Parallel Domain Decomposition Preconditioning
for the Adaptive Finite Element Solution of
Elliptic Problems in Three Dimensions

by

Sarfraz Ahmad Nadeem

M.Sc., M.Phil.

Submitted in accordance with the requirements for the degree of
Doctor of Philosophy.

The University of Leeds
School of Computing

August 2001

The candidate confirms that the work submitted is his own and the appropriate
credit has been given where reference has been made to the work of others.

Abstract

A novel weakly overlapping two level additive Schwarz domain decomposition pre-
conditioning algorithm is presented which is appropriate for the parallel finite el-
ement solution of elliptic partial differential equations in three dimensions. This
algorithm allows each processor to be assigned one or more subdomains and, as
with most parallel domain decomposition solvers, each processor is able to solve its
own subproblem(s) concurrently.

The novel feature of the technique proposed here is that it requires just a single
layer of overlap in the elements which make up each subdomain at each level of
refinement, and it is shown that this amount of overlap is sufficient to yield an
optimal preconditioner. The number of elements in this overlap region between
subdomains is O(h™%) as the mesh size A — 0. This is an improvement over the
O(h™?) overlapping elements required to obtain optimality for a conventional two
level additive Schwarz algorithm. The quality and effectiveness of this new algorithm
is examined using both global uniform and local non—uniform refinement with two
representative partitions of the domain 2.

This preconditioning algorithm is then generalized such that the resulting precon-
ditioner is not only suitable for symmetric problems but also for nonsymmetric and
convection—dominated elliptic problems. This generalization, in the absence of the-
oretical or mathematical background, is based on empirical observations. Moreover,
it turns out to be more effective and robust than the original symmetric precondi-
tioning algorithm when applied to symmetric positive definite problems. This gen-
eralized algorithm is tested on symmetric, nonsymmetric and convection—-dominated
partial differential equations, where the number of iterations observed suggests that
the preconditioner may in fact be optimal, i.e. the condition number of the precon-
ditioned systems is bounded as the mesh is refined or the number of subdomains is
increased. Due to non—physical oscillations in the solution of convection—-dominated
problems when discretized by the Galerkin finite element method, unless the size
of elements is sufficiently small, we have extended our implementation of the gen-
eralized preconditioning algorithm to be applicable to systems arising from a more
stable finite element discretization technique based upon streamline diffusion. Nu-
merical experiments for a wide variety of problems are included to demonstrate the
optimal or near—optimal behaviour and quality of this generalized algorithm.

Parallel performance of the generalized preconditioning algorithm is also evalu-
ated and analyzed. All the timings quoted are for a SG Origin 2000 computer and
all software implementations described in this thesis have been coded and tested

using ANSI C and the MPI communication library.

Acknowledgements

First of all, I would like to thank The Almighty for granting me the much needed
strength, energy, courage and will for this study.

My deepest gratitude to my supervisor, Dr. Peter K. Jimack, for the continuous
support, ideas and encouragement he has provided throughout my work on this
thesis. His unlimited availability and guidance, along with his wisdom, will be
warmly remembered forever. It is also a great pleasure and opportunity to thank
him for correcting my poorly drafted chapters of this thesis.

Thanks to my family and friends, both in Pakistan and UK, in particular my
mother, Naseem Akhtar who kept on asking me when you are going to finish and
praying for my success. I'm also in debt to my wife Naheed and daughter Alveenah
(who was born in the middle of this study) for allowing me the time towards this
study which I was supposed to spare for them. I thank all of them for their love and
support.

My gratitude goes to former and present members of the Computational PDE
Unit for providing an excellent research environment, helpful discussions and caring
assistance.

My thanks go to the Support and General Office staff of the School of Computing
who were always happy and ready to help me.

This thesis would not have been possible without the financial support of the

Government of Pakistan in the form of a Quaid-e-Azam scholarship.

i1

Declarations

Some parts of the work presented in this thesis have been published or submitted

for publication in the following articles:

[105] Jimack, P. K. and Nadeem, S. A. A weakly overlapping parallel domain
decomposition preconditioner for the finite element solution of elliptic problems
in three dimensions. In Arabnia, H. R., editor, Proceedings of the 2000 Interna-
tional Conference on Parallel and Distributed Processing Techniques and Applica-

tions (PDPTA’2000), volume 111, pages 1517-1523. CSREA Press, USA, 2000.

[106] Jimack, P. K. and Nadeem, S. A. Parallel application of a novel do-
main decomposition preconditioner for the stable finite element solution of three-
dimensional convection—-dominated PDEs. In Sakellariou, R. et al., editor, Furo—Par
2001 Parallel Processing, Lecture Notes in Computer Science 2150, pages 592—601.
Springer, 2001.

[107] Jimack, P. K. and Nadeem, S. A. A weakly overlapping parallel domain de-
composition preconditioner for the finite element solution of convection-dominated
problems in three dimensions. In Proceedings of International Parallel CFD 2001
Conference, Egmond ann Zee, The Netherlands, 21-23 May 2001. To appear.

[10] Bank, R. E., Jimack, P. K., Nadeem, S. A., and Nepomnyaschikh, S. V.
A weakly overlapping domain decomposition preconditioner for the finite element
solution of elliptic partial differential equations. SIAM Journal of Scientific Com-
puting, 2001. To appear.

[130] Nadeem, S. A. and Jimack, P. K. Parallel implementation of an optimal
two level additive Schwarz preconditioner for the 3-d finite element solution of elliptic

partial differential equations. Int. J. Num. Meth. Fluids, 2001. Submitted.

ii

Contents

1 Introduction 1
1.1 Finite Element Method 1
1.1.1 Galerkin Finite Element Method 2
1.1.1.1 Piecewise Linear Finite Elements 4

1.1.1.2 Higher Order Finite Elements 6

1.1.2 Petrov—Galerkin Finite Element Method 8

1.2 Mesh Adaptivity 10
1.2.1 h-Adaptivity 11
1.2.2 r-Adaptivity. 12
1.2.3 p-Adaptivityo 12

1.3 TETRAD 13
1.3.1 Description 13
1.3.2 Data structure oo 14
1.3.2.1 Data Objects 14

1.3.2.2 Further Details 15

1.3.3 Adaption Algorithm o0 16
1.3.4 Adaption Controlo 19

1.4 Parallel Computer Architecture 20
1.4.1 Backgroundo 20

1.4.2 The Classical von Neumann Machine 21
1.4.3 Pipeline and Vector Architecture 22
1.4.4 SIMD Systems 22
1.4.5 General MIMD Systems 22

v

Contents

1.4.5.1 Shared Memory MIMD 23

1.4.5.2 Distributed Memory MIMD 23

1.5 Message Passing Interface 25
1.5.1 Startup 25

1.5.2 Point to Point Communication 26

1.5.3 Collective Communication 27

1.5.4 Some Miscellaneous Functions 28

1.6 Parallel Finite Element Method 29
1.6.1 Parallel Sparse Matrix Assembly 29

1.6.2 Direct Solvers 31
1.6.2.1 General Methods 32

1.6.2.2 Frontal Methods 32

1.6.2.3 Multifrontal Methods 33

1.6.3 Tterative Solvers 34
1.6.3.1 Stationary Methods 34

1.6.3.2 Nonstationary Methods 35

1.6.4 Parallel Solution L. 37
1.6.4.1 Matrix—Vector Product 38

1.6.4.2 Inner Product 39

1.7 Preconditioning Lo 40
1.8 Contents of Thesis oL 46
Domain Decomposition 49
2.1 Domain Decomposition Solution Methods 19
2.2 Schwarz Alternating Methods 51
2.2.1 Multiplicative Schwarz Procedure 52
2.2.2 Additive Schwarz Procedure 54

2.3 Schur Complement Methods 56
2.3.1 Direct Substructuring Methods 57
2.3.2 Iterative Substructuring Methods 60
2.3.3 Finite Element Tearing and Interconnecting Method 61

Contents

2.4 Domain Decomposition: A Brief Review 65
2.5 Mesh Partitioning L oo 68
2.6 Graph Partitioning L oL 70
2.6.1 Geometric Techniques, 71
2.6.2 Spectral Techniques. L. 72
2.6.3 Graphical Techniques 73
2.6.4 Some Miscellaneous Techniques 74
2.6.5 Graph Partitioning Software 75

3 A Symmetric Weakly Overlapping Additive Schwarz Preconditioner 78

3.1 Introduction 78
3.2 Theory 80
3.3 The Preconditionero Lo 84
3.4 Implementationo 89
3.5 Restriction o 95
3.5.1 Setup Phase o oo 96
3.5.1.1 Data Collection 96

3.5.1.2 Matching of Coarse and Fine Meshes 99

3.5.2 lteration Phase L. 103
3.5.2.1 Coarsening o 104

3.5.2.2 How to Treat Green Nodes 106

3.6 Preconditioning Solve oL oo 107
3.6.1 Choice of Best Sequential Solver 108

3.7 Interpolation 110
3.7.1 Setup Phase o oo 110
3.7.2 lteration Phase 000 111
3.7.2.1 Prolongation 112

3.8 Computational Results 114
3.8.1 Uniform Refinement 115
3.8.2 Non—Uniform Refinement 117

3.9 Discussion e 119

vi

Contents

4 A Generalized Nonsymmetric Additive Schwarz Preconditioner 121

4.1 Introductiono 122
4.2 The Preconditionero oo 124
4.3 Implementation L oo 125
4.4 Application to Symmetric Problems L. 128
4.4.1 Uniform Refinement 128
4.4.2 Non-Uniform Refinement 131
4.4.3 Generalized Preconditioner: Pros and Cons 132

4.5 Application to Nonsymmetric Problems 133
4.6 Convection—Dominated Problems 136
4.6.1 Computational Results 138

4.7 Streamline—Diffusion Method 142
4.7.1 Computational Results 144

4.8 Local Adaptivity 147
4.9 DIscussion e e e 149
5 Parallel Performance 152
5.1 Assessment of Parallel Performance 153
5.1.1 Decomposition 0 Lo 154
5.1.2 Communication o000 155
5.1.3 Load Balancing 157
5.1.4 Parallel Overhead, 160

5.2 Sample Executiono o oo 161
5.3 Discussion e e 170
6 Conclusion and Future Directions 173
6.1 Summary 173
6.2 Future Directionso 174

vil

List of Figures

1.1
1.2
1.3
1.4
1.5
1.6
1.7

2.1
2.2

3.1

3.2
3.4
3.5
3.6
3.7
3.8
3.9

Triangular elements (in 2-d) of various degrees. 7
Tetrahedral elements (in 3—-d) of various degrees. 7
Orphan edges (dashed lines) produced by refinement. 16
Regular refinement of one tetrahedron into 8 tetrahedra. 17
Green refinement of one tetrahedron into 6 tetrahedra. 18
Knock—on effect of green refinement (two dimensional example). . . . 19
Partition of a computational domain into 16 subdomains. 30
Decomposition into overlapping and non—overlapping subdomains. . . 50
Schwarz’s original figure. L o o 66

Uniform (top) and Hierarchical (bottom) refinement in the overlap

TEEIOM. . v v v vt e e e e e e e e 85
Refinement without (top) and with (bottom) transition green elements. 91
Uniform refinement of subdomain 2; owned by processz. 94
Data sets sent by process 1 = 0 to every other process 7. 97
Data sets received by process ¢ = 0 from every other process 5. 99
Refinement tree: Refinement levels between 0 and 3.. 102
Coarsening of a residual vector. 106
Prolongation of a solution vector. 113

Domain partitioning strategies for 2, 4, 8 and 16 subdomains: re-
cursive coordinate bisection (RCB) partitions (left) and anisotropic

partitions (right). oo 114

Vviil

List of Figures

4.1
4.2

4.3

5.1

5.2

5.3

Solution plot for u given by (4.17) and e =0.01.
Analogous solution plot for a two—dimensional generalization of Fig-
ure 4.1, . . L
Solution plot when u is a function of z only, convection is dominating

along x—axisand e =0.01. oL

Communication required by a typical processor for our implementa-
tion of the two level additive Schwarz preconditioner (left), and the
communication required by the same processor when the coarse grid
solve is undertaken on a single processor (right).
Global uniform refinement of three representative subdomains in an
isotropic partition.
Two representative subdomains and their neighbouring subdomains
for the RCB partition of 2 = (0,2) x (0,1) x (0,1) into sixteen sub-

domains.

139

1x

List of Tables

3.1 The number of GMRES iterations at different levels of refinement
required to reduce the residual by a factor of 10°, the infinity norm
of the error and the L; norm for Test Problem 1 using the RCB
partitioning strategy.o oL 116
3.2 The number of GMRES iterations at different levels of refinement
required to reduce the residual by a factor of 10°, the infinity norm of
the error and the Ly norm for Test Problem 1 using the anisotropic
partitioning strategy. oL 116
3.3 The number of GMRES iterations at different levels of refinement
required to reduce the residual by a factor of 10°, the infinity norm
of the error and the L; norm for Test Problem 2 using the RCB
partitioning strategy. L oL 117
3.4 The number of GMRES iterations at different levels of refinement
required to reduce the residual by a factor of 10°, the infinity norm of
the error and the Ly norm for Test Problem 2 using the anisotropic
partitioning strategy. Lo oL 117
3.5 The number of GMRES iterations at different levels of refinement
required to reduce the residual by a factor of 10°, the infinity norm
of the error and the L; norm for Test Problem 3 using the RCB

partitioning strategy. Lo oL 118

List of Tables

3.6

4.1

4.2

4.3

4.4

4.5

4.6

The number of GMRES iterations at different levels of refinement
required to reduce the residual by a factor of 10°, the infinity norm of
the error and the Ly norm for Test Problem 3 using the anisotropic

partitioning strategy. oo 118

The number of GMRES iterations at different levels of refinement to
reduce the residual by a factor of 10°, plus the infinity norm and the
two norm of the error, for Test Problem 1 using the RCB partitioning
strategy. 129
The number of GMRES iterations at different levels of refinement
to reduce the residual by a factor of 10°, plus the infinity norm and
the two norm of the error, for Test Problem 1 using the anisotropic
partitioning strategy.o oL 129
The number of GMRES iterations at different levels of refinement to
reduce the residual by a factor of 10°, plus the infinity norm and the
two norm of the error, for Test Problem 2 using the RCB partitioning
strategy. 130
The number of GMRES iterations at different levels of refinement
to reduce the residual by a factor of 10°, plus the infinity norm and
the two norm of the error, for Test Problem 2 using the anisotropic
partitioning strategy. Lo oL 130
The number of GMRES iterations at different levels of refinement to
reduce the residual by a factor of 10°, plus the infinity norm and the
two norm of the error, for Test Problem 3 using the RCB partitioning
strategy. 131
The number of GMRES iterations at different levels of refinement
to reduce the residual by a factor of 10°, plus the infinity norm and
the two norm of the error, for Test Problem 3 using the anisotropic

partitioning strategy.o oL 132

x1

List of Tables

4.7

4.8

4.9

4.10

4.11

4.12

4.13

The number of GMRES iterations at different levels of refinement to
reduce the residual by a factor of 10°, plus the infinity norm and the
two norm of the error, for Test Problem 4 using the RCB partitioning
strategy. Lo
The number of GMRES iterations at different levels of refinement
to reduce the residual by a factor of 10°, plus the infinity norm and
the two norm of the error, for Test Problem 4 using the anisotropic
partitioning strategy. Lo L
The number of GMRES iterations at different levels of refinement to
reduce the residual by a factor of 10°, plus the infinity norm and the
two norm of the error, for Test Problem 5 using the RCB partitioning
strategy. L
The number of GMRES iterations at different levels of refinement
to reduce the residual by a factor of 10°, plus the infinity norm and
the two norm of the error, for Test Problem 5 using the anisotropic
partitioning strategy. Lo
The number of GMRES iterations at different levels of refinement
required to reduce the residual by a factor of 10°, plus the infinity
norm and the two norm of the error, for Test Problem 6 using the
RCB partitioning strategy and e = 1.0 x 107,
The number of GMRES iterations at different levels of refinement
required to reduce the residual by a factor of 10°, plus the infinity
norm and the two norm of the error, for Test Problem 6 using the
RCB partitioning strategy and e = 1.0 x 1072,
The number of GMRES iterations at different levels of refinement
required to reduce the residual by a factor of 10°, plus the infinity
norm and the two norm of the error, for Test Problem 6 using the

RCB partitioning strategy and e = 1.0 x 107,

135

135

136

136

x11

List of Tables

4.14

4.15

4.16

4.17

4.18

4.19

4.20

The number of GMRES iterations at different levels of refinement
required to reduce the residual by a factor of 10°, plus the infinity
norm and the two norm of the error, for Test Problem 6 using the
anisotropic partitioning strategy and e = 1.0 x 107,
The number of GMRES iterations at different levels of refinement
required to reduce the residual by a factor of 10°, plus the infinity
norm and the two norm of the error, for Test Problem 6 using the
anisotropic partitioning strategy and e = 1.0 x 1072,
The number of GMRES iterations at different levels of refinement
required to reduce the residual by a factor of 10°, plus the infinity
norm and the two norm of the error, for Test Problem 6 using the
anisotropic partitioning strategy and e = 1.0 x 1072,
The number of GMRES iterations at different levels of refinement
required to reduce the residual by a factor of 10°, plus the infinity
norm and the two norm of the error, for Test Problem 6 using the
RCB partitioning strategy and e = 1.0 x 107,
The number of GMRES iterations at different levels of refinement
required to reduce the residual by a factor of 10°, plus the infinity
norm and the two norm of the error, for Test Problem 6 using the
RCB partitioning strategy and e = 1.0 x 1072,
The number of GMRES iterations at different levels of refinement
required to reduce the residual by a factor of 10°, plus the infinity
norm and the two norm of the error, for Test Problem 6 using the
RCB partitioning strategy and e = 1.0 x 1072,
The number of GMRES iterations at different levels of refinement
required to reduce the residual by a factor of 10°, plus the infinity
norm and the two norm of the error, for Test Problem 6 using the

anisotropic partitioning strategy and e = 1.0 x 107*.

x1il

List of Tables

4.21

4.22

4.23

5.1

9.3

5.4

The number of GMRES iterations at different levels of refinement
required to reduce the residual by a factor of 10°, plus the infinity
norm and the two norm of the error, for Test Problem 6 using the
anisotropic partitioning strategy and e = 1.0 x 1072,
The number of GMRES iterations at different levels of refinement
required to reduce the residual by a factor of 10°, plus the infinity
norm and the two norm of the error, for Test Problem 6 using the
anisotropic partitioning strategy and e = 1.0 x 1072,
The number of GMRES iterations at different levels of local refine-
ment required to reduce the residual by a factor of 10°, plus the in-
finity norm and the two norm of the error, for Test Problem 7 (when

e = 0.01) using the anisotropic partitioning strategy..

The performance of the parallel solver for the Galerkin FE discretiza-
tion when solving Test Problem 1 using the RCB partition. The
times are quoted in seconds and the speedups are relative to the best
sequential solution time. oL oL
The performance of the parallel solver for the Galerkin FE discretiza-
tion when solving Test Problem 4 using the RCB partition. The
times are quoted in seconds and the speedups are relative to the best
sequential solution time. L L
The performance of the parallel solver for the stabilized FE dis-
cretization when solving Test Problem 6 using the RCB partition and
e = 1.0 x 1072, The times are quoted in seconds and the speedups
are relative to the best sequential solution time.
The performance of the parallel solver for the stabilized FE discretiza-
tion when solving Test Problem 6 using the anisotropic partition and
e = 1.0 x 1072, The times are quoted in seconds and the speedups

are relative to the best sequential solution time.

