

Intermediate 

CD11b (MF) 

24829 ± 1486 

 

25919 ± 2148 

 

0.96 

 

21251 ± 2077 

 

0.63 

 

Non-classical 

CD11b (MF 

11506 ± 1286 

 

12963 ± 939 0.85 

 

10759 ± 973 

 

0.96 
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Table 5.2 Effect of clopidogrel and ticagrelor on classical, intermediate and non-classical 

monocyte expression of CCR2, CXCR2, TLR4 and TLR2 24 hours after LPS administration. 

 Control Clopidogrel P value for 
clopidogrel 
vs. control 

Ticagrelor P value for 
ticagrelor 
vs. control 

Classical 

CCR2 (MF) 

10195 ± 1337 12457 ± 1263 0.37 12927 ± 1197 0.24 

 

Intermediate 

CCR2 (MF) 

6386 ± 659 6583 ± 536 0.99 5521 ± 910 0.74 

Non-classical 

CCR2 (MF) 

1414 ± 176 1469 ± 172 

 

0.99 

 

2025 ± 735 

 

0.46 

 

Classical 

CXCR2 (MF) 

4721 ± 663 

 

5377 ± 410 

 

0.64 5684 ± 361 

 

0.40 

 

Intermediate 

CXCR2 (MF) 

3083 ± 373 

 

2703 ± 148 0.76 2856 ± 155 0.91 

Non-classical 

CXCR2 (MF) 

1281 ± 163 

 

1128 ± 88 

 

0.97 1351 ± 213 

 

0.99 

Classical 

TLR4 (MF) 

3125 ± 575 

 

3490 ± 465 

 

0.89 

 

2415 ± 570 

 

0.64 

 

Intermediate 

TLR4 (MF) 

3905 ± 730 4115 ± 467 0.97 

 

3073 ± 841 

 

0.64 

 

Non-classical 

TLR4 (MF) 

3125 ± 575 3490 ± 465 0.89 2415 ± 570 0.64 

 

Classical 

TLR2 (MF) 

19264 ± 1008 19553 ± 662 0.98 18416 ± 1207 0.87 

 

Intermediate 

TLR2 (MF) 

25468 ± 725 25185 ± 968 0.99 22898 ± 1584 0.49 

 

Non-classical 

TLR2 (MF) 

19144 ± 998 21360 ± 807 0.42 17909 ± 1536 0.75 
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5.5 Higher intermediate monocytes counts at 24 hours were 

associated with higher neutrophil and non-classical 

monocyte counts and lower levels of platelet reactivity 

It was then determined whether the increase in intermediate monocyte count was 

associated with alterations in dynamics of other leukocytes and whether this was 

related to distinct changes in cytokine release or platelet reactivity. As described in 

the previous chapter, LPS administration significantly increased levels of IL-6, IL-8, 

IL-10, TNFα, G-CSF and CCL2, which peaked between 2-4 hours and also increased 

levels of CRP, which peaked at 24 hours. It was demonstrated that platelet P2Y12 

inhibitors reduce platelet-monocyte interactions, which is associated with reduced 

pro-inflammatory cytokine release and an attenuation of the prothrombotic response 

to LPS. 

The dataset is complex as there are a large number of variables at multiple 

timepoints. A state-of-the-art statistical method, known as random forests, was 

therefore used to identify relationships between the rise in intermediate monocyte 

count and changes in the other variables. The strengths of this approach involve the 

ability to robustly assess complex non-linear relationships and complex interactions 

between variables in hundreds or thousands of variables, even when the sample size 

is limited as in this case. Random forests showed that the following were the most 

important associations with the intermediate monocyte count at 24 hours: neutrophil 

count at 6 hours after LPS (p < 0.001; Figure 5.4A), non-classical monocyte count at 

24 hours (p = 0.001; Figure 5.4B), neutrophil count at 4 hours (p = 0.003) and 

platelet-monocyte reactivity to ADP assessed at baseline (p=0.01; Figure 5.4C). In 

the random forests model, these 4 variables accounted for 57% of the variation in the 

intermediate monocyte count at 24 hours (p < 0.001). The random forest model was 

validated by training on the first 80% of subjects and ensuring accuracy of 

predictions in the final unseen 20% (R2 = 0.66; p = 0.01; see Appendix). Standard 

Spearman correlation also confirmed significant positive correlation between the 

intermediate monocyte count at 24 hours and the neutrophil count at 6 hours (ρ = 

0.48; p = 0.007; Figure 5.4A) and non-classical monocyte count at 24 hours (ρ = 

0.42; p = 0.02; Figure 5.4B). In contrast, there was an inverse relationship between 

platelet reactivity at baseline (as assessed by the formation platelet-monocyte 
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aggregates in response to ADP ex vivo) and the subsequent levels of intermediate 

monocytes at 24 hours after LPS administration (ρ = -0.39; p=0.04). 
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Figure 5.4 Correlation (A) between intermediate monocyte count at 24 hours and the neutrophil 

count, non-classical monocyte count and formation of platelet-monocyte aggregates in response 

to ADP at baseline. Random forest partial dependence plots (B) showing partial dependence of 

intermediate monocyte count at 24 hours on neutrophil count, non-classical monocyte count and 

formation of platelet-monocyte aggregates in response to ADP at baseline. 

Correlation co-efficient determined using Spearman’s rank. Random forest analyses performed as 

detailed in methods section and appendix. 

A 

B 
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5.6 LPS has differential effects on classical, intermediate and 

non-classical monocytes in vitro 

Monocyte expression of CD14, CD16 and CD11b were determined after 1 hour of 

stimulation with 10 and 100 ng/ml of LPS in vitro, in order to assess the direct effects 

of LPS on each of the monocyte phenotypes (see 3.1.14). In the samples that had 

been pre-incubated with the vehicle control (DMSO), classical monocyte expression 

of CD14 significantly increased following exposure to 10 ng/ml LPS compared to 

PBS (73,997 ± 4726 MF vs 58795 ± 7831; p = 0.009; Figure 5.5). There was no 

additional effect of 100 ng/ml LPS compared to 10 ng/ml LPS and there were no 

modulatory effects of ticagrelor (all p > 0.05; Figure 5.5). In the DMSO samples, 10 

ng/LPS also increased intermediate monocyte expression of CD14 compared to PBS 

(60,234 ± 9,400 vs. 48,973 ± 6679; p = 0.007; Figure 5.5). Again, there was no 

further increase with 100 ng/ml LPS and there were no modulatory effects of 

ticagrelor. Non-classical monocyte CD14 expression was lower at baseline and did 

not significantly increase following exposure to LPS (Figure 5.5). 

In the DMSO samples, there was a low-level significant increase in classical 

monocyte median fluorescence of CD16 following exposure to 10 ng/ml LPS 

compared to PBS (926 ± 150 vs. 658 ± 86; p = 0.03; Figure 5.5). There was no 

additional effect of 100 ng/ml LPS and no modulatory effect of ticagrelor (Figure 

5.5). In contrast, in the DMSO samples, there was a significant reduction in 

intermediate monocyte expression of CD16 16,767 ± 4,043 vs. 7,511 ± 1,284; p = 

0.003; Figure 5.5). There was no additional effect of 100 ng/ml LPS and no 

significant modulatory effect of ticagrelor. In the DMSO samples, 10 ng/ml LPS also 

decreased non-classical monocyte expression of CD16 compared to PBS (44,678 ± 

3062 vs. 15,496 ± 1,682; p < 0.001; Figure 5.5). There was no additional effect of 

100 ng/ml LPS and no significant effect of ticagrelor (Figure 5.5). 

In the DMSO samples, 10 ng/ml LPS significantly increased classical and 

intermediate monocyte expression of CD11b compared to PBS (117,0000 ± 8,892 vs. 

