Fuzzy Evolutionary Approachesfor Busand
Rail Driver Scheduling

By

Jingpeng Li

Submitted in accor dance with the requirementsfor the degree of
Doctor of Philosophy

THE UNIVERSITY OF LEEDS
SCHOOL OF COMPUTING

July 2002

The candidate confirms that the work submitted is his own and that appropriate credit
has been given where reference has been made to the work of others



Acknowledgements
I would like to thank my supervisor, Dr. Raymond R. S. Kwan, for his guidance and
supervision.

I would like to thank my family members for their patient and support, and close friends for
their various kinds of help.

Finally 1 wish thank and acknowledge the full-scholarship for my three years PhD studies,
from the School of Computing, University of Leeds.



Abstract

Bus and train driver scheduling is a process of partitioning blocks of work, each of which is
serviced by one vehicle, into a set of legal driver shifts. The main objectives are to minimise
the total number of shifts and the total shift cost. Restrictions imposed by logistic, legal and

union agreements make the problem more complicated.

The generate-and-select approach is widely used. A large set of feasible shifts is generated
first, and then a subset is selected, from the large set, to form a fina schedule by the
mathematical programming method. In the subset selection phase, computational difficulties
exist because of the NP-hard nature of this combinatorial optimisation problem. This thesis
presents two evolutionary algorithms, namely a Genetic Algorithm and a Simulated Evolution

agorithm, attempting to model and solve the driver scheduling problem in new ways.

At the heart of both algorithms is a function for evaluating potential driver shifts under
fuzzified criteria. A Genetic Algorithm is first employed to calibrate the weight distribution
among fuzzy membership functions. A Simulated Evolution agorithm then mimics
generations of evolution on the single schedule produced by the Genetic Algorithm. In each
generation an unfit portion of the working schedule is removed. The broken schedule is then
reconstructed by means of a greedy algorithm, using the weight distribution derived by the
Genetic Algorithm. The basic Smulated Evolution algorithm is a greedy search strategy that
achieves improvement through iterative perturbation and reconstruction. This approach has
achieved success in solving driver scheduling problems from different companies, with

comparable results to the previously best known solutions.

Findly, the Simulated Evolution algorithm for driver scheduling has been generalized for the
set covering problem, without using any special domain knowledge. This shows that this
research is valuable to many applications that can be formulated as set covering models.
Furthermore, Taguchi’s orthogonal experimental design method has been used for the
parameter settings. Computational results have shown that for large-scale problems, in
general the proposed approach can produce superior solutions much faster than some existing
approaches. This approach is particularly suitable for situations where quick and high-quality
solutions are desirable.
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Chapter One

| ntroduction

1.1 Thebusand rail driver scheduling problem

Bus and train driver scheduling is a process of partitioning blocks of work, each of which is
serviced by one vehicle, into a set of legal driver shifts. The main objectives are to minimise
the total number of shifts and the total shift costs. This problem tas attracted much interest

since the 1960s.

Bus driver scheduling and train driver scheduling are fundamentally the same problem, but
the former can be regarded as a specia case of the latter since all the featuresin bus operation
can be found in train operation but not vice versa (Kwan 1999). In comparison, both problems
involve alocation of driver work to shifts that are similar in structure, have similar working

hours with at least one meal break, and must obey smilar labour agreement rules.

Compared with bus driver scheduling, train driver scheduling is much more complex, some of

the factors are listed as follows (Kwan 1999):



In case that a driver need to travel as passenger from one place to another, in train
driver scheduling it is necessary to find out the exact departure and arrival time for the
driver to travel. However, in bus driver scheduling a constant alowance for the
travelling is usudly adequate due to short distance to be travelled and frequent
services,

The bus driver scheduling problem is often solved as a single-depot problem, which is
much easier than the multi-depot case typical of train driver scheduling, since bus
drivers are usually restricted to buses from their home depots,

Compared to train work, bus work is less fragmented, and does not contain non-wheel

turning work such as unit preparation and disposa. Hence bus driver shifts usually
contain work on no more than three different buses,

Meal break rules in the bus situation are smpler than those in the train situation, and
the maximum number of meal bresks rarely exceeds two;

In bus driver scheduling, there is usualy no restriction on route and traction

knowledge.

The driver scheduling problem is commonly solved using a set covering approach. A large set
of possiblelegal shiftsisfirst generated by heuristics, which are usually highly parameterized
to reflect on the driver work rules of individual companies. Then, aleast cost subset covering
al the work is selected to form a solution schedule. The success and limitations of such a
standard approach, as exemplified in TRACS 1, which used a blend of heuristics and Integer

Linear Programming, have been discussed in Kwan et a. (2000).



1.1.1 Vehiclework

Vehicle (i.e. bus or train in this thesis) units are normally scheduled before driver schedules
are compiled. In avehicle schedule, the work is usually denoted as a set of blocks. A block is
a sequence of trips operated by one vehicle in one day, beginning with a pull-out from, and
ending with a pull-in, to adepot. A vehicle leaving from and returning to the depot more than
once in aday constitutes multiple blocks.

Diagram 1
Depart from depot at Manchester Piccadilly at 02:32

L ocation Arrival Time Departure Time
Manchester Picc. 02:32

Huddersfield 03:04 03:06

Leeds 03:28 03:31

York 04:00 04:22

Middlesborough 05:28 06:18 Clean
Y ork 07:15 07:18

Leeds 07:47 07:51

Huddersfield 08:12 08:14

Manchester Picc. 08:51 08:56

Manchester Air. 09:11 09:28 Clean
Manchester Picc. 09:45 09:50

Huddersfield 10:22 10:24

Leeds 10:49 10:54

York 11:23 11:26

Middlesborough 12:26 13:18 Clean
York 14:15 14:18

Leeds 14:45 14:51

Huddersfield 15:12 15:14

Manchester Picc. 15:49 15:55

Manchester Air. 16:10 16:28 Clean
Manchester Picc. 16:43 16:49

Huddersfield 17:22 17:24

Leeds 17:52 17:54

York 18:22 18:26

Middlesborough 19:27 20:18 Clean
York 21:12 21:21

Leeds 21:48 21:51

Huddersfield 22:12 22:14

Manchester Picc. 22:51 22:55

Manchester Air. 2311 23:28 Clean
Manchester Picc. 2344 23:50

Huddersfield 00:22 00:24

Leeds 00:46 00:53

York 01:22 Clean

Figure 1.1: An example of a unit diagram (Kwan 1999)



Figure 1.1 displays an example of train unit diagrams. Train unit diagrams are the printed
form of train schedules, which mainly include the whedl turning information about the arrival
and departure times of a vehicle unit at individua stops within the operation. It should be
noted that, although wheel turning work forms the major part of a driver's schedule, some

non-wheel turning work not shown in Figure 1.1 also needs to be done by a driver.

1.1.2 Definitions

In this section, some important concepts will be introduced. Figure 1.2 is an example of a
vehicle block, which timelines the vehicle work. A Relief Opportunity is a time and place
where a driver can leave the current vehicle, for reasons such as taking a meal break, or
transferring to another vehicle. The work between two consecutive relief opportunities on the

same vehicleis called a piece of work.

Piece of work
—
) 0600 0742 0935 1110 1304
Vehicle 38 @ @ .—#. ® -
G S H .~ H S

Time // J/
Location /
(Relief Opportunity)

Figure 1.2: An example of a vehicle block

The work a single driver carries out in one day is caled a shift, which conssts of severa
spells of work. A spell contains a number of consecutive pieces of work on the same vehicle,
and a driver schedule is a solution that uses a set of shifts to cover al the required driver

work. To make it clearer, Figure 1.3 gives an example of driver shifts, which contains a 2



spell shift and a 3-spell shift. From this figure, it is obvious that different partitions of vehicles

will result in different shifts.

A 2-spell shift
0607 0649 0949 1349 1519 1815 2010

Vehicle 1 S \\ N oo
+ (S1) +

0617 0747 0947

Vehice2 = ooee- #Neeee N e Noeeee N N N D
oo+ (S2)+ S+ (S1) +
0610 072 0012 1312 1542 1712 2030
Vehicle3 /" ccee Wiee Woeeee Y- T Woe W D

Figure 1.3: An example of driver shifts

1.1.3 Labour agreement rules

The rules for the construction of shifts are mostly provided by past practice and loca
conditions, and are agreed between the transport operators and the union as internd
regulations, while others are statutory. Some rules are hard rules that define the Labour
Agreement between management and unions. Other rules are soft rules that are used to

prevent the system forming a prohibitively larger number of possible shifts.
Most rules are relevant to transport operators in general even though their parameters may
differ. However, individual operators may have their own extra rules. The following is alist

of some global rules typically used by different operators:

Maximum total working time;



Minimum time allowance for signing on and off at the depot;

The total spreadover (normally the paid hours for a driver from sign on to sign off)
range;

The minimum length of a meal break, which is normally a fixed time for mea plus
travel time to the canteen;

The maximum time for a driver to work without a meal break, which is usually four to
five hours and may contain work on more than one vehicle with a join up required for

the driver to change vehicle.

114 Shift types

There are two main types of shift: straight shifts of two stretches separated by a meal break of
thirty to sixty minutes, and split shifts with a spreadover of maybe about twelve hours
containing two stretches separated by a long break of severa hours. A stretch is the period
from the start of a shift to the start of meal break, or from the end of meal break to the end of

shift.

According to which time period of the day shifts cover, straight shifts can be further divided
into the following three types: early shifts that take early buses/trains out of depot and cover
part of the morning peak, late shifts that take late buses/trains into the depot and cover part of
the afternoon peak, and middle shifts. Normally, straight shifts in UK contain two stretches
separated by a meal break, although some may aso contain two or more meal breaks or even
a straight run without any rreal break. However, straight bus runs without meal break are

common in North America



1.2 Research relevance

Driver scheduling is a worldwide problem. Since efficient schedules can make significant
monetary savings for the transportation operators, this problem has attracted much research
interest over the past forty years. Although a great ded of progress has been made, there are
dtill several aspects that need to be further investigated and improved. Any advances in the

techniques available for solving such problems are highly significant.

A much researched approach for the driver scheduling problem is “generate-and-select”, in
which a large set of feasible shifts are generated first, and then a subset is selected, from the
large set, to form a fina schedule by mathematical programming. In the selection stage,
computational difficulties exist because of the NP-hard nature of this combinatoria

optimisation problem (Kwan 1999).

The Integer Linear Programming process in the selection stage might fail to poduce an
integer solution for very large size problems. This usuadly happens when the branch and
bound process automatically stops the tree search because a stipulated number of nodes have
been explored and the search tree is getting too large to handle pactically. Therefore, the

following aspects still need to be improved.

1) Optimising ability: to converge to an optimal or near optimal integer solution;

2) Executing speed: even with today’s computer power, Integer Linear Programming
can be till time consuming;

3) Problem size: thereis alimit on the problem size to be handled by the Integer Linear

Programming process.

This research attempts to improve the robustness of the selection process to produce final

solutions, by investigating possible methods to replace the branch and bound process, or even



the whole mathematical programming method. Since the selection process is not problem:
specific, using evolutionary algorithms as alternatives to explore the search space and select a

subset as the final solution seems attractive.

Genetic Algorithms simulate natural evolution by maintaining a group of solutions and adding
new solutions by the crossover and mutation operators. They are useful approaches to
problems requiring an efficient search over alarge solution space, and are particularly suitable
for obtaining approximate solutions for multivariable optimisation problems where
mathematical analyses are difficult. On the other hand, Simulated Evolution agorithms mimic
the evolutionary process on a single solution. Each element of the solution in each generation
must constantly prove its functionality under the current conditions in order to remain

unatered. The purpose of this processisto create gradually stable structures that are perfectly

adapted to the given constraints.

In this research, the use of a Genetic Algorithm and a Simulated Evolution agorithm will be

investigated, tried and critically assessed.

1.3 Structureof thethess

Following this introduction chapter, Chapter 2 gives a literature review about some
computerised approaches to the driver scheduling problem and the set covering problem. The
remaining chapters in this thesis present the research in stages by investigating and building a
suitable approach to solve the driver scheduling problem, and finally generalize this approach

for the set covering problem.

Chapter 3 presents a refined greedy algorithm to evaluate al the potential shifts based on
fuzzy subsets theory, and to decide which shift is going to be sdlected in the process of

constructing a schedule. The main idea is to set up five criteria, characterized by fuzzy



membership functions, to evaluate the structure and generally the goodness of a shift. Since
each criterion reflects only one aspect of the shift structure, an overall evaluation could be
made by aggregation of all the criteria. Three different kinds of aggregation operator have

been investigated, and the most suitable one will be determined.

Chapter 4 describes a Genetic Algorithm for calibrating the weight distribution amongst the
above fuzzified criteria, so that a single-valued weighted evaluation can be computed for each
shift. Although driver schedules are constructed as by-products through generations of
evolution, they are not expected to be very close to optimum because of the greedy nature of

the construction method used.

Chapter 5 designs a novel evolutionary approach to improve the solutions further based on a
crude solution by the simple heuristic or a refined solution by the Genetic Algorithm. The
evolutionary algorithm combines the features of iterative improvement and constructive
perturbation with the ability to avoid getting stuck at local minima. Its framework is a
Simulated Evolution agorithm, in which the steps of Evaluation and Reconstruction have

been fuzzified.

Chapter 6 reports on the generalisation from driver scheduling to the class of set covering. A
function is first designed to evaluate, under fuzzified criteria, the structure of each column.
This function is embedded into the Construction step and the Evaluation step of an Smulated
Evolution agorithm. In each generation an unfit portion of the working solution is removed.
The broken solution is then repaired by a greedy algorithm. Taguchi’s experimental design is

utilized to reliably set the seven parameters involved, with a small number of experiments.

Finally, Chapter 7 gives the conclusions about the achievements of this research and suggests

some work for future research.
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Chapter Two

Review of Techniquesfor Driver
Scheduling and Set Covering

2.1 Introduction

Bus and train driver scheduling has attracted much interest since the 1960's. Wren and
Rousseau (1995) gave an overview of the approaches, many of which have been reported in a
series of international workshop conferences (Desrochers and Rousseau 1992; Daduna et al.
1995; Wilson 1999; Vol3 and Daduna, 2001). Besides a brief review about some heuristics for
the general set covering problem, this chapter gives an extensive literature review about the
driver scheduling techniques divided into the following three groups. early heuristics,

mathematical programming methods, meta-heuristics and others.

With regard to the driver scheduling techniques, Section 2.2.1 reviews some early heuristic
systems while Section 2.2.2 reviews some successful systems based on mathematical
programming methods. Some recent work on meta-heuristics and others (such as Tabu search,

genetic algorithms, Ant system, and constraint satisfaction) are introduced in Section 2.2.3.



11

Section 2.3 briefly reviews some heuristics for the genera set covering problem, including a
standard genetic agorithm, a parale genetic algorithm, an artificial neura network
algorithm, a simple Lagrangian heuristic, and a simulated annealing agorithm. A summary is

given in Section 2.4.

2.2 Driver scheduling techniques

221 Early heuristic methods

By the 1980s the early methods for driver scheduling problems were mainly heuristics based.
This is because the computer was not powerful enough to run the mathematical solvers, and
the techniques in the mathematical solvers were also not as advanced as nowadays. Many of
the approaches are first to construct an initial schedule by using a heuristic process, and then

attempt to improve this schedule by making limited alterations.

The early heuristics were useful in some applications, since they were customised for
individua companies and thus could be fully tailored to meet the specific requirement for
individual company. The drawbacks of these approaches are they were not easily portable to
other companies and had to be considerably modified to fit new conditions. Furthermore they
were not suitable for generad optimisation (Wren and Rouseau, 1995). The purely heuristic
approaches were subsequently abandonment with the advent of mathematical programming

approaches aided by heuristics.

2211 TRACS

TRACS (Techniques for Running Automatic Crew Scheduling) was developed at the
University of Leeds from 1967 (Parker and Smith, 1981). The system is based on the

assumption that a poor initial solution cannot be atered into a good solution by heuristic



improvements, which might be true since meta-heuristics were not available at that time.
Therefore, this method took great efforts to produce an initial solution as good as possible. An

initial schedule is constructed in the following steps:

1) To form early shifts from the beginning of the bus schedule, leaving sufficient work
for the first halves of split shiftsto cover the morning peak.

2) To form late and middle shifts at the end of the bus schedule, leaving suitable work
for the second halves of split shiftsto cover the afternoon pesk.

3) To form split shifts by matching the first and second halves.

4) To attach remaining work to existing shiftsif possible.

This initial schedule contains two-spell and three-spell shifts. A concept of marked time was
used to guide the formation of shifts. For early shifts, a marked time is the latest time by
which the first driver of each bus must be relieved. For late shifts, a marked time is the

earliest time at which the last driver can start work on each bus.

To minimise the number of drivers during the peaks, meal break chains were attempted to be
formed. In this chain, drivers take meal breaks in turn, that s, the first driver finishing his
meal bresk will relieve the second driver who, after his meal bresk, will take over the bus

from the third driver, and so on.

The initia schedule is improved by two sets of procedures. One set attempts to reduce the
number of shifts and unallocated pieces of work. Each shift is considered to determine
whether the work in it can be contained in other shifts. This procedure redistributes work
between shifts so that shifts with long spreadovers are assigned more work. This will make

short shifts shorter so that they become redundant and can be removed eventually.
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Another set of procedures is for cost reduction. There are severa procedures to achieve this
target, including swapping or moving stretches of shifts, rematching first and second
stretches of shifts, switching changeovers of a shift to another relief time, and relocating small

pieces of work around the middie of the day.

2.2.1.2 Other heurigtic methods

RUCUS (RUn CULtting and Scheduling) (Bennington and Rebibio, 1975; Bodin et a., 1985)
was developed in the late 1960s. It is also a system that first generates an initial solution and
then refines it using heuristics. It first forms 1-spell shifts and then 2-spell shifts, and after this
process any unallocated pieces of work are regarded as short overtime spells. This limited the
wide use of the system and eventualy led to the abandon of RUCUS, since many operators
did not use overtime and even if they had to they tried to restrict it. Moreover, it is generally
inefficient to leave out “difficult" work in such a way. Once an initial solution has been
constructed, the system begins to use local search moves trying to improve this solution. It
either exchanges some pieces of work in one shift with pieces of work in another shift, or
moves selected relief opportunities forward or backward. A repair procedure is then used to
fix any infeasible shifts due to the changes. In case that there are still infeasible shifts left in

the final schedule, manua intervention may be needed.

HOT (Hamburg Optimisation Techniques) (Hoffstadt 1981; Daduna and Mojsilovic, 1988)
was devel oped and used by the schedulers at the Hamburger Hochbahn AG since the 1970s. It
starts by trying to form good shifts, one at a time, for each morning bus, and then for each
evening bus. Any work that cannot be treated in this process is formed into partial shifts,
which are then combined into full shifts by a variant of the Hungarian Algorithm (Taha 1997).
Little improvement can be achieved to the schedule once it is constructed, and sometimes it
may even leave unassigned pieces of work. Although this system has been used in severa

German bus operations, it is believed that it is no longer in widespread use.
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COMPACS (COMPuter Assisted Crew Scheduling) was an interactive system developed in
the early 1980's (Wren et al., 1985), and was later incorporated into the BUSMAN scheduling
package (Chamberlain and Wren, 1992). It combines the heuristics of TRACS and the
interactive features of an early interactive system known as TRICS. One useful feature of
COMPACS isthat it can give an estimate on the possible number of shifts of each type. The
estimate is useful since it can guide the schedulers to build up the schedule interactively.
COMPACS can adso produce an entire schedule automatically by means of a smplified
verson of TRACS: it retained the initial solution generation phase of TRACS, but not the

improving moves. Hence the solution quality might be poor.

2.2.2 Mathematical programming methods

2.2.2.1 Mathematical modédl of set covering and set partitioning

The driver scheduling problem can be formulated as a set covering problem and expressed as

an Integer Linear Programming (ILP) problem. The basic model is shown below.

n Number of potentia shifts

m Number of driving work pieces to be covered

G Cost of shift

a; 0-1 integer constants: 1 indicates shift j covers work piecei, and
0 otherwise

X; 0-1 integer variables: 1 indicates shift j is used in the solution,

and 0 otherwise
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Minimize § c;x; (2.1)
j=1

Subjectto § a;x; 31, il {1,2...,m} (2.2)
j=1
x=0orl, ji{12..,n} (2.3)

Objective (2.1) minimizes the total cost. Constraint (2.2) ensures that each piece of work is
covered by at least one driver, and constraint (2.3) requires that whole shifts be considered. In
practice, the model has been extended to cater for other practical objectives and constraints

(Fores et d., 1999).

By changing the constraint (2.2) into the following form, it becomes a set partitioning

problem:

Subjectto: § ax; =1, il {1,2...,m} (2.4)

=1

In the set covering model, each piece of work must be covered by at least one shift, whilein a
set partitioning model, each piece of work must be covered by exactly one shift. In theory, the
solution to the ILP is the schedule with minimum cost. However, the total number of all

possible shifts is usualy too large to be practically solved by the ILP. The very large shift set
therefore has to be reduced to a manageable size by heurigtics, or else the problem has to be

decomposed into severa sub-problems and solved separately.
2222 IMPACS

IMPACS (Integer Mathematical Programming for Automatic Crew Scheduling) was

developed for bus operation in the late 1970s. Parker and Smith (1981) presented the
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prototype and Wren and Smith (1988) gave a full description of the system. This system was

installed in London Transport in 1984 and in Greater Manchester Buses in 1985.

IMPACS is based on a set covering model described above: alarge number of possible shifts
with associated costs are first generated, a subset is then selected to cover all the pieces of
work at minimum cost. Since the number of variables and congtraints may be too enormous to
be handled for the computer power at that time, IMPACS employs a number of heurigtics to
reduce the number of variables and congtraints. The reduction processes are described as

follows:

1) Reduce the number of pieces of work by heuristics. This method is based on the idea
of de-selecting some relief opportunities that are unlikely to be used by any shifts. If a
relief opportunity is not used as a changeover time, it can be omitted: the pieces of
work at either side of the relief can be combined into one and thus the number of

pieces of work is reduced.

2) Generate a reasonable set of lega shifts by heuristics. This is done by using ‘hard’
rules defined by the labour agreement rules and some ‘soft’ rules to restrict the

number of shifts produced.

3) Reduce the number of shifts by heuristics. Some shifts are regarded less important
than the others in forming an efficient schedule, e.g. the shift that has been included
in another shift but has a larger cost, and the shift whose every piece of work is aso
covered by at least a specified number of other shifts. These shifts are removed from

the large set for further reduction.

4) Select asubset of shifts using ILP. IMPACS solves this set covering problem by first

obtaining a relaxed LP solution and then finding an integer solution using the
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branch-and-bound technique, which searches for integer solutions through a tree
structure. The search terminates after a satisfied solution found or a certain number of

nodes reached.

5 Improve the driver schedule by heuristic. The best integer solution found can be
further improved by heuristic procedures similar to those used in early heuristic
systems. Before using these procedures, al the relief opportunities de-selected

previoudy need to be restored.

In order to solve large problems, IMPACS aso provides a decomposition module although a
risk of suboptimal solution may be caused. After decomposition, the first subproblem is
solved. The inefficient shifts in the first subproblem are carried forward to the next sub-
problem, and so on. Schedules of all sub-problems are finally combined into one schedule as

awhole.

Although originally developed for bus operations, great efforts have been attempted to adapt
IMPACS to the train driver scheduling problem (Parker et al., 1995). Since train operations
are more complicated and aso its problem size is usualy much larger, the adaptation has

proven difficult.

2223 TRACSII

TRACS 1l (Techniques for Running Automatic Crew Scheduling, Mark 1I) is a new
generation of driver scheduling software developed from 1994. It is being used on behalf of
many train companies (including First Group, the largest bus company in the UK). TRACSII
has shown significant savings when compared with standard methods for scheduling drivers
of raillways and buses, and has helped to negotiate more flexible working rules with the trade

unions.
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TRACS Il follows almost the same approach as IMPACS, but the components have keen
considerably redesigned to cope with the complexity of rail operations and to incorporate new
agorithmic advances. Basicdlly, it consists of seven modules (i.e.,, VALIDATE, TRAVEL,

BUILD, SIEVE, SCHEDULE, REDUCE, and DISPLAY) in the following three phases.

1) Thefirg phaseisfor shift generation. VALIDATE isrun first to check validity of the
data set. Then TRAVEL compiles a list of al possible opportunities for drivers
passenger travel between relief points. BUILD finaly generates alarge set of possible
legal shifts, based on a set of parameters to define the legality of a shift and to avoid
producing an excessve number of shifts. The heuristics in BUILD are more

complicated than those of IMPACS.

2) Thesecond phaseis for refinement of the shift sets. SIEVE is used to reduce the shift
set: it ranks the shifts generated by BUILD and diminates some of the less efficient
shifts formed. Recently, SIEVE is often only used to remove duplicated shifts
because of the use of a column generation technique, which alows larger shift setsto
be handled. MERGE is used to combine different potential shift sets that have passed
through the SIEVE process, in the case that BUILD has been run severa times, e.g.

thereis aneed for a second run to cover work that has previously been left.

