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Abstract 

 

Recent neuroimaging studies have identified a number of regions in the human brain that 

respond preferentially to visual scenes.  These regions are thought to underpin our ability 

to perceive and interact with our local visual environment.  However, the precise stimulus 

dimensions underlying the function of scene-selective regions remain controversial.   

Some accounts have proposed an organisation based on relatively high-level semantic or 

categorical properties of the stimulus.  However, other accounts have suggested that 

lower-level visual features of the stimulus may offer a more parsimonious explanation.  

This thesis presents a series of fMRI experiments employing multivariate pattern analyses 

(MVPA) in order to test the role of low-level visual properties in the function of scene-

selective regions.  The first empirical chapter presents two experiments showing that 

patterns of neural response to different scene categories can be predicted by a model of 

the visual properties of scenes (GIST).  The second empirical chapter demonstrates that 

direct manipulations of the spatial frequency content of the image significantly influence 

the patterns of response, with effects often being comparable to or greater than those of 

scene category.  The third empirical chapter demonstrates that distinct patterns of 

response can be found to different scene categories even when images are Fourier phase 

scrambled such that low-level visual features are preserved, but perception of the 

categories is impaired.  The fourth and final empirical chapter presents an experiment 

using a data-driven method to select clusters of scenes objectively based on their visual 

properties.  These visually defined clusters did not correspond to typical scene categories, 

but nevertheless elicited distinct patterns of neural response.  Taken together, these 

results support the importance of low-level visual features in the functional organisation 

of scene-selective regions.  Scene-selective responses may arise from the combined 

sensitivity to multiple visual features that are themselves predictive of scene content. 
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Chapter 1 – Literature Review 

 

1.1 What is scene perception? 

Human observers are able to perceive and extract information from visual scenes across a 

hugely diverse range of scene contexts and viewing conditions.  In general terms, a visual 

scene can be considered as a view of an environment in which objects, surfaces, and 

textures are arranged in a manner indicating a particular spatial layout (Oliva, 2013).  

Importantly, this definition may encompass a highly diverse range of scene contexts, 

including man-made and natural scenes, and indoor and outdoor scenes.  Common 

examples of visual scenes include room interiors, natural landscapes, and cityscapes.  Our 

capacity to reliably perceive and extract information from visual scenes is key to our 

ability to successfully interact with our local spatial environment, for instance in the case 

of navigating a familiar route, learning new routes, and recognising landmarks.  

Despite the complexity of real world visual scenes, human observers are able to 

reliably identify scenes even when they are presented for durations as short as mere 

fractions of a second (Potter, 1975; Greene & Oliva, 2009a), and when presented under 

severely visually degraded conditions (Torralba, 2009).  How is it that the human visual 

system is able to extract the key components of visual scenes so efficiently?  One 

suggestion is that scene processing may follow a coarse-to-fine (or alternatively global-to-

local) processing bias in which the more global, coarse-scale features of the scene are 

extracted rapidly, and this information is then later complemented by a slower but more 

detailed analysis of the local, fine-scale components of the scene (Schyns & Oliva, 1994).  

Importantly, coarse-scale visual components of scenes have been noted to reliably cue 

the overall spatial structure of scenes – often referred to as the gist of the scene (Oliva & 

Torralba, 2001; Torralba & Oliva, 2003).  Thus, key visual components of scenes may 

underscore human scene perception. 

At the same time, recent neuroimaging studies have identified a number of regions 

in the human brain that appear to respond selectively to images of visual scenes (Nasr et 

al., 2011).  These regions include the Parahippocampal Place Area (PPA; Epstein & 
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Kanwisher, 1998), Retrosplenial Complex (RSC; Maguire, 2001), and Occipital Place Area 

(OPA; Dilks et al., 2013).  Together, these regions are thought to form a scene processing 

network within the brain, the function of which is proposed to underscore visual scene 

perception. 

The remainder of this chapter will: 1) outline in more detail how visual statistics of 

scenes may be used to cue key spatial properties of scenes, 2) outline how such visual 

properties relate to human behaviour during scene perception, 3) overview evidence on 

the neural bases of scene processing and possible contributions of visual scene properties 

to these processes, and 4) provide an overview of the main aims and content of this 

thesis. 

 

1.2 Visual statistics of scenes 

One clue as to how the visual system is able to extract the spatial components of scenes 

so efficiently may lie in the statistical regularities present in the visual properties of scene 

images.  Oliva & Torralba (2001) note that the low-level visual statistics of images differ 

both reliably and markedly across different types of scenes.  Figure 1.1 depicts images 

taken from 5 distinct scene categories (city, coast, forest, indoor, and mountain) along 

with their corresponding Fourier amplitude spectra.  For these purposes, the amplitude 

spectra can be thought of as providing a graphical method of illustrating the spectral 

(spatial frequency and orientation) properties of the images.  Amplitude spectra have 

been calculated either across the whole image or within local windows of a 4x4 grid such 

that the spatial distribution of the spectral properties across the image can be seen.  In 

both cases, the spectral properties can be seen to differ between the images. 
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Oliva and Torralba (2001) note that key perceptual dimensions of scenes (e.g. 

naturalness, openness, expansiveness, etc.) can reliably capture the spatial structure of 

scenes.  Furthermore, they propose that these dimensions can in turn be effectively 

captured by visual statistics of the image, such as spectral properties (e.g. the spatial 

frequency and orientation content of the image) and the coarse-scale organisation of 

such properties across the scene.  For instance, the windowed spectra in Figure 1.1 show 

how some scenes (e.g. forest, indoor) have relatively consistent spectral properties across 

the image, whilst others show more variability (e.g. city, coast, mountain).  The 

consistency of these visual properties across a scene is often termed the stationarity (or 

conversely non-stationarity) of the image statistics (Torralba & Oliva, 2003).  The 

stationarity of the statistics can predict the viewing distance of the scenes, with more 

Figure 1.1 Examples of images from 5 different scenes categories (top row).  The 

middle row shows the corresponding Fourier amplitude spectra calculated across the 

whole image, whilst the bottom row shows the amplitude spectra calculated within 

4x4 windows of the image.  In both cases, spectral statistics can be seen to differ 

between the scenes.  In particular, the windowed spectra demonstrate how variability 

of the spectral properties across the spatial extent of the image predicts viewing 

distance.  To aid viewing, amplitude spectra are displayed on a log scale. 
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distant scenes showing less stationarity due to the inclusion of more varied textures such 

as sky in the upper and terrain in the lower portions of the image.  Oliva & Torralba 

(2001) suggest the notion of a spatial envelope of the scene – the combination of visual 

properties of an image that together can reliably cue the overall spatial structure or gist 

of the scene.  Oliva and Torralba further demonstrate that a machine learning algorithm 

trained on a statistical measure of visual properties such as these can reliably discriminate 

images from different categories of scenes (e.g. coasts from forests).  More recently, 

similar approaches have successfully made even finer distinctions, such as discriminating 

sub-categories of indoor scene  (Quattoni & Torralba, 2009). 

Thus, visual properties of scenes differ reliably between different types of scenes, 

such as different scene categories.  This raises the possibility that the human visual 

system may exploit these statistical regularities to aid scene perception and extraction of 

scene gist. 

 

1.3 Scene statistics relate to human behaviour 

One line of evidence supporting the role of spatial envelope properties in human 

perception of scenes is that scene statistics have been shown to relate to behavioural 

measures of scene perception.  Greene and Oliva (2006) tested participants’ ability to 

categorise rapidly presented scenes.  Although overall performance was high, it was 

observed that when participants did make miscategorisations they were often for scenes 

with similar spatial properties to the target category.  For instance forest scenes are 

marked by low openness (i.e. low spatial expanse), and hence a large number of false 

positives when forest was the target were for non-forest scenes but which also possessed 

low openness.  Furthermore, Greene and Oliva (2010) demonstrated behavioural 

adaptation to spatial envelope properties.  Participants viewed a stream of rapidly 

presented scenes sharing similar spatial properties, and were then required to categorise 

a final target image with an ambiguous scene category.  It was observed that participants’ 

categorisation of the target image could be biased away from the spatial properties of the 

adapted images.  For instance, when adapting to a stream of scenes marked by low 

openness followed by an ambiguous target image that could reasonably be categorised as 
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either a forest or a field, participants would be more likely to categorise this as a field as 

this would be associated with higher openness. 

It has also been observed that machine learning algorithms trained to categorise 

scenes based on their spatial envelope properties are able to reliably predict human 

categorisation behaviour (Greene & Oliva, 2006), and indeed outperform equivalent 

models based on semantic or object properties of the scenes (Greene & Oliva, 2009b).  

Ehinger et al. (2011) observed that such machine learning algorithms are better able to 

categorise scenes rated as ‘typical’ of their category by human observers, suggesting that 

scene typicality may be predicted by the degree to which a scene possesses spatial 

envelope properties typical of its category. 

 In the same way as Oliva and Torralba (2001) propose that the spatial envelope of 

a scene can be described by the low-level visual properties of the scene, a number of 

studies have investigated how specific visual dimensions may influence scene perception.  

For instance, studies have noted that the spatial frequency content of an image 

influences scene perception.  Specifically, it has been suggested that scene perception 

follows a coarse-to-fine process (Schyns & Oliva, 1994) in which coarse scale, low spatial 

frequency features are extracted from the scene rapidly to give an initial first-pass 

analysis that then helps inform a later, more detailed processing of the finer scale, high 

spatial frequency components.  Such a bias would permit the extraction of key spatial 

components of scenes faster than if all spatial frequency bands had to be processed 

simultaneously.  Schyns & Oliva (1994) presented participants with hybrid images of 

scenes – composite images containing a low-pass filtered image overlaid with a separate 

high-pass filtered image.  The image thus contains two different scenes, and importantly 

although the components of both scenes are always available, perception can be biased 

towards one or the other scene depending on which frequency band is attended to.  It 

was found that when images were presented very rapidly (for 30ms) participants were 

more likely to perceive the low frequency scene, whereas with longer stimulus durations 

(for 150ms) participants tended to favour perception of the high frequency scene, 

consistent with a coarse-to-fine processing bias across time.  Similarly, Kauffmann et al. 

(2015b) report faster reaction times during a scene categorisation task for movie 

sequences of a scene running from low-pass to high-pass filtered images than vice versa.  
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Interestingly, the coarse-to-fine processing bias may not always be absolute.  For 

instance, Oliva & Schyns (1997) note that both the low and high spatial frequency 

components of a hybrid scene are able to prime recognition of a later target scene, even 

when presented for short stimulus durations.  Thus, although the visual system may 

ordinarily favour a coarse-to-fine bias, both low and high frequency bands are available 

early on in the timecourse, and the system is flexible such that high frequency 

components can be extracted if required. 

 Meanwhile, McCotter et al. (2005) adapted the ‘bubbles’ technique (Gosselin & 

Schyns, 2001) in order to directly investigate the spectral components most informative 

to scene categorisation.  For a given image, a set of components of the Fourier phase 

spectra were sampled, and all other components replaced with random noise.  After 

inverse transforming the spectrum back to the image domain, only the sampled 

components would remain intact whilst the un-sampled components would be rendered 

unrecognisable.  Participants then performed a scene categorisation task on these 

images, with a different random set of components being sampled on each trial.  In this 

way, over a large number of successive trials it was possible to measure which spectral 

components were more or less informative to categorising each scene category.   In terms 

of spatial frequency, it was found that the most informative components for all categories 

occurred at relatively low frequencies, suggesting that coarse scale components of scenes 

alone provide sufficient information to accurately discriminate scene categories.  This 

would be consistent with the coarse-to-fine processing bias (Schyns & Oliva, 1994) in that 

the general scene gist can be extracted from the coarse components rapidly, and that 

such coarse scale components can reliably describe the spatial envelope of a scene (Oliva 

& Torralba, 2001).  In terms of the orientation of the visual components, McCotter et al. 

report that different orientations were informative for different scene categories.  For 

instance, horizontal orientations were most informative for discriminating coastal scenes, 

consistent with the horizontal bias present due to the dominant horizon line within such 

scenes.  Meanwhile, oblique orientations were more informative for discriminating 

mountain scenes, consistent with the sloping edges of the terrain in such scenes. 

 In summary, behavioural evidence suggests that the human visual system is 

sensitive to the spatial envelope properties of scenes during scene perception.  In the 
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same way as spatial envelope properties can be reliably described by the low-level visual 

properties of scenes (Oliva & Torralba, 2001), human scene perception is also influenced 

by the spectral components of scenes such as spatial frequency and orientation.  Taken 

together, these results suggest that the human visual system may exploit the statistical 

regularities present in the visual components of scenes to aid scene perception. 

 

1.4 Neural responses to scenes in the human brain 

Recent neuroimaging studies have identified a number of regions in the human brain that 

appear selectively responsive to scenes or places.  That is, these regions respond more to 

images of scenes than they do to images from other visual objects categories, such as 

faces or inanimate objects, or to scrambled images of scenes.  These regions include the 

Parahippocampal Place Area (PPA; Epstein & Kanwisher, 1998), Retrosplenial Cortex (RSC; 

Maguire, 2001), and the Transverse Occipital Sulcus / Occipital Place Area (TOS / OPA; 

Dilks et al., 2013).  The locations of these regions are illustrated in Figure 1.2.  The 

selectivity of these regions for scenes appears fairly ubiquitous; for instance, they will 

respond preferentially across a hugely diverse range of scenes including both indoor and 

outdoor scenes, and man-made and natural scenes (Epstein & Kanwisher, 1998).  

Furthermore, patients with damage to these regions often suffer with topographagnosia, 

in which they exhibit severe impairments in scene recognition (especially those lacking 

major landmarks), novel route learning, and spatial navigation within both familiar and 

unfamiliar environments (Barrash et al., 2000; Maguire, 2001; Mendez & Cherrier, 2003).  

This suggests that these regions are closely related to our ability to perceive and interact 

with spatial environments. 
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1.4.1 Perspectives on the neural representation of scenes 

Many of the earlier studies of scene-selective cortices focussed on traditional univariate 

analysis methods, i.e. those that consider the amplitude of neural response. These studies 

identified scene selective regions as responding relatively uniformly across a wide range 

of scene stimuli, such as indoor and outdoor scenes, and man-made and natural scenes 

(Epstein & Kanwisher, 1998).  However, more recent studies have begun to employ 

multivariate rather than univariate analyses.  These methods will be overviewed in more 

detail in the next chapter, but in brief here - whilst univariate methods simply examine 

the amplitude of response on a voxel-by-voxel basis, multivariate pattern analysis 

methods examine the distributed pattern of response across many voxels simultaneously.  

In contrast to the results of the univariate methods, studies employing multivariate 

Figure 1.2 Locations of core scene selective regions, overlaid on the standard MNI152 

brain.  Statistical maps indicate the group average responses (N = 20) to a contrast of 

intact scenes over Fourier phase scrambled scenes.  The Parahippocampal Place Area 

(PPA) is located on the ventral-temporal surface, the Retrosplenial Cortex (RSC) on the 

medial-temporal surface, and the Occipital Place Area (OPA; previously referred to as 

the Transverse Occipital Sulcus) on the lateral-occipital surface. 
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methods have shown patterns of response that differ reliably between different types of 

scenes, such as different scene categories (Walther et al., 2009, 2011).  These results 

would suggest a more nuanced neural representation of scenes in which distributed 

response patterns are tied to the stimulus properties. 

 One key question then is which precise stimulus dimensions underlie the 

functional response of scene regions, i.e. which dimensions drive the regions to be scene-

selective?  This issue remains highly debated within the literature.  Some accounts have 

argued for a relatively high-level organisation of scene-selective cortices in which 

responses are tied to the semantic features of scenes.  Importantly these representations 

are suggested to be largely dissociated from the visual features of the image.  For 

instance, Walther et al., (2009) note distinct patterns of neural response in scene-

selective regions to different semantic categories of scene (e.g. beaches, buildings, 

mountains, etc.), suggesting an organisation based upon categorical principles.  This leads 

them to conclude that “[the] representation of scenes in higher visual areas, namely PPA, 

RSC, and LOC, more closely tracks human behaviour rather than physical similarity”.  See 

also Walther et al. (2011) and Stansbury et al. (2013) for similar accounts. 

  However, other studies have proposed a more mid-level representation that 

stresses a role for the spatial envelope properties of scenes.  Using an event-related fMRI 

design, Kravitz et al. (2011) presented participants with a range of scene images.  

Importantly, by measuring responses on an image-by-image basis, this design avoided the 

constraint of grouping images by scene category at the stimulus presentation stage.  

Kravitz et al. found that response patterns in scene selective regions differed reliably 

between scenes as a function of the spatial expanse of the images (i.e. the degree to 

which the scene appeared open or closed), but found little evidence for responses 

grouping by semantic category.  Similarly, Park et al. (2011) note a greater effect of spatial 

expanse than semantic content on neural responses, whilst Park et al. (2015) note effects 

of both spatial expanse and visual clutter.  Previously reported effects of scene category 

(Walther et al., 2009, 2011) may therefore have reflected responses to spatial envelope 

properties that also differ reliably between scene categories, rather than a direct 

encoding of the semantic category per se. 
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 Meanwhile, other accounts have proposed even lower-level representations that 

are tied to the visual features of scenes.  For instance, many studies have reported biases 

for multiple low-level visual properties including a retinotopic bias (Malach et al., 2002; 

Arcaro et al., 2009; Silson et al., 2015), and biases for spatial frequency (Rajimehr et al., 

2011; Kauffmann et al., 2014), visual orientation (Nasr & Tootell, 2012), and rectilinearity 

(Nasr et al., 2014).  Importantly, such accounts do not dispute that these regions are 

scene-selective, but rather suggest that scene-selectivity may arise from the interaction 

of multiple low-level biases that are themselves predictive of scenes.   

A complication in this debate is that many of the aforementioned features across 

low-, mid-, and high-level accounts are themselves correlated, making it difficult to 

disentangle the effects of any one account from the others (Lescroart et al., 2015).  For 

instance, it has already been discussed how low-level, visual features can be used to 

reliably predict the mid-level, spatial envelope properties of scenes, and how these in 

turn can predict the high-level, semantic category of scenes (Oliva & Torralba, 2001; 

Torralba & Oliva, 2003).  Thus the stimulus dimensions underlying the functional 

organisation of scene selective cortices remain controversial, and require further 

investigation.  One of the key aims of this thesis is to further test the role of higher- 

versus lower-level stimulus features in the neural representation of scenes. 

 

1.4.2 Scene-selective regions 

Whilst a number of scene-selective regions in the human brain have been identified, it 

has also been suggested that each region may play subtly different roles in scene 

perception (Epstein, 2008). The following sections review the literature on each of the 

scene-selective regions in more detail. 

 

1.4.2.1 Parahippocampal Place Area (PPA) 

In an early functional magnetic resonance imaging (fMRI) study, Aguirre & D’Esposito 

(1997) reported a region in ventral-temporal cortex that seemed to respond 

preferentially during a scene categorisation task.  Epstein & Kanwisher (1998) more 
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definitively showed selectivity of a bilateral region in the posterior parahippocampal gyri 

to images of visual scenes.  In light of its location, they named this region the 

Parahippocampal Place Area (PPA).  More recent reports have localised the PPA as 

spanning the parahippocampal gyrus and collateral sulcus (Nasr et al., 2011). 

It has been suggested that the PPA is primarily concerned with encoding the local 

spatial geometries of scenes (Epstein, 2008).  For instance, Epstein & Kanwisher (1998) 

note that the PPA response was reduced when images were fragmented and re-arranged 

(thereby disrupting the spatial layout of the scenes) suggesting a scene-centred 

representation that focuses on spatial layout.  Epstein et al. (1999) report the PPA 

responds preferentially even to Lego models of scenes.  Model scenes will emulate the 

spatial geometries present in real scenes, but will clearly lack the wider scene context 

provided by real scenes.  Henderson et al. (2011) report greater PPA responses to scenes 

that convey a strong sense of 3D spatial structure (e.g. rooms) than those that do not (e.g. 

cityscapes).  As previously discussed, studies employing multivariate analyses have also 

suggested that the PPA encodes the spatial expanse of scenes (Kravitz et al., 2011; Park et 

al., 2011, 2015). 

It should, however, be noted that an alternative hypothesis has been proposed by 

Bar and colleagues (Bar et al., 2008a, 2008b) suggesting that the PPA processes 

contextual associations which simply coincide with scene processing, rather than being 

specifically scene selective per se.  In support of this, Bar et al. (2008a) report stronger 

PPA responses for familiar than unfamiliar faces, despite the fact that these clearly do not 

embody any spatial components.  Meanwhile, Bar et al. (2008b) report greater PPA 

activity to objects with strong contextual associations to scenes (e.g. traffic lights) than 

those with weak associations (e.g. a water bottle), suggesting a more object-centred 

representation.  However, Epstein & Ward (2010) provide a rebuttal to this hypothesis.  

They note that Bar et al. (2008b) used a relatively slow presentation rate that might have 

allowed for visual imagery of scenes, especially in the strong association condition.  

Epstein & Ward show that with faster presentation rates that reduce the time available 

for any mental imagery to occur, the effect of context drops out.  Furthermore, they were 

entirely unable to replicate the findings of Bar et al. (2008a).  Thus, on the whole the 
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literature primarily supports a scene-centred role of the PPA in encoding the spatial 

geometries of scenes. 

A number of studies have identified other more specific aspects of PPA response 

properties.  Firstly, there exists conflicting evidence on the effects of scene familiarity, 

with Epstein et al. (1999) reporting no significant effect of familiarity, whilst Epstein et al. 

(2007b) report greater responses to familiar than unfamiliar scenes.  Epstein et al. 

(2007b) suggest that their earlier report may have suffered from having too small a 

sample size. 

 In terms of effects of viewpoint, the evidence is again conflicting.  Epstein et al. 

(2003) used an fMRI adaptation paradigm in which participants viewed blocks of scenes 

where each block showed the same image repeatedly either from the same or different 

viewpoints.  It was found that whilst the PPA adapted to scenes shown from the same 

viewpoint, it displayed a release from adaptation when scenes were shown from different 

viewpoints.  In fact, the response to different viewpoints of the same scene was almost 

identical to the response to entirely different scenes.  This would suggest that the PPA is 

sensitive to the viewpoint of the scene, and essentially fails to discriminate the same 

scene viewed from a different viewpoint from an entirely different scene.  Conversely 

however, Ewbank et al. (2005) in fact do report adaption to scenes even when viewed 

from different angles.  They suggest their discrepant findings may be due to their using 

smaller viewpoint shifts than Epstein et al. (2003).  A further possible explanation may lie 

in later reports that suggest viewpoint effects may interact with the familiarity of the 

scene, with an increasing degree of viewpoint invariance observed as familiarity with a 

given scene increases (Epstein et al., 2005, 2007b). 

 Meanwhile, other studies have argued for lower-level representations of scenes 

more closely tied to the visual features of the image.  For instance, a number of studies 

have suggested a retinotopic bias in PPA.  A series of studies by Malach and colleagues 

have suggested a peripheral bias in scene-selective regions including the PPA (Levy et al., 

2001, 2004; Hasson et al., 2002, 2003; Malach et al., 2002).  Malach et al. suggest this bias 

may aid scene processing as real world scenes often span a large extent of the visual field 

and hence extend greatly into the periphery.  This contrasts with regions selective for 
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faces and words which they report showing a foveal bias, consistent with our tendency to 

fixate such objects.   Furthermore, Arcaro and colleagues have identified two retinotopic 

maps in posterior parahippocampal cortex named as PHC-1 and PHC-2 (Arcaro et al., 

2009; Wang et al., 2015) which heavily overlap with functional definitions of the PPA.  

Each of these maps contains a representation of the contralateral visual field and, 

consistent with Malach et al., show an overrepresentation of the periphery.  Silson et al. 

(2015) used a population receptive field (pRF) mapping technique in conjunction with 

fMRI to demonstrate the presence of both a contralateral and an upper visual field bias in 

PPA.  Similarly, MacEvoy & Epstein (2007) note a contralateral visual field bias in that 

greater responses are seen in the PPA contralateral to the field of unilaterally presented 

stimuli.  Interestingly, MacEvoy & Epstein do note that despite this contralateral bias, 

some bilateral response is still seen, and that fMRI adaptation can be seen bilaterally at 

approximately equal magnitudes.  This suggests that receptive fields in the PPA may be 

relatively large and therefore cross the visual midline.  This is consistent with more recent 

pRF mapping studies that have reported relatively large receptive fields both in the PPA 

and in ventral-temporal cortex in general (approximately 3 degrees of visual angle) 

compared to early visual regions (Kay et al., 2015; Silson et al., 2015). 

 Further supporting a lower-level representation of scenes in the PPA, a number of 

other studies have identified response biases to several other visual features of scenes.  

For instance, Rajimehr et al. (2011) report a bias towards high over low spatial frequency 

content in both scene and non-scene stimuli.  They suggest this may coincide with a 

higher degree of high spatial frequencies in scene stimuli relative to other stimuli such as 

faces, or may help enhance edge detection processes that could be relevant for extracting 

spatial geometries.  Furthermore, Musel et al. (2014) note greater PPA responses to 

movie sequences depicting a scene moving from a coarse (low-pass filtered) to a fine 

(high-pass filtered) scale than a fine-to-coarse scale, consistent with reports of a coarse-

to-fine bias in the behavioural literature (Schyns & Oliva, 1994; Oliva & Schyns, 1997; 

Kauffmann et al., 2015b).  It is not entirely clear how an overarching bias for high-spatial 

frequencies would support a further coarse-to-fine processing bias, although it should be 

noted that Rajimehr et al.'s (2011) study measured neural responses using fMRI, which 

possesses relatively poor temporal resolution, whilst the coarse-to-fine processing bias is 
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thought to occur on a much faster temporal scale.  Further studies employing more 

temporally sensitive methods such as EEG/MEG may be required to resolve this issue.   

Meanwhile, Nasr & Tootell (2012) report a bias towards cardinal over oblique 

orientations, again for both scene and non-scene stimuli.  More recently, Nasr et al. 

(2014) further suggest the presence of a rectilinear bias, i.e. for rectangular visual 

features with straight edges as opposed to more rounded features.  It is suggested that 

such biases reflect the relatively high occurrence of such features in natural scenes. 

 

1.4.2.2 Retrosplenial Cortex (RSC) 

The retrosplenial cortex (RSC) is located superior to the PPA on the medial temporal 

surface, anterior to the calcarine sulcus and posterior to the corpus callosum (Maguire, 

2001; Vann et al., 2009; Nasr et al., 2011).  The term “retrosplenial complex” is 

sometimes alternatively used to acknowledge that functional definitions of the area may 

encompass a number of anatomical regions.  Much like the PPA, the RSC is also reported 

to respond preferentially to visual scenes, but is also implicated in other aspects of scene 

processing such as spatial memory and navigation (Maguire, 2001; Vann et al., 2009). 

A number of the response properties of the RSC overlap with those of the PPA.  

Much like the PPA, Epstein et al. (2007b) note effects of scene familiarity on RSC 

responses, and increasing viewpoint invariance with increasing familiarity.  Henderson et 

al. (2011) again note stronger RSC responses to scenes that convey a greater sense of 

local 3D depth, much the same as the PPA.  Meanwhile, Nasr et al. (2014) also find 

evidence for a rectilinear bias in RSC, although they do note that this bias is more evident 

for visually complex stimuli, whilst the effect in the PPA was more ubiquitous. 

 Nevertheless, there are also a number of functional distinctions between the RSC 

and PPA.  The main difference is that the RSC appears much more heavily implicated in 

aspects of spatial memory and navigation than the PPA.  Epstein & Higgins (2007) note 

greater RSC responses to images of scenes which are accompanied with a label denoting 

the scene context (e.g. “beach”) than those without labels, whilst the PPA failed to show 

a significant difference between these conditions.  A number of reports have identified 

greater RSC responses when participants are required to identify the location of a scene, 
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compared to tasks requiring scene category or viewpoint discriminations (Epstein & 

Higgins, 2007; Epstein et al., 2007a).  Furthermore, the RSC appears highly responsive 

during tasks involving spatial navigation (Maguire, 2001), whilst Schinazi & Epstein (2010) 

implicate the region in real-world route learning.   It has been suggested that the RSC may 

represent the environment in terms of local spatial reference frames, for example 

encoding local heading direction and position within the immediate environment (Vass & 

Epstein, 2013; Marchette et al., 2014). 

 On the basis of such results, Epstein and colleagues have proposed distinct but 

complimentary roles for the RSC and PPA (Epstein & Higgins, 2007; Epstein et al., 2007a; 

Epstein, 2008).  Specifically, it is proposed that whilst the PPA is primarily concerned with 

extracting the spatial geometries of the immediate local spatial environment, the RSC 

then focuses on attempting to locate this scene within the wider spatial environment.  A 

further, but similar hypothesis is that the RSC may act as a mediator that transforms 

between egocentric representations of the environment (i.e. those centred with regards 

to the observer) in visual and parietal regions, and allocentric representations of the 

environment (i.e. those centred with regards to the wider environment) in medial 

temporal and hippocampal regions (Burgess et al., 2001; Vann et al., 2009). 

 

1.4.2.3 Transverse Occipital Sulcus (TOS) / Occipital Place Area (OPA) 

The transverse occipital sulcus (TOS) is located on the lateral occipital surface, 

overlapping retinotopic regions V3B, V7, and LO1 (Grill-Spector, 2003; Nasr et al., 2011).  

Recently, Dilks et al. (2013) have suggested renaming the region as the occipital place 

area (OPA) in order to better reflect its functional rather than anatomical definition, and 

the fact that more recent estimates have actually placed its location slightly outside of the 

anatomically defined TOS (Nasr et al., 2011).  Consequently, the term OPA is now 

becoming more prevalent within the literature. 

In comparison to the PPA and RSC, much less is known about the response 

properties of the OPA.  Much like the PPA and RSC, the OPA responds preferentially to 

images of scenes (Nasr et al., 2011).  Studies applying transcranial magnetic stimulation 

(TMS) to the OPA have reported disruptions to behavioural performance on both scene 
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categorisation and scene matching tasks, but little to no effect on task performance with 

images of objects or faces, thus demonstrating a causal role of the OPA in scene 

perception (Dilks et al., 2013; Ganaden et al., 2013).  Similar to the PPA and RSC, Epstein 

et al. (2007b) report scene familiarity effects within the OPA, in addition to an increasing 

degree of viewpoint independence with increasing scene familiarity.  Nasr et al. (2014) 

also find a rectilinear bias within this region. 

