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Abstract 

 

Bus and train driver scheduling is a process of partitioning blocks of work, each of which is 

serviced by one vehicle, into a set of legal driver shifts. The main objectives are to minimise 

the total number of shifts and the total shift cost. Restrictions imposed by logistic, legal and 

union agreements make the problem more complicated. 

 

The generate-and-select approach is widely used. A large set of feasible shifts is generated 

first, and then a subset is selected, from the large set, to form a final schedule by the 

mathematical programming method. In the subset selection phase, computational difficulties 

exist because of the NP-hard nature of this combinatorial optimisation problem. This thesis 

presents two evolutionary algorithms, namely a Genetic Algorithm and a Simulated Evolution 

algorithm, attempting to model and solve the driver scheduling problem in new ways. 

 

At the heart of both algorithms is a function for evaluating potential driver shifts under 

fuzzified criteria. A Genetic Algorithm is first employed to calibrate the weight distribution 

among fuzzy membership functions. A Simulated Evolution algorithm then mimics 

generations of evolution on the single schedule produced by the Genetic Algorithm. In each 

generation an unfit portion of the working schedule is removed. The broken schedule is then 

reconstructed by means of a greedy algorithm, using the weight distribution derived by the 

Genetic Algorithm. The basic Simulated Evolution algorithm is a greedy search strategy that 

achieves improvement through iterative perturbation and reconstruction. This approach has 

achieved success in solving driver scheduling problems from different companies, with 

comparable results to the previously best known solutions. 

 

Finally, the Simulated Evolution algorithm for driver scheduling has been generalized for the 

set covering problem, without using any special domain knowledge. This shows that this 

research is valuable to many applications that can be formulated as set covering models. 

Furthermore, Taguchi’s orthogonal experimental design method has been used for the 

parameter settings. Computational results have shown that for large-scale problems, in 

general the proposed approach can produce superior solutions much faster than some existing 

approaches. This approach is particularly suitable for situations where quick and high-quality 

solutions are desirable. 
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Chapter One 

 

Introduction 

___________________________________________________________________________ 

 

 

1.1 The bus and rail driver scheduling problem 

 

Bus and train driver scheduling is a process of partitioning blocks of work, each of which is 

serviced by one vehicle, into a set of legal driver shifts. The main objectives are to minimise 

the total number of shifts and the total shift costs. This problem has attracted much interest 

since the 1960s.  

 

Bus driver scheduling and train driver scheduling are fundamentally the same problem, but 

the former can be regarded as a special case of the latter since all the features in bus operation 

can be found in train operation but not vice versa (Kwan 1999). In comparison, both problems 

involve allocation of driver work to shifts that are similar in structure, have similar working 

hours with at least one meal break, and must obey similar labour agreement rules. 

 

Compared with bus driver scheduling, train driver scheduling is much more complex, some of 

the factors are listed as follows (Kwan 1999): 
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• In case that a driver need to travel as passenger from one place to another, in train 

driver scheduling it is necessary to find out the exact departure and arrival time for the 

driver to travel. However, in bus driver scheduling a constant allowance for the 

travelling is usually adequate due to short distance to be travelled and frequent 

services;  

• The bus driver scheduling problem is often solved as a single -depot problem, which is 

much easier than the multi-depot case typical of train driver scheduling, since bus 

drivers are usually restricted to buses from their home depots; 

• Compared to train work, bus work is less fragmented, and does not contain non-wheel 

turning work such as unit preparation and disposal. Hence bus driver shifts usually 

contain work on no more than three different buses; 

• Meal break rules in the bus situation are simpler than those in the train situation, and 

the maximum number of meal breaks rarely exceeds two; 

• In bus driver scheduling, there is usually no restriction on route and traction 

knowledge. 

 

The driver scheduling problem is commonly solved using a set covering approach. A large set 

of possible legal shifts is first generated by heuristics, which are usually highly parameterized 

to reflect on the driver work rules of individual companies. Then, a least cost subset covering 

all the work is selected to form a solution schedule. The success and limitations of such a 

standard approach, as exemplified in TRACS II, which used a blend of heuristics and Integer 

Linear Programming, have been discussed in Kwan et al. (2000). 
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1.1.1 Vehicle work 

 

Vehicle (i.e. bus or train in this thesis) units are normally scheduled before driver schedules 

are compiled. In a vehicle schedule, the work is usually denoted as a set of blocks. A block is 

a sequence of trips operated by one vehicle in one day, beginning with a pull-out from, and 

ending with a pull-in, to a depot. A vehicle leaving from and returning to the depot more than 

once in a day constitutes multiple blocks. 

 
                Diagram 1: 
                Depart from depot at Manchester Piccadilly at 02:32 
 

Location Arrival Time Departure Time  
Manchester Picc.  02:32  
Huddersfield 03:04 03:06  
Leeds 03:28 03:31  
York 04:00 04:22  
Middlesborough 05:28 06:18 Clean 
York 07:15 07:18  
Leeds 07:47 07:51  
Huddersfield 08:12 08:14  
Manchester Picc. 08:51 08:56  
Manchester Air. 09:11 09:28 Clean 
Manchester Picc. 09:45 09:50  
Huddersfield 10:22 10:24  
Leeds 10:49 10:54  
York 11:23 11:26  
Middlesborough 12:26 13:18 Clean 
York 14:15 14:18  
Leeds 14:45 14:51  
Huddersfield 15:12 15:14  
Manchester Picc. 15:49 15:55  
Manchester Air. 16:10 16:28 Clean 
Manchester Picc. 16:43 16:49  
Huddersfield 17:22 17:24  
Leeds 17:52 17:54  
York 18:22 18:26  
Middlesborough 19:27 20:18 Clean 
York 21:12 21:21  
Leeds 21:48 21:51  
Huddersfield 22:12 22:14  
Manchester Picc. 22:51 22:55  
Manchester Air. 23:11 23:28 Clean 
Manchester Picc. 23:44 23:50  
Huddersfield 00:22 00:24  
Leeds 00:46 00:53  
York 01:22  Clean 

 
Figure 1.1: An example of a unit diagram (Kwan 1999) 
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Figure 1.1 displays an example of train unit diagrams. Train unit diagrams are the printed 

form of train schedules, which mainly include the wheel turning information about the arrival 

and departure times of a vehicle unit at individual stops within the operation. It should be 

noted that, although wheel turning work forms the major part of a driver’s schedule, some 

non-wheel turning work not shown in Figure 1.1 also needs to be done by a driver. 

 

1.1.2 Definitions  

 

In this section, some important concepts will be introduced. Figure 1.2 is an example of a 

vehicle block, which timelines the vehicle work. A Relief Opportunity is a time and place 

where a driver can leave the current vehicle, for reasons such as taking a meal break, or 

transferring to another vehicle. The work between two consecutive relief opportunities on the 

same vehicle is called a piece of work. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1.2: An example of a vehicle block 

 

The work a single driver carries out in one day is called a shift, which consists of several 

spells of work. A spell contains a number of consecutive pieces of work on the same vehicle, 

and a driver schedule  is a solution that uses a set of shifts to cover all the required driver 

work. To make it clearer, Figure 1.3 gives an example of driver shifts, which contains a 2-

Vehicle 38 
S 

1304 1110 0935 0742 0600 

H H S G 

(Relief Opportunity) 

Location 

Time 

Piece of work 
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spell shift and a 3-spell shift. From this figure, it is obvious that different partitions of vehicles 

will result in different shifts. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1.3: An example of driver shifts 

 

1.1.3 Labour agreement rules 

 

The rules for the construction of shifts are mostly provided by past practice and local 

conditions, and are agreed between the transport operators and the union as internal 

regulations, while others are statutory. Some rules are hard rules that define the Labour 

Agreement between management and unions. Other rules are soft rules that are used to 

prevent the system forming a prohibitively larger number of possible shifts. 

 

Most rules are relevant to transport operators in general even though their parameters may 

differ. However, individual operators may have their own extra rules. The following is a list 

of some global rules typically used by different operators: 

 

• Maximum total working time; 

0607     0649             0949                
1149        1349         1519           1815      2010 

Vehicle 1      
D 

----
 

N -------
 

N -------
 

-----
 

N-----
 

N -----
 

0617        0747    0947       1227       
1247        1407        1647        1835 

Vehicle 2 -----
 

N ----
 

N ----
 

N ----
 

N -----
 

N -----
 

N -----
 

D
+   ( S 2 )  +   +   ( S 1 )    +                     

 
0610        0712      0912               
1112             

Vehicle 3       
D 

-----
 

W ---
 

W ------
 

W -----
 

W -----
 

W ----
 

W ------
 

D
+ ( S 2 ) +                        
         

----
 

-------
 

-------
 

N -----
 

-----
 

-----
 

D
+    ( S 1 )    + +    ( S 2 )   +     

 

-----
 

----
 

----
 

----
 

-----
 

-----
 

-----
 

1312          1542         1712       2030 

-----
 

---
 

------
 

-----
 

-----
 

----
 

------
 

A 2-spell shift 

A 3-spell shift 
shift 
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• Minimum time allowance for signing on and off at the depot; 

• The total spreadover (normally the paid hours for a driver from sign on to sign off) 

range; 

• The minimum length of a meal break, which is normally a fixed time for meal plus 

travel time to the canteen; 

• The maximum time for a driver to work without a meal break, which is usually four to 

five hours and may contain work on more than one vehicle with a join up required for 

the driver to change vehicle. 

 

1.1.4 Shift types 

 

There are two main types of shift: straight shifts of two stretches separated by a meal break of 

thirty to sixty minutes, and split shifts with a spreadover of maybe about twelve hours 

containing two stretches separated by a long break of several hours. A stretch is the period 

from the start of a shift to the start of meal break, or from the end of meal break to the end of 

shift. 

 

According to which time period of the day shifts cover, straight shifts can be further divided 

into the following three types: early shifts that take early buses/trains out of depot and cover 

part of the morning peak, late shifts that take late buses/trains into the depot and cover part of 

the afternoon peak, and middle shifts. Normally, straight shifts in UK contain two stretches 

separated by a meal break, although some may also contain two or more meal breaks or even 

a straight run without any meal break. However, straight bus runs without meal break are 

common in North America. 
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1.2 Research relevance  

 

Driver scheduling is a worldwide problem. Since efficient schedules can make significant 

monetary savings for the transportation operators, this problem has attracted much research 

interest over the past forty years. Although a great deal of progress has been made, there are 

still several aspects that need to be further investigated and improved. Any advances in the 

techniques available for solving such problems are highly significant. 

 

A much researched approach for the driver scheduling problem is “generate-and-select”, in 

which a large set of feasible shifts are generated first, and then a subset is selected, from the 

large set, to form a final schedule by mathematical programming. In the selection stage, 

computational difficulties exist because of the NP-hard nature of this combinatorial 

optimisation problem (Kwan 1999). 

 

The Integer Linear Programming process in the selection stage might fail to produce an 

integer solution for very large size problems. This usually happens when the branch and 

bound process automatically stops the tree search because a stipulated number of nodes have 

been explored and the search tree is getting too large to handle practically. Therefore, the 

following aspects still need to be improved. 

 

1) Optimising ability: to converge to an optimal or near optimal integer solution; 

2) Executing speed: even with today’s computer power, Integer Linear Programming 

can be still time consuming; 

3) Problem size: there is a limit on the problem size to be handled by the Integer Linear 

Programming process. 

 

This research attempts to improve the robustness of the selection process to produce final 

solutions, by investigating possible methods to replace the branch and bound process, or even 
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the whole mathematical programming method. Since the selection process is not problem-

specific, using evolutionary algorithms as alternatives to explore the search space and select a 

subset as the final solution seems attractive. 

 

Genetic Algorithms simulate natural evolution by maintaining a group of solutions and adding 

new solutions by the crossover and mutation operators. They are useful approaches to 

problems requiring an efficient search over a large solution space, and are particularly suitable 

for obtaining approximate solutions for multivariable optimisation problems where 

mathematical analyses are difficult. On the other hand, Simulated Evolution algorithms mimic 

the evolutionary process on a single solution. Each element of the solution in each generation 

must constantly prove its functionality under the current conditions in order to remain 

unaltered. The purpose of this process is to create gradually stable structures that are perfectly 

adapted to the given constraints. 

 

In this research, the use of a Genetic Algorithm and a Simulated Evolution algorithm will be 

investigated, tried and critically assessed. 

 

1.3 Structure of the thesis  

 

Following this introduction chapter, Chapter 2 gives a literature review about some 

computerised approaches to the driver scheduling problem and the set covering problem. The 

remaining chapters in this thesis present the research in stages by investigating and building a 

suitable approach to solve the driver scheduling problem, and finally generalize this approach 

for the set covering problem. 

 

Chapter 3 presents a refined greedy algorithm to evaluate all the potential shifts based on 

fuzzy subsets theory, and to decide which shift is going to be selected in the process of 

constructing a schedule. The main idea is to set up five criteria, characterized by fuzzy 
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membership functions, to evaluate the structure and generally the goodness of a shift. Since 

each criterion reflects only one aspect of the shift structure, an overall evaluation could be 

made by aggregation of all the criteria. Three different kinds of aggregation operator have 

been investigated, and the most suitable one will be determined. 

 

Chapter 4 describes a Genetic Algorithm for calibrating the weight distribution amongst the 

above fuzzified criteria, so that a single -valued weighted evaluation can be computed for each 

shift. Although driver schedules are constructed as by-products through generations of 

evolution, they are not expected to be very close to optimum because of the greedy nature of 

the construction method used. 

 

Chapter 5 designs a novel evolutionary approach to improve the solutions further based on a 

crude solution by the simple heuristic or a refined solution by the Genetic Algorithm. The 

evolutionary algorithm combines the features of iterative improvement and constructive 

perturbation with the ability to avoid getting stuck at local minima. Its framework is a 

Simulated Evolution algorithm, in which the steps of Evaluation and Reconstruction have 

been fuzzified.  

 

Chapter 6 reports on the generalisation from driver scheduling to the class of set covering. A 

function is first designed to evaluate, under fuzzified criteria, the structure of each column. 

This function is embedded into the Construction step and the Evaluation step of an Simulated 

Evolution algorithm. In each generation an unfit portion of the working solution is removed. 

The broken solution is then repaired by a greedy algorithm. Taguchi’s experimental design is 

utilized to reliably set the seven parameters involved, with a small number of experiments. 

 

Finally, Chapter 7 gives the conclusions about the achievements of this research and suggests 

some work for future research. 
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Chapter Two 

 

Review of Techniques for Driver 

Scheduling and Set Covering 
___________________________________________________________________________ 

 

 

2.1 Introduction 

 

Bus and train driver scheduling has attracted much interest since the 1960’s. Wren and 

Rousseau (1995) gave an overview of the approaches, many of which have been reported in a 

series of international workshop conferences (Desrochers and Rousseau 1992; Daduna et al. 

1995; Wilson 1999; Voß and Daduna, 2001). Besides a brief review about some heuristics for 

the general set covering problem, this chapter gives an extensive literature review about the 

driver scheduling techniques divided into the following three groups: early heuristics, 

mathematical programming methods, meta­heuristics and others. 

 

With regard to the driver scheduling techniques, Section 2.2.1 reviews some early heuristic 

systems while Section 2.2.2 reviews some successful systems based on mathematical 

programming methods. Some recent work on meta­heuristics and others (such as Tabu search, 

genetic algorithms, Ant system, and constraint satisfaction) are introduced in Section 2.2.3. 
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Section 2.3 briefly reviews some heuristics for the general set covering problem, including a 

standard genetic algorithm, a parallel genetic algorithm, an artificial neural network 

algorithm, a simple Lagrangian heuristic, and a simulated annealing algorithm. A summary is 

given in Section 2.4. 

 

2.2 Driver scheduling techniques 

 

2.2.1 Early heuristic methods  

 

By the 1980s the early methods for driver scheduling problems were mainly heuristics based. 

This is because the computer was not powerful enough to run the mathematical solvers, and 

the techniques in the mathematical solvers were also not as advanced as nowadays. Many of 

the approaches are first to construct an initial schedule by using a heuristic process, and then 

attempt to improve this schedule by making limited alterations. 

 

The early heuristics were useful in some applications, since they were customised for 

individual companies and thus could be fully tailored to meet the specific requirement for 

individual company. The drawbacks of these approaches are they were not easily portable to 

other companies and had to be considerably modified to fit new conditions. Furthermore they 

were not suitable for general optimisation (Wren and Rouseau, 1995). The purely heuristic 

approaches were subsequently abandonment with the advent of mathematical programming 

approaches aided by heuristics. 

 

2.2.1.1 TRACS 

 

TRACS (Techniques for Running Automatic Crew Scheduling) was developed at the 

University of Leeds from 1967 (Parker and Smith, 1981). The system is based on the 

assumption that a poor initial solution cannot be altered into a good solution by heuristic 



12 

 

improvements, which might be true since meta-heuristics were not available at that time. 

Therefore, this method took great efforts to produce an initial solution as good as possible. An 

initial schedule is constructed in the following steps: 

 

1) To form early shifts from the beginning of the bus schedule, leaving sufficient work 

for the first halves of split shifts to cover the morning peak. 

2) To form late and middle shifts at the end of the bus schedule, leaving suitable work 

for the second halves of split shifts to cover the afternoon peak. 

3) To form split shifts by matching the first and second halves. 

4) To attach remaining work to existing shifts if possible. 

 

This initial schedule contains two-spell and three-spell shifts. A concept of marked time was 

used to guide the formation of shifts. For early shifts, a marked time is the latest time by 

which the first driver of each bus must be relieved. For late shifts, a marked time is the 

earliest time at which the last driver can start work on each bus. 

 

To minimise the number of drivers during the peaks, meal break chains were attempted to be 

formed. In this chain, drivers take meal breaks in turn, that is, the first driver finishing his 

meal break will relieve the second driver who, after his meal break, will take over the bus 

from the third driver, and so on. 

 

The initial schedule is improved by two sets of procedures. One set attempts to reduce the 

number of shifts and unallocated pieces of work. Each shift is considered to determine 

whether the work in it can be contained in other shifts. This procedure redistributes work 

between shifts so that shifts with long spreadovers are assigned more work. This will make 

short shifts shorter so that they become redundant and can be removed eventually. 
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Another set of procedures is for cost reduction. There are several procedures to achieve this 

target, including swapping or moving stretches of shifts, re-matching first and second 

stretches of shifts, switching changeovers of a shift to another relief time, and relocating small 

pieces of work around the middle of the day. 

 

2.2.1.2 Other heuristic methods  

 

RUCUS (RUn CUtting and Scheduling) (Bennington and Rebibio, 1975; Bodin et al., 1985) 

was developed in the late 1960s. It is also a system that first generates an initial solution and 

then refines it using heuristics. It first forms 1-spell shifts and then 2-spell shifts, and after this 

process any unallocated pieces of work are regarded as short overtime spells. This limited the 

wide use of the system and eventually led to the abandon of RUCUS, since many operators 

did not use overtime and even if they had to they tried to restrict it. Moreover, it is generally 

inefficient to leave out “difficult" work in such a way. Once an initial solution has been 

constructed, the system begins to use local search moves trying to improve this solution. It 

either exchanges some pieces of work in one shift with pieces of work in another shift, or 

moves selected relief opportunities forward or backward. A repair procedure is then used to 

fix any infeasible shifts due to the changes. In case that there are still infeasible shifts left in 

the final schedule, manual intervention may be needed. 

 

HOT (Hamburg Optimisation Techniques) (Hoffstadt 1981; Daduna and Mojsilovic, 1988) 

was developed and used by the schedulers at the Hamburger Hochbahn AG since the 1970s. It 

starts by trying to form good shifts, one at a time, for each morning bus, and then for each 

evening bus. Any work that cannot be treated in this process is formed into partial shifts, 

which are then combined into full shifts by a variant of the Hungarian Algorithm (Taha 1997). 

Little improvement can be achieved to the schedule once it is constructed, and sometimes it 

may even leave unassigned pieces of work. Although this system has been used in several 

German bus operations, it is believed that it is no longer in widespread use. 
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COMPACS (COMPuter Assisted Crew Scheduling) was an interactive system developed in 

the early 1980’s (Wren et al., 1985), and was later incorporated into the BUSMAN scheduling 

package (Chamberlain and Wren, 1992). It combines the heuristics of TRACS and the 

interactive features of an early interactive system known as TRICS. One useful feature of 

COMPACS is that it can give an estimate on the possible number of shifts of each type. The 

estimate is useful since it can guide the schedulers to build up the schedule interactively. 

COMPACS can also produce an entire schedule automatically by means of a simplified 

version of TRACS: it retained the initial solution generation phase of TRACS, but not the 

improving moves. Hence the solution quality might be poor. 

 

2.2.2 Mathematical programming methods  

 

2.2.2.1 Mathematical model of set covering and set partitioning 

 

The driver scheduling problem can be formulated as a set covering problem and expressed as 

an Integer Linear Programming (ILP) problem. The basic model is shown below. 

 

n Number of potential shifts 

m Number of driving work pieces to be covered 

cj Cost of shift j 

aij 0-1 integer constants: 1 indicates shift j covers work piece i, and 

0 otherwise 

xj 0-1 integer variables: 1 indicates shift j is used in the solution, 

and 0 otherwise 
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Minimize   ∑
=

n

j
jj xc

1

                                                                         (2.1) 

Subject to   ∑
=

≥
n

j
jijxa

1

1 ,    i∈{1, 2,…, m}                                   (2.2) 

xj = 0 or 1,    j∈{1, 2,…, n}                                     (2.3) 

 

Objective (2.1) minimizes the total cost. Constraint (2.2) ensures that each piece of work is 

covered by at least one driver, and constraint (2.3) requires that whole shifts be considered. In 

practice, the model has been extended to cater for other practical objectives and constraints 

(Fores et al., 1999). 

 

By changing the constraint (2.2) into the following form, it becomes a set partitioning 

problem: 

 

Subject to: ∑
=

=
n

j
jijxa

1

1 ,    i∈{1, 2,…, m}                                   (2.4) 

 

In the set covering model, each piece of work must be covered by at least one shift, while in a 

set partitioning model, each piece of work must be covered by exactly one shift. In theory, the 

solution to the ILP is the schedule with minimum cost. However, the total number of all 

possible shifts is usually too large to be practically solved by the ILP. The very large shift set 

therefore has to be reduced to a manageable size by heuristics, or else the problem has to be 

decomposed into several sub-problems and solved separately. 

 

2.2.2.2 IMPACS 

 

IMPACS (Integer Mathematical Programming for Automatic Crew Scheduling) was 

developed for bus operation in the late 1970s. Parker and Smith (1981) presented the 
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prototype and Wren and Smith (1988) gave a full description of the system. This system was 

installed in London Transport in 1984 and in Greater Manchester Buses in 1985. 

 

IMPACS is based on a set covering model described above: a large number of possible shifts 

with associated costs are first generated, a subset is then selected to cover all the pieces of 

work at minimum cost. Since the number of variables and constraints may be too enormous to 

be handled for the computer power at that time, IMPACS employs a number of heuristics to 

reduce the number of variables and constraints. The reduction processes are described as 

follows: 

 

1) Reduce the number of pieces of work by heuristics. This method is based on the idea 

of de-selecting some relief opportunities that are unlikely to be used by any shifts. If a 

relief opportunity is not used as a changeover time, it can be omitted: the pieces of 

work at either side of the relief can be combined into one and thus the number of 

pieces of work is reduced. 

 

2) Generate a reasonable set of legal shifts by heuristics. This is done by using ‘hard’ 

rules defined by the labour agreement rules and some ‘soft’ rules to restrict the 

number of shifts produced. 

 

3) Reduce the number of shifts by heuristics. Some shifts are regarded less important 

than the others in forming an efficient schedule, e.g. the shift that has been included 

in another shift but has a larger cost, and the shift whose every piece of work is also 

covered by at least a specified number of other shifts. These shifts are removed from 

the large set for further reduction. 

 

4) Select a subset of shifts using ILP. IMPACS solves this set covering problem by first 

obtaining a relaxed LP solution and then finding an integer solution using the 
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branch­and­bound technique, which searches for integer solutions through a tree 

structure. The search terminates after a satisfied solution found or a certain number of 

nodes reached. 

 

5) Improve the driver schedule by heuristic. The best integer solution found can be 

further improved by heuristic procedures similar to those used in early heuristic 

systems. Before using these procedures, all the relief opportunities de-selected 

previously need to be restored. 

 

In order to solve large problems, IMPACS also provides a decomposition module although a 

risk of suboptimal solution may be caused. After decomposition, the first subproblem is 

solved. The inefficient shifts in the first subproblem are carried forward to the next sub-

problem, and so on. Schedules of all sub-problems are finally combined into one schedule as 

a whole. 

 

Although originally developed for bus operations, great efforts have been attempted to adapt 

IMPACS to the train driver scheduling problem (Parker et al., 1995). Since train operations 

are more complicated and also its problem size is usually much larger, the adaptation has 

proven difficult. 

 

2.2.2.3 TRACS II 

 

TRACS II (Techniques for Running Automatic Crew Scheduling, Mark II) is a new 

generation of driver scheduling software developed from 1994. It is being used on behalf of 

many train companies (including First Group, the largest bus company in the UK). TRACS II 

has shown significant savings when compared with standard methods for scheduling drivers 

of railways and buses, and has helped to negotiate more flexible working rules with the trade 

unions. 
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TRACS II follows almost the same approach as IMPACS, but the components have been 

considerably redesigned to cope with the complexity of rail operations and to incorporate new 

algorithmic advances. Basically, it consists of seven modules (i.e., VALIDATE, TRAVEL, 

BUILD, SIEVE, SCHEDULE, REDUCE, and DISPLAY) in the following three phases. 

 

1) The first phase is for shift generation. VALIDATE is run first to check validity of the 

data set. Then TRAVEL compiles a list of all possible opportunities for drivers’ 

passenger travel between relief points. BUILD finally generates a large set of possible 

legal shifts, based on a set of parameters to define the legality of a shift and to avoid 

producing an excessive number of shifts. The heuristics in BUILD are more 

complicated than those of IMPACS.  

 

2) The second phase is for refinement of the shift sets. SIEVE is used to reduce the shift 

set: it ranks the shifts generated by BUILD and eliminates some of the less efficient 

shifts formed. Recently, SIEVE is often only used to remove duplicated shifts 

because of the use of a column generation technique, which allows larger shift sets to 

be handled. MERGE is used to combine different potential shift sets that have passed 

through the SIEVE process, in the case that BUILD has been run several times, e.g. 

there is a need for a second run to cover work that has previously been left. 

 

3) The third phase is for shift selection using ILP. In this phase, SCHEDULE also 

applies the set covering ILP model to select the most economical subset from a large 

shift set. SCHEDULE is originated from the ILP process used in IMPACS. However, 

TRACS II can run any size of problem, while IMPACS could handle up to 30,000 

input shifts. 
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SCHEDULE has two main choices of optimisation procedures: the dual steepest edge 

approach and the primal column generation approach. To lessen the effect of 

degeneracy in set covering problem, a dual steepest edge approach was implemented 

by Willers et al. (1995), showing a significant reduction in executing time for the 

relaxed LP solution over the primal simplex approach used in earlier versions of 

TRACS II. Fores et al. (2001) suggested that this approach be executed on problems 

containing no more than 30,000 shifts, where all shifts can be explicitly considered 

within the limits imposed for storage and efficiency. To run any size of problem, the 

primal column generation approach was introduced in Fores et al. (1999; 2001). It 

selects an initial subset of the shifts from the submitted set in the beginning, and finds 

the optimal solution of the subset using a revised simplex method. A certain number 

of new shifts with favourable reduced costs are then added into the subset, and the 

new set is re-optimised. When no more shifts can be added into the subset to improve 

the objective function, the relaxed LP solution is the overall optimal solution. 

