A Constraint Programming Pre-Processor for
Duty Scheduling

by

Colin J. Layfield

Submitted in accordance with the requirements
for the degree of Doctor of Philosophy.

The University of Leeds
School of Computing

September 2002

The candidate confirms that the work submitted is his own and the
appropriate credit has been given where reference has been made to the
work of others.

Abstract

The bus driver scheduling problem involves assigning a set of drivers to cover all available
bus work such that every bus is assigned a driver, the number of duties is minimised
and each duty conforms to the rules governing them regarding maximum driving time
and so on. Generally this problem is solved using mathematical programming methods.
The University of Leeds has developed a driver scheduling system, TRACS-II, that solves
the bus driver scheduling problem by first generating a large set of potential duties and

selecting a subset of these via the associated set covering ILP to form the schedule.

The size of the set of potential duties used by TRACS-II is directly related to the number of
relief opportunities present in the original bus schedule. Each relief opportunity potentially
serves as a handover point between two bus shifts. A bus schedule containing many relief
opportunities can have a very large set of potential shifts generated to cover the buswork.
The complexity of the ILP is related to the number of relief opportunities present in the

bus schedule.

This thesis describes a pre-processing stage for the TRACS-II scheduling system. The
pre-processor selects potentially useful relief opportunities from bus schedule. The shifts
generated by TRACS-II are restricted to the subset of relief opportunities made available
to it by the pre-processor. The reduction of the number of relief opportunities serves to
reduce the complexity of the resulting set covering problem by reducing the number of

variables and constraints in the ILP.

The pre-processor itself uses constraint programming to find several possible ways of se-
lecting relief opportunities from the morning and evening portions of the bus schedule.
This is done by exploiting useful properties found in good driver schedules, specifically the
chaining together of driver duties such that when one driver takes a break another driver
finishing a break continues on the same bus. The pre-processor described has been shown
to be effective on a wide variety of schedules in that the minimum number of drivers is

almost always used and, in some cases, cheaper schedules can be produced.

Acknowledgements

First and foremost I'd like to offer my thanks to my supervisors Dr. Barbara Smith and

Professor Anthony Wren for both their guidance and support.

The interest and support of my friends and family is also appreciated. The support from
my parents has also inspired me to be able to finish this piece of work. My partner Stella
has also been most helpful and understanding during the writing up phase. Again, a big

thank you is in order.

Last but not least, I'd like to acknowledge Dr. Anton Colijn whose belief in me all those
years ago has enabled me to experience and do the things I’ve done in my academic career

thus far. Keep writing those funny programs!

ii

Declarations

Some parts of the work presented in this thesis have been published in the following

articles:

B M. Smith, C. J. Layfield and A. Wren, A Constraint Programming Pre-processor for
a Bus Driver Scheduling System. In E. Freuder and R. Wallace, editors, Constraint Pro-
gramming and Large Scale Optimization, DIMACS Series in Discrete Mathematics and

Theoretical Computer Science. American Mathematical Society, Volume 57, 2001, pp.
131-148.

C. J. Layfield, B. M. Smith and A. Wren, Bus relief point selection using constraint pro-
gramming. Proceedings of the 1st International Conference on the Practical Applications
of Constraint Technologies and Logic Programming, PACLP99, The Practical Application
Company, 1999, pp. 537-552.

C. J. Layfield, B. M. Smith and A. Wren, Relief Opportunity Selection for Bus Driver
Scheduling, Fourth ILOG International Users Meeting, October 5 & 6, Paris, France, 1998.

iii

Contents

1 Introduction

1.1

Driver Scheduling

1.2 Bus Driver and Vehicle Scheduling Terminology

1.3

Thesis Outline

2 Review of Driver Scheduling Methods

2.1

2.2

2.3

Heuristic Methods
211 TRACS
2.1.2 RUCUS & RUCUSII . .
2.1.3 COMPACS
214 HOT & HOT-II
2.1.5 INTERPLAN

Mathematical Programming . . .

2.2.1 Set Covering Formulation

222 IMPACS.
223 EXPRESS.........
224 HASTUS
2.2.5 CREW-OPT
Metaheuristics

2.3.1 Genetic Algorithms. . . .

2.3.1.1 Greedy Genetic Algorithms and Optimizing Mutations

2.3.1.2 Genetic Algorithms with Embedded Combinatorial Traits .

v

14
16
17
19
20
21
22
23
24
26
27
27
28
30

2.3.2 Ant Systems 32
2.3.2.1 An Ant System for Bus Driver Scheduling. 33

24 Discussionl 34
3 Constraint Programming 37
3.1 Imtroduction. e 37
3.2 Constraint Satisfaction Problems (CSP) 37
3.21 CSP Definition L 38
3.2.2 Constraints 39
3.2.3 Node Consistency it 41
3.24 Arc Consistency 41
3.24.1 Achieving Arc Consistency 42

3.2.5 Path Comsistency Lo 47
3.26 Kk Consistencyo e e 49
3.2.7 Search Algorithms 50
3.2.7.1 Backtracking (BT) 50

3.2.7.2 Backjumping (BJ)o L 52

3.2.7.3 Backmarking (BM), 54

3.2.74 Forward Checking (FC) 56

3.2.7.5 Full Lookahead (AC-L) 57

3.2.7.6 Variable Ordering 58

3.2.7.7 Value Ordering 59

3.278 Hybrids 60

3.28 ILOG Solver e 60
3.2.9 Summary e e 63

3.3 Scheduling with Constraint Programming 64
3.3.1 The COBRA System 64
332 Yunesetal 65
3.3.3 Curtis, Smithand Wren 66
3.3.4 Air Crew Scheduling L. 68

3.3.4.1 The CREM System 69

3.3.4.2 Guerinik and Van Caneghem 70

3.3.5 Summary oL e 71

4 The TRACS II System 72
4.1 Introduction e 72
4.2 The TRACS-II System i e 73
4.2.1 Step 1- The BUILD Process 73
4.2.2 Step 2 - The SIEVE Process 76
4.2.3 Step 3 - The SCHEDULE Process 7
4.2.3.1 TRACS-II Mathematical Model 7

4.2.3.2 Solution Techniques 79

4233 REDUCE. 80

4234 BranchandBound. 81

4.2.4 Step 4 - The DISPLAY Process 82

4.3 SUmmaryo o e e e e e e e e e 82
44 Useof TRACS-II o o . . o e 83
4.4.1 Limitations 84

45 Conclusions L 84
5 Mealbreak Chains 86
5.1 Introduction. L 86
5.2 Properties of Mealbreak Chains 87
5.3 Mealbreak Chains and Peak Periods 88
5.4 Mealbreak Chain Generation — Previous Work 89
5.4.1 Assignment Method 92
5.4.2 Network Programming Method 93
5.4.3 Mathematical Programming Method 94

5.5 Using Generated Mealbreak Chains 98
5.6 Summary e e e e e 98

vi

6 The
6.1

6.2

6.3
6.4

6.5
6.6

6.7

7 The

7.1

7.2
7.3

CROSS CSP 100
Introduction L 100
6.1.1 Earlier Work 101
Problem Definition and Outline of Approach 101
6.2.1 Hypothesis s 103
6.2.2 Schedule Generation using Constraint Programming 104
Data Used o . 105
The CROSS CSP: Variables and Domains 105
6.4.1 Pattern Variables o o L. 106
6.4.2 Next Variableso 106
6.4.3 PrevVariables o L. 106
6.4.4 PV; Variable Domains 107
6.4.5 Nexi(; ;) Variable Domains 109
6.4.6 Prev;) Variable Domains Lo 110
The CROSS CSP: Operational Constraints 111
The CROSS CSP: Model Constraints 113
6.6.1 Constraints Involving Nexzt(; ;) and Prev(; ;) Variables 113
6.6.2 Constraints Involving PV; Variables 115
6.6.3 Lookahead performed when PV variables are bound 119
6.6.4 Lookahead performed when Nezt variables are bound 120
6.6.5 Miscellaneous Constraints 121
SUMmAaryo e e e e e e 122
CROSS Algorithm 124
Introduction L 124
7.1.1 Earlier Work 125
Simplified Algorithm Outline 126
Algorithm 127
7.3.1 TImplementation oL o 128
7.3.2 StartNewChain - Starting a new chain 129

vii

7.3.3 BindFirstVariable - Binding the first Unbound Variable on a Run-

ning Boardo Lo 130
7.3.4 ContinueNextChain - When a Nexi; ;) Variable has been Bound 132
7.3.5 ContinuePrevChain - When a Prev; ;) Variable has been Bound 133

7.3.6 Backtrackingo o 133
7.3.7 Random Variable Assignment 134
7.3.8 Random Pattern Variable Assignment 135
7.3.9 Probabilistic Next(; ;) and Prev(; ;) Variable Assignment 139
7.3.10 Relief Opportunity Percentage 141
7.4 Evening Relief Opportunity Selection 141
7.5 Three and Four Part Duties 142
7.6 SUmMmaryo e e e e e e e e e e e e e 143
Results 146
8.1 Imtroduction. e 146
8.2 Original Solutions 146
8.3 Non Peaked Dataset Results. 150
83.1 R222Results 150
832 EA2Results 154
833 TRAMResults o 155
834 R61Results 156
835 UMAEResults 157
8.4 Peaked Dataset Results 160
84.1 R207 Results 160
84.2 RT7TA Results o 161
843 HEOl Results 163
8.5 The Effect of the REDUCE Process 165
8.6 Summary e e 167
Summary and Conclusions 169
9.1 Introduction. e 169

9.2 Summary
9.3 Further Work
9.3.1 Morning vs Evening Periods
9.3.2 Duty Properties
9.3.3 Variable and Value Ordering

9.3.4 Other types of Duty Scheduling Problems

9.4 Potential Applications of the CROSS System

9.5 Research Achievements.

Sample TRACS-ITI Data Files
A.1 Sample Labour File (R77A Stockwell Garage)
A.2 Sample Vehicle File (R77A Stockwell Garage)

Morning Results

Evening Results

Combined Results

Differences Between New and Old TRACS-II

ix

190
190
192

195

202

208

213

List of Figures

1.1
1.2

2.1
2.2
2.3

3.1
3.2
3.3
3.4
3.5
3.6
3.7

4.1
4.2
4.3
4.4

5.1
5.2
5.3
5.4

Example of a Running Board, 3
Example of Duty 5
TRACS: Marked Relief Times Example 10
TRACS: Morning Schedule Example 12
Reproduction using Fertilized Cover 29
Making (z,y) and (y,z) Arc Consistent 42
Search Tree Example0 Lo o o o 43
z,y and z Made Arc Consistent, 43
An Arc Consistent Constraint Network 48
4-Queens Search Using Chronological Backtracking (BT) 52
4-Queens Search Using Forward Checking (FC) 56
4-Queens Search Using Full Lookahead (AC-L) 58
The TRACS-IT Process« . o i it it i e s it e e e s 74
Redundant Duty Deletion 76
Bus Block Before REDUCE Process 80
Bus Block After REDUCE Process . - o 81
No Mealbreak Chain Example 87
Mealbreak Chain Example 88
Morning Bus Workings Example 90
Mealbreak Chain Problem Network Flow Diagram 94

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8

7.1
7.2
7.3
7.4
7.5
7.6

8.1

TRACS-II with Relief Opportunity Selection 102

Sample Morning Schedule L. 107
Pattern Variable Domains for Sample Morning Schedule 108
Next ;) Domain Values oo oo 109
Next Variable Domains for Sample Morning Schedule Bus 1 110
Prev(; jy Domain Values 0oL Lo 111
Prev Variable Domains for Sample Morning Schedule Bus 1 111
Spell on Running Board = 117
Simplified CROSS Algorithm 126
CROSS Mealbreak Chain Search Strategy 128
Binding PV before Next 131
Ash Grove Route 11 (London) Morning Bus Workings 136

Ash Grove Non Peaked Bus Workings Sorted Pattern Variables’ Domains . 136

Ash Grove Peaked Bus Workings Sorted Pattern Variables’ Domains 138

R222 Bus Workings L 153

xi

List of Tables

5.1 Matrix of Potential Mealbreak Links 91
8.1 Original TRACS-II Test Problem Solutions 147
8.2 Test Data Propertieso oo o 149
8.3 R222 - Morning/Evening/Combined Average Results (2 part duties)) 152
8.4 EA2 - Morning/Evening/Combined Average Results (2 part duties)) 154
8.5 TRAM - Morning/Evening/Combined Average Results (2 part duties) . . . 155
8.6 R61 - Morning/Evening/Combined Average Results (2 part duties)) 157
8.7 UMAE - Morning/Evening/Combined Average Results (2/3 part duties)) . 158
8.8 R207 - Morning/Evening/Combined Average Results (2 part duties)) 161
8.9 RT7T7A - Morning/Evening/Combined Average Results (2 part duties)) . . . 162
8.10 HEO1 - Morning/Evening/Combined Average Results (1/2/3/4 part duties)) 163
B.1 HEO1 - Complete Morning Results (2/3/4 pt duties) 195
B.2 R222 - Complete Morning Results (2 pt duties) 196
B.3 EA2 - Complete Morning Results (2 pt duties) 196
B.4 R207 - Complete Morning Results (2 pt duties with long peak) 197
B.5 R207 - Complete Morning Results (2 pt duties with short peak) 197
B.6 R207 - Complete Morning Results (2 pt duties with no peak) 198
B.7 TRAM - Complete Morning Results (2 pt duties) 198
B.8 R77A - Complete Morning Results (2 pt duties with long peak) 199
B.9 R77A - Complete Morning Results (2 pt duties with short peak) 199
B.10 R77A - Complete Morning Results (2 pt duties with no peak) 200

xii

B.11 R61 - Complete Morning Results (2 pt duties)
B.12 UMAE - Complete Morning Results (2/3 pt duties)

C.1 HEO1 - Complete Evening Results (1/2/3/4 pt duties with short peak) . . .
C.2 HEO01 - Complete Evening Results (1/2/3/4 pt duties with long peak)

C.3 HEO1 - Complete Evening Results (1/2/3/4 pt duties with no peak)

C.4 R222 - Complete Evening Results (2 pt duties)
C.5 EA2 - Complete Evening Results (2 pt duties)
C.6 R207 - Complete Evening Results (2 pt duties)
C.7 TRAM - Complete Evening Results (2 pt duties)
C.8 RT77A - Complete Evening Results
C.9 R61 - Complete Evening Results (2 pt duties)
C.10 UMAE - Complete Evening Results (2/3 pt duties)

D.1 HEO1 - Combined Morning/Evening Results (2/3/4 pt duties)
D.2 R222 - Combined Morning/Evening Results (2 pt duties)
D.3 EA2 - Combined Morning/Evening Results (2 pt duties)
D.4 R207 - Combined Morning/Evening Results (2 pt duties)
D.5 TRAM - Combined Morning/Evening Results (2 pt duties)
D.6 R77A - Combined Morning/Evening Results (2 pt duties)
D.7 R61 - Combined Morning/Evening Results (2 pt duties)
D.8 UMAE - Combined Morning/Evening Results (2/3 pt duties)

xiii

Chapter 1

Introduction

Both vehicle and driver scheduling problems are commonplace anywhere in the world
that public transport is available. A bus company generally has the responsibility of
providing bus services for a given area. Most of the routes involved are regularly scheduled;
this includes peak-only vehicles which deal with the afternoon and evening rush hours.
Occasionally, there are also special routes contracted out to private clients such as schools
or factories. The bus routes must be designed to provide the service needed and drivers

must be assigned to the relevant vehicles to meet this demand.

A vehicle schedule defines the routes and the stopping points for the vehicles involved as
well as the allocation of vehicles to be used on these routes. The stopping points selected
include both points for collecting and dropping off passengers as well as changing over
drivers; the latter of these referred to as relief opportunities. Given a vehicle schedule a
problem that must be addressed, and the topic of interest in this thesis, is the driver or
duty scheduling problem. The task of duty scheduling involves assigning drivers (duties)
to the bus schedule in such a way as to minimize the number of drivers needed as well as
the costs involved (wages) while ensuring any labour rules are not violated (for example

maximum driving times).

The privatization of bus and rail services in Great Britain (and elsewhere) has had some

Chapter 1 2 Introduction

affect on the scheduling aspects mentioned above. In the past it has generally been the
case that once a bus route has been scheduled it is used for some period of time before the
need to change it should arise. Today, due to competition from rival public transport firms
as a result of privatization, schedules are updated more frequently to respond to service
changes a competitor may make. This means that driver scheduling problems are faced
more frequently than in the past by public transport companies. Having fast effective

methods of dealing with them is essential.

1.1 Driver Scheduling

The problem of driver scheduling is computationally challenging. The number of potential
duties that can be created given a bus schedule can be very large. From this large set
of duties the duty scheduling system must select the duties that will make up the duty
schedule. Many computerized methods have been developed to tackle this, as will be
discussed in some detail in Chapter 2, but the reasons why this problem is combinatorially

expensive remain.

One of the reasons duty scheduling is so difficult is due to the large number of potential
duties that can be created from which to select a duty schedule. The size of this large set
of potential duties is directly related to the number of relief opportunities present in the
bus schedule. More relief opportunities present in the bus schedule creates more ways in
which drivers can be relieved from their buses by other drivers, thus the set of potential

duties that can be created is larger.

The complexity arising from the number of relief opportunities present in a bus schedule
can be reduced. Specifically, this thesis explores the idea of a pre-processing stage for a duty
scheduling system that was developed at the University of Leeds known as TRACS-II [39].
The pre-processing stage reduces the number of relief opportunities used in the scheduling
process. This is accomplished by first examining the morning and evening periods of a

bus schedule. Potentially useful relief opportunities are selected and kept whilst leftover

Chapter 1 3 Introduction

relief opportunities in the morning and evening periods are discarded. This smaller set
of relief opportunities is then passed onto the TRACS-II scheduling system to process in
order to generate a duty schedule. This has the effect of reducing the number of potential
duties that can be used to create a duty schedule. By selecting relief opportunities that

are potentially useful the quality of the duty schedule produced need not be compromised.

Before a discussion of the background of the field as well as the pre-processor some basic
driver scheduling terminology will be presented. A more complete list of terms and related

synonyms can be found in [57].

1.2 Bus Driver and Vehicle Scheduling Terminology

Generally a bus schedule, or a set of bus workings, is represented as a set of running boards.
A running board represents an individual vehicle and consists of various relief times. Each
relief time is also associated with a place and the pair of them form a relief opportunity.
These relief opportunities in between the start and finish time of a running board are
usually the times it is possible for a bus to switch crews aboard it. An example of a
running board can be found in Figure 1.1. In this example the set of relief opportunities
is {0529, 0720, 0945, 1015, 1310, 1530, 1650, 1905, 2025,2205}. The relief locations are ‘D’
(depot) and ‘L.

0529 0720 0945 1015 1310 1530 1650 1905 2025 2205

D = t t = = = = = D

Figure 1.1: Example of a Running Board

The relief opportunities serve to partition the schedule into pieces of work. A piece of work
is defined as the section of the running board that falls inbetween two relief opportunities.
The driver scheduling problem can be thought of as trying to cover the set of all work in

the bus schedule such that every piece of work has at least one driver assigned to it.

Bus crews or driver duties or just duties are assigned to cover the work on these running

boards. A bus crew consists of a driver (or, rarely, a conductor as well; hence the term

Chapter 1 4 Introduction

crew) that has been allocated to cover a set of work present in the bus schedule.

A duty consists of a set of work it is assigned to cover. Generally the set of work is split
into distinct halves. Each of these two sets of work are referred to as a stretch. The gap
inbetween the two stretches of work is referred to as a mealbreak as it is in this period of
time where the driver usually takes a break of around an hour for a meal. A mealbreak
usually has a minimum length, referred to as the minimum mealbreak length. Additionally,
the locations where a driver starts a mealbreak and finishes the mealbreak may not be
the same. There is usually an associated travel time between various relief opportunities
which is the allowed travelling time between them (not including the minimum mealbreak
length). The minimum length of time that must elapse between a driver starting a meal-
break and finishing one is the minimum mealbreak length plus the allocated travel time
between the relief opportunities at which the mealbreak will take place. An additional
parameter, known as the mazimum mealbreak idle time, specifies the maximum length of
the mealbreak that may be allowed over and above the minimum mealbreak length (plus

travel time).

A stretch can sometimes be subdivided as well. Usually a stretch is a continuous set of
work on the same vehicle. Sometimes a stretch will consist of two pieces of work separated
by a short gap. This gap is known as a joinup. A joinup usually represents the driver
leaving one vehicle to take over another one with a very short break inbetween (often
just the travel time between the two relief opportunities if they are not the same). The
two pieces of work would be referred to as spells. A stretch can also be a spell if it is a
continuous set of work. A duty that consist of two continuous stretches is referred to as a
two part duty. If one of the two stretches corresponding to a duty is made up of two spells
then that duty is referred to as a three part duty. This concept can be extended to four
or more part duties. Some duties have a large gap inbetween their stretches (a length of

several hours). These are referred to as split duties.

An example of a two part duty can be found in Figure 1.2. The driver in this case works

two stretches. The first stretch starts at 05:29 to 09:05, a mealbreak is then taken from

Chapter 1 5 Introduction

0529 0728 0905 1053 1244
D = = = L
e -
Duty 1- Stretch 1 L\
\
0646 0838 N 1039 1207
D t = L
0730 0017 \ 1104 1244
D = t L
0808 ‘1006 1142 1322
D * L L

Duty 1- Stretch 2
0935 1132
D———————— D

Figure 1.2: Example of Duty
9:05 to 10:06 and then the second stretch goes from 10:06 to 13:22.

When a driver starts and finishes their day they are allocated a set period of time, known
as the sign-on and sign-off times, in order to clock in and out. These times are usually

included in the cost calculations for first and last stretch of their duty.

Throughout the schedule drivers need to take their mealbreaks. After a break, the driver
is again assigned to work on a vehicle. Often this takes over a bus from another driver
who goes on a break. The chaining of such breaks such that one driver starting work after
a break takes over on a bus whose current driver is about to start a break is referred to as
a mealbreak chain. Mealbreak chains have many beneficial properties in a duty schedule

and will be discussed in detail in Chapter 5.

The cost of a schedule can be defined as the sum of the cost of the individual duties that
it contains. The cost of an individual duty is defined as the cost of the time worked. This
can further be adjusted by various penalties due to unusual or unpopular features in the
duty (for example, unsociable hours). The method of calculating the cost of a duty varies

between bus companies.

Chapter 1 6 Introduction

1.3 Thesis Outline

This thesis describes a pre-processing module for the TRACS-IT mathematical program-
ming duty scheduling system. As the complexity of the problem is related to both the
number of relief opportunities present in the set of bus workings as well as the rules that
govern what makes a legal duty, the goal of the pre-processor is to reduce the number of

relief opportunities present in a set of bus workings before TRACS-IT is applied to it.

Constraint programming was chosen as the methodology for the pre-processor. The task
of selecting relief opportunities involves many constraints between the relief opportunities
themselves. The expressiveness of modelling such a problem using constraint programming
methodologies was felt to be of benefit in the design of the solution as well as using ILOG-
Solver to solve it. The research this thesis describes involves examining the properties
of mealbreak chains and trying to exploit any perceived properties they may have with

respect to a duty schedule.

The following is an outline of the contents of each chapter.

Chapter 2 - Gives a review of past and present computerised duty scheduling systems
employing such techniques as heuristics, mathematical programming and meta-

heuristics.

Chapter 3 - Reviews the topic of constraint satisfaction problems. A description of
what makes a CSP as well as some of the methods for solving them is described.
The ILOG-Solver product that is used in this thesis is described and discussed. Some

constraint programming duty scheduling systems are also briefly described.
Chapter 4 - A description of the TRACS-IT duty scheduling system.

Chapter 5 - A definition of mealbreak chains is given as well as a description of why
they are beneficial. Some previous research regarding how mealbreak chains can be

found and a discussion of these is given.

Chapter 1 7 Introduction

Chapter 6 - The CROSS constraint satisfaction problem is described. This discussion
includes a description of the constraints employed and how they interact with one

another.

Chapter 7 - The algorithm used for solving the CROSS constraint satisfaction problem
is described. How CROSS can be applied to different types of bus schedules is also
described.

Chapter 8 - Results generated from the application of CROSS are presented and dis-

cussed.

Chapter 9 - Discussion of the overall contribution by CROSS. Suggestions for future

research are also given as well as the research contributions of this thesis.

Chapter 2

Review of Driver Scheduling

Methods

Over the last thirty years, two classes of approach have been predominantly used to
solve the transport driver scheduling problem. These are heuristic and mathematical
programming approaches. In more recent times other metaheuristic methods, such as
genetic algorithms or ant systems, have been employed to try to tackle this problem.
Both the papers [133, 139] give excellent brief overviews of driver scheduling issues and

the methods used to solve them over the years.

The earliest successful computer scheduling systems for the driver scheduling problem
were developed during the seventies. A series of workshops have been held since, with the
purpose of presenting and discussing some of the latest techniques and developments in

public transport scheduling with computers [120, 132, 102, 26, 32, 24, 130].

In the sixties and seventies heuristics were, by far, the more popular approach. This
was due not so much to their efficiency, but to the available computational power of the
day. Mathematical programming algorithms had been developed but it was not feasible to
use such methods as the computing capacity available at the time would only have been

adequate for very small cases. Watson and later Manington conducted early work into

Chapter 2 9 Review of Driver Scheduling Methods

the suitability of mathematical programming methods for the driver scheduling problem

in the seventies [127, 83] but at that time heuristic methods were much more practical.

In most of the successful systems in use today it is a blend of heuristics and mathematical

programming methods that are in use.

This chapter will examine some of the past (and present) methods used to solve the driver

scheduling problem.

2.1 Heuristic Methods

Heuristics developed for solving transport scheduling problems by computer have existed
since the 1950’s. The earliest known example of scheduling bus crews by computer was
by Cooper, who at the time worked for the City of Oxford Motor Services. This work is

referred to in a feasibility study carried out at the University of Leeds [133, 77].

Heuristic systems such as TRACS (which will be described in some detail next) employed
various heuristic schedule construction techniques that, essentially, mimic the techniques
used by human schedulers. Schedules produced with this method then had refining heuris-
tics applied to them. The refining heuristics usually consisted of routines to exchange work
between duties. A review of earlier heuristic methods can be found in [133, 135]. Examples
of several heuristic methods follow. It should be noted that all of these heuristic methods

have now been abandoned.

2.1.1 TRACS

TRACS (Techniques for Running Automatic Crew Schedules) was a heuristic system cre-
ated and developed at the University of Leeds during the late sixties and throughout the
seventies. Parker and Smith give a description of the heuristics found in TRACS [92].

The approach taken by TRACS was to first create an initial schedule that satisfies all the

Chapter 2 10 Review of Driver Scheduling Methods

labour agreement constraints; then a set of refining heuristics were applied to the schedule
generated in order to try to improve its quality (both in terms of number of duties used
and cost). A simplified description of the heuristics used in both duty schedule generation

and refinement is given next.

TRACS first creates a set of marked relief opportunities. This is created from the analysis
of both the morning and evening peak periods of the bus schedule. For each morning
vehicle the latest relief opportunity on it that can create a legal spell from the vehicle’s
beginning is marked. An example of a morning portion of a bus schedule’s marked relief
opportunities (assuming a maximum spell length of four and a half hours) can be found

in Figure 2.1. The marked relief opportunities in Figure 2.1 are labelled with an *X’.
6:00 7:00 8:00 9:00 10:00 11:00 12:00

Busl | : : i X R -
6:00 6:45 730 8:45 9:50 11:30

Bus2 6:=15 8:=00 9:=15 10=: 00 1(?:‘215 11=: s -

Bus3 5:=45 6:=30 7:=15 8:=30 91:1515 10=: 45 11=: s -

Bus4 6:=45 7:=30 8;=45 9'?20

BusS 6:=30 7:=45 8:=15 9:=00 9:=45 1(?:‘215 : 77777777 -

Figure 2.1: TRACS: Marked Relief Times Example

Similarly, in the case of the evening peak, the earliest legal relief opportunities for the start
of a spell (marked from the finish of the buses) are marked. The relief opportunities marked
in the morning peak are sorted into chronological order. The relief opportunities marked
in the evening peak are sorted into reverse chronological order. Some relief opportunities
will be marked as fized. This is meant to represent relief opportunities that must be used
in the schedule. For example, the last relief opportunity on bus four in Figure 2.1 would

be a fixed relief opportunity.

The heuristic starts to form duties by examining each marked relief opportunity in chrono-

logical order. If the relief opportunity being examined is not fixed then the bus continues

Chapter 2 11 Review of Driver Scheduling Methods

after this relief opportunity and no duty has yet been assigned to work on the bus after
this marked time. In this case, the current marked relief opportunity is changed to the
earliest possible one on the same bus in order to form a duty whose first stretch of work is
on the current bus, up to the given relief opportunity, and whose second stretch of work
will take over another bus at, or before, its marked time. Having found a ‘good’ duty using
the earlier marked time the algorithm will progressively move the marked time later until
it reaches the original marked time. The best overall duty will be chosen at this point
and the relief opportunity used is now fized. If the relief opportunity was already fixed,
then only this time is considered. Preference is generally given to taking over a second
bus at its marked time. The list of marked times is updated with new marked times due
to others being made fixed. Stretches are also left “uncovered” to satisfy targets on the
number of split duties that should be generated. A similar method, working backwards, is
carried out in the evening working towards the afternoon. Peak work is re-examined after
this step, and split duties are created. A second phase is available which deals with any
leftover uncovered work. This tries to allocate uncovered work as third portions of duties

(if possible) or as single spell duties.

As an example, consider again the schedule represented in Figure 2.1. The earliest marked
time is on bus three at 9:45. This marked time is moved to the earlier time of 8:30 (7:15
would be too early). Assume that mealbreaks can be anywhere between 30 and 60 minutes
in length. In this case the duty starting on bus three at 5:45 will work until 8:30 and take
a mealbreak. This duty will start work again on bus five at 9:00 (giving a 30 minute
mealbreak). The marked time on bus three is now fixed at 8:30 and the marked time
on bus five is moved to 9:00 and fixed. It should be noted that further marked relief
opportunities will be added to buses once a relief opportunity is fixed. For example, bus
three, with the now fixed time of 8:30, has a further mark put on it in the early afternoon
which will be the latest time a duty joining bus three at 8:30 can be relieved. The earliest
marked time is now 9:00 on bus five. This marked time is linked with bus one at 9:50
which happens to be the marked time on bus one. This forms a second duty starting on

bus five at 6:30 working until 9:00, taking a 50 minute mealbreak and starting its second

Chapter 2 12 Review of Driver Scheduling Methods

spell at 9:50 on bus one. The time 9:50 on bus one is now fixed and will be considered
next. 9:50 on bus one is linked with 10:45 on bus two (since 10:45 is marked) and forms
a third duty starting at 6:00 until 9:50 on bus 1 and then works from 10:45 till sometime
in the afternoon on bus two. The earliest marked time not yet considered is 9:50 on bus
four. The work on bus four will be left uncovered as it starts late enough to form the
first half of a split duty. The marked time 10:45 on bus two is considered next. This is
linked with 11:45 on bus three which is then marked and fixed forming a duty whose first
stretch starts at 6:15 on bus two until 10:45 and then has a second stretch starting at
11:45 that goes into the afternoon. The uncovered work between 8:30 and 11:45 on bus
three is then left uncovered to form part of a split or other type of duty. The resulting

morning schedule looks like what is found in Figure 2.2.

6:00 7:00 8:00 9:00 10:00 11:00 12:00

Busl I I I I '}/\ I ”””” =
6:00 6:45 7:30 8:45 9:50- 11:30
Duty 3 - Stretch 1 | Duty 2 - Stretch 2
I | L R I
1 < 1 =
Bus2 615 800 915/ 10.00 1&45\ 11:45
Duty 4 - Stretch 1 / Duty 3 - Stretch 2
l l l A4 o l Sy .
Bus 35:I 45 630 715 830 /945 10:45 11:45
Duty 1- Stretch 1 | h Duty 4 - Stretch 2
l] N / 74
Bus4 I 1 y g N
6:45 7:30 8:'45 ! 9:50
I L Y I I Lo _
Bus5 6:30 745 815 9:00 945 10:45 '
Duty 2- Stretch 1 Duty 1- Stretch 2

Figure 2.2: TRACS: Morning Schedule Example

Once the initial schedule has been generated using the previously described algorithms a
refining stage is applied to try to improve the schedule. These refining steps are broken
down into two groups. The first refining stage tries to reduce the number of duties used

in the schedule. The second stage concerns itself with reducing the cost of the schedule.

Three routines are used in order to try to reduce the number of duties in the schedule. The
first routine, reduce, is only invoked if the current schedule has exceeded the target number
of duties. Reduce considers every duty in the schedule and an attempt is made to redis-

tribute its work amongst the other duties in the schedule. Another routine, mazspread,

Chapter 2 13 Review of Driver Scheduling Methods

tries to decrease the work in duties of low spreadover. This is done by increasing the work
in other duties. The gaps created by this process help the reduce algorithm outlined pre-
viously. The third routine, onlyjalter, considers only the leftover work from the original
schedule'. This work is, as much as possible, reduced by assigning pieces of it to duties
already in the schedule. If this does not reduce all the uncovered work then uncovered
stretches are swapped with shorter covered stretches (where legal) and the work in these
shorter stretches is examined to see if any of them can be removed (added to another

duty). This continues until no further reduction can be achieved.

There are four routines used to try to reduce the cost of a schedule. The first routine,
halves, creates two lists. Each list corresponds with half a duty from the various types
available (early, late and so on). The halves of duties are next matched using a modification
of the standard method for solving a transportation problem. The second routine, recut,
scans the relief opportunities used on each bus. If a reduction in cost can be achieved
by moving one of these relief opportunities to an earlier/later time then such a move is
made. Another cost reduction routine, changends, removes small pieces of work from
duties around the middle of the day. An assignment problem is then solved to reallocate
these pieces of work in an optimal way. The final routine, stretchswop, examines the
stretches used in duties, and if removing a stretch from a duty and allocating it to another
or, alternatively, swapping stretches between duties lowers the cost further the adjustment

is made.

TRACS was demonstrated in the seventies for several UK transit companies with some
success. These include Bristol Omnibus Company, Midland Red, Cleveland Transit, West
Yorkshire Passenger Transport Executive, Greater Glasgow Passenger Transport Execu-
tive and Greater Manchester Passenger Transport Executive. However, Parker and Smith
observe that modifying the program to work with different labour agreement rules can be

difficult [92].

"What TRACS refers to as a type 5 duty, hence the routine name.

Chapter 2 14 Review of Driver Scheduling Methods

2.1.2 RUCUS & RUCUS I1

The Run Cutting and Scheduling (RUCUS) system was developed due to sponsorship from
the Urban Mass Transportation Administration (UMTA) of the United States Department
of Transportation. A run is the American term for duty and run cutting is the American
term for duty scheduling?. RUCUS was marketed by the MITRE corporation. RUCUS-I is
described in the first transport scheduling conference [120]. The RUCUS-II system being
described here is taken from descriptions by Luedtke and Ball, Bodein and Greenberg
[79, 4]. RUCUS-II maintained a relational transit system database and provided facilities

for generating both vehicle and duty schedules.

The information from the relational transit database was used both for vehicle and duty
scheduling. RUCUS-II provided the user with manual aids for vehicle scheduling as well as
some automated vehicle scheduling routines as outlined by Luedtke [79]. Duty scheduling
was done using heuristics. RUCUS-IT used many of the same heuristic procedures used
in the original RUCUS system. The heuristics developed in RUCUS and RUCUS-II try
to simulate manual techniques for selecting pieces of work and combining them to create

duties.

RUCUS’s original interface was fairly complex and many parameters needed to be specified
and routines needed to be invoked in the schedule generation process. The schedule
generation process itself was run in a batch oriented system. RUCUS-IT makes some effort
to improve interface issues raised by the users of RUCUS. Hildyard and Wallis give a
review of experiences using RUCUS and outline some of the improvements they had made

[59].

The first step in the RUCUS-II crew scheduling system is to generate an initial duty sched-
ule (this is with virtually no optimization being performed). This is done by specifying
time periods and the type of duties to be cut (for example, early duties). This is carried

out over all possible time periods by using the three automated duty scheduling heuristic

2 As observed earlier, a whole plethora of regional transport scheduling terminology exists. Hartley gives
a good glossary for such terms [57].

Chapter 2 15 Review of Driver Scheduling Methods

procedures offered by RUCUS-II . RUCUS-II contains a manual element in that at any
point the scheduler can change the duty schedule as needed. After this has been finished

a module called IMPROVE is invoked to try to improve the schedule generated.

Luedtke provides a description of the heuristic algorithms used in the creation of the
initial schedule [79]. As mentioned above, when the various duty scheduling algorithms
are invoked a set of parameters are passed that represent constraints such as earliest/latest
start /finish time of duties, length of duty, mealbreak length, spreadover and so on. Three

heuristic duty scheduling algorithms are outlined:

1. One-piece duties - One-piece duties are cut either from the front or the back of run-
ning boards. Such work cut from running boards is evaluated against the parameters

passed and evaluated by the cost routine to ensure its legality>.

2. Two-piece duties using dovetailing technique - To generate early and late du-
ties a dovetailing technique is applied to the creation of duties from the front or
back end of a running board respectively. The vehicle running boards are sorted by
earliest pull-out (or pull-in in the case of late duties). This creates a pyramid-like
arrangement of running boards. A cutting technique is employed which cascades
down the running boards. The first half of a duty is cut and then the other running
boards are searched for a suitable second part of the duty. A scanning technique
(not elaborated upon in [79]) is used to select several possible relief points to be used

in the formation of a two-part duty.

3. Two-piece duties using forward /reverse splitting - This method is similar to
the dovetailing technique described above. There is no sorting of the blocks of work
although each iteration of the duty scheduling process selects the earliest pull-out
(or pull-in). Luedtke claims a similar scanning technique, used in the dovetailing
technique, is employed in this method to aid in the selection of a subset of relief

opportunities used to help evaluate possible mealbreaks for two-part duties.

3 As an aside, today such duties are generally no longer acceptable.

Chapter 2 16 Review of Driver Scheduling Methods

It is observed that these duty scheduling steps can be applied in varying sequences so that
the scheduler can produce different duty schedules. These schedules will have their costs

and associated advantages/disadvantages explored and the best one chosen.

Once a duty schedule has been formed, a module called IMPROVE is used to try and im-
prove the duty schedule. RUCUS-II first used the same heuristic based IMPROVE module
found in the original RUCUS system. These heuristic methods essentially used a series of
shifting and switching steps. The shifting step involved shifting a relief opportunity in a
duty to an earlier or later time, potentially reducing the cost of a schedule. The switching
step involves switching halves of various two-part duties if this would result in a cheaper

schedule. These techniques are similar to the improvement heuristics used in TRACS.

Ball, Bodin and Greenberg discuss an enhancement to the RUCUS-II system that replaces
this original version of IMPROVE [4]. Instead of using the heuristic shifting and switching
steps, a mathematically based matching approach is used in order to try to get the optimal
matching of pieces of work. The drawback to both versions of IMPROVE is that the quality
of the final schedule is very dependent on the quality of the original heuristically generated

schedule.

It is believed that work on RUCUS-II has been abandoned.

2.1.3 COMPACS

COMPACS was a duty scheduling system that worked interactively with the user in order
to produce crew schedules. Wren et al. report that it could usually produce schedules with
the same number of duties as manually produced ones and occasionally uses an extra duty

compared to the manually produced solution [141]. COMPACS was part of the BUSMAN

scheduling suite of programs marketed by Wootton Jeffreys [129].

COMPACS was designed to operate in two different ways. One method was to produce
an entire duty schedule automatically using heuristics similar to those used in TRACS.

The schedule is then created quickly with no interaction from the user. The second

Chapter 2 17 Review of Driver Scheduling Methods

method produced a duty schedule in an interactive fashion. Users could create their own
duties to add to the schedule or ask COMPACS to form duties which could then be
accepted or rejected as seen fit by the scheduler. At any point the scheduler could have
COMPACS finish the partially created schedule automatically. The scheduler also had
complete control over the schedule through facilities to edit or delete duties which are

already present in the schedule.

Wren et al. [141] highlight several inherent advantages interactive systems, such as COM-
PACS, have over integer programming methods. Flexibility is maintained as to how the
schedule is created and modified. Heuristics are generally quick and, thus, cheap to run.
The scheduler maintains complete control over the scheduling process and can modify the
schedule as seen fit at any point. Finally, such an interactive system had the ability to
solve very large problems as it did not have the space, nor computational requirements of
mathematical programming methods. With the power of today’s modern computers these
advantages have become less apparent. Mathematical programming methods will create

better schedules than heuristics.

2.1.4 HOT & HOT-II

The HOT (Hamburger Optimierungs Technik) system was originally developed by the
Hamburger Hochbahn AG and is now marketed and developed by a former subsidiary,
HanseCom. The various components of the system are documented in several papers to
be found in the transport scheduling conference proceedings [60, 25, 123]. HOT has been
in use in Hamburg, Germany since 1978. Since then it has been used by several other
municipal bus operators in Bremen, Cologne, Dresden and Saarbrucken, and Besangon

(France).

In addition to generating driver schedules, HOT can schedule buses and create duty rosters.
The complete HOT system is composed of five modules to address individual tasks: data
management using a relational database management system, sensitivity analysis (for

bus scheduling), vehicle scheduling (using a variant of the hungarian algorithm), duty

Chapter 2 18 Review of Driver Scheduling Methods

scheduling and duty rostering. The output of one module is designed to be the input for

the next module.

The crew scheduling component of the original HOT system is mathematically specified as
an assignment problem (methods to solve such problems can be found in any reasonable
operations research text such as [131, 14, 99]) that matches up the pieces of work available
in order to form duties. First, one part early duties are created by cutting them out of early
vehicles that have relief opportunities late enough to allow this. Leftover pieces of work
or uncut vehicles are then split, if necessary, and recombined to form duties. A similar
process is carried out for the late duties, except that the blocks are broken backwards
in time from the finish of the vehicles to the earliest legal starting relief opportunity.
Afternoon duties are created next using the leftover bus work from the late and early duty
creation phase. Split duties are created last to cover any uncovered buswork at this point
which is generally to be found during the peak periods. An assignment model is used to

create the duties in the steps above.

Volker and Schiitze document the newer version of HOT, HOT-II [123]. One difference is
in the user interface. An effort seems to have been made to allow the user more interactive
control in order to modify computer generated solutions manually. There were changes
made to the algorithms themselves not documented in [123]. Wren gives a description of

some of the algorithms used HOT-II for the system developed for Bremen [134].

HOT-II first splits up the morning periods on buses into pieces of work by selecting relief
opportunities (generally not those that are close to the beginning of a bus) from the bus
workings. These pieces of work are next sorted into order of starting time. From this
point onwards HOT only considers the individual pieces of work in order to form duties.
Unassigned pieces of work are processed in chronological order as potential first halves of
duties. Every possible duty beginning with the given starting work unit is considered and
given a weight. The duty with the lowest weight is chosen. Any work contained in the
selected duty is considered assigned to a driver and, thus, is removed from the pool of

uncovered work. If work before the second part of a duty can be the beginning of a new

Chapter 2 19 Review of Driver Scheduling Methods

duty it is considered next and the same method described above is applied. The same
method described above is also applied to the evening portion of the schedule to produce
late duties (forming duties backwards). Uncovered pieces of work are grouped into vehicle
workings and they have the relief opportunities on them selected that produce maximum
length pieces of work. These long pieces of work are then matched using a variant of the

hungarian algorithm. A similar process is used to create split duties.

2.1.5 INTERPLAN

INTERPLAN was an interactive program for mass transit crew scheduling that employs
heuristics to find its solutions. INTERPLAN was capable of rostering as well as duty
scheduling, although these were carried out in two separate steps. A description of IN-

TERPLAN is given by Mott and Fritsche [89].

For duty scheduling purposes INTERPLAN provided two different computer-aided proce-

dures. One is based on a heuristic and the other is an exact optimization algorithm.

The heuristic procedure is based on the fact that duties in a crew schedule can be classified
into different types, each with their own characteristics. These characteristics can be used
as parameters in the algorithm to help describe the duties that are to be formed. The
parameters consist of such things as the total length of a duty, the total working time, the
number of pieces in a duty, the earliest start and/or finish time as well as whether or not
the duty is a split duty. These parameters, essentially, define “time-windows” in which
different types of duties are generated. It should also be noted that these parameters are

not unlike parameters used in the previously described systems.

The user would first define these time-windows described by the different types of duties
desired. The heuristic procedure would then check all the possible combinations of the
pieces of work and evaluate them. The work checked falls in between the earliest starting
and latest finishing times of the type of duty that is being generated. The best duties in

each group of potential duties generated would be selected. This would continue until a

Chapter 2 20 Review of Driver Scheduling Methods

given number of duties are generated. It should be noted that using these time-windows
also helps to reduce the number of potential duties generated. Once this process has been
completed the generated duties would be presented to the scheduler graphically. These
duties could then be accepted, deleted or modified as seen fit. Unfortunately this method
cannot guarantee any degree of optimality and it is possible that there will be some pieces

of work that will be left uncovered.

The second method available in INTERPLAN to tackle the duty generation process is
based on a matching algorithm. This procedure only optimizes the pairing of given pieces
of work (the algorithm assumes that the running boards have already been partitioned into
pieces of work). The quality of the schedule generated in this fashion is very dependent

on how the running boards are partitioned into pieces of work.

The two methods can be combined. The heuristic method can be used to generate an
initial set of duties. These duties can then be decomposed into the pieces of work they

cover and then the matching algorithm can be applied to it.

INTERPLAN has been tried in both Munich and Nuremberg, Germany. Schedules pro-
duced by INTERPLAN have been used in practice but Mott and Fritsche do not say how
successful they were and there is no further mention of INTERPLAN in later computer-

aided transport scheduling conferences.

2.2 Mathematical Programming

Wren and Rousseau observe that most successful driver scheduling packages in use today
use a mathematical programming methodology. Many use a model based on set covering

but there are others [139].

Chapter 2 21 Review of Driver Scheduling Methods

2.2.1 Set Covering Formulation

The most common mathematical formulation of the driver scheduling problem is as a set
covering problem. This requires first generating a very large set of potential duties. The
selection of a subset of these duties in order to cover the bus schedule at a minimum cost is
done by solving the associated set covering problem. This can be expressed as an Integer

Linear Programming (ILP) problem, similar to Shepardson’s formulation [108], as follows:

n

minimize Z CjTj (2.1)
j=1
n

subject to Zaijmj >1,i=1,2,...,m (2.2)
j=1

and z; €{0,1},j=1,2,...,n. (2.3)

The m constraints are the pieces of work to be covered in the bus schedule. The n variables
correspond to the duties in the generated set. The value a;; = 1 if the jth duty covers the
ith piece of work; ¢; is the cost associated with the jth duty. Variable x; = 1 if the jth

duty is in the schedule, 0 otherwise.

