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ABSTRACT 
        The thesis is divided into three parts. The first part of the thesis describes the 

design and development of two prototypes of an ultra-low phase noise 3.8GHz 

dielectric resonator oscillator. The first prototype included vibration measurements 

with a reasonable phase noise measurements developed for Selex-ES. The phase noise 

for the first 3.8GHz oscillator is -117 dBc/Hz at 1kHz offset and -150 dBc/Hz at 

10kHz offset. The second prototype was the improved modular yet compact oscillator 

was then developed which demonstrated a significantly improved phase noise 

performance of -125.6 dBc/Hz at 1kHz offset and -153 dBc/Hz at 10kHz offset which 

is the lowest noise reported in the literature in this frequency band using a ceramic 

dielectric resonator.  

        In the second part of the thesis, a design and measurement of a high Q broad 

tuning aperiodic Bragg resonator operating at 10GHz is described. The resonator 

utilises an aperiodic arrangement of non (λg/4) low loss alumina plates (ℰr=9.75, loss 

tangent of ~1 to 2 ×10-5) mounted in a cylindrical metal waveguide. The insertion 

loss, S21, varied from -3.9 dB to -6.4 dB while the unloaded Q varies from 81,650 to 

61,020 over the tuning range of 100MHz (1%). 

        In the third part of the thesis, simulation, design and measurement of a low 

noise Bragg resonator oscillator operating at 10GHz is presented. The oscillators 

demonstrated a phase noise of -153 dBc/Hz at 10kHz offset and -123 dBc/Hz at 

1kHz offset for an unloaded Q of 190,000. To achieve these results extensive 

optimization of different transistors with different power level and noise figure has 

taken place.  



Table of Contents  

3 
 

TABLE OF CONTENTS 

 

ABSTRACT .............................................................................................................. 2 
LIST OF FIGURES .................................................................................................. 6 
LIST OF TABLES .................................................................................................. 13 
ACKNOWLEDGEMENTS ..................................................................................... 15 
DECLARATION .................................................................................................... 16 
CHAPTER 1 INTRODUCTION ............................................................................ 17 

1.1 Background .............................................................................................. 17 
1.2 Thesis objective ........................................................................................ 19 
1.3 Thesis Structure ....................................................................................... 21 

CHAPTER 2 OSCILLATORS AND PHASE NOISE ............................................ 24 

2.1 Feedback Oscillators ................................................................................ 24 
2.2 Oscillator characteristics .......................................................................... 25 
2.3 Oscillator Phase Noise .............................................................................. 27 

2.3.1 Thermal Noise ...................................................................................... 29 
2.3.2 Shot Noise ............................................................................................. 30 
2.3.3 Flicker Noise ......................................................................................... 31 
2.3.4 Everard’s Phase Noise Model ............................................................... 33 

2.4 Environmental Noise ................................................................................ 39 

2.4.1 Vibrations Sensitivity of Oscillators ..................................................... 39 

2.5 Cross Correlation Measurement System .................................................. 43 

CHAPTER 3 3.8GHz DIELECTRIC RESONATOR OSCILLATOR ................... 47 

3.1 Introduction ............................................................................................. 47 
3.2 Oscillator Elements .................................................................................. 49 
3.3 Amplifier .................................................................................................. 51 

3.3.1 Single Stage Amplifier using SiGe BFR380F ....................................... 53 
3.3.2 Push Pull Amplifier .............................................................................. 57 

3.4 Dielectric Resonator ................................................................................. 61 



Table of Contents  

4 
 

3.4.1 Simulations and Measurements ............................................................ 64 

3.5 Voltage Controlled Phase Shifter ............................................................. 70 

3.5.1 Topology and Design ............................................................................ 71 

3.6 Multi Section Single Layer Coupler ......................................................... 78 
3.7 Phase Noise Measurements ...................................................................... 83 
3.8 Vibration Measurements .......................................................................... 88 

3.8.1 Initial Vibration Measurements at University of York ........................ 88 
3.8.2 Final Vibration Measurements at Selex-ES .......................................... 91 

3.8.2.1 Spot frequency ............................................................................. 91 
3.8.2.2 Random Vibration Profile ............................................................ 95 

3.9 New Improved Oscillator Prototype ........................................................ 98 

3.9.1 Push Pull Amplifier .............................................................................. 99 
3.9.2 Dielectric Resonator ............................................................................ 102 
3.9.3 New Improved Electronic Phase Shifter .............................................. 105 
3.9.4 Multi Section Directional Coupler ....................................................... 110 
3.9.5 Mechanical Phase Shifter..................................................................... 110 
3.9.6 Phase Noise Measurements .................................................................. 113 
3.9.7 Residual Phase Noise Measurements ................................................... 117 

3.10 Conclusions.............................................................................................. 122 

CHAPTER 4 TUNABLE BRAGG RESONATOR ............................................... 124 

4.1 Introduction ............................................................................................ 124 
4.2 Resonator Modelling and Simulations ..................................................... 128 

4.2.1 Air Section ........................................................................................... 130 
4.2.2 Dielectric Section ................................................................................. 131 
4.2.3 End Wall ............................................................................................. 131 

4.3 Design and Construction ......................................................................... 134 
4.4 Initial Results .......................................................................................... 139 
4.5 New Prototype ........................................................................................ 141 

4.5.1 Measurement Results ........................................................................... 142 



Table of Contents  

5 
 

4.6 Conclusions.............................................................................................. 147 

CHAPTER 5 10GHz BRAGG RESONATOR OSCILLATOR ............................. 149 

5.1 Introduction ............................................................................................ 149 
5.2 Resonator ................................................................................................ 152 
5.3 Amplifiers ................................................................................................ 157 

5.3.1 Push-Pull Amplifier using the Infineon SiGe BFP620F transistors .... 158 
5.3.2 Broadband NBB-402 HBT Amplifier .................................................. 165 
5.3.3 Broadband NBB-312 HBT Amplifier .................................................. 172 
5.3.4 Single Stage Amplifier using SiGe BFU-730F transistors ................... 174 
5.3.5 TC200 Amplifier .................................................................................. 178 

5.4 Phase Noise Measurement of the 10GHz oscillators ............................... 181 
5.5 Conclusions.............................................................................................. 186 

CHAPTER 6 CONCLUSIONS AND FUTURE WORK ....................................... 187 

6.1 3.8GHz Oscillator .................................................................................... 187 
6.2 Tunable High Q Bragg Resonator ........................................................... 189 
6.3 10GHz Bragg Resonator Oscillator ......................................................... 190 

APPENDIX A ........................................................................................................ 192 

A.1 Resonator Experiments ........................................................................... 192 
A.2 One Port Measurements .......................................................................... 194 
A.3 Vibration Measurements ......................................................................... 197 
A.4 Bellows Construction .............................................................................. 200 

Bibliography ........................................................................................................... 202 

 



List of Figures   

6 
 

LIST OF FIGURES 

Figure 2.1: Simplified positive feedback oscillator. ............................................... 24 
Figure 2.2: Spectrum of an ideal oscillator. .......................................................... 26 
Figure 2.3: Typical spectrum of the oscillator with frequency harmonics. ........... 26 
Figure 2.4: Representation of the phase noise diagrammatically. ........................ 28 
Figure 2.5: Thevenin circuit for a noisy resistor. .................................................. 30 
Figure 2.6: Noise model of the silicon bipolar transistor. ..................................... 31 
Figure 2.7: Residual phase noise plot of a typical amplifier using a silicon bipolar 
transistor with a flicker noise corner of 10kHz. ...................................................... 32 
Figure 2.8: Equivalent circuit of the feedback oscillator. ..................................... 33 
Figure 2.9: Spectrum of an oscillator. .................................................................. 39 
Figure 2.10: Sidebands caused by vibration in an oscillator. ............................... 41 
Figure 2.11: Single channel residual phase noise measurement system. ............... 43 
Figure 2.12: Cross Correlation measurement setup using two HP11848A. .......... 45 
Figure 3.1: Oscillator block diagram using the feedback topology. ...................... 49 
Figure 3.2: Picture of the compact dielectric resonator oscillator with individual 
elements. The oscillator measures 125×115×40mm. ............................................... 51 
Figure 3.3: Momentum simulation using transmission lines of the radial stubs 
optimised at 3.8GHz. .............................................................................................. 54 
Figure 3.4: Smith chart plot of the radial stubs from 3GHz to 5GHz which 
shows the open circuit at 3.8GHz. .......................................................................... 54 
Figure 3.5: Single Stage amplifier using BFP380F for Ic=40mA and a VCE of 
4V. ........................................................................................................................... 55 
Figure 3.6: Simulated frequency response for a single stage amplifier using the 
SiGe BFP380F transistors. ..................................................................................... 56 
Figure 3.7: Push Pull Amplifier Block Diagram. .................................................. 58 
Figure 3.8: Simulated S Parameter response for a Push Pull Amplifier using the 
Rat Race couplers in Momentum ADS. .................................................................. 58 
Figure 3.9: Simulated noise figure using the PSPICE model imported in ADS. .. 59 
Figure 3.10: Comparison of the simulations and measurements of the Amplifier 
+ Coupler + Electronic Phase Shifter. ................................................................... 59 



List of Figures  

7 
 

Figure 3.11: Noise Figure Measurement setup for the 3.8GHz amplifier. ............ 60 
Figure 3.12: Power measurement setup for the 3.8GHz amplifiers using Marconi 
power meter 6960B. ................................................................................................ 61 
Figure 3.13: Electric and Magnetic fields for a solid resonator puck for TE01δ 
using CST at 3.8GHz. ............................................................................................. 62 
Figure 3.14: Electric and Magnetic fields for a new tubular resonator puck for 
TE01δ using CST at 3.8GHz. ................................................................................... 62 
Figure 3.15: The dielectric puck was mounted on a short alumina spacer and 
then bonded to the aluminum base using two-part epoxy. ..................................... 63 
Figure 3.16: CST model of the resonator using straight transmission lines. ........ 65 
Figure 3.17: Variation of Insertion Loss and Loaded Q vs length of the straight 
coupling transmission lines simulated using CST. .................................................. 66 
Figure 3.18: Experiment to set the right insertion loss and the loaded Q using 
the straight micro Strip lines for the resonator. ..................................................... 67 
Figure 3.19: Plot of Insertion Loss/Loaded Q vs length of the straight coupling 
transmission lines. ................................................................................................... 67 
Figure 3.20: Resonator response with a 6 GHz span where the TE01 mode can 
be seen at the centre of the plot. ............................................................................ 69 
Figure 3.21: Measured Insertion Loss (S21) of -4.252dB and Loaded Q, (QL)  of 
7675 for a span of 10MHz for the 3.8GHz dielectric resonator. .............................. 69 
Figure 3.22: Low Pass Prototype for a 5th order Butterworth filter. ................... 72 
Figure 3.23: High pass 5th order Butterworth schematic for a cut off frequency 
of 2.28GHz. ............................................................................................................. 73 
Figure 3.24: Equivalent model of the MA46H070 varactor diodes. ..................... 75 
Figure 3.25: Comparison of the Capacitance Vs Voltage for MH46HO70 
varactor diodes. ....................................................................................................... 75 
Figure 3.26: Schematic of the electronic phase shifter incorporating the 
transmission line models for the inductors and the MH46HO70 varactor diodes. .. 76 
Figure 3.27: Simulated S Parameters for the phase shifter for a 5th order filter 
using varactor diode model and inductors replaced by transmission lines. ............ 77 
Figure 3.28: Simulation of the Insertion loss & Phase Response vs Bias Voltage 
using MH46HO70 varactor diodes. ......................................................................... 77 
Figure 3.29: Amplifier+ Phase Shifter+ Coupler Gain and the Phase Response 
Vs Bias Voltage. ...................................................................................................... 78 
Figure 3.30: Multi Section single layer 10-dB directional coupler. ...................... 79 
Figure 3.31: Impedances for the multi section 10dB directional coupler. ............ 80 



List of Figures  

8 
 

Figure 3.32: Momentum simulation of the 10 dB multi section direction coupler 
for spacing of 0.35, 0.45 and 0.5 mm. ..................................................................... 81 
Figure 3.33 Measured Phase Shifter + Amplifier + Coupler responses from 3-
5GHz. ...................................................................................................................... 82 
Figure 3.34: Oscillator 1 mounted on the baseplate with a separate resonator 
enclosure. ................................................................................................................. 83 
Figure 3.35: Oscillator 2 which measures 125×115×40mm is completely 
enclosed in its box. .................................................................................................. 83 
Figure 3.36: Phase Noise Measurement System used to measure the phase noise 
of the oscillators. ..................................................................................................... 84 
Figure 3.37: Phase Noise Measurement Plot of the 3.8GHz oscillators which 
demonstrate a phase noise of -150dBc/Hz at 10kHz offset. .................................... 85 
Figure 3.38: Tuning Frequency vs Bias Voltage for the 3.8GHz oscillator. ......... 87 
Figure 3.39: Spot frequency vibration measurement setup for the 3.8GHz 
oscillators using DC motors and loud speakers. ...................................................... 89 
Figure 3.40: Photograph of the dual axes accelerometer ADXL-203CE used for 
measuring the peak acceleration. ............................................................................ 90 
Figure 3.41: Sidebands seen on a spectrum analyser due to vibrations at 120Hz 
for ai=0.14g. ............................................................................................................ 90 
Figure 3.42: Measurement setup for the spot frequency profile at 100Hz, 500Hz 
and 1500Hz at an intensity of ai = 0.2g. ................................................................ 92 
Figure 3.43: Vibration Sensitivity in X, Y, Z axes at 100Hz, 500Hz, and 1.5kHz.
 ................................................................................................................................ 92 
Figure 3.44: Vibration Measurement phase noise setup with the reference of 
vibrations axes. ....................................................................................................... 96 
Figure 3.45: Comparison of the Phase Noise Plots for different axes for random 
vibration profile with 0.7g rms. ............................................................................... 97 
Figure 3.46: Modular 3.8GHz oscillator with an incorporated mechanical phase 
shifter. ..................................................................................................................... 98 
Figure 3.47: Modular yet compact 3.8GHz Oscillator Board incorporating the 
mechanical phase shifter. ........................................................................................ 99 
Figure 3.48: Comparison of the simulated and the measured S parameters of 
the Push pull amplifier. .......................................................................................... 100 
Figure 3.49: Power Measurement Setup for the Push Pull Amplifier using the 
SiGe BFP380F transistors. .................................................................................... 101 
Figure 3.50: Simulated and the measured 1-dB compression point for the Push 
Pull amplifier. ........................................................................................................ 101 



List of Figures  

9 
 

Figure 3.51: CST model of the Symmetrical Curved transmission lines. ............ 102 
Figure 3.52: Simulated response of the resonator with an insertion loss (S21) of 
-5.7 dB and 3-dB band width of 0.43kHz resulting in a (QL) of 8,860 usingCST. . 102 
Figure 3.53: Symmetrical probes for the resonator along with the enclosure for 
3.8GHz dielectric resonator. ................................................................................... 103 
Figure 3.54: Measured insertion loss of the resonator for a span of 6GHz. ........ 104 
Figure 3.55: Measured insertion loss of the resonator for a span of 10MHz with 
a loaded Q of 10,570. ............................................................................................. 104 
Figure 3.56: High pass filter prototype for a 25Ω system with a 2.28GHz cut off 
frequency. ............................................................................................................... 106 
Figure 3.57: Electronic phase shifter using impedance transformer with the 
MH46HO70 varactor diodes. .................................................................................. 107 
Figure 3.58: Comparison of the measurements and the simulation for the new 
modified electronic phase shifter. ........................................................................... 107 
Figure 3.59: Simulated and measured Insertion Loss (S21) and phase shift 
(degrees) for the electronic phase shifter. .............................................................. 108 
Figure 3.60: Measured Insertion Loss (S21) and Phase shift for various fixed 
value capacitors along with the varactor diode. .................................................... 109 
Figure 3.61: Measured Coupled and through port of the multi-section coupler 
for the 3.8GHz oscillator. ....................................................................................... 110 
Figure 3.62: Illustrated layout of the mechanical phase shifter designed at 
3.8GHz. .................................................................................................................. 111 
Figure 3.63: Momentum simulation of the insertion loss (S21) and the phase 
shift for the mechanical phase shifter for the closed and the open state. .............. 112 
Figure 3.64: Compact low insertion loss mechanical phase shifter. The total 
phase shift measured was 116° at 3.8GHz. ............................................................ 113 
Figure 3.65: DRO 1 with individual sections linked with each other were 
mounted on the baseplate was enclosed in a screened metal box. ......................... 114 
Figure 3.66: 3.8GHz oscillator with all the individual elements along with the 
enclosure on the right. The oscillator measures 120×110×35mm. ......................... 114 
Figure 3.67: Phase Noise Plot of the 3.8 GHz oscillators. The phase noise 
measured was -150.1 dBc/Hz at 10kHz and -122.6 dBc/Hz at 1kHz offset. .......... 116 
Figure 3.68: Cross Correlation measurement setup using two HP11848A phase 
noise test sets. ........................................................................................................ 118 
Figure 3.69: Residual phase noise measurements for the 3.8GHz amplifier with 
Pin= 8 dBm and NA = 5.2 dB. ............................................................................... 120 



List of Figures  

10 
 

Figure 3.70: Tuning Characteristics of the 3.8GHz Oscillators using the control 
voltage of the electronic phase shifter. ................................................................... 122 
Figure 4.1: Model of the Bragg resonator using ABCD matrices for one half of 
the resonator [15]. .................................................................................................. 128 
Figure 4.2: A cross section view of the six plate aperiodic Bragg resonator [15]. ..... 128 
Figure 4.3: Cascaded connection of the 2 port using ABCD matrices. ............... 129 
Figure 4.4: Simulation of the quality factor and resonant frequency as a function 
of the central section length for the TE011 mode. ................................................... 134 
Figure 4.5: Copper sheets with etched solder release grooves in order to control 
the position of the solder. ....................................................................................... 135 
Figure 4.6: Leaded and un-leaded solders at 50°C, 150°C and 200°C................. 136 

Figure 4.7: Centre section with the micrometers and the loop probes to couple 
energy into the cavity. ........................................................................................... 137 
Figure 4.8: Cross section view of a 6 plate Tunable Aperiodic Bragg Resonator.
 ............................................................................................................................... 138 
Figure 4.9: Tunable Bragg resonator showing the micrometres and upper and 
lower reflector sections. .......................................................................................... 138 
Figure 4.10: Plot of measured insertion loss and unloaded Q Vs Frequency with 
500MHz span. ......................................................................................................... 139 
Figure 4.11: Plot of insertion loss (S21) and unloaded Q Vs Frequency with a 
narrow 100MHz span with no unwanted modes. ................................................... 140 
Figure 4.12: Modified middle section with solder release rings to control the 
position of the solder. ............................................................................................. 141 
Figure 4.13: A plot of the forward transmission coefficient (S21) for the 6 plate 
aperiodic tunable Bragg resonator for a frequency span of 1GHz. ........................ 142 
Figure 4.14: A plot of insertion loss vs Frequency over the tuning range. Each 
trace shows a plot of S21 over a span of 100MHz. .................................................. 144 
Figure 4.15: A plot of insertion loss vs frequency at the start, centre and end 
of the tuning range. The location of the closest spurious modes is visible. ........... 145 
Figure 4.16: A Plot of the insertion loss (S21) and unloaded quality factor (Q0) 
for the tunable Bragg resonator. The cavity was tuned over a 100 MHz span. .... 146 
Figure 4.17: A plot of insertion loss and unloaded Q vs Frequency with a 2 
MHz span for an unloaded Q of 81,650 .................................................................. 147 
Figure 5.1: Block Diagram of the 10GHz Band Oscillator using the Bragg 
resonator. ............................................................................................................... 151 
Figure 5.2: Aperiodic 6 plate Bragg Resonator with the clamping mechanism .. 154 



List of Figures  

11 
 

Figure 5.3: Measured Insertion Loss Vs Frequency for a 500MHz span with the 
required TE011 mode................................................................................................ 154 
Figure 5.4: Plot of insertion loss (S21) with a 100 kHz span with the loaded Q 
of 103,653. .............................................................................................................. 155 
Figure 5.5: Plot of insertion loss (S21) with a 100kHz span with the loaded Q of 
111,221. .................................................................................................................. 157 
Figure 5.6: Single stage amplifier using BFP620F using the active bias 
BCR400W. ............................................................................................................. 159 
Figure 5.7: Push Pull amplifier configuration using BFP-620F transistors. ....... 160 
Figure 5.8: Measured S-Parameters for the Push Pull amplifier using SiGe 620F 
transistors. .............................................................................................................. 161 
Figure 5.9: Measurement setup to measure the Noise Figure of the 10GHz 
amplifiers. ............................................................................................................... 162 
Figure 5.10: Power Measurement Setup for the Push Pull Amplifier at 10GHz.
 ............................................................................................................................... 162 
Figure 5.11: Flicker corner of 36kHz for an input power (Pin) of 2dBm and a 
noise figure (NF) of 6dB measured at 3.8GHz. ...................................................... 164 
Figure 5.12: Circuit diagram for the NBB-402 amplifier for ICC=52mA. ............ 166 
Figure 5.13: Modified evaluation boards using NBB-402 transistor along with a 
broadband conical inductor BCL-232JL. ............................................................... 167 
Figure 5.14: Comparison of the S-Parameters of the measured NBB-402 
amplifier using the evaluation board to that of the s2p file by RFMD. ................ 168 
Figure 5.15: NBB-402 with the conical inductor and the biasing circuit. ........... 168 
Figure 5.16: 10GHz amplifier NBB-402 transistor along with ferrite bead 
obtained from Keysight Technologies, Santa Clara, USA. .................................... 169 
Figure 5.17: Comparison of the S Parameter response for NBB-402 using conical 
inductors and ferrite beads..................................................................................... 170 
Figure 5.18: Flicker corner of 26kHz for an input power (Pin) of 5dBm and a 
noise figure (NF) of 5dB. ....................................................................................... 171 
Figure 5.19: Circuit diagram for the NBB-312 amplifier for ICC of 56mA. ......... 172 
Figure 5.20: S-Parameter response of NBB-312 for Icc of 56mA. ....................... 173 
Figure 5.21: Schematic of the 10GHz amplifier using BFU730F transistor for 
Ic=15mA and VCE=2.5V. ........................................................................................ 175 
Figure 5.22: Picture of the amplifier with the BFU730F transistor with the 
BCL-232JL conical inductors for Ic=15mA and VCE=2.5V. ................................... 176 
Figure 5.23: Measured S parameters 10GHz amplifier using BFU730F with 
conical inductors for VCE =2.5V and collector current of IC=15mA. ..................... 176 



List of Figures  

12 
 

Figure 5.24: Flicker corner of 20kHz for an input power (Pin) of 2dBm and a 
noise figure (NF) of 2dB. ....................................................................................... 177 
Figure 5.25: Picture of the TC200 Amplifier board obtained from Keysight. .... 178 
Figure 5.26: Measured S parameters using the TC200 amplifier at 5V power 
supply. .................................................................................................................... 179 
Figure 5.27: Block Diagram of the measurement setup for the 10GHz Bragg 
resonator oscillators. .............................................................................................. 182 
Figure 5.28: Initial Phase Noise measurement of the 10GHz oscillators. ............ 183 
Figure 5.29: 10GHz battery operated oscillators screened in a metal box and 
resting on a set of tubes in order to dampen any mechanical vibrations. ............. 184 
Figure 5.30: Phase Noise of the 10GHz band oscillator using NBB-402 
transistors enclosed in a metal box to resting on the tubes to reduce the 
vibrations. .............................................................................................................. 185 
Figure A.1: CST model of the Curved transmission lines. .................................. 192 
Figure A.2: Curved Micro Strip coupling lines for resonator. ............................. 193 
Figure A.3: Plot of Insertion Loss/Loaded Q vs Distance of the curved coupling 
transmission lines. .................................................................................................. 193 
Figure A.4: Series LCR resonator circuit. ........................................................... 194 
Figure A.5: Measured resonator response using one port. ................................... 196 
Figure A.6: Sideband levels L(fv) caused by vibration on X axis 100, 500 and 
1500 Hz .................................................................................................................. 197 
Figure A.7: Sideband levels L(fv) caused by vibration on Y axis 100, 500 and 
1500 Hz. ................................................................................................................. 198 
Figure A.8: Sideband levels L(fv) caused by vibration on Z axis 100, 500 and 
1500 Hz. ................................................................................................................. 199 
Figure A.9: Mask of the bottom rings used in the construction of the copper 
bellows. ................................................................................................................... 200 
Figure A.10: Mask of the top rings used in the construction of the copper 
bellows. ................................................................................................................... 201 

  

 



List of Tables   

13 
 

LIST OF TABLES 

Table 3.1: S Parameters of BFR380F with Ic=40mA and VCE=3V at 4GHz ....... 53 
Table 3.2: Widths and lenghts using the Rogers3006 boards with ℰr=6.5 and 
loss tangent (tanδ) of 0.0020 at 3.8GHz ................................................................. 57 
Table 3.3: Comparison of the loaded Q for the simulations and measurements. . 68 
Table 3.4: Voltage controlled phase shifter values for a cut off frequency of 
2.28GHz. .................................................................................................................. 74 
Table 3.5: Initial and final dimensions of the multi-section Coupler .................... 81 
Table 3.6: Compassion of the theory with that of measurement of the oscillators 
at 3.8GHz for a noise figure of 4dB and a flicker noise corner assumed to be 
10kHz or higher. ...................................................................................................... 86 
Table 3.7: Vibration Sensitivity for all the 3 axes at 0.2g at 100Hz, 500Hz and 
1.5kHz ..................................................................................................................... 94 
Table 3.8: Comparison of the 3.8GHz oscillators theory with that of 
measurement for a noise figure of 4dB and a flicker noise corner of 20kHz 
(assumed). .............................................................................................................. 117 
Table 3.9: Comparison of the 3.8GHz oscillators theory with that of 
measurement for a noise figure of 8dB and a flicker noise corner of 12.7kHz ....... 121 
Table 4.1: Comparison of tuning range and the quality factor of various tunable 
resonators present in the literarture. ..................................................................... 127 
Table 4.2: Bragg resonator simulation parameters. ............................................. 132 
Table 4.3: Dielectric and air section reflector thicknesses for an optimised 6 
plate Bragg resonator [15]. ..................................................................................... 133 
Table 5.1: Transistors which were investigated by the author at 10GHz. .......... 158 
Table 5.2: Predicted theoritical phase noise performance of an oscillator using 
the  Push Pull Amplifier using BFP-620F for a NF=10dB , PAVO=10dBm and 
Qo=190,000 ............................................................................................................. 164 
Table 5.3: S-Paramteres for NBB-402 transistor. ................................................ 165 
Table 5.4: Predicted theoritical phase noise performance of an oscillator using 
NBB-402 transistor for a NF=6dB, PAVO=12.1dBm, fc=26kHz and Qo=190,000 .. 171 



List of Tables 

14 
 

Table 5.5: Predicted phase Noise performance of an oscillator using NBB-312 
transistor for a NF=7dB, PAVO=10.1dBm and Qo=190,000 ................................... 173 
Table 5.6: S Parameters for BFU-730F for VCE =2.5V and collector current of 
IC=15mA operating at 10GHz. ............................................................................... 174 
Table 5.7: Predicted theoritical phase noise performance of an oscillator using 
BFU730F transistor for a NF=4dB, PAVO=7dBm and Qo=190,000 ....................... 178 
Table 5.8: Predicted theoritical phase noise performance of an oscillator using 
TC200 transistor for a NF=9dB, PAVO=11dBm and Qo=190,000 .......................... 179 
Table 5.9: Compariosn of various amplifiers with NF, P1dBm points, residual 
phase noise of the amplifiers at 10kHz and the theroritical phase noise when used 
in the oscillators at 10kHz. .................................................................................... 180 
Table 5.10: Oscillator opearting at 10GHz comparison with the theory (flicker 
noise corner of 26kHz measured at 3.8GHz) .......................................................... 185 
 

 



 

15 
 

ACKNOWLEDGEMENTS 

I would like to thank my supervisor, Professor Jeremy Everard for his continuous 

support and the constructive feedback he has given me during my PhD. I would also 

like to thank him for proof reading my thesis.  

I would like to thanks Selex-ES for funding my PhD and in particular thank 

Neil Raphael and Robin Collings for help with the vibration measurements and also 

John Robertson for help with the initial project. 

I would like to thank Dr.Simon Bale for his support and encouragement 

during my research and also for all the long and fruitful discussions on various topics 

all these years.  

I would like to thank the technicians especially Mark Hough, Andy White 

and Pete Turner for their help of the construction of PCB boards and mechanical 

enclosures that required for the research. 