61,2444 ± 13,446; p < 0.001; Figure 5.5). There was no additional effect of 100 

ng/ml and no significant modulatory effects of ticagrelor. In the DMSO samples, 10 

ng/ml LPS also significantly increased intermediate monocyte expression of CD11b 

compared to PBS (110,538 ± 5,310 vs. 55,658 ± 11,646; p < 0.001; Figure 5.5). 
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Similarly, there was no additional effect of 100 ng/ml LPS and no modulatory effect 

of ticagrelor. LPS did not increase non-classical monocyte expression of CD11b and 

there were no significant modulatory effects of ticagrelor (Figure 5.5).  
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Figure 5.5 Dose-dependent effects of LPS and the impact of ticagrelor on monocyte expression of 

CD14 (A), CD16 (B) and CD11b (C).  

Data expressed as mean ± SEM (n=4). Effect of LPS and ticagrelor (both compared to control) 

determined using 2-way ANOVA with Dunnett’s correction for multiple comparisons (*p<0.05, 

**p<0.01 and ***p<0.001). 
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5.7 Effect of LPS on monocyte adhesion molecules, 

chemokine receptors and toll-like receptors is not 

directly influenced by P2Y12 inhibition in vitro 

Whole blood was incubated with LPS (100 ng/ml) for 1 hour at 37° C and classical, 

intermediate and non-classical monocyte expression of adhesion molecules, 

chemokine receptors and toll-like receptors was investigated by flow cytometry. The 

modulatory effects of ticagrelor and cangrelor were investigated (see 3.1.14). 

Changes in monocyte expression of CD14, CD16 and CD11b were similar to the 

results described in the previous section (Figure 5.6). There were no significant 

modulatory effects of ticagrelor or cangrelor. 

In the unstimulated DMSO samples, classical monocyte expression of CCR2 was 

higher than in intermediate monocytes (18,342 ± 6,859 vs. 8,835 ± 4,115; p = 0.005; 

Figure 5.7) and non-classical monocytes (18,342 ± 6,859 vs. 3,288 ± 639; p < 0.001; 

Figure 5.7). LPS decreased classical monocyte expression of CCR2 compared to PBS 

(13,394 ± 4,497 vs. 18,342 ± 6,859; p = 0.006), but had no significant effect on 

intermediate or non-classical monocytes (Figure 5.7). There were no significant 

modulatory effects of ticagrelor or cangrelor (Figure 5.7). Levels of expression of 

CXCR2 were similar on classical, intermediate and non-classical monocytes and 

there was no effect of LPS or modulatory effect of ticagrelor of cangrelor (Figure 

5.7). 

In the unstimulated DMSO samples, intermediate monocyte expression of TLR4 was 

higher than in classical monocytes (10,877 ± 1,004 vs. 5,309 ± 1,532; p = 0.007; 

Figure 5.8). There was no significant change in TLR4 expression in response to LPS 

and there was no modulatory effect of ticagrelor (Figure 5.8). In the unstimulated 

DMSO samples, intermediate monocytes had higher expression of TLR2 than 

classical monocytes, which had higher expression than non-classical monocytes (each 

comparison p < 0.05; Figure 5.8). In the DMSO samples, LPS significantly increased 

classical monocyte TLR2 compared to PBS (54,686 ± 8006 vs. 41,935 ± 9007; p = 

0.02; Figure 5.8). LPS did not significantly affect intermediate or non-classical 

monocyte TLR2 and there were no modulatory effects of ticagrelor and cangrelor 

(Figure 5.8). 
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Figure 5.6 Effect of LPS on classical, intermediate and non-classical monocyte expression of 

CD14 (A), CD16 (B) and CD11b (C).  

Data expressed as mean ± SEM (n=7). Effect of LPS and cangrelor and ticagrelor (each compared to 

their respective control) determined using 2-way ANOVA with Dunnett’s correction for multiple 

comparisons (*p<0.05, **p<0.01 and ***p<0.001). 
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Figure 5.7 Effect of LPS on classical, intermediate and non-classical monocyte expression of the 

chemokine receptors CCR2 (A) and CXCR2 (B). 

Data expressed as mean ± SEM (n=4). Effect of LPS and cangrelor and ticagrelor (each compared to 

their respective control) determined using 2-way ANOVA with Dunnett’s correction for multiple 

comparisons = (*p<0.05, **p<0.01 and ***p<0.001). 

 

Figure 5.8 Effect of LPS on classical, intermediate and non-classical monocyte expression of the 

toll-like receptors TLR4 (A) and TLR2 (B). 

Data expressed as mean ± SEM (n=3). Effect of LPS and cangrelor and ticagrelor (each compared to 

their respective control) determined using 2-way ANOVA with Dunnett’s correction for multiple 

comparisons (*p<0.05, **p<0.01 and ***p<0.001).  
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5.8 Discussion 

The intermediate monocyte population has recently been shown to increase in 

number during sepsis, ACS and heart failure (Mukherjee et al., 2015; Wrigley et al., 

2013; Tapp et al., 2012). It has been suggested that this increase in intermediate 

monocyte count may be due to mobilization from the marginal pool of monocytes 

that reside in close association with the endothelium in the spleen, lungs and liver 

(Ziegler-Heitbrock, 2015; Ginhoux & Jung, 2014). 

TLR4-mediated response to LPS is central to the pathophysiology of gram negative 

sepsis (Schouten et al., 2008). It was hypothesized that mobilization of the 

intermediate population during sepsis is due to response to LPS. The effect of LPS on 

intermediate monocyte mobilization was investigated by intravenous injection of LPS 

into healthy volunteers. Platelet-monocyte interactions increase monocyte expression 

of adhesion molecules and immobilized, endothelium-bound platelets directly 

facilitate monocyte adhesion to the endothelium. It was therefore also hypothesized 

that platelet-monocyte interactions may limit monocyte mobilization from the 

marginal pool. Intermediate monocyte mobilization was investigated in the presence 

and absence of the P2Y12 inhibitors clopidogrel and ticagrelor, which inhibit platelet-

monocyte interactions as demonstrated in Chapter 4. 

The results of this chapter provide several novel findings relating to the mobilization 

of intermediate monocytes in response to systemic inflammation induced by LPS in 

humans. LPS caused a marked expansion of the intermediate monocyte population 

and this was potentiated by platelet P2Y12 inhibitors, which inhibit platelet-monocyte 

interactions. At 24 hours after LPS administration there was a 6-fold rise in the 

intermediate monocyte count in subjects that had not received P2Y12 inhibitors. In 

addition to differences in CD14 and CD16, intermediate monocytes express greater 

levels of TLR2 and CD11b and lower levels of the chemokine receptors CCR2 and 

CXCR2 than classical monocytes. The greatly expanded population of intermediate 

monocytes appeared phenotypically similar to the baseline intermediate monocytes as 

they expressed similar levels of CD14, CD16, CD11b, CCR2, CXCR2, TLR2 and 

TLR4. The much higher proportion of intermediate monocytes at 24 hours after LPS 

may therefore modify subsequent inflammatory responses by altering the balance of 
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expression of adhesion molecules, toll-like receptors and chemokine receptors 

compared to classical monocytes. 

The increase in intermediate monocyte population at 24 hours after LPS 

administration was associated with higher neutrophil and non-classical monocyte 

counts. This likely reflects that a similar physiological process underlies mobilization 

of intermediate monocytes, neutrophils and non-classical monocytes. The platelet 

P2Y12 inhibitors clopidogrel and ticagrelor significantly potentiated the increase in 

intermediate monocyte count. Furthermore, the increase in intermediate monocyte 

count was greatest in subjects who displayed reduced platelet-monocyte aggregate 

formation in response to ADP. Platelet-monocyte interactions increase the 

adhesiveness of monocytes to endothelium, which may limit monocyte mobilization 

from the marginal pool. Inhibition of platelet-monocyte interactions therefore 

represents a mechanism by which platelet P2Y12 inhibition may potentiate 

mobilization of intermediate monocytes. Interestingly though, clopidogrel was 

associated with a non-statistically significant greater number of intermediate 

monocytes at 24 hours than ticagrelor, despite lower levels of platelet P2Y12 

inhibition than ticagrelor. This difference between the drugs was not statistically 

significant and is therefore difficult to interpret. Ticagrelor increases plasma levels of 

adenosine, whereas clopidogrel does not (Bonello et al., 2014). As adenosine is 

recognised to alter monocyte differentiation (Merrill et al., 1997), it is therefore 

possible that this mechanism may cause additional non-P2Y12 mediated effects on 

monocyte dynamics. Although the marginal pool is an established source of CD16+ 

monocytes, it is largely unknown whether intermediate monocytes in humans can be 

derived from classical monocytes or whether they are produced directly by the bone 

marrow. In-vitro experiments did not reveal any clear direct effects of either LPS or 

ticagrelor on monocyte phenotype. 