The objective function (2.1) represents the cost of the schedule and is to be minimized.
The inequalities (2.2) state that every piece of work should be covered by at least one
driver; this problem formulation can, therefore, allow a piece of work to be covered by
more than one driver (referred to as overcover). If inequality (2.2) is set to a strict equality
then this problem is transformed into the set partitioning problem. The set partitioning
problem is not usually used to model bus or rail driver scheduling. The reason for this is
there can be a danger that there will be no solution; that is no subset of shifts will exist
that “fit-together” without causing any overcover. Set partitioning, however, is a popular

choice for some other crew scheduling problems, for example air crew scheduling.

The set covering problem, in the ILP context given above, is usually solved by first relaxing
the constraint that the variables must have integral values. Once a continuous solution

has been found a branch-and-bound method is used to transform it to an integral solution.

Chapter 2 22 Review of Driver Scheduling Methods

Examples of driver scheduling systems that use set covering or other mathematical meth-

ods will be described next.

2.2.2 IMPACS

IMPACS (Integer Mathematical Programming for Automatic Crew Scheduling) is a driver
scheduling software package developed by the Operational Research Unit at the University
of Leeds. A more thorough description of the IMPACS system is given by Smith and Wren
in [111, 112, 115, 140]. The IMPACS system was installed for London Transport in 1984
and for Greater Manchester Transport in 1985. IMPACS is also part of the BUSMAN

system [129, 15].

TRACS-II is the successor system to IMPACS and has been developed since 1994. TRACS-
IT is described in detail in Chapter 4. Only the basics of the set covering model are

described here.

The number of variables in the set covering formulation is equal to the size of the set of
potential duties generated. This set can be very large, especially if many relief opportu-
nities are available. To make the set covering problem a practical one, in the sense that
it can be solved with the given computer hardware in a reasonable amount of time, often
the number of variables and constraints must be reduced. Several heuristic methods have

been developed within IMPACS to accomplish this.

Before the large set of potential duties is generated IMPACS inspects the schedule to try
to reject some potential relief opportunities. Essentially the maximum spell length is used
to mark out the latest time successive spells can finish from the beginning of a vehicle.
Similarly, starting from the end of the vehicle, the earliest times a sequence of spells can
start are marked. Generally each backward marked time is earlier than the corresponding
forward marked time. This forms time-bands and the relief opportunities falling outside
these bands are deleted. Further analysis may result in additional relief opportunities

being re-instated or deleted. For example a relief opportunity may be re-instated if it is

Chapter 2 23 Review of Driver Scheduling Methods

potentially useful in the sense that it could help in the formation of a particular type of

desirable duty.

After the set of potential duties is generated it is examined to see if any duties can
potentially be deleted from it if the set is large. Duties that have their work contained
within other duties (and are not cheaper) are deleted as well as duties that have their

pieces of work covered by a specified number of other duties.

Once a schedule has been produced, swap and switch heuristics (similar to what is found

in the TRACS system) are applied to try to improve the solution.

2.2.3 EXPRESS

The EXPRESS system uses a set partitioning model to schedule bus duties as described
by Falkner and Ryan [35]. The set partitioning model is solved using the ZIP package
which is also used in IMPACS [106, 38].

The EXPRESS system was designed specifically to be used in Christchurch, New Zealand.
The overall schedule to be produced is divided into five subproblems. The first of these
is a set of contract bus services; this problem is solved manually. Each of the remaining
subproblems consists of a subset of the routes. Each subproblem is solved individually

and broken down into three stages.

Stage 1 - The first stage involves creating the middle and late duties for the schedule.
The early portion of the schedule is removed. With the remaining part of the schedule
left intact thousands of potential duties are generated and then the problem is solved
using the set partitioning formulation. The mathematical model used for this stage
includes extra mealbreak constraints to help minimize the number of mealbreaks that

are used over certain times.

Stage 2 - Most of the early duties are selected in Stage two. Duties generated in Stage

one and any work that is too late to appear in early duties are excluded from the

Chapter 2 24 Review of Driver Scheduling Methods

schedule. The pieces of work that are to be covered by early duties are identified and
a reduced set of potential duties is generated and some of these duties are selected
using a mathematical model. Pieces of work that are covered by the early duties are

then removed from the schedule.

Stage 3 - The final stage creates the remaining early duties and any other duties needed
to cover the remaining uncovered work. The halves that will be later matched

together to form split duties are also created at this stage.

One disadvantage to this approach is that there is a loss of interaction between the three
stages. The EXPRESS system was first used in Christchurch New Zealand in a major re-
scheduling project that was completed in July 1990. The system itself is menu-driven and
the scheduler often has to make manual adjustments to the final schedule to reduce the

cost of drivers and to take into account some soft constraints that are difficult to model.

2.2.4 HASTUS

The original work on HASTUS began in 1974 as a joint research project between the
Transportation Research Center of the University of Montréal and the Montréal Urban
Community Transit Corporation. The company GIRO was created to deal with the com-
mercial distribution and development of the work. HASTUS is designed to be a complete

scheduling package.

HASTUS (as reported in [78, 104, 105, 10, 54]) is an interactive transport scheduling
system that is composed of three parts. They are HASTUS-Macro, HASTUS-Micro and
HASTUS-Bus. A more recent software module for the HASTUS suite is the CREW-OPT

procedure. This will be discussed in 2.2.5.

The HASTUS-Bus component is responsible for creating vehicle schedules given the service
requirements. Once the bus schedule has been generated HASTUS-Macro and HASTUS-

Micro components can be invoked to create the driver schedule.

Chapter 2 25 Review of Driver Scheduling Methods

HASTUS-Macro is the first phase in the driver schedule creation process. It uses a linear
program that tries to match idealized duties with buswork. HASTUS-Macro partitions the
vehicles into pieces of work with relief opportunities supplied at pre-determined intervals.
A variable set representing idealized possible duties is then generated and a minimum
cost solution is found using mathematical programming methods. This solution gives an
indication of the types of duties that should be constructed in order to form the final

solution.

HASTUS-Macro is often used as a approximation tool useful in evaluating proposed
changes to labour agreements as well as examining any “what-if” situations that may
arise. HASTUS-Macro is, thus, useful as a tool to measure the economic impact of pro-
posed labour agreement changes as well as a planning tool that can evaluate the impact
of the changes of the level of service. Garnier reports that the Paris bus company RATP*
has used HASTUS-Macro as a tool for this reason [46]. The solution found in HASTUS-
Macro can also be used as input into HASTUS-Micro in order to transform this schedule
“approximation” into a proper duty roster as described by Lessard, Rousseau and Dupuis

78, 105].

HASTUS-Micro completes the duty generation process. HASTUS-Micro uses the HASTUS-
Macro solution to split the vehicles into pieces of work. These pieces of work correspond,
as closely as possible, to the work generated in the HASTUS-Macro solution. The vehicles
are cut into pieces of work by solving a shortest path problem. This is expressed as finding
a path from the starting time to the finishing time in a vehicle using arcs that correspond
to pieces of work. A matching algorithm is then used to create duties from the work [10].
A refining heuristic method can be applied afterwards in order to improve the solution

slightly and to reduce the number of one piece duties used.

HASTUS has been used or is currently being used in cities throughout the world, including
Montréal, Boston, New York, Calgary, Helsinki, Singapore, Stockholm, Barcelona, Nantes,

Edinburgh, Sheffield, and Newcastle upon Tyne.

“Régie Autonome des Transports Parisiens.

Chapter 2 26 Review of Driver Scheduling Methods

2.2.5 CREW-OPT

GIRO Inc has added CREW-OPT into its HASTUS family of scheduling software. CREW-
OPT is a scheduling method that employs a set covering model using a column generation

approach [31, 103].

The column generation method is essentially an extension of the set-covering approach to
solving the crew-scheduling problem. The initial approach is similar to that used in the set
covering problem. A set of “good” duties are generated and the relaxed LP is then solved
using the simplex algorithm. Once a continuous solution has been found a subproblem is
then formulated that is used to try to generate new variables (duties) that would reduce

the cost of the current solution.

The subproblem formulation used in CREW-OPT is modeled as a shortest path prob-
lem with resource constraints. It is solved using a dynamic programming algorithm?®.
Desrochers and Soumis [31] give a thorough description of the subproblem formulation.
The resource constraints are imposed on the network to ensure that only legal duties are
created. These constraints consist of: maximum duration of a spell, minimum and maxi-
mum break lengths, maximum spreadover of a duty and the maximum number of pieces

allowed in a duty.

The subproblem itself is modeled using a network. Arcs in the network are defined to
represent pieces of work, breaks in between pieces of work (mealbreak or joinup), and
signing on and signing off activities. By solving this network as a shortest path problem,
efficient duties are created and compared with the current continuous solution of the
scheduling problem. If any of the duties created using this algorithm have a negative
reduced cost® then they are included in the LP formulation (a new column (variable)
representing this duty is added to the LP). When it becomes impossible to find a duty

with a negative reduced cost then the LP solution is optimal.

5A dynamic programming approach solves problems by combining the solutions to subproblems. A
description of this technique can be found in [20].
5That is, they can improve the solution.

Chapter 2 27 Review of Driver Scheduling Methods

Rousseau [103] gives a description of some of the scheduling problems CREW-OPT has
been applied to. CREW-OPT has been used in Lyon, Toulouse, Barcelona, Vienna, and

East Japan Railways.

2.3 Metaheuristics

There are other approaches that can be employed in order to solve the driver scheduling
problem. Many of these fall into the category of metaheuristics. The University of Leeds
has examined metaheuristic approaches to duty schedule generation as reflected in the

transport scheduling conferences. These will be examined next.

2.3.1 Genetic Algorithms

The approach of genetic algorithms (GA) involves intelligently exploiting a random search
by using an analogy to a natural process. GAs are based on a natural analogy with
population genetics and evolution. In nature, usually the stronger creatures in a population
will tend to survive whilst the weaker ones perish. This also works for some of their
inherited traits. This concept is extended to operational research problems by applying

the same principle to populations of potential solutions to a problem.

The interest in this approach began in the seventies when John Holland first published
his book Adaptation in Natural and Artificial Systems [61]. The basic idea of a GA is
to create an initial population of solutions or chromosomes for a given problem. Exam-
ples of scheduling problems which have been solved using GAs include university course
timetabling problems, professional ice hockey league timetabling problems, examination
scheduling problems and vehicle scheduling problems as well as bus driver scheduling
[75, 21, 36, 68, 18]. Two standard operators are then applied to this population to create
new and, it is hoped, better solutions. Crossover is employed to mate two solutions in

the hope that good characteristics from both of them will be combined in the offspring.

Chapter 2 28 Review of Driver Scheduling Methods

Mutation is a unary operator that, with a low probability, randomly alters the solutions
in such a way that genetic diversity is maintained. The parents used to create offspring
are often probabilistically chosen in such a way that the stronger solutions are more likely
to participate in reproduction. Similarly the less desirable solutions are more likely to be

replaced in the population with the offspring from these parents.

Over time the population will tend to converge. That is, the solutions will begin to
resemble one another so much that genetic diversity is lost. Mutation often helps to delay
convergence somewhat but it is inevitable that convergence will occur given the population
sizes used in practical problems. Convergence should be avoided in the early stages of the
GA process. Early convergence can lead to a sub-optimal or even a poor solution. Further

information on the basics of GAs can be found in any of [85, 100, 28, 6, 7].

Two examples of GAs applied to the driver scheduling problem follow.

2.3.1.1 Greedy Genetic Algorithms and Optimizing Mutations

At the University of Leeds Wren and Wren began work with the application of genetic
algorithms with reasonably good results [142]. Clement and Wren continued this work

with GAs with somewhat promising results which will be described next [18].

The initial population of solutions (chromosomes) are composed of binary strings of which
each bit represents a potential duty in the solution. A bit is set to ‘1’ if that duty is present
in the solution, ‘0’ otherwise. Crossover, in the context of this GA, is somewhat unusual.
When two chromosomes are mated, a union of all the duties used in both chromosomes
is constructed. This is referred to as a fertilized cover. Child chromosome(s) can then
be created using some form of heuristic that generates a legal schedule from the fertilized
cover. This can be seen conceptually in Figure 2.3. Several methods of crossover and

mutation are reported giving varying results.

The first method is referred to as the raw genetic approach. The crossover can be thought

of as a variation of the uniform crossover operator [119]. Child chromosomes are created

Chapter 2 29 Review of Driver Scheduling Methods

Figure 2.3: Reproduction using Fertilized Cover

from the random selection of bits (potential duties) from the fertilized cover. This takes
into account constraints such as ensuring all work is covered by at least one driver. The
results from this approach were not entirely satisfactory. One reason may be that the
population converges very quickly. This is avoided by introducing population remakes;
this entails entering many new random solutions into the population when convergence
is detected (while keeping the best solution). When population remakes were introduced

the quality of the solutions improved.

A new crossover method is introduced called greedy crossover. Given the fertilized cover
constructed from the two parents a heuristic derived from greedy algorithm methodology
is then used to create a new solution (child). Duties are linked with the pieces of work
they cover. Given a list of uncovered work this heuristic examines each piece of work
in the order presented and then selects the duty covering the most work, including the
piece of work being considered, from the fertilized cover. This is repeated until the entire
set of work is covered. Unfortunately this approach only generates one possible child per
mating pair of solutions. This problem is solved by permuting the order in which work is

considered in the greedy heuristic, which seems to help avoid convergence.

Clement and Wren report that classical bitwise mutation was tried and found to be of little

benefit. A mutation operator referred to as an optimizing mutation was then developed

Chapter 2 30 Review of Driver Scheduling Methods

which searched the chromosome’s duty set in order to try and replace some duties with
more efficient ones. Although this procedure is computationally expensive it did seem to

improve results.

Unfortunately, none of the results were able to reproduce known optimal solutions to the
problems (although, it should be noted, Wren and Wren’s original work on this did [142]).
The best solutions, using greedy crossover with optimizing mutations, usually had two or
three duties more than the known optimal. This is not to say that GAs are not applicable
to driver scheduling problems but rather that they need more research. One possible
application would be to apply them to large problems where solutions are difficult to find

using more conventional mathematical programming techniques.

2.3.1.2 Genetic Algorithms with Embedded Combinatorial Traits

The approach taken by Kwan et al. [72] is substantially different from the previous GA
examined. It is based on the TRACS-II system developed at the University of Leeds
(as will be described in Chapter 4), which uses a set covering model similar to the one

described in Section 2.2.1.

TRACS-II initially generates a large set of potential duties that abide by all the constraints
of the labour agreement for the schedule in question. The problem is then formulated as a
set covering problem and solved with an ILP with the integral constraint on the variables
relaxed. Normally at this point the ILP would use a Branch & Bound (B&B) process
if the solution is not integer. The GA takes over the schedule generation at this stage

instead.

The continuous solution provides two pieces of useful information. The sum of all variables
in the continuous solution’ provides a useful lower bound on the number of duties needed
in the solution. The second point is that the continuous solution involves a number of

duties that is no more than the total number of work pieces. Through experimentation it

"Rounded up if non integral.

Chapter 2 31 Review of Driver Scheduling Methods

has been found that at usually about 75% of the duties in the final integer solution are in
the continuous solution. This implies that there are probably subsets of shifts that fit well
together (or “well-fitting” shifts) in the continuous solution (each such subset is referred
to as a combinatorial trait). The goal of the GA is to derive such subsets, supplemented

with duties selected from the original large set of potential duties.

The GA chromosome is of a fixed length that is dependent on the number of duties in the
continuous solution whose continuous value exceeds® p. The chromosome is composed of
a bitstring with each bit representing a duty that has been selected from the continuous
solution. A value of ‘1’ indicates its presence in the schedule whilst a value of ‘0’ indicates
its absence. The bits of the chromosomes are generated randomly. It is unlikely that
any of the chromosomes will represent a legal schedule. A repair heuristic is applied to
the chromosomes to remedy this. This involves potentially considering duties other than
those represented in the chromosome (those duties not in the continuous solution with a
value > p), using a greedy approach. After the repair procedure any redundant duties are

removed.

The fitness of a chromosome is represented in terms of the weighted cost of the schedule
as well as a heavy penalty for each duty used. If the schedule S to be evaluated has n

duties and Cj represents the cost of shift j the cost can be expressed as follows:

WeightedCost(S) = i C; + 5000n (2.4)
j=1

The high cost imposed for each duty helps to identify better solutions (in terms of number
of duties) from their cost value. The genetic operators employed are classic one-point
and uniform crossover as well as standard and aggressive mutation (as described in [72]).
These unary operators become more active over the lifetime of the algorithm as they help
to enlarge the search space in order to avoid convergence. The parent selection procedure
for crossover is probabilistic with the probability being proportional to the parent’s fitness.

Population sizes used in the GA have varied between 50 and 800.

8 A good value of p has been found to be 0.2.

Chapter 2 32 Review of Driver Scheduling Methods

The results obtained with this GA have been quite good. The GA was able to match
TRACS-II results for several problems whilst coming within one or two duties of the
optimum for others. The GA has also solved problems which were too big for TRACS-
II. For TRACS-II the problems were decomposed. TRACS-II produced better solutions
than manually constructed ones, but the GA did better than TRACS-II. This work is still
at an early stage and one of the goals is to identify combinatorial traits within some of
the more fit members in the population of solutions in order to exploit them. Four such
combinatorial traits were identified, these are: well-fitted duties, relief chains, handover
relief and overcover links. Well-fitted duties are defined as duties that simply fit well
together. Relief chains, otherwise known as mealbreak chains, are another useful schedule
property which will be discussed in detail in Chapter 5. Handover relief traits refers to
a break where a driver takes a mealbreak and a new driver takes over. Overcover links
are pairs of relief opportunities that are potentially critical to a good solution but the GA

overcovers the work represented between them.

The end goal of this research is twofold. First is to identify the combinatorial traits in
promising solutions and exploit them during the GA process to find better solutions. The

second goal is to use this GA as a replacement for the branch and bound phase of the ILP.

2.3.2 Ant Systems

Ant Systems (AS), as created by Dorigo et al. [34], are, like genetic algorithms, based
on a natural process. Rather than simulating evolution, ASs simulate activities that take
place in an ant colony, specifically their behaviour when searching their environment for

food.

In an ant colony it is the job of worker ants to provide for their nest by searching the
surrounding area to find, and return with, food. As the worker ants wander about looking
for food they leave trails of pheromones behind which allows communication with other
ants. These trails of pheromones evaporate over time; however, if many ants use the same

trail, the scent of pheromones can be quite strong. When an ant is searching for a path

Chapter 2 33 Review of Driver Scheduling Methods

to take, the strength of pheromones on various trails in the area influences its decision on
which trail to follow. The stronger the scent of pheromones the more likely that particular
path will be chosen. If there is a short path to food it is likely the ants will traverse
this path more frequently, thus, the pheromones will evaporate less and the scent will be
stronger; this path with the strong pheromones is likely to influence other ants to follow

this trail to the nearby food.

An analogy with this natural process is made with the Ant Systems metaheuristic tech-
nique. Virtual ants are ‘let loose’ in a virtual solution space environment and, given a set
of rules, it is hoped they will be able to ‘trace’ reasonable solutions. The strength of the
pheromone trail is directly related to the quality of a solution (similar to the GA analogy
of a fitness function for a chromosome). Over a period of time it is hoped that a good

solution will be found.

2.3.2.1 An Ant System for Bus Driver Scheduling

Forsyth and Wren [42] have applied the AS metaheuristic to the bus driver scheduling
problem. The basic idea is to have these virtual ants trace paths through a bus schedule
(with the paths representing driver duties) to create driver schedules. Good duties will be
used more often by the ants and, thus, have a higher concentration of pheromone trails

and are therefore more likely to be chosen in future iterations.

Initially a large set of potential duties is generated. The routine to do this is the same one
that is used in TRACS-II as described in Chapter 4. A heuristic devised by Willers [128]
is next invoked to produce an initial solution. This covers the work in a greedy fashion
by repeatedly selecting duties from the large set generated such that as many pieces of
uncovered work as possible remaining in the vehicle schedule are covered. This generally
leads to a moderate amount of overcover (and more duties than required) in the initial

schedule.

The duties used in this initial schedule are used to calculate the initial closeness values.

Chapter 2 34 Review of Driver Scheduling Methods

Closeness values are used to aid the ants when there is little or no pheromone activity
in the AS. The purpose of this is, early on in the AS process, to favour duties that are
similar to the ones selected in the heuristic solution generated earlier. As time goes on
the pheromone trails produced by the ants in the system will take over and their influence

will be more dominant than these initial closeness values.

When pheromone trails are updated the values used reflect how much work is uncovered.
Duties selected that cover more uncovered work are given larger pheromone values. Once
all the work is covered the bias goes towards trying to reduce the number of duties used

in the solution.

Unfortunately, there are many parameters to be decided in an AS and Forsyth and Wren
recognize that this is a current problem. The current AS being developed is still in the

testing and development phase.

2.4 Discussion

Three types of approach to the driver scheduling problem have been examined in some

detail. The first of these examined was the use of heuristics to generate driver schedules.

The main reason heuristic systems were developed to produce driver schedules had more to
do with the technology of the time rather than lack of understanding of other approaches
(specifically mathematical ones). Heuristic approaches, however, do have advantages of
their own. One advantage is that heuristics are quick and cheap to run. The computa-
tional power needed to support such a system is also an advantage although with todays
inexpensive desktop computers this is much less of a factor. Interactive systems that em-
ploy heuristics enable the scheduler to have complete control over the scheduling process
as the ability to manually modify a solution at almost any point in the solution generation

process can be a powerful tool (such as COMPACS).

Disadvantages inherent with a heuristic approach are also present. Many heuristic methods

Chapter 2 35 Review of Driver Scheduling Methods

(such as TRACS, RUCUS, etc) first form a solution to the driver scheduling problem and
then try to heuristically improve the solution. The quality of the final duty schedule
produced is often very dependent on the quality of the initial solution. Another issue
that arose in the development of heuristic systems (as observed by Parker and Smith with
the TRACS system [92]) is that modifying them to be used with different labour rules is

difficult.

Mathematical methods are, by far, the most common and successful method of producing
driver schedules to date. Systems such as TRACS-II, HASTUS and CREW-OPT are in
use to this date which demonstrates how effective and popular such methods can be. Most
mathematical systems model the problem using a set covering formulation. First a large
set of potential duties are generated and then the duties to be used in the final solution are
selected by solving the resulting set covering ILP. One important inherent advantage to a
technique such as this is that the solution method and the duty generation procedures are
in two distinct steps. One of the most difficult features in driver scheduling is adapting to
the different labour agreements and rules/regulations present in each scheduling situation.
These constraints can be taken into account during the duty generation process such that
only legal duties are generated. The actual solution method can be thought of as a stand
alone procedure in the scheduling process. The set covering ILP does not have to reflect
these driver scheduling constraints; these are taken care of when the set of potential duties
is constructed. With heuristic methods, changes to the labour agreement rules often result
in major modifications that have to be made to the scheduling code in order to ensure
legal duty schedules are produced. With mathematical methods, such as set covering, only
the code that generates the initial large set of potential duties must be updated to reflect

any such changes.

Disadvantages that can be found when mathematical programming methods are employed
become apparent when the problem size is quite large. If a large number of running
boards with many relief opportunities is to have a driver schedule produced for them using
mathematical programming it can be the case that the potential set of duties generated is

extremely large. Heuristic procedures, or overly restrictive labour agreement parameters,

Chapter 2 36 Review of Driver Scheduling Methods

must be used in order to trim the size of the set of duties down to something a mathematical
program can cope with in a reasonable amount of time. This implies that valid duties will
be excluded from this set of potential duties and this can have a negative effect on the

quality of the overall solution.

Metaheuristic approaches such as genetic algorithms or ant systems are still fairly new
and unproven approaches to solving the driver scheduling problem. The research done
thus far with these techniques has, however, borne some promising results. The approach
taken by Kwan et al. [72, 70] shows how metaheuristics can be combined with a math-
ematical programming approach and that has had especially promising results showing
that, perhaps, for very large and difficult problems some hybrid between the realms of
metaheuristics and mathematical programming may be where future research should be

done.

Chapter 3

Constraint Programming

3.1 Introduction

This chapter will explore constraint programming (CP) in some detail. A brief survey of
the literature will be presented and towards the end of the chapter examples will be given

where constraint programming has been used for to help solve driver scheduling problems.

3.2 Constraint Satisfaction Problems (CSP)

Constraint Satisfaction Problems (CSPs) have been a topic of research for many years.
CSPs have practical significance in operational research problems including scheduling,
timetabling and other combinatorial problems (see the papers by Davis for the description
of a exam timetabling system and Le Pape for a historical discussion of some CP systems

that have been applied to scheduling problems [27, 76]).

Unfortunately, not many good texts or references exist that give an overview of the CP
field. The texts by Tsang [121] and Marriot and Stuckey [84] are widely regarded as
excellent references for those interested in CSPs. Baptiste et al. have produced a useful

book on constraint programming applied to scheduling problems [5].

37

Chapter 3 38 Counstraint Programming

This section is split into several parts. The first part will explore what makes a CSP.
After CPSs have been outlined the properties of variables and constraints will be exam-
ined; this includes properties between constrained variables, such as arc consistency and
path consistency. Search algorithms will then be described which will include such top-
ics as variable and value ordering. Lastly a description of the ILOG-Solver constraint

programming library will be given.

3.2.1 CSP Definition

A Constraint Programming (CP) or Constraint Satisfaction Problem (CSP) problem con-

sists of three parts [121, 113]. They are:

1. A set of variables X = {z1,...,zn},
2. For each variable z; a finite set D,, of possible values (its domain).

3. A set of constraints restricting the values that the variables are allowed to take

simultaneously.

A solution to a CSP consists of an assignment to every variable from its domain in such
a way that every constraint has been satisfied. Depending on how the problem is defined

it may be the case that:

e Any solution may be sufficient.
e All possible solutions to a problem may be required.

e An optimal (or near-optimal) solution may be required. To do this some objective

function must be defined in terms of some subset of the variables.

In general, solutions are found to a CSP by systematically assigning to variables values

from their domains. Heuristics often guide this search.

Chapter 3 39 Counstraint Programming

A label is a variable-value pair representing the assigned value to a variable. For example,
if x is assigned the value v, then < z,v > represents assigning the value v to z. Generally
this can be written as £ = v. A compound label is the simultaneous assignment of values

to a set of variables [121].

A variable that has been assigned a value or labelled is said to be bound or instantiated.

A variable that has not yet been assigned a value is said to be unbound.

3.2.2 Constraints

A constraint is usually represented as an expression involving a subset of the variables in
the CSP. For example, the following expressions represent constraints on a subset of the

integer variables z,y and z:

T =y (3.1)
2 # 2 (3.2)
zz < 2y (3.3)

Alternatively, and more formally, a constraint on a set of variables can be defined as a set
of compound labels for those variables [121]. The compound labels define the only assign-
ments to the variables which can be made simultaneously. Often the notation Cg is used
to represent a constraint on the set of variables S. Thus we can refer to constraint (3.1)

as Cpy.

As an example of this definition of a constraint, consider the integer variables x and y. If

their domains are:

D, = {1,2,3}

D, = {1,3}

Chapter 3 40 Counstraint Programming

then any subset of:

{(<z,1><y,1>),(<z,1><y,3>),(<z,2><y,1>),

(<z,2><y,3>),(<z,3><y,1>),(<z,3>,<y,3>)}

would be a legal constraint between z and y. The constraint > y would be represented

by the subset

{(<z,2>,<y,1>),(<z,3><y,1>)}

From the definition of a constraint it is clear that a constraint can affect any number of
variables from 1 to n (where n is the number of variables in the CSP). The number of

variables affected by a constraint is known as the arity of the constraint.

Unary constraints only affect one variable. Unary constraints can be used to remove values

from a variable’s domain (for example constraint (3.2)).

Binary constraints affect two variables (for example constraint (3.1)). When all the con-
straints in a CSP are binary both the variables and constraints can be represented in a
graph. This constraint graph, G = (E,V'), represents the variables in the CSP as the
vertices, V', and the edge set, F, consists of edges joining two vertices if and only if there

is a constraint between them.

CSPs not limited to binary and unary constraints are referred to as general CSPs. Any
constraint of an arity greater than two can be expressed in terms of binary constraints
however it may not always be a good idea to do this in practice. Unfortunately, it is not
always easy to decide whether or not it is worthwhile transforming a general CSP to a
binary CSP. Bacchus and van Beek explore transforming general CSPs into binary CSPs
and there are issues to do with the performance of solving such binary CSPs as well as cost
overheads involved in transforming them [3]. Stergiou and Walsh also explore this topic
in some detail [116]. Both papers conclude that more research needs to be carried out in

this area to help determine when transforming a general CSP to a binary CSP might be

Chapter 3 41 Counstraint Programming

advantageous.

Similar to the graph representation of a binary CSP, a general CSP can be represented
by a hypergraph. A hypergraph is similar to a graph except instead of an edge set a
hypergraph has a hyperedge set, H. A hyperedge would join a set of vertices if and only

if there is a constraint between them [20, 13].

3.2.3 Node Consistency

For any unary constraint a variable is said to be node consistent if and only if each value

in its domain satisfies any unary constraints placed on it.

Achieving node consistency is a trivial operation. One simply has to ensure that for each
variable in the CSP each of its domain values are examined. Any values that do not satisfy

the unary constraint(s) on the variable in question are deleted from the domain.

3.2.4 Arc Consistency

For any binary constraint, Cj;, between two variables, say z; and z;, the arc (z;,z;) is
said to be arc consistent if for every value a € Dy, there is a value b € Dy; such that the
assignments z; = a and z; = b satisfy the constraint C;;. Any value a € D, that violates
C;j because no such b € ij exists can be removed from D, since it cannot possibly
participate in a solution. If every arc in a binary CSP is arc consistent, then the whole

problem can be said to be arc consistent.

The arc (z;,x;) is directional. If arc (z;, ;) is arc consistent it is not necessarily the case

that (z;,z;) is also arc consistent.

Figure 3.1 shows a constraint graph between the variables £ and y. The sole constraint

between the two variables is:

S—x > y (3.4)

Chapter 3 42 Counstraint Programming

Part (a) of Figure 3.1 shows the original domains of both z and y. Part (b) shows the

X 5-x>y y
{1.5} {1.5}
@)

X 5-x>y y
{1.3} {1.5}
(b)

X 5-x>y y
{1.3} {1.3}
(©

Figure 3.1: Making (z,y) and (y,z) Arc Consistent

new domain of z as (z,y) is made arc consistent. Part (c) shows the new domain of y as

(y,x) is also made arc consistent.

3.2.4.1 Achieving Arc Consistency

The number of possible assignments of values to variables which an algorithm solving a
CSP might have to consider is the product of the domain sizes of the variables in the
problem. Arc consistency can reduce the domain sizes of the variables in a, CSP and, thus,

help to reduce the number of labels that must be considered in the search for a solution.

Consider another CSP example which will be represented as a search tree showing the
search space of the CSP which will be made arc consistent!. The search space shows every
possible state at which a search could arrive. Again, we will use the integer variables z,y

and z with initial domains of:

D, = {1,...4} (3.5)
D, = {1,...4} (3.6)
D, = {1,...4} (3.7)

'Each node in a tree can be thought of as a variable and the branches emanating from a node can be
though of as values in the variable’s domain to which that variable can be potentially bound.

Chapter 3 43 Counstraint Programming

Assume, also, that the following binary constraints are present in this CSP:

z—y = 1 (3.8)
2 >z (3.9)
z—y = 2 (3.10)

The original search tree for this CSP, before the CSP is made arc consistent, will look like
what is found in Figure 3.2. Note that this search tree assumes the variables z,y and z

are considered in order. After this CSP has been made arc consistent it will look like the

.

P

y O O O O

ALLALAL ALAL AAAA

search tree in Figure 3.3. As can be seen making the problem arc consistent has pruned

e

b

Figure 3.3: z,y and z Made Arc Consistent

the search space quite dramatically.

Making a CSP problem arc consistent is a relatively cheap operation. Because of this it

is often done in the pre-processing stage of a CSP. In ILOG Solver, for example, this is

Chapter 3 44 Counstraint Programming

done as constraints are placed on the CSP (or posted as ILOG Solver calls the operation)

and also whenever any change is made to the domains of the variables.

Often when a constraint is made arc consistent, it can have a knock-on effect with other
constraints. For example if the constraint = > y is made arc consistent and there is another
constraint, say y < z, then this too must be re-examined to ensure it is arc consistent if
the domain of y was modified (if the problem is to stay arc consistent). When a constraint
has this knock on effect it is due to the fact that the changes to the variable domains are
propagated to other variables via the constraints (also known as constraint propagation) .
Constraint propagation through arc consistency is powerful as it helps reduce the size of

variables’ domains throughout the search for a solution.

Several algorithms have been developed to make a CSP arc consistent. Each one is sup-
posedly better than its predecessors in some way (generally with regard to time and space
complexity, or perhaps in the way they take advantage of known features of the CSP it is
applied to). AC-1 through AC-3 are described by Mackworth? [82]. The algorithm AC-3,
the best of the three, first creates a queue containing all of the binary constraints (or arcs
as it is often convenient to view binary CSPs as graphs) in the problem. An arc is taken
from this queue and made arc consistent. If a domain was changed during this consistency
procedure then all arcs that might be affected by this (and are not already in the queue)
are added to the queue. This process continues until such time as the queue becomes
empty. The CSP is then arc consistent. AC-3 has a time?® complexity of O(a®e) and a
space complexity of O(e + na) where n is the number of variables and e is the number of

binary constraints and a is the size of the largest domain.

Mohr and Henderson devised an arc consistency algorithm, AC-4, with the theoretically
optimal time complexity of O(a2e). The price paid is with the space complexity which is
O(a?e) [87]. AC-4 went further than AC-3 in recognizing that values in a CSP support

other values. For example, if the arc (4,) is arc consistent with respect to < i, > and

2 Actually, Waltz’s filtering algorithm [125] is generally credited as being one of the first arc consistency
algorithms and Mackworth [82] states that AC-2 follows its spirit the closest.
3 A detailed analysis of these algorithms can be found in Mackworth and Freuder [80, 81].

Chapter 3 45 Counstraint Programming

< j,w > then the value w € Dj is said to support < ¢,v >. The extra space required
by AC-4 reflects this in that the supporting values are stored and a counter that keeps
track of how many supports a value has is also created. This counter is decremented as
supports are removed due to constraint propagation. As reflected in the time complexity
this reduces the number of consistency checks required. One downside with AC-4 is that,
although its optimal time complexity is proven, it usually performs close to its worst case
time complexity. AC-3, on average, has a better time complexity. Thus, AC-3 is often

used in preference to AC-4 [8, 124].

Further work on arc consistency by van Hentenryck, Devill and Teng has produced a
generic arc consistency algorithm, AC-5 [33]. It is generic because it allows consistency
checks to be done depending on the type of constraint being checked. This allows the
implementation to take advantage of features found in different constraints in order to
implement the most efficient consistency check. This is made possible by the queuing
strategy used in AC-5. Like AC-3, AC-5 starts by first examining each arc in the CSP and
making it arc consistent. Whenever a domain is reduced all arcs that may be affected by
this domain reduction are added to a queue. AC-5 also includes the values that have been
removed from the variable in question, say A, along with the arcs in the queue. When
this queue is processed after all of the arcs have been examined the user implemented arc
consistency routine receives an element from the queue, say (7, 7, v). This represents the arc
to be considered, (i,7), as well as the value, v, removed from variable j. The consistency
check can then proceed as seen fit. As with AC-3 and AC-4 any further domain reductions
result in more elements being added to the queue to be processed. When the queue is

empty the CSP is arc consistent.

These user implemented consistency checking routines can also take advantage of how
constraints are internally represented. For example the custom arc consistency procedures
may perform operations on the domains of variables such as retrieving the minimum and
maximum value in the domain. Functionality such as this is more sophisticated than
what is required with other arc consistency algorithms and can have a profound impact

on the overall time complexity of AC-5 with regards to certain type of constraints. Devill,

Chapter 3 46 Counstraint Programming

van Hentenryck and Teng discuss these special types of constraints and show the time

complexity of AC-5 can be reduced to O(ed) in some cases [33].

ILOG-Solver [97] takes advantage of exactly this type of functionality as do other systems
such as CHIP* (for which AC-5 was designed). More will be said on this topic when ILOG

Solver is discussed in Section 3.2.8.

AC-6, as described by Bessiere and Cordier, is another arc consistency algorithm that
keeps the optimal worst-case time complexity of AC-4 but has an O(ea) space complexity
[8]. AC-6, like AC-4, does keep track of supports for variables. Unlike AC-4, however,
only one support per variable is stored rather than all of them. If that support is removed
during the execution of the algorithm then another support is searched for and used (if
present). Bessiere and Cordier go on to describe some experimental results that show that
AC-6 outperforms, in the sense of comparisons made, both AC-3 and AC-4 on their test

problems.

Bessiere, Freuder and Regin [9] published AC-7 which tries to reduce the number of con-
straint checks necessary by inferring support for values in a variable’s domain. For exam-
ple, they state that AC-7 takes advantage of the knowledge that support is bidirectional.
That is if < 4,v > supports < j,w > then < j,w > supports < i,v >. Bessiere et al.
further state that, in terms of constraint checks, AC-7 is an improvement over AC-3, AC-4
and AC-6. AC-7 has a time complexity of O(ed?) and a space complexity of O(ae) (like
AC-6).

The AC algorithms discussed so far only consider binary constraints. Generalized arc
consistency considers constraints with an arity of more than two. A CSP is generalized
arc consistent if for any variable in a constraint and value it is assigned there exists legal
values for all the other variables in the constraint. Mohr and Massini [88] describe GAC-4,
a generalized arc consistency algorithm which is derived from AC-4. The algorithm main-
tains a queue of labels that have been removed from a domain and are not yet processed.

For each label processed, say < ¢,a >, each constraint containing a compound label that

4Constraint Handling In Prolog.

Chapter 3 47 Counstraint Programming

contains < %,a > must have that compound label removed. When such a compound label
is removed from a constraint, say C, it may be the case that this compound label was the
last element in C' that was supporting another label. This, now unsupported, label must
be added to the queue and processed in turn. Similar to the other AC algorithms, once

the queue is empty the CSP is generalized arc consistent.

Mohr and Massini show results that this generic algorithm does work well for some prob-
lems. In practice for many problems, such as the global cardinality constraint as described
by Regin [101], the number of admissible tuples that need to be processed can be too large
to cope with. GAC is used in some CP tools, such as ILOG Solver, in special cases where
it is practical to do so. In these cases it is a question of implementation. Solver’s usage
of GAC will be discussed in Section 3.2.8. Stergiou and Walsh also discuss GAC using a

specific example, the all-different constraint [117].

This is a brief illustration of the algorithms available for arc consistency. The number of
algorithms designed to make CSPs arc consistent should highlight the importance of arc

consistency in CSPs.

3.2.5 Path Consistency

Even when a CSP has been made arc consistent it may be possible to make further
deductions from the constraints and, hence, further domain reductions. Arc consistency
considers all pairs of variables so the next logical step would be to consider all triples of
variables. Consider the constraint network in Figure 3.4 (as taken from [113]). Although
this CSP is arc consistent, the variable x can never be assigned the value 2; this would

violate the constraint y 4+ z < 20. Unfortunately, arc consistency is unable to detect this.

A path (z;,z;,) in a constraint graph for a CSP is path consistent if and only if for each
pair of values v; € Dy; and vy € Dy, that satisfy constraint Cy, there is a value v; € Dy,
such that (v;,v;) € Cj; and (vj,v;) € Cjg. If no such value v; exists then (v;,v;) should

be removed from Cj;. This states that there is no value v; that is consistent with z; = v;

Chapter 3 48 Counstraint Programming

{12} x y>=3x y {6.10}

z>=5X y+z<20

z
{6.10}

Figure 3.4: An Arc Consistent Constraint Network

and z; = vx. Removing a value from a constraint, such as (v;,vy) from Cy, is known as
tightening a constraint. A CSP is said to be path consistent if every path of length two

in the graph is path consistent [121].

Like arc consistency there are several algorithms to achieve path consistency. Mackworth
describes the first two known as PC-1 and PC-2 [82]. PC-2 is the most efficient of the
two having a time complexity of O(a®n3) and a space complexity of O(n3 + n%a?). PC-3
was devised by Mohr and Henderson but their description contained some minor mistakes
[87]. This error was corrected by Han and Lee which produced the algorithm PC-4 [55].
PC-4 has both a time and space complexity of O(a®n3). PC-5, as proposed by Singh,
has a space complexity of O(n3a?) but still has the time complexity of PC-4 [110]. PC-5
uses the same idea exploited by AC-6 in that variable supports are searched for only when

required, thus reducing the space complexity of the problem.

The complexity of these algorithms illustrates that path consistency is a fairly expensive
operation in comparison to making a problem arc consistent. Tsang suggests that running
a path consistency algorithm on a CSP before a search starts may improve the search

efficiency and some problems lend themselves to pre-processing more than others [121, 11].

Conventional CP tools don’t employ PC. One problem with PC is that considering more
than 1 constraint at a time increases the complexity of the problem. There are far more
ways of choosing 2 constraints from a set of n constraints than 1. Additionally if a pair of

constraints is not PC then you have to forbid the pairs of values of the relevant variables.

Chapter 3 49 Counstraint Programming

This, in effect, adds more binary constraints to the problem. This is less convenient than

simple domain reduction which is what you would get from AC.

3.2.6 £k Consistency

Freuder [43] has generalised the concept of consistency in CSPs and devised the concept

of k consistency. k consistency (taken from [121]) is defined as follows:

A CSP is said to be k consistent for £ > 1 if and only if all (k — 1)-compound
labels which satisfy all the relevant constraints can be extended to include any
additional variable to form a k compound label that satisfies all the relevant

constraints.

This means if a problem is k£ consistent then if we choose values for any k— 1 variables that
satisfy the constraints amongst them and choose any kth variable, then there will exist a
value for the kth variable that satisfies the constraints amongst all k variables. However,
a CSP that is k consistent is not necessarily & — 1 consistent. Additionally a CSP with n

variables that is n consistent does not necessarily have a solution.

Cooper [19] has produced an algorithm for achieving k consistency, KS-1, and its com-

n .
plexity is O(XF_(a')). For values of k larger than three or four this algorithm
1
becomes very expensive to run.
Now that k£ consistency has been defined we can see that node consistency is equivalent
to l-comsistency, arc consistency is equivalent to 2-consistency and path consistency is
equivalent to 3-consistency. Clearly it is possible to consider groups of four or more
variables to generate higher orders of consistency but it is questionable whether or not it
would be a good idea to do so due to the excessive cost and the benefits in doing so. The
benefits gained from making a problem k consistent for larger values of k are not worth the
cost (anyway, k— 1 consistency is not guaranteed). k-consistency is never used in practice.

Maintaining node and arc consistency is a cheap and effective operation and is much more

Chapter 3 50 Counstraint Programming

favourable to k£ consistency. Although k consistency can remove more inconsistent values

from a CSP it will not eliminate the need to search for a solution in general.

3.2.7 Search Algorithms

Once a CSP has been defined various algorithms can be applied in order to find a so-
lution(s). A solution to a CSP is defined as an assignment of a value to each variable
that does not violate any of the constraints. The search tree for a CSP grows in size
exponentially in relation to the number of variables in the problem (although the entire
search tree will not be explored). Unless the problem is fairly small then the search for a

solution will need some guidance.

3.2.7.1 Backtracking (BT)

The classic algorithm for solving CSPs is backtracking [51]. The BT algorithm instantiates
(binds) each variable in turn and builds up a solution sequentially. Variables already bound
in a search algorithm are known as past variables whilst variables that are unbound are
known as future variables. The variable currently being considered by a search algorithm

is known as the current variable.

First, assume the variables being labelled are done so in sequence such that x; is the
first variable that will be considered, x5 will be the second and so on until z,, is lastly
labelled with a value. When the BT algorithm labels the current variable the assignment
is checked against all past variables. If any constraint between the current and past
variables is violated the BT algorithm instantiates the current variable to another value
in its domain. If all the values of the current variable are tried with no success, then
the algorithm backtracks to the previously bound variable. This variable is then assigned
another value from its domain. If the BT algorithm successfully assigns a value to every
variable in the CSP then a solution has been found. The algorithm can either terminate

with the one solution or continue to find another solution(s). If there are no solutions the

Chapter 3 51 Counstraint Programming

BT algorithm will exhaust all possible opportunities and terminate.

To show an example of what the search space explored by the BT algorithm would look

like the N-Queens problem will be used. The problem is stated as:

Given an N x N chessboard the goal is to place N queens on the board such

that no queen can attack any other queen.

For this problem to have a solution N must be greater than three; for this example the
4-Queens problem will be used. The CSP can be represented with four integer variables.
Each variable represents a row of the chessboard. Each variable’s domain, {1,...,4},
represents the column a queen can be placed in. The constraints on the problem are that

no two queens can be on the same row, column or diagonal on the chessboard.

Figure 3.5 shows what the search space for this problem would look like when the BT
algorithm is used. Each row in the 4 x 4 chessboards corresponds to a variable in the

’ in a particular row corresponds directly to the column to which that

problem and a 'Q
row’s variable has been bound (a value between one and four). The location in the search
tree where the search is unsuccessful and, therefore, must backtrack is marked by a circle
with a X in it. The leaf node representing a successful search is marked with a circle. From
this figure it can be seen that the search requires a fair amount of work. For example the
first subtree (where a queen is placed in the top left corner of the chessboard) contains no
valid solution at all. This is not detected because BT only checks constraints between the

current variable and the past variables. With the BT algorithm this cannot be detected

until the subtree is exhausted.

BT is the least favourable search algorithm as no effort is made to record any information
about past failures which may aid the algorithm in backtracking®. A variable may be
backtracked to and re-labelled repeatedly when it is an incorrect instantiation higher up

in the search tree that is causing the failures. If a search algorithm was to incorporate

SHowever, BT is much better than generating all possible solutions and testing each one. When BT
was introduced it was hailed as a great advance because of this.