A number of studies have suggested retinotopic biases within this region, 

consistent with its location overlapping known retinotopic regions (Nasr et al., 2011).  The 

peripheral bias reported in the PPA is also observed in the OPA (Malach et al., 2002).  

Meanwhile, Silson et al.'s (2015) pRF-mapping study reported both contralateral and 

lower visual field biases.  Silson et al. also report relatively large receptive field sizes of 

approximately 3 degrees of visual angle, comparable to those in the PPA. 

The functional role of the OPA within the scene processing network is poorly 

understood.  Dilks et al. (2013) suggest it may represent an initial stage within a 

hierarchical scene processing network, analogous to proposed roles of the occipital face 

area in the face processing network (Haxby et al., 2002).  However, this conclusion is 

largely based on its posterior location and proximity to the occipital face area, and 

currently is lacking much direct empirical evidence.  Meanwhile Silson et al. (2015) 

propose an alternative hypothesis that the PPA and OPA may represent complimentary 

regions that function in parallel with one another.  This is based on their observation that 

the PPA and OPA display upper and lower visual field biases respectively, and they 

suggest that this may represent a natural continuation of the upper and lower visual field 

segregation between ventral and lateral pathways observed in early visual areas, for 

example between V2v/V2d and V3v/V3d (Wandell & Winawer, 2011).  Nevertheless, this 

is the only study to have investigated this hypothesis, and so again further empirical 

evidence is required. 
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1.4.2.4 Other scene-selective regions 

Although the PPA, RSC, and OPA are typically regarded as forming the core components 

of a scene processing network, it should be noted that other brain regions are also 

implicated in scene processing.  Whilst the PPA is located in the posterior portions of the 

parahippocampal gyrus, scene selectivity can be seen to extend further anterior along 

parahippocampal cortex into entorhinal cortex and the hippocampus.  Anterior 

parahippocampal cortex has been implicated in wayfinding and novel route learning in 

scenes (Janzen & Weststeijn, 2007; Janzen et al., 2007; Janzen & Jansen, 2010; Wegman 

& Janzen, 2011).  Furthermore, Epstein (2008) notes that whilst lesions to posterior 

parahippocampal cortex may impair navigation and route learning in both new and 

familiar environments, lesions to anterior parahippocampal cortex are more likely to be 

associated with impairments only in new environments.  Moving further anterior still, 

both entorhinal cortex and the hippocampus have been implicated in processes relating 

to navigation and spatial memory, such as encoding an organism’s current heading 

direction and spatial location within the environment (Hartley et al., 2014).  Thus, moving 

from posterior to anterior there seems to be a general progression in scene selectivity 

from more visually based processes in PPA / posterior parahippocampal cortex towards 

more navigationally relevant and memory based processing in anterior parahippocampal 

cortex, entorhinal cortex, and the hippocampus. 

 

1.4.3 Connectivity of scene-selective regions 

With regards to the PPA, Kim et al. (2006) used Diffusion Tensor Imaging (DTI) to measure 

the structural connectivity of the PPA with other regions in both early and higher visual 

cortices.  They reported a high density of white matter tracts between the PPA and early 

visual regions – in particular V1, V2, V3v, and V4 – but very few connections to other high 

level visual regions (FFA, LO, and hMT+).  Interestingly, the other high level visual regions 

did show a high degree of connectivity to one another, as well as the early visual regions.  

This suggests that in terms of feed-forward input from early visual cortices, the PPA may 

exist on a separate neural pathway distinct from those which connect other high level 

visual regions.  However, Mullin & Steeves (2013) report that applying TMS to object-

selective lateral-occipital cortex (region LO) disrupts PPA responses to scenes as 
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measured by an immediately subsequent fMRI scan.  This would suggest that some 

functional connectivity between PPA and LO exists, even if direct anatomical connections 

are not present.  Other studies have noted functional connectivity between the PPA and 

frontal / parietal regions (Kauffmann et al., 2015a, 2015c).  It has been suggested that a 

PPA – fronto-parietal network may support a coarse-to-fine process of scene recognition 

(Kauffmann et al., 2014).  Specifically, it is proposed that low spatial frequency, coarse 

scale components receive a rapid first-pass analysis, fed forward to fronto-parietal 

regions in order to quickly extract the overall spatial components of the scene.  This 

information can then be fed back to visual regions such as the PPA in order to better 

inform a later parsing of the high spatial frequency, fine scale features.  Finally, 

Baldassano et al. (2013) suggest a possible anterior-posterior division in PPA connectivity.  

Using measures of functional connectivity, they show connectivity between posterior PPA 

and lateral-occipital visual areas such as OPA and LO, whilst anterior regions showed 

greater connectivity with RSC and parietal regions.  They suggest that posterior PPA may 

be more concerned with representing visual properties of the stimulus, whilst anterior 

regions might be more associated with higher level processes such as spatial memory. 

In terms of RSC connectivity, Kobayashi & Amaral (2007) note a very high density 

of projections from RSC to both hippocampal and parahippocampal regions in the 

macaque brain.  Although less dense, they also note some projection to frontal cortices.  

Consistent with these results, a DTI study in humans reported a large number of white 

matter tracts between RSC and regions of the medial temporal lobe, including the 

hippocampus (Greicius et al., 2009).  Meanwhile, Kim et al. (2015) report the case of a 

patient with congenital topographagnosia who displayed reduced functional connectivity 

between the PPA and RSC relative to healthy controls.  Taken together, these results 

suggest the RSC is heavily connected with hippocampal and parahippocampal regions.  

These results are therefore consistent with the proposed functional roles of the RSC both 

in terms of complimenting PPA function (Epstein, 2008) and in mediating between 

hippocampal and other brain regions (Burgess et al., 2001). 

In contrast to the PPA and RSC, relatively little information is available on the 

connectivity of the OPA with other regions, and what literature does exist often appears 

conflicting.  When applying TMS to the OPA, Mullin & Steeves (2013) did not observe any 
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significant effects on the fMRI activation within the PPA, suggesting against direct 

connectivity with the PPA.  However, in their study of a congenital topographagnosic, Kim 

et al. (2015) did report reduced functional connectivity between OPA and PPA, although 

the magnitude of this effect was less than in the connectivity between PPA and RSC.  

Baldassano et al. (2013) reported significant functional connectivity between the OPA and 

PPA, although they do note this relationship is more prevalent for posterior than anterior 

PPA.  Thus, the connectivity of the OPA is an area requiring further investigation. 

 

1.4.4 Feedback and lateral inputs to scene-selective regions 

Much of the evidence discussed thus far has considered the feed forward modulation of 

responses in scene-selective regions.   Nevertheless, the extensive feedback as well as 

feedforward connections present throughout the visual system make it seem likely that 

scene selective regions can be modulated by top-down influences just as any other visual 

region can.  Indeed, task demands have been shown to modulate the neural response to 

visual objects in both ventral-temporal and early visual cortices (Harel et al., 2014).  

Furthermore, it also remains possible that scene-selective regions may be modulated by 

lateral input from other cortical regions.  For instance, Wolbers et al. (2011) report PPA 

responses to haptic input from touching Lego models of scenes in both sighted and 

congenitally blind participants, raising the exciting possibility of cross-modal input to 

scene selective cortices.  Thus it remains possible, if not likely, that whilst scene selective 

cortices may be strongly driven by bottom-up visual input, responses can nevertheless 

also be modulated by other stimulus properties via top-down and lateral inputs. 

 

1.4.5 A unifying model of category selectivity 

So far we have seen that there exist regions in the human brain that respond selectively 

to scenes, and that such regions may be functionally organised along a number of biases 

for various stimulus properties.  However, many of these biases are relatively weak, and it 

remains unclear how such strong category selectivity could arise from these.  For 

instance, whilst scene selective regions may display a particular bias for the spatial 
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frequency content of an image, the magnitude of this bias is considerably less than that of 

the categorical response of these regions to scenes over other visual object categories.  

Op de Beeck et al. (2008) have proposed one particularly influential model that aims to 

explain how strong, localised selectivity may arise from weak biases for underlying 

stimulus properties.  This model is illustrated in Figure 1.3.  Their proposal is that there 

are a number of topographically organised maps that each encodes a particular functional 

dimension of the stimulus in a distributed manner across the cortical surface.  For 

instance, one map could encode a spatial frequency bias, another an orientation bias, 

another a retinotopic bias, and so on.  Each map on its own may exhibit only weak 

selectivity, but crucially the spatial organisation of each map is correlated with that of the 

other maps.  For instance, the points in the spatial frequency map that are most 

predictive of scene images would overlap with the points in the orientation and 

retinotopy maps that are also predictive of scenes.  If responses are combined across 

maps, for instance by multiplication, then each of the underlying weakly biased maps can 

give rise to a strong, localised peak of activity.  Importantly, this model does not dispute 

the notion that cortical regions may exhibit category selectivity, e.g. for scenes.  Rather, it 

simply proposes a mechanism by which such selectivity could occur, i.e. that it arises from 

a combination of distributed and topographically organised biases for a number of 

stimulus properties that are themselves predictive of that stimulus class. 
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1.5 The GIST descriptor: measuring scene statistics 

Given the apparent importance of spatial envelope properties to both human scene 

perception and the neural representation of scenes, it is important to be able to 

empirically measure such scene statistics.  This thesis focuses on one particularly 

influential model of scene statistics: the GIST descriptor (Oliva & Torralba, 2001; Torralba 

& Oliva, 2003), so named as it attempts to capture the key spatial properties of scenes 

that are extracted during the rapid perception of scene gist.  The GIST descriptor 

Figure 1.3 Illustration of Op de Beeck et al.’s (2008) model proposing how localised 

functional selectivity may arise from widely distributed responses.  A series of 

functional maps exist distributed across the cortical surface.  Each map exhibits a bias 

for a particular stimulus property that is relevant to encoding that stimulus class.  Each 

map on its own may exhibit only a weak bias.  However, the organisation of each map 

is spatially correlated with the other maps; for instance, the peak in selectivity in one 

map for a particular stimulus class spatially coincides with the peak in selectivity in the 

other maps for that same stimulus class.  Combination of the maps (e.g. by 

multiplication) therefore produces a strong and localised peak in selectivity for that 

stimulus class. 
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represents an image in terms of its spectral properties (spatial frequency and orientation) 

and the spatial distribution of these across the extent of the image.  This process is 

illustrated for an example image in Figure 1.4.  GIST descriptors can be calculated for 

many images, and then used to make statistical comparisons between images.  

Importantly, and in validation of the GIST descriptor, the visual properties that are 

measured are the same types of features that have been proposed to effectively describe 

spatial envelope properties (Oliva & Torralba, 2001).  Furthermore, these visual 

properties have been related to both human scene perception (Schyns & Oliva, 1994; 

McCotter et al., 2005), and the neural representation of scenes (Arcaro et al., 2009; 

Rajimehr et al., 2011; Nasr & Tootell, 2012).  Indeed, the GIST descriptor has been shown 

to reliably predict neural responses to visual objects in ventral temporal cortex (Rice et 

al., 2014; Andrews et al., 2015).  The GIST descriptor has also proved practically applicable 

within the field of computer vision; for instance, see Pugeault & Bowden (2011) for a 

successful application to an algorithm for a self-driving car. 

It should be noted that the GIST descriptor is by no means the only statistical 

image descriptor available.  A non-exhaustive list of other popular image descriptors 

includes the HMAX model (Riesenhuber & Poggio, 1999), SIFT descriptor (Lowe, 2004), 

and HOG descriptor (Dalal & Triggs, 2005), whilst other more recent approaches have 

shown success with deep neural-network learning models (Szegedy et al., 2015).  

Meanwhile, other studies have reported advantages of combining multiple image 

descriptors (e.g. Xiao et al., 2010).  However, it is beyond the scope of this thesis to 

provide a full comparison of image descriptors.  Instead, this thesis focuses on the 

application of the GIST descriptor to predicting neural responses to scenes.  It does 

therefore remain possible that an alternative model may prove a better predictor of 

responses than the GIST descriptor.  However, this is not necessarily problematic as it is 

not the goal of this thesis to identify the best image descriptor for predicting responses.  

Rather the aim is simply to test whether the GIST, as an example of a neurologically 

plausible model of scene statistics, is able to predict neural responses.  If it can, then this 

would suggest that scene selective regions of the human brain are sensitive to the spatial 

envelope properties that the GIST captures. 
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1.6 Thesis overview 

This literature review has demonstrated how key spatial properties of scenes can be 

described by the low-level visual statistics of images represented by the spatial envelope 

of the scene.  These spatial envelope properties have been shown to predict both human 

behaviour in scene perception and the neural representations of scenes.  Finally, the GIST 

descriptor provides a statistical method of capturing the spatial envelope properties of 

scenes. 

Figure 1.4.  Illustration of the calculation of a GIST descriptor (Oliva & Torralba, 2001) 

for an example image.  The image is first convolved with a bank of 32 Gabor filters 

spanning 4 spatial frequencies and 8 orientations.  In order to capture the spatial 

distribution of the spectral properties across the image, each of the resulting filtered 

images is then downsampled to a 4x4 grid and the pixel intensities averaged within 

each grid cell.  The GIST descriptor is constructed by reshaping each of these to a 16x1 

vector and concatenating them across the 32 filters, yielding a final 512x1 vector that 

describes the image in terms of the spatial frequencies and orientations present at 

each of the 16 locations across the image. 
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 Nevertheless, there do remain a number of outstanding issues.  It remains unclear 

to what extent neural responses in scene selective regions are governed by higher level 

categorical principles in comparison to lower level visual dimensions.  Furthermore, whilst 

a number of studies have identified biases for low level visual features in scene selective 

regions, these studies have typically employed univariate analyses that simply measure 

the amplitude of response.  Thus, it remains unclear to what extent these features may 

be represented in the distributed patterns of response that are assessed by multivariate 

methods.  Using fMRI in conjunction with multivariate pattern analyses, this thesis 

therefore aims to address the following questions: 

1. Can the low-level visual properties of scenes predict patterns of neural response 

to such images in scene selective cortices? 

2. What are the relative contributions of low-level visual information versus high-

level semantic category information to the neural response? 

3. What are the contributions of specific low-level visual properties (spatial 

frequency, orientation, and retinotopy) to the neural response? 

4. Are there alternatives to the more traditional categorical accounts that might 

more parsimoniously explain the function of scene selective cortices? 

 

The second chapter provides a more detailed overview of the fMRI methods applied 

within this thesis, and in particular those relating to multivariate pattern analyses. 

The third chapter describes two fMRI experiments that test whether the visual 

statistics of scenes as measured by the GIST descriptor can predict the neural response 

patterns to different categories of scene. 

The fourth chapter describes two further fMRI experiments that provide a direct 

manipulation of two key visual properties of scenes (spatial frequency and orientation).  

The effects of these visual properties on the neural response patterns are directly 

compared and contrasted to those of scene category. 

The fifth chapter describes an fMRI experiment that examines how the retinotopic 

distribution of visual features across the scene affects the neural response under 
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conditions where perception of the scene category is impaired.  This is accomplished by 

measuring patterns of neural response to images from different scene categories which 

have been either globally or locally scrambled to disrupt scene perception. 

The sixth chapter describes a final fMRI experiment that aims to address concerns 

about the assumptions of categorical scene structure made by many previous studies.  

Here an entirely data-driven method is used to objectively cluster scenes by their visual 

properties, as measured by the GIST descriptor.  Multivariate pattern analyses in 

conjunction with fMRI are then used to test whether neural responses to these visual 

scene clusters can be discriminated. 

The seventh chapter overviews the key findings of the thesis, and discusses how they 

relate to theories of the neural representation of scenes in the human brain. 
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Chapter 2 – fMRI Methods Review 

 

2.1 The fMRI BOLD signal 

Functional Magnetic Resonance Imaging (fMRI) is a commonly used method for 

measuring neural responses in the brain in vivo.  As neurons increase their firing rate, 

they consume their energy reserves which then need replenishing.  The brain 

accomplishes this by increasing the transfer of oxygen to those cells via the bloodstream, 

causing a local change in the oxygenation of the blood.  Ogawa et al. (1990) proposed 

using MRI to provide a measure of this oxygenation change using a contrast termed the 

Blood Oxygenation Level-Dependent (BOLD).  In this way, vascular changes in the brain as 

measured by fMRI via the BOLD signal can be used to infer the underlying neural activity.  

The BOLD signal is therefore the fundamental measurement of almost all fMRI research.  

A number of statistical techniques have been proposed for analysing such data; here we 

focus on two of the most commonly used groups of methods: univariate and multivariate 

analyses. 

 

2.2 Univariate Analysis 

Traditional fMRI analyses have tended to employ a univariate general linear model (GLM) 

approach (Friston et al., 1995) to analysing the BOLD signal.  A set of regressors are 

defined that model the neural response to different stimulus conditions.  For instance a 

boxcar model, which predicts zero response when the stimulus is absent and a non-zero 

response when the stimulus is present, can be convolved with a hemodynamic response 

function to produce an expected timeseries of response.  This model can then be 

regressed against the genuine fMRI BOLD signal on a voxel-by-voxel basis.  This results in 

a whole-brain statistical map of parameter estimates (regression coefficients) that reflect 

the fit of the model; a voxel that is responsive to the stimulus will be predicted well by 

the model and hence will be assigned a large coefficient value, whilst one that is not 

responsive will be predicted poorly and assigned a smaller coefficient value.  This process 
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is illustrated in Figure 2.1.  This analysis can be performed for a number of experimental 

conditions, and if desired these conditions can be contrasted against one another.  From 

here, the statistical significance at each voxel can be estimated (e.g. as a p-value, or a z-

score) by testing the coefficient values against a baseline.  Such statistical maps can then 

be submitted to further statistical analysis as necessary, such as higher-level analyses for 

combining results across scan sessions and / or subjects. 

 

Although the univariate GLM approach is undoubtedly a powerful statistical 

technique for the analysis of fMRI data, it does nevertheless have limitations.  The 

technique simply estimates the amplitude of neural response on a voxel-by-voxel basis, 

and it is assumed that responses which deviate significantly from zero reflect stimulus 

Figure 2.1.  Example of univariate GLM analysis of fMRI data. A box-car function is 

defined that corresponds to the periods of stimulus presentation.  A hemodynamic-

response function (HRF; in this instance, a single-gamma function) is then convolved 

with the box-car to produce a hemodynamic regressor.  This can then be regressed 

against the fMRI signal for each voxel independently.  This results in a statistical map of 

parameter estimates that indicate the fit of the regressor to the fMRI BOLD signal at 

each voxel. 
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related neural activity.  However, it is not necessarily the case that a sub-threshold or 

near-zero response means that a voxel does not convey information about the stimulus.  

For instance, coherent patterns of neural response may be observed across multiple 

voxels which may include voxels showing both super- and sub-threshold positive and 

negative responses.  Neural patterns such as these may be found to differ reliably 

between stimulus conditions.  In such cases it may even be that the aggregate response 

across voxels in a given brain region is near zero, but crucially this does not mean that this 

region does not contain information about the stimulus.  Standard univariate analyses, 

however, will not be sensitive to information represented in distributed neural patterns.  

It is for this reason that there is now a growing use of multivariate methods within 

neuroimaging research that aim to capture precisely this type of information. 

 

2.3 Multivariate Pattern Analysis (MVPA) 

An alternative to the standard univariate approach is the use of multivariate methods 

that allow one to consider the patterns of response across multiple voxels 

simultaneously.  Such approaches are often grouped under the term of Multi-Voxel or 

Multi-Variate Pattern Analysis (MVPA).  MVPA methods therefore provide a different 

sensitivity to traditional univariate analyses.  The input to a MVPA is simply any measure 

of the patterns of neural response.  It is possible to perform the MVPA on the fMRI 

timeseries, however it is often more common to use the outputs of an initial univariate 

analysis, such as the parameter estimate statistical maps. It should be noted that 

although MVPA techniques are discussed in relation to fMRI here, these methods are 

equally applicable to other neuroimaging methods such as EEG or MEG (e.g. see Carlson 

et al., 2013; Cichy et al., 2014). 

 

2.3.1 Correlation-based methods 

One of the simplest forms of MVPA is the correlation method, which is the method that 

was applied in the original Haxby et al. (2001) study that first proposed the application of 

MVPA to fMRI data.  It is common practice to perform MVPA across a subset of voxels 
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rather than the whole-brain volume, for instance by restricting the analyses to a pre-

defined region of interest (ROI). Firstly, estimates of the patterns of response are 

generated for each stimulus condition.  Typically, these are the parameter estimate 

values generated by a univariate GLM analysis for each voxel in a region.  To determine if 

these patterns of response are reliable, it is necessary to cross-validate the analysis, i.e. 

compare conditions across independent estimates of the neural responses.  To this end, 

multiple estimates of each condition are generated.  For instance, parameter estimates 

could be generated separately for odd and even runs of the stimulus presentation for 

each condition.  Although these patterns could be entered into the MVPA directly, at this 

point they are likely to still contain a high degree of variance that is shared across the 

conditions and may not necessarily reflect the key stimulus dimensions of interest, such 

as generic responses to visual stimulation or attentional effects.  In order to better isolate 

the unique variance to each condition, it is common practice to perform some 

normalisation of the data.  A typical normalisation procedure is to subtract from each 

stimulus condition a per-voxel mean across all the stimulus conditions – the logic being 

that the mean should reflect the shared variance across conditions, so subtracting this 

should reduce the influence of this shared variance whilst leaving the unique variance 

relatively unaffected.  In some cases, this normalisation is taken a step further by also 

dividing by a per-voxel estimate of the standard deviation across conditions such that 

responses are converted to z-scores.  In order to ensure that splits of the cross-validation 

remain independent, normalisation should be performed within each split independently 

(Kriegeskorte et al., 2009). 

 Once the normalised patterns of response have been obtained, one can now 

proceed with the main MVPA.  Pairwise correlations are calculated between the neural 

response patterns for each possible combination of conditions across the splits of the 

data.  This is performed for both within-condition comparisons (e.g. faces-even with 

faces-odd) and between-condition comparisons (e.g. faces-even with houses-odd).  This 

process is illustrated in Figure 2.2a.  If the total number of comparisons is large, it is often 

convenient to represent the results within a correlations matrix (Figure 2.2b).  The 

prediction is that if response patterns can discriminate the stimulus conditions, then the 

within-condition correlations should be higher than the corresponding between-condition 
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correlations.  This result would indicate that patterns of response to a given stimulus 

condition are more similar to other responses from that same condition than to 

responses from other conditions, and from this we can infer that there is some 

information represented in these distributed neural response patterns that allows us to 

discriminate the conditions. 

 

 In Haxby et al.'s (2001) study, participants were presented with images from 8 

visual object categories: faces, houses, cats, bottles, scissors, shoes, chairs, and scrambled 

images.  A univariate GLM approach was used to generate parameter estimates for each 

of the stimulus conditions relative to rest, with patterns estimated for odd and even runs 

of the stimulus presentation independently.  Parameter estimates were normalised by 

Figure 2.2.  Illustration of correlation-based MVPA paradigm.  (a) Patterns are 

estimated for two stimulus conditions (e.g. faces and houses), each across two 

independent splits of the data (e.g. even and odd stimulus runs).  Patterns are 

restricted to a region of interest (ROI), and correlated pairwise both within- and 

between-conditions across the data splits.  Higher within- than between-condition 

correlations indicate patterns can be discriminated.  (b)  For a larger number of 

comparisons, results may be more easily represented in a correlations matrix; within-

condition comparisons are represented on the diagonal elements, between-condition 

comparisons are represented on the off-diagonal elements.  In this example, off-

diagonal elements symmetrically opposite one another across the diagonal (e.g. faces-

even/houses-odd and faces-odd/houses-even) have been averaged to aid visualisation. 
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subtracting a voxel-wise mean across all conditions within each split independently.  

Analyses were restricted to an ROI of ventro-temporal cortex, and responses correlated 

across the splits.  Haxby et al. demonstrated higher within- than between-category 

correlations for all stimulus conditions, indicating that response patterns could be 

discriminated.  Furthermore, it was found that this result held even when the analysis was 

restricted to only those voxels which showed the maximum univariate response to each 

of the stimulus conditions, and also in the reverse case where these voxels were excluded 

from the main analysis.  This demonstrates that reliable information about all the 

stimulus conditions was present in the neural response patterns both within and outside 

of the regions maximally responsive to each of the stimulus conditions.  Importantly, it is 

unlikely that a standard univariate analysis would have been sensitive to this information.  

For instance, simply aggregating response amplitudes across the face selective voxels 

would likely have revealed strong responses to faces, but then just uniformly weak 

responses to each of the other stimulus categories.  By contrast, the multivariate analysis 

was able to reveal the information present within the distributed neural response 

patterns in these regions. 

 

2.3.2 Classification algorithms 

Shortly after Haxby et al.'s (2001) original proposal of correlation-based MVPA, 

alternative strategies were proposed that employed classification algorithms derived 

from the machine-learning literature.  These algorithms are more sophisticated than the 

correlation method and have the potential to provide greater sensitivity.  Even Haxby et 

al.’s data received a re-analysis using a neural-network algorithm (Hanson et al., 2004).  

The initial stages of analysis are similar to those of the correlation method.  Once again, it 

is necessary to cross-validate the analysis in order to test how well the model will 

generalise to new examples.  To this end, estimates of the patterns of response are 

generated for multiple independent splits of the data.  It is also common to normalise the 

data such as by mean subtraction or z-scoring, as per the correlation method.  However, 

the implementation of the pattern analysis itself differs substantially from the correlation 

methods. 
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 Many different classification algorithms are available, with popular examples 

including the k-nearest-neighbour classifier, linear discriminant analysis, and the support 

vector machine (Mur et al., 2009).  However, all of these algorithms work along a similar 

principle.   Each sample in the dataset is represented as a point within a (potentially high-

dimensional) feature space.  The features of this space most commonly correspond to 

voxels in the brain, but can equally well correspond to other dimensions; for instance 

O’Toole et al. (2005) use a feature space based on principal components derived from the 

voxel activity.  Generally speaking the number of samples available in fMRI data is 

relatively small compared to the total number of voxels in the brain.  It is not advisable to 

perform classification in a feature space with many more features than samples, thus it is 

necessary to perform feature selection in order to reduce the number of features initially 

selected.  Common approaches to feature selection include restricting analyses to a pre-

defined ROI, selecting a subsample of the most strongly modulated voxels, using a 

searchlight approach (see below), reducing dimensionality with principal components 

analysis, or any combination of these (Mur et al., 2009).   

The general form of the classification paradigm is illustrated in Figure 2.3.  Here, 

we imagine we have a very small ROI comprising just two voxels; hence samples are 

represented in a 2D feature space.  Samples each belong to one of two classes, for 

instance faces and houses.   The first step is to train the classification algorithm on a 

subset of the data given by the cross-validation paradigm (for instance, a leave-one-run-

out cross-validation would use data from all but one of the stimulus runs).  The 

classification algorithm will attempt to find a decision boundary that optimally separates 

samples between the classes; the precise definition of the “optimal” boundary depends 

on the choice of classifier.  Typically decision boundaries are linear, although some 

algorithms (e.g. some support vector machines) offer the option to use non-linear 

decision boundaries instead.  Non-linear decision boundaries allow the possibility to 

model more complex stimulus relationships.  However, the potential benefits of this can 

also be negated by the added sensitivity leading the algorithm to be more susceptible to 

overfitting, making it poorer at generalising to new examples in the testing-phase of the 

cross-validation (Misaki et al., 2010). 
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Regardless of the choice of classifier or type of decision boundary, once the 

classifier has been trained it can then be used to make predictions about the class 

membership of samples.  If a given sample falls on one side of the decision boundary we 

predict that it is a member of one class, and if it falls on the other side we predict that it 

belongs to the other class.  Testing classification accuracy on the training set is likely to 

lead to inflated estimates of the accuracy due to overfitting effects.  Instead, we will 

typically test performance on an independent subset of the data not previously seen by 

the classifier (for instance, a leave-one-run-out cross-validation would use data from the 

excluded run).  In this way, we can test the ability of the classifier to generalise to new 

examples, which is more useful than simply knowing how well it fits its own specific 

training data.  If the class we predict for a given sample matches its actual class then this 

counts as a correct classification.  If we predict a different class than the true class then 

this is a misclassification.  This entire procedure can then be repeated for the remaining 

folds of the cross-validation (for instance using each stimulus run as the excluded run 

once in a leave-one-run-out cross-validation).  If we are able to successfully discriminate 

the classes from one another based on the neural patterns across our features, we would 

expect overall above chance classification accuracy. 
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In this example, we considered the case where we had just two voxels / features.  

In reality, we would often have many more features than this, in which case our samples 

become represented in a hyper-dimensional space.  However, the underlying principle of 

the classification algorithm remains the same.  We also only considered the case where 

there are two classes.  It is also possible to perform classification with multiple classes, in 

which case most implementations will attempt to break the task down into a series of 

Figure 2.3.  Illustration of classification-based MVPA paradigm.  In this example, 

responses to two classes of stimuli (e.g. faces and houses) are measured across two 

voxels (labelled as features x1 and x2).  Each response is represented as a sample 

within the feature space.  A classification algorithm is trained on a subset of the data 

(e.g. on all but one of the stimulus runs) to place a decision boundary (green line) that 

optimally separates the two classes.  In this example, any samples falling above the 

decision boundary (red shaded region) will be classified as Class A, whilst those falling 

below the decision boundary (blue shaded region) will be classified as Class B.  

Classification accuracy is assessed by testing the classifier on an independent subset of 

the data not included in the training set (e.g. the left out stimulus run).  This process 

may then be repeated for the remaining folds of the cross-validation scheme. 
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two-class classification problems, such as by using a one-versus-all (in which classifiers are 

trained to discriminate each class in turn from the concatenation of all other classes) or a 

one-versus-one approach (in which classifiers are trained to discriminate each pairwise 

combination of classes in turn). 