X1v

List of Tables

9.9

(&
(@)

5.7

The performance of the parallel solver for the stabilized FE dis-
cretization when solving Test Problem 6 using the RCB partition and

e = 1.0 x 1073, The times are quoted in seconds and the speedups

are relative to the best sequential solution time.

The performance of the parallel solver for the stabilized FE discretiza-
tion when solving Test Problem 6 using the anisotropic partition and

e = 1.0 x 1072, The times are quoted in seconds and the speedups

are relative to the best sequential solution time.

The performance of the parallel solver for the stabilized FE discretiza-
tion when solving Test Problem 7 using the anisotropic partition and

€ = 1.0 x 1072, The times are quoted in seconds and the speedups

are relative to the best sequential solution time.

XV

Chapter 1

Introduction

The development of high speed computers during the second half of the last century
has enormously increased the efficient utilization of numerical techniques for simula-
tions and analysis of complicated systems in every field of science. As a result a new
scientific field of scientific computing has emerged which is a complement to theoret-
ical and experimental science. The exact analytical solution to mathematical models
is possible in limited and simple cases only, whereas approximate solutions for most

of the models of practical importance are determined using numerical techniques.

1.1 Finite Element Method

The Finite Element Method is one of the modern and well known techniques for the
numerical solution of partial differential equations which model a variety of problems
in almost all fields of science and engineering and is one of the most widely used
techniques to approximate the numerical solution of partial differential equations.
The mathematical study of Finite Element Methods (for example, [108]) establishes
the roots of this technique in variational methods introduced at the beginning of
last century. Today finite element methods are extensively used for a large variety
of problems in most of the disciplines of science and engineering.

The basic idea in any numerical technique is to discretize the given continuous

problem, such as partial differential equations or integral equations, to get the corre-

Chapter 1 1.1. Finite Element Method

sponding discrete problem or system of equations with a finite number of unknowns
that may be solved using a computer. In the finite element technique we may
start the discretization procedure by reformulation of the given partial differential
equation to get an equivalent variational problem. The solution of this variational
problem is identical to that of the original problem in the form a of partial differential
equation [46, 108, 136, 144, 165, 181].

To solve a given partial differential equation approximately using a finite element

technique, the four basic steps suggested in [108] are:
1. obtain a variational, or weak, formulation of the given problem,
2. produce a finite element discretization,
3. solve the discrete problem,
4. combine steps 1-3 in a computer implementation of the finite element method.

In the following sections we discuss the finite element discretization of a general

partial differential equation representing the elliptic class of problems.

1.1.1 Galerkin Finite Element Method

The finite element method is a piecewise application of a variational method, the
study of which involves the basic steps described above. The term variational formu-
lation means the weak formulation, which is a recast of the given partial differential
equation to an equivalent integral form by trading the differentiation between the
test function and the dependent vartables. In this thesis we consider a general class
of elliptic problems represented by the following partial differential equation (PDE)

of the form

—eV-(AVu)+b-Vu+cu=f on c R? (1.1)

where A is symmetric and strictly positive-definite, b may be 0 and ¢ > 0) subject to
y yp) Yy J

well-posed boundary conditions: u = ug on I'y , the Dirichlet (essential) boundary

Chapter 1 1.1. Finite Element Method

condition, and n - (AVu) = g on I'y , the Neumann (natural) boundary condition,
such that 90Q =T, UT,, I'' NIy = () and 7 is the outward unit vector normal to I';.

The above equation (1.1) is a linear second order PDE which represents an elliptic
class of PDE arising in large number in the fields of engineering and the physical
sciences. The matrix A and the vector b will be referred to as the diffusion matrix
and the convection vector respectively, and ¢ as the diffusion coefficient (here we
assume ||A|| = 1). In order to solve this elliptic problem, we need its weak form
which is obtained by multiplying this equation by a suitable test function, v say,

and integrating over the entire domain {2 as follows:

—5/92- (AVu)v d + /Q(@-yu)v dQ —I-c/

Q

uv d = / f v dQ. (1.2)
Q

Application of the Divergence Theorem to the above equation (1.2) gives

(b-Vu)v dQ+c/
Q

e /Q (V- (AVu)) dQ—e /8 ((AVw)-)o d5+ /

Q

u v df) =/fde.

R
If we take v € H(Q), the space of all functions whose first derivatives are square
integrable over () and zero everywhere on I'y, then the required weak solution of

equation (1.1), u, must satisfy

5/(2‘0-(/12‘11)) dQ—e/ g v d5+/(§-2u)v dﬂ—l—c/ uvd) = / fodQ, (1.4)
Q T, Q Q Q
where

g=n-(AVu) on T, (1.5)
Let H(Q) be the space of all functions whose first derivatives are square integrable

in the domain € and satisfy Dirichlet boundary condition v = ug on I'y. Then the

resulting weak formulation of equation (1.1) may be written as follows:

Find u € H}; such that

5/9@;-(14@)) dQ—s/F g dS—I—/Q(é-Zu)v dﬂ—l—c/ﬁu v dQ:/va Q) (1.6)

for all v € Hj,.

Chapter 1 1.1. Finite Element Method

1.1.1.1 Piecewise Linear Finite Elements

For the finite element approximation of the solution u in equation (1.6), the domain
 of the problem must be decomposed into a finite number of small non—overlapping
subdomains which are known as elements. Such a decomposition is always possible
provided the boundary of the domain € is not curved, that is, it is a polygon (in
2-d) or polyhedron (in 3-d). However, it is possible to handle domains with curved
boundaries [46, 108, 165]. A collection of such elements, which should cover the
computational domain of the problem, is called a mesh. Assume that the nodes in
the mesh (i.e. the vertices of the elements) are numbered from 0 to N — 1 (note
that C style numbering, starting from 0, will be used throughout this thesis). Thus
there is a total of N nodes in the mesh with N = N; + Ng where N; is the number
of nodes in the interior of the domain 2 or on the Neumann boundary I'y and Ng
is the number of vertices on the Dirichlet boundary I'y. The node numbering in the
interior of the domain €} and at the Neumann boundary I'; is assumed to be first,
followed by the numbering of nodes at the Dirichlet boundary I'y. On each element
the desired solution u of equation (1.6) will be approximated by a linear polynomial.
This choice of linear polynomial is the most simple but higher degree polynomials
can also be used in a similar way (see §1.1.1.2 for further details). Now we define
piecewise linear basis functions ®;(z) at all the node points j = 0,..., N — 1 such

that

1 at node j (i.e. when z is the position vector of node j),

P;(z) =

0 at node k& (i.e. when z is the position vector of node k # j).
(1.7)

In terms of these linear basis functions ®; we can approximate u by u; given in the

form of a linear combination

N-1
un =) u;®;(z), (1.8)
7=0
where u; are unknowns to be determined for 7 =0,..., Ny — 1 and are given by the

Dirichlet boundary condition © = ug for j = Ny,..., Ny + Ng — 1. By substituting

4

Chapter 1 1.1. Finite Element Method

equation (1.8) and v = ®,;(z) for ¢ = 0,..., Ny — | into equation (1.6) an algebraic
system of Nj equations, corresponding to a discretization of the original elliptic

problem, is obtained. This system of equations is given by

N-1 N-1
e u /(m (AY®;)) dQ — 5/ g ®dS+) u /(b Vo,)P; d
7=0 Q Iy 7=0 Q

N-1
Z] o : (L9)

fore=0,...,N;y— 1.

As an alternative, this system of equations can be written as

N]—l
> <5/(zq>i-(Az<1>j)) dQ+/<1>i(@-y<1>j) Q) + c/ D;P; dQ) =
=0 Q Q Q

N-1

=Ny Q Q Q

Q Iy

fore=0,...,N;— 1.

In matrix form this system of equations can be written as
Au=1> (L.11)

where A is the global stiffness matrix of the form

A=K +C+cS (1.12)
and u = (ug,...,un,_1)7.
Here K, with entries
Q
and S with entries
Sij = C/ (I)Z(I)] dQ 5 (114)
Q

are symmetric positive definite and C with entries

C; = / ®;(b- Vo) d (1.15)
Q

5

Chapter 1 1.1. Finite Element Method

is skew—symmetric. Finally, entries of the right-hand side vector b are given by

b = _Niuj G/ﬂ(z@-(/xy@j)) dQ+/

Q

i=Nr ¢
Q I
for 2 = 0,..., N — 1. From the definition of our basis function, we note that the

entries A;; of the matrix A are always zero if the nodes ¢ and j are not mutually
connected through an edge in the mesh. This leads to a matrix with most of its

entries equal to zero. Such a matrix is generally referred as sparse matriz.

1.1.1.2 Higher Order Finite Elements

In the previous subsection piecewise linear finite elements are used to derive the
system of linear equations (1.11). For the purpose of completeness, in this subsection
we introduce some common higher order finite elements. Once we have at our
disposal a variety of elements of different shapes and orders, it is possible to choose
appropriate elements for a given problem.

The linear (four-node) tetrahedral element was used in §1.1.1.1. Higher order
tetrahedral elements, that is, with interpolation functions of higher degree, can be
used in a similar way. To make the development of higher order elements systematic
and easy to understand, we begin by considering triangular elements (in 2—-d). Here,
Pascal’s triangle may be used to describe the development of triangular elements
corresponding to polynomials of various degrees in two coordinates = and y. A
few such elements for polynomials of degree between zero and three are shown in
Figure 1.1. Each marked point (node) defines the position of a degree of freedom and
so in each case a local basis function may be defined by using the unique polynomial
®; which is one at node j and zero at all other nodes.

In general, a pth—order triangular element has n nodes with

n= 50+ o +2) (1.17)

Chapter 1 1.1. Finite Element Method

AVAVAYL

Figure 1.1: Triangular elements (in 2—-d) of various degrees.

and a complete polynomial of degree p may be written as

n

n—1
u(z,y) = Zaiﬂys = Zujq)j, r+s<p (1.18)
7=0

i=0

Analogous to these triangular elements, rectangular and convex quadrilateral
elements can also be developed from Pascal’s triangle. Since a linear rectangular
element has four corners a general pth—order rectangular element has n nodes given

by
n=(p+1)? (p=0,1,...). (1.19)
The above ideas can easily be extended to three dimensions where Pascal’s tri-
angle takes the form of a Christmas tree [144] and the elements are tetrahedra. Such

tetrahedral elements for polynomials of degree between zero and three are given in

Figure 1.2

4444

Figure 1.2: Tetrahedral elements (in 3-d) of various degrees.

Chapter 1 1.1. Finite Element Method

A general pth—order tetrahedral element has n nodes given by
1
n=cp+1)p+2)p+3) (1.20)

and the corresponding polynomial of degree p may be written as

n n—1
u(z,y,z) = Z ax"y st = Zujq)j, r+s+t<p. (1.21)
1=0 7=0

A similar extension to the corresponding prism (or brick) elements in three di-

mensions is also possible.

1.1.2 Petrov—Galerkin Finite Element Method

An important topic of interest for researchers of numerical analysis is to be able
to solve convection—-dominated problems efficiently and accurately. It is also un-
derstood that applications of standard finite element methods to such problems
typically lead to non—physical oscillations of the numerical solution when the mesh
is not sufficiently refined in regions of rapid change in the solution [88]. Such so-
lution regions usually occur because of shock waves or boundary layers [164]. A
number of stabilization techniques are available in the literature [65, 81, 88, 100,
108, 109, 129, 142, 143] which result in a modified system of linear algebraic equa-
tions that may be solved efficiently to yield non-oscillatory solutions on all meshes.
The streamline—diffusion method is one of these existing techniques.

Recall that the general elliptic problem (1.1) is a convection—diffusion problem
for the bounded domain @ C R? with ¢ representing the magnitude of diffusivity
and the vector b = (b,,b,,b,)’ representing convection. When 0 < & << ||b]| the
dominance of the convection term poses difficulties to the standard Galerkin finite
element method [136, 144, 165, 181], making the approximation (1.10) unstable:
typically oscillations are observed in solution boundary layers in the absence of a
sufficiently fine mesh. Amongst the other possible solutions, such as introducing a
highly refined mesh in specific regions (e.g. [163, 164]) to capture such features more
accurately, it is possible to stabilize the discretization by introducing some diffusion

in accordance with the direction of streamlines [65, 81, 88, 100, 108, 109, 129]. This

8

Chapter 1 1.1. Finite Element Method

is achieved by using a Petrov—Galerkin approach, where the test function and trial
function are no longer identical. For example we may replace the test function ®;
in equation (1.9) with a new test function

where « is stabilization parameter. The introduction of the new test function makes
the finite element method non—conforming. However evaluation in an element—wise
manner makes the non—conforming term disappear when, as in this example, ®; is

piecewise linear. This yields the following discrete form:

N-1
5Z‘uj/(y<1>i-(Ay<bj)) dﬂ—z—:/ g, ds—m/ g(b-NV®;)dS
e Q Iy Iy
N-1 N-1
+Zuj/<1>i(@-yq>j) dQ—I—ozZuj/(é-zq)i)(é-z(Dj)dQ
7=0 Q 7=0 Q

N-1 N-1
—I-Czu]'/ (I)Z (I)] dQ—I—caZu]/(QZCDZ)(I)] df2
j=0 79 j=0 79

= / f®; dQ + a/ f(b-V&,)dQ, (1.23)
Q Q
fore=0,...,N;y— 1.
Ultimately this system of equations in matrix representation takes the same form
as given by equation (1.11) with a modified global stiffness matrix A of the form
A=eK+C+cS+ald, (1.24)

where K, C and § are exactly same as in equation (1.12) and ¢ has entries

Similarly, with the introduction of new terms, entries of the right-hand side vector

can be expressed as

bi:/f<I>idﬂ+a/f(§-2<1>i)dﬂ—|-e/ gCI)Z-dS—I—ea/ g(b- V®,)dS
Q Q I

Iy

—§ uj <5/Q(z<1>i-(qu>j)) dﬂ+/9q>i(@-chj) dQ+c/Q<I>Z- ®; dQ)
—a]ii uj </Q(@-zq>i)(@-yq>j)dﬂ + c/ﬂ(@-y@i)qy dﬂ) . (1.26)

Chapter 1 1.2. Mesh Adaptivity

It is to be noted that for o = 0 we get the original system of equations (1.10). It can
be shown, [142, 143], that a solution of equations (1.23) can be obtained efficiently

with an iterative solver under the assumption that
a=— (1.27)

where 6 > 0 is a tuning parameter. Description of how best to chose this tuning
parameter is postponed until Chapter 4 where the implementation of this technique

is discussed.

1.2 Mesh Adaptivity

As the number of unknowns in a domain €2 grows the finite element solution over 2
should become more accurate. A dense mesh therefore may provide a sufficiently ac-
curate solution throughout the domain). However, this is not only expensive com-
putationally but inefficient too as it involves solving the problem for all unknowns,
many of which may not necessarily be required. Therefore, it is often desirable to
construct a mesh where the number and size of the elements vary considerably in
different regions of the domain). Generally smaller elements are desired in the
regions where the exact solution varies rapidly or certain derivatives of the exact
solution are large. The process of refinement increases the number of unknowns by
increasing the number of elements in such regions, and hence also the accuracy of
the finite element solution. However, this refinement aims not to increase the total
number of unknowns too significantly whilst trying to significantly increase the ac-
curacy. Hence the use of refinement seeks to optimize the increase in the degrees of
freedom rather than increase them uniformly. In principal general mesh adaption
strategies involve some kind of error estimator for each element, for example, a line
segment in 1-d, a triangle or quadrilateral in 2—-d and a tetrahedron or hexahedron
in 3-d. Elements indicated by the error estimator as being insufficiently accurate
may then be adapted either by subdivision of the element (h-adaptivity), relocat-

ing mesh points (r—adaptivity), enrichment of the degree of polynomials used as the

10

Chapter 1 1.2. Mesh Adaptivity

trial functions (p-adaptivity) or some combination of these. The first two of the
above mentioned techniques cause a change in the mesh geometry whereas the third
technique introduces different trial functions for different elements. We now briefly

review these commonly used mesh adaptation techniques.

1.2.1 h—Adaptivity

This is the most widely used mesh refinement technique [7, 120, 131, 164] which
takes a relatively coarse mesh as the base level mesh. Assuming that some sort
of error estimator is available, the elements with larger errors than some suitable
tolerance are subdivided into a number of smaller elements of the same type. The
same procedure is continually repeated for the elements with the largest errors in the
newly constructed mesh until either the error for each element in the newest mesh
is no larger than the tolerance, or the highest allowable level of mesh refinement is
reached. In this way it is possible to start with a reasonably small mesh, solve the
finite element equations and estimate the error, then refine the particular elements
at the base level and repeat recursively until we have a converged solution on a fixed
mesh but hopefully avoiding an excessive number of elements. Usually this entire

process is subject to some restrictions on its effectiveness, such as:

e The error indicator must be reliable.
e The error tolerance selected must be realistic for the problem being solved.

e The refinement tree must be restricted to some highest level to avoid the

excessive creation of elements.

e The choice of base level mesh is important and may have significant bearing

on the final fully refined mesh [10].

e Different choices of tolerance for different refinement levels may save unneces-
sary computational cost. This is dependent on the refinement strategy used
but usually a fixed fraction strategy is used to define the tolerance (i.e. toler-

ance= 20% of maximum error on any element).

11

Chapter 1 1.2. Mesh Adaptivity

1.2.2 r—Adaptivity

In this technique the position of the nodes and the shape of the elements is altered
but the number of elements in the original mesh is not. This sort of mesh vertex
relocation is proposed in a number of algorithms such as is [40, 104, 127, 128]. We
do not intend to describe any particular r—adaptivity algorithm here but only some
general observations to highlight a few points. Typically an initial mesh is chosen
which is not as coarse as in the case of h—adaptivity since it must already contain
enough degrees of freedom to represent the solution. An error estimate or indicator,
such as a residual norm or stored energy functional is calculated. Node relocation is
then done according to this indicator. The final mesh resulting from r—adaptivity is
often capable of representing well sharp solution features like shock waves, boundary
layers etc. However this type of mesh adaption is not as robust as h—adaptivity since
the reduction in the error (indicator) to some pre—defined tolerance may not be
possible for a given initial mesh. Other problems like falling into local minima traps
or mesh tangling may also be encountered. A common way of overcoming such
problems is to make use of edge swapping.

The technique of edge swapping changes the mesh topology by swapping the
edges in some predetermined manner [84, 145]. There are also some limitations
associated with such changes in the mesh: the number of nodes in the original mesh
remains unchanged and the position of the nodes depends on the geometry of the
starting mesh. Edge swapping is beneficial however to improve the worst and/or

bad angles in the mesh, which affects the aspect ratio of mesh elements.