Chapter 3 52 Counstraint Programming

Q Q
Q Q Q Q Q Q Q Q
Q Q Q Q Q Q Q Q
Q Q Q Q Q Q Q Q] Q
Q Q Q Q Q Q Q Q Q
Q Q Q Q Q Q Q Q Q
® ® ® ® X X ®
Q Q Q Q Q Q Q
Q Q Q Q Q Q Q
Q Q Q Q Q Q Q
Q Q Q d [e Q Q

® ® ® ® ® ® O

Figure 3.5: 4-Queens Search Using Chronological Backtracking (BT)

information gathered during the search then irrelevant backtrack points may be avoided.

Search algorithms that do this will be explored next.

3.2.7.2 Backjumping (BJ)

Gaschnig devised a technique known as Backjumping (BJ) that avoids backtracking to
nodes where the reassignment of values to them cannot possibly lead to a solution [49].
The algorithm for BJ is exactly the same as BT except when it backtracks. Recall that
backtracking is needed if the current variable has no legal value in its domain. With
the BT algorithm, once it has been found that backtracking is necessary, BT will always
blindly go to the previous past variable and try to assign it another value. BJ identifies

culprit labels or bindings which are earlier labellings that have contributed to the failure.

When a variable is instantiated to a value from its domain it is then compared with all
the past variables to ensure the instantiation is consistent. If all the values in the current
variable’s domain are inconsistent with past bindings then backtracking is necessary. In
this situation every value in the current domain must be in conflict with at least one past

variable. For each value tried in the current variable’s domain a note is made of the first

Chapter 3 53 Counstraint Programming

variable that it is in conflict with (the past variables are processed in the order they were
bound). These are the culprit bindings. Next, BJ selects the most recent culprit binding to
backtrack to as this binding is responsible for making at least one of the current variables
domain values inconsistent. All of the assignments back to the selected culprit variable
are undone. This culprit variable is assigned another (legal) value from its domain and

the algorithm progresses from this point.

If the current variable was successfully bound, but backtracked to at a later point, and
the available domain values turn out to be inconsistent, then BJ will backtrack to the
immediate past variable. The immediate past variable is backtracked to due to the fact
we know that the current variable has had a value successfully assigned to it (otherwise
we would not have backtracked to it). Because there is no obvious culprit variable to use

BJ will backtrack to the immediate past variable.

Other varieties of BJ have been devised. Dechter’s graph-based backumping (GBJ) views
the CSP as a constraint graph (for a binary problem) and tries to exploit the topology of
the graph. When backtracking is necessary GBJ jumps back to the most recent variable,
say xj, connected to the current variable in the constraint graph, say z; [29, 30]. If
backtracking is needed at z; then GBJ jumps back to the most recent connected variable
to x; or xj, and so on. This may not be good as Gaschnig’s BJ as no information about
why a failure has occurred is recorded during the search. As a result of this there is no
guarantee that the variable backtracked to was responsible for the domain wipeout forcing

the backtrack.

Prosser developed a variety of BJ known as conflict directed backjumping (CBJ) [94].
During the algorithm a conflict set is maintained for each variable. The conflict set is
updated when the current variable has been instantiated and the past variables are being
checked for consistency. Any past variable, say z;, that makes the current binding, say
at variable z;, inconsistent is added to the conflict set. If backtracking is required then
the most recent variable in the conflict set is jumped back to. If the variable jumped

back to, say z;, itself causes backtracking then the conflict set used is the union of z;’s

Chapter 3 54 Counstraint Programming

and z;’s conflict set and the most recent variable in that set is chosen as the variable to
backjump to, and so on. This algorithm is similar to graph directed backjumping except
it exploits information gathered during the search. The conflict set generated may contain
information gained from the search about several variables which neither Gashnig’s BJ or

GBJ take advantage of.

Out of three CBJ would be the best one to use. CBJ records more relevant information
about culprit variables than BJ and the most recent connected variable backtracked to by

GBJ is not guaranteed to have contributed to the domain wipeout of the current variable.

3.2.7.3 Backmarking (BM)

Another algorithm that takes advantage of information recorded during the search is
Backmarking (BM) (also by Gaschnig [47, 48]). BM reduces the number of redundant
consistency checks performed during a search for a solution to a CSP. There are two cases
where consistency checks can be considered redundant. One is when we know the checking

will succeed and the other is performing checks when we know they will fail.

Like BT and BJ when a variable has been instantiated we check the past variables (starting
at the first variable instantiated and working our way down the search tree to just before

the current variable) to ensure the assignment is consistent.

Consider the case where the current variable, say x;, is given the labelling < z;, v >. Next
assume during consistency checking that it fails against the past variable z;. Two useful

pieces of information can be deduced from this.

First, we know that if at some point in the future z; again becomes the current variable
and the labelling < z;,v > is attempted then its consistency check with z; will fail if
z; has not been re-labelled with a different value. The next piece of information that is
gained from this consistency check failure is that if z; becomes a current variable again
and we have backtracked to some variable before z;, say x; where | < j, then when we

try the labelling < z;,v > we know that no consistency checks are required for all the

Chapter 3 55 Counstraint Programming

variables z; to x;_1 as they will, again, pass since their labels have not changed since the
last time the labelling < z;,v > was attempted. These two types of savings are referred

to as type (a) and (b) savings by Nudel [91].

Two data structures are maintained during the BM search in order to be able to do
tests to benefit from these types of savings. The first structure, mcl (maximum checking
level), is an n by m array where m is the largest domain size of the n variables. When a
consistency check is carried out between z; and < z;,v > where j < i then mcl[i,v] = j
(note that when a consistency check fails no more checks are made for that current variable
labelling so mcl[i,v] = i — 1 for a labelling that was successful). The second structure,
mbl (minimum backtracking level), is a one dimensional array of length n. An entry, say
mbl 7], records the shallowest variable we have re-labelled in the search tree since the last

time x; was the current variable.

Using these data structures two tests can be made when the labelling < z;,v > is at-

tempted again (as described by Prosser [93]):

(a) If mcl[i,v] < mbl[i] then we know that a consistency check has failed in the past
against some variable z; where j < mbl[i]. Since this variable has not been re-

instantiated to another value the consistency test will fail.

(b) If mcl[i, v] > mbl[i] then we know that the labelling < z;, v > has passed consistency
checks with variables =1 to zp[;—1. As these test would again succeed we only

perform consistency checks between z; and the variables T,y ;) to z;—1.

More in depth descriptions of BJ and BM can be found in [49, 47, 48, 30, 93, 56].

The proceeding algorithms, (BT, BJ and BM) are classified as look-back schemes as they
focus on the current and past variables only. The next algorithms to be examined are
classified as look-ahead schemes as they explicitly take future variables into consideration

whilst binding the current variable [30].

Chapter 3 56 Counstraint Programming

3.2.7.4 Forward Checking (FC)

Haralick and Elliott’s forward checking algorithm differs from the BT algorithm in one
important aspect [56]. When the current variable is bound to a value all of the future
variables in the CSP are checked against this value and inconsistent values are removed
(only temporarily), thus pruning the search tree. One significant advantage gained from
FC is that if any of the future variables’ domains become empty then it is immediately
known that the current partial solution is invalid. Therefore either another value should
be tried with the current variable (if possible) or the algorithm must backtrack to the
previous variable. FC allows backtracking to be initiated much earlier than in the BT

search algorithm.

When backtracking, to say previous variable z, the domains of the future variables are
restored to what they originally were before £ was bound. Figure 3.5 shows what the
search space for the 4-Queens problem looks like if the FC algorithm is used. The ‘x’
values in the figure represent domain values removed due to the forward checking process.

As can be seen this is a substantial improvement from the BT algorithm as much less of

X|X|X|O
x
x

X|X|X|O
x

X|X| X0
x
Lel
X|X|X|O
x
Le]
x
X|X|X|O
x
Le]

X|X|X|O

X |0 | %
x

X |0

X |0 | %

X|X|X|O
x
Le]

XX
QX

O

X |0 | %

X|X|X|O
x
Le]

Figure 3.6: 4-Queens Search Using Forward Checking (FC)

the solution space must be searched. However, there is extra overhead in the FC algorithm

5Note: This only applies to binary CSPs

Chapter 3 57 Counstraint Programming

from the extra consistency checks performed. Another advantage with FC is that if the
CSP is binary it is never necessary to check constraints between the current and past
variables. Due to the lookahead a current value is always bound to a legal value with
respect to the past variables in the problem. In some cases BT and FC can both do,
roughly, the same amount of work. It is generally accepted that with larger problems FC

is a better choice than BT.

The FC algorithm has been generalized to handle non binary” CSPs [58]. Forward checking
only takes place under certain circumstances in the non binary case. A k-ary constraint is
said to be forward checkable if k—1 of its values have already been legally instantiated and
the remaining variable is uninstantiated. The current node bound in the FC algorithm
may cause some constraints to become forward checkable. For each new forward checkable

constraint FC will forward check the remaining unassigned variable.

3.2.7.5 Full Lookahead (AC-L)

The goal of AC-L is to enforce a higher degree of consistency on the problem (thus reducing
the number of nodes explored in the search tree). The Full Lookahead or AC-Lookahead
(Arc Consistency Lookahead, (AC-L)) algorithm is identical to the FC lookahead but,
additionally, arc consistency is maintained between future variables, thus, potentially re-
moving even more values from the domains of unbound variables [56]. This guarantees that

there will be a pair of legal domain elements between every pair of unbound variables®.

Figure 3.5 shows what the search space for the 4-Queens problem when the AC-L search
algorithm is used. Right away AC-L determines that the first subtree (with a queen placed
in the upper left hand corner of the board) does not contain a solution as a result of keeping
the future variables arc consistent. Upon examination of the second subtree the solution

is found almost immediately. Once a queen is placed in the second column of the first row

"Bacchus and van Beek [3] compare FC applied to non binary CSPs and FC applied to non binary
CSPs whose constraints have been converted to binary ones.

8 Another variation of the AC-L algorithm in the literature is the Maintaining Arc Consistency (MAC)
algorithm. The only difference is that the problem is first made arc consistent before the search is started
[107].

Chapter 3 58 Counstraint Programming

Q Q
x[x[x x[x[x
x| [x[x x[x[x
X[x[x[x x[x[[x
®
Q
x[x[x]Q
Q[x[x][x
x[x[Q[x
O

Figure 3.7: 4-Queens Search Using Full Lookahead (AC-L)

the forward checking and arc consistency determine that each of the remaining variables

can only be bound to one value, thus finding a solution.

Haralick and Elliott [56] suggest that the extra effort used in an algorithm like AC-L
may not justify the large number of consistency tests incurred. Dechter and Frost [30]
suggest that more recent work shows that the higher levels of look ahead become more
useful when applied to larger and more difficult problems. This enables the detection of
an insoluble state earlier in the search process such that backtracking is initialized earlier
than in other algorithms such as FC. Sabin and Freuder, in their experiments, report
that maintaining full arc consistency during search was more efficient than the limited

consistency maintained in algorithms such as FC except on very easy problems [107].

Search algorithms themselves often need heuristics to help guide the search. The next two

topics of discussion, variable and value ordering address this.

3.2.7.6 Variable Ordering

During a search of a CSP’s solution space, the search algorithm selects a variable to bind
and then binds it. The order in which the variables are selected for binding is referred to

as the variable ordering of the problem. There are two types of variable ordering:

1. Static variable ordering (SVO) - the variable ordering for the problem is decided

before the search starts.

Chapter 3 59 Counstraint Programming

2. Dynamic variable ordering (DVO) - the variable ordering is dependent on the current

state of the search.

Dynamic ordering is not a good idea for all search algorithms. For example if the BT search
algorithm is used, since there is no lookahead whatsoever, there is no extra information
available to help in aiding the selection of the next variable to be bound to a value. If the
FC or AC-L search algorithms are used then it is possible to gain some insight from the

domains of future variables and use a heuristic to select the next variable to be bound.

One popular heuristic is known as ‘smallest remaining domain’ (SRD). Using this heuristic
the variable with the smallest remaining domain will be the next variable to be bound.
This makes the assumption that any value in the domain is equally likely to appear in a
solution; the more values a domain contains, the more likely it is that one of them will be

successful.

There are other variations on this theme such as the algorithms described by Brélaz or
Frost and Dechter [12, 45]. For many problems, heuristics like SRD work reasonably well.

Gent et al. have done an empirical study on DVO heuristics such as SRD and others [50].

3.2.7.7 Value Ordering

The order in which values are selected from a domain of a variable when it is being
instantiated is referred to as the walue ordering. The order in which domain values are

tried has a direct impact, like variable ordering, on the shape of the search tree.

In the case of value ordering the popular view in the literature is that one would want to
select domain values that are most likely to succeed. Such a choice should have a minimal
impact on future variables and would seem more likely to lead to a solution. This in itself
can be difficult. If much is known about the problem being solved then this may offer clues
as to which values are more promising than others. If no such information is available it

may be possible to see what the state of the future variables would look like by applying

Chapter 3 60 Counstraint Programming

forward checking for each potential value in the domain and base a decision on the result
of that (this is referred to as look ahead value ordering (LVO) [44]). Forward checking
from each possible value in a domain would be an expensive proposition to say the least

and may not be worth doing.

Care should be taken with both variable and value ordering heuristics. Smith [114] has
examined a car sequencing problem and has reported that variable ordering heuristics such
as SRD and value ordering heuristics similar to most likely to succeed are poor choices
for that problem. When deciding on variable and value ordering heuristics for a CSP, as

noted by Smith, it is often a case of trial-and-error and insight.

3.2.7.8 Hybrids

Although somewhat beyond the scope of this discussion here, hybrids of the algorithms

discussed so far are possible and, indeed, have been tried and experimented with.

Prosser carried out an evaluation of hybrid schemes as reported in [93]. Hybrids examined
were forward checking combined with backmarking (FC-BM), conflict directed backjump-
ing (FC-CBJ) and backmarking with conflict directed backjumping (BM-CBJ) [93, 95].

Further examples can be seen in the work of others who have evaluated or developed

hybrid schemes [29, 69].

3.2.8 ILOG Solver

The constraint programming software being used for the work described in this thesis is
ILOG Solver? 3.2 [62, 63]. ILOG Solver is a C++ library providing classes and algorithms

to help formulate a constraint programming framework for solving CSPs.

Puget originally developed a LISP-based constraint programming language known as

9ILOG hold a annual international users’ conference where people can present work done with Solver
(including scheduling problems) as well as experiences and techniques that they have found useful. Four
such conferences have been held thus far [64, 65, 66, 67].

Chapter 3 61 Counstraint Programming

PECOS [96]. As PECOS was implemented using object classes it seemed natural to
create an implementation of a similar library in C4++. This was the motivation behind

ILOG-Solver.

ILOG-Solver is described by Puget [97]. Implementing the constraint programming lan-
guage in C++ has two advantages. First, everything in ILOG Solver is an object (variables,
constraints and the search algorithms). This makes Solver easily extendible as you can
define new classes. The second advantage highlighted by Puget is that these objects can
be used for modelling the problem to be solved which gives an advantage from a software

engineering standpoint.

Arc consistency is maintained in ILOG-Solver through use of the AC-5 algorithm [33];

ILOG-Solver also employs an algorithm similar to AC-L during search.

Puget and Leconte describe how constraints are represented in Solver [98]. Constraints
are objects. Users can create their own custom constraints and define their own rules
for propagation. As discussed earlier the algorithm AC-5 is parameterised such that
the routines to actually enforce arc consistency are left open to the user. Solver takes
advantage of this fact by allowing the user to write their own functions to do this. The A
values (values removed from a variable’s domain during the AC-5 process), as defined in
AC-5 [33], are present in Solver and easily accessible to the user specified arc consistency
routines. Each Solver constrained variable maintains several lists of constraints. Each
list of constraints is related to how the constraint is invoked for the purpose of constraint

propagation. There are three such contexts:

1. When the variable is bound.

2. When the variable’s domain is changed.

3. When one of the bounds of the variable’s range is changed.

This flexibility enables some forms of GAC to be implemented. One form of GAC is imple-

mented by Solver using bounds consistency. An example of this would be the constraint

Chapter 3 62 Counstraint Programming

X +Y < Z. To ensure the variables X,Y and Z are arc consistent the bounds of the
variables can be examined and illegal values would be discarded. Three checks can be

made. These are:

min(X) + min(Y) < min(Z) (3.11)
max(X) < maz(Z) —min(Y) (3.12)
max(Y) < maz(Z) — min(X) (3.13)

where the domain bounds in bold represent the domains that may be reduced. A constraint
such as this would be activated when the appropriate bound of a variable is modified, which

can be detected by AC-5.

Another example of GAC in Solver can be found in the I1cA11Diff () constraint. This
constraint can be applied to an array of constrained variables and ensures that none of the
variables may be bound to the same value. This constraint would be activated when any
variable is bound to a value, say z, and the value z would be taken out of the domains
of all remaining unbound variables. A discussion of how constraints are represented in

Solver as well as how arc consistency is maintained is discussed further in [98].

At each step during a search for a solution of a CSP with Solver a choice point is created.
Each choice point has two branches. The first branch binds a variable to some value, say
i, and any constraints that can be propagated by this action are activated. The effect
of this instantiation on other variables’ domains is found and processed via constraint
propagation. If a domain wipeout is detected the second branch is tried which removes
the value 7 from the domain of the variable in question and tries another value from its
domain (at a new choice point). If the variable assignment was successful then another
variable to bind is chosen and another choice point is formed. Choice points can be marked
and backtracked to dynamically so Solver is not restricted to chronological backtracking.
This allows search techniques such as BJ to be implemented. Additionally the user can

write their own routines for both variable and value ordering.

Chapter 3 63 Counstraint Programming

3.2.9 Summary

A CSP consists of three things. A set of variables, a finite domain for each variable and a

set of constraints restricting the values that the variables may simultaneously take.

Constraints are defined as a set of compound labels for the variables in the constraint.
Alternatively a constraint can be viewed as a subset of the cartesian product of the domains
of the variables they involve. Once a CSP has been defined it is useful to make the problem
arc consistent such that every pair of variables each have a legal value to which they can
be simultaneously bound. Ensuring a CSP is arc consistent helps to reduce the size of
domains in the CSP, thus reducing the problem size. Path consistency is also a desirable

feature in a CSP but is more expensive and impractical than arc consistency to achieve.

Solving a CSP involves choosing a search algorithm. They are classified into two schemes:
look-back and look-ahead. Look-back schemes only focus on the current and past vari-
ables whilst look-ahead schemes take future variables into consideration when binding the

current variable.

BT is the simplest algorithm to use but is also the most inefficient as it only compares
constraints between the current variable and the past variables. BJ and BM are somewhat
more sophisticated than BT as they try to exploit knowledge gained in the search up
to the current variable. Algorithms such as forward checking or full lookahead search
examine future variables and compare them with the current variable’s binding to ensure
inconsistent values are taken out of their domains. The full lookahead search goes one step
further by ensuring all the future variables are arc consistent with one another. Hybrids

of the above algorithms have been made with some success.

The order in which the variables are bound as well as the order in which a variable is
assigned values from its domain is also important. The smallest remaining domain heuristic
for variable ordering is probably one of the most common approaches and works well with
many problems. Value ordering is more tricky as it is often difficult to identify which

values are more likely to lead to a solution. As is the case with most CSPs the properties

Chapter 3 64 Counstraint Programming

that an individual problem has will have an influence over which search algorithms and

variable/value ordering heuristics will be used.

3.3 Scheduling with Constraint Programming

One of the areas where constraint programming has seen some popularity is in the field of
scheduling. Le Pape [76] discusses a historical perspective of constraint programming with
regards to scheduling systems and tools. In the following sub sections we will examine
some scheduling systems that employ constraint programming techniques. Specifically,
those systems that apply constraint programming towards bus, rail or air crew scheduling

problems.

3.3.1 The COBRA System

The COBRA ftrain driver scheduling system was developed jointly by PA Consulting and
COSYTEC. The constraint handling package CHIP was used in the development [58].

Unfortunately there is little published about this system. The only published material the
author is aware of is an abstract, some unpublished presentation slides and a brief non
technical description published by PA Consulting [16, 17, 1]. The work was carried out

on behalf of North Western Trains in the UK.

COBRA appears to split the train schedules up into driving activities (this would corre-
spond to a piece of work). The problem is represented as a directed graph where the set
of nodes correspond to the driving activities or resources. The arcs connecting the nodes
have a weight corresponding to the cost of the connection between the two activities plus
any penalties in order to discourage disadvantageous links. The driver shifts appear to be

generated by a shortest path algorithm.

The results given claim that the initial solutions found are better than manually generated

Chapter 3 65 Counstraint Programming

ones. It is unclear how it competes with other systems as no concrete figures are given.

3.3.2 Yunes et al.

Yunes et al. describe a linear programming (LP) / constraint programming (CP) hybrid

applied to a bus driver scheduling problem in the city of Belo Horizonte in Brazil [143, 144].

Given a set of pre-generated shifts the LP portion of the system is applied to solve the
associated set partitioning problem. This produces a continuous solution. The CP portion
is found in the column generation stage of the LP. Once the continuous solution of the
current problem has been found in the LP a CP is invoked which generates new columns
(shifts) which are added to the LP. The LP is solved again and then more new shifts are
added via the CP. This cycle continues until such point that no shifts that can reduce the
overall cost of the schedule can be found. A branch and bound process is then invoked

which finds the final solution.

From the LP process the CP is supplied with the values from the dual variables (pieces
of work) from the LP process. A vector of constrained variables is initialized where the
domain of each variable is a range of integers, each of which represent a piece of work.
Five other vectors are created that contain the start time, end time, duration, departure
depot and the arrival depot. These vectors are linked to the vector of constrained variables
in that when a variable is bound they are updated with the relevant value. Constraints
can be placed between the vectors to ensure the duty generated is legal. The vector of
variables is then repeatedly solved producing more duties which are then fed back to the
LP as new columns. Yunes et al. also describe a version of the CP designed to solve the

entire driver scheduling problem but found it was only viable for small problems.

This approach differs from systems such as TRACS-II in that all the duties that may be
found in the LP are not generated in advance. The CP generates these duties on the fly
when the LP has found the optimal continuous solution for the set of duties at hand. The

system is also designed to find an optimal solution and examines a much larger proportion

Chapter 3 66 Counstraint Programming

of the solution space than systems such as TRACS-II. As a result this system cannot cope
with the size of problems that other systems routinely deal with. The results given involve

finding optimum solutions for problems needing 25 and 19 duties respectively.

Pure IP and CP approaches were also tried but found to be unsatisfactory in their results.
With the pure IP approach all feasible duties were first generated and used in the associated
set partitioning problem. The size of this set of potential duties quickly became too large

(millions) to be feasible as no effort was made to restrict its size.

The model used for the pure CP approach is an extended version of the CP solved to
create additional duties in the column generation method. Rather than a single vector
containing integer constrained variables representing pieces of work, a matrix is created
with each row being a representation of a duty. The five vectors containing supplementary
information are also represented by matrices with each row corresponding to a row in the
constrained variable matrix. By posting similar constraints as those found in the column
generation CP approach the CSP is solved and a duty schedule is produced. This worked
well only for small schedules. Optimal solutions were only proven for exceptionally small
solutions. Yunes et al. state that with the huge solution spaces involved the lack of good
problem specific knowledge hinders the search. Solving scheduling problems of a moderate
to large size, given their complexity, in an optimal fashion is intrinsically difficult for pure

CP techniques [144].

3.3.3 Curtis, Smith and Wren

Curtis, Smith and Wren use constraint programming by representing the bus driver
scheduling problem as a set partitioning problem [23, 22]. A continuous linear program-
ming (LP) solution from the associated set partitioning problem is used as a guide for
variable and value ordering in the CSP. Set partitioning is used rather than set covering
due to the fact it is easier to perform constraint propagation (as a piece of work is covered

by exactly one driver as opposed to at least one driver).

Chapter 3 67 Counstraint Programming

The constrained variables represent pieces of work that are to be assigned to drivers (P;
where i € I, the set of indices of the pieces of work). The domains of the variables
correspond to an index into a set of pre-generated duties (before the CSP is invoked a
large number of duties is pre-generated, it is from this set the final partition of duties
is to be chosen). Because the problem is modelled as a set partitioning problem useful
constraints can be applied to the variables in order to aid propagation. For example if
P; is assigned the value j then all other variables, say P, where k € I\ 4, containing
duties in their domain that cover any of the work duty j covers are removed. Some
pre-processing steps, similar to those used in Miller’s approach to set partitioning using
constraint programming [90], are discussed that can reduce the size of the search space but
these were found to be too memory intensive to use in practice. The value to be optimised

is the number of duties used in the final solution.

Rather than solving the problem directly by assigning values to the variables, P;, an
additional set of variables is created using information gained from the continuous solution
generated from a linear program (TRACS-II in this case). Specifically, information on
relief opportunities (points where drivers may change over) is extracted. A set of variables
R={Ry,k=1,...,7} is created. Ry is defined as an ’active’ RO and r is the number of
such ROs; each has a binary domain of {0, 1} to indicate whether or not the corresponding
RO is used. Active ROs represent ROs that need to have a value chosen for them (that
is they are in between the start or end of a bus). For every RO variable there is a
corresponding variable, F;, such that Ry is the start of a piece of work ¢. Constraints are
placed on the variables Ry, such that if Ry = 1 (the RO is used) then the adjacent piece of
work must be covered by a different duty (P;_; # P;). If Ry, = 0 then the adjacent pieces of
work must be covered by the same duty (P;—; = P;). This proves to be a powerful method
for reducing the search space as Curtis et al. state that the choice of the piece variables is
trivial after all the Ry, variables have been assigned values. The Ry, variables are ordered
on their weighting as extracted from the continuous solution (where the weighting falls
in the range [0...1]). The value ordering tries the value 1 first for Ry variables whose

weighting is greater than 0.5 in the continuous solution. Any unbound F; variables are

Chapter 3 68 Counstraint Programming

dealt with after all the Ry variables have been assigned values.

Curtis et al. report that this approach works reasonably well for small problems but not

as well as a pure ILP approach such as TRACS-II.

3.3.4 Air Crew Scheduling

The structure of the air crew scheduling problem is similar to the bus and rail driver
scheduling problems. Constraint programming techniques are more common in this field
due to some important differences between bus/rail driver scheduling and air crew schedul-
ing. Pieces of work in a bus/rail driver scheduling context can be quite short, often mea-
sured in minutes. Work pieces in a air crew scheduling problem can be very long as they
usually represent the length of an individual flight. From this it follows that air crew
scheduling problems generally have fewer pieces of work. Because of this it is easier to
generate all (or a good proportion of) of the possible duties that can cover the work in

the problem.

Mathematical programming methods are popular within the context of air crew scheduling.
Approaches similar to that of TRACS-II seem to be the most common. One important
difference is that the scheduling problem is often modelled as a set partitioning problem

rather than a set covering problem.

The terms used in air crew scheduling are different than those found in the bus and rail
driver scheduling world. Indeed, there are differences in bus and rail driver scheduling
terminology even in between countries (as highlighted in Hartley’s glossary of bus and
rail driver scheduling terms [57]). A piece of work is often referred to as a trip, duty or
a flight leg. A pairing is described as a sequence of trips originating and ending at the
same crew base for a single crew which corresponds to a duty in bus/rail terminology!°.
The differences in terminology will be highlighted as they are introduced in the following

subsections.

0See Antes [2] for a good description of what is involved in the entire airline scheduling process

Chapter 3 69 Counstraint Programming

3.3.4.1 The CREM System

Halatsis et al. describe a airline crew scheduling system known as CREM!! developed at
the University of Athens as part of their ESPRIT III Project PARACHUTE (PARAllel
Constraint Handling for User TEchnologies) [53]. Olympic Airways (OA) is the targeted

end user of this system.

The application is written with ILOG Solver [97]. Halatsis further states that the parallel

portion of the method is implemented using a parallel version of ILOG Solver.

The CREM system divides the problem into four subproblems. The first part involves
generating duties (duties, in the context of this paper, are analogous to stretches in our
earlier defined bus driver terminology). Air crew scheduling duties can be split into several
sectors each of which is a flight between two airports. All possible duties having between 1
and 7 sectors are generated using Solver. Constraints taken into account include maximum

flight time, duty time, flight time given type of aircraft, etc.

The second step is combining the duties into pairings. A pairing is defined as a sequence
of duties, separated by the required rest times, starting and ending at the same home base
which may not contain any days off (this would correspond to what we have been referring
to as a duty in a bus driver schedule). A pairing has a limit on the number of duties it
may consist of (say D). A limited number of pairings containing from 1 to D duties is
constructed using ILOG Solver. These pairings have various constraints placed on them

such as maximum flight time, pairings must start and end at the same home base, etc.

Once a set of pairings has been generated the third step is invoked. This is represented as
a set partitioning problem and is modelled as a series of equations which is solved using
ILOG Solver. Parallelism is exploited in this process although the paper does not give

any details on this.

The last step allocates the pairing selected to individual crew members to form the roster

""CREM stands for CREw Management.

Chapter 3 70 Counstraint Programming

for a period of time, generally a month. The pairings are assigned such that the assignment
of pairings will be about the same for all crews involved. Crew members are modelled as

resources and pairings are viewed as activities that require crew resources.

Halatsis et al. only describes a prototype system and no concrete results are given although

it is noted that OA have found the results produced to date quite satisfactory.

3.3.4.2 Guerinik and Van Caneghem

Guerinik and Van Caneghem discuss a constraint programming approach used both for
bus driver and air crew scheduling [52]. The system described is implemented using both

in C and Prolog III.

The driver scheduling problem is modelled as a set partitioning problem. The first step
involves generating a set of all potential crews (duties in the bus driver scheduling context).
Next a pre-processing stage is invoked. Any crews that are to be selected automatically are
flagged and various reductions are made based on an examination of the crews produced.
Next, the variables (crews) are assigned values (1 or 0 depending on whether or not
they are used) via enumeration until the optimal solution is found. This is obviously an
expensive way to solve a problem of anything other than a trivial size. In order to speed
up the execution time a mathematical programming method is used in order to aid the
enumeration process by intelligently selecting the next node (driver) to include in the
solution. A set partitioning LP system is solved using a simplex implementation. The
variable with the value closest to one is selected and enumerated next. This system, at

the time the paper was published, was in use at a French airline company.

The results achieved with this approach are not as good other pure ILP methods.

Chapter 3 71 Counstraint Programming

3.3.5 Summary

Constraint programming on its own has been found to be not as effective as pure mathe-
matical programming approaches. In most of the systems examined the scheduling prob-
lems are modelled as set partitioning problems due to the fact this model allows for more
effective constraint propagation for the CSP models used. The methods examined above
have subtle differences between them but the variables in the CSPs defined are generally
either the duties themselves or pieces of work that comprise duties. Some of the previously
described approaches employ mathematical programming methods in order to help guide
the search. This has been shown to dramatically improve the quality of the solutions that
originally relied on pure CP methods but also served to further highlight the advantages
of mathematical methods. The role of constraint programming in the context of crew
scheduling problems would seem to lie in the realm of hybrid systems where they work in

conjunction with mathematical programming methods in order to complement them.

Chapter 4

The TRACS II System

4.1 Introduction

The TRACS-II system was developed at the University of Leeds. It is the successor to the
IMPACS system developed earlier (described in section 2.2.2) at the University of Leeds
and, like IMPACS, uses a set covering formulation to solve the driver scheduling problem.
TRACS-II is used both for bus and rail driver scheduling problems but the work within
this thesis is directed towards bus driver scheduling. The features in TRACS-II that are

particularly relevant for train driver scheduling will, thus, not be described.

The description of TRACS-II is taken mainly from Fores et al. [38, 40, 39, 128], Kwan
[70], and the TRACS-II user manual [122]. Fores extended the TRACS-II ILP capabilities

by adding a column generation process as an alternative solution technique.

As an aside, it should be noted that the version of TRACS-IT that was used at the time
the research in this thesis took place was a prototype to the version that is available today.
As a result some of the procedures and limitations found in the following description of
TRACS-II are no longer present (or have been improved). Appendix E lists the differences

between this prototype system and the current state of TRACS-II'.

!The current version of TRACS-II is described in [136, 41].

72

Chapter 4 73 The TRACS II System

4.2 The TRACS-II System

The TRACS-II system consists of four steps. Figure 4.1 shows these steps in order. They

are as follows:

Step 1 - The first step involves creating a large set of potential duties from the labour
and wvehicle information files supplied by the user. The BUILD program carries out

this task.

Step 2 - The second step is invoked if the set of potential duties is too large to process
in the third step, SCHEDULE. SIEVE reduces the set of potential duties generated
in the BUILD process. It is also possible that more than one set of potential duties
could have been generated by BUILD for the same problem (perhaps these sets
contain different properties that justified their separate generation). A procedure

known as MERGE exists to merge together several sets of potential duties.

Step 3 - The third step, SCHEDULE, is where the solution is generated. A set covering
ILP approach is used to select the duties to cover the work in the bus schedule. The
problem is that of covering all the work whilst attempting to minimize the cost of
the schedule (with the first priority being the minimization of the number of drivers

used and the second priority being the cost of the individual duties).

Step 4 - The fourth step, DISPLAY, simply translates the solution generated by SCHED-

ULE into an output that is easy to read.

These four steps will be described in some detail in the following subsections.

4.2.1 Step 1 - The BUILD Process

The first step is to generate a large set of potential duties that have been validated against
labour agreement rules. A program called BUILD carries out this step. The input to

BUILD consists of two files.

Chapter 4 74 The TRACS II System

LABOUR FILE VEHICLE FILE

N

BUILD

SIEVE

;

SCHEDULE

|

DISPLAY

Figure 4.1: The TRACS-II Process

1. Labour Agreement File - This file contains information on rules in the labour agree-
ment as well as restrictions on the type of duties formed in BUILD. Information in

this file includes:
(a) Time ranges for various types of duty (EARLIES, LATES, etc).
(b) Maximum joinup time.
(c) Minimum/Maximum length of a spell.
(d) Minimum first and second stretch lengths.
(e) Minimum/Maximum mealbreak lengths.
(f) Earliest/Latest start/finish of a mealbreak.
(g) Minimum/Maximum cost of 2/3 part duties.
(h) Earliest/Latest signing on time.
(i) Earliest/Latest start on bus.
(j) Earliest/Latest finish on bus.

(k) Maximum spreadover.

Chapter 4 75 The TRACS II System

2. Vehicle File - This file contains information on the vehicles for which the duty sched-

ule is to be generated. This includes information such as:

(a) Relief Opportunities.

(b) Depots Used.

(c) Travel time between relief points (for join-ups, mealbreaks).
(d) Travel time between relief points and the canteen.

(e) Signon/Signoff times.

BUILD generates a large set of potential legal duties according to the parameters set out
in the labour and vehicle data files. BUILD also calculates and records the cost associated
with each potential duty generated. The costs include features such as wages and penalties
for undesirable traits that may be present in the duties generated. BUILD is capable of
building up to four part duties. First, BUILD considers every relief opportunity in the
vehicle schedule and generates all possible legal two part duties. Next, if needed, BUILD
generates a set of three/four part duties in a similar fashion. Since the number of potential
three/four part duties that can be generated from a set of bus workings is quite large, not
all three/four part duties will be generated and only a reasonable subset is produced.
Three/four part duties are not introduced during the BUILD process if the work they

cover is sufficiently covered by previously generated two part duties.

Since not all duties can be realistically considered in any solution process it is possible
that the quality of the overall solution will be affected. There is no guarantee that the
set of duties generated with BUILD will produce an optimal solution. However, it should
also be noted that, for the most part, the types of duties that are not generated with
TRACS-II are duties that are unlikely to participate in an optimal solution. For example,
exceptionally short duties are generally avoided. Fortunately experience with TRACS-II
has shown it is a very effective system finding the optimal or near optimal solution on

many problems.

Chapter 4 76 The TRACS II System

4.2.2 Step 2 - The SIEVE Process

In order for an ILP set covering model to be viable, some restriction must be placed on the
number of constraints and variables in the problem. The set of potential duties that can be
generated can easily number in the millions. Through the selection of sensible parameters
in the labour agreement rules, this number can be greatly reduced to tens of thousands
or even hundreds. It can still often be the case that too many duties are generated to be
considered in the ILP and further reduction is necessary. The SIEVE program can further
reduce the size of a generated set of duties from BUILD. SIEVE is an interactive program
that uses a variety of heuristics to try to discard duties that are not likely to be necessary

for a good solution.

The minimum that STIEVE does is remove identical duties from the set of potential duties
generated. This can occur if more than one set of potential duties has been generated
(perhaps due to more than one labour agreement file being used) and the sets of potential

duties have been merged together.

More advanced options look at all pairs of potential duties. It is determined whether
any of these duties are considered redundant. Redundant, in this context, means that
a duty is entirely contained within another duty (and, thus, if the duty is discarded the
work it covered can still be covered by another duty). An example of this can be found
in Figure 4.2. Potential duties B and C in Figure 4.2 can be thought of as redundant
compared to potential duty A. Clearly potential duty A covers all the work in duties B
and in C. Some redundant duties are cheaper than those containing them; an option allows

the user to choose whether to retain such duties.

Potential Duty A | — | | 1 | |

Potential Duty B — | | 1 |

Potential Duty C | — | | 1 |

Figure 4.2: Redundant Duty Deletion

If it is still deemed that the set of potential duties is too large, the user has the option of

Chapter 4 77 The TRACS II System

reducing the number of duties to some desired total. Duties which contain work which is
covered by many other potential duties, and which are inefficient, are targeted for deletion

in this case.

Before the ILP stage of TRACS-II is entered there is one further duty reduction process
used. The program is referred to as the P-Process. The P-process examines the set of
potential duties. Any duty that uses a relief point (that is not the beginning or end of
a vehicle) that is not used by another duty is removed from the set of potential duties.
Specifically, it searches for duties that have no other duties sharing its beginning or end
relief opportunity for any of its spells (provided, of course, that the work covered by such a
duty is sufficiently covered by other duties). This method is repeated until a pass through
the set of duties results in no more duties being removed. This helps to reduce the size of

the potential duty set further.

4.2.3 Step 3 - The SCHEDULE Process

The SCHEDULE process is where the duty schedule is selected. A ILP set covering
process is used, similar to the one used in IMPACS. The description of the mathematical

component of TRACS-II is taken from Fores et al. and Fores and Proll [40, 39].

4.2.3.1 TRACS-II Mathematical Model

The TRACS-II ILP model is as follows (from [40, 39]):

N

Minimize Y Djz; (4.1)
j=1
N

Subject to > Ajz;>1,i=1,2,...,m (4.2)
j=1

z; €{0,1},5 =1,2,...,N.

Chapter 4 78 The TRACS II System

The m constraints are the pieces of work to be covered in the bus schedule. The n variables
correspond to the duties in the generated set. Therefore A;; = 1 if the jth duty covers the
ith piece of work; D; is the weighted cost associated with the jth duty. Variable z; =1

if the jth duty is in the schedule, 0 otherwise.

The D; coefficients in objective function (4.1) are defined as:
D, = Wi+C; forj=1,...,N (4.3)
where
Wi = 1+ sum of X largest C; values (4.4)

Cj is the cost of duty j and the W, value is known as a Sherali weight [109]. This is
calculated as 1 plus the cost of the X most expensive duties. X is calculated as the number
of shifts in the original solution plus the number of uncovered pieces of work. This combines
the objectives of minimizing the number of duties and cost whilst maintaining the priority
of minimizing the number of duties as the primary objective. This ensures that the model
will find the minimum number of shifts needed (from the given set of potential duties).
The Sherali weight was introduced to the model so that only one objective function need
be solved. The previous version of SCHEDULE used two objective functions in the ILP
stage. The first one minimized the number of duties whilst the second objective function
minimized the cost (including a constraint on the number of duties as ascertained from
the first objective function). This is beyond the scope of the current discussion but full
details on the TRACS-IT mathematical programming model can be found in Fores et al.

[40]. The C; values combine wage and penalty costs for duty j.

This is a simplified version of the model used. Side constraints can be added to the model
restricting the numbers of various types of duty in the schedule (for example, a limit placed
on the number of split duties to appear in a solution). There are also situations where

some of the constraints in (4.2) are treated as strict equalities. This occurs mostly with

Chapter 4 79 The TRACS II System

work at the beginning and end of a vehicle.

4.2.3.2 Solution Techniques

There are two solution techniques employed by TRACS-II to solve the previously defined
set covering problem. A dual steepest edge method is used for sets containing up to 30,000
duties and column generation, employing a primal steepest edge method, is used for larger

sets of duties (up to 100,000 in the prototype used).

The first step before either solution technique is used is to produce an initial solution
from the set of potential duties remaining after the STEVE and P-Process. A heuristic
accomplishes this by sequentially selecting the uncovered piece of work that has the least
number of available duties to cover it [128]. From these duties, the duty covering the
most uncovered work (including the piece of work just selected) is then selected. This is
repeated until all the work is covered. This solution then has to be transformed into a

basic solution for the ILP model.

In the case of column generation, when the initial heuristic solution is generated, a subset of
the available duties is also selected. The ILP problem is then relaxed in that the variables
are allowed to take non integer values and is then solved. Once a continuous solution has
been found the TRACS-II column generation process looks for a further set of duties, from
among those generated by BUILD, to add to the current subset in the continuous solution
in order to improve the solution. If such a subset is found the duties are added and a
new continuous solution is found. The process is repeated (subsets of duties are added)
until no more duties can be found that will improve the continuous solution. An integer

solution is then found using a branch and bound process (see section 4.2.3.4).

The column generation technique employed here is an interesting contrast to the column
generation technique used by the CREW-OPT system outlined in section 2.2.5. CREW-
OPT generates new duties in its mathematical component, using a shortest-path algorithm

31, 103].

Chapter 4 80 The TRACS II System

Experiments have demonstrated that problems with smaller duty sets can be solved using

the first technique quicker than when column generation is used [39].

Complete details of the above techniques can be found in [39, 38].

4.2.3.3 REDUCE

Once a continuous solution has been found using either of the two methods outlined
previously, a process known as REDUCE can be invoked (this is an optional procedure

but is generally recommended).

The REDUCE procedure works on the hypothesis that the continuous solution gives a
useful indication of how the vehicle work should be covered in the schedule. This can be
exploited in a fashion that reduces the size of the problem solved in the branch and bound

phase.

Most of the constraints in the model are concerned with pieces of work. Each piece of
work starts and ends at a relief opportunity. Take the vehicle block in Figure 4.3 as an

example:

0529 0728 0905 1053 1244
| | | |

Figure 4.3: Bus Block Before REDUCE Process

The vehicle block in Figure 4.3 would generate four workpiece constraints. The first and
last relief opportunities on any block must be used by at least one duty in the continuous
solution (assuming all the work is covered). Any relief opportunity not used in the con-
tinuous solution separates two pieces of work (which equates to two constraints in the set
covering model). Assume the third relief opportunity in the running board represented in
Figure 4.3 is not used in the continuous solution. It could be eliminated which would give

a running board that looks like the one found in Figure 4.4.

The removal of the unused relief opportunity, as shown in Figure 4.4, will allow the removal

Chapter 4 81 The TRACS II System

0529 0728 1053 1244
| | |
| | | |

Figure 4.4: Bus Block After REDUCE Process

of one of the two work piece constraints surrounding the removed relief opportunity. In
addition, duties using these rejected relief opportunities (these duties are not used in the
continuous solution) are themselves removed from the problem (thus, reducing the number

of variables in the LP).

Fores et al. [40, 39] report that from 13-50% of the total workpiece constraints and 50-90%
of the potential duties can be eliminated from the LP before branch and bound with this

method. This provides a significant increase in speed.

Smith [112] used a similar method to REDUCE with the IMPACS? system. Smith ob-
served that if some variables are removed from the problem then it is impossible for a
optimal solution from the remaining variables to be better than that from the full set.
However, Smith also reported that the quality of the solutions produced was not found to

be consistently better or worse than if the entire set of variables was used.

4.2.3.4 Branch and Bound

Once a continuous solution has been found using either of the methods outlined previously
(and, potentially, REDUCE has been called), a branch and bound process is used to find
a solution. The branch and bound method has been developed to find an integer solution
quickly. Three specialized branching strategies, described in Smith and Wren [115], are
used. The sum of the continuous variables in the continuous solution is rounded up to the
nearest integer and this value is the target number of duties in a schedule that the branch

and bound process will try to find.

The search tree in TRACS-II is limited to 500 nodes. One implication of this is that not

every solution is necessarily found and, thus, it is possible the best solution available from

2See Section 2.2.2 for a discussion of IMPACS system.

Chapter 4 82 The TRACS II System

the large set of potential duties may not be found. It is also possible that all 500 nodes
are exhausted and no solution is found. This does not necessarily mean that there is no
solution to be found from the set of potential duties. The branch and bound search may
have been unlucky in its search. Regardless, the approach to be taken when this does
happen is to either build a new set of duties after altering some of the parameters in the
labour file, or, use SIEVE to reduce the set of duties further in the hope that branch and
bound will be more successful with this subset of the original set of duties. Alternatively,
additional constraints could be added to the ILP placing restrictions on the number of

various types of duties that are allowed to participate in a solution.

4.2.4 Step 4 - The DISPLAY Process

The DISPLAY process is the simplest of the four. DISPLAY simply reads the output of
the SCHEDULE program and translates that into a human readable duty schedule. This
includes a list of the driver duties (times, break lengths, total working time, etc) as well

as a complete set of running board diagrams upon which the duties are clearly marked.

4.3 Summary

The TRACS-II system consists of four stages. The first stage, BUILD, generates a large
set of potential duties from which the duty schedule will be chosen. These potential duties
adhere to the labour agreement rules as specified in the labour file; this ensures all the

duties generated are legal for the problem in question.

The second stage involves reducing the size of the potential duties if it is felt they are
too large. A program known as SIEVE exists which can do this. At this point it is also
possible that more than one set of potential duties has been generated and these sets can

be merged together into one set with the MERGE program.

The third step, SCHEDULE, is where the actual duty schedule is generated. SCHEDULE

Chapter 4 83 The TRACS II System

uses a set covering model to accomplish this. The integer constraints on the set covering
ILP are first relaxed and a continuous solution to the LP is found. Next, if selected,
a process known as REDUCE is invoked which eliminates unused relief opportunities
and unused duties (in the sense they are not used in the continuous solution) from the

continuous solution before entering the branch and bound process.

The final stage is known as DISPLAY. DISPLAY simply converts the duty schedule gen-

erated by SCHEDULE into a easy to read format for the user.

4.4 Use of TRACS-II

TRACS-II has been used for solving both bus and rail driver scheduling problems. Con-
sultancy work has been carried out consisting of driver scheduling exercises for various
train operators throughout the UK with some success. Investigations, detailed by Kwan
et al. [71], into producing train driver schedules under the different operating conditions,
in collaboration with several UK rail operators, found in the UK have been carried out

using TRACS-II. TRACS-II produced efficient driver schedules in every case.