Although classification algorithms offer the possibility of greater sensitivity than 

correlation methods (Mur et al., 2009), they do also themselves present a number of 

methodological problems.  As previously mentioned, classification algorithms may prove 

unreliable if the number of features greatly exceeds the number of samples.  

Unfortunately, due to the poor temporal resolution of fMRI, data acquisition tends to be 

relatively slow and as a result the number of obtainable samples is often quite small.  

Feature selection can help reduce the number of features, but the number is still likely to 

exceed the number of samples.  Consequently, classification algorithms often require 

many orders of magnitude more data to be collected than for the equivalent correlation 

analyses simply to obtain a sufficient number of samples.  Whereas a correlation analysis 

could potentially be run on a single fMRI-scan run, a classification algorithm is likely to 

require many repeated scan runs.  A further issue relates to the information that is 

recoverable from the algorithm.  Imagine a hypothetical case where a classification 

algorithm is trained to discriminate 3 classes – A, B, and C.   Responses to class A are 

found to be most similar to other responses from class A, but are still fairly similar to 

responses from class B, and not at all similar to responses from class C.  Nevertheless, 

classes A and B are still sufficiently dissimilar that a classifier is able to successfully 

discriminate them.  The classifier only reports what classifications are made, so the 

information that A was still relatively similar to B is lost.  This information will only be 

evident if A and B are sufficiently similar that they become confusable by the classifier, 

i.e. all responses that are confusable must be similar, but not vice versa.  Thus, although 

classification algorithms may offer greater sensitivity at discriminating responses than 

correlation methods, they are also potentially less sensitive at modelling the relationships 

between conditions.  If the primary goal of the analysis is to determine if conditions can 

be discriminated, and if the data are appropriate for classification (e.g. a sufficient 

number of samples can be acquired), then classification algorithms may be the preferable 

option.  On the other hand if the goal is to also model the relationship between 
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conditions, for instance for a representational similarity analysis (see below), or if the 

data are not suitable for classification, then a correlation method may be more 

appropriate. 

 

2.3.3 Representational (Dis)similarity Analysis (RSA / RDA) 

Whilst both correlation and classification methods can be used to determine if response 

patterns can be discriminated, a limitation of such analyses is that it often remains 

unclear what functional dimensions underlie these responses.  An alternative application 

of MVPA that has grown in popularity in recent years is representational similarity / 

dissimilarity analysis (RSA / RDA; Kriegeskorte et al., 2008; Nili et al., 2014), which aims to 

provide an explicit test of the functional dimensions underlying neural responses. 

The general form of the RSA paradigm is illustrated in Figure 2.4.  Two or more 

similarity matrices are constructed, for instance by taking the pairwise correlations 

between each combination of conditions.  Alternatively dissimilarity matrices can be 

constructed, for instance by calculating one minus the correlation, in which case a 

representational dissimilarity analysis (RDA) is conducted.  However, this choice is largely 

arbitrary as the final outcome of the analysis will be the same between RSA and RDA.  

RDA may be more appropriate if one wishes to submit the matrices to further analyses 

that require distance rather than similarity measures, such as hierarchical clustering or 

multi-dimensional scaling (Nili et al., 2014).  Similarity / dissimilarity matrices can be 

constructed from any data available provided they all correspond to the same set of 

conditions; in the example illustrated, one is constructed from neural data via correlation-

based MVPA (see above), and another from a model of the stimulus.  It is also possible to 

use the confusion matrices derived from classification algorithms (e.g. see O’Toole et al., 

2005; Walther et al., 2009), however a more continuous measure such as correlation is 

usually preferable as it is likely to be more sensitive to the relationships between 

conditions. 

Once constructed, the similarity / dissimilarity matrices are then compared to one 

another in turn, for instance by correlating the elements between matrices.  If a high 

degree of similarity is seen between two matrices this indicates that each measure is able 



 

51 
 

to predict the relative similarity between the conditions in the other measure.  From this 

we can infer that similar functional dimensions underlie both measures.  In this way, we 

can explicitly test hypotheses about the dimensions underlying the neural response. 

 

2.3.4 Searchlights 

The multivariate methods discussed thus far have all required some form of pre-defined 

feature selection, such as by restricting analyses to a pre-selected ROI.  However, this 

necessarily constrains the information that we can derive about the spatial location of the 

multivariate information within the brain.  For instance, it may remain unclear whether all 

voxels within a given region carry critical information, or only a few.  Furthermore, we 

cannot determine if significant information is present in other brain regions outside of our 

voxel selection.  An alternative implementation of MVPA that attempts to address these 

issues is the searchlight approach proposed by Kriegeskorte et al. (2006).  In this analysis 

a small, spherical ROI is defined, and the desired MVPA procedure performed within this 

ROI as per normal.  This procedure should return a value, for instance a within-condition 

minus between-condition difference in the case of a correlation-based approach, a 

Figure 2.4.  Illustration of the Representational Similarity Analysis (RSA) paradigm 

(Kriegeskorte et al. 2008).  Two similarity matrices are constructed, for example by 

calculating pairwise correlations between each combination of conditions.  Similarity 

matrices can be constructed from any data available provided they both correspond to 

the same stimulus conditions; in this example, one is determined from neural data via 

MVPA, and the other from a model of the stimuli.  Representational similarity is 

assessed by comparing the similarity of the two matrices, for instance by correlating 

them. High similarity between the matrices indicates that each measure is a good 

predictor of the relative similarity between conditions in the other measure. 
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decoding accuracy from a classification algorithm, or a correlation value from a RSA / 

RDA.  This value is assigned into the central voxel of the sphere, and then the entire 

process is repeated, iterating the sphere around the whole-brain volume till every voxel 

has been used as the central voxel once.  This results in a whole-brain statistical map 

where the value at each voxel reflects the result of the MVPA in a spherical ROI centred 

on that voxel.  In this way, we can see where in the brain the multivariate information is 

present without needing to restrict analyses to a pre-defined set of voxels.  It is also 

possible to perform surface-based searchlights in which circular discs are defined along 

the cortical surface rather than spheres in the volume, which may present some 

advantages over the standard volumetric method (Oosterhof et al., 2011). 

 However, searchlights do themselves present a number of problems.  The 

relatively large number of spheres required to cover a whole-brain volume makes the 

process highly computationally expensive, although a fast implementation using a 

Gaussian Naive Bayes classifier has been proposed (Pereira & Botvinick, 2011) and may 

present some further advantages over other algorithms (Raizada & Lee, 2013).  A further 

issue arises in combining searchlight maps across individuals.  Many studies employ 

simple parametric tests to compare values across subjects at each voxel against chance 

level.  However, these values may not be normally distributed so it is unclear whether 

these tests are appropriate.  An alternative is to determine significance via permutation 

testing, however the already considerable computational cost of the searchlight 

multiplied by the time required to run a large number of permutations at each sphere 

makes this approach largely unfeasible.   A possible solution is to perform a much smaller 

number of permutations at the individual level, but then estimate a null distribution by 

repeatedly bootstrapping these permutations across subjects (Stelzer et al., 2013).  The 

searchlight technique also produces a large problem of multiple comparisons due to the 

many thousands of statistical analyses computed across the whole brain.  Although 

several techniques exist for performing correction for multiple comparisons in univariate 

data (e.g. voxel-wise or cluster-based thresholding), these techniques may not be 

appropriate for use with searchlight data as they often make statistical assumptions 

about the data being analysed.  An alternative proposal is to perform cluster-based 

thresholding via permutation testing (Stelzer et al., 2013). 
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 Further issues arise from the interpretation of searchlight results.  It is frequently 

tempting to interpret the searchlight result at a given voxel as representing the 

information present within that voxel, in the same way as one would interpret a 

univariate statistical map.  However, this is incorrect; in reality the value represents the 

information present within a sphere centred on that voxel.  This distinction is subtle, but 

it can lead to a number of issues in the interpretation (or misinterpretation) of searchlight 

results (Etzel et al., 2013).  Searchlight results are inherently linked to the size of the 

sphere used.  By definition, response patterns that occur over a coarser spatial scale than 

the extent of the sphere cannot be considered by the searchlight.  Larger spheres may 

allow for consideration of coarser scale patterns, and the greater number of voxels 

included in the sphere sample may also improve the signal-to-noise ratio.  However, they 

may also lead to poorer spatial specificity as a cluster of informative voxels may drive high 

performance in any sphere overlapping it, even those that are not centred on the cluster. 

 In summary, searchlights offer a powerful statistical technique for applying MVPA 

to the whole-brain.  However, they also present a number of methodological problems 

that need to be considered, and the results of searchlights must be interpreted with care. 

 

2.3.5 Properties of neural patterns 

The pattern information used by multivariate analyses is often thought to occur at a fine 

spatial scale and to be largely idiosyncratic within individuals (Haxby et al., 2014).  

Consequently, it is common practice to perform MVPA on fMRI data without first applying 

spatial smoothing in order to preserve the fine spatial scale – in contrast to traditional 

univariate analyses where spatial smoothing is common practice.  Furthermore, analyses 

are typically performed within individual subjects independently, and the results then 

aggregated across subjects, to account for idiosyncrasies within the patterns.  However, 

there are counter-examples to these assumptions within the literature. 

 In support of the notion that multivariate methods are sensitive to information 

occurring at a fine spatial scale, studies have shown that visual orientation can be 

decoded from early visual regions such as V1 (Haynes & Rees, 2005; Kamitani & Tong, 

2005).  These results seem counterintuitive as the orientation columns in early visual 
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cortex occur at a very fine spatial scale, far beyond the resolution of the voxels used in 

fMRI.  The biased sampling account proposes that by chance each voxel in turn may 

contain more or fewer columns sensitive to some sets of orientations than others, leading 

to small biases in the orientation responses of each voxel which are detectable by a 

pattern classifier (Haynes, 2015).  This would therefore suggest that pattern information 

occurs at a very fine voxel-by-voxel scale.  However, this conclusion seems to run counter 

to the relatively coarse spatial sampling provided by fMRI.  Indeed, even if no spatial 

smoothing is applied by the experimenter as part of the data analysis, some smoothing is 

nevertheless inherent in the data due to the low spatial specificity of the hemodynamic 

response (at least relative to the scale of neuronal orientation columns) and head motion 

artifacts.  Meanwhile, the decoding of orientation has alternatively been explained in 

terms of a much coarser scale bias for radial orientations (i.e. those pointing towards the 

fovea) across V1 (Freeman et al., 2011).  Furthermore, if pattern information does occur 

at a fine spatial scale, one would expect spatial smoothing to significantly disrupt the 

information available.  However, Op de Beeck (2010) demonstrates that both when 

decoding orientation information from V1 and when decoding object category 

information from lateral-occipital visual cortex, spatial smoothing not only fails to 

produce detrimental effects to decoding performance but in some cases actually benefits 

it.  Thus, although the information used by multivariate analyses is often assumed to 

occur at a fine-scale, there is also counter evidence suggesting that at least some 

information may occur at coarser scales.  Although not commonly practiced, applying 

spatial smoothing to fMRI data prior to multivariate analyses may not be as detrimental 

to performance as is often assumed. 

 A further frequently stated assumption of pattern information is that it is largely 

idiosyncratic to each subject (Haxby et al., 2014), and consequently analyses are typically 

performed within each subject independently.  In particular, if pattern information does 

occur at a fine spatial scale (although see discussion above) then this may be expected to 

show poor spatial alignment across subjects. Although Haxby et al. (2001) suggest that 

the spatial topography of the patterns may be similar across individuals, they do not 

perform their correlation analyses across subjects as they suggest current inter-subject 

co-registration techniques are not sufficient for aligning data at a sufficiently fine scale.   
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Nevertheless, other studies have successfully performed cross-subject pattern analyses 

across a diverse range of contexts including decoding object categories (Shinkareva et al., 

2008, 2011; Haxby et al., 2011), cognitive states (Mourão-Miranda et al., 2005; Poldrack 

et al., 2009), truth telling (Davatzikos et al., 2005), social cues (Clithero et al., 2011), and 

somatosensory information (Kaplan & Meyer, 2012).  Studies comparing within-subject to 

cross-subject classification have typically reported either comparable (Kaplan & Meyer, 

2012) performance, or an advantage for within-subject analyses (Davatzikos et al., 2005; 

Shinkareva et al., 2008, 2011; Clithero et al., 2011; Haxby et al., 2011).  However, 

performance of cross-subject analyses in previous studies might be impeded by the fact 

that spatial smoothing was not applied to the individual subject data; unsmoothed 

patterns may be expected to show poorer alignment across subjects than smoothed 

patterns.  Indeed, Mourão-Miranda et al. (2005) report improved performance of cross-

subject analyses with spatial smoothing.  Alternatively, if standard anatomical alignment 

of data across subjects still proves insufficient, Haxby et al. (2011) propose a “hyper-

alignment” method that aligns subjects based on their functional neural responses rather 

than anatomy, and which may achieve better performance than standard anatomical 

alignment. 

 

2.4 Overview of Thesis Methods 

This thesis presents a number of fMRI experiments using MVPA to test the contribution of 

visual properties to the neural representation of visual scenes.  In all cases, the inputs to 

the pattern analyses are parameter estimate maps for each condition generated by GLM 

univariate analyses.  All experiments make frequent use of representational similarity 

analyses (Kriegeskorte et al., 2008; Nili et al., 2014), and consequently correlation-based 

analyses are employed over classification algorithms as these provide a better measure of 

the relationships between conditions.  Chapter 3 provides a comparison of the effects of 

using smoothed and unsmoothed data, and of performing within-subject and cross-

subject analyses.  Consistent with Op de Beeck (2010), the data demonstrate a beneficial 

rather than detrimental effect of spatial smoothing.  Furthermore, the cross-subject 

analyses are frequently comparable to or outperform the equivalent within-subject 
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analyses, especially in the case where spatial smoothing is first applied to the data.  

Consequently, subsequent experimental chapters make exclusive use of spatially 

smoothed data and cross-subject analyses. 
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Chapter 3 – Patterns of Response to Visual Scenes 

are Linked to the Low-Level Properties of the Image 

 

This chapter is adapted from: Watson, D. M., Hartley, T., & Andrews, T. J. (2014). 

Patterns of response to visual scenes are linked to the low-level properties of the 

image. NeuroImage, 99, 402–410. 1 

 

3.1 Abstract 

Scene-selective regions in the brain play an important role in the way that we navigate 

through our visual environment.  However, the principles that govern the organization of 

these regions are not fully understood.  For example, it is not clear whether patterns of 

response in scene-selective regions are linked to high-level semantic category or to low-

level spatial structure in scenes. To address this issue, we used multivariate pattern 

analysis with fMRI to compare patterns of response to different categories of scenes.  

Although we found distinct patterns of neural response to each category of scene, the 

magnitude of the within-category similarity varied across different scenes. To determine 

whether this variation in the categorical response to scenes could reflect variation in the 

low-level image properties, we measured the similarity of images from each category of 

scene.  Although we found that the low-level properties of images from each category 

were more similar to each other than to other categories of scenes, we also found that 

the magnitude of the within-category similarity varied across different scenes.  Finally, we 

compared variation in the neural response to different categories of scenes with 

corresponding variation in the low-level image properties. We found a strong positive 

correlation between the similarity in the patterns of neural response to different scenes 

and the similarity in the image properties.  Together, these results suggest that 

                                                      
1
 The author, David Watson, designed the experiment, analysed the results, and wrote the article under the 

supervision of Dr. Tom Hartley and Prof. Timothy Andrews. 
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categorical patterns of response to scenes are linked to the low-level properties of the 

images. 

 

3.2 Introduction 

The ability to perceive and recognize different visual scenes is essential for spatial 

navigation in the world.  Although real-world scenes can be incredibly complex and 

heterogeneous, human observers are able to reliably recognize and categorize images of 

scenes even when the images are shown briefly (Potter, 1975; Joubert et al., 2007; 

Greene & Oliva, 2009a). These studies have been taken to suggest that the initial 

perception of natural images is based on the global, visual properties - the gist - of the 

scene (Oliva & Torralba, 2001; Greene & Oliva, 2009a). 

 Neuroimaging studies have found a number of regions of the human brain that 

respond selectively to visual scenes. Damage to these regions often leads to impairments 

that are specific to scene perception and spatial navigation (Aguirre & D’Esposito, 1999; 

Mendez & Cherrier, 2003). The parahippocampal place area (PPA) is a region of the 

posterior parahippocampal gyrus that displays preferential activity to images of scenes 

over and above images of objects and faces (Aguirre & D’Esposito, 1997; Epstein & 

Kanwisher, 1998).  Other place selective regions include the Retrosplenial Complex (RSC) 

located immediately superior to the PPA and the Transverse Occipital Sulcus (TOS) or 

Occipital Place Area (OPA) on the lateral surface of the occipital lobe (Epstein, 2008; Dilks 

et al., 2013). 

 The spatial layout of different categories of scenes can vary quite considerably 

(Torralba & Oliva, 2003).  Although neuroimaging studies using univariate analyses have 

reported comparable levels of response to scenes as diverse as natural landscapes, 

cityscapes and indoor scenes in scene-selective regions (Aguirre & D’Esposito, 1997; 

Epstein & Kanwisher, 1998), more recent studies using multivariate analyses have found 

distinct patterns of response in these regions to different categories of scene (Walther et 

al., 2009, 2011).  Interestingly, these patterns of neural response have also been shown to 

correlate with patterns of behavioural response, but not with the low-level image 

properties of the images (Walther et al., 2009).  This suggests that there is a dissociation 
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between the perceptual categorization of scenes and their underlying image properties.  

However, this conclusion has been challenged by other studies that have suggested that 

the patterns of response in scene-selective regions are better explained by the spatial 

layout of the scene rather than by semantic category (Kravitz et al., 2011; Park et al., 

2011). Although these studies are not explicit about how the image properties of the 

scene are linked to the patterns of neural response, work in computer vision indicates 

that semantically-distinct scene categories can be identified on the basis of their 

characteristic low-level image statistics.  For example, the GIST descriptor can be used to 

accurately classify different scene categories and derive spatial properties such as 

openness (Torralba & Oliva, 2003). 

 Our aim was to determine whether categorical patterns of brain activity within 

scene-selective regions are linked to the low-level properties of the images from each 

category of scene. To address this issue, we measured the pattern of response to 

different categories of scenes using fMRI.  Next, we asked how similar the low-level 

properties of images from each category were to each other.  Finally, we asked whether 

differences in the categorical response to different visual scenes might be due to variation 

in low-level image properties. Our prediction was that, if low-level visual properties are 

linked to categorical patterns of response in these regions, then scene categories with 

similar image statistics should elicit correspondingly similar patterns of brain activity. 

  

3.3 Methods 

3.3.1 Participants 

20 participants took part in Experiment 1 (9 males, mean age: 24.5) and 20 participants 

took part in Experiment 2 (9 males, mean age: 25.2).  All participants were neurologically 

healthy, right-handed, and had normal or corrected-to-normal vision.  Written consent 

was obtained for all participants and the study was approved by the York Neuroimaging 

Centre Ethics Committee.   
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3.3.2 Stimuli 

All images were taken from the LabelMe scene database 

(http://cvcl.mit.edu/database.htm; Oliva & Torralba, 2001) and presented in greyscale at 

a resolution of 256 x 256 pixels.  All further image processing was performed in MATLAB 

v7.10 (http://www.mathworks.co.uk/).   Fourier-scrambled images were created by 

randomising the phase of each 2-dimensional frequency in the original image while 

keeping the power of the components constant.  For each experiment, the luminance 

histogram of images across all conditions was equated using the SHINE toolbox 

(Willenbockel et al., 2010).    

 

3.3.3 Experimental Design 

In Experiment 1 and Experiment 2, participants viewed images from 5 stimulus 

conditions.  Figure 3.1 shows examples of images taken from the stimulus conditions used 

in both experiments.  The stimulus conditions in Experiment 1 included: 1) cityscapes, 2) 

indoor scenes, 3) natural landscapes, 4) mixed (interleaved images from conditions 1-3) 

and 5) scrambled (Fourier scrambled versions of the mixed condition).  The stimulus 

conditions in Experiment 2 included: 1) coast, 2) forest, 3) mountains, 4) mixed 

(interleaved images from conditions 1-3) and 5) scrambled (Fourier scrambled versions of 

the mixed condition). In each experiment, images from each condition were presented in 

a block design with 9 images in each block.  Each image was presented for 850ms 

followed by a 150ms black screen.  Each stimulus block was separated by a 9s period in 

which a fixation cross was superimposed on a grey screen that was equal in mean 

luminance to the scene images.  Each condition was repeated 8 times in a 

counterbalanced block design, giving a total of 40 blocks. To maintain attention 

throughout the scan session, participants performed a one-back task in which one image 

from each block was repeated.  Stimuli were presented using PsychoPy (Peirce, 2007, 

2009). 

http://cvcl.mit.edu/database.htm
http://www.mathworks.co.uk/
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3.3.4 Imaging Parameters 

All scanning was conducted at the York Neuroimaging Centre (YNiC) using a GE 3 Tesla 

HDx Excite MRI scanner.  A Magnex head-dedicated gradient insert coil was used in 

conjunction with a birdcage, radiofrequency coil tuned to 127.7 MHz.  Data were 

collected from 240 volumes each comprising 38 contigual axial slices via a gradient-echo 

EPI sequence (TR = 3 s, TE = 32 ms, FOV = 28.8 x 28.8 cm, matrix size = 128 x 128, voxel 

dimensions = 2.25 x 2.25 mm, slice thickness = 3 mm, flip angle = 90°).  Visual stimuli were 

back-projected onto a custom in-bore acrylic screen at a distance of approximately 57 cm 

from the participant with images subtending approximately 9.5° of visual angle. 

 

3.3.5 fMRI Analysis 

Univariate analysis of the fMRI data was performed with FEAT v 5.98 

(http://www.fmrib.ox.ac.uk/fsl). All analyses were performed separately for each 

experiment in the manner described below.  In all scans the initial 9 s of data were 

Figure 3.1. Examples of images from each experimental condition in (a) Experiment 1 

and (b) Experiment 2.  Category average contour plots of Fourier power spectra within 

4x4 windows are shown for (c) Experiment 1 and (d) Experiment 2. 

http://www.fmrib.ox.ac.uk/fsl
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removed to reduce the effects of magnetic stimulation.  Motion correction (MCFLIRT, FSL) 

was applied followed by temporal high-pass filtering (Gaussian-weighted least-squares 

straight line fitting, sigma = 50s).  Spatial smoothing (Gaussian) was applied at 6 mm 

(FWHM).  Individual participant data were entered into a higher-level group analysis using 

a mixed-effects design (FLAME, http://www.fmrib.ox.ac.uk/fsl).  Functional data were 

first registered to a high-resolution T1-anatomical image and then onto the standard MNI 

brain (ICBM152).  A scene-selective region of interest was defined by the contrast of 

mixed>scrambled.  The resulting group statistical maps were thresholded at Z>2.3.  The 

thresholded statistical maps were then combined across experiments to generate a single 

scene-selective region of interest (ROI) used for subsequent MVPA analyses across both 

experiments (Figure A.1).  We also generated a more restrictive ROI constrained to the 

scene-selective regions (parahippocampal place area (PPA), retrosplenial cortex (RSC) and 

the transverse occipital sulcus (TOS) or occipital place area (OPA)) that have been 

reported in previous fMRI studies (Epstein & Kanwisher, 1998; Maguire, 2001; Grill-

Spector, 2003). This ROI was defined as follows; firstly, group mixed>scrambled statistical 

maps were averaged across the experiments.  Next, seed points were defined at the peak 

voxels within this average statistical map for each region (PPA, RSC, TOS / OPA) in each 

hemisphere.    The peak voxels of the ROIs had similar coordinates to those found in 

previous studies (Table A.1).  For a given seed, a flood fill algorithm was used to identify a 

cluster of spatially contiguous voxels around that seed which exceeded a given threshold. 

This threshold was in turn iteratively adjusted till a cluster size of 500 voxels was 

achieved.  This process was then repeated for each seed. Clusters for each region were 

combined across hemispheres to yield 3 ROIs each comprising 1000 voxels.  Additionally, 

a single ROI combining all clusters across both hemispheres was defined. MNI co-

ordinates of the seeds and corresponding thresholds are given in Table 3.1.  All further 

analyses were restricted to these regions of interest. 

 

 

 

http://www.fmrib.ox.ac.uk/fsl
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Table 3.1.  MNI mm co-ordinates and thresholds of standard place-selective (PPA, RSC, 

TOS / OPA) clusters. 

Region Hemisphere x y Z Threshold (Z) 

PPA 
L -26 -48 -14 4.23 

R 30 -42 -16 4.24 

RSC 
L -16 -60 4 3.58 

R 18 -56 6 3.77 

TOS / OPA 
L -42 -84 20 3.52 

R 32 -88 12 3.28 

 

Parameter estimates from the univariate analysis were normalised by subtracting 

the response to the mixed condition.  Pattern analyses were then performed using the 

PyMVPA toolbox http://www.pymvpa.org/; Hanke et al. (2009).  Figure 3.2 illustrates the 

method for determining the reliability of these neural patterns within and across subjects.  

To determine the reliability of the data within individual participants, the parameter 

estimates for each scene condition were correlated across odd (1, 3, 5, 7) and even (2, 4, 

6, 8) blocks across all voxels in the scene-selective region (Haxby et al., 2001).  The 

individual participant (IP) analysis was complemented by a group analysis, to determine 

the reliability of the pattern across participants.  We used a leave-one-participant-out 

(LOPO) method (Shinkareva et al., 2008; Poldrack et al., 2009) in which the parameter 

estimates were determined using a group analysis of all participants except one.  This 

generated parameter estimates for each scene condition in each voxel across the scene-

selective region. This LOPO process was repeated such that every participant was left out 

of a group analysis once.  For each LOPO iteration, the normalized patterns of response to 

each stimulus condition were correlated between the group and the participant that was 

left-out.  This allowed us to determine whether there are reliable patterns of response 

that are consistent across individual participants.  A Fisher’s z-transformation was applied 

to the within-category and between-category correlations prior to further statistical 

analyses.  For each category, the within-category and the average of the between-

category correlations were calculated.  These were entered into 3x2 repeated ANOVAs 

http://www.pymvpa.org/
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with the scene category (Experiment 1: city, indoor, natural; Experiment 2: coast, forest, 

mountain) and comparison (within, between) as the main factors.  If neural response 

patterns to a given category can be distinguished from those to other categories, a 

significant main effect of comparison showing greater within- than between-category 

correlations would be expected. In order to obtain a measure of the decoding accuracy of 

our MVPA analyses, parameter estimates from the univariate analysis were also 

submitted to a k-nearest neighbour (kNN) classifier (k=1) using correlation as the distance 

measure. 

 

In addition to the ROI analyses listed above we also performed whole-brain 

searchlight analyses (Kriegeskorte et al., 2006).  A spherical ROI of radius 6mm was 

Figure 3.2. Schematic diagram of pattern analysis procedures.  (a) Individual-

participant (IP) analyses correlated neural patterns across odd and even runs of the 

stimulus presentation. (b) Group analyses compared individual patterns of response 

with the group pattern of response derived from all participants except that individual 

(LOPO).  In both analyses this process is then repeated across all participants / LOPO 

iterations for all conditions. 



 

65 
 

defined, and MVPA performed as described above.  The average within- minus between-

category correlation difference across categories was then assigned to the central voxel 

of the sphere, and the process repeated iterating the sphere over the whole-brain 

volume.  A higher-level analysis using a mixed-effects design (FLAME) was used to 

determine whether the value at each voxel differed significantly from zero across 

individuals / LOPO-iterations.  The resulting group statistical maps were thresholded at 

Z>2.3 with a cluster-correction of p<.05 applied.  

 

3.3.6 Image Properties 

Finally, we asked whether the patterns of neural response in Experiment 1 and 2 could be 

explained by the image statistics of the visual scenes.  The image statistics of the scene 

images were computed using the GIST descriptor 

(http://people.csail.mit.edu/torralba/code/spatialenvelope/; Oliva and Torralba, 2001).  

First, each image is passed through a series of Gabor filters across 8 orientation and 4 

spatial frequencies.  This generates 32 filtered images.  Next, each image is divided into a 

4x4 grid giving 16 windows.  The mean intensity is measured in each window.  This 

generates a vector of 512 (32x16) values – the GIST descriptor – which represents the 

image in terms of the spatial frequencies and orientations present at different positions 

across the image.  A schematic illustration of the calculation is given in Figure 3.3.  In 

order to determine the similarity between individual scenes and the average of each 

scene category, GIST descriptors were correlated between each image and the average 

descriptor derived for each scene condition.  This cross-validation procedure was used to 

determine how similar each image was to the average of its own category and to the 

other categories.  Similarity with the neural response was determined by correlating the 

average GIST correlations matrix with the average MVPA correlations matrix.  In order to 

assess the significance of this relationship, a simple regression analysis was performed 

using the average GIST correlations matrix as the regressor, and the corresponding MVPA 

correlation matrices concatenated across individuals / LOPO iterations as the outcomes.  

If the GIST correlations matrix is able to explain a significant amount of the variance in the 

corresponding MVPA correlation matrices, the model regression coefficient (Beta) can be 

expected to be significantly greater than zero.  All regressor and outcome variables were 

http://people.csail.mit.edu/torralba/code/spatialenvelope/
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Z-scored prior to the regression analysis, such that all regression coefficients are given in 

standardised units.  The image statistics of the scene images were also computed using 

pixelwise correlation of luminance values (cf Walther et. al, 2009).  This provided us with 

a more basic image-based measure with which to compare with GIST descriptor. 

 

 

 

 

 

 

Figure 3.3. Schematic illustration of the calculation of a GIST descriptor for an example 

image.  A series of Gabor filters across 8 orientations and 4 spatial frequencies are 

applied to the image.  Each of the resulting 32 filtered images is then windowed by a 

4x4 grid and the pixel intensities within each grid cell averaged together.  Each grid cell 

thus represents the degree to which that window of the image is preserved by a Gabor 

filter at a given orientation and spatial frequency.  The final GIST descriptor is a vector 

of 512 values yielded by concatenating these 16 cells across the 32 filtered images. 
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3.4 Results 

3.4.1 Experiment 1 

In the first experiment, we measured the patterns of response to different categories of 

visual scenes: city, indoor and natural. Figure 3.4 shows the normalized group response to 

city, indoor, and natural categories across the scene-selective region.  Responses above 

the mean are shown in red and responses below the mean are shown in blue.  Each 

category of scene had a distinct pattern of response, which was similar in appearance 

across the two cerebral hemispheres.  Similar patterns were evident in individual 

participants (Figure A.2). 