3) The third phase is for shift selection using ILP. In this phase, SCHEDULE aso
applies the set covering ILP model to select the most economical subset from alarge
shift set. SCHEDULE is originated from the ILP process used in IMPACS. However,
TRACS Il can run any size of problem, while IMPACS could handle up to 30,000

input shifts.
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SCHEDULE has two main choices of optimisation procedures. the dual steepest edge
approach and the primal column generation approach. To lessen the effect of
degeneracy in set covering problem, adual steepest edge approach was implemented
by Willers et a. (1995), showing a significant reduction in executing time for the
relaxed LP solution over the primal simplex approach used in earlier versions of
TRACS II. Fores et a. (2001) suggested that this approach be executed on problems
containing no more than 30,000 shifts, where all shifts can be explicitly considered
within the limits imposed for storage and efficiency. To run any size of problem, the
primal column generation approach was introduced in Fores et a. (1999; 2001). It
selects an initial subset of the shifts from the submitted set in the beginning, and finds
the optimal solution of the subset using a revised smplex method. A certain number
of new shifts with favourable reduced costs are then added into the subset, and the
new set is re-optimised. When no more shifts can be added into the subset to improve

the objective function, the relaxed LP solution is the overall optimal solution.

Although TRACS 11 is successful, there are till computational difficulties for its ILP method
(Kwan 1999). One inherent problem is that the branch and bound algorithm does not dways

find an integer solution. Referring to the stopping conditions, two different situations may

happen:

1) The search terminates after all nodes of the search tree have been fathomed. Thisis
usually caused by the side constraints operating during the branch and bound searches
and the reduction heuristic excluding some vital shifts before the branch and bound

process.

2) The search terminates after one of the limits of the number of created nodes or active
nodes has been reached. This is the most common situation, in which there may be

some integer solutions but the search terminates before reaching it. This usualy



implies that their objective values may be much higher than the relaxed optimum, and
the node selection strategy makes them hard to find. The solution is to take a number
of actions, such as generating a different shift set, reducing the size of the shift set
input to the ILP, increasing the target of total number of shifts, and imposing side
congtraints. Any of the above actions requires the ILP to be rerun. For some
problems, to find an integer solution needs many iterations, which can be time-

consuming.

Another computationa difficulty of the ILP method is about the problem size handled. Even
employing the column generation technique, there is till alimit on the problem size that the
ILP can handle in practice. In the case that a problem is too large to be solved as a single

problem (e.g. Northern Spirit and ScotRail), the decomposition may risk losing optimality.

2.2.2.4 Other mathematical programming methods

HASTUS (Lessard et a., 1981; Rousseau and Blais, 1985; Blais and Rousseau, 1988) is a
widely used commercial package with graphical user interface to deal with driver scheduling,
vehicle scheduling, and rostering. The HASTUS driver scheduling component is divided into
two parts, HASTUSmicro and HASTUSmacro. HASTUS macro constructs an initial
schedule and HASTUS micro produces the fina schedule. HASTUS macro uses linear
programming to generate a pseudo-schedule that provides an estimate of the number of
drivers needed. The pseudo-schedule is built by pseudo-shifts, which are generated using
smplified relief opportunities by simply cutting the day into user-defined time dots. Then
HASTUSmicro uses the pseudo-schedule to create a final schedule, by producing real shifts

that relate to those in the HASTUS macro solution as close as possible.

EXPRESS (Fakner and Ryan, 1992) is a bus driver scheduling system based on a set partition

model specially developed for Christchurch Transport, New Zealand. Its earlier version and a
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study of the use of set partition are presented in (Falkner and Ryan, 1988). During the search
process, the strictness of the modd is diminished by the addition of dack variables. It then
uses a version of the origind ZIP smilar to those being used in IMPACS and TRACS II.
However, its branching model is dightly different. In this system, the branch and bound
algorithm branches on the pieces of work (constraint branching) rather than the relief

opportunities.

223 Meta-heuristic methods and others

Although TRACS Il works well, its solution is still not necessarily optimal, particularly when
large problems have to be decomposed. New research is therefore directed at finding new
ways to handle driver scheduling. Some approaches such as Tabu search, genetic algorithms,
ant system, and constraint programming have been designed, aiming to tackle part or all of
the problem. This research uses a mixture of artificia intelligence and operationa research

methods to enhance or replace TRACS 1.

2.2.3.1 Tabu search

Tabu search is proposed by Glover (1989, 1990) for solving hard combinatorial problems.
The basic idea is to escape from local optima by allowing the acceptance of non-improved
solutions. Basically, Tabu search is an iterative technique that moves step by step from an

initial solution towards a solution close to the global optimum.

Cavique et a. (1999) presented a Tabu search called Run-cutting for crew scheduling.
Starting with an initial solution produced by an approach similar to that used in TRACS, the
method only alows two-spell shifts or even less efficient one-spell shifts. Tabu search is
embedded in the improvement phase to reduce the number of shifts. This algorithm iteratively

removes some inefficient shifts and sometimes their adjacent shifts from the current solution,



and then applies the re-cutting algorithm to construct shifts to repair the broken schedule.
Tabu search is used to ensure that pieces of work that appear frequently in one-spell shifts are
given higher priority to be incorporated into two-spell shifts and thus become more likely to
be efficient. The Tabu search approach was found very efficient at improving the initial
solution after the first few iterations, but then found it difficult to make further improvements.
The reason might be that they only concentrated on inefficient shifts and sometimes an
efficient shift needs to be changed to make the leap to a redly efficient schedule. They also
presented another Tabu search agorithm called Run-gection, which applies a matching
technique that performs better. The reason might be that it expands the search, not only

changing inefficient shifts.

There are several specid features in this operation. These agorithms only construct one-spell
and two-spell shifts. The complexity will increase significantly if more spells are allowed in
shifts. Shift costs are not considered, and thus the objective is only to minimise the number of
shifts. Since these algorithms were developed for the Lisbon Underground, it would be

difficult to adapt to other bus or rail operations.

Shen and Kwan (2001) developed HACS, which aso used a Tabu search for the driver
scheduling problem. The HACS approach is based on a representation of the problem
involving sequences of links. The links and its associated active relief opportunities compose
a solution space. A significant feature of HACS is that infeasible intermediate solutions are
alowed, thus alowing more chances to escape from local optima. To get rid of infeasibility
and fulfil the objectives they applied four neighbourhood structures in sequence: swapping
two links, swapping two spdls, inserting one spdll, and recutting blocks. The first three
concentrate on refinement of links with fixed relief opportunities, while the last one considers
variable active relief opportunities while links are reconstructed. HACS has been extended to
handle windows of relief opportunities in (Shen 2001), where a time range replaces a relief

timein arelief opportunity.
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HACS darts from a rough initial solution, and can dea with complex problems by smply
adjusting the cost function and the penaty function to the rules stipulated in specific

problems. Compared with the results of TRACS I, its solution quality is dightly worse.

2232 GAs

GAs are genera-purpose search and optimisation methods originated from Holland (1975)
and developed subsequently to solve a wide range of real-world problems (Goldberg 1989).
These agorithms are based on the mechanics of genetics and natural selection, and represent
the search space as a coded population of potential solutions. The population is then
manipulated according to the survival of the fittest principle, providing good practical

solutions.

A number of GAs have been developed for the driver scheduling problem, among which the
GA in Kwan et a. (2001) performs best. The role of this GA isto derive a small selection of
good shifts to seed a greedy schedule repair technique. These good shifts can be preferred
shifts, whose fractional values in the relaxed LP solution generated by TRACS |1 are higher
than a pre-defined constant such as 0.2. The reason why only these shifts are represented is
that empirical evidence in Kwan (1999) has shown that at least 50% and on average 74% of
the shiftsin the final TRACS Il solution were in the LP solution. The schedule constructed is
fed back to the GA for fitness evauation. At the same time, the group of shifts (called ‘a
Relief Chain’) isidentified and recorded as a learning property of the corresponding member
in the population. That learning property will be inherited by the offspring and used to enlarge

the set of seeding shifts when the GA interfaces with the schedule construction heuristic.
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The new approach has been extensively tested using real data sets, some of which are very
large problem instances. This method has produced schedules that are comparable to solutions

found by ILP, and are generally better than those compiled by experienced schedulers.

2.2.3.3 Ant system

Forsyth and Wren (1997) applied an optimisation method called the ant system to produce
driver schedules. The ant system was developed by Dorigo et a (1995) based on behaviour of
ants searching for food, which can be modelled into a search algorithm as follows. The basic
idea is that, when ants move, they leave pheromone trails that can be detected by other ants

and sowly evaporate over time.

In the beginning, the ants depart from a nest in random directions. Once food is found, the
ants are most likely to return to the nest along their own pheromone trail, thus strengthening
the traill. Since ants have an in-built bias towards following strong pheromone trails,
subsequently more ants are likely to follow the shortest path, strengthening the trail even
more. Although a number of paths exist between the food and the nest due to the randomness
in the ants movements, the pheromone trails in the shortest path will become strongest, since

ants that follow the path are likely to return back soonest.

The ant system for driver scheduling uses TRACS |1 to generate potentia shifts. Each ant will
create a solution at each iteration. A heuristic is used to select relief opportunities, and then
the ant chooses a shift from the set that start at that relief opportunity. The process repeats
until al the work is covered. As the system progresses, the good combinations of shifts are
more likely to be followed and so over time the solutions are continuoudly improved.

Unfortunately, this method does not produce results comparable to the TRACS |1 solutions.
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2.2.3.4 Constraint satisfaction

The congtraint satisfaction approach (Tsang 1993) is an emergent technology for declarative
description and effective solving of large, particularly combinatoria, problems especialy in
areas of planning and scheduling. It provides a powerful and easy system for modelling

restrictions and using these restrictions to search for a solution.

Layfield et a. (1999) used constraint programming to produce a component that is sSimilar to
SELECT in IMPACS and could be dotted into TRACS II. Its purpose is to remove relief
opportunities that are unlikely to be used in good schedules, thus reducing the problem size.
The program first produces the morning part of the schedule smulating the manua
scheduling process. It puts alimit on the number of spells that each bus can be broken up into,
to prevent too short shifts being produced. A morning schedule is constructed by using
randomised heuristics to build the partial schedule one shift at a time. Several morning
schedules are constructed, and the relief opportunities that are not used in these schedules are
removed. This program can also be used to produce the evening part of a schedule. The
process has speeded up TRACS Il in severd cases, but its solution cost is mostly dightly

higher.

Curtis (2000) used constraints to reduce the search space of a set partitioning model, based on
previous work on air crew scheduling (Guerinik and Caneghem, 1995; Rodosek et al., 1996).
He modelled the bus driver scheduling problem as a constraint satisfaction problem, where
variables were defined as pieces of work and the domain of each variable was the set of
indices of the shifts that covered the piece of work. This work uses the large set of potential
shifts produced by of TRACS II. The relaxed LP solution in TRACS 11 is applied to guide the
‘variable ordering’. Test results from small problems are comparable to those of TRACS 1.

Curtis aso described an iterative repair process to construct driver schedules, in which aloca
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search method called GENET was applied to solve the problem modelled as a constraint

satisfaction problem.

2.3 Heuristicsfor general set covering problems

Set covering problems are difficult zero-one optimization problems, which have been proven
to be NP-complete (Garey and Johnson, 1979). They are often encountered in a wide area of
applications such as resource allocation (Revelle et a., 1970), crew scheduling (Rubin 1973;
Smith and Wren, 1988), location of emergency service (Toregas et al., 1971), assembly line

balancing (Salveson 1955), and simplification of Boolean expressions (Breuer 1970).

Besides the exact algorithms (Beasley 1987; Fisher and Kedia, 1990; Beadey and Jornstern,
1992), there is an abundant literature dealing with heuristics, some of which are discussed in

the following sections.

231 A GA by Beadey and Chu

Beadey and Chu (1996) used a GA for non-unicost set covering problems. In its chromosome
presentation, each gene position denotes one of the columns in the zero-one matrix, and has a
value of 1 or O depending on whether the variable is or is not present in the solution. A
crossover operator called ‘fusion’ is designed to combine two parent strings: the choice of
whose gene vaues are passed to the child is made based on the relative fitness of the two
parents. For the mutation operator, they applied a variable mutation rate. At the early stage of
the GA, the mutation rate is set to be lower to allow minima disruption. As the GA
progresses, the mutation rate increases since the crossover operator becomes less effective.

When the GA finally converges, the mutation rate will stay at a constant rate.
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The solutions generated by the crossover and mutation operators may be infeasible, i.e. some
rows are not covered. To repair these infeasible solutions, Beadey and Chu presented a
heuristic that could not only maintain the feasibility of the solution, but also provide an

additional local optimisation step to make the GA more efficient.

They tested the performance of the approach on a large set of randomly generated problems.
Computational results showed that this heuristic can produce optimal solutions for small-size

problems and high-quality solutions for large-size problems.

2.3.2 An Artificial Neural Network algorithm by Ohlsson et al.

Artificial Neural Network (ANN) has attracted much research during the past decades. Most
of the activities involve feedforward architectures for pattern recognition or function
approximation. However, ANN can aso be used for difficult combinatoria optimisation
problems. This is usually done by first mapping the problem onto an energy function, and
then finding configurations with low energy function values by the method of iterating some

mean field equations.

Ohlsson et a. (2001) developed a mean field feedback ANN algorithm for the set covering
problem. They used a multilinear penalty function to obtain a convenient encoding of the
inequality constraints. An approximate energy minimum is achieved by iterating a set of mean
field equations, in combination with annedling. In contrast to most existing search and
heuristics techniques, this ANN model is not based on exploratory search to find the optimal
configuration. Rather, the neura units of ANN find their way in a fuzzy manner through an

interpolating and continuous space towards good solutions.
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This algorithm has been tested against some very large-scale problems (up to 5000 rows and
10° columns). Computational results shows that this approach can produce results typically

within a few percent from the optimal solutions, and its executing speed is extremely fast.

2.3.3 A sophisticated GA by Solar €t al.

During recent years, parallel GA s have been used to discover how the interchange of genetic
information for separated populations affects the final solution. Normally a paradlel GA is
implemented based on an “Idland Model” where separate and isolated sub-populations evolve
independently and in paralel. Fit members occasionally migrate between sub-populations,
alowing the distribution and sharing of good genetic material of fit members and helping to
maintain genetic diversity. The exploration of different solution spaces could optimise the

search in terms of both computational time and solution quality.

Solar et a. (2002) presented a parale GA model to solve the set covering problem. The
chromosome representation used is the traditional one: a bit string with n bits where n isthe
number of columns in the problem. Since new chromosomes generated by genetic operators
could violate some problem constraints, solution representations do not always ensure their

feasibility. Therefore afeasibility operator is designed to repair al infeasible solutions

They proposed the following population scheme: independent populations are associated with
nodes. Each node executes a single GA and creates a new local population. When all nodes
are ready with new generations, each node sends the best local individual to the master node.
The master node then selects the best individua received, and broadcasts it to all dave nodes.
Each independent dave node replaces the worst loca individua with the new best global
received. In other words, the interchange of information between parallel searches is the

selection of the best global, which replaces the worst of each node.



The paralel GA has been tested by using ten problems up to 500 rows and 5000 columns. The
final solutions obtained are not very satisfactory: the percentage deviations are in the range
from 3.3% to 10%, and only one optimal value was achieved once in more than 1000

experiments.

234 A Lagrangian heurigtic by Capraraet al.

A number of attempts have been made by using the Lagrangianbased heuristics for the set
covering problem (Beasley 1990; Haddadi 1997; Capraraet a., 1999). The more recent work
of Caprara et al. will be introduced herein, which consists of three phases of subgradient

optimisation, heuristic, and column fixing.

The subgradient phase is to find a near-optima Lagrangian multiplier vector quickly, by
means of an aggressive policy. The heuristic phase is to generate a sequence of near-optimal
multiplier vectors, and for each vector compute a heuristic solution. The column fixing phase
isto select a subset of “good” columns, and fix to 1 the corresponding variables. In this way
an instance with a reduced number of columns and rows is obtained, on which the three-phase

procedure is executed iteratively until the solution cannot be improved.

The agorithm was extensively tested on very large size problems, involving up to 5,000 rows
and 1,000,000 columns. In 92 out of the 94 test instances, the optima or the best known
solutions can be found quickly. Furthermore, among the B instances that the optima are

unknown, in 6 cases their solutions are better than the previous best known solutions.

235 A simulated annealing approach by Sen

Simulated annealing is a stochastic optimization technique based on an analogy from

statistical nechanics, where a substance is reduced to its lowest energy configuration by a



sequence of steps that involve aternate heating and cooling. Sen (1993) used a smulated

annealing for the set covering problem, which consists of the following four steps:

1

2)

3)

4)

Encode the points in the solution space by using an n-bit string that represents the n
columns. A value of 1 in the j-th string position means that the column j is chosen to
be in the cover.

Formulate an evauation function that evaluates the goodness of a point in the
solution space.

Design a set of moves that can be used to ater the points in the solution space. Three
types of moves are defined in the annealing scheme: the first and second involves
either adding or removing a column from the chosen cover by flipping a randomly
picked bit; and the third involved replacing one column with another in the chosen
cover by interchanging the values of two bit positions with different values.

Decide an annealing schedule, such as the setting of starting temperature, rule for

temperature decrements, and the stopping criteria to halt the agorithm.

This approach has only been implemented on some small size problems with good results. For

large size problems, its performance would be difficult to estimate.

24 Summary

This chapter reviews the driver scheduling approaches, which can be mainly divided into two

groups. constructive approach and generate-and-select approach. This chapter aso gives a

brief introduction to some heuristic approaches for the general set covering problem.

The constructive approach for driver scheduling does not need artificial rules or explicit

reduction in problem size. The early heuristics are based on the constructive approach. They

relied on good initial schedules constructed based on human schedulers knowledge (e.g.
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TRACS and RUCUS), and try to improve this initiad schedule by smple refinement.
Therefore the early constructive heuristics are generally difficult to adapt to new situations,
and extensive final manual adjustments to the schedule are needed. Furthermore, the solution
quality cannot be guaranteed. The application of Tabu search with windows of relief
opportunities described by Shen and Kwan (2001) has exploited more powerful modern meta-

heurigtics, and is less dependent on human schedulers' knowledge.

The generate-and-select approach, which generates a large set of potential shifts and then
selects an efficient subset, is currently the most successful for bus and train driver scheduling.
The generation phase is problem-oriented, while the selection phase is agorithm-oriented.
This makes the approach adaptable to different conditions through the generation phase. The
algorithms for selection can be mathematical programming, genetic algorithms, ant system,
and constraint programming, among which the mathematical programming (i.e. in TRACS 1)
performs best. Unfortunately, the number of potential shiftsis usualy too enormous to enable
the selection algorithms (even for TRACS 1) to find an optimal solution within reasonable

time. Hence there is room for improvement to this approach.

The research presented in this thesis attempts to improve the selection phase for driver
scheduling, by investigating two evolutionary agorithms, namely a GA and a Simulated
Evolution algorithm, which will be described from Chapter 3 to Chapter 5. Chapter 6 will
report on the generalisation of the Simulated Evolution algorithm from driver scheduling to

the class of set covering problems.
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Chapter Three

A Fuzzy Theory Based Greedy Heuristic
for Driver Scheduling

3.1 Introduction

Bus and rail driver scheduling can be formulated as a set covering Integer Linear Programme
(ILP). All the legdl potential shifts are first constructed. Then, a least cost subset covering al
the work is selected to form a solution schedule. A typical problem may have a solution

schedule requiring over 100 shifts chosen from a potential set of up to 50,000.

Set covering is one of the oldest and most studied NP-hard problems (Karp 1972; Johnson
1974; Lovész 1975; Chvata 1979). Given a ground set U of m elements, and a weight for
each set, the goa isto cover U with the smallest possible number of sets. In the case of driver

scheduling, there is the additional objective of minimising the total weight.

Since the set covering problem is unlikely to be solved optimally in polynomia time, there

has been a lot of work in exploring the possibility of obtaining efficiently near-optimal



solutions. For example, the greedy algorithm repeatedly chooses the unused set that covers
the largest number of remaining elements. In this research, a more comprehensive evaluation
of the sets (potentia shifts) that uses the product of over-cover pendty and structura

coefficient has been developed to decide which shift is going to be selected in the process of
constructing a schedule. Much of the work in this chapter has been introduced in (Kwan et al.,

2000a; Li and Kwan, 2000, 2001,2001a, 2001b and 20023).

The new polynomia time algorithm for driver scheduling evaluates all potential shifts based
on fuzzy subsets theory, a means of presenting uncertain information put forward by Zadeh
(1965), and devel oped subsequently to solve rea-world complex problems (Kaufmann 1975;
Dubois and Prade, 1980; Klir and Y uan, 1995). The main idea of the proposed approach is to
set up five criteria, characterized by fuzzy membership functions, to evauate the structure and
generally the goodness of a shift. Since each criterion reflects only one aspect with regard to
the shift structure respectively, an overal evaluation could be made by aggregation of al the
criteria. Three different kinds of fuzzy aggregation operator, namely intersection operator,
union operator, and arithmetic mean @erator, will be investigated in this decision-making,

and the one most suitable for driver scheduling will be determined.

The rest of this chapter is organized as follows. Section 3.2 introduces some fundamental
notions in fuzzy theory, such as crisp seis, fuzzy subsets, and general aggregation operators.
Section 3.3 presents a refined greedy heuristic for driver scheduling. Section 3.4 describes the
method of fuzzy evaluation for shift structure in detail, including the construction of the five
fuzzified criteria and the evaluation process by aggregation operators in different categories.
Computational results for the determination of the greedy operators in over-cover penaty and
the aggregation operator in structural coefficient are reported in Section 3.5. Finadly,

conclusions are discussed in Section 3.6.



3.2 Fundamental notions of Fuzzy Subsets

Fuzzy knowledge, i.e. knowledge that is uncertain, vague, inexact, ambiguous, inaccurate, or
probabilistic in nature, can be frequently encountered in the real world. Thinking and
reasoning of human beings often involve such fuzzy information, possibly originating from
inherently inexact human concepts and the matching of similar rather than identica
experiences. In systems based on classical set theory and two-valued logic, it is very difficult
to answer such questions that do not have completely true answers in many circumstances.
However, by using their fuzzy knowledge, humans can usually give satisfactory answers,

which are probably true.

Naturaly a question arises: how can the fuzzy knowledge be represented? Before the
introduction of fuzzy subsets, we would first give a brief review about the notions of crisp

Sets.

321 Crigp Ses

Let E beaset and A be asubset of E, denoted as
Al E. (3.)
We usualy indicate that an element x of E is amember of A usingthesymboal 1 :
x1 A. (3.2
To present this membership we may aso use another concept, a characteristic function
m,(X) , whose value indicates whether x is amember of A (yes or no):

if x1 A

1
' o 33
0, if xi A 53

]

ma(X) = |

i

Thus, the membership function for acrisp set A is defined as

m,: X® {01}. (3.9



Similarly, given two subsets A and B, we can define the membership functions for the set

operations (such as union, intersection and complement) as follows:

Mye 5(X) = max(m, (x), my (X)),
Mycs(X) = min(m, (%), my(x)),

Mg () =1- my(x).

Furthermore, A isasubset of B if and only if

xI AP x| B," x.

In terms of membership function, A isasubset of B if and only if

m,(X) £ mg(x)," X.

[Example] Consider afinite set with five elements:
E={X, %, %35, Xy, %}
and let
A ={x, X3, X} .

One writes

m,(x) =1, my(x,) =0, my(x;) =1, My(X,) =0, m,(x;) =1.

(35)

(36)

3.7

(38)

(39)

(3.10)

(3.12)

(3.12)

Therefore we may also express A by accompanying the elements of E with their characteristic

function values:

A ={(%D),(%,0),(%3,D), (%4,0), (%5, 1)} -

(3.13)
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Fuzziness exists when the boundary of a piece of information is not clear-cut. For example,
words such as tall, young, good, or fat are fuzzy. There is no single quantitative value that
defines the term tall when describing a fuzzy concept (or fuzzy variable) such as the tallness
of adults. For some people, a height of 175cm is tall, and for others, a height of 185cm is
regarded as tall. The concept tall has no clean boundary. A height of 200cm is definitely tall
and a height of 100cm is definitely not tall. However, height of 175 has some possibility of
being tall, which depends on the context being considered. In fact, a height can have some
possibility of being tall and also some possibility of being short. It should be noted that these

are not probabilities because the sum of all the possibilities does not need to be 1.0.

The representation of this kind of information is based on the concept of fuzzy subsets. Unlike
in classical set theory where one deals with objects whose membership in a set can be clearly
described, in fuzzy subsets theory, membership of an element in a set can be partid, i.e. the

element belongs to a set with a certain grade (possibility) of membership.

Let us come back to the example in Section 3.2.1. Considering the subset A of E defined by
(3.13), the five elements of E belong or do not belong to A, and the characteristic function

takes the value of either O or 1.