I would like to take the opportunity to thank my friends to those especially 

in York; Anna Ladi, Evangelia Karadimou and Tsvetan Burtichelov for all the fun 

times we shared. I would also take the opportunity to thank my friends Rashmi Patil 

and Vinnay Mayya for all their unconditional friendship. 

Last but not the least; I thank my parents Dilip Deshpande and Deepti 

Deshpande who supported me in every decision of my life and who have always given 

me their unconditional love and support. I would also like to thank my sister Preeti 

N. Joshi and my brother in law Nikhil Joshi for constant support.



 

16 
 

DECLARATION 
 
First prototype of the 3.8GHz oscillator: This work was managed within the 

framework of the ITP SIMCLAIRS program. France, United Kingdom and Sweden 

mandated the European Defence Agency (EDA) to contract the Project with a 

Consortium composed of THALES SYSTEMES AEROPORTES France, acting as 

the Consortium Leader, Selex ES Ltd, THALES UK Ltd and SAAB AB. 

This work has not previously been presented for an award at this, or any 

other, University. I declare that this thesis is the result of my own work. References 

and acknowledgements to other authors have been given where appropriate. The 

following publications have resulted as part of this work: 

 

JOURNAL PUBLICATIONS 

1. Bale, Simon J.; Hough, Deshpande, Pratik D; Mark; Everard, Jeremy, “Highly tunable X-

band Bragg resonator at 10 GHz for oscillator applications” IEEE-UFFC (Accepted) 

 

CONFERENCE PUBLICATIONS 

1. P. D. Deshpande and J. Everard, "Compact low phase noise 3.8 GHz oscillator," European 

Frequency and Time Forum (EFTF), 2014, Neuchatel, 2014, pp. 203-207. (Best Student 

Paper). 

2. Deshpande, Pratik D; Bale, Simon J.; Hough, Mark; Everard, Jeremy, "Highly tunable X-

band Bragg resonator - initial results," Frequency Control Symposium & the European 

Frequency and Time Forum (FCS), 2015 Joint Conference of the IEEE International, vol., 

no., pp.423,426, 12-16 April 2015. 

3. Deshpande, Pratik D; Bale, Simon, J; Everard, Jeremy “Low Phase Noise 10GHz Bragg 

Resonator Oscillator”, 30th European Frequency and Time Forum, York, April 2016 

(Accepted)



Chapter 1. Introduction 

17 
 

CHAPTER 1 

 

INTRODUCTION 

 

1.1 Background 

Oscillators play a very important role in any communication device for example in 

mobile phones, satellite systems or instrumentations system. For instance, in the 

receiver chain of a communication system, after the signal is amplified with the help 

of a low noise amplifier, it is down converted with a mixer and a local oscillator to 

produce an intermediate frequency which is then used for modulation and 

demodulation [1]. If the phase noise of this oscillator is large, it might actually mask 

the required signal which is then a problem during digital processing. Similarly, in 

the case of a RADAR System, the oscillator performance is very critical where the 

phase noise that is close to the carrier might partially or completely mask the target 

signal which is being measured [2] [3] [4]. In the case of a digital system, any noise 

generated by the oscillator will result in an increased bit error rate of the system, 

which is a problem during the modulation and demodulations process. Also, the 

phase noise in a frequency multiplication process gets increased by a factor of 

20log10(N) dB [5], where N is the multiplication factor. So for example, if a 1GHz 

oscillator that has a noise floor of -170 dBc/Hz at large frequency offsets, when 
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multiplied by a factor of 10 to produce a 10GHz output signal, the system noise floor 

gets increased by 20dB, resulting in a noise floor of -150 dBc/Hz at 10GHz which is 

quite high when compared to sapphire dielectric resonator oscillators present in the 

literature [6]. Hence, in most cases, oscillators set the ultimate performance of the 

system in any communication device [7]. 

 One of the main characteristic of an oscillator is its frequency stability [8] [9]. 

This can be divided into long term instability, which is the gradual drift of the 

frequency due to ageing which changes in the bias point of the amplifier as a result 

of fluctuations in the operating points. Ageing might also degrade the quality factor 

of the resonator and hence the phase noise of the oscillator. The other type of 

instability is referred to be as short term instability that occurs due to noise 

fluctuations within the oscillator which modulates the amplitude and phase. In many 

oscillators, the amplitude noise fluctuations are greatly supressed by the active 

element, since under oscillating conditions, the amplifier operates mainly in the 

saturation region.  Hence, phase noise is the crucial factor which determines the 

purity of the oscillator. Initially, a model for the feedback oscillator was suggested 

by Leeson [10] where he states that within the 3dB bandwidth of the resonator, the 

amplifier phase noise gets multiplied by factor of (1/Δf2) and goes on to show that 

the phase noise is inversely proportional to the unloaded quality factor of the 

resonator. Later, Everard proposed a model [11] which incorporated the circulating 

power, the loaded quality factor and the input and the output impedances of the 

amplifier and demonstrates that there is an optimal resonator insertion loss to 

achieve minimum phase noise of the oscillators.  

 Also, RF systems which are designed in satellite or wireless systems for a 

particular frequency band unlike a cell phone which is manufactured to work at 
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multiple frequency bands. Hence to maximize the availability of the frequency 

spectrum, tunable resonators are mainly used in such systems as local tunable 

oscillators in front end of the receivers [12]. This is an ideal solution to reduce the 

hardware costs by incorporating a single local oscillator which can be used at multiple 

frequency bands. High Q tunable resonators can also be used as filters to suppress 

any interfering signals or harmonics that can be generated by power amplifiers. The 

dielectric resonator architecture usually offers high Q factors, controllable 

temperature coefficient and are less sensitive to vibrations. Their power handling 

capability ensures low phase noise close and far away from the carrier at microwave 

frequencies. One of the main criteria for such filters to be used in receiver systems is 

to have a low insertion loss since the noise figure of such filters might add up in the 

receiver chain if they are in the front end. They also need to have high Q when used 

in an oscillator to enhance the performance of the device and remove any harmonics 

or any spurious frequencies when used as a filter. They need to have a reasonable 

tuning range with good power handling capability and high linearity at microwave 

frequencies [12] [13]. 

1.2 Thesis objective  

The main aim of this thesis is to develop compact, low cost, ultra-low noise oscillators 

and high Q tunable resonators for oscillator applications at microwave frequencies. 

Ultra-low noise oscillators are implemented by designing, testing and optimising 

various elements such as amplifiers, electronic phase shifter, coupler and resonator 

in a feedback topology oscillator at 3.8GHz and 10GHz. High Q tunable resonators 

are investigated with existing high Q resonators available at 10GHz which can be 
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tuned for a certain range without severely degrading the quality factor. The main 

topics of research undertaken in this area are:  

• Ultra-low noise oscillators: 

Amplifiers: Various amplifiers were investigated for high power levels and low 

noise which exhibit low flicker noise corners for different amplifier topologies 

which includes amplifiers in single stage, cascaded and amplifiers in a push pull 

configuration. Residual noise measurements were done on various types of 

transistors to determine the flicker noise corners. 

Phase Shifter: Design of electronic phase shifters which exhibits low insertion 

loss with a reasonable phase shift for the required frequency of operation was 

investigated and non-linear effects of the phase shifter at high power levels were 

also investigated. 

Resonator: High Q resonators play a very important role in determining the 

phase noise of the oscillator and hence simulations, experiments and experiments 

were conducted in order to optimise the quality factor of the resonator along with 

the insertion loss to achieve optimum phase noise for the oscillators.  Printed 

circular probes were developed which enabled high Q resonator design in a 

compact layout.  

 In addition, investigations into multi section couplers for the 3.8GHz 

oscillator along with a compact mechanical phase shifter were undertaken. The 

single layer coupler and the mechanical phase shifter were designed to have a low 

insertion loss. 

 Finally, oscillators were built using these optimised elements in a feedback 

topology to demonstrate the phase noise which were within 3-4dB of the phase 

noise theory given by Everard [11]. 
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• Tunable Resonators: The main objective was to design and construct a 

high Q tunable resonator with a maximum spurious free tuning range with a 

low insertion loss which could be used for oscillator applications at 10GHz. 

Resonator was modelled using ABCD matrix and was simulated in order to 

predict the tuning range and the unloaded Q of the resonator. Simulations 

predict a tuning range of 10% without much degradation of Q for Bragg 

resonators at 10GHz.  

1.3 Thesis Structure  

The thesis is organised as follows:  

 Chapter 2 begins with the basics of the theory for a feedback oscillator and 

phase noise for oscillators. This is followed by an analytical linear phase noise 

model described by J.K.A.Everard [11] which consists of a set of equations 

describing the parameters which affect the phase noise in an oscillator. In the 

final part, a brief introduction on environmental noise which affects the phase 

noise and a review of the vibration measurements done on the oscillators using a 

dielectric resonator as the frequency selective element has been discussed. 

 Chapter 3 presents the design and measurement of a low cost compact 3.8GHz 

microwave oscillators using a dielectric resonator. In the first part of the chapter, 

a review of previous oscillators with dielectric resonators and sapphire resonators 

operating around 4GHz has been presented. This is followed by the design of the 

feedback topology oscillator which was built for Selex-ES which includes the 

simulations and measurements of various components used in the feedback 

oscillator. In the next part, the vibration measurement setup which was used to 
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perform vibration measurements for this oscillator prototype has been discussed 

followed by the results and the discussions.  

 In the final part of the chapter, a prototype was built at the University of 

York to improve the phase noise of the oscillator; the new improved oscillator 

was produced in a modular form to enable optimisation of the individual oscillator 

elements. A new design for the electronic phase shifter has been described for 

better power handling conditions which improves the linearity of the device. 

Finally, phase noise of these amplifiers was measured in order to determine the 

flicker noise corner using a cross correlation residual phase noise measurement 

system which demonstrated a phase noise floor of -200dBc/Hz recently [14]. 

 Chapter 4 begins with an introduction to tunable resonators followed by a 

review of various tunable resonators and tuning elements described in the 

literature. This is followed by a comparison of the best performance that was 

achieved in this work with that of various other tunable resonators in the 

literature with tuning range and the unloaded Q as the main criteria in 

determining the performance. In the next section, the theory of Bragg resonator 

is discussed which includes the models of the resonator using ABCD matrices. 

This is followed by the construction of the cavity and various steps and 

experiments made on the solder temperatures in the process. Finally, 

measurements and discussions on the tuning range and quality factor that were 

made on various prototypes built in this research are discussed.  

 Chapter 5 starts with a brief introduction to the X band oscillators followed 

by a review of previous X band oscillators that have used various types of 

resonators such as sapphire and alumina for different modes of operation. In the 

next part of the chapter, a Bragg resonator which demonstrated an unloaded Q 
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of 200,000 at 10 GHz was used as the frequency selective element in an oscillator 

[15]. Two of such resonators were built and optimised to have the correct insertion 

loss and the loaded Q. This is followed by testing a number of active devices in 

the oscillator. A number of Silicon germanium (SiGe) and heterojunction bipolar 

transistor (HBTs) amplifiers have been designed to determine the gain, noise 

figure (NF), output compression and flicker noise corners. Also, for each given 

amplifier, the predicted theoretical phase noise at 1kHz and 10kHz has been 

given. Based on this, the active element for the oscillator was chosen. Different 

configurations have been used to determine the highest output power and low 

flicker noise corners. In the final part of the chapter, phase noise measurements 

have been shown with a comparison with the theory followed by conclusions. 

 Chapter 6 provides the main conclusions of the research work followed by the 

future areas of research suggested for each of the topics described in the thesis.    
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CHAPTER 2 

 

OSCILLATORS AND PHASE NOISE 

 

2.1 Feedback Oscillators 

The simplest way to produce an oscillation is by combining an amplifier along with 

the frequency element such as a resonator to make a feedback oscillator as shown in 

Figure 2.1.  

  

Figure 2.1: Simplified positive feedback oscillator.  

 Now applying loop voltage equations to the above circuit we get:  

 ܸ = (݂)ܩ ௗܸ Eq. 2.1

 ௗܸ = ܸ − ܸܤ(݂) Eq. 2.2

 Rearranging the above equations, the ratio of ቀ ቁ we get:  
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൬ ܸܸ൰ = 1(݂)ܩ − ሾܩ(݂)ܤ(݂)ሿ

ܸ = ቆ 1(݂)ܩ − ሾܩ(݂)ܤ(݂)ሿቇ ܸ 
Eq. 2.3

 In order for a stable oscillation to take place, as seen in Eq. 2.3, there should 

be an output voltage even if there is no input present and this can only take place if 

the loop gain i.e [B(f)G(f)] becomes to unity at a particular frequency which is the 

Barkhausen criteria [16]: 

|(݂)ܩ(݂)ܤ|  = 1 Eq. 2.4

ሿ(݂)ܩ(݂)ܤሾ݃ݎܣ  = ܰߨ2 ݁ݎℎ݁ݓ ܰ = 0,1,2 ….   Eq. 2.5

 The first condition is that, the gain of the amplifier G(f) should be sufficient 

enough to cancel the losses from the feedback element B(f) and the open loop phase 

shift should be an integral of 2πN. Also, in order for the oscillation to start, thermal 

noise usually disturbs the initial disturbance in the feedback loop, the loop gain is 

greater than one and eventually, the gain saturates and the loop gain becomes unity 

and a more stable oscillation is produced.   

2.2 Oscillator characteristics  

In an ideal world, the oscillator would produce an output signal where its energy is 

confined to one single frequency. The frequency spectrum of such a signal is shown 

in Figure 2.2 where it consists of one single tone with a single discrete line and 

infinitely small bandwidth with no harmonics centered at required frequency, fo. The 

ideal output voltage can be shown as:  

 ܸ = ܣ ߨ2)ݏܿ ݂ݐ) Eq. 2.6

 Where A is the amplitude and fo is the operating frequency.  
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Figure 2.2: Spectrum of an ideal oscillator.  

 But in real world communication devices, signals are corrupt which means 

that they are noisy and apart from the desired signal, the spectrum consists of 

harmonics as shown in Figure 2.3. The noise side bands are due to random 

amplitude and phase fluctuations which occur inside the oscillator loop.  

 

Figure 2.3: Typical spectrum of the oscillator with frequency harmonics.  
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2.3 Oscillator Phase Noise 

The frequency stability of the oscillator is divided into two categories namely long 

term stability and short term stability [9]. Long term instabilities are slow changes 

that take place over years and gradually change the frequency of operation due to 

ageing. Temperature is one of the main causes for long term instability which mainly 

affects the operating conditions of the oscillator and particularly the resonator which 

affects the oscillator frequency. Short term instability is mainly due to noisy signals 

that arise within the system and change the phase and amplitude of the signals. The 

output of a noisy oscillator signal can be defined as seen in Eq. 2.7:  

 ܸ(ݐ) = ൫1ܣ + ߨ2)ݏܥ൯ሾ(ݐ)ߙ ݂ݐ + ሿ Eq. 2.7(ݐ)߶

 Where α(t) is the amplitude fluctuation (AM noise) and φ(t) is the phase 

fluctuations that take place as a function of time (PM noise). However, in an 

saturating amplifier used in oscillator, the amplitude noise is greatly suppressed by 

the limiting characteristics of the amplifier and hence α(t)→0. Now if we assume 

φ(t)≪1, then any small change in instantaneous frequency by frequency modulation 

of the phase term we get Eq. 2.8 and substituting Eq. 2.8 in Eq. 2.7 and using 

the trigonometric series we get Eq. 2.9. 

(ݐ)߶  = ߶ߨ2)݊݅ݏ ݂ݐ) Eq. 2.8

 
ܸ(ݐ) = ߨ2)ݏܿൣܣ ݂ݐ). ߨ2)݊݅ݏ൫߶ݏܿ ݂ݐ)൯− ߨ2)݊݅ݏ ݂ݐ). ߨ2)݊݅ݏ൫߶݊݅ݏ ݂ݐ)൯൧ Eq. 2.9

 For ݔ ≪ (ݔ)ݏܿ ;1 ≃ 1 and (ݔ)݊݅ݏ ≃  Hence the output voltage is given by .ݔ

Eq. 2.10.  

 ܸ(ݐ) = ߨ2)ݏܿൣܣ ݂ݐ) − ߨ2)݊݅ݏ ݂ݐ). ߶ߨ2)݊݅ݏ ݂ݐ) ൧ Eq. 2.10
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 Using the trigonometry identity: sin ߙ . sin ߚ = ଵଶ ሾcos(ߙ − (ߚ − cos (ߙ +  ሿ(ߚ
and substituting it in Eq. 2.11. 

 
ܸ(ݐ) = ܣ ܿߨ2)ݏ ݂ݐ) − ߶2 )ߨ2)ݏܿ ݂ − ݂)ݐ)

− ߶2 )ߨ2)ݏܿ ݂ + ݂)ݐ) ൨ Eq. 2.11

 This shows that any small changes in the phase or frequency cause side band 

modulation at frequencies fc±fm and these are referred to as the phase noise of an 

oscillator which is defined as the ratio of the single sideband phase noise power at a 

given offset in a 1Hz bandwidth to the total carrier power and is usually expressed 

as dBc/Hz as shown in Figure 2.4 where ܲ is the total power of the carrier plus 

the power in the sidebands of the oscillator. 

(݂)ܮ = ݁ݏℎܽ ܾ݀݊ܽ݁݀݅ݏ ݈݁݃݊݅ܵ ݁ݏ݅݊ ݎ݁ݓ ݐܽ ܽ ݊݁ݒ݅݃ ݐ݁ݏ݂݂ ݅݊ ܽ ݖܪ1 ݈ܽݐℎܶݐ݀݅ݓܾ݀݊ܽ ݎ݁݅ݎݎܽܿ ݎ݁ݓ  Eq. 2.12

 

Figure 2.4: Representation of the phase noise diagrammatically. 

(݂)ܮ  = ܲܲ = 12 ൬ܣ߶2 ൰ଶ
12 ଶ(ܣ) = ߶ଶ4 = ߶௦ଶ2 = థܲ( ݂) Eq. 2.13
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 Where φrms=φ(t)p/√2 and since the normalized power spectral density థܲ( ݂) 
is symmetrical about the carrier frequency, the double side band noise power ܵథ( ݂) 
is given by Eq. 2.14 and Eq. 2.15:  

 ܵథ( ݂) = 2 థܲ( ݂) Eq. 2.14

)ܮ   ݂) = 12 ܵథ( ݂) Eq. 2.15

 The phase noise of an oscillator can be broadly divided into additive noise in 

which the noise sidebands are present independent of the carrier such as the white 

noise and parametric noise where the noise sidebands are proportional to the carrier 

such as the flicker noise. There are several types of noise which result in phase noise 

such as thermal noise, shot noise and flicker noise. These are now described below:  

2.3.1 Thermal Noise 

Thermal noise is due to the thermal vibrations of the charge carriers within a 

conductor. The RMS thermal noise voltage for a given bandwidth B(Hz) and 

resistance (�) is given by Eq. 2.16:  

 ݁ = ඨ 4ℎ݂ ܴ݁ܤ ்ൗ − 1 Eq. 2.16

 Where k is the Boltzman’s constant (1.38ᇒ10-23 J/K), h is Planck’s constant 

(6.626ᇒ10-34 J/Sec) and T is the ambient temperature. At microwave frequencies, 

hf≪kT, hence this equation reduces to ቂ݁ ்ൗ − 1ቃ = ቀℎ݂ ݇ܶൗ ቁ and hence Eq. 2.16 

reduces to Eq. 2.17 [17]: 

 ݁ = ඥ4݇ܶ(݂߂)ܴܤ Eq. 2.17

 This can be modelled as a noiseless resistor with a voltage source as shown in 

Figure 2.5. From Eq. 2.17 it can be seen that the resistance changes with the 

frequency and hence thermal noise voltage is dependent on the frequency and if the 
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Δf is infinity, the thermal noise tends to be very large and for smaller bandwidths 

the noise is low. Also from Eq. 2.17 it can be seen that, at lower temperatures, the 

noise generated is low and therefore cooler devices and components generate lower 

noise.   

 

Figure 2.5: Thevenin circuit for a noisy resistor.  

 The noisy resistor can be modelled into a Thevenin equivalent circuit where 

the maximum power delivered to the load for a given bandwidth is shown in Eq. 

2.18:  

  ܲ = ቀ ݁2ܴቁଶ ܴ = Eq. 2.18 ܤܶ݇

2.3.2 Shot Noise 

Shot noise exists when a DC current is applied to a semiconductor device. Current 

flows randomly in a device and hence this causes random fluctuation of the charge 

carriers (electrons and holes) and this only exists under a DC current flow unlike the 

thermal noise [18].  The power density of shot noise is given by Eq. 2.19:  

 ݅ଶ =  Eq. 2.19ܫݍ2
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 Where q is the charge on an electron and IDC is the DC current flowing 

through the device. In a SiGe BJT device, the primary source of shot noise is IC and 

IB and thermal noise is generated by the base resistor rb as shown in Figure 2.6 [19].  

 

Figure 2.6: Noise model of the silicon bipolar transistor.  

2.3.3 Flicker Noise 

It was observed that when current passes through a semiconductor device, apart 

from thermal noise and shot noise, there exists excess noise which is dependent on 

the frequency which is referred to as flicker noise. It has a spectral density 

approximately of (1/f) at lower frequencies and at higher frequencies the noise is 

limited by thermal noise as shown in Figure 2.7. The origins of this flicker noise 

are not clearly understood however it is present in all semiconductor devices carrying 

a current [20]. These noise sources produce residual noise. The point at which the 

(1/f) and the thermal noise floor intersect is usually referred as flicker noise corner 

(fc) and this corner frequency is power dependent. Based on measurements made by 

Hooge [16], the flicker noise power spectral density is given by Eq. 2.20: 



Chapter 2. Oscillators and Phase Noise  

32 
 

 ܵ(݂) =  ܾି݂ିସ
ୀ  Eq. 2.20

where b-n are constants. The white phase noise is given by Eq. 2.21: 

 ܾ = ݇ܨ ܶܲ  Eq. 2.21

where bo is a white phase noise coefficient constant and the (1/f) noise is given by 

b-1f-1 which is phase flicker coefficient is independent of power but fc is dependent on 

power as shown in Eq. 2.22. 

 ݂ = ܾିଵ ܲ݇ܨ ܶ  Eq. 2.22

 

Figure 2.7: Residual phase noise plot of a typical amplifier using a silicon

bipolar transistor with a flicker noise corner of 10kHz. 

 In amplifiers, the flicker noise is up converted onto the carrier and the spectral 

density of the amplifier noise is given by Eq. 2.23: 

 ܵ(݂) = ݇ܨ ܶܲ ൬1 + ݂݂߂൰ Eq. 2.23



Chapter 2. Oscillators and Phase Noise  

33 
 

2.3.4 Everard’s Phase Noise Model 

In this section, a linear theory for the phase noise of the oscillator has been described 

by J.K.A Everard and is fully presented in [11]. In this theory, a full analytical model 

for the oscillator has been described with a set of phase noise equations which 

incorporates all the major factors affecting the phase noise in an oscillator. The 

equivalent circuit of the oscillator model that can be used to model the phase noise 

for a feedback oscillator is shown in Figure 2.8 where the model consists of an 

amplifier and a series resonator circuit. The input to the amplifier is split into two 

with equal impedances (RIN), where the first input (VIN1) is used to model the 

feedback loop whereas the second input (VIN2) is used to model the noise. These 

inputs are added together and amplified to produce a single output signal, VOUT with 

an output impedance of ROUT. 

 

Figure 2.8: Equivalent circuit of the feedback oscillator. 

 Now the circuit can be analysed with injecting some white noise in the noise 

input (VIN2) and the voltage transfer function for the model can be written as:  



Chapter 2. Oscillators and Phase Noise  

34 
 

 ை்ܸ = )ܩ ூܸேଵ + ூܸேଶ) = )ܩ ூܸேଶ + ߚ ை்ܸ) Eq. 2.24

 Eq. 2.24 which can be manipulated to be shown in Eq. 2.25. 

 ை்ܸூܸேଶ = 1ܩ − Eq. 2.25 (ߚܩ)

 Where G is the voltage gain of the amplifier and β is the voltage feedback 

coefficient given by Eq. 2.26:  

ߚ  = ܴூேܴைௌௌ + ܴை் + ܴூே + ܮ߱)݆ − Eq. 2.26 (ܥ߱/1

Now, if we assume (Δω= ω0±ω) and Δω≪ω0 (where Δω is the offset angular 

frequency from the centre angular frequency, ω0), then as Eq. 2.27:    

ܮ߱∆)  − 1 ⁄ܥ߱∆ ) ≅ ܮ߱∆±2  Eq. 2.27

 The loaded Q (QL) is given by Eq. 2.28 and by rearranging the terms; the 

voltage transfer function is given by Eq. 2.29.  

 ܳ = ωைܮ (ܴைௌௌ + ܴூே + ܴை்)⁄  Eq. 2.28

ߚ  = ܴூே(ܴைௌௌ + ܴூே + ܴை்) ቀ1 ± 2݆ܳ ∆ωω ቁ Eq. 2.29

 The unloaded Q (Q0) of the resonator is given by Eq. 2.30.                                  

 ܳை = ωைܴܮைௌௌ Eq. 2.30

 The ratio of the loaded Q and the unloaded Q is given by Eq. 2.31 which is 

obtained by using Eq. 2.28 and Eq. 2.30.                                       

 ൬ܳܳை൰ = ܴைௌௌ(ܴை் + ܴைௌௌ + ܴூே) Eq. 2.31

 Eq. 2.31 can be arranged as:  

 ൬1 − ܳܳை൰ = ൬ ܴை் + ܴூேܴை் + ܴைௌௌ + ܴூே൰ Eq. 2.32

 At resonance, the imaginary parts of the terms in Eq. 2.26 and Eq. 2.29 are 

zero and hence the feedback coefficient at resonance, β0, between nodes 1 and 2: 
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ߚ  = ൬ ܴூேܴை் + ܴைௌௌ + ܴூே൰ = ቆ1 − ቇܱܳܮܳ ൬ ܴூேܴூே + ܴை்൰ Eq. 2.33

Therefore the resonator response is given by Eq. 2.34: 

ߚ  = ൬1 − ܳܳை൰ ൬ ܴூேܴூே + ܴை்൰ ൮ 11 ± 2݆ܳ ݂݂߂ ൲ Eq. 2.34

Where f0 is now the centre frequency and Δf is the offset frequency from the 

carrier now in Hertz. Hence the voltage transfer function is given by Eq. 2.35 which 

is obtained by substituting Eq. 2.34 in Eq. 2.25. 

 

ை்ܸூܸேଶ = ܩ
1 − ൮ܩ ቀ1 − ܳܳைቁ ቀ ܴூேܴூே + ܴை்ቁ൬1 ± 2݆ܳ ݂݂߂ ൰ ൲ 

Eq. 2.35

Now at resonance, Δf is zero, ೀೆಿమ  is very large and the denominator is 

approximately equal to zero and since Gβ0=1, we therefore get Eq. 2.36 which 

basically means that at resonance, the gain of the amplifier is equal to the loss in the 

resonator.  

ܩ  = 1ቀ1 − ܳܳைቁ ቀ ܴூேܴூே + ܴை்ቁ Eq. 2.36

Substituting Eq. 2.36 in Eq. 2.35 and rearranging we get:  

 

ை்ܸூܸேଶ = 1ܩ − 1൬1 ± 2݆ܳ ݂݂߂ ൰ 

= 1
ቀ1 − ܳܳைቁ ቀ ܴூேܴூே + ܴை்ቁ ൮1 − 1൬1 ± 2݆ܳ ݂݂߂ ൰൲ 

 

Eq. 2.37
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For close to carrier noise,ܳ ௱ ≪ 1 , the transfer function in Eq. 2.37 simplifies to:  

 

ை்ܸூܸேଶ = ൮ 2݆ܳ±ܩ ݂݂߂ ൲
          = 1ቀ1 − ܳܳைቁ ቀ ܴூேܴூே + ܴை்ቁ ൬±2݆ܳ ݂݂߂ ൰ 

Eq. 2.38

 The oscillator noise is quoted in terms of phase noise L(f), which is defined 

as the ratio of the noise power in a 1Hz bandwidth at an offset Δf from the carrier 

to the total power in the carrier. Then the phase noise is calculated by converting 

the voltage transfer function which is proportional to power, which is the power 

dissipated in the oscillating system and not in the load. The input noise power in a 

1Hz bandwidth with a noise figure of F is given by Eq. 2.39 where kT is the noise 

power available if the input and the source impedances were equal to RIN. 