 

Correlation based MVPA methods (Haxby et al., 2001) were used to measure the 

reliability of the neural response to these different categories of scene within individual 

Figure 3.4. Experiment 1: Group patterns of response to city, indoor, and natural 

conditions on lateral (leftmost panels) and ventro-medial surfaces (rightmost panels). 

Patterns are restricted to regions defined by the response of mixed scenes > scrambled 

scenes.  Red and blue colours indicate normalized values above and below the mean 

respectively.   
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participants (IP).  Figure 3.5a shows a matrix of the correlations for the within- and 

between-category correlations. A 3 x 2 repeated measures ANOVA with Scene (city, 

indoor, natural) and Comparison (within, between) as the main factors showed a 

significant main effect of Comparison (F(1,19)=11.6, p=.003), showing that within-

category correlations were higher than between-category correlations.  However, there 

was no significant interaction between Scene * Comparison (F(2,38)=1.7, p=.196). A kNN 

classifier revealed that the decoding accuracy across categories was 46.7%, p=.008 

(chance = 33%).  A similar classification was evident when the ROI was restricted to all the 

standard scene-selective regions (combined PPA+RSC+TOS: 58.3%, p<.001).  Figure A.3a 

shows the corresponding correlations matrix for this region.  Splitting this ROI into its 

constituent regions revealed accuracies significantly above chance in PPA and TOS, but 

not RSC (PPA: 64.1%, p<.001; RSC: 42.5%, p=.09; TOS: 53.3%, p=.006).   

 

 

Figure 3.5. Experiment 1: Relationship between fMRI response and low-level image 

properties.  Within- and between- category correlations for city, indoor, and natural 

conditions as determined by the individual-participant (a) and LOPO (b) MVPA 

analyses, and by the GIST image descriptor (c).  Scatter-plots (d-e) showing strong 

positive correlations of the correlation matrices in (a) and (b) with (c) respectively. 
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We then determined the extent to which these patterns were consistent across 

participants using the LOPO method (see Methods). Figure 3.5b shows the correlation 

matrix using the LOPO method. There was a significant main effect of Comparison (F(1,19) 

= 90.8, p<.001), which was due to higher within-category compared to between-category 

correlations.  There was also a significant Scene * Comparison interaction (F(2,38)=3.9, 

p=.028). This interaction was due to larger differences in within- versus between-category 

comparisons for the indoor and natural conditions compared to the city condition (city: 

p=.004, indoor: p<.001, natural: p<.001).  A kNN classifier revealed a decoding accuracy 

across categories of 72.5%, p<.001 (chance = 33%). A similar classification was evident 

when the ROI was restricted to the standard scene-selective regions (combined 

PPA+RSC+TOS: 59.2%, p<.001); Figure A.3b shows the corresponding correlations matrix 

for this region.  Splitting this ROI into its constituent regions revealed a similar pattern of 

results (PPA: 59.1%, p<.001; RSC: 50.8%, p=.003; TOS: 54.1%, p=.002). 

To address the spatial scale of the patterns we repeated the LOPO and IP analyses 

with no spatial smoothing.  Consistent with a coarser scale representation, we found a 

similar pattern of results (Figure A.4).  We then repeated the LOPO and IP analyses using a 

whole-brain searchlight paradigm.  Consistent with the previous analysis, we found that 

the majority of significant spheres clustered around the scene selective cortices defined 

by the ROI (Figure A.5).  

Next, we used the GIST descriptor to measure the statistics of each image used in 

the fMRI experiment.   Figure 3.5c shows the within- and between-category correlations 

in image properties for different categories of visual scenes.  We found higher within-

category than between-category correlations (city: p<.001, indoor: p<.001, natural: 

p<.001). To determine whether there was a relationship between image properties of the 

stimuli and patterns of brain activity, the GIST correlations for each combination of scene 

were then correlated with the corresponding neural correlations for both the IP and 

LOPO.  Figure 3.5d-e show the relationship between the similarity in image properties and 

the similarity in the pattern of response across different scenes.  Strong positive 

correlations were evident for both the IP (r=.86) and LOPO analyses (r=.91).  The 

significance of this relationship across participants or LOPO iterations was assessed using 

a simple regression analysis.  The image properties significantly predicted the neural 
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response in the IP (β=.28, p=.001) and LOPO analyses (β=.57, p<.001).  A similar pattern of 

results was evident when the ROI was restricted to the standard scene-selective regions 

(combined PPA+RSC+TOS) for both the IP (r=.78, β=.32, p<.001) and LOPO analyses (r=.58, 

β=.33, p<.001); Figure A.3c-d.  Splitting this ROI into its constituent regions produced a 

similar pattern of results for the IP analyses (PPA: r=.76, β=.46, p<.001; RSC: r=.75, β=.21, 

p=.022; TOS: r=.73, β=.21, p=.024) and LOPO analyses (PPA: r=.64, β=.42, p<.001; RSC: 

r=.55, β=.17, p=.065; TOS: r=.78, β=.26, p=.004).  

We next repeated our analysis using pixel correlations as a measure of image 

properties. Pixel correlations did not significantly predict the neural response for the IP 

analysis (r=.12, β=.04, p=.653).  However, a significant relationship was found for the 

LOPO analysis (r=.55, β=.34, p<.001). The pixel correlations were also poor predictors of 

the neural responses in the standard scene-selective regions for the IP analyses 

(combined PPA+RSC+TOS: r=.27, β=.11, p=.221; PPA: r=.01, β=.003, p=.973; RSC: r=.36, 

β=.10,  p=.281; TOS: r=.31, β=.09, p=.339) and LOPO analyses (combined PPA+RSC+TOS: 

r=.17, β=.10, p=.298; PPA: r=.34, β=.12, p=.120; RSC: r=.24, β=.22, p=.017; TOS: r=.25, 

β=.08, p=.361).  Thus, the pixel correlations measure was outperformed by the GIST 

descriptor. 

 

3.4.2 Experiment 2 

In the second experiment, we compared the patterns of responses to different types of 

natural landscapes: coasts, forests and mountains. Figure 3.6 shows the normalized group 

responses to coast, forest, and mountain scenes within scene-selective regions.  Again, 

each category of scene had a distinct pattern of response, which was similar in 

appearance across the two cerebral hemispheres.  Similar patterns of response can be 

found in the individual participants (Figure A.6).  The reliability of these patterns of 

response was measured using the LOPO and IP methods.  A 3 x 2 repeated measures 

ANOVA with Scene (coast, forest, mountain) and Comparison (within, between) as the 

main factors was used to test statistical significance. 
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First, we performed the pattern analyses for individual participants (IP).  The 

correlation between different scene categories is shown in Figure 3.7a. There was a 

significant main effect of Comparison (F(1,19)=33.30, p<.001), revealing significantly 

higher within-category compared to between-category correlations.  However, there was 

not a significant Scene * Comparison interaction (F(2,38)=2.70, p=.079). A kNN classifier 

obtained mean decoding accuracy across all scene categories of 53.3%, p=.001 

(chance=33%).  A similar classification was evident when the ROI was restricted to the 

standard scene-selective regions (combined PPA+RSC+TOS: 55.8%, p<.001).  Figure A.7a 

shows the corresponding correlations matrix for this region.  Splitting this ROI into its 

constituent regions revealed accuracies significantly above chance in PPA and TOS, but 

not RSC (PPA: 56.7%, p<.001; RSC: 37.5%, p=.362; TOS: 52.5%, p=.002). 

 

Figure 3.6. Experiment 2: Group patterns of response to coast, forest, and mountain 

conditions on lateral (leftmost panels) and ventro-medial surfaces (rightmost panels). 

Patterns are restricted to regions defined by the response of mixed scenes > scrambled 

scenes.  Red and blue colours indicate normalized values above and below the mean 

respectively.   
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To determine whether the pattern of response was consistent across participants, 

we repeated the analysis using the LOPO method (Figure 3.7b). There was a significant 

main effect of Comparison (F(1,19)=114.40, p<.001) and a significant Scene * Comparison 

interaction (F(2,38)=18.18, p<.001).  This interaction was due to larger within- versus 

between-category comparisons for the coast and mountain conditions compared to the 

forest condition (coast: p<.001, forest: p=.009, mountain: p<.001).  A kNN classifier 

obtained mean decoding accuracy across all scene categories of 67.5%, p<.001 

(chance=33%).  A similar classification was evident when the ROI was restricted to the 

standard scene-selective regions (combined PPA+RSC+TOS: 50.8%, p<.001).  Figure 3.7b 

shows the corresponding correlations matrix for this region.  Splitting this ROI into its 

constituent regions revealed a similar pattern of results (PPA: 49.2%, p=.002; RSC: 50.0%, 

p=.002; TOS: 49.2%, p=.002).  

To address the spatial scale of the patterns we repeated the LOPO and IP analyses 

with no spatial smoothing.  Consistent with a coarser scale representation, we found a 

Figure 3.7. Experiment 2: Relationship between fMRI response and low-level image 

properties. Within- and between- category correlations for coast, forest, and mountain 

conditions as determined by the individual-participant (a) and LOPO (b) MVPA 

analyses, and by the GIST image descriptor (c).  Scatter-plots (d-e) showing strong 

positive correlations of the correlation matrices in (a) and (b) with (c) respectively. 



 

73 
 

similar pattern of results (Figure A.8).  To determine the extent to which our findings 

generalise to regions outside the ROI, the LOPO and IP analyses were repeated using a 

whole-brain searchlight paradigm.  Significant spheres fell within the scene-selective ROI, 

particularly along the lateral regions, that included the TOS, and along medial regions that 

included the PPA and RSC.  Figure A.9 shows the resulting searchlight group-average 

statistical maps.   

Next, we used the GIST description to measure the statistics of each image used in 

the fMRI experiment.   Figure 3.7c shows the within- and between-category correlations 

in image properties for different categories of visual scenes.  We found higher within-

category than between-category correlations (coast: p<.001, forest: p<.001, mountain: 

p<.001).  To determine whether there was a relationship between image properties of the 

stimuli and patterns of brain activity, the GIST correlations for each combination of scene 

were then correlated with the corresponding neural correlations for both the IP and LOPO 

analyses.  Figure 3.7d-e show the relationship between the similarity in image properties 

and the similarity in the pattern of response across different scenes for the IP and LOPO 

analyses.  Positive correlations were evident for both the IP (r=.77) and LOPO analyses 

(r=.53).  The significance of this relationship across participants / LOPO iterations was 

assessed using a simple regression analysis.  The image properties significantly predicted 

the neural response in the IP (β=.27, p=.003) and LOPO analyses (β=.36, p<.001).  A similar 

pattern of results was evident when the ROI was restricted to the standard scene-

selective regions (combined PPA+RSC+TOS) for both the IP (r=.85, β=.27, p=.003) and 

LOPO analyses (r=.84, β=.37, p<.001); Figure A.7c-d.  When the scene-selective ROI was 

split into its constituent regions, for the IP analysis the relationship between image 

properties and fMRI response was significant for the PPA and TOS, but not for the RSC 

(PPA: r=.70, β=.26, p=.004; RSC: r=.49, β=.08, p=.394; TOS: r=.91, β=.32, p<.001).  The 

LOPO analysis showed a significant relationship for the TOS and RSC, but not in the PPA 

(PPA: r=.32, β=.13, p=.172; RSC: r=.56, β=.23, p=.012; TOS: r=.90, β=.24, p=.008). 

We next repeated our analysis using pixel correlations as a measure of image 

properties.   The pixel correlations significantly predicted the neural response for the IP 

(r=.70, β=.24, p=.008) but not the LOPO analyses (r=.23, β=.16, p=.084). When the ROI 

was restricted to the standard scene-selective regions, a more variable pattern of results 
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was observed: IP analyses (combined PPA+RSC+TOS: r=.72,  β=.22, p=.014; PPA: r=.59, 

β=.22, p=.014; RSC: r=.43, β=.07, p=.450; TOS: r=.76, β=.27, p=.003) and LOPO analyses 

(combined PPA+RSC+TOS: r=.69, β=.31, p=.001; PPA: r=.09, β= .04, p=.672; RSC: r=.38, 

β=.16, p=.088; TOS: r=.83, β=.22, p=.014).  Although pixel correlations accounted for 

significant variance in the similarity of neural responses in some of the ROIs and analyses, 

performance was typically inferior to that of the GIST descriptor.  

 

3.5 Discussion 

The aim of this study was to understand the principles that underlie the organization of 

scene-selective regions of the human brain.  We found that the patterns of response to 

images from the same scene category were more similar than the patterns of response 

from different categories of scene.  However, there were differences in the magnitude of 

both the within- and between-category correlations.  Next, we investigated the extent to 

which this variation in the categorical pattern of response to different scenes could be 

explained by systematic differences in image properties.  We found a strong, linear 

relationship between the pattern of neural response in scene-selective regions and the 

image statistics of the scenes. 

Our results show that the within-category correlations in fMRI responses to scenes 

were higher than the between-category correlations. These results are consistent with 

previous neuroimaging studies that have used pattern classification techniques to show 

distinct patterns of response to different categories of scene (Walther et al., 2009, 2011).   

However, our results also show that there was marked variation in the capacity of MVPA 

to distinguish different categories of real-world scenes.  In Experiment 1, although we 

found distinct patterns of neural response to different categories of scenes, the patterns 

of response to natural landscapes were more distinct than to cityscapes or indoor scenes.  

In Experiment 2, we asked whether the patterns of response in scene-selective regions 

could discriminate between more subtle differences in scene type using different types of 

natural landscapes (coasts, forests, mountains).  The results again showed that within-

category responses were higher than between-category responses, but that there were 

also differences in the patterns of response to different types of natural scenes.  For 
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example, coastal scenes could be accurately distinguished from other scene categories on 

the basis of the pattern of brain activity they evoked, but the pattern of response to 

forests was often confused with the responses to mountain scenes. 

The variability in the ability of the pattern of response to discriminate different 

scenes suggests that factors other than category membership may contribute to the 

organization of scene-selective regions.  Other studies have found that classification of 

fMRI responses is impaired when poor exemplars of a scene are used (Torralbo et al., 

2013).  This suggests that the image properties may also be important.  This conclusion is 

supported by other MVPA studies that have shown that variation in the pattern of 

response in scene-selective regions is not reflected by categorical differences in scenes, 

but rather by the spatial layout of the scene (Kravitz et al., 2011; Park et al., 2011).  

However, these studies do not provide a statistical account of how the spatial layout of 

the scene is linked to the patterns of response. 

 To directly address this issue, we determined the low-level properties of the 

images used in our experiment using the GIST descriptor (Oliva & Torralba, 2001).  This 

determines the orientation energy at different spatial frequencies and spatial positions in 

the image and generates a list of values for each image that could be used to determine 

the similarity of images within and across different categories of scenes.  The results 

showed that the properties of individual images of a scene were more similar to the 

average of images from the same category than they were to the average of images from 

different categories.  However, like the neural patterns of response, there were also 

differences in the consistency or homogeneity of the image properties within different 

categories of scenes. 

 The main finding from this study was that the similarity of patterns of response to 

different categories of scenes showed a strong positive correlation with the similarity of 

their low-level image statistics.  This relationship between the neural response and image 

properties was found in both experiments with two different methods of pattern analysis 

(IP, LOPO).  The correlation is based not only on the variation within each category of 

scene, but also reflects systematic variation in the between-category confusions. Our 

findings contrast with those of Walther et al., (2009) who found no significant correlation 

between neural responses and image similarity.  However, their analysis involved a 
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different measure of image similarity based on correlating pixel values across images.   

Indeed, we likewise found that pixel correlations did not reliably predict the similarity of 

neural responses.  The difference in results may reflect the fact that the GIST descriptor 

used in our main analysis more accurately reflects statistics encoded by the human visual 

system and was expressly devised to capture the critical spatial variables used to 

distinguish scene categories (Oliva & Torralba, 2001).   

Whether we consider the ventral stream as a whole or whether we restrict our 

analysis to the standard scene-selective regions, the current findings suggest that the 

pattern of response to different categories of scenes is linked to the low-level properties 

of the image.  This conclusion is consistent with other work showing that low-level image 

biases may be encoded in scene-selective regions. For example, spatial frequency 

(Rajimehr et al., 2011) and orientation (Nasr & Tootell, 2012)  biases, along with visual 

field representations (Arcaro et al., 2009) have been reported in these regions. 

Our results show that the neural patterns were not specific to individual 

participants; rather they reflect a more consistent functional organization. Using a 

modified cross-validation analysis (Haxby et al., 2001) we compared the pattern of 

response in one participant with the pattern from a group analysis in which that 

participant was left out.  This leave-one-participant-out (LOPO) approach indicates that 

patterns of response to different visual scene categories are consistent across individuals 

(see also Shinkareva et al., 2008; Poldrack et al., 2009; Haxby et al., 2011). We found that 

the LOPO method often outperformed equivalent individual-participant (IP) analyses. 

These observations are significant in that they suggest that our findings reflect the 

operation of consistent, large-scale organizing principles, rather than an arbitrarily 

distributed representation in each individual. 

 In conclusion, our results showed that the pattern of response in scene-selective 

regions of the brain can be used to discriminate different categories of scene.  However, 

there was systematic variation in the within- and between category similarity of neural 

responses across different scenes.  We found that low-level image properties could 

explain these variations in response to visual scenes in scene-selective regions of the 

human brain. 
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Chapter 4 – Patterns of Neural Response in Scene-

Selective Regions of the Human Brain are Affected 

by Low-Level Manipulations of Spatial Frequency 

 

This chapter is adapted from: Watson, D. M., Hymers, M., Hartley, T., & Andrews, T. J. 

(2016). Patterns of neural response in scene-selective regions of the human brain are 

affected by low-level manipulations of spatial frequency. Neuroimage, 124, 107–117. 2 

 

4.1 Abstract 

Neuroimaging studies have found distinct patterns of response to different categories of 

scenes. However, the relative importance of low-level image properties in generating 

these response patterns is not fully understood.  To address this issue, we directly 

manipulated the low level properties of scenes in a way that preserved the ability to 

perceive the category.  We then measured the effect of these manipulations on category-

selective patterns of fMRI response in the PPA, RSC, and OPA.  In Experiment 1, a 

horizontal-pass or vertical-pass orientation filter was applied to images of indoor and 

natural scenes.  The image filter did not have a large effect on the patterns of response.  

For example, vertical- and horizontal-pass filtered indoor images generated similar 

patterns of response.  Similarly, vertical- and horizontal-pass filtered natural scenes 

generated similar patterns of response. In Experiment 2, low-pass or high-pass spatial 

frequency filters were applied to the images.  We found that the image filter had a 

marked effect on the patterns of response in scene-selective regions. For example, low-

pass indoor images generated similar patterns of response to low-pass natural images. 

The effect of filter varied across different scene-selective regions, suggesting differences 

in the way that scenes are represented in these regions. These results indicate that 

                                                      
2
 The author, David Watson, designed the experiment, analysed the results, and wrote the article under the 

supervision of Dr. Tom Hartley and Prof. Timothy Andrews.  Mark Hymers provided technical assistance 
with the image filtering process and some statistical analyses. 
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patterns of response in scene-selective regions are sensitive to the low-level properties of 

the image, particularly the spatial frequency content. 

 

4.2 Introduction 

Despite their spatial complexity and heterogeneity, human observers are able to reliably 

categorise real world scenes even when images are presented rapidly (Potter, 1975; 

Greene & Oliva, 2009a) or visually degraded (Torralba, 2009; Walther et al., 2011).  This 

capacity is thought to be based on neural activity in regions of human visual cortex that 

are selectively responsive to visual scenes (Aguirre & D’Esposito, 1997; Epstein & 

Kanwisher, 1998; Maguire, 2001; Nasr et al., 2011; Dilks et al., 2013).  While studies using 

univariate fMRI analyses have reported comparable levels of response within these 

regions to different images of scenes (Epstein & Kanwisher, 1998), more recent reports 

employing multivariate techniques have shown that there are distinct patterns of 

response to different categories of scene (Walther et al., 2009, 2011) suggesting a finer-

grained organisation that might underpin perceptual discriminations. However, the 

functional dimensions that shape these patterns have not been fully resolved. 

Some reports have argued that patterns of response reflect high-level, categorical 

differences amongst scenes (Walther et al., 2009, 2011).  For example, Walther and 

colleagues (2011) showed that the ability to decode scene categories from fMRI data was 

similar for photographs and line drawings, suggesting some level of invariance to the low 

level properties of images.  However, other studies have suggested that patterns of 

response in scene-selective regions may be better explained in terms of visual properties 

of scenes such as spatial layout (e.g. Kravitz et al., 2011; Park et al., 2011; Watson et al., 

2014).  This latter account is consistent with the sensitivity of the amplitude of response 

in these regions for orientation (Nasr & Tootell, 2012), spatial frequency (Rajimehr et al., 

2011; Musel et al., 2014), visual contrast (Kauffmann et al., 2015d), rectilinearity (Nasr et 

al., 2014), and visual field location (Levy et al., 2001; Arcaro et al., 2009; Golomb & 

Kanwisher, 2012).  Nevertheless, these studies employed univariate analyses, so it 

remains unclear whether these modulations in the amplitude of response also affect the 

pattern of response.   
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In a recent study, we demonstrated that low-level properties of visual scenes, 

(defined by the GIST descriptor; Oliva and Torralba 2001), predicted patterns of neural 

response in scene-selective regions (Watson et al., 2014).  However, images drawn from 

the same scene category are likely to have similar low-level properties (Oliva & Torralba, 

2001).  So, reliable category-specific patterns of response are expected under both 

categorical and image-based accounts.   Therefore, it remains unclear whether patterns 

are determined primarily by membership of a common category or by the shared low-

level image statistics characteristic of that category. 

In the current study, we provide a direct comparison of the relative importance of 

image properties and category in determining patterns of response in scene-selective 

regions.  Participants viewed images from two different categories of scene (indoor and 

natural) that are known to have distinct image properties (Oliva & Torralba, 2001) and to 

elicit different patterns of response in scene-selective regions (Walther et al., 2009; 

Watson et al., 2014). Low-level visual properties of the scenes were manipulated by 

filtering the images by orientation (Experiment 1) and spatial frequency (Experiment 2) as 

previous reports have suggested functional biases for these properties (Rajimehr et al., 

2011; Nasr & Tootell, 2012).  Using multi-voxel pattern analysis (MVPA), we compared the 

similarity of the patterns of neural response to each condition across the core scene 

regions (PPA, RSC, OPA).  Our prediction was that if scene-selective regions are sensitive 

to image properties, then some degree of similarity should be seen between conditions 

sharing the same filter.  If scene-selective regions are solely sensitive to category, then 

conditions sharing the same category should elicit similar patterns of response regardless 

of the low-level manipulation.  The use of pattern analysis allows us to determine 

whether image properties are an important organizing factor in the topography of this 

region of the brain. 

 

4.3 Methods 

4.3.1 Participants 

25 participants (8 males; mean age, 25.52; age standard deviation, 4.28; age range, 19-33) 

took part in Experiment 1 and 24 (8 males; mean age, 25.46; age standard deviation, 3.27; 
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age range, 20-32) took part in Experiment 2.  All participants were neurologically healthy, 

right-handed, and had normal or corrected-to-normal vision. Written consent was 

obtained for all participants and the study was approved by the York Neuroimaging 

Centre Ethics Committee.   

 

4.3.2 Stimuli 

Visual stimuli were back-projected onto a custom in-bore acrylic screen at a distance of 

approximately 57 cm from the participant with all images subtending approximately 10.7° 

of visual angle.  Images presented in the main experiment runs were taken from the 

LabelMe scene database (http://cvcl.mit.edu/database.htm; Oliva & Torralba, 2001) and 

presented in greyscale.  The image set comprised 128 images; 64 indoor and 64 natural 

scenes.  These categories were selected on the basis of their inclusion in previous studies 

of scene processing (Oliva & Torralba, 2001; Walther et al., 2009).  Images were first 

converted to greyscale – this is important as the filtering process can produce undesirable 

artifacts in colour images.  For instance, high-pass filtering a colour image is likely to 

introduce false colour into areas of the image not passed by the filter, which will now 

appear a colour given by the mean luminance of each colour channel.  Next, luminance 

histograms were equated across all images using the MATLAB SHINE toolbox 

(Willenbockel et al., 2010) prior to any filtering.  The full sets of unfiltered indoor and 

natural images are shown in Figures A.10 and A.11 respectively. 

Filtering was performed by weighting the Fourier spectrum of each image to 

preserve either horizontal or vertical orientations (Experiment 1), or high or low spatial 

frequencies (Experiment 2).  In Experiment 1, filters were wrapped Gaussian profiles, with 

a wide angle cut-off (FWHM = 75°) that ensured images remained recognisable after 

filtering.  In Experiment 2 filters were Gaussian profiles with cut-offs set at less than 2 

cycles/degree and greater than 6 cycles/degree at FWHM for the low- and high-pass 

filters respectively.  Filter cut-offs for Experiment 2 were based upon those used in 

previous literature (Schyns & Oliva, 1994, 1999; Oliva & Schyns, 1997). A soft window was 

applied around the edges of all images to reduce wrap-around edge artifacts associated 

http://cvcl.mit.edu/database.htm
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with the filtering process.  Figure 4.1 shows examples of the images used in each 

experiment. 

 

For each experiment, an additional localiser scan was performed.  An independent 

set of 64 scene images were drawn from the SUN database 

(http://groups.csail.mit.edu/vision/SUN/; Xiao et al., 2010) and presented in full colour.  

The SUN database is hierarchically organised into manmade-indoor, manmade-outdoor 

and natural-outdoor scenes, and stimuli were drawn in approximately equal numbers 

from each of these 3 classifications.   Fourier-scrambled images were created by applying 

the same set of random phases to each 2-dimensional frequency component in each 

colour channel of the original image while keeping the magnitude constant.  Intact and 

scrambled images were then rescaled to have a mean luminance equal to that of the 

Figure 4.1. (a) Examples of images from conditions in Experiment 1 (left panel) and 

Experiment 2 (middle panel).  For comparison, equivalent unfiltered images are shown 

(right panel).  (b) Average Fourier amplitude spectra across all images in each 

condition. 

http://groups.csail.mit.edu/vision/SUN/


 

82 
 

images used in the experimental scan.  Figure 4.2a shows examples of the images used in 

the localiser scan. 

 

4.3.3 Experimental Design 

During the localiser scan, participants viewed images from 2 stimulus conditions: 1) intact 

scene images and 2) phase scrambled versions of the same images in condition 1.  During 

the experimental scan participants viewed images from 4 stimulus conditions comprising 

2 scene categories (indoor and natural) across 2 levels of filtering (Experiment 1: 

horizontal-pass, vertical-pass; Experiment 2: low-pass, high-pass).  Stimuli were presented 

using PsychoPy (Peirce, 2007, 2009). 

In both the localiser and experimental scans, images from each condition were 

presented in a blocked fMRI design with 9 images per block (8 unique and 1 repeated).  

Each image was presented for 750ms followed by a 250ms grey screen that was equal in 

mean luminance to the scene images.  Each stimulus block was separated by a 9s period 

in which the same grey screen as used in the inter-stimulus interval was presented.  In 

order to minimise eye movements a central fixation cross was superimposed on all 

images and the grey screen and participants were instructed to maintain fixation for the 

duration of both scans.  Each condition was repeated 8 times in a counterbalanced block 

design giving a total of 16 and 32 blocks in the localiser and experimental scans 

respectively.  To maintain attention throughout the scan sessions participants performed 

a one-back task in which they were required to detect the repeated presentation of one 

image in each block, responding to the repeated image with a button press.  By using a 

passive task we avoid biasing neural responses towards either one of our experimental 

manipulation; for instance, a categorisation task might bias responses towards the 

category manipulation, whereas an image-based task might bias responses towards the 

filter manipulation. 
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4.3.4 Imaging Parameters 

All scanning was conducted at the York Neuroimaging Centre (YNiC) using a GE 3 Tesla 

HDx Excite MRI scanner.  A Magnex head-dedicated gradient insert coil was used in 

conjunction with a birdcage, radiofrequency coil tuned to 127.7MHz.  Data were collected 

from 38 contigual axial slices via a gradient-echo EPI sequence (TR = 3s, TE = 32.5ms, FOV 

= 288x288mm, matrix size = 128x128, voxel dimensions = 2.25x2.25 mm, slice thickness = 

3mm, flip angle = 90°).   

 

4.3.5 fMRI Analysis 

Univariate analyses of the fMRI data were performed with FEAT v5.98 

(http://www.fmrib.ox.ac.uk/fsl).  In all scans the initial 9s of data were removed to reduce 

the effects of magnetic stimulation.  Motion correction (MCFLIRT, FSL, Jenkinson et al., 

2002) was applied followed by temporal high-pass filtering (Gaussian-weighted least-

squares straight line fittings, sigma=50s).  Spatial smoothing (Gaussian) was applied at 

6mm FWHM to both the localiser and experiment runs, in line with previous studies 

employing smoothing in conjunction with MVPA (Op de Beeck, 2010; Watson et al., 

2014).  Parameter estimates were generated for each condition by regressing the 

hemodynamic response of each voxel against a box-car regressor convolved with a single-

gamma HRF.    Next, individual participant data were entered into higher-level group 

analyses using a mixed-effects design (FLAME, FSL).  Functional data were first registered 

to a high-resolution T1-anatomical image and then onto the standard MNI brain 

(ICBM152). 