Imagine now that this characteristic function may take any value in the interval [0,1]. Thus, an
element x, of E might be a member of A (m, =1), could be a strong member of A ( m, near
1), may more or less be a member of A (m, neither too near O nor too near 1), could be a
member of A a little (m, near 0), or finally may not be a member of A (m, =0). By this

method the concept of membership takes on an extension and leads to very useful

developments.
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The mathematical concept can be defined by the following expression:
A={(%,0.9),(x,,0),(x3,0.4),(x,,0.1), (X 1)} , (3.14)
where X; isan element of the reference set E and its associated number is the value of the

characteristic function of the element. This mathematical concept is called afuzzy subset of

E, denoted as

Al E. (3.15)

Thus the fuzzy subset defined by (3.14) contains a large part of x,, does not contain x,,

contains alittle more x,, contains alittle x,, and contains x; completely. This enables usto
construct a mathematical model, by which one can handle concepts that are not precisely
defined but whose membership in a subset is somewhat qualitative. Hence one may consider:
in the set of men, the fuzzy subset of very tall men; in the set of decisions, the fuzzy subset of

good decisions; in the set of colours, the fuzzy subset of deep blue colours; and so on.

A rigorous definition of the fuzzy subsetsis given by Zadeh [1965]:

Let E be a set, denumerable or not, and let x be an element of E. Then afuzzy subset A

of E isaset of ordered pairs

{(xmz())}," xT E, (3.16)
where m;(X) is the grade or degree of membership of x in A.If m;(X) tekesits values
inaset M, called the membership set, one may say that x takes its valuesin M through
the function my(x) . Thus, the membership function for a fuzzy subset A is defined as

m;: X ® M. (3.17)



Normally, M is an interva of [0,1], where 1 is used to represent complete membership, O is
used to represent complete non-membership, and al the values in between are used to
represent intermediate degrees of membership. Furthermore, the membership functions for the

fuzzy subset operations are defined in the same forms asin a crisp set.

There are many commonly used membership function types, which are built mainly from the
following basic functions. piecewise linear functions (such as triangular and trapezoidal

membership functions), the bell-shaped Gaussian distribution function, the sigmoid curve,
and quadratic and cubic polynomia curves (such as the S-shaped and Zshaped curve
membership functions). For specia requirements, one may aso establish the problem-specific

membership functions.

Summarily, we should be aware that:
Fuzzy subsets describe vague concepts;
A fuzzy subset admits the possibility of partial membership init;
The degree an object belongs to a fuzzy subset is denoted by a membership value
between 0 and 1;
A membership function associated with a given fuzzy subset maps an input value to

its appropriate membership value.

323 General aggregation operators

Aggregation operations on fuzzy subsets are operations by which several fuzzy subsets are
combined to produce a single subset (Klir and Yuan, 1995). In general, any aggregation

operation is defined by afunction

f:[01" ® [01] (3.18)



where n3 2. When applied to n fuzzy subsets Z& ;‘h defined on X, f produces an
aggregation fuzzy subset A by operating on the membership grades of each x1 X in the
aggregation sets. Thus,

M (X) = (Mg (X),....m5 (X)) (319)

foreach x1 X .

The nature of aggregation of variables Mg (%),....Mm; (X) could be any of the following (Bloch

1996; Petrou and Sasikala, 1999):

Aggregation is conjunctive if

m;\(x)£min(m;l(x),...,m/;q(x)), (3.20)
which states that a conjunctive operator has confidence at most as high as the smallest
membership value and looks for the simultaneous satisfaction of all combined
criteria;
Aggregation is digunctive if

Mz () 3 max(mg (x),...,m5 (X)), (3.2
which states that a digunctive operator has confidence at least as high as the greatest
membership value and looks for a redundancy between the combined criteria;
Aggregation is a compromise if

min(mg (X),....m; (X)) £ mz (x) £ max(m (),...,n; (X)), (3.22)

which may represent a cautious behaviour.

3.3 A Greedy heuristic for driver scheduling

From the viewpoint of driver scheduling, the vehicle schedule consists of a set of pieces of

work 1={1, ..., m} to be covered. A very large set of potentia shifts S={S,, ..., S;} has been



generated. Each shift covers a subset of the pieces of work (S; I | forj1 J={1,...,n}), and
has an associated cost ¢, (hours paid). A subset of shifts (3" : J° | J) coversall the work if

U i1 a)=1. (3.23)

Because of the advantage of fast computational speed, besides the traditional approach of ILP,
aternative approaches of using greedy techniques are sometimes employed for driver
scheduling. A simple greedy heuristic for the set covering problem is at each step, to choose
the unused set (shift) which covers the largest number of remaining elements (pieces of

work). For the weighted set covering problem, choose the unused shift Sj(jT J) with the
largest ratio (S;)/c; , based on the assumption that at each iteration the possibility for shift §

to be selected increases with its number of uncovered pieces of work, denoted as <Sj > and

decreases with its cost ¢;. In terms of driver scheduling, a straightforward greedy operator

would be choosing the unused § with the largest uncovered worked time in each iteration.

A more refined greedy heuristic is presented herein, based on the assumption that the
desirability of using shift § in an optimal solution increases with its functional value F(S).
This function consists of two components, and can be formulated as

F(S;) = f.(S))° fz(Sj),"jT J, (3.24)

where f,(S;)1 [01] is caled the over-cover penaty, and f,(S;)1 [0] is caled the
structural coefficient (to be described in Section 3.4). With respect to f,(S;), theratio of the

overlapped worked time to the total worked time in § should be regarded as one of the
important criteria to determine whether or not to choose shift §. The choice of using worked
time as the adaptive operator is based on experimental results, which will be given in Section

3.5.1 |ater.
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Over-cover means a piece of work has been covered by mare than one shifts. The over-cover
penaty can be formulated as
|§i| ) |;°;J .
f,(S))=a@; " by) ab."ijlJ. (3.29)
k=1 k=1

Where || = number of pieces of work in S;

Q= },1 ,if work piecek in S; has not been coveredby any other shiftsS in schedule J
710, otherwise;

b = worked time for work piecekin S.

If every piece of work in S has been covered by other shiftsin J°, f; (S) = O conversely if

none of the pieces of work is overlapped, f; (S) = 1

This following congtruction heurigtic is smilar to that presented in (Kwan et a., 2001). The
difference is the greedy operator in the proposed heuristic is to choose the shifts with the
largest function value F(S), while the greedy operator in Kwan's heuristic is to smply chose

the shift with largest uncovered pieces of work.

Considering all the potential shifts in the large set with respect to the pieces of work to be
covered, each piece of work i has an associated coverage list with a length of L, i.e.
containing L; shiftsthat coversit. The steps for the proposed agorithm to construct a feasible

schedule are:

Step0  Set |1 (={1,2,...,m} , where misthe number of pieces of work to be covered.
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Stepl If 1¢=f then stop: J" is a feasible schedule. Otherwise find an index ki J
having F(S,)=max(F(S;): jT J) from the shortest coverage list L (id 19,
and proceed to step 2.

Step2  Add shift Scto J7, set 1¢=1¢ S, and return to step 1.

The construction heuristic can be regarded as a process of assigning shifts until every piece of
work has been covered. In the beginning, each of the pieces of work will have a so-caled
coverage list. Candidate shifts are then assigned to the unassigned pieces of work
sequentialy. The criterion of choosing the next uncovered piece of work for assgnment is
that it has the shortest coverage list, and within the coverage list the shift with the largest

function value F(S) is chosen.

It should be noted that in a feasible solution, over-cover is often inevitable and usualy can be

resolved easily by manua editing before the schedule is implemented.

3.4 Fuzzy evaluation of shift structure

The process of constructing a potential schedule by means of greedy heuristics is inherently
sequential. However, among the large set of potentia shifts, it would be difficult to judge
which one is more effective than others because the criteria bear some uncertainty. To
mitigate the problem, fuzzy evaluation, a powerful tool to describe quantitative uncertain

values and relations between them, is used to introduce the concept of structural coefficient. It

givesshift S;(jT J) aquantitative value f,(S;)T [01] according to its structural state. The

fitter the structure for S; , the larger f,(S;) is.



The main ideais to set up severa criteria characterized by fuzzy membership functions, and
then make decisions based on an aggregation of the fuzzified criteria. Considering the
structurd state of a shift in several aspects, the result will be more reliable than conventional

approaches in determining the efficiency of the shift.

There are two steps in establishing the new concept. First, a number of fuzzified criteria
should be obtained according to the efficiency of a shift, which describes quantitatively the
characteristic of its structural state from different aspects. Secondly, fuzzy evaluation will be
applied to appraise effectively the shift structural state for decisionr-making. These two steps

are presented respectively as follows.

341 Congruction of thefuzzified criteria

Driver scheduling is a specialised set covering problem. In terms of ILP, the columns are
shifts, which must satisfy conditions in the Labour Agreement between management and
unions, not just any possible combination of pieces of work. In TRACS I, aBUILD process

is used to generate such alarge set of potential shifts, by means of a set of parameters.

Explained in the following sections, the main criteria for evaluating shift structure are total
worked time (u,), ratio (u,) of total worked time to spreadover (normally the paid hours for a
driver from sign on to sign off), number of pieces of work (us), and number of spells (u,)
contained in a shift. Furthermore, the fractiona cover by Linear Programming (LP) relaxation

(us) isregarded as the fifth criterion.

34.1.1 Criterion u;

In driver scheduling, not al the time from sign on to sign off is regarded as worked time,

athough it might be fully paid.



Figure 3.1: Example shift with gaps of meal break and join up

Considering a 3spell shift in Figure 3.1, the interval between B and C is time given to a
driver to take a meal break, and the interval between D and E is ajoin up time required for a
driver to change train like a passenger from relief point D to E, plus some sack, without a
medl break. The actua worked time in this shift is therefore the sum of al the on-vehicle time

excluding join up and/or meal break time.

It is intuitive that shifts with longer worked time are more efficient than those with shorter

worked time. Hence we can assume that the goodness of a potential shift S;( T J) generaly

increases with its total worked time. Furthermore, since in most real world driver scheduling
problems only a very small proportion of the shifts in the large set will be used to produce
efficient schedules, it is not desirable to have larger variations in the measure of goodness
among these dlite shifts. On the contrary, for shifts with longer worked time, their goodness
should increase as smoothly as possible, allowing them more chances to be selected later.

Based on this consideration, the kind of increase should be non-linear. Thus, the Sshape

guadratic membership function ( my ), rather than the smple linear function, can be applied to

define criterion u; as

1) " 1 1
Xl agnln = (1) Ex < agnl) n aSnz)ax
' 2

| 2
1 1)
§a< ol 5

2

1 mx £ x, £al

, (3.26)




wherex; = total workedtimeof S; ;
al® = maximum total worked time;

a® = minimum total worked time.

min

The characteristic curve of function my is shown below:

7

a®

min

3.4.1.2 Criterion u,

Al

Besides the absolute worked time, the relative ratio of actual worked time to spreadover (paid

hours) can be regarded as another important criterion.

Shift 1. p—— B, (o — D,
Spell 1 Spell 2

Shift 2.  — B, G D,
Spell 1 Spell 2

Shift 3. . p— =N o N— Ds
Spell 1 Spell 2

Figure 3.2: Example shifts with different lengths of spells and gaps



Considering three shifts each with two spdlls in Figure 3.2, in terms of the length of worked
time, shift 1 and shift 2 are equal, while shift 3 is shorter due to its shorter second spell. In
terms of the length of the gap, shift 1 is the longest, shift 2 second, and shift 3 third. Among
these three shifts, shift 2 is obviously more efficient than shift 1 because of its shorter gap
between spells and thus shorter paid hours. However, shift 3 is aso regarded intuitively as
more efficient than shift 1 because of its much shorter gap, even though its second spell is

dightly shorter than that of shift 1.

The above analysis leads to the criterion rule that shifts with larger ratio of worked time to the
spreadover are regarded as more efficient than those with shorter ratio. Hence an associated

membership function can be designed based on the assumption that the goodness of a

potential shift S (jT J) generdly increases with this ratio. For the similar reason given in

section 3.4.1.1 above, this increase should be non-linear as well. Again, the S-shape quadratic

membership function (m/sg)’ rather than the simple linear function, is applied to define

criterion u, as

i m|n (2 E’ri)n a%
T A——& (2) (2) ) Amin £ Xy < 2
m":? =Il " (2) @ 4+459@ ’ (3'27)
T X - Qa2 Gmin T ()
1= 2= ) Ex;Ear,
b an-al) 2

where x, = ratio of total worked time to spreadover for S;;
a'2) = maximum ratio;

a? = minimum ratio.

min

The characteristic curve of function m; is shown below:
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a a2

3.4.1.3 Criterion us

A shift may contain several spells, and each spell contains a number of consecutive pieces of

work. The number of pieces of work may be regarded as one of the criteria about the shift

structure.
Al Bl Cl Dl El Fl Gl Hl I 1
Shift 1. + + + +-- + B E— . E— S E— +
Spell 1 Spell 2
A2 Bz Cz D2 E2 I:2 GZ
Shift 2. + + + + S — S E— +
Spell 1 Spdll 2

Figure 3.3: Example shifts with different number of pieces of work

Considering two 2-spell shiftsin Figure 3.3, shift 1 is composed of seven pieces of work, and
shift 2 is composed of five pieces of work. Driver scheduling is a bi-objective combinatorial
problem. Although the main objective is to minimize the overall cost of the schedule, for

practical reasons, the number of shifts in the schedule is also to be minimised. To the



objective of minimizing the number of shifts, shift 1 is more efficient than shift 2 because it

covers more pieces of work and hopefully saves shiftsin the final schedule.

If every shift in the final schedule covers as many pieces of work as possible, the number of

shift potentially might be minimised. Hence an associated membership function can be

designed based on the assumption that the goodness of a potential shift S;(jT J) generaly

increases with the number of pieces it covers. Since the range of number of work pieces

among the shifts is small (normally smdler than 30) and this variable is discrete, the non-

linear curve using u, or u, is not appropriate. A linear membership function ( ”ka) istherefore

applied to define criterion uz as

%, - a®

min

=20 L3
X, ad - al

min

where x; = number of pieces of work contained in ' S; ;
al® = maximum number of pieces of work;

al® = minimum number of pieces of work.

min

The characteristic representation of function m; is shown below:

NE)

min max

(3.29)
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3.4.14 Criterion uy,

In the current TRACS Il process of generating the large set of potential shifts, the parameter
that decides the maximum number of spellsin a shift is usudly set to be 4. The reason why
shifts with more than 4-spells are not constructed is that they are seldom efficient, and also
the combinations of work pieces for forming them would be so enormous that they would
cause computationa difficulties. However, among the shifts with up to four spells, differences

of structura efficiency or user preferences still exist.

1-spell shift A B,
Spell 1
2-spell shift —— B, G D,
Spell 1 Spell 2
3'$d| §]Ift A3 ------------- BS C3 ------------- D3 CZ ------------ D2
Spell 1 Spell 2 Spell 3
4-spell shift Jp— =Y oy— YR m—— = P— H,
Spell 1 Spell 2 Spell 3 Spell 4

Figure 3.4: Example shifts with one to four spells

Considering the example shifts with up to four spells in Figure 3.4, 1-spell shifts are shorter
shifts without a mea break in between the work pieces. These shifts may either be an

overtime shift, or a half shift where ameal break can be placed at the beginning or at the end
of it, and the other half would be made up with required work such as shunting. These shifts
seem to be inefficient and are discouraged by transport operators, even if sometimes they are

crucia in forming optimal schedules.

On the other hand, 2spell shifts are highly encouraged because they are inherently more
robust and preferred than shifts with three or four spells. Usudly, a shift with more spells

would inevitably result in an additional meal break, or more time for the driver to transfer



from one vehicle to another vehicle. Therefore, between the 4-spell shift and the 3-spell shift,

the 4-spell one seems to be less preferable.

Based on the above consideration, membership function m for the spell factor u, can be

designed as

i0, if x,=1or x, =4
:

mg, =i %5, if x,=3 , (3.29)
1, if x, = 2

where x, = number of spells contained in S .

The characteristic representation of function e is shown below:
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3415 Criterion us

The common method for shift selection is Integer Linear Programming, which uses the

branch-and-bound tree-search procedure to produce integer solutions. This is a non-
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polynomial time agorithm, limited by the amount of search space to be explored within
reasonable time. For this reason, the ILP process sometimes may be terminated before any
integer solution has been found. However the relaxed LP, i.e. ignoring the integer constraints,
can usually be solved quickly: it provides some useful information about the distribution of
the optimum integer solution. Therefore, the relaxed Linear Programming solution us, if

applicable, can be considered as an additional criterion.

With regard to driver scheduling, the relaxed LP solution is an assignment of possibly
fractional values to shifts, in which the sum of the shifts covering any piece of work is not
smaller than 1 (shown in Figure 3.5). The number of shifts used in this solution, i.e. the sum
of the possibly fractiona values, is a very good estimate of the lower bound on the optimal
number of shifts. In practice, the optimal number of shiftsis usually obtained by rounding up

the number of shifts to the next higher integer.

Shift 6 (0.3560)
< >
Shift 4 (0.6320) Shift 5 (0.2760)
< < >
Shift 1 (1.0000) Shift 2 (0.3680) Shift 3 (0.7240)

< > >< >
+ + + + +
A B C D E

Figure 3.5: Fractional valuesin arelaxed LP solution

Some constraint programming systems have utilized the relaxed LP solution to solve
scheduling problems in different ways (Guerinik and Caneghem, 1995; Rodosek et d., 1996;
Curtis et a., 1999), in which the fractional valuesin this solution were employed as a guide of
choosing variables to be satisfied. Although their searching approaches were dightly
different, both Guerinik and Caneghem (1995) and Rodosek et al. (1996) used the fractional
value of a shift as the guide to the first value chosen for their shift variables, while Curtis et

al. (1999) assigned the fractional values to relief opportunities rather than shifts.
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Another successful application of the relaxed LP solution, by the means of hybrid genetic
algorithms, is described in (Kwan et a., 99; Kwan 1999; Kwan et al., 2001), which
included all the shifts with fractional values larger than a given parameter (such as 0.3) in the
candidate seeding shift set, and reported better results than other heuristics. They investigated
alarge number of data sets originating from bus and train operators, and found that, among all
the constructed shifts, those shifts with fractional values in the relaxed LP solution are more
likely to be used in the integer solution then others. The investigative results of some selected
larger cases in (Kwan et a., 1999), together with the largest instance of Gall2 obtained

recently, are shown in Table 3.1.

Date | Number | (a) Shiftsinthe | (b) Shiftsinan | () Common shifts | (c)/(b)x100
of shifts | relaxed solution | integer solution in (a) and (b) %
Wakh | 30000 428 106 88 83
G34a | 30701 476 106 70 66
Wkh | 30000 420 109 98 0
TI9%6 | 17430 368 112 85 76
TI97 | 22917 377 112 99 88
G309 | 27973 425 113 76 67
Swbx | 30423 474 132 104 79
Gal2 | 144339 627 242 219 0

Table 3.1: Relationship of shiftsin an integer solution and those in the relaxed LP solution

Table 3.1 shows that, for larger cases, more than 60% of the shiftsin the fina integer solution
exist in the relaxed LP solution: the average percentage is about 80%, while the maximum
percentage even reaches 90%. Since there may be many different integer solutions using the
same minimum number of shifts, those shifts in the relaxed LP solution but not in the best
integer solution found by TRACS |1 might till be potentially good in terms of contributing to

aminimum shift schedule.



To study the distribution of the shifts in the integer solution with respect to their fractional
values in the relaxed LP solution, an extract of the largest Gall2 problem with an integer
solution of 242 shiftsis shown in Table 3.2, in which 219 shifts have the fractional valuesin

the relaxed LP solution.

Fractional valuesin | (1) No. of shifts | (2) No. of shiftsin | (2)/(1)x100
the relaxed solution an integer solution %

0 143712 23 0.02%
0.0000-0.0999 257 12 4.67%
0.1000-0.1999 50 4 8.00%
0.2000-0.2999 41 8 19.51%
0.3000-0.3999 41 13 31.71%
0.4000-0.4999 12 4 33.33%
0.5000-0.5999 10 3 30.00%
0.6000-0.6999 33 13 39.39%
0.7000-0.7999 18 9 50.00%
0.8000-0.8999 20 17 85.00%
0.9000-1.0000 145 136 93.79%%

Table 3.2: Digtribution of shiftsin an integer solution with respect to their fractiona values

Whether or not a shift has a fractional value in the relaxed LP solution significantly affectsits
chance to be included in the optimum integer solution. If not, the chance can be regarded
probabilistically as zero (only 0.02% in this case). However the shifts involved in this small
chance may till be vitaly important to complete a perfect solution, which will be
demonstrated by experiments in Section 3.5.3.3. Otherwise, the higher the fractional value,
the more likely the shift will be present in the integer solution (for example, 4.67% in the

interval [0.000-0.0999] and 93.79% in the interval [0.9000-1.0000]).

Furthermore, since the shifts in the integer solution are concentrated in fractiona values close

to 1, the membership function with respect to criterion us should be non-linear. With the



advantage of being smooth and nonzero at al points, the Gaussian distribution function ( m/%)

is applied to define criterion us as

|
.'.e ,if S, isin the fractional cover (3.30)
10 , otherwise

Let m; =1 when x;=a(, and m; =0.01 when x; =afj

min?
wherexs = fractiond value of S; in the relaxed LP solution;
al?) = maximum valuein fractiona cover;

a® = minimum valuein fractional cover.

min

Therefore,

—a®

_ (e - am)’
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QO
|
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The characteristic curve of function m; is shown below:

a®

min ar(nsa)x



3.4.2 Evaluation of shift structure by fuzzy aggregation

Five criteria u; (i=1,...,5) have been abstracted for the evaluation of the shift structure, and

each criterion is assigned a numerical evaluation by fuzzy membership function my

(i=1,...,5), where 7‘, is the fuzzy subset on the i-th criterion. These evaluations refer to local

feature of each criterion respectively, thus an overall evaluation on fuzzy subset A could be

made by aggregation of these five criteria

As introduced in Section 3.2.3, the nature of aggregation of Mg (%),....m; (X) fallsinto any of

these three categories. conjunctive, digunctive, or compromise. The relative influence and
inter-relationship of these criteria cannot be predicted. Therefore, a specific operator from
each d the three aggregation categories is selected for experiments, whose results will be

reported in Section 3.5.1. The chosen aggregation operators are described as follows.
1) Conjunctive aggregation

When criteria u; are of equa importance, the fuzzy subset A of good shift structure with

respect to the five criteria may be defined as intersection of al the fuzzy subsets A e
5
A= ﬂ A, (332

Therefore, for shift Sj(jT J), the formulation of its structural coefficient f,(S) by the

corresponding aggregation operator is:

f2(S)) =mz(x) = min(m;l(x) ..... m. (x),"jT J. (3.33)

This aggregation is “pessimigtic” in the sense that each shift is assigned its worst evauation.



2) Digunctive aggregation

When criteria u; are of equal importance, the fuzzy subset A of good shift structure with

respect to the five criteriamay be also defined as union of al the fuzzy subsets A i.e

A=), (334)

i=1
Therefore, for shift Sj(jT J), the formulation of its structural coefficient f,(S) by the
corresponding aggregation operator is:

fz(Sj):m/;(x):max(%(x),...,%(x)),"ji J. (3.35)

This aggregation is “optimistic” in the sense that each shift is assigned its best evaluation.
3) Compromise aggregation

The above aggregation schemes assume that the criteria cannot compensate each other. When
this is no longer true, other schemes may be considered, such as product, arithmetic mean,

and geometric mean. Therefore, for shift Sj(jT J), the formulation of its structural

coefficient f,(S) using the arithmetic mean operator is:

5
f2(S)) =mz(x) =@ wimz," j1 J. (3.36)

i=1
Where w; (w; 2 0) denotes the corresponding weights for criteria u; (i=1, ..., 5). They al

satisfy the normalizing condition

Aw=1 (337)

If the i-th criterion were dominant in assessing the shift structure, its weight should have a

high value.
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3.5 Experimentson the greedy heuristic with fuzzy evaluation

The major concern about using heuristics is the quality of the obtained solution. Due to lack
of knowledge about the true optimum, an effective method of assessing the quality of a
heuristic solution is by comparing it to the best known solution. Therefore, Relative
Percentage Deviation (RPD) over the best known schedule is applied to measure the quality

of aheuristic schedule: the smaller the RPD is, the better the result is.

aHeuridic schedule - Best known schedule 6.

RPD= 8 Best - known schedule o 100% (338)
Number of Number of Best known schedule
Data Type | piecesof work | potentia shifts | Shifts Cost

(hours paid)
Colx Bus 127 3560 A 288.16
Gmb Bus 154 11817 A 289.32
Neur Tran 340 29380 62 509.25
Ew3 | Tran 437 25099 116 1003.55
Wag3 | Tran 456 16636 50 403.42
F2x | Tran 546 43743 64 562.22
Tram | Tram 553 6437 49 419.50
Trmx Tram 553 29500 49 408.47
Nb2 Bus 613 22568 75 851.09
Gdl2 | Tran 707 144339 242 2247.52
G532 | Tran 1164 29465 276 2083.15
Gdll | Tran 1495 28639 349 2661.12
Rrne Tran 1873 50000 395 3137.20

Table 3.3: Size and the best known schedules of the test problems

Table 3.3 shows the sizes and the best known results of thirteen real world problems. For
example, the largest case RRNE is a scheduling problem from the former Regional Railways
North East, which had a diverse operation comprising rural, inter-urban and urban operations

to cover most area of northeast England. The best known schedules are mostly obtained by



the TRACS II: some (F2x, Gall2 and Rrne) from version 12.0b, and the others from the
previous version. The only side constraint present in these data sets are on the total number of
shifts. Default settings of the TRACS Il parameter were used. For the cases of Neur and Nb2,
the ILP process fails to find any integer solution even though the ILP has been re-run many
times and each time with a higher revised target number of shifts. In this circumstance, results

reached by hybrid GAs incorporating strong domain knowledge (Kwan 1999) are cited.