 ூܸேଶ (݂߂) = ூே Eq. 2.39ܴܶܭܨ

 In this case, the noise of interest lies within the bandwidth of the resonator 

since the sideband noise power reaches the background level by the 3dB point of the 

resonator and hence the tuned circuit can be represented as a resistor for the close 

to carrier performance. Now using Eq. 2.39 and Eq. 2.38, an expression for ( ை்ܸ)ଶ݂߂ can be obtained: 

 ை்ܸଶ (݂߂) = ூே4ܴܶ݇ܨ (ܳ)ଶ ቀ ܴூேܴூே + ܴை்ቁଶ ቀ1 − ܳܳቁଶ ൬ ݂݂߂൰ଶ
 Eq. 2.40

 

Eq. 2.40 can be written in terms of ொಽொబ to give:  

 ை்ܸଶ (݂߂) = ூே4ܴܶ݇ܨ (ܳ)ଶ ቀܳܳቁଶ ቀ ܴூேܴூே + ܴை்ቁଶ ቀ1 − ܳܳቁଶ ൬ ݂݂߂൰ଶ
 Eq. 2.41
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 As the theory described is linear, we can incorporate the non-linearity 

introduced by the amplifier by modifying the absolute noise in Eq. 2.41. Since the 

amplifier operates in saturation, the amplitude noise of the oscillator gets supressed 

and the phase noise is halved. If the total output voltage is VOUTMAXRMS, then the 

phase noise is given by:  

 ை்ܸଶ (݂߂) = ூே8ܴܶ݇ܨ (ܳ)ଶ ቀܳܳቁଶ ቀ ܴூேܴூே + ܴை்ቁଶ ቀ1 − ܳܳቁଶ ൬ ݂݂߂൰ଶ
 Eq. 2.42

Now, the phase noise is defined as:  

(݂)ܮ  = ቆ ை்ܸଶ ை்ܸெோெௌଶ(݂߂) ቇ Eq. 2.43

Now substituting Eq. 2.42 in Eq. 2.43 we get:  

(݂)ܮ  = ூே8 (ܳ)ଶܴܶ݇ܨ ቀܳܳቁଶ ቀ ܴூேܴூே + ܴை்ቁଶ ቀ1 − ܳܳቁଶ ை்ܸெோெௌଶ ൬ ݂݂߂൰ଶ
 Eq. 2.44

If we define the power available at the output of the amplifier into a matched load 

as PAVO, then  

 ܲை = 24ܴܱܷܶܵܯܴܺܣܯܷܱܸܶ  Eq. 2.45

Now substituting this in Eq. 2.44 we get:  

 
(݂)ܮ = ூே8 (ܳ)ଶܴܶ݇ܨ ቀܳܳቁଶ ቀ ܴூேܴூே + ܴை்ቁଶ ቀ1 − ܳܳቁଶ 4ܴை் ܱܸܣܲ ൬ ݂݂߂൰ଶ

 

 

Eq. 2.46

This can be rearranged to give:  

 
(݂)ܮ = ଶ(ܳ) 32ܶ݇ܨ ቀܳܳቁଶ ቀ1 − ܳܳቁଶ ܱܸܣܲ ቆ(ܴூே + ܴை்)ଶܴூேܴை் ቇ ൬ ݂݂߂൰ଶ

 

 

Eq. 2.47
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Since, the input and the output impedances are equal; Eq. 2.47 can be simplified 

as:  

(݂)ܮ  = 8ܶ݇ܨ (ܳ)ଶ ቀܳܳቁଶ ቀ1 − ܳܳቁଶ ܲை ൬ ݂݂߂൰ଶ
 Eq. 2.48

And when considering the flicker noise in an amplifier under operating conditions 

Eq. 2.48 becomes:  

(݂)ܮ  = ଶ(ܳ) 8ܶ݇ܨ ቀܳܳቁଶ ቀ1 − ܳܳቁଶ ܲை ൬ ݂݂߂൰ଶ ൬1 + ݂݂߂൰ Eq. 2.49

 As seen in Eq. 2.49, the phase noise can be improved by increasing the 

quality factor of the resonator, increasing the power available to the resonator, 

decreasing the noise figure of the amplifier and by lowering the flicker noise corner 

of the amplifiers.  

 Eq. 2.49 can be optimised for minimum phase noise by differentiating it with 

respect to ொಽொబ and then equating it to zero.  

 
݀(݂)ܮ݀ ቀܳܳቁ = 0 Eq. 2.50

 It was shown that the minimum phase noise occurs when ொಽொబ=0.5 [11] which 

results Eq. 2.48 to:   

(݂)ெூேܮ  = ଶ(ܳ)ܶ݇ܨ2 ܲை ൬ ݂݂߂൰ଶ
 Eq. 2.51

 Eq. 2.49 states that the phase noise of an oscillator can be improved by 

increasing the power in the amplifier and reducing the noise figure of the amplifier 

for a given (QL/Qo)=0.5.  

The phase noise spectrum of the oscillator mainly consists of (1/f3), (1/f2), (1/f1) and 

(1/f0) regions from Eq. 2.20 as shown in Figure 2.9. The (1/f3) is due to the up 
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conversion the sustaining amplifiers flicker noise, (1/f2) is due to multiplication of 

the amplifier’s white noise (leeson effect) and (1/f1) arises due to the flicker noise of 

the sustaining amplifier followed by the white noise (1/f0) at larger frequency offset. 

 

Figure 2.9: Spectrum of an oscillator. 

2.4 Environmental Noise 

High precision oscillators are used in modern day navigation systems such as cars, 

helicopters and unmanned aerial vehicles, radars to detect the target. At microwave 

frequencies, dielectric resonator oscillators are known to have a low phase noise, 

however when these communication systems are subjected to mild and harsh 

conditions, any acceleration such as shock or vibrations produced by the environment 

are picked up by the oscillators degrading their performances. This hence degrades 

the entire performance of the transmitter or the receiver system which might mask 

the signal containing useful information [21].  

2.4.1 Vibrations Sensitivity of Oscillators 

When an oscillator is subjected to vibration, the resonant frequency (fo) of the 

oscillator shifts and this change in the frequency (Δfo) is proportional to the 
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magnitude of the acceleration and the direction of the acceleration. The peak 

fractional change in the frequency is given by Eq. 2.52 and Eq. 2.53 [22]:  

 ݂( Ԧܽ ) = ݂(1 + Ԧ߁ ⋅ Ԧܽ ) Eq. 2.52

ݕ  = ߂ ݂݂ = ሬሬሬԦ.߁ Ԧܽ Eq. 2.53

 Where ห߁Ԧห is the acceleration sensitivity vector in the x, y and z directions 

and | Ԧܽ| is the peak applied vibration acceleration vector and the total acceleration 

sensitivity for a particular frequency in all the directions is given by Eq. 2.54:  

 ห߁௧௧ሬሬሬሬሬሬሬሬሬሬԦห = ට߁௫ଶ + ௬ଶ߁ + ௭ଶ Eq. 2.54߁

 The power spectral density is the rms value of the peak fractional frequency 

is given by Eq. 2.55 : 

 ܵ௬(݂) = ܹܤ௦|ଶݕ| = ൬߂ ݂௦݂ ൰ଶ ܹܤ1 = ቆ ߂ ݂√2 ݂ቇଶ Eq. 2.55 ܹܤ1

 Eq. 2.55 is related to the power density of the phase fluctuation Sφ(f) as Eq. 

2.56: 

 ܵథ(݂) = ܵ௬(݂)  ݂݂൨ଶ
 Eq. 2.56

 We know that the phase noise is related to the power spectral density by Eq. 

2.15: 

(݂)ܮ  = 12 ൣܵథ(݂)൧ Eq. 2.57

 And hence the phase noise under vibrations normalising to 1Hz bandwidth is 

given by Eq. 2.58:  
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)ܮ ௩݂) = 12 ൣܵథ(݂)൧ 
)ܮ ௩݂) = 12 ቆ ߂ ݂√2 ݂ቇଶ  ݂݂௩൨ଶ

 

)ܮ ௩݂) = ቆ߁.ሬሬሬԦ Ԧܽ2 ௩݂ ݂ቇଶ
 

Eq. 2.58

 When Eq. 2.58 expressed in dB: 

)ܮ  ௩݂) = ݃20݈ ቆ߁.ሬሬሬԦ Ԧܽ2 ௩݂ ݂ቇ Eq. 2.59

 Rearranging Eq. 2.59 we get:  

߁  = 2 . ௩݂ܽ . ݂ 10൬(ೡ)ଶ ൰ (݃ିଵ) Eq. 2.60

 The units for L(fV) is dBc/Hz and for random vibrations, the acceleration is 

represented by its power spectral density | Ԧܽ| =  The spectrum of .(g/√Hz) ܦ2ܲܵ√

the oscillators is indicated in an idealized form under vibrations is shown in Figure 

2.10. 

 

 

Figure 2.10: Sidebands caused by vibration in an oscillator.  

 It should be noted that when the oscillator frequency is multiplied by N in 

Eq. 2.59, the phase noise of the sidebands increases by 20log(N) as shown in Eq. 

2.61. 
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)ܮ  ௩݂) = ݃20݈ ቆ߁.ሬሬሬԦ Ԧܽ2 ௩݂ (ܰ ݂)ቇ Eq. 2.61

 Eq. 2.61 suggests that multiplying the carrier frequency by 10 times, the 

sidebands increase by 20dBc (20log(10)). For example, a 1GHz oscillator when 

subjected to a ห߁Ԧห of 1ᇒ10-9 per g when experiencing an acceleration | Ԧܽ| of 10g 

produces a sidebands of L(fV)=-26dBc at 100Hz vibrations however when the same 

oscillator is multiplied by 10 times at 10GHz, produces sidebands which are          -

6.0dBc at 100Hz for the same conditions. The sidebands have increased by a factor 

of 20log(10)=20dB in this case [23].  

 In real world environment oscillators placed in navigation systems such as a 

ship faces up to 0.8 peak acceleration while a propeller aircraft faces up to 0.3-5g 

rms and the acceleration sensitivity on a helicopter is in the range of 0.1-7 g rms 

values. In the literature, DROs have been subjected to vibrations, an X band 

oscillator built at NIST when subjected to 0.5g rms acceleration had a vibration 

sensitivity of 10-7 in Z axis while 10-8 in the X and Y axes for a high Q resonator. 

Further, it was repeated with a low Q resonator, the vibration sensitivity was 

improved and it was shown that a high Q resonator was more sensitive to vibrations 

when compared to a low Q since the phase change with frequency of the resonator 

is steep at the frequency of oscillation and any vibration would modulate the centre 

frequency and hence change the phase. This would in turn change the quality factor 

of the resonator and change the phase noise [24]. Stockwell et al. built a sapphire 

based oscillator at 9GHz which had a vibration sensitivity of 5ᇒ10-9 in all the three 

axes when subjected to 0.1g acceleration and believed that a DRO would be in the 

range of 10-9 -10-7 [25].  
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2.5 Cross Correlation Measurement System  

Residual noise which is also referred to as multiplicative noise is the noise which gets 

modulated onto a carrier in a less than perfect (real) 2 port device. Similar to the 

oscillator noise, it has both AM and PM noise associated with it but mainly the PM 

noise is of interest since the AM noise is usually very low. A conventional single 

channel phase noise measurement system is shown in Figure 2.11 used to measure 

the PM noise of the DUT. The main purpose of this system is to measure the PM 

noise by isolating the multiplicative noise produced by the DUT. A very low noise 

signal source is used as a reference source for the system which is split using a splitter 

into two separate paths. This drives the DUT and hence drives the signals to the 

LO and the RF port of the mixer. There is a phase shifter in one of the paths of the 

signal to set the mixers to be in quadrature and hence the mixer behaves as a phase 

detector. It is assumed that the phase noise of the source gets correlated at the inputs 

of the phase detector and therefore gets cancelled and only the noise of the DUT 

gets measured. Finally, the IF signal gets filtered using a low pass filter and then 

amplified before being fed into an FFT analyser where the spectral density of the   

noise at the output of the mixer is measured. 

 

Figure 2.11: Single channel residual phase noise measurement system. 
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 This can be demonstrated as follows, let us assume the V0 and V1 are the 

signals at the LO and the RF port given as shown in Eq. 2.62 and Eq. 2.63 [26]. 

 ܸ(ݐ) = ܸݏܥ൫߱ݐ + ൯ Eq. 2.62(ݐ)߮

 ଵܸ(ݐ) = ோܸݏܥ(߱ோݐ) Eq. 2.63

 At the output of the mixer, the IF is given by Eq. 2.64:  

 
ூܸி(ݐ) = ܸ(ݐ) ᇒ ଵܸ(ݐ)

ூܸி(ݐ) = ܸ ோܸ ݐ൫߱ݏܥ + ൯(ݐ)߮ Eq. 2.64 (ݐோ߱)ݏܥ

 Using the trigonometry identity: cos ߙ . cos ߚ = ଵଶ ሾcos(ߙ + (ߚ + cos(ߙ −  ሿ(ߚ
and substituting this in Eq. 2.64 we get Eq. 2.65: 

 ூܸி(ݐ) = ܸ ோܸ2 ݐ൫߱ݏܥൣ + ߱ோݐ + +൯(ݐ)߮ ݐ൫߱ݏܥ − ߱ோݐ − ൯൧ Eq. 2.65(ݐ)߮

 When the mixer operates as a phase detector then the frequencies are equal ߱ = ߱ோ, Eq. 2.65 changes to Eq. 2.66. 

 ூܸி(ݐ) = ܸ ோܸ2 ݐ൫2߱ݏܥൣ + ൯(ݐ)߮ + ൯൧ Eq. 2.66(ݐ)൫߮ݏܥ

 The signals are 90° out of phase ߮(ݐ) = (ܰ + 1)90° +  and this signal (ݐ)߮߂

passes through the low pass filter, hence the higher frequencies can be filtered out, 

resulting in Eq. 2.67. The other advantage of the mixers being in quadrature mode 

is that at this point, the mixers are most sensitive to PM fluctuations while least 

sensitive to AM noise [27]. Eq. 2.66 now reduces to Eq. 2.67 using the quadrature 

condition. 

 ூܸி(ݐ) = ܸ ோܸ2 ൣܵ݅݊൫(ݐ)߮߂൯൧ Eq. 2.67

For small angles൫(ݐ)߮߂൯ ≪ 1; ܵ݅݊൫(ݐ)߮߂൯ ≃ ൫(ݐ)߮߂൯; using this in Eq. 2.67 we get: 

 ூܸி(ݐ) = ௗܭ Eq. 2.68 (ݐ)߮߂
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 Where ܭௗ = ಽೃଶ  is the phase detector constant. Eq. 2.68 leads to a direct 

linear relationship between the voltage and the phase fluctuations of the input 

signals. However, the noise from the mixer, filter and the low noise amplifier gets 

onto the IF and hence to suppress these noises, cross correlation technique is used 

were by the uncorrelated noise in each arm can be suppressed by a factor of √ܰ 

where N is the number of correlations as seen in Figure 2.12  [28].  

 

 

Figure 2.12: Cross Correlation measurement setup using two HP11848A. 

 Let us assume x(t) and y(t) are the noisy signals in the time domain present 

at the output of the phase detectors. a(t) and b(t) are the uncorrelated noise of the 

instrument and c(t) is the correlated DUT noise in each arm as Eq. 2.69 and Eq. 

2.70 [29]: 

(ݐ)ݔ  = (ݐ)ܽ + (ݐ)ܿ ிி்ርሮ ܺ(݂) = (݂)ܣ + Eq. 2.69 (݂)ܥ

(ݐ)ݕ  = (ݐ)ܾ + (ݐ)ܿ ிி்ርሮ ܻ(݂) = (݂)ܤ + Eq. 2.70 (݂)ܥ

 The cross spectrum of these signals is given by Eq. 2.71:  

 ܵ = 1ܰ ሾܺ × ܻ∗ሿே
ୀଵ  Eq. 2.71
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Eq. 2.71 leads to Eq. 2.72 and Eq. 2.73: 

 ܵ = 1ܰ ሾ(ܣ + (ܥ × ܤ) + )∗ሿேܥ
ୀଵ  Eq. 2.72

 ܵ = 1ܰ ሾ(ܣܤ∗) + (∗ܥܣ) + (∗ܤܥ) + ሿே(∗ܥܥ)
ୀଵ  Eq. 2.73

 If we assume there are no correlations between these signals, then all the 

uncorrelated terms in Eq. 2.73 is zero and only the correlated noise from the DUT 

is measured.  
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CHAPTER 3 

 

3.8GHz DIELECTRIC RESONATOR OSCILLATOR 

 

3.1 Introduction 

In this chapter, the design and measurements of 3.8GHz oscillators incorporating 

dielectric resonators built for Selex-ES with low vibration sensitivity have been 

described. A high Q resonator and a low noise amplifier are key elements in a low 

phase noise oscillator. As dielectric resonators usually offer high Q factors, 

controllable temperature coefficient and low sensitive to vibrations they are used in 

the oscillators. The maximum quality factor is determined by the loss tangent (tan 

δ) of the dielectric material. For a dielectric resonator, the product of Qᇒf is 

approximately a constant. Dielectric resonators such as Barium Tetratitanate are 

available with an unloaded quality factor of 60,000 at 2GHz when operating in TE01 

mode [30] however as we go higher in frequency, sapphire based resonators have 

higher quality factors when compared to the dielectric resonators but these have 

higher sensitivity to temperature fluctuations and are also expensive. The other 

advantage of dielectric resonators is that they are able to sustain powers from a few 

mill watts to few watts when compared to a crystal resonator. Hence with a high 

circulating power, it is possible to design oscillators which have better phase noise 
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compared to that of a crystal oscillator multiplied up to at microwave frequencies. 

Also, at these microwave frequencies, the performance of the oscillator is highly 

dependent on the active device used in the oscillator. Silicon Germanium (SiGe) and 

heterojunction bipolar transistors (HBT) with high ft which exhibit low flicker corner 

are usually used as the active device since the phase noise is inversely proportional 

to the power, it is often useful to have a higher power active device.  

 Several authors have demonstrated oscillator performance utilising materials 

such as sapphire and ceramic for resonators from 4-5GHz. Initially, M. Regis et.al. 

demonstrated a phase noise of -133 dBc/Hz at 1kHz offset for a 4.85GHz oscillator 

using a SiGE HBT device and a sapphire resonator with a loaded Q of 60,000 [31]. 

Later, a phase noise of -138 dBc/Hz at 1kHz and by extrapolation close to              -

165 dBc/Hz at 10kHz offset was measured using a sapphire resonator with an loaded 

Q of 75,000 at 4.85GHz [32]. A SiGe device (Infineon BFP620F) was used with a 

ceramic resonator of unloaded Q of 33,000 demonstrated a phase noise of     -146 

dBc/Hz at 10kHz offset at 4GHz [33]. Sallin, Zhou, Broomfield and Everard 

demonstrated a phase noise of -135 dBc/Hz at 10kHz using a ceramic dielectric 

resonator with an unloaded Q of 17,400 at X band [34]. Later, Everard and 

Theodoropoulos demonstrated a 1.2GHz band using a ceramic resonator with a phase 

noise of <-173 dBc/Hz [30]. 

In this chapter, the design and construction of a 3.8GHz low vibration 

sensitivity, ultra-low phase noise DRO developed for Selex-ES is presented which is 

based on the feedback topology. The initial oscillators demonstrated a phase noise 

of -117 dBc/Hz at 1kHz offset and -150 dBc/Hz at 10kHz offset as the oscillator is in 

the flicker noise region the slope is 30dB per decade. Most of the elements on the 

PCB boards are printed in order to reduce the vibration sensitivity. The vibration 
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sensitivity (τi) varied from 1.33x10-7 to 8.51x10-9 per g depending on the axis and the 

frequency of the vibration. Later in the second prototype developed for University 

of York, the oscillator demonstrated a significantly improved phase noise 

performance of -125.6 dBc/Hz at 1kHz offset and -153 dBc/Hz at 10kHz offset which 

is the lowest noise reported in the literature in this frequency band using a dielectric 

resonator. The improved performance is mainly due to an increase in the power level 

and the reduced noise figure. In the following sections the simulations, design and 

measurement of the individual oscillator elements for both the prototypes are 

presented.  

3.2 Oscillator Elements 

The block diagram for the feedback topology oscillator is shown in Figure 3.1. All 

the elements were simulated and optimised individually and then combined to make 

a compact prototype of the oscillator.    

 

Figure 3.1: Oscillator block diagram using the feedback topology. 
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The oscillator consists of 5 parts:  

1. Amplifier: An amplifier is required to sustain the oscillation. The gain should 

be sufficient to cancel the insertion loss of the other elements and guarantee 

oscillation under all operating conditions. A push pull amplifier using SiGe 

BFP380F transistors with a gain of around 10dB, noise figure (NF) of 4dB 

and output power of 20dBm has been built. 

2. Resonator: The resonator is the frequency selective element in an oscillator 

and in this instance a dielectric resonator was used which mounted on an 

alumina tube in order to increase the quality factor and printed transmission 

lines were used to couple in and out of the resonator. The dielectric resonator 

had an unloaded Q of around 20,000. The insertion loss (S21) of the resonator 

is optimised to be around -6dB to achieve optimum phase noise performance. 

3. Electronically Tunable Phase Shifter: A phase shifter is used to tune the loop 

phase and hence oscillator frequency of the entire circuit. A voltage controlled 

phase shifter is designed with a low insertion loss which provides a tunable 

phase shift of about +110° using varactor diodes. 

4. Fixed phase shifter: This is used to set the loop phase shift to N × 360° and 

is made up of printed transmission lines and short lengths of semi-rigid cable. 

5. Output Coupler: A printed 10dB multi-section single layer coupler has been 

designed in order to integrate external devices. 

A compact amplifier design which also includes the electronic phase shifter, 

output coupler and resonator coupling probes was developed on a single high Rogers 

3006 substrate with a ℰr=6.5 with a loss tangent (tanδ) of 0.0020. This configuration 

enables the resonator to be measured separately; however, the amplifier, phase shifter 

and output coupler have to be measured together and the picture of the oscillator 



Chapter 3. C Band Dielectric Resonator Oscillator 

51 
 

board is shown in Figure 3.2. The design and simulations of the individual elements 

for the amplifier, phase shifter, output coupler and resonator are now described in 

the following sections. 

 

Figure 3.2: Picture of the compact dielectric resonator oscillator with individual 

elements. The oscillator measures 125×115×40mm. 

3.3 Amplifier 

The active element used in an oscillator needs to have a low noise figure, high output 

power and low flicker noise. There are a large number of devices that are available 

which have low noise figure and high output power at microwave frequencies. GaN 

and GaAs are suitable to use as an active device since they have high output power 

and also have low noise figure [35]. However, the flicker noise and phase noise of such 

devices are up to a few MHz [36] [37] it is undesirable since the flicker noise gets up 

converted in an oscillator. Hence, SiGe transistors are a suitable choice for transistors 
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when used in an oscillator. The gain of the amplifier needs to be around 8-10dB 

inside the oscillator loop to compensate the loss from the resonator which is set to 

6dB for minimum phase noise and the losses from the other elements such as the 

electronic phase shifter, coupler and the cables (maximum of 2dB). Also, the 

amplifier needs to be unconditionally stable since during oscillation the impedances 

presented at the input and the output are poorly defined. There are a number of 

such devices available from different manufactures but the devices selected were the 

BFR380F and BFP620F which were both SiGe devices from Infineon devices. The 

BFR380F had a P1dBm of 17dBm while the BFP620F had a P1dBm of 15dBm but 

both these devices had a similar noise figure of 4dB at 4GHz. However, the BFP620F 

had a gain of about 10dB at 4GHz while the BFR380F had a gain of about 5dB at 

4GHz. Hence both of these devices were simulated in order to optimise the gain, 

noise figure and the output power as these parameters directly affect the phase noise 

of the oscillator. However, simulations suggest that the BFP620F had a slightly high 

noise figure of 6dB and a low output power of 14dBm at 3.8GHz when compared to 

the BFR380F transistors and hence BFR380F was investigated.   

 The BFR380F is a silicon bipolar transistor from Infineon devices is one such 

device which has a gain of about 5 dB at 4GHz with a collector current of Ic=40mA 

and VCE=3Vand the S parameters for the device at 4GHz is shown in Table 3.1 for 

Ic=40mA and VCE=3V. The transistor also has an output compression point P1dBm 

of 17dBm at 4GHz and hence based on this information, the BFP380F transistor 

was chosen for the amplifier. 
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Table 3.1: S Parameters of BFR380F with Ic=40mA and VCE=3V at 4GHz 

S parameters Magnitude Angle 
S11 0.6108 144.9 
S21 1.826 50.7 
S12 0.2335 62.6 
S22 0.2258 -171.3 

 

3.3.1 Single Stage Amplifier using SiGe BFR380F 

A single stage amplifier was designed in CE configuration as shown in Figure 3.5 

and the amplifier block consists of a single transistor (BFP380R) from Infineon. An 

Infineon BCR400W active bias controller is used to bias the microwave transistor 

which is a low voltage drop device capable of stabilising the bias current of an NPN 

transistor from 0.2mA to over 200mA and includes temperature compensation 

elements. The quiescent current is set by REXT. The bias for the transistors was set 

to 40mA for a VCE of 4V for the maximum output power. The printed bias tee’s are 

used in order to present high impedance (open circuit) to the RF signal and low 

impedance at DC. The bias tees consist of a short 85Ω upper element, a radial stub 

and an 85Ω (λg/4) element. The length of the lines in the radial stubs were optmised 

using momentum in ADS and the plot of s parameters in shown in Figure 3.3 which 

has loss of 0.2dB at operating frequency and Figure 3.4 shows the smith chart 

which indicates the open circuit at 3.8GHz. It shows a good 50Ω match at 3.8GHz.  
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Figure 3.3: Momentum simulation using transmission lines of the radial stubs

optimised at 3.8GHz.  

 

Figure 3.4: Smith chart plot of the radial stubs from 3GHz to 5GHz which shows

the open circuit at 3.8GHz. 

The amplifier was simulated using Agilent Advance Design Software (ADS) 

using transmission line models and the models for the transistor and the active bias 

were imported. Rogers 3006 substrate (ℰr=6.5 with a loss tangent (tanδ) of 0.0020, 

thickness of 0.64mm with a copper cladding of 17μm) was used for simulations and 
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fabricate the boards in order to keep the boards compact. The simulations suggest 

that the amplifier had a gain of 5 dB at 3.8GHz as shown in Figure 3.6.  

 

Figure 3.5: Single Stage amplifier using BFP380F for Ic=40mA and a VCE of 4V.

 An amplifier can oscillate if the input or the output impedances have a 

negative real part, i.e if |Γin|>1 or |Γout|>1. Hence the amplifier was also checked for 

its stability using Eq. 3.1 and Eq. 3.2 which states that the amplifier is 

unconditional stable if |Γin|<1 or |Γout|<1 for all passive source and load impedances 

(|ΓS|>1 or |ΓL|>1) [38].   

 |Γ୧୬| = ൬|Sଵଵ + SଵଶSଶଵΓ1 − SଶଶΓ |൰ < 1 Eq. 3.1

 |Γ୭୳୲| = ൬|Sଶଶ + SଵଶSଶଵΓୗ1 − SଵଵΓୗ |൰ < 1 Eq. 3.2
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 The amplifier was also simulated in Agilent ADS for its stability using the 

K−Δ test, which states that a transistor is unconditionally stable if Rollet’s 

condition, K, is greater than unity and the auxiliary condition, |Δ|, is less than unity. 

As K>1 and |Δ|<1 the transistor is unconditionally stable upto 12GHz using Eq. 

3.3 and Eq. 3.4. 

|߂|  = | ଵܵଵܵଶଶ − ଵܵଶܵଶଵ| Eq. 3.3

ܭ  = 1 − | ଵܵଵ|ଶ − |ܵଶଶ|ଶ + |ଶ2|߂| ଵܵଶܵଶଵ|  Eq. 3.4

 The amplifier was also simulated for its output compression point and noise 

figure using the PSIPCE model which suggested a noise figure of 5dB and an output 

compression point of 17dBm at 3.8GHz. The dips at 2.7 GHz and around 6 GHz are 

due to the radial stubs which present an open circuit to the RF circuit and an open 

circuit to the DC end of the circuit.  

 

Figure 3.6: Simulated frequency response for a single stage amplifier using the 

SiGe BFP380F transistors. 
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3.3.2 Push Pull Amplifier  

The simulated gain of the amplifier was about 5dB at 3.8GHz; hence it was decided 

to use two amplifiers in series to have a potential combined gain of 10dB at 3.8GHz 

ignoring the losses from the couplers. The amplifiers were then combined using the 

Rat Race couplers in the Push Pull configuration. In this configuration, the amplifier 

consists of two similar transistors with similar CE amplifier topology which have 

equal gain, 1-dB compression points and noise figure connected in series. Then, each 

arm is then connected and a rat race coupler was used with balanced (180°) outputs 

as shown in Figure 3.7. The advantage of using a rat race coupler in a Push Pull 

configuration is that it provides a 3dB increase in the output power [38] however, 

simulations suggested no reduction to the overall noise figure. If Na is the noise figure 

of the individual cell, then the overall noise figure was found to be (Na+Na)/2 for 

the push pull amplifier. 