1.2.3 p—Adaptivity

Like other mesh adaptivity techniques, p—adaptivity [7, 182] is usually based on some
error estimate for each element in the mesh. The elements with an error exceeding
some tolerance are adapted by increasing the degree of the trial polynomial, such
as from linear to quadratic, or a higher order polynomial. This phenomena is also

known as p—enrichment. The number of new degrees of freedom obtained through

12

Chapter 1 1.3. TETRAD

p-refinement is the same as that obtained by h-refinement where the order of the
polynomial in p-refinement corresponds to the level of refinement in A-refinement.
However, it is to be noted that as p-refinement does not require subdivision of mesh
elements, it helps to avoid the burden of element—subdivision and its convergence
rate for smooth solutions is exponential. A down-side of this approach however is

that the matrices in (1.12) become much less sparse as p is increased.

1.3 TETRAD

In this work we will only consider the use of h-refinement on tetrahedral elements
in three dimension. TETRAD is a general purpose tetrahedral mesh adaption tool,
based upon h-adaptivity of the tetrahedra, which can be used to support a variety
of numerical solution schemes [163, 164]. To handle the complexity of unstructured
meshes and to support a range of solvers, a large set of data structures is imple-
mented. This is the tool that has been used to construct mesh hierarchies for the

work in this thesis.

1.3.1 Description

The software package TETRAD (TETRahedral ADaptivity) is written in C and
may be used to adapt (refinement and derefinement) meshes consisting of elements
of tetrahedra in 3-D. The processes of refinement and derefinement are activated ac-
cording to a scheme involving the marking of elements and/or the edges of elements.
The algorithm is hierarchical in nature as is described in [163, 164]. The main data
objects of edges, elements, nodes and faces form the computational domain and
naturally map onto the TETRAD adaption algorithm and data structure. These
objects contain the connectivity information required to adapt the mesh structure
by a local mesh refinement or derefinement procedure. TETRAD assumes that
there exists an initial unstructured tetrahedral mesh, taken as the base mesh of the
computational domain. The refinement process adds new nodes to the initial base

mesh through edge, element and face subdivision. Each such change being taken

13

Chapter 1 1.3. TETRAD

into account within the data structure of the software by constructing a data hi-
erarchy. The procedure of derefinement is an inverse process to refinement, where
the local mesh of the previous level, before its refinement, is recovered by removing
the edges, elements, nodes and faces that had been inserted during the refinement.
This process of local coarsening can only be undertaken until the base level mesh is
reached. In a refined mesh neighbouring elements can differ by at most one level.
This adaptation procedure is initiated whenever some predefined criteria for the
refinement or derefinement of the mesh is satisfied. In this work we do not focus on
the specific criteria available, such as a posterior error estimates [1, 17, 24, 118, 131]
for example. In the following sections we briefly describe the data structure of

TETRAD, the algorithm used for adaption and how the adaptivity is controlled.

1.3.2 Data structure

The TETRAD data structure, based on h—adaptivity algorithms [19, 111, 120], is
implemented in C in the form of structures and pointers with the following set of
data objects at the core of the software package. The difference between a pointer
and an object can be defined as that a pointer is a means of accessing an object

whereas an object is a collection of information to be accessed through pointers.

1.3.2.1 Data Objects

e An Edge Object
This object is defined by two node objects, vertices of the mesh, mutually con-
nected to form an edge in the mesh of the computational domain. There also
exists a parent and two child pointers for each edge. At the base level mesh the
parent pointers all point to null and at the highest level mesh, where no child
edges are present, the child pointers all point to null. These pointers support
mesh refinement and derefinement. Moreover orphan edges are introduced

to refine the interior of elements and faces and to make the mesh conformal

(details given below in §1.3.2.2).

14

Chapter 1 1.3. TETRAD

e An Element Object
Each of the tetrahedral element objects in the mesh consists of four node
objects, six edge objects and four face objects. Each element object has pointers
to its parent and child elements, with the exception of base level elements
where no parent element exists and elements at the highest level where no

child elements exist, to support the refinement and derefinement processes.

e A Node Object
Each node object corresponds to a vertex of the computational mesh and con-
sists of the coordinates (x,y,z) of the vertex and a pointer to a linked list of
element objects which surround the vertex in the mesh: known as the node’s
family. This family (of elements) for each node object supports the connec-
tivity of the data structure and is of fundamental importance since all other

mesh connectivities may be deduced from it, as explained in §1.3.2.2.

e A Face Object
All the face objects of a tetrahedral element are defined by three node objects.
These face objects also have a pointer to a single element object as only the
boundary faces are stored and so have limited functionality. Nevertheless,

these objects are useful for defining boundary conditions of different types.

1.3.2.2 Further Details

In addition to these four basic/fundamental data objects there also exists a link
object which provides the link (as obvious from the nomenclature) between the basic
data objects, e.g., the node’s family (as described above) provides a link between
node objects and element objects. Also the elements which share an edge may be
determined by finding the common elements in the families of those two nodes which
define the edge. This sort of node—element connectivity support is one amongst a
number of possible natural choices [19].

For the adaption hierarchy the parent and child pointers in the case of edges and

elements are stored together with node—element connectivity. Two new child edges

15

Chapter 1 1.3. TETRAD

Figure 1.3: Orphan edges (dashed lines) produced by refinement.

are obtained by the bisection of each parent edge by introducing a node to its middle.
However in the case of an element, the number of child elements varies depending on
the type of dissection of the parent element by the refinement process (see §1.3.3).
The resulting element tree contains all of the information and element refinement
history required for both derefinement and further refinement to take place. In
contrast to the element tree structure, we get orphan edges (as mentioned above)
as a result of element and face dissection. These orphan edges are incorporated into
the overall data structure by introducing a separate linked list of edges for each level
of the refined mesh. The nodes and faces at each level are also organized in the form
of linked lists in order to completely specify the mesh adaption hierarchy. On top
of all this, a mesh data structure is also defined with pointers to the linked lists
corresponding to each of the data objects. Some other fundamental figures are also
provided, e.g., the number of elements in the base level mesh and the final mesh,

the number of nodes, edges, faces, etc. in the final mesh.

1.3.3 Adaption Algorithm

The adaption of the mesh is carried out by refinement and derefinement of elements,

edges and faces as in [19], which requires that all the elements sharing an edge must

16

Chapter 1 1.3. TETRAD

also be refined since the edge is refined by introducing a node to that edge. Similarly,
if a node is removed all the elements sharing that node must be derefined. Based on
some predefined criteria, an element, and consequently each edge of that element, is
marked for refinement, derefinement or left unchanged. However each edge marked
for refinement or derefinement must have to pass some additional tests (again for
details see [19]) before their adaption. For the purpose of refinement, only two
types of element subdivision are permitted so as to maintain the quality of the
tetrahedra and the simplicity of the algorithm. The first type of subdivision, called
regular subdivision, is the popular subdivision by eight illustrated in Figure 1.4. The

&

Figure 1.4: Regular refinement of one tetrahedron into 8 tetrahedra.

second type of refinement is called green subdivision [164] which is used when an
element only has some of its edges marked for refinement: typically on the interface
between two different levels of refinement. Green refinement creates between 6 and
14 green child elements depending on the number of edges of the parent element
marked for refinement. This type of refinement, when only one edge is marked,
is illustrated in Figure 1.5. For further details interested readers are referred to
[111, 120, 131, 164]. Due to the poor quality of green child elements relative to
regular child elements, in terms of their aspect ratio for example, green child elements

are prohibited from any further refinement. Instead, when additional refinement is

17

Chapter 1 1.3. TETRAD

Figure 1.5: Green refinement of one tetrahedron into 6 tetrahedra.

desired, they are first derefined and then refined regularly. Since green elements
generally indicate a change in the mesh levels they tend to act as interface/transit
elements between changes in the grid resolution. Following the analysis presented in
[131], any degradation in mesh quality as a result of this refinement procedure is kept
bounded and this is verified by numerical evidence in [164] for the implementation
in TETRAD.

The elements with less than or equal to 5 edges marked for refinement are refined
in a manner referred as green refinement by catering a new node at the centroid
of the element. All the nodes in the element, including the nodes resulting from
edge refinement, are then connected to this new node. These new green elements
are geometrically more distorted [131] than regular elements and are not further
refined. However if required these green elements are first derefined to get the parent
elements which are then refined in regular manner. This may have a knock—on effect
as illustrated in two dimensions Figure 1.6. If edge A is marked for refinement then
tetrahedron T4 must also be refined. Since tetrahedron T4 is green and its further
refinement is ruled out, therefore, it must be first derefined along with neighbouring
green tetrahedra to get the parent which is then refined in regular manner. This

requires the refinement of edge B and consequently the refinement of tetrahedron

18

Chapter 1 1.3. TETRAD

Figure 1.6: Knock—on effect of green refinement (two dimensional example).

Tg. Since tetrahedron T'g is green, the same procedure of derefinement and then
refinement needs to be repeated as in the case of tetrahedron T'4. We note that all of
this bookkeeping is necessary because of the inserted new node at the center of each
tetrahedron when refined in green manner. The green refinement approach adopted
here raises a number of general issues concerning mesh quality which involve not only
the discretization error but also the norm [17], in which the error is to be controlled.
These issues will be explained in more detail in Chapters 3 and 4, where special
coding effort is required to handle these new green nodes in order to implement
the domain decomposition preconditioning algorithms which are the subject of this
thesis. Alternative forms to this green refinement are possible without the insertion
of a new node at the centre of tetrahedra, but this work only had access to TETRAD,

and so the additional node must be dealt with.

1.3.4 Adaption Control

The adaption algorithm is combined with a flagging mechanism for the mesh regions
to be refined or derefined according to some user—defined criteria. This could be to
refine some particular region of the computational domain, defined through the

mesh geometry, or possibly to adapt based upon a local solution error indicator.

19

Chapter 1 1.4. Parallel Computer Architecture

These approaches can be used independently (e.g. the first approach for global
refinement and second for local refinement) or they can be combined together (for
local refinement). In addition to this a safety layer of refinement flagging is applied
[164] and a maximum level for mesh refinement is specified. The issue of mesh
derefinement is dealt in a similar manner. In this work our main concern is the
application of an efficient finite element solver so we will mainly use simple geometric

rules to drive the adaption.

1.4 Parallel Computer Architecture

In this thesis we are concerned with the efficient application of the finite element
method on parallel computer architectures. In this section we present a brief outline

of some of the main issues associated with achieving this.

1.4.1 Background

Today in almost all areas of science and engineering experiment, observation and
design prototyping are being replaced (or at least compensated) by computations.
Also, phenomena which would be almost impossible to study through experiments,
such as the evolution of the universe, are now being simulated. Undertaking such
calculations places a continued pressure for the development of computers with both
greater speed and greater storage in the form of memory. Ultimately this will lead to
fundamental physical limitations affecting the performance of such great computers.

The development of parallel computers is led, along with other reasons, by these
physical limitations of sequential computers. For example, suppose we wish to
build a computer with the capability of performing one trillion arithmetic oper-
ations per second. Assume that we have built more or less a conventional von
Neumann computer with extremely fast computational power. A simple arithmetic
operation, addition say, inside a loop of length of one trillion would have to suc-
cessively fetch the contents of two memory locations into the registers, perform the

operation and store the result in to the third memory location (modified form of

20

Chapter 1 1.4. Parallel Computer Architecture

an example from [50]). This would require 3 x 10'* copies between memory loca-
tions and registers to be undertaken each second. Now suppose that data travels
between CPU and memory at the speed of light (3 x 10® meters/second), then
the distance between the CPU and a word of memory should average 10™* me-
ters [(3 x 10®meters/second x lsecond)/(3 x 10*meters)]. If our computer has 3
trillion memory words forming a square grid of side 107 meters we would clearly
need to be able to fit a single word of memory into a square a side length equal to
(2 x 10~*meters/v/3 x 10) ~ 107'° meters, the size of a relatively small atom. This
suggests that building such a computer is impossible, thus motivating the develop-
ment of parallel computers which have multiple CPUs capable of performing tasks
simultaneously.

We now briefly describe a few standard types of parallel architecture. The orig-
inal classification of parallel computers, popularly known as Flynn’s taxonomy [82],
is based upon the number of instruction streams and the number of data streams.
The classical von Neumann machine is single—instruction single-data (SISD) and the
opposite extreme is a multiple—instruction multiple-data (MIMD) computer. The
other possible systems are single—instruction multiple—data (SIMD) and multiple—
instruction single-data (MISD), although the latter rarely occurs in practice.

1.4.2 The Classical von Neumann Machine

The classical von Neumann machine is a combination of a CPU and main mem-
ory wherein the CPU is a combination of a control unit and an algorithmic—logic
unit (ALU). The memory stores the instructions and data, the control unit directs
execution of the program and the ALU perform the calculations. During the execu-
tion, instructions and data are stored in very fast memory locations called registers
which, being expensive, are relatively few in number in any machine. The route for
instructions and data between memory and registers in the CPU is via the bus —
a collection of parallel wires together with some hardware. The additional devices
required for the von Neumann machine to be useful are input/output devices and

an extended storage device such as a hard disk.

21

Chapter 1 1.4. Parallel Computer Architecture

1.4.3 Pipeline and Vector Architecture

Pipelining was the first widely used extension to the basic von Neumann model. By
splitting various circuits in a CPU into functional units and setting them up in a
pipeline, then theoretically (and once it is full) a result is produced by this pipeline
during each instruction cycle. A further improvement can be obtained by adding
vector instructions to the basic machine instructions set. These instructions are
similar to those in Fortran 90 which replace the loops of Fortran 77. The CRAY

C90 and NEC SX4 are examples of vector processors.

1.4.4 SIMD Systems

In contrast to vector processors, a SIMD system consists of a single CPU devoted to
control and a large number of subordinate ALUs — each with its own small amount
of memory. The control processor broadcasts instructions to subordinate processors,
each of which than either execute that instruction or remain idle. It means that a
completely synchronous execution of instructions is undertaken. The most famous
SIMD machines are the CM—1 and CM-2 from Thinking Machines, and the MP-2
from Maspar. It should be noted however that, for the most part, SIMD systems

are now obsolete.

1.4.5 General MIMD Systems

The key difference of MIMD machines from SIMD machines is that with the former
each processor is a complete CPU with its own control unit and ALU making it
independent in executing its program at its own pace (unless otherwise specifically
programmed to synchronize with other processors at some particular point). Thus,
even if the same instruction set is being executed, there may not be any correspon-
dence between the specific instructions being executed on different processors at a
given instant. The MIMD systems are generally divided into two main categories:

shared—memory and distributed—memory systems.

22

Chapter 1 1.4. Parallel Computer Architecture

1.4.5.1 Shared Memory MIMD

A generic shared memory machine is defined as a collection of processors (CPUs)
and memory modules interconnected through a network such that each processor
can access any of the memory modules. In other words, any set of data stored in the
shared memory is common to all processors and can be accessed by each of them.
The advantage of this is that it is very simple to program and, in principle, very
fast. However if more than one processor tries to access the same memory location
at the same time, there may be a long delay while this contention is resolved. In this
category of system, the simplest network for interconnection between the processors
and the memory modules is bus based. Delays are also caused therefore if the bus
becomes saturated due to too many processors simultaneous attempting to access
the memory. Although each processor has access to a large amount of memory in this
model, the limited bandwidth of the bus does not usually allow these architectures
to have a large number of processors. Some other shared memory architectures,
instead of a bus—based interconnection network, rely on some form of switch—based
interconnection network. For example, the basic unit of the Convex SPP1200 is a 5 x
5 crossbar switch. Hence any processor can access any memory module and any other
processor can access any other memory module without interference with each other.
This last described system provides an example of non—uniform memory access
(NUMA), where non—uniform access times occur depending on the location of data
relative to the CPU that requires it. In recent years the use of NUMA architecture
has become very popular amongst the designers of shared memory systems, including

the SG Origin, for example, on which much of the work in this thesis was undertaken.

1.4.5.2 Distributed Memory MIMD

In distributed memory systems, each processor has its own private memory module
to which other processors have no access. Distributed memory systems can be
visualized as a graph with edges as the communications wires. We can imagine two

major types of such systems: those in which each vertex of the graph correspond to

23

Chapter 1 1.4. Parallel Computer Architecture

a processor and memory module pair, conventionally known as node, and those in
which some of the vertices of the graph correspond to nodes and others to switches.
These two types are referred to as static networks and dynamic networks respectively.
The ideal interconnection network is the fully connected network, i.e. each node is
statically connected to every other node to allow direct communication between any
two nodes. Obviously the cost of such a network makes it extremely difficult to
build such a machine with more than a few nodes. To overcome this, use is made of
fast switches such as the crossbar switch, however it is unusual to have such a switch
with more than 16 processors. The Fujitsu VPP500 with 224 nodes and a 224 x 224
crossbar is one of a number of exceptions however. A related approach is the use of
multistage switching networks such as the omega network, which requires plog,(p)/2
switches for p nodes in contrast to p? switches in the case of a crossbar. Every node
can still communicate directly to every other node but with an increased probability
of a delay in transmitting a message due to interference at a switch. IBM, in its SP
series of computers, have used a combination of crossbar and omega networks with
the largest machines consisting of 512 nodes.

Other distributed memory topologies include a linear array in which all the nodes
have two immediate adjacent neighbour nodes except the extreme end nodes, which
have a single neighbour node. A ring network is a slightly more powerful variant
of this with each end node being a neighbour to the others. These networks only
cost p— 1 or p wires respectively and can easily be extended to include an arbitrary
number of nodes with very little expenditure. However, multiple pairs of nodes are
unable to communicate at the same time because of the limited number of wires
and in the worst case a message has to pass through p — 1 or p/2 wires respectively
to reach its destination. A better, practical and closer to fully connected, network
of this static type is known as the hypercube. This topology is defined inductively,
whereby a dimension 0 hypercube consists of a single node and any hypercube
with dimension d > 0 consists of two hypercubes, each of dimension d — 1 and
joined by 2?71 communications wires connecting corresponding pairs of nodes in the

(d — 1)-dimensional cubes. Hence, a dimension d hypercube consists of 2¢ nodes

24

Chapter 1 1.5. Message Passing Interface

and each node is connected to d other nodes. In the worst case any message has
to pass through log,(p) wires. Although the first massively parallel MIMD system
was a hypercube (an nCUBE 10 with 1024 nodes), it still lacks in scalability to a
certain extent. Meshes and tori are alternative topologies which are simply higher
dimensional analogues of the linear array and ring architecture respectively. An
important feature of these systems is that, with the increase in dimension, the
probability of interfere between any two pair of communicating nodes decreases.
Examples include the Intel Paragon, a two dimensional mesh, and the CRAY T3E,

a three dimensional torus, both of which scale to thousands of nodes.

1.5 Message Passing Interface

Message Passing Interface (MPI) is the outcome of a community effort. A forum,
known as the MPI forum, was established comprising of over 80 experts from more
than 40 organizations in order to define a standard for a portable message passing
system to support parallel applications and libraries [133]. This forum defined the
syntax and semantics of the functions which make up what is today called the
MPI library. This library is based upon a MIMD distributed memory programming
model, however MPI codes still run efficiently on shared memory architectures.
Indeed, MPI is today one of the most widely used and most powerful libraries for
programming parallel systems. In this section we explore a small subset of MPI
functions, such as one-to-one communications functions, broadcast and reduction
operations, and a few other miscellaneous functions which are relevant to the work

undertaken in the rest of this thesis.