35.1 Determination of the greedy operator in over-cover penalty

Schedules derived from the three smple greedy heuristics (described in Section 3.3) are
compared to decide which greedy component should be kept in the proposed algorithm. These
three simple greedy heuristics, whose results are tabulated in Table 3.4 as Greedy schedule

(1), Greedy schedule (2), and Greedy schedule (3), choose the potential shift S ( iT J) with
the largest uncovered pieces of work, the largest ratio <Sj > /c]. , and the largest uncovered

worked time respectively in each iteration.

Data | Greedy schedule (1) Greedy schedule (2) Greedy schedule (3)
Shift Cost Shift Cost Shift Cost

Colx 41 349.32 44 382.62 40 356.70
Gmb 40 355.35 42 359.93 40 350.70
Neur 74 621.45 75 643.07 74 602.20
Ew3| 128 1199.88 128 1241.78 123 1156.27
Wag3 61 501.38 59 495.66 59 490.18
F2x 76 714.18 70 693.72 74 700.95
Tram 61 558.72 61 564.12 61 558.55
Trmx 63 561.25 63 571.50 61 547.45
Nb2 84 985.32 84 1006.67 84 974.25
Gal2 | 295 2738.08 291 2946.22 274 2497.23
G5h32 | 322 2412.13 323 2537.32 329 2398.78
Galll | 405 3079.55 402 3308.95 410 3033.72
Rrne | 457 3793.27 471 4024.17 452 3704.32

Table 3.4: Computational results of simple greedy heuristics
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According to Table 3.5, the average RPD in terms of number of shifts and total cost for these
three heuristics are (18.77%, 22.89%), (19.11%, 27.05%), and (16.89%, 20.36%)
respectively. In general, the 3¢ greedy heuristic works better with both objectives. Therefore,
this greedy operator will be adopted, and uncovered worked time is used in the over-cover

penalty f1(S), which is described in Section 3.3.

Greedy schedule (1) | Greedy schedule (2) | Greedy schedule (3)
Data RPD RPD RPD RPD RPD RPD
(shift) (cost) (shift) (cost) (shift) (cost)
Colx 20.59 21.22 2041 32.78 17.65 23.79
Gmb 17.65 22.82 2353 24.41 17.65 21.22
Neur 19.35 22.03 20.97 26.28 19.35 18.25

Ew3 10.34 19.56 10.34 23.74 6.03 15.22
Wag3 22.00 24.28 18.00 22.86 18.00 2151
F2x 18.75 27.03 9.38 23.39 15.63 24.68

Tram 24.49 33.19 24.49 34.47 24.49 33.15
Trmx 28.57 37.40 28.57 39.91 24.49 34.02

Nb2 12.00 15.77 12.00 18.28 12.00 14.47
Gall2 21.90 21.83 20.25 31.09 13.22 1111
G532 16.67 15.79 17.03 21.80 19.20 1515
Gall 16.05 15.72 1519 24.34 17.49 14.00
Rrne 15.70 2091 19.24 28.27 14.43 18.08
Ave. 18.77 22.89 19.11 27.05 16.89 20.36

Table 3.5: RPD results of smple greedy heuristics

35.2 Seectingthe aggregation operator for the structural coefficient

As described in Section 3.4.2, three different kinds of aggregation operator have been applied
to evauate the shift structure, educing the so-called structural coefficient f,(S). The product
of structural coefficient f»(S) and over-cover pendty fi(S), denoted as F(S), is used as the

final criterion in the new approach to decide which shift should be used in the process of



constructing a schedule. In this section, the most suitable aggregation operator will be

determined according to the experimental results.

3.5.2.1 Intersection operator

Defined by formula (3.33), the intersection operator is a “pessmistic’ aggregation, in which
each shift is assigned the worst evaluation. According to the membership functions defined, if
taking the smallest value by this operator, most shifts involve zero values for their structural
coefficient f,(S), i.e. shifts with one or four spells with regard to the criterion u,, and shifts
without fractional values in the relaxed LP solution with regard to the criterion us. Thus the
associated overal evaluation function values F(S) for these shifts are zero. Since in the
process of constructing a schedule, each step is to choose the shift with the largest value of
F(S), shifts with zero evaluation values will never have chances to be selected. In many
circumstances, these unselected shifts are vitally important, sometimes necessary, to produce

agood schedule.

Data Shift RPD (%) Cost RPD (%)
Colx 47 38.24 389.90 3531
Gmb 13 26.47 36752 27.03
Neur 83 33.87 661.38 29.87
Ew3 134 1552 1186.68 1825
Wag3 57 14.00 262.37 14.61
F2x 76 18.75 711.02 26.47
Tram 60 2245 520.77 24.14
Trmx 66 34.69 552.75 35.32
Nb2 121 61.33 1181.97 38.88
Gal2 275 1364 2553.32 1361
G532 294 6.52 2337.42 1221
Gall 382 9.6 3085.93 15.96
Rrne 466 17.97 3912.33 24.71
Ave. 24.07 24.34

Table 3.6: Experimenta results by using the intersection operator
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As shown in Table 3.6, the average RPD for number of shifts and total cost are 24.07% and
24.34% respectively. In general the results using this operator are no better than those of the

simpler greedy heuristics. This operator is therefore discarded without further investigation.

3.5.2.2 Union operator

Defined by formula (3.35), the union operator is an “optimistic’ aggregation, in which each
shift is assigned its best evaluation. According to the membership functions defined, if taking
the largest value by this operator, the structural coefficients f,(S) for most shifts are one, i.e.
those shifts with two spells with regard to the criterion u,, and shifts with a fractiona value of
1.0000 in the relaxed LP solution with regard to the criterion us. Thus for a large proportion
of shifts, their associated overall evaluation values F(S) are equal to f1(S), meaning that the
component of structural coefficient f,(S) is actually not taking effect. In recognition of this,
the performance of the agorithm using such an operator should be better, but not too much

better, than the simple greedy heuristics.

Data Shift RPD (%) Cost RPD (%)
Calx 38 11.76 326.30 1324
Gmb 40 17.65 353.73 22.26
Neur 70 12.90 588.07 1548
Ew3 126 8.62 114542 14.14
Wag3 62 24.00 510.33 26.50
F2x 70 9.38 686.52 2211
Tram 67 36.73 602.13 4354
Trmx 62 2653 544.43 33.29
Nb2 79 533 931.87 9.49
Gal2 268 10.74 2532.22 12.67
G532 309 11.96 2374.92 14.01
Gall 390 11.75 3036.88 14.12
Rrne 445 12.66 3717.95 1851
Ave. 15.39 19.95

Table 3.7: Experimental results by using the union operator
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The experimental results in Table 3.7 have demonstrated the above. The average RPD for
number of shifts and total cost are 15.39% and 19.95% respectively. In general the results
using the union operator are dightly better than those of the best ssimple greedy heuristic, i.e.

the 3° one, in terms of both the number of shifts and total cost.

3.5.3.3 Arithmetic mean operator

Both the intersection and union operators are based on the assumption that al the criteriaare
of equal importance, and cannot compensate each other. Since the <hedules produced by
these operators are not satisfactory, another operator of arithmetic mean is tested the

performance of the proposed approach.

1) Individua effect of each criterion

Before studying whether these criteria are compensative with each other, it would be
interesting to know the individual effect of each single criterion on the system’s performance.
Table 3.8 and Table 3.9 show the experimenta results and their associated RPD results of
using the single criteria u; (i=1,...,5) respectively, which are obtained by simply setting

w =1and w; =0(j* i) informula(3.36).



Data Criterion 1 Criterion 2 Criterion 3 Criterion 4 Criterion 5
Shift  Cost | Shift  Cost | Shift  Cost | Shift  Cost | Shift  Cost
Cox | 38 341.08| 44 33448| 49 43383 | 44 34902| 42 36058
Gmb| 39 35398| 45 34675| 49 44792 | 46 36438| 40 33438
Neur 72 60632| 73 57842 8 68913 99 71108| 75 60280
Ew3| 123 122368| 135 1121.33| 127 1258.73| 169 1303.62| 125 1070.90
Wag3| 57 48743| 59 48157 | 63 54303| 82 60193| 57 459.37
Fox | 72 71675 79 65848 | 74 74550 83 63055| 77 71178
Tram | 67 63853| 59 51215| 72 67413 69 570.02 58 50130
Trmx 64 60075| 61 53375 72 657.75| 66 53223 57 47582
Nb2| 83 97335 8 94068| 80 94143 | 116 109252 92 97750
Gdl2 | 267 2713.05| 284 242433 | 299 3059.88| 337 2581.33| 249 2297.65
G532 | 307 250758 | 336 2246.45| 328 2667.90| 421 253043| 293 2298.90
Gall | 388 316212 429 285145| 413 3393.30| 544 3263.03| 371 2952.70
Rrne | 444 375858 | 453 3632.12| 520 4439.80| 513 3984.45| 437 3683.65
Table 3.8: Computational results by using single criterion individually
Criterion 1 Criterion 2 Criterion 3 Criterion 4 Criterion 5
Data | RPD PRD | RPD PRD | RPD PRD | RPD PRD | RPD PRD
(shift) (cost) | (shift) (cost) | (shift) (cost) | (shift) (cost) | (shift) (cost)
Cox | 11.76 18.36| 2941 16.07 | 4412 5055 | 2941 2112 | 2353 25.13
Gmb | 1471 2235| 3235 1985 | 4412 5482 | 3529 2594 | 1765 1557
Neur | 1613 19.06 | 17.74 1358 | 29.03 3532 | 59.68 39.63 | 20.97 1837
Ew3| 603 2194 | 1638 11.74| 948 2543 | 4569 2990 | 776 6.71
Wag3 | 1400 20.82 | 1800 1937 | 2600 34.61 | 6400 49.21 | 1400 13.87
F2x | 1250 2749 | 2344 1712 | 1563 3260 | 2969 1215 2031 26.60
Tram | 36.73 5221 | 2041 2209 | 4694 60.70 | 4082 35.88 | 18.37 19.50
Trmx | 30.61 4707 | 2449 3067 | 4694 6103 | 3469 3030 | 16.33 16.49
Nb2 | 1067 1437 | 1467 1053 | 6.67 10.61 | 5467 2837 | 2267 1485
Gdl2 | 1033 2071 | 1736 787 | 2355 3614 | 3926 1485 | 289 223
G532 | 1123 2037 | 21.74 7.84| 1884 2807 | 5254 2147 | 6.16 10.36
Gall | 1117 1883 | 2292 7.15| 1834 2751 | 5587 2262 | 6.30 10.96
Rrne | 1241 1981 | 1468 1578 | 31.65 4152 | 2087 2701 | 1063 17.42
Ave. | 1525 2488 | 21.044 1536 | 27.79 3838 | 4396 2757 | 1441 15.26

Table 3.9: RPD results by using single criterion individually




According to the criterion u; (total worked time in a shift), shifts with more work content
have preference to be selected in the final schedule. Given the finite work content, the
construction process by such a strategy will potentially result in fewer number of shiftsin the
schedules. The average RPD results of this criterion in Table 3.9 demonstrate this trend: it
achieves 15.25% in terms of the number of shifts, which is better than those of the three

simple greedy heuristics.

According to the criterion u, (ratio of total worked time to spreadover), it is encouraged that
shifts with larger percentage of work content have preference to be selected in the fina
schedule. The construction process by this strategy will potentially result in little non-worked
time, reducing the total cost in the schedules. The average RPD results of this criterion in
Table 3.9 dso demonstrate this trend: it achieves 15.36% in terms of the total cost, which is

better than those of the simple greedy heuristics.

The effects for the criterion us (number of pieces of work) and the criterion u, (number of
spells) are more complex. As described in Section 3.4.1.3 and Section 3.4.1.4, these two
criteria are regarded as the effective factors for shift structure. However, if each criterion is
isolated to evaluate the shift structure, the results are much worse in both objectives (shown in
Table 3.9). With respect to the criterion us, the reason might be that it increases significantly
the number of over-covered pieces of work, thus increases eventually the total cost in the
schedule. With respect to the criterion u,, probably it is because some shifts, though not

many, with other than two spells are vitally important to good schedules.

Obvioudy, the criterion us (fractional values in the relaxed LP solution) worked best
separately compared with the other four criteria, according to its average RPD resultsin Table
3.9. Compared with the three smple greedy heurigtics, it also performs best in terms of both

number of shifts and total cost.



2) Combined effect of al criteria

From the experimental results of using single criterion, the ndividua effect of each single
criterion on the system’s performance is not satisfactory, and no criterion is absolutely
dominant than others although the 5" criterion can produce better solutions in general. In this
section, experiments of using the combined criteria by the arithmetic mean operator will be

implemented to study whether and how these criteria are compensative with each other.

Table 3.10 shows the summary results of 100 runs with weight combinations generated
randomly. The four important indices of Maximum, Minimum, Mean, and Standard Deviation
in gtatistics are applied to study the distribution of the computational results in terms of both
number of shifts and total cost. Let t; be avariable of either the number of shifts or total cost

in a schedule, then

Maximum = max{t,,...,t;o0} s (3.39)
Minimum=min{t,,....t, ..} , (3.40)
B lgO
Mean t = ati/loo, (3.41)
i=l

100
Standard Deviation = /é (t - ©)? / 99 . (3.42)
i=1

The Mean is a measure to evaluate the average performance of the proposed algorithm, while
the Standard Deviation is a summary measure of the differences of each result from the mean.
According to the RPD results in Table 3.11, the average RPD of Means in number of shifts
and total cost are 13.84% and 13.03% respectively. It shows that the arithmetic mean operator
with different weights works much better than other aggregation operators and the ssimple

greedy heurigtics.



Data Maximum Minimum Mean Standard Deviation
Shift Cost | Shift Cost Shift Cost Shift Cost
Colx 12 350.65 37 312.22 39.44 328.34 0.97 9.9
Gmb 42 353.02 37 313.02 39.92 334.67 104 8.13
Neur &4 632.33 69 551.45 73.60 579.39 252 14.86
Ew3 | 146 122313| 120 103643 | 12984 1105.42 6.41 41.88
Wag3 71 552.35 %! 432.40 59.84 479.03 3.39 2412
F2x 87 698.90 68 594.55 73.12 636.28 3.37 2171
Tram 66 604.40 52 448.73 57.84 515.58 4.02 45.25
Trmx 63 576.37 51 43550 55.68 483.60 304 35.85
Nb2 | 108 1039.87 79 880.12 | 87.85 929.39 483 27.49
Gdl2 | 316 2560.88| 245 227642 | 25832 2362.23 1321 65.91
G532 | 333 232638| 280 2164.37 | 296.64  2225.70 11.20 34.93
Gall | 429 2987.13| 358 279843 | 37816 2862.75 15.78 47.42
Rrne | 477 3768.38| 413 343250 | 43712 3572.82 13.49 67.99
Table 3.10: Summary results of 100 runs with randomised weights
Data Maximum Minimum Mean
RPD RPD RPD PRD RPD RPD
(Shift) (Cost) (Shift) (Cost) (Shift) (Cost)
Colx 2353 21.66 8.82 8.35 16.00 1394
Gmb 2353 22.02 8.82 8.19 17.41 15.67
Neur 3548 24.17 11.29 8.29 18.71 13.77
Ew3 25.86 21.88 345 3.28 11.93 10.15
Wag3 42.00 36.92 8.00 7.18 19.68 18.74
F2x 35.94 24.31 6.25 5.75 14.25 13.17
Tram 34.69 44.08 6.12 6.97 18.04 22.90
Trmx 28.57 41.10 4.08 6.62 13.63 18.39
Nb2 44.00 22.18 533 341 17.13 9.20
Gal2 30.58 1394 1.24 129 6.74 5.10
G532 20.65 11.68 145 3.90 7.48 6.84
Gall 22.92 12.25 2.58 5.16 8.36 7.58
Rrne 20.76 20.12 457 941 10.66 13.89
Ave. 29.89 24.33 554 5.98 13.84 13.03

Table 3.11: RPD results of 100 runs with randomised weights
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Particularly, it achieves an encouraging finding: among the 100 randomised weight
combinations, there aways exist several ones that can derive rather satisfactory results for
each case. For example, Table 3.11 shows that the average RPD of Min in number of shifts

and total cost are as small as 5.54% and 5.98% respectively.

According to the experimental results, in genera the results of using the combined weights
are much better than those of using single criterion. It can be concluded that the five criteria
proposed are compensative with each other. Moreover, since a significant difference exists
among schedules produced by individual weight combinations, hopefully better results may
be achieved if these criteria are given more suitable weights. Therefore, the arithmetic

operator will be kept for further investigation.

3.6 Conclusions

A refined greedy algorithm based on fuzzy subsets theory has been presented in this chapter.
The new agorithm is novel because it is the first time that fuzzy set theory has been applied
to the driver scheduling problem. An effective method is proposed to solve the problem about
ranking the potential shifts in each iteration. Unlike the smple greedy agorithms, the new
approach employs fuzzy evaluation which depends on five fuzzified criteria about the
structure of a shift including total worked time, ratio of total worked time to spreadover,

number of pieces of work, number of spells, and fractiona cover.

The evaluation operator in the proposed algorithm is the product of two components, namely
over-cover penalty and structural coefficient. The over-cover pendlty is actualy an adaptive
greedy operator, in which there are severa aternative choices for its greedy unit. Among the
three smple greedy heuristics, the one using the largest uncovered worked time is adopted

because of its best performance by experiments. With regard to structura coefficient, there



are also three aggregation operators in different categories as candidates, among which the
arithmetic mean operator takes into account the interactive factor of individua criterion, and

performs best in general. This operator is therefore applied to aggregate the proposed criteria.

It is interesting to find that, among the results of using 100 weight combinations generated
randomly, outstanding results were obtained for each test case, some of which are rather close
to the best known solutions (within 2%). Therefore more sophisticated algorithms are
worthwhile to be developed and further investigated, in particular we would like to

investigate:

1) Whether more refined sets of weight combinations could be derived to produce even
better results;
2) Whether these better results produced, if achievable, can be improved further by other

strategies.

Research in these two issues are pursued by means of two different evolutionary algorithms,
i.e. a GA and a Simulated Evolution algorithm, which will be presented in Chapter 4 and

Chapter 5 respectively.
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Chapter Four

A Genetic Algorithm for Weight

Deter mination

4.1 Introduction

The greedy heuristic introduced in Chapter 3 constructs a schedule by sequentialy selecting
shifts, from a very large set of pre-generated legal potential shifts, to cover the remaining
work. Individua shifts and the schedule as a whole have to be evaluated in the process. Fuzzy
set theory is applied on such evaluations. For individua shifts, their structura efficiency is
assessed by fuzzified criteria identified from practica knowledge of the problem domain
(described in Section 3.4). These criteria are represented by fuzzy membership functions
about the structure and generally the goodness of a shift. The fuzzy membership functions are
weighted and combined to yield an overall evaluation. While it might be possible to derive a
genera relatively robust set of weights by experiments, these weights will have to be fine-

tuned for individual problems for best performance.
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In this chapter, a GA is described for caibrating the weight distribution amongst the fuzzified
criteria, so that a single-valued weighted evaluation can be computed for each shift. Although
driver schedules are constructed as by-products through generations of evolution, they are not
expected to be very close to optimum because of the crude greedy nature of the schedule
construction method used. Much of the work in this chapter has been published by Li and

Kwan (2002a).

This GA approach belongs to the general class of hybrid GAs (memetic algorithms, genetic
local sarch) (Ackley 1987; Moscato and Norman, 1992; Radcliffe and Surry 1994), i.e.
algorithms that hybridize genetic operations with local or constructive heuristics.
Furthermore, there are some similarities between the idea introduced in this paper and the
GRASP agorithm (Feo and Resende, 1995) or the Adaptive Multi-Start (AMS) technique
(Boese et al., 1994): they al apply adaptive construction heuristics to obtain individual
feasible solutions, and perform searches based on multiple solutions to improve the local
optimum. However, the formations of multi-start are very different: the proposed GA is based
on an evolutionary mechanism, while GRASP is purely randomized and AMS maintains a

constant number of best solutions found so far.

This chapter is organized in the following way. A brief overview of GAs is given first. The
GA approach, which follows a simple ‘standard’ scheme, for weight determination is then
described in detail. Comparative results using rea-life problems, some of which are very

large instances, are presented. Finally, conclusions are discussed.

42 A brief overview of GAs

GAs are general-purpose search and optimisation methods originating from Holland (1975)
and developed subsequently to solve a wide area of realworld problems (Davis 1987,

Goldberg 1989; Michaelwicz 1994; Zalzala and Fleming, 1997). These algorithms are based
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on the mechanics of genetics and natural selection, and represent the search space of a coded
population of potential solutions. The population is then manipulated according to the

survival of the fittest principle, providing good practical solutions.

4.2.1 Basic concepts

The GA is an iterative procedure consisting of normally a constant-size population of
individuals. Each individua is represented by a finite string of symbols, caled the
chromosome, to encode a possible solution in a given problem space. This space, referred to
as the search space, comprises al possible solutions to the problem at hand. In most cases,
the GA is applied to spaces that are too large to be exhaustively searched. The symbol
alphabet commonly used is binary, athough other representations have also been used, such

as character-based encoding, real-valued encoding, and tree representation.

The standard GA proceeds as follows. An initial population of individuas is generated
randomly or heurigtically. In every evolutionary step, caled a generation, the individuas in
the current population are decoded and evaluated according to some predefined quality
criteria, called the fitness function. To form a new population, or the next generation,
individuals are selected according to their fithess. Many selection procedures are currently in
use, among which the smplest one is the roulette selection, where individuas are selected
probabilistically according to their fitness values. This ensures that the expected number of
times for an individual to be chosen is approximately proportional to its relative performance
in the population. Thus, highfitness, or good, individuals have better chances of survival,

while low-fitness ones are more likely to be eliminated.

Selection aone cannot introduce new individuals into the population, i.e., it cannot find new
points in the search space. New individuals are generated by genetically inspired operators, of

which the most widely used are crossover and mutation. Crossover is performed with
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crossover probability p. between two selected individuals, called parents, by exchanging parts
of their chromosomes to generate two new individuals, called offspring. In its simplest form,
substrings are exchanged after a crossover point randomly selected. This operator tends to
enable the evolutionary process to move towards the promising regions of the search space.
To prevent premature convergence to local optima, the mutation operator is introduced by
sampling new points at random in the search space, which is carried out by flipping bits

randomly with some small probability py,.

GAs are stochastic iterative processes that are not guaranteed to find the optima solution. The
termination condition may be specified as some fixed number of generations, or as the

attainment of a satisfactory fitness level.

4.2.2 Some applications

GAs have attracted much research interest over the last two decades. The following areas of
application (Mitchell 1996) in both problem solving and scientific contexts are by ho means

exhaustive, but exemplify what GAs have been used for.

1) Optimisation: to solve a wide variety of optimisation tasks, including numerical
optimisation and combinatorial optimisation problems such as circuit layout and
driver scheduling;

2) Automatic programming: to evolve computer programs for special tasks, and to
design other computational structures such as cellular automata and sorting networks;

3) Machinelearning: to evolve particular machine learning systems, such as weights for
neural networks, rules for learning classifier systems or symbolic production systems,

and sensors for robots;
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Computer-aided design: to use the feedback from the evaluation process to select the
fitter designs, generate new designs through the combination of parts of the selected
designs, and result in a population of high performance designs eventualy;

Evolution and learning: to study how individual learning and species evolution affect
one another;

Socia systems. to study evolutionary aspects of social system and the evolution of
cooperation and communication in multi-agent systems;

Economics: to model the processes of innovation, the development of bidding
strategies, and the emergence of economic markets;

Ecology: to model ecological phenomena such as biologica arm races, host-parasite
coevolution, symbiosis, and resource flow;

Immune systems. to model various aspects of natural immune systems, including
somatic mutation during an individud’s lifetime and the discovery of multi-gene

families evolutionary time.

Comparison with traditional search methods

GAs differ from the traditional search and optimisation methods significantly in the following

four aspects:

1

2)

3)

4)

GAs search a population of pointsin paralée, rather than a single point;

GAs work on the encoding of the solution set rather than the solution set itself, except
wherereal-valued individuals are used,

GAss use probabilistic transition rules, not deterministic ones,

GAs do not require derivative information or other auxiliary knowledge. Only the

objective function and corresponding fitness levels influence the search directions.
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Furthermore, it is important to point out that, to a given problem, GAs can provide a number
of potential solutions and the choice of a final solution is left for the user to decide. In cases
where a specific problem does not have a unique solution, for example in multi-objective
optimisation where the result is usualy a group of Pareto-optima solutions, GAs are

particularly useful for identifying the alternative solutions simultaneoudly.