 A scene-selective region of interest was defined from the localiser data of both 

experiments using the contrast of intact scenes > scrambled scenes (Figure 4.2b).  The 

intact scenes share the same amplitude spectra with their phase scrambled counterparts, 

thus such a contrast provides a clearer control for low-level visual differences than other 

commonly used contrasts such as scenes > objects or scenes > faces.  For instance, 

although scenes and objects / faces differ in their category membership, they also differ 

in a large number of image properties (e.g. spatial frequency, orientation, retinotopic 

eccentricity, etc.).  Given that this experiment aimed to investigate the neural 
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representation of image properties, it was important to use the contrast that provided a 

stronger control for such visual differences.  This ROI therefore provides a definition 

including scene-selective voxels across a wide extent of cortex – this enables us to test 

the distributed neural representations of the images as originally described by Haxby et 

al. (2001).  This scene-selective ROI was used for subsequent MVPA across both 

experiments. 

 

We also generated more restrictive ROIs constrained to the classical scene-

selective regions (parahippocampal place area (PPA), retrosplenial complex (RSC), 

occipital place area (OPA)) that have been reported in previous fMRI studies (Epstein & 

Kanwisher, 1998; Maguire, 2001; Dilks et al., 2013).  Within the MNI-2x2x2mm space, 

group intact>scrambled statistical maps were first averaged across the experiments.  

Next, seed points were defined at the peak voxels within the average intact>scrambled 

statistical map for each region (PPA, RSC, OPA) in each hemisphere.  For a given seed, a 

flood fill algorithm was used to identify a cluster of spatially contiguous voxels around 

Figure 4.2. (a) Examples of images presented in the localiser scan.  (b) Mask used for 

ROI analyses defined by the contrast of intact > scrambled. 
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that seed which exceeded a given threshold.  This threshold was then iteratively adjusted 

till a cluster size of approximately 500 voxels was achieved (corresponding to a volume of 

4000mm3); actual cluster sizes ranged from 499-501 voxels as an optimal solution to the 

algorithm was not always achievable. This step ensures that estimates of multi-voxel 

pattern similarity are not biased by the different sizes of ROIs being compared.  Clusters 

were combined across hemispheres to yield 3 ROIs, each comprising approximately 1000 

voxels.  These regions are shown in Figure 4.3.  MNI co-ordinates of the seeds are given in 

Table 4.1.  These seed points had similar locations to those reported in previous literature 

(Table A.1). To ensure clusters were appropriately sized we additionally repeated our 

analyses across using clusters across a range of sizes from 200-500 voxels.  We found that 

the cluster size made little to no difference upon the main results (Figure A.12). An 

additional early visual control ROI was defined from the V1 region of the Jülich 

histological atlas (Amunts et al., 2000; Eickhoff et al., 2005).  We also tested for possible 

differences in response within the PPA region by splitting this region precisely halfway 

along its posterior-anterior extent into a posterior PPA and an anterior PPA region. 

 

Table 4.1. Peak MNI mm co-ordinates and thresholds of standard scene-selective 

clusters (PPA, RSC, OPA). 

Region Hemisphere x y z Threshold (Z) 

PPA 
L -24 -52 -14 5.21 

R 26 -50 -16 5.68 

RSC 
L -18 -62 4 4.24 

R 16 -54 -2 4.92 

OPA 
L -36 -88 4 5.23 

R 36 -82 4 5.54 
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Next, we measured patterns of response to different stimulus conditions in each 

experiment.  Parameter estimates were generated for each condition in the experimental 

scans.  The reliability of response patterns was tested using a leave-one-participant-out 

(LOPO) cross-validation paradigm (Shinkareva et al., 2008; Poldrack et al., 2009) in which 

Figure 4.3. Masks used for ROI analyses of core scene regions.  Each mask comprises 

approximately 500 voxels (4000mm3) in each hemisphere.  Slices of MNI brain span the 

range from Z = -22 to Z = 16 in 2mm increments. 
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parameter estimates were determined using a group analysis of all participants except 

one (Figure 3.2).  This generated parameter estimates for each scene condition in each 

voxel. This LOPO process was repeated such that every participant was left out of a group 

analysis once.  These data were then submitted to correlation-based pattern analyses 

(Haxby et al., 2001, 2014) implemented using the PyMVPA toolbox 

(http://www.pymvpa.org/; Hanke et al., 2009).  Parameter estimates were normalised by 

subtracting the mean response per voxel across all experimental conditions (see Haxby et 

al., 2001).  For each iteration of the LOPO cross-validation, the normalized patterns of 

response to each stimulus condition were correlated between the group and the left-out 

participant.  This allowed us to determine whether there are reliable patterns of response 

that are consistent across individual participants.  A Fisher’s z-transformation was then 

applied to the correlations prior to further statistical analyses. 

 We next used a representational similarity analysis (RSA; Kriegeskorte et al. 2008) 

utilising multiple regression to assess the relative contributions of category information 

and image properties to the neural response patterns.  For each factor (category and filter 

type) a binary regressor was generated representing a model correlations matrix whereby 

ones were placed on those elements where the relevant factor was shared and zeroes on 

all other elements.  The regressors therefore represent the extreme cases where the 

patterns of response are entirely predicted by either the scene category or by the 

filtering; these regressors are illustrated for Experiments 1 and 2 in Figure 4.5a-b and 

Figure 4.8a-b respectively.  Each regressor was then repeated and tiled across LOPO 

iterations.  The outcomes measure was defined as the MVPA correlation matrices 

concatenated across LOPO iterations.   All regressors and outcomes were then Z-scored 

such that all outputs of the regression model are given in standardised units.  These 

regressors and outcomes were then entered into the multiple regression model.  This 

analysis yielded a beta value and associated standard error for each regressor which 

would be expected to differ significantly from zero if that regressor were able to explain a 

significant amount of the variance in the MVPA correlations.  A t-contrast was used to 

assess the significance of the differences between the betas. 

 

http://www.pymvpa.org/
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4.3.6 Behavioural Experiment 

In order to ensure that the filtering process did not disrupt the ability of participants to 

perceive the scenes categorically, we conducted an additional behavioural experiment.  A 

new set of 20 participants (5 males; mean age, 26.80; age standard deviation, 3.32; age 

range, 23-34) were presented with the images used in the fMRI experiments plus their 

unfiltered equivalents.  This produced 10 conditions across 2 categories (indoor, natural) 

and 5 levels of filtering (horizontal-pass, vertical-pass, high-pass, low-pass, unfiltered).  

For each participant, images were divided into 5 subsets and then each subset randomly 

assigned to a different filtering condition such that participants only saw each image once 

across all filtering conditions.  A chin rest was used to maintain viewing distance across 

participants.  Images subtended a visual angle of approximately 10.7°.  In each trial a 

fixation screen was presented for 1000ms, followed by an image for 750ms.  Importantly, 

both visual angle and stimulus duration were set to match those of the fMRI experiment.  

Following this, a blank screen was presented for 2250ms or until the participant made a 

response.  Participants were required to indicate, with a button press, whether the image 

was of an indoor or natural scene as quickly and as accurately as possible, and were able 

to respond immediately after stimulus onset. 

 

4.4 Results 

4.4.1 Experiment 1 

In Experiment 1, we measured patterns of neural response to different categories of 

scene (indoor and natural) filtered by orientation (horizontal-pass and vertical-pass).  

Figure 4.4 shows the normalised group responses to each condition across the scene-

selective ROI.  Responses above the mean are shown in red and responses below the 

mean are shown in blue. 
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 A correlation based MVPA (Haxby et al., 2001) was conducted to measure the 

similarity of the neural responses to different conditions (Figure 4.5c).  To test the 

contribution of category and image factors to the neural responses, we used a 

representational similarity analysis (Kriegeskorte et al., 2008).  Model correlation matrices 

were generated representing the extreme cases where the patterns of response are 

entirely predicted by the scene category (Figure 4.5a) or by the orientation filter (Figure 

4.5b).   These were then used as regressors in a multiple regression analysis of the fMRI 

data.  Figure 4.5d shows the resulting coefficients for each regressor.  Both the category 

( = 0.82, p < .001) and filter regressors ( = 0.17, p < .001) explained a significant amount 

of the variance in the MVPA correlation matrix.  However, a t-contrast revealed that the 

Figure 4.4. Group patterns of response to conditions in Experiment 1. Patterns are 

restricted to regions defined by the response of intact scenes > scrambled scenes.  Red 

and blue colours indicate normalized values above and below the mean respectively. 
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category regressor explained significantly more variance than the filter regressor (t = 

12.84, p < .001).  A series of post-hoc paired-sample t-tests were used to compare the 

critical elements of the correlations matrix representing the same-category, different-

filter and different-category, same-filter correlations.  In all cases, the same-

category/different-filter correlations were found to be significantly greater than the 

different-category/same-filter correlations (indoor-horizontal-pass/indoor-vertical-pass > 

indoor-horizontal-pass/natural-horizontal-pass: t(24) = 13.32, p < .001; natural-horizontal-

pass/natural-vertical-pass > indoor-horizontal-pass/natural-horizontal-pass: t(24) = 7.07, 

p < .001; indoor-horizontal-pass/indoor-vertical-pass > indoor-vertical-pass/natural-

vertical-pass: t(24) = 14.68, p < .001; natural-horizontal-pass/natural-vertical-pass > 

indoor-vertical-pass/natural-vertical-pass: t(24) = 8.64, p < .001).  An additional post-hoc 

test did not find a significant difference between correlations in the indoor-horizontal-

pass/natural-horizontal-pass and the indoor-vertical-pass/natural-vertical-pass 

comparison (t(24) = 1.13, p = .271).  Thus, patterns were no more or less similar for 

horizontal-pass than vertical-pass filtered images. 

Restricting the regression analysis to the standard scene-selective regions (PPA, 

RSC, OPA) revealed a similar pattern of results (Figure 4.6).   Responses in the PPA were 

significantly predicted by the category ( = 0.85, p < .001) but not the filter regressor ( = 

0.04, p = .204), with significantly more variance explained by the category than the filter 

regressor (t = 16.34, p < .001).  Responses in the RSC were significantly predicted by the 

category ( = 0.77, p < .001) but not the filter regressor ( = 0.02, p = .529), with 

significantly more variance explained by the category than the filter regressor (t = 12.01, p 

< .001).   Responses in the OPA were significantly predicted by the category ( = 0.73, p < 

.001) but not the filter regressor ( = 0.07, p = .095), with significantly more variance 

explained by the category than the filter regressor (t = 10.21, p < .001).   In contrast to the 

scene regions, responses in the early visual (V1) control region were significantly 

predicted by both the category (β = 0.36, p < .001) and filter regressors (β = 0.25, p < 

.001).  There was no significant difference between the effect of category and filter (t = 

1.28, p = .203).  Results of post-hoc t-tests for these regions are given in Table 4.2. 
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Figure 4.5. Experiment 1 analysis.  Condition labels: indoor horizontal-pass (IHo), 

natural horizontal-pass (NHo), indoor vertical-pass (IVe), natural vertical-pass (NVe).  

Binary models were defined representing the cases where the patterns of response are 

entirely predicted by either the category (a) or the filter type (b).  These were entered 

into a multiple regression analysis as regressors, while the fMRI MVPA correlations (c) 

were entered as outcomes.  The resulting regression coefficients are shown in (d).  

Error bars represent 1 SEM.  (* p < .05, ** p < .01, *** p < .001). 
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Table 4.2. Experiment 1: t-statistics and significance of post-hoc pairwise t-tests for 

standard scene selective regions (PPA, RSC, OPA) and V1. 

(* p < .05, ** p < .01, *** p < .001) 

 PPA RSC OPA V1 

IHo/IVe > IHo/NHo 9.35*** 9.30*** 9.25*** 2.49(ns) 

NHo/NVe > IHo/NHo 8.68*** 8.77*** 7.05*** -2.13(ns) 

IHo/IVe > IVe/NVe 9.84*** 7.14*** 6.97*** 3.83** 

NHo/NVe > IVe/NVe 9.26*** 7.05*** 5.09*** -0.18(ns) 

 

4.4.2 Experiment 2 

In Experiment 2, we measured patterns of neural response to different categories of 

scene (indoor and natural) filtered by spatial frequency (high-pass and low-pass).  Figure 

4.7 shows the normalised group responses to each condition across the scene-selective 

ROI.  Responses above the mean are shown in red and responses below the mean are 

shown in blue. 

Figure 4.6. Experiment 1: standard scene-selective regions and V1.  (a) MVPA 

correlation matrices.  (b) These matrices were compared against binary regressors of 

category and filter effects using a multiple regression analysis; resulting beta 

coefficients are shown for each regressor.  Error bars represent 1 SEM. 

(* p < .05, ** p < .01, *** p < .001). 
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Correlation based MVPA was used to assess the similarity of the neural responses 

across different conditions. The influence of category and image factors on the fMRI data 

was assessed using a representational similarity analysis.  Model correlation matrices 

representing the cases where responses are entirely predicted by the scene category 

(Figure 4.8a) or by the spatial frequency filtering (Figure 4.8b) were entered as regressors 

in a multiple regression analysis of the fMRI data (Figure 4.8c).  Figure 4.8d shows the 

resulting coefficients for each regressor.  Both the category ( = 0.23, p < .001) and filter 

regressors ( = 0.86, p < .001) explained a significant amount of the variance in the MVPA 

data.  However, in contrast to Experiment 1, the filter regressor explained significantly 

more variance than the category regressor (t = 16.93, p < .001).  Post-hoc tests revealed 

Figure 4.7. Group patterns of response to conditions in Experiment 2. Patterns are 

restricted to regions defined by the response of intact scenes > scrambled scenes.  Red 

and blue colours indicate normalized values above and below the mean respectively. 
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greater different-category/same-filter than same-category/different-filter correlations in 

all cases (indoor-high-pass/natural-high-pass > indoor-high-pass/indoor-low-pass: t(23) = 

17.56, p < .001; indoor-high-pass/natural-high-pass > natural-high-pass/natural-low-pass: 

t(23) = 10.29, p < .001; indoor-low-pass/natural-low-pass > indoor-high-pass/indoor-low-

pass: t(23) = 20.26, p < .001; indoor-low-pass/natural-low-pass > natural-high-

pass/natural-low-pass: t(23) = 15.95, p < .001).  An additional post-hoc test revealed 

significantly higher correlations in the indoor-low-pass/natural-low-pass than the indoor-

high-pass/natural-high-pass comparison (t(23) = 10.51, p < .001), indicating greater 

similarity in the neural response patterns across low-pass than high-pass filtered images. 

Restricting the regression analyses to the standard scene-selective regions (PPA, 

RSC, OPA) revealed a more variable pattern of results (Figure 4.9).  Responses in the PPA 

were significantly predicted by both the category ( = 0.66, p < .001) and filter regressors 

( = 0.43, p < .001).  However, in contrast to the scene-selective region as a whole, more 

variance was explained by the category than the filter regressor (t = 4.33, p < .001) in this 

subregion.  Responses in the RSC were significantly predicted by both the category ( = 

0.35, p < .001) and filter regressors ( = 0.53, p < .001) but in this case slightly more 

variance was explained by the filter than the category regressor (t = 2.41, p = .017).  

Responses in the OPA were significantly predicted by both the category ( = 0.22, p < 

.001) and filter regressors ( = 0.66, p < .001), but again significantly more variance was 

explained by the filter than the category regressor (t = 6.25, p < .001).  Responses in the 

V1 control region were significantly predicted by the filter (β = 0.95, p < .001) but not the 

category regressor (β = 0.03, p = .213), with significantly more variance explained by the 

filter than the category regressor (t = 29.96, p < .001).  Results of post-hoc t-tests for 

these regions are given in Table 4.3. 
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Figure 4.8. Experiment 2 analysis.  Condition labels: indoor high-pass (IHi), natural 

high-pass (NHi), indoor low-pass (ILo), natural low-pass (NLo).  Binary models were 

defined representing the cases where the patterns of response are entirely predicted 

by either the category (a) or the filter type (b).  These were entered into a multiple 

regression analysis as regressors, while the fMRI MVPA correlations (c) were entered 

as outcomes.  The resulting regression coefficients are shown in (d).  Error bars 

represent 1 SEM. (* p < .05, ** p < .01, *** p < .001). 
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Table 4.3. Experiment 2: t-statistics and significance of post-hoc pairwise t-tests for 

standard scene selective regions (PPA, RSC, OPA) and V1. 

(* p < .05, ** p < .01, *** p < .001) 

 PPA RSC OPA V1 

IHi/NHi > IHi/ILo -3.42** 2.48(ns) 6.12*** 18.23*** 

IHi/NHi > NHi/NLo -5.55*** 1.06(ns) 1.63(ns) 17.33*** 

ILo/NLo > IHi/ILo -0.80(ns) 4.10** 7.89*** 17.94*** 

ILo/NLo > NHi/NLo -2.89* 1.89(ns) 5.49*** 16.79*** 

 

Previous experiments have suggested a possible division of labour between 

anterior and posterior regions of the PPA (Aminoff et al., 2007; Epstein, 2008; Arcaro et 

al., 2009; Baldassano et al., 2013).  Accordingly, we re-analysed our data by splitting the 

PPA region halfway along its posterior-anterior extent and repeating the pattern analyses 

within each division.  Responses in the posterior PPA region were significantly predicted 

by both the category (β = 0.19, p < .001) and filter regressors (β = 0.63, p < .001), with 

Figure 4.9. Experiment 2: standard scene-selective regions and V1.  (a) MVPA 

correlation matrices.  (b) These matrices were compared against binary regressors of 

category and filter effects using a multiple regression analysis; resulting beta 

coefficients are shown for each regressor.  Error bars represent 1 SEM. 

(* p < .05, ** p < .01, *** p < .001). 
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significantly more variance explained by the filter regressor (t = 5.90, p < .001).  

Representations in the anterior PPA appeared more similar to the overall PPA region, with 

responses significantly predicted by both the category (β = 0.75, p < .001) and filter 

regressors (β = 0.31, p < .001), but with significantly more variance explained by the 

category regressor (t = 8.51, p < .001).  These results are shown in Figure 4.10.  Our 

results therefore show a change in selectivity within the PPA, with a shift from more 

image-based to more category-based representations along a posterior-to-anterior axis. 

 

 

4.4.3 Behavioural Experiment 

In order to ensure that the filtering process did not disrupt the ability of participants to 

perceive the scenes categorically, we conducted an additional behavioural experiment.  

Participants were presented with the images from the fMRI experiments plus their 

unfiltered equivalents whilst performing a scene categorisation task.  Percentage 

accuracy scores and median RTs were calculated for each condition within each 

participant (Table 4.4).  Mean accuracy across all conditions was 95.63 ± 1.34% (range 

89.17 – 97.92%).  Mean RT across all conditions was 598 + 26ms (range: 566 - 611).  These 

Figure 4.10. Experiment 2:  Analysis of anterior and posterior PPA divisions.  The PPA 

region was divided halfway along its posterior-anterior extent, and the pattern 

analyses and representational analyses repeated for each division separately.  The 

resulting regression coefficients are displayed above.  Error bars represent 1 SEM. 

(* p < .05, ** p < .01, *** p < .001). 
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results show that participants were able to categorize all stimulus conditions well above 

chance levels. 

Table 4.4.  Behavioural experiment: average accuracy and response times (± 1 SEM). 

Category Filter Accuracy (% correct) Response Time (ms) 

Indoor Horizontal-pass 95.83  ± 1.28 597 ± 18 

Vertical-pass 95.42 ± 1.41 611 ± 19 

High-pass 97.08 ± 1.09 569 ± 16 

Low-pass 94.58 ± 1.51 611 ± 18 

Unfiltered 95.42 ± 1.54 566 ± 17 

Natural Horizontal-pass 97.50 ± 1.06 604 ± 23 

Vertical-pass 95.83 ± 1.54 595 ± 21 

High-pass 97.50 ± 1.06 589 ± 16 

Low-pass 89.17 ± 2.10 664 ± 24 

Unfiltered 97.92 ± 0.83 581 ± 20 

 

 

4.5 Discussion 

The aim of this study was to compare the relative effect of low-level image properties and 

high-level categorical factors on the patterns of fMRI response in scene-selective regions.  

Participants viewed images from indoor and natural scene categories that were filtered 

by orientation and spatial frequency.  These manipulations had a marked effect on the 

low level image properties.  Nevertheless, a behavioural experiment using stimulus 

presentation parameters matched to those of the fMRI experiments revealed that these 

manipulations preserved the ability to accurately categorize the images.  We then 

measured the patterns of response in scene-selective regions.  We found that orientation 

filtering had a significantly smaller effect on patterns of response than category.  In 

contrast, spatial frequency filtering had a significantly greater effect on patterns of 

response compared to category.  These results show that patterns of neural response in 
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scene-selective cortices revealed by fMRI are sensitive to low-level properties of the 

image, particularly the spatial frequency content. 

Previous studies have established that distinct patterns of neural response are 

elicited by viewing different categories of scene (Walther et al., 2009, 2011).  These 

findings have been taken to suggest a categorical organisation of scene-selective cortices 

in which response properties are linked to the semantic properties of the image.  It has 

also been shown that the semantic content of scene images can be used to predict neural 

responses during viewing of natural scenes (Huth et al., 2012; Stansbury et al., 2013) and 

to reconstruct scene images from neural responses in higher visual areas (Naselaris et al., 

2009).  However, other studies suggest that categorical factors may not provide a 

complete account of the organization of scene-selective regions.  For instance, reports by 

both Kravitz et al. (2011) and Park et al. (2011) suggest that responses in PPA are better 

predicted by image properties (open versus closed) than by the categorical content 

(indoor versus natural) of scenes.  It has also been shown that visual properties can be 

used to discriminate between different categories of scenes (Torralba & Oliva, 2003). 

These findings suggest that a fuller understanding of the principles governing organization 

of ventral visual cortex will hinge on determining the way in which patterns of brain 

activity reflecting semantic, spatial and functional properties of scenes are derived from 

their lower level visual properties. 

Recently, we showed that the statistical properties of visual images can be used to 

predict patterns of response in high-level visual cortex (Rice et al., 2014; Watson et al., 

2014; Andrews et al., 2015).  These results provide an alternative framework for 

understanding the topographic organization of the ventral visual pathway in which the 

appearance of category-selective patterns of response may emerge from the 

combinations of low-level image properties that typically co-occur in different image 

categories (see also Hanson et al., 2004; Op de Beeck et al., 2008).  To directly test the 

role of image properties, we measured the effect of low-level image manipulations on 

patterns of response in scene-selective regions. We found a significant effect of spatial 

frequency filter on patterns of response in scene-selective cortex.  For example, indoor 

low-pass images generated similar patterns of response to natural low-pass images.  

Similarly, indoor high-pass images generated similar patterns to natural high-pass images. 

These results show that patterns of response to scenes are sensitive to the low-level 
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properties of the image.  Previous univariate fMRI studies have shown that there are 

biases in the magnitude of the response to different spatial frequencies in scene-selective 

regions (Rajimehr et al., 2011; Kauffmann et al., 2014).  However, changes in the 

amplitude of response can occur without a change in the pattern of response. Our 

findings fundamentally extend these earlier studies by showing that the spatial frequency 

content of the image can also influence the pattern of response in scene-selective 

regions.  This suggests that this property of the image is a key feature underlying the 

functional organisation of scene-selective regions. 

How do we explain the category-specific patterns of response found in scene-

selective regions (Walther et al., 2009, 2011)?  Rather than reflecting an organization 

based on categorical properties of the stimulus, we propose that scene-selective regions 

have a topographic organization that is based on image properties (Andrews et al., 2015). 

We suggest that the appearance of category selectivity may reflect the characteristic 

combinations of low-level image properties that co-occur in different types of scenes.  

Because images from different scene categories have distinct image properties (Watson 

et al., 2014), images from a particular scene category will activate spatially-selective 

patterns of response. Although patterns of response in scene-selective regions may be 

dominated by the features characteristic of specific natural categories, they may remain 

sensitive to low-level manipulations. 

Our findings appear to contrast with a previous study that reported scene 

category can be decoded from photographs and line drawings of scenes, and that 

decoding generalises between these visual representations (Walther et al., 2011).  As line 

drawings represent a visually impoverished version of photographic images, it is argued 

that these results are indicative of image-invariant, categorical representations in scene-

selective regions.  Our results suggest that such effects could alternatively be understood 

in terms of the low-level visual properties of images, such as spatial frequency.  Line-

drawings reduce an image to a subsample of its edge boundaries, and thus represent an 

extreme high-pass representation of the original image.  Consequently, despite being 

visually impoverished, line drawings will nevertheless maintain similar high spatial 

frequency content to their original images.  Thus, generalisation between each visual 

representation could reflect sensitivity within the neural patterns to the high spatial 

frequency content of the image. 
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Despite showing that manipulations of spatial frequency did affect the patterns of 

response in scene-selective regions, we also found a smaller but significant effect of scene 

category across the whole scene-selective ROI.  When the scene-selective ROI was 

subdivided into different sub-divisions (PPA, RSC, TOS/OPA), we found that, although 

both filter and category influenced the patterns of response, the relative contribution of 

category and filter varied between regions.  For instance, the effect of the spatial 

frequency filter was greater than that of the category in both the OPA and RSC, while in 

the PPA the effect of category was greater than filter.  This suggests that while all scene-

selective regions remain sensitive to the low-level visual properties of scenes, there may 

be a shift towards a more categorical representation in some regions.  Presumably, these 

differences in selectivity reflect the different computational processes that are thought to 

occur in different scene-selective regions.  For instance, it has been proposed that the 

PPA and RSC may form distinct but complimentary roles within the scene processing 

network, with the PPA primarily focussed on representing the spatial components of the 

immediately visible scene, whilst the RSC is more concerned with representing the scene 

within the wider spatial environment (Epstein & Higgins, 2007; Epstein et al., 2007a; 

Epstein, 2008; Park & Chun, 2009).  Meanwhile, the more posterior OPA has been 

proposed to be a lower-level component of a hierarchical scene processing network (Dilks 

et al., 2013), perhaps analogous to proposed roles for the occipital face area within the 

face processing network (Haxby et al., 2002).  We additionally observed a shift from more 

image-based to more category-based representations along a posterior-to-anterior axis 

within the PPA.  This suggests an organisation in which representations become less 

dependent on the individual visual components of images in more anterior regions of 

parahippocampal cortex, consistent with previous studies suggesting a division of labour 

along this axis (Epstein, 2008; Baldassano et al., 2013). 

In contrast to spatial frequency, we found that manipulating the orientation 

content of the image had a much smaller effect on the patterns of response across scene-

selective cortex.  For example, indoor vertical-pass images generated similar patterns of 

response to indoor horizontal-pass images and natural vertical-pass images generated 

similar patterns to natural horizontal-pass images.  Our results suggest that not all low 

level properties exert the same degree of influence on large scale patterns of response in 

scene-selective cortex.    This result may seem at odds with a previous study that reported 
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orientation biases in scene-selective regions (Nasr & Tootell, 2012).  However, this study 

differed from our study in two important ways.  First, our filters only included the cardinal 

orientations (horizontal and vertical) and so did not coincide with the cardinal versus 

oblique orientation bias shown by Nasr and Tootell (2012).  Indeed, they did not report 

any significant differences between cardinal orientations.  Second, they used a univariate 

analysis in which the magnitude of response to cardinal orientations was compared to 

oblique orientations.  In contrast, we investigated the pattern of response across the 

cortical surface.  It is possible to find overall differences in the magnitude of the response 

between conditions that are not reflected in the pattern of response.  So, the finding that 

the current analyses did not show a significant effect of orientation filtering upon the 

pattern of response should not be taken as meaning that the regions do not have low-

level orientation biases.  Rather, it simply means that (horizontal vs. vertical) orientation 

biases are not found in the pattern of response detected by fMRI.  

To understand how the neural representation of scenes changes through the 

processing hierarchy, we measured the patterns of response in V1.  We found that the 

pattern of response in V1 showed some differences to the patterns found in the scene-

selective regions.  For instance, while the orientation filters had little effect on the 

responses in the scene selective regions, a significant effect of both orientation filter and 

category was found in V1.  Furthermore, although a significant effect of both spatial 

frequency filters and category was observed in scene-selective regions, there was only an 

effect of spatial frequency filters on the pattern of response in V1.  It is important to note, 

however, that although image filtering techniques do preserve categorical information, 

they also preserve other visual dimensions that are not influenced by the filtering 

manipulation.  So, the observed effects of the category manipulation may be attributable 

not only to categorical factors, but also to visual properties that were not affected by the 

filtering.  For example, the effect of category in V1 in Experiment 1 is unlikely to reflect a 

higher-level representation of scenes in this region, but it is more likely to be driven by 

differences in the remaining non-orientation-sensitive visual information (such as spatial 

frequency).  Nevertheless, our results indicate a gradual transition in responses to low-

level properties such that later processing regions (e.g., PPA) are increasingly sensitive to 

those features which serve to distinguish behaviourally distinct environments. 
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In conclusion, in this study we directly determined the effect of low-level image 

manipulations on the patterns of neural response to different scene categories.  We 

found clear evidence that scene-selective regions were sensitive to the low-level visual 

content of the image, and that spatial frequency was more influential than orientation 

content in determining the coarse-scale patterns measured by the MVPA.  The sensitivity 

to image properties shown in this study fundamentally extends previous univariate 

reports of image biases in the magnitude of response in scene-selective regions.  By 

showing that the pattern of response to scenes can be influenced by the spatial frequency 

content of the image, our results suggest that this image property is an important 

organizing factor in the topographic organization of scene-selective regions of the brain. 
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Chapter 5 – Category-Selective Patterns of Neural 

Response in Scene-Selective Regions to Intact and 

Scrambled Images 

 

This chapter is adapted from: Watson, D. M., Hartley, T., & Andrews, T. J. (in review). 

Category-selective patterns of neural response in scene-selective regions to intact and 

scrambled images. 3 

 

5.1 Abstract 

Neuroimaging studies have found distinct patterns of neural response to different 

categories of scenes in the human brain.  These findings imply that scene category is an 

important organizing principle in scene-selective regions.  However, images from 

different categories also vary systematically in their lower-level properties.  So, it is 

possible that these patterns of neural response could reflect variance in image properties.  

To address this question, we used fMRI to measure the patterns of neural response to 

images of intact scenes and to scenes that had been phase-scrambled at a local or global 

level. Although both scrambling processes preserved many of the lower-level image 

properties, categorical perception of the scenes was severely impaired.  Nevertheless, we 

found distinct patterns of response to different scene categories in the parahippocampal 

place area (PPA) and the occipital place area (OPA) for both intact and scrambled scenes. 