It is well-established that both clopidogrel and ticagrelor reduce the incidence of 

adverse cardiovascular events in patients with ACS (Grove et al., 2015). 

Additionally, platelet P2Y12 inhibitors have been associated with a reduced risk of 

mortality during sepsis (Tsai et al., 2015). Further work is therefore needed to 

establish whether platelet P2Y12 inhibitors alter intermediate monocyte populations in 

these diseases and whether this contributes to their benefit or whether it represents an 

adverse off-target effect. In addition, further work is needed to understand the 
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functional role of intermediate monocytes in these conditions. Although initial 

reports from in vitro experiments with isolated cells suggested that intermediate 

monocytes may produce pro-inflammatory cytokines, such as TNFα, more recent 

investigations in whole blood have demonstrated that intermediate monocytes may 

actually produce anti-inflammatory cytokines such as IL-10 (Mukherjee et al., 2015). 

Higher levels of intermediate monocytes are associated with increased mortality in 

patients with ACS, but it is not known whether this simply reflects a greater 

ischaemic and inflammatory insult leading to a confounding increase in mortality. In 

fact, higher levels of intermediate monocytes have been associated with reduced left 

ventricular function in particular (Stansfield et al. 2015), which raises the possibility 

that they may be involved in myocardial repair. 

In conclusion, there is a marked expansion of the intermediate monocyte count 

following bacterial endotoxaemia and this is potentiated by platelet P2Y12 inhibitors, 

which inhibit platelet-monocyte interactions. Further work is needed to clarify the 

role of intermediate monocytes in sepsis, ACS and other inflammatory conditions. 
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6 Adenosine-mediated effects of 
ticagrelor on innate immune 
activation in vitro 

6.1 Introduction 

The main mechanism of action of ticagrelor is potent platelet P2Y12 inhibition. 

However, in addition, ticagrelor is also known to weakly inhibit cellular uptake of 

adenosine (van Giezen et al., 2012), which has been shown to increase extracellular 

levels of adenosine (Bonello et al., 2014). Although ticagrelor causes relatively weak 

inhibition of adenosine uptake (Armstrong et al., 2014), the effects appear to be 

clinically significant, because ticagrelor potentiates the effects of adenosine on 

coronary blood flow and adenosine-induced dyspnoea in patients (Alexopoulos et al., 

2013; Wittfeldt et al., 2013). Furthermore, in animal models, ticagrelor reduces 

myocardial infarct size and improves subsequent remodelling, mediated by adenosine 

(Ye et al., 2015; Nanhwan et al., 2014). 

Ticagrelor may therefore have additional non-P2Y12 mediated effects on innate 

immune activation due to the effect of adenosine. Adenosine is produced from the 

degradation of ATP and is released during cellular stress, such as during hypoxia, 

ischaemia and inflammation. The effects of adenosine are mediated by 4 G-protein-

coupled adenosine receptors, namely A1, A2A, A2B and A3, which are ubiquitously 

expressed (Haskó & Pacher, 2012). A1 and A3 receptors are coupled to Gi and 

decrease intracellular levels of cAMP, whereas A2A and A2B are generally considered 

to be coupled to Gs and Gq and increase intracellular levels of cAMP (Barletta et al., 

2012; Haskó & Pacher, 2012). A1 and A3 receptors have high affinity and are 

activated at nanomolar concentrations of adenosine, whereas A2A and A2B receptors 

have lower affinity and are activated at micromolar concentrations of adenosine 

(Barletta et al., 2012; Haskó & Pacher, 2012). To further complicate matters, 

leukocytes can produce adenosine and the expression of adenosine receptors is also 

dynamic (Barletta et al., 2012; Haskó & Pacher, 2012). The effects of adenosine are 

therefore complex and adenosine can either have stimulatory or suppressive effects 

depending on the concentration of adenosine in the microenvironment (Barletta et al., 

2012; Haskó & Pacher, 2012). 
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At nanomolar concentrations, adenosine has predominantly pro-inflammatory effects 

and upregulates a number of monocyte/macrophage and neutrophil pro-inflammatory 

functions, including phagocytosis and chemotaxis (Table 6.1 and Table 6.2). At 

higher concentrations, adenosine has predominantly anti-inflammatory effects and 

limits excessive innate immune activation by downregulating phagocytosis, 

chemotaxis and release of TNFα (Table 6.1 and Table 6.2). 

Erythrocytes rapidly take up adenosine by ENT1, resulting in a very short half life of 

less than 10 seconds in the blood. However, ENT1 is also expressed by a wide range 

of cell types and this mechanism therefore also regulates adenosine levels within 

tissues. As ticagrelor inhibits ENT1 and therefore inhibits erythrocyte uptake of 

adenosine, it was hypothesized that this would preserve the effects of adenosine on 

leukocytes in the presence of erythrocytes. The impact of adenosine uptake inhibition 

on leukocytes was therefore investigated by studying the effect of adenosine on 

leukocytes in the presence and absence of erythrocytes in the presence or absence of 

ticagrelor and another more potent ENT1 inhibitor, dipyridamole (Armstrong et al., 

2014). Work in our department established that adenosine potentiates chemotaxis in 

isolated neutrophils and that this effect is abolished in the presence of erythrocytes 

(Alsharif et al., 2015). The effect of adenosine is preserved in the presence of 

ticagrelor or dipyridamole however (Alsharif et al., 2015). The work included in this 

chapter demonstrates the effects of this mechanism on phagocytosis of isolated 

neutrophils. In addition, the effects of this mechanism on leukocyte activation were 

also investigated by measuring neutrophil and monocyte expression of the adhesion 

molecule CD11b in response to the leukocyte agonists LPS and FMLP.    
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Table 6.1 Influence of adenosine receptors on neutrophil function 

 A1 A3 A2A A2B 

Phagocytosis  

(Zalavary et al., 
1994; Salmon & 
Cronstein, 1990) 

  

(Zalavary et al., 1994; 
Salmon & Cronstein, 
1990) 

 

Chemotaxis  

(Cronstein et al., 
1990; Rose, 1988) 

 

(Chen, Corriden, 
et al., 2006) 

 

(Cronstein et al., 1990) 

 

Apoptosis    

(Yasui et al., 2000; 
Walker et al.) 