TRACS-II has been used for scheduling bus drivers. Wren and Gualda [137] describe the
combined use of TRACS-II and BOOST (a bus scheduling system as described by Kwan
and Rahin [74]) used in the scheduling of buses and drivers in Brazil with an improvement

in efficiency.

Grampian Computers Litd. had an agreement with the University of Leeds regarding the
marketing of TRACS-II. A consultancy exercise with Reading Buses using both TRACS-I1
and the bus scheduling system BOOST, known as the Openbus system from Grampian
Computers Ltd., demonstrated that TRACS-II was able to produce more efficient driver
schedules than were previously used at Reading Buses. The exercise and experience in

installing the system at Reading Buses is described by Wren and Kwan [138].

Kwan et al. [73] describe an exercise, for potential suppliers of computer-aided scheduling

Chapter 4 84 The TRACS II System

systems, carried out for FirstGroup based in Norwich UK. The schedules worked upon
were large and difficult in the sense they had unusual constraints. As well as producing
driver schedules using FirstGroup’s current operating constraints TRACS-II was applied
to three ‘what if’ scenarios. TRACS-II proved it was flexible enough to produce the
driver schedules required (better than the previously produced ones where comparisons
can be done) and work has now started on the installation of TRACS-II throughout the

26 companies of FirstGroup.

4.4.1 Limitations

Current limitations on the TRACS-II system involve the size of problems that can be
solved. As would be expected BUILD generates many more duties for larger problems,
especially if they involve three or four part duties. To combat this the duty constraints in
the labour file generally have to be tightened such that fewer duties are generated. The
current limit for the number of potential duties to be used by SCHEDULE is 100,000.
Large problems that use three or four part duties can easily exceed this if the parameters

in the labour file are not tightened.

Fine tuning a labour file to generate both a reasonable number of duties as well as a good
variety of duties can be difficult and time consuming for large problems. Relief opportunity
selection would help to reduce the size of the problem as the removal of relief opportunities

would mean that fewer duties will be generated by BUILD.

4.5 Conclusions

TRACS-IT has been demonstrated to be a flexible driver scheduling system that can be
used in both the bus and rail industry with some success. This flexibility derives from the
fact that the operator dependent constraints are dealt with in both the BUILD program

and the labour agreement file. If TRACS-II were to be used in a different operating

Chapter 4 85 The TRACS II System

environment only the first step in the TRACS-II process might? need to be modified.

The number of relief opportunities used in a set of bus workings has a direct influence
on the number of potential duties generated in the BUILD process. Relief opportunity
selection would help to reduce number of duties generated in BUILD and, thus, reduce

the size of large problem.

30nly if the environment was drastically different, or if some new scheduling rule was introduced which
was very different from previous ones.

Chapter 5

Mealbreak Chains

5.1 Introduction

Throughout a duty schedule drivers need to take a breaks between stretches. After such
a break the driver is again assigned to work on another vehicle. Often this involves taking
over a bus from another driver who then goes on a break. The chaining of such breaks
such that one driver starting work after a break relieves another driver who is about to

start a break is referred to as a mealbreak chain.

The hypothesis used by the relief opportunity selection method developed in this thesis
is that mealbreak chains hold a key role in defining a good schedule. A good schedule, in

this context, is one that uses as few drivers as possible.

This chapter contains a discussion of mealbreak chains. This will include the discussion

of topics such as:

1. Properties of mealbreak chains.
2. Peak periods of the schedule.

3. Algorithms to construct mealbreak chains in a bus schedule.

86

Chapter 5 87 Mealbreak Chains

5.2 Properties of Mealbreak Chains

Mealbreak chains are a crucial feature that are present in good schedules. To see how
mealbreak chains can improve a duty schedule consider the partial running boards shown

in Figure 5.1.

7:00 8:00 9:00 10:00 11:00 12:00 13:00

| Pttt -
,,,,,,,,,, Driver 1 =Stretch1 _ . __________ _______
| | | | | @ -
o I I 1™
,,,,, Driver2 =Stretch1_________________
"+ e -
,,,,, Driver3=Stretch1 ____:_________:_______

Figure 5.1: No Mealbreak Chain Example

Each relief opportunity in Figure 5.1 marked with an “X” represents the latest possible
time a driver can work on the vehicle starting from the beginning. In this example assume

the following parameters:

e MAX SPELL LENGTH is set to five hours.

e MINIMUM MEALBREAK LENGTH is set to forty minutes.

All three drivers represented on the vehicles in Figure 5.1 have their latest possible han-
dover times within twenty minutes of each other. This means that if they all work up to
the marked time then three new drivers will have to take over their vehicles in order for
the original three drivers to take their mealbreaks. This is the worst possible case as one
of the most important objectives in the driver scheduling problem is trying to minimize

the number of drivers used.

A mealbreak chain will create at most one additional driver in the schedule. An example
of this can be seen in Figure 5.2 where a sensible mealbreak chain has been formed. After
the duty worked on by driver 1 finishes a mealbreak, work is continued on bus 2. This

coincides with the time that driver 2 starts a mealbreak. Driver 2’s mealbreak finishes at

Chapter 5 88 Mealbreak Chains

the same time that driver 3 starts a mealbreak and driver 2, thus, relieves driver 3 on bus
3. The drivers’ mealbreaks are chained together and the only new driver required is on
bus 1 when driver 1 starts a mealbreak. The mealbreak chain used creates one additional
driver instead of three and carries on past noon. If bus 1 in Figure 5.2 were short and
ended at the same time that driver 1 takes a mealbreak (in this example) then it would

be the case that no additional drivers would be required.

7:00 8:00 9:00 10:00 11:00 12:00 13:00

Figure 5.2: Mealbreak Chain Example

On the surface it would seem that it is more efficient to have stretches as long as possible.
In practice, as seen with the mealbreak chain example in Figure 5.2, the way in which
duties fit together to form mealbreak chains plays a crucial role in reducing the number
of duties used in a driver schedule. When drivers take their mealbreaks it is more efficient
to relieve them with drivers finishing their mealbreaks rather than starting a new driver.
From this it can be deduced that a driver schedule using the minimum number of drivers
must have mealbreak chains formed in the schedule in order to limit the number of drivers

introduced in the schedule [38].

5.3 Mealbreak Chains and Peak Periods

Some bus workings are peaked. That is they have more vehicles on the road during the
morning and evening rush hour periods than at any other time during the day. This feature

is more common amongst weekday bus workings rather than weekend bus workings.

A peak in a schedule is defined as the period of time that has the most vehicles in operation

simultaneously. A peak vehicle can be defined as a running board that is contained wholly

Chapter 5 89 Mealbreak Chains

within the morning (or evening) bus workings and part of it falls entirely within the peak.

Mealbreak chains should be avoided during peak periods in a set of bus workings. If
mealbreak chains were to go through the peak period then it is likely that extra drivers
will be added to the schedule; it is also possible that there may be more drivers available

than there are running boards to work on after the peak.

Although peak periods can occur in both the morning and evening periods in the bus
schedule there are some important differences between them; specifically there are differ-
ences in the times, with respect to the start and finish of a running board, they occur. The
morning peak usually takes place soon after the buses have started the day. In contrast,
the evening peak generally occurs several hours before the buses terminate late in the

evening.

5.4 Mealbreak Chain Generation — Previous Work

Fores [38] investigated mealbreak chains and methods that can be used to generate them.
Fores identified and described three methods for finding mealbreak chains in a bus sched-

ule. These methods are:

1. Assignment Problem.
2. Network Programming.

3. Mathematical Programming.

The methods themselves and the observations made are from Fores’s work with mealbreak

chains [38].

Before the methods themselves will be described a sample morning schedule will be intro-
duced which will be used as an example in the first two method descriptions. Consider

the partial schedule shown in Figure 5.3. For this schedule the following parameter values

Chapter 5 90 Mealbreak Chains

will be used:

MINIMUM SPELL LENGTH is set to 2 hours.

MAXIMUM SPELL LENGTH is set to 4% hours.

MINIMUM MEALBREAK LENGTH is set to 30 minutes.

MAXIMUM MEALBREAK LENGTH is set to 1 hour 15 minutes.

Legal relief opportunities have been marked with an ‘X’ in Figure 5.3. The relief opportu-
nities on each vehicle have also been given a letter for identification purposes. The legal

relief opportunities are thus:

Bus 1: 1A-8:45, 1B-9:45.

e Bus 2 : 2A-9:15, 2B-10:00, 2C-10:45.

e Bus 3 : 3A-8:30, 3B-9:45.
e Bus 4 : 4A-9:45 (end of the vehicle).
e Bus 5 : 5A-9:00, 5B-9:45, 5C-10:45.

6:00 7:00 8:00 9:00 10:00 11:00 12:00
1 . 1 . v . v . . 1 .

Bus1l —] ; : A -~

6:00 645 730 845 945 ‘ 11:45
‘ ‘] A B] ‘
Cl \] \ 14 y [
Bus?2 : < < —t+ - >
us 615 : 8/00 915 1000 10.45 11:45
: : : A B C :
] S| 1 Y 1 Y L1
B ; ; ; N ; N -1 . =
us35:'45‘ 630 ‘ 715 ‘ 830 ‘ 91:'45‘ 10':45‘ 11:15
‘ ‘ ‘ i\ | e ‘
|] L v
Bus4 \
us 6:45 7:30 8145 945
: A
|]] 14 Yy 14]
B : N N I =
us5 630 7:'45‘ 815 9?00 91:'45‘ 10:45 !
‘ A B C

Figure 5.3: Morning Bus Workings Example

A matrix of potential mealbreak links can next be constructed. It will be a n by m matrix

where n is the number of relief opportunities that can be the legal start of a mealbreak link

Chapter 5 91 Mealbreak Chains

and m is the number of relief opportunities that can be used legally to end a mealbreak
link. Each entry, (i,7), will represent the cost of the mealbreak from relief opportunity 4
to j. The cost is measured in minutes above the minimum mealbreak length used. If it is
illegal to have a mealbreak link between relief opportunities ¢ and 7 a ‘-’ will be present
in the table. Such a matrix has been constructed for the bus workings in Figure 5.3 which
is shown in Table 5.1. The problem, as formulated by Fores [38], is that of minimizing the

total cost of chaining the maximum number of mealbreak links.

| [[1B]2A]2B|2C [3B |5A || 5B | 5C |
IA[-Jof4] -]30]-1]30]-
B[- -T-[3]-T-1T-1T3
Ao - -[-JTo]-J0o]-
B -] -[-1-1T-1T-1T-11
BAJ45 15 - [- -]0][4] -
3B - [- -3 -T-1T-130
[aa] [- [[s0f [~ [-[]
BA 15 - [30] -] -] -]~
BBl - -T-TJ3[-T-1T-1-

Table 5.1: Matrix of Potential Mealbreak Links

Given the size of Table 5.1 an optimal solution can be determined by examining all possible

links. One solution is:

1A->2A->3B->5C
3 Links.

30 Minutes idle time.

There is a total of three optimal solutions containing 3 links and having a cost of 30
minutes. This would also leave the work on bus 4 to be covered by a split duty as the

duty covering this work will not participate in the optimal mealbreak chain solution.

The general solution methods for finding mealbreak chains will be discussed next.

Chapter 5 92 Mealbreak Chains

5.4.1 Assignment Method

The goal of the assignment method is to assign as many second stretches of work as
possible to drivers who have already completed their mealbreak. For example, in the
previous problem there are 9 potential relief opportunities where drivers can start their
mealbreaks and 9 potential relief opportunities where drivers can finish their mealbreaks

(start a second stretch of work).

Given the cost matrix found in Figure 5.1 a matching algorithm, such as the Hungarian
algorithm', can be applied. All illegal links can be given some artificially high value to
discourage their selection. Fores observed that with using a matching algorithm to solve
this problem one relief opportunity would be assigned to one and only one driver; it is
therefore possible that some drivers will have to be given invalid links and these would
have to be removed from the solution (for example, since the optimal solution for our
previous problem only used three links there would have had to have been some illegal

links formed if an assignment method was used).

Unfortunately, one problem with this approach is that the rows and columns in the meal-
break link matrix are not independent. For example if relief opportunities 1A and 2A are
used (forming the Link 1A->2A from Table 5.1) then no other relief opportunities present
in the assignment problem on buses one and two should be considered any further be-
cause the work left between the relief opportunities is too short. As rows and columns are
eliminated from the cost matrix, dependent rows and columns will have to be deleted. To
complicate things further, the assignment of a relief opportunity in a particular row (or
column) can affect other columns (or rows) that represent alternative relief opportunities
for that bus. A version of the Hungarian algorithm modified to take these operations into

account would be fairly complicated to implement.

Fores identifies a possible way to overcome this drawback. If each vehicle fixes a relief

opportunity then the rows and columns are no longer dependent on one another as before.

'"Which can be found in any reasonable operational research or management science textbook such as
[131, 126].

Chapter 5 93 Mealbreak Chains

This would mean that a standard matching algorithm could be used. Unfortunately this
is a costly way of solving the problem. With the small example in Figure 5.3 there are
36 possible (assuming each vehicle has one relief opportunity fixed) combinations of relief
opportunity selections that could be put through a matching algorithm. Each one of
the solutions found with the matching algorithm would be a local optimum; this is due
to the fact that no effort is made to see how the duties created around the mealbreak
chains “fit-together” elsewhere in the schedule. Fores also mentions that swapping relief
opportunities and solving each stage with a tree search could work. Heuristics would be
needed to decide at which relief opportunity branching should occur. Penalties could be
placed on links that are very costly to help avoid choosing them. Unfortunately for a
large problem, this could be difficult due to the fact that penalty costs for various relief
opportunities are low in comparison to the cost of an actual solution and this would still

not take into account the schedule as a whole, only local parts of the schedule [38].

5.4.2 Network Programming Method

Fores also considered solving the problem graphically using a network. To avoid using more
than one relief opportunity on a bus to start a second stretch of work Fores introduced
one sink node per bus. The beginnings of mealbreaks are represented as source nodes with
only one source node per bus. A network flow diagram for the previous example can be

found in Figure 5.4.

Each link is given a lower bound of 0 and an upper bound of 1 which indicates whether
a given link is used or not. Each link then has its cost assigned to it from an associated

cost matrix, such as what is found in Table 5.1.

Unfortunately, this model still suffers from some of the deficiencies found in the assignment
approach discussed previously. It is still possible for different relief opportunities on the
same bus to be used as the beginning and end of mealbreaks. There are no constraints
that would ban certain sink nodes from being used if certain source nodes are used and

vice versa.

Chapter 5 94 Mealbreak Chains

Figure 5.4: Mealbreak Chain Problem Network Flow Diagram

Fores suggests that Lagrangian Relaxation? techniques could be used to encompass such
constraints. These additional constraints could be modelled in an ILP and used as a

penalty on the objective costs if these constraints are violated.

5.4.3 Mathematical Programming Method

Mealbreak chain creation can also be modelled as a mathematical program. Fores in-
vestigated this and gives a concrete example. A generalised version of the mathematical
programming approach is presented here. Fores split the problem into two separate sub-

problems.

The first part of the mathematical programming method finds the maximum number of
links that can be used forming mealbreak chains. This can be described with the following

ILP problem:

n o m
Maximize Z Z uijli]' (51)

i=1j=1

2A good discussion of lagrangian relaxation techniques applied to integer programming problems can
be found in an article by Fisher [37].

Chapter 5 95 Mealbreak Chains

where

0 if (4,7) is an invalid mealbreak link

1 otherwise

l 1 if mealbreak link (i, 7) is used
v 0 otherwise
The variables /;; represent whether or not the mealbreak link between relief opportunities
1 and j is used. The index 7 can take values in the range 1,...,n and j can have values
in the range 1,...,m; the value n represents the number of legal relief opportunities that
can be used as the start of a mealbreak whilst m represents the number of legal relief

opportunities that can be used to finish a mealbreak link. The u;; parameter bans invalid

links from occurring in a solution.

Several sets of constraints need to be included to ensure the solution is legal. The first set
of constraints ensures that a driver only relieves a maximum of one other driver and that
a driver is relieved only by another driver who is legally able to do so. These constraints

can be expressed as:

n
oy <1 forallj=1,...,n (5.2)
=1
m
Zlij < 1 foralli=1,...,m (5.3)
7j=1

Conveniently, this turns out to be the same as making sure that only one entry per row
or column in the cost matrix is used. Once a relief opportunity has been chosen for
a particular bus, the other relief opportunities on the same bus need to be removed as
possible handover points. The next set of constraints tackle this by ensuring that only one
relief opportunity per bus can have the value of one. Expressed generally these constraints

would look like:

kn2 n
Z Zlij < 1 for all buses 1,...,k (5.4)
j=kn i=1

Chapter 5 96 Mealbreak Chains

Pn2 m

2 Zlij < 1 forall buses1,...,p (5.5)

i=pp1 j=1

where k,1 and k.o are the first and last column indices for the relief opportunities on bus
k and p,1 and p,o are the first and last row indices for the relief opportunities on bus
p. The Constraint (5.4) ensures that no columns representing relief opportunities for the
same bus has more than one value of one. Constraint (5.5) performs a similar function for

the rows.

One more group of constraints must be added to this ILP. It can be the case that some
relief opportunities occur in both the rows and the columns in the matrix. Constraints
must be added to ensure that more than one relief opportunity is not used on the same
vehicle; every combination of relief opportunities that cannot be used on a vehicle must
be eliminated to ensure this cannot happen. For each such relief opportunity, row r, along
with the other relief opportunities on the same vehicle that can be used as the end of a

mealbreak (say columns, cy,co, . ..cy) the following constraint is added:

m T n
Zh‘j"‘Zthi < 1 (56)
j=1

j=1i=1

As the formulation is somewhat complicated an example will be given. Using the sample
cost matrix in Table 5.1, consider relief opportunity 2B. This relief opportunity is legal
to use as both the beginning and end of a mealbreak link and there are other relief
opportunities available on bus 2 that can be used as the finish of a mealbreak link (2A

and 2C). Constraint (5.6) would be formulated as follows:

8 2 9
S+ Yl < 1 wheree;=2andc; =4

j=1 j=1l4=1

It should be noted at this point that constraints such as (5.6) may not always need to be
implemented. For example if three part duties were being constructed it is possible that
two relief opportunities close to one another could be used and such a constraint would
not be necessary. This is dependent on the labour agreement. However, this will not be

considered in this definition.

Chapter 5 97 Mealbreak Chains

The solution to this ILP represents the maximum number of mealbreak links, say z,
that can be created with the given set of data. The second subproblem is to revise the
mathematical program slightly in order to minimize the cost of the mealbreak links. The

new objective function is now:

Minimize z”: i Cost;jli (5.7)

i=1j=1
The value Cost;; is the cost of link (4,) in the cost matrix. Rather than using u;; values
to ban certain links, high penalties are assigned to them instead which will discourage
their use. All of the previous constraints are incorporated in this second model. However,
one more constraint is added. This constraint sets the number of links to be used to z.

This constraint is:

ZZ[U = Z (58)

This method will find the optimum chaining of mealbreaks for a given time interval.
However, as can be seen from the equations above, a large problem using this method would
have many constraints and the computational expense would be a consideration. This
problem becomes more apparent if shorter mealbreak lengths are allowed or complicated
labour agreements are used thus potentially creating additional complicated constraints

[38].

Fores identifies a few other drawbacks to using this method. For example some decision
must be made as to which ‘time window’ optimum mealbreak chains will be created for.
A window too large will make the ILP expensive to solve and a window too small may
miss vital mealbreak links. Some mealbreak links created may create illegal duties due to
suitable relief opportunities not being available later in the day. Heuristics would have to

be developed to try to resolve some of these problems.

Chapter 5 98 Mealbreak Chains

5.5 Using Generated Mealbreak Chains

Fores carried out some experiments using the mathematical programming model just de-
scribed to find optimum mealbreak chains on a schedule at intervals throughout the day.
The duties created around these mealbreak chains would, thus, form the duty schedule. In
the schedule experimented on by Fores, a driver schedule was created that used 20 duties
when the mealbreak chains were selected using the mathematical programming method

just outlined. IMPACS [111] found a solution using only 18 duties.

A problem with the mathematical programming generated mealbreak chains was that
they included many duties that were fairly short and, thus, inefficient. Since the chaining
problem solved here maximizes the number of links used it will often use shorter duties
to facilitate longer mealbreak chains. This ‘greedy’ approach did not give particularly en-
couraging results. Mealbreak chains hold a key role in the creation of good duty schedules

but the selection of these ‘optimum’ mealbreak chains did not help to solve the problem.

5.6 Summary

It was argued that mealbreak chains are an important part of a good duty schedule. This
is due to the fact they help reduce the number of duties required in a schedule. However,
mealbreak chains are best avoided during the peak periods of a set of bus workings; if
possible duties should try to work past the peak. If mealbreak chains do occur during
the peak it may be possible that there are more drivers available than there are running

boards to work on after the peak.

The work by Fores on mealbreak chains included three methods in which mealbreak chains
could be generated. The mealbreak chains found with these methods, however, concen-
trated on minimizing the idle time of drivers on their mealbreaks and, in the case of the
mathematical programming method, tried to maximize the number of mealbreak links

used. Unfortunately the schedules created from using such mealbreak chains were not

Chapter 5 99 Mealbreak Chains

satisfactory. However, this does not mean that a good duty schedule cannot be found

from a sensible selection of mealbreak chains.

The method described in this thesis on mealbreak chain generation uses the properties
of mealbreak chains as its very hypothesis. Rather than trying to find mealbreak chains
using the minimal amount of idle time the combination of several good mealbreak chains

is used.

Chapter 6

The CROSS CSP

6.1 Introduction

CROSS (Constraint programming Relief Opportunity Selection Scheme) has been designed
in order to select relief opportunities, from a set of bus workings, that are likely to be useful

in the driver scheduling process. The purpose of this chapter is twofold:

1. Outline the problem to be solved.

2. Outline the constraint programming model used.

CROSS will be referred to in several ways throughout the rest of the thesis. CROSS, on
its own, refers to the application of the CROSS method from beginning to finish. The
CROSS algorithm refers to the CSP search algorithm and the CROSS CSP refers to the

constraint programming model itself.

Chapter 7 will examine the algorithm used to search for solutions to the CROSS CSP in

detail.

100

Chapter 6 101 The CROSS CSP

6.1.1 Earlier Work

The CSP model used in CROSS has evolved over time. The original model that was used

(and eventually evolved into the CROSS model used today) is described for completeness.

Initially the set of bus workings was split into individual pieces of work (governed by
the labour agreement rules). Each individual piece of work had a constrained variable
associated with it, say W; where i is the ith piece of work in the bus workings. The
domain of each W; variable would be the set of work pieces that could legally follow
workpiece W; as well as a value indicating that W; is the end of a duty. Some inspiration

for this original model came from the TRACS heuristic described in Section 2.1.1 [92].

Although this model does encompass all eventualities it was found to be fairly clumsy to
work with. No real structure is given to the schedule as the variables are processed and
odd short pieces of work could be leftover in between stretches formed part way through
a solution. Constraints could be created to discourage this from occurring but constraint

propagation was not particularly effective.

The model in this chapter is the end result of the evolution of this original approach and

it can be seen that these issues have been addressed.

6.2 Problem Definition and Outline of Approach

The goal of this work was to develop a method of analysing the morning and evening
periods of a bus schedule in order to decide which relief opportunities may be useful in
duty generation. The procedure that was designed can be viewed as a front end, or a pre-

processing stage, in the TRACS-II process. This can be seen conceptually in Figure 6.1.

TRACS-II needs both a labour file and a vehicle file provided in order for the large set
of potential duties to be generated by BUILD (as described in Chapter 4). CROSS also

requires a labour file and vehicle file but for a different purpose. CROSS examines the

Chapter 6 102 The CROSS CSP

LABOURFILE VEHICLE FILE

S

RELIEF
OPPORTUNITY
SELECTION

NEW
VEHIClE FILE

BUILD

Jz

SIEVE

Jz

SCHEDULE

Jz

DISPLAY

Figure 6.1: TRACS-II with Relief Opportunity Selection

relief opportunities available in the morning or evening period and produces a new vehicle
file which contains only the relief opportunities selected by CROSS in the period chosen.
This new vehicle file will then be used in the regular TRACS-II process. This has two
effects on TRACS-IT:

1. Tt reduces the number of potential duties generated in the BUILD process, thus

reducing the number of variables in the resulting ILP.

2. It reduces the number of constraints in the SCHEDULE ILP (due to a reduction in

the number of pieces of work to be covered in the bus schedule).

This also has the effect of, in general, reducing the amount of time needed for SCHEDULE
to find a solution. The problem that is to be solved is deciding what is the criteria for

selecting the relief opportunities to be used.

Chapter 6 103 The CROSS CSP

6.2.1 Hypothesis

As was seen in Chapter 5, mealbreak chains have properties that may be useful to exploit.
One of the most important observations made was that when drivers take their mealbreaks
it is more efficient to relieve them with drivers finishing their mealbreaks rather than
starting a new driver. From this observation the hypothesis that is used for the basis of

this work is:

Schedules containing good mealbreak chains should require fewer duties than

schedules not containing good mealbreak chains.

The issue here is what constitutes a good mealbreak chain. It was seen in Chapter 5 that
using what can be thought of as ‘optimal’ mealbreak chains can have a negative impact
on a duty schedule. The mealbreak chains that were generated using Fores’s methods
were too restrictive; these chains would only allow a few ways of covering the portion of
the bus workings to which it was applied. ‘Optimal’ mealbreak chains do not always lead
to satisfactory duty schedules as they are only locally optimal to a small portion of the
schedule. Nonetheless the concept of trying to construct mealbreak chains is a useful one.

Two additions are needed in order to gain the flexibility to make this a viable approach:

1. Several sets of mealbreak chains should be generated such that the large set of
relief opportunities used would enable the scheduling process to have more flexibility

towards how the work is to be covered

2. A random element needs to be introduced into the mealbreak chain generation pro-

cess such that different chains can be created.

CROSS takes these two points into account. Firstly, the CROSS CSP’s variable and value
ordering heuristics themselves have a random element introduced into them that ensures
that each time it is solved it is likely that a different set of relief opportunities (mealbreak

chains) will be selected. Due to this if the CROSS CSP is solved several times then a larger

Chapter 6 104 The CROSS CSP

set of relief opportunities will be selected from which TRACS-II can generate a schedule.
Solving the CROSS CSP several times to generate several sets of mealbreak chains will
enable new mealbreak chains to be implicitly formed from the total set of selected relief

opportunities. This added flexibility is important and plays a key role in CROSS.

6.2.2 Schedule Generation using Constraint Programming

The question naturally arises that perhaps generating an entire duty schedule using con-
straint programming would be a useful approach. This, indeed, has been done as seen

earlier with the COBRA system outlined in Section 3.3.1 and others.

Methods such as TRACS-II have an inherent advantage over others. This is due to the
separation of the duty generation component from the schedule construction. Recall that
with TRACS-II a large set of potential duties is generated initially. This large set is
then supplied to the TRACS-II SCHEDULE (ILP) component and a schedule is formed.
The SCHEDULE component has no interaction with the generation of duties. All the
duty generation issues are addressed in the BUILD component and if a different driver
scheduling problem with different labour agreement rules is tackled, only the BUILD
component of TRACS-IT may need to be modified. The SCHEDULE component remains
untouched; the only interaction SCHEDULE has with BUILD is through the large set of
duties that BUILD generates. A pure CP approach would not benefit from this separation
as the constraints on the duties themselves will be directly connected with the CP model.
For different scheduling problems (for example different labour rules) the CP itself may

have to undergo serious modification.

Constraint programming has also been applied to solving the associated set covering or
set partitioning problems that can be used to model the duty scheduling problem. Curtis,
Smith and Wren applied constraint programming to the set partitioning problem and found
it worked reasonably well for small schedules but not as well as the pure ILP-approach
(such as TRACS-II). Solving the set covering problem using CP techniques was found to

not be very practical as it is difficult to model it as a CSP such that useful constraint

Chapter 6 105 The CROSS CSP

propagation can be utilized [23, 22].

6.3 Data Used

The CROSS program uses the same input files that TRACS-II would use on its own.

Therefore, like TRACS-II, the input for CROSS consists of a labour file and a vehicle file.

The labour file contains the rules and constraints to be placed on the duties used in a duty
schedule. The vehicle file contains most of the information needed in order to formulate a

model for mealbreak chain generation. Specifically, the vehicle file consists of:

1. A set of vehicles (running boards), V = {V1,...,V,}

2. Each vehicle, V; is defined as a set of relief opportunities V; = {RO; 1y, . . - aRO(i,kvi)}
such that |V;| = ky,.

3. Each relief opportunity consists of a pair', (i, j), that represents vehicle 4, at time j.

There are two types of relief opportunities, depending on their position on the running
board. The first and last relief opportunities on each running board in the morning/evening
set of bus workings are referred to as external relief opportunities. The relief opportunities
in between the external relief opportunities on the same running board are referred to as

internal relief opportunities.

6.4 The CROSS CSP: Variables and Domains

The CROSS CSP itself was originally devised for the morning period of a schedule (and the
description of the CROSS CSP reflects this), but can be easily be applied to the evening

period of a set of bus workings as will be described in the next chapter. The morning

'Relief opportunities are actually defined as triples with the third value representing the relief point
(physical location of the stop). The convention used here is to just use the first two values.

Chapter 6 106 The CROSS CSP

period has been defined as all bus workings before noon. What happens after noon is not
considered at any point in this process. All relief opportunities until the first one past

noon on each bus are considered in the model.

The variables and domains in the CROSS CSP try to model the set of running boards
being examined and the relationships between them regarding the structure of mealbreak

chains. There are three types of constrained variables used.

6.4.1 Pattern Variables

The first type of constrained variable has to do with the individual buses in the schedule.
These are referred to as Pattern Variables. The pattern variable for a bus represents
which relief opportunities on it are going to be used. Alternatively, this can be viewed as
deciding how the vehicle is partitioned into pieces of work. The pattern variable for bus

is written as PV;.

6.4.2 Next Variables

Each individual running board has a set of relief opportunities. FEach one of these relief
opportunities has a Next variable associated with it. The Next variable for relief op-
portunity (7,7) (bus i at time j) is written as Next(; j). The Next; ;) variable indicates
what a driver finishing a piece of work on bus 7 at time j is going to do next. Nexi j
could include a relief opportunity representing the finish of a mealbreak started at relief
opportunity (i,7) or a value that indicates that the relief opportunity is either not used

at all or is the end of a duty.

6.4.3 Prev Variables

Similar to the definition of the Next(; ;) variable, a previous variable is associated with

each relief opportunity on each running board. A previous variable for relief opportunity

Chapter 6 107 The CROSS CSP

(4,7) is written as Prev; j). The Prev; ;) variable indicates what a driver starting a piece

i7j)
of work on bus 7 at time j did previously. This could be a value indicating whether or not
this relief opportunity is the start of a duty or a relief opportunity value indicating where

a mealbreak started where the relief opportunity (7,7) is the end of that mealbreak or a

value indicating that it is not used at all.

6.4.4 PV, Variable Domains

The example morning schedule that will be used to illustrate the domains of the previously

defined types of variables is shown in Figure 6.2.

6:00 7:00 8:00 9:00 10:00 11:00 12:00

Bus1 I I : I : I : I I ’]l ””” =
600 645 730 845 9:45 1130 1215

Bus2 6:=15 | s:loo 9:=15 1o=:00 1o=:45 11=:45 12w

BUS35:'4sj 6:=3O 7:=15 8:=3O 9;453 1o=:453 11=:15 3172&57 o

Bus5 6:=3O 7:=45i 8:=15 9500 9:=45j 1o=:453 7777777 12:45

Figure 6.2: Sample Morning Schedule

For the morning schedule represented in Figure 6.2 assume the following parameters:

MINIMUM SPELL LENGTH is 2 hours.

MAXIMUM SPELL LENGTH is 4% hours.

MINIMUM MEALBREAK LENGTH is 30 minutes.

MAXIMUM MEALBREAK LENGTH is 1 hour 15 minutes.

SPLIT DUTIES are allowed.

Chapter 6 108 The CROSS CSP

The domains of the pattern variables in the problem represent all the possible ways in
which a vehicle can have its work partitioned. Conceptually each element in a pattern
variable’s domain is a set of relief opportunities. If the pattern variable is assigned to an
element in the domain, the vehicle will be partitioned into pieces of work by the values in
that element. Consider the schedule in Figure 6.2; the pattern variable domains for the

buses in this schedule are shown in Figure 6.3.

Dpy, = {{0845},{0945},{0845,1130}}
Dpy, = {{0915},{1000},{1045},{0915,1145}}
Dpy, = {{0830},{0945},{0830,1045},{0830,1115}}

Dpy, = {{-1}}
Dpy, = {{0900}, {0945}, {1045}}

Figure 6.3: Pattern Variable Domains for Sample Morning Schedule

Pattern variable PV; has four elements in its domain. The first value, {0845}, represents
partitioning the bus into two pieces of work, the first of which is from 0600 till 0845 and
the second piece of work starts at 0845 and carries on until some time past noon. The
last value in the domain Dpy, partitions the vehicle into three pieces of work which are

0600-0845, 0845-1130 and 1130 until some time past noon.
The maximum cardinality of a relief opportunity element in the domain of a pattern
variable has been set to two. This is done for two reasons.
1. Almost all bus schedules examined used at most two relief opportunities on a single
vehicle before noon.
2. This helps to reduce the combinatorial complexity of the problem by avoiding the
use of many relief opportunities on a single vehicle.
It should also be observed that as several solutions to the CROSS CSP will be generated

it is likely that more than two relief opportunities before noon will be selected.

Dpy, is different from the other pattern variable domains. It consists of a set with the

Chapter 6 109 The CROSS CSP

value ‘-1’. The ‘-1’ represents a vehicle that is not partitioned. That is, the entire vehicle

(or the morning portion thereof) will be treated as a single piece of work.

As a general rule of thumb, any vehicle that is entirely contained in the morning period
will have it’s pattern variable bound to the value —1. In almost all schedules examined
short vehicles such as these are rarely subdivided into workpieces; generally the entire

vehicle is worked on by a single driver.

6.4.5 Next(;; Variable Domains

The domain of a Next(; ;) variable can consist of several types of values. These values
model what a driver does after relief opportunity (4, 7). The exception to this rule is if the
relief opportunity represented by Next; ;) is not used in the solution at all. The domain

for Next; jy variables is outlined in Figure 6.4.

0 This relief time is not used or a duty
ends at this point
RO(my CV The start of the next spell in the

DNewt(,-’]-) =< current duty following a mealbreak.
1201 Dummy time indicating that the mealbreak
after this spell finishes after 1200
1500 Dummy time indicating a split duty.

Figure 6.4: Nezt(; j) Domain Values

Nexi(; ;) is only assigned a value of 0 in two cases; either it is not used at all or relief
opportunity (i,) represents the end of a duty (nothing can happen after this point with
the current duty). A value representing a relief opportunity, say RO), is assigned to
Next(; ;) if relief opportunity (4, j) is the end of a first spell of work for a duty and RO(;)
is the relief opportunity where this duty finishes its mealbreak and continues on a new
piece of work. Two special values that can occur in the N ext(; j) domains are: 1201,
which represents a mealbreak that goes past 1200 noon (since what happens after 1200
is not considered), and 1500, which represents a split duty (which will carry on well past

1200). The 1201 dummy value is only found in Next(; ;) domains if relief opportunity

Chapter 6 110 The CROSS CSP

(,7) is close enough to noon such that a mealbreak starting at relief opportunity (3, j)
can go past noon. The 1500 dummy value, representing a split duty, will only be found in
the domain of Next; j) variables if split duties are used and the relief opportunity (4,7)
represents the legal beginning of a mealbreak for a split duty. Figure 6.5 contains the

domains for all of the Nexzt(; j) variables on bus 1 in Figure 6.2.

DNezt(lysoo) = {0}

DNezt(1,645) = {0}

DNezt(1,730) = {0}

DNestaasy = {(2,0915),(3,0945), (5,0945), (2,1000),0, 1500}
DNest o5y = {(2,1045),(3,1045), (5,1045),0, 1500}
Dieats gy = 10,1201,1500}

DN@fEt(l,1215) = {0}

Figure 6.5: Next Variable Domains for Sample Morning Schedule Bus 1

The first three Next(; ;) variables in Figure 6.5 represent relief opportunities that are too

1]
close to the start of the running board to create a legal spell; therefore the first three
Next(; ;) variables are assigned the value 0 as they will not be used. The Next(; 1915
variable is also set to 0 because relief opportunities after 1200 are not considered in the
CSP. The first time past 1200 is included on each vehicle such that spells going past 1200
can be formed. The rest of the Next; ;) variables in Figure 6.5 have domains containing

relief opportunities that can form a legal mealbreak link with Next(; ;), the 0 value and

the split duty or late mealbreak value (if legal).

6.4.6 Prey)Variable Domains

i’j

Prevy; ;) variable domains represent what a duty was doing before it starts work at relief

(&)
opportunity (i,7). The values these domains can contain are found in Figure 6.6.

A Prev; ;) variable’s domain contains the value 0 when relief opportunity (4,7) is not used.
A value of ‘-1’ represents that the relief opportunity (7, j) is the start of a duty. The relief

opportunities in the Prev(; ;) variables’ domains are the relief opportunities at which a

duty may potentially start a mealbreak that terminates, legally, at relief opportunity (i, 7).

Chapter 6 111 The CROSS CSP

0 This relief time is not used.
D B -1 This is the start of a duty.
Previ;) — RO(1m) CV The start of a mealbreak ending at

relief opportunity (%,).
Figure 6.6: Prev(; ;) Domain Values

Figure 6.7 contains the domains for all of the Prev(; j) variables on bus 1 in Figure 6.2.

Dprevy 600y = {-1}

Dprevy sy = {0}

Dprevy ey = 10}

DPTCU(1,845) = {0,-1}

Dprev o5y = {(3,0830), (5,0900), (2,0915),0,—1}
Dpreviy 1130 = {(2,1045), (3,1045), (5,1045),0, -1}
Dprevy 1msy = 10}

Figure 6.7: Prev Variable Domains for Sample Morning Schedule Bus 1

The first three Prev; ;) variables in Figure 6.7 have their values fixed automatically in
this problem. The first one at relief opportunity (1,0600) is set to represent the start of
a duty since it is impossible for a driver to take over at this relief opportunity following
a mealbreak. The next two, relief opportunities (1,0645) and (1,0730), have their associ-
ated Prev(; ;) variables set to 0 as they cannot be used due to the fact they would not
form a legal spell of work from the beginning of the running board. Prev(1215), like its
Next(y 1215 counterpart, is set to 0 as it will not participate in the solution. The rest of

the domains reflect the possible legal values that are available to them.

6.5 The CROSS CSP: Operational Constraints

The bus driver scheduling problem has many operational constraints. The TRACS-II
labour agreement file contains many constraints taken into account as ‘duties’ are formed

in CROSS. These are:

Chapter 6 112 The CROSS CSP

e Minimum/Maximum spell length.

e Sign on and sign off times.

e Travel time to canteen during the mealbreak time.

e Minimum/Maximum mealbreak length.

e Minimum/Maximum length of 1st and 2nd stretches.
e Farliest start on bus.

e Earliest start of a mealbreak.

e Minimum/Maximum cost of duty.

e Maximum spreadover.

Many of these constraints can be taken into account when the variable domains are cre-
ated. For example, the domains of the PV;, Next(;), and Prev ;) variables can be
guaranteed to contain only legal values initially (such that DNemt(ij) will not contain a

relief opportunity that would form an illegal mealbreak with relief opportunity (z,)).

It should be noted that the variables essentially trace out two part and the first half of
split duties in the bus workings. These are not of great interest as the goal of the CROSS
system is to select relief opportunities that may be useful, not to generate duties. However,
it is worth noting that only two part and split duties are created. The two part duties, in
bus driving terminology, can be thought of as two part early or middle duties; both will be
referred to as reqular duties as the distinction is not important here. Split duties, formed
during the CROSS process, consist of only one part whilst the second part is assumed to

take place sometime after 1200 and is not considered any further.

Chapter 6 113 The CROSS CSP

6.6 The CROSS CSP: Model Constraints

A tool like ILOG Solver is useful if the constraints involved are such that constraint
propagation will quickly reduce the size of the solution space to be searched as well as
preventing the construction of illegal solutions. The CROSS model takes advantage of this
by posting constraints to Solver immediately after the variable domain construction phase

as well as while searching for solutions, when variables are bound or domains are altered.

Many of the constraints posted are conditional ones. That is, certain criteria have to be
satisfied before the constraint is enforced. ILOG Solver provides functionality to support

this in a convenient way as will be seen in the following subsections.

6.6.1 Constraints Involving Next(; jy and Prev; Variables

One important fundamental constraint between the Nezi(; ;y and Prev; ;) variables in
the CSP occurs when a Nexi(; ;) variable is assigned a mealbreak link with another relief
opportunity, say (I,m). For any two relief opportunities (say (i,7) and (I, m) where j < m

and 7 # [) used in a legal mealbreak link, the following constraint must always hold:

Next;jy = (I,m) = Prevgm) = (i,]) (6.1)

Conditional constraints can be posted to ILOG Solver via the I1cIfThen() function. The

function call would look something like this:

I1cIfThen(Next == p, Prev == n);

where Next represents Next(; ;), Prev represents Prev(), p represents (I,m) and n rep-
resents (4,7). This corresponds exactly to Constraint (6.1). This constraint is posted

directly to Solver for each possible legal mealbreak link?.

2 As an aside, ILOG Solver provides a I1cInverse () constraint that is very similar to this. Unfortunately
it is not as powerful as the I1cIfThen() representation of Constraint (6.3) and Constraint (6.4) is not
enforced.

Chapter 6 114 The CROSS CSP

The relationship between Nezt(; ;) and Prev() is symmetric in that:

Prevgm) = (4,7) = Nextj) = (I,m) (6.2)

is also true. Thus the constraint can be written as:

Nextj = (I,m) <= Prevgm,) = (4,) (6.3)

When a Next(; ;) variable is bound to a relief opportunity, say (I,m), the value (I, m)
must be taken out of the domains of all other Next variables that contain it. Similarly,
when a Prev(; ., variable is bound to a relief opportunity, say (4, j), then (4, j) also must
be removed from the domains of all other Prev variables that contain it. Constraint (6.3)
ensures that this happens when Next(; ;y and Prev ., variables are bound. This is
automatically carried out by ILOG Solver via constraint propagation. What effectively
happens when Constraint (6.3) is posted is that the CSP behaves as if the following

constraint is constructed:

Next; jy # (I,m) <= Prevgm) # (i,7) (6.4)

Another conditional constraint in the CSP is that if a Prev(variable is bound to the

1,)
value ‘0’ then Next(; jy must also have the value ‘0’ as it cannot be used. There is only
one case where this rule does not hold and that is where (4, j) is a relief opportunity at
the end of a running board and ;7 < 1200 (as it may be possible for a driver to take a
break at this point to start a second part of a two part duty elsewhere). The following

conditional constraint is posted to ILOG Solver on all relevant Prev(; ;) variables along

%))

with the associated Next(; ;) variables:

Previ; =0 = Next; ;=0 (6.5)

Note that Constraint (6.5) is not symmetric because a Next(; j) variable can also have a

value of ‘0’ if it represents the end of a duty.

Chapter 6 115 The CROSS CSP

All of these constraints are posted to Solver after the domains have been constructed.
They are fundamental as much of the constraint propagation that takes places during the

search for solutions involves them.

6.6.2 Constraints Involving PV, Variables

There are many conditional constraints that must be enforced between PV; variables and

the Next(; ;) and Prev ;) variables in the CROSS CSP. When a PV; variable is bound it

(2]
has an immediate impact on the domains of the Next and Prev variables associated with

the relief opportunities on running board .

To see this, consider a pattern variable, say PV;, bound to a value, say S. It is clear
that for all internal relief opportunities (say there are p; of them) on running board 7 any
relief opportunity that is not contained in the set S must have its Next(; ;) and Prev j
variables bound to ’0’ as they cannot be used. This constraint can therefore be written

as:

(ti[k} ZS)N(PV;=8) = (Nea"t(i,ti[k]) =0) A (PTe’U(z',ti[k]) =0) (6.6)

where k=1,...,p; and VS € Dpy,

where ;3] represents the time of the k'™ internal relief opportunity on the running board
1 and p; represents the number of internal relief opportunities on running board . Due to

constraint (6.5) and constraint propagation the above constraint can be simplified to:

(tz‘[k] gS)N(PV;=8) = Prev =0 (6.7)

(RARY
where k=1,...,p; and VS € Dpy,

Additionally, if the time ;) is present in S then Prev(i,ti[k]) # 0. The Prev(,. .y variable,

[x]

in this context, must take either the value of a relief opportunity (representing the start

of a mealbreak link) or the value —1 (representing the beginning of a duty). This is stated

Chapter 6 116 The CROSS CSP

as follows:

(tig) € SYN(PVi=8) = Prevgiyg,) #0 (6.8)

where k=1,...,p; and VS € Dpy,

It should be noted that it is not necessarily the case that if (t;x) € S) A (PV; = S) that

N L (it; k) # 0. This is because Next might represent the end of a driver’s duty.

iytifk])

Additionally, since a bound PV; partitions the vehicle into spells, we can post two more
constraints for each such spell. Assuming a spell starts at (i, A) and ends at (i, B) they

are as follows:

Previ s =—1 <= Next;p) #0 (6.9)

Previ 4y # -1 <= Next;p =0 (6.10)

This ensures that if Prev(; 4) represents the start of a duty then at the end of the first
stretch it will either form a mealbreak link, represent a split duty or have a mealbreak going
past noon (Constraint (6.9)). Similarly, if Prev(; 4) is not the beginning of a new duty
then relief opportunity (i, B) will have to represent the end of a duty (Constraint (6.10)).
As the relief opportunities occurring past noon only have a legal Next domain value of 0

these constraints are not applied to them.

In practice the previous four constraints can be enforced by invoking a routine when PV;
is bound and performing the appropriate checks in order to enforce a unary constraint
on the appropriate Prev variables (Constraints (6.7) and (6.8)) or post the appropriate

conditional constraints (Constraints 6.9) and (6.10)).

Constraint (6.7) has an effect on other Next and Prev variables in the problem. If
relief opportunity (7,7) is not used on running board i because j ¢ S then no Next or
Prev variables in the model can be assigned the value (i,j). ILOG Solver maintains arc
consistency between Nezt and Prev variables due to Constraint (6.3) which ensures such

values are removed from their domains.