 

Although TRACS II is successful, there are still computational difficulties for its ILP method 

(Kwan 1999). One inherent problem is that the branch and bound algorithm does not always 

find an integer solution. Referring to the stopping conditions, two different situations may 

happen: 

 

1) The search terminates after all nodes of the search tree have been fathomed. This is 

usually caused by the side constraints operating during the branch and bound searches 

and the reduction heuristic excluding some vital shifts before the branch and bound 

process. 

 

2) The search terminates after one of the limits of the number of created nodes or active 

nodes has been reached. This is the most common situation, in which there may be 

some integer solutions but the search terminates before reaching it. This usually 
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implies that their objective values may be much higher than the relaxed optimum, and 

the node selection strategy makes them hard to find. The solution is to take a number 

of actions, such as generating a different shift set, reducing the size of the shift set 

input to the ILP, increasing the target of total number of shifts, and imposing side 

constraints. Any of the above actions requires the ILP to be rerun. For some 

problems, to find an integer solution needs many iterations, which can be time-

consuming. 

 

Another computational difficulty of the ILP method is about the problem size handled. Even 

employing the column generation technique, there is still a limit on the problem size that the 

ILP can handle in practice. In the case that a problem is too large to be solved as a single 

problem (e.g. Northern Spirit and ScotRail), the decomposition may risk losing optimality. 

 

2.2.2.4 Other mathematical programming methods  

 

HASTUS (Lessard et al., 1981; Rousseau and Blais, 1985; Blais and Rousseau, 1988) is a 

widely used commercial package with graphical user interface to deal with driver scheduling, 

vehicle scheduling, and rostering. The HASTUS driver scheduling component is divided into 

two parts, HASTUS-micro and HASTUS-macro. HASTUS-macro constructs an initial 

schedule and HASTUS-micro produces the final schedule. HASTUS-macro uses linear 

programming to generate a pseudo-schedule that provides an estimate of the number of 

drivers needed. The pseudo-schedule is built by pseudo-shifts, which are generated using 

simplified relief opportunities by simply cutting the day into user-defined time slots. Then 

HASTUS-micro uses the pseudo-schedule to create a final schedule, by producing real shifts 

that relate to those in the HASTUS-macro solution as close as possible. 

 

EXPRESS (Falkner and Ryan, 1992) is a bus driver scheduling system based on a set partition 

model specially developed for Christchurch Transport, New Zealand. Its earlier version and a 



21 

 

study of the use of set partition are presented in (Falkner and Ryan, 1988). During the search 

process, the strictness of the model is diminished by the addition of slack variables. It then 

uses a version of the original ZIP similar to those being used in IMPACS and TRACS II. 

However, its branching model is slightly different. In this system, the branch and bound 

algorithm branches on the pieces of work (constraint branching) rather than the relief 

opportunities. 

 

2.2.3 Meta-heuristic methods and others  

 

Although TRACS II works well, its solution is still not necessarily optimal, particularly when 

large problems have to be decomposed. New research is therefore directed at finding new 

ways to handle driver scheduling. Some approaches such as Tabu search, genetic algorithms, 

ant system, and constraint programming have been designed, aiming to tackle part or all of 

the problem. This research uses a mixture of artificial intelligence and operational research 

methods to enhance or replace TRACS II. 

 

2.2.3.1 Tabu search 

 

Tabu search is proposed by Glover (1989, 1990) for solving hard combinatorial problems. 

The basic idea is to escape from local optima by allowing the acceptance of non-improved 

solutions. Basically, Tabu search is an iterative technique that moves step by step from an 

initial solution towards a solution close to the global optimum. 

 

Cavique et al. (1999) presented a Tabu search called Run-cutting for crew scheduling. 

Starting with an initial solution produced by an approach similar to that used in TRACS, the 

method only allows two-spell shifts or even less efficient one-spell shifts. Tabu search is 

embedded in the improvement phase to reduce the number of shifts. This algorithm iteratively 

removes some inefficient shifts and sometimes their adjacent shifts from the current solution, 
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and then applies the re-cutting algorithm to construct shifts to repair the broken schedule. 

Tabu search is used to ensure that pieces of work that appear frequently in one-spell shifts are 

given higher priority to be incorporated into two-spell shifts and thus become more likely to 

be efficient. The Tabu search approach was found very efficient at improving the initial 

solution after the first few iterations, but then found it difficult to make further improvements. 

The reason might be that they only concentrated on inefficient shifts and sometimes an 

efficient shift needs to be changed to make the leap to a really efficient schedule. They also 

presented another Tabu search algorithm called Run-ejection, which applies a matching 

technique that performs better. The reason might be that it expands the search, not only 

changing inefficient shifts. 

 

There are several special features in this operation. These algorithms only construct one-spell 

and two-spell shifts. The complexity will increase significantly if more spells are allowed in 

shifts. Shift costs are not considered, and thus the objective is only to minimise the number of 

shifts. Since these algorithms were developed for the Lisbon Underground, it would be 

difficult to adapt to other bus or rail operations. 

 

Shen and Kwan (2001) developed HACS, which also used a Tabu search for the driver 

scheduling problem. The HACS approach is based on a representation of the problem 

involving sequences of links. The links and its associated active relief opportunities compose 

a solution space. A significant feature of HACS is that infeasible intermediate solutions are 

allowed, thus allowing more chances to escape from local optima. To get rid of infeasibility 

and fulfil the objectives they applied four neighbourhood structures in sequence: swapping 

two links, swapping two spells, inserting one spell, and recutting blocks. The first three 

concentrate on refinement of links with fixed relief opportunities, while the last one considers 

variable active relief opportunities while links are reconstructed. HACS has been extended to 

handle windows of relief opportunities in (Shen 2001), where a time range replaces a relief 

time in a relief opportunity. 
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HACS starts from a rough initial solution, and can deal with complex problems by simply 

adjusting the cost function and the penalty function to the rules stipulated in specific 

problems. Compared with the results of TRACS II, its solution quality is slightly worse. 

 

2.2.3.2 GAs 

 

GAs are general-purpose search and optimisation methods originated from Holland (1975) 

and developed subsequently to solve a wide range of real-world problems (Goldberg 1989). 

These algorithms are based on the mechanics of genetics and natural selection, and represent 

the search space as a coded population of potential solutions. The population is then 

manipulated according to the survival of the fittest principle, providing good practical 

solutions.  

 

A number of GAs have been developed for the driver scheduling problem, among which the 

GA in Kwan et al. (2001) performs best. The role of this GA is to derive a small selection of 

good shifts to seed a greedy schedule repair technique. These good shifts can be preferred 

shifts, whose fractional values in the relaxed LP solution generated by TRACS II are higher 

than a pre-defined constant such as 0.2. The reason why only these shifts are represented is 

that empirical evidence in Kwan (1999) has shown that at least 50% and on average 74% of 

the shifts in the final TRACS II solution were in the LP solution. The schedule constructed is 

fed back to the GA for fitness evaluation. At the same time, the group of shifts (called ‘a 

Relief Chain’) is identified and recorded as a learning property of the corresponding member 

in the population. That learning property will be inherited by the offspring and used to enlarge 

the set of seeding shifts when the GA interfaces with the schedule construction heuristic.  
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The new approach has been extensively tested using real data sets, some of which are very 

large problem instances. This method has produced schedules that are comparable to solutions 

found by ILP, and are generally better than those compiled by experienced schedulers. 

 

2.2.3.3 Ant system 

 

Forsyth and Wren (1997) applied an optimisation method called the ant system to produce 

driver schedules. The ant system was developed by Dorigo et al (1995) based on behaviour of 

ants searching for food, which can be modelled into a search algorithm as follows. The basic 

idea is that, when ants move, they leave pheromone trails that can be detected by other ants 

and slowly evaporate over time. 

 

In the beginning, the ants depart from a nest in random directions. Once food is found, the 

ants are most likely to return to the nest along their own pheromone trail, thus strengthening 

the trail. Since ants have an in-built bias towards following strong pheromone trails, 

subsequently more ants are likely to follow the shortest path, strengthening the trail even 

more. Although a number of paths exist between the food and the nest due to the randomness 

in the ants' movements, the pheromone trails in the shortest path will become strongest, since 

ants that follow the path are likely to return back soonest. 

 

The ant system for driver scheduling uses TRACS II to generate potential shifts. Each ant will 

create a solution at each iteration. A heuristic is used to select relief opportunities, and then 

the ant chooses a shift from the set that start at that relief opportunity. The process repeats 

until all the work is covered. As the system progresses, the good combinations of shifts are 

more likely to be followed and so over time the solutions are continuously improved. 

Unfortunately, this method does not produce results comparable to the TRACS II solutions. 
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2.2.3.4 Constraint satisfaction 

 

The constraint satisfaction approach (Tsang 1993) is an emergent technology for declarative 

description and effective solving of large, particularly combinatorial, problems especially in 

areas of planning and scheduling. It provides a powerful and easy system for modelling 

restrictions and using these restrictions to search for a solution. 

 

Layfield et al. (1999) used constraint programming to produce a component that is similar to 

SELECT in IMPACS and could be slotted into TRACS II. Its purpose is to remove relief 

opportunities that are unlikely to be used in good schedules, thus reducing the problem size. 

The program first produces the morning part of the schedule simulating the manual 

scheduling process. It puts a limit on the number of spells that each bus can be broken up into, 

to prevent too short shifts being produced. A morning schedule is constructed by using 

randomised heuristics to build the partial schedule one shift at a time. Several morning 

schedules are constructed, and the relief opportunities that are not used in these schedules are 

removed. This program can also be used to produce the evening part of a schedule. The 

process has speeded up TRACS II in several cases, but its solution cost is mostly slightly 

higher. 

 

Curtis (2000) used constraints to reduce the search space of a set partitioning model, based on 

previous work on air crew scheduling (Guerinik and Caneghem, 1995; Rodosek et al., 1996). 

He modelled the bus driver scheduling problem as a constraint satisfaction problem, where 

variables were defined as pieces of work and the domain of each variable was the set of 

indices of the shifts that covered the piece of work. This work uses the large set of potential 

shifts produced by of TRACS II. The relaxed LP solution in TRACS II is applied to guide the 

‘variable ordering’. Test results from small problems are comparable to those of TRACS II. 

Curtis also described an iterative repair process to construct driver schedules, in which a local 
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search method called GENET was applied to solve the problem modelled as a constraint 

satisfaction problem. 

 

2.3 Heuristics for general set covering problems  

 

Set covering problems are difficult zero-one optimization problems, which have been proven 

to be NP-complete (Garey and Johnson, 1979). They are often encountered in a wide area of 

applications such as resource allocation (Revelle  et al., 1970), crew scheduling (Rubin 1973; 

Smith and Wren, 1988), location of emergency service (Toregas et al., 1971), assembly line 

balancing (Salveson 1955), and simplification of Boolean expressions (Breuer 1970). 

 

Besides the exact algorithms (Beasley 1987; Fisher and Kedia, 1990; Beasley and Jornstern, 

1992), there is an abundant literature dealing with heuristics, some of which are discussed in 

the following sections. 

 

2.3.1 A GA by Beasley and Chu 

 

Beasley and Chu (1996) used a GA for non-unicost set covering problems. In its chromosome 

presentation, each gene position denotes one of the columns in the zero-one matrix, and has a 

value of 1 or 0 depending on whether the variable is or is not present in the solution. A 

crossover operator called ‘fusion’ is designed to combine two parent strings: the choice of 

whose gene values are passed to the child is made based on the relative fitness of the two 

parents. For the mutation operator, they applied a variable mutation rate. At the early stage of 

the GA, the mutation rate is set to be lower to allow minimal disruption. As the GA 

progresses, the mutation rate increases since the crossover operator becomes less effective. 

When the GA finally converges, the mutation rate will stay at a constant rate. 
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The solutions generated by the crossover and mutation operators may be infeasible, i.e. some 

rows are not covered. To repair these infeasible solutions, Beasley and Chu presented a 

heuristic that could not only maintain the feasibility of the solution, but also provide an 

additional local optimisation step to make the GA more efficient. 

 

They tested the performance of the approach on a large set of randomly generated problems. 

Computational results showed that this heuristic can produce optimal solutions for small-size 

problems and high-quality solutions for large-size problems. 

 

2.3.2 An Artificial Neural Network algorithm by Ohlsson et al. 

 

Artificial Neural Network (ANN) has attracted much research during the past decades. Most 

of the activities involve feed-forward architectures for pattern recognition or function 

approximation. However, ANN can also be used for difficult combinatorial optimisation 

problems. This is usually done by first mapping the problem onto an energy function, and 

then finding configurations with low energy function values by the method of iterating some 

mean field equations. 

 

Ohlsson et al. (2001) developed a mean field feedback ANN algorithm for the set covering 

problem. They used a multilinear penalty function to obtain a convenient encoding of the 

inequality constraints. An approximate energy minimum is achieved by iterating a set of mean 

field equations, in combination with annealing. In contrast to most existing search and 

heuristics techniques, this ANN model is not based on exploratory search to find the optimal 

configuration. Rather, the neural units of ANN find their way in a fuzzy manner through an 

interpolating and continuous space towards good solutions. 

 



28 

 

This algorithm has been tested against some very large-scale problems (up to 5000 rows and 

106 columns). Computational results shows that this approach can produce results typically 

within a few percent from the optimal solutions, and its executing speed is extremely fast. 

 

2.3.3 A sophisticated GA by Solar et al. 

 

During recent years, parallel GAs have been used to discover how the interchange of genetic 

information for separated populations affects the final solution. Normally a parallel GA is 

implemented based on an “Island Model” where separate and isolated sub-populations evolve 

independently and in parallel. Fit members occasionally migrate between sub-populations, 

allowing the distribution and sharing of good genetic material of fit members and helping to 

maintain genetic diversity. The exploration of different solution spaces could optimise the 

search in terms of both computational time and solution quality. 

 

Solar et al. (2002) presented a parallel GA model to solve the set covering problem. The 

chromosome representation used is the traditional one: a bit string with n bits where n is the 

number of columns in the problem. Since new chromosomes generated by genetic operators 

could violate some problem constraints, solution representations do not always ensure their 

feasibility. Therefore a feasibility operator is designed to repair all infeasible solutions 

 

They proposed the following population scheme: independent populations are associated with 

nodes. Each node executes a single GA and creates a new local population. When all nodes 

are ready with new generations, each node sends the best local individual to the master node. 

The master node then selects the best individual received, and broadcasts it to all slave nodes. 

Each independent slave node replaces the worst local individual with the new best global 

received. In other words, the interchange of information between parallel searches is the 

selection of the best global, which replaces the worst of each node. 
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The parallel GA has been tested by using ten problems up to 500 rows and 5000 columns. The 

final solutions obtained are not very satisfactory: the percentage deviations are in the range 

from 3.3% to 10%, and only one optimal value was achieved once in more than 1000 

experiments. 

 

2.3.4 A Lagrangian heuristic by Caprara et al. 

 

A number of attempts have been made by using the Lagrangian-based heuristics for the set 

covering problem (Beasley 1990; Haddadi 1997; Caprara et al., 1999). The more recent work 

of Caprara et al. will be introduced herein, which consists of three phases of subgradient 

optimisation, heuristic, and column fixing. 

 

The subgradient phase is to find a near­optimal Lagrangian multiplier vector quickly, by 

means of an aggressive policy. The heuristic phase is to generate a sequence of near­optimal 

multiplier vectors, and for each vector compute a heuristic solution. The column fixing phase 

is to select a subset of “good” columns, and fix to 1 the corresponding variables. In this way 

an instance with a reduced number of columns and rows is obtained, on which the three-phase 

procedure is executed iteratively until the solution cannot be improved. 

 

The algorithm was extensively tested on very large size problems, involving up to 5,000 rows 

and 1,000,000 columns. In 92 out of the 94 test instances, the optimal or the best known 

solutions can be found quickly. Furthermore, among the 18 instances that the optima are 

unknown, in 6 cases their solutions are better than the previous best known solutions. 

 

2.3.5 A simulated annealing approach by Sen 

 

Simulated annealing is a stochastic optimization technique based on an analogy from 

statistical mechanics, where a substance is reduced to its lowest energy configuration by a 
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sequence of steps that involve alternate heating and cooling. Sen (1993) used a simulated 

annealing for the set covering problem, which consists of the following four steps: 

 

1) Encode the points in the solution space by using an n-bit string that represents the n 

columns. A value of 1 in the j-th string position means that the column j is chosen to 

be in the cover. 

2) Formulate an evaluation function that evaluates the goodness of a point in the 

solution space. 

3) Design a set of moves that can be used to alter the points in the solution space. Three 

types of moves are defined in the annealing scheme: the first and second involves 

either adding or removing a column from the chosen cover by flipping a randomly 

picked bit; and the third involved replacing one column with another in the chosen 

cover by interchanging the values of two bit positions with different values. 

4) Decide an annealing schedule, such as the setting of starting temperature, rule for 

temperature decrements, and the stopping criteria to halt the algorithm. 

 

This approach has only been implemented on some small size problems with good results. For 

large size problems, its performance would be difficult to estimate. 

 

2.4 Summary 

 

This chapter reviews the driver scheduling approaches, which can be mainly divided into two 

groups: constructive approach and generate­and­select approach. This chapter also gives a 

brief introduction to some heuristic approaches for the general set covering problem. 

 

The constructive approach for driver scheduling does not need artificial rules or explicit 

reduction in problem size. The early heuristics are based on the constructive approach. They 

relied on good initial schedules constructed based on human schedulers' knowledge (e.g. 
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TRACS and RUCUS), and try to improve this initial schedule by simple refinement. 

Therefore the early constructive heuristics are generally difficult to adapt to new situations, 

and extensive final manual adjustments to the schedule are needed. Furthermore, the solution 

quality cannot be guaranteed. The application of Tabu search with windows of relief 

opportunities described by Shen and Kwan (2001) has exploited more powerful modern meta-

heuristics, and is less dependent on human schedulers’ knowledge. 

 

The generate­and­select approach, which generates a large set of potential shifts and then 

selects an efficient subset, is currently the most successful for bus and train driver scheduling. 

The generation phase is problem­oriented, while the selection phase is algorithm­oriented. 

This makes the approach adaptable to different conditions through the generation phase. The 

algorithms for selection can be mathematical programming, genetic algorithms, ant system, 

and constraint programming, among which the mathematical programming (i.e. in TRACS II) 

performs best. Unfortunately, the number of potential shifts is usually too enormous to enable 

the selection algorithms (even for TRACS II) to find an optimal solution within reasonable 

time. Hence there is room for improvement to this approach. 

 

The research presented in this thesis attempts to improve the selection phase for driver 

scheduling, by investigating two evolutionary algorithms, namely a GA and a Simulated 

Evolution algorithm, which will be described from Chapter 3 to Chapter 5. Chapter 6 will 

report on the generalisation of the Simulated Evolution algorithm from driver scheduling to 

the class of set covering problems. 
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Chapter Three 

 

A Fuzzy Theory Based Greedy Heuristic 

for Driver Scheduling 
___________________________________________________________________________ 

 

 

3.1 Introduction 

 

Bus and rail driver scheduling can be formulated as a set covering Integer Linear Programme 

(ILP). All the legal potential shifts are first constructed. Then, a least cost subset covering all 

the work is selected to form a solution schedule. A typical problem may have a solution 

schedule requiring over 100 shifts chosen from a potential set of up to 50,000. 

 

Set covering is one of the oldest and most studied NP-hard problems (Karp 1972; Johnson 

1974; Lovász 1975; Chvátal 1979). Given a ground set U of m elements, and a weight for 

each set, the goal is to cover U with the smallest possible number of sets. In the case of driver 

scheduling, there is the additional objective of minimising the total weight. 

 

Since the set covering problem is unlikely to be solved optimally in polynomial time, there 

has been a lot of work in exploring the possibility of obtaining efficiently near-optimal 
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solutions. For example, the greedy algorithm repeatedly chooses the unused set that covers 

the largest number of remaining elements. In this research, a more comprehensive evaluation 

of the sets (potential shifts) that uses the product of over-cover penalty and structural 

coefficient has been developed to decide which shift is going to be selected in the process of 

constructing a schedule. Much of the work in this chapter has been introduced in (Kwan et al., 

2000a; Li and Kwan, 2000, 2001,2001a, 2001b and 2002a). 

 

The new polynomial time algorithm for driver scheduling evaluates all potential shifts based 

on fuzzy subsets theory, a means of presenting uncertain information put forward by Zadeh 

(1965), and developed subsequently to solve real-world complex problems (Kaufmann 1975; 

Dubois and Prade, 1980; Klir and Yuan, 1995). The main idea of the proposed approach is to 

set up five criteria, characterized by fuzzy membership functions, to evaluate the structure and 

generally the goodness of a shift. Since each criterion reflects only one aspect with regard to 

the shift structure respectively, an overall evaluation could be made by aggregation of all the 

criteria. Three different kinds of fuzzy aggregation operator, namely intersection operator, 

union operator, and arithmetic mean operator, will be investigated in this decision-making, 

and the one most suitable for driver scheduling will be determined. 

 

The rest of this chapter is organized as follows. Section 3.2 introduces some fundamental 

notions in fuzzy theory, such as crisp sets, fuzzy subsets, and general aggregation operators. 

Section 3.3 presents a refined greedy heuristic for driver scheduling. Section 3.4 describes the 

method of fuzzy evaluation for shift structure in detail, including the construction of the five 

fuzzified criteria and the evaluation process by aggregation operators in different categories. 

Computational results for the determination of the greedy operators in over-cover penalty and 

the aggregation operator in structural coefficient are reported in Section 3.5. Finally, 

conclusions are discussed in Section 3.6. 
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3.2 Fundamental notions of Fuzzy Subsets 

 

Fuzzy knowledge, i.e. knowledge that is uncertain, vague, inexact, ambiguous, inaccurate, or 

probabilistic in nature, can be frequently encountered in the real world. Thinking and 

reasoning of human beings often involve such fuzzy information, possibly originating from 

inherently inexact human concepts and the matching of similar rather than identical 

experiences. In systems based on classical set theory and two-valued logic, it is very difficult 

to answer such questions that do not have completely true answers in many circumstances. 

However, by using their fuzzy knowledge, humans can usually give satisfactory answers, 

which are probably true. 

 

Naturally a question arises: how can the fuzzy knowledge be represented? Before the 

introduction of fuzzy subsets, we would first give a brief review about the notions of crisp 

sets. 

 

3.2.1 Crisp Sets  

 

Let E be a set and A be a subset of E, denoted as 

A ⊂ E.                                                             (3.1) 

We usually indicate that an element x of E is a member of A using the symbol ∈: 

∈x A.                                                             (3.2) 

To present this membership we may also use another concept, a characteristic function 

)(xAµ , whose value indicates whether x is a member of A (yes or no): 





∉
∈

=
. if      ,0
; if       ,1

)(
Ax
Ax

xAµ .                                               (3.3) 

Thus, the membership function for a crisp set A is defined as  

}1,0{: →XAµ .                                                       (3.4) 
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Similarly, given two subsets A and B, we can define the membership functions for the set 

operations (such as union, intersection and complement) as follows: 

)),(),(max()( xxx BABA µµµ =∪                                            (3.5) 

)),(),(min()( xxx BABA µµµ =∩                                            (3.6) 

)(1)( xx AA µµ −= .                                                  (3.7) 

 

Furthermore, A is a subset of B if and only if  

∈x A ∈⇒ x B, x∀ .                                                 (3.8) 

 

In terms of membership function, A is a subset of B if and only if  

xxx BA ∀≤ ),()( µµ .                                                    (3.9) 

 

[Example] Consider a finite set with five elements: 

E },,,,{ 54321 xxxxx= ,                                                (3.10) 

and let 

A },,{ 531 xxx= .                                                     (3.11) 

One writes 

1)( 1 =xAµ , 0)( 2 =xAµ , 1)( 3 =xAµ , 0)( 4 =xAµ , 1)( 5 =xAµ .               (3.12) 

Therefore we may also express A by accompanying the elements of E with their characteristic 

function values: 

A )}1,(),0,(),1,(),0,(),1,{( 54321 xxxxx= .                                  (3.13) 
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3.2.2 Fuzzy Subsets 

 

Fuzziness exists when the boundary of a piece of information is not clear-cut. For example, 

words such as tall, young, good, or fat are fuzzy. There is no single quantitative value that 

defines the term tall when describing a fuzzy concept (or fuzzy variable) such as the tallness 

of adults. For some people, a height of 175cm is tall, and for others, a height of 185cm is 

regarded as tall. The concept tall has no clean boundary. A height of 200cm is definitely tall 

and a height of 100cm is definitely not tall. However, height of 175 has some possibility of 

being tall, which depends on the context being considered. In fact, a height can have some 

possibility of being tall and also some possibility of being short. It should be noted that these 

are not probabilities because the sum of all the possibilities does not need to be 1.0. 

 

The representation of this kind of information is based on the concept of fuzzy subsets. Unlike 

in classical set theory where one deals with objects whose membership in a set can be clearly 

described, in fuzzy subsets theory, membership of an element in a set can be partial, i.e. the 

element belongs to a set with a certain grade (possibility) of membership. 

 

Let us come back to the example in Section 3.2.1. Considering the subset A of E defined by 

(3.13), the five elements of E belong or do not belong to A, and the characteristic function 

takes the value of either 0 or 1. 

 

Imagine now that this characteristic function may take any value in the interval [0,1]. Thus, an 

element ix of E might be a member of A ( 1=Aµ ), could be a strong member of A ( Aµ  near 

1), may more or less be a member of A ( Aµ  neither too near 0 nor too near 1), could be a 

member of A a little ( Aµ  near 0), or finally may not be a member of A ( 0=Aµ ). By this 

method the concept of membership takes on an extension and leads to very useful 

developments. 



37 

 

 

The mathematical concept can be defined by the following expression: 

)}1,(),1.0,(),4.0,(),0,(),9.0,{(
~

54321 xxxxxA = ,                             (3.14) 

where ix  is an element of the reference set E and its associated number is the value of the 

characteristic function of the element. This mathematical concept is called a fuzzy subset of 

E, denoted as 

⊂A
~ E.                                                            (3.15) 

 

Thus the fuzzy subset defined by (3.14) contains a large part of 1x , does not contain 2x , 

contains a little more 3x , contains a little 4x , and contains 5x  completely. This enables us to 

construct a mathematical model, by which one can handle concepts that are not precisely 

defined but whose membership in a subset is somewhat qualitative. Hence one may consider: 

in the set of men, the fuzzy subset of very tall men; in the set of decisions, the fuzzy subset of 

good decisions; in the set of colours, the fuzzy subset of deep blue colours; and so on. 

 

A rigorous definition of the fuzzy subsets is given by Zadeh [1965]: 

 

Let E be a set, denumerable or not, and let x be an element of E. Then a fuzzy subset A
~  

of E is a set of ordered pairs 

∈∀xxx A ))},(,{( ~µ E,                                                 (3.16) 

where )(~ xAµ is the grade or degree of membership of x in A
~ . If )(~ xAµ  takes its values 

in a set M, called the membership set, one may say that x takes its values in M through 

the function )(~ xAµ . Thus, the membership function for a fuzzy subset A is defined as 

→XA :~µ M.                                                       (3.17) 
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Normally, M is an interval of [0,1], where 1 is used to represent complete membership, 0 is 

used to represent complete non-membership, and all the values in between are used to 

represent intermediate degrees of membership. Furthermore, the membership functions for the 

fuzzy subset operations are defined in the same forms as in a crisp set. 