4.3 Using GA to produce near-optimal weights

The evaluation function F(S), described in Section 3.3, involves a weight distribution among
five membership functions corresponding to five fuzzified criteria. Determination of these
weights is a honlinear problem, which implies that it is impossible to treat each weight as an
independent variable to be solved in isolation from other variables. There are interactions
such that the combined effects of the weights must be considered in order to optimise the

output.

GAs are useful approaches to problems requiring an efficient search over a large solution
space, and are particularly suitable for obtaining approximate solutions for multivariable
optimisation problems where mathematica analyses are difficult. In this section, the
evolutionary process of using GA to generate near-optimal weights for the fuzzy membership

functions will be described in detail. The basic framework of the GA is given as follows:

Step 0  Set generation t = 0; initia population P(t) is generated with randomised weight
sets.

Stepl Apply the greedy agorithm to obtain a solution, the cost of which is used to
evaluate the corresponding weight set in P(t).

Step2  If termination criterion has not been reached, continue step 3; otherwise stop.

Step3  Sett=t+1; select weight setsfrom P(t-1) for reproduction.
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Step4  Perform adaptive crossover and mutation operators to produce offspring, and
partialy replenish P(t) by randomly generated members. All new weight sets are
evaluated by applying the greedy agorithm above to obtain a schedule.

Step5  Returnto Step 2.

431 Chromosomerrepresentation

GAs operate ssmultaneously on a number of potentia solutions, called a population,
consisting of some encoding of the parameter set. Typicaly, a population is composed of 50

to 100 individuals.

The first step in designing the GA s to represent the weights in a way suitable for applying
the genetic operators. The chromosome representation used here is the most commonly used
dngle—level binary string, in which the weights w; (i=1, 2, 3, 4, 5; wil [0,1]) are continuous
variables requiring an appropriate discrete representation. Each discretised value of the
variable is first linearly mapped to an integer defined in a specified range, encoded using a
fixed number of binary bits. The binary codes of all the variables are then concatenated to

obtain a binary string as follows:

For weight w;, if it is encoded in mbinary bits, then

€y, = Wigrmg = W) /(27 - 1)," 1T {1,234, (4.1)

where €, isthe precision of Wi, Wi,y and w; . isthe upper bound and lower bound of

w; respectively. In this research, each w; is encoded in 6 binary bits. Hence, the problem is a

5-dimension-search, and the solution spaceis 2%°.
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43.2 Initialisation

An initial population can be achieved smply by generating the required number of weight
sets randomly. In this approach, with a population of N weight sets whose chromosomes are
30 bitslong, N random 4-byte unsigned integer numbers uniformly distributed from the range

of [0, 2°~1] each is produced and then mapped to individual weights between 0 and 1.

43.3 Thefitnessfunctions

Driver scheduling is a bi-objective combinatoria problem. Although the main objective of
driver scheduling is to minimise the overall cost of the solution, for practical reasons, we also
wish that the number of shifts in the schedule is as few as possible. In multi-criteria
optimization, the primary goal isto find or to approximate the set of Pareto-optimal solutions,
and recently some multiple objective versions of hybrid GAs have been proposed (Ishibuchi

and Murata, 1998; Jaszkiewicz et al., 2001).

In GAs, the objective function and the fitness function are different notions. The objective
function provides a measure of performance with respect to a particular parameter set, while
the fitness function transfers that measure of performance into an alocation of reproductive
opportunities. In maximised optimisation where the fitness function is deemed to be the
objective function, these two notions are sometimes used interchangeably. However,
transformation of the objective function is necessary when the objective function is to be

minimised, since lower objective function values correspond to fitter weight sets.

4.3.3.1 A smplefitnessfunction

In automatically making trade-offs between the objectives, traditional approach combines all

objectivesin aweighted sum cost function, and the schedule with the lowest weighted sum is



regarded as the best solution (Fores et a., 1999; Kwan 1999; Kwan et a., 1999). Based on

this technique, the objective function g(x) for schedule x can be simply formulated as

|
g(x) = & (c; +2000), 42

=1

where | is the number of shifts in the schedule x, and c is the cost of shifts Sj* . The

constant 2000 is used here so that a heavy weight is imposed on each shift and it helps to

reduce the total number of shifts.

This is a minimisation problem, thus it is necessary to transform (4.2) into a maximised

fitnessfunction f (x) asfollows. The larger the value of f (x), thefitter the weight set is.
f(x) =G(g(x)) =a+b- g(x), 43

wherea is the maximum objective value in the population;

b is the minimum objective vaue in the population.

4.3.3.2 A fuzzy goal-based fitness function

It is well-known that problems exist with the above weighted sum function if the Pareto
surface is non-convex (Steuer 1986; Ulungu 1994). In addition, the determination of weights
for individual objectives will be practically very difficult. This section presents a goa-
directed search approach, where the best schedule is the one that satisfies a vector of fuzzy

goals as much as possible.
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Let O be the set of solutions generated by the hybrid GA. Consider that we are minimizing a

n-valued cost vector denoted as f(x) =(f (X), f,(X),....f,(X)) where xI W. Suppose

foin =(fins Fan s fin) IS @ vector that gives lower bound estimates on the individual

min? "min **

objective, which usually are not reachable in practice, such that " i, f,\.. £ f,(x)," xI W; and
frm = (fos oo fiie ) is @ vector that indicates user-specified upper bounds for the

objectivessuch that " i, f. 3 f.(x)," xI W.If " i, f,()T [f.,, fos ], X Will be an effective
solution. It means that this solution might include some useful information, and is worthy to
be preserved in the evolutionary process. For the bi-objective driver scheduling problem, the

region of the effective solutionsis shown in Figure 1.

fa(x)

Effective
Solutions

P fi(x)

f lmin f max
Figure 4.1: Range of effective solution set

In the proposed scheme, the effective solution set is a fuzzy set. Therefore, applying the
arithmetic mean operator described in section 3.4.2, the fuzzy goal based fitness function,

f (x)1 [0]], can be designed as follows:

T&t,” m(x).if xisan effective solution
(=12

to , otherwise

Yy 2

44

where

1 =1,1,3 0, 45

. Q)ON
_—

I
NN

and



79

m(X) =M. =12 (4.6)

max min
Note that formula (4.6) has transformed the original minimised objectives to a maximisation

problem. Therefore, the fitness function f (x) in (4.4) takes the same form as its objective

function. The larger the value of f (x), the fitter the weight set is.

User preferences can be easily expressed in the upper bound vector f.,.. For example, by

increasing the upper bound value f . to f,iw* , the subsequent membership function m (x)
for objective i will increase, which might control the acceptance or rejection of solutions. In
this work, the lower bound on the 1% objective, i.e. the total cost, is computed as the total cost
of all pieces of work, based on the assumption that there is no overlapped work in a perfect
schedule. The lower bound on the 2 objective, i.e. the number of shifts, is the sum rounded
up of the fractional solution derived by the LP relaxation. If the problem has not been solved
using LP relaxation, the lower bound can be estimated by experienced schedulers. The upper
bound adopted here is the solution value obtained by the simple greedy agorithm of choosing
the unused shift with the largest uncovered work content in each iteration, which has been

mentioned in section 3.3.
434 Selection

Selection models nature's survivakof-the-fittest mechanism. Fitter solutions survive while
weaker ones perish. The traditional roulette wheel strategy based on fitness-proportionate
selection is used here. Individuals with the best fitness values in each generation are always

preserved.



Fitness-proportionate selection is a common selection method in GAs, in which the number of
times a weight set is expected to reproduce is equal to its fithess divided by the average
fitness of the population. A simple method for implementing this selection is “roul ette-wheel
sampling”, which is conceptualy equivalent to giving each weight set a dice of a circular
roulette wheel equal in areato its fitness. The wheel is spun N times, where N is the number
of weight sets in the population. On each spin, the set under the whedl’s marker is selected
into the pool of parents for the next generation. In more detail, this method can be

implemented as follows:

1. Sum thetotal fitness value of weight setsin the population, denoted as S
2. Repeat N times:
2.1 Generate arandom integer tintheinterva [0, §;
2.2 Loop through the weight sets in the population, summing the fitness values until
the sum is larger than or equa to t. Select the weight set whose fitness value

puts the sum over this limit.

By these steps, the stochastic method statistically results in the expected number of offspring

for each weight set.

435 Geneticoperators

To implement a GA, the genetic operators of crossover and mutation have to be used.

4.3.5.1 Multipoint crossover

Crossover is the basic operator to produce new chromosomes that have some parts of both

parents genetic materia. The smplest form is single-point crossover.
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In multipoint crossover, m crossover positions are chosen at random with no duplicates and
sorted into ascending order. Then, the bits between successive crossover points are exchanged
between the two parents to produce two new offspring. The section between the first alele
position and the first crossover point is not exchanged between individuas. A 5-point
crossover is applied to the 30-bit chromosome in the proposed GA, which is illustrated in

Figure 4.2. The parts included in quotation marks in parents are exchanged each other.

Parents |:> Offspring
0110 ‘0011'10010 ‘10100101100 ‘11001 0110 ‘1111'10010 ‘00110101100 ‘11010’
1100 ‘1111'00111 ‘00110101001 ‘11010 1100 ‘0011’ 00111 ‘10100101001 ‘11001

Figure 4.2: 5 point crossover

The idea behind multipoint crossover is that the parts of the chromosome that contribute most
to the performance of a particular individual may not necessarily be contained in adjacent
substrings (Booker 1987). Moreover, the disruptive nature of multipoint crossover appears to
encourage the exploration of the search space, rather than convergence to highly fit

individuas early in the search, thus making the search more robust.

4,35.2 Mutation

In natural evolution, mutation is a random process where one alele of a gene is replaced by
another to produce a new genetic structure. In GAs, mutation is randomly applied with low
probability, and modifies elementsin the chromosomes. As an ancillary operator, the roles of
mutation are to recover good genetic material that may be lost through selection and crossover

(Goldberg 1989) and to ensure that any given string has the chance to be selected.

Binary mutation flips the value of the bit at the mutation point to be selected. The effect of

mutation on the decision variable depends on the encoding scheme used. Given that mutation
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is generdly applied uniformly to an entire population of strings, it is possible that a given
binary string may be mutated at multipoint. The effect of a 5-point mutation on a binary string
is illustrated in Figure 4.3 for a 30-bit chromosome representing five weights encoded over

the interval [0,1] individually.

Par ent 011’000 1171001 ‘0’10101 010110 011°'C01
O fspring 01'0'000 1°'0'1001 ‘1'10101 010100 011101

Figure 4.3: 5 point binary mutation

4.3.5.3 Adaptive probabilities of crossover and mutation

There are two essential characteristicsin GAs. The first is the capacity to converge to a loca
or globa optimum after locating the region containing such an optimum. The second is the
capacity to explore new regions of the solution space in search of the global optimum. The
vaues of Crossover Probability p. and Mutation Probability pr, and the type of crossover
applied (Spears and Dejong, 1991) is important to the balance between these two

characteristics.

To accomplish the trade-off between exploration and exploitation, Srinivas (Srinivas and
Patnail, 1994) designed an agorithm that could vary p. and p,, adaptively in response to the
fitness values of the solutions: p. and p,, are increased when the population tends to get stuck

at aloca optimum and are decreased when the population is scattered in the solution space.

Here we employ Srinivas's algorithm formulated as follows, and perform 5point crossover
and mutation operators described above to the five weights. After crossover and mutation, the
sum of the five weights is not 1. Renormalization for these weights is therefore needed for

each generation.
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ks =0.96, k, = 0.96, ks = 0.12, and k, = 0.16 (values are derived from a number of
experiments using different parameter combinations);

fmax 1S the largest fitness value in the population;

f isthe average fitness value of the population;
f ¢ isthe larger fitness value between the two parents to be crossed;

f isthefitness value of the solution to be mutated.

4.4 Computational results

The GA approach was coded in Borland C++. All problems were run on the same Pentium |1
333 MHz with 196 megabyte RAM persona computer using the Windows 98 operating
system. The best known schedules are mostly obtained by the TRACS Il system. In cases
where TRACS Il has difficulty in finding solutions, results reached by hybrid GAs

incorporating strong domain knowledge (Kwan 1999; Kwan et a., 2001) are cited.

For the four larger problems Gall2, G532, Gall1 and Rrne, population sizes of 100, 200, 300,
400 and 500 have been tested. For the other problems, population sizes of 50, 100, 200 and
300 were tried. Smaller population sizes might not result in satisfactory solutions, although
they would reduce the computation for each generation. Therefore some larger population

sizes were aso tried. According to the results by several combinations of parameters, the most



effective population sizes were found to be 400 to 500 for the four larger problems, and 100

to 200 for the other prablems.

For al the problems, the number of generations for the GA is set to be 150. Furthermore, t;
and t, in the GA’s fuzzy goal-based fitness function are set to be both 0.5 respectively. The
experimenta results in terms of shift number and total cost for the schedules derived by the
simple fitness function and fuzzy goalbased fitness function are compiled in Table 4.1 and

Table 4.2 respectively. Elapsed time is the time following the solution of the relaxed LP of

TRACSII.
Data | Shifts | RPD Cost RPD Time® Time
(hours) (seconds) | (seconds)
Colx 35 294 296.05 2.74 2 22
Gmb 36 5.88 296.87 261 85 4
Neur 64 3.23 510.02 0.15 203 955
Ew3 118 172 1007.39 0.38 95 69
Wag3 52 4.00 413.87 2.59 24 A
F2x 66 313 618.95 8.20 144 >40000
Tram 51 4.08 435.10 3.72 21 24
Trmx 51 408 425.70 4.22 72 139
Nb2 76 133 851.92 0.10 241 452
Gall2 244 0.83 2282.70 157 220 >80000
Gbh32 | 276 0.00 2147.65 310 285 >80000
Gall 348 -0.29 2734.03 2.74 469 >80000
Rrne 398 0.76 3267.14 | 414 754 >40000
Ave. 2.44% 2.80%

Table 4.1: Comparative results using simple fitness function
+ The computing time for the GA
* The computing time for the best-known solutions



Data | Shifts | RPD Cost RPD Time" Time
(hours) (seconds) | (seconds)
Colx 35 2.9 294.02 2.03 20 22
Gmb 36 5.88 294.87 1.92 75 84
Neur 64 3.23 509.02 -0.05 230 955
Ew3 118 172 1006.49 0.29 105 69
Wag3 51 2.00 409.87 1.60 22 A
F2x 66 313 598.35 6.42 120 >40000
Tram 50 2.04 430.50 2.62 26 24
Trmx 50 2.04 420.89 3.04 79 139
Nb2 77 2.67 831.22 -2.33 351 452
Gal2 244 0.83 2274.22 119 262 >80000
G532 | 274 -0.72 2137.65 2.62 275 >80000
Gall A7 -0.57 2714.88 202 509 >80000
Rrne 397 0.51 3259.20 3.89 1350 >40000
Ave. 1.98% 1.94%

Table 4.2: Comparative results using fuzzy goal-based fithess function
+ The computing time for the GA

* The computing time for the best-known solutions

Most of the problem instances are complex. In some cases, the ILP process of TRACS 1 fails
to find an integer solution after alarge number of nodes of the branch-and-bound search tree
has been explored. In these circumstances, the target is raised by one shift and the ILP process
isrerun. The process is repeated until an integer solution can be found, and may be abandoned

after the target has been raised many times without success (e.g. Neur and Nb2 instances).

The computational results show that results produced by the GA approach are close to the
best known schedules, and results by the fuzzy goalbased fitness function are dightly better
than those by the simpler fitness function. Compared with all the best known solutions,
solution by the fuzzy fitness function has 1.98% more shifts in terms of total shift number,

and is 1.94% more expensive in terms of total cost on average. However, the GA’ s results are



obtained much faster in general, particularly for larger cases. Note that the comparison of
computing time has not included the time taken by the failed ILP runs before the final results

were obtained.

Fixing the parameter used above, each data set was run ten times by varying the pseudo

random number seed at the beginning of each run. The results are summarized in Table 4.3.

Number of Shifts Cost
Data | Intable Distribution of runs Ave. Min. Max. Std.
4.2 -1 = +1 | =2 Dev.
Colx 35 4 5 1 294.32 293.56 297.33 201
Gmb 36 1 9 294.67 293.74 296.44 179
Neur 64 8 2 508.66 508.44 511.38 138
Ew3 118 9 1 1006.73 | 1005.38 | 1008.46 165
Wag3 51 6 4 410.13 400.23 412.65 181
F2x 66 7 3 598.14 589.14 607.32 412
Tram 50 7 3 429.89 428.50 433.22 2.37
Trmx 50 6 4 420.94 418.66 424.32 245
Nb2 77 1 7 2 830.24 830.11 83542 3.02
Gal2 244 1 8 1 2275.18 | 2270.11 | 2279.69 6.58
G532 274 6 2 2 | 2138.63 | 2134.23 | 214231 5.89
Gall 347 4 4 1 | 271344 | 271042 | 2723.14 7.89
Rrne 397 2 5 2 1 | 3260.11 | 3249.33 | 3267.78 8.07

Table 4.3: Results of ten runs with fixed parameters but different random seed numbers

Table 4.3 shows that the proposed GA is quite robust. Comparing the number of shiftsin the
ten runs with the best solutions found before the runs, on average 70.8% of the runs have the
same or better results. In terms of solution costs, there is no remarkable variation between the
runs. Except the four larger problems that have higher standard deviations in cost, no obvious

trend has been detected.
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In addition to finding the best schedule, another task for the GA is to explore whether there
exists a generally good pattern of weight distribution. According to the experiments, it is
found that, in most cases, the GA performs well with the weights vector (0.15, 0.15, 0.15,
0.15, 0.40). Obvioudly, the fractional cover factor dominates while others play smilarly
minor roles. However it is interesting that when we only considered the fractional cover factor
as the unique factor, al the results were no better than those attained by the smple greedy

algorithm.

45 Conclusions

In Chapter 3, it has been found that the weight distribution used for the greedy construction
algorithm would affect the solution quality significantly. A GA is therefore presented in this
chapter, with a simple or fuzzy goa-based fitness function, to derive such elite sets of weight
distribution that could produce superior solutions. The benchmark experimental results
demongtrate that the GA approach is suitable for solving large size rea-world driver

scheduling problems.

There are severa advantages for the proposed GA. First, using the ILP process, very large
problems may have to be decomposed into smaller sub-problems and solved independently.
In contrast, the GA can be used to solve large problems in one go. Secondly, the GA is dways
able to produce a group of solutions, whereas the ILP process in some cases may need severa
runs to increase the target number of shifts and still not be able to find any integer solution.
Thirdly, the GA executes very fast, since its greedy agorithm framework is always capable of

producing a feasible solution after Q (m) iterations, where mis the number of pieces of work.

However, due to the crude greedy and deterministic nature of the schedule construction
method applied, the sdutions produced by the GA are till deemed to be a bit far from

optimal. Naturaly, it would be interesting to know whether these superior solutions produced



could be improved further by other evolutionary strategies. This will be investigated in the

next chapter.



Chapter Five

A Fuzzy Simulated Evolution Algorithm
for Driver Scheduling

5.1 Introduction

Chapter 3 presents a refined greedy heuristic based on fuzzy subsets theory, which uses the
product of over-cover penalty and structural coefficient to decide which shift is going to be
selected in the process of constructing a schedule. The main idea is to set up five criteria,
characterized by fuzzy membership functions, to evaluate the structure and generaly the
goodness of a shift. The fuzzy membership functions are weighted and combined to yield an

overal evauation. Experimental results have shown that this heuristic works better than a

simple greedy one.

It has been found that the weight distribution of the membership functions is vitally important
to the performance of the above greedy heuristic. A GA is therefore presented in Chapter 4 to

derive such anear optimal weight set, and thus obtain the associated good sol ution.



In this Chapter an evolutionary approach is designed to improve the solutions further, based
on the crude solution by the simple heuristic (Li and Kwan, 2001) or the refined solution by
the GA (Li and Kwan, 2001a and 2001b). The evolutionary algorithm combines the features
of iterative improvement and constructive perturbation with the ability to avoid getting stuck
at loca minima. Its framework is a Simulated Evolution (SE) agorithm, in which the steps of
Evaluation and Recongruction have been fuzzified. In the Evaluation step, each shift in a
solution is evaluated by an evaluation function based on its coverage status and five fuzzified
criteria. In the Reconstruction step, a greed-based heuristic with the above derived fuzzy

evauation function is applied to form a complete solution from a partial solution.

This chapter is organized as follows. Section 5.2 gives a brief introduction of the SE
algorithm. Section 5.3 discusses the proposed SE agorithm, describing its procedure and
related operators in detail. Benchmark results using rea-world problems are presented in

section 5.4, and conclusions are given in section 5.5.

5.2 Preliminaries about the Smulated Evolution algorithm

The SE agorithm is a general optimization technique originaly proposed by Kling and
Banerjee (1987) for the placement problem, based on an anaogy to the natura selection
process in biological environments. The biological solution to the adaptation process is the
evaluation from one generation to the next one by eiminating inferior elements and keeping
superior ones for subsequent states. Every element in each generation must constantly prove
its functionality under the current conditions in order to remain unaltered. The purpose of this
process is to create gradualy stable structures which are perfectly adapted to the given
congtraints. To escape from local optima, nature implements genetic mutation which perturbs

the genetic inheritance process, and natural calamities which interfere with natural selection.
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5.2.1 Basic concepts

Basically, the agorithm iteratively operates a sequence of Evaluation, Selection and
Reconstruction steps on one solution. Besides these three steps, some input parameters (e.g.
stopping conditions) and a valid starting solution are initialised in an earlier step called
Initialization. The outline of the basic SE agorithmsis shown in figure 5.1. In the Evaluation
step, the goodness of each eement in the current solution is computed. A measure of
goodness is used probabilistically to select elements to be discarded in the Selection step. An
element with high goodness has a lower probability of being discarded. The resulting partia
solution is then fed to the Reconstruction step, which implements application specific

heuristics to derive a new and complete solution from a partial solution.

Throughout these iterations, the best solution is retained and finally returned as the fina
solution. The basic SE agorithm is a greedy search strategy that achieves improvement
through iterative perturbation and reconstruction. Furthermore, to escape from loca minima
in the solution space, capabilities for uphill moves must be incorporated. Thisis carried out in
the Selection step by probabilistically discarding even some superior elements of the solution.

This process is analogous to mutation in GAs.

[ Initialisation
|

[ Evaluation

i

Selection ]

A4

Reconstruction ]
)

Figure 5.1: SE outline
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522 SE versusother stochastic methods

The main difference between SE and Simulated Annealing is that the latter makes purely
random choices to decide which move, or single change, to perform to generate a new
solution. The new solution is then evaluated on a globa bass, and probabilistically accepted
or discarded. In contrast, by discarding ill-suited elements of a solution and then
reconstructing a new solution, SE is effectively employing along sequence of moves, not just
a single move as in SA, between iterations, thus permitting more complex and more distant

changes between successive solutions.

GA isquite similar to SE in the aspect of using evolution from one generation to the next. GA
needs to maintain a number of solutions during each generation as parents, generating
children by using crossover operators. SE, however, mimics generations of evolution on a
single solution, using domain specific heuristics to repair the partial solution and derive a
complete one. Therefore, SE diminates the extra cpu-time needed to maintain a set of

solutions.

Furthermore, the selection processes for GA and SE are completely different. While GA
probabilistically selects a set of solutions from the parents to retain according to the fitness of
each solution, SE will select the inferior elements of a solution to discard according to the
goodness of each element. Due to these strong convergence characteristics, SE generaly
performs fewer iterations than GA. This is the magjor reason why SE achieves a significant

speedup over Simulated Annealing while GA does not.
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The SE agorithm was originally proposed by Kling and Banerjee (1987) to perform standard
cdl placement, whose objective was to arrange cells of common height and variable widthsin
an integrated circuit layout such that a given cost function is minimised. The SE agorithm
was used to simulate an evolutionary process to achieve the objective. While obtaining results
comparable to or better than the popular Smulated Annealing algorithm, SE performed its

task about ten times faster.

Lin et a. (1989) presented a rip-up-and-reroute approach based on a matrix representation
scheme and the SE technique to solve the detailed routing problem, the last task next to
compaction in a physical design process for VLS| circuits. Experimental results showed that,
when solving al the benchmarks from the literature, the SE-based approach out-performed

the most successful switch-box router in terms of both quality and speed.

Ly and Mowchenko (1993) applied the SE algorithm to the task of scheduling and allocation
in high level synthess, which was concerned with mapping abstract behavioura
specifications of digital systems into structural designs at the register-transfer level. The SE-
based synthesis explored the design space by repeatedly ripping up parts of a design in a
probabilistic manner, and then reconstructing these parts by loca heuristics. This approach
combined rapid design iterations and effective design space exploration to obtain superior

designs.

Bhuyan (1995) presented an agorithm combined with GA and SE techniques for clustering,
which is a process to partition an object space into different classes such that some
optimisation criteria are satisfied. Each string in the GA’s population was a solution state and
consisted of a number of clusters. The globa clustering procedure was based on an GA, while

within each population the individuas were generated based on an SE. Experimental results



showed that this approach could produce better results than that of the best available

heuristics.