Chapter 6 117 The CROSS CSP

When the pattern variable domains are first created, the only constraints taken into ac-
count are the minimum and maximum allowed spell lengths. After the pattern variable
domains have been generated, a further check is carried out to ensure that the three types
of stretches that these spells can represent are legal. If a spell cannot represent a legal
stretch then constraints must be constructed in order to prevent an illegal stretch from
occurring. A spell can be a part of three types of stretch in the CROSS algorithm. The

three types of stretches considered are:

1. First stretch of a two part regular duty.
2. Second stretch of a two part regular duty.

3. First stretch of a split duty.

To add stretch constraints to the CSP all possible spells, in conjunction with the pattern
variable domain elements which form them, must be considered. Each stretch has to
include its own sign on/sign off time as well as its own minimum/maximum length to be
legal. If any of the three types of stretches are found to be illegal with the spell being
examined then constraints must be placed on the Next, Prev and PV, variables involved

in the stretch.

Consider the spell belonging to running board z shown in Figure 6.8. Assume that the spell
shown in Figure 6.8 has been created due to the work on the vehicle being partitioned by
S € Dpy,. Each pattern variable domain element creates at least one spell on the running

board; the general case is being considered here. The spell in Figure 6.8 starts at relief

| |
Bus x B 1
A B

Figure 6.8: Spell on Running Board z

opportunity (z, A) and finishes at relief opportunity (z, B). Each spell must be examined

to ensure it forms a legal first stretch of a duty. If not, the following constraints are posted

Chapter 6 118 The CROSS CSP

to Solver:

Prevg ay=-1 = PV #S5 (6.11)
PV, =8 = Prevga # -1 (6.12)
PVy=S = Nexip =0 (6.13)

These constraints ensure that this spell will not be used as a first stretch of a duty. The
first constraint ensures that if spell A is the beginning of a duty the domain of PV, cannot
contain S. The second and third constraints ensure that Prev(; 4) cannot be the beginning

of a duty and, in fact, must be the second part of a two part duty if PV, = §.
Note that the following is not necessarily true:

PV, #85 = Prevga =—1

Prevga#-1 = PVp=S§

It could be the case that relief opportunity (x, A) does not have to be the start of a new
duty if PV, happens to be bound to a value other than S. Similarly if Prev(, 4 is the

start of a new duty it may be the case that PV, # S.

Every stretch is also examined to ensure it can represent a legal second stretch of a duty.

If this stretch is deemed illegal then the following constraints are posted to Solver:

Previga # -1 = PV #S (6.14)
PVy =8 = Prevga =-1 (6.15)
PV, =5 = Ne.’I,‘t(x,B) #0 (616)

The first constraint ensures that if Prev(4y does not represent the beginning of a new
duty then PV, cannot take the value S, thus ensuring the spell will not form the second
stretch of a regular duty. The second and third constraints ensure that if PV, = S then

Prev(;) must represent the start of a new duty; this ensures the spell cannot be used as

Chapter 6 119 The CROSS CSP

a second stretch of a two part duty therefore 0 is taken out of the domain of Next(, p).
As with the constraints preventing a spell being used as a first stretch in a regular duty,

these constraints are not symmetric.

The third, and final, stretch test made in the preprocessing stage of the CROSS algorithm
involves treating the spell as the first stretch of a split duty (if split duties are allowed).
If the stretch is deemed to be illegal for the first stretch of a split duty then the following

constraint is posted to ILOG Solver:

PV, =S = Newty g # 1500 (6.17)

It should be noted at this point that if the first two stretch tests show that the spell in
question cannot be a legal part of a duty then S is taken out of the domain of PV,. The
parameter for the minimum split shift length is almost always the same or longer than the
minimum first stretch of a two part regular duty. Therefore if the spell in question is not
a legal first stretch for a two part regular duty then it is not considered to be suitable for

a split duty.

These tests on the stretch lengths are made for every spell induced by every pattern

variable element that exists in the CSP except for spells going later than 1200.

Some constraints can be posted after some lookahead has been performed after a variable

has been bound. These are discussed next.

6.6.3 Lookahead performed when PV variables are bound

When a pattern variable is bound a routine is invoked that performs a lookahead to ensure
that a regular duty with its first stretch on vehicle 7 (with a spell that finishes before 1200)
only has a mealbreak link with a second stretch that creates a duty with a legal cost. Cost,
in the CROSS algorithm, is defined as the total time of a duty from sign-on to sign-off.

The minimum and maximum cost parameters are defined in the labour file. A general

Chapter 6 120 The CROSS CSP

description of this lookahead follows.

If a stretch of a regular duty starts on running board i at relief opportunity (i, m) and
finishes at relief opportunity (¢,m) then each domain element representing a mealbreak
link (relief opportunity) in Next(;) is examined. For each relief opportunity value, say
(k,p), in Dneat,;) the pattern variable domain elements for PV}, are examined. There
are two cases: either (k,p) is a relief opportunity at the beginning of running board & or

(k,p) is an internal® relief opportunity on running board k.

If (k, p) is at the beginning of running board & then each Dpy, element, say S, is examined.
For each spell formed from (k, p) to, say (k,q) where (((k,q) € S)V (S ={-1}))A(¢q > p),
the cost of the potential duty formed by the two spells (i,m) to (i,n) and (k,p) to (k,q)
is calculated. If it is too long or short to form a legal duty (the min/max cost parameter
is violated) then the following constraint is posted preventing PV} from taking the value

S should Next(; ,y = (k,p). This is stated as:

Next(in = (k,p) = PV #S (6.18)

In the second scenario only Dpy, elements containing p are considered. Spells going past

1200 are not considered in this lookahead.

6.6.4 Lookahead performed when Nexzt variables are bound

If Next(; jy = 0 and PV; is unbound and either Prev; ;) has not been bound or Prev; ;) #
0 then each element in PVj;, say s, is examined. For each S € PV, value where j € S,
a spell (i,k) to (4,7) (where k is either the beginning of the running board or in S) is

formed. The following constraints are then added to the CSP:

Previpy =—-1 = PVi#S (6.19)

3 As defined earlier, an internal relief opportunity is one which appears in between the first and last relief
opportunity of the morning portion of the running board being considered. An ezternal relief opportunity
is the first and last relief opportunity on that running board.

Chapter 6 121 The CROSS CSP

PV;=S8 = Prev;;) # -1 (6.20)

These constraints help to prevent the algorithm from potentially trying to use the spell
ending at (7, 7) as the first part of a two part duty. At this point it is not clear if (7, j) will
be the end of a drivers duty or if relief opportunity (7, 7) will be used at all (this depends

on the value given to Prev; ;) if it is not already bound).

6.6.5 Miscellaneous Constraints

When a Next; jy variable is bound a routine is invoked to examine the value it has been
assigned. If a Next(; ;) variable, where (4, j) is an internal relief opportunity, is not bound
to the value 0 then PVj is tested to see if it has been bound to a value. If PV} is unbound

then it is randomly* bound to a value containing j.

When a Prev(; j) variable is bound it too invokes a routine to examine its value. If

Prev; ;) is bound to a value other than 0 and its pattern variable is unbound then the

1,5)
pattern variable is bound randomly to a value containing j.
The reason for binding the PV; value at this point is for the constraint propagation such a

binding would invoke. This helps to further reduce domains of variables as well as giving

structure to the problem (via the partitioning of the vehicles into work).

In both of the routines called when Prev; ;) and Next(; ;) variables are bound there are
special VALID routines that examine the duties, or partial duties, constructed thus far.
If there are any unusual constraints that must be taken into account then it can be done

at this point to ensure no illegal duties are created.

4The method for probabilistically binding pattern variables is described in Section 7.3.8.

Chapter 6 122 The CROSS CSP

6.7 Summary

The CROSS CSP has been described. The CROSS CSP was developed as a front end,
or pre-processing stage, in the TRACS-II process. The input for the CROSS CSP is a
labour file (containing constraints on the duties themselves) and a vehicle file (containing
a description of the set of bus workings). The CROSS process produces a new vehicle
file as output having removed some of the relief opportunities that were contained within
the original vehicle file. This reduces the number of potential duties generated in the

TRACS-II BUILD process and reduces the number of constraints in the TRACS-II ILP.

The motivation behind CROSS is the observation that mealbreak chains have beneficial
properties in the context of duty scheduling. Schedules that contain good mealbreak chains

should require fewer duties than schedules not containing them.

The CSP itself consists of three sets of constrained variables. The first is a set of pattern
variables. There is one pattern variable per running board. Pattern variables are used to
represent how the work on a running board is partitioned (which relief opportunities are
used). Each relief opportunity has an associated Nexzt and Prev variable which determine
what a duty does after and before the relief opportunity respectively. By chaining together

successive relief opportunities (Next and Prev variables) mealbreak chains can be formed.

The CROSS CSP is designed to form a set of mealbreak chains over the morning period of
a set of bus workings, although as described later, it can also be applied to evening portions
of a set of bus workings. The algorithm employed for solving the CSP (as described in
the next chapter) has a random element introduced into it so that the CROSS CSP is
solved several times forming a variety of mealbreak chains over the set of morning bus
workings. The union of all the relief opportunities participating in these mealbreak chains

is recorded and passed onto the TRACS-II BUILD process via the output vehicle file.

CROSS is implemented using ILOG Solver. The constraints are generally represented
as conditional constraints. These constraints only take effect when certain criteria are

met. Constraints are posted to Solver regarding the interaction between Next and Prev

Chapter 6 123 The CROSS CSP

variables which is fundamental to the construction of mealbreak chains in the CROSS
CSP. Constraints are posted on PV variables as well as on the interaction between PV
and Nezt/Prev variables, mostly to ensure that illegal duties are not allowed to be formed
around the mealbreak chains. Other constraints are posted when PV, Next or Prev
variables themselves are bound, again to help ensure only legal duties are traced out

around the mealbreak chains formed. Some lookahead is also performed.

Next, in Chapter 7, the search strategy used in solving the CROSS CSP is discussed.

Chapter 7

The CROSS Algorithm

7.1 Introduction

This chapter presents a description of the CROSS algorithm. First an outline of the
algorithm is given. This provides an overview as to how the algorithm works and how
relief opportunities are selected such that mealbreak chains are formed. The CROSS
algorithm itself is then discussed, focusing on the flow of the algorithm. The method
by which PV;, Next(; ;) and Prev(; ;) variables are randomly assigned values will also be

presented.

After the algorithm has been discussed the focus will then be placed on other related issues.
These include how CROSS can be applied to an evening portion of a set of running boards
as well as applying CROSS to select relief opportunities when duties in the TRACS-II

schedules may contain three or four parts.

It should be noted that the discussion of the CROSS algorithm is specific to finding a
single solution to the CSP. The actual application of the CROSS method will involve
finding several solutions, with a random element, to the CROSS CSP. The union of all the
relief opportunities selected by CROSS will then be used as the set of relief opportunities

selected and supplied to TRACS-II via a new vehicle file. This satisfies the two additions

124

Chapter 7 125 The CROSS Algorithm

needed in order to gain the flexibility from a mealbreak chain selection scheme as outlined

in Section 6.2.1.

7.1.1 Earlier Work

The search strategy for the original CSP formulation (as described in Section 6.1.1) is
similar in spirit to the algorithm that will be described in this chapter. Its main objective

is to trace out mealbreak chains via the relief opportunities that they are comprised of.

First the earliest unbound workpiece, W;, variable was chosen. A value (a pointer to
another piece of work) was selected from its domain randomly with a bias towards the
adjacent piece of work (if legal); this bias is in order to try and create long rather than short
stretches of work. When a mealbreak is formed the same strategy is used in order to form
the duties’ second stretch of work. The algorithm would then select the workpiece before
the second stretch of work just formed in order to form a mealbreak link and the second
stretch of the implicitly formed duty is created. This is repeated until the mealbreak chain
currently being constructed comes to an end. When a mealbreak chain has come to an
end the algorithm restarts with the earliest unbound piece of work. Eventually the entire

set of W; variables are assigned a value.

Unfortunately, without the extensive use of look-aheads, the constraint propagation oc-
curring in this model was not entirely satisfactory and a large amount of backtracking
would take place, even on relatively small problems. Some attempt was made to remedy
this by modifying the search strategy slightly. For example only a limited number of val-
ues were tried from a variable’s domain before backtracking was invoked. Additionally a
mechanism was implemented whereby if a solution was not found within a set period of
time, a variable earlier in the search tree was backtracked to at random in an attempt
to avoid the troublesome part of the search space (backtracking techniques such as these

were successfully applied in a university course timetabling heuristic [75]).

It was decided that by modelling the problem slightly differently (with more emphasis on

Chapter 7 126 The CROSS Algorithm

how a running board is to be split up into pieces of work and, thus, on which relief oppor-
tunities will be used) the goals of both a better model and better constraint propagation

could be realised.

The changing of the problem’s variables to represent what happens before and after a
relief opportunity (Next and Prev variables) as well as a mechanism to partition a vehicle
into pieces of work (PV variables) made the CSP much easier to solve and the constraint
propagation much more effective. The model now used also shifts the emphasis onto the

relief opportunities themselves rather than the pieces of work.

7.2 Simplified Algorithm Outline

Using the model defined in Chapter 6 the CROSS algorithm selects relief opportunities
from the morning period of a set of bus workings by forming mealbreak chains. A simplified
version of the CROSS algorithm is displayed in Figure 7.1. The diamond objects on the
arrows in the diagram indicate a decision point regarding whether or not the current

mealbreak chain currently being traced out is finished or not.

Choose a Bind the

START— Vehicle Running Board's

Running Board Pattern Variable

Bind a Next/Prev

Variableon the

Running Board

Follow the
Mealbreak Link
toanew

Running Board

Figure 7.1: Simplified CROSS Algorithm

Figure 7.1 shows that the algorithm starts by selecting a running board. Generally this will

be a running board containing a relief opportunity whose Next; ;) variable is unbound.

Chapter 7 127 The CROSS Algorithm

The running board selected, say 7, will first have its pattern variable, PV;, bound (if
it has not been assigned a value already). The earliest unbound N ext(; j) variable! on
this running board whose time, j, is selected in PV, or which occurs at the end of the
running board but before 1200 will then be bound, usually forming a mealbreak link or
alternatively representing a duty finishing its mealbreak after 1200 or perhaps indicating
a split duty. Usually the mealbreak link connects the relief opportunity (i, 7) with a relief
opportunity on another running board, say relief opportunity (/,m). The running board [
is considered next. The Nexi(,,) variable is bound, forming another mealbreak link, and
so on. This has the effect of tracing out a mealbreak chain through the bus workings as
well as forming duties around the chain. This process is repeated until all the variables
in the constraint programming model are assigned a value. Many other factors have to
be considered whilst the mealbreak chains are being constructed; these will be explored

in more detail in this chapter.

7.3 Algorithm

The CROSS algorithm’s search strategy itself is split up into four routines that each have
a distinct role in the mealbreak chain generation process. The search for mealbreak chains
centres on the movement between these routines depending on what needs to be done at

the time. Figure 7.2 shows these four routines and the flow of control between them.

The four main routines in the algorithm are as follows:

e StartNewChain - Selects a running board, i, with an unbound Next or Prev

variable. Binds PV; if needed.
¢ BindFirstVariable - Binds the earliest Next or Prev variable on a running board.

e ContinueNextChain - Deals with newly bound Next variables. Tries to extend

current mealbreak chain.

LA similar process is followed in the case that the earliest unbound variable on a running board is a
Prev variable.

Chapter 7 128 The CROSS Algorithm

StartNewChain BindFirstVariable

Select
Running Board &
Bind Pattern
Variable

Bind 1st
””” >Unbound Variable
on Running
Board

Prev Variable Next Variable \

Bound Bound

ContinuePrevChain ContinueNextChain

Figure 7.2: CROSS Mealbreak Chain Search Strategy

e ContinuePrevChain - Deals with newly bound Prev variables. Tries to extend

current mealbreak chain.

Some implementation details of the algorithm will be described next. Afterwards the four

routines that comprise the search strategy will be explained in some detail.

7.3.1 Implementation

ILOG Solver provides built in functions to solve a CSP. Specifically, it supplies a function
called IlcGenerate() which is responsible for selecting the next variable to be bound in the
algorithm (variable ordering). Another function, IlcInstantiate(), binds a constrained
variable to a value from its domain (value ordering). These correspond to the constraint

programming concepts of variable ordering and value assignment.

The approach taken in the CROSS algorithm uses its own custom-made Generate()
and Instantiate() functions in order to have more control over the variable ordering as
well as the value assignments used in the algorithm. The Generate() function contains
references to the four routines used in the CROSS algorithm; the custom Instantiate()

function controls how Next(; ;y, Prev ;) and PV; variables are bound to values in their

Chapter 7 129 The CROSS Algorithm

domains.

ILOG Solver provides a useful data type that is used in the CROSS algorithm. Specifically,
ILOG Solver provides a reversible data type. Such a data type can be assigned values like
any other variable in a program. However, when any backtracking takes place the variable’s
value is restored to the value it had at the point to which the algorithm backtracks. A
reversible structure, referred to as the Status of the algorithm, is constructed and every
time Generate is called the running board and current relief opportunity being examined

are recorded. This serves two purposes:

1. Tt informs the next routine in Generate to be called what running board and relief

opportunity are currently being examined.

2. When backtracking occurs, the Status allows the algorithm to revert back to the
running board and relief opportunity that was being considered at the point to
which the algorithm backtracks. The routine which the algorithm was executing at

that point is also recorded.

In the Status structure a reversible variable is used to record which of the four routines is
to be used next. The Generate function uses the value of this in a switch statement in

order to ensure the correct routine is executed.

The search strategy begins in the Generate function and invokes the StartNewChain

routine. From here we focus on the formation of meal-break chains.

7.3.2 StartNewChain - Starting a new chain

The first step carried out involves selecting a running board on which a mealbreak chain
will be started. A list of the earliest twenty relief opportunities with either an unbound
Nexi(; ;) or Prev(;) variable is constructed. One of these relief opportunities is selected

at random and the running board it is on, say ¢, will be used.

Chapter 7 130 The CROSS Algorithm

This random selection of running boards helps to make the solution of the CSP different
from run to run. When the same running board was always used to start the search then
it was found that many of the solutions looked somewhat similar, especially in problems
where the domain size of many of the pattern variables is small. Allowing the algorithm
to choose a running board from the twenty earliest relief opportunities ensures that each

solution is different.

Next, the pattern variable for running board i, PV}, is bound (if needed) thus partitioning
the work on the running board. This is done in a random fashion which is detailed
in Section 7.3.8. The search next moves to BindFirstVariable whose goal is to bind
the earliest unbound Nexi(; ;) or Prev; ;) variable on the running board. The unbound
variable will be chosen corresponding to the relief opportunities given in the value assigned

to the pattern variable.

7.3.3 BindFirstVariable - Binding the first Unbound Variable on a Run-

ning Board

BindFirstVariable searches the running board, say i, selected by StartNewChain for
the earliest relief opportunity with an unbound Nezi(; ;) or Prev; ;) variable. There are

two cases to consider:

1. There are no relief opportunities with an unbound Nezt(; ;) or Prev; ;) variable on

the running board.

2. The earliest relief opportunity, say (4,7), with an unbound variable has either an

unbound Next(; jy or Prev) variable.

Case 1 If there is no relief opportunity on running board ¢ with an unbound Nezt; ;) or

Prev; ;) variable then control is passed back to StartNewChain in order to select

)

another running board to try and start a new mealbreak chain.

Case 2 The earliest relief opportunity with an unbound variable has either a Next; ;) or

Chapter 7 131 The CROSS Algorithm

Prev(; j) variable unbound. If a Next; ;) variable is unbound, then it is bound in a

Zv])
random fashion to form a mealbreak link, if possible, and the search then proceeds
to the ContinueNextChain routine. If Nexi(; ;) has already been bound then

Prev(; ;) is bound to a value in a random fashion and the search will proceed to

%)
the ContinuePrevChain routine. The random method by which Nezt(; ;) and

Prev; ;) variables are bound will be discussed in Section 7.3.9.

It is worthy of note that at the beginning of a mealbreak chain on a running board with an
unbound pattern variable, PV;, the pattern variable is bound before a Next; ;) or Prev j
variable; this is the reason for the distinction between the two routines StartNewChain
and BindFirstVariable. It is important to bind the variables in this order at the begin-
ning of a mealbreak chain in order to ensure all pattern variable domain values may be
tried, if necessary, in solving the CSP. To see this consider Figure 7.3. In it assume that
Dpy, = {{a},{b}}. Also assume that both Next(.y and Nexzt;) are unbound and that

a <b.
PV

{a b}

@) (b)

Figure 7.3: Binding PV before Next

Figure 7.3 has two parts. Part (a) shows a search tree if the pattern variable is bound
before the Next variable. Once the PV; variable is bound to either {a} or {b} the Next; o)
or Next(;) variable is bound. If backtracking takes place such that PV; has to be bound

to another value then the other untried Next variable will be bound.

Part (b) of Figure 7.3 shows what happens when Next(; ;) is bound before PV;. This
would be equivalent to BindFirstVariable binding a Next(; ;) variable before the PV;

variable has been bound. After Next(; ,) has been assigned a value PV; is bound to some

Chapter 7 132 The CROSS Algorithm

value containing a. Since only one Dpy; element contains the value a, PV; = {a}. If
the search backtracks to Nexi(;) it will only assign another relief opportunity value to
Next(; o) and PV; will be bound with the value {a} again. Since StartNewChain finds
the earliest unbound? Next (or Prev) variable, N ext(;p) will not be chosen at all in this
portion of the search tree. However, if the order of variable binding that is shown in part
(a) of Figure 7.3 is used then all PV; domain values will be tried which in turn implies
all relief opportunities within its domain values have a chance of being used. When a
mealbreak chain is started on a vehicle, 4, with an unbound PV; variable then PV; must

be bound before any unbound Next or Prev variables on running board i.

7.3.4 ContinueNextChain - When a Next(; ;) Variable has been Bound

The role of ContinueNextChain is to examine the value of a Next; ;) variable (usually
a mealbreak link) and try to extend the mealbreak chain in which it participates. There

are two cases to be considered:

1. Next(;) € {1500,1200,0}.

2. Nexi(;j) = RO) - A relief opportunity representing the finish of a mealbreak link.

Case 1 If the value of the Next(; ;) variable is 1500, 1200 or 0 then the current meal-

i.5)
break chain being constructed has come to an end and the search moves to Start-

NewChain in order to try and start another mealbreak chain elsewhere.

Case 2 Nert(; j) must be bound to a value representing a relief opportunity, say (I, m).
The variable Next(,, is examined. If it is already bound then it is assumed that the
current mealbreak chain being constructed has joined with the tail end of another
mealbreak chain and the search goes to StartNewChain in order to try and start a
new mealbreak chain elsewhere. If Nexzt(;) is unbound then it is randomly bound

and the search will stay in ContinueNextChain in order to try and extend this

2 An analogous situation exists for Prev variables.

Chapter 7 133 The CROSS Algorithm

mealbreak chain further. This routine forms mealbreak chains by successively linking

together Next variables.

7.3.5 ContinuePrevChain - When a Prev(; ;) Variable has been Bound

This routine examines the value to which a Prev(; j) variable has been bound. Similar to

the ContinueNextChain routine, there are two cases to consider:

1. Prev(; ;) = —1 - The start of a new duty.

2. Prev ;) = RO - A relief opportunity representing the start of a mealbreak link

where (i,7) is the end of the link.

Case 1 If Prev(; ;) is bound to the value -1 then the current mealbreak chain being
constructed has come to an end and the search moves to StartNewChain in order

to try and start another mealbreak chain elsewhere.

Case 2 If Prev(;) is bound to a value representing the beginning of a legal mealbreak
link, say (I,mm), then the variable Prev() is examined. If it is already bound then
it is assumed that the current mealbreak chain being constructed has joined with
the beginning of another mealbreak chain and the search goes to StartNewChain
in order to try and start a new mealbreak chain elsewhere. If Prev() is unbound
then it is randomly bound and the search stays in ContinuePrevChain in order to
try and extend this mealbreak chain further. This routine forms mealbreak chains

by successively linking together Prev variables.

7.3.6 Backtracking

The default chronological backtracking of ILOG Solver is used. This implies that only
reasonably recent variables in the search will be re-examined by backtracking. This might

seem to be a disadvantage. However, in practice, CROSS usually finds a solution within

Chapter 7 134 The CROSS Algorithm

seconds. Additionally a timeout value is used where the search is restarted if a solution
has not been found within a pre-determined amount of time. The new search will almost
certainly search a different part of the solution space and it is very unusual for two timeouts

to occur in a row. This parameter is usually set to 15 seconds.

Backtracking is most commonly caused by Next variables with empty domains as the
mealbreak chain creation process focuses mainly on these. The constraints described in
the labour file have a direct influence on this, however. For example, if the Next variables
have the value 1500 in their domains then backtracking is unlikely to happen due to the
fact that this split shift value is always a legal assignment. If split shifts are not allowed
or have tight constraints on when they can occur then backtracking due to empty Next
variable domains can be more common; this has not been a serious issue in any of the

datasets used.

In Generate the search spends, roughly, 25% of its time in the StartNewChain and
BindFirstVariable respectively, 40% of its time in ContinueNextChain and 10% of

its time in ContinuePrevChain.

7.3.7 Random Variable Assignment

When a PV;, Prev) or a Next; ;) variable is bound, every value in its domain should
have a chance of being used; this would allow any potential mealbreak chain in the set of
bus workings to be formed. If value ordering is done in a deterministic fashion then it is
possible that potentially useful relief opportunities will be missed out every time CROSS
is used (as the CROSS algorithm itself only looks for a solution to the CSP). To help
avoid this, special random value ordering routines were created to assign values to the
PV;, Next(; ;) and Prev; jy variables. The random routines are designed to try to favour

introducing features similar to what are found in efficient schedules.

The domains of the PV, Next and Prev variables themselves are sorted in order to give

preference to some values over others. This is discussed next.

Chapter 7 135 The CROSS Algorithm

7.3.8 Random Pattern Variable Assignment

It is a vehicle’s pattern variable that decides which of its relief opportunities will be used.
An aim of driver scheduling is for each duty to cover as much bus work as possible. In
practice this is not always practical as some shorter duties may be required to cover
awkward pieces of work. However, a bias towards longer spells was part of the motivation
for using a randomised pattern variable assignment strategy. From the combination of
different relief opportunity sets provided by several runs of the CROSS algorithm the
TRACS-II build process should be able to generate a selection of long and short duties
to supply to the SCHEDULE process. For such a strategy to be used each of the pattern
variables’ domains has to be sorted into order of desirability. After this has been done
a method of randomly selecting elements from the domain of a pattern variable must be

constructed.

When the pattern variables’ domains are sorted there are two cases to be considered; either
the schedule is peaked or non-peaked. First, the case of pattern variables on non-peaked

sets of bus workings will be considered.

A pattern variable’s domain is sorted based on two criteria (in order of preference):

1. Length of first spell from the beginning of the running board as formed by the

pattern variable domain element.

2. Length of second spell on the running board as formed by the pattern variable

domain element.

The domain elements are sorted in descending order based on the length of the first spell
on the running board formed by each domain element. For domain elements that form the
same first spell on a running board the length of the second spell they form is compared

and, again, longer spell lengths are given preference.

To see how the pattern variable domain element ordering works, consider what the pattern

Chapter 7 136 The CROSS Algorithm

variable domains from the set of bus workings in Figure 7.4 would look like. Assume the

spells formed on this set of bus workings are constrained by the following parameters:

e MINIMUM SPELL LENGTH is set to 1% hours.

e MAXIMUM SPELL LENGTH is set to 5 hours.

500 6:00 7:00 800 9:00 10:00 11:00 12:00 13:00

Bus1 5:=29 7:=28 9:=O5 10=: 53 o iéI;f;l 777777777 -
Bus2 62:46 8:= 38 1o=; 39 12!(;% 7777777777777 -
Bus3 7:=30 9:=17 11=:04 7”5.21:74;1 777777777 -
Bus4 8I08 10=: 06 11=:42 777777 il; Oé 777777 -
BusS 9:35 11:32

Figure 7.4: Ash Grove Route 11 (London) Morning Bus Workings

Dpy, = {{905},{905,1053), {728, 1053}, {728, 905}}
Dpy, = {{1039},{838},{838,1039}}

Dpy, = {{1104},{917},{917,1104}}

Dpy, = {{—1},{1142},{1006},{1006,1142}}

Dpy, = {{-1}}

Figure 7.5: Ash Grove Non Peaked Bus Workings Sorted Pattern Variables’ Domains

If the bus workings in Figure 7.4 were treated as a non-peaked set of bus workings the
sorted pattern variables would look like what is found in Figure 7.5. The first element in
Dpy, is {905} because 905 forms the longest legal spell from the beginning of the running
board on bus one. The value {905,1053} is directly after {905} because, although both
domain elements share the longest first spell on the running board, the domain element
{905} has a longer second spell than the domain element {905, 1053}, hence its preferential

ordering. The first domain element in Dpy, is {—1} as this value uses the entire morning

Chapter 7 137 The CROSS Algorithm

portion of the running board as a single spell (which, by definition, is the longest). By
inspection it can be seen the rest of the domains in Figure 7.5 follow the rules outlined

above.

For the CROSS algorithm the definition of a peaked schedule is that 20% of the vehicles in
the set of morning running boards are peak vehicles (end before 1200). This is identified
during the initialization phase of the algorithm. The bus workings in Figure 7.4 could be

considered a peaked set of bus workings.

In the case of a peaked set of bus workings the pattern variable domains are sorted some-
what differently. Before invoking the previous set ordering (the ordering used for non-
peaked bus workings) on a pattern variable’s domain, the domain is first partitioned into
three subsets. These three subsets will each contain domain elements with a particular

property. These properties (in order of importance) are:

1. Domain elements whose relief opportunities are all after the peak, say subset S(; 1) C

Dpw.

2. Domain elements whose relief opportunities are all before the peak or occur on either

side of the peak, say subset S(; 2y C Dpy;.

3. Domain elements containing at least one relief opportunity that falls within the peak,

say subset S(; 3y C Dpy;.

Once these three sets have been determined the domain of pattern variable, PV}, is ordered

as follows:

PVi = {S1):56,2),S6,3)} (7.1)

Each of the three subsets in the pattern variable is then ordered by the same criteria that
is used for a non-peaked pattern variable domain. Using, again, the set of bus workings
in Figure 7.4 as an example and treating the schedule as peaked between the times of 935

and 1132 the pattern variable domains for the vehicles in this schedule will look like what

Chapter 7 138 The CROSS Algorithm

is found in Figure 7.6.

Dpy, = {{905},{728,905},{905,1053),{728,1053}}
Dpy, = {{838},{1039},{838,1039}}

Dpy, = {{917},{1104},{917,1104}}

Dpy, = {{—1},{1142},{1006},{1006,1142}}

Dpyv; = {{-1}}
Figure 7.6: Ash Grove Peaked Bus Workings Sorted Pattern Variables’ Domains

Once a pattern variable domain has been sorted, each element in the domain must have
an associated probability of being chosen for value ordering purposes. A linear probability
distribution was chosen in order to give every element in the domain a reasonable chance of
being chosen but, at the same time, providing a bias towards preferred elements. If there
are n elements in a pattern variable’s domain each element, eq,...,e,, has a probability
Py, ..., P, of being chosen. The first element in a pattern variable domain of size n will
have n times the chance of being selected compared to the last element in the domain
(whose probability of being selected is z). The sum of these probabilities will add to one

as described by the following equation:
nt+n—-Lz+---+2r+z = 1 (7.2)

The terms nx, (n — 1)z, ..., 2z, z correspond directly to Py, P,... P, 1, P,. This can be

simplified and we define F; as follows:

(n—l—l—i)] (73)

P = 2|————=
' [n(n+1)

As the domains of pattern variables vary in size during the CROSS algorithm execution
the probabilities of them being selected are adjusted to remain consistent with the current

size of the domain.

Chapter 7 139 The CROSS Algorithm

7.3.9 Probabilistic Next(; ;) and Prev(; ;) Variable Assignment

The Next(; ;) and Prev; ;) variables’ assignments are also important. Ideally mealbreaks
should be as short as possible in order minimize the amount of idle time present in meal-
breaks, thus, creating more efficient duties. Like the pattern variable domains, Next; ;
and Prev(; jy domains are sorted in order of preference with respect to value ordering. The
following description specifically addresses the probabilistic binding of Next; ;) variables

but the same method is also used for Prev(; j) variables.

One of the parameters given in the labour agreement file is the maximum mealbreak idle
time length allowed. This parameter specifies the maximum amount of idle time allowed in
a driver’s mealbreak. This does not include, of course, any travel time to and from a relief
point. The travel time specifies the amount of time allocated for a driver to travel from
one relief opportunity to another. This value is taken into account when the Nezt(; ;) and
Prev(; ;) domains are initially generated to ensure all relief opportunities in their domains
are legal (and thus will generate legal mealbreak chains®). The travel time is taken into

account in addition to the minimum mealbreak length.

The relief opportunities in the Nezt(; ;) variable’s domain are partitioned into five subsets.
Each subset contains relief opportunities within a certain band of mealbreak idle time.
These bands of idle time are calculated from the maximum mealbreak parameter divided
by this value of five. Thus, if a set of bus workings has a maximum mealbreak value
of 50 minutes, the set of relief opportunities in Next(; ;) domains for this problem are
partitioned into five sets each of ten minutes in length. The first set would contain relief
opportunities forming a mealbreak with 0-10 minutes of idle time with respect to relief
opportunity (4, 7), the second set will contain relief opportunities that form 11-20 minutes
of idle time with respect to relief opportunity (i,) and so on up until the fifth band which

will contain relief opportunities that form 41 to the maximum 50 minutes of allowed idle

3For example, if we are generating a domain for IV ext(; ;y and are currently considering adding relief
opportunity (I, m) to the domain, then m — j > MinMealbreak + TravelTime((%, j), ({,m)). Where Min-
Mealbreak is the minimum mealbreak length and TravelTime is a function that returns the travel time
between two relief opportunities.

Chapter 7 140 The CROSS Algorithm

time.

When a Next(; ;) variable is to be assigned a value from its domain in the CROSS algorithm
it is done in a random fashion. Using the probability distribution used for pattern variable
binding (represented in Equation (7.3)), except with n set to the value of five, one of the
five subsets in the Next(; ;) variable’s domain will be chosen randomly. Once a subset
has been selected a relief opportunity is taken at random from this subset and assigned
to the Next(; ;) variable. If this subset is empty then the next earliest relief opportunity
available is chosen. The values representing split duties and mealbreaks going past 1200
are only used once all legal relief opportunities are exhausted as they will not contribute

to a mealbreak chain in a meaningful fashion. In the case of Prev; ;) variables the value

1,J
-1, representing the start of a new duty, is only tried once all relief opportunities in the
domain have been exhausted. By avoiding binding Prev; ;) to —1 it is hoped this will

help avoid the creation of new driver duties.

If the schedule is peaked then there is an additional check made when assigning a Next;

or Prev(; ;) variable in order to avoid selecting relief opportunities during the peak. If the

i5)
value selected for the Next(; j) or Prevy; ;) variable is a relief opportunity that falls within
the peak then another value is chosen, using the same method, and kept. This additional

value ordering attempt at binding the variable makes the selection of a relief opportunity

during the peak less likely.

Splitting up the domain of a Next; ;) or Prev(;) variable into five sets may seem odd at
first glance. There are, however, good reasons why this was done. To see this consider the
case where a large number of running boards are in the problem and/or a liberal maximum
mealbreak parameter is used. The cardinality of the domains of Nezt(; ;) and Prev j
variables can run into the hundreds. Assigning a probability for elements in these large
variable domains to be picked using the same distribution that is used for pattern variable
value assignment would result in many of the elements being unlikely to be chosen. By

statically partitioning the domains this problem is avoided whilst keeping the desired bias

towards shorter mealbreaks.

Chapter 7 141 The CROSS Algorithm

7.3.10 Relief Opportunity Percentage

The CROSS algorithm will be invoked several times such that several solutions to the
CROSS CSP are generated. The union of all relief opportunities used in these solutions
is calculated and a new vehicle file is produced which uses only these relief opportunities

in the morning portion of the bus workings.

A parameter value known as the Relief Opportunity Percentage or ROP must be specified.
This value specifies the target percentage of relief opportunities which must be selected
by the CROSS algorithm. The total number of relief opportunities available for selection
is defined as the number of internal relief opportunities represented in the domains of all
of the pattern variables. The ROP refers to the percentage of relief opportunities selected
from this set. The parameters given in the labour file (such as minimum spell length) will,

of course, have a direct impact on the size of this set.

CROSS generates solutions to the CSP until the percentage of relief opportunities used is

greater than or equal to the value of the ROP parameter.

7.4 Evening Relief Opportunity Selection

Evening relief opportunity selection is treated in an analogous manner to the morning
case. The set of running boards is inverted temporally such that the evening period of
bus workings is treated in a similar way to a morning set of bus workings. The running
board that finishes at the latest time in the evening is treated as a bus leaving the garage
at 4AM and the rest of the running boards have their relief opportunity times changed to
reflect this. Thus the evening period of a set of bus workings can be defined as the set of
bus workings occuring in the eight hour timespan that ends at the latest finish of a bus in

the bus workings®*.

4For example, if the latest finish of a bus in the bus workings is at 1:00AM, the evening period would
be defined as the set of bus workings occuring between 5:00PM and 1:00AM.

Chapter 7 142 The CROSS Algorithm

After the bus workings have been inverted a new vehicle file is generated using these times.
CROSS is then applied to this new data which selects several sets of relief opportunities.

The running boards are then inverted back to their original times with any times not

selected by CROSS removed.

Using this technique a vehicle file can contain running boards in both the morning and

evening periods that have been processed by CROSS.

The afternoon period in a set of bus workings (the buswork that is not processed in either
the morning or evening period) is not considered by CROSS. There are two reasons for
this. Firstly, when relief opportunities are removed from the morning and evening period
this untouched afternoon period of buswork is left intact so that the duties generated by
BUILD will have as much flexibility as possible to create duties to cover the afternoon
period given the new set of morning and evening relief opportunities in the problem.
Secondly, there is, generally speaking, not as many relief opportunities to select from in
this afternoon period so the case for relief opportunity selection during this period is not

as strong and probably should be avoided.

7.5 Three and Four Part Duties

In many driver schedules, duties with more than two parts are not uncommon. The CROSS
algorithm constructs mealbreak chains and, as a result of this, forms two part duties around
these chains at the same time. Three and four part duties are never explicitly created, or

catered for, in the CROSS algorithm.

This does not mean that three and four part duties cannot be taken into account. Recall
that a three or four part duty consists of two stretches of work. Each stretch can contain
one or two spells. If a stretch contains two spells they are separated by a joinup. A
joinup is a short break in between two spells that is much shorter than a mealbreak.
Duty scheduling problems that use three or four part duties will have reasonably short

minimum spell length parameter values in the labour file in order for BUILD to be able

Chapter 7 143 The CROSS Algorithm

to generate such duties. The minimum cost parameter should be reduced in order for
CROSS to be able to create short duties that will select relief opportunities likely to be
of use to a three/four part duty in BUILD. This is especially critical as it is possible that
a three/four part duty may have a very short first spell of work. If the minimum duty
cost is not reduced to reflect this then relief opportunities near the beginning of a running
board may never be selected and relief opportunities that would be legal in a three/four

part duty would be missed altogether.

7.6 Summary

The CROSS algorithm provides a method of selecting relief opportunities from the morn-
ing, and evening, periods of a set of bus workings through the solution of the CROSS CSP.
Several sets of relief opportunities are selected each resulting from a solution to the CSP

model.

The initialisation stage in the CROSS algorithm creates the constrained variables to be
solved in the CSP process and assigns them domains. Various constraints are placed on
these variables in order to ensure that both legal duties are traced out in the mealbreak
chain generation process and constraint propagation takes place when the variables are
assigned values. These constraints, as described in Chapter 6, also take into account
various relationships that exist between the Next, Prev and PV variables that exist due

to the model itself.

The CROSS algorithm itself is defined as being split into four routines that are used to
help solve the CSP such that two part duties are formed around mealbreak chains. The
algorithm starts by selecting a running board from which to start a mealbreak chain and
binds the pattern variable on it. The earliest unbound Nezt or Prev variable is selected.
More often than not a Next variable is chosen and a mealbreak chain is started at that
point. Successive Next (or Prev) variables are bound until a mealbreak chain is completed

then the process is started again. Once all the variables in the CSP have been bound to a

Chapter 7 144 The CROSS Algorithm

value a solution has been found. Chronological backtracking is used when a constrained

variable is found to have an empty domain.

One of the key elements in this CROSS algorithm is the way in which PV;, Nezi; ;) and

Prev(; ;) variables are randomly assigned values. For pattern variables their domains are

i,4)
sorted sets (with different orderings for peaked and non-peaked sets of bus workings) with
a domain element’s position in the ordering having a direct link to its probability of being
chosen. A linear probability distribution is used such that all the domain elements have a
reasonable chance of being selected but there will exist a bias towards favoured elements.

Some effort is made, with respect to the random binding of pattern variables, to avoid

selecting relief opportunities in the peak.

The Next(; ;) and Prev; ;) variables are also bound randomly. Their domains are split

()
into five sets; each set contains relief opportunities that fall within a given band of meal-
break idle time allowed. The same probability distribution used for binding PV; variables
is used for selecting which of the five sets are used from which a relief opportunity is
selected at random and assigned to the Next(; jy or Prev(; ;) variable in question. A pa-

rameter is supplied to CROSS indicating what the minimum percentage of internal relief

opportunities should be selected.

The CROSS process can also be used to select relief opportunities from the evening pe-
riod of a set of bus workings. The schedule is temporally flipped such that the evening
period becomes the morning period and is then processed by CROSS. The running boards
are then temporally flipped back to their original evening times but with only the relief
opportunities selected by CROSS. With this technique vehicle files can be produced that
have had their relief opportunities selected in both the morning and evening periods by

CROSS.

CROSS is able to select relief opportunities that would be suitable for the generation of
potential three or four part duties. This is done by modifying the labour file to reflect the
minimum spell lengths and duty costs allowed. These rule modifications combined with

the variety of relief opportunities selected by several solutions to the CROSS CSP enable

Chapter 7 145 The CROSS Algorithm

the TRACS-II BUILD process to generate three/four part duties with some success.

Chapter 8

Results

8.1 Introduction

This chapter presents the results produced using the CROSS pre-processor in conjunc-
tion with the TRACS-II system. The pre-processor has been applied to eight data sets.
The data sets are real data from several bus companies and have a variety of scheduling

conditions.

This chapter is divided into several parts. First, the TRACS-II schedules produced using
the original unaltered data are presented. Next, schedules produced by TRACS-II using
the CROSS pre-processor are also reported. The effect of the REDUCE process in contrast
with the CROSS process is also examined followed by a discussion of the results reported

in this chapter.

8.2 Original Solutions

Using the complete set of relief opportunities for each set of data, a duty schedule was
generated using TRACS-II. The results generated serve as a baseline in order to see how

well the CROSS pre-processing system works with respect to these original solutions.

146

Chapter 8 147 Results

Table 8.1 shows this set of solutions. Column 1 shows the problem name. Column 2
contains the number of potential duties generated by TRACS-IT’s BUILD process. Column
3 contains information on the number of parts used in the duties generated by BUILD.
Column 4 shows the number of workpiece constraints used in the SCHEDULE ILP; this
roughly equates to the number of relief opportunities in the original schedule. The cost of
the schedule is displayed in column 5 and takes the form [hours].[minutes]. The number of
duties used to cover all the buswork is in column 6. The last two columns show the time it
took BUILD to generate the set of potential duties and the total time SCHEDULE took to
produce a solution. The times in these last two columns take the form [minutes].[seconds].
The second row for each set of data represents the cost and scheduling time for schedule

generation using the REDUCE option in TRACS-IT.

Problem Potential Duty Work | Schedule | Duties | BUILD | SCHED
Name Duties Type Pieces Cost Used Time Time
HEO1 43,594 | 1/2/3/4 158 123.52 14 5.21 11.56
HEO1(R) 123.53 3.16
R222 10,088 2 175 223.45 24 0.25 0.57
R222(R) 2 223.45 0.58
EA2 21,664 2 222 223.21 27 1.07 28.04
EA2(R) 223.21 5.34
R207 23,004 2 216 378.43 39 0.22 1.43
R207(R) 379.08 1.33
TRAM 81,928 2 487 406.14 49 2.33 158.30
TRAM(R) 406.06 23.10
R77A 76,906 2 352 490.26 53 2.28 88.31
R77A(R) 493.03 17.40
R61 100,000 2 540 596.42 69 3.05 98.42
R61(R) 597.42 19.57
UMAE 97,429 2/3 873 1171.06 133 76.00 185.18
UMAE(R) 1175.17 140.30

Table 8.1: Original TRACS-II Test Problem Solutions

Examining Table 8.1 one can see that the time taken to generate duty schedules is related
to both the size of the schedule (in terms of relief opportunities) and the number of
potential duties used in the SCHEDULE ILP. The number of duties generated by BUILD
is influenced by both the number of relief opportunities available as well as the types of
duties used. For example, the smallest schedule in Table 8.1 is HE01 (Heathrow Express).

Although this schedule is quite small the inclusion of 3 and 4 part duties in the BUILD

Chapter 8 148 Results

process greatly increases the number of potential duties that can be generated, which in
turn also influences the solution time required by TRACS-II’'s SCHEDULE component.
R222 is a larger problem than HEO1 in the sense that its bus workings contain more relief
opportunities and running boards but since it only employs two part duties it is easier

and quicker to solve.

One of the advantages of a system like TRACS-II (as highlighted in Section 6.2.2) is the
ease with which it can be adapted to the different rules and constraints used by various
bus companies. This is accomplished by creating a new version of BUILD that ensures
that any potential duties generated adhere to the constraints set by the bus company in
question. Three versions of BUILD were used for the problems examined in this chapter,
each containing slight variations as to how duties are constructed. For example, the EA2
set of bus data represents buses managed by Centre West (London). Driver costs are
calculated differently than in the UMAE data set (which belongs to the Reading Buses
company'!) therefore each problem requires its own version of BUILD. The fact that several
different versions of BUILD are used also gives an opportunity to see how robust CROSS is
regarding different scheduling requirements. Schedules for EA2 and R61 used the Centre
West specific version of BUILD. The UMAE schedules were produced using the Reading
BUILD program and the remaining data sets employed a generic BUILD program which
equates the cost of a duty with its length. The Centre West and Reading Buses BUILD

programs calculate the costs slightly differently.