 

There are many commonly used membership function types, which are built mainly from the 

following basic functions: piecewise linear functions (such as triangular and trapezoidal 

membership functions), the bell-shaped Gaussian distribution function, the sigmoid curve, 

and quadratic and cubic polynomial curves (such as the S-shaped and Z-shaped curve 

membership functions). For special requirements, one may also establish the problem-specific 

membership functions. 

 

Summarily, we should be aware that: 

• Fuzzy subsets describe vague concepts; 

• A fuzzy subset admits the possibility of partial membership in it; 

• The degree an object belongs to a fuzzy subset is denoted by a membership value 

between 0 and 1; 

• A membership function associated with a given fuzzy subset maps an input value to 

its appropriate membership value. 

 

3.2.3 General aggregation operators  

 

Aggregation operations on fuzzy subsets are operations by which several fuzzy subsets are 

combined to produce a single subset (Klir and Yuan, 1995). In general, any aggregation 

operation is defined by a function 

]1,0[]1,0[: →nf                                                    (3.18) 
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where 2≥n . When applied to n fuzzy subsets 1
~
A , …, nA

~  defined on X, f produces an 

aggregation fuzzy subset A
~  by operating on the membership grades of each Xx ∈  in the 

aggregation sets. Thus, 

))(),...,(()( ~~~
1

xxfx
nAAA µµµ =                                         (3.19) 

for each Xx ∈ . 

 

The nature of aggregation of variables )(),...,( ~~
1

xx
nAA µµ  could be any of the following (Bloch 

1996; Petrou and Sasikala, 1999): 

 

• Aggregation is conjunctive if 

))(),...,(min()( ~~~
1

xxx
nAAA µµµ ≤ ,                                    (3.20) 

which states that a conjunctive operator has confidence at most as high as the smallest 

membership value and looks for the simultaneous satisfaction of all combined 

criteria; 

• Aggregation is disjunctive if 

))(),...,(max()( ~~~
1

xxx
nAAA µµµ ≥ ,                                    (3.21) 

which states that a disjunctive operator has confidence at least as high as the greatest 

membership value and looks for a redundancy between the combined criteria; 

• Aggregation is a compromise if 

))(),...,(max()())(),...,(min( ~~~~~
11

xxxxx
nn AAAAA µµµµµ ≤≤ ,               (3.22) 

which may represent a cautious behaviour. 

 

3.3 A Greedy heuristic for driver scheduling 

 

From the viewpoint of driver scheduling, the vehicle schedule consists of a set of pieces of 

work I={1, …, m} to be covered. A very large set of potential shifts S={S1, …, Sn} has been 
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generated. Each shift covers a subset of the pieces of work  ( IS j ⊆ for j∈J={1, …, n}), and 

has an associated cost cj (hours paid). A subset of shifts ):( ** JJJ ⊆  covers all the work if  

U IJjS
j

=∈ ):( **
* .                                               (3.23) 

 

Because of the advantage of fast computational speed, besides the traditional approach of ILP, 

alternative approaches of using greedy techniques are sometimes employed for driver 

scheduling. A simple greedy heuristic for the set covering problem is at each step, to choose 

the unused set (shift) which covers the largest number of remaining elements (pieces of 

work). For the weighted set covering problem, choose the unused shift )( JjS j ∈  with the 

largest ratio jj cS , based on the assumption that at each iteration the possibility for shift Sj 

to be selected increases with its number of uncovered pieces of work, denoted as jS , and 

decreases with its cost cj. In terms of driver scheduling, a straightforward greedy operator 

would be choosing the unused Sj with the largest uncovered worked time in each iteration. 

 

A more refined greedy heuristic is presented herein, based on the assumption that the 

desirability of using shift Sj in an optimal solution increases with its functional value F(Sj). 

This function consists of two components, and can be formulated as 

                    JjSfSfSF jjj ∈∀×= ),()()( 21 ,                                       (3.24) 

 

where ]1,0[)(1 ∈jSf  is called the over-cover penalty, and ]1,0[)(2 ∈jSf  is called the 

structural coefficient (to be described in Section 3.4). With respect to )(1 jSf , the ratio of the 

overlapped worked time to the total worked time in Sj should be regarded as one of the 

important criteria to determine whether or not to choose shift Sj. The choice of using worked 

time as the adaptive operator is based on experimental results, which will be given in Section 

3.5.1 later.  
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Over-cover means a piece of work has been covered by more than one shifts. The over-cover 

penalty can be formulated as 

            JjSf
jj S

k
jk

S

k
jkjkj ∈∀×= ∑∑

==

,)()(
11

1 ββα .                               (3.25) 

Where =jS  number of pieces of work in Sj; 

           






=
  otherwise; ,   0

; schedule in  shiftsother any by  covered beennot  has  in  piece work if ,   1 *JSSk ij
jkα  

           =jkβ  worked time for work piece k  in Sj. 

 

If every piece of work in Sj has been covered by other shifts in *J , f1 (Sj) = 0; conversely if 

none of the pieces of work is overlapped, f1 (Sj) = 1. 

 

This following construction heur istic is similar to that presented in (Kwan et al., 2001). The 

difference is the greedy operator in the proposed heuristic is to choose the shifts with the 

largest function value F(Sj), while the greedy operator in Kwan’s heuristic is to simply chose 

the shift with largest uncovered pieces of work.  

 

Considering all the potential shifts in the large set with respect to the pieces of work to be 

covered, each piece of work i has an associated coverage list with a length of Li, i.e. 

containing Li shifts that covers it. The steps for the proposed algorithm to construct a feasible 

schedule are: 

 

Step 0 Set },...,2,1{ mI =′ , where m is the number of pieces of work to be covered. 
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Step 1 If φ=′I  then stop: *J  is a feasible schedule. Otherwise find an index k∈J 

having ):)(max()( JjSFSF jk ∈=  from the shortest coverage list )( IiLi ′∈′′ , 

and proceed to step 2. 

Step 2 Add shift Sk to *J , set kSII −′=′ , and return to step 1. 

 

The construction heuristic can be regarded as a process of assigning shifts until every piece of 

work has been covered. In the beginning, each of the pieces of work will have a so-called 

coverage list. Candidate shifts are then assigned to the unassigned pieces of work 

sequentially. The criterion of choosing the next uncovered piece of work for assignment is 

that it has the shortest coverage list, and within the coverage list the shift with the largest 

function value F(Sj) is chosen. 

 

It should be noted that in a feasible solution, over-cover is often inevitable and usually can be 

resolved easily by manual editing before the schedule is implemented.  

 

3.4 Fuzzy evaluation of shift structure  

 

The process of constructing a potential schedule by means of greedy heuristics is inherently 

sequential. However, among the large set of potential shifts, it would be difficult to judge 

which one is more effective than others because the criteria bear some uncertainty. To 

mitigate the problem, fuzzy evaluation, a powerful tool to describe quantitative uncertain 

values and relations between them, is used to introduce the concept of structural coefficient. It 

gives shift )( JjS j ∈  a quantitative value ]1,0[)(2 ∈jSf  according to its structural state. The 

fitter the structure for jS , the larger )(2 jSf  is. 
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The main idea is to set up several criteria characterized by fuzzy membership functions, and 

then make decisions based on an aggregation of the fuzzified criteria. Considering the 

structural state of a shift in several aspects, the result will be more reliable than conventional 

approaches in determining the efficiency of the shift. 

 

There are two steps in establishing the new concept. First, a number of fuzzified criteria 

should be obtained according to the efficiency of a shift, which describes quantitatively the 

characteristic of its structural state from different aspects. Secondly, fuzzy evaluation will be 

applied to appraise effectively the shift structural state for decision-making. These two steps 

are presented respectively as follows. 

 

3.4.1 Construction of the fuzzified criteria 

 

Driver scheduling is a specialised set covering problem. In terms of ILP, the columns are 

shifts, which must satisfy conditions in the Labour Agreement between management and 

unions, not just any possible combination of pieces of work. In TRACS II, a BUILD process 

is used to generate such a large set of potential shifts, by means of a set of parameters.  

 

Explained in the following sections, the main criteria for evaluating shift structure are total 

worked time (u1), ratio (u2) of total worked time to spreadover (normally the paid hours for a 

driver from sign on to sign off), number of pieces of work (u3), and number of spells (u4) 

contained in a shift. Furthermore, the fractional cover by Linear Programming (LP) relaxation 

(u5) is regarded as the fifth criterion. 

 

3.4.1.1    Criterion u1 

 

In driver scheduling, not all the time from sign on to sign off is regarded as worked time, 

although it might be fully paid. 
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                                               Meal break                                Join up 
                       A-------------B                    C-------------------D             E--------------F 
                             Spell 1                                   Spell 2                              Spell 3 
 

Figure 3.1: Example shift with gaps of meal break and join up 

 

Considering a 3-spell shift in Figure 3.1, the interval between B and C is time given to a 

driver to take a meal break, and the interval between D and E is a join up time required for a 

driver to change train like a passenger from relief point D to E, plus some slack, without a 

meal break. The actual worked time in this shift is therefore the sum of all the on-vehicle time 

excluding jo in up and/or meal break time. 

 

It is intuitive that shifts with longer worked time are more efficient than those with shorter 

worked time. Hence we can assume that the goodness of a potential shift )( JjS j ∈  generally 

increases with its total worked time. Furthermore, since in most real world driver scheduling 

problems only a very small proportion of the shifts in the large set will be used to produce 

efficient schedules, it is not desirable to have larger variations in the measure of goodness 

among these elite shifts. On the contrary, for shifts with longer worked time, their goodness 

should increase as smoothly as possible, allowing them more chances to be selected later. 

Based on this consideration, the kind of increase should be non-linear. Thus, the S-shape 

quadratic membership function (
1

~
Aµ ), rather than the simple linear function, can be applied to 

define criterion u1 as 
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where x1  = total worked time of jS ; 

   )1(
maxa = maximum total worked time; 

   )1(
mina = minimum total worked time. 

 

The characteristic curve of function 
1

~
Aµ  is shown below: 

 

0

0.5

1

 
 

3.4.1.2    Criterion u2 

 

Besides the absolute worked time, the relative ratio of actual worked time to spreadover (paid 

hours) can be regarded as another important criterion.  

 

                Shift 1.                       A1---------------B1                    C1-------------------D1 
                                                           Spell 1                                       Spell 2 
 
                Shift 2.                       A2---------------B2              C2-------------------D2 
                                                           Spell 1                                 Spell 2 
 
                Shift 3.                       A3---------------B3    C3--------------D3 
                                                           Spell 1                    Spell 2 
 

Figure 3.2: Example shifts with different lengths of spells and gaps 

 

)1(
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maxa
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Considering three shifts each with two spells in Figure 3.2, in terms of the length of worked 

time, shift 1 and shift 2 are equal, while shift 3 is shorter due to its shorter second spell. In 

terms of the length of the gap, shift 1 is the longest, shift 2 second, and shift 3 third. Among 

these three shifts, shift 2 is obviously more efficient than shift 1 because of its shorter gap 

between spells and thus shorter paid hours. However, shift 3 is also regarded intuitively as 

more efficient than shift 1 because of its much shorter gap, even though its second spell is 

slightly shorter than that of shift 1. 

 

The above analysis leads to the criterion rule that shifts with larger ratio of worked time to the 

spreadover are regarded as more efficient than those with shorter ratio. Hence an associated 

membership function can be designed based on the assumption that the goodness of a 

potential shift )( JjS j ∈  generally increases with this ratio. For the similar reason given in 

section 3.4.1.1 above, this increase should be non-linear as well. Again, the S-shape quadratic 

membership function (
2

~
Aµ ), rather than the simple linear function, is applied to define 

criterion u2 as 
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where x2 = ratio of total worked time to spreadover for jS ; 

   )2(
maxa = maximum ratio; 

   )2(
mina = minimum ratio. 

 

The characteristic curve of function 
2

~
Aµ  is shown below: 
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3.4.1.3    Criterion u3 

 

A shift may contain several spells, and each spell contains a number of consecutive pieces of 

work. The number of pieces of work may be regarded as one of the criteria about the shift 

structure. 

 

                                A1        B1         C1          D1         E1            F1         G1        H1          I1 
        Shift 1.             +--------+--------+---------+--------+             +--------+--------+--------+ 
                                                      Spell 1                                                   Spell 2 
 
                                A2        B2         C2          D2              E2         F2        G2 
        Shift 2.             +--------+--------+---------+               +--------+--------+ 
                                               Spell 1                                        Spell 2 
 

Figure 3.3: Example shifts with different number of pieces of work 

 

Considering two 2-spell shifts in Figure 3.3, shift 1 is composed of seven pieces of work, and 

shift 2 is composed of five pieces of work. Driver scheduling is a bi-objective combinatorial 

problem. Although the main objective is to minimize the overall cost of the schedule, for 

practical reasons, the number of shifts in the schedule is also to be minimised. To the 
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objective of minimizing the number of shifts, shift 1 is more efficient than shift 2 because it 

covers more pieces of work and hopefully saves shifts in the final schedule.  

 

If every shift in the final schedule covers as many pieces of work as possible, the number of 

shift potentially might be minimised. Hence an associated membership function can be 

designed based on the assumption that the goodness of a potential shift )( JjS j ∈  generally 

increases with the number of pieces it covers. Since the range of number of work pieces 

among the shifts is small (normally smaller than 30) and this variable is discrete, the non-

linear curve using u1 or u2 is not appropriate. A linear membership function (
3

~
Aµ ) is therefore 

applied to define criterion u3 as 

 

)3(
min

)3(
max

)3(
min3

~
3 aa

ax
A −

−
=µ ,                                                     (3.28) 

 
where x3  = number of pieces of work contained in jS ; 

   )3(
maxa = maximum number of pieces of work; 

   )3(
mina = minimum number of pieces of work. 

 

The characteristic representation of function 
3

~
Aµ  is shown below: 

 

0
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3.4.1.4    Criterion u4 

 

In the current TRACS II process of generating the large set of potential shifts, the parameter 

that decides the maximum number of spells in a shift is usually set to be 4. The reason why 

shifts with more than 4-spells are not constructed is that they are seldom efficient, and also 

the combinations of work pieces for forming them would be so enormous that they would 

cause computational difficulties. However, among the shifts with up to four spells, differences 

of structural efficiency or user preferences still exist. 

 

   1-spell shift             A1---------------------------------B1 
                                                      Spell 1 
 
   2-spell shift             A2--------------------B2      C2---------------------D2 
                                              Spell 1                               Spell 2 
 
   3-spell shift             A3--------------B3       C3--------------D3        C2--------------D2 
                                           Spell 1                      Spell 2                        Spell 3 
 
   4-spell shift             A4---------B4       C4------------D4        E4----------F4        G4-----------H4 
                                        Spell 1                 Spell 2                    Spell 3                  Spell 4 
 

Figure 3.4: Example shifts with one to four spells 

 

Considering the example shifts with up to four spells in Figure 3.4, 1-spell shifts are shorter 

shifts without a meal break in between the work pieces. These shifts may either be an 

overtime shift, or a half shift where a meal break can be placed at the beginning or at the end 

of it, and the other half would be made up with required work such as shunting. These shifts 

seem to be inefficient and are discouraged by transport operators, even if sometimes they are 

crucial in forming optimal schedules. 

 

On the other hand, 2-spell shifts are highly encouraged because they are inherently more 

robust and preferred than shifts with three or four spells. Usually, a shift with more spells 

would inevitably result in an additional meal break, or more time for the driver to transfer 
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from one vehicle to another vehicle. Therefore, between the 4-spell shift and the 3-spell shift, 

the 4-spell one seems to be less preferable. 

 

Based on the above consideration, membership function 
4

~
A

µ for the spell factor u4 can be 

designed as 

 


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




=
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~
4

x

x

xx

Aµ ,                                  (3.29) 

 

where x4 = number of spells contained in jS . 

 

The characteristic representation of function 
4

~
A

µ  is shown below: 

 

0
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3.4.1.5    Criterion u5 

 

The common method for shift selection is Integer Linear Programming, which uses the 

branch-and-bound tree-search procedure to produce integer solutions. This is a non-

4x

4
~
Aµ



51 

 

polynomial time algorithm, limited by the amount of search space to be explored within 

reasonable time. For this reason, the ILP process sometimes may be terminated before any 

integer solution has been found. However the relaxed LP, i.e. ignoring the integer constraints, 

can usually be solved quickly: it provides some useful information about the distribution of 

the optimum integer solution. Therefore, the relaxed Linear Programming solution u5, if 

applicable, can be considered as an additional criterion. 

 

With regard to driver scheduling, the relaxed LP solution is an assignment of possibly 

fractional values to shifts, in which the sum of the shifts covering any piece of work is not 

smaller than 1 (shown in Figure 3.5). The number of shifts used in this solution, i.e. the sum 

of the possibly fractional values, is a very good estimate of the lower bound on the optimal 

number of shifts. In practice, the optimal number of shifts is usually obtained by rounding up 

the number of shifts to the next higher integer.  

 

                                                                                Shift 6 (0.3560) 
                                                                           ‹-------------------------› 
                                              Shift 4 (0.6320)                          Shift 5 (0.2760) 
                                        ‹-------------------------›‹--------------------------------------------------› 
            Shift 1 (1.0000)                         Shift 2 (0.3680)                           Shift 3 (0.7240) 
      ‹------------------------›‹---------------------------------------------------›‹------------------------› 
     +––––––––––––––––+–––––––––––––––––+––––––––––––––––+––––––––––––––––+ 
     A                               B                                 C                                D                               E 

 

Figure 3.5: Fractional values in a relaxed LP solution 

 

Some constraint programming systems have utilized the relaxed LP solution to solve 

scheduling problems in different ways (Guerinik and Caneghem, 1995; Rodosek et al., 1996; 

Curtis et al., 1999), in which the fractional values in this solution were employed as a guide of 

choosing variables to be satisfied. Although their searching approaches were slightly 

different, both Guerinik and Caneghem (1995) and Rodosek et al. (1996) used the fractional 

value of a shift as the guide to the first value chosen for their shift variables, while Curtis et 

al. (1999) assigned the fractional values to relief opportunities rather than shifts. 
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Another successful application of the relaxed LP solution, by the means of hybrid genetic 

algorithms, is described in (Kwan et al., 1999; Kwan 1999; Kwan et al., 2001), which 

included all the shifts with fractional values larger than a given parameter (such as 0.3) in the 

candidate seeding shift set, and reported better results than other heuristics. They investigated 

a large number of data sets originating from bus and train operators, and found that, among all 

the constructed shifts, those shifts with fractional values in the relaxed LP solution are more 

likely to be used in the integer solution then others. The investigative results of some selected 

larger cases in (Kwan et al., 1999), together with the largest instance of Gall2 obtained 

recently, are shown in Table 3.1. 

 

Date Number 

of shifts 

(a) Shifts in the 

relaxed solution 

(b) Shifts in an 

integer solution 

(c) Common shifts 

in (a) and (b) 

(c)/(b)×100 

% 

Wakh 30000 428 106   88 83 

G34a 30701 476 106   70 66 

 Wkh 30000 420 109   98 90 

 Tl96 17430 368 112   85 76 

 Tl97 22917 377 112   99 88 

G309 27973 425 113   76 67 

Swbx 30423 474 132 104 79 

Gall2 144339 627 242 219 90 

 

Table 3.1: Relationship of shifts in an integer solution and those in the relaxed LP solution 

 

Table 3.1 shows that, for larger cases, more than 60% of the shifts in the final integer solution 

exist in the relaxed LP solution: the average percentage is about 80%, while the maximum 

percentage even reaches 90%. Since there may be many different integer solutions using the 

same minimum number of shifts, those shifts in the relaxed LP solution but not in the best 

integer solution found by TRACS II might still be potentially good in terms of contributing to 

a minimum shift schedule. 
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To study the distribution of the shifts in the integer solution with respect to their fractional 

values in the relaxed LP solution, an extract of the largest Gall2 problem with an integer 

solution of 242 shifts is shown in Table 3.2, in which 219 shifts have the fractional values in 

the relaxed LP solution. 

 

Fractional values in 

the relaxed solution 

(1) No. of shifts (2) No. of shifts in 

an integer solution 

(2)/(1)×100 

% 

0 143712   23   0.02% 

0.0000–0.0999 257   12   4.67% 

0.1000–0.1999   50     4   8.00% 

0.2000–0.2999   41     8 19.51% 

0.3000–0.3999   41   13 31.71% 

0.4000–0.4999   12     4 33.33% 

0.5000–0.5999   10     3 30.00% 

0.6000–0.6999   33   13 39.39% 

0.7000–0.7999   18     9 50.00% 

0.8000–0.8999   20   17 85.00% 

0.9000–1.0000 145 136 93.79% 

 

Table 3.2: Distribution of shifts in an integer solution with respect to their fractional values 

 

Whether or not a shift has a fractional value in the relaxed LP solution significantly affects its 

chance to be included in the optimum integer solution. If not, the chance can be regarded 

probabilistically as zero (only 0.02% in this case). However the shifts involved in this small 

chance may still be vitally important to complete a perfect solution, which will be 

demonstrated by experiments in Section 3.5.3.3. Otherwise, the higher the fractional value, 

the more likely the shift will be present in the integer solution (for example, 4.67% in the 

interval [0.000-0.0999] and 93.79% in the interval [0.9000-1.0000]). 

 

Furthermore, since the shifts in the integer solution are concentrated in fractional values close 

to 1, the membership function with respect to criterion u5 should be non-linear. With the 



54 

 

advantage of being smooth and nonzero at all points, the Gaussian distribution function (
5

~
Aµ ) 

is applied to define criterion u5 as 
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Let 1
5

~ =
A

µ  when )5(
max5 ax = , and 01.0

5
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A

µ  when )5(
min5 ax = , 

where x5 = fractional value of jS  in the relaxed LP solution; 

        )5(
maxa = maximum value in fractional cover; 

        )5(
mina  = minimum value in fractional cover. 

Therefore, 
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The characteristic curve of function 
5

~
Aµ  is shown below: 
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3.4.2 Evaluation of shift structure by fuzzy aggregation 

 

Five criteria u1 (i= 1,…,5) have been abstracted for the evaluation of the shift structure, and 

each criterion is assigned a numerical evaluation by fuzzy membership function 
iA

~µ  

(i=1,…,5), where iA
~  is the fuzzy subset on the i-th criterion. These evaluations refer to local 

feature of each criterion respectively, thus an overall evaluation on fuzzy subset A
~  could be 

made by aggregation of these five criteria. 

 

As introduced in Section 3.2.3, the nature of aggregation of )(),...,(
51

~~ xx AA µµ  falls into any of 

these three categories: conjunctive, disjunctive, or compromise. The relative influence and 

inter-relationship of these criteria cannot be predicted. Therefore, a specific operator from 

each of the three aggregation categories is selected for experiments, whose results will be 

reported in Section 3.5.1. The chosen aggregation operators are described as follows. 

 

1)  Conjunctive aggregation 

 

When criteria ui are of equal importance, the fuzzy subset A
~  of good shift structure with 

respect to the five criteria may be defined as intersection of all the fuzzy subsets iA
~ , i.e. 

I
5

1

~~

=

=
i

iAA ,                                                         (3.32) 

Therefore, for shift )( JjS j ∈ , the formulation of its structural coefficient f2(Sj) by the 

corresponding aggregation operator is: 

JjxxxSf AAAj ∈∀== )),(),...,(min()()(
51

~~~2 µµµ .                          (3.33) 

 

This aggregation is “pessimistic” in the sense that each shift is assigned its worst evaluation. 
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2)  Disjunctive aggregation 

 

When criteria ui are of equal importance, the fuzzy subset A
~  of good shift structure with 

respect to the five criteria may be also defined as union of all the fuzzy subsets iA
~  i.e.  

U
5

1

~~

=

=
i

iAA ,                                                         (3.34) 

Therefore, for shift )( JjS j ∈ , the formulation of its structural coefficient f2(Sj) by the 

corresponding aggregation operator is: 

JjxxxSf AAAj ∈∀== )),(),...,(max()()(
51

~~~2 µµµ .                          (3.35) 

 

This aggregation is “optimistic” in the sense that each shift is assigned its best evaluation. 

 

3)  Compromise aggregation 

 

The above aggregation schemes assume that the criteria cannot compensate each other. When 

this is no longer true, other schemes may be considered, such as product, arithmetic mean, 

and geometric mean. Therefore, for shift )( JjS j ∈ , the formulation of its structural 

coefficient f2(Sj) using the arithmetic mean operator is: 

JjwxSf
iA

i
iAj ∈∀== ∑

=
,)()( ~

5

1

~2 µµ .                                   (3.36) 

Where )0( ≥ii ww  denotes the corresponding weights for criteria ui (i=1, …, 5). They all 

satisfy the normalizing condition  

∑
=

=
5

1

1
i

iw                                                            (3.37) 

If the i-th criterion were dominant in assessing the shift structure, its weight should have a 

high value. 
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3.5 Experiments on the greedy heuristic with fuzzy evaluation 

 

The major concern about using heuristics is the quality of the obtained solution. Due to lack 

of knowledge about the true optimum, an effective method of assessing the quality of a 

heuristic solution is by comparing it to the best known solution. Therefore, Relative 

Percentage Deviation (RPD) over the best known schedule is applied to measure the quality 

of a heuristic schedule: the smaller the RPD is, the better the result is. 

    %100
 schedule  known-Best

 schedule  known  Best    schedule Heuristic
×






 −

=RPD                   (3.38) 

 

Best known schedule   

Data 

 

Type 

Number of 

pieces of work 

Number of 

potential shifts Shifts Cost 
(hours paid) 

 Colx   Bus   127     3560   34   288.16 

 Gmb   Bus   154   11817   34   289.32 

 Neur Train   340   29380   62   509.25 

  Ew3 Train   437   25099 116 1003.55 

Wag3 Train   456   16636   50   403.42 

   F2x Train   546   43743   64   562.22 

Tram Tram   553     6437   49   419.50 

Trmx Tram   553   29500   49   408.47 

  Nb2   Bus   613   22568   75   851.09 

Gall2 Train   707 144339 242 2247.52 

G532 Train 1164   29465 276 2083.15 

Gall1 Train 1495   28639 349 2661.12 

 Rrne Train 1873   50000 395 3137.20 

 

Table 3.3: Size and the best known schedules of the test problems 

 

Table 3.3 shows the sizes and the best known results of thirteen real world problems. For 

example, the largest case RRNE is a scheduling problem from the former Regional Railways 

North East, which had a diverse operation comprising rural, inter-urban and urban operations 

to cover most area of northeast England. The best known schedules are mostly obtained by 
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the TRACS II: some (F2x, Gall2 and Rrne) from version 12.0b, and the others from the 

previous version. The only side constraint present in these data sets are on the total number of 

shifts. Default settings of the TRACS II parameter were used. For the cases of Neur and Nb2, 

the ILP process fails to find any integer solution even though the ILP has been re-run many 

times and each time with a higher revised target number of shifts. In this circumstance, results 

reached by hybrid GAs incorporating strong domain knowledge (Kwan 1999) are cited. 