1.5.1 Startup

We begin by describing how to start a simple parallel C program using MPI. The
very first function which indicates the start of a parallel program is MPI_Init which
has parameters which are pointers to the parameters of the main function, that is,

arge and argv. Any other MPI function can be called only after calling this function.

25

Chapter 1 1.5. Message Passing Interface

Conversely, no MPI function can be called after a call to the MPI function
MPI_Finalize. This function, which requires no parameters, indicates the end of
the parallel part of the program and cleans up any left over or unfinished jobs
such as memory deallocation. It is not essential for MPI_Init to be the first or
MPI_Finalize to be the last executable statements in the program. The other two
basic MPI functions, MPI_Comm_rank and MPI_Comm_size, return the rank of each
process (an integer between 0 and p — 1), and size (the total number of processes
involved). The flow of control in any program typically depends very heavily on

knowledge of these quantities.

1.5.2 Point to Point Communication

The current implementation of MPI assumes a static allocation of processes, that is,
the number of processes, size, is set at the beginning of program execution. The rank
of all the processes and the size of the communicator is known to each process (a
communicator is simply a name for a subset of the processes). The communication
of messages to particular processes is controlled by targeting their ranks. The pair
of basic functions provided by MPI for sending and receiving messages in this way
are MPI_Send and MPI_Recv respectively.

Suppose that, in a simple two process example, we wish the process with rank
0 to send a message to the process with rank 1. Each process can execute a copy
of the same program, with the different effect on each process being gained through
the use of conditional statements (e.g. if rank = 0 then send else if rank = 1 then
receive). This single program paradigm is the most commonly used approach for
parallel programming in MPI. It has the advantage of minimizing the likelihood
of programmer errors due to one process calling the send function and the other
process not calling the corresponding receive function. When such an error occurs
the behaviour of the sending process in undefined by MPI. In general however, it
cannot be assumed that the execution will continue beyond the unsuccessful blocking
send since, if the system does not provide adequate buffering, the sending process

will hang on forever.

26

Chapter 1 1.5. Message Passing Interface

Now we consider another sequence of calls of the send-receive communication
pair. Suppose that one process calls the receiving function but the other process
does not call the corresponding send function until some later time. Since MPI_Recv
is also a blocking function, if the message is not available for it to receive it the
process will remain waiting and idle until the message becomes available. As an
alternative to this scenario, MPI provides another form of communication, known
as non-blocking communication.

When a non—blocking receive is called, instead of waiting for the message, the
system merely allows the receiving process to receive a message from the sending
process, but the program execution itself continues. At some time before it is neces-
sary to use the message to be received, it is possible to check on its arrival through
the call to another function.

The non-blocking send function can be used in a similar way. Thus most non—
blocking operations require at least two calls, one to start the operation and the
other to check that it has been successfully completed. The basic functions in MPI
for non-blocking communication are named MPI_Isend and MPI_Irecv, where the
‘I’ stands for immediate, since these functions return immediately after they are
called. There are two main MPI functions for checking the completion of non—
blocking communications. MPI_Wait checks to see if the operation is complete and
blocks until it is. MPI_Test always returns immediately but with a value which
indicates if the operation has completed or not.

It should be noted that the matching of a blocking send/receive with a non—
blocking receive/send communication operation is not illegal, and some times it
proves to be most appropriate. For example, if we are going to use data as soon
as it is received then MPI_Recv should be used even if the message is sent using

MPI_Isend at some earlier time.

1.5.3 Collective Communication

A communication involving all of the processes in a communicator is said to be a

collective communication. The broadcast communication pattern is an example of

27

Chapter 1 1.5. Message Passing Interface

a collective communication in which a single process sends the same message using
the function MPI_Bcast to every other process in the communicator. This type of
communication can be a lot more efficient than a corresponding sequence of sends
to all of the processes from the originating process. The converse situation where we
need to send messages from all processes in the communicator to a single process is
known as reduction. MPI provides a general class of reduction operations through
the function MPI_Reduce. As with MPI_Bcast, this function must be called by all
processes in the communicator however the result of this operation is available to
the root process only. For example, if we perform the reduction operation to find the
maximum of a set of values distributed across the processes, only the root process will
return this maximum value. Another function, MPI_Allreduce, performs reduction
operations in the same way as MPI_Reduce except that the result of the operation

is made available to all processes.

1.5.4 Some Miscellaneous Functions

Assume that in a parallel program we need to synchronize all of the processes before
performing a particular task. To block all of the processes in the communicator at
a particular point, until the last one reaches that point, MPI provides the function
MPI_Barrier. This function is useful for the timing of parallel programs; especially
for timing particular subsections of a program. To find the time taken by any parallel
program, or any subsection of a parallel program, MPI provides a double precision
function MPI_Wtime. When called this function returns the elapsed time in seconds
from some particular point in the past. It should be noted that this function returns
the wall-clock time which makes it unreliable for performance analysis. The last
function to be considered here is related to aborting from a parallel program. If a
parallel program crashes during the execution because of some bug in the program,
it is possible that the processes which did not encounter the bug continue to execute
or wait upon the crashed process(s). To ensure that no processes continue to run
after the program has behaved in an unexpected manner the MPI_Abort function is

provided.

28

Chapter 1 1.6. Parallel Finite Element Method

1.6 Parallel Finite Element Method

A system of linear equations of the form (1.11) with a few thousand degrees of
freedom can be solved easily and efficiently using a conventional computer. However
as the size of this system of linear equations grows, due to mesh refinement for
example, then conventional computers face the twin problems of lack of speed and
memory. Also, in some cases, even when a conventional computer is able to solve a
very large problem, the time taken to do so may be such that the solution becomes
useless [116], e.g. with forecast problems which require a solution to be delivered by
a specific time.

Parallel computers/architectures provide a means of overcoming these speed and
memory problems and can lead to massive savings in solution time. For any problem
to be solved in parallel we need to partition the data, which in the case of the finite
element method means dividing the computational mesh into a number of parts.
There are a number of ways of partitioning the computational mesh and these are
discussed in the next chapter. Nevertheless, a consequence of such a partition is
the requirement that the assembly of the coefficient matrix (which is sparse) and
the computation of the right-hand side vector in (1.11) have to be undertaken in a

distributed manner (preferably in parallel).

1.6.1 Parallel Sparse Matrix Assembly

Consider a system of linear equations (1.11) with the sparse coefficient matrix A
and a corresponding mesh of the computational domain {2, whose elements are
partitioned into p subdomains €; for ¢ = 0,...,p — 1, where each subdomain (2,
is assigned to the process i. Due to the partition of the elements of the mesh, the
unknowns in the solution vector u may be distributed across the p subdomains such
that part of the solution vector, u, say, is owned by process ¢. Additionally, each
process ¢ shares some of the unknowns at the interface of the subdomains with one
or more other processes. The same distribution may be associated with the entries

of the right—hand side vector b, so that the system of linear equations may be written

29

Chapter 1 1.6. Parallel Finite Element Method

Figure 1.7: Partition of a computational domain into 16 subdomains.

in block matrix form as:

A, By g by
Ay B, u, b,
: : = : . (1.28)
Ap-1 By Up_q ép—l
([Co Cio G A || w || b

Here the blocks A;, B;, C; and A, are themselves sparse. Also u; is the vector of

unknown nodal values strictly inside the subdomain €; (=0,...,p — 1) and u, is

the vector of unknown nodal values for nodes on the interface between subdomains.

30

Chapter 1 1.6. Parallel Finite Element Method

From the definition of the basis function ®; it is clear that the integrals required
to calculate A;, B;, C; and b, are interior to the subdomain ¢ and so these matrix
blocks can be assembled independently by each process :. However, due to the
distribution of A and b, across the subdomains, each process is required to assemble

its contribution independently so that we have

p—1
As = As(i)7 (129)
=0
p—1
=0

where Ay(;) and by, are the contributions computed by process ¢ on ;. Now it is
straightforward to implement a simple solver in parallel. For example, if an iterative
method is implemented then this typically requires the calculation of matrix—vector
products and inner products. The distributed matrix—vector product and the dis-
tributed inner product require only a small amount of communication amongst the

processes, which is now almost a standard in parallel computing and is examined in

§1.6.4.

1.6.2 Direct Solvers

The use of direct solvers is one of the basic approaches used for solving a linear
system of equations such as (1.11). Direct solution methods typically use variations

on Gaussian elimination and generally consist of the following steps:

1. Factorization of the coefficient matrix of the linear system — the most expensive

part.

2. Use of this factorization to solve the system through forward and backward

substitution.

The mathematical structure and the storage structure of the coefficient matrix

play important roles in choosing any algorithm to solve the corresponding system.

31

Chapter 1 1.6. Parallel Finite Element Method

The mathematical structure defines the mathematical features of the coefficient ma-
trix such as Hermitian, non-Hermitian, definite, indefinite, etc., whereas the stor-
age structure usually represents the storage format such as dense, sparse, banded,
structured, etc. The appropriate type of factorization of a coefficient matrix is de-
termined by the mathematical structure (e.g. Choleski factorization for Hermitian,
LU factorization with pivoting for general Non—Hermitian, etc.).

The direct solution methods can further be categorized with respect to the prop-
erties of the coefficient matrix such as direct methods for Dense Matrices, Band
Matrices, Sparse Matrices, Structured Matrices etc. We are interested in direct
solution methods for the sparse matrices which may fall in any of the following

group [53, 62]:
e General techniques,
e Frontal methods,

e Multifrontal methods.

1.6.2.1 General Methods

First we outline a completely general approach [60] where the numerical and sparsity
pivoting can be performed at the same time (by making use of dynamic and sparse
structures). This approach gives very satisfactory performance over a wide range
of mathematical structures and further gains and simplification can be achieved for
symmetric or banded coefficient matrices. If the coefficient matrix is symmetric and
the diagonal pivots produce a stable factorization than there is no need to check

numerical values for stability and the search for a pivot is simplified.

1.6.2.2 Frontal Methods

Frontal schemes [99] can be viewed as an extension to band or variable-band schemes.
These methods perform well for systems with small bandwidth however for grid—
based problems, such as discretization of partial differential equations, the efficiency

is geometry dependent. The origin of frontal methods lies in the solution of finite

32

Chapter 1 1.6. Parallel Finite Element Method

element problems in structural analysis. One of the earliest computer applications
of frontal method was considered for a symmetric positive definite system [103] and
extended to unsymmetric systems [98] and systems without restrictions on the finite

element application [61].

1.6.2.3 Multifrontal Methods

As the name suggests, the multifrontal approach, [63], is an extension of frontal
methods. These methods can handle symmetric or nearly symmetric coefficient
matrices efficiently and any type of sparse ordering for symmetric systems is allowed.
If the bandwidth of the coefficient matrix is not small, a large amount of storage
and arithmetic operations are required. In such situations multifrontal methods [62]
attempt to reduce the required number of arithmetic operations while keeping some
of the benefits of frontal schemes.

The main issue in the implementation of the above described and most other
direct solution methods for solving sparse linear equations lies in preserving the
sparsity in the matrix factors. The LU decomposition is favoured for this reason
and strategies are developed to retain much of the sparsity of the original matrix in
the LU factors. On the other hand this leads to a need to compromise the numerical
pivoting strategy in order to choose pivots to limit the fill-in. The common threshold
strategy and the discussion of other similar possibilities to limit the fill-in may be
found in [2, 49, 62]. For all the methods described, there are three levels at which
parallelism can be exploited in the solution of sparse linear systems. The finest
grain parallelism lies in the elimination operations. At the coarsest level, matrix
partitioning techniques are often designed for parallel computing and are particularly
appropriate for distributed memory computers. Indeed, matrix partitioning methods
are often only competitive in the context of parallelism. At an intermediate level,
the sparsity of the matrix can sometimes be used to assist with the parallelism if
there is a substantial independence between pivot steps in the sparse elimination.
For example, in the best possible case, if the matrix is a permutation of a diagonal

matrix then all of the operations may be performed in parallel.

33

Chapter 1 1.6. Parallel Finite Element Method

1.6.3 Iterative Solvers

The phenomena of obtaining a solution to a linear system of algebraic equations
such as given by (1.11) through successive approximations is known as an itera-
tive solution method. There are two main types of iterative solution methods, [13],
known as stationary and nonstationary methods. The former type of method rep-
resents older techniques which are simple, easy to understand and implement, but
have the disadvantage of being less effective. The latter type consists of relatively
recent developments, which are harder to understand and implement but can be
very effective. A measure of the effectiveness of an iterative method is given by
the number of iterations taken to converge: the fewer the number of iterations the
better the method. In the following sections, a few representative iterative methods
of each type are described. It should be noted that the performance of most of
these methods may be improved through the use of preconditioning. Since parallel
domain decomposition preconditioning is the subject of this thesis we postpone a

discussion of the role of preconditioners to a separate section of its own.

1.6.3.1 Stationary Methods

In this section, we present stationary methods and summarize their convergence

behaviour and effectiveness.

e The Jacobi Method
In this method, the approximation to each variable in the linear system of
equations is updated with respect to the other variables at each iteration.
The method is also known as the method of simultaneous displacements since
the order of equations in the system is irrelevant as this method treats them
independently. This makes the method converge slowly but suitable for parallel

implementation.

e The Gauss—Seidel Method
This method is similar to the Jacobi method except that the most recent

values of other variables are used in the update of each variable. Whenever

34

Chapter 1 1.6. Parallel Finite Element Method

the Jacobi method converges, the Gauss—Seidel method converges at least as
fast for the same problem. This method is also known as the method of

successive approximations.

e The Successive Overrelaxation Method
The successive overrelaxation (SOR) method is an extrapolation of the Gauss—
Seidel method by introducing a weighted average between any two consecutive
iterations. The value of this extrapolation factor should always be in the
interval (0, 2) otherwise this method may fail [110]. By setting the value of
the extrapolating factor equal to 1 this method simplifies to the Gauss—Seidel
method.

e The Symmetric Successive Overrelaxation Method
It the coefficient matrix of the given system of linear equations is symmet-
ric then this method combines a forward and a backward sweep of the SOR
method such that the resulting iteration matrix is similar to the symmetric
coefficient matrix. Because of this double sweep, for any optimal choice of the
extrapolating factor, this method is slower than the SOR method [179]. Hence
there is no advantage of this method over the SOR method however it can be
used as a preconditioner with other methods where maintaining symmetry

and/or definiteness is important.

1.6.3.2 Nonstationary Methods

The two main subclasses of nonstationary type (i.e. Conjugate Gradient and its
variants and Minimum Residual and its variants) are described. These methods are

examples of Krylov subspace methods.

e The Conjugate Gradient Method
The conjugate gradient (CG) method [4] is one of oldest and most well known
iterative methods of nonstationary type and is very effective for symmetric
positive definite (SPD) systems of equations. This method generates successive

approximations to both the solution and the residual based upon a two-term

35

Chapter 1 1.6. Parallel Finite Element Method

recurrence relation. Hence, only a small amount of memory, one matrix—
vector product and only two inner products per iteration are required, and the

method performs well for sparse matrices.

e The Biconjugate Gradient Method
This method is a variant of the CG method and generates two sequences of
vectors similar to those in the CG method. One sequence is built on the system
with the original coefficient matrix and the other sequence on its transpose.
These two sequences are made orthogonal to each other, hence the name of
this method. With limited memory requirements this method is suitable for
a nonsymmetric (and non—singular) coefficient matrix [67] but with the possi-
bility of irregular convergence or breakdown in the worst case. This method
requires two matrix—vector multiplications at each iteration, one with the orig-

inal coefficient matrix and the other with its transpose.

e The Conjugate Gradient Squared Method
This method is a variant of the biconjugate gradient method and updates
the sequences of vectors corresponding to the original coefficient matrix and
its transpose to the same vector. This makes the convergence rate of the
conjugate gradient squared [162] method almost double but with many more
irregularities. It may also lead to unreliable results. Unlike the biconjugate
gradient method, this method requires only one matrix vector multiplication
(for the original coefficient matrix) per iteration. If sequences of vectors are
updated to different vectors instead of one vector, the above method becomes

the biconjugate gradient stabilized [167] method, which converges smoothly.

e Minimum Residual and Symmetric LQ
MINRES and SYMMLQ both generate a sequence of mutually orthogonal
vectors and can be used as an alternative to the CG method for symmetric
but indefinite linear systems of equations [134]. The Symmetric LQ method
[135] is based on the L@ factorization of the coefficient matrix and generates

the same solution iterations as the CG method for SPD systems.

36

Chapter 1 1.6. Parallel Finite Element Method

e The Generalized Minimal Residual Method
The generalized minimal residual (GMRES) method [154], like the minimum
residual method, builds a sequence of orthogonal vectors which are than com-
bined through a least square solve and update. In contrast to the minimum
residual and the conjugate gradient methods, this method stores all vectors
generated at previous iterations and thus needs a fairly large amount of mem-
ory. In order to control the memory requirement, a restarted variant of this
method is used by specifying a suitable maximum number of orthogonal vec-
tors to be generated before restarting. This method is very useful for systems
with a general nonsymmetric coefficient matrix. The orthogonalization may
be done by using either the classical Gram—Schmidt procedure, or a modified
Gram—Schmidt procedure for extra stability. The parallel implementation is
straightforward with the main effort being to implement the inner products
and the matrix—vector product in parallel. It is a preconditioned version of

this parallel GMRES algorithm that is used throughout this thesis.

1.6.4 Parallel Solution

Like many other iterative methods, when GMRES is implemented in parallel a

relatively small number of computational kernels dominate. These are listed below.
e Matrix—vector product,
e Inner product,
e Preconditioning solves (if preconditioner is applied).

For a distributed memory programming paradigm the computation of the sparse
matrix-vector product and the accumulation of each inner product require some
communication amongst the processes. The amount of this communication depends
on the non-zero structure of the matrix, how these non-zero entries are distributed
across the processes, and the number of vector entries shared by more than one

process (i.e. on an interface). The topic of preconditioning, which is the subject

37

Chapter 1 1.6. Parallel Finite Element Method

of this thesis, is introduced in §1.7. Here we describe the parallel aspects of the

matrix—vector product and the inner product in turn.

1.6.4.1 Matrix—Vector Product

The matrix—vector product is relatively easy to implement on high performance
computers. For a sparse linear system of equations to be solved on a parallel com-
puter, it is natural to map the equations in the linear system and the corresponding
unknowns to the same process. Recall from §1.6.1 that due to the partition of the
mesh elements, the unknowns in the solution vector may be distributed across the p
processes (subdomains) such that process ¢ owns its own solution vector, u; say, and
the unknowns at the interface of subdomain }; with other subdomains. Hence the
sparse matrix should be distributed across the processes accordingly (see (1.28)).

Following this same block structure, the distributed matrix—vector product of

the form
Ao By Ly Y,
Ay By Ly gl
Az = : : = |: =y (1.31)
Ap—l By Ly Qp_l
i Co Cl Cp—l AS 1| s i i ys i
can be calculated as
y, = Aix; + Bz, (1.32)
on process ¢, fort=0,...,p— 1, and
p—1

Il
=]

where A,y is defined by (1.29). It is to be noted that the blocks A;, B;, C; are
themselves sparse, the entries of vectors z; and y, are strictly inside the subdomain
Q (:=0,...,p—1) whereas A, z, and y, are distributed across the processes, and
hence to form the sum in (1.33) communication is required amongst neighbouring

processes. It is worth mentioning here however that, for the work presented in this

38

Chapter 1 1.6. Parallel Finite Element Method

thesis, the distributed data structure is designed in such a way as to eliminate this
requirement to communicate across the processes for the matrix—vector product.