Table 3.2: Widths and lenghts using the Rogers3006 boards with ℰr=6.5 and loss 

tangent (tanδ) of 0.0020 at 3.8GHz 
 

Transmission Line 
Impedance 

Width Length (λg/4) 

50� 0.88 mm 8.7 mm 

70.71� (Rat Race 
Couplers) 

0.42 mm  

85� (Bias Tee) 0.255 mm 9.01 mm 
 

  



Chapter 3. C Band Dielectric Resonator Oscillator 

58 
 

 

Figure 3.7: Push Pull Amplifier Block Diagram. 

 The single stage amplifiers were simulated in Momentum ADS to have a more 

accurate model of the single stage and then imported back in the schematic in order 

to run an ADS co-simulation with the transistors models. The Push Pull amplifier 

was simulated for its gain, noise figure and output compression point (P1 dBm). The 

gain was simulated to be 10.1dB at 3.8GHz with a noise figure (NF) of 5.1dB as 

shown Figure 3.8 and Figure 3.9. Also, the output compression point (P1 dBm) of 

the amplifier was simulated to be 20dBm. 

 

Figure 3.8: Simulated S Parameter response for a Push Pull Amplifier using the

Rat Race couplers in Momentum ADS. 
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Figure 3.9: Simulated noise figure using the PSPICE model imported in ADS. 

 In the present configuration, the electronic phase shifter, amplifier and the 

coupler response had to be measured together due to the PCB design. The combined 

measured frequency response is shown in Figure 3.10. This demonstrates a gain of 

9.8dB at 3.8GHz.  

 

Figure 3.10: Comparison of the simulations and measurements of the Amplifier

+ Coupler + Electronic Phase Shifter.  

 Next the noise figure was measured using an HP8970B noise figure meter 

using the double side band method [39]. This instrument only operates up to 1.6GHz 
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so it is necessary to use a mixer. The HP346B noise source operates up to 18GHz. 

The noise meter is set to measure the noise figure at an IF frequency of 10MHz so 

this system measures the noise figure of the amplifier at +10MHz around the signal 

generator as shown in Figure 3.11. As long as the amplifier performance is constant 

over this 20MHz spacing then a correct reading can be obtained. The signals are 

down converted using a Minicircuits mixer ZEM-4300. The device is calibrated from 

the noise meter to the mixer as the mixer has a loss associated with it. The LO signal 

is provided by a signal generator with a 17dBm output power level via a 10dB 

attenuator. The mixer LO power is therefore +7dBm. A noise figure (NF) of 4dB 

was measured at 3.8GHz. 

 

Figure 3.11: Noise Figure Measurement setup for the 3.8GHz amplifier. 

Finally, the output 1dB compression point was measured using the setup 

shown in Figure 3.12. A directional coupler is used at the input of the amplifier to 

measure the input power available to the amplifier. Also, a 10dB attenuator is used 

at the output of the amplifier in order to protect the power meter. The P1dBm point 

was measured to be 20dBm.  
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Figure 3.12: Power measurement setup for the 3.8GHz amplifiers using Marconi

power meter 6960B.   

3.4 Dielectric Resonator  

Resonator is the frequency selective element, which is used in a feedback 

configuration to establish the correct oscillation frequency. Dielectric resonators are 

a suitable choice in an oscillator since they offer high Q factors, controllable 

temperature coefficient and a high power handling capability at microwave 

frequencies compared to crystal resonators and hence ensures low phase noise close 

and far away from the carrier. Dielectric materials with a ℰr ranging from 20-90 with 

a high Q is usually used as resonator and have a constant Q x f bandwidth. For 

example, commercially available DRs which have a ℰr of 30 have an unloaded Q of 

60,000 at 2GHz and a Q of 30,000 at 4GHz and so on. A common mode used in a 

dielectric resonator is the TE01δ mode where δ is the mode number [38] and the 

electric and magnetic field intensity for this mode is shown in Figure 3.13 simulated 

using CST Microwave Studio™ where the arrows represent the intensity and the 

direction of the electric and the magnetic field of a dielectric puck. Most of the 

electric and the magnetic energy are stored in the dielectric cylinder and the 
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remaining energy is distributed in the air surrounding the puck. Looking at the field 

pattern, the electric filed is almost zero at the centre of the dielectric resonator and 

the maximum occurs around at ¾th radius away from the centre of the resonator and 

the magnetic field is the strongest at the centre. Hence, a cylindrical plug can be 

removed from the centre without disturbing any field as shown in Figure 3.14.  

Coupling to the TE01δ mode is accomplished with the help of transmission lines 

placed near to the dielectric puck using the magnetic field or with the help of a small 

dipole to couple onto the electric field [40].  

               

 

Figure 3.13: Electric and Magnetic fields for a solid resonator puck for TE01  

using CST at 3.8GHz. 

              

 

Figure 3.14: Electric and Magnetic fields for a new tubular resonator puck for 

TE01  using CST at 3.8GHz. 

E-Field

H-FieldE-Field

H-Field
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 The dimensions of the dielectric puck determine the resonance frequency [40] 

and for a given radius ‘a’ and height ‘l’, for a TE01  the resonant frequency is given 

by: 

 ݂(ܶܧ) = ߳ߤ√ߨ12 ඨ൬߯ᇱܽ ൰ଶ + ቀߨ݈ቁଶ
 Eq. 3.5

 Where χ’mn represents the nth zero of the derivative of the Bessel function of the 

first kind of order m and in the case of the TE01 mode the value of χ’mn is 3.8318. 

The dielectric resonator which were used were made from Barium Tetratitanate 

which has a dielectric constant (ℰ) of 30 and an unloaded Q of 30,000 at 4GHz. At 

3.8GHz, the values of ‘a’ is 8.01mm and ‘l’ was 6.68mm for a ℰr of 30 calculated 

using Eq. 3.5. The dielectric puck was mounted on a short alumina spacer and then 

bonded to the aluminum base using a two-part epoxy as shown in Figure 3.15. The 

total structure could then be fitted and bolted into the base of the box. This allowed 

easy replacement and modification of the resonator. The main reason for the alumina 

spacer to be used was to increase the quality factor. As a high Q material is brought 

close to a lossy material (in this case Rogers 3006 substrate) and the base aluminium 

metal plate, the Q of the resonator significantly reduces from 9000 to 1000.  

 

Figure 3.15: The dielectric puck was mounted on a short alumina spacer and

then bonded to the aluminum base using two-part epoxy. 
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 Printed transmission lines were used to couple energy in and out of the cavity 

since the entire structure needed to be less vibration sensitivity. When transmission 

lines are used to couple energy, the lateral distance between the dielectric resonator 

and the transmission line determines the amount of coupling and in order to minimise 

the radiation loss, the DR is usually enclosed in a metallic enclosure. For an open 

circuit transmission line, the current maximum occurs at a distance (λg/4) away 

from the open circuit end and current minimum occurs at (λg/2) away from the end. 

For a Rogers 3006 substrate, the (λg/4) point is 6.723mm and (λg/2) point is 

13.44mm away from the open circuit end which means that minimum insertion loss 

has to occur at 6.7mm away from the open circuit end and maximum current occurs 

at 13.44mm which leads to better coupling and hence high Q. Also, increasing the 

separation between the transmission lines effectively increases the insertion loss since 

the magnetic field is weaker at greater distances and based on the simulation the 

optimum spacing was found to be 21.6mm between the transmission lines. 

3.4.1 Simulations and Measurements 

CST Microwave Studio was used to simulate the frequency response of the dielectric 

resonator. The initial lengths of the transmission lines were set to 28mm while the 

spacing between the printed transmission lines was 21.6mm and frequency domain 

solver with hexahedral mesh was used for simulations. To begin with, the simulation 

was carried out for a span of 5GHz but when no lower frequency modes were seen 

below 3.8GHz, the frequency span was reduced to ±100MHz to get a more accurate 

measurement of the insertion loss and the loaded Q. A number of probe simulations 

and experiments were conducted on a set of transmission lines to set the right 

insertion loss and loaded Q (QL) to achieve a low phase noise for the oscillator. The 
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top view, perspective and the dielectric resonator along with its enclosure is shown 

in Figure 3.16  for the straight micro strip coupling probes for the resonator.  

 

Figure 3.16: CST model of the resonator using straight transmission lines. 

 The dielectric puck is represented by dark blue colour while the alumina 

support underneath is represented by light blue as seen in centre of Figure 3.16. 

The PCB copper cladding is in yellow along with the transmission lines (extreme 

left) while the aluminium cavity is also in yellow (extreme right in the Figure 3.16). 

The lengths of the transmission lines were reduced by 1mm at a time and the 

resonator was simulated for its insertion loss (S21) and loaded Q (QL). The frequency 

response of the resonator for various lengths of the transmission lines is shown in 

Figure 3.17. As the length of the transmission lines is reduced, the coupling between 

the magnetic fields between the microstrip lines and the dielectric resonator changes 

and hence the insertion loss and the loaded Q. The change of frequency is believed 

to be an artifact of the simulator and was not observed during the experiments.  
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Figure 3.17: Variation of Insertion Loss and Loaded Q vs length of the straight 

coupling transmission lines simulated using CST. 

 In order to verify the simulations, PCB boards using Rogers 3006 were 

fabricated where the initial straight micro strip coupling probes were 28mm long and 

21.6mm apart as shown in Figure 3.18. The measurement demonstrated that the 

insertion loss was (S21) was -1.414 dB with a loaded Q, QL of 1766 for a 28mm length 

line. The insertion loss was optimised by cutting away the lines 1mm at a time whilst 

measuring the insertion loss and the loaded Q of the resonator. It should be noted 

that reduction in length by 1mm might not have been accurate enough as the 

reduction was done with the help of scalpel. The insertion loss was noted down for 

each measurement. The calibration was done at the start at 3.813 GHz and the same 

calibration was recalled every time. The unloaded Q, Q0 is calculated using: 

 ܳ = ൬ ܳ1 − |ܵଶଵ|൰ Eq. 3.6

 Two useful probe lengths for the oscillators were: 

1.  12 mm in length, where S21 was -4.252 dB and QL was 7675 and hence 

Q0 was calculated to be 19,829.  
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2. 11 mm in length, where S21 was -6.6 dB and QL was 10,495. Q0 was 

calculated to be 19,669 using Eq. 3.6. 

Figure 3.18: Experiment to set the right insertion loss and the loaded Q using 

the straight micro Strip lines for the resonator. 

 

Figure 3.19: Plot of Insertion Loss/Loaded Q vs length of the straight coupling 

transmission lines. 

 It can be seen that at (λg/4) which is 6.7mm, where a current maximum exists 

and where the optimum coupling should be achieved. The data indicates that the 

minimum insertion loss occurs at 4.3mm and this is in agreement with the theory as 

shown in Figure 3.19. The Table 3.3 shows the comparison of the simulation and 
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the experiment loaded Q (QL) for the distance from the open circuit lines. The 

measurement error is 5% to 10% from that of simulations. 

Table 3.3: Comparison of the loaded Q for the simulations and measurements. 
 

 
Distance from the open 

circuit lines (mm) 

 
Loaded Q  

(Simulations) 

 
Loaded Q  

(Measurements) 
 
0 

 
1654 

 
1766 

 
4 

 
1010 

 
913 

 
8 

 
1310 

 
1307 

 
12 

 
2910 

 
2898 

 
14 

 
4480 

 
4620 

 
16 

 
8265 

 
7675 

 

  Since the maximum unloaded Q was obtained at 16mm, the lengths were not 

reduced further and were used for the final prototype of the oscillators. Figure 3.20 

shows the response of the resonator with a 6GHz span with a reduced length of 

16mm with no lower order modes observed in the resonator. The required TE011 mode 

can be observed with an insertion loss (S21) of -20.53 dB since there is not enough 

number of points. The span was then reduced to 10MHz in order to get an accurate 

measurement of the insertion loss (S21) and loaded Q (QL). The response of the 

resonator with the reduced span which demonstrated an insertion loss of -4.2 dB 

with a loaded Q of 7,675 is shown in Figure 3.21. The unloaded Q was then 

calculated to be 19,829 using Eq. 3.6.  
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Figure 3.20: Resonator response with a 6 GHz span where the TE01 mode can 

be seen at the centre of the plot. 

 

Figure 3.21: Measured Insertion Loss (S21) of -4.252dB and Loaded Q, (QL)  of 

7675 for a span of 10MHz for the 3.8GHz dielectric resonator.  



Chapter 3. C Band Dielectric Resonator Oscillator 

70 
 

3.5 Voltage Controlled Phase Shifter  

In a dielectric resonator oscillator (DRO), the frequency of operation is fixed and 

determined by the resonator. The frequency of oscillation can be changed externally 

by mechanical tuning of the resonator where the magnetic field distribution is 

changed around the resonator by moving a metallic object close to the dielectric 

material. However, continuous tuning cannot be achieved since the quality factor 

degrades which degrades the phase noise performance of the oscillator. Frequency 

tuning can also be achieved by using an electronic phase shifter network 

incorporating varactor diodes inside the oscillation loop to produce a voltage 

controlled oscillator (VCO). By varying the capacitance of the varactor using a DC 

voltage, the resonance is moved and the frequency is changed and the oscillator 

would still operate as long as the total phase shift is Nᇒ360°. The change in the 

phase shift in an oscillator changes the loaded Q of the resonator which is 

proportional to dϕ/dω. This also changes the resonator insertion loss which alters 

the amplifier gain and hence the circulating power in the loop. All these alterations 

degrade the phase noise of the oscillator and the research group at University of 

York has shown, both theoretical and experimentally, that the phase noise 

performance degrades with a Cos4ϕ relationship. This type of network produces 6dB 

degradation in phase noise at the 3dB points of the resonator (±45°) at which point 

the oscillator is tuned to ±f0/2QL. Typically to maintain low phase noise at all tuning 

points the oscillator is tuned to ±20° [11] [41]. Hence the electronic phase shifter 

needs to have a low insertion loss in the given tuning range in order to reduce the 

total noise figure of the system. It also needs to have a desirable phase shift in the 

tuning range but also have linear properties with respect to power and the control 

voltage. Also, since the varactor diodes are nonlinear semiconductor devices, they 



Chapter 3. C Band Dielectric Resonator Oscillator 

71 
 

should exhibit low residual phase noise since it would have effect on the overall 

performance of the oscillator.   

3.5.1 Topology and Design 

There are a number of ways to design an electronic phase shift using varactor diodes 

and the most common way is to design as in case of a reflection type phase shifter 

(RTPS). The total phase shift using this topology is usually +360° but they usually 

have a high insertion loss with respect to the change in the bias voltage which is 

undesirable in case of an oscillator [42] [43] [44]. Hence to maintain a low insertion 

loss in the pass band, a phase shifter presented in [45] was used which consisted of a 

5th order high pass Butterworth filter where the capacitors were replaced with 

varactor diodes. The choice of the cut off frequency determines the insertion loss and 

the phase shift. In case of a low cut off frequency, the parasitics of the varactors 

increases and hence the insertion loss and therefore minimum phase shift is achieved. 

In case of the high cut off frequency, this might be close to the frequency of operation, 

as we change the control voltage, the cut off frequency moves towards the operational 

frequency causing higher insertion loss.  Hence the cut off frequency was set to Kᇒf 

where K was set to 0.6 from previous optimization and f is the frequency of oscillation 

[45].  

 The basic circuit for the phase shifter consists of a high pass filter based on a 

5th order Butterworth filter prototype with the two series capacitors replaced with 

varactor diodes and the capacitance is changed with the control voltage. The three 

shunt inductors are replaced with short lengths of high impedance transmission line 

for high frequency circuits. This circuit also enables varactor control from a voltage 

source. There are four stages in the design of the phase shifter: 
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a. Obtain the low pass filter prototype values. 

b. Convert these values to a high pass topology. 

c. De-normalize for the desired cut off frequency and impedance. 

d. Convert the inductance to micro strip line equivalents.  

 The component values for the low pass prototype for a normalised 5th order 

Butterworth filter are: C1 & C2 = 0.618F; C3 = 2F; L1 & L2 = 1.618H and the 

schematic is shown in Figure 3.22.   

 

Figure 3.22: Low Pass Prototype for a 5th order Butterworth filter. 

These low pass filter prototype values can now be de-normalised and 

converted to a high pass filter suing Eq. 3.7 and Eq. 3.8.  

ᇱܥ  = 1ܼ ܮ ߱  Eq. 3.7

ᇱܮ  = ܼܥ߱ Eq. 3.8

So for Z0=50�, and for a cut off frequency, fC of 2.4GHz which is ~0.6 of the operating 

frequency for optimum performance and the high pass prototype is shown in Figure 

3.23 calculated using Eq. 3.9, Eq. 3.10 and Eq. 3.11. 

 
ଵܮ = ଶܮ = ܼܥ߱ = ߨ2)50 × 2.4 × 10ଽ × 0.618) =  ܪ݊ 5.36

 
Eq. 3.9
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ଷܮ = ܼܥ߱ = ߨ2)50 × 2.4 × 10ଽ × 2) = 1.65  ܪ݊

 
Eq. 3.10

 

ଵܥ = ଶܥ = 1ܼ ܮ ߱ = 150 ߨ2) × 2.4 × 10ଽ × 1.618)=  ܨ 0.819

 

Eq. 3.11

 The high pass prototype for the 5th order prototype is shown in Figure 3.23.  

 

Figure 3.23: High pass 5th order Butterworth schematic for a cut off frequency of

2.28GHz.  

 As we are operating over a narrow tuning range, it is possible to replace the 

inductor with a high impedance line (Z0) then we can obtain the equivalent length 

of line for the required inductance. This is the impedance for a transmission line 

terminated in a short circuit and is given by Eq. 3.12. Also, the capacitors are 

replaced by varactor diodes and as the reverse bias voltage applied to the diodes is 

increased, capacitance varies from CMAXIMUM to CMINIMUM and hence changing the phase 

shift.   

ܮ݆߱  = ݆Z0(݈ߚ)݊ܽݐ Eq. 3.12

 The high impedance for the inductor was chosen to be 85Ω as the width of 

the transmission line was easy to fabricate in house using Rogers 3006 substrate.  

For Z0=85Ω and f=3.8GHz and L3=1.65 nH and the length of the transmission line 

was l=2.52mm and similarly L1 & L2=5.36nH, l=5.602mm was calculated using Eq. 
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3.12. The component values for the voltage controlled phase shifter are shown in 

Table 3.4 for a cut off frequency of 2.28GHz. It should be noted that the length of 

the transmission line for the inductors was calculated at frequency of oscillation and 

not at the cut off frequency. 

Table 3.4: Voltage controlled phase shifter values for a cut off frequency of 

2.28GHz. 
 

Component Low Pass 

prototype 

High Pass 

Equivalent 

Micro-strip 

Length 

L1 , L2 0.618F 5.36nH 5.602mm 

C1 , C2 1.618H 0.82pF - 

L3 2.000F 1.65nH 2.520mm 
 

Based on this design a varactor diode needs to be selected with a centre 

capacitance around 0.82pF. In this instance the MA46H series of varactor diodes 

from MA-COM were investigated and the MA46H070 was chosen. Unfortunately, 

there was no SPICE model available for these varactors and therefore one was 

developed as shown in Figure 4.2. The package has a parasitic capacitance of Cp = 

0.15 pF, inductance of Ls =0.5nH from the data sheet. The capacitance Cv is 

calculated based on Eq. 3.13. 

௩ܥ  = ൬1ܥ + ܸܸ൰ం  Eq. 3.13

 Where the exponent γ was given to be around 0.75 in the datasheet, VJC was 

taken as 0.7V and Cj (2.2pf) was calculated from the information that the diode has 

a value of 0.7pf at 4V. The diode series resistance (rs = 1.4�) was calculated from a 

Q of 4500 at 50MHz.  
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Figure 3.24: Equivalent model of the MA46H070 varactor diodes. 

 Based on this information, the varactor capacitance was modelled by 

simulating the S parameters. The bias voltage was varied and the capacitance was 

calculated using ZC=-j/ωC. The simulated and the values form the data sheet for 

the MA46H070 capacitance vs voltage graph (calculated at 1MHz) is shown in 

Figure 3.25 for 0.1V-20V. 

 

Figure 3.25: Comparison of the Capacitance Vs Voltage for MH46HO70 

varactor diodes. 

The schematic of the phase shifter incorporating the transmission line models 

for the inductors and the MH46HO70 varactor diodes is shown in Figure 3.26. The 

lengths of the transmission lines for the inductors were optmised using momentum 

in ADS and imported in ADS to run a co-simulation along with the model for the 

varactor.  
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Figure 3.26: Schematic of the electronic phase shifter incorporating the

transmission line models for the inductors and the MH46HO70 varactor diodes. 

The entire phase shifter was simulated using the transmission line models for 

the inductors and the models for the varactor didoes using Agilent ADS for its S 

parameters and the frequency response is shown in Figure 3.27 . The insertion loss 

(S21) is 0.2dB at 3.8GHz with a cut off frequency of 2.28GHz. The voltage on the 

varactor diodes was at 4V since the capacitance from the simulation was close to 

0.88pF. Next, the insertion loss vs bias voltage shows the variation of the phase with 

respect to the bias voltage shown in Figure 3.28. It can be seen that it provides a 

tuning range of about 50° from 5V to 20V. The simulated insertion loss (S21) is 0.2dB 

for the same voltage range. 
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Figure 3.27: Simulated S Parameters for the phase shifter for a 5th order filter 

using varactor diode model and inductors replaced by transmission lines. 

 

Figure 3.28: Simulation of the Insertion loss & Phase Response vs Bias Voltage

using MH46HO70 varactor diodes. 

In this current configuration, the electronic phase shifter is directly connected 

to the input of the push pull amplifier and coupler combination so a direct 

measurement is not possible. In order to obtain the response of the phase shifter, the 

measurement of the electronic phase shifter, amplifier and the coupler has to be 
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performed. The gain of the Amplifier which includes the Phase Shifter + Coupler vs 

Bias Voltage is shown in Figure 3.29. The gain varies by 1.2 dB for 5-20V where 

as there is a linear change in the phase shift from 5-20V providing 60° of phase shift. 

This measurement is similar to the simulated result shown in Figure 3.28. 

Measurements are accomplished using a network analyser to display the magnitude 

and phase of the forward transmission scattering parameter, (S21) where variable DC 

power supply is used to provide the bias voltage. Note that in the second prototype 

described in section 3.9, all the elements of the oscillator including the phase shifter 

can be measured separately.  

 

Figure 3.29: Amplifier+ Phase Shifter+ Coupler Gain and the Phase Response 

Vs Bias Voltage. 

3.6 Multi Section Single Layer Coupler 

A coupler was designed in order to integrate the oscillator to any external device. 

Power can be coupled from one transmission line to another which is in close 
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proximity due to the interaction of the electromagnetic fields. However, at microwave 

frequencies it is currently not possible to design a single section with a coupling of 

10dB as the gaps between the lines would be too small with the current fabrication 

techniques at the University of York (current tolerance of 50 μm). The gap has to 

be around 30μm to achieve a coupling of 10dB at 3.8GHz. A multi section coupler 

has therefore been designed using the techniques described in [46].  

 In this design as seen in Figure 3.30 the coupler consists of parallel lines 

which are (λg/4) in length are used. These two single parallel lines have a slightly 

lower coupling ratio and hence higher impedances. If these coupled lines are 

connected directly to each other no coupling is achieved since the total phase shift 

is 90° and they are out of phase. Hence they are connected with a 50� line which is 

also (λg/4) in length which adds the signals in phase and higher coupling can be 

achieved. 

 

Figure 3.30: Multi Section single layer 10-dB directional coupler. 

 The various impedances of the directional coupler terminated at Z0=1� 

(normalised) is shown in Figure 3.30. The coupling ratio is determined as follows: 

At point D, the total impedance seen by the circuit (ZD) is its characteristic 

impedance which is 1�. At point C, which is (λg/4) away from the D, the impedance 

(ZC) seen by the circuit is (Z1
2). Now at point B, the impedance (ZB) which is again 
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(λg/4) from C, is (Z2
2/Z1

2) and finally at A. ZA= (Z1
2)/(Z2

2/Z1
2)=(Z1

4/Z2
2). Hence the 

total reflection coefficient (Γin) is: 

ଵܥ  = ߁ = ܼଵସ − 1ܼଵସ + 1 Eq. 3.14

ଵݖ  = ൬1 + 1ܥ − ൰ଵସܥ
 Eq. 3.15

ܥ   = ܼଵଶ − 1ܼଵଶ + 1 Eq. 3.16

 For a 10 dB coupler, c=-10dB therefore C=10-10/20=0.316. Using Eq. 3.15 we 

get Z1=1.177� and substituting this in Eq. 3.16 we get a coupling ratio of 0.16 

which is -15.8dB coupling and then de-normalising we get a impedance of 

Z1=Z3=58.88�.  

The design was simulated and optimised for its correct electrical lengths using 

Momentum in Agilent ADS for various impedance transmission lines. The design 

consists of a cascade of two quarter wave coupled lines (with a coupling of -15.8dB) 

with a quarter wave delay line between them. This is illustrated in Figure 3.31. 

The first and the third sections (which are used for coupling) have an impedance of 

58.88� and the middle section is 50� impedance. This centre section is used to set 

the correct phase shift and is not used for coupling.  

 

Figure 3.31: Impedances for the multi section 10dB directional coupler. 
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 It was found that the spacing is very critical and small changes affect the 

bandwidth and the coupling ratio of the coupler as shown in Figure 3.32 for various 

spacing of 0.35mm, 0.45mm and 0.5mm. The optimum spacing between the lines was 

found to be 0.45mm using Momentum. All the sections are (λg/4) in length.  The 

simulations suggested a -10.3dB coupling and a loss of 0.6dB at the through port 

3.8GHz for a spacing of 0.45mm and also as the spacing between the lines changes, 

the coupling starts to decrease faster. 

 

Figure 3.32: Momentum simulation of the 10 dB multi section direction coupler

for spacing of 0.35, 0.45 and 0.5 mm. 

 Table 3.5 shows the final dimensions of the lines before and after 

optimisation using Momentum in ADS.  

Table 3.5: Initial and final dimensions of the multi-section Coupler 
 

Transmission line 
Impedance 

Width (mm) Length (λg/4) (mm) 

58.88� 0.63 Initial value: 8.12 
Optimised value: 8.86 

50� 0.88 8.73 
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The coupler is directly connected to the output of the push pull amplifier and 

phase shifter combination so a direct measurement is not possible and hence to obtain 

the response of the coupler alone two measurements are required. The left hand 

response Figure 3.33 is the measured response of the Phase Shifter + Amplifier + 

Coupler taken at the output port and the measured response of the Phase Shifter + 

Amplifier + Coupler from the Coupled Port is shown on the right hand side in 

Figure 3.33. The difference demonstrates a coupling of approximately 10dB, as 

expected. 

 

Figure 3.33 Measured Phase Shifter + Amplifier + Coupler responses from 3-

5GHz. 

 The first DRO mounted on the baseplate was enclosed in a screened metal 

box to remove spurious signals and the second oscillator was fully enclosed in its own 

box and the pictures of the DRO’s are shown in Figure 3.34 and Figure 3.35. 
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Figure 3.34: Oscillator 1 mounted on the baseplate with a separate resonator 

enclosure.  

Figure 3.35: Oscillator 2 which measures 125×115×40mm is completely 

enclosed in its box. 

3.7 Phase Noise Measurements 

The phase noise of these oscillators is significantly lower than any commercial phase 

noise measurement systems. It is therefore necessary to mix two oscillators and 
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measure a low frequency beat signal and hence the two oscillators, DRO1 and DRO2 

are mixed using a mixer; ZEM-4300MH as shown in Figure 3.36. This produces a 

down converted signal of 3.5MHz. The phase noise of this signal was measured using 

a Symmetricom 5120A opt 01 phase noise analyser. Two isolators were initially used 

for the measurements but later they were removed and the same results were 

obtained. A low pass filter (DC- 11MHz) was used to remove the higher order 

harmonics at the input of the Symmetricom 5120A.  

 

Figure 3.36: Phase Noise Measurement System used to measure the phase noise 

of the oscillators. 
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Figure 3.37: Phase Noise Measurement Plot of the 3.8GHz oscillators which 

demonstrate a phase noise of -150dBc/Hz at 10kHz offset. 