 

Adhesion  

(Cronstein et al., 
1992) 

 

(S. Armstrong & 
Ganote, 1994) 

 

 

(Sullivan et al., 2004) 

 

Transmigration  

 

   

(Wakai et al., 
2001) 

Superoxide 
production 

 

(Salmon & 
Cronstein, 1990) 

  

(Visser et al., 2000; 
Sullivan et al., 1999; 
1995; Stewart & Harris, 
1993; Kubersky et al., 
1989) 

 

(van der Hoeven 
et al., 2011) 

Degranulation   

(Bouma et al., 
1997) 

 

(Sullivan et al., 2004; 
Visser et al., 2000; 
Bouma et al., 1997; 
Richter, 1992) 

 

Pro-inflammatory effects indicated by a red arrow and anti-inflammatory effects indicated by a blue 

arrow. 
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Table 6.2 Influence of adenosine receptors on mononuclear phagocyte function 

 A1 A3 A2A A2B 

Differentiation 
into giant 
cells 

 

(Merrill et al., 
1997) 

  

(Merrill et al., 1997) 

 

Phagocytosis  

(Salmon et al., 
1993) 

  

(Salmon et al., 1993) 

 

Chemotaxis  

(Schnurr et al., 
2004) 

  

(Schnurr et al., 2004) 

 

Superoxide 
generation 

   

(Elliott & Leonard, 1989) 

 

Nitric oxide 
release 

 

(Haskó, Szabó, 
Nemeth, Kvetan, 
Pastores, & Vizi, 
1996a) 

 

 

 

(Haskó, Szabó, Nemeth, 
Kvetan, Pastores, & Vizi, 
1996b) 

 

IL-12 release    

(Haskó et al., 2000) 

 

TNFα release  

(Haskó, Szabó, 
Nemeth, Kvetan, 
Pastores, & Vizi, 
1996a) 

 

(Haskó, Szabó, 
Nemeth, 
Kvetan, 
Pastores, & 
Vizi, 1996a) 

 

(Haskó et al., 2000; Haskó, 
Szabó, Nemeth, Kvetan, 
Pastores, & Vizi, 1996a) 

 

(Kreckler et 
al., 2006) 

MIP-1α 
release 

  

(Szabó	et	al.,	
1998) 

 

(Szabó et al., 1998) 

 

IL-10 release  

(Haskó, Szabó, 
Nemeth, Kvetan, 
Pastores, & Vizi, 
1996a) 

 

(Haskó, Szabó, 
Nemeth, 
Kvetan, 
Pastores, & 
Vizi, 1996b) 

 

(Haskó, Szabó, Nemeth, 
Kvetan, Pastores, & Vizi, 
1996b) 

 

Pro-inflammatory effects indicated by a red arrow and anti-inflammatory effects indicated by a blue 

arrow. 
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6.2 Ticagrelor potentiates adenosine-induced stimulation of 

neutrophil phagocytosis 

The effect of adenosine, at low (10-8 M) and high concentrations (10-5 M), was 

determined on phagocytosis of opsonized S.pneumoniae (pneumococcus) by 

neutrophils over a 30 minute period (see 3.2.4). 

In isolated neutrophils, a nanomolar concentration of adenosine (10-8 M) significantly 

increased the percentage of neutrophils phagcoytosing S.pneumoniae compared to the 

vehicle control RPMI (51 ± 4% vs. 43 ± 2%; p = 0.005; Figure 6.1) and significantly 

increased the phagocytic index (98 ± 21 vs. 60 ± 10; p = 0.04). In contrast, a 

micromolar concentration of adenosine (10-5 M) had no significant effect (Figure 

6.1). 

The effect of adenosine was then investigated in the presence of erythrocytes (red 

blood cells [RBC]). It was necessary to dilute the concentration of erythrocytes to 

allow assessment of neutrophil phagocytosis be microscopy. In samples that had been 

treated with the vehicle control (DMSO), neither a nanomolar or micromolar 

concentration of adenosine had any effect on the percentage of neutrophils 

phagocytizing or the phagocytic index (Figure 6.2A and B). However, in samples that 

had been pre-treated with ticagrelor (10 µM), the stimulatory effect of a nanomolar 

concentration of adenosine was preserved. In these samples, adenosine (10-8 M) 

significantly increased the percentage of neutrophils phagocytizing compared to 

control (16 ± 2% vs. 11 ± 2%; p = 0.002; Figure 6.2A and B). 

The mechanism by which ticagrelor potentiated the effect of adenosine was then 

investigated by the use of the specific A1 receptor antagonist DPPX. Ticagrelor no 

longer preserved the effect of adenosine when DPCPX was present, demonstrating 

that the stimulatory effect was mediated by adenosine A1 receptors (Figure 6.2C and 

D) 



 126 

 
Figure 6.1 Effect of adenosine on percentage of neutrophils phagocytosing (A) and the 

phagocytic index (B) of isolated neutrophils with no erythrocytes present 

Data expressed as mean ± SEM (n=8). Effect of adenosine determined using 1-way ANOVA with 

Dunnett’s correction for multiple comparisons (*p<0.05, **p<0.01 and ***p<0.001). 

 

 
Figure 6.2 Modulatory effect of ticagrelor on A1-mediated effects of adenosine on percentage of 

neutrophils phagocytosing (A and C) and the phagocytic index (B and D) of isolated neutrophils 

in the presence of erythrocytes. 

Data expressed as mean ± SEM (n=8 [A and B] and n=5 [C and D]). Effect of LPS and cangrelor and 

ticagrelor (each compared to their respective control) determined using 2-way ANOVA with Dunnett’s 

correction for multiple comparisons (*p<0.05, **p<0.01 and ***p<0.001). 
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6.3 Adenosine has minimal effect on LPS-induced changes in 

isolated neutrophil expression of CD11b, CXCR1 and 

CD16 

Isolated neutrophils were then pre-incubated with adenosine and their reactivity to 

LPS over 30 minutes was determined by measurement of CD11b, CXCR1 and CD16 

using flow cytometry (see 3.2.5). Neutrophil CD11b expression is upregulated in 

response to LPS and has a critical role in neutrophil adhesion (Zhou et al., 2005). The 

chemokine receptor CXCR1 is activated by IL-8 and plays a critical role in 

neutrophil chemotaxis (Sabroe et al., 2005). Neutrophil expression of CXCR1 is 

downregulated in response to LPS (Sabroe et al., 2005). The FcγRIII receptor CD16 

has an important role in response to immunoglobulin-opsonized bacteria and 

phagocytosis (Bredius et al., 1994) and neutrophil expression of CD16 is 

downregulated in response to LPS (Wagner et al., 2003). 

A high concentration of adenosine (10-4 M) reduced expression of CD11b in 

unstimulated isolated neutrophils (Figure 6.3A). Compared to PBS vehicle control, 

LPS caused a dose-dependent increase in isolated neutrophil expression of CD11b 

(Figure 6.3A). Nanomolar concentrations of adenosine did not significantly affect 

LPS-induced CD11b expression (Figure 6.3A). Higher concentrations of adenosine 

(10-5 M and 10-4 M), did significantly reduce LPS-induced CD11b expression but 

only by approximately 10-15% (Figure 6.3A). 

Neutrophil expression of CXCR1 was downregulated in a dose-dependent manner by 

LPS, but this was not significantly affected by any of the concentrations of adenosine 

(Figure 6.3B). 

Neutrophil expression of CD16 was downregulated in response to LPS (Figure 6.3C). 

A high concentration of adenosine (10-4 M) reduced neutrophil expression of CD16 

in unstimulated and LPS stimulated samples, but only by approximately 10-15% 

(Figure 6.3C). 
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Figure 6.3 Effect of adenosine on LPS-induced expression of CD11b (A), CXCR1 (B) and CD16 

(C) on isolated neutrophils 

Data expressed as mean ± SEM (n = 6). The effect of LPS and the effect of adenosine (both compared 

to their respective controls) determined using 2-way ANOVA with Dunnett’s correction for multiple 

comparisons (*p<0.05, **p<0.01 and ***p<0.001). 

  



 129 

6.4 Adenosine dose-dependently modifies FMLP-induced 

changes in isolated neutrophil expression of CD11b, 

CXCR1 and CD16 

FMLP is a naturally occurring bacterial peptide that stimulates neutrophils through 

the FMLP receptor (Torres et al., 1993). Isolated neutrophils were stimulated with 

FMLP for 30 minutes and the modulatory effect of pre-incubation with adenosine 

was determined (see 3.2.6). FMLP at concentrations of 10-8 M, 10-7 M and 10-6 M 

increased neutrophil expression of CD11b. Compared to PBS (vehicle control), 10-4 

M adenosine significantly reduced CD11b expression in response to FMLP at 

concentrations of 10-8 M, 10-7 M and 10-6 M (all p < 0.01; Figure 6.4A). Adenosine 

10-9 M significantly potentiated isolated neutrophil expression of of CD11b in 

response to FMLP 10-7 M compared to control (61,188 ± 6,515 vs. 51,548 ± 3,059; 

p=0.002; Figure 6.4A). Adenosine at 10-5 M significantly reduced neutrophil 

expression of CD11b compared to control in response to this concentration of FMLP 

(44,217 ± 1,803 vs. 51,549 ± 3,059; p = 0.03; Figure 6.4A). 