All results reported in this chapter, aside from the UMAE data set, were generated on a
Pentium Pro-200Mhz machine running Windows-NT 3.51. As all the results were produced
on the same computer, comparisons between BUILD and SCHEDULE times will provide
accurate information. The sole exception is that the solutions generated for the UMAE

data set were generated on a 333MHZ machine running Windows-98.

The datasets used for this comparison have different characteristics. Specifically, the den-

sity of relief opportunities available for selection in the morning/evening periods examined

!The experiences of installing the TRACS-IT system for Reading Buses can be found in [138].

Chapter 8 149 Results

as well as the number of running boards/relief opportunities present varies between the
data sets. Various statistics have been compiled on the data sets and are presented in Ta-
ble 8.2. The first column contains the problem name. The next two columns contain the
number of running boards in the morning and evening periods of the problems examined.
This gives an indication of the size of the bus schedule. The next two columns show the
morning and evening relief opportunity densities of the schedules involved. The density is
calculated as the average number of internal relief opportunities available for CROSS to
choose from per running board. The higher the value, the more combinatorially complex
the problem is (the larger the set of potential duties). The next two columns contain the
total number of internal relief opportunities available for selection in the morning/evening
periods; this value gives a rough indication as to how many Next and Prev variables will
be present in the CROSS CSP for the respective morning and evening periods. The final

column indicates whether or not the schedule contains a peak (morning or evening).

Problem | Morn Running | Eve Running | Morn RO | Eve RO | Morn | Eve | Peaked?
Name Boards Boards Density Density | RO’s | RO’s
HEO1 5 10 10.8 11.2 54 56 Y
R222 13 13 4.1 4.0 53 44 N
EA2 16 14 5.0 5.3 60 64 N
R207 25 23 2.7 2.6 53 59 Y
TRAM 21 21 6.3 7.6 133 161 N
R77A 30 33 4.3 3.8 86 104 Y
R61 39 39 3.4 4.9 125 117 N
UMAE 80 87 4.8 2.6 325 161 N

Table 8.2: Test Data Properties

It should be noted that the TRACS-II REDUCE process was not used in the majority of
the schedules generated using CROSS. The reason for this is that the effect of REDUCE
is similar to that of CROSS2. With REDUCE not used, the solutions generated will give
a clearer picture of effectiveness of the CROSS method on its own. The sole exception
to this was the UMAE data set. The UMAE data set is very large and finding schedules

using TRACS-II without the REDUCE process can take a considerable amount of time.

REDUCE removes relief opportunities after a continuous solution has been found in the SCHEDULE
phase. A description of REDUCE can be found in Section 4.2.3.3.

Chapter 8 150 Results

The results presented in this chapter are grouped into two sections. The first reports
results using data sets that contain non peaked data. The second reports results on data

that contains peaks (either in the morning or evening).

8.3 Non Peaked Dataset Results

For all of the results, the CROSS pre-processor is applied to each data set in three ways:

1. Apply CROSS to the morning period of a schedule. Generate a duty schedule using
the vehicle file generated by CROSS with TRACS-II.

2. Apply CROSS to the evening period of a schedule. Generate a duty schedule using
the vehicle file generated by CROSS with TRACS-II.

3. Use the morning and evening relief opportunities selected by CROSS to form a new

vehicle file from parts 1 and 2 (above). Use this data with TRACS-II.

This section describes the results for five sets of data. These are: R222, EA2, TRAM,

R61, and UMAE. Each of these data sets will be examined in turn.

8.3.1 R222 Results

The results produced from the bus workings R222 (London) can be found in Table 8.3.
The sets of potential duties generated for R222 were produced using the generic version

of BUILD.

Table 8.3 (and all the remaining tables of results in this chapter) are formatted as follows.
Each table is split into four sections: the first contains the original TRACS-II solution with
all relief opportunities available to BUILD, the next section contains average results from
schedules generated with CROSS applied to the morning period, the third section displays

the average results from schedules where CROSS has been applied to the evening period

Chapter 8 151 Results

and the final section shows results where CROSS was applied to both the morning and
evening periods. The combined results are produced from the corresponding morning and
evening results®. Since there is a random element introduced into CROSS regarding the
selection of relief opportunities, each run will be different*. In the morning/evening and
combined sections each row represents the average of five runs of CROSS. The columns
in the results tables are organized as follows: column 1 is the average number of duties
generated by BUILD; column 2 contains the average number of workpiece constraints used
in the SCHEDULE ILP; column 3 contains the target percentage of relief opportunities
used. These values are in 5% ranges (for example the value 70% indicates that between
70% and 75% of the legal relief opportunities in the schedule were selected for this averaged
set of solutions). Column 4 displays the average percentage of relief opportunities used;
column 5 contains the average number of unions of solutions that were generated with
the CROSS process®; columns 6 and 7 show the average cost of the schedule as well as
the average number of duties used in the solutions and the final two columns contain
the average BUILD time and the average SCHEDULE time for the schedules generated.
Values in parentheses in the last column represent the number of schedules that were
found to have integer solutions in the SCHEDULE ILP (that is, the branch and bound
stage was not necessary). Values with an asterisk beside them indicate that one of the
runs did not find a solution in the branch and bound phase of the SCHEDULE ILP (but
the target number of duties the branch and bound was trying to achieve was the same as

the optimal amount used in the TRACS-II original solution).

The R222 set of bus workings is a fairly straightforward non-peaked set of data. The R222
bus workings can be found in Figure 8.1. All thirteen running boards run throughout the

day with several of them running into the late evening.

Several observations can be made from the R222 results that, generally, apply to all the

results presented in this chapter. These general observations will be highlighted for R222

3The first morning CROSS produced vehicle file is merged with the first evening CROSS produced
vehicle file to produce the first combined vehicle file and so on.

4The complete set of results can be found in Appendices B, C and D.

SRecall that the CROSS process repeatedly selects sets of morning/evening relief opportunities until
the percentage of relief opportunities used falls into the specified range.

Chapter 8 152 Results

Potential | Work Sched | Duties | BUILD | SCHED
Duties | Pieces | T% A% | #U | Cost Used Time Time

| Original Result |

[10,088 175 | [100%] -]22345] 240] 025] 0.57]

| Morning Results |
5305 | 1494 [70% [72.4% | 3222617 | 24.0 0.15 0.44
5,186 | 148.0 | 65% | 68.2% | 2.2 [226.18 | 24.0 0.14 | 0.40(1)
4,902 | 146.2 | 60% | 63.2% | 2.0 [226.29 | 24.0 0.13 0.22

4,655 | 145.0 | 55% | 59.0% | 2.0 | 227.27 24.0 0.24 0.20(1)
| Evening Results |
7463 | 1578 | 70% | 72.2% | 3.6 | 22453 | 240 | 0.7 | 037()
7,199 | 155.4 | 65% | 66.8% | 3.6 | 225.21 24.0 0.16 0.35
7,087 | 153.8 | 60% | 63.4% 3.0 | 224.53 24.0 0.15 1.15
6,684 | 151.6 | 55% | 58.2% 3.0 | 225.36 24.0 0.14 0.55(1)
| Combined Results |

3,350 | 130.0 | 70% —[-[227.15] 240 0.08 | 0.14(1)
3,071 | 126.0 | 65% — [[22744 240 0.06 | 0.11(1)
2,779 | 123.6 | 60% — [—[227.04| 240 0.06 | 0.10(1)
2,378 | 118.6 | 55% — [122900 240 0.05 | 0.07(1)

Table 8.3: R222 - Morning/Evening/Combined Average Results (2 part duties))

and only additional observations of note will be discussed regarding the other results.

The average time to generate the set of potential duties with BUILD is considerably
reduced. Additionally, the average time needed to run the SCHEDULE process is, the
vast majority of the time, considerably lower than in the original TRACS-II solution. This
is to be expected because since there are fewer relief opportunities present in the vehicle file
given to TRACS-II then there will be fewer combinations from which BUILD can generate
potential duties. Similarly there will be fewer constraints present in the SCHEDULE ILP
thus making it easier to find a solution to the ILP. Results may also vary due to the
version of BUILD being used or due to parameter settings made in the TRACS-II labour
or vehicle files. The average costs of the schedules is slightly higher than the cost of the
original TRACS-II solution (this is common between most of the results except for the
data sets employing 3 and/or 4 part duties as will be discussed later). The average costs
for the combined results are more expensive than either the morning or evening results.
Regardless, these costs would be considered acceptable. The tradeoff here is with the

considerable decrease in solution time (the original TRACS-II solution took four times

Chapter 8

153

Results

as long to solve than did the average combined results for the 70-75% range). The most

important feature of the R222 data set is that in every case the minimum number of duties

was used.
Morning Period Finish Evening Period Start
| |
| |
0631 | | 1853
0546 0726 0949 1150 1359 1605] 1810 2040 2220
0514 0600 0645 0736 0939 1144 1345 1555 | 1805 1900 2034 2204 2345
401 U uu uu uu U
| |
0701 1 |
0616 0712 0919 1130] 1349 1558 | 1803 2000 2139 2320
0544 0625 0909 1114 | 1325 1544] 1755 1949 2134 2304 0015
402 U-—-s S uu S u-u S-S S: SS- uu S: U
| |
0746 0959 1200 1419 1622 1830
0549 0738 0948 1154 1355 1614] 1821 1910
403 U uu u-u s——-U
| |
0806 1019 1220 1439 1640
0609 0758 1006 1214 1415 1635 1840
404 U S: uu S: u-u S U
| |
0726 0940 1209 1410 1613] 1820 2020 2200 2340
0612 0714 0928 1135 1404 1605] 1813 2004 2147 2324 0035
405 u u--u u U
| |
0646 0910 1119 | 1320 1527] 1730
0614 0703 0858 1105 | 1314 1515] 1725 1923
406 U SS- SS uu SS uu S v
| |
0816 1029 1 1537 1 1740 1940 2120 2300
0619 0808 1014 | 1225 1329 1525 1 1735 1932 2114 2244 0025
407 U S u-u U-————- u uu S S U
| |
0826 1039 I 1240 1449 1650
0629 0818 1025 | 1234 1435 1645 1850
408 U S uu S uu U
| |
0836 1049 1 1250 1459 11700
0639 0828 1035 | 1244 1445 11655 1859
409 U uu uu U
| |
0848 1059] 1300 1509 | 1710 1920 2100 2240
0649 0838 1045] 1254 1455 | 1705 1906 2054 2224 0005
410 U S: uu S: uu SS- S: U
| |
0900 1109 | 1310 1517 I 1720
0655 0848 1055 1 1304 1505 | 1715 1914
411 U S- uu S! uu U
| |
0748 1010 | 1229 1430 1630 1840
0709 0756 0957 1205 1424 1624 1829 2020
412 U---s S: u-u SS- S: SS- U
| |
0930 1139 1340 1547 | 1750
0715 0918 1125] 1334 1535 1 1745 1835
413 U uu s uu U

Figure 8.1: R222 Bus Workings

Examining the evening results it can be seen that the average number of potential duties

used is considerably larger than in the morning case. The reason for this can be seen from

the running boards for R222 as seen in Figure 8.1. The profile of buses in the set of bus

workings in a typical weekday schedule (like R222) is different in the morning and evening

periods. In peaked schedules the morning peak occurs shortly after the buses have started

in the morning but the evening peak occurs several hours before normal bus services finish.

In non-peaked schedules, like R222, it can be seen that the morning buses all start within

Chapter 8 154 Results

a period of a few hours. The evening buses can terminate many hours apart from one
another. The range where the morning and evening periods for R222 are processed by
CROSS are clearly marked with vertical bars through the schedule in Figure 8.1. The
number of relief opportunities available for CROSS to select from is fewer in the evening
period due to the fact that there are fewer relief opportunities to choose from because
there is less work to cover. A result of this fact is that fewer relief opportunities are taken
away from the original set of bus workings compared to a morning run of CROSS thus the
number of duties created by BUILD is higher. This behaviour can be seen in other results
in this chapter. This is a common difference between the morning and evening periods of

a set of bus workings.

8.3.2 EA2 Results

The results produced from the bus workings EA2 (London) can be found in Table 8.4. The
sets of potential duties generated for EA2 were produced using the Centre West version

of BUILD.

Potential | Work Sched | Duties | BUILD | SCHED
Duties | Pieces | T% A% | #U | Cost Used Time Time

| Original Result |

[21,664] 222 [-] 100% | -[22321] 27.0] 1.07[28.04]
| Morning Results |
14,907 [210.4 [70% | 73.4% | 4.8 22321 270 0.44 8.13

13,936 | 208.0 | 65% | 67.6% | 4.8 | 223.25 27.0 0.49 30.27
13,389 | 204.0 | 60% | 63.0% | 4.0 | 223.25 27.0 0.38 20.43
12,497 | 202.2 | 55% | 57.8% | 3.6 | 223.22 27.0 0.37 8.57
| Evening Results |
15,086 | 202.4 | 70% | 73.0% | 5.4 | 223.21 27.0 0.48 10.20
13,485 | 197.6 | 65% | 66.6% | 4.8 | 223.24 27.0 0.45 9.01
12,620 | 195.0 | 60% | 62.6% | 4.2 | 223.27 27.0 0.43 14.58
12,356 | 192.4 | 55% | 58.4% | 3.4 | 223.27 27.0 0.40 10.06
| Combined Results |

9,854 | 185.2 | 70% - -1 223.25 27.0 0.28 21.04
8,063 | 178.6 | 65% - - | 223.28 27.0 0.22 7.20
7,191 | 172.6 | 60% - - | 223.32 27.0 0.20 3.15
6,378 | 167.0 | 55% - - | 223.40 27.0 0.18 10.46

Table 8.4: EA2 - Morning/Evening/Combined Average Results (2 part duties))

Chapter 8 155 Results

Again, it can be observed that all the results used the optimal number of duties. The
average cost in this set of results is much closer to the original cost than in some of the
other sets of results. This can be attributed to the CW-BUILD version of BUILD used.
Cost is calculated as the length of the stretches worked whereas the cost using the generic
version of build is equivalent to the spreadover. The costs using the generic build are more

sensitive to different length duties.

8.3.3 TRAM Results

The results produced from the Sheffield supertram data set TRAM can be found in Ta-
ble 8.5. The sets of potential duties generated for TRAM were produced using the generic
version of BUILD.

Potential | Work Sched | Duties | BUILD | SCHED
Duties | Pieces | T% A% | #U | Cost Used Time Time

| Original Result |
[sL,028| 487 | | 100% | _ | 40614] 490 2.33] 15830 |
| Morning Results |
56,114 | 451.2 | 70% | 71.0% | 7.0 | 405.59 49.0 1.15 105.46
54,460 | 446.2 | 65% | 67.6% | 6.2 | 406.38 49.2 1.12 145.08
52,246 | 439.0 | 60% | 63.2% | 5.4 | 406.32 49.0 1.08 58.26
50,415 | 434.2 | 55% | 59.8% | 4.8 | 406.50 49.0 1.06 86.07
| Evening Results |
52,244 | 442.0 | 70% | 72.4% | 8.4 | 407.28 49.0 1.11 100.48
48,786 | 433.8 | 65% | 67.8% | 6.6 | 407.04 49.0 1.02 123.17
46,880 | 427.4 | 60% | 63.6% | 5.8 | 407.09 49.0 0.59 112.28
42,796 | 419.0 | 55% | 57.6% | 5.2 | 407.25 49.0 0.53 62.53
| Combined Results |

32,361 | 406.4 | 70% - - | 407.15 49.0 0.39 101.14
28,247 | 393.0 | 65% - - | 407.18 49.2 0.34 59.53
25,616 | 379.4 | 60% - - | 408.06 49.0 0.29 48.33
21,408 | 367.2 | 55% - - | 408.40 49.0 0.24 20.21

Table 8.5: TRAM - Morning/Evening/Combined Average Results (2 part duties)

This medium sized data set has a structure similar to that found in the R222 data set
previously examined. Although there are only twenty one running boards in this data
set, it contains the second highest number of morning and evening relief opportunities

available for selection by CROSS in all the data examined (as seen in Table 8.2); thus

Chapter 8 156 Results

BUILD generates a substantial number of potential duties.

The results are quite encouraging but require some explanation. The original TRACS-II
solution has a cost of 406.14 yet the average cost for the first set of morning solutions is
below this figure. This has to do with some limitations in the SCHEDULE program. At
the time these experiments were carried out SCHEDULE had a limit of 500 nodes on the
branch and bound portion of the ILP process. The original TRACS-II solution exhausted
this 500 node limit and the solution with the cost of 406.14 was the best solution found
up until that point. Although several of the other solutions generated using the CROSS
pre-processor also exhausted the 500 node SCHEDULE branch and bound limit, cheaper
solutions were found. This is due to the fact that every solution generated using the
CROSS pre-processor will have a different continuous solution. Various heuristics guide
the branch and bound search and are influenced by the fractional values in the continuous
solution. The complexity of the CROSS pre-processed problems is also reduced so the ILP
has fewer variables and constraints to deal with. SCHEDULE was able to occasionally
find solutions cheaper than the original TRACS-II solution because its branch and bound
search found solutions that the original TRACS-II solutions branch and bound tree did
not get to before the 500 node limit was reached. All but one of the schedules produced

using CROSS used the minimal number of duties.

8.3.4 R61 Results

The results produced from the bus workings R61 can be found in Table 8.6. The sets
of potential duties generated for R61 were produced using the Centre West version of

BUILD.

This is the second largest schedule from our data set in terms of the number of running
boards contained in the set of bus workings (39). Inspecting the results in Table 8.6 it can
be seen that, as in the set of TRAM results, the average cost for the solutions in the first
(and second) set of morning results is actually lower than that of the original TRACS-II

solution. This is due to the same reason previously discussed with the TRAM dataset

Chapter 8 157 Results

Potential | Work Sched | Duties | BUILD | SCHED
Duties | Pieces | T% A% | #U | Cost Used Time Time

| Original Result |
[100,000] 540 | | 100% | [596.42] 69.0 | 3.05 | 9842 |
| Morning Results |
52457 | 463.8 | 70% | 71.4% | 5.4 | 596.31 69.0 3.33 94.25
50,913 | 459.8 | 65% | 69.0% | 4.6 | 597.21 69.0 3.24 33.55
46,644 | 452.6 | 60% | 62.6% | 3.6 | 597.16 69.0 2.59 18.51
44,063 | 449.6 | 55% | 59.6% | 3.0 | 598.17 69.0 2.44 22.23
| Evening Results |
64,977 | 496.8 | 7T0% | 72.6% | 6.6 | 596.53 69.0 4.17 118.40
61,355 | 492.4 | 65% | 68.2% | 5.6 | 597.48 69.0 4.08 44.14
59,342 | 488.4 | 60% | 64.2% | 5.4 | 597.11 69.0 3.49 35.04
54,715 | 481.4 | 55% | 57.4% | 4.2 | 598.13 69.0 3.32 31.08
Combined Results

33,144 | 4204 | 70% - - | 897.20 69.0 2.01 60.27
29,741 | 410.2 | 65% - - | 597.52 69.0 1.46 12.38
25,487 | 395.8 | 60% - - | 597.56 69.0 1.32 17.00
21,784 | 384.8 | 55% - - | 598.11 69.0 1.17 16.28

Table 8.6: R61 - Morning/Evening/Combined Average Results (2 part duties))

regarding the original TRACS-II solution exhausting all 500 branch and bound nodes. All
of the schedules produced using CROSS used the minimum number of duties. One feature
in this set of data that stands out more than in others is the significant reduction in the
average SCHEDULE time. However, this significant saving is not realised until fewer than

70% of the relief opportunities are selected in both the morning and evening cases.

8.3.5 UMAE Results

CROSS was not designed to directly incorporate three or four part duties into its mealbreak
chain generation scheme. Indeed, the CROSS model essentially just traces out two part
duties in the data given and keeps track of which relief opportunities are used in their
formation. However this does not prevent us from employing CROSS to be used with

problems that employ three or four part duties.

The results produced from the bus workings UMAE can be found in Table 8.7. The sets of

potential duties generated for UMAE were produced using the Reading version of BUILD.

Chapter 8 158 Results

This set of results was generated using the REDUCE process in order to reduce the running
time of SCHEDULE such that experiments could be carried out in a reasonable amount

of time.

The asterisks beside the average duties in Table 8.7 indicate that a continuous solution of
133 was found but the branch and bound tree was exhausted. The averages in the relevant

rows are for four runs, not five.

Potential | Work Sched | Duties | BUILD | SCHED
Duties | Pieces | T% A% | #U | Cost Used Time Time
| Original Result |
[97429 8138 | | 100% | | 1171.06] 133.0] 76.00 | 185.15 |
| Morning Results |
71,806 | 803.8 | 70% | 72.4% | 4.0 | 1162.41 133.0 26.12 57.56
66,258 | 785.8 | 65% | 66.2% | 3.0 | 1164.10 133.0 22.36 59.24
63,019 | 778.0 | 60% | 63.6% | 3.0 | 1164.50 133.0 20.48 47.53
53,029 | 749.6 | 50% | 52.8% | 2.2 | 1165.13 133.0 15.48 34.18
| Evening Results |

93,555 | 858.4 | 70% | 75.2% | 4.0 | 1163.51 | 133.0 42.24 81.24
89,206 | 853.6 | 65% | 66.0% | 3.2 | 1165.49 | 133.0* 38.00 57.27
87,583 | 842.8 | 60% | 62.0% | 3.0 | 1169.47 | 133.0 35.12 72.13
84,734 | 841.0 | 55% | 58.6% | 2.8 | 1168.29 | 133.0 35.00 66.35

| Combined Results |

63,773 | 787.8 | T0% - - | 1164.47 | 133.0 20.36 42.58
56,178 | 768.4 | 65% - - | 1168.00 | 133.0 17.48 37.14
50,820 | 747.8 | 60% - - | 1171.54 | 133.0 15.00 36.45
40,442 | 711.8 | 55% - - | 1171.36 | 133.0* 10.24 43.49

Table 8.7: UMAE - Morning/Evening/Combined Average Results (2/3 part duties))

The UMAE data set was the largest one considered with CROSS. Additionally it was
also the only data set that required a specific change to be made to CROSS in order
for it to properly select relief opportunities. The Reading Buses version of the BUILD
program only allowed mealbreaks between certain buses (dependent on their bus number).
If mealbreaks are restricted in this way then it is clear that CROSS should be modified
with this domain specific knowledge otherwise mealbreak chains will be formed that simply
cannot take place. Fortunately this is a fairly minor change that needed to affect only
the way the domains of Next and Prev variables are initialised. In addition to this

the maximum amount of time a driver is allowed on a vehicle during a stretch was varied

Chapter 8 159 Results

between different vehicles. This, again, could be accounted for in CROSS by simply setting
the maximum amount of driving time on a vehicle to be the smallest value allowed amongst
all of the vehicles. Mealbreak chains will still be formed but the duties will be shorter
than might be used in the real world. However, as several sets of relief opportunities
are generated by CROSS this will not necessarily detract from the quality of the relief

opportunities selected as a whole.

The original solution generated by TRACS-II used a labour file that contained fairly tight
constraints. Duties allowed to be generated by BUILD were restricted to ensure they
covered a large amount of work thus not exploring the possibility of using shorter® duties.
The sheer size of the problem to be solved makes this necessary as too many duties will
be generated by BUILD if more relaxed constraints were used. Unfortunately this caused
a problem for CROSS as it was found that some of the vehicle files generated by CROSS
occasionally produced combinations of relief opportunities for which it was impossible for
BUILD to generate duties to cover all the work. This is due to the combination of the
fact CROSS does not exactly try to produce legal duties while forming mealbreak chains
and that the UMAE dataset had some unusual working constraints (like the drivers being
restricted to the buses they can work on). However, there is no reason why the labour
file parameters to the UMAE data set could not take advantage of the smaller set of relief
opportunities and be slackened. This would seem to be an advantageous strategy to use
for larger schedules because if slacker labour parameters are used then a richer variety of

shifts can be generated by BUILD.

The labour file used for CROSS for the UMAE data set had its join-up and minimum
duty work content parameters slackened slightly (by about 10%-20%) and the results
produced were very encouraging. Again, as seen in Table 8.7, it can be seen that the
average cost of the solutions found were less than that of the original solution (bar the
final two sets of combined solutions). Additionally the minimum number of duties was
used in every solution found using CROSS. The slacker parameter values used are at least

partly responsible for these good results.

5Possibly less efficient but perhaps better at covering awkward pieces of work.

Chapter 8 160 Results

8.4 Peaked Dataset Results

The next three data sets examined in this section, R207, R77A, and HEO1 contain peaks.
R207 and R77A have peaks in their morning period whilst HEQ1 contains its peak in its

evening period.

The tables presenting the results of the peaked data sets are slightly different than the
ones examined previously. The morning or evening period of work has three separate sets
of results generated. Three different ways of calculating the beginning and end times of a

peak were investigated.

1. No Peaks - CROSS processes the morning set of relief opportunities as normal. No

special attention is given to the peak period.

2. Short Peaks - The peak period on the vehicle is defined as the block of time in the

morning period where the most running boards are active at the same time.

3. Long Peaks - Peaks periods are defined as they are in short peaks but are extended
by the length of the minimum allowed mealbreak at the beginning and end time of

the peak. This extends the peak period by double the minimum mealbreak length.

The combined results section incorporates both the Long Peak results with the morn-

ing/evening results (as appropriate).

First, the R207 peaked results will be presented.

8.4.1 R207 Results

The results produced from the bus workings R207 can be found in Table 8.8. The sets of

potential duties generated for R207 were produced using the generic version of BUILD.

All of the results generated used the minimum number of duties and the average costs of

the schedules are close to the original TRACS-II value. The most important feature to be

Chapter 8 161 Results

found in the morning sets of results is the average cost for the schedules generated. The
long peaked set of data produced cheaper results than the short peaked data which, in
turn, was cheaper than the results generated when R207 was treated as if it had no peaks.
This supports the hypothesis that mealbreak chains are best avoided through the peak

period of a set of bus workings.

Potential | Work Sched | Duties | BUILD | SCHED
Duties | Pieces | T% A% | #U | Cost Used Time Time

| Original Result |
[23004] 216 | -] 100%| ~[37843] 39.0] 022] 1.43]
| Morning Results (With Long Peak) |
12,511 | 2004 | 70% | 71.8% | 5.4 | 379.05 39.0 0.11 | 2.00(1)

11,834 | 1974 | 65% | 66.6% | 3.4 | 379.41 39.0 0.10 1.18
11,440 | 195.6 | 60% | 62.2% | 3.6 | 379.46 39.0 0.10 | 1.49(1)
10,609 | 192.6 | 55% | 57.2% | 2.4 | 380.22 39.0 0.10 1.25

| Morning Results (With Short Peak) |
13,043 | 201.6 | 70% | 73.2% | 3.6 | 379.24 39.0 0.12 1.15
12,370 | 199.0 | 65% | 68.0% | 2.4 | 380.34 39.0 0.11 1.36
11,715 | 196.0 | 60% | 62.0% | 2.4 | 380.58 39.0 0.10 1.24

11,158 | 193.4 | 55% | 57.4% | 2.0 | 381.16 39.0 0.10 | 1.09(1)
| Morning Results (With No Peak) |
13,079 | 201.2 | 70% | 72.6% | 3.6 | 380.06 39.0 0.11 1.24(1)

12,461 | 198.6 | 65% | 68.0% | 2.8 | 379.50 39.0 0.11 1.12
11,729 | 196.0 | 60% | 62.0% | 2.4 | 380.24 39.0 0.11 1.26
11,177 | 193.2 | 55% | 57.4% | 2.0 | 381.26 39.0 0.11 1.31
| Evening Results |
16,589 | 198.6 | 70% | 73.0% | 4.2 | 380.39 39.0 0.14 1.54
16,015 | 197.0 | 65% | 67.8% | 3.0 | 381.09 39.0 0.14 1.53
15,187 | 194.2 | 60% | 63.0% | 2.6 | 381.35 39.0 0.14 | 1.57(1)
14,296 | 191.2 | 55% | 57.6% | 2.0 | 382.25 39.0 0.13 1.12
Combined Results
8,631 | 183.0 | 70% - — | 381.00 39.0 0.07 1.13
7,767 | 178.6 | 65% - - | 382.06 39.0 0.07 0.54
7,138 | 174.0 | 60% - - | 382.53 39.0 0.06 0.51
6,077 | 167.6 | 55% - - | 383.55 39.0 0.05 | 0.26(1)

Table 8.8: R207 - Morning/Evening/Combined Average Results (2 part duties))

8.4.2 RT77A Results

The results produced from the bus workings R77A can be found in Table 8.9. The sets of

potential duties generated for R77A were produced using the generic version of BUILD.

Chapter 8 162 Results

This second set of peaked data is considerably larger than the R207 data set. Examining
the results generated for the morning period it can be seen, as in the previous R207 data
set, that when the data is treated as if it contained the longer peak that the average cost

of the morning results is cheapest.

Potential | Work Sched | Duties | BUILD | SCHED
Duties | Pieces | T% A% | #U | Cost Used Time Time
| Original Result |
[76,906] 352 |] 100% | |490.26] 53.0] 228 8831
| Morning Results (With Long Peak) |
54,558 | 310.0 | 70% | 74.4% | 4.8 | 492.00 53.0 1.07 53.29
53,039 | 304.0 | 65% | 67.6% | 3.4 | 494.42 53.0 1.04 57.48
51,201 | 300.6 | 60% | 63.6% | 3.2 | 498.26 53.0 1.02 55.35
48,992 | 296.2 | 55% | 58.2% | 2.8 | 499.34 53.0 0.59 49.42
| Morning Results (With Short Peak) |
55,249 | 309.2 | 70% | 73.4% | 4.0 | 497.52 53.0 1.07 55.40
53,585 | 304.4 | 65% | 67.8% | 3.8 | 494.47 53.0 1.03 57.15
51,241 | 299.8 | 60% | 62.6% | 3.0 | 498.54 53.0 1.02 56.11
48,551 | 295.2 | 55% | 57.2% | 2.8 | 497.18 53.0 0.58 55.19
| Morning Results (With No Peak) |
54,452 | 308.2 | 70% | 72.2% | 3.4 | 496.09 53.0 1.05 61.08
52,472 | 304.4 | 65% | 68.0% | 3.0 | 499.39 53.0 1.03 54.02
50,505 | 300.8 | 60% | 63.8% | 2.8 | 501.15 53.0 1.01 52.06
47,559 | 2954 | 55% | 57.4% | 2.0 | 495.11 53.0%* 0.57 53.34
| Evening Results |
51,023 | 324.6 | 70% | 73.6% | 5.0 | 492.30 53.0%* 1.01 65.13
49,378 | 317.8 | 65% | 66.8% | 4.0 | 495.50 53.0 0.56 59.13
47,948 | 313.2 | 60% | 62.8% | 3.4 | 496.07 53.0 0.56 67.56
47,722 | 308.6 | 55% | 58.6% | 3.0 | 497.05 53.0 0.54 53.59
| Combined Results |

34,835 | 282.6 | 70% - - | 498.08 53.0 0.39 45.36
28,979 | 269.8 | 65% - - | 500.46 53.0 0.32 29.19
26,048 | 261.8 | 60% - — | 508.30 53.0 0.29 32.45
22,763 | 253.0 | 55% - - | 511.57 53.0 0.26 20.50

Table 8.9: R77A - Morning/Evening/Combined Average Results (2 part duties))

The asterisk beside the average number of duties used in the morning periods with no
peak indicates that one of the runs did not find a solution in the branch and bound phase
within the allotted 500 nodes (but did have a continuous solution indicating the need for

53 duties). Like in the UMAE dataset the average is for four runs, not five.

Chapter 8

163

Results

8.4.3 HEO1 Results

The results produced from the Heathrow Express data set (HE01) can be found in Ta-
ble 8.10. The sets of potential duties generated for HEQ1 were produced using the generic

version of BUILD. HEO1 is unique in comparison to the other datasets as it is a small

train schedule that is very ’bus like’ in structure.

The HEOQ1 data set is one of two that use 3 or 4 part duties in the set of potential duties

generated by BUILD (in this case both 3 and 4 part duties are used). Additionally it is

the only schedule to contain an evening peak.

Potential | Work Sched | Duties | BUILD | SCHED
Duties | Pieces | T% A% | #U | Cost Used Time Time

| Original Result |

[43594 158 | —] 100% | —| 12352 140 521 10.56]

| Morning Results |
34,929 | 143.8 | 70% | 71.6% 8.2 | 123.34 14.0 4.56 6.36
33,436 | 140.2 | 65% | 67.4% 7.0 | 123.27 14.0 4.34 4.51
31,657 | 137.6 | 60% | 62.2% 6.2 | 123.12 14.0 4.03 3.17
30,758 | 135.4 | 55% | 58.0% 5.4 | 123.17 14.0 4.05 3.45

| Evening Results (With Long Peak) |
34,049 | 1424 | 70% | 71.8% | 10.0 | 122.16 14.0 4.18 2.49
32,267 | 139.8 | 66% | 67.6% 8.0 | 121.48 14.2 4.01 | 4.48(1)
29,902 | 136.6 | 60% | 62.2% 6.2 | 121.58 14.2 3.39 | 4.05(3)
28,405 | 133.4 | 55% | 55.8% 5.0 | 122.48 14.2 3.16 | 3.09(1)

| Evening Results (With Short Peak) |
34,272 | 142.6 | 70% | 72.2% 9.0 | 123.09 14.0 4.11 3.08
32,397 | 140.0 | 65% | 67.8% 7.2 | 122.48 14.0 3.53 3.00
30,137 | 136.8 | 60% | 62.4% 5.2 | 122.49 14.0 3.26 2.22
28,340 | 133.8 | 55% | 56.6% 5.2 | 122.33 14.2 3.07 3.46

| Evening Results (With No Peak) |
33,279 | 142.6 | 70% | 71.8% 9.0 | 123.31 14.0 3.57 4.26
31,079 | 139.6 | 656% | 67.0% 7.8 | 122.31 14.0 3.32 2.46
28,956 | 136.8 | 60% | 62.2% 5.6 | 122.43 14.0 3.10 3.16
29,027 | 134.6 | 55% | 58.2% 5.4 | 123.41 14.2 3.10 2.52

| Combined Results |
25,449 | 127.2 | 70% - — | 122.59 14.0 2.50 | 1.57(2)
22,258 | 122.0 | 65% - — | 122.34 14.2 2.11 1.45(1)
18,334 | 116.4 | 60% - — | 123.23 14.2 1.35 1.46(1)
16,188 | 110.8 | 55% - — | 123.47 14.2 1.19 | 0.52(3)

Table 8.10: HEO1 - Morning/Evening/Combined Average Results (1/2/3/4 part duties))

Chapter 8 164 Results

Perhaps the most remarkable feature of the HEO1 set of results is that all of the averaged
schedule costs are less than the cost of the solution given when all relief opportunities are
allowed in the BUILD process. Unlike the UMAE dataset the labour file has not been
slackened in any way so the rules governing duty construction for TRACS-IT are the same

between the original and CROSS pre-processed results.

There are two possible explanations for this. The first has to do with the TRACS-II BUILD
process. BUILD, when generating 3 or 4 part duties, does not generate all such duties.
Many are heuristically deemed to be unlikely to be useful and discarded. When relief
opportunities have been removed from the bus workings some of the previously rejected
duties will be included by BUILD. Unfortunately, this does not explain all the HE(1
results. Several of the HEQ1 schedules were examined and only a few of them contained
any of these previously rejected duties. Most of the schedules produced were cheaper than
the original TRACS-IT result regardless as to whether or not these previously discarded

duties were present in the solution.

The real reason these cheaper solutions can be generated is due to TRACS-1I’'s SCHED-
ULE component. The reasons are not dissimilar to the ones presented for the cheaper
schedules produced in the TRAM and R61 datasets. There is one difference however;
the original TRACS-II solution for HEO1 did not exhaust its entire branch and bound
tree. Due to heuristics in the brand and bound phase cheaper solutions were pruned from
the search space and omitted. The different continuous solutions for the HE01 CROSS
results enabled SCHEDULE to find cheaper solutions. The fact a smaller set of con-
straints/variables were used may have had some influence on this. Regardless, all of the

solution costs presented for HEO1 are acceptable.

The pattern in the results for the evening peak is similar to the previous two datasets
examined. The long peak produced the cheapest solutions but the difference between the
short peak and no peak results is very minimal. However, the peak in the HEQ1 schedule is
somewhat different than the others in that the peak vehicles are all very short (20 minutes

long) and the peak period itself is only about 5 minutes long making the CROSS produced

Chapter 8 165 Results

vehicles files for the short peaks and non peaked runs very similar. The long mealbreak
set of results has a more profound impact producing cheaper schedules like we have seen
in the previous two datasets. The 5 minute peak may seen insignificant but the short
peak buses are all scheduled around the same time with the temporal overlap occurring

in about the middle thus the consideration of the long peak made a difference.

CROSS, when applied to this data set, did not always result in the generation of a duty
schedule using the optimal number of duties. This can be attributed to the unusual peak.
There are not many sensible ways of covering the short buses. By examining the schedules
produced it was observed that the extra duty is a one part duty that takes a vehicle back
to the depot at the end of the day (4-5 hrs work) whilst a less efficient duty is formed to
cover part of the peak buswork. Table 8.10 provides some evidence to support this as it
can be seen that the result set generated for the long peak had the most schedules using 15
duties. CROSS specifically avoided selecting relief opportunities temporally close to these
peak buses in the long peak results. This can lead to the selection of relief opportunities
that does not enable BUILD to produce duties to cover the peak buses in a sensible way.
This accounts for why there are more results generated using 15 instead of 14 duties for
the long peak results. The results for the 70-75% range were all safe indicating that with
the slightly higher number of relief opportunities selected it is more likely this peak work
will be covered in a sensible way while still gaining the benefits from relief opportunity

selection.

8.5 The Effect of the REDUCE Process

As outlined in Chapter 4, TRACS-II has an optional procedure called REDUCE. This
procedure, when selected, is invoked after a continuous solution to the set covering prob-
lem is solved. Any relief opportunities that are not used in the continuous solution are,

effectively, removed from the problem. This also has two effects on the branch and bound

phase [40]:

Chapter 8 166 Results

1. The number of constraints in the branch and bound phase is reduced. When a relief
opportunity is removed from the problem, the two pieces of work are merged into

one.

2. Any duties using a relief opportunity that were removed by REDUCE may also be

removed this eliminating shift variables from the problem.

In practice, REDUCE removes about 50% of the relief opportunities (merges adjacent
pieces of work). Whilst CROSS does not remove nearly as many relief opportunities there

does seem to be a reasonable overlap in the relief opportunities removed.

On the surface it may seen that the REDUCE process is superior to the CROSS process.
In practice it would probably be ideal to use both methods, especially for larger schedules;
this was not done with our results, however, because REDUCE and CROSS perform similar
tasks. A clearer picture can be given of the effectiveness of CROSS if REDUCE is not
used in the SCHEDULE component (bar the UMAE dataset for time reasons). REDUCE
selects relief opportunities to discard from information gained from the continuous solution
to the ILP. CROSS has no such knowledge and can’t take advantage of this information as
it only forms mealbreak chains given a set of bus workings. However, for large schedules
like UMAE, it is not possible to generate as rich a variety of schedules as would be
possible when the CROSS pre-processor is used (as labour rules can be relaxed when relief
opportunities are taken away before the BUILD process). REDUCE is entirely dependent
on what duties are generated by BUILD and can only act from within the framework of

these duties.

By examining several of the CROSS runs it was found that around 50% of the relief op-
portunities removed by REDUCE (from the morning/evening periods) from the original
unaltered data were also removed by CROSS process (when 70-75% of the relief opportu-

nities are set as the target percentage).

Examining the times and costs for the combined results for the datasets considered (in

the 70-75% bracket) we can see that in 4 of the 8 datasets, the schedules produced by

Chapter 8 167 Results

TRACS-IT using REDUCE were always cheaper than the average costs of CROSS pro-
cessed schedules. Like the average schedule costs, in 4 of the 8 datasets the schedules
produced by TRACS-II using REDUCE were done so in a shorter period of time than if
CROSS were used. Two important observations that can be made about the 4 cases where
CROSS produced some cheaper average schedule costs. First, 2 of these 4 cases were dat-
sets involving 3 or 4 part duties. Secondly, the others were with datasets that exhausted
the 500 node branch and bound tree in SCHEDULE with the original TRACS-II dataset.
This indicates that CROSS can be an effective tool when 3 or 4 part duties are employed

or when SCHEDULE exhausts its search tree.

8.6 Summary

This chapter presents the results produced from applying CROSS to 8 different scheduling
problems. Several general observations can be made about the results produced using
CROSS. In virtually every case it was found that the minimum number of duties were
used in the CROSS pre-processed results. Additionally, the average time taken by BUILD
as well as SCHEDULE was also considerably less. The average costs of the schedules
generated were acceptable and in some cases were found to be cheaper than the original
TRACS-II results. In all datasets, except UMAE, the same version of CROSS was used
to pre-process the data. Only a minor modification was required for the UMAE dataset.
Schedules containing peaks were found to have better solutions produced when the peak
period was modelled as a long peak. Overall, the 70%-75% relief opportunity selection

range was found to be safe to use in all cases.

Two of the original two part duty TRACS-II solutions exhausted the 500 node branch and
bound search in SCHEDULE. It was found that CROSS occasionally produced cheaper
schedules for these datasets. This was due to the branch and bound phase searching a

different part of the solution space for the CROSS produced results.

CROSS usually produced cheaper solutions when three or four part duties were used. The

Chapter 8 168 Results

UMAE dataset was large and had a fairly restrictive set of labour agreement rules. The
approach used with UMAE was to slacken these rules so that a richer variety of duties
would be available to SCHEDULE. This helped to enable TRACS-II to produce cheaper
schedules for this dataset. The HEO1 dataset also produced cheaper solutions even though
the labour file was not modified. This was attributed mainly to the branch and bound
phase of SCHEDULE. No schedules using two part duties produced cheaper schedules
than the original TRACS-II solutions (except those exhausting the 500 node branch and
bound limit). As TRACS-II generates many more ways of covering work in schedules
using three and four part duties this is not unexpected as it will be more difficult to find

the best solution in such cases (as demonstrated with the HE01 results).

It was found that the REDUCE process selected some of the same relief opportunities
that CROSS does. REDUCE and CROSS both influence the SCHEDULE ILP in a sim-
ilar way in that they both reduce the number of constraints and variables found in the
set covering ILP. However, REDUCE exploits information gathered from the continuous
solution while CROSS selects relief opportunities solely from forming mealbreak chains in

the bus workings.

CROSS has been successfully applied to several types of problems of varying sizes. CROSS
would probably not be of much benefit for smaller scheduling problems unless they em-
ployed 3 or 4 part duties (such as HE01). Small schedules using only 2 part duties can
generally have a rich enough set of potential duties generated by BUILD such that a very
good solution can be produced in a reasonable amount of time. CROSS would speed up
the solution time but the final schedule produced would most likely be slightly more ex-
pensive than if the entire set of original relief opportunities was left intact. Additionally,
the REDUCE process seems to work just as well in these situations. Large scheduling
problems where strict parameters must be enforced on the duties produced by BUILD
would be where a pre-processor like CROSS would be most effective. It would enable the
users to use less strict parameters regarding the duties formed by BUILD thus enabling a
richer variety of potential duties to be produced by BUILD and therefore better solutions

may be produced. The UMAE dataset is an excellent example of this.

Chapter 9

Summary and Conclusions

9.1 Introduction

This chapter summarizes what has been presented and reported in this thesis. A discussion
on future work that could be undertaken as a result of this work is also given. How one
might apply the CROSS system in practice is described and a summary of the research

achievements is presented.

9.2 Summary

This thesis has described the bus driver scheduling problem itself and the TRACS-II
mathematical programming system designed to solve it. Mathematical programming has
been the most successful technique applied to problems such as bus, rail and air duty
scheduling. However, some problems in practice can still be problematic due to their size

or their labour agreement rules.

The CROSS pre-processor has been described. CROSS helps to reduce the complexity of
the problem solved by TRACS-II by trying to select only those relief opportunities that

are likely to be beneficial in the scheduling process. The motivation for CROSS comes

169

Chapter 9 170 Summary and Conclusions

from the hypothesis that schedules containing good mealbreak chains should require fewer
duties than those not containing good mealbreak chains. Constraint programming was
chosen as the methodology to employ with the design and implementation of CROSS. The
expressiveness and ability to model the problem was important and made the definition
of constraints between the variables involved logical and effective with respect to the

constraint propagation gained during the search for a solution to the CSP.

Little research has been carried out on the topic of mealbreak chains themselves. Fores
[38] reports her findings on mealbreak chains and their beneficial properties but concluded
that it would be extremely unlikely that an automatic system could be built that would
create a duty schedule based only on finding mealbreak chains. Earlier heuristic systems,
such as TRACS [92], made some effort to incorporate mealbreak chains into the schedules
they created but suffered from the fact the optimisation performed was of a local nature
and was too inflexible. This was borne in mind when the CROSS CSP was designed and

a flexible and generic approach was used.

The CROSS CSP itself was designed to trace out mealbreak chains during the morning
period of a set of bus workings. This was also applied to the evening periods. The relief
opportunities traced out in the mealbreak chains are selected and the CROSS CSP is solved
several times. The union of all of the relief opportunities selected by CROSS is calculated.
A new vehicle file is then produced that uses only the selected relief opportunities in its
morning and/or evening periods. TRACS-IT uses this new vehicle file, with the reduced

set of relief opportunities, in order to generate a duty schedule.

Because the CROSS CSP is solved several times there is a good selection of sets of relief
opportunities that can be used by TRACS-II. The union of these sets will enable additional
mealbreak chains to be formed that were not explicitly selected by CROSS; this is where
the solutions of the CROSS CSP gain their flexibility and is why CROSS is effective.

The results reported in this thesis support the hypothesis about the benefits of mealbreak
chains and demonstrate that CROSS can be applied to a wide variety of schedules and

labour rules with success. The results also demonstrate that avoiding mealbreak chains

Chapter 9 171 Summary and Conclusions

around the peak period of a schedule is beneficial.

9.3 Further Work

There are still some areas regarding relief opportunity selection, and further experimen-

tation with CROSS itself, that could be investigated further.

9.3.1 Morning vs Evening Periods

The CROSS system was designed for a morning period of a set of bus workings. Although it
was found that CROSS could also be applied to the evening period of a set of bus workings
the evening and morning periods in a set of bus workings do tend to have different features.
Investigating this relationship further in the context of relief opportunity selection could

be beneficial to future work with CROSS.