 The phase noise measurement plot displayed in Figure 3.37 is 3dB lower. 

This is because two identical oscillators have been mixed together in order to produce 

the result and hence it therefore necessary to subtract 3dB from the measured value. 

The spurs at the lower frequency can be removed by operating the bias, the supply 

voltages using bias boxes and batteries. The theoretical phase noise of an oscillator 

is calculated using Eq. 3.17 and the parameters values used for the calculation of 

the theoretical phase noise of the oscillator:  

T: The room temperature in Kelvin T = 293 K 

FA: The Noise Figure of the amplifier, phase shifter and the coupler, measured to be 

4 dB. 
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QL: loaded Q of the resonator = 7675 

Q0: Un-loaded Q of the resonator = 19,829 

PAVO: Power available at the resonator = 20dBm 

fo: frequency of oscillation, 3.81GHz. 

fc: Flicker Frequency, assumed to be 10kHz. 

Δf: Offset frequency 

(݂)ܮ = 20 logଵ ێێێۏ
ۍ ܥଵ݇ܶ2ܨ ଵܲ + ݇ܶܨ ൬1 + ݂݂൰2 ܲை ێێۏ

ۍ 1ቀ1 − ܳܳቁଶۑۑے
ې

+ ݇ܶ8(ܳ)ଶܨ ቀܳܳቁଶ ቀ1 − ܳܳቁଶ ܲை ൬ ݂݂൰ଶ ൬1 + ݂݂൰ۑۑۑے
ې
 

Eq. 3.17

 

Table 3.6: Compassion of the theory with that of measurement of the oscillators 

at 3.8GHz for a noise figure of 4dB and a flicker noise corner assumed to be 10kHz

or higher. 
 

Offset Theory Measurement 

1kHz -128.8 dBc/Hz -117.2 dBc/Hz 

10kHz -156.8 dBc/Hz -150.0 dBc/Hz 
 

 Table 3.6 shows the comparison of the theoretical phase noise with that of 

the measurements assuming the flicker noise corner of 10kHz and noise figure of 4dB 

which includes the cables, phase shifter and the coupler. The measurements are 8-

10dB worse when compared to that of the theory. The degradation in phase noise 

may be explained as a result of increase in the noise figure when the amplifier is 

under saturation. Hence residual phase noise measurements would be needed in order 
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to measure the noise figure when the amplifier is under saturation and also the flicker 

noise corner. In the present design, the amplifier, electronic phase shifter and the 

output coupler are connected together and hence it is not possible to measure the 

flicker corner frequency and the noise figure under large signal conditions. So a new 

prototype was built (explained in section 3.9) where all the individual elements of 

the oscillator can be built and measured independently.  

 Finally, measurements were performed for the Frequency tuning vs Bias 

voltage where the amplifier supply was kept at VCC of 6 V as seen in Figure 3.38. 

This measurement demonstrates the frequency tuning range which can be obtained 

using the voltage controlled phase shifter. The voltage controlled phase shifter was 

adjusted in 1 volt increments and the frequency of the new peak recorded. The phase 

shift tuning is nonlinear with respect to the tuning voltage and hence as we change 

voltage on the phase shifter, the insertion loss and the loaded Q changes which in 

turn changes the circulating power in the loop non-linearly degrading the phase noise 

of the oscillators. In the new prototype, a better power handling capability (explained 

in section 3.9.3) was built in order to reduce the non-linearity. 

 

Figure 3.38: Tuning Frequency vs Bias Voltage for the 3.8GHz oscillator. 
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3.8 Vibration Measurements 

One of the main aims of this initial work was to measure the vibration sensitivity 

(Γi) of the dielectric resonator oscillator to understand how the phase noise of the 

oscillator degrades with vibrations. In order to measure the sensitivity, the oscillator 

needs to be characterized while subjected to vibrations. The basic measurement setup 

needed to have a mechanical actuator or a shaker in order to induce vibrations and 

an accelerometer to sense these vibrations. The final set of vibration measurements 

for different vibration profiles were performed at Selex-ES which had sophisticated 

vibration measurement systems. However, to obtain initial estimates of the vibration 

sensitivity some initial measurements were performed at University of York.  

3.8.1 Initial Vibration Measurements at University of York  

First, it was necessary to develop excitation methods to induce vibrations. Two 

methods were used. DC vibration motors which are commonly used in mobile phones 

for vibrations were available which produce sinusoidal vibrations at around 120Hz 

with a peak g around 0.5g. The oscillator is mounted on a plate supported by pieces 

of string. The vibration motor is placed under the metal plate and the accelerometer 

is bonded to the oscillator. The second method was a loudspeaker cone. A signal 

generator was used to vary the frequency and the amplitude of the oscillations. The 

frequency of oscillation was set to 120Hz so as to compare the results with the DC 

motor but with a different peak acceleration ‘ai’. The oscillator was made to rest on 

the top of the loud speaker and the accelerometer was mounted on the side of the 

oscillator. The measurement system for both the setups is shown in Figure 3.39.  



Chapter 3. C Band Dielectric Resonator Oscillator 

89 
 

 

Figure 3.39: Spot frequency vibration measurement setup for the 3.8GHz 

oscillators using DC motors and loud speakers. 

 Next, in order to sense the peak acceleration which is exhibited on the 

oscillators, it was necessary to obtain some accelerometers. The ADXL-203CE from 

Analog Devices was used which is a dual-axis accelerometer which can measure 

acceleration up to ±1.7g from DC to 3 kHz. This can operate from 3 to 5 V. The 

total current consumption is 1.1mA. According to the data sheet, the vibration 

sensitivity is 1000mV/g at 5V and 560mV/g at 3V [47]. A CR-2032 Li-ion battery 

(3V) was used to power the accelerometer. The accelerometer was mounted on a 

small PCB measuring about 15mm square as shown in Figure 3.40. One advantage 

of these sensors is that they can be calibrated directly at DC by measuring the 

voltage change in each axis by turning them upside down. The change in voltage is 

equal to 2g. Care was taken that lights and other electronic devices were switched 

off in the room to remove any unwanted pickups. 

 The vibration sensitivity (Γi) for a given peak acceleration ai in the X axis is 

calculated by Eq. 3.18: 

߁  = ଶೡబ 10ቀಽ(ೡ)మబ ቁ           Eq. 3.18߁
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Figure 3.40: Photograph of the dual axes accelerometer ADXL-203CE used for

measuring the peak acceleration.  

 A DC Vibration Motor was used to produce vibrations at 120Hz. The side 

bands were measured to be L(fv)=-23.3 dBc and the accelerometer output voltage 

was 240mV therefore ‘ai’ is 240/560 = 0.42g. Therefore, the vibration sensitivity for 

the DC motor was 1.164 x 10-8 g-1 in the X axis. For a second measurement a loud 

speaker was used, again at 120Hz, as the exciter. The side bands were measured to 

be L(fv)=-33.3 dBc, the ‘ai’ measured was to be 0.14g as seen in Figure 3.41. 

Therefore, the vibration sensitivity is 1.092 x 10-8 g-1 in the X axis.  

 

Figure 3.41: Sidebands seen on a spectrum analyser due to vibrations at 120Hz

for ai=0.14g. 
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3.8.2 Final Vibration Measurements at Selex-ES 

Next for more accurate measurements for various vibration profiles, measurements 

were performed at Selex-ES. The Oscillator was rigidly mounted on a vibration table 

with accelerometers. Next a set of spot frequency vibrations at various frequencies 

and random vibration profile was used on the oscillators to measure the vibration 

sensitivity. Precautions have to be taken care of when measuring the acceleration 

sensitivity of the DUT as mentioned by Hati el al. [21]. The oscillators were rigidly 

mounted on the vibration table in order to avoid any mechanical resonance from the 

box and since there were cables which connected the oscillators to the phase noise 

instrument and power leads associated with the experiment, all the cables were 

secured to the ground to dampen any effects of the vibrations. Also, there were no 

other components attached on the vibration table apart from the accelerometers. 

Before the start of the vibration measurements, a phase noise measurement was done 

under the vibration measurement setup in order to verify the phase noise 

measurement results with that of the ones done at University of York. 
   

3.8.2.1 Spot frequency 

The dielectric resonator oscillator which was enclosed in its own box was used for 

the spot frequency vibrations which were similar to the measurements performed at 

University of York; however, the measurements at Selex-ES were performed for all 

the axes. Sine wave vibrations were applied at three different frequencies 100Hz, 

500Hz and 1500Hz at an intensity of ai = 0.2g and the measurement setup is shown 

in Figure 3.42. The induced sideband levels, L(fv), were then measured as shown 

in Figure 3.43 and based on this the vibration sensitivity was calculated at these 

fixed frequencies for all the three axes using Eq. 3.18.   
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Figure 3.42: Measurement setup for the spot frequency profile at 100Hz, 500Hz

and 1500Hz at an intensity of ai = 0.2g. 

 

Figure 3.43: Vibration Sensitivity in X, Y, Z axes at 100Hz, 500Hz, and 

1.5kHz. 

  At lower frequency, the Y and the Z axis have larger vibration 

sensitivity compared to that of the X axis. This may be due to a number of factors. 



Chapter 3. C Band Dielectric Resonator Oscillator 

93 
 

Firstly, the semi-rigid cables which are used in the oscillator are not ideal. Ideally, 

most of the components should be printed on the PCB in order to reduce any effects 

of vibrations on the oscillator. Secondly, the resonator was mounted on an aluminium 

base in order to improve the quality factor and hence improve the performance of 

the oscillator. It can be also seen that, the measurements performed at York (120Hz) 

were similar in vibration sensitivity measurements performed at Selex-ES (100Hz) 

on the X axis. The FSUP spectrum analyser plots showing the induced sideband 

levels L(fv) caused by vibration on the X, Y and the Z axis are shown in Appendix 

A.1. It has to be noted that correlation of these spot frequency measurements needs 

more investigation. 
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Table 3.7: Vibration Sensitivity for all the 3 axes at 0.2g at 100Hz, 500Hz and 
1.5kHz 
X Axis : 

f g L(fv) ࢣ (g-1) 

100 Hz 0.2 -29.80 dBc 8.51 x 10-9 

500 Hz 0.2 -42.64 dBc 9.70 x 10-9 

1500 Hz 0.2 -25.88 dBc 2.00 x 10-7 

 
Y Axis : 

f g L(fv) ࢣ (g-1) 

100 Hz 0.2 -14.56 dBc 4.92 x 10-8 

500 Hz 0.2 -27.66 dBc 5.44 x 10-8 

1500 Hz 0.2 -29.26 dBc 1.35 x 10-7 

 
Z Axis:  

f g L(fv) ࢣ (g-1) 

100 Hz 0.2 -14 dBc 5.2 x 10-8 

500 Hz 0.2 -28.33 dBc 5.04 x 10-8 

1500 Hz 0.2 -29.44 dBc 1.33 x 10-7 
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3.8.2.2 Random Vibration Profile 

DRO 1 was mounted on the vibration table and the output was connected to the 

Mixer ZEM-4300MH. DRO 2 was mounted away from the table in a screened box 

and the output was connected to the LO port of the mixer. Both signals were then 

down converted to 3.5MHz. A low pass filter was used to remove the higher 

harmonics. A Rohde & Schwarz FSUP was used to measure the side bands as well 

as the phase noise measurements. A Symmetricom 5120A opt 01 was also used to 

verify the phase noise measurements with those from the FSUP. Batteries were used 

to reduce the lower frequency spurs. Care was taken when performing the vibration 

measurements. The oscillator was rigidly mounted on the vibration table with an 

accelerometer and no other components were mounted on the vibration table. The 

semi rigid cables which were used in the oscillators were set to the correct torque. 

Also, the cables which were used to connect to the output of the oscillators to the 

Symmetricom 5120A and the FSUP were secured to the floor to reduce the tension 

on the cables. The vibration axes of the oscillator are defined showing the 

relationship between X, Y and Z axes to the resonator mounting as shown in Figure 

3.44. 
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Figure 3.44: Vibration Measurement phase noise setup with the reference of 

vibrations axes. 

 A second test applied a random vibration profile (10Hz–2kHz) with a total 

vibration of 0.7g rms on all the 3 axes. A phase noise measurement was carried out 

during this test. A random vibration profile of acceleration 0.7g (rms) is used for 

10Hz ≤ fv ≤ 2000 Hz as shown in Figure 3.45. It shows the variation in the close to 

carrier noise for three different axes with that of the phase noise with no vibrations. 

At 1kHz, the phase noise varies from -112.56 dBc/Hz with no vibrations to -64.11 

dBc/Hz in the X axis, -51.08 dBc/Hz in Y Axis and -51.16 dBc/Hz in the Z axis for 

0.7g rms. Far away from carrier around 50kHz the phase noise of the Y and Z plots 

merge with reference signal.  
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Figure 3.45: Comparison of the Phase Noise Plots for different axes for random 

vibration profile with 0.7g rms. 

 The bottom curve shows the noise floor of the oscillators measured under no 

vibrations. There are a number of reasons for the vibration sensitivity to be in order 

of 10-7. The vibration effects may due to the semi rigid cables which were used to get 

the phase shift right around the loop and secondly due to mounting of the resonator 

on spacer in order to increase the quality factor. The sensitivity can further be 

improved by having a single board with the right phase shift around the loop. It is 

believed that the vibration sensitivity on these oscillators can be further improved 

by placing the puck directly on the PCB board but this comes at an expense of the 

phase noise performance. However, when the puck is directly mounted on the PCB 

board, the simulated Q is reduces to 1600 from 7675 and the phase noise of the 

oscillators degrades to -134.4 dBc/Hz at 10kHz offset. 
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3.9  New Improved Oscillator Prototype 

A 6dB improvement in the phase noise is potentially possible if the noise figure is 

reduced and the output power is increased in the oscillator. Hence a new oscillator 

was built using the same feedback topology as shown in Figure 3.46 to improve the 

phase noise performance. The new prototype of the oscillator was built in such a way 

that the individual elements can be built and measured separately and then linked 

directly with each other to form the oscillator. A mechanical phase shifter was 

included in the new prototype to make it more compact and reduce the noise figure 

and to remove the semi rigid cables. PCB boards were fabricated using Rogers 3006 

(ℰr=6.50, tanδ= 0.0020) for the amplifier, coupler, resonator and the mechanical 

phase shifter while Rogers 4003C (ℰr=3.55, tanδ=0.0027) [48] [49]was used for the 

electronic phase shifter due to limitation of the width of the transmission lines during 

the manufacturing process of the PCB boards as shown in Figure 3.47. 

 

 

Figure 3.46: Modular 3.8GHz oscillator with an incorporated mechanical phase

shifter. 
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Figure 3.47: Modular yet compact 3.8GHz Oscillator Board incorporating the 

mechanical phase shifter. 

3.9.1 Push Pull Amplifier 

The design of the Push Pull Amplifier is similar to the one mentioned in section 3.3 

using the SiGe BFP380F transistors from Infineon. The amplifier was simulated for 

its gain, noise figure and the output power compression point. The Push Pull 

amplifier demonstrated a gain of 10.2dB with an input return loss of -11.2 dB at 

3.8GHz. The comparison of the gain and the input return loss for the simulated 

amplifier with that of the measurements is shown in Figure 3.48. The noise figure 

was measured to be 4dB at 3.8GHz using the double side band technique.  
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Figure 3.48: Comparison of the simulated and the measured S parameters of 

the Push pull amplifier. 

Next, the output compression point was measured using the setup shown in 

Figure 3.49. A signal generator at 3.8GHz was used at the input followed by a 

directional coupler in order to accurately measure the input power. An attenuator 

was used at the output to protect the power meter. Figure 3.50 shows the 

comparison of the simulation and the measurement of the P1dBm compression point. 

The output compression point was measured to be at 20.1 dBm which was in 

agreement with the simulated of 20 dBm at 3.8GHz using the harmonic balance 

simulation using the SPICE model for the transistor in ADS. 
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Figure 3.49: Power Measurement Setup for the Push Pull Amplifier using the 

SiGe BFP380F transistors. 

 

Figure 3.50: Simulated and the measured 1-dB compression point for the Push 

Pull amplifier. 
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3.9.2 Dielectric Resonator 

Since the dielectric puck used in the previous prototype was bonded on an aluminium 

base and bolted from the below, it could be swapped easily and hence the same 

dielectric puck could be used. A new structure using symmetrical transmission lines 

was simulated using CST Microwave Studio. The top view, perspective and the 

dielectric resonator along with its enclosure is shown in Figure 3.51.  

Figure 3.51: CST model of the Symmetrical Curved transmission lines. 

Figure 3.52: Simulated response of the resonator with an insertion loss (S21) of -

5.7 dB and 3-dB band width of 0.43kHz resulting in a (QL) of 8,860 usingCST. 
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The insertion loss was simulated to be -5.7 dB with a simulated loaded Q of 

8860 as shown in Figure 3.52. A new board was fabricated where the transmission 

lines were symmetrical and hence a new enclosure was also built for the same as 

shown in Figure 3.53. Also, to achieve fine tuning, a screw was inserted on the top 

of the enclosure in order to change the magnetic fields inside the resonator and hence 

the frequency.  The insertion loss for a span of 6 GHz is shown in Figure 3.54. The 

required TE011 mode can be seen along with unwanted higher frequency spurs. Also, 

there are no lower order modes and the insertion loss at 3.81GHz is -21.28 dB since 

there is not enough number of points. The closest spur is at a frequency of around 

575MHz higher than the TE01 mode.  

 

Figure 3.53: Symmetrical probes for the resonator along with the enclosure for

3.8GHz dielectric resonator. 

The span was reduced to 10MHz and the insertion loss and the loaded Q was 

recorded. The insertion loss is -6.7dB and the loaded Q was measured to be 10,570 

shown in Figure 3.55 which results in an unloaded Q of 19,660 calculated using 

Eq. 3.6. 
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Figure 3.54: Measured insertion loss of the resonator for a span of 6GHz. 

 

Figure 3.55: Measured insertion loss of the resonator for a span of 10MHz with 

a loaded Q of 10,570. 
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3.9.3 New Improved Electronic Phase Shifter 

The phase shifter developed in the previous prototype exhibited nonlinear effects 

during frequency tuning at certain DC voltages as seen in Figure 3.38 and hence a 

harmonic balance simulator was used in Agilent ADS to predict the non-linearity of 

the modelled MH46HO70 varactor diodes with respect to the input power for various 

bias voltages. Simulations suggested no non linearity up to 23dBm at all DC voltages, 

since the maximum power which was possible at the input of the electronic phase 

shifter was 20dBm. The device appears to be linear with respect to the power levels 

at any certain DC voltage. From the literature it is known that at certain RF 

voltages the varactor diodes exhibits negative conductance at a subharmonic 

frequency. This negative conductance cancels any losses in the circuit which results 

in a subharmonic frequency between the diode capacitance and the inductance of the 

circuit [50] [51]. As the voltage across the diodes is halved by reducing the system 

impedance from 50Ω to 25Ω the negative conductance needs higher input power to 

occur.  

Hence a new 25� phase shifter was developed based on the 5th order high pass 

filter prototype using the same procedure as the original phase shifter described in 

section 3.5. A quarter wave transformer was used to transform the system impedance 

of 50Ω into 25Ω and because of this the voltage across the diodes was halved, the 

capactiance doubles and the inductors are halved. The new values of the capacitors 

are 1.64pF and the inductors L1,L2 is 2.68nH and L3 is 0.825nH calculated using Eq. 

3.7 and Eq. 3.8 for the 5th order Butterworth high pass filter prototype. The 

capacitors are again replaced with varactor diodes from MA-COM which were used 

in the previous prototype. Since the value of capacitors doubles, two of the 
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MH46HO70 diodes were used in parallel to get a total capacitance of 1.64pF. The 

schematic for a new phase shifter is shown in Figure 3.56.  

 

Figure 3.56: High pass filter prototype for a 25Ω system with a 2.28GHz cut off

frequency.  

 L1, L2 and L3 are the inductors which are now converted into tranmission lines 

using jωl= jZ0tan(βl). The lengths (l) for the inductors are 5.39mm for L1 and L2 and 

2.56mm for L3 using a high impedance (85�) line with a width of 0.40mm using 

Rogers 4003C substrate. The quarter wavelength of the impedance transformer for 

a 35.35� line is (λg/4) 11.64mm to transform into a 25� system. The circuit diagram 

for a new phase shifter using the transmission line models for the inductors is shown 

in Figure 3.57. 

 The transmission lines were optimised in Momentum ADS and then the phase 

shifter was simulated for its frequency response. The frequency response for the high 

pass filter is shown in Figure 3.58 with a cut off frequency of 2.4GHz. The simulated 

insertion loss at 3.8GHz was 0.88dB while the measured insertion loss (S21) was 

1.45dB for a 10V control voltage as seen in Figure 3.59. 
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Figure 3.57: Electronic phase shifter using impedance transformer with the 

MH46HO70 varactor diodes. 

 

Figure 3.58: Comparison of the measurements and the simulation for the new

modified electronic phase shifter. 

 Next, the measurement was performed to determine the variation of the 

insertion loss and the phase shift with respect to the control voltage. The simulation 
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suggests a constant insertion loss of about 0.3dB. The measured insertion loss (green 

line) varies by 0.3dB for 5V to 20V as shown in Figure 3.59. There is an almost a 

linear change in the phase shift (black line) from 5V to 20V providing 40° of phase 

shift. Measurements are accomplished using a network analyser to display the 

magnitude and phase of the forward transmission scattering parameter, (S21). A 

variable DC power supply is used to provide the bias voltage. 

 

Figure 3.59: Simulated and measured Insertion Loss (S21) and phase shift 

(degrees) for the electronic phase shifter. 

 Next, two varactor diodes (one from each pair) was replaced by a fixed 

capacitor to see if there were any nonlinear effects on the phase shifter and the same 

set of measurements were conducted to see if the insertion loss remained constant 

over the voltage. As shown in Figure 3.60 there is almost a constant insertion loss 

with respect to the control voltage from 5V to 20V for 0.8pF, 0.9pF, 1pF and 1.2pF. 

But the tuning ability of the phase shifter was reduced to 10° for the same control 

voltage when one of the varactor diodes was removed.   



Chapter 3. C Band Dielectric Resonator Oscillator 

109 
 

 

Figure 3.60: Measured Insertion Loss (S21) and Phase shift for various fixed 

value capacitors along with the varactor diode. 

 Finally, to see if there were any nonlinear effects on the phase shifter with 

respect to the input power, large signal measurements were done on the phase shifter. 

The input power was changed with a help of a tunable attenuator and the insertion 

loss and the phase shift were noted. The phase shifter did not exhibit any non-

linearity with respect to the phase shift and the insertion loss up to maximum input 

power of 17dBm at 3.8GHz. 
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3.9.4 Multi Section Directional Coupler 

In order to integrate external devices, a single layer multi section printed 10dB 

coupler has been designed and built similar to the design described in section 3.6. 

The impedances were 58.88� and 50� and all the sections were (λg/4) and the 

spacing between the lines is 0.45 mm. The coupler demonstrated a loss of 0.6dB at 

the through port which connects to the resonator while the coupling was measured 

to be -9.9dB at 3.8GHz as shown in Figure 3.61.   

 

Figure 3.61: Measured Coupled and through port of the multi-section coupler 

for the 3.8GHz oscillator. 

3.9.5 Mechanical Phase Shifter  

The oscillator always oscillates at (N ᇒ 360°) and in the previous prototype the 

additional phase shift required was obtained by using semi rigid cables. However, 

the semi rigid cables increased the vibration sensitivity of the oscillators and added 

to the noise figure. Hence, in this prototype in order to get the phase shift correct in 

the loop, a compact mechanical phase shifter was developed. The design similar on 



Chapter 3. C Band Dielectric Resonator Oscillator 

111 
 

a compact mechanical phase shifter developed by Aeroflex [52]. The open loop phase 

shift is required to be accurate to <±1mm (10°/mm) for a Rogers 3006 with a ℰr 

=6.50 board [48] to achieve the required phase noise performance. The layout of the 

mechanical phase shifter consisting of the rotatable top section and the fixed bottom 

section is shown in Figure 3.62. Phase shift can be obtained just by rotating the 

top section and hence changing the length of the transmission lines. In the closed 

state, the top PCB board completely overlaps the bottom PCB providing a minimum 

phase shift and as we move the top PCB from a completely overlapped position, the 

length of the transmission line changes and hence the total phase shift. The top PCB 

which has a meander line has a total electrical length of 120°.  A meander line was 

chosen for the top PCB board so that a screw can hold the PCB board onto a base 

plate and moved easily. The lengths of the lines were optimised using momentum in 

ADS to obtain a low insertion loss as well as the required phase shift. 

 

Figure 3.62: Illustrated layout of the mechanical phase shifter designed at 3.8GHz.

 The top PCB board was rotated in steps of 10° and Agilent ADS Momentum 

was used to simulate for the entire structure for its total phase shift and the insertion 
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loss. The simulated insertion loss (S21) was 0.4dB at 3.8GHz for the closed state and 

0.5dB for the open state while the total simulated phase shift was around 140° as 

shown in Figure 3.63 while the total measured insertion loss varies from 0.4dB to 

0.7dB from 3GHz to 5GHz. 

 

Figure 3.63: Momentum simulation of the insertion loss (S21) and the phase shift

for the mechanical phase shifter for the closed and the open state.  

 The mechanical phase shifter consists of the top PCB and the bottom PCB 

board as shown in Figure 3.64 and the two were connected using a nylon screw. 

The mechanical phase shifter was then tested for its insertion loss and the phase 

shift. The measured insertion loss (S21) varies from 0.7dB to 0.9dB from closed state 

to the open state providing a total phase shift of 116°. 
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Figure 3.64: Compact low insertion loss mechanical phase shifter. The total 

phase shift measured was 116° at 3.8GHz.  

3.9.6 Phase Noise Measurements 

The first DRO made of these individual sections linked with each other were 

mounted on the baseplate which was enclosed in a screened metal box as shown in 

Figure 3.65. The second oscillator which also consisted of all the individual parts 

was linked with each other was fully enclosed in its own box as shown in Figure 

3.66. It should be noted that all the individual parts can be measured separately 

making it a modular structure. Phase noise measurement is carried as described in 

section 3.7 using the beat frequency method. The two oscillators, DRO1 and DRO2 

are mixed using a mixer; ZEM-4300MH. This produces a down converted signal of 

1.9MHz. The phase noise of this signal was measured using a Symmetricom 5120A 

opt 01 phase noise analyser. 
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Figure 3.65: DRO 1 with individual sections linked with each other were mounted

on the baseplate was enclosed in a screened metal box. 

Figure 3.66: 3.8GHz oscillator with all the individual elements along with the 

enclosure on the right. The oscillator measures 120×110×35mm. 
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 The phase noise equation for the oscillators is given by:  

(݂)ܮ = 20 logଵ ێێێۏ
ۍ ܥଵ݇ܶ2ܨ ଵܲ + ݇ܶܨ ൬1 + ݂݂൰2 ܲை ێێۏ

ۍ 1ቀ1 − ܳܳቁଶۑۑے
ې

+ ݇ܶ8(ܳ)ଶܨ ቀܳܳቁଶ ቀ1 − ܳܳቁଶ ܲை ൬ ݂݂൰ଶ ൬1 + ݂݂൰ۑۑۑے
ې
 

Eq. 3.19

Where :  

T: The room temperature in Kelvin T = 293 K 

FA: The total noise figure of the amplifier, phase shifter and the coupler, measured 

to be 5 dB. Note that the noise figure is shown to be 8dB under large signal conditions 

as explained in section 3.9.7 

QL :  Loaded Q of the resonator = 10,570 

Q0 : Un-loaded Q of the resonator = 19,660 

PAVO: Power available at the resonator = 19dBm 

fo: frequency of oscillation, 3.81GHz. 

fc: Flicker corner frequency, measured to be 12.7kHz. 

Δf: Offset frequency 
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Figure 3.67: Phase Noise Plot of the 3.8 GHz oscillators. The phase noise 

measured was -150.1 dBc/Hz at 10kHz and -122.6 dBc/Hz at 1kHz offset. 

 It should be noted that the quoted value is 3dB lower than in the displayed 

on the plot in Figure 3.67. This is because two identical oscillators have been mixed 

together in order to produce the result and it is therefore necessary to subtract 3dB 

from the measured value. 
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Table 3.8: Comparison of the 3.8GHz oscillators theory with that of measurement

for a noise figure of 4dB and a flicker noise corner of 20kHz (assumed). 
 

Offset Frequency 
 

Theory  
 

Measured 

1 kHz -128.4 dBc/Hz -125.6 dBc/Hz 

10 kHz -156.8 dBc/Hz -153.1 dBc/Hz 
 

 The theoretical noise for the two oscillators was calculated to be -156.6 

dBc/Hz at 10kHz and -128.4 dBc/Hz at 1kHz respectively as shown in Table 3.8. 