In unstimulated samples, 10-4 M adenosine significantly reduced neutrophil 

expression of CXCR1 compared to the PBS vehicle control (4,990 ± 502 vs. 5,871 ± 

687; p = 0.003; Figure 6.4B). FMLP reduced neutrophil expression of CXCR1 and 

this was inhibited by higher concentrations of adenosine. Adenosine at concentrations 

of 10-7 M, 10-6 M, 10-5 M and 10-4 M significantly reduced the decrease in neutrophil 

expression of CXCR1 that was induced by FMLP at concentrations of 10-7 M and 10-

6 M (all p <0.001; Figure 6.5B). For example, 10-5 adenosine significantly reduced 

the decrease in neutrophil expression of CXCR1 in response to 10-7 M FMLP, 

resulting in a higher level of CXCR1 expression compared to samples without 

adenosine (3,192 ± 430 vs. 1,838 ± 443; p < 0.001; Figure 6.4B). 

In unstimulated samples, 10-4 M adenosine significantly reduced neutrophil 

expression of CD16 compared to PBS vehicle control (87,574 ± 4,097 vs. 97,558 ± 

5,782; p = 0.003). Neutrophil expression of CD16 significantly decreased following 

stimulation by FMLP at concentrations of 10-8 M, 10-7 M and 10-6 M (all p < 0.05; 

Figure 6.4C). Although this decrease was significantly attenuated by higher 
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concentrations of adenosine, adenosine only modified levels of CD16 expression by 

approximately 10% or less (Figure 6.4C). 
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Figure 6.4 Effect of adenosine on FMLP-induced expression of CD11b (A), CXCR1 (B) and 

CD16 (C) on isolated neutrophils. 

Data expressed as mean ± SEM (n = 8). The effect of FMLP and the effect of adenosine (both 

compared to their respective controls) determined using 2-way ANOVA with Dunnett’s correction for 

multiple comparisons (*p<0.05, **p<0.01 and ***p<0.001). 
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6.5 Erythrocytes abolish the effect of adenosine on FMLP-

induced changes in neutrophil expression of CD11b, 

CXCR1 and CD16 

Next, it was investigated whether the effects of adenosine are abolished in the 

presence of erythrocytes, which take up adenosine. It was investigated whether the 

effects of adenosine persisted for 5 and 30 minutes of stimulation of neutrophils with 

10-7 M FMLP (see 3.2.7). Neutrophil expression of CD11b was significantly 

increased by 5 and 30 minutes of exposure to FMLP (all p < 0.001; Figure 6.5A). In 

isolated neutrophils, 10-5 M adenosine significantly reduced neutrophil expression of 

CD11b in response to 5 minutes stimulation with FMLP (37,575 ± 4,890 vs. 56,308 ± 

5,917; p < 0.001; Figure 6.5A).  

A), whereas 10-8 M adenosine did not have a significant effect. Even after 30 minutes 

stimulation with FMLP, 10-5 M adenosine still significantly reduced CD11b 

expression (p < 0.001). The addition of erythrocytes in a 5:1 ratio with neutrophils 

did not modify the effect of adenosine. However, 10-5 M adenosine no longer 

significantly reduced FMLP-induced CD11b expression in the presence of 

erythrocytes at 1000:1 ratio with neutrophils. 

In isolated unstimulated neutrophils, 10-8 M adenosine significantly increased  

expression of CXCR1 (p < 0.001; Figure 6.5B), whereas 10-5 M adenosine had no 

effect. In the presence of erythrocytes, both 10-8 M and 10-5 M adenosine reduced 

neutrophil expression of CXCR1 however (all p<0.001; Figure 6.5). 10-5 M 

adenosine significantly attenuated the FMLP-induced decrease in CXCR1 expression 

and this effect was abolished by the addition of erythrocytes in 1000:1 ratio with 

neutrophils but not at the lower concentration of erythrocytes (Figure 6.5B). 

30 minutes stimulation with FMLP induced a significant decrease in neutrophil 

expression of CD16, which was significantly attenuated by 10-5 M adenosine (p = 

0.02 (Figure 6.5C). This effect was abolished by the addition of erythrocytes in 

1000:1 ratio with neutrophils but not by the lower concentration of erythrocytes 

(Figure 6.5C). 

 



 133 

 

Figure 6.5 Effect of adenosine on the expression of CD11b (A), CXCR1 (B) and CD16 (C) in 

isolated neutrophils following 5 and 30 minutes of stimulation with FMLP. 

Data expressed as mean ± SEM (n = 4). The effect of FMLP and the effect of adenosine (both 

compared to their respective controls) determined using 2-way ANOVA with Dunnett’s correction for 

multiple comparisons (*p<0.05, **p<0.01 and ***p<0.001). 
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6.6 Inhibition of erythrocyte uptake of adenosine preserves 

its effects on FMLP-induced changes in neutrophil 

expression of CD11b 

Dipyridamole is a well-established potent inhibitor of adenosine uptake (Gresele et 

al., 1986). The previous section’s results demonstrated that erythrocytes take up 

adenosine, thereby abolishing its effect. It was next investigated whether inhibiting 

erythrocyte uptake of adenosine preserves the effects of adenosine in whole blood 

(see 3.2.8). 5 and 30 minutes of stimulation with 10-7 M FMLP significantly 

increased neutrophil expression of CD11b compared to PBS vehicle control (all p < 

0.001). The inhibitory effect of 10-5 adenosine was preserved by dipyridamole and 

this was most marked when adenosine was added at the same time as the FMLP, 

rather than when adenosine was added 4 minutes before FMLP (Figure 6.6A). 

Although 5 and 30 minutes stimulation with FMLP also significantly increased 

monocyte expression of CD11b (p < 0.001) and significantly decreased neutrophil 

expression of CXCR1, no modulatory effects of adenosine or dipyridamole were seen 

(Figure 6.6B and C). 
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Figure 6.6 Effect of dipyridamole on neutrophil expression of CD11b (A), monocyte expression 

of CD11b (B) and neutrophil expression of CXCR1 (C) in response to FMLP. 

Data expressed as mean ± SEM (n = 6). The effect of FMLP and the effect of adenosine and 

dipyridamole (each compared to their respective controls) determined using 2-way ANOVA with 

Dunnett’s correction for multiple comparisons (*p<0.05, **p<0.01 and ***p<0.001). 
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6.7 Effect of timing of pre-incubation of adenosine on 

subsequent response to FMLP 

In whole blood, the effects of adenosine were most prominent on FMLP-induced 

changes in neutrophil expression of CD11b and CXCR1 and monocyte expression of 

CD11b. These effects were therefore investigated in more detail in the following 

sections. It became apparent that the duration of pre-incubation of leukocytes with 

adenosine had a significant impact on the effect of adenosine, even in the presence of 

adenosine uptake inhibitors. Even in the presence of ticagrelor, the effect of 10-5 M 

adenosine on neutrophil expression of CD11b was most prominent when it was added 

at the same time as FMLP rather than pre-incubating the blood with adenosine for up 

to a minute (Figure 6.7A). In the presence of ticagrelor, the effects of adenosine on 

monocyte CD11b and neutrophil CXCR1 appeared more prolonged (Figure 6.7B and 

C). 
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Figure 6.7 Effect of duration of pre-incubation with adenosine on FMLP induced expression of 

neutrophil CD11b (A), monocyte CD11b (B) and neutrophil CXCR1 (C) in the presence of 

ticagrelor. 