 

3.5.1 Determination of the greedy operator in over-cover penalty 

 

Schedules derived from the three simple greedy heuristics (described in Section 3.3) are 

compared to decide which greedy component should be kept in the proposed algorithm. These 

three simple greedy heuristics, whose results are tabulated in Table 3.4 as Greedy schedule 

(1), Greedy schedule (2), and Greedy schedule (3), choose the potential shift )( JjS j ∈  with 

the largest uncovered pieces of work, the largest ratio jj cS , and the largest uncovered 

worked time respectively in each iteration. 

 
Greedy schedule (1) Greedy schedule (2) Greedy schedule (3) Data 
 Shift  Cost  Shift  Cost Shift  Cost 

 Colx   41   349.32   44   382.62   40   356.70 

 Gmb   40   355.35   42   359.93   40   350.70 

 Neur   74   621.45   75   643.07   74   602.20 

  Ew3 128 1199.88 128 1241.78 123 1156.27 

Wag3   61   501.38   59   495.66   59   490.18 

   F2x   76   714.18   70   693.72   74   700.95 

Tram   61   558.72   61   564.12   61   558.55 

Trmx   63   561.25   63   571.50   61   547.45 

  Nb2   84   985.32   84 1006.67   84   974.25 

Gall2 295 2738.08 291 2946.22 274 2497.23 

G532 322 2412.13 323 2537.32 329 2398.78 

Gall1 405 3079.55 402 3308.95 410 3033.72 

 Rrne 457 3793.27 471 4024.17 452 3704.32 

 
Table 3.4: Computational results of simple greedy heuristics 
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According to Table 3.5, the average RPD in terms of number of shifts and total cost for these 

three heuristics are (18.77%, 22.89%), (19.11%, 27.05%), and (16.89%, 20.36%) 

respectively. In general, the 3rd greedy heuristic works better with both objectives. Therefore, 

this greedy operator will be adopted, and uncovered worked time is used in the over-cover 

penalty f1(Sj), which is described in Section 3.3. 

 

Greedy schedule (1) Greedy schedule (2) Greedy schedule (3)  

Data RPD 

(shift) 

RPD 

(cost) 

RPD 

(shift) 

RPD 

(cost) 

RPD 

(shift) 

RPD 

(cost) 

 Colx 20.59 21.22 29.41 32.78 17.65 23.79 

 Gmb 17.65 22.82 23.53 24.41 17.65 21.22 

 Neur 19.35 22.03 20.97 26.28 19.35 18.25 

  Ew3 10.34 19.56 10.34 23.74   6.03 15.22 

Wag3 22.00 24.28 18.00 22.86 18.00 21.51 

   F2x 18.75 27.03 9.38 23.39 15.63 24.68 

Tram 24.49 33.19 24.49 34.47 24.49 33.15 

Trmx 28.57 37.40 28.57 39.91 24.49 34.02 

  Nb2 12.00 15.77 12.00 18.28 12.00 14.47 

Gall2 21.90 21.83 20.25 31.09 13.22 11.11 

G532 16.67 15.79 17.03 21.80 19.20 15.15 

Gall1 16.05 15.72 15.19 24.34 17.49 14.00 

 Rrne 15.70 20.91 19.24 28.27 14.43 18.08 

 Ave. 18.77 22.89 19.11 27.05 16.89 20.36 

 

Table 3.5: RPD results of simple greedy heuristics 

 

3.5.2 Selecting the aggregation operator for the structural coefficient 

 

As described in Section 3.4.2, three different kinds of aggregation operator have been applied 

to evaluate the shift structure, educing the so-called structural coefficient f2(Sj). The product 

of structural coefficient f2(Sj) and over-cover penalty f1(Sj), denoted as F(Sj), is used as the 

final criterion in the new approach to decide which shift should be used in the process of 
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constructing a schedule. In this section, the most suitable aggregation operator will be 

determined according to the experimental results. 

 

3.5.2.1    Intersection operator 

 

Defined by formula (3.33), the intersection operator is a “pessimistic” aggregation, in which 

each shift is assigned the worst evaluation. According to the membership functions defined, if 

taking the smallest value by this operator, most shifts involve zero values for their structural 

coefficient f2(Sj), i.e. shifts with one or four spells with regard to the criterion u4, and shifts 

without fractional values in the relaxed LP solution with regard to the criterion u5. Thus the 

associated overall evaluation function values F(Sj) for these shifts are zero. Since in the 

process of constructing a schedule, each step is to choose the shift with the largest value of 

F(Sj), shifts with zero evaluation values will never have chances to be selected. In many 

circumstances, these unselected shifts are vitally important, sometimes necessary, to produce 

a good schedule. 

 

Data  Shift RPD (%)  Cost RPD (%) 

 Colx   47 38.24   389.90 35.31 

 Gmb   43 26.47   367.52 27.03 

 Neur   83 33.87   661.38 29.87 

  Ew3 134 15.52 1186.68 18.25 

Wag3   57 14.00   462.37 14.61 

   F2x   76 18.75   711.02 26.47 

Tram   60 22.45   520.77 24.14 

Trmx   66 34.69   552.75 35.32 

  Nb2 121 61.33 1181.97 38.88 

Gall2 275 13.64 2553.32 13.61 

G532 294   6.52 2337.42 12.21 

Gall1 382   9.46 3085.93 15.96 

 Rrne 466 17.97 3912.33 24.71 

 Ave.                         24.07                         24.34 
 

Table 3.6: Experimental results by using the intersection operator 
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As shown in Table 3.6, the average RPD for number of shifts and total cost are 24.07% and 

24.34% respectively. In general the results using this operator are no better than those of the 

simpler greedy heuristics. This operator is therefore discarded without further investigation. 

 

3.5.2.2    Union operator 

 

Defined by formula (3.35), the union operator is an “optimistic” aggregation, in which each 

shift is assigned its best evaluation. According to the membership functions defined, if taking 

the largest value by this operator, the structural coefficients f2(Sj) for most shifts are one, i.e. 

those shifts with two spells with regard to the criterion u4, and shifts with a fractional value of 

1.0000 in the relaxed LP solution with regard to the criterion u5. Thus for a large proportion 

of shifts, their associated overall evaluation values F(Sj) are equal to f1(Sj), meaning that the 

component of structural coefficient f2(Sj) is actually not taking effect. In recognition of this, 

the performance of the algorithm using such an operator should be better, but not too much 

better, than the simple greedy heuristics. 

 

Data  Shift RPD (%)  Cost RPD (%) 

 Colx   38 11.76   326.30 13.24 

 Gmb   40 17.65   353.73 22.26 

 Neur   70 12.90   588.07 15.48 

  Ew3 126    8.62 1145.42 14.14 

Wag3   62 24.00   510.33 26.50 

   F2x   70   9.38   686.52 22.11 

Tram   67 36.73   602.13 43.54 

Trmx   62 26.53   544.43 33.29 

  Nb2   79   5.33   931.87   9.49 

Gall2 268 10.74 2532.22 12.67 

G532 309 11.96 2374.92 14.01 

Gall1 390 11.75 3036.88 14.12 

 Rrne 445 12.66 3717.95 18.51 

 Ave.                        15.39                         19.95 
 

Table 3.7: Experimental results by using the union operator 
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The experimental results in Table 3.7 have demonstrated the above. The average RPD for 

number of shifts and total cost are 15.39% and 19.95% respectively. In general the results 

using the union operator are slightly better than those of the best simple greedy heuristic, i.e. 

the 3rd one, in terms of both the number of shifts and total cost. 

 

3.5.3.3    Arithmetic mean operator 

 

Both the intersection and union operators are based on the assumption that all the criteria are 

of equal importance, and cannot compensate each other. Since the schedules produced by 

these operators are not satisfactory, another operator of arithmetic mean is tested the 

performance of the proposed approach. 

 

1)  Individual effect of each criterion 

 

Before studying whether these criteria are compensative with each other, it would be 

interesting to know the individual effect of each single criterion on the system’s performance. 

Table 3.8 and Table 3.9 show the experimental results and their associated RPD results of 

using the single criteria ui (i=1,…,5) respectively, which are obtained by simply setting 

1=iw  and )(0 ijw j ≠=  in formula (3.36). 
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Criterion 1 Criterion 2 Criterion 3 Criterion 4 Criterion 5 Data 

Shift   Cost Shift   Cost Shift   Cost Shift   Cost Shift   Cost 

 Colx   38   341.08   44   334.48   49   433.83   44   349.02   42   360.58 

 Gmb   39   353.98   45   346.75   49   447.92   46   364.38   40   334.38 

 Neur   72   606.32   73   578.42   80   689.13   99   711.08   75   602.80 

  Ew3 123 1223.68 135 1121.33 127 1258.73 169 1303.62 125 1070.90 

Wag3   57   487.43   59   481.57   63   543.03   82   601.93   57   459.37 

   F2x   72   716.75   79   658.48   74   745.50   83   630.55   77   711.78 

Tram   67   638.53   59   512.15   72   674.13   69 570.02   58   501.30 

Trmx   64   600.75   61   533.75   72   657.75   66 532.23   57   475.82 

  Nb2   83   973.35   86   940.68   80   941.43 116 1092.52   92   977.50 

Gall2 267 2713.05 284 2424.33 299 3059.88 337 2581.33 249 2297.65 

G532 307 2507.58 336 2246.45 328 2667.90 421 2530.43 293 2298.90 

Gall1 388 3162.12 429 2851.45 413 3393.30 544 3263.03 371 2952.70 

 Rrne 444 3758.58 453 3632.12 520 4439.80 513 3984.45 437 3683.65 
 

Table 3.8: Computational results by using single criterion individually 

 

Criterion 1 Criterion 2 Criterion 3 Criterion 4 Criterion 5  

Data RPD 
(shift) 

PRD 
(cost) 

RPD 
(shift) 

PRD 
(cost) 

RPD 
(shift) 

PRD 
(cost) 

RPD 
(shift) 

PRD 
(cost) 

RPD 
(shift) 

PRD 
(cost) 

 Colx 11.76 18.36 29.41 16.07 44.12 50.55 29.41 21.12 23.53 25.13 

 Gmb 14.71 22.35 32.35 19.85 44.12 54.82 35.29 25.94 17.65 15.57 

 Neur 16.13 19.06 17.74 13.58 29.03 35.32 59.68 39.63 20.97 18.37 

  Ew3 6.03 21.94 16.38 11.74 9.48 25.43 45.69 29.90   7.76   6.71 

Wag3 14.00 20.82 18.00 19.37 26.00 34.61 64.00 49.21 14.00 13.87 

   F2x 12.50 27.49 23.44 17.12 15.63 32.60 29.69 12.15 20.31 26.60 

Tram 36.73 52.21 20.41 22.09 46.94 60.70 40.82 35.88 18.37 19.50 

Trmx 30.61 47.07 24.49 30.67 46.94 61.03 34.69 30.30 16.33 16.49 

  Nb2 10.67 14.37 14.67 10.53   6.67 10.61 54.67 28.37 22.67 14.85 

Gall2 10.33 20.71 17.36   7.87 23.55 36.14 39.26 14.85   2.89   2.23 

G532 11.23 20.37 21.74   7.84 18.84 28.07 52.54 21.47   6.16 10.36 

Gall1 11.17 18.83 22.92   7.15 18.34 27.51 55.87 22.62   6.30 10.96 

 Rrne 12.41 19.81 14.68 15.78 31.65 41.52 29.87 27.01 10.63 17.42 

Ave. 15.25 24.88 21.044 15.36 27.79 38.38 43.96 27.57 14.41 15.26 

 

Table 3.9: RPD results by using single criterion individually 



64 

 

 

According to the criterion u1 (total worked time in a shift), shifts with more work content 

have preference to be selected in the final schedule. Given the finite work content, the 

construction process by such a strategy will potentially result in fewer number of shifts in the 

schedules. The average RPD results of this criterion in Table 3.9 demonstrate this trend: it 

achieves 15.25% in terms of the number of shifts, which is better than those of the three 

simple greedy heuristics. 

 

According to the criterion u2 (ratio of total worked time to spreadover), it is encouraged that 

shifts with larger percentage of work content have preference to be selected in the final 

schedule. The construction process by this strategy will potentially result in little non-worked 

time, reducing the total cost in the schedules. The average RPD results of this criterion in 

Table 3.9 also demonstrate this trend: it achieves 15.36% in terms of the total cost, which is 

better than those of the simple greedy heuristics. 

 

The effects for the criterion u3 (number of pieces of work) and the criterion u4 (number of 

spells) are more complex. As described in Section 3.4.1.3 and Section 3.4.1.4, these two 

criteria are regarded as the effective factors for shift structure. However, if each criterion is 

isolated to evaluate the shift structure, the results are much worse in both objectives (shown in 

Table 3.9). With respect to the criterion u3, the reason might be that it increases significantly 

the number of over-covered pieces of work, thus increases eventually the total cost in the 

schedule. With respect to the criterion u4, probably it is because some shifts, though not 

many, with other than two spells are vitally important to good schedules. 

 

Obviously, the criterion u5 (fractional values in the relaxed LP solution) worked best 

separately compared with the other four criteria, according to its average RPD results in Table 

3.9. Compared with the three simple greedy heuristics, it also performs best in terms of both 

number of shifts and total cost. 
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2)  Combined effect of all criteria  

 

From the experimental results of using single criterion, the individual effect of each single 

criterion on the system’s performance is not satisfactory, and no criterion is absolutely 

dominant than others although the 5th criterion can produce better solutions in general. In this 

section, experiments of using the combined criteria by the arithmetic mean operator will be 

implemented to study whether and how these criteria are compensative with each other. 

 

Table 3.10 shows the summary results of 100 runs with weight combinations generated 

randomly. The four important indices of Maximum, Minimum, Mean, and Standard Deviation 

in statistics are applied to study the distribution of the computational results in terms of both 

number of shifts and total cost. Let ti be a variable of either the number of shifts or total cost 

in a schedule, then 

 

Maximum } ..., ,max{ 1001 tt= ,                                          (3.39) 

Minimum } ..., ,min{ 1001 tt= ,                                           (3.40) 

Mean 100 
100

1
∑

=
=

i
itt ,                                                (3.41) 

Standard Deviation 99 )(
100

1

2∑
=

−=
i

i tt .                               (3.42) 

 

The Mean is a measure to evaluate the average performance of the proposed algorithm, while 

the Standard Deviation is a summary measure of the differences of each result from the mean. 

According to the RPD results in Table 3.11, the average RPD of Means in number of shifts 

and total cost are 13.84% and 13.03% respectively. It shows that the arithmetic mean operator 

with different weights works much better than other aggregation operators and the simple 

greedy heuristics. 
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Maximum Minimum Mean Standard Deviation Data 

 Shift   Cost  Shift   Cost  Shift   Cost  Shift   Cost 

 Colx   42   350.65   37   312.22   39.44   328.34   0.97   9.94 

 Gmb   42   353.02   37   313.02   39.92   334.67   1.04   8.13 

 Neur   84   632.33   69   551.45   73.60   579.39   2.52 14.86 

  Ew3 146 1223.13 120 1036.43 129.84 1105.42   6.41 41.88 

Wag3   71   552.35   54   432.40   59.84   479.03   3.39 24.12 

   F2x   87   698.90   68   594.55   73.12   636.28   3.37 21.71 

Tram   66   604.40   52   448.73   57.84   515.58   4.02 45.25 

Trmx   63   576.37   51   435.50   55.68   483.60   3.04 35.85 

  Nb2 108 1039.87   79   880.12 87.85   929.39   4.83 27.49 

Gall2 316 2560.88 245 2276.42 258.32 2362.23 13.21 65.91 

G532 333 2326.38 280 2164.37 296.64 2225.70 11.20 34.93 

Gall1 429 2987.13 358 2798.43 378.16 2862.75 15.78 47.42 

 Rrne 477 3768.38 413 3432.50 437.12 3572.82 13.49 67.99 
 

Table 3.10: Summary results of 100 runs with randomised weights 

 

Maximum Minimum Mean Data 

RPD 
(Shift) 

RPD 
(Cost) 

RPD 
(Shift) 

PRD 
(Cost) 

RPD 
(Shift) 

RPD 
(Cost) 

 Colx 23.53 21.66   8.82 8.35 16.00 13.94 

 Gmb 23.53 22.02   8.82 8.19 17.41 15.67 

 Neur 35.48 24.17 11.29 8.29 18.71 13.77 

  Ew3 25.86 21.88   3.45 3.28 11.93 10.15 

Wag3 42.00 36.92   8.00 7.18 19.68 18.74 

   F2x 35.94 24.31   6.25 5.75 14.25 13.17 

Tram 34.69 44.08   6.12 6.97 18.04 22.90 

Trmx 28.57 41.10   4.08 6.62 13.63 18.39 

  Nb2 44.00 22.18   5.33 3.41 17.13   9.20 

Gall2 30.58 13.94   1.24 1.29   6.74   5.10 

G532 20.65 11.68   1.45 3.90   7.48   6.84 

Gall1 22.92 12.25   2.58 5.16   8.36   7.58 

 Rrne 20.76 20.12   4.57 9.41 10.66 13.89 

Ave. 29.89 24.33   5.54 5.98 13.84 13.03 

 

Table 3.11: RPD results of 100 runs with randomised weights 
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Particularly, it achieves an encouraging finding: among the 100 randomised weight 

combinations, there always exist several ones that can derive rather satisfactory results for 

each case. For example, Table 3.11 shows that the average RPD of Min in number of shifts 

and total cost are as small as 5.54% and 5.98% respectively. 

 

According to the experimental results, in general the results of using the combined weights 

are much better than those of using single criterion. It can be concluded that the five criteria 

proposed are compensative with each other. Moreover, since a significant difference exists 

among schedules produced by individual weight combinations, hopefully better results may 

be achieved if these criteria are given more suitable weights. Therefore, the arithmetic 

operator will be kept for further investigation. 

 

3.6 Conclusions  

 

A refined greedy algorithm based on fuzzy subsets theory has been presented in this chapter. 

The new algorithm is novel because it is the first time that fuzzy set theory has been applied 

to the driver scheduling problem. An effective method is proposed to solve the problem about 

ranking the potential shifts in each iteration. Unlike the simple greedy algorithms, the new 

approach employs fuzzy evaluation which depends on five fuzzified criteria about the 

structure of a shift including total worked time, ratio of total worked time to spreadover, 

number of pieces of work, number of spells, and fractional cover. 

 

The evaluation operator in the proposed algorithm is the product of two components, namely 

over-cover penalty and structural coefficient. The over-cover penalty is actually an adaptive 

greedy operator, in which there are several alternative choices for its greedy unit. Among the 

three simple greedy heuristics, the one using the largest uncovered worked time is adopted 

because of its best performance by experiments. With regard to structural coefficient, there 
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are also three aggregation operators in different categories as candidates, among which the 

arithmetic mean operator takes into account the interactive factor of individual criterion, and 

performs best in general. This operator is therefore applied to aggregate the proposed criteria. 

 

It is interesting to find that, among the results of using 100 weight combinations generated 

randomly, outstanding results were obtained for each test case, some of which are rather close 

to the best known solutions (within 2%). Therefore more sophisticated algorithms are 

worthwhile to be developed and further investigated, in particular we would like to 

investigate: 

 

1) Whether more refined sets of weight combinations could be derived to produce even 

better results; 

2) Whether these better results produced, if achievable, can be improved further by other 

strategies. 

 

Research in these two issues are pursued by means of two different evolutionary algorithms, 

i.e. a GA and a Simulated Evolution algorithm, which will be presented in Chapter 4 and 

Chapter 5 respectively. 
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Chapter Four 

 

A Genetic Algorithm for Weight 

Determination 
___________________________________________________________________________ 

 

 

4.1 Introduction 

 

The greedy heuristic introduced in Chapter 3 constructs a schedule by sequentially selecting 

shifts, from a very large set of pre-generated legal potential shifts, to cover the remaining 

work. Individual shifts and the schedule as a whole have to be evaluated in the process. Fuzzy 

set theory is applied on such evaluations. For individual shifts, their structural efficiency is 

assessed by fuzzified criteria identified from practical knowledge of the problem domain 

(described in Section 3.4). These criteria are represented by fuzzy membership functions 

about the structure and generally the goodness of a shift. The fuzzy membership functions are 

weighted and combined to yield an overall eva luation. While it might be possible to derive a 

general relatively robust set of weights by experiments, these weights will have to be fine-

tuned for individual problems for best performance.  
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In this chapter, a GA is described for calibrating the weight distribution amongst the fuzzified 

criteria, so that a single -valued weighted evaluation can be computed for each shift. Although 

driver schedules are constructed as by-products through generations of evolution, they are not 

expected to be very close to optimum because of the crude greedy nature of the schedule 

construction method used. Much of the work in this chapter has been published by Li and 

Kwan (2002a). 

 

This GA approach belongs to the general class of hybrid GAs (memetic algorithms, genetic 

local search) (Ackley 1987; Moscato and Norman, 1992; Radcliffe and Surry 1994), i.e. 

algorithms that hybridize genetic operations with local or constructive heuristics. 

Furthermore, there are some similarities between the idea introduced in this paper and the 

GRASP algorithm (Feo and Resende, 1995) or the Adaptive Multi-Start (AMS) technique 

(Boese et al., 1994): they all apply adaptive construction heuristics to obtain individual 

feasible solutions, and perform searches based on multiple solutions to improve the local 

optimum. However, the formations of multi-start are very different: the proposed GA is based 

on an evolutionary mechanism, while GRASP is purely randomized and AMS maintains a 

constant number of best solutions found so far. 

 

This chapter is organized in the following way. A brief overview of GAs is given first. The 

GA approach, which follows a simple ‘standard’ scheme, for weight determination is then 

described in detail. Comparative results using real-life problems, some of which are very 

large instances, are presented. Finally, conclusions are discussed. 

 

4.2 A brief overview of GAs 

 

GAs are general-purpose search and optimisation methods originating from Holland (1975) 

and developed subsequently to solve a wide area of real-world problems (Davis 1987; 

Goldberg 1989; Michaelwicz 1994; Zalzala and Fleming, 1997). These algorithms are based 
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on the mechanics of genetics and natural selection, and represent the search space of a coded 

population of potential solutions. The population is then manipulated according to the 

survival of the fittest principle, providing good practical solutions. 

 

4.2.1 Basic concepts  

 

The GA is an iterative procedure consisting of normally a constant-size population of 

individuals. Each individual is represented by a finite string of symbols, called the 

chromosome, to encode a possible solution in a given problem space. This space, referred to 

as the search space, comprises all possible solutions to the problem at hand. In most cases, 

the GA is applied to spaces that are too large to be exhaustively searched. The symbol 

alphabet commonly used is binary, although other representations have also been used, such 

as character-based encoding, real-valued encoding, and tree representation. 

 

The standard GA proceeds as follows. An initial population of individuals is generated 

randomly or heuristically. In every evolutionary step, called a generation, the individuals in 

the current population are decoded and evaluated according to some predefined quality 

criteria, called the fitness function. To form a new population, or the next generation, 

individuals are selected according to their fitness. Many selection procedures are currently in 

use, among which the simplest one is the roulette selection, where individuals are selected 

probabilistically according to their fitness values. This ensures that the expected number of 

times for an individual to be chosen is approximately proportional to its relative performance 

in the population. Thus, high-fitness, or good, individuals have better chances of survival, 

while low-fitness ones are more likely to be eliminated. 

 

Selection alone cannot introduce new individuals into the population, i.e., it cannot find new 

points in the search space. New individuals are generated by genetically inspired operators, of 

which the most widely used are crossover and mutation. Crossover is performed with 
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crossover probability pc between two selected individuals, called parents, by exchanging parts 

of their chromosomes to generate two new individuals, called offspring. In its simplest form, 

substrings are exchanged after a crossover point randomly selected. This operator tends to 

enable the evolutionary process to move towards the promising regions of the search space. 

To prevent premature convergence to local optima, the mutation operator is introduced by 

sampling new points at random in the search space, which is carried out by flipping bits 

randomly with some small probability pm. 

 

GAs are stochastic iterative processes that are not guaranteed to find the optimal solution. The 

termination condition may be specified as some fixed number of generations, or as the 

attainment of a satisfactory fitness level. 

 

4.2.2 Some applications  

 

GAs have attracted much research interest over the last two decades. The following areas of 

application (Mitchell 1996) in both problem solving and scientific contexts are by no means 

exhaustive, but exemplify what GAs have been used for. 

 

1) Optimisation:  to solve a wide variety of optimisation tasks, including numerical 

optimisation and combinatorial optimisation problems such as circuit layout and 

driver scheduling; 

2) Automatic programming:  to evolve computer programs for special tasks, and to 

design other computational structures such as cellular automata and sorting networks; 

3) Machine learning:  to evolve particular machine learning systems, such as weights for 

neural networks, rules for learning classifier systems or symbolic production systems, 

and sensors for robots; 
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4) Computer-aided design:  to use the feedback from the evaluation process to select the 

fitter designs, generate new designs through the combination of parts of the selected 

designs, and result in a population of high performance designs eventually; 

5) Evolution and learning:  to study how individual learning and species evolution affect 

one another; 

6) Social systems:  to study evolutionary aspects of social system and the evolution of 

cooperation and communication in multi-agent systems; 

7) Economics:  to model the processes of innovation, the development of bidding 

strategies, and the emergence of economic markets; 

8) Ecology:  to model ecological phenomena such as biological arm races, host-parasite 

coevolution, symbiosis, and resource flow; 

9) Immune systems:  to model various aspects of natural immune systems, including 

somatic mutation during an individual’s lifetime and the discovery of multi-gene 

families evolutionary time. 

 

4.2.3 Comparison with traditional search methods  

 

GAs differ from the traditional search and optimisation methods significantly in the following 

four aspects: 

 

1) GAs search a population of points in parallel, rather than a single point; 

2) GAs work on the encoding of the solution set rather than the solution set itself, except 

where real-valued individuals are used; 

3) GAs use probabilistic transition rules, not deterministic ones; 

4) GAs do not require derivative information or other auxiliary knowledge. Only the 

objective function and corresponding fitness levels influence the search directions. 
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Furthermore, it is important to point out that, to a given problem, GAs can provide a number 

of potential solutions and the choice of a final solution is left for the user to decide. In cases 

where a specific problem does not have a unique solution, for example in multi-objective 

optimisation where the result is usually a group of Pareto-optimal solutions, GAs are 

particularly useful for identifying the alternative solutions simultaneously. 

 

4.3 Using GA to produce near-optimal weights  

 

The evaluation function F(Sj), described in Section 3.3, involves a weight distribution among 

five membership functions corresponding to five fuzzified criteria. Determination of these 

weights is a nonlinear problem, which implies that it is impossible to treat each weight as an 

independent variable to be solved in isolation from other variables. There are interactions 

such that the combined effects of the weights must be considered in order to optimise the 

output. 

 

GAs are useful approaches to problems requiring an efficient search over a large solution 

space, and are particularly suitable for obtaining approximate solutions for multivariable 

optimisation problems where mathematical analyses are difficult. In this section, the 

evolutionary process of using GA to generate near-optimal weights for the fuzzy membership 

functions will be described in detail. The basic framework of the GA is given as follows: 

 

Step 0 Set generation t = 0; initial population P(t) is generated with randomised weight 

sets. 

Step 1 Apply the greedy algorithm to obtain a solution, the cost of which is used to 

evaluate the corresponding weight set in P(t). 

Step 2 If termination criterion has not been reached, continue step 3; otherwise stop. 

Step 3 Set t = t +1; select weight sets from P(t-1) for reproduction. 
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Step 4 Perform adaptive crossover and mutation operators to produce offspring, and 

partially replenish P(t) by randomly generated members. All new weight sets are 

evaluated by applying the greedy algorithm above to obtain a schedule. 