There is a deviation of 3dB in terms of the measured phase noise from that of the 

theory. If the noise figure of the amplifier was increased by 3dB under saturation, 

then the theoretical and the measured phase noise would tie in and hence residual 

noise measurements were performed to measure the noise figure of the amplifier 

under saturation.  

 

3.9.7 Residual Phase Noise Measurements 

Residual phase noise measurements of the active components are measured using the 

broadband York System which has recently been demonstrated to have a noise floor 

of -200dBc/Hz at L Band [14]. The block diagram of the residual phase noise 

measurement set up using the cross correlation technique is shown in Figure 3.68. 

The measurement system consists of two HP 11848A phase noise sets which have 

the phase detector, LNA and the anti-aliasing filters. These units exhibit a low single 

channel noise floor of below -180 dBc/Hz at carrier offsets greater than 10kHz [53].  
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The reference source is provided by a battery powered ultra-low phase noise dielectric 

resonator oscillator (DRO) developed in the previous prototype at 3.8GHz which 

had a phase noise of -153 dBc/Hz at 10kHz offset. When compared to a commercial 

signal generator this DRO has a much lower phase noise and believed to have a 

much lower AM noise too.  A low level of AM noise is important when measuring 

the residual phase noise of the devices since the saturated double balanced mixers 

only offer up to 20 to 30 dB of AM noise suppression [53]. If the AM noise is not 

suppressed, then this can directly add to the residual phase noise and the 

measurements can be masked. Saturation of the mixers is required in order to make 

sure that any AM noise present at the input of the mixers can be suppressed. Also, 

double shielded microwave cables were used in order to reduce any external noise 

sources. 

Figure 3.68: Cross Correlation measurement setup using two HP11848A phase 

noise test sets. 

Single side band calibration was performed with the help of a signal which 

was injected into to measurement setup with the help of a directional coupler as 
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shown in Figure 3.68. An R&S SMB100A signal generator was used as a calibration 

source. This frequency now modulates the carrier signal present at the LO ports of 

the phase detector and hence any non-linear effects present in the mixer are taken 

into consideration. This calibration tone modulates the carrier signal present at the 

LO ports of both phase detectors and will therefore appear as a single side-band spur 

at the inputs to the cross spectrum analyser [53]. The primary advantage of 

calibrating the instrument in this way is that the calibration is performed under the 

actual measurement conditions with the device in place. It should also be noted that 

ideally a calibration spur should be injected at every measurement frequency of 

interest; however, the frequency response of the HP11848A units is sufficiently flat 

that this is not necessary. However, the downside of this technique is that, a second 

source and a directional coupler have to be added in the experimental setup. 

The theoretical noise floor can be calculated using Eq. 3.20 

 ℒ(݂) = −177 − ܲ + Eq. 3.20 ܨܰ

Where (NF) is the noise figure of the combined amplifier and attenuator and (Pin) is 

the power available at the input to the attenuator. In order to make sure that the 

measurement setup does not mask the actual residual noise measurements of the 

DUT, a phase noise floor of the measurement system was initially performed at same 

power conditions i.e the inputs power levels at the input of the mixer. The system 

noise floor was measured to be at -190dBc/Hz at offsets greater than 10kHz and 

below -180dBc/Hz around 1KHz. The input power to the amplifier was limited as 

the input power to the mixer of the single channel residual noise measurement system 

is limited to +10 dBm. Power at the input of the amplifier (Pin) was 8 dBm and a 

10 dB attenuator was used after the amplifier (to protect the mixers from high 

power) which increased the noise figure (NF) by 1.2 dB. Figure 3.69 shows a plot 
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of the amplifiers residual phase noise and at offsets above 10 kHz the residual phase 

noise is approximately -180.5 dBc/Hz which is in good agreement with the theoretical 

value of -180 dBc/Hz calculated using Eq. 3.20 and the measured phase noise is -

168 dBc/Hz at 1 kHz offset and -178 dBc/Hz at 10kHz offset as shown in Figure 

3.69 and the estimated flicker noise corner of 12.7 kHz. The white noise follows 

exactly the (1/P0) law up to 8 dBm input power. Eq. 3.20 is valid when the amplifier 

is operated in the linear region. However, when the amplifier is operated in a non-

linear or a saturation region, then noise figure (NF) may increase [27] [54] and hence 

the measurement was repeated for the amplifier at its 1dB compression point, it was 

observed that the noise figure increased from 4dB to 8dB which is likely the 

consequence of saturation in the intermediate stage of the amplifiers.  

 

Figure 3.69: Residual phase noise measurements for the 3.8GHz amplifier with

Pin= 8 dBm and NA = 5.2 dB. 

Hence for a new noise figure of 8dB and with a flicker noise corner of the 

amplifier estimated to be around 12.7kHz, the theoretical phase noise of the 

oscillators is -125.5dBc/Hz at 1kHz offset and -153.8dBc/Hz at 10kHz offset. This 



Chapter 3. C Band Dielectric Resonator Oscillator 

121 
 

shows that the theoretical phase noise using Everard’s phase noise equation and the 

measurements are in very close agreement as shown in Table 3.9.    

Table 3.9: Comparison of the 3.8GHz oscillators theory with that of measurement

for a noise figure of 8dB and a flicker noise corner of 12.7kHz 
 

Offset Frequency Theory Measured 

1 kHz -125.5 dBc/Hz -125.6 dBc/Hz 

10 kHz -153.8 dBc/Hz -153.1 dBc/Hz 
 

Finally, measurement for the frequency tuning vs Bias voltage was made. 

This measurement has been performed in order to demonstrate the frequency tuning 

range which can be obtained using the voltage controlled phase shifter. The voltage 

controlled phase shifter is then adjusted in 1 volt increments and the frequency of 

the new peak recorded. A tuning range of 150 kHz with a constant output power can 

be shown in Figure 3.70. A 10-dB attenuator was used at the output of the 

oscillator to protect the spectrum analyser. 

 

 

 



Chapter 3. C Band Dielectric Resonator Oscillator 

122 
 

 

Figure 3.70: Tuning Characteristics of the 3.8GHz Oscillators using the control 

voltage of the electronic phase shifter. 

 It can be seen that the tuning response is more linear when compared to that 

in the previous prototype which was seen in Figure 3.38. This is due to the lower 

impedance which makes it capable of handling higher power levels.  

3.10 Conclusions 

The first prototype included vibration measurements with a reasonable phase noise 

measurements developed for Selex-ES. To enhance the phase noise performance, a 

modular design was later implemented independently enabling all the oscillator 

elements to be measured and optimised separately. Key additional features are low 

vibration sensitivity, low weight and low DC power consumption. The phase noise 

for the 3.8GHz oscillator is -117 dBc/Hz at 1kHz offset and -150 dBc/Hz at 10kHz 

offset. Two types of vibration sensitivity measurements were performed. One was 

the spot frequency measurements in the X, Y and Z axes of 0.2g at 100Hz, 500Hz & 
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1500Hz and second was the random vibration profile which was performed in all 

three axes at 0.7g rms from 10Hz to 2kHz. The vibration sensitivity (Γi) varied from 

1.33x10-7 to 8.51x10-9 per g depending on the axis and the frequency of the vibration.  

The second prototype was the improved modular yet compact oscillator was 

then developed which demonstrated a significantly improved phase noise 

performance of -125.6 dBc/Hz at 1kHz offset and -153 dBc/Hz at 10kHz offset which 

is the lowest noise reported in the literature in this frequency band using a dielectric 

resonator. The theoretical and the measured phase noise of these oscillators are 

within 0.5dB accuracy. The improved performance is mainly due to increase in the 

power level of the amplifier and the reduced noise figure.  Finally, residual phase 

noise measurement of the amplifier was made using a broadband cross correlation 

phase noise measurement system developed at York. The flicker noise corner of the 

amplifier was estimated to be around 12.7kHz from the residual phase noise 

measurements.  

. 
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CHAPTER 4 

 

TUNABLE BRAGG RESONATOR  

 

4.1 Introduction 

Tunable oscillators are a fundamental element in almost all communication and 

measurement systems. In these systems high Q tunable resonators are required for 

low phase noise signal generation. This is because in an oscillator, the phase slope of 

the resonator (group delay & Q) causes any internal phase fluctuations, within the 

bandwidth of the resonator, to be transformed into frequency fluctuations and phase 

noise. Ideally, a tunable filter should have a high tuning range, high unloaded Q in 

a spurious free window with high power handling capability.  

 For a planar or a lumped element resonator, the quality factor is limited to a 

few hundreds and when loaded with a tuning element, the overall quality factor 

further drops. The maximum unloaded quality factor attainable from a dielectric 

resonator is defined by the loss tangent (tanδ) of the dielectric material. Modern 

dielectric resonators (DR) operating in the TE01δ mode is capable of providing Q-

factors of between 10,000 and 30,000 at 10GHz. Hence dielectric resonators are a 

good choice in oscillators due to a high quality factor. At higher frequencies, the 

dimensions of the dielectric puck can become small if it is operated in a TE or TM 
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hybrid mode and alternatively, a whispering gallery mode can be used where the 

field energy is confined to the outer edge of a ring of dielectric material [6].  

When compared to a dielectric resonator, a distributed Bragg resonator can 

offer a significant increase in the quality factor. This is done by replacing the end 

walls by alternating layers of air and dielectric material which leads to partial 

reflection of the incident electromagnetic waves. When several such layers are 

combined more energy is reflected back into the central air section if kept away from 

the lossy end metal walls. The reflector section lengths in a Bragg resonator are 

typically one quarter of the guide wavelength (λg/4) in thickness in order to 

maximize their reflectivity [55].  

 There are a number of authors who have demonstrated high Q fixed frequency 

Bragg resonators. The most common dielectric materials are Sapphire, Alumina, 

Quartz and Yttrium Iron Garnet (YIG). Maggiore et.al demonstrated a quality 

factor of 531,000 at 18.99GHz using a layered Sapphire resonator [56]. Flory and 

Taber measured a quality factor of 650,000 using Sapphire resonators at 9GHz [55] 

while Flory and Ko demonstrated a Q of 450,000 at 13.2GHz using a similar structure 

[57]. Krupka et.al used single crystal quartz as a dielectric material to build Bragg 

resonators at 39GHz which had a Q of 560,000 [58]. Spherical Bragg resonators were 

demonstrated Krupka et.al which were constructed from single crystal YAG and 

quartz. The resonator produced a Q-factor of 104,000 at 26.26 GHz while the YAG 

resonator produced a Q of 64,000 at 27.63 GHz [59]. Breeze, Krupka and Alford 

demonstrate that by utilising an aperiodic arrangement of dielectric plates that the 

energy losses within a Bragg resonator can be redistributed away from the lossy 

dielectric materials and into the  lower air regions [60]. Simulations also suggest that 

a spherical Bragg resonator can be designed with a quality factor in excess 107 at 
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10GHz. An aperiodic sapphire resonator consisting of concentric dielectric rings 

separated by dielectric plates was demonstrated. The resonator had a Q factor of 

600,000 at 30 GHz [61]. More recently, Bale and Everard demonstrated a fixed 

frequency aperiodic cylindrical Bragg resonator using alumina plates with an 

unloaded Q of 200,000 at 10GHz [15]. 

  Several technologies are presented in the literature to realize the tuning 

elements in order to tune the centre frequency. Ferroelectric materials [62], Yttrium 

Iron Garnet (YIG) [63], piezoelectric, micro electromechanical systems (MEMS) [64] 

are the most common used tuning elements. However, in most of these systems the 

tuning range and the unloaded Q are very limited. All of these tuning elements 

degrade the quality factor as the tuning range is increased. Mechanical tuning of a 

dielectric resonator can be achieved by perturbing the magnetic field distribution 

around the resonator by moving a metallic or a dielectric object close to the dielectric 

puck. Initially, Wakino reported a mechanically tuned dielectric resonator in 1987 

which use a piezoelectric actuator on the top of the dielectric resonator to tune the 

centre frequency. The actuator was controlled with a use of a DC voltage where a 

tuning range of up to 8% can be achieved using this technique [65] [66]. Dielectric 

resonator can also be tuned with the use of another dielectric material or a resonator 

with the same dielectric constant to perturb the field inside the original dielectric 

resonator [67] [68]. Dielectric resonator using MEMS based tuning element where 

MEMS actuators controlling the tuning disk are used (instead of the tuning screws) 

has been reported. At 4GHz a tuning range of 1.5% was demonstrated with an 

unloaded Q of 3730 [69]. Magnetically tuned dielectric resonators are the other form 

of tunable resonators where a low loss ferrite material is used to change the resonant 

frequency [70] [71]. The highest Q obtained using this technique was 4000 with a 
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tuning range of 1.3% at 2.3GHz. Tunable dielectric resonators using varactors were 

reported in [70] [72] [73] where the resonator consists of 2 varactors. The change in 

the resonant frequency was obtained by changing the boundary conditions on the 

metal ring which is located close to the resonator on the substrate. A maximum 

unloaded Q of 8000 was reported at 3.5GHz with a tuning range of 1.6%. YIG is a 

ferrite material which resonates when placed in a magnetic field and the frequency 

of response is directly proportional to the magnetic field. They are capable of having 

unloaded Q’s of up to 10,000 at 10GHz [74] with low insertion loss and broad tuning 

ranges making them the best choices for tunable filters in communication systems 

[75]. Table 4.1 shows the comparison of tuning range and unloaded Q dielectric 

resonators with different tuning elements. 

Table 4.1: Comparison of tuning range and the quality factor of various tunable

resonators present in the literarture. 
 

 Type of the Resonator 
(Tuning Element) 

Frequency
(GHz) 

Tuning 
Range 

Maximum 
Unloaded Q 

[65] Dielectric  
(Dielectric  

Plugs) 

1.965 10% 16,000 

[76] Dielectric  
(MEMS) 

2 0.25% 12,000 

[77] Two pole dielectric filter 
(MEMS) 

4 1.5% 3,730 

[71] Dielectric  
(Ferrite) 

2.2 1.3% 4,000 

[72] Dielectric 
(Varactor) 

3.5 1.6% 8,000 

This work Dielectric  
(Mechanical) 

10 1% 81,650 
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 In the work presented here, a tunable distributed aperiodic Bragg resonator 

is built which demonstrates a tuning range of 1% (100MHz) at 10GHz with a 

maximum unloaded Q of 81,650. In the following sections of the chapter the 

modelling of the resonator using an ABCD matrix along with the design and 

construction of the cavity with the tunable centre section has been described.   

4.2  Resonator Modelling and Simulations 

The performance of the Bragg resonator can be modelled by using ABCD parameters 

to describe the resonator as a cascaded set of waveguides as shown in Figure 4.1 

while the cross section of the aperiodic Bragg resonator is shown in Figure 4.2 [15].  

Figure 4.1: Model of the Bragg resonator using ABCD matrices for one half of the
resonator [15]. 

 

Figure 4.2: A cross section view of the six plate aperiodic Bragg resonator [15]. 

 

The advantage of using ABCD matrices is that the response of cascaded 

sections is just the product of the matrices. This is achieved through the definition 
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of the directions of the input and output currents. The resonator model must now 

contain ABCD matrices for the air sections, dielectric sections and for the end wall 

to form the Bragg Resonator as seen in Figure 4.3. 

 

Figure 4.3: Cascaded connection of the 2 port using ABCD matrices. 

 The resulting matrix equation for a cascaded connection of an air and 

dielectric section is given by:     

  ଵܸܫଵ ൨ = ܣ ܥܤ ൨ܦ ܣௗ ௗܥௗܤ ௗ൨ܦ  ଷܸܫଷ ൨ Eq. 4.1

 The ABCD matrix for a lossy transmission line of length l meters with 

complex propagation constant ߛ and characteristic impedance Zo is shown in Eq. 

4.2. 

  ଵܸܫଵ ൨ =  (݈ߛ)ℎݏܥ ܼܵ݅݊ℎ(݈ߛ)1ܼ ܵ݅݊ℎ(݈ߛ) (݈ߛ)ℎݏܥ   ଶܸܫଶ ൨ Eq. 4.2

The complex propagation constant, ߛ, is defined as:  

ߛ  = ߙ + ߚ݆  Eq. 4.3

Where ߙ is the attenuation co-efficient (Npm-1) and ߚ is the phase constant (rad 

m−1). The phase constant for the air and the dielectric sections can be found by 

using:  

ߚ  = ඨ߱ଶߝߤ − ൬߯ᇱܽ ൰ଶ
 Eq. 4.4

where ߝ is the permittivity of the material filling the guide and ω is the angular 

frequency and a is the cavity radius. ߯ᇱ  represents the nth zero of the derivative of 
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the Bessel function of the first kind of order m. In the case of the TE01 mode the 

value of ߯ᇱ = 3.8318. The attenuation coefficients for the air and the dielectric 

sections of the Bragg resonator are now discussed. 

4.2.1 Air Section 

The loss in the air sections is due to the conductive side wall losses. This can be 

modelled as shown in Eq. 4.5. This equation represents the attenuation coefficient, 

in units of Npm-1, for a transverse electric (TE) mode with circumferential mode 

number m and radial mode number n in a cylindrical waveguide of radius ‘a’ 

operating at frequency, fc: 

 
ߙ        = ܴ௦ܽ ඨ1ߟ − ൬ ݂݂൰ଶ ቈ൬ ݂݂൰ଶ + ݉ଶ(߯ᇱ )ଶ − ݉ଶ 

Eq. 4.5

 Where ߟ, is the wave impedance for a plane wave inside an unbounded infinite 

medium, Rs is the surface loss resistance of the walls and fc is the lower cut off 

frequency of the guide and ߟ is the wave impedance inside an unbounded infinite 

medium with permittivity ℰ and permeability μ is given by Eq. 4.6. 

ߟ  = ටߤℰ Eq. 4.6

 The Rs is the surface loss impedance is given by Eq. 4.7 which is related to 

the wall conductivity (σ) while the lower cut off frequency (fc) is given by Eq. 4.8 

[38]. 

 ܴ௦ = ට߱ߪ2ߤ  Eq. 4.7

 ݂ = ߯ᇱ2ߤߝ√ܽߨ Eq. 4.8



Chapter 4. Tunable Bragg Resonator 

131 
 

4.2.2 Dielectric Section 

The total loss in the dielectric sections, ߙ௧௧, can be considered as the sum of the 

sidewall conducting loss, ߙ and the dielectric losses, ߙௗ  

௧௧ߙ   = ߙ + ௗߙ ≅ ௗ Eq. 4.9ߙ

The conductive side wall losses can be calculated using Eq. 4.5 but the loss 

in the dielectric must be treated differently. The attenuation due to the lossy 

dielectric ߙௗ can be calculated from the complex propagation constant as shown in 

[4]. If the loss is small, then the phase constant in the dielectric section can be 

assumed to be constant. The attenuation due to dielectric loss is given by equation 

Eq. 4.10 and the units are in Npm−1. 

 
ௗߙ       = ߱ଶߜ݊ܽݐߝߤ

2ඨ߱ଶߝߤ − ቆ χ ܽ ቇଶ Eq. 4.10

4.2.3 End Wall 

The loss in the metal end walls of the cavity can be approximated by considering 

the complex propagation constant,ߛ, and intrinsic wave impedance, ߟ, for a plane 

wave in a good conductor. The complex propagation constant inside a good 

conductor is given by Eq. 4.11. 

ߛ  = (1 + ݆)ට߱2ߪߤ  Eq. 4.11

 The wave impedance inside a lossy medium is given by Eq. 4.12:  

ߟ  = ߛߤ݆߱  Eq. 4.12

 The ABCD parameters for the end wall section can be written as Eq. 4.13 

  ଵܸܫଵ ൨ =  1 01/ܼ௦ 1൨  ଶܸܫଶ ൨ Eq. 4.13



Chapter 4. Tunable Bragg Resonator 

132 
 

Where: 

 ௌܼ = (1 + ݆)ට߱ߪ2ߤ Eq. 4.14

Where σ is the electrical conductivity of cavity shield. The loss tangent (tan ߜ) of the dielectric material determines the maximum unloaded quality factor. The 

attenuation in the air and the dielectric sections along with the wall losses degrade 

the unloaded quality factor. Hence, to maximize the quality factor of the resonator, 

it is critical that wall and dielectric losses are minimized. The side wall loss can be 

reduced by using a high conductivity metal such as copper, silver or silver plated 

Aluminium. Therefore ߛ and ߛௗ௧ [38] [78]  have to be calculated in order to 

model the individual ABCD matrices of the air and the dielectric sections. Table 

4.2 summarises the various constants used in the ABCD model.  

Table 4.2: Bragg resonator simulation parameters. 
 

PARAMETER SYMBOL VALUE 
Cavity radius a 60 mm 

Dielectric permittivity ℰ 9.75 
Dielectric loss tangent tanδ 2 × 10-5  

Wall conductivity (using silver) σ 6.173 × 107 Sm−1 
 

Air-Phase constant  
 

βa 199.68 radm−1 

Dielectric –Attenuation coefficient αd 6.61×10-3 Npm−1 

Dielectric - Phase constant βd 651.18 radm−1 
 

The parameters shown in Table 4.2 were used in the ABCD model and an 

S-parameter simulation was performed for a periodic Bragg resonator. In a periodic 

Bragg resonator each of the dielectric plates and air sections are one quarter of the 

guide wavelength (λ/4) in thickness in order to maximize their reflectivity [55]. 
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Once the dimensions of the air sections and the dielectric sections for a periodic 

Bragg resonator were obtained, the model was then split in two. The reflector section 

lengths were then optimised until the magnitude of the input reflection coefficient at 

port one (S11) reached a maximum using the ABCD solver and a genetic algorithm. 

The phase response of the reflection was taken into account by adjusting the length 

of the centre section. This then produced an aperiodic Bragg resonator. The lengths 

are now dependent on the losses and dispersion in each section as well as the 

frequency of operation. The dimensions of the individual sections are given in Table 

4.3 where LD’s are the lengths of the dielectric sections, LA’s are the lengths of the 

air section and the LCental is the length of the central air section. 

Table 4.3: Dielectric and air section reflector thicknesses for an optimised 6 plate 

Bragg resonator [15]. 
 

Section Identifier Material Length (mm)

LD1 Dielectric 1.512 

LA2 Air 11.023 

LD3 Dielectric 1.887 

LA4 Air 9.300 

LD5 Dielectric 2.253 

LA6 Air  8.060 

LCentral Air 17.033 
 

As stated earlier, tuning can be achieved by changing the length of the centre 

section, this is because the Bragg mirrors offer low loss high reflectivity over a broad 

frequency range, exceeding 10% of the centre frequency. This is illustrated by tuning 

the length of the centre section by ±15%. Further, this model only considers the 



Chapter 4. Tunable Bragg Resonator 

134 
 

wanted TE011 mode. The nominal length of the centre section (17.033mm) was tuned 

by ±4 mm in 1 mm increments and the ABCD model was used to simulate the new 

unloaded Q and centre frequency for the TE011 mode. The plot of change in frequency 

and Unloaded Q vs change in length is shown in Figure 4.4. 

 

Figure 4.4: Simulation of the quality factor and resonant frequency as a function

of the central section length for the TE011 mode. 

4.3 Design and Construction  

In the previous work at York, the tunable section was built with the use of concentric 

cylinders. However, when the resonator was assembled and tested, the required mode 

wasn’t observed. This was believed due to the energy leakage from the cylinders [35]. 

The resonator developed in [15] was modified to incorporate a new tunable centre 

section which incorporated copper bellows. The following steps were used to 

construct the tunable centre section: 
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Step 1: The bellows were made up of two large copper rings and were etched with 

solder release groves (mask of the copper rings shown in appendix A.4) in order to 

control the position of the solder as shown in Figure 4.5. This controls the exact 

position of the solder within the bellows and also prevents it from flowing into the 

cavity which may degrade the Q. These rings also have a number of tabs around the 

outer edges which are folded shut to ensure the bellows remain soldered during the 

later processing stages. The copper rings were soldered with each other to form a 

bellow using unleaded solder. 

  

Figure 4.5: Copper sheets with etched solder release grooves in order to control 

the position of the solder. 

Step 2: Once the bellows were constructed, one set of bellows were soldered to the 

middle section on a hot plate using unleaded solder.  

Step 3: Finally, the second set of bellows were soldered on to the middle section but 

during this process, the bellows which were soldered in the previous step re-liquefied 

and disintegrated. Since the construction of the centre section was a complex 

technique which involved soldering of multiple plates together, it was believed that 

a number of different soldering operations have to be performed using two different 
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temperature solders. This would prevent the solder from reflowing when a new joint 

was produced. 

Hence, experiments were conducted using different leaded and un-leaded 

solder which are at different temperatures. The left hand side is the leaded and the 

right hand side is the un-leaded solder paste at 50°C, 150°C and 200°C as shown in 

Figure 4.6. At 150°C, the leaded solder liquefies while the un-leaded solder only 

starts to liquefy at 200°C. Hence, the unleaded solder was used for the copper bellows 

(200°C) for step 2 and at the final stage of the construction the leaded solder (150°C) 

was used which was in step 3. 

 

Figure 4.6: Leaded and un-leaded solders at 50°C, 150°C and 200°C. 

To obtain the correct ratio of loaded to unloaded Q (QL/Q0) and insertion 

loss for low noise oscillators [11] , the probes need to be placed in the middle of the 

centre section close to the cavity wall. The tunable centre section is shown in Figure 

4.7. Micrometres were used to tune the length of the central section.  
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Figure 4.7: Centre section with the micrometers and the loop probes to couple 

energy into the cavity. 

The cross section of the tunable Bragg resonator prototype (not to scale) is 

shown in Figure 4.8. The central tunable section now comprises an upper section, 

bottom section and a solid middle section for the probe placement with two bellows 

either side of the centre section. The air waveguide dimensions of the centre sections 

were optimised to incorporate the thickness of the copper sheets which form the

tuning bellows. 
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Figure 4.8: Cross section view of a 6 plate Tunable Aperiodic Bragg Resonator. 

Tunable Bragg resonator which utilises an aperiodic arrangement of non 

(λ/4) low loss alumina plates mounted in a cylindrical waveguide is shown in 

Figure 4.9 along with the micrometers which are used for tuning. 

Figure 4.9: Tunable Bragg resonator showing the micrometres and upper and 

lower reflector sections. 
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4.4 Initial Results 

Measurements of the tuning range were achieved by initially setting the micrometres 

to a maximum position so that the spacing between the upper section and the lower 

section was maximised. Micrometers were then used to tune the frequency of the 

cavity over 500 MHz (5% tuning range with degradation of unloaded Q) and the 

insertion loss and the loaded Q were measured on a network analyser. The change 

in the frequency was also noted and the highest unloaded Q obtained was 64,000. It 

was observed that the required TE011 mode passes through several low Q modes 

degrading the unloaded Q as shown in Figure 4.10 where the insertion loss 

increases.  

 

Figure 4.10: Plot of measured insertion loss and unloaded Q Vs Frequency with 

500MHz span. 
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 It was observed that for a span of 100MHz which is from 10.02GHz to 

10.12GHz, the insertion loss of the wanted mode was almost the same without any 

degradation. The network analyser was re-calibrated at each centre frequency from 

10.02GHz to 10.12GHz (1% tuning range) and insertion loss and the laoded Q were 

noted for a suprious free region with no unwanted modes. The insertion loss, S21, 

varies from -5.6dB to -4dB while the loaded Q varied from 20,000 to 23,000. The 

unlaoded Q can be found by using Eq. 4.15. 

 ܳ = ൬ ܳ1 − |ܵଶଵ|൰ Eq. 4.15

 Unloaded Q varies from 40,000 to 60,000 over the tuning range of (1%) 

100MHz. The plot of insertion loss and unloaded Q Vs Frequency with a narrow 

100MHz span is shown in Figure 4.11. 

 

Figure 4.11: Plot of insertion loss (S21) and unloaded Q Vs Frequency with a 

narrow 100MHz span with no unwanted modes. 
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4.5 New Prototype  

The centre section was disassembled to construct a new section; it was observed that 

some of solder reflowed back into the centre of the cavity which is a high field region. 

It was also observed that the screws which were used to hold the top and the bottom 

sections of the resonator had penetrated into the copper bellows which could lead to 

energy leakage from these holes. All these factors affected the unloaded Q and hence 

a new middle section was constructed using the same upper and the lower sections 

from the previous prototype. The middle section was improved in order to 

incorporate a solder release ring which was similar to the ones included in the copper 

rings to control the position of the solder as shown in Figure 4.12. This stops the 

solder from entering the centre section of the resonator when put on a hot plate 

during the soldering procedure. A new middle section was constructed from copper 

plate for the same purpose which included the solder release rings. The entire central 

section was once again assembled using the same technique mentioned in the previous 

sections using different temperature solders for step 2 and step 3.  