Moreover, intact and scrambled scenes produced highly similar patterns of response.  

Our finding that reliable and distinct patterns of response in scene-selective regions are 

still evident when categorical perception is impaired suggests that the neural 

representation in these regions may be better explained by the statistical properties of 

the image. 

                                                      
3
 The author, David Watson, designed the experiment, analysed the results, and wrote the article under the 

supervision of Dr. Tom Hartley and Prof. Timothy Andrews. 
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5.2 Introduction 

The ability to perceive and recognize the spatial layout of visual scenes is essential for 

spatial navigation. Neuroimaging studies have identified a number of regions in the 

human brain that respond selectively to visual scenes (Epstein, 2008).  For example, the 

parahippocampal place area (PPA) is a region of the posterior parahippocampal gyrus that 

displays preferential activity to images of scenes over and above images of objects and 

faces (Aguirre et al., 1998; Epstein & Kanwisher, 1998).  Other place selective regions 

include the retrosplenial complex (RSC) located immediately superior to the PPA and the 

transverse occipital sulcus (TOS) or occipital place area (OPA) on the lateral surface of the 

occipital lobe (Dilks et al., 2013). Damage to these regions leads to specific impairments in 

scene perception and spatial navigation (Aguirre & D’Esposito, 1999; Mendez & Cherrier, 

2003). 

Despite the importance of scene-selective regions for spatial navigation, the 

functional organisation of these regions remains unclear (Lescroart et al., 2015).  Some 

studies have argued that scene-selective regions represent information about the 

semantic categories of natural scenes (Walther et al., 2009, 2011; Huth et al., 2012; 

Stansbury et al., 2013).  For example, regions such as the PPA show distinct patterns of 

response to images of different scene categories (e.g. beaches, forest, buildings).  This 

conclusion has, however, been challenged by other studies that have suggested that the 

patterns of response in scene-selective regions are better explained by spatial properties 

of the scene, such as openness (Kravitz et al., 2011; Park et al., 2011) or distance (Amit et 

al., 2012; Park et al., 2015) rather than by semantic category. 

Although concepts such as openness or distance provide a more continuous 

dimension with which to understand the organization of scene-selective regions, it is not 

clear whether this can be explained even more simply in terms of low-level image 

properties that co-vary with these high-level parameters (Oliva & Torralba, 2001). In 

recent studies, we have shown that variance in the patterns of response to different 

scene categories can be explained by corresponding variance in the image properties of 

the scenes (Watson et al., 2014, 2016; Andrews et al., 2015).  These findings are 

consistent with previously reported biases in scene-selective regions for orientation (Nasr 
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& Tootell, 2012; Nasr et al., 2014), spatial frequency (Rajimehr et al., 2011; Musel et al., 

2014) and visual field location (Arcaro et al., 2009; Golomb and Kanwisher, 2012; Levy et 

al., 2001; Silson et al., 2015) and provide further evidence for the role of image properties 

in the organization of scene-selective regions.  However, images drawn from the same 

scene category or with the same spatial layout are likely to have similar low-level image 

properties (Oliva & Torralba, 2001).  So, reliable patterns of response are expected under 

both higher-level and lower-level accounts of scene perception.  

The aim of this study was to directly determine whether the patterns of neural 

response across scene-selective regions can be explained by selectivity to more basic 

properties of the stimulus. To address this question, we measured the neural response 

across scene-selective regions to intact images of different scene categories, as well as 

versions of these images that had been phase-scrambled at a global or local level.  Our 

rationale for using scrambled images is that they have many of the image properties 

found in intact images, but disrupt perception of categorical and semantic information, 

thus dissociating high- and low-level information.  Our hypothesis was that, if scene-

selective regions are selective for the categorical or semantic properties conveyed by the 

image, there should be no correspondence between patterns of response evoked by 

intact and scrambled images.  Conversely, if patterns of response in scene-selective 

regions reflect selectivity to more basic dimensions of the stimulus, we would predict a 

significant correlation between patterns of response to intact and scrambled images. 

 

5.3 Methods 

5.3.1 Participants 

20 participants (5 males; mean age: 25.85; age range: 19-34) took part in the experiment.  

All participants were neurologically healthy, right-handed, and had normal or corrected-

to-normal vision. Written consent was obtained for all participants and the study was 

approved by the York Neuroimaging Centre Ethics Committee. 
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5.3.2 Stimuli 

Participants viewed scene images in two independent runs; one to localize the scene-

selective regions, the other to experimentally investigate the effects of local and global 

scrambling manipulations. Images presented in the experiment runs were taken from the 

LabelMe database (http://cvcl.mit.edu/database.htm; Oliva & Torralba, 2001).  Images for 

the localiser run were taken from the SUN database 

(http://groups.csail.mit.edu/vision/SUN/; Xiao et al., 2010).  Stimuli were presented using 

PsychoPy (Peirce, 2007, 2009) and were back-projected onto a custom in-bore acrylic 

screen at a distance of approximately 57 cm from the participant, with all images 

presented at a resolution of 256x256 pixels subtending approximately 10.7° of visual 

angle.    

The experiment image set comprised 180 greyscale images from 5 scene 

categories: city, coast, forest, indoor, and mountain (36 images per category).  Each image 

was shown at 3 levels of image scrambling: intact, locally scrambled, and globally 

scrambled.  Globally scrambled images were created by randomising the phase of the 2D 

frequency components across the whole image whilst keeping the magnitude constant.  

Locally scrambled images were created by the same process, except that scrambling was 

applied independently within each of 64 windows of an 8x8 grid across the image.  

Luminance histograms across all images in all conditions were normalised using the SHINE 

toolbox (Willenbockel et al., 2010).  Examples of the stimuli used in each condition are 

shown in Figure 5.1. 

The localiser images comprised a separate set of 64 scene images plus their phase 

scrambled counterparts (128 images total), with all images presented in full colour.  

Fourier-scrambled images were created by randomising the phase of the 2D frequency 

components in each colour channel of the original image whilst keeping the magnitude 

constant.  Mean luminance was then equated across images.  

http://cvcl.mit.edu/database.htm
http://groups.csail.mit.edu/vision/SUN/
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5.3.3 fMRI Experimental Design 

During the experimental runs participants viewed images from the 5 scene categories.  

Images from each level of image scrambling were presented across separate experiment 

runs.  For all participants, globally scrambled images were presented in the first run, 

locally scrambled in the second run, and intact images in the third run.  This order was 

chosen to ensure that responses to scrambled scenes could not be primed by earlier 

viewing of the intact versions.  

In each run, images from each category were presented in a blocked design.  

There were 6 images in each block. Each image was presented for 750ms followed by a 

250ms grey screen that was equal in mean luminance to the scene images.  Each stimulus 

block was separated by a 9s period in which the same grey screen as used in the inter-

stimulus interval was presented.  Each condition was repeated 6 times (total 30 blocks) in 

each run. To maintain attention throughout the experimental runs, participants had to 

detect the presence of a red dot randomly superimposed on one of the images in each 

Figure 5.1. Examples of the scene images used in each condition. 
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block, responding via a button press.  Stimuli were presented using PsychoPy (Peirce, 

2007, 2009). 

To define scene-selective regions, independent data was collected while 

participants viewed images from 2 stimulus conditions (intact scenes, scrambled scenes).  

Images from each condition were presented in a blocked fMRI design, with each block 

comprising 9 images.  Each condition was repeated 8 times (16 blocks). In each stimulus 

block, an image was presented for 750ms followed by a 250ms grey screen.  Each 

stimulus block was separated by a 9s period in which a grey screen was presented. 

Participants performed a one-back task that involved pressing a button when they 

detected a repeated image in each block. 

 

5.3.4 Imaging Parameters 

All scanning was conducted at the York Neuroimaging Centre (YNiC) using a GE 3 Tesla 

HDx Excite MRI scanner.  Images were acquired with an 8-channel phased-array head coil 

tuned to 127.72MHz.  Data were collected from 38 contigual axial slices in an interleaved 

order via a gradient-echo EPI sequence (TR = 3s, TE = 32.5ms, FOV = 288x288mm, matrix 

size = 128x128, voxel dimensions = 2.25x2.25 mm, slice thickness = 3mm with no inter-

slice gap, flip angle = 90°, phase-encoding direction = anterior-posterior, pixel bandwidth 

= 39.06 kHz). In order to aid co-registration to structural images, T1-weighted in-plane 

FLAIR images were acquired (TR = 2.5s, TE = 9.98ms, FOV = 288x288mm, matrix size = 

512x512, voxel dimensions = 0.56x0.56 mm, slice thickness = 3mm, flip angle = 90°).  

Finally, high-resolution T1-weighted structural images were acquired (TR = 7.96ms, TE = 

3.05ms, FOV = 290x290mm, matrix size = 256x256, voxel dimensions = 1.13x1.13 mm, 

slice thickness = 1mm, flip angle = 20°). 

 

5.3.5 fMRI Analysis 

Univariate analyses of the fMRI data were performed with FEAT v5.98 

(http://www.fmrib.ox.ac.uk/fsl).  In all scans the initial 9s of data were removed to reduce 

the effects of magnetic stimulation.  Motion correction (MCFLIRT, FSL; Jenkinson et al., 
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2002) was applied followed by temporal high-pass filtering (Gaussian-weighted least-

squares straight line fittings, sigma=15s).  Spatial smoothing (Gaussian) was applied at 

6mm FWHM to both the localiser and experiment runs, in line with previous studies 

employing smoothing in conjunction with MVPA (Op de Beeck, 2010; Watson et al., 

2014).  Parameter estimates were generated for each condition by regressing the 

hemodynamic response of each voxel against a box-car convolved with a single-gamma 

HRF.  Next, individual participant data were entered into higher-level group analyses 

using a mixed-effects design (FLAME, FSL).  Functional data were first co-registered to an 

in-plane FLAIR anatomical image then to a high-resolution T1-anatomical image, and 

finally onto the standard MNI brain (ICBM152). 

 Scene selective regions of interest (ROIs) were defined from the localiser data of 

both experiments using the contrast of intact scenes > scrambled scenes.  The intact 

scenes share the same amplitude spectra with their phase scrambled counterparts, thus 

such a contrast provides a clearer control for low-level visual differences than other 

commonly used contrasts such as scenes > objects or scenes > faces.  For instance, 

although scenes and objects / faces differ in their category membership, they also differ 

in a large number of image properties (e.g. spatial frequency, orientation, retinotopic 

eccentricity, etc.).  Given that this experiment aimed to investigate the neural 

representation of image properties, it was important to use the contrast that provided a 

stronger control for such visual differences.  ROIs were defined for the parahippocampal 

place area (PPA), retrosplenial complex (RSC), and occipital place area (OPA) that have 

been reported in previous fMRI studies (Epstein & Kanwisher, 1998; Maguire, 2001; Dilks 

et al., 2013).  Within the MNI-2x2x2mm space, seed points were defined at the peak 

voxels within the intact>scrambled statistical map for each region (PPA, RSC, OPA) in each 

hemisphere.  For a given seed, a flood fill algorithm was used to identify a cluster of 

spatially contiguous voxels around that seed which exceeded a given threshold.  This 

threshold was then iteratively adjusted till a cluster size of approximately 500 voxels was 

achieved (corresponding to a volume of 4000mm3); actual cluster sizes ranged from 499-

502 voxels as an optimal solution to the algorithm was not always achievable. This step 

ensures that estimates of multi-voxel pattern similarity are not biased by the different 

sizes of ROIs being compared.  Clusters were combined across hemispheres to yield 3 
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ROIs, each comprising approximately 1000 voxels.  These regions are shown in Figure 5.2.  

MNI co-ordinates of the seeds are given in Table 5.1.  These seed points had similar 

locations to those reported in previous literature (Table A.1).  

 

Table 5.1. Peak MNI mm co-ordinates, voxel counts, and thresholds of standard 

scene selective clusters (PPA, RSC, OPA). 

Region Hemisphere x y z Voxel count Threshold (Z) 

PPA L -34 -46 -22 500 5.06 

 R 26 -50 -18 500 5.59 

RSC L -18 -52 2 500 4.63 

 R 16 -58 6 502 4.79 

OPA L -36 -90 2 500 5.14 

 R 38 -82 4 499 5.03 

 

Next, we measured patterns of response to different stimulus conditions in each 

ROI.  Parameter estimates were generated for each condition in the experimental scans.  

The reliability of response patterns was tested using a leave-one-participant-out (LOPO) 

Figure 5.2. Illustration of the masks used for the fMRI analyses.  Each mask comprises 

approximately 500 voxels (4000mm3) in each hemisphere.  Slices of MNI brain span the 

range from z = -20mm to z = +20mm in 4mm increments. 
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cross-validation paradigm (Shinkareva et al., 2008; Poldrack et al., 2009) in which 

parameter estimates were determined using a group analysis of all participants except 

one.  This generated parameter estimates for each scene condition in each voxel. This 

LOPO process was repeated such that every participant was left out of a group analysis 

once.  These data were then submitted to correlation-based pattern analyses (Haxby et 

al., 2001, 2014) implemented using the PyMVPA toolbox (http://www.pymvpa.org/; 

Hanke et al., 2009).  Parameter estimates were normalised by subtracting the voxel-wise 

mean response across all experimental conditions (see Haxby et al., 2001).  For each 

iteration of the LOPO cross-validation, the normalized patterns of response to each 

stimulus condition were correlated between the group and the left-out participant.  This 

allowed us to determine whether there are reliable patterns of response that are 

consistent across individual participants. 

 

5.3.6 Statistical Analyses 

A Fisher’s z-transform was applied to the correlation similarity matrices before further 

statistical analyses.  A Bonferroni-Holm correction for multiple comparisons was applied 

across ROIs. 

First, we tested the ability of each region to discriminate the scene categories 

under each level of image scrambling.  For each iteration of the LOPO cross-validation, we 

calculated an average within-category (on-diagonal) and an average between-category 

(off-diagonal) value across categories.  These values were then entered into a paired-

samples t-test.  If scene category can be discriminated based on the pattern of activity it 

elicits, then significantly greater within- than between-category correlations would be 

expected. 

Next, we conducted a series of representational similarity analyses (RSAs; 

Kriegeskorte et al., 2008) to investigate the effects of different levels of scrambling.  

Correlation matrices were averaged across iterations of the cross-validation.  

Representational similarity was assessed by correlating the averaged similarity matrices 

between the intact and locally scrambled conditions, and between the intact and globally 

scrambled conditions.  If the scrambling does not affect the relative similarity between 

http://www.pymvpa.org/
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categories relative to the intact condition, then a significant positive correlation would be 

expected between the intact and corresponding scrambled matrices. 

5.3.7 Behavioural Experiment 

We also tested the ability of participants to recognise the scenes under each level of 

image scrambling.  An independent set of 18 participants naive to the purposes of the 

study were recruited (6 males; mean age: 21.7; age range: 19-39).  Written consent was 

obtained for all participants and the study was approved by the University of York 

Psychology Department Ethics Committee.  Each participant viewed a subset of 1/6th of 

the image set, comprising 6 images from each category.  Subsets were counterbalanced 

across participants.  Participants viewed each image under all three levels of scrambling, 

and to prevent priming effects participants viewed globally scrambled images first, 

followed by locally scrambled images, and finally intact images.  In each trial participants 

were shown an image for as long as they wished and were required to describe the type 

of scene they thought was shown, typing responses into a text box below the image.  

Participants were free to provide any description they wanted, and were also informed 

that they did not have to give a response if they could not reasonably see what type of 

scene was depicted.  Accuracy was coded manually, and a correct response was defined 

as any which could reasonably be seen to accurately describe the corresponding intact 

scene.  Accuracies were converted to proportions and an arcsine square-root transform 

was applied prior to further statistical tests. If participants did provide a description, they 

were next prompted to provide a confidence rating of their decision on a 7 point scale 

(not at all confident - very confident).  Participants were not provided with any 

information about the scene categories prior to the experiment; this is important as 

participants in the fMRI experiment were not given any prior knowledge of the scene 

categories either. 
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5.4 Results 

5.4.1 Behavioural Experiment 

We first tested the effects of the different levels of scrambling on participants’ ability to 

recognise the scenes.  Mean accuracy for each condition is shown in Figure 5.3a.   As 

expected, accuracy was higher for intact (mean = 100 ± 0%) compared to locally 

scrambled (mean = 31.48 ± 3.37%) and globally scrambled images (mean = 4.63 ± 0.86%).  

A one-way repeated measures ANOVA revealed a significant main effect of scrambling 

(F(2,34) = 811.17, p < .001, generalized-ƞ2 = .97).  A series of post-hoc t-tests revealed 

significantly higher accuracies for intact compared to locally scrambled scenes, intact 

compared to globally scrambled scenes, and locally scrambled compared to globally 

scrambled scenes (all p < .001). Participants also provided confidence ratings of their 

descriptions on a scale of 1 (not at all confident) to 7 (very confident).  Median ratings for 

each condition were calculated for each participant and are shown in Figure 5.3b. Similar 

to the accuracy data, confidence ratings were higher for intact (median = 7, IQR = 6 - 7) 

compared to locally scrambled (median = 3, IQR = 2 - 4) and globally scrambled images 

(median = 2, IQR = 2 - 2.5). A Friedman’s ANOVA revealed a significant main effect of 

scrambling (χ2(2) = 32.62, p < .001).  A series of post-hoc Wilcoxon signed-rank tests 

revealed significantly higher confidence ratings for intact than locally scrambled scenes (p 

< .001), intact than globally scrambled scenes (p < .001), and locally scrambled than 

globally scrambled scenes (p = .002).  Thus both types of scrambling significantly impaired 

participants’ recognition and confidence on a scene recognition test. 
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Figure 5.4. Group patterns of response for each condition, restricted to PPA region.  

Responses within each level of scrambling are normalized by subtracting a voxel-wise 

mean across all categories, such that red and blue colours indicate values above and 

below the mean respectively. 

Figure 5.3. Results of the behavioural experiment.  (a)  Mean scene identification 

accuracies for each level of scrambling.  Error bars represent 1 SEM.  (b)  Box-plots of 

median confidence ratings for each level of scrambling. 



 

116 
 

5.4.2 fMRI experiment 

Next, we used fMRI to measure the patterns of neural response to each of the conditions.  

The group normalised responses within the PPA region are shown in Figure 5.4 (red and 

blue colours indicate responses above and below the mean respectively).  Responses 

within the RSC and OPA regions are shown in Figures A.13 and A.14.  Correlation-based 

MVPA (Haxby et al., 2001) using a leave-one-participant-out (LOPO) cross-validation 

scheme was then used to assess the reliability of these responses.  Average correlation 

similarity matrices for each of the ROIs and each of the scrambling types are shown in 

Figure 5.5, with symmetrically opposite points averaged across the diagonal to aid 

visualisation. 

 

Figure 5.5. MVPA results: correlation similarity matrices for each level of scrambling in 

each region of interest.  To aid visualisation, symmetrically opposite points across the 

diagonal have been averaged and displayed within the lower-triangle portion of the 

matrix only. 
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 We first assessed the ability of the MVPA to discriminate the scene categories 

under each of the levels of scrambling.  We calculated within- and between-category 

correlation values averaged across categories for each scrambling type and ROI.  These 

values are shown in Figure 5.6.  Paired-samples t-tests were then used to test for 

differences between within- and between-category correlations; if categories can be 

discriminated based on patterns of brain activity, then significantly greater within- than 

between-category correlations would be expected.  For the intact scenes, significantly 

greater within- than between-category correlations were observed in the PPA (t(19) = 

10.90, p < .001, Cohen’s d = 2.44) and OPA (t(19) = 9.89, p < .001, Cohen’s d = 2.21), but 

not in the RSC (t(19) = 0.17, p > .999, Cohen’s d = 0.04).  In the locally scrambled 

condition, significantly greater within- than between-category correlations were found in 

the PPA (t(19) = 5.54, p < .001, Cohen’s d = 1.24) and OPA (t(19) = 4.57, p = .001, Cohen’s 

d = 1.02), but not in the RSC (t(19) = 1.43, p = .498, Cohen’s d = 0.32).  For the globally 

scrambled scenes, no significant differences were seen for any ROI (PPA: t(19) = 0.43, p > 

.999, Cohen’s d = 0.10; RSC: t(19) = 2.20, p = .200, Cohen’s d = 0.49; OPA: t(19) = 2.14, p = 

.200, Cohen’s d = 0.48). 

We next conducted a series of representational similarity analyses (RSAs; 

Kriegeskorte et al., 2008) to test to what extent the two types of scrambling influence the 

representational structure of the responses relative to those of the intact scenes.  The 

group average matrices (each comprising 25 elements) were correlated between intact 

and locally scrambled conditions, and intact and globally scrambled conditions.  If the 

scrambling does not disrupt the representational space, a significant positive correlation 

would be expected with the intact scenes matrix.  A significant positive correlation was 

observed between intact and locally-scrambled scenes in the PPA (r = .72, p < .001), but 

not in the RSC (r = -0.43, p = .132) or OPA (r = .31, p = .250).  A significant positive 

correlation was observed between intact and globally scrambled conditions in the OPA (r 

= .66, p = .002), but not the PPA (r = .40, p = .151) or RSC (r = .21, p = .325).  These results 

are illustrated in Figure 5.7. 
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Figure 5.6. Decoding of categories from MVPA.  Average within-category (on-diagonal) 

and between-category (off-diagonal) values are calculated from the MVPA correlation 

matrices.  Significantly greater within- than between-category correlations indicate 

categories can be successfully decoded (* p < .05, ** p < .01, *** p < .001). 
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Correlation values between intact and scrambled matrices could reflect the 

distinction between higher within-category (on-diagonal) compared to between-category 

(off-diagonal) elements, regardless of the underlying representational structure.  To 

address this issue, we repeated our analyses, but restricted the analysis to only the off-

diagonal elements of the matrices.  A similar pattern of correlations was found both when 

comparing intact and locally scrambled conditions (PPA: r = .66, p = .009; RSC: r = -0.56, p 

= .044; OPA: r = -.15, p > .999), and intact and globally scrambled conditions (PPA: r = .43, 

p = .160; RSC: r = .02, p > .999; OPA: r = .62, p = .019). 

 

 

Figure 5.7. Representational similarity analyses.  Group average MVPA correlation 

matrices (Figure 5.5) are correlated between intact and locally-scrambled conditions, 

and between intact and globally-scrambled conditions.  Shaded regions represent 95% 

confidence intervals (* p < .05, ** p < .01, *** p < .001). 
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5.5 Discussion 

The aim of the present study was to directly determine whether category-selective 

patterns of response in scene-selective regions were better explained by scene category 

or by more basic dimensions of the stimulus.  To address this issue, we compared 

patterns of response to intact and scrambled images. Our hypothesis was that if category-

selective patterns of response reflect the categorical or semantic content of the images, 

there should be little similarity between the patterns of response elicited by intact and 

scrambled images.  On the other hand, if category-specific patterns are based on more 

basic image properties, similar patterns should be elicited by both intact and scrambled 

images. Image scrambling significantly impaired the ability to categorize scenes.  

However, we found distinct and reliable category-selective patterns of response for both 

the intact and scrambled image conditions in the PPA and OPA regions, but not the RSC.   

Moreover, the patterns of response elicited by intact scenes were similar to the patterns 

of response to scrambled scenes.  This was most evident between intact and locally 

scrambled scenes in the PPA, and between intact and globally scrambled scenes in the 

OPA. 

Previous studies have identified distinct patterns of neural response to different 

categories of scene in scene selective regions (Walther et al., 2009, 2011).  These results 

have been taken to suggest that such regions may play a role in the categorisation of 

scenes (Walther et al., 2009). Our results show that categorical patterns of response in 

scene-selective regions are still evident to images with significantly reduced categorical 

information.  This suggests that the topographic organization in regions such as the PPA is 

based on more fundamental properties of the image.    These findings are consistent with 

recent studies in which we have shown that basic image properties of different scene 

categories can predict patterns of response in scene-selective regions (Watson et al., 

2014).  However, because images drawn from the same category are likely to have similar 

lower-level properties, it was unclear from this previous work whether patterns are 

determined primarily by membership of a common category or by the shared lower-level 

image statistics characteristic of that category (Lescroart et al., 2015).  The results from 
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the current study provide more direct evidence that lower-level properties of the image 

can account for patterns of response in scene-selective regions. 

To evaluate the importance of spatial properties in the neural representation of 

scenes, we compared scrambling across the full global extent of the image, or 

independently within local windows of the image.  The local scrambling thus preserves 

the spatial organisation of the original image more than the global scrambling.  In the 

PPA, we found that responses could be discriminated for locally, but not globally 

scrambled scenes.  Furthermore, a representational similarity analysis showed that local 

scrambling, rather than global scrambling best preserved the relative similarity in 

response relative to the intact scenes.  This would suggest that the PPA is sensitive to the 

local spatial organisation of the image, such that responses are more severely disrupted 

by globally scrambling the image.  Such a conclusion would be consistent with previous 

studies demonstrating sensitivity of the PPA to the spatial structure of scenes (Epstein et 

al., 2006; Kravitz et al., 2011; Park et al., 2011), and displaying visual field biases (Arcaro 

et al., 2009; Cichy et al., 2013; Silson et al., 2015).  Indeed, it has been proposed that the 

PPA may support extraction of local spatial geometries of the scene (Epstein et al., 2007a; 

Epstein, 2008), for which local visual features may be important.   

We found that category responses in the OPA could also be discriminated for 

intact scenes and locally scrambled scenes, but not globally scrambled scenes.  However, 

in contrast to the PPA the representational similarity analysis showed that the 

representational structure of the intact scenes was better maintained by the global than 

the local scrambling.  Although the OPA has been causally implicated in the perception of 

scenes (Dilks et al., 2013; Ganaden et al., 2013), its precise functional properties are less 

well established than other scene regions.  It should be noted that the local scrambling 

process does also introduce some disruption to the global features of the image that the 

global scrambling does not; for instance high spatial frequency artifacts are introduced at 

the edges between windows, and the phase coherence of components spanning multiple 

windows is not maintained.  Thus responses in a region sensitive to the global statistics of 

the image may still be disrupted by the local scrambling.  Nevertheless, our results do 

support the idea that OPA responses demonstrate sensitivity to visual features of scenes 

even when scene perception is disrupted.  Furthermore, they suggest a possible 
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functional distinction between PPA and OPA, with the PPA more clearly tuned to the local 

visual features than the OPA. 

In contrast to the PPA and OPA, responses in RSC failed to discriminate the scene 

categories in any of the conditions.  The representational similarity analyses showed that 

neither local nor global scrambling maintained the representational structure relative to 

the intact scenes.  It has been proposed that the RSC may play a role representing the 

scene as part of the wider spatial environment (Epstein et al., 2007a; Epstein, 2008) 

playing a crucial role in spatial memory, navigation and imagery – for example, translating 

between ego- and allocentric spatial representations (Byrne et al., 2007; Vann et al., 

2009).  Such processes may be expected to be less dependent on the immediate visual 

features of the scene, but at the same time are likely to be more severely disrupted by 

impaired perception of the scene.  Thus, it might be expected that scrambling the scene 

would disrupt response patterns relative to those of intact scenes. 

In conclusion, our results demonstrate distinct responses to different categories of 

scenes even when the perception of scene category is severely impaired.  These results 

suggest that semantic category may not be a dominant organizing principle in scene-

selective regions.  Rather, they suggest that the neural representations in these regions 

may be better explained by the statistical properties of the image. 
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Chapter 6 – A Data Driven Analysis Reveals the 

Importance of Image Properties in the Neural 

Representation of Scenes 

 

This chapter is adapted from: Watson, D. M., Andrews, T. J., Hartley, T. (in review). A 

data driven analysis reveals the importance of image properties in the neural 

representation of scenes. 4 

 

6.1 Abstract 

The neural representation of scenes in human visual cortex has been linked to processing 

of semantic and categorical properties (e.g. categorization of indoor versus outdoor 

scenes). However, it is not clear whether patterns of neural response in these regions 

reflect more fundamental visual principles like those that govern the organization of early 

visual cortex.  One problem is that existing studies have involved comparisons between 

stimulus categories chosen by the experimenter, potentially obscuring the contribution of 

more basic visual features. Here, we used a data-driven analysis to select clusters of 

scenes based solely on their image properties.  Although these visually-defined clusters 

did not correspond to conventional scene categories, we found they elicited distinct and 

reliable patterns of neural response, and that the relative similarity of the response 

patterns to different clusters could be predicted by the low-level properties of the 

images.  Local semantic properties of the images failed to explain any additional variance 

in the neural responses of scene-selective regions beyond that explained by the image 

properties.  However, we did find that participants’ behavioural classification of the 

scenes was better predicted by local semantic properties than by image properties. These 

results suggest that image properties play an important part in governing patterns of 

response to scenes in high-level visual cortex and suggest that these patterns are at least 

                                                      
4
 The author, David Watson, designed the experiment, analysed the results, and wrote the article under the 

supervision of Prof. Timothy Andrews and Dr. Tom Hartley. 
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partially dissociated from behavioural responses which are better explained in terms of 

local semantic content. 

 

6.2 Introduction 

Human observers are reliably able to perceive and categorize scenes (for example indoor, 

outdoor) based on their spatial organisation and semantic content.  These processes are 

thought to rely upon a network of regions in the human brain that have been shown to 

respond preferentially to images of spatial scenes (Aguirre & D’Esposito, 1997; Epstein & 

Kanwisher, 1998; Dilks et al., 2013). While studies using univariate fMRI analyses have 

reported comparable overall magnitudes of response within these regions to different 

scene categories (Epstein & Kanwisher, 1998), more recent reports employing 

multivariate techniques have identified distinct patterns of response to different types of 

scene (Walther et al., 2009, 2011; Marchette et al., 2015) suggesting a finer-grained 

organisation within scene-selective regions.   