Data expressed as mean ± SEM (n = 6). The effect of FMLP and the effect of ticagrelor and adenosine 

(each compared to their respective controls) determined using 1-way ANOVA with Dunnett’s 

correction for multiple comparisons for the cytokines (*p<0.05, **p<0.01 and ***p<0.001). 
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6.8 Ticagrelor and dipyridamole inhibit FMLP-induced 

expression of CD11b in neutrophils 

It was next investigated whether ticagrelor and dipyridamole preserved the effect of 

adenosine on FMLP-induced changes in leukocyte expression of CD11b and CXCR1 

in whole blood. FMLP (10-7 M) significantly increased neutrophil expression of 

CD11b in whole blood. In the DMSO (vehicle control) samples, 10-8 M adenosine 

and 10-5 adenosine had no effect on neutrophil expression of CD11b. Ticagrelor 

alone significantly reduced FMLP-induced neutrophil CD11b expression compared 

to DMSO (38,800 ± 6,104 vs. 48,111; p < 0.001; Figure 6.8A). The combination of 

ticagrelor and adenosine also significantly reduced FMLP-induced neutrophil CD11b 

expression compared to DMSO (41,550 ± 5,215 vs. 47,558 ± 6,627; p = 0.005; 

Figure 6.8A).  

Similarly, dipyridamole alone and the combination of dipyridamole and adenosine 

significantly reduced FMLP-induced neutrophil CD11b expression (both p < 0.01; 

Figure 6.8A). FMLP-induced monocyte CD11b expression was only significantly 

reduced compared to DMSO control by the combination of ticagrelor and adenosine 

(27,390 ± 4,278 vs. 31,017 ± 5,141; p = 0.03; Figure 6.8B) and the combination of 

dipyridamole and adenosine (26,298 ± 3,042 vs. 31,017; p = 0.002; Figure 6.8).  

There was no significant effect of adenosine, ticagrelor or dipyridamole on neutrophil 

expression of CXCR1 in whole blood (Figure 6.8C). 
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Figure 6.8 Modulatory effect of ticagrelor and dipyridamole on neutrophil expression of CD11b 

(A), monocyte expression of CD11b (B) and neutrophil expression of CXCR1 (C) in response to 

FMLP. 

Data expressed as mean ± SEM (n = 8). The effect of FMLP and the effect of adenosine, ticagrelor and 

dipyridamole determined using 2-way ANOVA with Dunnett’s correction for multiple comparisons 

for the cytokines (*p<0.05, **p<0.01 and ***p<0.001). 
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6.9 Limited additive effect of adenosine uptake inhibition and 

P2Y12 inhibition 

In the previous section’s results, FMLP-induced neutrophil expression of CD11b was 

inhibited by ticagrelor even without the addition of adenosine. These effects may 

have been due to platelet P2Y12 inhibition and the effect of ticagrelor was therefore 

next compared to the P2Y12 inhibitor cangrelor, which does not inhibit adenosine 

uptake (Armstrong et al., 2014). In addition, cangrelor and dipyridamole were used in 

combination to determine whether the effects of P2Y12 inhibition and adenosine 

uptake inhibition are additive. 

In this set of experiments, FMLP-induced neutrophil CD11b expression was only 

significantly inhibited by the combination of ticagrelor and adenosine, dipyridamole 

alone, the combination of dipyridamole and adenosine, and the combination of 

dipyridamole, cangrelor and adenosine (all p < 0.05; Figure 6.9A). The combination 

of dipyridamole, cangrelor and adenosine did not provide any greater inhibition than 

the combination of dipyridamole and adenosine (Figure 6.9). 

FMLP-induced monocyte CD11b expression was inhibited by adenosine alone in this 

set of experiments and was also inhibited the combination of ticagrelor and 

adenosine, the combination of dipyridamole and adenosine, and the combination of 

dipyridamole, cangrelor and adenosine (all p < 0.05; Figure 6.9). 

There were no significant effects of adenosine, cangrelor, ticagrelor or dipyridamole 

on neutrophil CXCR1 expression (Figure 6.9). 
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Figure 6.9 Modulatory effect of cangrelor, ticagrelor and dipyridamole on the effects of 

adenosine on neutrophil expression of CD11b (A), monocyte expression of CD11b (B) and 

neutrophil expression of CXCR1 (C) in response to FMLP. 

Data expressed as mean ± SEM (n = 4). The effect of FMLP and the effect of adenosine, cangrelor, 

ticagrelor and dipyridamole determined using 2-way ANOVA with Dunnett’s correction for multiple 

comparisons (*p<0.05, **p<0.01 and ***p<0.001). 
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6.10  Discussion 

It is now well-established that ticagrelor is a weak inhibitor of cellular uptake of 

adenosine, in addition to its effects on platelet P2Y12 receptors (Cattaneo et al., 2014; 

Bonello et al., 2014; Armstrong et al., 2014; van Giezen et al., 2012). This 

mechanism increases extracellular levels of adenosine, which increases plasma levels 

of adenosine in patients with ACS (Bonello et al., 2014). This mechanism has the 

potential to affect neutrophils and monocytes, which express 4 different adenosine 

receptors. The effects of adenosine on neutrophils and monocytes are complex due to 

dynamic local concentrations. Nanomolar concentrations of adenosine generally have 

pro-inflammatory effects, mediated by A1 and A3, whereas micromolar 

concentrations of adenosine limit excessive innate immune activation and have anti-

inflammatory effects mediated by A2A and A2B (Barletta et al., 2012; Haskó & 

Pacher, 2012). It was therefore hypothesized that inhibition of adenosine uptake by 

ticagrelor may have a combination of pro-inflammatory and anti-inflammatory 

effects, dependent on the concentration of adenosine.  

The results of this chapter provide novel findings relating to the effect of this 

mechanism on neutrophils and monocytes. Ticagrelor potentiated the stimulatory 

effect of nanomolar concentrations of adenosine on neutrophil phagocytosis, which 

was otherwise abolished by erythrocytes. The stimulatory effect of nanomolar 

concentrations of adenosine was mediated by neutrophil A1 receptors. Higher 

concentrations of adenosine act on A2A and A2B receptors and micromolar 

concentrations of adenosine significantly inhibited FMLP-induced changes in 

expression of CD11b, CXCR1 and CD16 in isolated neutrophils, but only had a 

minimal impact on the effects of LPS. Ticagrelor in combination with adenosine 

inhibited FMLP-induced neutrophil and monocyte expression in whole blood, which 

may have been due to a combination of P2Y12 inhibition and adenosine uptake 

inhibition. 

These findings suggest that this adenosine-mediated mechanism of ticagrelor may 

cause a combination of A1- and A3- mediated pro-inflammatory effects and A2A-and 

A2B-mediated anti-inflammatory effects. This may serve to stimulate immune 

responses in the early stages of inflammation and then to limit excessive innate 

immune activation during the later stages of inflammation. Interestingly, adenosine 
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had little effect on the response to LPS, which may help to explain why the effects of 

ticagrelor appeared to be mostly P2Y12 related rather than adenosine-mediated during 

intravenous LPS administration as described in Chapter 4. 
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7 General discussion 
Platelet P2Y12 inhibitors are now some of the most commonly used medications 

worldwide due to their established benefit in the treatment of atherothrombosis 

(Grove et al., 2015). Ticagrelor is a novel P2Y12 inhibitor that has a more rapid onset 

of action and more potent effect than the P2Y12 inhibitor clopidogrel (Gurbel et al., 

2009). In the PLATO study, ticagrelor reduced the incidence of adverse 

cardiovascular events in patients with ACS compared to clopidogrel (9.8% vs. 

11.7%; HR 0.84; p < 0.001). However, ticagrelor also reduced all-cause mortality 

compared to clopidogrel (4.5% vs. 5.9%; HR 0.78; p < 0.001), which was unexpected 

on the basis of previous studies.  