Sait et al. (1999) presented afuzzy SE algorithm for the multi-objective VLS| cell placement
problem, which consisted of arranging circuit blocks on a layout surface such that cost was
minimised. They proposed a fuzzy goa-based search strategy combined with a fuzzy
alocation scheme. The alocation scheme tried to minimise multiple objectives and added
controlled randomness as opposed to original deterministic allocation schemes. Experiments

with benchmark tests showed a remarkable improvement in solution quality.

5.3 A fuzzy SE algorithm for driver scheduling

The basic idea behind the agorithm is to determine, for each current schedule, the goodness
of each shift in its current position. The goodness value is a figure of merit (normalized in the
range [0,1]) of how well the shift is used with respect to the other shifts to which it has
relations. The goodnessis high if the other shiftsit is related to cause overlapped work time as
little as possible in the present schedule. Conversely, the goodness is low if those shifts result
in more overlapped work time. The process of evolution keeps the shifts that are well

arranged (having high goodness values) in their present positions and tries to replace the
others that have low goodness values. At a particular iteration, a random number in the range
[0,1] is generated for each generation, and al shifts whose goodness \alues exceed that
number are labelled as “good shifts’ and survive in their present positions; the remaining
shifts are labelled as “bad shifts” and do not survive (become extinct) in the current schedule.
The goodness value therefore corresponds to the survival chance of a shift in a specific
position. The “bad” shifts are removed from the schedule and are put into a queue for the new
assgnment by using constructive techniques. The above steps are iterated upon. Thus the
globa scheduling procedure is based on iterative improvement, while an iterative constructive

process is performed within.
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The agorithm has two places where probabilistic techniques help prevent the solution from
getting stuck at a loca minimum. The first one is the generation of the threshold value to
distinguish “good” shifts from “bad” shifts. The second is in the mutation step. Periodically
during the evolution-based iterative improvement process, the system state is mutated, i.e.
randomly changed. Usually the mutation rate is much less than the evolution rate to ensure

convergence.

In detail, the steps for the proposed fuzzy SE agorithm are described as follows, of which the

Evaluation and Reconstruction steps have been fuzzified.

53.1 Precomputation

Among the large number of potentia shifts S, it would be difficult to judge which one has a
more effective structure than others since the criteria bear some uncertainty. If only either
afirmative or negative measure is given, some middle information is lost leading to
assessment deviation. Thus fuzzy evaluation is used to introduce the concept of a structural
coefficient, which gives shift S;(jT J) aquantitative value f,(S;)T [01] according to its

structural state (described in Section 3.4.2). The more efficient the structure for S; , the larger

f,(S,) is.

The structural coefficient f,(S;) isacomponent of the goodness evauation function, and isa

constant once the five weights involved have been determined. To avoid the repeated

computation in each iteration and thus speed up the SE algorithm, the calculation of f,(S;) is

put outside of the loop as a Precomputation step.



5.3.2 Initialisation

In this step, an initial solution is generated to serve as a seed for the evolutionary process. Due
to the fact that the initial exchange rate is relatively high, the algorithm’s performance is
generaly independent of the quality of the initial generation. However, if this seed is aready
arelatively good solution, the overal computation time will decrease. In our program, the SE

algorithms have been implemented by using the following initial solutions:

As mentioned in Section 3.5.1, an initial solution can be generated by the origina

greedy method for weighted set covering problem of choosing the unused shift

S;(j1 J) with the largest ratio |Sj|/cj , where |Sj| denotes the number of pieces of

work in § and ¢ isthe cost of S, until al the pieces of work are covered.

As explained in Chapter 4, the GA for calibrating the weight distribution of the fuzzy
evaluation function would provide, as a by-product, a good solution. This solution can

be fed into the SE to serve as a good seed.

The steps described in section 5.3.3 to 5.3.6 are executed in sequence in a loop until a user
specified parameter (e.g. cpu-time, tota cost, or number of shifts) is reached or no

improvement has been achieved for a certain number of iterations.

5.3.3 Evaluation

The first step of the iterative loop is the evaluation of the current arrangement for each shift in
a schedule. A goodness value for every shift is established. The purpose of computing this

measure is to determine, besides the structural goodness of shifts, which shifts are in positions
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that lead to less total overlapped work time, and which shifts contribute unnecessarily to large

amounts of overlapped work time.

In this step, goodness of the individual shift in a complete schedule J” is computed. The
formulation of its evaluation function is similar to that used in the greedy heuristic (described
in Section 3.3). The major difference is that the former one only evaluates shifts in the current
schedule, while the latter needs to evaluate all unused shifts from the large potentia shift set,

for the purpose of selecting some shiftsto form a feasible schedule.

The evaluation function F(S..) for shift Sj*(j*T J") should be normalized. Besides the
structural coefficient f2(S;) another normalized function, which reflects the coverage status
for shift S,., should be combined. Hence the evaluation function F(S;.) consists of two
parts: structural coefficient f,(S..)T [0,1] and over-cover pendlty f,(S-)T [0], which can

be formulated as

F(Sj*)z fl(Sjk)’ fZ(SJ*), T aN. (5.
Over-cover pendty f 2(S;+) is based on the consideration that the ratio of the overlapped work

time to total work timein Sj* (j"1 J") isregarded as an important criterion, and thus can be

formulated as

5
.

o , d " .
fi(s)=a@, b.) /ab., "Iy, (5.2)
k=1 k=1

where |Sj*|: number of pieces of work in Shy



_ 10 if work piecekin S; hasbeencoveredby any other shift § in J;

A =l .
1 otherwise;

bj*k = worked time for work pieceskin S,

If every piece of work in S, has been covered by other shift S in J°, then f,(S,.)=0;

conversaly if none of the pieces of work in S; is overlapped, f,(S;)=1.

534 Sdection

In this step it will be determined whether a shift Sj*(j*T J") is retained for the next

generation, or discarded and placed in a queue for the new alocation. This is done by

comparing its goodness F(S;) to (ps - P), where ps isarandom number generated for each
generation in the range [0, 1], and p is a constant smaller than 1.0. If F(S;)>(ps- p) then

S will survive in its present position; otherwise S will be removed from the current
evolutionary schedule. The pieces of work it covers, except those also covered by other shifts
in the solution, are then released for the next Reconstruction. By using this Selection process,

shift S; with larger goodness F(Sj*) has higher probability of surviva in the current

schedule.

The purpose of subtracting p from ps is to improve the SE’s convergence capability. Without

it, in the case of ps closeto 1, nearly al the shifts will be removed from the schedule, which is
obvioudly ineffective in searching. In our experiments, p is set to be 0.3. If p> p,, then set

(P, - ) tobeO.
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To escape from local minima in the solution space, capabilities for uphill moves must be
incorporated. This can be carried out in the Mutation step by probabilistically discarding even

some superior components of the solution. Therefore, following the Selection step, each

retained shift S.. (j"T J7) till has a chance to be mutated, i.e. randomly discarded from the

partial solution at a given rate of p,, and rlease its covered pieces of work, except those also
covered by other retained shifts, for the next Reconstruction. The mutation rate should be

much smaller than the selection rate to guarantee convergence. From empirical results we find

that p,, £0.05 yields better results.

536 Reconstruction

The Recongtruction step takes a partia schedule as the input, and produces a complete
schedule as the output. Since the new schedule should be an evolution of the previous
schedule, al shift assignments in the partial schedule should remain unchanged. Therefore,
the Reconstruction task reduces to that of assigning shifts to al uncovered pieces of work to

repair a broken schedule.

Considering dl the large number of potential shifts with respect to the pieces of work to be
covered, each piece of work i has an associated coverage list with a length of L, i.e.

containing L; shifts that coversit. The greed-based constructor assumes that the desirability of
adding shift S,—(jT J) into the partial schedule increases with its function value F(S;).
However, to introduce diversification, we randomly select one of the candidates, not
necessarily the top candidate, from a Restricted Candidate List (RCL), which consists of k
best shifts. From empirical results we find that k £ 3 achieves better solutions. The steps to

generate a complete schedule based on a partial solution are:
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Step1 J° ={l,l,,..,]} isapartia schedule, where |, istheindex number of each shift.

Step 2 Set 1¢=1 - U(Sr TN,

Step 3 If 1(=f then stop: J” is a complete solution and C(J")=§ (c;: i'Tan.
Otherwise locate a work piece t€i 1¢ having L,=min(L.:id 19, and then
randomly select ashift S, within RCL from the coverage list of row t(¢. Proceed to
sep 4.

Step4 Addrto J°, set 1¢=1¢ S, and return to step 3.

Some of the features in the Reconstruction steps have been considered in the literature, such
as the GRASP algorithm (Feo and Resende, 1995) for the set covering problem, the “Peckish”
(Corne and Ross, 1996) or “Bias Selection” (Burke et al., 1998) for the time-tabling problem,
and the repairing operator of hybrid GAs (Kwan et a., 2001) for the driver scheduling

problem.

It should be noted that the shifts added during schedule Reconstruction might be redundant,
causing al their pieces of work covered by other shifts later, even if each shift is chosen to
cover at least one currently uncovered piece of work. However, in the next Sdlection, these
redundant shifts will be removed automatically because of their zero goodness. Moreover, the
goodness vaues of al shiftsin the current Reconstruction might be different from those in the

next Selection as well due to the updated over-cover penalties at each iteration.

The following example illustrates how the Reconstruction step works and may result in a

redundant shift, and how the next Selection step can remove this redundant shift. To make it

easy to understand, the structural coefficient f,(S;) for al example shifts are regarded as



101

equal to 1, thus the goodness computation F(S;) only concerns with the over-cover penaty

f1(S;) . Furthermore, the random number k in RCL is set to be 1.

[Example] Suppose there are seven shifts § (j=1,2,...,7) and eight pieces of work

I ¢<={1,2,...8} to be covered. The work content for each work pieceis c,, (i(=1,2,...,8).

Let S, ={1234}, S, ={1256}, S ={34,7.8}, S ={34.5}, S ={6}, S ={34,7}, S =(8};

and c,=1 (i¢=1,2,...,8). On this smple example, the length of the coverage list L;,=2 (for

i(=1,25,67,8) and L,,=3 (for i(=34).

The first step is to locate a work piece with the shortest L. In case of atie, the work piece
with the smallest subscript will be chosen. Therefore, one of the shifts will be selected from

coverage list L, which contains S, and S;.

Then

1"1+1"1+1" 1+1° 1
F =f = :1,
(8)=f(s) =T 2

171417 1+1" 1+1° l:1

F(S)= (S) = —

Since F(S)=F(S,), S will be sdected because of its smaller subscript. Thus
[¢=1¢ S ={12,..8}- {1,234} ={56,7,8 , and L, ;=2 (for i(=5,6,7,8). The Ls containing S,

and S, rather than Ls, is chosen because of its smaller subscript.

Then

001+0"1+1"1+1°1 1
F =f = ==,
(%)= 1(S) 1+1+1+1 2
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001+0"1+1°1 1
F(S,)=1(S,)= =_.
( 4) 1( 4) 1+1+1 3

Since F(S,)>F(S,), S will be selected. Thus 1¢=1¢ S, ={56,7,8 - {1,256} ={7,8} , and
L,,=2 (for i¢=7,8). The L; containing S; and S;, rather than L, is chosen because of its

smaller subscript.

Then

001+0°1+1"1+1°1 1
F =f = ==,
(5)=h(S) 1+1+1+1 2

07 1+071+1°1_1
1+1+1 3

F(S)=1.(S) =

Since F(S)>F(S;), S will be sdlected. Thus 1¢=1¢ S, ={7,8 - {3478 =f , and a

coverusing S;, S, and S; is obtained.

It can be easily observed that S, is redundant actualy: using only S, and S can cover dl the
pieces of work. Therefore shifts added by the Reconstruction may be redundant themselves.

However, in the next Evaluation step, the goodnessfor §, S, and S are computed as

0" 1+0°1+0° 1+0°1 _
1+1+1+1

F(S)=1(5)= 0,

001+0"1+1"1+1°1 1
F =f = =—,
(%)= 1(S) 1+1+1+1 2

001+0°1+1"1+41°1 _ 1
1+1+1+1 2

F(S) =1.(S) =

Because of its zero goodness value, S; will be discarded in the following Selection step, no

matter what selection threshold is generated.
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According to the above example, it can be noticed that the function value F(S;) for each
shift § in the Reconstruction step is continuoudly updated, for example F(S,) =1 in the first
iteration and F(S,) =}£ in the second iteration. Moreover, the greedy function F(S;) in

Reconstruction and the goodness function F(S;) in Evaluation are using the same formulae

in two contrasting contexts: the former one is alocal function to decide the next move, while
the latter is a global function to give an overal evauation. That is the reason why the

goodness of shift S, becomes zero in the next Evaluation step.

5.4 Computational results

The above evolutionary approach was coded in Borland C++. All problems were run on the
same Pentium 11 333 MHz with 196 megabyte RAM persona computer using Windows 98
operating system. If no improvement has been achieved for 1000 iterations, the program will
terminate. Furthermore, p,, in Mutation of SE is set to be 5.0%, and size k of RCL in
Reconstruction is set to be 2. Elgpsed time is the time following the solution of the relaxed LP

of TRACSII.

The SE approach combines the two main objectives, minimising the total cost and the number

|
of shifts in a schedule, in a weighted-sum cost function, i.e. minimizing é (cj* +2000),

j =1
where | is number of shifts in the schedule and c is the cost of shift Sj* . Since in most

driver scheduling problems the first objective is to minimize the number of shifts, a large
constant of 2000 per shift gives priority to this. The best known schedules are obtained by
either the TRACS Il system (Proll 1997; Fores et a. 1999) or the hybrid GA by Kwan et a

(1999; 2000) incorporating strong domain knowledge.
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In fact, a problem exists with the above weighted sum function if the Pareto surface is non-
convex (Steuer 1986; Ulungu 1994). Furthermore, the determination of weights per shift will
be difficult. Therefore Section 4.3.3.2 proposes a fuzzy goal-directed search approach for the
hybrid GA with some improved results, where the best schedule is the one that satisfies a
vector of fuzzy goals as much as possible. However, since the best known solutions were al
obtained using a weighted-sum objective function, the SE approach used the same simple

weighted-sum objective function for benchmark comparisons.

Two sets of experiments have been implemented for the SE algorithm. The first set isto use
an initia solution generated by a smple greedy heurigtic as the SE’s input, the purpose of
which is to demonstrate the feasibility of using the SE algorithm in driver scheduling. The
benchmark results in terms of shift number and total cost, including the qualities of the initial
solution and the final SE's solution for individua cases, are compiled in table 5.1. In this
experimental set, the same weight distribution of membership functions, W=(0.20, 0.10, 0.10,

0.20, 0.40), is applied to al these thirteen cases.

Data SE’'sinitid schedule SE’'sfina schedule

Shifts | RPD | Cost (h) | RPD | Shifts| RPD | Cost(h) | % | Time(9
Cox | 44 | 2041| 38262 | 3278 | 35 | 294 | 20485 | 232 25

Gmb 42 | 2353 | 359.93 | 2441 36 5.88 296.82 | 2.59 14
Neur 75 | 2097 | 643.07 | 26.28 63 161 | 509.77 | 0.10 131
Ews| 128 | 1034 | 1241.78 | 23.74 | 118 1.72 | 1006.41 | 0.28 72

Nb2 84 | 12.00 | 1006.67 | 18.28 2.67 | 836.83 | -1.68 189
Gall2 | 291 | 20.25 | 2946.22 | 31.09 | 2 041 | 2263.33 | 0.70 776
G532 | 323 | 17.03 | 2537.32 | 21.80 | 276 0.00 | 2149.25 | 3.17 132
Galll | 402 | 1519 | 330895 | 2434 | 344 | -143 | 2695.33 | 1.29 239
Rme | 471 | 19.24 | 4024.17 | 28.27 | 397 051 | 3277.33 | 4.47 969
Avg. 19.11% 27.05% 1.57% 1.86%

Wag3 59 | 18.00 | 495.66 | 22.86 51 200 | 41560 | 3.02 22
F2x 70 | 938 | 693.72 | 23.39 64 0.00 57223 | 1.78 320
Tram 6l | 2449 | 56412 | 3447 50 204 | 430.78 | 2.69 17
Trmx 63 | 2857 | 57150 | 3991 S0 204 | 42228 | 3.38 69
77
43

Table 5.1: Results of the crude initia and the final SE’s schedules
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The second set isto use a seed generated by a GA (described in Chapter 4) as the SE's input,
the purpose of which isto find how good the SE’s fina solution would be if arelatively good
initial solution is used. The benchmark results in terms of both objectives, including the
qualities of the GA’s initial solution and the final SE's solution for individua case, are
compiled in table 5.2. The GA’s population size is set to be 100 for all problems, and the
weight distributions of membership functions in the SE are the ones that are used to derive

these seeds in the GA.

Data Initial schedule derived by GA SE'sfinad schedule

Shifts | RPD | Cost (h) | RPD | Shifts| RPD | Cost (h) | RPD | Time(s)
Colx 36 | 5.88 30251 | 4.98 35 294 29406 | 205 24
Gmb 37 | 882 30733 | 6.22 35 294 20492 | 194 16

Neur 66 | 645 | 531.02 | 427 62 0.00 507.67 | -0.31 120
Ews | 118 | 172 | 1022.08 | 1.85 117 0.82 | 1000.18 | -0.34 167

Wag3 51 | 200 | 41665 | 3.28 51 200 | 40655 | 0.78 11

F2x 66 | 313 | 61386 | 9.19 62 | -313 | 58328 | 3.75 530
Tram 51 | 408 | 44210 | 539 49 000 | 42156 | 049 23
Trmx 51 | 408 | 42770 | 4.71 49 000 | 41438 | 145 59

Nb2 76 | 133 | 88192 | 362 74 | -133 | 83060 | -241 216
Gall2 | 244 | 083 | 2287.68 | 1.79 243 041 | 225053 | 0.13 981
G532 | 277 | 036 | 215238 | 3.32 271 | -181 | 210433 | 1.02 130
Galll | 350 | 029 | 274932 | 331 A3 | -172 | 2663.05 | 0.07 358
Rrme | 407 | 3.04 | 3399.62 | 8.36 390 | -127 | 324275 | 3.36 1320
Avg. 3.23% 4.63% -0.01% 0.92%

Table 5.2: Reaults of the GA’sinitial and the final SE’s schedule

Using the initial solutions derived from GAs, the SE approach has successfully solved two
problems which were not solved by TRACS |1 with better solutions and much faster speed
than other heuristics, and has produced superior results for the two larger problems (G532 and
Galll) whose sizes necessitated decomposition for TRACS I1. Although the ILP of the latest
TRACS Il version can now solve the largest problem (Rrne) without decomposition, the SE

approach has outperformed it in terms of total shift number.
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Computational results show that the results of the new SE approach are very close to that of
TRACS 11, regardless which kind of initiad solution is used as the seed. In particular,
compared with all the best known solutions, the SE’s solution using the GA’s result as the
seed is even 0.01% better in terms of total shift number, and is only 0.92% more expensive in
terms of total cost on average. However, our results are much faster in general, especidly for

larger cases.

To test the robustness of the proposed SE algorithm, each data set started from the seed
derived from the GA was n ten times by fixing the parameter and varying the pseudo
random number seed at the beginning. The summary results are showed in Table 5.3.
Comparing the number of shiftsin the ten times with the best solutions found before the runs,
on average 56.9% of the runs have the same or better results. In terms of solution costs, there
is no noticeable variation between the runs. Except the last four larger cases that have higher

standard deviations in cost, no obvious trend can be observed.

Number of Shifts Cost
Data | Intable Distribution of runs Ave. Min. Max. Std.
52 -1 = +1 +20r Dev.

more

Colx 35 5 5 294.12 20376 | 29583 | 161
Gmb 35 6 4 295.07 203.82 | 29544 | 158
Neur 62 4 4 2 508.33 507.32 | 51064 | 1.47
Ew3 117 1 7 2 1003.37 | 99836 | 1006.41 | 256
Wag3 51 7 3 407.31 40568 | 41056 | 1.77
F2x 62 4 3 3 584.82 57223 | 58923 | 386
Tram 49 6 4 422.14 420.13 426.65 1.73
Trmx 49 5 5 41547 413.83 420.21 2.14
Nb2 74 6 2 2 830.44 82086 | 83524 | 287
Gdl2 243 9 1 2251.03 | 2249.35 | 2265.69 | 5.85
G532 271 5 2 3 2106.45 | 2102.32 | 212213 | 6.13
Gdll 343 1 4 3 2 2663.46 | 2661.72 | 2673.41| 5.98
Rrne 390 1 3 2 4 3244.16 | 3238.57 | 3259.87 | 7.64

Table 5.3: Results of ten runs with fixed parameters but different random seed numbers
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Figure 5.2 and Figure 5.3 respectively depicts the improvement of the schedule from aspects

of total cost and shift number versus the number of iterations for the Tram case. Although the

actua values may differ among various cases, the characteristic shapes of the curves are

similar.
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55 Conclusons

A fuzzy evolutionary approach for driver scheduling is presented in this chapter. It
incorporates the idea of fuzzy evauation into a SE agorithm, combining the features of
iterative improvement and constructive perturbation, to explore solution space effectively and
obtain superior schedules. This new approach is novel because it is the first time that the SE
algorithm has been applied to the driver scheduling problem. Experiments with benchmark
tests using data from the transportation industry demonstrate the strengths of the proposed

agorithm in solving large size driver scheduling problems.

Applying SE agorithms to driver scheduling problems has several advantages. Firgt, it is
simple to carry out because it utilizes greedy agorithm and local heuristic. Secondly, due to
its characteristics of maintaining only a single schedule at each generation and discarding
inferior shifts from this schedule, the SE agorithm converges fast compared with other meta-
heurigtics. Thirdly, combined with probabilistic hill climbing, the SE achieves superior

schedules by effective exploration of the solution space.

Although this work is presented in terms of driver scheduling, it is suggested that, besides
genera set covering problems (to be introduced in the following Chapter 6), this SE approach
could aso be applied to many other scheduling problems whose solutions can be decomposed
into elements. Even the process of identifying fuzzified criteria could be generalized and

applied elsewhere.
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Chapter Six

A Fuzzy SE Approach with Taguchi
Parameter Setting for the
Set Covering Problem

6.1 Introduction

Set Covering Problems (SCPs) are difficult zero-one optimization problems, which have been
proven to be NP-complete (Garey and Johnson, 1979). The SCP is the problem of finding a

subset of the columnsof an m” n zero-one matrix
A={a;1{0L;i=12,..,mj=12..n}
that covers al rows at a minimum cost, based on a set of costs {c;;j =12,...,n}. Defining

x; =1 if column j (with an associated cost ¢; >0) is in the solution and x; =0 otherwise, the

SCPisto

Minimize § c;x, (6.1)

=1
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Subjectto: § a;x; 21, il 1={1,2..., m (6.2)
j=1
x=0orl, jlJ={1,2...,n} (6.3)

Constraint (6.2) ensures that each row is covered by at least one column, and (6.3) requires
that whole columns be used. In the case that all the cost coefficients ¢; are equal, the problem

is called a unicost SCP, and the objective is to minimize the number of columns.

Integer Linear Programming (ILP) is the traditiona approach for the SCP. The relaxed Linear
Programming (LP) for the SCP, i.e. ignoring the integer constraint, is first solved. Then, the
branch-and-bound tree-search procedure is used to obtain the integer solution. For large size
SCPs, this method often has computational difficulty in getting an integer solution, athough

the relaxed LP can usualy be solved relatively quickly in polynomia time (Karmarkar 1984).

In this chapter, a new fuzzy evolutionary approach for solving large-scale SCP problems is
presented. The approach involves a number of parameters and evaluation weights, the
combinations of which are efficiently experimented using Taguchi’s orthogonal arrays
(Taguchi 1986, Taguchi 1987). Data sets for the bus and rail driver scheduling problem are

used to test the performance of this approach.

This chapter reports on improvements in the fuzzy SE approach, and its generalization from

driver scheduling to the class of SCP:

For fuzzy evauation, the criteria used are now generalized for the SCP without any
domain specific knowledge in their formulation.
In SE’s Evaluation step, a new evaluation function has been designed to replace the

former function that was specialized for the driver scheduling problem.
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In SE’'s Construction step, the function for assessing which columns to be used for
repairing the broken solution is different from that in the Evaluation step for
discarding columns.

Taguchi’s experimental design (Taguchi 1986; Taguchi 1987) is utilized to reliably
set the seven parameters in our proposed agorithm. This method uses orthogonal
arrays to perform an initia study of the wide range of parameter space, with a small

number of experiments.

The method of fuzzy evaluation for the SCP is described first. A fuzzy SE agorithm is then
presented. Taguchi’s orthogonal experimental design for parameter settings will be briefly
introduced. Comparative results using large-scale real world problems are given, which are

followed by some conclusions.

6.2 Fuzzy evaluation for set covering

Like the process of forming a schedule, the process of constructing a possible solution by the
greedy heuristic is inherently sequential. Among the large number of columns to be chosen, it
would be difficult to judge which one is more effective than others because the criteria bear
some uncertainty. Fuzzy set theory (Zadeh 1965) is therefore used to assign each column a
guantitative value according to its structural state. The fitter the structure for a column, the

larger itsvalue is.