Although it is clear that participants can perceive and distinguish scene categories, 

and that patterns of neural response reflect categorical distinctions, it is by no means 

obvious that neural responses are systematically organised by semantic category, or that 

the perception of categories and categorical behavioural responses are causally linked to 

such patterns (Lescroart et al., 2015). Indeed, recent studies have suggested that patterns 

of response in scene-selective regions may be better explained in terms of visual 

properties of scenes, related to spatial characteristics, such as openness (Kravitz et al., 

2011; Park et al., 2011) or distance (Amit et al., 2012; Park et al., 2015) rather than by 

semantic category. These studies are not explicit about how the image properties of the 

scene are linked to the patterns of neural response, but work in computer vision indicates 

that semantically-distinct scene categories can be identified on the basis of their low-level 

image statistics.  For example, the visual properties of the image can be used to 

accurately classify different scene categories and derive spatial properties such as 

openness (Torralba & Oliva, 2003).  Recently, we showed that the same visual properties 

also predict the topographic pattern of response in scene-selective regions (Watson et al., 
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2014). Furthermore, we showed that direct manipulations of low-level features have a 

marked effect on the pattern of response in scene-selective regions (Watson et al., 2016). 

These findings suggest that patterns of response in scene-selective regions may be 

determined by more basic dimensions of the stimulus, perhaps similar to those that 

govern the functional topography of early visual cortex, rather than high-level semantic or 

categorical properties.  

To understand how the perception of scene categories might emerge from more 

basic visual characteristics of images, we set out to investigate their contribution to the 

patterns of response in scene selective regions. A fundamental problem in almost all 

univariate and multivariate studies to date is that they have relied on experimental 

designs employing experimenter-defined stimulus categories. This makes it difficult to 

separate the effects of the arbitrary and subjective manipulation of semantic category 

from those driven by correlated image statistics. However, if the underlying 

organisational principles governing patterns of neural response in scene-selective cortex 

draw on such low-level properties, the coupling of neural responses and visual descriptors 

should persist even when the stimuli are selected solely on the basis of their visual 

characteristics.  

In this study, we directly compared the relative contribution of image properties 

and semantic features to the organization of scene-selective regions using a data-driven 

approach in which images are selected based only on their visual content.  We used a 

measure of visual properties (GIST; Oliva and Torralba, 2001) in conjunction with an 

unsupervised learning algorithm to identify clusters of scenes according to their visual 

content.  If scene-selective areas are sensitive to the visual content of scenes 

independent of semantic properties, we would expect to find: 1) distinct patterns of 

response to each scene cluster, 2) the similarity of neural responses to different scene 

clusters is well explained by the similarity of the corresponding visual descriptors, and 3) 

semantic properties of the different scene clusters do not explain any additional variance 

in the neural responses beyond that explained by the visual descriptors. 
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6.3 Methods 

6.3.1 Participants 

20 participants (5 males; mean age: 25.8; age range: 19-34) took part in the experiment.  

All participants were neurologically healthy, right-handed, and had normal or corrected-

to-normal vision. Written consent was obtained for all participants and the study was 

approved by the York Neuroimaging Centre Ethics Committee.   

 

6.3.2 Data-Driven Image Selection 

The experimental stimulus set was generated by an entirely data-driven approach.  In 

order to reflect the high variability of real world scenes we selected images from the 

SUN397 database (Xiao et al., 2010) as this offers a large number (over 100,100 images) 

and diverse range of scenes.  Image properties were measured with the GIST descriptor 

(Oliva & Torralba, 2001) as this has previously been shown to provide a good model of 

neural responses in scene selective regions (Rice et al., 2014; Watson et al., 2014; 

Andrews et al., 2015).  The GIST descriptor uses a vector of 512 values to represent an 

image in terms of the spatial frequencies and orientations present at different spatial 

locations across the image (Figure 6.1a). 

Images were first cropped and resized to the resolution that they would be 

presented at in the experiment (256x256 pixels), and converted to grayscale.  A GIST 

descriptor was then calculated for every image in the SUN database.  GIST vectors were 

next normalised by first scaling each component of the vectors to sum to 1 across images, 

and second by scaling each vector to have a magnitude of 1.  Each image is thus 

represented as a point in a 512-dimensional feature space by its normalised GIST 

descriptor.  Attempting to apply clustering algorithms in such a high-dimensional space 

can be problematic, so we first reduced the dimensionality using principal components 

analysis (PCA).  The first 20 principal components were selected; these explained 70.35% 

of the variance of the original components.  We applied a k-Means clustering algorithm (k 

= 10; Euclidean distance metric) to identify 10 distinct clusters of samples within this 

space, such that samples within a cluster are defined by having similar image properties 

to one another.  Finally, we selected the 24 points nearest the centroid of each cluster as 
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measured by Euclidean distance.  This process is illustrated in Figure 6.1b.  The GIST 

descriptor is not sensitive to colour, so images were presented in greyscale.  Mean 

luminance and visual contrast were equated across images.   Examples of images from 

each cluster are shown in Figure 6.2. 

To help visualise the structure of the points within the feature space, we 

computed a correlation based similarity matrix using a leave-one-image-out cross-

validation procedure.  For each cluster, the principal component vectors were averaged 

across all but one of the images, and the average and left-out vectors correlated within 

and between clusters.  This process was then repeated so that every image was left out 

once.  Figure 6.1c shows the correlations matrix averaged across the cross-validation 

iterations.   We also used multi-dimensional scaling (MDS) to provide a 2D visualisation 

approximating the distribution of samples within the feature space (Figure 6.1d).  PCA, k-

Means, and MDS algorithms were all implemented using the Python Scikit-learn toolbox 

(Pedregosa et al., 2011). 
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Figure 6.1.  GIST clustering process.  (a) The GIST descriptor (Oliva & Torralba, 2001) 

comprises a vector of 512 values that represent the image in terms of the spatial 

frequencies and orientations present within each of 16 spatial locations across the 

image.  (b)  GIST descriptor vectors were calculated for every image in the SUN 

database.  PCA was used to reduce dimensionality down to the first 20 components, 

and a k-Means clustering algorithm then used to select 10 clusters of scenes.  Finally, 

the 24 images nearest the centroid of each cluster were selected to form the final 

stimulus set.  The structure of the feature space is illustrated by the correlations 

similarity matrix (c) and multi-dimensional scaling plots (d). 
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6.3.3 fMRI Experimental Design 

Visual stimuli were back-projected onto a custom in-bore acrylic screen at a distance of 

approximately 57 cm from the participant, with all images presented at a resolution of 

256x256 pixels subtending approximately 10.7° of visual angle.   Images presented in both 

the experiment and localiser runs were taken from the SUN database 

(http://groups.csail.mit.edu/vision/SUN/; Xiao et al., 2010).  Stimuli were presented using 

PsychoPy (Peirce, 2007, 2009). 

During the experimental scan participants viewed images from the 10 scene 

clusters. Images from each condition were presented in a blocked fMRI design, with each 

block comprising 6 images.  Each image was presented for 750ms followed by a 250ms 

grey screen that was equal in mean luminance to the scene images.  Each stimulus block 

was separated by a 9s period in which the same grey screen as used in the inter-stimulus 

interval was presented.  Each condition was repeated 4 times giving a total of 40 blocks.  

To maintain attention throughout the scan participants performed a passive task 

detecting the presence of a red dot randomly superimposed on one of the images in each 

block, responding via a button press. 

Figure 6.2.  Examples of the stimuli from each of the scene clusters. 

http://groups.csail.mit.edu/vision/SUN/
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 An independent localiser scan was used to define scene-selective regions.  During 

the localiser scan, participants viewed images from 2 stimulus conditions: 1) intact scene 

images and 2) phase scrambled versions of the same images in condition 1.  Images from 

each condition were presented in a blocked fMRI design, with each block comprising 9 

images.  Each block was separated by a 9s period in which the same grey screen was 

presented.  Each condition was repeated 8 times giving a total of 16 blocks.  To maintain 

attention participants performed a one-back task detecting the presentation of a 

repeated image in each block, responding via a button press. 

 

6.3.4 Imaging Parameters 

All scanning was conducted at the York Neuroimaging Centre (YNiC) using a GE 3 Tesla 

HDx Excite MRI scanner.  Images were acquired with an 8-channel phased-array head coil 

tuned to 127.72 MHz.  Data were collected from 38 contigual axial slices in an interleaved 

order via a gradient-echo EPI sequence (TR = 3s, TE = 32.5ms, FOV = 288x288mm, matrix 

size = 128x128, voxel dimensions = 2.25x2.25 mm, slice thickness = 3mm with no inter-

slice gap, flip angle = 90°, phase-encoding direction = anterior-posterior, pixel bandwidth 

= 39.06 kHz). In order to aid co-registration to structural images, T1-weighted in-plane 

FLAIR images were acquired (TR = 2.5s, TE = 9.98ms, FOV = 288x288mm, matrix size = 

512x512, voxel dimensions = 0.56x0.56 mm, slice thickness = 3mm, flip angle = 90°).  

Finally, high-resolution T1-weighted structural images were acquired (TR = 7.96ms, TE = 

3.05ms, FOV = 290x290mm, matrix size = 256x256, voxel dimensions = 1.13x1.13 mm, 

slice thickness = 1mm, flip angle = 20°). 

 

6.3.5 fMRI Analysis 

Univariate analyses of the fMRI data were performed with FEAT v5.98 

(http://www.fmrib.ox.ac.uk/fsl).  In all scans the initial 9s of data were removed to reduce 

the effects of magnetic stimulation.  Motion correction (MCFLIRT, FSL; Jenkinson et al., 

2002) was applied followed by temporal high-pass filtering (Gaussian-weighted least-

squared straight line fittings, sigma=15s).  Spatial smoothing (Gaussian) was applied at 

6mm FWHM to both the localiser and experiment runs, in line with previous studies 
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employing smoothing in conjunction with MVPA (Op de Beeck, 2010; Watson et al., 

2014).  Parameter estimates were generated for each condition by regressing the 

hemodynamic response of each voxel against a box-car regressor convolved with a single-

gamma HRF.   Head motion parameters were also included as confound regressors.  Next, 

individual participant data were entered into higher-level group analyses using a mixed-

effects design (FLAME, FSL).  Functional data were first co-registered to an in-plane FLAIR 

anatomical image then to a high-resolution T1-anatomical image, and finally onto the 

standard MNI brain (ICBM152). 

 Scene-selective regions of interest (ROIs) were defined from the localiser data of 

both experiments using the contrast of intact scenes > scrambled scenes.  Because intact 

scenes share the same amplitude spectra with their phase scrambled counterparts, this 

contrast provides a clearer control for low-level visual differences than other commonly 

used contrasts such as scenes > objects or scenes > faces.  For instance, although scenes 

and objects / faces differ in their category membership, they also differ in a large number 

of image properties (e.g. spatial frequency, orientation, retinotopic eccentricity, etc.).  

Given that this experiment aimed to investigate the neural representation of image 

properties, it was important to use the contrast that provided a stronger control for such 

visual differences.  ROIs were defined for the parahippocampal place area (PPA), 

retrosplenial complex (RSC), occipital place area (OPA) that have been reported in 

previous fMRI studies (Epstein & Kanwisher, 1998; Maguire, 2001; Dilks et al., 2013).  

Within the MNI-2x2x2mm space, seed points were defined at the peak voxels within the 

intact>scrambled statistical map for each region (PPA, RSC, OPA) in each hemisphere.  For 

a given seed, a flood fill algorithm was used to identify a cluster of spatially contiguous 

voxels around that seed which exceeded a given threshold.  This threshold was then 

iteratively adjusted till a cluster size of approximately 500 voxels was achieved 

(corresponding to a volume of 4000mm3); actual cluster sizes ranged from 499-502 voxels 

as an optimal solution to the algorithm was not always achievable. This step ensures that 

estimates of multi-voxel pattern similarity are not biased by the different sizes of ROIs 

being compared.  Clusters were combined across hemispheres to yield 3 ROIs, each 

comprising approximately 1000 voxels.  These regions are shown in Figure 6.3.  MNI co-

ordinates of the seeds are given in Table 6.1.  These seed points had similar locations to 

those reported in previous literature (see Table A.1).  
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Table 6.1  Peak MNI mm co-ordinates, voxel counts, and thresholds of standard 

scene-selective clusters (PPA, RSC, OPA). 

Region Hemisphere x y z Voxel count Threshold (Z) 

PPA L -34 -46 -22 500 5.06 

 R 26 -50 -18 500 5.59 

RSC L -18 -52 2 500 4.63 

 R 16 -58 6 502 4.79 

OPA L -36 -90 2 500 5.14 

 R 38 -82 4 499 5.03 

 

Next, we measured patterns of response to different stimulus conditions in each 

experiment.  Parameter estimates were generated for each condition in the experimental 

scans.  The reliability of response patterns was tested using a leave-one-participant-out 

(LOPO) cross-validation paradigm (Shinkareva et al., 2008; Poldrack et al., 2009) in which 

parameter estimates were determined using a group analysis of all participants except 

one.  This generated parameter estimates for each scene condition in each voxel. This 

LOPO process was repeated such that every participant was left out of a group analysis 

Figure 6.3.  Illustration of the masks used for the fMRI analyses.  Each mask comprises 

approximately 500 voxels (4000mm3) in each hemisphere.  Slices of MNI brain span the 

range from z = -22mm to z = +18mm in 4mm increments. 
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once.  These data were then submitted to correlation-based pattern analyses (Haxby et 

al., 2001, 2014) implemented using the PyMVPA toolbox (http://www.pymvpa.org/; 

Hanke et al., 2009).  Parameter estimates were normalised by subtracting the voxel-wise 

mean response across all experimental conditions per fold of the cross-validation (Haxby 

et al., 2001).  For each iteration of the LOPO cross-validation, the normalized patterns of 

response to each stimulus condition were correlated between the group and the left-out 

participant.  This allowed us to determine whether there are reliable patterns of response 

that are consistent across individual participants. 

 

6.3.6 Semantic Model 

We adapted the local semantic concept model proposed by (Greene & Oliva, 2009b) to 

determine the semantic similarity of the scenes.  Objects within each of the scenes were 

manually segmented and labelled using the LabelMe toolbox (Russell et al., 2008).  

Objects were then re-labelled by one of 22 core object labels.  These comprised all 16 

labels employed by (Greene & Oliva, 2009b) (sky, water, foliage, mountain, snow, rock, 

sand, animal, hill, fog, cloud, grass, dirt, manmade object, canyon, and road), plus an 

additional 6 labels (manmade structure, people, footpath / paved area, room interior, 

foodstuff, and vehicle) necessary to fully describe the scenes within our stimulus set.  

Figure 6.4a illustrates this process for an example image.  For each image a vector of 22 

values was constructed where each value indicates the proportion of pixels within the 

image occupied by a given object label (Figure 6.4b).  Each vector was then normalised to 

have a magnitude of 1.  Finally, we constructed a correlation based similarity matrix from 

these vectors using a leave-one-image-out cross-validation procedure as described 

previously (Figure 6.4c). 

http://www.pymvpa.org/
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6.3.7 Behavioural Model 

Participants completed a post-scan behavioural test, following a minimum delay of one 

week after the scan session in order to reduce bias by familiarity with the scenes.  Written 

consent was obtained for all participants and the study was approved by the University of 

York Psychology Department Ethics Committee.  Participants performed a card sorting 

task (Jenkins et al., 2011).  Each participant was provided with a set of printed cards 

depicting one of four subsets of the scene set (60 images; 6 per cluster).  Subsets were 

counterbalanced across participants.  Participants were required to sort the cards into 10 

stacks according to their perceptual similarity so that cards within a particular stack were 

Figure 6.4.  Local semantic concept model (Greene & Oliva, 2009b).  (a)  Objects within 

each of the images in the stimulus set were segmented and labelled using the LabelMe 

toolbox (Russell et al., 2008). Object labels were then reduced to a core set of 22 labels 

sufficient to describe the stimulus set.  (b)  For each image, a vector was calculated 

representing the proportion of pixels in the image occupied by each of the object 

labels.  Vectors were normalised to have an overall magnitude of 1.  (c)  Group average 

similarity matrix calculated by correlating the vectors within and between clusters 

using a leave-one-image-out cross-validation scheme. 
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ones that they perceived to all be similar to one another.  The task was designed to allow 

participants as much freedom as possible to sort the cards however they wished.  The 

precise definition of perceptual similarity was left deliberately vague so as to encourage 

participants to form their own interpretation.   Card stacks were allowed to vary in size, 

and participants were allowed unlimited time to complete the task.  In order to prevent 

the paradigm becoming a memory task, participants were required to stack cards next to 

one another so that they could always be seen. 

 Following the test, the number of cards from each of the scene clusters was 

counted for each of the card stacks.  For each cluster a vector of 10 values was 

constructed representing the counts for that cluster across each of the card stacks.   The 

lower-triangle of a similarity matrix was constructed by taking the dot-product of the 

vectors between each unique pairing of clusters, such that the element at position (i,j) 

represents the dot product between the vectors of the ith and jth scene clusters 

respectively.  Values thus represent the frequency of co-occurrence between pairs of 

scene clusters across card stacks.  This process is illustrated for an example subject in 

Figure 6.7a, and the group average similarity matrix is shown in Figure 6.7b. 

 

6.3.8 Statistical Analyses 

A Fisher’s z-transform was applied to the correlation similarity matrices (GIST, MVPA, 

semantic) before further statistical analyses.  A Bonferroni-Holm correction for multiple 

comparisons was applied across ROIs. 

We first tested the MVPA and semantic models for their ability to decode the 

scene clusters.  For each iteration of the cross-validation, we calculated the average 

within cluster (on-diagonal) and between cluster (off-diagonal) values of the correlations 

matrix.  These values were then entered into a paired-samples t-test.  If scene clusters 

can be discriminated, then significantly greater within than between-cluster correlations 

would be expected. 

We also conducted a series of representational similarity analyses (RSAs; 

Kriegeskorte et al., 2008).  Correlation matrices (GIST, MVPA, semantic) were averaged 

across iterations of the cross-validation, whilst the behavioural dot product matrices were 
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averaged across subjects.  Representational similarity was assessed by correlating the 

averaged similarity matrices between each of the models.  The behavioural model only 

comprises the lower-triangle of the matrix, so only off-diagonal matrix elements were 

compared with this model.  If any model is able to predict any other, a significant 

correlation would be expected between the respective similarity matrices.  In order to 

investigate whether the local semantic concept model is able to explain any additional 

variance beyond the GIST model, we conducted a series of further RSAs using partial 

correlations.  The MVPA correlation matrices were correlated with either the GIST or local 

semantic concept model whilst controlling for the effects of the other model.  If the 

semantic model can explain any variance above and beyond the GIST model, a significant 

partial correlation between the semantic and MVPA models would be expected even 

when controlling for the GIST model.  We also tested partial correlations between the 

behavioural and GIST / semantic models, and between the MVPA and GIST / behavioural 

models in the same manner. 

 

6.4 Results 

A data-driven analysis was used to define scene clusters based on their image properties 

(Figure 6.1).  Examples of images in each cluster are shown in Figure 6.2. It is clear that 

these images do not reflect the typical scene categories commonly used in studies of 

scene perception.  Next, we measured the pattern of neural response in each scene 

region (PPA, RSC, OPA) to the 10 different scene clusters using a blocked fMRI design.  

Figure 6.5 shows the normalised responses within each of the scene-selective regions 

(PPA, RSC, and OPA); red and blue colours indicate responses above and below the voxel-

wise mean respectively.   
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Correlation-based MVPA (Haxby et al., 2001) was used to assess the reliability of 

these responses.  Average correlation similarity matrices for each of the scene regions are 

shown in Figure 6.6a.  We first assessed the ability of the MVPA to discriminate the scene 

clusters by comparing the within-cluster (on-diagonal) and between-cluster (off-diagonal) 

values of the correlation matrices.  Figure 6.6b shows that there were significantly greater 

Figure 6.5.  Group patterns of response restricted to each of the scene-selective 

regions (PPA, RSC, OPA).  Responses are normalized by subtracting a voxel-wise mean 

across all conditions, such that red and blue colours indicate values above and below 

the mean response respectively. 
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within-cluster than between-cluster correlations in the PPA (t(19) = 5.98, p < .001, 

Cohen’s d = 1.34) and OPA (t(19) = 3.98, p = .002, Cohen’s d = 0.89), but not in the RSC 

(t(19) = 0.10, p = .918, Cohen’s d = 0.02).  This shows that there are distinct neural 

responses in both PPA and OPA to the scene clusters defined by the data-driven method. 

Next, we asked whether the similarity in the patterns of neural response to 

different scene clusters could be predicted by the similarity in the low-level image 

properties defined by the GIST descriptor. Using a representational similarity analysis 

(Kriegeskorte et al., 2008), we compared the correlation matrices for each region with the 

GIST correlation matrix.  Results of these analyses are illustrated in Figure 6.6c and show 

that the image properties significantly correlated with neural responses in the PPA (r = 

.65, p < .001), but not the RSC (r = .21, p = .126) or OPA (r = .28, p = .081).  It is possible 

that the correlation between image properties and neural responses in the PPA could be 

driven by the overall more positive on-diagonal than off-diagonal values in both the 

MVPA and GIST correlation matrices.  To address this issue, we repeated our analysis 

using only the off-diagonal elements of each matrix.  The correlation with the PPA 

remained statistically significant (r = .43, p = .008), while neither the correlations with the 

RSC (r = .26, p = .182) or OPA (r = -.04, p = .770) reached significance.  This shows that the 

representational similarity structure of patterns of response in the PPA can be predicted 

by low-level image properties. 
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Figure 6.6.  Main fMRI analyses for each scene region.  (a) MVPA correlation matrices.  

(b) Discrimination of scene clusters by contrasting within over between cluster 

correlation values; error bars represent 1 SEM.  Scatter plots show results of 

representational similarity analyses between the MVPA and:  (c) the GIST and (d) local 

semantic concept correlation models; shaded regions represent 95% confidence 

intervals. 



 

140 
 

 Although images in each cluster were selected on the basis of their visual 

properties, they also convey semantic information.  For instance, scenes containing 

semantically similar objects also tend to be visually similar.  To address this issue, the 

local semantic concept model (Greene & Oliva, 2009b) was used to test the semantic 

similarity of images within and between different clusters (Figure 6.4).  To determine if 

each image cluster conveys distinct semantic information, we compared the within-

cluster (on-diagonal) and between-cluster (off-diagonal) values of the correlation matrix.  

A paired-samples t-test revealed significantly higher within- than between-cluster 

correlations (t(23) = 12.67, p < .001, Cohen’s d = 2.56), indicating that clusters could be 

discriminated based on semantic properties.  We next determined the representational 

similarity between the local semantic properties and the image properties given by the 

GIST analysis.  We found a significant positive correlation between semantic and image 

properties (r = .48, p < .001).  Repeating this analysis with only the off-diagonal elements 

revealed a reduced correlation, but one that was nevertheless borderline significant (r = 

.29, p = .050).  

Next, we asked whether the local semantic properties could predict the patterns 

of fMRI response in scene-selective regions by correlating the respective correlation 

matrices.  Semantic properties significantly correlated with neural responses in the PPA (r 

= .43, p = .003), but not the RSC (r = .04, p = .788) or OPA (r = .16, p = .507).  These results 

are illustrated in Figure 6.6d.  When we repeated our analyses using only the off-diagonal 

elements of the matrices no significant correlations were found for any region (PPA: r = 

.28, p = .193; RSC: r = .11, p = .942; OPA: r = .04, p = .942).  However, as the semantic and 

GIST models are themselves correlated it remains unclear whether the semantic model is 

able to explain significantly more variance in the PPA data above and beyond that already 

explained by the GIST model.  To test this, we repeated our analyses for the PPA region 

using partial correlation to control for the effect of one or the other model.   A significant 

partial correlation was observed between neural responses and the GIST model while 

controlling for the semantic model (r = .56, p < .001).  However, the partial correlation 

with the semantic model while controlling for the GIST did not reach significance (r = .18, 

p = .196).   A similar pattern of results was observed when restricting the analysis to only 

the off-diagonal elements; both when correlating neural responses with the GIST while 



 

141 
 

controlling for the semantic model (r = .39, p = .009), and when correlating neural 

responses with the semantic whilst controlling for the GIST model (r = .17, p = .258).  Thus 

the neural responses were primarily predicted by the GIST model, whilst the semantic 

model did not significantly predict any additional variance.   

 Finally, we tested how each of our models compared to human behaviour.  

Participants completed a card-sorting task in which scenes were sorted into distinct stacks 

according to their perceptual similarity (Jenkins et al., 2011).  A similarity matrix was 

constructed by examining the co-occurrence of each possible pairing of scene clusters 

across each of the subject’s card stacks.  This was calculated by defining a vector for each 

scene cluster denoting the counts across each of the card stacks, and taking the dot 

product between each pairwise combination of vectors (Figure 6.7a).   The average dot 

product similarity matrix is shown in Figure 6.7b.  We first tested the representational 

similarity with the GIST and semantic models.  Because the behavioural similarity matrix 

contains only the lower-triangle, only off-diagonal elements were compared between 

models; results of these analyses are shown in Figure 6.7c-d.  A significant correlation was 

found between the behavioural responses and both the GIST (r = .30, p = .045) and 

semantic models (r = .69, p < .001).  Repeating these analyses as partial correlations 

revealed a significant partial correlation between the behavioural and semantic models 

while controlling for the GIST model (r = 0.66, p < .001).  However, the partial correlation 

between the behavioural and GIST models while controlling for the semantic model failed 

to reach significance (r = 0.14, p = .361).  Thus the behavioural responses were primarily 

predicted by the semantic model. 

We next asked whether the behavioural responses could predict patterns of 

neural response (Figure 6.7e).  Behavioural responses significantly correlated with neural 

responses in the PPA (r = .42, p = .012), but not the RSC (r = .04, p > .999) or OPA (r = -.07, 

p > .999).  In order to compare the unique contributions of the behavioural and visual 

models to the PPA response, we repeated our analyses using partial correlations.  

Significant correlations were observed both when comparing the neural response with 

the GIST whilst controlling for the behavioural model (r = .36, p = .017), and comparing 

the neural response with the behavioural model whilst controlling for the GIST (r = .34, p 
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= .024).  Thus, the visual and behavioural models account for relatively distinct 

components of the variance in the PPA response. 

 

Figure 6.7.  Behavioural experiment method and results.  (a) Illustration of the analysis 

procedure for an example subject.  A matrix of counts (left) was generated for each of 

the scene clusters (columns) against each of the subject’s card stacks (rows).  The card 

stack labels were generated by the subject themselves.  The lower triangle of a 

similarity matrix (right) was then constructed by calculating the dot-product between 

each pairwise combination of columns in the counts matrix.  The group average dot 

product similarity matrix (b) was then compared against the GIST (c), local semantic 

concept (d), and MVPA models (e) in a series of representational similarity analyses.  

Shaded regions on scatterplots indicate 95% confidence intervals. 
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6.5 Discussion 

The aim of this study was to explore the functional organization of scene-selective regions 

in the human brain using a wholly data-driven method.  Clusters of scenes were defined 

objectively by their image properties. Our results show that in the scene-selective PPA 

there are 1) distinct patterns of response to each scene cluster, 2) that the similarity of 

neural responses to different scene clusters is well explained by the similarity of the 

corresponding visual descriptors, and 3) that the semantic properties of the different 

scene clusters do not explain any additional variance in the neural responses beyond that 

explained by the visual descriptors. Together, these results demonstrate a clear link 

between patterns of response in scene-selective regions and low-level image properties. 

 

Patterns of response in PPA are closely related to visual properties 

 We demonstrated that visually defined clusters generated distinct patterns of response 

in the PPA.  Furthermore, responses in the PPA showed a similar representational 

structure to that predicted by a low-level image-based model: the more similar the visual 

properties of each cluster, the more similar the pattern of neural response.   These results 

fundamentally extend those of previous experiments by demonstrating sensitivity to the 

visual properties of the scene, independent of prescribed scene categories. 

Previous studies have revealed distinct patterns of neural response to different 

scene categories within scene-selective cortices (Walther et al., 2009, 2011).  Such 

findings have been taken to suggest a functional organisation that tracks the high-level 

categorical aspects of scenes, and is at least partially independent of image properties.  In 

contrast, later studies have suggested that effects of category may be better explained by 

visual properties of scenes, such as openness (Kravitz et al., 2011; Park et al., 2011) or 

distance (Amit et al., 2012; Park et al., 2015).  However, an important limitation in 

previous studies is the fact that the choice of stimulus conditions was determined by the 

experimenters.  In each case, although the manipulated factors clearly influence the 

neural response, they need not correspond to fundamental organizing principles.  
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The scene clusters used in the current study are essentially arbitrary in terms of 

the scene categories used in classic designs. Our results demonstrate that scene category 

need not be considered the dominant organising principle of scene-selective regions. 

More parsimoniously, the effects of manipulations of scene category on patterns of 

neural response, seen in many earlier experiments, are likely driven by systematic 

variation in the underlying scenes’ image statistics. Indeed, even in the current study, 

when grouping images according to objective visual descriptors, a statistically significant 

relationship between semantic content and visual properties remains, indicating that 

these characteristics cannot be considered entirely independent in natural images.  For 

instance, scene cluster 6 is marked by images with a strong horizontal component across 

the middle of the image, frequently manifested as outdoor scenes with a strong horizon 

line.  Although this is a visual distinction, it also means scenes are frequently associated 

with labels such as “sky” and “cloud”, but less so labels such as “vehicle” or “animal”. 

Critically, however, the semantic properties of each cluster did not account for additional 

variance in representational similarity of the neural response after controlling for visual 

properties.  In contrast, the visual properties of each cluster predicted representational 

similarity in patterns of neural response after controlling for semantic properties. 

 

Behavioural classification is better explained by local semantic object information 

How do visually-organised patterns of responses contribute to perception and 

categorisation? Many previous studies have demonstrated our ability to categorise 

scenes (Schyns & Oliva, 1994; Oliva & Schyns, 1997; Greene & Oliva, 2006; Xiao et al., 

2010; Ehinger et al., 2011).  However, like the earlier neuroimaging research, these 

studies typically rely on tasks that are constrained by the choice of categories. Here, we 

used a card-sorting task that allowed participants a high degree of freedom in choosing 

how to group the scenes used in the fMRI experiment (Jenkins et al., 2011).  If there were 

a direct link between neural responses and perceptual decisions, we might expect a linear 

relationship between representational similarity associated with fMRI responses to scene 

clusters and participants’ behavioural classification of the same items. Indeed, both visual 

and behavioural models were found to significantly predict the representational similarity 

of neural responses in the PPA, and each explained relatively independent components of 
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the variance.  Yet, while the visual descriptor model provided the better account of 

patterns of neural response, the local semantic model explained the most variance in 

participants’ unconstrained behavioural classification of the stimuli, suggesting a partial 

dissociation between the mechanisms driving patterns of neural response in PPA and 

those responsible for categorical perception. 