 

Figure 4.12: Modified middle section with solder release rings to control the 

position of the solder.  
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4.5.1 Measurement Results 

Measurements of the tuning range were achieved by initially setting the micrometres 

to a maximum position so that the spacing between the upper section and the lower 

section was maximised which was similar to the previous prototype. The micrometres 

were then adjusted so that required TE011 mode was observed. The forward 

transmission coefficient scattering parameter (S21) was measured on a network 

analyser for a frequency span of 1GHz as shown in Figure 4.13. 

TE011 Mode

 

Figure 4.13: A plot of the forward transmission coefficient (S21) for the 6 plate 

aperiodic tunable Bragg resonator for a frequency span of 1GHz. 

 

The wanted resonance can be clearly seen at the centre of Figure 4.13. at 

9.04GHz. Several spurious modes which are close to the required mode are also 

clearly visible. The reduced centre frequency from 10.06 GHz to 9.02GHz in the 

second prototype can be explained due to the fact that a new middle section was 
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built and might have some uncertainties during the manufacturing process. 

Simulations suggest that length must have changed by 1.5-2mm in order to have the 

centre frequency at 9.0GHz. The total change in length might be due to this along 

with the thickness of the solder paste. Once the required mode was located, the 

micrometres were then slowly adjusted in order to tune the resonant frequency. A 

combined plot showing the tuning range of this mode is shown in Figure 4.14. Each 

trace shows a plot of S21 over a span of 100 MHz and the traces are cascaded left to 

right with increasing frequency. A spurious free tuning region of 1% i.e 100 MHz 

from 8.97 GHz to 9.07 GHz is observed. It should be noted that once the TE011 mode 

moves away from this spurious free tuning range, the required mode passes through 

several low Q modes degrading the unloaded quality factor. The length of the centre 

section determines the centre frequency.  The reduction in the centre frequency when 

compared to the previous prototype could be explained due to the fact that a new 

middle section was constructed. A mm of change in the centre section would move 

the frequency by almost 450MHz as seen in Figure 4.4.    

Figure 4.15 shows plots, with a 100 MHz span, of the TE011 resonance at the 

start (blue trace), middle (red trace) and end (black trace) of the tuning range. At 

the start of the tuning range (8.97GHz) the closest spurious mode is 20MHz lower 

in frequency than the wanted mode and as we tune the centre section, we move away 

from this spurious mode (blue trace). At the centre of the tuning range (red trace) 

which is 9.02GHz, the spurious modes are ±41MHz above and below the centre 

frequency and at the end of the tuning range at 9.07GHz the closest spurious mode 

is 17 MHz higher in frequency (black trace). 
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Figure 4.14: A plot of insertion loss vs Frequency over the tuning range. Each trace shows a plot of S21 over a span of 100MHz. 
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Figure 4.15: A plot of insertion loss vs frequency at the start, centre and end of the tuning range. The location of the closest spurious modes is 

visible. 
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The span was then reduced to 2MHz to get an accurate measurement of the 

insertion loss (S21) and the loaded Q (QL) for the individual frequencies. The unloaded 

Q (Q0) was calculated using Eq. 4.15. The results are shown in Figure 4.16 where 

it can be seen that the maximum and minimum unloaded quality factors are 81,650 

and 61,020 respectively over the spurious free tuning range i.e from 8.97GHz to 

9.07GHz, a tuning range of 1%. The insertion loss (S21) varies between -3.6 dB and 

-6.4 dB over this range.    

Figure 4.16: A Plot of the insertion loss (S21) and unloaded quality factor (Q0) 

for the tunable Bragg resonator. The cavity was tuned over a 100 MHz span. 

A plot of insertion loss vs frequency with a narrow span of 2MHz with the 

3dB points for the highest unloaded Q of 81,650 is shown in Figure 4.17. The 

insertion loss (S21) was measured to be -4.307 dB and the unloaded Q was 81,650 

using Eq. 4.15. 
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Figure 4.17: A plot of insertion loss and unloaded Q vs Frequency with a 2 

MHz span for an unloaded Q of 81,650 

The unloaded Q is lower than the numerical simulation results. This may be 

due to conductor losses in and around the bellows including losses in the solder as 

well as leakage and mode conversion due to the discontinuities in the structure. The 

loss tangent of the Alumina plates may have been larger than the manufacturer’s 

specification resulting in increased dielectric losses. It is interesting to know that if 

the loss tangent is doubled, the unloaded Q halves.  

4.6 Conclusions  

 In this chapter, the design and construction of a tunable Bragg resonator has 

been described. The best performance achieved was a spurious free tuning range of 

1% at 9GHz with a maximum unloaded Q of 81,650. This is believed to be the best 

available high Q tunable resonator available at 10GHz present in the literature. The 

insertion loss varies from -3dB to -6.4dB while the unloaded Q varies from 61,020 to 



Chapter 4. Tunable Bragg Resonator 

148 
 

81,650 over the tuning range. At the start of the tuning range (8.97GHz) the closest 

spurious mode is 20MHz lower in frequency than the wanted mode and as we tune 

the centre section, the resonant mode moves away from this spurious mode. At the 

centre of the tuning range which is 9.02GHz, the spurious modes are ± 41MHz above 

and below the centre frequency and at the end of the tuning range at 9.07 GHz the 

closest spurious mode is 17MHz higher in frequency. 
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CHAPTER 5 

 

10GHz BRAGG RESONATOR OSCILLATOR 

 

5.1 Introduction  

The design, construction and measurement of an ultra-low phase noise 10GHz 

oscillator using an aperiodic Bragg resonator is presented in this chapter. Oscillators 

utilising dielectric resonators (DR) are mainly used at microwave frequencies since 

they offer Qs greater than 10000 at 10GHz. The other advantage of using a DR is 

that they have better power handling capability compared to crystal resonators. The 

exceptionally low loss-tangent of sapphire (Al2O3) allows very high-Q resonators at 

both cryogenic and room temperatures. The Q factor of almost 200,000 at 300K and 

can exceed 6 x 109 at 2K and 5 x 107 at 77K at 10GHz [79]. However oscillators 

utilising these resonators often use very sophisticated flicker noise reduction 

techniques [80]. A Bragg resonator built using low loss materials can offer a 

significant increase in quality factor when compared to the traditional dielectric 

resonator at room temperature. Qs up to 650,000 can be obtained using Sapphire 

resonators consisting of interpenetrating concentric rings and plates at 9.0GHz [55]. 

More recently, Bale and Everard demonstrated a fixed frequency aperiodic cylindrical 

Bragg resonator using alumina plates with an unloaded Q of 200,000 at 10GHz [15].  
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 A number of oscillators have been built using dielectric and sapphire 

resonators at room temperatures but the best room temperature oscillators at 10GHz 

currently available use sapphire whispering-gallery mode resonators. Sallin et al. 

demonstrated a dielectric resonator oscillator (DRO) at 10GHz with an unloaded Q 

of 17,400 which had a phase noise of -135 dBc/Hz at 10kHz offset using a SiGe as 

an active device [34]. Gupta et al. demonstrated a phase noise of    -145 dBc/Hz at 

1kHz using an air filled cavity operating in higher TE023 modes. To achieve this phase 

noise performance, interferometric signal processing was used to suppress the carrier 

[81]. Furthermore, M.Tobar et al. demonstrated a low noise sapphire based oscillator 

at 9GHz with a high Q sapphire loaded cavity at room temperatures that initially 

resulted in a phase noise of -125 dBc/Hz at 1kHz offset [82]. Later they went on to 

demonstrate a phase noise of -150 dBc/Hz at 1kHz offset with the help of a phase 

noise reduction technique where the resonator is used as band pass filter as well in 

the oscillator as well as in a frequency discriminator [83]. Flory and Ko then used a 

sapphire distributed Bragg resonator at room temperature with an unloaded Q of 

700,000 to demonstrate a phase noise of around -152 dBc/Hz at 10kHz offset using 

an HBT TC200 as an active device [57]. Recently, a phase noise of -148 dBc/Hz at 

10kHz offset was demonstrated by Boudotet et.all by using a high Q whispering 

gallery mode sapphire resonator with an unloaded Q of 8x104 at 9.5GHz [84]. 

Commercially available oscillators from PSI using a sapphire loaded cavity oscillator 

at 10.24GHz demonstrated a phase noise of -170 dBc/Hz at 10kHz offset [6]. The 

lowest available phase noise was reported by Ivanov et al. They demonstrated a 

phase noise of -160dBc/Hz at 1kHz using a high Q sapphire dielectric resonator [85]. 

Also, in cryogenic oscillators, the best phase noise of -162dBc/Hz at 1kHz offset with 
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a Q of 60 million was obtained at 80K using a liquid nitrogen sapphire loaded cavity 

operating at a whispering gallery mode [86].  

 In this work a 10GHz oscillator utilising an aperiodic Bragg resonator with 

an unloaded Q of 200,000 which achieves a phase noise of -123.6 dBc/Hz at 1kHz 

and -152.5 dBc/Hz at 10kHz offset is presented. The oscillator was built using the 

feedback topology as shown in Figure 5.1. 

 

Figure 5.1: Block Diagram of the 10GHz Band Oscillator using the Bragg 

resonator.  

 A brief description of the main oscillator components is given below and more 

detailed description of these individual sections are explained in the following 

sections. 

1. Amplifier:  The amplifier should have a high output power compression 

point (P1dBm), a low noise figure and a low flicker noise corner. The gain of 

the amplifier should be sufficient to cancel the insertion loss of the other 

elements and therefore guarantee oscillation under all operating conditions. 

Various SiGe and HBT amplifiers have been tested for their gain, noise figure 

and P1dBm point. Residual phase noise measurements have also been made 
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using a cross correlation measurement system to estimate the flicker noise 

corner of the amplifiers. For the final oscillator prototype, amplifier using the 

NBB-402 from RFMD was used. The amplifier had a noise figure of 6dB and 

the output power compression point was P1dBm measured at 11.5dBm. The 

flicker noise corner was estimated to be 26kHz at 3.8GHz.   

2. Resonator:  Two aperiodic Bragg resonators were built with the centre 

frequency of 9.95 GHz with an unloaded Q (Q0) of 203,603 and a centre 

frequency of 9.945 GHz with an unloaded Q (Q0) of 199,167. 

3. Mechanical phase shifter: This was used to set the loop phase shift to           

N × 360°. A mechanical phase shifter Aeroflex 980-3 was used which is 

specified to work from DC-8GHz but still operates well at 10GHz. Semi rigid 

RG-402 cables were also used to connect the elements of the oscillator.  

4. Output Coupler: In order to connect to an external device, a broadband 

10dB directional coupler from Pasternack has been used which works from 2-

18GHz.  

 In the following sections, the design of the Bragg resonator built in 

[15] is described. The simulations, design and measurements of various 

amplifiers using SiGe and HBT transistors operating at 10GHz are also 

discussed. Finally, the phase noise measurement setup with the phase noise 

performance has been described.  

5.2 Resonator 

Resonators at 10GHz are usually made up of dielectric materials such as alumina, 

sapphire or Barium Tetratitanate. Dielectric materials are usually the most common 

choice and the maximum unloaded quality factor attainable from a dielectric 
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resonator is defined by the loss tangent (tanδ) of the dielectric material and the Qᇒf 

which is usually a constant for dielectric resonator. Modern dielectric resonators 

(DR) operating in the TE01  mode are capable of providing Q-factors of between 

10,000 and 30,000 at 10 GHz. The distributed Bragg resonator can offer a significant 

increase in quality factor when compared to the dielectric resonators at 10GHz. It is 

a structure formed by replacing the end and/or side walls of an empty metal cavity 

with alternating layers of air and dielectric material. The sudden change in dielectric 

constant at each air dielectric interface causes a partial reflection of the incident 

electromagnetic wave. If several air-dielectric layers are combined, then more of the 

energy is reflected back into the central air region of the cavity and kept away from 

the lossy metal end walls. The reflector section lengths in a Bragg resonator are 

typically one quarter of the guide wavelength (λg/4) in thickness in order to 

maximize their reflectivity [55]. The design of the Bragg resonator used in this work 

has been described in [15] which is a high Q aperiodic arrangement of non (λg/4) of 

low loss alumina plates with a relative permittivity of ℰr=9.5 and a loss tangent of 

2x105 at 5GHz. Simulations using the ABCD model suggested that the unloaded Q 

in a periodic Bragg resonator began to saturate as the number of dielectric plates 

were increased which led to the exponential decay of the electric field as the cavity 

end walls are approached and hence six dielectric plates were used for the initial 

porotype of the resonator. The dielectric plates were enclosed in an aluminum shield 

which demonstrated an insertion loss of -8.9 dB and a loaded Q (QL) 126,810 and 

the unloaded Q (Q0) was calculated to be 196,797 with wire loops being used to 

couple the energy in and out of the cavity. 

 For the 10GHz oscillators, two aperiodic Bragg resonators were built to have 

a maximum unloaded Q and the insertion loss was set to 6dB for optimum phase 
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noise performance. Wire loops were used to couple the energy in and out of the 

cavity. Since the insertion loss and the Q were very sensitive to the position of the 

probes, the probes were clamped using a jig as shown in the Figure 5.2. A plot of 

insertion loss versus frequency with a 500 MHz span of the first resonator is shown 

in Figure 5.3. The closest spur is ±40MHz away from the required TE011 mode. 

 

Figure 5.2: Aperiodic 6 plate Bragg Resonator with the clamping mechanism 

   

Figure 5.3: Measured Insertion Loss Vs Frequency for a 500MHz span with the 

required TE011 mode.  
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 The span was then reduced to 100kHz to get a more accurate measurement 

of the insertion loss as shown Figure 5.4. The centre frequency can be seen at 9.95 

GHz with the insertion loss (S21) of -6.18 dB with a loaded Q (QL) 103,653 and the 

unloaded Q was then calculated to be 203,603 using Eq. 5.1.  

 ܳ = ൬ ܳ1 − |ܵଶଵ|൰ Eq. 5.1

 

Figure 5.4: Plot of insertion loss (S21) with a 100 kHz span with the loaded Q 

of 103,653. 

 Second Bragg resonator was built identical to the first one with a new set of 

dielectric plates. However, the second Bragg resonator cavity was silver plated with 

10μm thickness silver in order to reduce the wall losses and hence increasing the Q. 

The author assembled the new Bragg resonator and optimised the probe in order to 

set the correct insertion loss and the loaded Q by adjusting the probes. The insertion 

loss on the second resonator with silver plated was set to -7.1 dB insertion loss with 
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a loaded Q (QL) of 111,221 as shown in Figure 5.5 which resulted in a calculated 

unloaded Q (Q0) of 199,167. 

 There are several factors accounting for a lower Q compared to that of the 

non-silver plated aluminum sections. Firstly, the loss tangent may be larger for the 

new set of plates. Simulations suggest that if the loss tangent is doubled, the 

unloaded Q of the resonator changes from 400,000 to 230,000 that suggest that any 

slight manufacture variation of the loss tangent of the dielectric plates has a 

significant effect on the unloaded Q. It has to be noted that the loss tangent of 1x10-

5 from the manufacture’s data sheet is measured at 5GHz. Secondly, it was also 

observed that the loaded Q was fairly dependent on the tightening of the screws 

which would lead in variation of unloaded Q. this might be due to the fact that any 

uneven metal cavity will have an effect on energy leakage. Any small gaps between 

the cavity plates will lead to degradation of Q. In addition, if the metal plates were 

uneven to begin with, the silver plating coating may be also uneven which could lead 

to energy potentially leak degrading the quality factor. There might be also mode 

suppression or any other physics effect and needs further investigation. 
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Figure 5.5: Plot of insertion loss (S21) with a 100kHz span with the loaded Q of 

111,221. 

5.3 Amplifiers 

A low noise amplifier with high power with sufficient gain is the requirements of an 

amplifier in the oscillator to obtain a low phase noise. Also, in the feedback topology 

of the oscillator, the phase noise performance is limited with the residual noise of the 

sustaining amplifier and hence it is critical to measure and reduce the residual phase 

noise of the sustaining amplifier. At microwave frequencies (above 6 GHz), the power 

available from Silicon or SiGe devices is quite low and hence GaN or GaAs transistors 

which have much higher output power are a more suitable choice. However they can 

exhibit high flicker noise corners and hence when used as an active device in an 

oscillator, the phase noise performance can be at least 30 dB worse due to the 

increased transposed flicker noise [35] [36] and hence SiGe and HBTs are usually a 

good choice when close in phase noise of the oscillator has to be improved. Also, a 
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more recent comparison of the phase noise of various commercial amplifiers which 

use HBT and SiGe transistors working at X band has been reported and found to 

have low residual phase noise [87].  

 Selections of SiGe and heterojunction bipolar transistors (HBTs) are available 

as seen in Table 5.1 from a number of manufacturers at 10GHz. The devices are 

BFP-620F from Infineon Technologies, HBT’s NBB-402 and NBB-312 from RFMD, 

a SiGe transistor BFU-730F from NXP Semiconductor devices and TC 200 from 

Keysight Technologies were chosen based on the gain, noise figure and power 

characteristics. Each of these amplifiers was tested for its gain, noise figure, output 

compression point (P1dBm) and the flicker noise corner. The following sections 

discuss the simulations, design and the test of the various amplifiers. 

Table 5.1: Transistors which were investigated by the author at 10GHz.  
 

Manufacturer Part No

Infineon Technologies SiGe BFP620F 

RFMD InGaP/GaAs MMIC HBT NBB-402 

RFMD InGaP/GaAs MMIC HBT NBB-312 

NXP SiGe BFU-730F 

Keysight Technologies  GaAs MMIC HBT TC-200 
 

5.3.1 Push-Pull Amplifier using the Infineon SiGe BFP620F 

transistors 

From the data sheet, BFP620F transistors from Infineon are SiGe devices that have 

a gain of 6 dB at 10GHz for a collector current of IC=50mA and VCE=2V. It also has 

a noise figure of 1.3dB at 6GHz for a collector current of 5mA. Also, the P1dBm is 

14 dBm specified at 1.8GHz for a VCE=2V and IC=50mA. 
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 A PSPICE model was imported in Agilent ADS in order to simulate the S 

parameter response over the required frequency range (6-12GHz). The single stage 

amplifier is shown in Figure 5.6 which was designed in a common emitter 

configuration which incorporates compact bias tees with a shorter upper section. The 

printed Bias T’s are used in order to present high impedance (open circuit) to the 

RF signal and low impedance at DC. The bias T’s consists of a radial stub and an 

85Ω (λg/4) element. An Infineon BCR400W active bias controller is used to bias the 

microwave transistor. This is a low voltage drop device capable of stabilising the bias 

current of an NPN transistor from 0.2mA to over 200mA and includes temperature 

compensation elements. The quiescent current is set by REXT.  

 

Figure 5.6: Single stage amplifier using BFP620F using the active bias

BCR400W. 
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 The amplifier was again simulated for its S parameter response in a series 

Push Pull configuration since they did not have enough gain at 10GHz. Each arm is 

then connected and a rat race coupler was used with balanced (180°) outputs. Four 

of these single stage amplifiers were then combined with the rat race couplers to 

produce the complete compact push pull amplifier as shown in Figure 5.7. The 

advantage of using a rat race coupler is that it provides better isolation at the input 

and the output of the amplifier and a 3 dB increase in the output power. Finally, 

the amplifier was tested for its stability using the K-Δ test as mentioned for the 

3.8GHz amplifiers. The amplifiers were unconditionally stable upto 16GHz. 

 

Figure 5.7: Push Pull amplifier configuration using BFP-620F transistors. 

 The boards were designed using Rogers 3006C PCB boards which have a ℰr=6.5 with a tanδ of 0.0020. The Push Pull amplifier was then tested for its gain 

which demonstrates a gain of 10dB at 10GHz with an input return loss of -12.5dB 

as shown in Figure 5.8. The dips in the simulated and measured gain responses are 

due to the bias tees. Next, the noise figure was measured using an HP8970B noise 

figure meter using the double side band technique. This instrument only operates up 

to 1.6GHz so it is necessary to down convert it using a mixer. The HP346B noise 

source operates up to 18GHz. The noise meter is set to measure the noise figure at 
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10MHz so this system measures the noise figure of the amplifier at  ± 10MHz around 

the signal generator as shown in Figure 5.9. The signals are down converted using 

a MZ410CR mixer. The device is calibrated from the noise meter to the mixer since 

the mixer has a loss associated with it. The LO signal is provided by a HP8672A 

signal generator with a 10dBm output power. A noise figure of 6.2dB was measured 

at 10GHz using the double side band technique. Finally, the output power 

compression P1dBm measurement was done on the Push Pull amplifier using the 

measurement set up as shown in Figure 5.10. A directional coupler was used in 

order to determine the input power available to the amplifier. Also, a 10dB 

attenuator was used to protect the power meter. The output compression point 

P1dBm was measured to be 10dBm.  

 

Figure 5.8: Measured S-Parameters for the Push Pull amplifier using SiGe 620F

transistors. 
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Figure 5.9: Measurement setup to measure the Noise Figure of the 10GHz

amplifiers. 

  

Figure 5.10: Power Measurement Setup for the Push Pull Amplifier at 10GHz. 

 Finally, a residual phase noise measurement was done on the BFP620F Push 

Pull amplifier using the cross correlation technique at 3.8GHz as explained in 

Section 3.9.7. Calibration was performed using the single side band method as 

described in [53] with the help of a directional coupler as shown in Figure 3.68. 

The primary advantage of this method is that non-linearity in both mixers is 
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accounted for and also the calibration conditions match the measurement conditions 

as closely as possible. A 3.8GHz oscillator built in the previous chapter which 

exhibited a phase noise of -153 dBc/Hz at 10kHz offset was used as a reference source 

since it offered a good low AM noise when compared to a commercial signal 

generator. This is important since the mixer can only offer about 20dB suppression 

when operated in a quadrature mode. The high level mixers which operate from 2-

18GHz have a power limitation to a maximum of +10dBm in the LO port. Since the 

output power saturation P1 dBm for the amplifiers were 10dBm, the power levels 

were enough to drive the mixers. As the amplifier operates in the saturation region 

in an oscillator, the residual phase noise measurements were performed at the 

saturation since the flicker corner is power dependent.  For a given input power (Pin) 

and the noise figure (NF.) it is possible to determine the residual noise floor of the 

device using Eq. 5.2 when the amplifier is in the linear region. However, the noise 

floor is likely to increase in case the amplifier is in the saturated region or have any 

nonlinear affects [54] [27]. 

(݂)ܮ  = −177 − ܲ + Eq. 5.2  ܨܰ

 Hence for a given input power level (Pin) of 2dBm which was the input 

saturation point and a noise figure (NF.) of 6dB, the noise floor is estimated to be -

173 dBc/Hz using Eq. 5.2. The measured noise floor as observed in Figure 5.11 is 

-170 dBc/Hz which suggests that the noise figure has been increased under saturation 

by 3dB. The residual phase noise of the amplifier was measured to be –160 dBc/Hz 

at 1 kHz offset and   –168 dBc/Hz at 10 kHz offset as shown in Figure 5.11 and 

the estimated flicker corner of the amplifier was found to be 36kHz.  
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Figure 5.11: Flicker corner of 36kHz for an input power (Pin) of 2dBm and a noise

figure (NF) of 6dB measured at 3.8GHz. 

 If these set of transistors were used to build the final oscillator operating at 

10GHz, for an overall noise figure of 10dB including the cables, coupler and the 

mechanical phase shifter and a PAVO of 10dBm, the theoretical phase noise 

performance would be as seen in Table 5.2: 

Table 5.2: Predicted theoritical phase noise performance of an oscillator using the 

Push Pull Amplifier using BFP-620F for a NF=10dB , PAVO=10dBm and 

Qo=190,000 

Offset Frequency Theory 

1kHz -120.7 dBc/Hz 

10kHz -150.0 dBc/Hz 
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5.3.2 Broadband NBB-402 HBT Amplifier 

According to the manufacturer’s data sheet, NBB-402 from RFMD is a cascadable 

broadband InGaP/GaAs MMIC HBT amplifier which works upto DC-8GHz but 

offers sufficient gain of 10dB at 10GHz. It also has a high P1 dBm point of +15.4dBm 

at 6GHz and a noise figure of 4.3dB at 3GHz which is desirable to work as an active 

device in a feedback topology oscillator. Hence amplifiers using NBB-402 transistors 

were investigated. The S parameters for the transistor at 10GHz is shown in Table 

5.3 which shows a gain of 11.3dB at 10GHz.  

 Biasing was achieved with the help of an external series resistor and choke 

inductor to VCC as shown in Figure 5.12. This configuration uses a conical inductor 

as a choke to provide a high impedance at the operating frequency but very low 

impedance to the DC. The conical shape of the inductor makes it ultra-broad band 

in response with the ferrite material embedded in order to increase the total 

inductance [88]. BCL-232JL from Coilcraft which has an inductance of 2.35μH with 

a current handling upto 270mA was used. 

Table 5.3: S-Paramteres for NBB-402 transistor. 
 

S Parameter Magnitude Angle 
S11 -13.5012 -153.14 

S21 +13.5039   +38.78 

S12 -16.5228    -6.56 

S22 -27.9210   +17.51 
 

 The typical S21 frequency response is relatively flat and a return loss better 

than 20dB from 5MHz to 25GHz. Care was taken while soldering the conical inductor 

to the PCB boards in order not to introduce any parasitic or resonances in the 
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inductor performance. The VDEVICE was set to 3.8V according to the data sheet and 

hence the resistor value is determined by Eq. 5.3. The collector current ܫ was set 

52mA for 42� resistor in the collector with a 6V power supply. 

 ܴ = ൬ ܸ − ܸாூாܫ ൰ Eq. 5.3

  

Figure 5.12: Circuit diagram for the NBB-402 amplifier for ICC=52mA. 

  The circuit was simulated using the S Parameter files available for the 

transistor and the conical inductor provided by the manufacturer using Agilent ADS 

for its gain which demonstrated a gain of 10dB with an input return loss of 6dB. 

The amplifier was also simulated for its stability using the K−Δ test, which states 

that a transistor is unconditionally stable if Rollet’s condition, K, is greater than 

unity and the auxiliary condition, |Δ|, is less than unity. As K>1 and |Δ|<1 the 

transistor is unconditionally stable upto 20GHz using Eq. 3.3 and Eq. 3.4. A 

number of transistors and evaluation boards were obtained from RFMD to measure 

the gain, noise figure and power characteristics. When the evaluation boards were 

obtained, it was noticed that they did not have any biasing circuit on them. Hence 
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the evaluation boards were modified to incorporate a conical inductor and a resistor 

in order to set the collector current on the transistor as shown in Figure 5.13. 

 

Figure 5.13: Modified evaluation boards using NBB-402 transistor along with a

broadband conical inductor BCL-232JL.  

 The amplifier was tested for its gain, noise figure and output power 

compression P1 dBm point at 10GHz. A comparison of the gain and the input return 

loss for the simulated and measured S-parameters is shown in Figure 5.14. A gain 

of 9.8dB at 10 GHz and an input return loss of -11.0dB were measured which are in 

close agreement with that of the simulations. Next, noise figure measurement was 

performed on these amplifiers. A noise figure of 4.9dB was measured at 10GHz using 

the double side band technique [39]. Finally, the output compression point P1dBm 

point was measured to be 12.2dBm suing the same measurement setup used to 

measure the BFP-620F amplifier.  
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Figure 5.14: Comparison of the S-Parameters of the measured NBB-402 amplifier

using the evaluation board to that of the s2p file by RFMD. 

 

 Next, a PCB board was designed and fabricated to incorporate the biasing 

circuit on it as shown in Figure 5.15. The amplifier was once again tested for its 

gain but the measurements agree with that of the evaluation boards with a gain of 

9.8dB at 10GHz.  

 

Figure 5.15: NBB-402 with the conical inductor and the biasing circuit.  
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 Finally, boards from Keysight Technologies (Santa Clara) were obtained 

which used ferrite beads as a choke as shown in Figure 5.16. The amplifier was 

initially designed for a collector current IC of 52mA with a supply voltage of 9V. The 

S parameters were measured for the amplifiers with the ferrite bead as shown in 

Figure 5.17 and a dip in the gain was observed at 13GHz which was due to the 

ferrite bead. In order to have a more broadband design, the ferrite bead was replaced 

with a conical inductor BCL-232JL and the supply voltage was reduced to 6V since 

it can be operated using lead acid battery. This resulted in changing the resistor 

from 108.2� to 42� in order to set the collector current at 52mA.  

 

Figure 5.16: 10GHz amplifier NBB-402 transistor along with ferrite bead

obtained from Keysight Technologies, Santa Clara, USA.  