Step 5 Return to Step 2. 

 

4.3.1 Chromosome representation 

 

GAs operate simultaneously on a number of potential solutions, called a population, 

consisting of some encoding of the parameter set. Typically, a population is composed of 50 

to 100 individuals. 

 

The first step in designing the GA is to represent the weights in a way suitable for applying 

the genetic operators. The chromosome representation used here is the most commonly used 

single–level binary string, in which the weights wi (i=1, 2, 3, 4, 5; wi∈[0,1]) are continuous 

variables requiring an appropriate discrete representation. Each discretised value of the 

variable is first linearly mapped to an integer defined in a specified range, encoded using a 

fixed number of binary bits. The binary codes of all the variables are then concatenated to 

obtain a binary string as follows: 

 

 

 

For weight wi, if it is encoded in m binary bits, then  

           }5,4,3,2,1{),12/()( (min)(max)wi
∈∀−−= iww m

iiε                                  (4.1) 

 

where 
iwε is the precision of wi , (max)iw  and (min)iw is the upper bound and lower bound of 

wi respectively. In this research, each wi is encoded in 6 binary bits. Hence, the problem is a 

5-dimension-search, and the solution space is 230. 

w1 w2 w3 w4 w5 
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4.3.2 Initialisation 

 

An initial population can be achieved simply by generating the required number of weight 

sets randomly. In this approach, with a population of N weight sets whose chromosomes are 

30 bits long, N random 4-byte unsigned integer numbers uniformly distributed from the range 

of [0, 230–1] each is produced and then mapped to individual weights between 0 and 1. 

 

4.3.3 The fitness functions  

 

Driver scheduling is a bi-objective combinatorial problem. Although the main objective of 

driver scheduling is to minimise the overall cost of the solution, for practical reasons, we also 

wish that the number of shifts in the schedule is as few as possible. In multi-criteria 

optimization, the primary goal is to find or to approximate the set of Pareto-optimal solutions, 

and recently some multiple objective versions of hybrid GAs have been proposed (Ishibuchi 

and Murata, 1998; Jaszkiewicz et al., 2001). 

 

In GAs, the objective function and the fitness function are different notions. The objective 

function provides a measure of performance with respect to a particular parameter set, while 

the fitness function transfers that measure of performance into an allocation of reproductive 

opportunities. In maximised optimisation where the fitness function is deemed to be the 

objective function, these two notions are sometimes used interchangeably. However, 

transformation of the objective function is necessary when the objective function is to be 

minimised, since lower objective function values correspond to fitter weight sets. 

 

4.3.3.1    A simple fitness function 

 

In automatically making trade-offs between the objectives, traditional approach combines all 

objectives in a weighted sum cost function, and the schedule with the lowest weighted sum is 
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regarded as the best solution (Fores et al., 1999; Kwan 1999; Kwan et al., 1999). Based on 

this technique, the objective function )( xg  for schedule x can be simply formulated as 

 

∑
=

+=
l

j
j

cxg
1*

* )2000()( ,                                                 (4.2) 

 

where l is the number of shifts in the schedule x, and *jc  is the cost of shifts *jS . The 

constant 2000 is used here so that a heavy weight is imposed on each shift and it helps to 

reduce the total number of shifts.  

 

This is a minimisation problem, thus it is necessary to transform (4.2) into a maximised 

fitness function )(xf  as follows. The larger the value of )(xf , the fitter the weight set is. 

 

)())(()( xgbaxgGxf −+== ,                                          (4.3) 

 

where a is the maximum objective value in the population; 

           b is the minimum objective value in the population. 

 

4.3.3.2    A fuzzy goal-based fitness function 

 

It is well-known that problems exist with the above weighted sum function if the Pareto 

surface is non-convex (Steuer 1986; Ulungu 1994). In addition, the determination of weights 

for individual objectives will be practically very difficult. This section presents a goal-

directed search approach, where the best schedule is the one that satisfies a vector of fuzzy 

goals as much as possible. 
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Let O be the set of solutions generated by the hybrid GA. Consider that we are minimizing a 

n-valued cost vector denoted as ))(),...,(),(()( 21 xfxfxfxf n=  where Ω∈x . Suppose 

),...,,( min
2

min
1
minmin

nffff =  is a vector that gives lower bound estimates on the individual 

objective, which usually are not reachable in practice, such that Ω∈∀≤∀ xxffi i
i ),(, min ; and 

),...,,( max
2

max
1
maxmax

nffff =  is a vector that indicates user-specified upper bounds for the 

objectives such that Ω∈∀≥∀ xxffi i
i ),(, max . If ],[)(, maxmin

ii
i ffxfi ∈∀ , x will be an effective 

solution. It means that this solution might include some useful information, and is worthy to 

be preserved in the evolutionary process. For the bi-objective driver scheduling problem, the 

region of the effective solutions is shown in Figure 1. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

In the proposed scheme, the effective solution set is a fuzzy set. Therefore, applying the 

arithmetic mean operator described in section 3.4.2, the fuzzy goal based fitness function, 

]1,0[)( ∈xf , can be designed as follows: 








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otherwise ,                   0
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                                (4.4) 

where  

∑
=

=
2

1

1
i

it , 0≥it ,                                                     (4.5) 

and 

Effective 
Solutions 

f1(x) 

f2(x) 

f 1min f 1max 

f 2min 

f 2max 

Figure 4.1: Range of effective solution set 
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Note that formula (4.6) has transformed the original minimised objectives to a maximisation 

problem. Therefore, the fitness function )(xf  in (4.4) takes the same form as its objective 

function. The larger the value of )(xf , the fitter the weight set is. 

 

User preferences can be easily expressed in the upper bound vector fmax. For example, by 

increasing the upper bound value if max  to 
*

max
if , the subsequent membership function )(* xiµ  

for objective i will increase, which might control the acceptance or rejection of solutions. In 

this work, the lower bound on the 1st objective, i.e. the total cost, is computed as the total cost 

of all pieces of work, based on the assumption that there is no overlapped work in a perfect 

schedule. The lower bound on the 2nd objective, i.e. the number of shifts, is the sum rounded 

up of the fractional solution derived by the LP relaxation. If the problem has not been solved 

using LP relaxation, the lower bound can be estimated by experienced schedulers. The upper 

bound adopted here is the solution value obtained by the simple greedy algorithm of choosing 

the unused shift with the largest uncovered work content in each iteration, which has been 

mentioned in section 3.3. 

 

4.3.4 Selection 

 

Selection models nature’s survival-of-the-fittest mechanism. Fitter solutions survive while 

weaker ones perish. The traditional roulette wheel strategy based on fitness-proportionate 

selection is used here. Individuals with the best fitness values in each generation are always 

preserved. 
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Fitness-proportionate selection is a common selection method in GAs, in which the number of 

times a weight set is expected to reproduce is equal to its fitness divided by the average 

fitness of the population. A simple method for implementing this selection is “roulette-wheel 

sampling”, which is conceptually equivalent to giving each weight set a slice of a circular 

roulette wheel equal in area to its fitness. The wheel is spun N times, where N is the number 

of weight sets in the population. On each spin, the set under the wheel’s marker is selected 

into the pool of parents for the next generation. In more detail, this method can be 

implemented as follows: 

 

1. Sum the total fitness value of weight sets in the population, denoted as S. 

2. Repeat N times: 

2.1 Generate a random integer t in the interval [0, S]; 

2.2 Loop through the weight sets in the population, summing the fitness values until 

the sum is larger than or equal to t. Select the weight set whose fitness value 

puts the sum over this limit. 

 

By these steps, the stochastic method statistically results in the expected number of offspring 

for each weight set. 

 

4.3.5 Genetic operators  

 

To implement a GA, the genetic operators of crossover and mutation have to be used. 

 

4.3.5.1    Multipoint crossover 

 

Crossover is the basic operator to produce new chromosomes that have some parts of both 

parents’ genetic material. The simplest form is single -point crossover. 
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In multipoint crossover, m crossover positions are chosen at random with no duplicates and 

sorted into ascending order. Then, the bits between successive crossover points are exchanged 

between the two parents to produce two new offspring. The section between the first allele 

position and the first crossover point is not exchanged between individuals. A 5-point 

crossover is applied to the 30-bit chromosome in the proposed GA, which is illustrated in 

Figure 4.2. The parts included in quotation marks in parents are exchanged each other. 

 
                           Parents                                                                      Offspring 
 

0110 ‘0011’10010 ‘10100’101100 ‘11001’            0110 ‘1111’10010 ‘00110’101100 ‘11010’ 

1100 ‘1111’00111 ‘00110’101001 ‘11010’            1100 ‘0011’00111 ‘10100’101001 ‘11001’ 

 

Figure 4.2: 5-point crossover 

 

The idea behind multipoint crossover is that the parts of the chromosome that contribute most 

to the performance of a particular individual may not necessarily be contained in adjacent 

substrings (Booker 1987). Moreover, the disruptive nature of multipoint crossover appears to 

encourage the exploration of the search space, rather than convergence to highly fit 

individuals early in the search, thus making the search more robust. 

 

4.3.5.2    Mutation 

 

In natural evolution, mutation is a random process where one allele of a gene is replaced by 

another to produce a new genetic structure. In GAs, mutation is randomly applied with low 

probability, and modifies elements in the chromosomes. As an ancillary operator, the roles of 

mutation are to recover good genetic material that may be lost through selection and crossover 

(Goldberg 1989) and to ensure that any given string has the chance to be selected. 

 

Binary mutation flips the value of the bit at the mutation point to be selected. The effect of 

mutation on the decision variable depends on the encoding scheme used. Given that mutation 
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is generally applied uniformly to an entire population of strings, it is possible that a given 

binary string may be mutated at multipoint. The effect of a 5-point mutation on a binary string 

is illustrated in Figure 4.3 for a 30-bit chromosome representing five weights encoded over 

the interval [0,1] individually.  

 

       Parent                01‘1’000   1‘1’1001   ‘0’10101   0101‘1’0   011‘0’01 

       Offspring         01‘0’000   1‘0’1001   ‘1’10101   0101‘0’0   011‘1’01 

 

Figure 4.3: 5-point binary mutation 

 

4.3.5.3    Adaptive probabilities of crossover and mutation 

 

There are two essential characteristics in GAs. The first is the capacity to converge to a local 

or global optimum after locating the region containing such an optimum. The second is the 

capacity to explore new regions of the solution space in search of the global optimum. The 

values of Crossover Probability pc and Mutation Probability pm, and the type of crossover 

applied (Spears and Dejong, 1991) is important to the balance between these two 

characteristics. 

 

To accomplish the trade-off between exploration and exploitation, Srinivas (Srinivas and 

Patnail, 1994) designed an algorithm that could vary pc and pm adaptively in response to the 

fitness values of the solutions: pc and pm are increased when the population tends to get stuck 

at a local optimum and are decreased when the population is scattered in the solution space. 

 

Here we employ Srinivas’s algorithm formulated as follows, and perform 5-point crossover 

and mutation operators described above to the five weights. After crossover and mutation, the 

sum of the five weights is not 1. Renormalization for these weights is therefore needed for 

each generation. 
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where 

        k1 = 0.96, k2 = 0.96, k3 = 0.12, and k4 = 0.16 (values are derived from a number of 

experiments using different parameter combinations); 

        fmax is the largest fitness value in the population; 

       f  is the average fitness value of the population; 

       f ′  is the larger fitness value between the two parents to be crossed; 

        f  is the fitness value of the solution to be mutated. 

 

4.4 Computational results  

 

The GA approach was coded in Borland C++. All problems were run on the same Pentium II 

333 MHz with 196 megabyte RAM personal computer using the Windows 98 operating 

system. The best known schedules are mostly obtained by the TRACS II system. In cases 

where TRACS II has difficulty in finding solutions, results reached by hybrid GAs 

incorporating strong domain knowledge (Kwan 1999; Kwan et al., 2001) are cited. 

 

For the four larger problems Gall2, G532, Gall1 and Rrne, population sizes of 100, 200, 300, 

400 and 500 have been tested. For the other problems, population sizes of 50, 100, 200 and 

300 were tried. Smaller population sizes might not result in satisfactory solutions, although 

they would reduce the computation for each generation. Therefore some larger population 

sizes were also tried. According to the results by several combinations of parameters, the most 
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effective population sizes were found to be 400 to 500 for the four larger problems, and 100 

to 200 for the other problems. 

 

For all the problems, the number of generations for the GA is set to be 150. Furthermore, t1 

and t2 in the GA’s fuzzy goal-based fitness function are set to be both 0.5 respectively. The 

experimental results in terms of shift number and total cost for the schedules derived by the 

simple fitness function and fuzzy goal-based fitness function are compiled in Table 4.1 and 

Table 4.2 respectively. Elapsed time is the time following the solution of the relaxed LP of 

TRACS II. 

 

Data Shifts RPD Cost  

(hours) 

RPD Time+ 

(seconds) 

Time*  

(seconds) 

Colx   35  2.94   296.05 2.74   22   22 

Gmb   36  5.88   296.87 2.61   85   84 

Neur   64  3.23   510.02 0.15 203 955 

Ew3 118  1.72 1007.39 0.38   95   69 

Wag3   52  4.00   413.87 2.59   24   34 

F2x   66  3.13   618.95 8.20 144 >40000 

Tram   51  4.08   435.10 3.72   21   24 

Trmx   51  4.08   425.70 4.22   72 139 

Nb2   76  1.33   851.92 0.10 241 452 

Gall2 244  0.83 2282.70 1.57 220 >80000 

G532 276  0.00 2147.65 3.10 285 >80000 

Gall1 348 -0.29 2734.03 2.74 469 >80000 

Rrne 398  0.76 3267.14 4.14 754 >40000 

Ave. 2.44% 2.80%   

 

Table 4.1: Comparative results using simple fitness function 

                           +  The computing time for the GA 

                           *  The computing time for the best-known solutions 
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Data Shifts RPD Cost  

(hours) 

RPD Time+ 

(seconds) 

Time*  

(seconds) 

Colx   35  2.94   294.02  2.03   20   22 

Gmb   36  5.88   294.87  1.92   75   84 

Neur   64  3.23   509.02 -0.05 230 955 

Ew3 118  1.72 1006.49  0.29 105   69 

Wag3   51  2.00   409.87  1.60   22   34 

F2x   66  3.13   598.35  6.42 120 >40000 

Tram   50  2.04   430.50  2.62   26   24 

Trmx   50  2.04   420.89  3.04   79 139 

Nb2   77  2.67   831.22 -2.33 351 452 

Gall2 244  0.83 2274.22  1.19 262 >80000 

G532 274 -0.72 2137.65  2.62 275 >80000 

Gall1 347 -0.57 2714.88  2.02 509 >80000 

Rrne 397  0.51 3259.20  3.89 1350 >40000 

Ave. 1.98% 1.94%   

 

Table 4.2: Comparative results using fuzzy goal-based fitness function 

                   +  The computing time for the GA 

                   *  The computing time for the best-known solutions 

 

Most of the problem instances are complex. In some cases, the ILP process of TRACS II fails 

to find an integer solution after a large number of nodes of the branch-and-bound search tree 

has been explored. In these circumstances, the target is raised by one shift and the ILP process 

is rerun. The process is repeated until an integer solution can be found, and may be abandoned 

after the target has been raised many times without success (e.g. Neur and Nb2 instances). 

 

The computational results show that results produced by the GA approach are close to the 

best known schedules, and results by the fuzzy goal-based fitness function are slightly better 

than those by the simpler fitness function. Compared with all the best known solutions, 

solution by the fuzzy fitness function has 1.98% more shifts in terms of total shift number, 

and is 1.94% more expensive in terms of total cost on average. However, the GA’s results are 
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obtained much faster in general, particularly for larger cases. Note that the comparison of 

computing time has not included the time taken by the failed ILP runs before the final results 

were obtained. 

 

Fixing the parameter used above, each data set was run ten times by varying the pseudo 

random number seed at the beginning of each run. The results are summarized in Table 4.3.  

 

Number of Shifts Cost 

Distribution of runs 

 

Data In table  

4.2 -1 = +1 =2 

Ave. Min. Max. Std. 

Dev. 

 Colx   35  4 5 1   294.32   293.56   297.33 2.01 

 Gmb   36 1 9     294.67   293.74   296.44 1.79 

 Neur   64  8 2    508.66   508.44   511.38 1.38 

 Ew3 118  9 1  1006.73 1005.38 1008.46 1.65 

Wag3   51  6 4    410.13   409.23   412.65 1.81 

 F2x   66  7 3    598.14   589.14   607.32 4.12 

Tram   50  7 3    429.89   428.50   433.22 2.37 

Trmx   50  6 4    420.94   418.66   424.32 2.45 

 Nb2   77 1 7 2    830.24   830.11   835.42 3.02 

Gall2 244 1 8 1  2275.18 2270.11 2279.69 6.58 

G532 274  6 2 2 2138.63 2134.23 2142.31 5.89 

Gall1 347 1 4 4 1 2713.44 2710.42 2723.14 7.89 

Rrne 397 2 5 2 1 3260.11 3249.33 3267.78 8.07 

 

Table 4.3: Results of ten runs with fixed parameters but different random seed numbers 

 

Table 4.3 shows that the proposed GA is quite robust. Comparing the number of shifts in the 

ten runs with the best solutions found before the runs, on average 70.8% of the runs have the 

same or better results. In terms of solution costs, there is no remarkable variation between the 

runs. Except the four larger problems that have higher standard deviations in cost, no obvious 

trend has been detected. 

 



87 

 

In addition to finding the best schedule, another task for the GA is to explore whether there 

exists a generally good pattern of weight distribution. According to the experiments, it is 

found that, in most cases, the GA performs well with the weights vector (0.15, 0.15, 0.15, 

0.15, 0.40). Obviously, the fractional cover factor dominates while others play similarly 

minor roles. However it is interesting that when we only considered the fractional cover factor 

as the unique factor, all the results were no better than those attained by the simple greedy 

algorithm. 

 

4.5 Conclusions  

 

In Chapter 3, it has been found that the weight distribution used for the greedy construction 

algorithm would affect the solution quality significantly. A GA is therefore presented in this 

chapter, with a simple or fuzzy goal-based fitness function, to derive such elite sets of weight 

distribution that could produce superior solutions. The benchmark experimental results 

demonstrate that the GA approach is suitable for solving large size real-world driver 

scheduling problems. 

 

There are several advantages for the proposed GA. First, using the ILP process, very large 

problems may have to be decomposed into smaller sub-problems and solved independently. 

In contrast, the GA can be used to solve large problems in one go. Secondly, the GA is always 

able to produce a group of solutions, whereas the ILP process in some cases may need several 

runs to increase the target number of shifts and still not be able to find any integer solution. 

Thirdly, the GA executes very fast, since its greedy algorithm framework is always capable of 

producing a feasible solution after Θ (m) iterations, where m is the number of pieces of work. 

 

However, due to the crude greedy and deterministic nature of the schedule construction 

method applied, the solutions produced by the GA are still deemed to be a bit far from 

optimal. Naturally, it would be interesting to know whether these superior solutions produced 
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could be improved further by other evolutionary strategies. This will be investigated in the 

next chapter. 
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Chapter Five 

 

A Fuzzy Simulated Evolution Algorithm 

for Driver Scheduling 
___________________________________________________________________________ 

 

 

5.1 Introduction 

 

Chapter 3 presents a refined greedy heuristic based on fuzzy subsets theory, which uses the 

product of over-cover penalty and structural coefficient to decide which shift is going to be 

selected in the process of constructing a schedule. The main idea is to set up five criteria, 

characterized by fuzzy membership functions, to evaluate the structure and generally the 

goodness of a shift. The fuzzy membership functions are weighted and combined to yield an 

overall evaluation. Experimental results have shown that this heuristic works better than a 

simple greedy one. 

 

It has been found that the weight distribution of the membership functions is vitally important 

to the performance of the above greedy heuristic. A GA is therefore presented in Chapter 4 to 

derive such a near optimal weight set, and thus obtain the associated good solution. 
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In this Chapter an evolutionary approach is designed to improve the solutions further, based 

on the crude solution by the simple heuristic (Li and Kwan, 2001) or the refined solution by 

the GA (Li and Kwan, 2001a and 2001b). The evolutionary algorithm combines the features 

of iterative improvement and constructive perturbation with the ability to avoid getting stuck 

at local minima. Its framework is a Simulated Evolution (SE) algorithm, in which the steps of 

Evaluation and Reconstruction have been fuzzified. In the Evaluation step, each shift in a 

solution is evaluated by an evaluation function based on its coverage status and five fuzzified 

criteria. In the Reconstruction step, a greed-based heuristic with the above derived fuzzy 

evaluation function is applied to form a complete solution from a partial solution. 

 

This chapter is organized as follows. Section 5.2 gives a brief introduction of the SE 

algorithm. Section 5.3 discusses the proposed SE algorithm, describing its procedure and 

related operators in detail. Benchmark results using real-world problems are presented in 

section 5.4, and conclusions are given in section 5.5. 

 

5.2 Preliminaries about the Simulated Evolution algorithm 

 

The SE algorithm is a general optimization technique originally proposed by Kling and 

Banerjee (1987) for the placement problem, based on an analogy to the natural selection 

process in biological environments. The biological solution to the adaptation process is the 

evaluation from one generation to the next one by eliminating inferior elements and keeping 

superior ones for subsequent states. Every element in each generation must constantly prove 

its functionality under the current conditions in order to remain unaltered. The purpose of this 

process is to create gradually stable structures which are perfectly adapted to the given 

constraints. To escape from local optima, nature implements genetic mutation which perturbs 

the genetic inheritance process, and natural calamities which interfere with natural selection. 
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5.2.1 Basic concepts 

 

Basically, the algorithm iteratively operates a sequence of Evaluation, Selection and 

Reconstruction steps on one solution. Besides these three steps, some input parameters (e.g. 

stopping conditions) and a valid starting solution are initialised in an earlier step called 

Initialization. The outline of the basic SE algorithms is shown in figure 5.1. In the Evaluation 

step, the goodness of each element in the current solution is computed. A measure of 

goodness is used probabilistically to select elements to be discarded in the Selection step. An 

element with high goodness has a lower probability of being discarded. The resulting partial 

solution is then fed to the Reconstruction step, which implements application specific 

heuristics to derive a new and complete solution from a partial solution. 

 

Throughout these iterations, the best solution is retained and finally returned as the final 

solution. The basic SE algorithm is a greedy search strategy that achieves improvement 

through iterative perturbation and reconstruction. Furthermore, to escape from local minima 

in the solution space, capabilities for uphill moves must be incorporated. This is carried out in 

the Selection step by probabilistically discarding even some superior elements of the solution. 

This process is analogous to mutation in GAs. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.1: SE outline 

Initialisation 

Evaluation 

Selection 

Reconstruction 
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5.2.2 SE versus other stochastic methods  

 

The main difference between SE and Simulated Annealing is that the latter makes purely 

random choices to decide which move, or single change, to perform to generate a new 

solution. The new solution is then evaluated on a global basis, and probabilistically accepted 

or discarded. In contrast, by discarding ill-suited elements of a solution and then 

reconstructing a new solution, SE is effectively employing a long sequence of moves, not just 

a single move as in SA, between iterations, thus permitting more complex and more distant 

changes between successive solutions. 

 

GA is quite similar to SE in the aspect of using evolution from one generation to the next. GA 

needs to maintain a number of solutions during each generation as parents, generating 

children by using crossover operators. SE, however, mimics generations of evolution on a 

single solution, using domain specific heuristics to repair the partial solution and derive a 

complete one. Therefore, SE eliminates the extra cpu-time needed to maintain a set of 

solutions. 

 

Furthermore, the selection processes for GA and SE are completely different. While GA 

probabilistically selects a set of solutions from the parents to retain according to the fitness of 

each solution, SE will select the inferior elements of a solution to discard according to the 

goodness of each element. Due to these strong convergence characteristics, SE generally 

performs fewer iterations than GA. This is the major reason why SE achieves a significant 

speedup over Simulated Annealing while GA does not. 
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5.2.3 Related work 

 

The SE algorithm was originally proposed by Kling and Banerjee (1987) to perform standard 

cell placement, whose objective was to arrange cells of common height and variable widths in 

an integrated circuit layout such that a given cost function is minimised. The SE algorithm 

was used to simulate an evolutionary process to achieve the objective. While obtaining results 

comparable to or better than the popular Simulated Annealing algorithm, SE performed its 

task about ten times faster. 

 

Lin et al. (1989) presented a rip-up-and-reroute approach based on a matrix representation 

scheme and the SE technique to solve the detailed routing problem, the last task next to 

compaction in a physical design process for VLSI circuits. Experimental results showed that, 

when solving all the benchmarks from the literature, the SE-based approach out-performed 

the most successful switch-box router in terms of both quality and speed. 

 

Ly and Mowchenko (1993) applied the SE algorithm to the task of scheduling and allocation 

in high level synthesis, which was concerned with mapping abstract behavioural 

specifications of digital systems into structural designs at the register-transfer level. The SE-

based synthesis explored the design space by repeatedly ripping up parts of a design in a 

probabilistic manner, and then reconstructing these parts by local heuristics. This approach 

combined rapid design iterations and effective design space exploration to obtain superior 

designs.  

 

Bhuyan (1995) presented an algorithm combined with GA and SE techniques for clustering, 

which is a process to partition an object space into different classes such that some 

optimisation criteria are satisfied. Each string in the GA’s population was a solution state and 

consisted of a number of clusters. The global clustering procedure was based on an GA, while 

within each population the individuals were generated based on an SE. Experimental results 
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showed that this approach could produce better results than that of the best available 

heuristics. 

 

Sait et al. (1999) presented a fuzzy SE algorithm for the multi-objective VLSI cell placement 

problem, which consisted of arranging circuit blocks on a layout surface such that cost was 

minimised. They proposed a fuzzy goal-based search strategy combined with a fuzzy 

allocation scheme. The allocation scheme tried to minimise multiple objectives and added 

controlled randomness as opposed to original deterministic allocation schemes. Experiments 

with benchmark tests showed a remarkable improvement in solution quality. 

 

5.3 A fuzzy SE algorithm for driver scheduling 

 

The basic idea behind the algorithm is to determine, for each current schedule, the goodness 

of each shift in its current position. The goodness value is a figure of merit (normalized in the 

range [0,1]) of how well the shift is used with respect to the other shifts to which it has 

relations. The goodness is high if the other shifts it is related to cause overlapped work time as 

little as possible in the present schedule. Conversely, the goodness is low if those shifts result 

in more overlapped work time. The process of evolution keeps the shifts that are well 

arranged (having high goodness values) in their present positions and tries to replace the 

others that have low goodness values. At a particular iteration, a random number in the range 

[0,1] is generated for each generation, and all shifts whose goodness values exceed that 

number are labelled as “good shifts” and survive in their present positions; the remaining 

shifts are labelled as “bad shifts” and do not survive (become extinct) in the current schedule. 

The goodness value therefore corresponds to the survival chance of a shift in a specific 

position. The “bad” shifts are removed from the schedule and are put into a queue for the new 

assignment by using constructive techniques. The above steps are iterated upon. Thus the 

global scheduling procedure is based on iterative improvement, while an iterative constructive 

process is performed within. 
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The algorithm has two places where probabilistic techniques help prevent the solution from 

getting stuck at a local minimum. The first one is the generation of the threshold value to 

distinguish “good” shifts from “bad” shifts. The second is in the mutation step. Periodically 

during the evolution-based iterative improvement process, the system state is mutated, i.e. 

randomly changed. Usually the mutation rate is much less than the evolution rate to ensure 

convergence.  