6.2.1 Construction of the factor set

The main factors concerning the column’s structure are the number of rowsit covers (u,), its
cost (uy), the ratio of its number of covered rows to its cost (us), and the average coverage
number (number of columns covering the row) of all the rows covered by this column (uy).

Furthermore, since the relaxed LP in the set covering model can be solved relatively easly,
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the fractional cover of the rdlaxed LP solution, if the column is included in this solution, is

used as the fifth factor (us).

The formation of these five factorsis very similar to that used in driver scheduling. However,
all the factors that involve domain knowledge of driver scheduling (i.e. u,, us, and u,) have
been removed. New factors particularly relevant to the general set covering problem have

been added.

6.2.1.1 Factor u;

The objective for set covering is to minimize the total cost of the solution. However in many
real-world problems, the total cost is usualy increased with the number of columns in the
solution. To reduce the number of columns used as more as possible, the number of rows each

column covers should be taken into account as a criterion about the column structure.

Considering two columns that cover different number of rows, one column should be more
efficient than another because it covers more rows and thus potentially minimises the number
of columns in the final solution. If every column in the solution covers as many rows as
possible, it can be concluded that, in this solution, the number of column is possibly fewer
thus leading to a lower total cost. Therefore, smilar to the function for driver scheduling, an
associated membership function can be designed based on the assumption that the goodness

of acolumn j(jT J) generally increases with the number of rows it covers, denoted as b;.

The membership functions mjl(jT J) for factorsu; is defined as
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Ve, -c, 0 b, +c,
izﬁ: Cj £ X < ]12 -
[ i1 vilg N
m1=| b 2 b ) Jl‘Jv (64)
T .- b.0 .+ C.
j1- 2 —2= 2T gex £b,
i o&bncng 2

m
o
where x;; =b; = q g ;
i=1
b;;= maximum number of rows;

C;1= minimum number of rows.

6.2.1.2 Factor u,

To achieve the objective of minimum total cost, the cost for individual column in the final
solution should be as small as possible. Therefore, factor u, is based on the assumption that
the goodness of a column j(jT J) generaly decreases with its cost ¢;. Compared with the
non-linear membership function used for the driver scheduling problem, a linear functions

defined as mjz(jT J) below seemsto perform better.
LIS LR (6.5)

where x;, =¢;;
b;, = maximum cost;

Cj2 = minimum cost.
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6.2.1.3 Factor u;

According to the above analysis for factor u, and factor u,, to achieve a satisfactory solution,
the ideal columns to be used would be those covering as many rows as possible, and at the
same time having the cost as small as possible. Unfortunately, in practice these two factors

are often contradictory because a column covering more rows usually has alarger cost.

To get a baance between the number of covered rows and the cost for a column, besides these
absolute vaues, the relative ratio of number of covered rows to its cost can be regarded as the
third important criterion. Based on the assumption that the goodness of a column j(jT J)
generally increases with the ratio of the number of covered rows to its cost, denoted as

b;/c; , the membership function mjg(jT J) for factor us is therefore defined as

i .2

L ®X.,-Ci,0 b..+c,

.'.Z‘é—bJB BT, CisEXj3< 21
1 8Y3 - Cizg

T &z~ by ¢ bt
il- 2 g £XJ-3£bJ-3
t &bja- Cja 2

il g, (6.6)

h B bj _a ]
where xj3= ")/, =Q g; Ci;
i =
b= maximum ratio;

Cj3= minimum ratio.
6.2.1.4 Factor u,

Considering al the columns with respect to all the rows to be covered, each row i hasan

associated coverage list containing L; columns that are able to cover i, where
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L =a a,il I. (6.7)

Normally each column covers at least one row, and the number of rows contained in column |

m
is é_aij. Therefore, for dl the rows in column j, the total coverage number is
i=1

m n
a (a; " 4 a;), and the average coverage number, denoted asa ;, is formulated as
i=1 j=1

a-=5n(ai-'gai-) 2 LT d. 6.8
’%J%’/%"’“ (68)

The average coverage number is an index about whether the components in a column are
heavily covered by other columns in general. To find an economic cover, it is reasonable to
regard the columns whose rows are heavily covered by others as to be less important. Based
on this assumption, the goodness of column j(jT J) generally decreases with the average
coverage number of al the rows covered by column j. Thus the membership functions

my,(j1 J) for factorsu, is defined as
e LS (69)
where x;, =a ;

b, = maximum average coverage number;

C;4 = Minimum average coverage number.
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6.2.1.5 Factor us

A popular method for column selection is ILP, which is NP-hard (Garey and Johnson, 1979).
Large problems would have to be divided into sub-problems, and in some cases the ILP
process may have difficulties in finding an integer solution. In contrast, the relaxed fractional
problem in which the solution vector is not required to be integral, XI [0,1]", is much easier:
the optimal solution for the relaxed problem can be found in polynomia time (Karmarker
1984). In addition, Srinivasan (1995) showed that the approximation guarantee for the

Randomised Rounding Algorithm (RRA) on fractional coversis

m m

) +1In In( )+0(1)%. (6.10)

Min Min (4]

Crra E Cpin gn( c

Here Cz, iSthe number of setsin the subcover output by the RRA, and Gy, is the optimum

value of the relaxed LP for the set covering problem. Although Slavik (1996) proved the
performance guarantee for the RRA was even worse than that of the simple greedy agorithm,
it still can be concluded that at least the relaxed solution provides some useful information

about the distribution of the optimal integer solution. For the same reason described in
Section 3.4.1.5, the membership function rqs(jT J) for the fractiona cover factor can be

defined as

ms=ie ,if column j isin the fractional cover; (6.11)
fo , otherwise,

Let ms =1when x;5s =bjs, and m; =0.01when X5 =Cjs,
where x; = fractiona value of column j in the relaxed LP solution;

b5 = maximum value in fractional cover;
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Cj5= minimum value in fractiona cover.

Therefore,

(6.12)

6.2.2 Fuzzy evaluation

As described in Section 3.5.2, three aggregation operators in different categories (namely
intersection operator, union operator, arithmetic mean operator) have been investigated for the
driver scheduling problem, among which the arithmetic mean operator takes into account the
compensative effect of individua factors, and performs best in general. Because of the
similarity of these two problems, the arithmetic mean operator is applied again to aggregate

all proposed criteriafor set covering.

Therefore, for column j(jT J), the formulation of its dructural coefficient f,(j) by the

method of fuzzy evaluation is
- 05 -, .
fi()=a (W, "my),"j1I J. (6.13)
k=1
Where w, (w, 3 0) denotes the corresponding weights for factor ux (k=1, 2, 3, 4, 5),

satisfying

(6.14)

T Qo
=
1
=
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The main task for the fuzzy evauation modd is to find a suitable weight distribution among
the fuzzy membership functions. These five weights, along with two other parameters to be
given in Section 6.3.3 and 6.3.4, could be determined by Taguchi’s orthogonal experimental

design, which will be described in Section 6.4.

6.3 A fuzzy Simulated Evolution algorithm

In this section, afuzzy SE agorithm is applied to mimic generations of evolution on asingle
solution. It executes a sequence of Construction, Evaluation, Selection and Mutation stepsin
aloop until a user specified parameter (e.g. cpu-time, or the solution cost) is reached or no
improvement has been achieved for a number of iterations. Throughout the evolution, the

currently best solution is retained and finally returned as the final solution.

6.3.1 Construction

The Construction step takes a partial solution as the input, and produces a complete solution
as the output. All the existing column assignments in the partial solution remain unaffected.
Therefore, the Construction step is to assign columnsto all the uncovered rows to complete a

partial solution. Note that the partial solution in the first iteration of the loop is set to be

empty.

Considering all columns with respect to all rows to be covered, ech of the remaining
unassigned rows i has a coverage list of length L , i.e. containing L; possible columns that can
cover it. The greed-based constructor assumes that the desirability of adding column j(jT J)
into the partial solution generally increases with its function value F(j), which can be

formulated as



119

F&j)= () aa;,"il J. (6.15)

e

Wheref,(j) isthe structural coefficient defined as formula (6.13), and | ¢ is the set of rows
to be covered. However, to introduce diversification, one of the candidates, not necessarily
the top candidate, is randomly selected from a Restricted Candidate List (RCL) consisting of
columns with r largest function values F(j). From empirical studies we find that r £ 4

achieves better solutions.

Let J° = {1,2,... 1} the set of columns in a partial solution, and S :{i|a”. =1,il I} theset

of rows covered by column j, the steps to generate a complete solution are:

Stepl  Setle=1-[J@S::j'13"),
Step2 If 1¢=f then stop: J"is a complete solution and C(J*)=é(cj*:j*i JY).

Otherwise locate arow td 1¢having L,=min(L,:id 19, and then randomly

sdect acolumn S ki {1,...,r}, within RCL from the coverage list of row t¢.
Proceed to step 3.

Step3  Addkto J',set 1¢=1¢ S, and return to step 2.

Before the Construction, some rows may already be over-covered, i.e. covered nore than
once by the existing columns in the partia solution. The other columns added by the
Construction step are each chosen to cover at least one currently uncovered row, but they
increase the amount of over-cover as well. Thus some columns might become redundant later,
causing all their rows covered by other columns. It should be pointed out that, in the next
Sdection, these redundant columns will be removed automatically because of their zero

goodness.
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A dmilar condruction phase has been considered for the timetabling problem, under a
number of different names of “Peckish” in (Corne and Ross, 1996) or “Bias Selection” in
(Burke et a., 1998). The main difference for the proposed Construction step is it uses a more

comprehensive evaluation function to direct the searching process.

6.3.2 Evaluation

Similar to the Evaluation of SE for driver scheduling (Described in section 5.3.3), the overal

evauation function F(j") consists of two parts: structural coefficient f,(j")T [0,1] and

over-cover pendlty f,(j")1 [01], which can be formulated as

F(iD) =10 (7)1 3. (6.16)

.....

f,(i=ab. /aa. 13, (6.17)
i=1 i=1
where
i0, 4 a; >1
b. =t i (6.18)

{1, otherwise.

If every row in | has been covered by one or more other columns in J° as well, then

f,(j") =0; conversdly if none of therowsin " isover-covered, f,(j)=1.
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6.3.3 Sdlection

In this step it will be determined whether a column j"(j'T J°) is retained for the next
generation, or discarded and placed in a queue for the new alocation. This is done by

comparing its goodness F(j”) to (p,- k), where ps is arandom number generated for each
generation in the range [0, 1], and ks is avalue smaller than 1.0. If F(j") > (p, - k,) then |

will survive in its present position; otherwise |° will be removed from the current

evolutionary solution. The rows it covers, except those also covered by other columns in the

solution, are then released for the next Construction. By using this Selection process, column

j” with larger goodness F(j*) has higher probability of survival in the current solution.

The purpose of subtracting k.1 [0,1] from ps is to improve the SE's convergence capability.

A suitable setting of the selection value ks isimportant to the algorithm’s performance.

6.3.4 Mutation

Following the Selection step, each retained column " ("1 J”) has a chance to be mutated,
i.e. randomly discarded from the partial solution at a given rate of p,, and releases its covered
rows, except those also covered by other retained columns, for the next generation. The
mutation rate p,, should be much smaller than the selection rate to guarantee convergence.

Like the sdlection valve ks, pr, is dso an influencing parameter in the SE.

6.4 Taguchi method for parameter design

Seven parameters are investigated in the proposed algorithm, namely weight w for criteria uy

k=1, 2, 3, 4, 5) in the fuzzy evauation model, selection value ks in the Selection step, and
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mutation rate p,, in the Mutation step. These parameters will influence the SE’s performance
significantly, and are difficult to determine. Common approaches for parameter design lead
either to along time span for trying out all combinations, or to a premature termination of the

design process with results far from optimal in most cases.

As described in Chapter 4, a Genetic Algorithm (GA) was presented in the earlier stage of this
research (Li and Kwan, 20024) to calibrate the fuzzy weight distribution, and some good
solutions were obtained as by-products. However, the weights so obtained may not be always
good for the SE even though the results were rather satisfactory in some cases (Li and Kwan
2001a and 2001b). The first reason is that GA and SE are evolutionary algorithms with very
different mechanisms, therefore a good weight distribution under GA may not be aways
suitable for SE. The second reason is due to the different construction methods: the one used

in GA is deterministic rather than randomized asisin SE.

For full experimentation on the fuzzy SE algorithm, the first six parameters at five value
levels each would require 15,625 (5°) possible experimental evaluations, each of which is a
process of iterative improvement and thus is quite time-consuming. The time to conduct such
adetailed search for the optimal solution is prohibitive. Naturally, it is desirable to reduce the
number of experiments to a practical point, and still reach satisfactory solution. For the
problem of choosing appropriate parameter configurations, Taguchi's orthogona experimental

design provides an effective solution.

6.4.1 Preiminaries

Orthogonal experimental design for parameter optimisation provides a systematic and
efficient approach to determine near optimal parameter settings. The objective is to select the
best combination of control factors (parameters) so that the product or process is most robust

with respect to noise factors. The orthogona experimental design applies orthogonal arrays



123

from experimental design theory to study alarge number of variables with a small number of
trials, significantly reducing the number of experimental configurations. Moreover, in case
that parameter-interaction space is relatively smooth, the conclusions drawn from such small-
scale experiments are valid over the entire experimental region spanned by the control factors

and their settings.

6.4.1.1 Orthogonal Array

Orthogonal arrays are a specia set of Latin squares (Dénes and Keedwell, 1974), constructed
by Taguchi to lay out the experimental design. In this array, the columns are said to be
mutually orthogona or balanced. That is, for any pair of columns, al combinations of factor
levels occur, and occur an equal number of times. By using the table, the required
experimental situations are defined. Consider a 3-level and 4-factor orthogonal array shown in

Table 6.1 below:

© 0 N O O b~ W N R
W W W NNDNR R R >
W N P WNRFP ®OWN R T
N P W R WNWDN RO
P W NN P W w N O

Table 6.1: Orthogonal array Lo(3")

The array is designated by the symbol Le(3"), involving four factors A, B, C, and D, each at
three levels one (1), two (2), and three (3). The array has a size of nine rows and four

columns. The numbers (1/2/3) in the row indicate the factor levels and each row represents
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specific test characteristics of each experiment. The verticd columns represent the
experimental factors to be studied using that array. Each of the columns contains three
assignments at each levels (1, 2, or 3) for the corresponding factors. These conditions an
combine in nine possible ways (i.e. (1,1), (1,2), (1,3), (2,1), (2,2), (2,3), (3,1), (3,2), (3,3)) for

two factors, with 3* possible combinations of levels for al the four factors.

The orthogonal array facilitates the experimental design process by assigning factors to the
appropriate columns. In this case, referring to table 1, factors A, B, C, and D are arbitrarily
assigned to columns 1, 2, 3, and 4 respectively. From the table, nine trials of experiments are
needed, with the level of each factor for each tria-run as indicated in the array. The
experimenta descriptions are reflected through the condition level. The experimenter may use
different designators for the columns, but the nine triakruns will cover al combinations,
independent of column definition. In this way, the orthogonal array assures consistency of the
design carried out by different experimenters. The orthogonal array aso ensures that factors
influencing the quality of solutions are properly investigated and controlled during the initial

design stage.

6.4.1.2 Comparison to thetraditional method of factorial design

The traditiona method of factorial design is to investigate al possible combinations and
conditions in an experiment that involves multiple factors. Let A be the number of levels for
each factor, and B be the number of factors involved, then the number of possible designs N
(number of trids) by this method is

N=AB. (6.19)
If the factorial design is implemented for the four 3level factors in Table 6.1, the tota
number of trials needed would be a full combination of 81 (3*) trids, rather than 9 trials by

the orthogonal array Lo(3").
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The reason why by using orthogona array superior parameter configurations could be found
by only a small number of experiments is because of its mutual balance. For example, in
Table 6.1, each column contains three ones, three twos, and three threes; and any pair of
columns contain all combinations of levels (i.e. (1,1), (1,2), (1,3), (2,1), (2,2), (2,3), (3,1),
(3,2), (3,3)) exactly once. It is the characteristic of mutual balance that guarantees the choice

of combinations producing dlite solutions.

Furthermore, in the factorial design process, the means of levels combination laid out is not
specified, which may lead to different results on the same experimental subject each time a
trial is conducted. However, Taguchi’s orthogonal array is able to smplify and standardize
the factoriad design in a manner that will produce consistent and similar results, even though
the trials are implemented by different experimenters. Hence, two different investigators will

have smilar results and a standard design methodol ogy.

The concept of consistent results and standard design methodology through orthogonal array
analysis is important, because it allows the experimenter to produce two outcomes of the
same quality standards, using the same materias, but with differences in the experimental
process. This is possible since, through orthogonal array experimental analysis, the factors
influencing the quality of results can be identified, controlled, and subsequently compensated
during the early design stage. Thus, the quality of the outcome itself is able to adapt to the

experimental process, rather than depends on the experimental process.

In summary, in case that parameter-interaction space is relatively smooth, compared with the
traditional factorial design method, Taguchi’s orthogona array is considered to be superior
since:

It is efficient in handling larger numbers of factor variables,
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It can produce similar and consistent results, even though the experiments may be

carried out by different experimenters,

It enables determination of the contribution of each quality-influencing factor.

The limitation of orthogonal arraysis that they can only be applied at the initial design stage.
There are some situations where orthogonal array techniques are not available, such as a

process involving control factors that vary in time and cannot be quantified exactly.

6.4.2 Theapproach of orthogonal experimental design

Due to of the characteristic of mutua balance in orthogonal arrays, Taguchi’s approach can
explore the solution space as extensive as possible. Moreover, due to the following ANOVA
process, Taguchi’s approach can also exploit the solution space as much as possible. The goal
that uses this gpproach in our application is to determine the best setting for each parameter so
that the solution cost is minimized. Basically, this approach consists of the following steps of

defining the parameter space, determining the factor levels, and analysis of variance.

6.4.2.1 Definition of the parameter ranges

The first step towards the goal is to define the ranges of seven control factors in the proposed
algorithm. Without any pre-knowledge about the influence of the weights w (k=1, 2, 3, 4, 5)
on the algorithm, it is reasonable to set the levels of wi evenly over the full applicable range
of [0, 1]. However the range for the selection value ks and the mutation rate ps should be much
narrower, since according to the former experience, the SE usually yields better solutions with
ks T [0.20, 0.30] and ps 1 [0.05, 0.06] respectively, and these two parameters are relatively

independent of wi.
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6.4.2.2 Determination of thefactor levels

This step is to define the initial levels of the control factors, and sequentially choose the most
suitable orthogonal array. In order to facilitate the description of this step, three definitions are

given first asfollows:

[Definition 6.1] A factor-level table is a tableau, where each row represents a control factor

and each column represents an individua level.

[Definition 6.2] In a factor-leve table, degrees of freedom for a factor are the number of
levelsin this factor minus one, and degrees of freedom for the table are the sum of degrees of

freedom for all factors.

[Definition 6.3] Degrees of freedom for an orthogonal array are the number of trials minus

one. For example, for orthogonalarray Lo (3") in Table 6.1, degrees of freedom are eight.

To gain an intuitive fed for degrees of freedom, consider taking one ball from a box of n

balls. Every time we come to take one ball and have a choice, until we come to the last one,

and then there is no choice. Thus we have n - 1 choices, i.e. degrees of freedom.

In theory, the initia levels of the individua control factor can be set arbitrarily, and the
associated orthogonal array can be chosen flexibly as well without rigorous regulations.
However, in practice two principles below are normally complied with:
1) Degrees of freedom for the factor-level table should be no larger than degrees of
freedom for the orthogonal array to be used;
2) The number of factors in the factor-level table should be no larger than the number of

columnsin the orthogonal array.
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To achieve the goa with the necessary precision, there should be as many levels in each
factor as possible. However, in this situation, the number of trials needed would be increased
explosively. The most suitable orthogona array is the one that maintains the best balance: it
uses the largest number of levels, but conducts the smalest number of trials. Since the
number of factors currently investigated has been fixed to seven, the task for the orthogonal
experimental design is to determine the largest number of levels for each factor, and the

smallest number of rows (trials) in the associated orthogonal array.

Let A be the number of levels for each factor, and L be the number of rows (trials) in the

orthogonal array. Normally L is the square of an integer, denoted as

L=k?, ki {23,..1}. (6.20)

According to the 1* principle above,

L-1 k?-1

7 (A-1)EL-10 AE +10 AE

+1 (6.22)

P if k =6,then A£ 6, wherek is the smallest integer to be satisfied

U if L=36then A£6.

Therefore the largest number of levels for each factor is 6, the smallest number of triasis 36,
and the most ideal orthogonal is array Lgs (6'). It is effective to deal with the seven factors

using only 36 trials, rather than 279,936 (6") experimental trials.

Unfortunately, currently the author has difficulty in finding a readily available Lz6(6")
configuration from related literature. To design such an array manually will consume alot of
time, which may be left as the future work of this research. On the contrary, an L ,5(5°) can be

found easily (Taguchi 1987), which is the optimal design to handle six 5-level factors.
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As mentioned above, the design of orthogonal array is flexible. Studying the proposed
algorithm, the seventh factor ps is relatively less important than the others due to the relatively
minor role of the mutation step in SE. To maintain a balance between necessary precision and
number of experiments, factors w, (k=1, 2, 3, 4, 5) and ks are finally defined to be 5 levels,
and ps to be 2 levels respectively (shown in Table 6.2). These seven factors are assigned to an
Lso(2'x5°%) orthogonal array shown in Table 6.3. Thisis an economica and efficient design for
dealing with these seven factors using only 50 trials, rather than 31,250 (2x5°) experimental

trials.

Control factors Levels

1 2 3 4 5
1.Weight w, 0.1 0.3 05 07 0.9
2.Weight w, 0.1 0.3 05 07 0.9
3.Weight ws 0.1 0.3 05 07 0.9
4.Weight w, 0.1 0.3 05 07 0.9
5.Weight ws 0.1 0.3 05 07 0.9
6.Selectionvaveks | 022 024 026 028 030
7.Mutation rate p, 005 0.06 - - -

Table 6.2: Control factors and their levels
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Trid Control factors

No. 1w, 2.W, 3.w; 4.w, 5.Ws 6.k 7.Pm
1 0.1(2) 0.1(2) 0.1(2) 0.1(2) 0.1(2) 0.22(1) 0.05(2)
2 0.1(2) 0.3(2) 0.3(2) 0.3(2) 0.3(2) 0.24(2) 0.05(2)
3 0.1(2) 0.5(3) 0.5(3) 0.5(3) 0.5(3) 0.26(3) 0.05(2)
4 0.1(2) 0.7(4) 0.7(4) 0.7(4) 0.7(4) 0.28(4) 0.05(2)
5 0.1(2) 0.9(5) 0.9(5) 0.9(5) 0.9(5) 0.30(5) 0.05(2)
6 0.3(2) 0.1(2) 0.3(2) 0.5(3) 0.7(4) 0.30(5) 0.05(2)
7 0.3(2) 0.3(2) 0.5(3) 0.7(%) 0.9(5) 0.22(1) 0.05(1)
8 0.3(2) 0.5(3) 0.7(4) 0.9(5) 0.1(1) 0.24(2) 0.05(1)
9 0.3(2) 0.7(4) 0.9(5) 0.1(2) 0.3(2 0.26(3) 0.05(2)
10 0.3(2) 0.9(5) 0.1(2) 0.3(2) 0.5(3) 0.28(4) 0.05(2)
11 0.5(3) 0.1(2) 0.5(3) 0.9(5) 0.3(2) 0.28(4) 0.05(2)
12 0.5(3) 0.3(2) 0.7(4) 0.1(2) 0.5(3) 0.30(5) 0.05(2)

13 | 053 053 09(5) 032 074 0221 005Q2)
14 | 053 07(4) 01(1) 05(3) 09(5) 0242 0052)
15 | 053 09(5) 032 07(4 01(1) 0263 0052)
16 | 07(4) 01(1) 074 03(2) 09>5) 0263 0052
17 | 074) 032 09(5) 053 01(1) 0284) 005Q2)
18 | 07(4) 053 011 07(4 032 0305 0.05(1)
19 | 074) 074 032 09(5) 053 0221 005Q2)
20 | 07(4 095) 053 01(1) 07(4 0242 005(1)
21 | 0905 01(1) 09(5) 07(4) 053 0242 0.05(1)
2 | 095 032 011 095 07(4 026(3) 00501
23 | 095 053 032 01(1) 0905 0284 00502
24 | 09(5) 074 053 032 011 0305 00502)
25 | 09(5) 095 07(4) 053 032 0221 00502
26 | 011) 01(1) 01(1) 01(1) 011 02201 006(2
27 | 01(1) 032 032 032 032 0242 00602
28 | 01(1) 053 053 053 053 026(3) 00602

29 | 01(1) 07(4) 07(4) 07(4) 07(4) 0284) 006(2
30 | 041) 095 095 095 095 0305 00602
31 | 032 011 032 053 07(4 0305 00602
32 | 032 032 053 074 0905 022(1) 006(2
33 | 032 053 074 095 01(1) 0242 006(2
34 | 032 074 095 01(1) 032 026(3) 00602
35 | 032 095 011 032 053 0284 00602
36 | 053) 01(1) 053 095 03(2) 0284) 00602
37 | 053 032 074 011 053 0305 00602
38 | 053 053 095 032 07(4) 0221 00602
39 | 053 074 011 053 0905 0242 006(2
40 | 053 095) 032 07(4) 011 026(3) 006(2
4 | 07(44) 011 074 032 0905 026(3) 006(2
42 | 07(44) 032 095 053 01(1) 0284 006(2
43 | 07(4) 053 011 074 032 0305 006(2
44 | 07(4) 074 032 095 053 0221 00602
45 | 07(4) 09(5) 053 01(1) 07(4 0242 006(2
46 | 095 01(1) 0905 07(4) 053 0242 0.06(2
47 | 095 032 011 095 07(4 026(3) 006(2
48 | 095 053 032 01(1) 0905 0284 006(2
49 | 095 074 053 032 011 0305 00602
50 | 095 095) 07(4) 053 032 0221 00602

Table 6.3: Lso(2'x5°) orthogonal array (the values in parenthesis represent the factors levels)
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At the same time, it would be interesting to know how good the results derived from the
above 50 trials are, without further consideration of al other possible combinations. Because
of the characteristic of mutual balance in orthogona arrays, this performance ratio can be
guaranteed by the following theorem in non-parametric statistics (The triplex design group,

1987):

[Theorem 6.1] Suppose random variable X is subject to a probabilistically continuous
distribution F(X), and Xy, X2, ..., X, ae ssimple samples (or random observation values) of X. If
X1, X2, ..., Xn @re sorted in ascending order, denoted as x, £ x, £...£ X, , then the performance

ratioforx (i=1,2, ..., n)is

E[F(x)]= ﬁ : (6.22)

In particular,

E[F(x,)]= n—rll : (6.23)

Formula (6.23) means that the best experimental result in these simple samples is

n

probabilistically better than 1% of al possible results defined in the whole discrete
n+

solution space. In this case, the best result by Lso(2'%5°) is better than 98.04% (:5%1)

results of all 31,250 trials.
6.4.2.3 Analyssof variance

The step isto analyse the results obtained from the orthogonal array to achieve the following
objectives:
To evaluate the contribution of individua quality-influencing factors in the

experimental design process;
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To obtain the best, or optimum, condition for a process, so that good quality
characteristics can be sustained;

To approximate the response of the design parameters under the optimum conditions.