That is, y, is stored on process 7 and
Yo = it T Aoz, (1.34)

is stored on process ¢ too (i.e. y_ is not fully assembled).

1.6.4.2 Inner Product

It may be argued that the calculation of sparse matrix—vector products need not
necessarily cause a significant performance degradation due to communication costs
on modern parallel computers. However, the case of inner products is not the
same. Inner products use all of the components of the given vectors to compute
a single floating—point result which is required by all of the processes. Therefore
the calculation of an inner product requires a global communication, which also
provides a necessary synchronization point in the parallel code. To elaborate upon
the global communication required for distributed inner products, let us consider

two distributed vectors z and y given by

g&

(1.35)

=
I

and

(1.36)

|
Il

where

Chapter 1 1.7. Preconditioning

and

T
L

ys = gs(z)

7

(1.38)

Il
=}

are explained in §1.6.4.1. The inner product of these vectors may be expressed as

Lo Y,
Ty = (1.39)
£p—1 yp—l

The vectors z; and y, are owned by process ¢ and this process also stores z,(; and

sy Equation (1.39) can be expressed as
p—1

=0

To form the sum in (1.40) a global reduction operation is required. This global

communication can be implemented using MPI in either of two ways.

1. A global accumulation on one process followed by a broadcast of the accumu-
lated result to each process by using functions MPI_Reduce and MPI_Bcast

respectively.
2. A global accumulation on all processes by using function MPI_Allreduce.

The operations for global accumulation of a result on one process are referred as
reduction operations and those for global accumulation on all processes are referred
as global reduction operations (see §1.5 for details). The global reduction operations
provide the functionality for consecutive implementation of reduction operations and

broadcast operations and should yield the faster result.

1.7 Preconditioning

Preconditioning is simply a means of transforming a system of linear equations

to an equivalent new system of linear equations such that both systems have the

40

Chapter 1 1.7. Preconditioning

same solution but the new system is easier to solve in some sense by an iterative
method. There are applications and occasions where iterative methods may fail to
converge or suffer from a slow rate of convergence (see details in §1.6.3, for example).
Preconditioning of the corresponding systems may help to overcome such difficulties
and improve the efficiency and robustness of the iterative methods. The convergence
of any linear system is associated with the spectral properties of the corresponding
coefficient matrix and a preconditioner is a matrix that attempts to transform the
spectrum to a more favourable form for convergence. Therefore, instead of solving

a linear system such as (1.11), a new left—preconditioned system

M7 Au=M""b (1.41)

or the equivalent right—preconditioned system

AM o =b, u=M"v (1.42)
could be solved. The problem of finding an efficient preconditioner lies in identifying

a matrix M (the preconditioner) that should satisfy the following properties:

1. M is a good approximation of A in some sense.

2. The system Mu = v is much easier and cheaper to solve than the original

system.

By an efficient preconditioner we mean that it is possible to obtain a much faster
convergence of the iterative method for the preconditioned system, in terms of the
overall solution time, than for the original system. The preconditioner M may
be chosen from algebraic techniques which can be applied to general matrices or
may be problem dependent so as to exploit special features of the particular class
of problem being solved. The problem—dependent preconditioners often prove to
be very powerful, but there is still room for additional efficient techniques to be
developed for large classes of problems.

Algebraic preconditioners tend to be based on direct solution methods where a

part of the computation is skipped, for example an incomplete factorization of the

41

Chapter 1 1.7. Preconditioning

matrix A of the form A= LU — R. Here L and U have the same (or similar) sparse
structure as the lower and upper parts of A respectively and R is the residual or
error of the factorization. This leads to the notion of incomplete LU (or ILU)
factorization [5, 152], where the incomplete factors form the preconditioner M =
LU. In the context of iterative methods this requires the evaluation of the expression
v = (LU) u for a given vector u at each iteration. The following two steps are

required for this computation.
1. Obtain w by solving Lw = u,
2. Compute v from Uv = w.

A drawback of the I'LU approach is that it has sequential steps which tend to
increase the computational complexity in parallel either in terms of iteration count
or, more usually, cost per iteration. A standard trick for exploiting parallelism lies in
selecting and numbering all those unknowns first which are not directly connected
with each other. This approach is known as red-black ordering and does allow
parallel preconditioners. The simplest approach in parallel is just to make use of
diagonal scaling.

There are a number of different forms in which a given preconditioner can be im-
plemented. These different implementations do not affect the eigenvalues of the pre-
conditioned matrix for a given preconditioner. However, the convergence behaviour
also depends upon the eigenvectors which may vary considerably for different im-
plementations, and hence the convergence behaviour could be different for different

implementations. These implementations are briefly described below.

1. Left Preconditioning
The left preconditioning algorithm is defined by the solution of the system
(1.41). If A and M are symmetric then M~ A is not necessarily symmetric.
However, if M is SPD then < z,y >= (2, My) defines an inner product and
M1 A is symmetric with respect to this new inner product. For such systems

MINRES [134] or CG [4] (if A is SPD) can be used. The well known pre-

conditioned CG is based on this observation. In the case of minimal residual

42

Chapter 1 1.7. Preconditioning

methods such as MINRES or GMRES [154] (see §1.6.3 for details), minimiza-
tion of the preconditioned residual M~'(b — Au) may be quite different from
minimization of the original residual (b — Au). This could have consequences

on stopping criteria that are based on the norm of residual.

2. Right Preconditioning
Solution of the system (1.42) defines the right preconditioning algorithm. Here
AM™ may not be symmetric even if both A4 and M are symmetric. The
stopping criteria for right preconditioned algorithms is based upon the error
norm |[v — v, ||z rather than the error norm ||u — uy||2 (less than or equal to
IM™|2]|lv — v,||2). Since right preconditioning affects the operator only, not
the right—hand side, this may be more useful as compared to left precondition-
ing, for example, in software designed or for problems with multiple right—hand

side.

3. Split or Two—Sided preconditioning
In many cases it is possible that M is available only in the form of some
factorization such as M = LU. Here L and U are lower and upper triangular

matrices. An iterative method applied to the system

L7'AU v = L7 with w=U"1v (1.43)

defines the split or two—sided preconditioner. This form of preconditioning
may be more useful for preconditioners which are available only in the form
of a factorization and may be seen as a compromise between left and right

preconditioning.

4. Flexible Preconditioning
This form of preconditioning is a variant of left or right preconditioning which
provides the flexibility for the preconditioning matrix M not to be necessarily
a constant operator at each iteration of the solver. A number of variants of

iterative procedures have been developed in the literature that accommodate

43

Chapter 1 1.7. Preconditioning

variations in the preconditioning operator at each iteration [150, 152]. Such
iterative procedures are known as flexible iterations or preconditioners. The
additional cost associated with flexible variants over standard algorithms is
an extra amount of memory to save an additional vector (of the size of the

problem) and, more importantly, the possibility of breakdown.

There exist many successful techniques for preconditioning a sparse linear sys-
tem, and there is virtually no limit on the available options for designing a good
preconditioner. The cost of most preconditioners is such that the work per itera-
tion is multiplied by a constant factor only. Similarly, with the exception of a few
preconditioners (such as preconditioners based on modified incomplete factorization
and/or multigrid techniques [13]) the reduction in the number of iterations to reach
convergence is also only usually by a constant factor. There is a further trade—off be-
tween the efficiency of a preconditioner in a classical sense and its parallel efficiency.
Many popular preconditioners (such as I LU, discussed above) have large sequential
components. In the following summary therefore, we outline only a few additional

preconditioners which show the most potential for efficient parallel implementation.

1. Element—-by—Element Preconditioning
For finite element problems, the assembly of the full coefficient matrix in not
always possible or necessary and the product of this matrix with vectors is as
simple and easy to compute if the coefficient matrix is not assembled. This
also helps with parallelism by distributing the corresponding matrix—vector
products across the processes. In such a situation, preconditioners should
also be developed at the element level. Some of the first element-by—element
preconditioners are reported in [102]. For a symmetric positive definite coef-

ficient matrix A, the corresponding element matrices A, are decomposed as

A. = L.LT to construct the preconditioner M = LLT where L = EE_I Le

e=0

and F is the total number of elements in the mesh. The parallelism in this

approach is exploited in the simultaneous treatment of non-adjacent elements

[91].

44

Chapter 1 1.7. Preconditioning

2. Polynomial Preconditioning
Since the matrix—vector products generally offer more parallelism than other
parts of an iterative solver, polynomial preconditioning seeks to exploit this
in order to improve the parallel performance of the solver. The approach is
based upon solution of pi(A)Au = pr(A)b, where pi(A) is a polynomial that
needs to be defined (the choice of an effective low degree polynomial may be
problematic). Here m steps of a Krylov subspace iterative solver lead to a
solution from a higher dimensional space (but with holes) with an overhead
cost of m iteration steps only. For a suitable choice of polynomial this high
dimensional space with holes may approximate the solution almost as well as
the full Krylov subspace. In this case the overhead associated with a large
number of iteration steps has been saved. On the other hand, the holes may
cause the iteration to miss important search directions, ultimately leading to

a higher iteration count. A number of general polynomial preconditioners are

discussed in [3, 152].

3. Sparse Approximate Inverse Preconditioning
The explicit inverse of a sparse matrix is always dense even if some of its
entries are actually zero, that is, it is structurally dense. However, if we are
able to compute a good sparse approximation to the inverse it is possible to
eliminate this problem of it being dense. Perhaps the most simple technique

to approximate the inverse of a general sparse matrix is to solve the problem
H}E‘HHI—AMH% (1.44)

where the Frobenius norm of the matrix A is defined by [|Allr = />, ai;.
The resulting matrix M corresponds to the right approximate inverse of A

and the left approximate inverse can similarly be computed from
rrjetn |1Z — MA|3. (1.45)

For preconditioning purposes the structure of M is constrained to be fully,
or at least partially, sparse. These minimization problems can in turn be ex-

pressed as a number of independent least—square subproblems each involving

45

Chapter 1 1.8. Contents of Thesis

only a few variables. As these subproblems are independent of each other, they
can be solved in parallel [45]. It is also possible to successively increase the
density of the approximation M to reduce the values of (1.44) and (1.45) in
order to ensure the faster convergence of the preconditioned iterative method
[47]. A number of different parallel implementations of sparse approximate
inverse preconditioners are described in [12, 16, 15, 90]. These sparse ap-
proximate inverse preconditioners may require large numbers of iterations to
converge, however, they are reasonably robust and can perform well when

standard methods may fail.

4. Domain Decomposition Preconditioning
There is a long history behind the construction of preconditioners and it is
difficult to construct efficient general purpose preconditioners for wide classes
of problems. This becomes even more difficult when preconditioners have
to be in parallel. Recently there has been a renewed focus on coarse-grain
parallel preconditioners: the sparse approximate inverse techniques outlined
above but also particularly on domain decomposition methods. Domain de-
composition techniques have been in use for many years, going as far back as
1870 [156]. These techniques have been successfully applied to large classes
of problems, especially those governed by elliptic partial differential equations
[27, 26, 28, 29, 30, 36, 44, 57, 59, 160]. As domain decomposition precondi-
tioning is the main subject of this thesis, its introduction is postponed to the

following chapter where the key ideas are described in detail.

1.8 Contents of Thesis

This thesis is concerned with the development of new efficient domain decomposition
preconditioning techniques of additive Schwarz type which are appropriate for the
parallel adaptive finite element solution of elliptic partial differential equations in
three dimensions. The novel feature of the presented preconditioning techniques is

that the refinement of a single layer of elements in the overlap region is sufficient to

46

Chapter 1 1.8. Contents of Thesis

yield optimal preconditioners.

The presentation of this thesis is organized in the following manner. Having in-
troduced the basic concepts of finite element methods, mesh adaptivity and hierar-
chies, parallel computer architectures, direct and iterative solvers, and some general
preconditioning methods in Chapter 1, we will discuss some of the most well-known
domain decomposition solution methods in Chapter 2. These include multiplicative
and additive Schwarz methods, direct and iterative substructuring methods and
the Finite Element Tearing and Interconnecting (FETI) method. Some mesh and
graph partitioning techniques, together with a few related public domain software
packages, will be discussed.

Chapter 3 consists of our first symmetric weakly overlapping two level additive
Schwarz preconditioner. In the early part of this chapter we introduce a model
problem, describe the related background theory and then the development of the
preconditioning algorithm itself. This is followed by various implementation details,
particularly the restriction operation, the preconditioning solve and the interpola-
tion operation. Then we present numerical evidence in support of the theoretical
optimality, showing that theory works in practice. For this purpose, test problems
with global uniform as well as local non—uniform refinement are considered.

We extend these ideas in Chapter 4 and develop a generalized nonsymmetric
preconditioning algorithm. This new algorithm outperforms the original symmetric
algorithm and has a number of advantages. It can also be applied to nonsymmetric
and convection-dominated problems. For the convection-dominated problems, a
stabilized finite element method, the streamline-diffusion method, is implemented
and the results obtained show its effectiveness over the Galerkin method. The issue
of local refinement for convection—dominated problems is also addressed.

Parallel performance of the generalized nonsymmetric preconditioning algorithm,
considered due to its superiority in all respects over the original symmetric algorithm,
is assessed in Chapter 5. A few issues of concern such as subdomain shape, inter—
process communication, load imbalance and parallel overhead are also addressed.

The numerical results show the obtained timings and speedups for a variety of test

47

Chapter 1 1.8. Contents of Thesis

problems.
Finally, Chapter 6 concludes the thesis with suggestions on how to improve the
parallel performance and a number of possible extensions to the existing research

work.

48

Chapter 2

Domain Decomposition

In this chapter we provide an overview of domain decomposition (DD) solvers and
explain their connection with the finite element method and the use of parallel
computers. Techniques for decomposing domains based upon mesh and graph par-

titioning, along with some related software tools, are also discussed.

2.1 Domain Decomposition Solution Methods

The DD approach provides a powertul strategy for obtaining efficient solution meth-
ods for partial differential equations. Historically, particular attention has been
given to the application of DD methods for linear elliptic problems, based on the
partitioning of the physical domain of the problem. In [160], the phenomena of DD

is defined as:

Domain decomposition refers to the process of subdividing the
solution of a large linear system into smaller problems whose
solution can be used to produce a preconditioner (or solver)
for the system of equations that results from discretizing the

partial differential equation on the entire domain.

Since the subdomains (smaller problems) can be handled independently, such meth-

ods are very attractive for parallel computing platforms. The development of parallel

49

Chapter 2 2.1. Domain Decomposition Solution Methods

computers is one of the main reasons for the increased popularity and importance
of DD methods in recent years. Generally there are two main classes of DD strategy
which depend upon the partition of the initial domain into subdomains, that is,

whether the subdomains are overlapping or non—overlapping. In the case of overlap-

Figure 2.1: Decomposition into overlapping and non—overlapping subdomains.

ping subdomains, variables in the overlap regions are associated with more than one
subproblem whereas, when non—overlapping subdomains are used, only variables on
the subdomain interfaces are associated with more than one subproblem. The main
advantage gained from using overlapping regions is that it can lead to a better rate
of convergence, however the size of subdomain problems is clearly greater. In [22]
it is shown that the distinction between these two classes of DD methods is not
actually that fundamental and that the same technical tools can be used for the
analysis of both of these methods. Hence, we consider an alternative categorization

of DD solution techniques as follows.

1. Schwarz Alternating Methods, in which subdomains are generally over-
lapping (also known as Schwarz Alternating Procedures). The original alter-
nating procedure was introduced in 1870 by H. A. Schwarz [156]. Today the
DD literature is full of variants of this procedure: two of the most important

(described in more detail below) being

50

Chapter 2 2.2. Schwarz Alternating Methods

(a) Multiplicative Schwarz Procedures, which are an analogue of the

block Gauss—Seidel Method.

(b) Additive Schwarz Procedures, which are analogue of the block Jacobi
Method.

2. Schur Complement Methods, in which subdomains are non—overlapping
(also known as substructuring methods). The Schur complement methods may

also be further divided into two types of solver (also described in more detail

below):

(a) Direct Substructuring Methods, in which a direct solution method
is employed.

(b) Iterative Substructuring Methods, in which a preconditioned Krylov

subspace iterative method is employed.

Each of the above mentioned Schwarz and Schur complement methods is used to
derive a parallel preconditioner or solver based on the DD for the system of linear
equations (1.11). In the following two sections we outline the general principles
for Schwarz alternating procedures for overlapping subdomains and Substructuring
methods for non—overlapping subdomains respectively. A short survey of DD meth-
ods is then presented in §2.4, whereas in §2.5 we briefly describe mesh partitioning
techniques followed by some well known graph partitioning techniques in §2.6, where

some public domain software tools for graph partitioning are also discussed.

2.2 Schwarz Alternating Methods

The original idea of an alternating procedure, due to Schwarz [156], is for two sub-

domains only and comprises of the following three components:
1. Alternating between two subdomains.

2. Solving a Dirichlet problem at each iteration on one subdomain only.

51

Chapter 2 2.2. Schwarz Alternating Methods

3. Using the most recent solution from one subdomain to obtain boundary con-

ditions to solve a Dirichlet problem on the other subdomain.

This procedure resembles the block Gauss—Seidel iterative solution method in that
the most recent solution is always used, and is known as a multiplicative Schwarz
procedure. A modification to this original procedure that is analogous to the block
Jacobi iterative solution method, known as the additive Schwarz procedure, is suit-
able for parallel implementation. In this version steps 2 and 3 above are solved
independently and may therefore be solved concurrently. It turns out that in prac-
tice both of these procedures are best used as preconditioners to other iterative
solution methods. Furthermore, in the last twenty years or so, people from disci-
plines including the physical sciences, engineering and particularly from scientific
computing have introduced many valuable variants of these procedures. The basic

description of these two procedures is presented in the following subsections.

2.2.1 Multiplicative Schwarz Procedure

Let the computational domain € of the problem (1.1) be divided into an arbitrary
number of subdomains, say p, {1; such that Q = Uf:_gﬂi and each subdomain overlaps
with its neighbouring subdomains (i.e. has at least one shared interior point). Let
N; be the set of subdomains §2; which are neighbours to the subdomain €2;, then the
multiplicative Schwarz procedure can be described as a sequence of the following

steps:
1. Loop over the subdomains ; for : =0,...,p — 1.

2. For subdomain ; determine (update) boundary conditions for the local prob-

lem using the most recent solution values from subdomains §; € N;.

3. Solve local problem over the subdomain £2;.

It should be noted that in step 2 above the first subdomain €2; will use an initial
guess to determine the boundary conditions instead of the most recent solution

from the subdomains Q; € N;. After the local problem over the first subdomain

52

Chapter 2 2.2. Schwarz Alternating Methods

; is solved, a combination of the initial guess and the most recent solution from
the neighbouring subdomains will be used until the solve for the last subdomain
where the most recent solution from all neighbouring subdomains is available. This
situation takes place only during the first sweep through the subdomains and for
any subsequent sweeps over the subdomains the most recent solution is available
from all of the neighbouring subdomains. As with most iterative solution methods
requiring an initial guess to start with, a good choice of this initial guess will solve the
problem in fewer iterations. Iterative solution methods typically obey the principal
of correction by adding a correction to the approximated solution at each iteration.