 

In detail, the steps for the proposed fuzzy SE algorithm are described as follows, of which the 

Evaluation and Reconstruction steps have been fuzzified. 

 

5.3.1 Precomputation 

 

Among the large number of potential shifts S, it would be difficult to judge which one has a 

more effective structure than others since the criteria bear some uncertainty. If only either 

affirmative or negative measure is given, some middle information is lost leading to 

assessment devia tion. Thus fuzzy evaluation is used to introduce the concept of a structural 

coefficient, which gives shift )( JjS j ∈  a quantitative value ]1,0[)(2 ∈jSf  according to its 

structural state (described in Section 3.4.2). The more efficient the structure for jS , the larger 

)(2 jSf  is. 

 

The structural coefficient )(2 jSf  is a component of the goodness evaluation function, and is a 

constant once the five weights involved have been determined. To avoid the repeated 

computation in each iteration and thus speed up the SE algorithm, the calculation of )(2 jSf  is 

put outside of the loop as a Precomputation step. 
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5.3.2 Initialisation 

 

In this step, an initial solution is generated to serve as a seed for the evolutionary process. Due 

to the fact that the initial exchange rate is relatively high, the algorithm’s performance is 

generally independent of the quality of the initial generation. However, if this seed is already 

a relatively good solution, the overall computation time will decrease. In our program, the SE 

algorithms have been implemented by using the following initial solutions: 

 

• As mentioned in Section 3.5.1, an initial solution can be generated by the original 

greedy method for weighted set covering problem of choosing the unused shift 

)( JjS j ∈  with the largest ratio jj cS , where jS  denotes the number of pieces of 

work in Sj and cj is the cost of Sj, until all the pieces of work are covered. 

 

• As explained in Chapter 4, the GA for calibrating the weight distribution of the fuzzy 

evaluation function would provide, as a by-product, a good solution. This solution can 

be fed into the SE to serve as a good seed. 

 

The steps described in section 5.3.3 to 5.3.6 are executed in sequence in a loop until a user 

specified parameter (e.g. cpu-time, total cost, or number of shifts) is reached or no 

improvement has been achieved for a certain number of iterations. 

 

5.3.3 Evaluation 

 

The first step of the iterative loop is the evaluation of the current arrangement for each shift in 

a schedule. A goodness value for every shift is established. The purpose of computing this 

measure is to determine, besides the structural goodness of shifts, which shifts are in positions 
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that lead to less total overlapped work time, and which shifts contribute unnecessarily to large 

amounts of overlapped work time. 

 

In this step, goodness of the individual shift in a complete schedule *J  is computed. The 

formulation of its evaluation function is similar to that used in the greedy heuristic (described 

in Section 3.3). The major difference is that the former one only evaluates shifts in the current 

schedule, while the latter needs to evaluate all unused shifts from the large potential shift set, 

for the purpose of selecting some shifts to form a feasible schedule. 

 

The evaluation function )( *jSF  for shift )( **
* JjS

j
∈  should be normalized. Besides the 

structural coefficient )( *2 jSf , another normalized function, which reflects the coverage status 

for shift *jS , should be combined. Hence the evaluation function )( *jSF  consists of two 

parts: structural coefficient ]1,0[)( *2 ∈jSf  and over-cover penalty ]1,0[)( *1 ∈jSf , which can 

be formulated as 

 

**
21        ),()()( *** JjSfSfSF

jjj
∈∀×= .                                   (5.1) 

 

Over-cover penalty )( *2 jSf is based on the consideration that the ratio of the overlapped work 

time to total work time in )( **
* JjS

j
∈  is regarded as an important criterion, and thus can be 

formulated as 
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where =*j
S  number of pieces of work in *j

S ; 
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If every piece of work in *jS  has been covered by other shift Si in * J , then 0)( *1 =jSf ; 

conversely if none of the pieces of work in *jS  is overlapped, 1)( *1 =jSf . 

 

5.3.4 Selection 

 

In this step it will be determined whether a shift )( **
* JjS

j
∈  is retained for the next 

generation, or discarded and placed in a queue for the new allocation. This is done by 

comparing its goodness )( *jSF  to )( pps − , where ps is a random number generated for each 

generation in the range [0, 1], and p is a constant smaller than 1.0. If )()( * ppSF sj −>  then 

*jS  will survive in its present position; otherwise *jS  will be removed from the current 

evolutionary schedule. The pieces of work it covers, except those also covered by other shifts 

in the solution, are then released for the next Reconstruction. By using this Selection process, 

shift *jS  with larger goodness )( *jSF  has higher probability of survival in the current 

schedule. 

 

The purpose of subtracting p from ps is to improve the SE’s convergence capability. Without 

it, in the case of ps close to 1, nearly all the shifts will be removed from the schedule, which is 

obviously ineffective in searching. In our experiments, p is set to be 0.3. If spp > , then set 

)( pps −  to be 0. 
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5.3.5 Mutation 

 

To escape from local minima in the solution space, capabilities for uphill moves must be 

incorporated. This can be carried out in the Mutation step by probabilistically discarding even 

some superior components of the solution. Therefore, following the Selection step, each 

retained shift )( **
* JjS

j
∈  still has a chance to be mutated, i.e. randomly discarded from the 

partial solution at a given rate of pm, and release its covered pieces of work, except those also 

covered by other retained shifts, for the next Reconstruction. The mutation rate should be 

much smaller than the selection rate to guarantee convergence. From empirical results we find 

that 05.0≤mp  yields better results. 

 

5.3.6 Reconstruction 

 

The Reconstruction step takes a partial schedule as the input, and produces a complete 

schedule as the output. Since the new schedule should be an evolution of the previous 

schedule, all shift assignments in the partial schedule should remain unchanged. Therefore, 

the Reconstruction task reduces to that of assigning shifts to all uncovered pieces of work to 

repair a broken schedule. 

 

Considering all the large number of potential shifts with respect to the pieces of work to be 

covered, each piece of work i has an associated coverage list with a length of Li, i.e. 

containing Li shifts that covers it. The greed-based constructor assumes that the desirability of 

adding shift )( JjS j ∈  into the partial schedule increases with its function value )( jSF . 

However, to introduce diversification, we randomly select one of the candidates, not 

necessarily the top candidate, from a Restricted Candidate List (RCL), which consists of k 

best shifts. From empirical results we find that 3≤k  achieves better solutions. The steps to 

generate a complete schedule based on a partial solution are: 
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Step 1 },...,,{ 21
*

slllJ =  is a partial schedule, where il  is the index number of each shift. 

Step 2 Set ):( **
* JjSII

j
∈−=′ U . 

Step 3 If φ=′I  then stop: *J  is a complete solution and ∑ ∈= ):()( ***
* JjcJC

j
. 

Otherwise locate a work piece It ′∈′  having ):min( IiLL it ′∈′= ′′ , and then 

randomly select a shift rS  within RCL from the coverage list of row t′ . Proceed to 

step 4. 

Step 4 Add r to *J , set ,rSII −′=′  and return to step 3. 

 

Some of the features in the Reconstruction steps have been considered in the literature, such 

as the GRASP algorithm (Feo and Resende, 1995) for the set covering problem, the “Peckish” 

(Corne and Ross, 1996) or “Bias Selection” (Burke et al., 1998) for the time-tabling problem, 

and the repairing operator of hybrid GAs (Kwan et al., 2001) for the driver scheduling 

problem. 

 

It should be noted that the shifts added during schedule Reconstruction might be redundant, 

causing all their pieces of work covered by other shifts later, even if each shift is chosen to 

cover at least one currently uncovered piece of work. However, in the next Selection, these 

redundant shifts will be removed automatically because of their zero goodness. Moreover, the 

goodness values of all shifts in the current Reconstruction might be different from those in the 

next Selection as well due to the updated over-cover penalties at each iteration. 

 

The following example illustrates how the Reconstruction step works and may result in a 

redundant shift, and how the next Selection step can remove this redundant shift. To make it 

easy to understand, the structural coefficient )(2 jSf  for all example shifts are regarded as 
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equal to 1, thus the goodness computation )( jSF  only concerns with the over-cover penalty 

)(1 jSf . Furthermore, the random number k  in RCL is set to be 1. 

 

[Example]  Suppose there are seven shifts Sj (j=1,2,…,7) and eight pieces of work 

}8,...2,1{=′I  to be covered. The work content for each work piece is ic ′  ( i′ =1,2,…,8).  

 

Let S1 ={1,2,3,4}, S2 ={1,2,5,6}, S3 ={3,4,7,8}, S4 ={3,4,5}, S5 ={6}, S6 ={3,4,7}, S7 ={8}; 

and ic ′ =1 ( i′ =1,2,…,8). On this simple example, the length of the coverage list iL ′ =2 (for 

i′ =1,2,5,6,7,8) and iL ′ =3 (for i′ =3,4). 

 

The first step is to locate a work piece with the shortest iL ′ . In case of a tie, the work piece 

with the smallest subscript will be chosen. Therefore, one of the shifts will be selected from 

coverage list L1, which contains S1 and S2. 

 

Then 

1
1111

11111111
)()( 111 =

+++
×+×+×+×== SfSF , 

1
1111

11111111
)()( 212 =

+++
×+×+×+×== SfSF . 

 

Since )()( 21 SFSF = , S1 will be selected because of its smaller subscript. Thus 

}8,7,6,5{}4,3,2,1{}8,...2,1{1 =−=−′=′ SII , and iL ′ =2 (for i′ =5,6,7,8). The L5 containing S2 

and S4, rather than L6, is chosen because of its smaller subscript. 

 

Then 

2
1

1111
11111010

)()( 212 =
+++

×+×+×+×== SfSF , 
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3
1

111
111010

)()( 414 =
++

×+×+×== SfSF . 

 

Since )()( 42 SFSF > , S2 will be selected. Thus }8,7{}6,5,2,1{}8,7,6,5{2 =−=−′=′ SII , and 

iL ′ =2 (for i′ =7,8). The L7 containing S3 and S6, rather than L8, is chosen because of its 

smaller subscript. 

 

Then 

2
1

1111
11111010

)()( 313 =
+++

×+×+×+×== SfSF , 

3
1

111
111010

)()( 616 =
++

×+×+×== SfSF . 

 

Since )()( 63 SFSF > , S3 will be selected. Thus φ=−=−′=′ }8,7,4,3{}8,7{3SII , and a 

cover using S1, S2 and S3 is obtained.  

 

It can be easily observed that S1 is redundant actually: using only S2 and S3 can cover all the 

pieces of work. Therefore shifts added by the Reconstruction may be redundant themselves. 

However, in the next Evaluation step, the goodness for S1, S2 and S3 are computed as 

 

0
1111

10101010
)()( 111 =

+++
×+×+×+×== SfSF , 

2
1

1111
11111010

)()( 212 =
+++

×+×+×+×== SfSF , 

2
1

1111
11111010

)()( 313 =
+++

×+×+×+×== SfSF . 

 

Because of its zero goodness value, S1 will be discarded in the following Selection step, no 

matter what selection threshold is generated. 
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According to the above example, it can be noticed that the function value )( jSF  for each 

shift Sj in the Reconstruction step is continuously updated, for example 1)( 2 =SF  in the first 

iteration and 2
1)( 2 =SF  in the second iteration. Moreover, the greedy function )( jSF  in 

Reconstruction and the goodness function )( jSF  in Evaluation are using the same formulae 

in two contrasting contexts: the former one is a local function to decide the next move, while 

the latter is a global function to give an overall evaluation. That is the reason why the 

goodness of shift S1 becomes zero in the next Evaluation step. 

 

5.4 Computational results  

 

The above evolutionary approach was coded in Borland C++. All problems were run on the 

same Pentium II 333 MHz with 196 megabyte RAM personal computer using Windows 98 

operating system. If no improvement has been achieved for 1000 iterations, the program will 

terminate. Furthermore, pm in Mutation of SE is set to be 5.0%, and size k  of RCL in 

Reconstruction is set to be 2. Elapsed time is the time following the solution of the relaxed LP 

of TRACS II. 

 

The SE approach combines the two main objectives, minimising the total cost and the number 

of shifts in a schedule, in a weighted-sum cost function, i.e. minimizing ∑
=

+
l

j
j

c
1*

* )2000( , 

where l is number of shifts in the schedule and *jc  is the cost of shift *jS . Since in most 

driver scheduling problems the first objective is to minimize the number of shifts, a large 

constant of 2000 per shift gives priority to this. The best known schedules are obtained by 

either the TRACS II system (Proll 1997; Fores et al. 1999) or the hybrid GA by Kwan et al 

(1999; 2000) incorporating strong domain knowledge. 
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In fact, a problem exists with the above weighted sum function if the Pareto surface is non-

convex (Steuer 1986; Ulungu 1994). Furthermore, the determination of weights per shift will 

be difficult. Therefore Section 4.3.3.2 proposes a fuzzy goal-directed search approach for the 

hybrid GA with some improved results, where the best schedule is the one that satisfies a 

vector of fuzzy goals as much as possible. However, since the best known solutions were all 

obtained using a weighted-sum objective function, the SE approach used the same simple 

weighted-sum objective function for benchmark comparisons. 

 

Two sets of experiments have been implemented for the SE algorithm. The first set is to use 

an initial solution generated by a simple greedy heuristic as the SE’s input, the purpose of 

which is to demonstrate the feasibility of using the SE algorithm in driver scheduling. The 

benchmark results in terms of shift number and total cost, including the qualities of the initial 

solution and the final SE’s solution for individual cases, are compiled in table 5.1. In this 

experimental set, the same weight distribution of membership functions, W=(0.20, 0.10, 0.10, 

0.20, 0.40), is applied to all these thirteen cases. 

 

SE’s initial schedule  SE’s final schedule  Data 

Shifts RPD Cost (h) RPD Shifts RPD Cost (h) % Time (s) 

 Colx   44 29.41   382.62 32.78   35  2.94   294.85  2.32   25 

 Gmb   42 23.53   359.93 24.41   36  5.88   296.82  2.59   14 

 Neur   75 20.97   643.07 26.28   63  1.61   509.77  0.10 131 

  Ews 128 10.34 1241.78 23.74 118  1.72 1006.41  0.28   72 

Wag3   59 18.00   495.66 22.86   51  2.00   415.60  3.02   22 

  F2x   70 9.38   693.72 23.39   64  0.00   572.23  1.78 320 

Tram   61 24.49   564.12 34.47   50  2.04   430.78  2.69   17 

Trmx   63 28.57   571.50 39.91   50  2.04   422.28  3.38   69 

  Nb2   84 12.00 1006.67 18.28   77  2.67   836.83 -1.68 189 

Gall2 291 20.25 2946.22 31.09 243  0.41 2263.33  0.70 776 

G532 323 17.03 2537.32 21.80 276  0.00 2149.25  3.17 132 

Gall1 402 15.19 3308.95 24.34 344 -1.43 2695.33  1.29 239 

Rrne 471 19.24 4024.17 28.27 397  0.51 3277.33  4.47 969 

Avg. 19.11% 27.05% 1.57% 1.86%  
 

Table 5.1: Results of the crude initial and the final SE’s schedules 
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The second set is to use a seed generated by a GA (described in Chapter 4) as the SE’s input, 

the purpose of which is to find how good the SE’s final solution would be if a relatively good 

initial solution is used. The benchmark results in terms of both objectives, including the 

qualities of the GA’s initial solution and the final SE’s solution for individual case, are 

compiled in table 5.2. The GA’s population size is set to be 100 for all problems, and the 

weight distributions of membership functions in the SE are the ones that are used to derive 

these seeds in the GA. 

 
Initial schedule derived by GA SE’s final schedule  Data 

Shifts RPD Cost (h) RPD Shifts RPD Cost (h) RPD Time (s) 

Colx   36 5.88   302.51 4.98   35  2.94   294.06  2.05     24 

Gmb   37 8.82   307.33 6.22   35  2.94   294.92  1.94     16 

Neur   66 6.45   531.02 4.27   62  0.00   507.67 -0.31   120 

 Ews 118 1.72 1022.08 1.85 117  0.82 1000.18 -0.34   167 

Wag3   51 2.00   416.65 3.28   51  2.00   406.55  0.78     11 

  F2x   66 3.13   613.86 9.19   62 -3.13   583.28  3.75   530 

Tram   51 4.08   442.10 5.39   49  0.00   421.56  0.49     23 

Trmx   51 4.08   427.70 4.71   49  0.00   414.38  1.45     59 

 Nb2   76 1.33   881.92 3.62   74 -1.33   830.60 -2.41   216 

Gall2 244 0.83 2287.68 1.79 243  0.41 2250.53  0.13   981 

G532 277 0.36 2152.38 3.32 271 -1.81 2104.33  1.02   130 

Gall1 350 0.29 2749.32 3.31 343 -1.72 2663.05  0.07   358 

Rrne 407 3.04 3399.62 8.36 390 -1.27 3242.75  3.36 1320 

Avg. 3.23% 4.63% -0.01% 0.92%  

 

Table 5.2: Results of the GA’s initial and the final SE’s schedule  

 

Using the initial solutions derived from GAs, the SE approach has successfully solved two 

problems which were not solved by TRACS II with better solutions and much faster speed 

than other heuristics, and has produced superior results for the two larger problems (G532 and 

Gall1) whose sizes necessitated decomposition for TRACS II. Although the ILP of the latest 

TRACS II version can now solve the largest problem (Rrne) without decomposition, the SE 

approach has outperformed it in terms of total shift number. 
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Computational results show that the results of the new SE approach are very close to that of 

TRACS II, regardless which kind of initial solution is used as the seed. In particular, 

compared with all the best known solutions, the SE’s solution using the GA’s result as the 

seed is even 0.01% better in terms of total shift number, and is only 0.92% more expensive in 

terms of total cost on average. However, our results are much faster in general, especially for 

larger cases. 

 

To test the robustness of the proposed SE algorithm, each data set started from the seed 

derived from the GA was run ten times by fixing the parameter and varying the pseudo 

random number seed at the beginning. The summary results are showed in Table 5.3. 

Comparing the number of shifts in the ten times with the best solutions found before the runs, 

on average 56.9% of the runs have the same or better results. In terms of solution costs, there 

is no noticeable variation between the runs. Except the last four larger cases that have higher 

standard deviations in cost, no obvious trend can be observed. 

 
Number of Shifts Cost 

Distribution of runs 
 
Data In table  

5.2 -1 = +1 +2 or 
more 

Ave. Min. Max. Std. 
Dev. 

 Colx   35  5 5    294.12   293.76   295.83 1.61 
 Gmb   35  6 4    295.07   293.82   295.44 1.58 
 Neur   62  4 4 2   508.33   507.32   510.64 1.47 
 Ew3 117 1 7 2  1003.37   998.36 1006.41 2.56 
Wag3   51  7 3    407.31   405.68   410.56 1.77 
 F2x   62  4 3 3   584.82   572.23   589.23 3.86 
Tram   49  6 4    422.14   420.13   426.65 1.73 
Trmx   49  5 5    415.47   413.83   420.21 2.14 
 Nb2   74  6 2 2   830.44   829.86   835.24 2.87 
Gall2 243  9 1  2251.03 2249.35 2265.69 5.85 
G532 271  5 2 3 2106.45 2102.32 2122.13 6.13 
Gall1 343 1 4 3 2 2663.46 2661.72 2673.41 5.98 
Rrne 390 1 3 2 4 3244.16 3238.57 3259.87 7.64 

 

Table 5.3: Results of ten runs with fixed parameters but different random seed numbers 
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Figure 5.2 and Figure 5.3 respectively depicts the improvement of the schedule from aspects 

of total cost and shift number versus the number of iterations for the Tram case. Although the 

actual values may differ among various cases, the characteristic shapes of the curves are 

similar. 
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Figure 5.2: RPD of total cost (in current and best schedule respectively) 

versus iteration number 
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Figure 5.3: RPD of shift number (in current and best schedule respectively) 

versus iteration number 
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5.5 Conclusions  

 

A fuzzy evolutionary approach for driver scheduling is presented in this chapter. It 

incorporates the idea of fuzzy evaluation into a SE algorithm, combin ing the features of 

iterative improvement and constructive perturbation, to explore solution space effectively and 

obtain superior schedules. This new approach is novel because it is the first time that the SE 

algorithm has been applied to the driver scheduling problem. Experiments with benchmark 

tests using data from the transportation industry demonstrate the strengths of the proposed 

algorithm in solving large size driver scheduling problems. 

 

Applying SE algorithms to driver scheduling problems has several advantages. First, it is 

simple to carry out because it utilizes greedy algorithm and local heuristic. Secondly, due to 

its characteristics of maintaining only a single schedule at each generation and discarding 

inferior shifts from this schedule, the SE algorithm converges fast compared with other meta-

heuristics. Thirdly, combined with probabilistic hill climbing, the SE achieves superior 

schedules by effective exploration of the solution space. 

 

Although this work is presented in terms of driver scheduling, it is suggested that, besides 

general set covering problems (to be introduced in the following Chapter 6), this SE approach 

could also be applied to many other scheduling problems whose solutions can be decomposed 

into elements. Even the process of identifying fuzzified criteria could be generalized and 

applied elsewhere. 
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Chapter Six 

 

A Fuzzy SE Approach with Taguchi 

Parameter Setting for the  

Set Covering Problem 
___________________________________________________________________________ 

 

 

6.1   Introduction 

 

Set Covering Problems (SCPs) are difficult zero-one optimization problems, which have been 

proven to be NP-complete (Garey and Johnson, 1979). The SCP is the problem of finding a 

subset of the columns of an nm ×  zero-one matrix 

},...,2,1;,...,2,1};1,0{{ njmiaA ij ==∈=  

that covers all rows at a minimum cost, based on a set of costs },...,2,1;{ njc j = . Defining 

1=ix  if column j (with an associated cost cj >0) is in the solution and xj =0 otherwise, the 

SCP is to 

 

Minimize   ∑
=

n

j
jj xc

1

                                                    (6.1) 
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Subject to: ∑
=

≥
n

j
jijxa

1

1 ,    i∈I={1, 2,…, m}                                 (6.2) 

xj = 0 or 1,    j∈J={1, 2,…, n}                                            (6.3) 

 

Constraint (6.2) ensures that each row is covered by at least one column, and (6.3) requires 

that whole columns be used. In the case that all the cost coefficients cj are equal, the problem 

is called a unicost SCP, and the objective is to minimize the number of columns. 

 

Integer Linear Programming (ILP) is the traditional approach for the SCP. The relaxed Linear 

Programming (LP) for the SCP, i.e. ignoring the integer constraint, is first solved. Then, the 

branch-and-bound tree-search procedure is used to obtain the integer solution. For large size 

SCPs, this method often has computational difficulty in getting an integer solution, although 

the relaxed LP can usually be solved relatively quickly in polynomial time (Karmarkar 1984). 

 

In this chapter, a new fuzzy evolutionary approach for solving large-scale SCP problems is 

presented. The approach involves a number of parameters and evaluation weights, the 

combinations of which are efficiently experimented using Taguchi’s orthogonal arrays 

(Taguchi 1986, Taguchi 1987). Data sets for the bus and rail driver scheduling problem are 

used to test the performance of this approach. 

 

This chapter reports on improvements in the fuzzy SE approach, and its generalization from 

driver scheduling to the class of SCP: 

 

• For fuzzy evaluation, the criteria used are now generalized for the SCP without any 

domain specific knowledge in their formulation. 

• In SE’s Evaluation step, a new evaluation function has been designed to replace the 

former function that was specialized for the driver scheduling problem. 
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• In SE’s Construction step, the function for assessing which columns to be used for 

repairing the broken solution is different from that in the Evaluation step for 

discarding columns. 

• Taguchi’s experimental design (Taguchi 1986; Taguchi 1987) is utilized to reliably 

set the seven parameters in our proposed algorithm. This method uses orthogonal 

arrays to perform an initial study of the wide range of parameter space, with a small 

number of experiments. 

 

The method of fuzzy evaluation for the SCP is described first. A fuzzy SE algorithm is then 

presented. Taguchi’s orthogonal experimental design for parameter settings will be briefly 

introduced. Comparative results using large-scale real world problems are given, which are 

followed by some conclusions. 

 

6.2   Fuzzy evaluation for set covering  

 

Like the process of forming a schedule, the process of constructing a possible solution by the 

greedy heuristic is inherently sequential. Among the large number of columns to be chosen, it  

would be difficult to judge which one is more effective than others because the criteria bear 

some uncertainty. Fuzzy set theory (Zadeh 1965) is therefore used to assign each column a 

quantitative value according to its structural state. The fitter the structure for a column, the 

larger its value is. 

 

6.2.1   Construction of the factor set 

 

The main factors concerning the column’s structure are the number of rows it covers (u1), its 

cost (u2), the ratio of its number of covered rows to its cost (u3), and the average coverage 

number (number of columns covering the row) of all the rows covered by this column (u4). 

Furthermore, since the relaxed LP in the set covering model can be solved relatively easily, 
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the fractional cover of the relaxed LP solution, if the column is included in this solution, is 

used as the fifth factor (u5). 

 

The formation of these five factors is very similar to that used in driver scheduling. However, 

all the factors that involve domain knowledge of driver scheduling (i.e. u2, u3, and u4) have 

been removed. New factors particularly relevant to the general set covering problem have 

been added. 

 

6.2.1.1    Factor u1 

 

The objective for set covering is to minimize the total cost of the solution. However in many 

real-world problems, the total cost is usually increased with the number of columns in the 

solution. To reduce the number of columns used as more as possible, the number of rows each 

column covers should be taken into account as a criterion about the column structure. 

 

Considering two columns that cover different number of rows, one column should be more 

efficient than another because it covers more rows and thus potentially minimises the number 

of columns in the final solution. If every column in the solution covers as many rows as 

possible, it can be concluded that, in this solution, the number of column is possibly fewer 

thus leading to a lower total cost. Therefore, similar to the function for driver scheduling, an 

associated membership function can be designed based on the assumption that the goodness 

of a column )( Jjj ∈  generally increases with the number of rows it covers, denoted as jβ .  

 

The membership functions )(1 Jjj ∈µ  for factors u1 is defined as 
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1µ ,                        (6.4) 

 

where ∑
=

==
m

i
ijjj ax

1
1 β ; 

      1jb = maximum number of rows; 

      1jc = minimum number of rows. 

 

6.2.1.2    Factor u2 

 

To achieve the objective of minimum total cost, the cost for individual column in the final 

solution should be as small as possible. Therefore, factor u2 is based on the assumption that 

the goodness of a column )( Jjj ∈  generally decreases with its cost cj. Compared with the 

non-linear membership function used for the driver scheduling problem, a linear functions 

defined as )(2 Jjj ∈µ  below seems to perform better. 

 

Jj
cb

xb

jj

jj
j ∈∀

−

−
= ,

22

22
2µ ,                                            (6.5) 

 

where jj cx =2 ; 

      2jb = maximum cost; 

      2jc = minimum cost. 
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6.2.1.3    Factor u3 

 

According to the above analysis for factor u1 and factor u2, to achieve a satisfactory solution, 

the ideal columns to be used would be those covering as many rows as possible, and at the 

same time having the cost as small as possible. Unfortunately, in practice these two factors 

are often contradictory because a column covering more rows usually has a larger cost. 

 

To get a balance between the number of covered rows and the cost for a column, besides these 

absolute values, the relative ratio of number of covered rows to its cost can be regarded as the 

third important criterion. Based on the assumption that the goodness of a column )( Jjj ∈  

generally increases with the ratio of the number of covered rows to its cost, denoted as 

jj cβ , the membership function )(3 Jjj ∈µ  for factor u3 is therefore defined as 
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where j

m

i
ij

j

j
j cacx ∑

=
==

1
3

β
; 

      3jb = maximum ratio; 

      3jc = minimum ratio. 