The contribution of individual quality-influencing factorsis crucial to the control enforced on
the experimenta design. A statistical method, Analysis of Variance (ANOVA), is commonly
used to analyse the results of the orthogonal experimental design, and to determine how much
variation each factor has contributed. By studying the main effects of each factor, the genera
tendencies of the influencing factors can be characterized. The characteristics can be
controlled, such that a lower, or a higher, value in a particular factor produces the preferred
result. Thus, the levels of influencing factors to produce the best results can be predicted. For
more detals regarding the ANOVA method for orthogona array, (Taguchi 1987) can be

referred to.

Since the main purpose of this paper is to test the suitability of the proposed approach for the
set covering problem, the author only performs an initia investigation about the wide range of
parameter settings, and uses orthogonal experimental design to find a suitable, but coarse,
range of the control factors. Therefore, this research simply chooses the parameter
configuration from Table 6.3 that leads to the best results, and skips the follow-on process of

ANOVA and further experiments.

6.5 Computational results

The algorithm presented in this paper was coded in Borland C++, and run on a Pentium 11 333
MHz machine with 196 megabyte RAM using the Windows 98 operating system. To test the
proposed algorithm, eight realworld large size set covering problems originating from the

public transport industry are solved. Problem instances prefixed by B are bus problems, and T
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are train problems. Details of these test problems, including the number of rows, number of

columns, and density (percentage of ones in the a; matrix), are given in Table 6.4.

Data | Rows | Columns | Density Best known solutions
(%) Cover Cost Elapsed time
Size (hours) (seconds)
T1* 340 29380 1.90 62 509.25 955
T2 437 25099 1.26 116 1003.55 69
T3 546 43743 1.80 64 562.22 >40000
B1* 613 22568 1.58 75 851.09 452

T4 707 144339 0.51 242 2247.52 >80000
T5 1164 29465 0.36 276 2083.15 >80000
T6 1495 28639 0.30 349 2661.12 >80000
T7 1873 50000 0.27 395 3137.20 >80000

Table 6.4: Details of the test problems and related best known solutions

Note: Results of cases marked by asterisks are obtained by the hybrid GA, while others are
obtained by the specialized set covering ILP.

The best known schedules are mainly obtained by the TRACS |1 system (Fores et a., 1999), a
commercial system based on ILP. In cases (marked by asterisk) that TRACS |1 has difficulty
in finding solutions, results achieved by hybrid Genetic Algorithms incorporating strong
domain knowledge (Kwan et a., 2000) are cited. Since the purpose of the research in this
chapter is to investigate the performance of the proposed approach for general set covering
problems, the objective for comparison is the minimum cost, and the number of columns is
only given for information. Note that these best known solutions are obtained under a balance
between objectives of minimising number of shifts and total cost, and therefore may be

further improved if the minimum total cost is regarded as the only objective.

To give fair comparison of the computationa results, each test problem was run by using the

same pseudo random number seed at the beginning of the program. The best parameter
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settings are those producing the smallest solution cost among the 50 trials of each orthogonal

design.

To save the computationa time, in the process of applying the orthogona experimental
design of Lso(2'%5°), iteration number of the SE algorithm is set to be 200 for al problems.
Due to the capability of relatively fast convergence, the parameter sets that produce the
smallest solution cost within the shorter iteration of 200 are used to carry out further SE
searches and obtain the final solutions. If no improvement has been achieved for 1000
iterations, the program will be terminated. Since the proposed agorithm, the hybrid GA, and
the branch-and-bound phase of the ILP process al take the relaxed LP solutions as starting

points, the elapsed time for them are compared.

6.5.1 Experiment 1

As described above, due to the characteristic of mutual balance, the orthogonal array is used
to study the wide range of parameter space by a small number of experiments. Using the
instance of B1, Figure 6.1 gives full demonstration about the variation of solutions for the 50

triakruns defined by Lso(2'%5°).

RPD 12T
0
L * ¢
8 . T amm o
* o * .  J * ‘0’ . ¢ .
4 1ot * o - *e o * ‘e
0t ¢ * e o
[0 o o °* Yor . ¢
L * * L2
0 *
_4 -| 1 1 1 1 1 1 1 1 1 1 N0.0ftrid

0O 5 10 15 20 25 30 35 40 45 50

¢ Solution of each trid

Figure 6.1. RPD of solution cost versustrial number in Lsy(2'x5°)
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Table 6.5 shows the summary results of 50 trials by parameters associated with the orthogonal

array Lso(2'x5°), and Table 6.6 shows the summary results of 50 trials by randomised

parameter sets The indices of Maximum, Minimum, Mean, and Standard Deviation in

statistics are applied to study the distribution of the experimental results in terms of solution

cost. Let t; be the variable of solution cost, then

Minimum=min{t,,...,t;;}, (6.24)
Maximum = max{t,,...,t;,} , (6.25)
_
Meant=qt; /50, (6.26)
i=1
. N _
Standard Deviation=_|g (t, - T)? / 49. (6.27)
i=1
Data Minimum Maximum Mean Standard
Deviation
Cost RPD(%)| Cost RPD(%)| Cost RPD(%) Cost
T1 529.28 3.93 57152 1223 549.13 7.83 10.97
T2 | 1004.55 0.10 | 1074.17 7.04 | 1026.12 2.25 15.23
T3 586.68 435 663.72 18.05 62842 1177 17.34
B1 | 850.60 -0.06 924.45 8.62 889.45 451 18.26
T4 | 2269.07 0.96 | 2490.70 10.82 | 2329.33 3.64 56.83
T5 | 2158.53 3.62 | 232277 1150 | 222258 6.69 37.46
T6 | 2764.55 3.89 [ 2989.70 1235 | 2855.26 7.30 46.13
T7 | 3321.70 588 | 3636.07 1590 | 351404 1201 64.76
Ave. 2.83% 12.06% 7.00% 33.37

Table 6.5: Summary results of 50 trials by Lso(2'X5°)
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Data Minimum Maximum Mean Standard
Deviation
Cost RPD(%)| Cost RPD(%)| Cost RPD(%) Cost
T1 | 535.73 5.20 570.72 12.07 547.45 7.50 10.19

T2 | 101768 141 | 1070.13 6.63 | 1024.04 2.04 12.72
T3 | 594.35 5.71 66048 17.48 627.38 1159 16.02
Bl | 869.33 214 912.33 7.20 883.68 3.83 16.96
T4 | 2291.73 197 | 2461.62 953 | 2325.59 347 49.34
T5 | 216042 371 | 229280 1006 | 2219.40 6.54 30.42
T6 | 279855 516 | 295235 1094 | 2854.21 7.26 42.15
T7 | 3460.3 998 | 360645 1495 | 350240 1164 63.60
Ave. 4.41% 11.10% 6.73% 30.18

Table 6.6: Summary results of 50 trials by randomised parameter sets

The Mean is a measure to evaluate the average performance of the proposed algorithm, while
the Standard Deviation is a summary measure of the differences of each result from the mean.
According to the RPD results in Table 6.5 and Table 6.6, the average RPD of Minimum,
Maximum, and Standard Deviation of Lsy(2'x5°) are 2.83%, 12.06%, and 33.37 respectively,
while those produced by random parameters are 4.41%, 11.10%, and 30.18 respectively.
Compared with results achieved by randomised parameters, on average results using
orthogonal arrays have better Minimum, worse Maximum, and larger Standard Deviation. It
demonstrates that results achieved by the orthogonal array are more evenly scattered
throughout the solution space, some of which are inevitably elite. Therefore, it is not

necessary to study the full solution space for a near-optimal solution.

On the other hand, it can be noticed that some Minimum valuesin Table 6.6 are aso similar
to those in Table 3.11. However, the chance of using randomised parameters to produce elite
solutions is purely random, while the chance for using an orthogonal array to find these €elite

solutions is more predictable.
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The final cost values of these test problems are compiled in Table 6.7. Computational results
show that the solutions derived by the SE approach are very close to those of the previous
best known solutions. The negative percentage deviation indicates the percentage
improvement from the previous best known solution. In terms of cover size, our results are
0.92% larger on average. But in terms of solution cost, our results are only 0.02% larger on
average: in 4 out of the 8 test problems, the SE-based heuristic has generated better cost

values.

Data SE’sfinal solution
Cover RPD Cost RPD | Elapsed time
Size (%) (hours) (%) (seconds)
Tl 65 4.84 507.53 -0.34 520
T2 118 172 994.90 -0.86 161
T3 66 313 565.38 0.56 730
Bl 75 0.00 819.68 -3.69 168
T4 243 041 2246.32 -0.05 1398
T5 273 -1.09 2082.77 0.68 286
T6 345 -1.15 2674.18 0.49 316
T7 393 -0.51 3243.11 3.38 2482
Ave. 0.92% 0.02%

Table 6.7: Comparative results

In term of the elapsed time, compared with those of other approaches, it is obvious that in

general our results are obtained in much faster speed, particularly for larger cases.

In addition to finding the best solutions, another task for the first orthogona experimental
design is to explore whether there exists a generally good pattern of parameter setting.
According to the experiments using orthogonal array Lso(2'x5°), in all cases, the best result is
produced by the same parameter configuration of (0.3, 0.9, 0.1, 0.3, 0.5, 0.28, 0.06) for w

k=1, 2, 3,4, 5), ks, and p, respectively.
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6.5.2 Experiment 2

Unlike the ranges of selection value ks and mutation rate ps, the levels of weights wy (k=1, 2,
3, 4, 5) are evenly set over the full applicable range of [0, 1] without the pre-knowledge about
the influence of w on the algorithm (described in the beginning of Section 6.4.2). According
to the experimental results in Section 6.5.1, it is a very surprising finding that out of 50
different parameter sets, one set gave the best results in al cases. Naturally, one might be
interested to know whether those results in Table 6.7 could be improved further by simply
implementing another orthogonal experimental design, which uses the same Lgy(2'%x5°%)

orthogonal array, but is carried out in narrower ranges of values for the factors.

Table 6.8 shows the definition of the control factors and their levels in the narrower ranges,
which are centred respectively on the parameter configuration of (0.3, 0.9, 0.1, 0.3, 0.5, 0.28,

0.06) found above. These seven factors are assigned to an Lso(2'x5%) orthogonal array shown

in Table 6.9.
Control factors Levels

1 2 3 4 5
1. Weight w; 0.20 0.25 0.30 0.35 0.40
2. Weight w;, 0.80 0.85 0.90 0.95 1.00
3. Weight w; 0.00 0.05 0.10 0.15 0.20
4. Weight w, 0.20 0.25 0.30 0.35 0.40
5. Weight ws 0.40 0.45 0.50 0.55 0.60
6. SHection vaveks | 0270 0275 0280 028 0.290
7. Mutation rate p, 0.055 0.060 - - -

Table 6.8: Control factors and their levelsin the narrower ranges
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Trid

Control factors

No. 1w, 2.W, 3.wW; 4.w, 5.Ws 6.k 7.Pm
1 020(1) 080(1) 0001 0201 040(1) 02701 0.055(2)
2 020(1) 0852 0052 0252 0452 02752  0.055(1)
3 020(1) 090(3) 0103) 0303 0503 02803  0.055(1)
4 020(1) 095(4) 0154 0354 0554 0.2854) 0.05501)
5 020(1) 1005) 02005) 040(5) 060(5) 0290(05) 0.055(1)
6 0252 080(1) 0052 0303 0554 029005) 0.0550)
7 025(2) 0852 010(3) 0354 060(5) 0.270(1) 0.055(1)
8 0252 090(3) 0.154) 0405) 0401 02752  0.055(1)
9 0252 0954) 0205) 0201 0452 0.280(3) 0.055(2)

10 | 0.252) 1.005) 000(1) 0252 0503 0.2854) 0.055(1)
11 030(3) 080(1) 0103 040(55) 0452  0.2854) 0.055(1)
12 030(3) 08532 0154 0201 0503 0290055) 0.055(1)
13 030(3) 090(3) 0205) 0252 0554 02701 0.055(1)
14 | 0.30(3) 0954) 0001 0303 06005 02752  0.05502)
15 030(3) 1.00(5) 0052 0354 040(1) 02803 0.055(1)
16 035(4) 080(1) 0154 0252 060(5) 0.280(3) 0.0551)
17 035(4) 0852 02005) 0303 040(1) 0.2854) 0.055(1)
18 0354) 090(3) 0001 0354 0452 0290055) 0.055(2)
19 035(4) 0954) 0052 04005) 0503 02701 0.055(2)
20 | 0354) 1005) 0103 020(1) 0554) 02752  0.055(1)
21 04055) 080(1) 0205) 0354 0503 02752  0.055(1)
22 04055) 0852 0001 040(55) 0554 02803 0.05501)
23 04055) 090(3) 0052 0201 06005) 02854) 0.0550)
24 | 040050 0954) 01030 0252 040(1) 029050 0.055(1)
25 04050 1000550 0154 03013 0452 0.270(1) 0.055(1)
26 020(1) 080(1) 0.00(1) 0201 0401 0.270(1) 0.060(2
27 020(1) 0852 0052 0252 0452 02752 0.060(2)
28 0201)) 090(3) 0103 0303 0503 02803 0.060(2
29 020(1) 0954) 0154 0354 0554) 0.2854) 0.060(2

30 | 020(1) 100(5) 0200550 040(5) 060(5) 0290055  0.060(2)

31 0252 080(1) 0052 0303 0554 029005 0.060(2

32 0252 0852 0103) 0.354) 06055) 02701 0.060(2

33 0252 090(3) 0.15(4) 040(5) 040(1) 02752 0.060(2

A | 0252 0954) 02005) 0201 0452 0.2803) 0.060(2)

35 025(2) 10050 000(1) 0252 0503 0.2854) 0.060(2

36 030(3) 080(1) 0.10(3) 0405) 0452 0.2854) 0.060(2

37 030(3) 0852 0154 020(1) 0503 0290055 0.060(2

38 030(3) 090(3) 0205) 0252 0554 02701 0.060(2

39 030(3) 0954) 0001 0303 06005 02752 0.060(2

40 | 030(3) 100(5 0052 0354 0401 02803 0.060(2

41 035(4) 080(1) 0154 0252 060(5) 02803 0.060(2

42 035(4) 0852 0205) 0303 040(1) 02854 0.060(2

43 0.35(4) 090(3) 0001 0354 0452 0290055) 0.060(2

44 | 035(4) 095(4) 0052 040(5) 050(3) 0.270(1) 0.060(2)

45 035(4) 100050 010(3) 0.20(1) 0554) 02752 0.060(2)

46 0405) 080(1) 0205) 0354 0503 02752  0.060(2

47 04055) 0852 0001 040(5) 0554 02803 0.060(2

48 04055) 090(3) 0052 0201 060(5) 02854) 0.060(2

49 04055) 0954) 010(3) 0252 040(1) 0290055) 0.060(2

50 | 04050 1.005) 0154 030(3) 0452 0.270(1) 0.060(2)

Table 6.9: Lso(2'x5°) orthogonal array in the narrower ranges




The final results of these test problems are compiled in Table 6.10. It shows that compared
with results by the parameters defined in the larger ranges, the solutions derived by the
refined parameter settings have been dightly improved. On average, the solution cost of the
proposed approach is 0.33% lower, and the associated cover size are only 0.69% larger. In T7,

the new solution cost is worse by 3.25%. However, it should be noted that the cover size of

T7 in our solution is smaller by 1.01%.

140

Data SE'sfina solution
Cover RPD Cost RPD Elapsed time
Size (%) (hours) (%) (seconds)

T1 64 323 504.13 -101 384
T2 118 172 993.35 -101 161
T3 66 313 565.38 0.56 730
Bl 74 -1.33 814.53 -4.30 668
T4 243 041 2246.32 -0.05 1398
T5 275 -0.36 2073.36 -047 468
T6 348 -0.29 2670.57 0.36 420
T7 391 -1.01 3239.23 3.25 962

Ave. 0.69% -0.33%

Table 6.10: Comparative results by the refined parameter settings

With respect to the variation of solutions for individual cases, Figure 6.2 depicts the
improvement of the cost value versus the number of iterations for the instance of T1.

Although the actual values may differ among various cases, the characteristic shapes of the

curvesaresimilar.
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Figure 6.2: RPD of solution cost (in current and best schedule respectively)

versus iteration number

6.6 Conclusions

In this chapter, a novel fuzzy SE approach for the non-unicost set covering problem has been
developed. A function is first designed to evaluate the structure of each column under
fuzzified factors. The formation of these factors is similar to that in driver scheduling. The
difference is that factors involved in domain knowledge of driver scheduling are removed,
replacing with new factors that only concern the set covering problem. This function is
embedded into the Construction step and the Evaluation step of the proposed Simulated
Evolution agorithm, which mimics generations of evolution on a single solution. In each
generation an unfit portion of the working solution is removed. The broken solution is then

repaired by a greedy algorithm speciaized for the set covering problem.

In the proposed approach, there are seven investigated control factors in total. Using the
“change-one-factor-at-a-time” method of experimentation, a prohibitively large number of

31,250 experiments needs to be carried out. In this research, the Lso(2'x5°%) orthogonal array
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from Taguchi’ s experimental design theory is applied to reduce the number of experiments to

50.

Instances from driver scheduling have been used to test the evolutionary approach. These test
problems can be regarded as general set covering problems, since they are handled without
the benefit of domain knowledge of driver scheduling. It has demonstrated that for very large-
scale problems, in genera the proposed approach can produce superior solutions much faster
than some other approaches. Particularly, this approach is suitable for situations where quick

and high-quality solutions are desirable.

Future work may test the performance of this approach on randomly generated problems,

which can be obtained from the OR-Library (Beasley 1990).
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Chapter Seven

Conclusions

7.1 Summary

The bus and rail driver scheduling problem and its commercial importance have been
presented. A review of meta-heuristics used for the set covering problem has also been
provided. The success and limitations of the current methods for driver scheduling have been
described. Early heuristic approaches are heavily dependent on problem-specif ic knowledge
and hard to adapt between different organisations, and they generaly have difficulty in
producing satisfactory results. On the other hand, mixtures of heuristics and mathematical
programming have been very successful, although they till have their weaknesses. This fact

stimulated investigations on other approaches.

This research has investigated two evolutionary algorithms to model and solve the driver
scheduling problem. These agorithms start from a predefined large set of possible lega

shifts, from which a small set of shiftsis selected to produce a schedule.



144

The new approach has achieved success in solving large-scale driver scheduling problems
from different companies, with comparable results to the TRACS Il system, a commercial
system based on an ILP solver with more than 100 person-years devoted in its development.
In particular, in several very large cases, our results are even better, and indicate directions for

further research.

Based on fuzzy set theory, the first phase of this research presents a novel evolutionary
approach for the driver scheduling problem, which involves solving a set covering model. At
the heart of this approach is afunction for evaluating, under fuzzified criteria, potential driver
shifts. A GA is first employed to calibrate the weight distribution among fuzzy membership
functions. A SE algorithm then mimics generations of evolution on the single schedule
produced by the GA. In each generation an unfit portion of the working schedule is removed.
The broken schedule is then reconstructed by means of a greedy algorithm, using the weight
distribution derived by the GA. The basic SE agorithm is a greedy search strategy that

achieves improvement through iterative perturbation and reconstruction.

The next phase of this research reports on new improvement in the fuzzy SE approach, and its
generalisation of the approach to the class of set covering. The set covering problem is
basicaly to cover the rows of a zero-one matrix with a subset of columns at minimal cost,
which has a very wide area of important applications. Taguchi’s orthogona experimental
design is applied. This has the effect of comprehensively evaluating the combinations of

factors, athough only a small fraction of the possible combinations is explicitly experimented

upon.
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7.2 Achievementsin thisresearch

Driver scheduling problems are a worldwide problem, and any advances in the techniques

available for solving such problems are highly significant. The major contributions of the

research are listed as follows:

1)

2)

3

4)

This research presents a refined greedy algorithm based on fuzzy subsets theory to
effectively solve the problem about ranking the potential shifts in each iteration. The
new agorithm is novel because it is the first time that fuzzy set theory has been

applied to the driver scheduling problem.

A GA is presented to achieve the goa of solving the large problems without
decomposition. The benchmark experimental results have shown that its results are

closed to the best known solutions (normally no worse than 2%) in much faster speed.

To further improve the GA’s results and <ill maintain a balance between time
complexity and accuracy, this research applies a general optimization technique of SE
algorithm. It is also the first time that the SE algorithm has been introduced for the
driver scheduling problem. The computational results are very close to the best known
solution (normally no worse than 1%). For some large cases which cause difficulties

for TRACS I, itsresults are even better, and are more than 50 times faster in speed.

Although the main theme of this research is presented in terms of driver scheduling, it
is suggested that, the proposed SE approach could also be applied to many other
scheduling problems whose solutions can be decomposed into elements. Even the

process of identifying fuzzified criteria could be generalized and applied elsewhere.
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The fuzzy SE approach for the driver scheduling problem has been generalized
successfully to the set covering problem, without using any specia domain
knowledge. It means that this research is valuable to many applications that can be
formulated using the set covering model. Furthermore, the proposed Taguchi’s
orthogonal experimental design for the related parameter settings is rather

unconventional.

7.3 Futurework

The following points discuss some of the issues that could be investigated as the future work

of thisresearch:

1

2)

With respect to the ability of treating side constraints such as restricting the number
of shifts of some depots, solution quality could be improved further if they are taken
into account. This might be implemented by adding a criterion of side constraints (us)

as the additional measure for shift structure.

With respect to the SE algorithm, further research could be continued to improve its
searching efficiency. For example, the sdection threshold in the Selection step and
the mutation rate in the Mutation step are currently set to be constants in all
generations, which might be improved by more sophisticated, such as alaptive,

operators.

Furthermore, the two objectives of minimising cost and number of shifts in the SE
algorithm have been combined in the form of a weighted-sum function, which will
cause problems if the Pareto surface is non-convex. Most popular evolutionary
algorithms for multiobjective optimisation maintain a population of solutions, from

which individuas are selected for reproduction. However, since only one solution is



3)

147

produced in each iteration of the SE, these population-based strategies are difficult to
apply. Knowles and Corne (2000) presented a Pareto Archived Evolution Strategy
(PAES), which employs a loca search to the true multiobjective problem to find
diverse solutions in the Pareto optimal set. Further research could be implemented by
using the idea of PAES to achieve a better balance between the two objectives of

driver scheduling.

With respect to the further improvement about solution quality for the set covering
problem, according to the experimental results there is no significant improvement in
genera even if the refined parameter settings have been used. The reason might be
that it is only the relative levels of two or three parameters that are important, or that
some weights are much more sensitive than others. Therefore, to improve the solution
quality further, the statistical method, analysis of variance, needs to be carried out to
analyse the results of the orthogonal experimental design, and to determine how much

variation each factor has contributed.
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