Further analysis of the PLATO study demonstrated that ticagrelor was associated 

with fewer deaths following sepsis than clopidogrel (Varenhorst et al., 2014; Storey 

et al., 2014; Varenhorst et al., 2012). Interestingly, it has also been suggested by other 

observational studies that platelet P2Y12 inhibitors may reduce mortality from sepsis 

(Tsai et al., 2015; Akinosoglou et al., 2014). In addition to being a more potent P2Y12 

inhibitor than clopidogrel, ticagrelor also inhibits cellular uptake of adenosine 

whereas clopidogrel does not (Bonello et al., 2014). Therefore it was hypothesized 

that both of these mechanisms could contribute to a potential beneficial effect of 

ticagrelor during sepsis. The impact of P2Y12 inhibitors on pathophysiological 

processes that are central to sepsis responses in humans were therefore investigated 

using an experimental human model of systemic inflammation that involves the 

injection of intravenous E.coli endotoxin (LPS). 

Intravenous injection of LPS induced the formation of platelet-monocyte aggregates, 

which was inhibited by ticagrelor and to a lesser extent clopidogrel. Platelet-

monocyte interactions upregulate monocyte release of pro-inflammatory cytokines 

(Bournazos et al., 2008). Inhibition of platelet-monocyte aggregate formation 

therefore represents a mechanism by which ticagrelor and clopidogrel reduced the 

release of the major pro-inflammatory cytokines TNFα, IL-6 and CCL2. Ticagrelor, 

but not clopidogrel, also significantly reduced the release of G-CSF and IL-8, which 

may have been due to greater P2Y12 inhibition or could have been related to 

adenosine-mediated effects. Sepsis is characterized by dysregulated response to 
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bacterial components, such as LPS, and excessive innate immune activation causes a 

pro-inflammatory cytokine storm, leading to collateral host tissue damage and 

increased mortality (Angus & van der Poll, 2013). Platelet P2Y12 inhibitors may 

therefore improve mortality from sepsis by limiting excessive pro-inflammatory 

cytokine release. 

Following sepsis, the risk of atherothrombotic events is increased by as much as 20-

fold, by mechanisms that are incompletely understood (Dalager-Pedersen et al., 

2014). For the first time, the results presented in this thesis demonstrate that LPS 

triggers alterations in fibrin clot structure, resulting in more compact clots that 

present greater resistance to fibrinolysis. This demonstrates a mechanism by which 

sepsis may increase the risk of thrombosis. Ticagrelor significantly attenuated these 

prothrombotic changes, which may have been secondary to its reduction in levels of 

pro-inflammatory cytokines, such as TNFα, which activates the extrinsic coagulation 

cascade (van der Poll et al., 1990). 

Platelet-leukocyte interactions also upregulate leukocyte expression of adhesion 

molecules and facilitate adhesion of leukocytes to the endothelium (da Costa Martins 

et al., 2004). Ticagrelor potentiated the increase in neutrophil count that occurred 

following LPS administration, likely due to inhibition of non-specific sequestration 

of neutrophils. At 24 hours after LPS administration, there was a marked 6-fold 

increase in the number of intermediate monocytes, which may have been mobilized 

from the marginal pool. The expanded intermediate monocyte population appeared to 

be phenotypically similar to intermediate monocytes at baseline and expressed 

similar levels of CD14, CD16, CD11b, CCR2, CXCR2, TLR2 and TLR4. Both 

clopidogrel and ticagrelor potentiated the increase in intermediate monocyte 

population. Platelet P2Y12 inhibitors may facilitate mobilization of leukocytes from 

the marginal pool by decreasing platelet-leukocyte interactions and thereby 

decreasing leukocyte adhesiveness. Emerging evidence suggests that intermediate 

monocytes may have a role in production of anti-inflammatory cytokines (Mukherjee 

et al., 2015), but further work is needed to delineate their role in ACS and sepsis. 

  In addition to P2Y12-mediated effects on inflammation, ticagrelor also has 

adenosine-mediated effects on leukocytes. By inhibiting cellular uptake of adenosine, 

ticagrelor increases plasma levels of adenosine in ACS patients (Bonello et al., 2014). 
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Low concentrations of adenosine have predominantly pro-inflammatory effects, 

mediated by A1 and A3 receptors (Barletta et al., 2012; Haskó & Pacher, 2012). 

Higher concentrations of adenosine have predominantly anti-inflammatory effects, 

mediated by A2A and A2B. Ticagrelor potentiates the stimulatory effect of low 

concentrations of adenosine on neutrophil phagocytosis, by inhibiting adenosine 

uptake. In addition, ticagrelor potentiates the suppressive effect of high 

concentrations of adenosine on leukocyte expression of CD11b in response to FMLP. 

7.1 Future work 

The results of this thesis suggest that there could be potential benefits of timed 

administration of platelet P2Y12 inhibitors to patients with sepsis. This is supported 

by observational studies, which shows that P2Y12 inhibitors are associated with a 

reduction in mortality in sepsis (Tsai et al., 2015; Akinosoglou et al., 2014). In 

addition, P2Y12 inhibitors have not been associated with excess bleeding during 

sepsis (Akinosoglou et al., 2014), which may be because they partially correct the 

underlying coagulopathy, which is due to excess fibrin deposition and exhaustion of 

the coagulation cascade (Angus & van der Poll, 2013). P2Y12 inhibitors were 

administered prior to LPS administration in this study and further work is needed to 

demonstrate whether P2Y12 inhibitors also reduce established systemic inflammation. 

In order to clarify this, the Examining the Effect of Ticagrelor on Platelet Activation, 

Platelet-leukocyte Aggregates and Acute Lung Injury in Pneumonia (XANTHIPPE) 

study (clinicaltrials.gov reference NCT01883869) and the Randomized Trial of 

Ticagrelor for Severe Community Acquired Pneumonia (TCAP) trial 

(clinicaltrials.gov reference NCT01998399) will investigate whether ticagrelor is of 

benefit compared to placebo in patients with pneumonia. 

The results of this thesis demonstrate marked effects of platelet P2Y12 inhibitors on 

mobilization of intermediate monocytes. Clarification is needed to determine the 

physiological roles of intermediate monocytes and to determine their role in the 

pathophysiology of ACS and sepsis. Further work is needed to determine whether 

intermediate monocytes are harmful or helpful during ACS. The ability of 

observational studies to determine this is limited due to multiple confounders. 
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The results of this thesis demonstrate that ticagrelor has adenosine-mediated effects 

on monocytes and neutrophils in vitro. However, adenosine metabolism is complex 

and dynamic. Further work is therefore needed to characterise the effect of ticagrelor 

on levels of adenosine at the local tissue level as well as at the systemic level in 

humans and animal models. In addition, more work is required to demonstrate 

whether these mechanisms improve clinical outcomes during ACS and, potentially, 

sepsis. 

7.2 Concluding remarks 

Potent inhibition of multiple inflammatory and prothrombotic mechanisms by P2Y12 

inhibitors demonstrates critical importance of platelets as central orchestrators of 

systemic inflammation. The findings of this thesis provide novel mechanistic insight 

into the lower mortality associated with P2Y12 inhibitors in patients with sepsis in 

clinical studies. This suggests a promising new line of investigation for novel 

applications of P2Y12 inhibitors in a syndrome that has proved elusive to almost all 

previous pharmacological strategies.  
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9 Appendices 
9.1 R code and R markdown document demonstrating the 

code used for Random Forest analyses of associations 

between intermediate monocyte count and other 

variables 

This appendix is automatically generated by R Studio from R markdown code in order to demonstrate 

the code that was used to produce the Random Forest analysis for assessment of the interactions 

between the intermediate monocyte count at 24 hours and the other variables in the dataset. The graphs 

in this appendix were automatically generated using the following code and then reformatted for 

formal use in the PhD thesis itself. 