 

Patterns of response in other scene selective regions 

Our most significant positive findings concern the PPA, but we found interesting 

differences in the response profiles between other scene-selective regions (OPA, RSC). 

RSC responses failed to discriminate the visually-defined scene clusters, and the 

representational similarity structure in this region was not predicted by any of the models 

tested.  Previous studies have identified complimentary but distinct roles for the PPA and 

RSC (Byrne et al., 2007; Epstein & Higgins, 2007; Epstein et al., 2007a; Epstein, 2008; Park 

& Chun, 2009; Marchette et al., 2014, 2015), with the PPA proposed to be involved in 

processing the spatial features in the immediate visual environment, while the RSC 

focuses more on integrating the scene within the wider spatial environment, and in 

mediating translations between egocentric and allocentric representations.  Our results 

are consistent with this view since the GIST descriptor captures the critical (image-based, 

egocentric) spatial variables that are thought to underlie scene perception (Torralba & 

Oliva, 2003), but may be less directly relevant to the more abstract representations 

required for the integration of scenes within the wider environment and the extraction of 

allocentric information. 

A somewhat different pattern of results was observed in the OPA.  Although 

showing distinct and reliable patterns of response to different scene clusters, these only 

weakly maintained the representational similarity predicted by the GIST descriptor.  

Furthermore, neither local semantic concept nor behavioural models predicted the 

representational similarity structure seen in OPA responses.  These findings are consistent 

with a proposal for a hierarchical network of scene processing in which more posterior 

regions such as the OPA are sensitive to visual properties in scenes, but are perhaps less 



 

146 
 

selective for spatially diagnostic features than more anterior regions such as the PPA 

(Kravitz et al., 2011; Park et al., 2011; Dilks et al., 2013). 

 

Conclusion 

In conclusion, we describe a method for data-driven clustering of scenes based on their 

image properties.  This overcomes limitations of more traditional experimental designs in 

which scene stimuli are subjectively allocated to predefined categories.  We demonstrate 

that scene selective regions, in particular the PPA, display a clear sensitivity to the low-

level visual properties of scenes, independent of prescribed scene categories.  Local 

semantic properties of the scene are correlated with visual properties, but fail to explain 

additional variance.   However, behavioural classification of the scenes was better 

explained in terms of local semantic properties than image properties. Overall the results 

underscore the importance of visual features in functional responses of scene-selective 

regions of the human brain, and suggest that scene category need not be the dominant 

organising principle. 
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Chapter 7 – General Discussion 

 

Human observers are able to rapidly perceive and extract the key spatial components of 

visual scenes – the so called scene gist (Oliva & Torralba, 2001; Torralba & Oliva, 2003).  

Indeed, observers are able to reliably perceive and categorise scenes even when images 

are presented rapidly (Potter, 1975; Greene & Oliva, 2009a) or under degraded visual 

conditions (Torralba, 2009).  Recent neuroimaging studies have identified a number of 

cortical regions responsive to images of visual scenes, which are thought to underlie our 

ability to perceive scenes.  These regions include the parahippocampal place area (PPA; 

Aguirre & D’Esposito, 1997; Epstein & Kanwisher, 1998), retrosplenial complex (RSC; 

Maguire, 2001; Vann et al., 2009), and the transverse occipital sulcus / occipital place 

area (TOS / OPA; Dilks et al., 2013). 

Whilst the existence of these regions is well established, the precise stimulus 

dimensions underlying their functional organisation remain controversial.  Some accounts 

have argued for relatively high-level accounts based upon categorical or semantic 

properties of the scene, based on the finding that distinct patterns of neural response can 

be observed to different semantic categories of scene (Walther et al., 2009, 2011).  

However, other studies have argued for an organisation based on more mid-level spatial 

envelope properties of scenes (Kravitz et al., 2011; Park et al., 2011).  Other studies still 

have argued for even lower-level accounts based on biases for visual features, such as 

those for spatial frequency (Rajimehr et al., 2011), orientation (Nasr & Tootell, 2012), 

rectilinearity (Nasr et al., 2014), and retinotopy (Malach et al., 2002; Arcaro et al., 2009).  

A complication in this debate has been that many of these features are themselves 

correlated (Lescroart et al., 2015), thus making it difficult to separate out the effects of 

any one account over the others.  For instance, visual features have been shown to be 

predictive of both the spatial content and semantic category of scenes  (Oliva & Torralba, 

2001; Torralba & Oliva, 2003). 

Thus, it remains unclear from previous research what the relative contributions of 

high- and low-level properties of scenes are to the function of scene selective regions.  
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Furthermore, although previous studies have identified low-level visual biases within 

these regions, many of them have employed univariate analyses and so it remains unclear 

to what extent such properties may be reflected in distributed patterns of neural 

response.  Therefore, the primary aims of this thesis were: 

 To determine if low-level visual properties of scenes can predict patterns of neural 

response within scene-selective visual cortices. 

 To test the relative contributions of low-level visual information against high-level 

semantic or categorical information to the pattern of response. 

 To determine the contributions of specific low-level visual properties (i.e. spatial 

frequency, orientation, and retinotopy) to the neural response. 

 To explore whether alternatives to more traditional categorical accounts might 

more parsimoniously explain the function of scene selective cortices. 

To this end, a series of neuroimaging experiments employing fMRI in conjunction with 

multi-variate pattern analysis (MVPA) were conducted to investigate these possibilities.   

 

7.1 The representation of scenes in the brain 

If neural representations of scenes are related to the visual properties of the image, then 

one would expect that neural responses could be predicted by a model of the visual 

features of scenes.  Chapter 3 presented two fMRI experiments that measured the 

patterns of neural response to different categories of scene; city, indoor, and natural 

scenes in the first experiment, and coast, forest, and mountain scenes in the second 

experiment.  The low-level visual properties of the scenes were measured by the GIST 

descriptor (Oliva & Torralba, 2001).  The GIST descriptor is designed to capture the critical 

spatial features of scenes, and the key visual features measured by the GIST (spatial 

frequency, orientation, and retinotopy) map on to known tuning properties of neurons in 

visual cortex (Wandell & Winawer, 2011), thus providing a neurologically plausible model 

of visual statistics.  Representational similarity analyses showed that, in both 

experiments, the GIST descriptor was able to predict the relative similarity between 

neural response patterns to the different scene categories. 
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It should be noted that the GIST descriptor is not the only image descriptor 

available – other popular algorithms include the HMAX model (Riesenhuber & Poggio, 

1999), HOG descriptor (Dalal & Triggs, 2005), and SIFT descriptor (Lowe, 2004).  However, 

it was beyond the scope of this thesis to provide a comprehensive comparison of the 

different visual descriptors, and thus the GIST was the only model tested.  Nevertheless, 

the GIST remains a good choice of model for a number of reasons.  Firstly, the GIST is 

theoretically motivated for scene processing, which many other models are not, and 

indeed the GIST has been demonstrated to successfully discriminate scenes 

computationally (Oliva & Torralba, 2001).  Secondly, the GIST model is neurologically 

plausible and thus overcomes the limitations of previous experiments that used less 

plausible image models, such as pixel correlations (e.g. Walther et al., 2009).  Finally, the 

simplicity of the GIST model and the relatively coarse-scale at which it samples the image 

may provide a good correspondence to the relatively coarse-scale at which fMRI samples 

the neural response.  This contrasts with other models such as the HMAX which, although 

neurologically plausible, nevertheless aim to provide a model of the image closer to the 

resolution of individual neurons. 

 Although these results do lend support to the importance of low-level visual 

features, they do nevertheless remain correlational.  The use of distinct scene categories 

in the design of these experiments necessarily confounded the effects of visual properties 

with those of scene category.  To address this, Chapter 4 presented a further two fMRI 

experiments in which visual properties of the stimuli were directly manipulated.  In the 

first of these, scenes were filtered between horizontal and vertical orientation content, 

whilst the second of these filtered the scenes between low and high spatial frequency 

content.  Importantly, both experiments employed a 2x2 design in which the relevant 

levels of filtering were applied across two scene categories (indoor and natural), thus 

allowing a direct comparison of the effects of visual filter and category.  In the first of 

these experiments, little to no effect of the orientation content was seen upon the neural 

response patterns.  This does not necessarily mean that orientation is not represented by 

scene selective regions (indeed other recent reports have suggested orientation biases 

within these regions, e.g. Nasr & Tootell, 2012; Nasr et al., 2014), but may suggest that 

these properties are not represented in the distributed patterns of response measured by 
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the MVPA technique.  It should also be noted that Nasr & Tootell (2012) reported a bias 

of cardinal over oblique orientations, which would not have coincided with the horizontal 

and vertical orientation distinction used in this experiment.  By contrast, the second of 

these experiments revealed a highly significant effect of spatial frequency in all regions of 

interest.  Furthermore, the magnitude of this effect was found to be significantly greater 

than the effect of category in the both the overall scene selective region and the OPA, 

whilst the PPA and RSC showed more comparable effects of spatial frequency and 

category.  By directly manipulating the visual content of the scenes, this approach 

provides stronger evidence for the influence of visual properties upon the functional 

organisation of scene selective regions.  Although some residual effects of scene category 

were observed in these experiments, this does not necessarily have to reflect direct 

effects of semantic category.  For instance, although the scene categories did differ in 

terms of semantics, they also differed in many other visual features beyond the ones 

manipulated by the filters.  Thus, effects of category here can be thought of as reflecting 

all remaining stimulus dimensions after the effect of the filter has been accounted for, 

and therefore although they could be attributable to high-level semantic differences, they 

could equally well reflect additional sensitivity to the many other visual features that 

differed between the categories. 

 Chapter 5 presented an fMRI experiment testing the contribution of visual 

properties of scenes to the corresponding neural responses under conditions where 

perception of the scene content was disrupted.  Fourier phase scrambling was applied to 

images of scenes from 5 categories (city, coast, forest, indoor, and mountain) either 

globally (across the whole image) or locally (within windows of a 4x4 grid across the 

image).  Both methods of scrambling significantly impaired subjects’ ability to recognise 

the scenes.  Despite the fact that the scrambling severely impaired scene perception, it 

was found that scene categories could nevertheless be discriminated from the neural 

response patterns to the locally scrambled scenes in the PPA and OPA.  Furthermore, a 

series of representational similarity analyses demonstrated that PPA and OPA responses 

to intact scenes were similar to those to the scrambled scenes.  Again, the direct 

manipulation of the visual content of the images here provides strong evidence for the 

role of visual properties in the functional responses of scene regions.  The fact that effects 
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of scene category were observed even when the perception of these categories was 

clearly impaired would suggest that representations are more closely tied to visual 

features of the images that differ reliably between the categories, rather than the 

semantic category itself.  In the case of the PPA, it was also found that responses to the 

intact scenes were more similar to the locally scrambled than the globally scrambled 

scenes, suggesting some sensitivity to the retinotopic distribution of the visual features. 

 The experiments discussed so far all contain one common design choice – that 

scenes are selected from pre-defined categories.  This approach to stimulus selection is 

also extremely common within the literature, almost universal.  However, such design 

decisions can also be problematic as the selection of these categories is necessarily 

subjective and biased by experimenter choices.  Selection of these categories may not be 

justified by the data, i.e. there is not necessarily any reason to assume that “scene 

category” should be the most natural feature along which neural responses should be 

expected to vary.  An experiment that employs conditions following scene categories may 

well demonstrate a significant effect of those categories, but it could not very well have 

demonstrated an effect of anything else if the design does not permit such alternative 

hypotheses to be investigated, and therefore risks obscuring other potentially simpler 

accounts of neural function.   To address these concerns, Chapter 6 presented one final 

fMRI experiment in which scenes were selected objectively based upon their visual 

properties, as measured by the GIST descriptor, thereby avoiding experimenter bias in 

choosing the stimulus conditions.  The resulting clusters of scenes were essentially 

arbitrary in terms of semantic category, but did differ reliably in their low-level visual 

properties.  It was found that patterns of neural response not only successfully 

discriminated the scene clusters, but also modelled a similar representational similarity to 

that predicted by the GIST.  Furthermore, neural responses were better predicted by the 

GIST descriptor than by a model of the semantic object properties of the scene.  These 

results therefore provide strong support for the importance of visual properties in 

determining responses of scene selective regions, whilst arguing against scene category 

being the dominant organising principle of such regions.   Interestingly, the semantic 

object model did prove a better model of human behaviour than the GIST descriptor.  

This suggests a possible dissociation between human behaviour and neural responses, 
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with behaviour more closely tracking semantic / object properties, whilst neural 

responses more closely track visual properties.  However, a significant relationship was 

seen between behavioural and neural responses, indicating this dissociation is only 

partial. 

 Thus, the evidence presented in this thesis would argue against an organisation of 

scene selective regions based upon categorical principles.  Instead, the results would 

seem to favour an account in which neural response patterns are closely tied to the low-

level visual properties of the stimuli.  This conclusion would be consistent with previous 

studies employing univariate analyses that have reported low-level visual biases (Malach 

et al., 2002; Arcaro et al., 2009; Rajimehr et al., 2011; Nasr & Tootell, 2012; Kauffmann et 

al., 2014; Nasr et al., 2014; Silson et al., 2015).  Whilst effects of scene category may be 

evident (Walther et al., 2009, 2011), it seems likely that these are largely accounted for by 

visual features that are known to differ reliably between scenes (Oliva & Torralba, 2001) 

rather than the semantic category per se.  One key problem for more traditional accounts 

is explaining how image-based representations in early visual cortices are transformed 

into semantic or categorical representations in high-level visual cortices (Andrews et al., 

2015).  The results presented in this thesis suggest that such an explanation may in fact 

not be necessary; apparently high-level responses to specific stimulus classes can be 

explained by sensitivity to low-level visual features that are predictive of those classes. 

In light of these results, one open question is: what role is there for non-visual 

properties in the function of scene regions?  It seems possible, if not probable, that 

functional responses would be influenced by top-down neural feedback, and indeed 

studies have noted modulation of responses in ventral-temporal visual cortex by 

attentional and task demands (Harel et al., 2014; Kay et al., 2015).  It is also possible that 

responses could be influenced by lateral connections, for instance in the form of cross-

modal input (Wolbers et al., 2011).  Nevertheless the evidence presented in this thesis 

argues strongly in favour of a dominant role of visual properties, but importantly this 

does not necessarily discount some additional influences of other non-visual properties.   

 It should be noted that the evidence presented here does not suggest that scene-

selective regions are not truly responsive to scenes.  Instead, it suggests a possible 
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mechanism by which such scene-selectivity may arise.  Rather than understanding scene-

selective regions as responding to scenes as a category or a semantic concept, it may be 

that they respond to a combination of low-level visual features (and possibly some non-

visual features) that are themselves predictive of scene content.  Indeed, visual features 

such as those discussed here have been noted to reliably capture the key spatial 

geometries of scenes (Oliva & Torralba, 2001; Torralba & Oliva, 2003).  This conclusion 

would be consistent with Op de Beeck et al.'s (2008) model, in which localised selectivity 

for specific stimulus classes is proposed to arise from the interaction of multiple lower-

level biases mapped across the cortex and which are themselves predictive of each 

stimulus class. 

 

7.2 Functional dissociations between scene regions 

In all experiments, the three core regions of the scene network (PPA, RSC, and OPA) were 

identified.  This allowed examination of the similarities and differences in response 

profiles between each of the regions.  In all experiments, the PPA consistently displayed a 

clear sensitivity to the low-level visual properties of the scenes.  The PPA has been 

proposed to be implicated in the extraction and processing of the local spatial geometries 

of scenes (Epstein, 2008).  Given that low-level visual properties closely relate to the 

spatial structure of scenes (Oliva & Torralba, 2001), the sensitivity of the PPA to such 

features could therefore support its role in such processes. 

 In contrast, responses of the RSC appeared more variable.  Some commonalities 

between responses and visual properties were observed.  For instance, responses could 

be predicted by the GIST descriptor (Chapter 3), and were significantly modulated by the 

spatial frequency content of the image (Chapter 4).  However, RSC responses failed to 

discriminate the different categories of scenes in scrambled images, and little similarity 

was seen between responses to intact and scrambled scenes (Chapter 5).  Furthermore, 

RSC responses also failed to discriminate the objectively selected scene clusters (Chapter 

6).  This would suggest some degree of sensitivity of the RSC to the visual features of 

scenes, but one that is not as ubiquitous as that which is observed for the PPA, for 
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instance.  The RSC has been proposed to play a complementary role to the PPA, but one 

which is nevertheless distinct and focuses on more navigationally relevant processes such 

as locating the immediate visual scene within the wider spatial environment (Epstein, 

2008; Vann et al., 2009).  It is possible that the low-level visual content of the image is less 

important to these higher-level, navigationally relevant processes and thus a partial 

degree of independence from visual features might be expected. 

 Much like the PPA, responses in the OPA consistently displayed sensitivity to the 

visual features of scenes.  In some cases, the magnitude of this effect was quite large – for 

instance the OPA was much more strongly modulated by the spatial frequency content 

than the category information of scenes (Chapter 4).  However, some functional 

differences from the PPA were also observed.  For instance, whilst both the PPA and OPA 

successfully discriminated responses to the objectively defined scene clusters, only the 

PPA responses were also predicted by the representational similarity of the GIST 

descriptor (Chapter 6).  In comparison to the PPA and RSC, much less is known about the 

functional role of the OPA within the scene processing network.  Dilks et al. (2013) 

propose that the OPA may represent an early stage within a hierarchical scene processing 

network, analogous to proposed roles for the occipital face area in the face processing 

network (Haxby et al., 2002).  The results presented here suggest that whilst the OPA may 

maintain sensitivity to the visual features of scenes, it may be less concerned with 

representing those features in terms of the critical spatial dimensions of scenes than the 

PPA is.  Such a conclusion would therefore be consistent with Dilks et al.’s proposal.  

Alternatively, Silson et al. (2015) note upper and lower visual field biases in the PPA and 

OPA respectively, and suggest a complimentary role for the two regions, with each 

representing a continuation of the lateral / ventral divide of regions in early visual cortex 

(e.g. V2v/V2d, V3v/V3d).  Such biases could potentially contribute to the results observed 

here.  For instance, differences in the (non-)stationarity of the visual statistics between 

scenes are often observed primarily in the upper sections of the image, e.g. by the 

presence or absence of sky between different types of scene (Torralba & Oliva, 2003).  

Upper and lower visual field biases might therefore be expected to produce differential 

responses in PPA and OPA regions.  Nevertheless, it seems unlikely that visual field biases 

would be able to wholly explain the observed differences in response between the two 
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regions, and so the existence of some additional functional distinctions between the 

regions seems likely. 

 One potential avenue of future research that may help resolve the functional 

relationships between scene regions would be to further examine their connectivity with 

one another.  In particular, methods with high temporal resolution such as MEG may be 

able to resolve the temporal dynamics of connectivity within the scene processing 

network.  It is conceivable that different stimulus features could exert different influences 

on the functional response across the course of the timeseries.  For instance, a number of 

studies using MEG have reported that responses in occipital and ventral-temporal visual 

cortices represent increasingly complex stimulus features of visual objects over the 

progression of the timecourse in the first few hundreds of milliseconds after stimulus 

onset (Carlson et al., 2013; Cichy et al., 2014; Clarke et al., 2015).  It is therefore possible 

that visual features of scenes may drive functional responses and connectivity within the 

scene network most strongly early in the timecourse, whilst a greater role for other non-

visual features could be seen later in the timecourse. 

 

7.3 Properties of the neural response patterns 

It is frequently stated that the neural patterns informative to MVPA exist at a fine spatial 

scale and are largely idiosyncratic to each individual subject (Haxby et al., 2014).  

However, other studies have argued that patterns may instead be organised at a coarser 

spatial scale (Op de Beeck, 2010; Freeman et al., 2011).  Furthermore, a number of 

studies have successfully employed cross-participant pattern analyses (Shinkareva et al., 

2008, 2011; Poldrack et al., 2009), which would argue against purely idiosyncratic 

response patterns. 

The fMRI experiments presented in Chapter 3 of this thesis reported the results of 

pattern analyses for both spatially smoothed and unsmoothed data, and for both 

individual-participant (cross-validating across odd and even stimulus blocks) and cross-

participant analyses (using a leave-one-participant-out cross-validation scheme).  It was 

found that spatially smoothing the data had little to no detrimental effect upon either the 
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decoding or representational similarity analyses, and if anything spatial smoothing lead to 

a small benefit.  Similarly, results of the cross-participant analyses appeared comparable 

to or slightly better than those of the individual-participant analyses, especially when 

performed upon spatially smoothed data.  In all further fMRI experiments, analyses were 

conducted on spatially smoothed data using cross-participant analyses, with no clear 

detrimental effects.  Thus, counter to common assumptions, the results presented here 

would argue for a functional organisation of scene selective regions based upon coarse-

scale patterns of response that display at least some degree of commonality across 

subjects.  It should be noted that this does not preclude the possibility that there may 

exist further pattern information that is fine-scale and / or idiosyncratic, but it does 

appear that if such information is present then it was not necessary to observe the 

significant differences between the patterns of response, or to measure the 

representational similarity of the patterns, as has been reported in this thesis.  

Nevertheless, it is possible that fine-scale and / or idiosyncratic patterns may be more 

prevalent in other brain regions, or for other experimental designs.  For instance, an 

event-related design in which responses are measured independently for individual 

images might be expected to yield pattern information that is somewhat different to that 

given by measuring relatively generic responses across blocks of many images.  Further 

research investigating the spatial scale and idiosyncrasy of neural response patterns in 

different brain regions and using different experimental methods may therefore be 

required to fully resolve this issue.  

 

7.4 Conclusion 

This thesis aimed to investigate the role of low-level visual properties in the 

representation of scenes in the brain.  A series of fMRI experiments in conjunction with 

multi-variate pattern analyses revealed a clear sensitivity of scene-selective regions to the 

visual content of images, both in terms of responses being predicted by a model of low-

level visual features (GIST), and in terms of responses being modulated by direct 

manipulation of such properties.  This would suggest that scene selectivity in the brain 

may, at least in part, arise from multiple co-occurring biases for low-level visual features 
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that are themselves predictive of scene content.   Although all of the scene regions tested 

(PPA, RSC, and OPA) showed some degree of sensitivity to the visual content of scenes, 

there were nevertheless some differences between each of their response profiles.  The 

PPA showed a clear sensitivity to the visual features of scenes, possibly supporting its 

proposed role in extracting local spatial geometries of visual scenes.  The RSC also 

displayed some sensitivity to visual features, but less so than the PPA, which is possibly 

consistent with its proposed role in higher-level, more navigationally relevant aspects of 

scene processing.  The OPA displayed clear sensitivity to the visual content of scenes, but 

appeared less concerned with representing such information in terms of the critical 

spatial geometries of scenes than the PPA was.  This may suggest a role for the OPA as an 

early region within a hierarchical scene processing network, but this remains uncertain as 

literature on the response properties of the OPA is currently lacking.  Finally, by using 

spatially smoothed data in conjunction with cross-participant analyses, these experiments 

demonstrated that pattern information represented in scene selective cortices can be 

measured in a coarse-scale manner that shows commonality across subjects.  Taken 

together, these results therefore provide a significant contribution to the literature by 

demonstrating selectivity for low-level visual features of images in high-level, scene-

selective visual cortices of the human brain. 
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Appendices 

A.1 Supplementary Figures 

A.1.1 Chapter 3 

 

 

Figure A.2. Patterns of response in Experiment 1 to city, indoor, and natural conditions 

in a representative participant.  Patterns are restricted to regions defined by the 

response of mixed scenes > scrambled scenes.  Red and blue colours indicate values 

above and below the mean respectively. 

Figure A.1. Mask used for ROI analyses given by the group level contrast of mixed > 

scrambled. 
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Figure A.3. Experiment 1: Relationship between fMRI responses in ROI restricted to 

standard scene-selective regions (PPA, RSC, TOS / OPA) and low-level image 

properties.  Within- and between- category correlations for city, indoor, and natural 

conditions as determined by the individual-participant (a) and LOPO (b) MVPA 

analyses.  Scatter-plots (d-e) showing strong positive correlations of the correlation 

matrices in (a) and (b) with (Fig. 3.5c) respectively. 



 

160 
 

 

Figure A.4. Experiment 1: MVPA of unsmoothed fMRI data. (a) IP analysis of main 

scene region (kNN accuracy = 50.0%, t = 3.63, p = .001).  (b) LOPO analysis of main 

scene region (kNN accuracy = 70.83%, t = 8.72, p < .001).  (c) IP analysis of standard 

scene regions (PPA, RSC, TOS/OPA) (kNN accuracy = 52.5%, t = 4.80, p < .001).  (d) 

LOPO analysis of standard scene regions (kNN accuracy = 62.5%, t = 5.34, p < .001). 
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Figure A.6. Patterns of response in Experiment 2 to coast, forest, and mountain 

conditions in a representative participant.  Patterns are restricted to regions defined 

by the response of mixed scenes > scrambled scenes.  Red and blue colours indicate 

values above and below the mean respectively.   

Figure A.5. Experiment 1: Group statistical maps of searchlight analyses using 

individual-participant and LOPO paradigms.  Thresholded Z>2.3, cluster corrected 

p<.05.  Black border indicates the area of the mixed > scrambled mask used for ROI 

analyses. 
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Figure A.7. Experiment 2: Relationship between fMRI responses in ROI restricted to 

standard scene-selective regions (PPA, RSC, TOS / OPA) and low-level image 

properties.  Within- and between- category correlations for coast, forest, and 

mountain conditions as determined by the individual-participant (a) and LOPO (b) 

MVPA analyses.  Scatter-plots (d-e) showing strong positive correlations of the 

correlation matrices in (a) and (b) with (Fig. 3.7c) respectively. 



 

163 
 

 

Figure A.8. Experiment 2: MVPA of unsmoothed fMRI data. (a) IP analysis of main 

scene region (kNN accuracy = 45.8%, t = 2.66, p = .015).  (b) LOPO analysis of main 

scene region (kNN accuracy = 70.0%, t = 7.75, p < .001).  (c) IP analysis of standard 

scene regions (PPA, RSC, TOS/OPA) (kNN accuracy = 45.8%, t = 3.08, p = .006).  (d) 

LOPO analysis of standard scene regions (kNN accuracy = 56.7%, t = 5.80, p < .001). 



 

164 
 

 

  

Figure A.9. Experiment 2: Group statistical maps of searchlight analyses using 

individual-participant and LOPO paradigms.  Thresholded Z>2.3, cluster corrected 

p<.05.  Black border indicates the area of the mixed > scrambled mask used for ROI 

analyses. 
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A.1.2 Chapter 4 

 

Figure A.10. Full unfiltered indoor scene image set. 



 

166 
 

Figure A.11. Full unfiltered natural scene image set. 
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Figure A.12. A flood-fill algorithm was used to identify ROIs for each of the scene-

selective regions (PPA, RSC, OPA) in each hemisphere.  Clusters were defined to 

comprise 200, 300, 400, or 500 contiguous voxels, and then combined across 

hemispheres for each region to yield final ROIs comprising 400, 600, 800, or 1000 

voxels respectively.  The multi-voxel pattern analyses and representational similarity 

analyses were conducted for each ROI independently.  The resulting regression 

coefficients are displayed above; coloured asterisks indicate the significance of the 

corresponding regressors, whilst black asterisks indicate the significance of the 

contrast between the regressors (*** p < .001, ** p < .01, * p < .05).  Error bars 

represent 1 SEM.  In all cases, cluster size is seen to have little effect upon the results 

of the regression analyses. 
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A.1.3 Chapter 5 

 

Figure A.14. Group patterns of response for each condition, restricted to OPA region.  

Responses within each level of scrambling are normalized by subtracting a voxel-wise 

mean across all categories, such that red and blue colours indicate values above and 

below the mean respectively. 

Figure A.13. Group patterns of response for each condition, restricted to RSC region.  

Responses within each level of scrambling are normalized by subtracting a voxel-wise 

mean across all categories, such that red and blue colours indicate values above and 

below the mean respectively. 
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A.2 Supplementary Tables 

A.2.1 Chapter 3 

 

Table A.1. MNI mm co-ordinates (x, y, z) of PPA, RSC, and TOS / OPA 

regions reported in literature. 

  LH RH 

PPA Dilks et al. (2011) -25, -45, -6 27, -45, -8 

 Epstein et al. (1999) -29, -40, -7 23, -40, -7 

 Epstein et al. (2003) -27, -51, -9 31, -48, -12 

 Epstein and Higgins (2007) -19, -37, -8 20, -36, -6 

 Golomb and Kanwisher (2011) -28, -52, -10 28, -51, -12 

 Henderson et al. (2011) -19, -42, -2 23, -41, -3 

 Köhler et al. (2002) -12, -42, -2 21, -35, -11 

 Mullally and Maguire (2011) -27, -42, -12 33, -39, -12 

 O’Craven and Kanwisher (2000) -28, -39, -3 31, -39, -6 

 Park et al. (2007) -26, -42, -12 26, -42, -11 

    

RSC Dilks et al. (2011) -19, -57, 15 21, -56, 6 

 Epstein and Higgins (2007) -10, -59, 8 13, -54, 9 

 Park et al. (2007) -16, -55, 20 15, -51, 22 

 Schinazi and Epstein (2010) -22, -50, 6 17, -53, 12 

    

TOS / OPA Dilks et al. (2011) -34, -78, 27 38, -75, 26 

 Epstein and Higgins (2007) -33, -79, 31 32, -75, 34 

 Hasson et al. (2003) -35, -81, 18 37, -79, 16 

 Levy et al. (2004) -36, -80, 17 36, -78, 19 
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