 

6.2.1.4    Factor u4 

 

Considering all the columns with respect to all the rows to be covered, each row i has an 

associated coverage list contain ing Li columns that are able to cover i, where  
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∑
=

∈=
n

j
iji IiaL

1

, .                                                         (6.7) 

 

Normally each column covers at least one row, and the number of rows contained in column j 

is ∑
=

m

i
ija

1
. Therefore, for all the rows in column j, the total coverage number is 

∑ ∑
= =

×
m

i

n

j
ijij aa

1 1

)( , and the average coverage number, denoted as jα , is formulated as 

Jjaaa
m

i

m

i
ij

n

j
ijijj ∈×= ∑ ∑∑

= ==

,)(
1 11

α .                                   (6.8) 

 

The average coverage number is an index about whether the components in a column are 

heavily covered by other columns in general. To find an economic cover, it is reasonable to 

regard the columns whose rows are heavily covered by others as to be less important. Based 

on this assumption, the goodness of column )( Jjj ∈  generally decreases with the average 

coverage number of all the rows covered by column j. Thus the membership functions 

)(4 Jjj ∈µ  for factors u4 is defined as 

 

Jj
cb

xb

jj

jj
j ∈∀

−

−
= ,

44

44
4µ ,                                                (6.9) 

 

where jjx α=4 ; 

       4jb = maximum average coverage number; 

       4jc = minimum average coverage number. 
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6.2.1.5    Factor u5 

 

A popular method for column selection is ILP, which is NP-hard (Garey and Johnson, 1979). 

Large problems would have to be divided into sub-problems, and in some cases the ILP 

process may have difficulties in finding an integer solution. In contrast, the relaxed fractional 

problem in which the solution vector is not required to be integral, X∈[0,1]n, is much easier: 

the optimal solution for the relaxed problem can be found in polynomial time (Karmarker 

1984). In addition, Srinivasan (1995) showed that the approximation guarantee for the 

Randomised Rounding Algorithm (RRA) on fractional covers is 

             





++≤ )1()ln(ln)ln( O

c
m

c
m

cc
MinMin

MinRRA .                              (6.10) 

 

Here RRAc  is the number of sets in the subcover output by the RRA, and Minc  is the optimum 

value of the relaxed LP for the set covering problem. Although Slavík (1996) proved the 

performance guarantee for the RRA was even worse than that of the simple greedy algorithm, 

it still can be concluded that at least the relaxed solution provides some useful information 

about the distribution of the optimal integer solution. For the same reason described in 

Section 3.4.1.5, the membership function )(5 Jjj ∈µ  for the fractional cover factor can be 

defined as 

 







=
−

−

otherwise. ,           0
cover; fractional  thein is   column if ,

2
5 )(

5 je
jx

j
β

α

µ                      (6.11) 

 

Let =5jµ 1 when 55 jj bx = , and =5jµ 0.01 when 55 jj cx = , 

where 5jx = fractional value of column j in the relaxed LP solution; 

           5jb = maximum value in fractional cover; 
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           5jc = minimum value in fractional cover. 

Therefore, 

 









−
−=

=

01.0ln
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j

cb

b

β

α
                                                (6.12) 

 

6.2.2   Fuzzy evaluation 

 

As described in Section 3.5.2, three aggregation operators in different categories (namely 

intersection operator, union operator, arithmetic mean operator) have been investigated for the 

driver scheduling problem, among which the arithmetic mean operator takes into account the 

compensative effect of individual factors, and performs best in general. Because of the 

similarity of these two problems, the arithmetic mean operator is applied again to aggregate 

all proposed criteria for set covering. 

 

Therefore, for column )( Jjj ∈ , the formulation of its structura l coefficient )(1 jf  by the 

method of fuzzy evaluation is 

 

Jjwjf jk
k

k ∈∀×= ∑
=

),()(
5

1
1 µ .                                       (6.13) 

 

Where )0( ≥kk ww  denotes the corresponding weights for factor uk (k=1, 2, 3, 4, 5), 

satisfying 

∑
=

=
5

1

1
k

kw .                                                       (6.14) 
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The main task for the fuzzy evaluation model is to find a suitable weight distribution among 

the fuzzy membership functions. These five weights, along with two other parameters to be 

given in Section 6.3.3 and 6.3.4, could be determined by Taguchi’s orthogonal experimental 

design, which will be described in Section 6.4. 

 

6.3   A fuzzy Simulated Evolution algorithm 

 

In this section, a fuzzy SE algorithm is applied to mimic generations of evolution on a single 

solution. It executes a sequence of Construction, Evaluation, Selection and Mutation steps in 

a loop until a user specified parameter (e.g. cpu-time, or the solution cost) is reached or no 

improvement has been achieved for a number of iterations. Throughout the evolution, the 

currently best solution is retained and finally returned as the final solution. 

 

6.3.1   Construction 

 

The Construction step takes a partial solution as the input, and produces a complete solution 

as the output. All the existing column assignments in the partial solution remain unaffected. 

Therefore, the Construction step is to assign columns to all the uncovered rows to complete a 

partial solution. Note that the partial solution in the first iteration of the loop is set to be 

empty. 

 

Considering all columns with respect to all rows to be covered, each of the remaining 

unassigned rows i has a coverage list of length Li , i.e. containing Li possible columns that can 

cover it. The greed-based constructor assumes that the desirability of adding column )( Jjj ∈  

into the partial solution generally increases with its function value )( jF ′ , which can be 

formulated as 
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JjajfjF
Ii

ij ∈∀×=′ ∑
′∈

,)()( 1 .                                          (6.15) 

 

Where )(1 jf  is the structural coefficient defined as formula (6.13), and I ′  is the set of rows 

to be covered. However, to introduce diversification, one of the candidates, not necessarily 

the top candidate, is randomly selected from a Restricted Candidate List (RCL) consisting of 

columns with r  largest function values )( jF ′ . From empirical studies we find that 4≤r  

achieves better solutions. 

 

Let =*J  {1,2,…,t} the set of columns in a partial solution, and },1{ IiaiS ijj ∈==  the set 

of rows covered by column j, the steps to generate a complete solution are: 

 

Step 1 Set ):( **
* JjSII

j
∈−=′ U . 

Step 2 If φ=′I  then stop: *J is a complete solution and ∑ ∈= ):()( ***
* JjcJC

j
. 

Otherwise locate a row It ′∈′  having ):min( IiLL it ′∈′= ′′ , and then randomly 

select a column },,...,1{, rkSk ∈  within RCL from the coverage list of row t′ . 

Proceed to step 3. 

Step 3 Add k  to *J , set ,kSII −′=′  and return to step 2. 

 

Before the Construction, some rows may already be over-covered, i.e. covered more than 

once by the existing columns in the partial solution. The other columns added by the 

Construction step are each chosen to cover at least one currently uncovered row, but they 

increase the amount of over-cover as well. Thus some columns might become redundant later, 

causing all their rows covered by other columns. It should be pointed out that, in the next 

Selection, these redundant columns will be removed automatically because of their zero 

goodness. 
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A similar construction phase has been considered for the timetabling problem, under a 

number of different names of “Peckish” in (Corne and Ross, 1996) or “Bias Selection” in 

(Burke et al., 1998). The main difference for the proposed Construction step is it uses a more 

comprehensive evaluation function to direct the searching process. 

 

6.3.2   Evaluation 

 

Similar to the Evaluation of SE for driver scheduling (Described in section 5.3.3), the overall 

evaluation function )( *jF  consists of two parts: structural coefficient ]1,0[)( *
1 ∈jf  and 

over-cover penalty ]1,0[)( *
2 ∈jf , which can be formulated as 

 

***
2

*
1

* ),()()( JjjfjfjF ∈∀×= .                                    (6.16) 

 

The ratio of the non-overlapped number of rows to total number of rows in )( *** Jjj ∈  is 

also regarded as an important criterion, which can be formulated as )( *
2 jf  below: 

 

**

1 1

*
2 ,)( ** Jjabjf

m

i

m

i
ijij

∈∀= ∑ ∑
= =

,                                  (6.17) 

where  





 >

=
∑
∈

otherwise.     , 1

;1     , 0
**

*

* Jj
ij

ij

a
b                                             (6.18) 

 

If every row in *j  has been covered by one or more other columns in * J  as well, then 

0)( *
2 =jf ; conversely if none of the rows in *j  is over-covered, 1)( *

2 =jf . 
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6.3.3   Selection 

 

In this step it will be determined whether a column )( *** Jjj ∈  is retained for the next 

generation, or discarded and placed in a queue for the new allocation. This is done by 

comparing its goodness )( *jF  to )( ss kp − , where ps is a random number generated for each 

generation in the range [0, 1], and k s is a value smaller than 1.0. If )()( *
ss kpjF −>  then *j  

will survive in its present position; otherwise *j  will be removed from the current 

evolutionary solution. The rows it covers, except those also covered by other columns in the 

solution, are then released for the next Construction. By using this Selection process, column 

*j  with larger goodness )( *jF  has higher probability of survival in the current solution. 

 

The purpose of subtracting ]1,0[∈sk  from ps is to improve the SE’s convergence capability. 

A suitable setting of the selection value ks is important to the algorithm’s performance. 

 

6.3.4   Mutation 

 

Following the Selection step, each retained column )( *** Jjj ∈  has a chance to be mutated, 

i.e. randomly discarded from the partial solution at a given rate of pm, and releases its covered 

rows, except those also covered by other retained columns, for the next generation. The 

mutation rate pm should be much smaller than the selection rate to guarantee convergence. 

Like the selection valve k s, pm is also an influencing parameter in the SE. 

 

6.4   Taguchi method for parameter design 

 

Seven parameters are investigated in the proposed algorithm, namely weight wk for criteria uk 

(k=1, 2, 3, 4, 5) in the fuzzy evaluation model, selection value ks in the Selection step, and 
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mutation rate pm in the Mutation step. These parameters will influence the SE’s performance 

significantly, and are difficult to determine. Common approaches for parameter design lead 

either to a long time span for trying out all combinations, or to a premature termination of the 

design process with results far from optimal in most cases. 

 

As described in Chapter 4, a Genetic Algorithm (GA) was presented in the earlier stage of this 

research (Li and Kwan, 2002a) to calibrate the fuzzy weight distribution, and some good 

solutions were obtained as by-products. However, the weights so obtained may not be always 

good for the SE even though the results were rather satisfactory in some cases (Li and Kwan 

2001a and 2001b). The first reason is that GA and SE are evolutionary algorithms with very 

different mechanisms, therefore a good weight distribution under GA may not be always 

suitable for SE. The second reason is due to the different construction methods: the one used 

in GA is deterministic rather than randomized as is in SE.  

 

For full experimentation on the fuzzy SE algorithm, the first six parameters at five value 

levels each would require 15,625 (56) possible experimental evaluations, each of which is a 

process of iterative improvement and thus is quite time-consuming. The time to conduct such 

a detailed search for the optimal solution is prohibitive. Naturally, it is desirable to reduce the 

number of experiments to a practical point, and still reach satisfactory solution. For the 

problem of choosing appropriate parameter configurations, Taguchi's orthogonal experimental 

design provides an effective solution. 

 

6.4.1   Preliminaries 

 

Orthogonal experimental design for parameter optimisation provides a systematic and 

efficient approach to determine near optimal parameter settings. The objective is to select the 

best combination of control factors (parameters) so that the product or process is most robust 

with respect to noise factors. The orthogonal experimental design applies orthogonal arrays 
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from experimental design theory to study a large number of variables with a small number of 

trials, significantly reducing the number of experimental configurations. Moreover, in case 

that parameter-interaction space is relatively smooth, the conclusions drawn from such small-

scale experiments are valid over the entire experimental region spanned by the control factors 

and their settings. 

 

6.4.1.1     Orthogonal Array 

 

Orthogonal arrays are a special set of Latin squares (Dénes and Keedwell, 1974), constructed 

by Taguchi to lay out the experimental design. In this array, the columns are said to be 

mutually orthogonal or balanced. That is, for any pair of columns, all combinations of factor 

levels occur, and occur an equal number of times. By using the table, the required 

experimental situations are defined. Consider a 3-level and 4-factor orthogonal array shown in 

Table 6.1 below: 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6.1: Orthogonal array L9(34) 

 

The array is designated by the symbol L9(34), involving four factors A, B, C, and D, each at 

three levels one (1), two (2), and three (3). The array has a size of nine rows and four 

columns. The numbers (1/2/3) in the row indicate the factor levels and each row represents 

 A B C D 

1 1 1 1 1 

2 1 2 2 2 

3 1 3 3 3 

4 2 1 2 3 

5 2 2 3 1 

6 2 3 1 2 

7 3 1 3 2 

8 3 2 1 3 

9 3 3 2 1 
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specific test characteristics of each experiment. The vertical columns represent the 

experimental factors to be studied using that array. Each of the columns contains three 

assignments at each levels (1, 2, or 3) for the corresponding factors. These conditions can 

combine in nine possible ways (i.e. (1,1), (1,2), (1,3), (2,1), (2,2), (2,3), (3,1), (3,2), (3,3)) for 

two factors, with 34 possible combinations of levels for all the four factors.  

 

The orthogonal array facilitates the experimental design process by assigning factors to the 

appropriate columns. In this case, referring to table 1, factors A, B, C, and D are arbitrarily 

assigned to columns 1, 2, 3, and 4 respectively. From the table, nine trials of experiments are 

needed, with the level of each factor for each trial-run as indicated in the array. The 

experimental descriptions are reflected through the condition level. The experimenter may use 

different designators for the columns, but the nine trial-runs will cover all combinations, 

independent of column definition. In this way, the orthogonal array assures consistency of the 

design carried out by different experimenters. The orthogonal array also ensures that factors 

influencing the quality of solutions are properly investigated and controlled during the initial 

design stage. 

 

6.4.1.2     Comparison to the traditional method of factorial design 

 

The traditional method of factorial design is to investigate all possible combinations and 

conditions in an experiment that involves multiple factors. Let A be the number of levels for 

each factor, and B be the number of factors involved, then the number of possible designs N 

(number of trials) by this method is 

BAN = .                                                           (6.19) 

If the factoria l design is implemented for the four 3-level factors in Table 6.1, the total 

number of trials needed would be a full combination of 81 (34) trials, rather than 9 trials by 

the orthogonal array L9(34). 
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The reason why by using orthogonal array superior parameter configurations could be found 

by only a small number of experiments is because of its mutual balance. For example, in 

Table 6.1, each column contains three ones, three twos, and three threes; and any pair of 

columns contain all combinations of levels (i.e. (1,1), (1,2), (1,3), (2,1), (2,2), (2,3), (3,1), 

(3,2), (3,3)) exactly once. It is the characteristic of mutual balance that guarantees the choice 

of combinations producing elite solutions. 

 

Furthermore, in the factorial design process, the means of levels combination laid out is not 

specified, which may lead to different results on the same experimental subject each time a 

trial is conducted. However, Taguchi’s orthogonal array is able to simplify and standardize 

the factorial design in a manner that will produce consistent and similar results, even though 

the trials are implemented by different experimenters. Hence, two different investigators will 

have similar results and a standard design methodology. 

 

The concept of consistent results and standard design methodology through orthogonal array 

analysis is important, because it allows the experimenter to produce two outcomes of the 

same quality standards, using the same materials, but with differences in the experimental 

process. This is possible since, through orthogonal array experimental analysis, the factors 

influencing the quality of results can be identified, controlled, and subsequently compensated 

during the early design stage. Thus, the quality of the outcome itself is able to adapt to the 

experimental process, rather than depends on the experimental process. 

 

In summary, in case that parameter-interaction space is relatively smooth, compared with the 

traditional factorial design method, Taguchi’s orthogonal array is considered to be superior 

since: 

• It is efficient in handling larger numbers of factor variables; 
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• It can produce similar and consistent results, even though the experiments may be 

carried out by different experimenters; 

• It enables determination of the contribution of each quality-influencing factor. 

 

The limitation of orthogonal arrays is that they can only be applied at the initial design stage. 

There are some situations where orthogonal array techniques are not available, such as a 

process involving control factors that vary in time and cannot be quantified exactly. 

 

6.4.2   The approach of orthogonal experimental design 

 

Due to of the characteristic of mutual balance in orthogonal arrays, Taguchi’s approach can 

explore the solution space as extensive as possible. Moreover, due to the following ANOVA 

process, Taguchi’s approach can also exploit the solution space as much as possible. The goal 

that uses this approach in our application is to determine the best setting for each parameter so 

that the solution cost is minimized. Basically , this approach consists of the following steps of 

defining the parameter space, determining the factor levels, and analysis of variance. 

 

6.4.2.1     Definition of the parameter ranges 

 

The first step towards the goal is to define the ranges of seven control factors in the proposed 

algorithm. Without any pre-knowledge about the influence of the weights wk (k=1, 2, 3, 4, 5) 

on the algorithm, it is reasonable to set the levels of wk evenly over the full applicable range 

of [0, 1]. However the range for the selection value k s and the mutation rate ps should be much 

narrower, since according to the former experience, the SE usually yields better solutions with 

ks ∈[0.20, 0.30] and ps ∈[0.05, 0.06] respectively, and these two parameters are relatively 

independent of wk. 
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6.4.2.2     Determination of the factor levels  

 

This step is to define the initial levels of the control factors, and sequentially choose the most 

suitable orthogonal array. In order to facilitate the description of this step, three definitions are 

given first as follows: 

 

[Definition 6.1]  A factor-level table is a tableau, where each row represents a control factor 

and each column represents an individual level. 

 

[Definition 6.2]  In a factor-level table, degrees of freedom for a factor are the number of 

levels in this factor minus one, and degrees of freedom for the table are the sum of degrees of 

freedom for all factors. 

 

[Definition 6.3]  Degrees of freedom for an orthogonal array are the number of trials minus 

one. For example, for orthogonal array L9 (34) in Table 6.1, degrees of freedom are eight. 

 

To gain an intuitive feel for degrees of freedom, consider taking one ball from a box of n 

balls. Every time we come to take one ball and have a choice, until we come to the last one, 

and then there is no choice. Thus we have 1−n  choices, i.e. degrees of freedom. 

 

In theory, the initial levels of the individual control factor can be set arbitrarily, and the 

associated orthogonal array can be chosen flexibly as well without rigorous regulations. 

However, in practice two principles below are normally complied with: 

1) Degrees of freedom for the factor-level table should be no larger than degrees of 

freedom for the orthogonal array to be used; 

2) The number of factors in the factor-level table should be no larger than the number of 

columns in the orthogonal array. 
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To achieve the goal with the necessary precision, there should be as many levels in each 

factor as possible. However, in this situation, the number of trials needed would be increased 

explosively. The most suitable orthogonal array is the one that maintains the best balance: it 

uses the largest number of levels, but conducts the smallest number of trials. Since the 

number of factors currently investigated has been fixed to seven, the task for the orthogonal 

experimental design is to determine the largest number of levels for each factor, and the 

smallest number of rows (trials) in the associated orthogonal array. 

 

Let A be the number of levels for each factor, and L be the number of rows (trials) in the 

orthogonal array. Normally L is the square of an integer, denoted as 

2kL = , },...,3,2{ nk ∈ .                                              (6.20) 

 

According to the 1st principle above, 

1
7

1
1

7
1

1)1(7
2

+
−

≤⇔+
−

≤⇔−≤−×
k

A
L

ALA                         (6.21) 

6  then,6 if ≤=⇒ Ak , where k is the smallest integer to be satisfied 

6  then,36 if ≤=⇔ AL . 

 

Therefore the largest number of levels for each factor is 6, the smallest number of trials is 36, 

and the most ideal orthogonal is array L36 (67). It is effective to deal with the seven factors 

using only 36 trials, rather than 279,936 (67) experimental trials. 

 

Unfortunately, currently the author has difficulty in finding a readily available L36(67) 

configuration from related literature. To design such an array manually will consume a lot of 

time, which may be left as the future work of this research.  On the contrary, an L25(56) can be 

found easily (Taguchi 1987), which is the optimal design to handle six 5-level factors.  
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As mentioned above, the design of orthogonal array is flexible. Studying the proposed 

algorithm, the seventh factor ps is relatively less important than the others due to the relatively 

minor role of the mutation step in SE. To maintain a balance between necessary precision and 

number of experiments, factors wk (k=1, 2, 3, 4, 5) and k s are finally defined to be 5 levels, 

and ps to be 2 levels respectively (shown in Table 6.2). These seven factors are assigned to an 

L50(21×56) orthogonal array shown in Table 6.3. This is an economical and efficient design for 

dealing with these seven factors using only 50 trials, rather than 31,250 (21×56) experimental 

trials. 

 

Levels Control factors 

1 2 3 4 5 

1.Weight w1 0.1 0.3 0.5 0.7 0.9 

2.Weight w2 0.1 0.3 0.5 0.7 0.9 

3.Weight w3 0.1 0.3 0.5 0.7 0.9 

4.Weight w4 0.1 0.3 0.5 0.7 0.9 

5.Weight w5 0.1 0.3 0.5 0.7 0.9 

6.Selection valve k s 0.22 0.24 0.26 0.28 0.30 

7.Mutation rate pm 0.05 0.06 - - - 

 

Table 6.2: Control factors and their levels 

 

 

 

 

 

 

 

 

 

 
 



130 

 

Control factors Trial 
No. 1.w1 2.w2 3.w3 4.w4 5.w5 6.ks 7.pm 

1 0.1(1) 0.1(1) 0.1(1) 0.1(1) 0.1(1) 0.22(1) 0.05(1) 
2 0.1(1) 0.3(2) 0.3(2) 0.3(2) 0.3(2) 0.24(2) 0.05(1) 
3 0.1(1) 0.5(3) 0.5(3) 0.5(3) 0.5(3) 0.26(3) 0.05(1) 
4 0.1(1) 0.7(4) 0.7(4) 0.7(4) 0.7(4) 0.28(4) 0.05(1) 
5 0.1(1) 0.9(5) 0.9(5) 0.9(5) 0.9(5) 0.30(5) 0.05(1) 
6 0.3(2) 0.1(1) 0.3(2) 0.5(3) 0.7(4) 0.30(5) 0.05(1) 
7 0.3(2) 0.3(2) 0.5(3) 0.7(4) 0.9(5) 0.22(1) 0.05(1) 
8 0.3(2) 0.5(3) 0.7(4) 0.9(5) 0.1(1) 0.24(2) 0.05(1) 
9 0.3(2) 0.7(4) 0.9(5) 0.1(1) 0.3(2) 0.26(3) 0.05(1) 

10 0.3(2) 0.9(5) 0.1(1) 0.3(2) 0.5(3) 0.28(4) 0.05(1) 
11 0.5(3) 0.1(1) 0.5(3) 0.9(5) 0.3(2) 0.28(4) 0.05(1) 
12 0.5(3) 0.3(2) 0.7(4) 0.1(1) 0.5(3) 0.30(5) 0.05(1) 
13 0.5(3) 0.5(3) 0.9(5) 0.3(2) 0.7(4) 0.22(1) 0.05(1) 
14 0.5(3) 0.7(4) 0.1(1) 0.5(3) 0.9(5) 0.24(2) 0.05(1) 
15 0.5(3) 0.9(5) 0.3(2) 0.7(4) 0.1(1) 0.26(3) 0.05(1) 
16 0.7(4) 0.1(1) 0.7(4) 0.3(2) 0.9(5) 0.26(3) 0.05(1) 
17 0.7(4) 0.3(2) 0.9(5) 0.5(3) 0.1(1) 0.28(4) 0.05(1) 
18 0.7(4) 0.5(3) 0.1(1) 0.7(4) 0.3(2) 0.30(5) 0.05(1) 
19 0.7(4) 0.7(4) 0.3(2) 0.9(5) 0.5(3) 0.22(1) 0.05(1) 
20 0.7(4) 0.9(5) 0.5(3) 0.1(1) 0.7(4) 0.24(2) 0.05(1) 
21 0.9(5) 0.1(1) 0.9(5) 0.7(4) 0.5(3) 0.24(2) 0.05(1) 
22 0.9(5) 0.3(2) 0.1(1) 0.9(5) 0.7(4) 0.26(3) 0.05(1) 
23 0.9(5) 0.5(3) 0.3(2) 0.1(1) 0.9(5) 0.28(4) 0.05(1) 
24 0.9(5) 0.7(4) 0.5(3) 0.3(2) 0.1(1) 0.30(5) 0.05(1) 
25 0.9(5) 0.9(5) 0.7(4) 0.5(3) 0.3(2) 0.22(1) 0.05(1) 
26 0.1(1) 0.1(1) 0.1(1) 0.1(1) 0.1(1) 0.22(1) 0.06(2) 
27 0.1(1) 0.3(2) 0.3(2) 0.3(2) 0.3(2) 0.24(2) 0.06(2) 
28 0.1(1) 0.5(3) 0.5(3) 0.5(3) 0.5(3) 0.26(3) 0.06(2) 
29 0.1(1) 0.7(4) 0.7(4) 0.7(4) 0.7(4) 0.28(4) 0.06(2) 
30 0.1(1) 0.9(5) 0.9(5) 0.9(5) 0.9(5) 0.30(5) 0.06(2) 
31 0.3(2) 0.1(1) 0.3(2) 0.5(3) 0.7(4) 0.30(5) 0.06(2) 
32 0.3(2) 0.3(2) 0.5(3) 0.7(4) 0.9(5) 0.22(1) 0.06(2) 
33 0.3(2) 0.5(3) 0.7(4) 0.9(5) 0.1(1) 0.24(2) 0.06(2) 
34 0.3(2) 0.7(4) 0.9(5) 0.1(1) 0.3(2) 0.26(3) 0.06(2) 
35 0.3(2) 0.9(5) 0.1(1) 0.3(2) 0.5(3) 0.28(4) 0.06(2) 
36 0.5(3) 0.1(1) 0.5(3) 0.9(5) 0.3(2) 0.28(4) 0.06(2) 
37 0.5(3) 0.3(2) 0.7(4) 0.1(1) 0.5(3) 0.30(5) 0.06(2) 
38 0.5(3) 0.5(3) 0.9(5) 0.3(2) 0.7(4) 0.22(1) 0.06(2) 
39 0.5(3) 0.7(4) 0.1(1) 0.5(3) 0.9(5) 0.24(2) 0.06(2) 
40 0.5(3) 0.9(5) 0.3(2) 0.7(4) 0.1(1) 0.26(3) 0.06(2) 
41 0.7(4) 0.1(1) 0.7(4) 0.3(2) 0.9(5) 0.26(3) 0.06(2) 
42 0.7(4) 0.3(2) 0.9(5) 0.5(3) 0.1(1) 0.28(4) 0.06(2) 
43 0.7(4) 0.5(3) 0.1(1) 0.7(4) 0.3(2) 0.30(5) 0.06(2) 
44 0.7(4) 0.7(4) 0.3(2) 0.9(5) 0.5(3) 0.22(1) 0.06(2) 
45 0.7(4) 0.9(5) 0.5(3) 0.1(1) 0.7(4) 0.24(2) 0.06(2) 
46 0.9(5) 0.1(1) 0.9(5) 0.7(4) 0.5(3) 0.24(2) 0.06(2) 
47 0.9(5) 0.3(2) 0.1(1) 0.9(5) 0.7(4) 0.26(3) 0.06(2) 
48 0.9(5) 0.5(3) 0.3(2) 0.1(1) 0.9(5) 0.28(4) 0.06(2) 
49 0.9(5) 0.7(4) 0.5(3) 0.3(2) 0.1(1) 0.30(5) 0.06(2) 
50 0.9(5) 0.9(5) 0.7(4) 0.5(3) 0.3(2) 0.22(1) 0.06(2) 

 
Table 6.3: L50(21×56) orthogonal array (the values in parenthesis represent the factors levels) 
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At the same time, it would be interesting to know how good the results derived from the 

above 50 trials are, without further consideration of all other possible combinations. Because 

of the characteristic of mutual balance in orthogonal arrays, this performance ratio can be 

guaranteed by the following theorem in non-parametric statistics (The triplex design group, 

1987): 

 

[Theorem 6.1]  Suppose random variable X is subject to a probabilistically continuous 

distribution F(X), and x1, x2, …, xn are simple samples (or random observation values) of X. If 

x1, x2, …, xn are sorted in ascending order, denoted as nxxx ≤≤≤ ...21 , then the performance 

ratio for xi (i = 1, 2, …, n) is 

1
)]([

+
=

n
i

xFE i .                                                  (6.22) 

In particular,  
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n

xFE n .                                                  (6.23) 

 

Formula (6.23) means that the best experimental result in these simple samples is 

probabilistically better than %
1+n

n  of all possible results defined in the whole discrete 

solution space. In this case, the best result by L50(21×56) is better than 98.04% ( 51
50= ) 

results of all 31,250 trials. 