9.3.2 Duty Properties

Investigation into potentially useful properties of three and four part duties may prove
useful. Relief opportunities suitable for three and four part duties are not explicitly
created in CROSS but the interaction between several runs of the CROSS algorithm
creates suitable relief opportunities to enable BUILD to construct useful duties. CROSS
may be able to be extended to select certain relief opportunities that would be of particular
use to the construction of three/four part duties in various contexts. For example, a set
of short running boards contained in a set of bus workings often, ideally, have their work

covered by three or four part duties.

The BUILD component of TRACS-IT uses heuristics that discard three/four part duties
that are unlikely to be useful. It was found that when CROSS is applied to a set of bus

workings that three/four part duties that were not considered in the original problem are

Chapter 9 172 Summary and Conclusions

constructed. Some of these duties were actually present in schedules produced that were
cheaper than the original TRACS-II produced ones. Although this is probably not the
main reason these schedules were cheaper it may be worthwhile to revisit these heuristics
used in BUILD in order to try to identify in what context it might be useful to keep some

of these duties that would otherwise be discarded.

9.3.3 Variable and Value Ordering

The method by which the random variable and value ordering is carried out is somewhat
simplistic but effective. It may be possible to enhance these procedures to be dynamic
with respect to the size and shape (and perhaps other features to be found) of the schedule;

this could potentially warrant future research.

As the goal of the CROSS CSP is to select relief opportunities by tracing out mealbreak

chains, domain specific knowledge, or heuristics, will be required’.

9.3.4 Other types of Duty Scheduling Problems

The research done in this thesis has been domain specific in that it was only applied to
the bus duty scheduling problem and a simple rail problem. It would be useful to see if
the techniques and ideas acted upon in this thesis would be applicable to the domain of
other types of duty scheduling problems. There would undoubtedly be differences between
them that would need to be addressed. For example, in rail driver scheduling problems,
the stops on the train can be great distances apart and additional constraints may be
present such as ensuring that a driver finishes his duty at the same relief opportunity (or
a subset of relief opportunities) that the driver started at. Constraints regarding what
trains can be driven by the same driver are also present, so called traction knowledge.
Some investigation would need to be carried out in order to determine how to model the

additional constraints found in such problems.

Variable and Value ordering are very closely related in the context of Next and Prev variables as the
value assigned to a Next variable often represents the next variable to be bound.

Chapter 9 173 Summary and Conclusions

9.4 Potential Applications of the CROSS System

As reported in Chapter 8, CROSS was found to be reasonably effective with all of the data
examined. There were three cases in particular where the CROSS pre-processor was found
to enable TRACS-II to produce better solutions than if all the relief opportunities were
left intact and, thus, these would be the target scenarios where CROSS would probably

be beneficial to apply.

The first is the case where three or four part duties are employed. Since several solutions
to the CROSS CSP are generated BUILD is supplied with a rich enough variety of relief
opportunities from which three or four part duties can be generated. Additionally, since
BUILD creates its set of potential duties from a reduced set of relief opportunities, three
and four part duties that would not normally be generated are created and occasionally

used.

If a large schedule is being examined it can often be the case that the labour file contains
tight constraints in order to strictly limit the number of duties generated. With the appli-
cation of CROSS the constraints in the labour file can be slackened. This enables BUILD
to generate a richer variety of duties than was previously available for the SCHEDULE

process. This aids SCHEDULE in finding, potentially, a better solution to the problem.

The third case where CROSS provided better solutions is where the SCHEDULE module
exhausted its branch and bound search space and may not have found the best solution
available. The reduction of relief opportunities reduces both the number of variables and
the number of constraints in the SCHEDULE ILP. This, in turn, reduces the search space
that the ILP examines thus enabling SCHEDULE to find different and possibly better
solutions due to the fact the associated branch and bound search will, more than likely,

search a different part of the solution space.

One additional benefit is CROSS’s ability to reduce the complexity of SCHEDULE’s ILP
and, therefore, reducing the amount of time it takes to find a solution. If a scheduling

problem takes too long to solve then using either CROSS or SCHEDULE’s REDUCE

Chapter 9 174 Summary and Conclusions

feature (or both) should be considered in order to reduce the time it takes SCHEDULE

to finish.

In the newer version of TRACS-II the portion of the system that takes the most CPU
time is the BUILD component. The application of CROSS would produce immediate
speed benefits with the new BUILD from the reduction of relief opportunities from which

BUILD can construct duties.

CROSS was designed to be reasonably generic but, as was seen in the UMAE dataset,
sometimes modifications may have to be made. The modification made for UMAE was
essential in that legal mealbreak chains would not have been formed otherwise. Similar

situations may arise with future use due to unforeseen constraints.

The CROSS system should be applicable to virtually any mathematical programming
driver scheduling package. CROSS is a pre-processing stage that changes the input data
(bus workings); the scheduling system would then take the modified set of bus workings
and proceed as usual. This could be extended further to systems that employ column
generation where additional duties are generated in the column generation phase (for
example in systems like CREW-OPT [31, 103]). CROSS could be employed during this
duty generation phase by pre-processing the bus workings before additional duties are
constructed (This, indeed, itself could be done in a cyclical fashion where several sets of

duties can be created, each from a set of bus workings processed by CROSS).

In many large scheduling problems (bus and rail) sometimes problems have to be sub-
divided; that is, the problem is so large it must be decomposed into several sub problems.
It may be possible that an application of CROSS to the entire original problem can reduce

its size sufficiently that sub-division is not necessary.

Although CROSS itself is not entirely suitable for rail scheduling, there are circumstances
in rail duty scheduling where such an approach could be beneficial. In some rail problems
there are situations where time-windows arise. Occasionally when a rail driver finishes a

spell of work on a train the train must be attended for some fixed amount of time (perhaps

Chapter 9 175 Summary and Conclusions

there may be a short period of time before it heads out again and the train must remain
attended whilst it is kept running during this time). This fixed amount of time is referred
to as a time window. Essentially the driver can be relieved at any time during this time
window. If the time window was for, say 15 minutes, then essentially there are 15 relief
opportunities present in this time window from a duty scheduling perspective. Clearly if
a schedule has many of these time windows the complexity of the problem is increased
by a substantial amount as BUILD will create many similar duties. A procedure such as
CROSS would be useful to apply to such a scenario in order to reduce these sets of time

windows whilst ensuring legal mealbreak chains (thus duties) can be created using them.

9.5 Research Achievements

The work carried out in this research has expanded the knowledge in the domain of duty
scheduling, specifically that of bus driver scheduling and relief opportunity selection. A
technique for creating, with a random element, mealbreak chains from portions of a set of

bus workings has been presented.

Constraint programming has been shown to be very valuable as an aid to constructing good
driver schedules even though constraint programming itself has not been very successful
at producing duty schedules when used on its own. It may be the case that with other
problems where constraint programming on its own is not suitable the technique may be

useful as an aid.

The CROSS pre-processor summarises the achievements. We have shown that mealbreak
chain selection successfully enables the reduction of the number of relief opportunities
that need to be supplied to a mathematical programming system such as TRACS-II [38,
40, 39, 128, 70] without significantly affecting the quality of solutions produced. In some
cases it was found that CROSS actually enabled TRACS-II to find solutions of a higher
quality than those that have already been identified. Another benefit achieved from relief

opportunity selection was the resulting reduction in complexity of the resulting ILP in

Chapter 9 176 Summary and Conclusions

TRACS-II. This enables the possibility of tackling larger problems as well as giving the
option of slackening labour parameters enabling a richer variety of duties to be produced

in the BUILD process for large schedules.

The empirical results produced regarding the selection of relief opportunities in peaked
schedules is worthy of note. This clearly shows the link between the relief opportunity

selection and peak periods in the schedule.

The CROSS system has been shown to be extremely generic and flexible in that schedules
with vastly different constraints and features were all successfully solved using the same
CROSS pre-processor before applying TRACS-II (with the exception of the one minor
enhancement made for the UMAE dataset). This includes applying CROSS to the evening
period of a set of running boards as well as using CROSS to select relief opportunities with
sets of running boards whose labour file allows the use of three or four part duties. This
is particularly important as three and four part duties are often used in real world driver
scheduling problems. Running boards having both their morning and evening periods
processed by CROSS were also reported with satisfactory results. Most importantly, in
almost every case, the CROSS pre-processor was able to select relief opportunities that

enabled TRACS-II to create duty schedules using the minimum number of duties required.

Bibliography

[1]

[2]

[5]

[6]

(8]

Optimising traincrew allocation can deliver step-change performance improvement.

PA Consulting brochure, 1998.

J. Antes. Structuring the Process of Airline Scheduling. In Operations Research

Proceedings, 1997, Berlin, Heidelberg, 1998.

F. Bacchus and P. van Beek. On the Conversion between Non-Binary and Binary
Constraint Satisfaction Problems. In Proceedings of AAAI-98, pages 311-318, July
1998.

M. O. Ball, L. D. Bodin, and J. Greenberg. Enhancements to the RUCUS-II Crew

Scheduling System. In Rousseau [102], pages 279-293.

P. Baptiste, C. Le Pape, and W. Nuijten. Constraini-Based Scheduling - Applying
Constraint Programming to Scheduling Problems, volume 39 of International Series

in Operations Research and Management Science. July 2001.

D. Beasley, D. R. Bull, and R. R. Martin. An Overview of Genetic Algorithms: Part

1, Fundamentals. University Computing, 15(2):58-69, 1993.

D. Beasley, D. R. Bull, and R. R. Martin. An Overview of Genetic Algorithms: Part
2, Research Topics. University Computing, 15(4):170-181, 1993.

C. Bessiere and M.-O. Cordier. Arc-Consistency and Arc-Consistency Again. In
Proceedings of AAAI-93, pages 107-113, 1993.

C. Bessiere, E. C. Freuder, and J.-C. Regin. Using constriant metaknowledge to

reduce arc consistency computation. Artificial Intelligence, 107:125-148, 1999.

177

178 BIBLIOGRAPHY

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

J. Y. Blais and J.-M. Rousseau. Overview of HASTUS Current and Future Versions.
In Daduna and Wren [26], pages 175-187.

J. E. Borrett and E. Tsang. Observations on the Usefulness of Arc Consistency

Preprocessing. Technical Report CSM-236, University of Essex, March 1995.

D. Brélaz. New Methods to Color the Vertices of a Graph. Communications of the

ACM, pages 251-256, 1979.

P.J. Cameron. Combinatorics: Topics, Techniques, Algorithms. Cambridge Univer-

sity Press, first edition, 1994.
B. Catlow. Quantitative Methods for Computing Students. DP Publications, 1993.

M. Chamberlain and A. Wren. Developments and Recent Experience wiht the BUS-

MAN and BUSMAN II Systems. In Desrochers and Rousseau [32], pages 1-15.

P. Charlier and H. Simonis. A system for train crew scheduling. Abstract in DIMACS

Workshop on constraint programming and large scale discrete optimisation, 1998.

P. Charlier and H. Simonis. A system for train crew scheduling. Slides for DIMACS

Workshop on constraint programming and large scale discrete optimisation, 1998.

R. Clement and A. Wren. Greedy Genetic Algorithms, Optimizing Mutations and
Bus Driver Scheduling. In Daduna et al. [24], pages 213-235.

M.C. Cooper. An optimal k-consistency algorithm. Artificial Intelligence, 41:89-95,
1989.

T. H. Corman, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. MIT

Press, 1990.

D. Costa. An Evolutionary TABU Search Algorithm and the NHL Scheduling Prob-
lem. INFOR, 33(3):161-178, August 1995.

S.D. Curits, B. M. Smith, and A. Wren. Forming Bus Driver Scheduling usin Con-

straint Programming. In Practical Application of Constraint Technologies and Logic

179 BIBLIOGRAPHY

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

Programming (PACLP99), pages 239-254. The Practical Application Company Ltd,
1999.

S. D. Curtis. Constraint Satisfaction Approaches to Bus Driver Scheduling. PhD

thesis, University of Leeds, Februrary 2000.

J. R. Daduna, I. Branco, and J. M. P. Paixao, editors. Computer-Aided Transit
Scheduling, Proceedings of the Sixth International Workshop on Computer-Aided

Scheduling of Public Transport. Springer-Verlag, 1995.

J. R. Daduna and M. Mojsilovic. Computer-Aided Vehicle and Duty Scheduling

Using the HOT Programme System. In Daduna and Wren [26], pages 133-146.

J. R. Daduna and A. Wren, editors. Computer-Aided Transit Scheduling, Proceed-
ings of the Fourth International Workshop on Computer-Aided Scheduling of Public

Transport. Springer-Verlag, 1988.

P. David. A Constraint-Based Approach for Examination Timetabling Using Local
Repair Techniques. In E. Burke and M. Carter, editors, Practice and Theory of
Automated Timetabling, Proceedings of the Second International Conference on the
Practice and Theory of Automated Timetabling, pages 169-186. Springer-Verlag,
1998.

L. Davis. Handbook of Genetic Algorithms. Van Nostrand Reinhold, 1991.

R. Dechter. Enhancement schemes for constraint processing: Backjumping, learning,

and cutset decomposition. Artificial Intelligence, 41:273-312, 1990.

R. Dechter and D. Frost. Backtracking algorithms for constraint satisfaction prob-

lems. Technical report, UCI, 1997.

M. Descrochers and F. Soumis. CREW-OPT: Crew Scheduling by Column Gener-

ation. In Daduna and Wren [26], pages 83-90.

180 BIBLIOGRAPHY

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

M. Desrochers and J.-M. Rousseau, editors. Computer-Aided Transit Scheduling,
Proceedings of the Fifth International Workshop on Computer-Aided Scheduling of

Public Transport. Springer-Verlag, 1992.

Y. Deville and P. van Hentenryck. An efficient arc consistency algorithm for a class

of CSPs. In Proceedings International Joint Conference on AL 1991.

M. Dorigo, V. Maniezzo, and A. Colorni. The Ant System: Optimization by a Colony
of Cooperating Agents. IEEE Transactions on Systems, Man, and Cybernetics-Part
B, 26:29-41, 1996.

J.C. Falkner and D.M. Ryan. EXPRESS: Set Partitioning for Bus Crew Scheduling

in Christchurch. In Desrochers and Rousseau [32], pages 359-378.

H. Fang. Investigating Genetic Algorithms for Scheduling. Master’s thesis, Univer-
sity of Edinburgh, 1992.

M. L. Fisher. The Lagrangian Relaxation Method for Solving Integer Programming

Problems. Management Science, 27(1):1-18, January 1981.

S. Fores. Column Generation Approaches to Bus Driver Scheduling. PhD thesis,
University of Leeds, March 1996.

S. Fores and L. Proll. Driver Scheduling by Integer Linear Programming - The
TRACS II Approach. In P Bourne, M Ksouri, and A El Kamel, editors, Proceedings
CESA’98 Computational Engineering in Systems Applications, volume 3 Symposium

on Industrial and Manufacturing Systems, pages 213-218, 1998.

S. Fores, L. Proll, and A. Wren. An Improved ILP System for Driver Scheduling. In
Wilson [130], pages 43-61.

S. Fores, L. Proll, and A. Wren. TRACS to Better Schedules. Technical Report

2001.03, School of Computing, University of Leeds, January 2001.

P. Forsyth and A. Wren. An Ant System for Bus Driver Scheduling. In Wilson [130],
pages 405-421.

181 BIBLIOGRAPHY

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

E. C. Freuder. Synthesizing Constraint Expressions. Communications of the ACM,
21(11):958-966, 1978.

D. Frost and R. Dechtedr. Look-ahead value ordering for constraint satisfaction
problems. In Proceedings of the International Joint Conference on Artificial Intelli-

gence (IJCAI-95), pages 572-578, 1995.

D. Frost and R. Dechter. In search of the best constraint satisfaction search. In

Proceedings AAAI-94, pages 301-306, 1994.

G. Garnier. MERCATOR and HASTUS-MACRO Computerization and Changing
Working Conditions for RATP Bus Drivers. In Rousseau [102], pages 137-144.

J. Gaschnig. A General Backtrack Algorithm that Eliminates Most Redudant Tests.

In Proceedings IJCAI-77, 1977.

J. Gaschnig. Experimental case studies of backtrack vs. Waltz-type vs. new algo-
rithms for satisficing assigment problems. In Proceedings Second National Conference
of the Canadian Society for Computational Studies of Intelligence, pages 268-277,
1978.

J. Gaschnig. Performance measurement and analysis of certain search algorithms.
Technical Report CMU-CS-79-124, Carnegie-Mellon University, Pittsburg, January
1979.

I. P. Gent, E. MacIntyre, P. Prosser, B. M. Smith, and T. Walsh. An Empiri-
cal Study ofc Dynamic Variable Ordering Heuristics for the Constraint Satisfaction
Problem. In E. C. Freuder, editor, Constraint Processing, LNCS 1118, pages 179-
193. Springer-Verlag, 1996.

S. W. Golumb and L. D. Baumert. Backtrack Programming. Journal of the ACM,
12:516-524, 1965.

N. Guerinik and M. Van Caneghem. Solving Crew Scheduling Problems by Con-

straint Programming. In U. Montanari and F. Rossi, editors, Principles and Practice

182 BIBLIOGRAPHY

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

of Constraint Programming, CP ’95, First International Conference, CP ’95 Cassis,

France, Proceedings, pages 481-498. Springer-Verlag, September 1995.

C. Halatsis, P. Stamatopolous, I. Karali, T. Bitsikas, G. Fessakis, A. Schizaz,
S. Sfakianakis, C. Fouskakis, T. Koukoumpetsos, and D. Papageorgiou. Crew
Scheduling Based on Constraint Programming: The PARACHUTE Experience. In
Proceedings of the 3rd Hellenic- European Conference on Mathematics and Informat-

ics (HERMIS ’96), pages 424431, 1996.

N. Hamer and L. Seguin. The HASTUS System: New Algorithms and Modules for

the 90s. In Desrochers and Rousseau [32], pages 17-29.

C. Han and C. Lee. Comments on Mohr and Henderson’s Path Consistency Algo-
rithm. Artificial Intelligence, 36:125-130, 1988.

R. Haralick and G. Elliott. Increasing Tree Search Effciency for Constraint Satsifac-
tion Problems. Artificial Intelligence, 14:263-313, 1980.

T. Hartley. A glossary of terms in bus and crew scheduling. In Wren [132], pages
353-359.
P. van Hentenryck. Constraint Satisfaction in Logic Programming. Logic Program-

ming Series. MIT Press, 1989.

P. M. Hildyard and H. V. Wallis. Advances in Computer-Assisted Runcutting in

North America. In Wren [132], pages 183-192.

J. Hoffstadt. Computerized Vehicle and Driver Scheduling for the Hamburger
Hochbahn Aktiengesellschaft. In Wren [132], pages 35-52.

J. H. Holland. Adaptation in Natural and Artificial Systems. Massachusetts Institute

of Technology Press, 1975. First edition University of Michigan Press.
ILOG. ILOG Solver - Reference Manual Version 3.2, July 1996.

ILOG. ILOG Solver - User Manual Version 3.2, July 1996.

183 BIBLIOGRAPHY

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

ILOG Solver and ILOG Schedule First International Users’s Conference, ILOG
Solver and ILOG Schedule First International Users’s Conference, July 10-11, Ab-

baye des Vaux de Cernay, France, 1995.

ILOG Solver and ILOG Schedule Second International Users’s Conference, July 9-10,

Paris, France, 1996.

ILOG Solver and ILOG Schedule Third International Users’s Conference, France,
1997.

Fourth ILOG International Users Meetings, October 5-6, Paris, France, 1998.

S. Kikuchi and M. Arimura. Use of Genetic Algorithms to Schedule the Specialized

Transporation Vehicles. In Wilson [130], pages 322-336.

A. Kwan and E. Tsang. Minimal Forward Checking with Backmarking. Technical
Report CSM-260, University of Essex, March 1996.

A. S. K. Kwan. Train driver scheduling. PhD thesis, University of Leeds, 1999.

A. S. K. Kwan, R. S. K. Kwan, M. E. Parker, and A. Wren. Producing Train Driver

Schedules under differing Operating Strategies. In Wilson [130], pages 129-154.

A. S. K. Kwan, R. S. K. Kwan, and A. Wren. Driver scheduling using Genetic
Algorithms with embedded combinatorial traits. In Wilson, editor, Computer- Aided

Transit Scheduling, pages 81-102. Springer-Verlag, 1999.

A. S. K. Kwan, S. K. Kwan, M. E. Parker, and A. Wren. Proving the Versatility
of Automatic Driver Scheduling on Difficult Train and Bus Problems. Technical
Report 2000.12, University of Leeds, 2000.

R. S. K. Kwan and M. A. Rahin. Object Oriented Bus Vehicle Scheduling — The
BOOST System. In Wilson [130], pages 177-191.

C. J. Layfield. Investigations into the Master Timetabling Problem. Master’s thesis,

University of Calgary, September 1998.

184 BIBLIOGRAPHY

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

C. Le Pape. Constraint-Based Programming for Scheduling: An Historical Perspec-
tive. In Working notes of the Operations Research Socity Seminar on Constraint

Handling Techniques, London, UK, 1994.

The Solution of Large Scale Scheduling Problems by Computer: An Appreciation of
Basic Principles and Future Possibilities. Internal Report, The University of Leeds,
1960.

R. Lessard, J.-M. Rousseau, and D. Dupuis. HASTUS I: A Mathematical Pro-
gramming Approach to the Bus Driver Scheduling Problem. In Wren [132], pages
255-266.

L. K. Luedtke. RUCUS II: A Review of System Capabilities. In Rousseau [102],
pages 61-116.

A. K. Mackworth and E. C. Freuder. The Complexity of Some Polynomial Network
Consistency Algorithms for Constraint Satisfaction Problems. Artificial Intelligence,

25:65-74, 1985.

A. K. Mackworth and E. C. Freuder. The Complexity of Constraint Satisfaction

Revisited. Artificial Intelligence, 59:57-62, February 1993.

A K. Mackworth. Consistency in networks of relations. Artificial Intelligence, 8:99—
118, 1977.

P. D. Manington. Mathematical and Heuristic Approaches to Road Transport
Scheduling. PhD thesis, University of Leeds, 1977.

K. Marriot and P. Stuckey. Programming with Constraints: An Introduction. The
MIT Press, Cambridge, Mass, 1998.

7. Michalewicz. Genetic Algorithms + Data Structures = Ewvolution Programs.

Springer-Verlag, 1992.

M. Minoux. Mathematical Programming Theory and Algorithms. Wiley & Sons,
1986.

185 BIBLIOGRAPHY

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

R. Mohr and T. C. Henderson. Arc and Path Consistency Revisited. Artificial

Intelligence, 28:225-233, 1986.

R. Mohr and G. Masini. Gold Old Discrete Relaxation. In Proceedings of ECAISS,
Munich, 1988.

P. Mott and H. Fritsche. INTERPLAN - An Interactive Program System for Crew
Scheduling and Rotering of Public Transport. In Daduna and Wren [26], pages
200-211.

T. Miiller. Solving set partitioning problems with constraint programming. In Practi-
cal Applications of Constraint Technologies (PACT98), pages 313-332. The Practical

Application Company Ltd, 1998.

B. Nudel. Constraint Satisfaction Algorithms. Computational Intelligence, 5:188—
224, 1989.

M. E. Parker and B. M. Smith. Two Approaches to Computer Crew Scheduling. In
Wren [132], pages 193-221.

P. Prosser. Forward Checking with Backmarking. Technical Report AISL-48-93,

University of Strathclyde, 1993.

P. Prosser. Hybrid algorithms for the constraint satisfaction problem. Computational

Intelligence, 9(3):268-299, 1993.

P. Prosser. Forward Checking with Backmarking. In Meyer, editor, Constraint
Processing, LNCS 923, pages 185-204. Springer-Verlag, 1995.

J.-F. Puget. PECOS A High Level Constraint programming Language. In Proceed-
ings of SPICIS 92, Singapore, September 1993.

J.-F. Puget. A C++ Implementation of CLP. In Proceedings of SPICIS 9/, Singa-

pore, November 1994.

186 BIBLIOGRAPHY

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

J.-F. Puget and M. Leconte. Beyond the Glass Box: Constraints as Objects. In
J. Lloyd, editor, Logic Programming, Proceedings of the international symposium on

logic programming, pages 513-527, 1995.

Ravindran, Phillips, and Solberg. Operations Research Principles and Practice. Wi-
ley & Sons, 1987.

C. R. Reeves, editor. Modern Heuristic Techniques for Combinatorial Problems.

Wiley, 1993.

J-C Regin. Generalized Arc Consistency for Global Cardinality Constraint. In
Proceedings of AAAI/TAAI volume 1, pages 209-215, 1996.

J.-M. Rousseau, editor. Computer Scheduling of Public Transport 2, Proceedings of
the Third International Workshop on Computer-Aided Scheduling of Public Trans-

port. Springer-Verlag, 1985.

J.-M. Rousseau. Results Obtained with Crew-Opt: A Column Generation Method

for Transit Crew Scheduling. In Daduna et al. [24], pages 349-358.

J.-M. Rousseau and J.-Y. Blais. HASTUS : An Interactive System for Buses and

Crew Scheduling. In Rousseau [102], pages 45—60.

J.-M. Rousseau and R. Lessard. Enhancements to the HASTUS Crew Scheduling
Algorithm. In Rousseau [102], pages 295-310.

D.M. Ryan. ZIP - a Zero One Integer Programming Package for Scheduling. Tech-
nical Report CSS-85, AERE, Computer Science and Systems Division, Harwell,
Oxfordshire, 1980.

D. Sabin and E. C. Freuder. Contradicting Conventional Wisdom in Constraint
Satisfaction. In Proceedings of the European Conference on Artificial Intelligence,

pages 125-129, 1994.

F. Shepardson. Modelling the Bus Crew Scheduling Problem. In Rousseau [102],
pages 247-261.

187 BIBLIOGRAPHY

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

H. D. Sherali. Equivalent weights in lexicographic multi-objective programs. Furo-

pean Journal of Operations Research, 18:57-61, 1982.
M. Singh. Path Consistency Revisited. In IEEE-ICTAI’95, 1995.

B. M. Smith. Bus Crew Scheduling using Mathematical Programming. PhD thesis,
University of Leeds, 1986.

B. M. Smith. IMPACS - A Bus Crew Scheduling System using Integer Programming.
Mathematical Programming, 42:181-187, 1988.

B. M. Smith. A Tutorial on Constraint Programming. Technical Report 95.14,

School of Computer Studies, University of Leeds, April 1995.

B. M. Smith. Succeed-first or Fail-first: A Case Study in Variable and Value Ordering
Heuristics. In Proceedings of PACT’97, pages 321-330, 1997.

B. M. Smith and A. Wren. A Bus Crew Scheduling System using a Set Covering

Formulation. Transportation Research, 22A:97-108, 1988.

K. Stergiou and T. Walsh. Encodings of Non-Binary Constraint Satisfaction Prob-
lems. In Proceedings of AAAI-99, 1999.

K. Stergiou and T. Walsh. The Difference All-Difference Makes. In Procedings of
IJCAI-99, 1999.

D. Stirzaker. Elementary Probability. Cambridge University Press, 1994.

G. Syswerda. Uniform Crossover in Genetic Algorithms. In J. D. Schaffer, editor,
Proceedings of the Third International Conference on Genetic Algorithms, pages 28,

1989.

Preprints of the Workshop on Automated Techniques for Scheduling of Vehicle Op-

erators for Urban Public Transportation Services. Chicago, 1975.
E. Tsang. Foundations of Constraint Satisfaction. Academic Press, 1993.

University of Leeds. TRACS-II, May 1998.

188 BIBLIOGRAPHY

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

M. Vélker and P. Schiitze. Recent Developments of HOT II. In Daduna et al. [24],
pages 334-348.

R. J. Wallace. Why AC-3 is almost always better than AC-4 for establishing arc

consistency in CSPS. In Proceedings IJCAI-93, Chambéry, France, 1993.

D. L. Waltz. Generating semantic descriptions from drawings of scenes with shadows.

Technical Report AI-271, Massachusetts Institution of Technology, 1972.

C.D.J. Waters. A Practical Introduction To Management Science. Addison Wesley,

first edition, 1989.

D. J. Watson. Computational Problems in the Scheduling of Buses and Allocation

of their Crews. PhD thesis, University of Leeds, September 1971.

W. P. Willers. Improved Algorithms for Bus Crew Scheduling. PhD thesis, University
of Leeds, 1995.

R. H. Williamson. BUSMAN: The United Kingdoms Integrated Approach to Transit

Scheduling. In Rousseau [102], pages 1-43.

N. H. M. Wilson, editor. Computer-Aided Transit Scheduling, Preprints of the Sev-
enth International Workshop on Computer-Aided Scheduling of Public Transport.

Springer-Verlag, 1999.

W. L. Winston. Operations Research - Applications and Algorithms. Duxbury Press,
third edition, 1993.

A. Wren, editor. Computer Scheduling of Public Transport, Proceedings of the Sec-
ond International Workshop on Computer-Aided Scheduling of Public Transport.
North-Holland, 1981.

A. Wren. General Review of the user of Computers in Scheduling Buses and their

Crews. In Computer Scheduling of Public Transport [132], pages 3-16.

A. Wren. HOT - Hamburger Optimierungs Technik, 1993. Personal communication.

189 BIBLIOGRAPHY

[135]

[136]

[137]

[138]

[139]

140

[141]

[142]

[143]

[144]

A. Wren. Heuristics Ancient and Modern: Transport Scheduling Through the Ages.
Journal of Heuristics, 4:87-100, 1998.

A. Wren, S. Fores, A. Kwan, R. Kwan, M. Parker, and L. Proll. A Flexible System
for Scheduling Drivers. Technical Report 2002.08, School of Computing, University
of Leeds, April 2002.

A. Wren and N. D. F. Gualda. Integrated Scheduling of Buses and Drivers. In

Wilson [130], pages 155-176.

A. Wren and R. S. K. Kwan. Installing an Urban Transport Scheduling System.

Journal of Scheduling, 2:3-17, 1999.

A. Wren and J.-M. Rousseau. Bus Driver Scheduling - An Overview. In Daduna

et al. [24], pages 173-187.

A. Wren and B. M. Smith. Experiences with a Crew Scheduling System based on

Set Covering. In Daduna and Wren [26], pages 104-118.

A. Wren, B. M. Smith, and A. J. Miller. Complementary Approaches to Crew
Scheduling. In Rousseau [102], pages 263-278.

A. Wren and D. Wren. A Genetic Algorithm for Public Transport Driver Scheduling.

Computers and Operations Research, 22(1):101-110, 1995.

T. H. Yunes, A. V. Moura, and C. C. de Souza. Solving large scale crew scheduling
problems with constraint programming and integer programming. Technical Report

1C-99-19, Institute of Computing, UNICAMP, August 1999.

T. H. Yunes, A. V. Moura, and C. C. de Souza. A Hybrid Approach for Solving
Large Scale Crew Scheduling Problems. In Proceedings of the Second International
Workshop on Practical Aspects of Declarative Languages (PADL’00), volume 1753

of Lecture Notes in Computer Science, Boston, MA, January 2000. Springer-Verlag.

Appendix A

Sample TRACS-1II Data Files

A.1 Sample Labour File (R77A Stockwell Garage)

Spreadover Range

A 0000 0840

B 0841 1200

*SELECT

NO

MAX-JOINUP

:35

MIN. LENGTH OF SPELL

160

LIMIT

140

MAX. LENGTH OF SPELL

500 500

MIN. LONG BREAK IN SPLIT DUTY
000

MIN. SPREADOVER IN SPLIT DUTY
000

MIN LENGTH OF 1ST STRETCH
100 100

MIN LENGTH OF 2ND STRETCH
100 100

MAX MEALBREAK

0100 0100

EARLIEST START OF MEALBREAK
0000 0000

LATEST START OF MEALBREAK
3600 3600

EARLIEST FINISH OF MEALBREAK
0000 0000

LATEST FINISH OF MEALBREAK
3600 3600

190

Appendix A 191 Sample TRACS-II Data Files

MIN COST (2-veh)

500 625

MIN COST (3-veh DUTIES)

3600 3600

Min work content (4-veh shifts)

3600 3600

MAX COST

0840 1200

EARLIEST SIGNING ON TIME

0000 0000

EARLIEST START ON BUS

0000 0000

LATEST START ON BUS

3600 3600

EARLIEST FINISH OFF BUS

0000 0000

LATEST FINISH OFF BUS

3600 3600

LATEST SIGNING OFF TIME

3600 3600

MAXIMUM STRETCH LENGTH

510 510

MAXIMUM PLATFORM TIME

0840 1200

MAXIMUM SPREADOVER

0840 1200

MINIMUM PAID DAY

000 000

Fine Cover (***x important, Yes 1, No 0)
0

MAXIMUM NUMBER OF MEALBREAKS

1

MAX LENGTH OF DUTY WITHOUT PNB MIN WORK CONTENT Min paid day (1l-stretch)
000 100 400

Min work content (3-bus shifts)

3600 3600

Stop program if the number of stretches created is greater than
20000

NO.PNBS LENGTH SO.RANGE PNB.PERIODS

1 :40 000 840 000 840
1 1240 0841 1200 000 1200
2 140 000 840 000 840

*ok ok ok
Passenger Travelling? (1 or 0)
0

Depth

9999

Appendix A 192 Sample TRACS-II Data Files

A.2 Sample Vehicle File (R77A Stockwell Garage)

Route 77A Stockwell Garage Monday-Friday

3

1 G Stockwell Garage (depot)

2 h VAUXSN

3 h VAUXSN A

Prep/disp/mob/immob

0

91 0708 1 0806 2 0919 3 1023 2 1116 3 1223 2 1316 3
1423 2 1512 3 1616 2 1704 3 1814 2 1901 1

92 0652 1 0730 3 0842 2 0929 3 1035 2 1128 3 1235 2
1328 3 1435 2 1523 3 1626 2 1700 3 1826 2 1940 1

93 0602 1 0710 3 0818 2 0939 3 1047 2 1140 3 1247 2
1340 3 1447 2 1539 3 1650 2 1812 3 1928 1

94 0645 1 0723 3 0834 2 0953 3 1059 2 11562 3 1259 2
13562 3 1459 2 1605 3 1730 2 1808 1

95 0704 1 0738 3 0850 2 1006 3 1111 2 1204 3 1311 2
1404 3 1511 2 1601 3 1710 2 1800 3 1918 2 1959 3
2101 2 2144 3 2246 2 2328 1

96 0427 1 0505 3 0550 2 0631 3 0731 2 0810 3 0922 2
1017 3 1123 2 1216 3 1323 2 1416 3 1523 2 1628 3
1754 2 1913 3 2016 2 2059 3 2201 2 2244 3 2346 2
2424 1

97 0652 1 07561 2 0840 3 0935 2 1028 3 1135 2 1228 3
13356 2 1428 3 15635 2 1652 3 1818 2 1851 1

98 0546 1 06563 3 0756 2 0847 3 0947 2 1040 3 1147 2
1240 3 1347 2 1440 3 1546 2 1641 3 1750 2 1839 1

99 0805 1 0843 3 0959 2 1052 3 1159 2 1262 3 1359 2
1451 3 1556 2 1632 3 1742 2 1831 3 1926 1

100 0650 1 0720 3 0813 2 0903 3 1009 2 1104 3 1211 2
1304 3 1411 2 1502 3 1606 2 1724 3 1854 1

101 0749 1 0827 3 0941 2 1022 3 1141 2 1222 3 1341 2
1422 3 1541 2 1620 3 1746 2 1821 1

102 0457 1 0537 3 0621 2 0702 3 0809 2 0856 3 0956 2
1034 3 1153 2 1234 3 1353 2 1434 3 1551 2 1708 3
1834 2 1905 1

103 0731 1 0851 3 1004 2 1046 3 1205 2 1246 3 1402 2
1446 3 1601 2 1648 3 1758 2 1847 3 19256 2 1955 1

104 0637 1 0746 2 0907 3 1018 2 1058 3 1217 2 1258 3
1417 2 1456 3 1611 2 1656 3 1807 2 1853 1

105 0522 1 0600 3 0655 2 0742 3 0837 2 0916 3 1029 2
1110 3 1229 2 1310 3 1429 2 1506 3 1620 2 1740 3
1857 2 1944 3 2046 2 2129 3 2231 2 2314 3 2421 1

106 0701 1 0802 2 0923 3 1041 2 1122 3 1241 2 1322 3
1441 2 1517 3 1634 2 1752 3 1844 1

107 0713 1 0759 3 0854 2 0934 3 1053 2 1134 3 1253 2
1334 3 1453 2 15631 3 1641 2 1717 3 1841 2 1954 3
2021 2 2054 3 2121 2 2154 3 2221 2 2254 3 2321 2
2352 1

108 0728 1 0829 2 0948 3 1105 2 1146 3 1305 2 1346 3
15056 2 1544 3 1706 2 1827 1

Appendix A 193 Sample TRACS-II Data Files

109 0734 1 0823 3 0918 2 0959 3 1117 2 1168 3 1317 2
1358 3 1517 2 1556 3 1722 2 1842 3 1946 2 2029 3
2131 2 2214 3 2316 2 2358 1

110 0702 1 0819 2 0930 2 1011 3 1129 2 1210 3 1329 2
1410 3 1529 2 1624 3 1734 2 1823 3 1932 2 2014 3
2116 2 2159 3 2301 2 2344 3 2446 1

111 0455 1 0525 3 0606 2 0647 3 0738 2 0831 3 0931 1

1111 1502 1 1551 3 1713 2 1749 3 1847 2 1931 1

112 0518 1 0549 3 0638 2 0716 3 0825 2 0912 1

1112 1504 1 1610 3 1638 2 1728 3 1838 2 1923 3 1951 2
2024 3 2051 2 2124 3 2151 2 2224 3 2251 2 2324 3
2356 1

113 0532 1 0611 3 0705 2 0751 3 0846 2 0934 1

1113 1510 1 1616 3 1726 2 1817 3 1906 1

114 0542 1 0622 3 0716 2 0835 3 0956 1

1114 1520 1 1636 3 1802 2 1837 1

115 0559 1 0637 3 0724 2 0815 3 0910 2 0949 1

1115 1522 1 1646 2 1736 3 1849 1

116 0618 1 0726 3 0822 2 0859 3 1017 1

1116 1530 1 1657 2 1733 3 1852 2 1925 1

117 0633 1 0747 3 0858 2 0945 3 1030 1

1117 1533 1 1608 3 1718 2 1805 3 1841 1

118 0647 1 0803 3 0914 2 1030 1

1118 1542 1 1654 2 1744 3 1904 2 1939 3 2006 2 2039 3
2106 2 2139 3 2206 2 2239 3 2306 2 2337 1

119 0719 1 0755 3 0906 2 0955 3 1026 1

1119 1549 1 1702 2 1752 3 1911 2 1951 1

120 0721 1 0807 3 0902 2 0939 1

1120 1607 1 1738 2 1858 3 2001 2 2044 3 2146 2 2229 3
2331 2 2413 1

121 16256 1 1712 3 1822 2 1908 3 1937 2 2009 3 2036 2
2109 3 2136 2 2209 3 2236 2 2309 3 2336 2 2407 1

122 1633 1 1720 3 1830 2 1916 1

123 1639 1 1810 2 1929 3 2031 2 2114 3 2216 2 2259 3
2401 2 2439 1

Minimum time allowance for meal break

:0 :0 :0

:0 :0 :0

:0 :0 :0

Length of time paid during a meal break

:0 :0 :0

:0 :0 :0

:0 :0 :0

Minimum join-up time

:10 :10 :10

:10 :10 :10

:10 :10 :10

signing on

:10 :10 :10

Signing off

:10 :10 :10

Signing on at depot

:10 :10 :10

Signing off at depot

Appendix A 194 Sample TRACS-II Data Files

:10 :10 :10

Depot with lack of route knowledge

0

0

0

Depot with lack of traction knowledge

Appendix B

Morning Results

Potential | Work Sched | Duties | BUILD | SCHED
Duties | Pieces | T% | A% | #U | Cost Used Time Time
35,789 144 70% | 74% 8 | 123.37 14 4.44 4.22
36,126 143 0% | 72% 7 | 122.18 14 4.56 2.34
34,146 | 142 | 70% | 70% 6 | 124.31 14 5.09 9.52
34,450 143 0% | 72% 9 | 123.47 14 4.58 4.43
34,133 142 70% | 70% 11 | 123.37 14 4.58 6.31
33,568 140 65% | 67% 8 | 125.31 14 4.35 4.29
32,979 140 65% | 67% 9 | 123.52 14 4.30 4.10
32,982 140 65% | 67% 7| 122.39 14 4.15 3.39
33,911 140 65% | 67% 6 | 122.18 14 4.50 6.23
33,741 141 65% | 69% 5 | 122.54 14 4.40 3.53
31,335 137 60% | 61% 8 | 122.09 14 3.48 2.25
31,474 | 138 | 60% | 63% 6 | 123.37 14 3.40 2.26
31,097 138 60% | 63% 5 | 123.53 14 4.10 6.14
31,714 137 60% | 61% 7 | 124.02 14 4.15 3.05
32,666 138 60% | 63% 5 | 122.18 14 4.23 2.16
30,618 136 55% | 59% 6 | 123.08 14 4.05 4.54
30,442 135 55% | 57% 5 | 122.09 14 4.04 3.02
30,441 134 55% | 56% 5| 124.38 14 4.06 4.25
31,347 136 55% | 59% 6 | 123.40 14 4.03 2.17
30,942 136 55% | 59% 5| 123.08 14 4.07 4.07

Table B.1: HEO1 - Complete Morning Results (2/3/4 pt duties)

195

Appendix B 196 Morning Results
Potential | Work Sched | Duties | BUILD | SCHED
Duties | Pieces | T% | A% | #U | Cost Used Time Time
5,316 150 0% | 72% 4 | 225.49 24 0.15 1.32
5,274 149 70% | 2% 3 | 225.59 24 0.15 0.29
5,265 149 0% | 72% 3| 227.44 24 0.15 0.34
5,261 149 0% | 2% 3 | 225.51 24 0.14 0.34
5,410 150 70% | 74% 3 | 226.10 24 0.17 0.32
5,123 148 65% | 67% 2 | 227.34 24 0.15 0.31
5,190 148 65% | 69% 2 | 225.59 24 0.14 0.57
5,237 148 65% | 69% 2 | 226.22 24 0.14 1.06
5,240 149 65% | 69% 2 | 226.07 24 0.15 0.17
5,139 147 65% | 67% 3 | 225.26 24 0.13 0.27
4,951 147 60% | 64% 2 | 225.59 24 0.13 0.19
5,028 146 60% | 64% 2 | 227.31 24 0.14 0.28
4,729 145 60% | 62% 2 | 226.35 24 0.12 0.20
4,932 147 60% | 64% 2 | 226.10 24 0.14 0.18
4,871 146 60% | 62% 2 | 226.08 24 0.14 0.23
4,655 145 55% | 59% 2 | 227.34 24 0.13 0.10
4,602 145 55% | 59% 2 | 228.10 24 0.12 0.16
4,625 145 55% | 59% 2 | 225.42 24 0.12 0.15
4,714 145 55% | 59% 2 | 228.09 24 0.14 0.43
4,680 145 55% | 59% 2 | 227.41 24 0.14 0.15
Table B.2: R222 - Complete Morning Results (2 pt duties)
Potential | Work Sched | Duties | BUILD | SCHED
Duties | Pieces | T% | A% | #U | Cost Used Time Time
14,421 208 0% | 72% 5 | 223.21 27 0.40 8.19
14,851 210 0% | 2% 5 | 223.21 27 0.47 5.27
15,429 212 0% | 5% 5 | 223.21 27 0.46 15.11
14,653 210 70% | 73% 5 | 223.21 27 0.43 7.16
15,180 212 0% | 5% 4 | 223.21 27 0.45 4.51
14,072 208 65% | 68% 4 | 223.21 27 0.47 9.16
13,982 208 65% | 67% 5 | 223.21 27 0.52 11.26
13,701 207 65% | 67% 5 | 223.28 27 0.52 5.30
14,225 208 65% | 68% 4 | 223.35 27 0.52 75.13
13,700 209 65% | 68% 6 | 223.21 27 0.40 50.51
13,148 204 60% | 62% 4 | 223.28 27 0.40 4.43
13,077 205 60% | 63% 4 | 223.35 27 0.38 73.52
13,709 205 60% | 65% 4 | 223.21 27 0.37 10.45
13,184 200 60% | 62% 4 | 223.21 27 0.38 8.58
13,826 206 60% | 63% 4 | 223.21 27 0.39 5.17
12,769 202 55% | 58% 3| 223.21 27 0.35 5.03
12,357 202 55% | 58% 3| 223.21 27 0.39 21.22
12,380 202 55% | 57% 3| 223.28 27 0.37 5.37
12,528 201 55% | 58% 4 | 223.21 27 0.37 6.51
12,450 204 55% | 58% 4 | 223.21 27 0.37 5.51

Table B.3: EA2 - Complete Morning Results (2 pt duties)

Appendix B 197 Morning Results
Potential | Work Sched | Duties | BUILD | SCHED
Duties | Pieces | T% | A% | #U | Cost Used Time Time
12,707 200 0% | 1% 7 | 379.28 39 0.11 1.39
12,250 200 0% | 1% 5 | 379.15 39 0.10 3.04
12,657 201 70% | 73% 5 | 378.43 39 0.12 0.55
12,816 201 70% | 3% 5 | 378.08 39 0.11 1.24
12,127 200 0% | 1% 5 | 379.50 39 0.10 3.01
12,326 199 65% | 69% 3| 379.21 39 0.11 1.09
12,078 197 65% | 67% 4 | 380.12 39 0.10 1.32
11,489 197 65% | 66% 4 | 379.04 39 0.10 1.03
11,287 197 65% | 65% 3| 379.04 39 0.09 1.15
11,988 198 65% | 67% 3 | 380.44 39 0.10 1.32
11,139 195 60% | 62% 3| 379.49 39 0.10 0.44
11,354 195 60% | 63% 4 | 379.15 39 0.10 1.34
11,646 196 60% | 63% 4 | 380.08 39 0.10 2.56
11,521 196 60% | 63% 4 | 379.33 39 0.11 2.41
11,540 196 60% | 63% 3 | 380.06 39 0.11 1.10
10,896 194 55% | 60% 3 | 380.53 39 0.10 2.06
10,532 192 55% | 56% 3 | 380.00 39 0.10 0.45
10,468 193 55% | 58% 2 | 379.41 39 0.10 0.56
10,790 192 55% | 56% 2 | 380.39 39 0.12 1.36
10,360 192 55% | 56% 2 | 380.36 39 0.10 1.42