Mathematically this can be expressed as
up = u;+ 9 (2.1)

where u; is the approximate solution vector of the local discrete problem on sub-
domain €2; and ¢, is a correction vector. This may be obtained by solving a local
system of the form

A b, = 1y (2.2)

13 —1

on subdomain €;, with r; the local part of the global residual vector (b— Au), where
b is defined by (1.16), corresponding to the linear system of equations (1.11). A
point to be noted here is that after solving the local problem on subdomain €; the
parts of the global residual vector which belong to the neighbouring subdomains
2, € N; need to be updated. Hence the above sequence for the multiplicative

Schwarz procedure can be rephrased as:
1. Loop over the subdomains ; for : =0,...,p — 1.

2. Determine (update) boundary conditions for the local problem using the most

recent values from subdomains 2; € N;.
3. Solve the local system A;6, = r; for ¢,.
4. Update the local approximate solution u; := u; + 9,.

5. Update the local residual r; for 2; € N;.

53

Chapter 2 2.2. Schwarz Alternating Methods

An alternative to this procedure is obtained by eliminating all variables which corre-
spond to the interior (non—overlapping part) of the subdomains. Such a multiplica-
tive Schwarz procedure, which would directly compute the solution in the overlap
regions between subdomains only, would resemble a form of the block Gauss—Seidel
iteration on the Schur complement problem for a consistent choice of the initial
guess [41]. The Schur complement problem is described in §2.3.

Finally we make the following observations on the applications of multiplicative

Schwarz procedures:

e The multiplicative Schwarz procedure can be used as a preconditioner for other

iterative solvers.

e When used as a preconditioner for a symmetric problem, the symmetry is
lost in the preconditioned system. A sweep over the subdomains €; for ¢ =
0,...,p — 1 followed by another sweep in the reverse direction recovers the

symmetry however.

e The multicolouring of subdomains for the multiplicative Schwarz procedure
can be exploited in a similar way to the block symmetric successive overrelax-
ation (SSOR) method. By assuming that any two adjacent subdomains have
different colours then subdomains of the same colour have no coupling. In this
situation the standard SSOR preconditioner can be used to solve the block
system derived from the original problem (1.11). Similarly, a Schwarz multi-
plicative procedure can be applied for the preconditioning of such a system.
The colour based decoupling of subdomains is one of the necessary features

for efficient parallelism.

2.2.2 Additive Schwarz Procedure

The additive Schwarz procedure is a variant of the original multiplicative Schwarz
procedure and is equivalent to a block Jacobi solution method. The additive Schwarz

procedure updates the boundary conditions for all subdomains together once the

54

Chapter 2 2.2. Schwarz Alternating Methods

previous sweep over all subdomains is complete. This makes it slower to converge but
ideally suited for implementation on a parallel computer since each subdomain solve

is independent. An iteration of the additive Schwarz procedure can be expressed as:
1. Determine (update) boundary conditions for all subproblems.
2. Loop over the subdomains ; forz =0,...,p — 1.
3. Solve local problem over subdomain (2;.

The boundary conditions for all of the local problems in step 1 use the initial guess
for the first iteration and for any subsequent iterations the solution from the pre-
vious iteration is used. The boundary conditions are updated for all subproblems
from the local approximate solution of neighbouring subdomains obtained in the
previous iteration. As with the multiplicative Schwarz method it is possible to use
the principle of correction whereby, after completing a sweep over the subdomains,

the solution from each local problem is used to update the global solution as follows:

—

p—

7

Il
=]

where u is the approximate solution vector of the global problem on the whole
domain £ and §; is the correction vector contributed by each of the local problems.

This is obtained by solving a local linear system

on subdomain ; with r; representing the part of the global residual vector (b— Au),
where b is defined by (1.16), of the global system of equations (1.11) corresponding
to the local problem on subdomain €2;. Unlike the multiplicative Schwarz proce-
dure, the residual vector for the global system only has to be updated once after
the solution for all subproblems is obtained, hence it does not matter whether the
local problems are solved sequentially (in any order) or concurrently. The additive

Schwarz procedure in this revised form, therefore, can be described as:

55

Chapter 2 2.3. Schur Complement Methods

1. Determine (update) boundary conditions for all subproblems using available

values from the previous iteration.
2. Loop over the subdomains ; forz =0,...,p — 1.
3. Solve the local problem A;6; = r; for ¢;.
4. Loop over the subdomains 2; for: =0,...,p — 1.
5. Update the global approximate solution v = u + ¢;.

As noted earlier, due to the absence of data dependency amongst the local prob-

lems, this procedure can be implemented in parallel as follows:

1. Determine (update) boundary conditions for all subproblems using available

values from the previous iteration.
2. Solve the local problems A;6; = r, for ¢, in parallel.

3. Update the global approximate solution v = u + Zp_l o;.

=0

Obviously there is no need of a loop over subdomains as the local problems are
solved in parallel in step 2 but a global reduction operation, as described in §1.5.3
and implemented in §1.6.4, is required in step 3 to sum the contributions from each

local problem in order to update the global approximate solution vector.

2.3 Schur Complement Methods

In this section we discuss the use of Schur complement methods to solve a linear
system of equations (1.11) on a parallel computer. Let us begin with the assumption
that a finite element mesh is defined on the domain € and a partition of this domain
into p subdomains €;, for ¢ = 0,...,p — 1, is defined through the partition of the
mesh such that Q = Uf:_gﬂi, that is, each subdomain has a complete mesh suitable
for solving finite element problems. Although this notation is valid for both cases of

overlapping and non—overlapping (disjoint) subdomains, Schur complement methods

56

Chapter 2 2.3. Schur Complement Methods

are more appropriate for non—overlapping subdomains and we shall discuss them in
this context.

As explained above DD methods attempt to solve the system of linear equations
(1.11) on the entire domain € by using the solution of the subproblems on the
subdomains €;, for + = 0,...,p — 1. For a suitable partition of the domain 2
(consistent with a partition of a global mesh) into p subdomains, the corresponding
system of linear equations in block matrix notation is given by (1.28) and may also

be written as:

A; B ur | b, (2 5)
CI AS u, é) .
where))
Ao
A
Af = ' (2.6)
L Ap_l -

is a block matrix corresponding to the interior nodes of all subdomains €2; for : =
0,...,p — 1, A, is the block matrix corresponding to all nodes at the interfaces

between subdomains,

By

B
Bi=| (2.7)

B,y

represents the coupling of all subdomains to the interfaces and
CI = 00,01,. . -7Cp—1 (28)

represents the coupling of interfaces to all subdomains.

2.3.1 Direct Substructuring Methods

The early applications of substructuring or Schur complement methods exploited a

direct solution framework from where the name of this method is borrowed. Consider

57

Chapter 2 2.3. Schur Complement Methods

the system of linear equations (2.5) which can further be expressed in the form
AIM[+ BIMS = é[(2.9)

Cruy + Asu, = by (2.10)

The substitution of equation (2.9) into equation (2.10) yields
Cr (A7 (by — Buu,)) + Asu, = b, (2.11)

On further simplification this equation takes the form

Su, =g (2.12)
where
S=A,— CiA;' By (2.13)
and
g=0b,— CrAT'Y,. (2.14)

The matrix S defined by equation (2.13) is known as the Schur complement matriz
associated with the variables at the interface between subdomains and the corre-
sponding system (2.12) is known as Schur complement system or reduced system.
The matrix A; associated with this Schur complement system is a block diagonal
matrix given by (2.6), where each block A; is associated with the interior variables
of subdomain €; forz =0, ..., p—1. This phenomena naturally decouples the global
problem into p independent subproblems which can be solved concurrently. In order
to solve the interface problem, we need to assemble the Schur complement matrix
S given by (2.13) which involve the inversion of the block diagonal matrix A; and
is given by

At

A—l
A7l = b : (2.15)

A—l

p—1 |

58

Chapter 2 2.3. Schur Complement Methods

Now substitution of equations (2.7, 2.8, 2.15) into (2.13) gives

A Bo
At By
S =A,— 00701,...,Cp_1
I AL | | Bo-1 |
Ag' By (2.16)
AT B,
:As_ 00,01,...,Cp_1
| A8 |
p—1
= A, =) CiA'B..
=0

From this equation the local Schur complement matriz for the subdomain €2; can be

defined as
S; = As(i) — CZ-AZ-_IBZ- (2.17)

where A,(;) is the contribution to A, from subdomain €2;, for ¢« = 0,...,p — L.
Therefore the global Schur complement matrix S for the linear system (1.11) can be

expressed in terms of local Schur complement matrices S;, corresponding to linear

systems on subdomains §2;, for z = 0,...,p — 1, as follow:
p—1 p—1 p—1
S=A =Y CAT'Bi=)Y (A —CAT'B) =) S (2.18)
=0 =0 =0

This leads to the observation that the Schur complement matrix can be formed
from the smaller Schur complements matrices from the subdomains. However this
is an expensive operation due to the need to calculate A;'B; on each subdomain.
Nevertheless the system of linear equations expressed by the equations (2.12) can

be solved, as suggested in [152], in the following five steps:
1. Factorize A; on each subdomain ; for: =0,...,p — 1.

2. Compute A7'B; and A;'b; on subdomain Q; for i = 0,...,p — 1.

59

Chapter 2 2.3. Schur Complement Methods

3. Form Ef:_g S; to get the global Schur complement matriz and the right—hand

side b, = f:_g C;A7'b; where a global reduction operation is required.
4. Solve the global Schur complement system given by equation (2.12).

5. Compute remaining unknowns on each subdomain using backward substitu-

tion (as A; has been factorized).

Note that on a parallel machine the solution of the Schur complement problem in
step 4, may become a serial bottleneck. Many different methods could be used for
this dense system of equations (including a parallel direct solver, e.g. [53, 62]). Note
that by using a direct solution method as described here the solution of the linear
subsystem corresponding to each subdomain must be exact. This is not necessarily
the case when iterative solution methods are used, as discussed in the following

section.

2.3.2 Iterative Substructuring Methods

As we can see from the previous section, direct substructuring methods have the
drawback in both time and memory of requiring exact factrorizations of the sub-
domain matrices A;. The use of an iterative scheme can avoid this cost. Further-
more, the use of a preconditioner with iterative solution techniques can make the
convergence process fast and increase the algorithm’s efficiency. Possible iterative
techniques and parallel preconditioners exploiting the Schur complement system of
linear equations for the interface variables between subdomains are considered here
(see also [64, 117, 153, 161]). Recall that in the previous section the Schur comple-
ment system, also called the reduced system, has been derived. This system (2.12)
is generally dense with the coefficient matrix given by (2.13) which, in terms of local
Schur complement matrices, is also given by (2.18). Similarly, the right-hand side
(2.14) of this system can be expressed as

g = @s(i) - CiAi_léi> . (2.19)

60

Chapter 2 2.3. Schur Complement Methods

Application of any Krylov subspace method such as CG or GMRES to solve the
Schur complement system (2.12) does not necessarily require the explicit assembly
of the Schur complement matrix S. This is very important from the computational
point of view as the explicit construction of this matrix, as described in the previous
section, is very expensive. Instead these methods only need the action of multiplica-
tion of the matrix with a given direction vector, vy say. Thus from equation (2.18),
we have
p—1
Sve =Y (A — CiAT' Bi) vs, (2.20)
i=0

This product, in more appropriate form, can be written as:

p—1 p—1
Sve =Y Ayavs — ¥ Ci (A7 (Bivy)) (2.21)
=0 =0

and may therefore be obtained using only local matrix—vector products and subdo-
main solves. Each of these operations, on each subdomain, may be performed in
parallel.

The benefit of Schur complement methods is that they require the solution of a
smaller system than the original system. In fact, for a small number of subdomains,
the interface between subdomains is small and therefore the size of interface prob-
lem is small. However, with an increase in the number of subdomains the interface
between the subdomains usually becomes large and so does the size of the corre-
sponding interface problem. Due to this increase in the number of subdomains and
size of interface problem, an iterative solver may require more iterations to converge.
Therefore a good preconditioner may be required to solve the system (2.18) on a
finite element mesh with very large number of degrees of freedom and large number

of subdomains in order to obtain a reasonable rate of convergence [57, 97, 159].

2.3.3 Finite Element Tearing and Interconnecting Method

In this section we briefly explain the Finite Element Tearing and Interconnecting
(FETI) Method which belongs to the class of methods referred as non—overlapping
DD methods [160] and also referred as conjugate gradient based substructuring

61

Chapter 2 2.3. Schur Complement Methods

methods [77]. These methods solve the interface problem (2.12), usually by an
iterative method such as CG, as this avoids the explicit formation of the Schur
complement matrix (2.13). The substructuring approach combines both direct and
iterative solvers (for the subdomain and outer solves respectively) and can have a
better parallel scalability [18, 75] than the CG method applied directly to the global
system (since the computational work on each process is higher for the same amount
of communication).

The FETI method, or DD based iterative method with Lagrange multipliers,
can be considered as a two step preconditioned CG algorithm where problems with
Dirichlet boundary conditions are solved in the preconditioning step and related
problems with Neumann boundary conditions are solved in a second step. An aux-
iliary problem based on the subdomain rigid body modes acts as a coarse problem
to propagate the error globally during the preconditioned CG iteration, thus accel-
erating the convergence. Recall that in §2.2.1 NV; is defined as the set of subdomains
2; which are neighbours of subdomain ;. Similarly, let N; for j # ¢ be the set
of subdomains Q; which are neighbours to the subdomain ;. A variational form
of the problem (1.1) can be expressed in terms of the following algebraic system of
equations [70, 77]:

Aw; = b+ > BIA for i=0,...p-1 (2.22)

Q;eN;

2

Here the matrices B; are signed boolean matrices which map a local vector u; to
the corresponding entries in the global subdomain interface vector. Also, A;, u,
and b; (for 1 = 0,...,p — 1) are the stiffness matrix, the vector of unknowns and
the right-hand side vector respectively associated with finite element discretization
of the subdomain ;. The vector of Lagrange multipliers A is the interaction be-
tween neighbouring subdomains along their common boundary and the number of
Lagrange multipliers is equal to the total number of unknowns at the global sub-

domain interface. Equation (2.23) ensures equal solution values at nodes shared

between neighbouring subdomains and provides an additional equation to help in

62

Chapter 2 2.3. Schur Complement Methods

solving equations (2.22).
We first consider the simple case where A; is non—singular for : = 0,...,p — 1,

then equation (2.22) can be rewritten as

u,=A7 b+ Y BIA for i=0,...,p—1. (2.24)

2 1
Q;€eN;

Substitution of this equation in (2.23) yields

BAT | b+ Y BIA| =BAT [b+ Y BIA (2.25)

Q;EN; Q1 EN;

which may be rearranged,

BATY Y B = BjATY Y BE | A= BjAT'b — BiAT'D, (2.26)
Q, €N, QreN,
and solved for A. Once A is obtained, the vector of unknown variables can be
obtained by substituting for A in equations (2.22).

Unfortunately, for some problems the stiffness matrix for a subdomain may not
always be non—singular. In this situation the solution process described above will
break down. To overcome this situation, let us assume that subdomains Q include
a Dirichlet condition and subdomains Q" are pure Neumann (also known as floating
subdomains). In this case the A; for Q; € OF are positive definite and the Aj for
QO € OV are positive semi-definite. Thus any subsystem of equations in (2.22)
corresponding to subdomains Q; € OV is singular. Assuming that this system is

consistent then a general solution can be written as:

w, = Af (@k + Z B?A) + Rra (2.27)

Q; ENg,
where A} is a pseudo-inverse of Ay [14], the columns of R}, are the singular vectors of
Ay, and the vector a indicates a linear combination of these vectors. The replacement
of equation (2.22) by the equation (2.27) rather than (2.24) introduces a set of
additional unknowns a, so the overall system of equations becomes underdetermined.

Since Ay is symmetric, there exists at least one solution of the singular equation

63

Chapter 2 2.3. Schur Complement Methods

(2.22) if and only if the right-hand side (ék + ZQJeNk B]TA> has no component in

the null space of A;. This can be written as

R\ b+ > BIA| =0 (2.28)

Q] ENk

which is an additional equation that is helpful in obtaining A, a and the vectors
of unknown variables u;. Combining together equations (2.22), (2.23), (2.27) and

(2.28), the interface system can be written as:

Fr =Gy A d
= (2.29)
-G7 0 a e
where
p—1
Fr =) BAfB, (2.30)
=0
GI - [B()RO BNf—lRNf—l]y (231)
p—1
d =) BiAfb, (2.32)
=0
e = [BFR]" (i=0,...,N;—1), (2.33)

and Ny is the number of floating subdomains. For full derivation details of this
further reading, such as [69, 70, 76, 77, 79], is suggested. This system can be solved
for (A, @) and the unknown variables in the interior of subdomains may then be
obtained from equations (2.24) and (2.27). It is expensive to explicitly assemble the
matrix £ which makes the use of a direct methods to solve this system impractical.
However, an iterative method such as CG may be efficient, although the indefinite-
ness of the Lagrangian precludes a straightforward application of CG. Alternatively,
due to the symmetry of Fy, (2.29) can be formulated as a constrained minimization
problem:

1
min ®(A) = SATFA = A (Gra + d) (2.34)

subject to

GTA =e. (2.35)

64

Chapter 2 2.4. Domain Decomposition: A Brief Review

As F7 is positive semi—definite, this problem can be solved by CG provided the
value of A at each iteration satisfies the constraint (2.35). Furthermore, suitable
preconditioning of this problem [75, 114] can make the convergence faster, although

this is not considered here.

2.4 Domain Decomposition: A Brief Review

Having outlined some of the major DD solution techniques we now put these into
an historical context and provide details of further reading by giving a brief review
of some of the literature in this (very large) field. We concentrate on the domain
decomposition methods covered in §2.2 and §2.3 only, and consider them in the same
order, that is, Schwarz methods, Schur complement methods and FETI methods.
This review is not intended to be exhaustive by any means and the reader is referred
to survey and review articles and recent monographs such as [42, 119, 141, 160, 177,
178] for still further details.

It is believed that the first domain decomposition method was introduced by
Schwarz [156] and was used to show the existence of analytical solutions of elliptic
boundary value problems on domains which consist of the union of simple overlap-
ping subregions. It was assumed that the shape of these subregions was such that
the elliptic problem in each subregion could be solved analytically. The case of two
subregions is illustrated in [160], as shown in Figure 2.2.