In the first instance the following packages are loaded: 

library(reshape2) 
library(randomForest) 
library(rfUtilities) 
library(rfPermute) 
library(gridExtra) 

Widedat is a dataframe that includes merged values from crp.csv, cytokines1.csv, cytokines2.csv, 

ddimer.csv, fbc.csv and fibrin.csv in the "wide" data frame format where each variable at each 

timepoint is in a separate column. 

widedat <- read.csv("./activecsv/mainprocessed.csv") 

The data is divided into x explanatory variables and y, the intermediate monocyte count at 24h. 

Missing values are simply replaced with medians for that variable, which is required for analysis by 

the standard randomForest algorithm. 

trainy <- na.roughfix(widedat[,"im_conc_24"]) 
trainx <- na.roughfix(widedat[,names(widedat)!="im_conc_24"]) 

Sets the random seed and runs an initial random forest on all of the variables at all of the timepoints to 

determine the importance of their relationship with the intermediate monocyte count at 24 hours. The 

10 most important variables in the model are displayed. 

set.seed(100) 
initialrf <- rfPermute(trainx, trainy, num.cores=8, parallel=TRUE,  
                      ntree=20000,nrep=10000) 
initialimp <- importance(initialrf) 
initialimp <-initialimp[order(initialimp[,1], decreasing=TRUE),] 
initialimp <-as.data.frame(initialimp[1:10,1, drop=FALSE]) 
initialimp$variable <- rownames(initialimp) 
colnames(initialimp)<-c("importance_MSE","variable") 
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initialimp$variable <- factor(initialimp$variable, levels=rev(initialimp$va
riable)) 
ggplot(initialimp, aes(variable,importance_MSE))+ 
    geom_bar(stat="identity",color="blue",fill="blue")+coord_flip()+ 
    theme_bw() 

 Uses 5-fold cross validation to identify the optimal number of variables for achieving the most 

accurate model. 

set.seed(100) 
cvpredictors <- rfcv(trainx, trainy, ntree=100000,cv.fold=5,step=1.3) 
cvpredictors <- as.data.frame(cvpredictors[1:2]) 
qplot(n.var, error.cv, data=cvpredictors)+geom_smooth(se=FALSE, method="gam
", formula=y~s(x))+labs(x="Number of variables", y="Mean squared error (5-f
old cross validated)")+ theme_bw()+scale_x_log10(breaks=c(1,2,4,10,40,100,5
00)) 
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In this case, there is evidence of "overfitting" when all variables are included. The optimal variables to 

include were the 4 with the greatest importance in the initial model, which are neut_6, ncm_conc_24, 

neut_4 and pma_adp_percent_0. 

namespredictors <- c("neut_6","ncm_conc_24","neut_4","pma_adp_percent_0") 

Calculates p values for each of these variables in the initial run of random forests using all input 

variables. This determines the likelihood that these importance values, or more extreme importance 

values, could have been generated if there was no true relationship (null hypothesis). 

set.seed(100) 
pvals <- as.data.frame(initialrf$null.dist$pval) 
pvals[namespredictors,1,drop=FALSE] 

##                      %IncMSE 
## neut_6            0.00009999 
## ncm_conc_24       0.00109989 
## neut_4            0.00329967 
## pma_adp_percent_0 0.00999900 

Makes a dataset using the selected variables only and runs random forests on this. 

featuresselected<-cbind("im_conc_24"=trainy,trainx[,namespredictors]) 
set.seed(100) 
rffit<-randomForest(im_conc_24~., data=featuresselected,ntree=20000, 
                 na.action="na.roughfix") 
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Calculates the out of bag error of the model, which is a reliable estimate of the test error of the model. 

Calculates a p value for the fit of the final model 

set.seed(100) 
fitsig <- rf.significance(rffit, na.roughfix(trainx), nperm=10000) 

 

## [1] "MODEL SIGNIFICANT AT p=1e-04" 

rffit 

##  
## Call: 
##  randomForest(formula = im_conc_24 ~ ., data = featuresselected,      nt
ree = 20000, na.action = "na.roughfix")  
##                Type of random forest: regression 
##                      Number of trees: 20000 
## No. of variables tried at each split: 1 
##  
##           Mean of squared residuals: 0.01146426 
##                     % Var explained: 56.84 

Creates random forests partial dependence plots for each of the selected variables. 

featuresselected<-na.roughfix(featuresselected) 
par.dep.plot <-partialPlot(rffit,featuresselected,x.var="neut_6",n.pt=30,pl
ot=FALSE) 
par.dep.vals <- as.data.frame(par.dep.plot$x) 
colnames(par.dep.vals)[1]<- "values" 
par.dep.vals$variable <- "Neutrophil count 6h" 
par.dep.vals$im_conc_24 <- par.dep.plot$y 
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pardep <- par.dep.vals 
 
par.dep.plot <-partialPlot(rffit,featuresselected,x.var="ncm_conc_24",n.pt=
30,plot=FALSE) 
par.dep.vals <- as.data.frame(par.dep.plot$x) 
colnames(par.dep.vals)[1]<- "values" 
par.dep.vals$variable <- "NCM count 24h" 
par.dep.vals$im_conc_24 <- par.dep.plot$y 
pardep <- rbind(pardep,par.dep.vals) 
 
par.dep.plot <-partialPlot(rffit,featuresselected,x.var="pma_adp_percent_0"
,n.pt=30,plot=FALSE) 
par.dep.vals <- as.data.frame(par.dep.plot$x) 
colnames(par.dep.vals)[1]<- "values" 
par.dep.vals$variable <- "PMA reactivity to ADP" 
par.dep.vals$im_conc_24 <- par.dep.plot$y 
pardep <- rbind(pardep,par.dep.vals) 
 
pardep$variable<-as.factor(pardep$variable) 
pardep$variable = factor(pardep$variable,levels(pardep$variable)[c(2,1,3)]) 
 
pardepplot <- ggplot(pardep,aes(values, im_conc_24))+ 
    geom_smooth(se=FALSE, method="gam",formula = y ~ s(x,k=3),size=3,alpha=
0.3,color="dodgerblue")+ 
    facet_wrap(~variable,scales = "free_x")+theme_bw()+labs(x="", 
    y="Intermediate monocyte count x 10^9/L")+expand_limits(y=c(0.1,0.5)) 
pardepplot 

 
Creates a plot showing the linear relationship between each of the variables and the intermediate 

monocyte count at 24h. 

meltfeatures <- melt(widedat, id.var=c("im_conc_24","treatment")) 
meltfeatures <- meltfeatures[meltfeatures$variable%in%namespredictors,] 
meltfeatures$value <- as.numeric(meltfeatures$value) 
meltfeatures<-meltfeatures[meltfeatures$variable!="neut_4",] 
meltfeatures$variable <- as.factor(as.character(meltfeatures$variable)) 
 
 
levels(meltfeatures$variable)<- c("NCM count 24h", 
                                  "Neutrophil count 6h","PMA reactivity to 
ADP") 
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meltfeatures$variable = factor(meltfeatures$variable, 
                               levels(meltfeatures$variable)[c(2,1,3)]) 
meltfeatures$treatment = factor(meltfeatures$treatment, 
                                levels(meltfeatures$treatment)[c(2,1,3)]) 
 
depplot <- ggplot(meltfeatures,aes(value, im_conc_24,color=treatment))+geom
_point(alpha=0.5)+ 
    facet_wrap(~variable,scales = "free_x")+theme_bw()+labs(x="", 
    y="Intermediate monocyte count x 10^9/L")+expand_limits(y=c(0.15,0.325)
)+ 
    scale_color_manual(breaks=c("control","clopidogrel","ticagrelor"), 
                       values=c("blue2", "green2", "red2")) 
depplot 

## Warning: Removed 1 rows containing missing values (geom_point). 

## Warning: Removed 1 rows containing missing values (geom_point). 

## Warning: Removed 2 rows containing missing values (geom_point). 
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9.2 Ethical Approval for the Study 
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