Table B.4: R207 - Complete Morning Results (2 pt duties with long peak)

Potential | Work Sched | Duties | BUILD | SCHED
Duties | Pieces | T% | A% | #U | Cost Used Time Time
12,989 202 70% | 74% 4 | 379.48 39 0.12 0.59
13,271 202 70% | 74% 4 | 379.57 39 0.12 2.00
13,261 202 0% | 74% 4 | 379.39 39 0.11 1.22
12,913 201 0% | 2% 3 | 380.34 39 0.13 1.14
12,782 201 0% | 72% 3 | 380.13 39 0.12 1.38
12,177 198 65% | 66% 3 | 379.57 39 0.11 1.09
12,812 200 65% | 0% 3| 379.52 39 0.13 1.47
12,481 200 65% | 70% 2 | 379.57 39 0.11 1.23
12,093 198 65% | 66% 2 | 380.49 39 0.11 1.41
12,289 199 65% | 68% 2 | 382.14 39 0.11 2.02
11,482 195 60% | 60% 3 | 381.38 39 0.10 1.32
11,926 196 60% | 62% 2 | 381.11 39 0.10 2.01
11,649 197 60% | 64% 3 | 381.04 39 0.10 1.09
11,699 196 60% | 62% 2 | 380.00 39 0.11 1.15
11,818 196 60% | 62% 2 | 380.58 39 0.11 1.02
11,050 194 55% | 58% 2 | 381.41 39 0.10 1.54
11,360 194 55% | 58% 2 | 380.59 39 0.11 0.41
11,256 193 55% | 58% 2 | 380.07 39 0.11 1.27
11,033 193 55% | 57% 2 | 382.22 39 0.09 0.54
11,093 193 55% | 57% 2 | 381.13 39 0.09 0.49

Table B.5: R207 - Complete Morning Results

(2 pt duties with short peak)

Appendix B 198 Morning Results
Potential | Work Sched | Duties | BUILD | SCHED
Duties | Pieces | T% | A% | #U | Cost Used Time Time
13,434 202 0% | 75% 4 | 379.33 39 0.11 1.58
13,314 201 0% | 2% 3 | 380.02 39 0.12 1.00
12,879 201 0% | 72% 3 | 380.08 39 0.11 1.42
13,229 201 0% | 72% 3 | 381.00 39 0.12 1.03
12,538 201 0% | 72% 4 | 379.46 39 0.11 1.17
12,581 200 65% | 70% 3 | 380.29 39 0.11 0.49
12,316 197 65% | 66% 3 | 380.18 39 0.11 1.25
12,910 199 65% | 70% 3| 379.16 39 0.11 1.08
12,425 199 65% | 68% 2 | 379.26 39 0.11 1.27
12,072 198 65% | 66% 3 | 379.41 39 0.11 1.13
11,779 196 60% | 62% 2 | 380.43 39 0.11 1.49
12,142 197 60% | 64% 3 | 380.11 39 0.11 1.23
11,199 195 60% | 60% 2 | 380.01 39 0.10 0.50
11,692 195 60% | 60% 2 | 381.06 39 0.11 1.25
11,833 197 60% | 64% 3| 379.59 39 0.11 1.42
11,342 194 55% | 58% 2 | 380.16 39 0.11 1.22
10,832 193 55% | 57% 2 | 382.02 39 0.11 2.31
11,544 194 55% | 58% 2 | 382.47 39 0.11 1.07
11,325 192 55% | 57% 2 | 380.14 39 0.11 1.03
10,844 193 55% | 57% 2 | 381.50 39 0.10 1.31
Table B.6: R207 - Complete Morning Results (2 pt duties with no peak)
Potential | Work Sched | Duties | BUILD | SCHED
Duties | Pieces | T% | A% | #U | Cost Used Time Time

56,577 449 0% | 1% 7 | 405.55 49 1.25 39.54
55,978 449 0% | 1% 6 | 407.17 49 1.12 114.53
56,212 453 0% | 1% 8 | 405.54 49 1.12 179.46
55,691 452 0% | 1% 8 | 405.29 49 1.12 156.15
56,116 453 0% | 1% 6 | 405.20 49 1.13 48.00
54,270 445 65% | 68% 6 | 406.24 49 1.12 145.17
53,895 448 65% | 69% 7 | 405.33 49 1.12 131.40
54,447 447 65% | 68% 6 | 406.16 49 1.12 168.39
54,857 447 65% | 68% 6 | 408.17 50 1.12 175.52
54,833 444 65% | 65% 6 | 406.39 49 1.10 104.14
52,080 437 60% | 63% 6 | 405.43 49 1.09 21.27
51,617 439 60% | 62% 5 | 407.35 49 1.07 25.26
53,366 442 60% | 65% 6 | 406.06 49 1.08 118.21
53,248 440 60% | 65% 5 | 406.36 49 1.09 97.09
50,920 437 60% | 61% 5 | 406.42 49 1.05 29.45
50,076 432 55% | 59% 5 | 406.01 49 1.05 122.29
47,831 431 55% | 56% 4 | 406.46 49 1.03 90.08
52,195 439 55% | 62% 5 | 406.04 49 1.10 42.57
50,076 435 55% | 59% 5 | 408.02 49 1.04 17.38
51,897 434 55% | 63% 5 | 407.19 49 1.08 157.23

Table B.7: TRAM - Complete Morning Results (2 pt duties)

Appendix B 199 Morning Results
Potential | Work Sched | Duties | BUILD | SCHED
Duties | Pieces | T% | A% | #U | Cost Used Time Time
55,640 309 70% | 73% 5 | 490.59 53 1.05 55.48
56,918 310 70% | 74% 5 | 492.13 53 1.08 60.05
54,711 307 70% | 1% 4 | 491.21 53 1.05 42.34
58,473 313 70% | 78% 5 | 491.19 53 1.10 53.37
57,049 311 70% | 76% 5 | 494.10 53 1.08 55.23
53,350 305 65% | 69% 4 | 493.46 53 1.04 64.39
52,692 302 65% | 65% 3 | 489.36 53 1.03 47.21
53,912 306 65% | T0% 3 | 492.53 53 1.04 53.52
53,699 305 65% | 69% 3 | 498.35 53 1.05 71.21
51,542 302 65% | 65% 4 | 498.42 53 1.02 51.46
50,968 300 60% | 63% 3 | 501.16 53 1.00 50.29
50,947 301 60% | 64% 3 | 499.14 53 1.01 56.39
52,177 302 60% | 65% 4 | 494.36 53 1.03 53.05
50,678 299 60% | 62% 3 | 498.12 53 1.04 67.17
51,237 301 60% | 64% 3 | 498.53 53 1.01 50.27
49,250 297 55% | 59% 2 | 499.20 53 0.59 49.11
49,421 296 55% | 58% 3 | 494.55 53 1.01 55.35
48,525 295 55% | 57% 3 | 493.46 53 0.58 44.00
49,765 297 55% | 59% 3 | 506.54 53 1.02 54.50
48,001 296 55% | 58% 3 | 502.53 53 0.57 44.52

Table B.8: R77A - Complete Morning Results (2 pt duties with long peak)

Potential | Work Sched | Duties | BUILD | SCHED
Duties | Pieces | T% | A% | #U | Cost Used Time Time
54,682 309 70% | 73% 4 | 491.50 53 1.08 51.57
54,318 308 0% | 72% 4 | 500.51 53 1.07 64.18
55,605 308 70% | 2% 4 | 490.36 53 1.06 52.34
57,654 314 70% | 79% 4 | 496.13 53 1.12 65.26
53,984 307 70% | 1% 4 | 509.48 53 1.04 44.04
54,486 306 65% | 70% 3 | 490.45 53 1.04 61.10
52,431 303 65% | 66% 4 | 493.02 53 1.02 53.19
53,939 304 65% | 67% 4 | 490.45 53 1.04 49.57
53,972 305 65% | 69% 4 | 504.21 53 1.03 75.34
53,095 304 65% | 67% 4 | 495.02 53 1.04 46.16
50,556 299 60% | 62% 3 | 499.09 53 1.04 61.41
50,283 298 60% | 60% 3 | 500.24 53 1.00 49.53
52,178 301 60% | 64% 3 | 491.36 53 1.03 67.01
51,241 300 60% | 63% 3 | 507.08 53 1.02 53.00
51,948 301 60% | 64% 3 | 496.15 53 1.03 49.21
48,689 296 55% | 57% 2 | 494.25 53 0.58 78.46
48,440 295 55% | 58% 3 | 503.25 53 0.57 49.32
47,949 294 55% | 56% 2 | 497.21 53 0.56 45.10
49,563 296 55% | 58% 3 | 495.47 53 1.00 47.03
48,116 295 55% | 57% 3 | 495.31 53 0.59 56.04

Table B.9: R77A - Complete Morning Results (2 pt duties with short peak)

Appendix B 200 Morning Results
Potential | Work Sched | Duties | BUILD | SCHED
Duties | Pieces | T% | A% | #U | Cost Used Time Time

54,142 308 70% | 2% 3 | 493.52 53 1.05 55.40
53,998 308 70% | 2% 3 | 494.20 53 1.04 63.30
53,546 307 70% | 1% 4 | 501.52 53 1.04 62.58
54,895 308 0% | 2% 4 | 497.34 53 1.05 62.03
55,680 310 70% | 74% 3 | 493.08 53 1.06 61.30
52,5622 305 65% | 69% 3 | 497.32 53 1.04 73.01
52,698 304 65% | 67% 3 | 498.04 53 1.04 57.15
52,431 306 65% | 0% 3 | 499.40 53 1.02 37.30
51,712 302 65% | 65% 3 | 501.18 53 1.01 40.35
52,996 305 65% | 69% 3 | 501.42 53 1.04 61.47
50,642 301 60% | 64% 3 | 501.36 53 1.00 52.56
50,479 301 60% | 64% 2 | 502.43 53 1.00 54.47
50,957 301 60% | 64% 3 | 497.42 53 1.00 41.18
50,421 301 60% | 64% 3 | 504.09 53 1.00 47.08
50,027 300 60% | 63% 3 | 500.04 53 1.05 64.20
46,361 294 55% | 56% 2 | 489.05 53 0.57 46.45
47,281 295 55% | 57% 2 | 490.12 53 0.56 49.19
47,488 296 55% | 58% 2 NS NS 0.56
47,986 296 55% | 58% 2 | 498.09 53 0.57 51.17
48,677 296 55% | 58% 2 | 503.16 53 0.58 62.55

Table B.10: R77A - Complete Morning Results (2 pt duties with no peak)

Potential | Work Sched | Duties | BUILD | SCHED
Duties | Pieces | T% | A% | #U | Cost Used Time Time
52,648 464 70% | 2% 5 | 596.50 69 3.29 91.14
52,670 465 0% | 2% 6 | 596.25 69 3.32 100.01
53,868 468 70% | 3% 5 | 596.15 69 3.42 69.22
51,928 460 70% | 70% 6 | 596.22 69 3.34 93.36
51,171 462 70% | 70% 5 | 596.44 69 3.30 117.54
51,591 459 65% | 69% 5 | 596.48 69 3.28 90.32
50,617 460 65% | 69% 4 | 597.18 69 3.25 18.51
47,398 454 65% | 66% 4 | 597.37 69 3.11 19.55
51,180 457 65% | 67% 5 | 597.30 69 3.26 19.29
53,780 469 65% | 74% 5 | 597.30 69 3.32 20.46
49,194 456 60% | 66% 4 | 597.06 69 3.02 23.12
44,438 451 60% | 61% 3 | 9596.58 69 2.57 18.36
45,953 451 60% | 61% 3 | 597.41 69 2.50 12.24
47,907 454 60% | 64% 4 | 597.07 69 3.07 14.32
45,728 451 60% | 61% 4 | 597.27 69 3.01 25.31
42,487 447 55% | 58% 3 | 599.26 69 2.51 31.21
46,078 454 55% | 63% 3 | 598.47 69 3.09 24.02
46,702 452 55% | 62% 3 | 598.21 69 3.02 26.54
42,335 447 55% | 57% 3 | 596.57 69 2.49 15.27
42,712 448 55% | 58% 3 | 597.56 69 1.49 14.13

Table B.11: R61 - Complete Morning Results (2 pt duties)

Appendix B 201 Morning Results
Potential | Work Sched | Duties | BUILD | SCHED
Duties | Pieces | T% | A% | #U | Cost Used Time Time
68,675 807 0% | 1% 4 | 1162.26 133 26.00 39.23
69,967 807 0% | 2% 4 | 1161.37 133 25.00 53.26
74,734 809 70% | 5% 4 | 1161.27 133 27.00 43.39
72,835 796 0% | 2% 4 | 1161.59 133 26.00 68.33
72,819 800 0% | 72% 4 | 1165.56 133 27.00 84.37
67,902 786 65% | 66% 3 | 1163.46 133 23.00 74.27
62,263 782 65% | 65% 3| 1167.31 133 20.00 32.21
66,430 784 65% | 65% 3 | 1163.47 133 22.00 27.53
68,595 790 65% | 67% 3 | 1164.09 133 26.00 77.41
66,102 787 65% | 68% 3 | 1161.38 133 22.00 58.28
64,553 780 60% | 63% 3 | 1165.59 133 22.00 69.35
65,722 780 60% | 63% 3 | 1169.35 133 20.00 79.18
62,771 e 60% | 65% 3 | 1162.09 133 22.00 30.25
63,643 782 60% | 65% 3| 1162.26 133 22.00 34.11
58,408 771 60% | 62% 3 | 1164.00 133 18.00 25.56
56,733 767 50% | 59% 3 | 1161.32 133 17.00 24.46
49,813 743 50% | 51% 2 | 1169.25 133 15.00 55.36
52,574 748 50% | 52% 2 | 1164.17 133 15.00 23.53
53,677 748 50% | 51% 2 | 1165.19 133 16.00 21.35
52,347 742 50% | 51% 2 | 1165.30 133 16.00 45.41

Table B.12: UMAE - Complete Morning Results (2/3 pt duties)

Appendix C

Evening Results

Potential | Work Sched | Duties | BUILD | SCHED
Duties | Pieces | T% | A% | #U | Cost Used Time Time
33,340 142 0% | 1% 10 | 122.47 14 4.00 2.49
34,898 143 0% | 73% 9 | 125.01 14 4.19 4.16
33,916 | 142 | 70% | 1% 8 | 122.39 14 4.05 2.25
34,961 144 0% | 75% 9 | 123.54 14 4.20 3.59
34,244 142 70% | 1% 9 | 121.26 14 4.12 2.11
32,615 140 65% | 68% 7| 121.26 14 4.03 2.32
32,620 140 65% | 68% 9 | 122.46 14 3.51 2.26
32,150 141 65% | 69% 7| 122.47 14 3.53 2.10
33,235 140 65% | 68% 6 | 125.01 14 4.02 5.19
31,360 139 65% | 66% 7 | 122.01 14 3.37 2.32
30,260 137 60% | 63% 5 | 121.26 14 3.31 1.49
30,707 138 60% | 64% 5 | 126.03 14 3.32 2.47
30,084 137 60% | 63% 6 | 121.42 14 3.24 2.15
28,665 136 60% | 61% 4 | 121.26 14 3.05 1.58
30,971 136 60% | 61% 6 | 123.31 14 3.38 3.03
27,982 134 55% | 57% 5 | 122.47 14 3.02 1.53
27,271 133 55% | 55% 5 | 124.31 14 2.55 4.12
29,928 135 55% | 59% 5 | 122.53 15 3.25 7.49
27,894 133 55% | 55% 5 | 121.26 14 3.05 2.17
28624 | 134 | 55% | 57% 6 | 121.08 15 3.08 2.41

Table C.1: HEO1 - Complete Evening Results (1/2/3/4 pt duties with short peak)

202

Appendix C 203 Evening Results
Potential | Work Sched | Duties | BUILD | SCHED
Duties | Pieces | T% | A% | #U | Cost Used Time Time
32,627 | 142 70% | 1% 8 | 123.03 14 3.57 2.50
35,573 | 144 | 70% | 5% 9 | 121.48 14 4.38 2.34
33,757 142 0% | 1% 11 | 121.48 14 4.11 3.32
34,731 142 0% | 1% 12 | 122.57 14 4.28 2.49
33,555 142 70% | 1% 10 | 121.42 14 4.16 2.22
31,967 | 140 | 65% | 68% 8 | 122.41 14 3.47 3.40
33,256 141 65% | 0% 9 | 121.42 14 4.10 2.13
30,333 139 | 656% | 66% 71 121.47 15 3.33 13.26
33,285 140 | 65% | 68% 8 | 121.26 14 4.11 2.21
32,492 | 139 | 65% | 66% 8 | 121.26 14 4.24 2.21
30,214 136 | 60% | 61% 6 | 122.43 15 3.45 7.57
29,744 137 | 60% | 63% 7 1 121.26 14 3.40 4.07
29,888 137 | 60% | 63% 6 | 122.47 14 3.32 2.07
30,897 | 137 | 60% | 63% 6 | 121.26 14 3.55 3.45
28,934 136 | 60% | 61% 6 | 121.26 14 3.23 2.32
28,347 | 133 55% | 55% 5 | 121.26 14 3.11 1.55
27,908 133 55% | 55% 6 | 124.03 14 3.05 2.08
29,372 134 | 55% | 57% 4 | 122.00 15 3.33 7.00
27,901 134 | 55% | 57% 5 | 124.46 14 3.10 2.49
28,497 | 133 55% | 55% 51 121.47 14 3.20 1.53

Table C.2: HEO1 - Complete Evening Results (1/2/3/4 pt duties with long peak)

Potential | Work Sched | Duties | BUILD | SCHED
Duties | Pieces | T% | A% | #U | Cost Used Time Time
32,303 142 0% | 1% 8 | 123.23 14 3.45 3.00
34,369 144 70% | 75% 9 | 122.18 14 4.12 2.52
33,779 143 0% | 1% 8 | 123.17 14 4.04 3.57
32,828 142 0% | 1% 10 | 124.18 14 3.53 5.10
33,116 142 70% | 1% 10 | 125.20 14 3.55 7.15
31,587 141 65% | 69% 8 | 123.54 14 3.38 2.38
31,361 139 | 65% | 66% 8 | 121.26 14 3.39 2.59
31,331 140 65% | 68% 8 | 121.26 14 3.34 3.38
31,432 139 65% | 66% 7| 122.18 14 3.37 2.37
29,685 139 65% | 66% 8 | 123.32 14 3.16 2.01
29,526 138 60% | 64% 5 | 122.18 14 3.18 2.45
28,746 136 60% | 61% 6 | 122.47 14 3.09 3.33
28,621 | 138 | 60% | 64% 6 | 124.29 14 3.03 3.11
28,832 136 60% | 61% 6 | 124.07 14 3.10 4.38
29,054 136 60% | 61% 5 | 122.54 14 3.11 2.14
29,511 134 55% | 57% 5 | 123.00 14 3.08 3.10
28,545 135 55% | 59% 6 | 123.19 14 3.08 2.31
28,752 134 55% | 57% 6 | 122.25 14 3.11 1.56
29,062 135 55% | 59% 5 | 122.47 14 3.10 1.49
29,267 135 55% | 59% 5 | 121.52 15 3.17 4.58

Table C.3: HEO1 - Complete Evening Results (1/2/3/4 pt duties with no peak)

Appendix C 204 Evening Results
Potential | Work Sched | Duties | BUILD | SCHED
Duties | Pieces | T% | A% | #U | Cost Used Time Time
7,534 157 70% | 70% 3 | 223.58 24 0.17 0.35
7,454 159 70% | 75% 5 | 226.31 24 0.17 0.54
7,564 158 70% | 73% 3 | 225.53 24 0.17 0.40
7,429 158 70% | 73% 4 | 224.12 24 0.17 0.27
7,332 157 70% | 70% 3 | 223.51 24 0.17 0.27
7,282 155 65% | 66% 3| 223.45 24 0.15 0.27
7,049 156 65% | 68% 3| 223.45 24 0.15 0.27
7,449 156 65% | 68% 5 | 227.48 24 0.17 0.56
7,189 155 65% | 66% 4 | 225.16 24 0.17 0.34
7,028 155 65% | 66% 3| 226.12 24 0.16 0.29
7,238 154 60% | 64% 3| 226.03 24 0.16 1.03
7,144 154 60% | 64% 3 | 225.47 24 0.16 1.55
7,145 154 60% | 64% 3| 223.45 24 0.15 0.29
6,843 153 60% | 61% 3 | 223.56 24 0.15 0.25
7,063 154 60% | 64% 3 | 224.56 24 0.15 2.25
6,401 151 55% | 57% 3| 224.12 24 0.14 0.30
6,836 | 152 | 55% | 59% 3 | 226.57 24 0.14 2.01
6,706 152 55% | 59% 3| 225.46 24 0.15 0.36
6,760 152 55% | 59% 3| 226.17 24 0.14 0.58
6,716 151 55% | 57% 3| 224.48 24 0.14 0.32
Table C.4: R222 - Complete Evening Results (2 pt duties)
Potential | Work Sched | Duties | BUILD | SCHED
Duties | Pieces | T% | A% | #U | Cost Used Time Time
15,672 204 70% | 75% 6 | 223.21 27 0.45 8.50
14,197 199 70% | 70% 5 | 223.21 27 0.52 7.54
15,895 204 0% | 5% 5 | 223.21 27 0.45 19.57
14,836 203 70% | 73% 5 | 223.21 27 0.45 9.51
14,830 202 0% | 72% 6 | 223.21 27 0.55 5.09
13,491 | 199 | 65% | 67% 5 | 223.21 27 0.41 9.00
13,762 200 65% | 67% 4 | 223.28 27 0.46 4.38
13,239 196 65% | 66% 5 | 223.21 27 0.40 3.55
13,563 196 65% | 66% 4 | 223.21 27 0.58 10.33
13,370 197 65% | 67% 6 | 223.28 27 0.40 17.01
12,400 194 60% | 63% 4 | 223.21 27 0.37 12.00
12,762 195 60% | 64% 5 | 223.28 27 0.50 20.32
12,610 193 60% | 61% 4 | 223.28 27 0.37 12.37
12,716 | 197 | 60% | 64% 4 | 223.28 27 0.37 21.01
12,614 196 60% | 61% 4 | 223.28 27 0.52 8.41
12,682 192 55% | 60% 3| 223.28 27 0.49 8.17
12,787 192 55% | 60% 4 | 223.21 27 0.38 9.10
11,903 191 55% | 58% 4 | 223.28 27 0.45 5.05
12,593 195 55% | 58% 3| 223.21 27 0.36 1.53
11,806 192 55% | 56% 3| 223.38 27 0.34 26.04

Table C.5: EA2 - Complete Evening Results (2 pt duties)

Appendix C 205 Evening Results
Potential | Work Sched | Duties | BUILD | SCHED
Duties | Pieces | T% | A% | #U | Cost Used Time Time
14,729 192 0% | 72% 4 | 381.08 39 0.14 1.15
17,862 202 70% | 6% 5 | 380.59 39 0.15 1.35
16,711 199 70% | 1% 4 | 380.21 39 0.14 3.32
16,780 200 70% | 73% 4 | 380.51 39 0.14 1.35
16,861 200 0% | 73% 4 | 379.56 39 0.15 1.32
16,060 197 65% | 68% 3 | 380.11 39 0.14 1.51
16,172 198 65% | 69% 3 | 382.32 39 0.14 1.24
15,252 196 65% | 66% 3 | 380.21 39 0.14 0.59
16,681 197 65% | 68% 3 | 381.15 39 0.14 2.07
15,909 197 65% | 68% 3 | 381.27 39 0.14 3.06
14,960 193 60% | 61% 2 | 382.37 39 0.14 4.50
15,399 194 60% | 63% 3 | 384.47 39 0.14 1.01
14,958 194 60% | 63% 2 | 378.43 39 0.14 0.49
15,091 195 60% | 64% 3 | 380.53 39 0.14 1.38
15,526 195 60% | 64% 3 | 380.53 39 0.14 1.28
13,854 190 55% | 56% 2 | 385.02 39 0.13 1.04
13,824 190 55% | 56% 2 | 385.15 39 0.13 0.51
15,105 192 55% | 59% 2 | 380.18 39 0.13 1.26
13,970 192 55% | 58% 2 | 380.20 39 0.13 1.27
14,729 192 55% | 59% 2 | 381.08 39 0.14 1.12
Table C.6: R207 - Complete Evening Results (2 pt duties)
Potential | Work Sched | Duties | BUILD | SCHED
Duties | Pieces | T% | A% | #U | Cost Used Time Time
50,095 439 70% | 70% 7 | 406.49 49 1.06 115.37
53,744 443 70% | 73% 8 | 407.55 49 1.20 73.00
53,141 443 0% | 73% 9 | 407.29 49 1.15 87.33
52,577 443 70% | 73% 8 | 408.11 49 1.07 139.03
51,665 442 0% | 73% 10 | 406.55 49 1.05 98.46
49,680 433 65% | 69% 7 | 407.08 49 1.03 117.45
47,225 432 65% | 66% 6 | 408.57 49 0.59 99.55
51,815 437 65% | 1% 7 | 406.15 49 1.07 151.34
46,764 432 65% | 65% 6 | 406.30 49 0.58 112.03
48,450 435 65% | 68% 7 | 406.31 49 1.02 135.06
47,709 426 60% | 64% 6 | 406.08 49 0.59 156.43
43,557 424 60% | 60% 5 | 406.50 49 0.55 48.31
49,234 432 60% | 66% 6 | 406.56 49 1.02 111.58
45,774 425 60% | 63% 6 | 407.18 49 0.59 114.31
48,125 430 60% | 65% 6 | 408.32 49 1.01 130.35
42,751 419 55% | 58% 5 | 407.33 49 0.52 79.06
42,736 418 55% | 57% 5 | 407.38 49 0.53 95.25
43,762 420 55% | 58% 6 | 407.50 49 0.55 40.10
42,618 415 55% | 57% 5 | 407.12 49 0.52 11.51
42,112 423 55% | 58% 5 | 406.51 49 0.52 104.35

Table C.7: TRAM - Complete Evening Results (2 pt duties)

Appendix C 206 Evening Results
Potential | Work Sched | Duties | BUILD | SCHED
Duties | Pieces | T% | A% | #U | Cost Used Time Time
54,031 327 70% | 76% 6 | 494.10 53 1.00 68.16
53,398 325 70% | 74% b} NS 53% 1.02 73.27
51,701 322 0% | 1% 4 | 493.54 53 0.58 66.05
53,438 326 70% | 75% 5 | 490.37 53 0.59 58.29
52,549 323 0% | 72% 5 | 491.20 53 1.04 59.50
50,067 319 65% | 68% 5 | 498.05 53 0.56 54.16
47,699 316 65% | 65% 3 | 495.42 53 0.58 51.34
49,393 318 65% | 67% 4 | 494.55 53 0.54 61.05
49,223 317 65% | 66% 4 | 495.40 53 0.57 71.24
50,509 319 65% | 68% 4 | 494.48 53 0.56 57.44
47,389 311 60% | 61% 3 | 498.01 53 0.57 65.45
47.626 313 60% | 63% 3| 496.14 53 0.52 45.29
48,554 315 60% | 64% 4 | 495.26 53 0.58 66.16
48,745 315 60% | 64% 4 | 495.31 53 0.54 60.09
47,426 312 60% | 62% 3 | 495.24 53 0.59 52.02
47,075 310 55% | 60% 3| 494.43 53 0.56 50.02
45,699 310 55% | 60% 3 | 493.48 53 0.56 56.45
45,168 309 55% | 59% 3 | 500.58 53 0.53 57.10
45,141 308 55% | 58% 3| 496.17 53 0.55 57.07
45,527 306 55% | 56% 3 | 499.38 53 0.52 48.50
Table C.8: R77A - Complete Evening Results
Potential | Work Sched | Duties | BUILD | SCHED
Duties | Pieces | T% | A% | #U | Cost Used Time Time
69,787 501 70% | 76% 8 | 596.49 69 4.36 136.00
61,378 492 70% | 70% 7 | 596.42 69 4.11 113.40
63,184 498 0% | 72% 6 | 597.09 69 4.16 80.38
64,447 497 70% | 4% 6 | 596.44 69 4.12 136.49
66,088 496 0% | 1% 6 | 597.01 69 4.12 126.17
60,150 491 65% | 68% 5 | 597.51 69 4.06 71.14
60,383 493 65% | 68% 5 | 598.51 69 4.22 42.10
62,001 489 65% | 66% 5 | 596.42 69 3.58 33.09
63,292 494 65% | 70% 7 | 597.50 69 4.11 33.49
60,951 495 65% | 69% 6 | 597.46 69 4.03 40.49
60,630 490 60% | 64% 6 | 598.37 69 3.55 42.33
57,704 485 60% | 62% 5 | 596.38 69 3.50 29.18
58,656 484 60% | 62% 5 | 596.57 69 3.51 28.26
58,431 491 60% | 65% 5 | 596.33 69 3.34 26.03
61,287 492 60% | 68% 6 | 597.10 69 3.56 49.01
53,641 484 55% | 59% 5 | 597.27 69 3.21 28.20
54,251 480 55% | 56% 4 | 598.00 69 3.33 23.23
55,022 480 55% | 56% 4 | 599.16 69 3.35 52.57
56,821 485 55% | 60% 4 | 599.16 69 3.40 24.46
53,842 478 55% | 56% 4 | 597.08 69 3.29 26.12

Table C.9: R61 - Complete Evening Results (2 pt duties)

Appendix C 207 Evening Results
Potential | Work Sched | Duties | BUILD | SCHED
Duties | Pieces | T% | A% | #U Cost Used Time Time
92,114 850 0% | 76% 4 | 1164.23 133 37.00 57.30
92,905 857 70% | 73% 4 | 1162.13 133 43.00 104.53
94,096 867 0% | TT% 4 | 1168.11 133 44.00 56.41
96,317 866 70% | 76% 4 | 1162.09 133 45.00 96.33
92,341 852 0% | 74% 4 | 1162.21 133 43.00 91.21
89,570 854 656% | 65% 3 | 1165.00 133 37.00 60.21
89,929 858 65% | 0% 4 | 1169.51 133 37.00 76.20
87,620 858 65% | 65% 3 NS NS 38.00 128.12
91,158 848 65% | 65% 3 | 1160.29 133 41.00 53.11
87,751 850 65% | 65% 3 | 1167.57 133 37.00 57.56
90,161 846 60% | 63% 3 | 1166.16 133 36.00 52.37
91,517 853 60% | 64% 3 | 1175.47 133 37.00 109.57
86,856 832 60% | 61% 3 | 1166.48 133 35.00 62.12
82,994 845 60% | 61% 3| 1171.46 133 33.00 72.14
86,389 838 60% | 61% 3 | 1168.19 133 35.00 64.00
85,992 848 55% | 60% 3 | 1164.59 133 34.00 53.45
83,892 836 55% | 57% 2 | 1176.13 133 36.00 123.43
86,076 840 55% | 60% 3| 1166.32 133 35.00 50.59
85,123 843 55% | 58% 3 | 1168.56 133 34.00 50.15
82,588 838 55% | 58% 3 | 1165.43 133 36.00 54.11

Table C.10: UMAE - Complete Evening Results (2/3 pt duties)

Appendix D

Combined Results

Potential | Work Sched | Duties | BUILD | SCHED
Duties | Pieces | T% | Cost Used Time Time
24,933 128 70% | 124.01 14 3.01 1.54
28,138 129 70% | 121.48 14 3.24 2.06
24,466 126 70% | 123.32 14 2.30 2.11
25,569 127 70% | 123.08 14 2.41 1.51
24,142 126 0% | 122.25 14 2.34 1.43
22,084 122 65% | 124.04 14 2.08 1.35
22,665 123 65% | 123.52 14 2.20 1.24
20,188 121 65% | 121.44 15 1.45 3.14
23,678 122 65% | 121.26 14 2.28 1.19
22,677 122 65% | 121.42 14 2.12 1.12
18,677 115 60% | 122.07 15 1.46 1.38
18,241 117 60% | 123.10 14 1.33 1.31
18,017 117 60% | 126.01 14 1.28 2.29
18,241 117 60% | 123.10 14 1.34 1.40
18,492 116 60% | 121.26 14 1.33 1.834
16,027 111 55% | 122.41 14 1.18 1.42
15,331 110 55% | 124.19 14 1.13 0.50
16,659 110 55% | 122.13 15 1.26 1.32
16,533 112 55% | 126.39 14 1.18 0.49
16,301 | 111 | 55% | 123.02 14 1.19 044

Table D.1: HE01 - Combined Morning/Evening Results (2/3/4 pt duties)

208

Appendix D 209 Combined Results
Potential | Work Sched | Duties | BUILD | SCHED
Duties | Pieces | T% | Cost Used Time Time
3,412 129 70% | 225.59 24 0.08 0.24
3,286 131 0% | 227.42 24 0.08 0.09
3,344 130 70% | 229.31 24 0.08 0.09
3,326 130 70% | 226.51 24 0.08 0.15
3,380 130 70% | 226.10 24 0.09 0.13
3,053 125 65% | 227.45 24 0.06 0.07
3,024 127 65% | 225.55 24 0.07 0.19
3,208 127 65% | 228.40 24 0.07 0.09
3,086 126 65% | 228.19 24 0.06 0.08
2,984 125 65% | 227.59 24 0.06 0.12
2,869 123 60% | 227.06 24 0.06 0.07
2,951 123 60% | 228.23 24 0.06 0.18
2,635 122 60% | 226.35 24 0.06 0.09
2,684 122 60% | 226.39 24 0.05 0.07
2,755 122 60% | 226.36 24 0.06 0.10
2,266 118 55% | 228.42 24 0.04 0.07
2,352 119 55% | 229.38 24 0.06 0.07
2,370 119 55% | 228.23 24 0.05 0.07
2,475 119 55% | 229.41 24 0.06 0.08
2,428 118 55% | 228.36 24 0.05 0.07

Table D.2: R222 - Combined Morning/Evening Results (2 pt duties)

Potential | Work Sched | Duties | BUILD | SCHED
Duties | Pieces | T% | Cost Used Time Time

9,930 184 70% | 223.21 27 0.29 2.21
9,178 183 70% | 223.28 27 0.26 58.22
10,738 188 70% | 223.28 27 0.30 25.54
9,557 185 70% | 223.21 27 0.27 3.04
9,865 186 70% | 223.28 27 0.28 15.39
8,139 179 65% | 223.21 27 0.22 6.30
8,266 179 65% | 223.28 27 0.22 3.52
7,658 177 65% | 223.28 27 0.21 1.00
8,282 178 65% | 223.35 27 0.22 22.52
7,919 180 65% | 223.28 27 0.22 2.27
6,858 172 60% | 223.35 27 0.17 4.02
7,116 174 60% | 223.42 27 0.20 1.52
7,402 173 60% | 223.28 27 0.22 1.52
7,159 171 60% | 223.28 27 0.21 3.12
7,420 173 60% | 223.28 27 0.21 5.16
6,755 168 55% | 223.49 27 0.17 38.51
6,543 168 55% | 223.30 27 0.19 3.58
6,045 167 55% | 223.42 27 0.18 3.50
6,569 165 55% | 223.36 27 0.19 1.40
5,976 167 55% | 223.42 27 0.17 5.29

Table D.3: EA2 - Combined Morning/Evening Results (2 pt duties)

Appendix D 210 Combined Results
Potential | Work Sched | Duties | BUILD | SCHED
Duties | Pieces | T% | Cost Used Time Time
7,725 176 70% | 381.26 39 0.06 0.29
9,170 186 70% | 380.59 39 0.08 1.07
8,820 184 70% | 380.24 39 0.08 1.04
8,883 185 70% | 381.25 39 0.07 2.25
8,555 184 70% | 380.48 39 0.08 0.58
8,192 180 65% | 380.41 39 0.07 1.02
8,059 179 65% | 383.38 39 0.08 0.34
7,155 177 65% | 380.59 39 0.06 1.03
7,602 178 65% | 381.22 39 0.07 1.00
7,826 179 65% | 383.50 39 0.07 0.49
6,888 172 60% | 383.52 39 0.06 0.30
7,150 174 60% | 386.39 39 0.06 0.40
7,084 174 60% | 380.08 39 0.06 0.29
7,145 175 60% | 381.23 39 0.06 1.24
7,422 175 60% | 382.23 39 0.06 1.13
6,064 168 55% | 386.43 39 0.05 0.21
5,672 166 55% | 387.28 39 0.05 0.18
6,388 169 55% | 381.23 39 0.05 0.37
6,084 167 55% | 381.53 39 0.05 0.32
6,179 168 55% | 382.07 39 0.05 0.22

Table D.4: R207 - Combined Morning/Evening Results (2 pt duties)

Potential | Work Sched | Duties | BUILD | SCHED
Duties | Pieces | T% | Cost Used Time Time
30,964 402 70% | 407.41 49 0.37 11.16
33,315 405 70% | 407.41 49 0.39 121.46
32,872 409 70% | 406.46 49 0.41 111.26
32,404 408 70% | 407.33 49 0.40 146.02
32,248 408 70% | 406.35 49 0.37 115.42
29,364 391 65% | 407.00 49 0.33 45.58
26,694 393 65% | 406.44 49 0.34 92.30
30,597 397 65% | 406.47 49 0.38 113.36
27,299 392 65% | 408.50 50 0.31 37.57
27,281 392 65% | 407.07 49 0.32 9.23
26,048 376 60% | 406.42 49 0.27 64.46
22,628 376 60% | 409.36 49 0.27 52.24
28,075 387 60% | 406.58 49 0.32 45.42
25,869 378 60% | 408.27 49 0.30 76.27
25,460 380 60% | 408.45 49 0.29 3.24
21,572 364 55% | 407.20 49 0.25 8.53
19,858 364 55% | 408.52 49 0.20 6.29
22,736 372 55% | 409.27 49 0.25 43.37
20,960 363 55% | 409.57 49 0.24 34.39
21,914 373 55% | 407.44 49 0.25 8.08

Table D.5: TRAM - Combined Morning/Evening Results (2 pt duties)

Appendix D 211 Combined Results
Potential | Work Sched | Duties | BUILD | SCHED
Duties | Pieces | T% | Cost Used Time Time
35,109 284 70% | 498.19 53 0.39 52.18
35,240 283 70% | 510.31 53 0.39 58.03
32,119 277 70% | 499.25 53 0.36 38.28
36,911 287 70% | 491.11 53 0.41 59.22
34,794 282 70% | 491.13 53 0.38 19.51
27,181 272 65% | 498.19 53 0.30 32.02
29,999 266 65% | 496.33 53 0.35 42.56
29,731 272 65% | 495.59 53 0.33 10.13
29,110 270 65% | 518.34 53 0.33 43.55
28,873 269 65% | 494.25 53 0.31 17.31
25,247 259 60% | 509.40 53 0.28 36.10
25,682 262 60% | 516.46 53 0.29 31.13
27,548 265 60% | 499.35 53 0.30 38.46
26,112 262 60% | 505.51 53 0.29 31.16
25,650 261 60% | 510.39 53 0.28 26.20
23,794 255 55% | 522.51 53 0.28 41.07
23,306 254 55% | 502.23 53 0.25 13.53
22,296 253 55% | 510.25 53 0.26 28.16
22,874 253 55% | 502.17 53 0.25 13.50
21,544 250 55% | 521.51 53 0.25 7.04

Table D.6: R77A - Combined Morning/Evening Results (2 pt duties)

Potential | Work Sched | Duties | BUILD | SCHED
Duties | Pieces | T% | Cost Used Time Time
35,782 426 70% | 596.38 69 2.06 87.09
31,391 417 70% | 596.40 69 1.56 53.12
33,266 424 70% | 597.21 69 1.59 74.15
32,686 417 70% | 598.33 69 2.02 17.34
32,597 418 70% | 597.28 69 2.01 70.07
29,754 411 65% | 598.57 69 1.52 10.27
29,818 412 65% | 596.59 69 1.48 11.43
28,495 402 65% | 597.37 69 1.31 10.35
30,831 411 65% | 597.33 69 1.50 12.27
29,807 415 65% | 598.14 69 1.47 17.57
26,776 401 60% | 598.38 69 1.39 9.51
23,993 391 60% | 597.24 69 1.27 7.30
25,776 390 60% | 598.01 69 1.34 10.39
26,950 404 60% | 597.52 69 1.35 14.39
23,939 393 60% | 597.44 69 1.25 42.19
21,290 389 55% | 599.18 69 1.17 9.49
21,090 381 55% | 597.41 69 1.11 6.03
22,215 383 55% | 598.46 69 1.17 46.59
22,670 387 55% | 597.53 69 1.25 7.03
21,657 384 55% | 597.19 69 1.17 12.25

Table D.7: R61 - Combined Morning/Evening Results (2 pt duties)

Appendix D 212 Combined Results
Potential | Work Sched | Duties | BUILD | SCHED
Duties Pieces | T% Cost Used Time Time
61,820 785 70% | 1164.44 133 18.00 34.35
59,879 788 70% | 1162.13 133 20.00 42.09
66,653 803 70% | 1168.24 133 23.00 37.55
66,769 787 70% | 1162.02 133 21.00 30.04
63,742 776 70% | 1166.31 133 21.00 70.06
56,922 762 65% | 1170.11 133 16.00 61.27
52,030 765 65% | 1170.09 133 15.00 30.44
60,030 789 65% | 1169.46 133 21.00 38.04
58,150 761 65% | 1162.32 133 20.00 26.33
53,759 765 65% | 1167.24 133 17.00 29.22
53,468 750 60% | 1169.01 133 16.00 27.22
55,653 756 60% | 1182.09 133 17.00 74.51
50,217 745 60% | 1164.50 133 15.00 23.19
48,696 751 60% | 1171.25 133 14.00 34.58
46,065 737 60% | 1172.04 133 13.00 23.19
44,501 735 | 55% | 1168.15 133 12.00 23.26
36,857 702 55% - 133* 9.00 72.46
40,834 708 55% | 1170.50 133 11.00 17.27
41,221 708 55% | 1174.30 133 11.00 43.31
38,799 706 55% | 1172.48 133 9.00 61.53

Table D.8: UMAE - Combined Morning/Evening Results (2/3 pt duties)

Appendix E

Differences Between New and Old

TRACS-II

As mentioned in Section 4 the version of TRACS-II used for the research carried out in
this thesis was a prototype to the version of TRACS-II available today.

There are several differences between the two versions. This section will list the differences
with regards to the components present in TRACS-II (it should be observed that the basic

system is the same). The current state of the art TRACS-II is described in [136, 41].

BUILD - The limit on the number of potential duties built is now much higher. In fact
[136] reports that BUILD has generated 1,500,000 duties in one problem (although

this is not typical).

SIEVE - As BUILD can product twice as many duties as before, SIEVE is no longer
used to trim the size of the set of duties generated. SIEVE is used either to prepare
for MERGE or, if needed, to cut down the set of duties generated by BUILD to
speed up the SCHEDULE process.

MERGE - Merge can now, effectively, cope with any number of duties.
P-Process - No longer used.

SCHEDULE - SCHEDULE can deal with 200,000+ potential duties now (the previous
limit was 100,000). The search tree in SCHEDULE is no longer limited to 500 nodes.

213

Index

AC-Lookahead (AC-L), 57 unary, 40
ant systems, 32 constraint graph, 40
closeness values, 33 constraint hypergraph, 41
pheromones, 32 constraint propagation, 44
arc consistency, 41 Constraint Satisfaction Problem (CSP),
support, 44 38
arity, 40 CREW-OPT, 26
CROSS

backjumping (BJ), 52

algorithm, 127
backmarking (BM), 54

constraints, 111
backtracking (BT), 50

CROSS Model, 105
bound variable, 39

Next Variable Domain, 109
bus crew, 3

Next variables, 106
bus workings

Pattern Variable Domain, 107

morning period, 106
Pattern variables, 106

COBRA, 64 Prev Variable Domain, 110

column generation Previous variables, 106
TRACS-II, 79 regular duty, 112

COMPACS, 16 search strategy

compound label, 39 ContinueNextChain, 132

conflict directed backjumping (CBJ), 53 ContinuePrevChain, 133

constraint (CSP), 39 StartNewChain, 129
binary, 40 BindFirstVariable, 130
posting, 44 simplified algorithm, 126
tightening, 48 culprit labellings, 52

214

215 INDEX
domain (CSP), 38 Micro, 25
duty, 3 HOT, 17
cost, b HOT-II, 17

regular, 112
split duty, 4
three part, 4

two part, 4

evening period, 141

EXPRESS, 23
full lookahead (AC-L), 57

general CSP, 40

generalised arc consistency (GAC), 46

genetic algorithms, 27
aggressive mutation, 31
chromosomes, 27
combinatorial traits, 31
convergence, 28
crossover, 27
fertilized cover, 28
greedy crossover, 29
mutation, 28
optimizing mutations, 29
population, 27
repair heuristic, 31

graph-based backjumping (GBJ), 53

HASTUS, 24
Bus, 24
Macro, 25

ILOG Solver, 60
IlcGenerate(), 128
IlcInstantiate(), 128
reversible data type, 129

IMPACS, 22

INTERPLAN, 19

joinup, 4

k-consistency, 49

label, 39

mathematical driver scheduling methods
TRACS-II, 72

maximum mealbreak idle time, 4, 139

mealbreak, 4

mealbreak chain, 5, 86

mealbreak chain generation, 89
assignment method, 92
mathematical programming method,

94

network flow method, 93

minimum mealbreak length, 4

N-Queens problem, 51

node consistency, 41

overcover, 21

path consistency, 47

216 INDEX

peak, 88 maxspread routine, 13
peak vehicle, 88 onlybalter routine, 13
peaked schedule, 137 recut routine, 13

. . reduce routine, 12
relief opportunity, 3

stretchswop routine, 13
external, 105

. TRACS-II, 73
internal, 105

o branch and bound, 81
relief time, 3

BUILD, 73
RUCUS, 14)

DISPLAY, 82
RUCUS II, 14

P-Process, 77
IMPROVE module, 16

REDUCE, 80
run, 14

) SCHEDULE, 77
run cutting, 14

. SIEVE, 76
running board, 3

travel time, 4, 139
search

forward checking (FC), 56 unbound variable, 39

set covering, 21 value ordering, 59

TRACS-II, 72 variable ordering, 58
set partitioning, 21 variables
Sherali weight (TRACS-IT ILP), 78 current, 50
sign-off, 5 future, 50
sign-on, 5 past, 50
spell, 4 variables (CSP), 38
stretch, 4

work, 3

time window, 175

TRACS, 9
changends routine, 13
fixed relief opportunity, 10
halves routine, 13

marked relief opportunity, 10