The multiplicative Schwarz algorithm is a straightforward extension of the clas-
sical alternating Schwarz algorithm to an arbitrary number of subdomains once the
order in which each subproblem is to be considered has been selected. However,
this extension of the theory had some difficulties at the early stage of its devel-
opment [31, 39, 177], since for large numbers of subdomains the convergence rate
deteriorates rapidly (the condition number grows like 1/H?* where H is the diam-
eter of the smallest subdomain). The additional solution of a global coarse grid
problem is the most common mechanism for improving this convergence rate since

it provides global communication of information across the subdomains at each it-

65

Chapter 2 2.4. Domain Decomposition: A Brief Review

Figure 2.2: Schwarz’s original figure.

eration. The multiplicative Schwarz algorithm is inherently a sequential algorithm
although parallelism is possible by introducing a subdomain colouring such that
no two subdomains of same colour are neighbours. The introduction of additive
Schwarz methods [56, 124] removed completely the inherent sequential behaviour of
multiplicative Schwarz methods. However, despite less scope for parallelism, multi-
plicative Schwarz methods are often superior to additive Schwarz methods because
their algebraic convergence rate tends to be higher. A hybrid Schwarz preconditioner
is also possible [35]: this aims to combine the advantages of the two methods, that
is, faster convergence of multiplicative Schwarz and inherent parallelism of additive
Schwarz methods.

The two level additive Schwarz methods (i.e. making use of a global coarse grid
problem) are introduced in [57] and a few variants of these can be found in [35, 121].
In two level Schwarz methods, the local preconditioner may be either multiplicative
or additive. Multilevel Schwarz methods also exist in the literature, [58] for example.
Here, the coarse problem is itself solved by a two level method (repeating recursively
to as many levels as required). A comprehensive study of multilevel algorithms and

their convergence theory is carried out in [180]. BPX algorithms [32] are a special

66

Chapter 2 2.4. Domain Decomposition: A Brief Review

case of the multilevel additive Schwarz method but are derived in a different way.
An optimality proof for multilevel additive Schwarz algorithms is given in [132] and
a generalization of both multilevel multiplicative and additive Schwarz methods
appears in [177]. We refer to [87] for an abstract theory of both multiplicative and
additive Schwarz algorithms.

Non—overlapping DD methods are defined on a decomposition of the domain
which consists of mutually disjoint subdomains. We discuss here these methods in
the context of preconditioning algorithms for Schur complement systems. These
techniques, often known as substructuring methods, were first studied in [26, 29].
However, a similar adoption of DD for organizing large structural analysis problems
has also been reported [140]. A key feature of substructuring methods that is miss-
ing in [140] however, is that they facilitate the design of effective parallel algorithms
[160]. The original idea behind substructuring methods was to provide direct so-
lution algorithms based on explicit computation and factorization of a sequence of
Schur complement matrices. We refer to [48] for a survey article on Schur comple-
ment methods and the parallel implementation of direct substructuring methods is
discussed in [20].

Since the original introduction of these direct substructuring methods a num-
ber of promising iterative alternatives have been introduced. For these methods,
even without preconditioning, the condition number of discrete, second order ellip-
tic systems is generally improved from O(h™?) to O(h™") [21]. The method proposed
in [43] shows that the convergence rate is independent of aspect ratios for several
model problems and it is further shown in [22] that the these methods are identical
to certain classical alternating Schwarz iterations. Similarly, an algebraic proof of
the equivalence between certain overlapping Schwarz methods and the Schur com-
plement iteration is given in [41]. Iterative substructuring algorithms may also be
used with p—version finite element methods [6]. Furthermore, a hierarchical basis
may be used along the interface [160] which introduces the possible use of multilevel
preconditioners on the interface [166]. For a complete discussion of many iterative

substructuring algorithms, including problems in three dimensions, we refer to [55]

67

Chapter 2 2.5. Mesh Partitioning

whereas in [178] a unified investigation of non—overlapping DD methods is presented.

A more recent DD algorithm for the iterative solution of equations arising from
the finite element discretization of self-adjoint elliptic PDEs, known as the FETI
method, was introduced in [69, 77, 78]. A detailed introduction to this method can be
found in [79], with significant theoretical work in [122]. For preconditioning within
a unified framework for accelerating convergence of the FETI method see [70]. Here
we briefly review the literature related to the advancement of DD methods which
belong to the FETT class.

Extensive numerical tests are reported in [18, 148] for example, and the concept
of scaling used in the FETI preconditioner is introduced in [147]. Similar scaling
can also be found in [115]. More recently a dual-primal FETI algorithm [72] is
introduced which is suitable for second order elliptic problems in the plane and for
plate problems. However, numerical experiments show poor performance for this
algorithm in three dimensions. Some more recent experiments, [73], with an alter-
native algorithm are however encouraging. The condition number bound established
in [123] for the FETT method equipped with a Dirichlet preconditioner is of the form
C (1 +1log(H/R))?, and a corresponding result for fourth order elliptic problems is
also established. A proof for this condition number bound is provided in [123]. The
same preconditioner is also defined for three dimensions but does not perform so
well. This may be related to the poor performance of many vertex—based iterative
substructuring methods [55], however the addition of a few constraints to this basic

algorithm [73] can improve the performance.

2.5 Mesh Partitioning

A number of computational techniques, including the FEM discussed in §1.1 and
§1.6, use unstructured meshes to solve the large—scale scientific and engineering
problems such as those arising in computational fluid dynamics or computational
mechanics for example. As seen in §1.6, due to their size, these problems are often

solved in parallel and therefore require the partitioning of the mesh on the problem

68

Chapter 2 2.5. Mesh Partitioning

domain. So far in this chapter we have considered DD solution techniques which
assume that the problem domain has already been partitioned by elements. This
partition takes place on a mesh which covers the domain and so in this section we
discuss some of the main issues and heuristics associated with mesh partitioning.
To ensure the quality of a partition, so that the problem can be solved efficiently
in parallel, it is desirable for a partition of the mesh M into p submeshes M; (for

i =0,...,p— 1) to satisfy the following two main properties.

e The submeshes M; should be of equal size so as to ensure the computational

load is balanced.

e The inter—process communication should be minimized by keeping the inter-

face between subdomains to a minimum.

Other features of a partition, such as good subdomain aspect ratios or subdomain
inter—connectivity bandwidths, may also be required by some parallel solution algo-
rithms (see, for example, [71]) but these will not be discussed here.

Assume that the domain of the problem has already been meshed into a number
of coarse elements (for example, triangles in 2-d or tetrahedra in 3-d), where each
element is a combination of edges and vertices. Generally this meshed domain is
partitioned by using a graph representation of the mesh in one way or another and
the resulting subdomains are assigned to distinct processes. There are therefore a

number of choices over the type of partition and these are considered below.

e Edge Based partition
This partition does not allow splitting of edges between subdomains and there-
fore each edge of the mesh should be assigned to a unique process. This type

of partition is particularly suitable for finite volume techniques.

e Vertex Based Partition
In this partition each vertex of the mesh is allocated to a unique process.
Consequently, some elements and edges at the interface may be assigned to

more than one process.

69

Chapter 2 2.6. Graph Partitioning

¢ Element Based Partition
This type of partition requires the mapping of each element to a unique process,
that is, elements should not be sliced between subdomains. All the information
related to an element should therefore be mapped to the same process. Some

edges and nodes will lie on the subdomain boundaries however.

For the parallel finite element solution described in §1.6 an element based par-
tition is used. This is the type of partition that we will consider throughout this
work. By defining a dual graph relating elements of the mesh with graph vertices
and the adjacency of mesh elements with graph edges, the problem of element based
mesh partitioning can be expressed as a conventional graph partitioning problem.
In the following section, this issue of finite element mesh partitioning through graph

partitioning is addressed.

2.6 Graph Partitioning

A graph G consists of a non—empty set of elements V() and a subset E(G) of the
set of pairs of elements of V() x V(). The elements V(G) and E(G) are known
as vertices and edges of the graph (G respectively, where any two vertices connected
through an edge are said to be adjacent. If the edges are ordered pairs of vertices,
the graph is known as a directed graph and if these edges are unordered pairs of
vertices it is an undirected graph.

As discussed above, when we want to solve a PDE, such as (1.1), on a parallel
computer we need to partition the computational mesh of the problem domain. The

following two issues may be associated with such a partition.
1. Obtaining a suitable partition of the mesh.
2. Distributing the submeshes appropriately across the processes.

Graph partitioning techniques are related to the first issue only, whereas the second
issue is architecture dependent. The task of graph partitioning is to subdivide the

graph into a number of small subgraphs (which should be of approximately equal size

70

Chapter 2 2.6. Graph Partitioning

for the reasons discussed in §2.5). The problem of finding the partition of a graph
with equal-sized subgraphs and the minimum possible number of edges crossing
from one subgraph to another is NP-hard. For large, or even moderate sized, finite
element grids finding the optimal solution is not practical therefore. Hence we
tend to use heuristics: many of which appear in the literature [93, 112, 139, 170].
These techniques involve a variety of algorithms such as those based on geometric
techniques, spectral techniques or graphical techniques. Some other heuristics which
are harder to categorize are also summarized in this section. We also provide a short

survey of some of the available graph partitioning software.

2.6.1 Geometric Techniques

1. Recursive Coordinate Bisection
For recursive coordinate bisection (RCB) of a given undirected graph it is
necessary that the coordinates of the vertices are available. A simple strategy
to determine the coordinate direction of the longest expansion of the domain
is introduced in [175] and generalized in [158]. Without loss of generality, it is
assumed that this coordinate direction is along the x—axis. The nodes are then
partitioned into two sets by assigning the half of the nodes with smallest x—
coordinates to one subdomain and rest of the nodes to other subdomain. This
process is repeated recursively on each subdomain. A straight observation is
that this technique does not exploited the adjacency information of the graph
and so it is unlikely that the resulting subdomains will have a low cut-weight
(the cut—weight, also called edge—cut, is the term used for the number of edges

crossing from one subgraph to another).

2. Recursive Inertial Bisection
This is a generalization of the RCB technique whereby a point mass, as well
as a position, is associated with each vertex of the graph and the resulting
principal axis of inertial (PA) is calculated. The graph is then bisected by
taking an orthogonal cut to the PA such that the total mass on either side

71

Chapter 2 2.6. Graph Partitioning

of the cut is approximately equal. This procedure is also repeated recursively
for each subdomain. Although this technique is fast, the partitions produced
generally still have a relatively high cut-weight [52].

3. Stripe—wise Method
The sorting of the nodes in this method is similar to that in RCB however
there is no restriction to a total of 2" partitions. Instead, an arbitrary number
of orthogonal cuts along a suitably chosen axis produces an arbitrary number
of partitions of almost equal size. However, this stripe like decomposition of
the mesh is not advised [95] because of its large cut—weight and its adverse
affect on the scalability of typical parallel solvers, due to deteriorating aspect
ratios. (In [95] isotropic problems are considered however for some anisotropic

problems this partition may be preferable provided it is properly aligned.)

2.6.2 Spectral Techniques

1. Recursive Spectral Bisection
This technique exploits the properties of eigenvectors of the Laplacian of a
graph. For any given graph, the Laplacian matrix L is defined to have the

following entry in row z, column j:

-1 if vertices 7 & j are connected,
L;; = degree of vertex ¢ ifi =7,
0 otherwise.

Note that the degree of a vertex is equal to the number of graph edges radiating
from it. Furthermore, when the graph is undirected the matrix is symmetric,
and it may be shown that it is negative semidefinite with a single eigenvalue
of zero (provided the graph is connected: there are more zero eigenvalues for
disconnected graphs). When the graph is connected, the eigenvector associated
with the second smallest (in magnitude) eigenvalue has some useful properties
[96]. This eigenvector is called the Fiedler vector and the signs of its entries

may be used to divide the domain into two roughly equal parts. The Recursive

72

Chapter 2 2.6. Graph Partitioning

Spectral Bisection (RSB) technique sorts the components of the Fiedler vector
and then assigns the first half of the sorted vertices to one subdomain and the
rest to the other subdomain. This procedure is repeated recursively until a

required number of subdomains is produced.

2. Multidimensional Spectral Graph Partitioning
By making a novel use of multiple eigenvectors [92], this generalization of RSB
divides a graph into 4 (spectral quadrisection) or 8 (octasection) parts at once.
It is shown in [94] that, for some problems, this multidimensional approach

significantly out—performs standard RSB.

2.6.3 Graphical Techniques

1. Recursive Graph Bisection
This technique is similar to RCB however the idea of graph distance is used
instead of Euclidean distance. The graph distance between any two vertices
v; and v; is defined as the number of edges in the shortest path connecting
vertices v; and v; . The recursive graph bisection (RGB) algorithm begins
by finding the diameter of the graph (or alternatively the pseudo-diameter, as
the true diameter is expensive to find [85]). The nodes are sorted according to
their graph distance from one of the extreme nodes of this diameter. One half
of these sorted nodes are assigned to one subdomain and the remaining half
to the second subdomain. This approach is then repeated recursively on each
subdomain. If the original graph is connected then this algorithm guarantees
that at least one of the two subdomains will be connected, however the other
subdomain may not be. Thus the situation can arise where not all of the

subdomains are connected.

2. Double Stripping Technique
This technique uses two parameters, p; and py say, such that the product of
these two parameters is equal to the required number of subdomains (p =

p1 X p2). The original graph is first partitioned into p; subgraphs using a one

73

Chapter 2 2.6. Graph Partitioning

way partition. This consists of performing a level set traversal from a (pseudo)
peripheral vertex and assigning an average number of consecutive nodes to each
different subgraph in a graphical analogy of the strip—wise decomposition.
Then each of these p; subgraphs are further subdivided into p; parts in a
similar manner. For certain problems however, the subgraphs obtained using
this technique may be quite long and twisted in shape, giving a higher number

of edge—cuts than desired [152].

3. Greedy Algorithm
The Greedy algorithm [68] builds its first subdomain without looking ahead.
Once this is achieved it discards this subdomain and forms the second sub-
domain (again without looking ahead) and so on. Ultimately the quality of
last subdomain is not generally very good in comparison with the early subdo-
mains. This graph—based algorithm uses the level set principle as in the RGB
technique where vertices are claimed by walking through the graph one level

at a time, beginning with a (pseudo-) peripheral vertex.

2.6.4 Some Miscellaneous Techniques

1. Recursive Node Cluster Bisection
This is an attempt to combine the features of RSB and graph coarsening
techniques [96], based on the idea of node clustering [170]. Here, some of the
connected vertices in a graph are clustered together to create a single, highly—
weighted, vertex whose degree is equal to the number of vertices adjacent to the
vertices forming the cluster. A generalized spectral bisection approach is then
used on this weighted graph. This method can lead to some imbalance between

subdomains and so the balance must be restored by a suggested recovery

scheme [96].

2. Kernighan—Lin Type Algorithms
An iterative graph partitioning algorithm is introduced in [113] which first

divides a graph into an arbitrary number of equally—sized subgraphs. During

74

Chapter 2 2.6. Graph Partitioning

each subsequent iteration subsets of vertices are determined from each sub-
graph such that interchange of these subsets leads to an improved cut—weight.
If such subsets exist then their interchange is carried out and this becomes
the new partition, otherwise the algorithm terminates. The complexity of the
algorithm is nonlinear in nature and each iteration takes O(|E|*log |E|) time,
however a variant of this algorithm introduced in [80], reduces the complexity

to O(|E|).

2.6.5 Graph Partitioning Software

As indicated by the examples above, a large number of graph partitioning heuristics
have been developed and the performance of these methods is typically influenced by
various choices of parameters and details of their implementation. For this reason
many public domain graph partitioning software packages (specializing in one or
more particular aspect of graph partitioning) are now available. A few of these are

briefly described below.

1. Chaco
Chaco is a software package [93] designed for graph partitioning which allows
the recursive application of several methods to find small edge separators in
weighted graphs. It also provides the facility to improve the quality of an

existing partition. The main issues addressed are:

(i) Partition of graphs using a variety of methods with different properties.

(ii) Embedding the generated partitions intelligently into different topologies

such as hypercubes, meshes, etc.

(iii) The use of spectral methods to sequence graphs such that locality is

preserved.
Finally, the software may be used either as a library or in stand—alone form.

2. PARTY
The PARTY partitioning library [139] consists of a variety of different parti-

75

Chapter 2 2.6. Graph Partitioning

tioning methods that can be used either as a stand—alone program or included
within an application code in the form of a library. In addition to these
resources, PARTY, provides an interface to the Chaco software which can

therefore be invoked from the PARTY environment.

3. Jostle
The software package Jostle [172, 173] is build upon two main types of algo-
rithm. The first is multilevel graph partitioning. The main idea is to take a
large graph and construct a sequence of smaller and simpler graphs that in
some sense approximate the original graph. When the graph is sufficiently
small it is partitioned using some other method. This smallest graph and the
corresponding partition is then propagated back through all the levels to the
original graph. A local refinement strategy, such as Kernighan-Lin [113], is
also employed at some or every level of this back—propagation. The second
main strategy used is diffusion. This method assumes that an initial partition
(balance) is given, and load balance is achieved by repeatedly moving objects
(nodes) from partitions (processes) that have too heavy a load to neighbouring

partitions (processes) with too small a load.

4. METIS
Metis is another powerful software package [112] for the partition of large irreg-
ular graphs, large meshes and for computing fill reducing orderings of sparse
matrices. The algorithms implemented in Metis are also based on multilevel
graph partitioning and like Jostle can be described by the following three
phases:

(i) Coarsening Phase Numerous vertices and edges of the graph are col-

lapsed in order to reduce the size of the graph.

(ii) Partitioning Phase The smaller graph obtained after the coarsening

phase is partitioned into the desired number of subgraphs.

(iii) Prolongation Phase After coarsening and partitioning into subgraphs

each of these subgraphs is interpolated onto a finer graph and the parti-

76

Chapter 2 2.6. Graph Partitioning

tion is locally improved. This is repeated until a partition of the original

graph is recovered.

The quality of subgraphs is maximized by partitioning the graph at the coars-

est level and then concentrating effort on the interface boundaries of the par-

titions during the prolongation process.

(s

Chapter 3

A Symmetric Weakly Overlapping

Additive Schwarz Preconditioner

In this chapter we discuss a two level additive Schwarz method for preconditioning el-
liptic problems in three dimensions. The basic techniques of finite element methods,
mesh adaption, message passing and preconditioning, discussed in Chapter 1, and
some DD methods, mesh partitioning and graph partitioning techniques, discussed in
Chapter 2, are used. Together these lead to a new parallel DD preconditioner which
is applicable for the adaptive finite element solution of partial differential equations
representing a variety of elliptic problems defined on a bounded Lipschitz domain
Q0 C R® In §3.1 we introduce a model problem and this is followed by the theory
and development of the preconditioner in §3.2 and §3.3 respectively. An overview
of the implementation is then provided in §3.4. The following three sections, 3.5 to
3.7, focus on algorithmic and implementation details and the computational results
for some test problems using global uniform and local non—uniform mesh refinement

are presented in §3.8.

3.1 Introduction

Domain decomposition methods assume that the computational domain € is parti-

tioned into p subdomains, €;, for : = 0,...,p — 1, which may or may not overlap.

78

Chapter 3 3.1. Introduction

We are interested in a two level additive Schwarz algorithm which is suitable for
parallel implementation. For such an algorithm the overlap between subdomains is
generally some fraction of the subdomain size and the convergence rate depends on
this amount of overlap between subdomains. A DD algorithm is considered to be op-
timal if the condition number of the corresponding algebraic system is independent
of the number and size of the subdomains and the mesh size. Without the use of a
coarse grid correction this condition number would increase quickly as the finite el-
ement mesh is refined, and so the convergence rate would start to deteriorate. With
two level additive Schwarz methods the introduction of a relatively coarse mesh on
the global domain, [54, 174], allows the global flow of error information across the
domain so that the quality of the algorithm is preserved as the number and size of
subdomains is increased or the mesh is refined. In this case the condition number of
the preconditioned system grows very slowly, if at all (depending upon the amount
of overlap), and therefore a faster convergence rate is obtained.