 The S parameter comparison for ferrite bead and conical inductor is shown in 

Figure 5.17. The performance of the amplifier was improved with the help of a 

broadband conical inductor (solid black line) when compared to that of a ferrite bead 

(dotted grey line). Both set of amplifiers demonstrated similar gain of 10.2dB at 

10GHz and a return loss of -8.9dB. The noise figure for the amplifiers was measured 

to be 4.9dB and the output compression point P1 dBm of 12.4dBm. 
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Figure 5.17: Comparison of the S Parameter response for NBB-402 using 

conical inductors and ferrite beads.  

 Residual phase noise measurement was performed on NBB-402 amplifiers at 

3.8GHz. The noise floor for an input power (Pin) of 2dBm, which was the input power 

of its saturation and a noise figure (NF) of 5dB was estimated to be -174 dBc/Hz 

using Eq. 5.2. The measured residual phase noise is –159 dBc/Hz at 1 kHz offset 

and -168 dBc/Hz at 10kHz offset as shown in Figure 5.18 and a flicker corner of 

26kHz was estimated using a curve fitting algorithm. Eq. 5.2 is valid when the 

amplifier is operated in the linear region and it should be noted that the noise figure 

is likely to increase when operated in a large signal regime where the amplifier is 

under saturation or has any nonlinear property [54] [27].  The 2dB increase in the 

noise floor indicates that the noise figure under saturation has been increased by 2dB 

as seen in Figure 5.18. 



Chapter 5. 10GHz Bragg Resonator Oscillator 

171 
 

Figure 5.18: Flicker corner of 26kHz for an input power (Pin) of 5dBm and a noise

figure (NF) of 5dB. 

 Also, if these transistors were used to build the final oscillator operating at 

10GHz with a combined noise figure of the amplifier, mechanical phase shifter, the 

isolator, directional coupler measured to be 6dB and the PAVO measured to be 12 

dBm, the theoretical phase noise performance of the oscillators would be as seen in 

Table 5.4: 

Table 5.4: Predicted theoritical phase noise performance of an oscillator using 

NBB-402 transistor for a NF=6dB, PAVO=12.1dBm, fc=26kHz and Qo=190,000 

Offset Frequency Theory 

1 kHz -128.4 dBc/Hz 

10 kHz -156.8 dBc/Hz 
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5.3.3 Broadband NBB-312 HBT Amplifier 

Next, NBB-312 which is also a cascadable broadband InGaP/GaAs MMIC HBT 

amplifier similar to NBB-402 was obtained from RFMD. It also has a high output 

compression point of +12dBm at 12GHz but a high noise figure of 4.9dB at 3GHz 

when compared to NBB-402. These devices were specified to have a gain of 9.7dB 

from 8-12GHz. Biasing was also similar to that of NBB-402 transistor. It is done 

with the help of an external series resistor and conical inductor connected to the VCC. 

The voltage at the collector VDEVICE was set to 4.6V according to the data sheet and 

hence the resistor value is determined by Eq. 5.3. The collector current ICC was set 

56mA for 25� resistor in the collector with a 6V power supply since it could be used 

with a lead acid battery as shown in Figure 5.19. The footprints of the NBB-302 

transistors are similar to that of NBB-402 and hence the same PCB boards were 

used to test the devices. 

  

Figure 5.19: Circuit diagram for the NBB-312 amplifier for ICC of 56mA. 

 These devices were again tested for its gain, noise figure and the output 

compression points. The comparison of the measured and the simulated S parameter 

response is shown in Figure 5.20 and the amplifier demonstrated a gain of 10.3dB 

at 10GHz with an input return loss of -8.1dB. Finally, the noise figure (NF.) was 
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measured to be 5.8dB using the double side band method and the P1dBm point was 

measured to be 10.1dBm for the NBB-312 amplifier.  

 

Figure 5.20: S-Parameter response of NBB-312 for Icc of 56mA. 

  If these set of transistors were used to build the final oscillator operating at 

10GHz oscillator for a total noise figure for the amplifier, coupler and the mechanical 

phase shifter measured to be 7dB, the theoretical phase noise performance of the 

oscillator would be as seen in Table 5.5: 

Table 5.5: Predicted phase Noise performance of an oscillator using NBB-312 

transistor for a NF=7dB, PAVO=10.1dBm and Qo=190,000 

Offset Frequency  Theory 

1kHz -125.4 dBc/Hz 

10kHz -153.6 dBc/Hz 



Chapter 5. 10GHz Bragg Resonator Oscillator 

174 
 

5.3.4 Single Stage Amplifier using SiGe BFU-730F transistors 

SiGe transistors from NXP semiconductor devices were investigated at 10GHz. They 

are NPN devices which are suitable as an active element in an oscillator since they 

have a low noise figure NF of 1.3dB at 12GHz for a collector voltage of VCE =2V 

and collector current of IC=5mA. Also the transistors have a P1dBm of 12.5dBm at 

5.8GHz for a collector voltage of VCE =2.5V and collector current of IC=15mA. Also, 

they have a gain of 11.7dB at 10GHz as shown in Table 5.6.  

Table 5.6: S Parameters for BFU-730F for VCE =2.5V and collector current of 

IC=15mA operating at 10GHz.  
 

S Parameters Magnitude Angle 
S11 0.48725    126.76     
S21 3.8559     17.00   
S12 0.098556     25.06    
S22 0.13962   -100.26 

 

A SPICE model was imported in Agilent ADS and biasing was achieved with 

the help of a conical inductor BCL-232JL. The schematic of the single stage amplifier 

is shown in Figure 5.21. The collector current IC is set to 15mA with VCE at 2.5V 

with the help of the 150Ω and the 16Ω resistors in the collector path and the device 

was simulated for its gain, noise figure and P1dBm characteristics. The picture of the 

amplifier using the conical inductors is shown in Figure 5.22 using Rogers 4003C 

substrate with a ℰr=3.38 with a loss tangent (tanδ) of 0.0027, height of 0.508mm. 

The simulations suggest a noise figure of 1.9 dB at 10GHz with a P1dBm at 12dBm. 

The amplifier was then tested for its gain, noise figure and its output compression 

point. The amplifier demonstrated a gain of about 9.8dB at 10GHz and an input 

return loss of 34.3dB as shown in Figure 5.23. The noise figure was measured using 



Chapter 5. 10GHz Bragg Resonator Oscillator 

175 
 

the double side band technique described previously and the noise figure was 

measured to be 2.1dB at 10GHz, 1.9dB at 11GHz, 1.9dB at 12GHz and 2.0 at 13GHz 

using the double side band method. The P1dBm measurement setup is similar to the 

one made to measure the SiGe transistors in section 5.3.1 and the output 

compression point was measured to be 8dBm at 10GHz. 

 

Figure 5.21: Schematic of the 10GHz amplifier using BFU730F transistor for

Ic=15mA and VCE=2.5V. 
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Figure 5.22: Picture of the amplifier with the BFU730F transistor with the BCL-

232JL conical inductors for Ic=15mA and VCE=2.5V.  

  

Figure 5.23: Measured S parameters 10GHz amplifier using BFU730F with

conical inductors for VCE =2.5V and collector current of IC=15mA.   

 Next, residual phase noise measurement was performed on these set of 

amplifiers to determine the flicker noise at saturation power of 2dBm at 3.8GHz. 
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The noise floor for an input power (Pin) of 2dBm and a noise figure (NF) of 2dB was 

estimated to be -177 dBc/Hz using Eq. 5.2. The measured phase noise is -163 

dBc/Hz at 1 kHz offset and -172 dBc/Hz at 10kHz offset as shown in Figure 5.24 

with a flicker corner of 20kHz but the noise floor observed is -175 dBc/Hz which 

indicates that the noise figure has increased by 2dB under saturation. Note that the 

noise floor is not quite flat yet so this number could change slightly. 

Figure 5.24: Flicker corner of 20kHz for an input power (Pin) of 2dBm and a noise

figure (NF) of 2dB. 

 If these set of transistors were used to build the final oscillator operating at 

10GHz oscillator for a total noise figure for the amplifier, coupler and the mechanical 

phase shifter to be 4dB, the theoretical phase noise performance of the oscillator with 

flicker corner fc of 20kHz is shown in Table 5.7: 
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Table 5.7: Predicted theoritical phase noise performance of an oscillator using 

BFU730F transistor for a NF=4dB, PAVO=7dBm and Qo=190,000 

Offset Frequency  Theory 

1kHz -120.9 dBc/Hz 

10kHz -150.6 dBc/Hz 

5.3.5 TC200 Amplifier  

The TC200 device/amplifier was obtained from Keysight Technologies which is an 

HBT feedback working from DC to 20 GHz which has a stated gain of 10.2dB at 

10GHz with a noise figure of 7dB at 10GHz and P1dBm of 11.7dBm at 10GHz. The 

picture of the device is seen in Figure 5.25. The boards were modified to have a 

DC block at the input and the output of the amplifier. The Vsupply used was 5V 

and hence no biasing was used as mentioned in the data sheet.  

 

Figure 5.25: Picture of the TC200 Amplifier board obtained from Keysight. 

 The amplifier was tested for its gain, noise figure and its output compression 

point. The amplifier demonstrated a gain of about 8.1dB at 10GHz. The noise figure 

was measured using the double side band technique. The noise figure was measured 
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to be 7.9dB at 10GHz. The output 1dB compression point was measured to be 

11.0dBm at 10GHz. The measured S parameters for the TC200 amplifier measured 

at York, are shown in Figure 5.26 and the theoritical phase noise performance of 

the oscillators if these devices were used as an active lement is shown in Table 5.8.  

 

Figure 5.26: Measured S parameters using the TC200 amplifier at 5V power

supply. 

 The residual phase noise measurements were not carried out this device since 

these devices were obtained very late from Keysight.  

Table 5.8: Predicted theoritical phase noise performance of an oscillator using 

TC200 transistor for a NF=9dB, PAVO=11dBm and Qo=190,000 

 
 Offset Frequency  Theory 

1kHz -119.9 dBc/Hz 

10kHz -149.6 dBc/Hz 
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Table 5.9: Compariosn of various amplifiers with NF, P1dBm points, residual phase 

noise of the amplifiers at 10kHz and the theroritical phase noise when used in the

oscillators at 10kHz. 
 

 
Transistors 

 
Measured  
Gain at 10 

GHz 

 
Measured 

Noise 
Figure 

at 10GHz 

 
Output 

compression 
point 

P1(dBm) 

 
Residual 

phase noise 
at 10kHz 
(dBc/Hz) 

 
Predicted 

Theoretical 
Phase noise of 
the oscillator 

at 10kHz 
(dBc/Hz) 

BFP620F 10 6.2 10 –168 -150.0  

NBB-402 9.8 4.9 12.2 -168 -156.8  

NBB-312 10.8 5.3 10.1 -165 -153.6  

BFU-730F 9.8 2.1 8 -172 -150.6  

TC200 8.1 7.9 11 Not 
Measured 

-149.6 

 

 Table 5.9 summarises the various amplifiers built in this research work. It 

can be early seen that there are a number of SiGe and HBTs that offer can really 

low phase noise at X band frequencies. Based on the output compression point, noise 

figure and the flicker noise corners of the devices tested, the NBB-402 from RFMD 

was a suitable choice in an oscillator since the theoretical phase noise of the 

oscillators would be -156.8 dBc/Hz at 10kHz offset. This was the lowest possible 

noise that could be obtained from the available devices. Hence this was chosen to be 

an active element in the feedback topology oscillator.    
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5.4 Phase Noise Measurement of the 10GHz oscillators 

The theoretical phase noise obtained using any of the above amplifiers in oscillators 

is significantly lower than any commercial phase noise measurement systems and 

hence it is therefore necessary to mix two oscillators and measure the low frequency 

beat signal. When comparing the various amplifiers designed above, the lowest 

theoretical phase noise was obtained was using the NBB-402 transistors and hence 

it was used as an active element in the oscillator. Phase noise measurement is carried 

as described in section 3.7 using the beat frequency method where the two oscillators, 

Oscillator 1 had a frequency of 9.95GHz and Oscillator 2 had a frequency of 

9.945GHz are mixed using a mixer MZ410CR to produce a beat frequency of 4.6MHz. 

The LO drive level for the mixer is +10dBm. It is necessary to use the beat frequency 

since Symmetricom can only measure up to 30MHz. Since the output power from 

the oscillators was limited to 1.2dBm, a Push Pull amplifier built using the Infineon 

SiGe transistors BFP620F in Section 5.3.1 was used as a pre amplifier to drive the 

mixer. The phase noise of this signal was measured using a Symmetricom 5120A opt 

01 phase noise analyser as shown in Figure 5.27. 

The theoretical phase noise was calculated using Eq. 5.4 for two oscillators. 

Parameters values used for the calculation of the theoretical phase noise of the 

oscillator using the NBB-402 transistors are shown below:  

T: The room temperature in Kelvin T=293 K 

FA: The combined noise figure of the amplifier, mechanical phase shifter and the 

directional coupler, measured to be 6.2dB. 

QL: Loaded Q of the resonator=95,000 

Q0: Un-loaded Q of the resonator=190,000 



Chapter 5. 10GHz Bragg Resonator Oscillator 

182 
 

PAVO: Power measured at the input of the resonator=11.5dBm 

fo: frequency of oscillation, 10GHz 

fc: Flicker Frequency, measured to be 26kHz for the NBB-402 amplifier measured at 

3.8GHz 

Δf: Offset frequency  

 

Figure 5.27: Block Diagram of the measurement setup for the 10GHz Bragg

resonator oscillators. 

   

(݂)ܮ = 20 logଵ ێێێۏ
ۍ ܥଵ݇ܶ2ܨ ଵܲ + ݇ܶ2ܨ ܲை ێێۏ

ۍ 1ቀ1 − ܳܳቁଶۑۑے
ې ൬1 + ݂݂൰

+ ݇ܶ8(ܳ)ଶܨ ቀܳܳቁଶ ቀ1 − ܳܳቁଶ ܲை ൬ ݂݂൰ଶ ൬1 + ݂݂൰ۑۑۑے
ې
 

Eq. 5.4

 The oscillators were enclosed in screened metal box to shield them against 

any electromagnetic interferences and also battery powered in order to remove any 
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spurs at lower frequencies. Initial phase noise of -121.7 dBc/Hz at 1kHz and -150.5 

dBc/Hz at 10kHz was measured as shown in Figure 5.28. There are a large number 

of low frequency spurs. These are believed to be caused by the vibrations since the 

dielectric alumina plates just rest in the cavity under gravity and any vibrations 

have an effect on the frequency of operation. 

Figure 5.28: Initial Phase Noise measurement of the 10GHz oscillators.  

 Hence the oscillators were wrapped in bubble wrap and then the entire box 

was made to rests on inner inflated tubes in order to dampen any mechanical 

vibration as shown in Figure 5.29. Finally, the phase noise measurement was 

performed on these oscillators. 
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Figure 5.29: 10GHz battery operated oscillators screened in a metal box and

resting on a set of tubes in order to dampen any mechanical vibrations. 

 A phase noise of -120.6 dBc/Hz at 1kHz and -149.5 dBc/Hz at 10kHz was 

measured as shown in Figure 5.30. It has to be noted that since the phase noise of 

two oscillators are being measured, it is therefore necessary to subtract 3 dB from 

the measured result. Hence a phase noise of -123.6 dBc/Hz at 1kHz and -152.5 

dBc/Hz at 10kHz was measured for the oscillators operating at 10GHz. Table 5.10 

shows the comparison of the performance of the oscillators operating at 10GHz 

between the theory and the measurement.  
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Figure 5.30: Phase Noise of the 10GHz band oscillator using NBB-402 transistors

enclosed in a metal box to resting on the tubes to reduce the vibrations. 
  

Table 5.10: Oscillator opearting at 10GHz comparison with the theory (flicker

noise corner of 26kHz measured at 3.8GHz) 
 

Offset Frequency  Theory Measurement 

1kHz -127.4 dBc/Hz -123.6 dBc/Hz 

10kHz -155.1 dBc/Hz -152.5 dBc/Hz 
 

 The theoretical noise for the two oscillators was calculated to be -155.1 

dBc/Hz at 10kHz and -127.4 dBc/Hz at 1kHz respectively. There is a deviation of 

3-4dB in terms of the measured phase noise from that of the theory. This can be 
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explained due to the fact that the large signal noise figure of the amplifier was 

measured at 3.8GHz instead of 10GHz. If we assume the large signal noise figure of 

the amplifier under saturating conditions along with the phase shifter, cables and 

the mechanical shifter had increased by 3dB, then the measured phase noise of the 

oscillator would tie in with the theoretical phase noise. The other possibility is that 

if the flicker noise of the amplifier were increased from 26kHz measured at 3.8GHz 

to 50kHz at 10GHz, the theory would be -123.8 dBc/Hz at 1kHz offset and -153.6 

dBc/Hz at 10kHz offset which be in perfect agreement with that of the 

measurements. In order to know which is accounting for the 3-4dB deviation in phase 

noise, residual phase noise measurements needs to be performed at X band 

frequencies with different power levels.  

5.5 Conclusions 

In this chapter, the design and construction of oscillators operating at 10GHz which 

uses a Bragg resonator with an unloaded Q of 190,000 is presented which used a 

NBB402 amplifier with a noise figure of 6dB and the amplifier output 1dB 

compression point of 12dBm which had a flicker noise corner of 26kHz at 3.8GHz. 

The amplifier had a residual phase noise of -159 dBc/Hz at 1 kHz offset and -168 

dBc/Hz at 10kHz offset. A phase noise of -123.6 dBc/Hz at 1kHz and -152.5 dBc/Hz 

at 10kHz was measured at 10GHz using the NBB-402 devices. To achieve the low 

phase noise for the oscillator, several amplifiers were designed and tested for gain, 

noise figure, output 1dB compression points. In addition, residual phase noise 

measurements have been made using the cross correlation measurement system to 

determine the flicker noise corner for these amplifiers. 
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CHAPTER 6 

 

CONCLUSIONS AND FUTURE WORK 

 

 

The main objectives of this research have been to develop ultra-low noise oscillators 

at 3.8GHz and at 10GHz and high Q tunable Bragg resonators for oscillator 

applications. The current results and the suggestions for future research work are 

discussed in the following sub-sections. 

6.1 3.8GHz Oscillator 

 The first prototype built for Selex-ES included vibration measurements with 

a reasonable phase noise. The phase noise for the first 3.8 GHz prototype oscillator 

was -117 dBc/Hz at 1kHz offset and -150 dBc/Hz at 10kHz offset. Two types of 

vibration sensitivity measurements were performed. Spot frequency measurements in 

the X, Y and Z axes of 0.2g at 100Hz, 500Hz & 1500Hz and random in all three axes 

at 0.7g rms from 10Hz to 2kHz were performed. The vibration sensitivity (Γi) varied 

from 1.33x10-7 to 8.51x10-9 per g depending on the axis and the frequency of the 

vibration. Perhaps, the mounting of the resonator on an alumina tube and the use 

of semi rigid cables were believed to had an effect on these measurements. 
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 The second prototype was a modular compact oscillator was then developed 

which demonstrated a significantly improved phase noise performance of -125.6 

dBc/Hz at 1kHz offset and -153 dBc/Hz at 10kHz offset. This is the lowest noise 

reported in the literature in this frequency band using a dielectric resonator built at 

University of York. A new electronic phase shifter was designed in order to handle 

higher power levels and a mechanical phase shifter was also incorporated in this 

prototype to eliminate the use of semi rigid cables. The improved performance is 

mainly due to increase in the power level of the amplifier and the overall reduced 

noise figure. Finally, residual phase noise measurement of the amplifier was made 

using a broadband cross correlation phase noise measurement system developed at 

University of York and the amplifier has a flicker noise corner of 12.7kHz. The 

theoretical and the measured phase noise of these oscillators are within 0.5dB 

accuracy.   

 The following recommendations are made for the future research on the 

3.8GHz oscillators. The main area of research would be on amplifier design which 

involves increasing the output power, reducing the noise figure using SiGe 

transistors. The output of the amplifiers using SiGe transistors can be increased by 

using an 8-way splitter, which would potentially increase the output power by 9dB, 

ignoring the losses within the stages. A new family of SiGe transistors from NXP 

devices such as BFU690F, BFU730F SiGe devices are ideal choices for such 

applications. The noise figures of these devices are as low as 0.8dB and hence noise 

figure can be reduced to 1.5dB (amplifier plus other elements) by low noise matching 

if necessary, which would be an additional 4dB, which adds up to 10dB improvement 

in the total phase noise. A phase noise performance of -163 dBc/Hz at 10kHz is easily 

achievable for the same unloaded factor of 19,000. Also, these devices can be used in 
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single stage instead of series which potentially would reduce nonlinear effects on the 

amplifier when it is under saturation and 1/f residual noise of the amplifiers can also 

be improved by some feedforward techniques. A 10dB improvement in phase noise 

would produce the lowest phase noise of the oscillators in the 4GHz frequency band 

which would be comparable to oscillators incorporating sapphire resonators present 

in the literature.  

 

6.2 Tunable High Q Bragg Resonator 

 The best performance achieved was a spurious free tuning range of 1% at 

10GHz with a maximum unloaded Q of 81,650 after several iterations to the design 

of the cavity. The insertion loss varies from -3dB to -6.4dB while the unloaded Q 

varies from 61,020 to 81,650 over the tuning range and the spurious modes were 

0.17%-0.41% away from the required mode.  

 One of the key challenges in tunable resonators would be to maintain a 

constant spurious free range with a reasonable high quality factors over the tuning 

range. Very few resonators in the literature have a constant bandwidth without 

degrading the quality factor and hence further research on designing resonators 

having spurious free responses is required. One such way that has been suggested is 

to reshape the conventional dielectric resonator by removing dielectric material in 

the region where the field strength is high for the spurious modes [13], this could 

then be potentially used for Bragg resonators. Also, in the current design, some of 

the soldered areas of the resonator are directly exposed to the high field regions 

degrading the quality factor. This can be further improved by new techniques in the 

construction of the cavity with a possibility of silver plated copper bellows along 
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with silver solder paste to reduce the end wall losses. Finally, tunable oscillators 

using these Bragg resonators could be built which would potentially demonstrate a 

phase noise in the range of -147dBc/Hz to -140dBc/Hz at 10 kHz offset for a tuning 

range of 1% at 10 GHz. These results would be start of the art for a tunable 10 GHz 

oscillator.  

6.3 10GHz Bragg Resonator Oscillator 

 Low noise oscillators utilising Bragg resonators have been built at 10GHz. 

The oscillator demonstrates a phase noise of -123.6 dBc/Hz at 1kHz and -152.5 

dBc/Hz at 10kHz. To achieve the low phase noise for the oscillator, several amplifiers 

utilising SiGe and HBTs transistors were simulated, designed and tested for gain, 

noise figure and output compression points. Also, residual phase noise measurements 

have been made using the cross correlation measurement system to determine the 

flicker noise corner for these amplifiers at 3.8GHz oscillator built in the chapter 3 

since it had low AM and PM noise when compared to the commercially available 

signal generators at the time of measurements. Based on these measurements, NBB-

402 from RFMD was used as an active device for the oscillator which has a flicker 

noise of 26kHz at 3.8 GHz. The residual phase noise of the amplifier was measured 

to be -159 dBc/Hz at 1kHz and -168 dBc/Hz at 10kHz. There is a 2-3dB deviation 

in the measured phase noise with that of the theory. However, while performing 

phase noise measurements it was observed that the oscillators were very sensitive to 

vibrations and hence had to be placed on tyre inner tubes filled with air in order to 

dampen the vibrations. It would be interesting to know that the phase noise 

measurements would tie in when the flicker noise is changed from 26kHz to 50kHz 
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 The Author believes that the future research should concentrate on increasing 

the quality factor of Bragg resonators. A new resonator design in collaboration with 

Keyisght Technologies, Santa Clara is being implemented for the cavity. This cavity 

will be constructed using Oxygen Free Copper which exhibits a higher electrical 

conductivity than standard Copper. The dielectric plates which are the main reason 

for vibrations are held in position using Spira-Gasket both to provide an 

electromagnetic seal and to hold the plates in place with low vibration sensitivity. 

This material is typically used for EMC shielding and is constructed from Beryllium-

Copper. Finally, an overall improvement in the amplifier design should be 

investigated by primarily concentrating on using various power combing techniques 

and in improving amplifiers noise figures. Also, residual phase noise measurements 

should be performed at 10 GHz in order to determine the flicker noise corner for 

these devices. Simulations suggests that a parallel amplifier which uses the 8-way 

splitter could be used for a 9dB improvement in phase noise at 10 GHz. This would 

be comparable to oscillators using cryostat sapphire resonators having a Q of few 

billions present in the literature. 
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APPENDIX A  

A.1 Resonator Experiments  

A.1.1 Curved Coupling Probes  

A different set of probes were simulated for the same enclosure and the same set of 

simulations. The top view of the modelled resonator can be shown in the Figure 

A.1. 

 

Figure A.1: CST model of the Curved transmission lines. 

A new board was fabricated where the micro strip lines were curved instead 

of straight as shown in Figure A.2. They were initially 16mm in length. The 

insertion loss was measured using the network analyser and was found to be -4.632dB 

with a loaded Q of 7991. The unloaded Q was calculated to be 19,228. The probe 

lengths were further reduced by a 1 mm at a time to see the variation of the insertion 

loss and the loaded Q as seen in Figure A.3. The value decreases to be -12.783dB 

when they were cut 15mm from the initial lines. 
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Figure A.2: Curved Micro Strip coupling lines for resonator. 

 

Figure A.3: Plot of Insertion Loss/Loaded Q vs Distance of the curved coupling

transmission lines. 
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A.2 One Port Measurements 

 

Figure A.4: Series LCR resonator circuit. 

 The impedance of a series LCR circuit is given by Eq. A.1:  

 ܼ = ܮ݆߱ + ܥ1݆߱ + ܴ Eq. A.1

 The quality factor of the circuit is given by Eq. A.2:  

 
ܳ = ܮܴ߱

 

ܴ = ܮܳ߱
 

Eq. A.2

 For the resonant frequency, the quality factor is given by Eq. A.3:  

 
ܳ = 1ܴ߱ܥ 

ܴ = 1߱ܳܥ 
Eq. A.3

When the impedance in Eq. A.1 is normalized and using Eq. A.2 and Eq. A.3 we 

get: 

 
ܼܴ = ݆߱ ܮܴ + ܴܥ1݆߱ + 1 Eq. A.4

 
ܼܴ = ݆߱ ܮ߱ܳܮ + ߱ܥ݆߱ܳܥ + 1 Eq. A.5
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ܼܴ = ݆ܳ ൬ ߱߱ − ߱߱൰ + 1 Eq. A.6

 As the frequency is changed, at the half power frequency, the absolute part 

of the reactance is resistive and hence: 

 ܼܴ = 1 + ݆ Eq. A.7

Now the complex reflection coefficient is given by:  

 

ߩ = ቌܼܴ − 1ܼܴ + 1ቍ
= ቈ(1 + ݆) − 1(1 − ݆) + 1 
= ݆2 + ݆ = ൬ ݆2 + ݆൰ ൬2 − ݆2 − ݆൰ 

= 2݆ − ݆ଶ5  

= 2݆ + 15  = 0.2 + ݆(0.4) 

Eq. A.8

 The magnitude of the reflection coefficient is then:   |ߩ| = 0.447 

Hence return loss is given by: R.L=-20log(|ߩ|)=-7dB  

 The measured one port measurement for the dielectric resonator is shown in 

Figure A.4. The 7dB bandwidth is 206kHz which translated into an unloaded Q of 

18,495 which is in agreement with the two port measurements.  
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Figure A.5: Measured resonator response using one port. 
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A.3 Vibration Measurements 

The FSUP spectrum analyser plots showing the induced sideband levels L(fv) caused 

by vibration on  the X, Y and the Z axis at 100 Hz, 500 Hz, 1500 Hz: are shown in 

Figure A.6, Figure A.7 and Figure A.8 respectively. 

 

Figure A.6: Sideband levels L(fv) caused by vibration on X axis 100, 500 and

1500 Hz 
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Figure A.7: Sideband levels L(fv) caused by vibration on Y axis 100, 500 and

1500 Hz. 
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Figure A.8: Sideband levels L(fv) caused by vibration on Z axis 100, 500 and 1500

Hz. 
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A.4 Bellows Construction  

Bottom Bellows:  

 The masks for the bellows which were used in order to construct the tuning 

section are shown in Figure A.9 and Figure A.10. 

 

Figure A.9: Mask of the bottom rings used in the construction of the copper

bellows. 
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Figure A.10: Mask of the top rings used in the construction of the copper bellows.
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