 

6.4.2.3     Analysis of variance  

 

The step is to analyse the results obtained from the orthogonal array to achieve the following 

objectives: 

• To evaluate the contribution of individual quality-influencing factors in the 

experimental design process; 
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• To obtain the best, or optimum, condition for a process, so that good quality 

characteristics can be sustained; 

• To approximate the response of the design parameters under the optimum conditions. 

 

The contribution of individual quality-influencing factors is crucial to the control enforced on 

the experimental design. A statistical method, Analysis of Variance (ANOVA), is commonly 

used to analyse the results of the orthogonal experimental design, and to determine how much 

variation each factor has contributed. By studying the ma in effects of each factor, the general 

tendencies of the influencing factors can be characterized. The characteristics can be 

controlled, such that a lower, or a higher, value in a particular factor produces the preferred 

result. Thus, the levels of influencing factors to produce the best results can be predicted. For 

more details regarding the ANOVA method for orthogonal array, (Taguchi 1987) can be 

referred to. 

 

Since the main purpose of this paper is to test the suitability of the proposed approach for the 

set covering problem, the author only performs an initial investigation about the wide range of 

parameter settings, and uses orthogonal experimental design to find a suitable, but coarse, 

range of the control factors. Therefore, this research simply chooses the parameter 

configuration from Table 6.3 that leads to the best results, and skips the follow-on process of 

ANOVA and further experiments.  

 

6.5   Computational results  

 

The algorithm presented in this paper was coded in Borland C++, and run on a Pentium II 333 

MHz machine with 196 megabyte RAM using the Windows 98 operating system. To test the 

proposed algorithm, eight real-world large size set covering problems originating from the 

public transport industry are solved. Problem instances prefixed by B are bus problems, and T 
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are train problems. Details of these test problems, including the number of rows, number of 

columns, and density (percentage of ones in the aij matrix), are given in Table 6.4.  

 

Best known solutions Data Rows Columns Density 
(%) Cover 

Size 
Cost 

(hours) 
Elapsed time 

(seconds) 
  T1*   340   29380 1.90   62   509.25       955 

T2   437   25099 1.26 116 1003.55         69 

T3   546   43743 1.80   64   562.22 >40000 

  B1*   613   22568 1.58   75   851.09       452 

T4   707 144339 0.51 242 2247.52 >80000 

T5 1164   29465 0.36 276 2083.15 >80000 

T6 1495   28639 0.30 349 2661.12 >80000 

T7 1873   50000 0.27 395 3137.20 >80000 

 

Table 6.4: Details of the test problems and related best known solutions 

 

Note: Results of cases marked by asterisks are obtained by the hybrid GA, while others are 

obtained by the specialized set covering ILP. 

 

The best known schedules are mainly obtained by the TRACS II system (Fores et al., 1999), a 

commercial system based on ILP. In cases (marked by asterisk) that TRACS II has difficulty 

in finding solutions, results achieved by hybrid Genetic Algorithms incorporating strong 

domain knowledge (Kwan et al., 2000) are cited. Since the purpose of the research in this 

chapter is to investigate the performance of the proposed approach for general set covering 

problems, the objective for comparison is the minimum cost, and the number of columns is 

only given for information. Note that these best known solutions are obtained under a balance 

between objectives of minimising number of shifts and total cost, and therefore may be 

further improved if the minimum total cost is regarded as the only objective. 

 

To give fair comparison of the computational results, each test problem was run by using the 

same pseudo random number seed at the beginning of the program. The best parameter 
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settings are those producing the smallest solution cost among the 50 trials of each orthogonal 

design. 

 

To save the computational time, in the process of applying the orthogonal experimental 

design of L50(21×56), iteration number of the SE algorithm is set to be 200 for all problems. 

Due to the capability of relatively fast convergence, the parameter sets that produce the 

smallest solution cost within the shorter iteration of 200 are used to carry out further SE 

searches and obtain the final solutions. If no improvement has been achieved for 1000 

iterations, the program will be terminated. Since the proposed algorithm, the hybrid GA, and 

the branch-and-bound phase of the ILP process all take the relaxed LP solutions as starting 

points, the elapsed time for them are compared. 

 

6.5.1   Experiment 1 

 

As described above, due to the characteristic of mutual balance, the orthogonal array is used 

to study the wide range of parameter space by a small number of experiments. Using the 

instance of B1, Figure 6.1 gives full demonstration about the variation of solutions for the 50 

trial-runs defined by L50(21×56). 
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Figure 6.1. RPD of solution cost versus trial number in L50(21×56) 
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Table 6.5 shows the summary results of 50 trials by parameters associated with the orthogonal 

array L50(21×56), and Table 6.6 shows the summary results of 50 trials by randomised 

parameter sets. The indices of Maximum, Minimum, Mean, and Standard Devia tion in 

statistics are applied to study the distribution of the experimental results in terms of solution 

cost. Let ti be the variable of solution cost, then 

Minimum } ..., ,min{ 501 tt= ,                                           (6.24) 

Maximum } ..., ,max{ 501 tt= ,                                          (6.25) 

Mean 50 
50

1
∑

=
=

i
itt ,                                                (6.26) 

Standard Deviation 49 )(
50

1

2∑
=

−=
i

i tt .                               (6.27) 

 

Minimum Maximum Mean Standard 
Deviation 

Data 

 Cost RPD(%)  Cost RPD(%)  Cost RPD(%) Cost 
T1   529.28  3.93   571.52 12.23   549.13   7.83 10.97 

T2 1004.55  0.10 1074.17   7.04 1026.12   2.25 15.23 

T3   586.68  4.35   663.72 18.05   628.42 11.77 17.34 

B1 850.60 -0.06 924.45   8.62 889.45   4.51 18.26 

T4 2269.07  0.96 2490.70 10.82 2329.33   3.64 56.83 

T5 2158.53  3.62 2322.77 11.50 2222.58   6.69 37.46 

T6 2764.55  3.89 2989.70 12.35 2855.26   7.30 46.13 

T7 3321.70  5.88 3636.07 15.90 3514.04 12.01 64.76 

Ave.  2.83%  12.06%  7.00% 33.37 

 

Table 6.5: Summary results of 50 trials by L50(21×56) 
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Minimum Maximum Mean Standard 
Deviation 

Data 

 Cost RPD(%)  Cost RPD(%)  Cost RPD(%) Cost 
T1 535.73 5.20   570.72 12.07   547.45   7.50 10.19 

T2 1017.68 1.41 1070.13   6.63 1024.04   2.04 12.72 

T3 594.35 5.71   660.48 17.48   627.38 11.59 16.02 

B1 869.33 2.14   912.33   7.20   883.68   3.83 16.96 

T4 2291.73 1.97 2461.62   9.53 2325.59   3.47 49.34 

T5 2160.42 3.71 2292.80 10.06 2219.40   6.54 30.42 

T6 2798.55 5.16 2952.35 10.94 2854.21   7.26 42.15 

T7 3460.3 9.98 3606.45 14.95 3502.40 11.64 63.60 

Ave.  4.41%  11.10%  6.73% 30.18 

 

Table 6.6: Summary results of 50 trials by randomised parameter sets 

 

The Mean is a measure to evaluate the average performance of the proposed algorithm, while 

the Standard Deviation is a summary measure of the differences of each result from the mean. 

According to the RPD results in Table 6.5 and Table 6.6, the average RPD of Minimum, 

Maximum, and Standard Deviation of L50(21×56) are 2.83%, 12.06%, and 33.37 respectively, 

while those produced by random parameters are 4.41%, 11.10%, and 30.18 respectively. 

Compared with results achieved by randomised parameters, on average results using 

orthogonal arrays have better Minimum, worse Maximum, and larger Standard Deviation. It 

demonstrates that results achieved by the orthogonal array are more evenly scattered 

throughout the solution space, some of which are inevitably elite. Therefore, it is not 

necessary to study the full solution space for a near-optimal solution. 

 

On the other hand, it can be noticed that some Minimum values in Table 6.6 are also similar 

to those in Table 3.11. However, the chance of using randomised parameters to produce elite 

solutions is purely random, while the chance for using an orthogonal array to find these elite 

solutions is more predictable. 
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The final cost values of these test problems are compiled in Table 6.7. Computational results 

show that the solutions derived by the SE approach are very close to those of the previous 

best known solutions. The negative percentage deviation indicates the percentage 

improvement from the previous best known solution. In terms of cover size, our results are 

0.92% larger on average.  But in terms of solution cost, our results are only 0.02% la rger on 

average: in 4 out of the 8 test problems, the SE-based heuristic has generated better cost 

values. 

 

SE’s final solution Data 
Cover 
Size 

RPD 
(%) 

Cost 
(hours) 

RPD 
(%) 

Elapsed time 
(seconds) 

T1   65  4.84   507.53 -0.34   520 

T2 118  1.72   994.90 -0.86   161 

T3   66  3.13   565.38  0.56   730 

B1   75  0.00   819.68 -3.69   168 

T4 243  0.41 2246.32 -0.05 1398 

T5 273 -1.09 2082.77  0.68   286 

T6 345 -1.15 2674.18  0.49   316 

T7 393 -0.51 3243.11  3.38 2482 

Ave. 0.92% 0.02%  

 

Table 6.7: Comparative results 

 
In term of the elapsed time, compared with those of other approaches, it is obvious that in 

general our results are obtained in much faster speed, particularly for larger cases. 

 

In addition to finding the best solutions, another task for the first orthogonal experimental 

design is to explore whether there exists a generally good pattern of parameter setting. 

According to the experiments using orthogonal array L50(21×56), in all cases, the best result is 

produced by the same parameter configuration of (0.3, 0.9, 0.1, 0.3, 0.5, 0.28, 0.06) for wk 

(k=1, 2, 3, 4, 5), k s, and pm respectively. 
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6.5.2   Experiment 2 

 

Unlike the ranges of selection value k s and mutation rate ps, the levels of weights wk (k=1, 2, 

3, 4, 5) are evenly set over the full applicable range of [0, 1] without the pre-knowledge about 

the influence of wk on the algorithm (described in the beginning of Section 6.4.2). According 

to the experimental results in Section 6.5.1, it is a very surprising finding that out of 50 

different parameter sets, one set gave the best results in all cases. Naturally, one might be 

interested to know whether those results in Table 6.7 could be improved further by simply 

implementing another orthogonal experimental design, which uses the same L50(21×56) 

orthogonal array, but is carried out in narrower ranges of values for the factors. 

 

Table 6.8 shows the definition of the control factors and their levels in the narrower ranges, 

which are centred respectively on the parameter configuration of (0.3, 0.9, 0.1, 0.3, 0.5, 0.28, 

0.06) found above. These seven factors are assigned to an L50(21×56) orthogonal array shown 

in Table 6.9.  

 

Levels Control factors 
1 2 3 4 5 

1. Weight w1 0.20 0.25 0.30 0.35 0.40 

2. Weight w2 0.80 0.85 0.90 0.95 1.00 

3. Weight w3 0.00 0.05 0.10 0.15 0.20 

4. Weight w4 0.20 0.25 0.30 0.35 0.40 

5. Weight w5 0.40 0.45 0.50 0.55 0.60 

6. Selection valve k s 0.270 0.275 0.280 0.285 0.290 

7. Mutation rate pm 0.055 0.060 - - - 

 

Table 6.8: Control factors and their levels in the narrower ranges 
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Control factors Trial 
No. 1.w1 2.w2 3.w3 4.w4 5.w5 6.ks 7.pm 

1 0.20(1) 0.80(1) 0.00(1) 0.20(1) 0.40(1) 0.270(1) 0.055(1) 
2 0.20(1) 0.85(2) 0.05(2) 0.25(2) 0.45(2) 0.275(2) 0.055(1) 
3 0.20(1) 0.90(3) 0.10(3) 0.30(3) 0.50(3) 0.280(3) 0.055(1) 
4 0.20(1) 0.95(4) 0.15(4) 0.35(4) 0.55(4) 0.285(4) 0.055(1) 
5 0.20(1) 1.00(5) 0.20(5) 0.40(5) 0.60(5) 0.290(5) 0.055(1) 
6 0.25(2) 0.80(1) 0.05(2) 0.30(3) 0.55(4) 0.290(5) 0.055(1) 
7 0.25(2) 0.85(2) 0.10(3) 0.35(4) 0.60(5) 0.270(1) 0.055(1) 
8 0.25(2) 0.90(3) 0.15(4) 0.40(5) 0.40(1) 0.275(2) 0.055(1) 
9 0.25(2) 0.95(4) 0.20(5) 0.20(1) 0.45(2) 0.280(3) 0.055(1) 

10 0.25(2) 1.00(5) 0.00(1) 0.25(2) 0.50(3) 0.285(4) 0.055(1) 
11 0.30(3) 0.80(1) 0.10(3) 0.40(5) 0.45(2) 0.285(4) 0.055(1) 
12 0.30(3) 0.85(2) 0.15(4) 0.20(1) 0.50(3) 0.290(5) 0.055(1) 
13 0.30(3) 0.90(3) 0.20(5) 0.25(2) 0.55(4) 0.270(1) 0.055(1) 
14 0.30(3) 0.95(4) 0.00(1) 0.30(3) 0.60(5) 0.275(2) 0.055(1) 
15 0.30(3) 1.00(5) 0.05(2) 0.35(4) 0.40(1) 0.280(3) 0.055(1) 
16 0.35(4) 0.80(1) 0.15(4) 0.25(2) 0.60(5) 0.280(3) 0.055(1) 
17 0.35(4) 0.85(2) 0.20(5) 0.30(3) 0.40(1) 0.285(4) 0.055(1) 
18 0.35(4) 0.90(3) 0.00(1) 0.35(4) 0.45(2) 0.290(5) 0.055(1) 
19 0.35(4) 0.95(4) 0.05(2) 0.40(5) 0.50(3) 0.270(1) 0.055(1) 
20 0.35(4) 1.00(5) 0.10(3) 0.20(1) 0.55(4) 0.275(2) 0.055(1) 
21 0.40(5) 0.80(1) 0.20(5) 0.35(4) 0.50(3) 0.275(2) 0.055(1) 
22 0.40(5) 0.85(2) 0.00(1) 0.40(5) 0.55(4) 0.280(3) 0.055(1) 
23 0.40(5) 0.90(3) 0.05(2) 0.20(1) 0.60(5) 0.285(4) 0.055(1) 
24 0.40(5) 0.95(4) 0.10(3) 0.25(2) 0.40(1) 0.290(5) 0.055(1) 
25 0.40(5) 1.00(5) 0.15(4) 0.30(3) 0.45(2) 0.270(1) 0.055(1) 
26 0.20(1) 0.80(1) 0.00(1) 0.20(1) 0.40(1) 0.270(1) 0.060(2) 
27 0.20(1) 0.85(2) 0.05(2) 0.25(2) 0.45(2) 0.275(2) 0.060(2) 
28 0.20(1) 0.90(3) 0.10(3) 0.30(3) 0.50(3) 0.280(3) 0.060(2) 
29 0.20(1) 0.95(4) 0.15(4) 0.35(4) 0.55(4) 0.285(4) 0.060(2) 
30 0.20(1) 1.00(5) 0.20(5) 0.40(5) 0.60(5) 0.290(5) 0.060(2) 
31 0.25(2) 0.80(1) 0.05(2) 0.30(3) 0.55(4) 0.290(5) 0.060(2) 
32 0.25(2) 0.85(2) 0.10(3) 0.35(4) 0.60(5) 0.270(1) 0.060(2) 
33 0.25(2) 0.90(3) 0.15(4) 0.40(5) 0.40(1) 0.275(2) 0.060(2) 
34 0.25(2) 0.95(4) 0.20(5) 0.20(1) 0.45(2) 0.280(3) 0.060(2) 
35 0.25(2) 1.00(5) 0.00(1) 0.25(2) 0.50(3) 0.285(4) 0.060(2) 
36 0.30(3) 0.80(1) 0.10(3) 0.40(5) 0.45(2) 0.285(4) 0.060(2) 
37 0.30(3) 0.85(2) 0.15(4) 0.20(1) 0.50(3) 0.290(5) 0.060(2) 
38 0.30(3) 0.90(3) 0.20(5) 0.25(2) 0.55(4) 0.270(1) 0.060(2) 
39 0.30(3) 0.95(4) 0.00(1) 0.30(3) 0.60(5) 0.275(2) 0.060(2) 
40 0.30(3) 1.00(5) 0.05(2) 0.35(4) 0.40(1) 0.280(3) 0.060(2) 
41 0.35(4) 0.80(1) 0.15(4) 0.25(2) 0.60(5) 0.280(3) 0.060(2) 
42 0.35(4) 0.85(2) 0.20(5) 0.30(3) 0.40(1) 0.285(4) 0.060(2) 
43 0.35(4) 0.90(3) 0.00(1) 0.35(4) 0.45(2) 0.290(5) 0.060(2) 
44 0.35(4) 0.95(4) 0.05(2) 0.40(5) 0.50(3) 0.270(1) 0.060(2) 
45 0.35(4) 1.00(5) 0.10(3) 0.20(1) 0.55(4) 0.275(2) 0.060(2) 
46 0.40(5) 0.80(1) 0.20(5) 0.35(4) 0.50(3) 0.275(2) 0.060(2) 
47 0.40(5) 0.85(2) 0.00(1) 0.40(5) 0.55(4) 0.280(3) 0.060(2) 
48 0.40(5) 0.90(3) 0.05(2) 0.20(1) 0.60(5) 0.285(4) 0.060(2) 
49 0.40(5) 0.95(4) 0.10(3) 0.25(2) 0.40(1) 0.290(5) 0.060(2) 
50 0.40(5) 1.00(5) 0.15(4) 0.30(3) 0.45(2) 0.270(1) 0.060(2) 

 
Table 6.9: L50(21×56) orthogonal array in the narrower ranges 
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The final results of these test problems are compiled in Table 6.10. It shows that compared 

with results by the parameters defined in the larger ranges, the solutions derived by the 

refined parameter settings have been slightly improved. On average, the solution cost of the 

proposed approach is 0.33% lower, and the associated cover size are only 0.69% larger. In T7, 

the new solution cost is worse by 3.25%. However, it should be noted that the cover size of 

T7 in our solution is smaller by 1.01%. 

 

SE’s final solution Data 

Cover 
Size 

RPD 
(%) 

Cost 
(hours) 

RPD 
(%) 

Elapsed time 
(seconds) 

T1   64  3.23   504.13 -1.01   384 

T2 118  1.72   993.35 -1.01   161 

T3   66  3.13   565.38  0.56   730 

B1   74 -1.33   814.53 -4.30   668 

T4 243  0.41 2246.32 -0.05 1398 

T5 275 -0.36 2073.36 -0.47   468 

T6 348 -0.29 2670.57  0.36   420 

T7 391 -1.01 3239.23  3.25   962 

Ave. 0.69% -0.33%  

 

Table 6.10: Comparative results by the refined parameter settings 

 

With respect to the variation of solutions for individual cases, Figure 6.2 depicts the 

improvement of the cost value versus the number of iterations for the instance of T1. 

Although the actual values may differ among various cases, the characteristic shapes of the 

curves are similar. 
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Figure 6.2: RPD of solution cost (in current and best schedule respectively) 

 versus iteration number 

 

6.6   Conclusions  

 

In this chapter, a novel fuzzy SE approach for the non-unicost set covering problem has been 

developed. A function is first designed to evaluate the structure of each column under 

fuzzified factors. The formation of these factors is similar to that in driver scheduling. The 

difference is that factors involved in domain knowledge of driver scheduling are removed, 

replacing with new factors that only concern the set covering problem. This function is 

embedded into the Construction step and the Evaluation step of the proposed Simulated 

Evolution algorithm, which mimics generations of evolution on a single solution. In each 

generation an unfit portion of the working solution is removed. The broken solution is then 

repaired by a greedy algorithm specialized for the set covering problem. 

 

In the proposed approach, there are seven investigated control factors in total. Using the 

“change-one-factor-at-a-time” method of experimentation, a prohibitively large number of 

31,250 experiments needs to be carried out. In this research, the L50(21×56) orthogonal array 
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from Taguchi’s experimental design theory is applied to reduce the number of experiments to 

50.  

 

Instances from driver scheduling have been used to test the evolutionary approach. These test 

problems can be regarded as general set covering problems, since they are handled without 

the benefit of domain knowledge of driver scheduling. It has demonstrated that for very large-

scale problems, in general the proposed approach can produce superior solutions much faster 

than some other approaches. Particularly, this approach is suitable for situations where quick 

and high-quality solutions are desirable. 

 

Future work may test the performance of this approach on randomly generated problems, 

which can be obtained from the OR-Library (Beasley 1990). 
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Chapter Seven 

 

Conclusions 

___________________________________________________________________________ 

 

 

7.1 Summary 

 

The bus and rail driver scheduling problem and its commercial importance have been 

presented. A review of meta-heuristics used for the set covering problem has also been 

provided. The success and limitations of the current methods for driver scheduling have been 

described. Early heuristic approaches are heavily dependent on problem-specif ic knowledge 

and hard to adapt between different organisations, and they generally have difficulty in 

producing satisfactory results. On the other hand, mixtures of heuristics and mathematical 

programming have been very successful, although they still have their weaknesses. This fact 

stimulated investigations on other approaches. 

 

This research has investigated two evolutionary algorithms to model and solve the driver 

scheduling problem. These algorithms start from a predefined large set of possible legal 

shifts, from which a small set of shifts is selected to produce a schedule. 
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The new approach has achieved success in solving large-scale driver scheduling problems 

from different companies, with comparable results to the TRACS II system, a commercial 

system based on an ILP solver with more than 100 person-years devoted in its development. 

In particular, in several very large cases, our results are even better, and indicate directions for 

further research. 

 

Based on fuzzy set theory, the first phase of this research presents a novel evolutionary 

approach for the driver scheduling problem, which involves solving a set covering model. At 

the heart of this approach is a function for evaluating, under fuzzified criteria, potential driver 

shifts. A GA is first employed to calibrate the weight distribution among fuzzy membership 

functions. A SE algorithm then mimics generations of evolution on the single schedule 

produced by the GA. In each generation an unfit portion of the working schedule is removed.  

The broken schedule is then reconstructed by means of a greedy algorithm, using the weight 

distribution derived by the GA. The basic SE algorithm is a greedy search strategy that 

achieves improvement through iterative perturbation and reconstruction. 

 

The next phase of this research reports on new improvement in the fuzzy SE approach, and its 

generalisation of the approach to the class of set covering. The set covering problem is 

basically to cover the rows of a zero-one matrix with a subset of columns at minimal cost, 

which has a very wide area of important applications. Taguchi’s orthogonal experimental 

design is applied. This has the effect of comprehensively evaluating the combinations of 

factors, although only a small fraction of the possible combinations is explicitly experimented 

upon. 
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7.2 Achievements in this research 

 

Driver scheduling problems are a worldwide problem, and any advances in the techniques 

available for solving such problems are highly significant. The major contributions of the 

research are listed as follows: 

 

1) This research presents a refined greedy algorithm based on fuzzy subsets theory to 

effectively solve the problem about ranking the potential shifts in each iteration. The 

new algorithm is novel because it is the first time that fuzzy set theory has been 

applied to the driver scheduling problem. 

 

2) A GA is presented to achieve the goal of solving the large problems without 

decomposition. The benchmark experimental results have shown that its results are 

closed to the best known solutions (normally no worse than 2%) in much faster speed. 

 

3) To further improve the GA’s results and still maintain a balance between time 

complexity and accuracy, this research applies a general optimization technique of SE 

algorithm. It is also the first time that the SE algorithm has been introduced for the 

driver scheduling problem. The computational results are very close to the best known 

solution (normally no worse than 1%). For some large cases which cause difficulties 

for TRACS II, its results are even better, and are more than 50 times faster in speed. 

 

4) Although the main theme of this research is presented in terms of driver scheduling, it 

is suggested that, the proposed SE approach could also be applied to many other 

scheduling problems whose solutions can be decomposed into elements. Even the 

process of identifying fuzzified criteria could be generalized and applied elsewhere. 
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5) The fuzzy SE approach for the driver scheduling problem has been generalized 

successfully to the set covering problem, without using any special domain 

knowledge. It means that this research is valuable to many applications that can be 

formulated using the set covering model. Furthermore, the proposed Taguchi’s 

orthogonal experimental design for the related parameter settings is rather 

unconventional. 

 

7.3 Future work 

 

The following points discuss some of the issues that could be investigated as the future work 

of this research: 

 

1) With respect to the ability of treating side constraints such as restricting the number 

of shifts of some depots, solution quality could be improved further if they are taken 

into account. This might be implemented by adding a criterion of side constraints (u6) 

as the additional measure for shift structure. 

 

2) With respect to the SE algorithm, further research could be continued to improve its 

searching efficiency. For example, the selection threshold in the Selection step and 

the mutation rate in the Mutation step are currently set to be constants in all 

generations, which might be improved by more sophisticated, such as adaptive, 

operators.  

 

Furthermore, the two objectives of minimising cost and number of shifts in the SE 

algorithm have been combined in the form of a weighted-sum function, which will 

cause problems if the Pareto surface is non-convex. Most popular evolutionary 

algorithms for multiobjective optimisation maintain a population of solutions, from 

which individuals are selected for reproduction. However, since only one solution is 
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produced in each iteration of the SE, these population-based strategies are difficult to 

apply. Knowles and Corne (2000) presented a Pareto Archived Evolution Strategy 

(PAES), which employs a local search to the true multiobjective problem to find 

diverse solutions in the Pareto optimal set. Further research could be implemented by 

using the idea of PAES to achieve a better balance between the two objectives of 

driver scheduling. 

 

3) With respect to the further improvement about solution quality for the set covering 

problem, according to the experimental results there is no significant improvement in 

general even if the refined parameter settings have been used. The reason might be 

that it is only the relative levels of two or three parameters that are important, or that 

some weights are much more sensitive than others. Therefore, to improve the solution 

quality further, the statistical method, analysis of variance, needs to be carried out to 

analyse the results of the orthogonal experimental design, and to determine how much 

variation each factor has contributed. 
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