We describe a two level additive Schwarz algorithm which acts as an optimal
DD preconditioner for the finite element solution of a class of second-order self-
adjoint elliptic problems in three dimensions. For detailed background reading on
the subject we refer to some of the recent publications on DD [119, 141, 160, 176,
178]. It is possible to develop a unified theory [59] for a variety of DD algorithms,
particularly in the context of iterative techniques in terms of subspace corrections.

For some theoretical background and a discussion of the preconditioning algo-

rithm that we propose here we consider the following model problem.

Find u € H(Q) such that
/Q(zv - (AVu)) dS —/F gvdS = /Qf vd) VveHQ) (3.1)
where Q@ C R? is the domain of the problem and
Ho(Q) = {u € HNQ):uy,, =0} (3.2)

We note that equations (3.1) and (3.2) represent only the symmetric part of equation

(1.6) and the corresponding Dirichlet boundary conditions respectively. Here we

79

Chapter 3 3.2. Theory

consider this symmetric problem only and therefore the corresponding bilinear and

linear forms can be expressed as
Alu,v) = / Vv - (AVu)dQ (3.3)
Q

and

F(v) = / fo dQ—I—/ gv d§) (3.4)

Q Iy

respectively. Here A is bounded, symmetric and strictly positive definite and I'; is
the Neumann part of the boundary, subject to the conditions: n - (AVu) = ¢g. For
the finite element solution of (3.1), the domain € of the problem must be meshed by
tetrahedral elements, 7" say, where h represents the length of the largest diagonal
of the largest tetrahedron in the mesh. Although polynomials of any order can be
used to construct the piecewise polynomial space of trial functions V" (see §1.1.1.2
for details), here we consider only a piecewise linear space of trial functions V" on
T". The construction of this space and further details are described in the following

section.

3.2 Theory

For the finite element approximation to the solution of (3.1) from the finite dimen-
sional space, V", of continuous piecewise linear functions on 7", we need to solve a

corresponding discrete problem, which can be defined as follows.
Find v" € V" N H{(Q) such that
Au, o) = F(v™) Vol e VENHE(Q). (3.5)
This problem can be solved using a suitable choice of basis functions for V* and
hence transformed to a system of linear equations of the form (1.11). For the usual

local choice of basis functions, ®;, the stiffness matrix A is sparse, symmetric and

strictly positive definite, and has entries given by

Ayj = /(y@ (AV®,)) d9. (3.6)

80

Chapter 3 3.2. Theory

Hence a conjugate gradient (CG) like algorithm [4, 86] for the iterative solution of
this problem is most appropriate. Since the growth of the condition number of A
as the mesh is refined is like O(h™3) as h — 0 (for details see [108]), the application
of preconditioned CG methods for most practical choices of h is essential. In this
chapter, although we consider only the symmetric version of the additive Schwarz
preconditioner for symmetric problems, we actually use a more general iterative
method, GMRES [154], which is equally suitable for symmetric and nonsymmetric
problems. Although the cost of GMRES is slightly higher than CG for symmetric
problems, this approach will allow us to generalize the codes developed to non-
symmetric problems (see Chapter 4) more easily. Furthermore, when an effective
preconditioner is used the total number of iterations required is small (see §3.8) and
so the overhead of using GMRES rather than CG remains low.

Assume that the tetrahedral mesh 7" over the domain) is obtained by uniform
refinement of some coarse tetrahedral mesh 7% of the same domain. We also define
V = VPNHL(Q) as the trial and test space in (3.5) and V. to be the piecewise linear
finite element space V¥ N HE(Q) defined on 7H. Introduction of this coarse mesh
TH makes it possible to decompose the domain 2 into p subdomains, g, ..., , 1,
where each of these subdomains is the union of tetrahedral elements in 7, and

these subdomains are possibly overlapping. For ¢ = 0,...,p — 1 we define the space

HH(Q;) € L) to be the extension of H'(;) such that
u(z,y,z) =0 V(z,y,2) € (Q—Q)UT. (3.7)
We also define corresponding finite dimensional spaces by

Vi = VN HL (), (3.8)

so that these local spaces V; form a decomposition of the global finite element space

V:

T
L

=3 V. (3.9)

7

Il
=]

This means that, for each v € V, there exists a combination of v; € V;, for ¢+ =

0,...,p—1, such that v = f:_g v;. This combination is not necessarily unique. For

81

Chapter 3 3.2. Theory

the space decomposition given by (3.9), the additive Schwarz algorithm defines a
preconditioner, M say, for matrix A in (1.11) as follows.
Let M; be the projection from V to V; for : =0,...,p — 1 given by

/(Miu)vi dQ = / u v; d§) Yu€eV, v, eV, (3.10)
Q Q

and define A; to be the restriction of A to V; x V; given by
&(ul, 'Ui) = A(ui, 'Ui) A U, U; € V. (3.11)

Now for the usual linear finite element basis of V and V;, we can express M; as
rectangular matrix, M; say, and a local stiffness matrix A; can be derived from A,.
This is done in the same way that A is derived from A above. The basic additive

Schwarz preconditioner is then given by

p—1
M=) MIATM;. (3.12)
i=0

Here we note that the subdomain solves (A;lgi) may be performed concurrently.
These subdomain solves are required at each preconditioned GMRES iteration for
the solution of the system M~!z = y. For the time being, we assume that these
subdomain solves are exact but in practice, as we will see later on, it is not generally

necessary to solve subdomain problems exactly.
A theoretical justification for preconditioners of the form (3.12) is evident from

the following theorem.

Theorem 3.1 The matriz M defined by (3.12) is symmetric and positive definite.

Furthermore, if we assume that there is some constant C' > 0 such that: Y v € V

there are v; € V; such that v = f:_g v; and
p—1
> Ai(vi,v) < CA(v,v) (3.13)
1=0

then the spectral condition number of MA is given by
K(MA) < N.C (3.14)

where N, is the minimum number of colours of the subdomains ; such that all

neighbours are of different colours.

82

Chapter 3 3.2. Theory

The proof of this theorem may be found in [177]. This theorem shows that the
quality of a general additive Schwarz preconditioner only depends upon the stability
of the splitting of V into subspaces V;. Therefore the preconditioner given by (3.12)
is an optimal preconditioner provided that the splitting (3.9) is such that (3.13)
holds with €' independent of A, H and p. In order to obtain such a splitting it is in

fact necessary to modify (3.9) to include the coarse grid space V.:
p—1
V=V.+> V. (3.15)
i=0
The preconditioner (3.12) then becomes
p—1
M=MIAT M+ MIAT M. (3.16)
i=0

Here M, represents the rectangular matrix corresponding to the £? projection M.
from V to V. that is given by

/(Z\lcu)'vc dQ) = / u v, df) YueV, v. €V.. (3.17)
Q

Q
Also the stiffness matrix A. is derived from A., the restriction of A to V. x V. that

is given by
A (ue,ve) = Alue, ve) Ve, v € Ve (3.18)

Now we state (without proof, which can also be found in [177] for example)

another theorem to reflect this modification to the preconditioner (3.12).

Theorem 3.2 Provided the overlap between the subdomains Q; is of size O(H),
where H represents the mesh size of T, then there exists C' > 0 which is indepen-

dent of h, H and p, such that for any v € V there are v. € V. and v; € V; such thal
v = v, + f:_g v; and

A (ve,ve) + pz_: A (vi,v;) < CA(v,v) (3.19)

=0
Hence, with the inclusion of a coarse grid solve and a generous overlap between
subdomains, it is possible to use the additive Schwarz method to get an optimal

preconditioner. However, there are a couple of issues to be considered in the context

of the practical efficiency of such a preconditioner. These issues are:

83

Chapter 3 3.3. The Preconditioner

1. The parallel solution of the global coarse grid problem.
2. The amount of overlap between subdomains.

Since it is hard to solve the global coarse grid problem in parallel, its implemen-
tation demands great care in order to avoid a potential bottleneck in the parallel
performance. It may be best to solve this problem sequentially on a single process or
on all processes (which introduces redundancy but may save some communication).
Alternatively, a multilevel solution technique could be used, however a detailed dis-
cussion of this is outside the scope of this thesis. The issue of overlap between
subdomains is also important. The theoretical results of Theorem 3.2 suggest that a
fixed fraction of the subdomain size should be used. However, if we assume the uni-
form global refinement of the mesh 7", the number of elements of 7" in the overlap
regions between subdomains is O(h™?) as h — 0 and this will cause a significant
computational overhead for small A. This issue is usually addressed (e.g. [160])
by dropping the requirement of optimality and permitting only a small amount of
overlap between subdomains: typically a fixed number of fine element layers. This
reduces the total number of elements in the overlap significantly (to O(h™?) in 3-d)
but at the expense of increasing the iteration count to some degree. Both of these
issues are addressed in a different manner in the following section, where we de-
scribe an optimal two level additive Schwarz preconditioner of the form (3.16) with

substantially fewer elements in the overlap regions and a modified coarse grid solve.

3.3 The Preconditioner

After the introduction of the model problem representing a class of elliptic partial
differential equation in §3.1 and the background theory of two level additive Schwarz
DD preconditioners in §3.2, Now we describe the above mentioned optimal two level
additive Schwarz preconditioner of the form (3.16), where the number of elements in
the overlap region between subdomains is O(h™?) as h — 0 in contrast to O(h™?) in

the case of a generous overlap. This is achieved through the existence of a hierarchy

84

Chapter 3 3.3. The Preconditioner

of meshes between 7 and 7", each defined by a single level of refinement of its
predecessor. At each level of the hierarchy the overlap is defined to be just a single
layer of elements. This idea of using hierarchical refinement with just one element
in the overlap region at each level is contrasted against the uniform refinement of

an O(H) overlap region in Figure 3.1. In order to describe the DD preconditioner

Figure 3.1: Uniform (top) and Hierarchical (bottom) refinement in the overlap re-

gion.

under consideration, we begin by introducing some notation. Let the domain) of
the problem given by equations (3.1-3.2) be covered by 7, a set of Ny tetrahedral

elements T]-O for y =1,..., Ng. These tetrahedral elements may be refined using the

85

Chapter 3 3.3. The Preconditioner

techniques described in §1.3, where each tetrahedron is divided to produce 8 children
using regular refinement. Here it is to be noted that although the child elements are
not necessarily geometrically similar to the parent elements, their aspect ratios are
always bounded independently of & [164]. The set 7y of Ny tetrahedral elements T]Q

is such that T]Q = 'f]Q and

Ny
Q=J7 (3.20)
7=1
or
To = {r}%,. (3.21)

Let the diameter of these base mesh elements be diameter(r)) = O(H), hence
this tetrahedral mesh can be referred to as 7" by the notation used in the previous
section. Let the domain) be divided into p non-overlapping subdomains €; for

t=0,...,p— 1 such that

p—1
a = |Je. (3.22)

=0
QZ-OQ]- = @ fOI’ l# j, (323)
O = U 77 where I, C {1,...,No}, I, # 0. (3.24)

JE L

The refinement of 7y up to some specified level, J say, produces a family of tetrahe-
dral meshes 7y, ...,7; such that mesh 7 at level k& consists of N elements which

are represented by Tf such that

N,
71=1
or
Ty = {7F}05,. (3.26)

There is no compulsion for the tetrahedral meshes in this sequence to be either a
global refinement of their predecessor or conforming. On the other hand they must

satisfy some, reasonably standard (e.g. [25]) conditions.
1. If 7 € Ty41 then either

(a) 7 € Ty, or

86

Chapter 3 3.3. The Preconditioner

(b) 7 is child of an element of 7}, produced by refinement.

2. Any two tetrahedral elements sharing a common point may differ by one level

of refinement at the most.

3. In the transition from level k to k& + 1, only tetrahedral elements at level &

may be refined.

4. The elements created in the transition from level k to k£ + 1 are said to be at

level k£ + 1.

5. All tetrahedral elements with a common edge which lies on the interface be-

tween subdomains must be at the same level.

Once the domain 2 has been decomposed into subdomains €; forz: = 0,...,p—1,
and refined successively to achieve a nested sequence of tetrahedral meshes, the
restriction of these tetrahedral meshes onto each subdomain €; fort =0,...,p—1

may be defined by

Qi = {U . 20 Q). (3.27)

That is, € is the union of all tetrahedral mesh elements at level & within the
boundary of subdomain ;. In this way we get the same non—overlapping subdo-
mains at each level of the mesh hierarchy, each consisting of a unique subset of
elements from the global mesh 7; for £ = 0,...,J. A certain amount of overlap

between neighbouring subdomains is now permitted through the definition:

Q= {U *) has a common point with {; }. (3.28)

Having defined the restriction of each mesh 7; to each subdomain €;, we now
define the finite element spaces associated with tetrahedral elements in these subsets.
Let GG be some tetrahedral mesh and let S((G) be the space of continuous piecewise
linear functions on . Then the finite element spaces associated with the local

tetrahedral meshes given above may be defined as:

W = S(7;), (3.29)

87

Chapter 3 3.3. The Preconditioner

W. = S(Ty), (3.30)
Wi = S(Qp), (3.31)
Wi = S(Qu), (3.32)
Wi = Wio+...+ Wi (3.33)

A decomposition of the form (3.15), necessary to define a two level additive Schwarz

preconditioner, can therefore be defined as
W:WC+W0—|-...—|-Wp_1. (334)

For this preconditioner to be optimal, Theorem 3.1 implies that for any given

u € W, it is sufficient to construct v € W, and u” € W;, fori =0,...,p—1, such

that
p—1
ut = u? + Z uf (335)
=0
and
p—1
Aot + 3 Al) < CAGP) (3.3
=0

for some constant ' > 0 and independent of A, H and p. We now state the last
theorem involved in this discussion, which demonstrates that the splitting (3.34) of
the finite element space W is stable. A proof of this theorem may be found in [11]
or [10].

Theorem 3.3 There exists C' > 0 which is independent of h, H and p such that
for any u* € W there are vl € W, and u* € W; fori=0,...,p — 1, such that

u =uf Ul 4+ u;_l (3.37)

and

a3) + sy + - -+ g i) < Cllu®|7aq)- (3.38)

At this stage Theorem 3.1, with N. replaced by N. + 1 in order to account for

1/2 with the norm

the coarse grid space W., and the equivalence of the norm A(-,-)
H!' imply that our two level additive Schwarz preconditioner of the form (3.16) is

optimal.

88

Chapter 3 3.4. Implementation

The above presented theoretical results, and the appropriate use of a mesh hier-
archy, offer an optimal two level additive Schwarz preconditioner with an overlap of
O(h™?%) elements in three dimensions whereas the standard theoretical results require
an overlap of O(h™?) for an optimal two level preconditioner in three dimensions.
It should be noted however that practical implementations of the two level additive
Schwarz method do not use a generous overlap in practice [160]. Typically, two to
four fine mesh layers give a reasonable trade—off between a good sub—optimal and
an economical preconditioner. In contrast to this, our weakly overlapping approach

offers the guarantee of optimality but at this reduced cost per iteration.

3.4 Implementation

In this section we describe some minor modifications to the preconditioner described
in the previous section in order to generate the partitioned hierarchical meshes
required for practical implementation in parallel. A number of other important
issues concerned with implementation and algorithmic details will also be discussed
in this and the following sections. Some numerical results for both global uniform
refinement and local non—uniform refinement will then be presented to demonstrate
the quality of the proposed preconditioner.

Let the computational domain 2 be covered by tetrahedra which form the coarse
mesh 75. Once this coarse mesh 7y is partitioned into p non—overlapping subdomains
Q;,for: =0,...,p—1, a copy of this mesh is allocated to each process. The copy of
the coarse mesh on process 7 is then refined only in subdomain 0 up to level k in
the refinement procedure. On the meshes so obtained, the corresponding continuous

piecewise linear finite element spaces are defined by
U = W. UW,, (3.39)

forz =0,...,p — 1. Hence from Theorem 3.3 the following corollary immediately

follows.

89

Chapter 3 3.4. Implementation

Corollary 3.4 LetU;, fori=0,...,p— 1, be the space given by (3.39). Then
W=Uy+ ...+ U, (3.40)
is a stable decomposition.

We refer to [8] for some of the advantages of this approach where it is shown
that partitioned adaptive meshes may be generated in parallel in a well load bal-
anced manner. In this approach, instead of a separate global coarse mesh solve per
iteration, we are completing a coarse mesh solve as part of each subspace correction
or local inner solve, that is, p times per iteration which is clearly a disadvantage.
However, in many practical codes this coarse mesh solve is completed sequentially
on a single process, [97] for example. Therefore this disadvantage is not necessarily
of serious concern (but will be discussed in more detail in Chapter 5).

A second minor modification to the described preconditioner relates to our use
of transition or green elements in the mesh. These are inserted between elements
at any two consecutive refinement levels to make the mesh conforming [146, 164],
and are described in §1.3 in detail. Figure 3.2 illustrates the use of green elements
for a simple problem in two dimensions (this illustration represents the xy—plane
cross—section of the 3—d mesh produced by TETRAD). In three dimensions they are
more complex (again see [164]) and they have a significant effect on the practical
implementation of our preconditioner. As such, they are discussed in detail later in
this chapter at the appropriate stage.

We now illustrate the use of this weakly overlapping additive Schwarz domain
decomposition preconditioner algebraically when solving the algebraic equations ob-
tained from (3.1-3.2). The Galerkin finite element discretization of this problem
generates a linear system of the form (1.11) with a sparse coefficient matrix A. In
order to solve this system in parallel, the sparse coefficient matrix A, the right-hand
side vector b and the solution vector u (to be determined) are required to be dis-
tributed across the subdomains ; for ¢ = 0,...,p — 1. Such a distributed system

can be expressed in block matrix notation as follows:

90

Chapter 3 3.4. Implementation

Figure 3.2: Refinement without (top) and with (bottom) transition green elements.

AO By Ug bo
Ay By Uy b,
= . (3.41)
Ap—l Bp—l U,y bp—l
BI BT ... B, A, ||u b,

Here u,; is the vector of unknown values for nodes strictly inside the subdomain
Q (e =0,...,p— 1) and u, is the vector of unknown values for nodes on the
interface between subdomains. Also, each block A;, B; and b, is sparse and can be

assembled by each process independently. The distribution of A; and b, across the

91

Chapter 3 3.4. Implementation

subdomains requires a partial assembly to be calculated and stored independently
on each process, such as given by (1.29) and (1.30) respectively. Here an iterative
solver such as CG [4] or GMRES [154] needs to be implemented in parallel. It
should be recalled from §1.6.4 that the distributed matrix—vector products do not
require any communication due to the distributed nature of the implemented data
structure in this thesis. However, distributed inner products do require one global
reduction operation, which is now a well established standard in parallel computing
[160]. On each process ¢, for ¢ = 0,...,p — 1, note that (3.41) may, after a suitable

permutation, be expressed as

A; B; u; éz
A; B u | =1 b (3.42)
BZT BZT Ai75 7,8 éi,s

Here w; still represents the unknowns inside €}; but u, ; represents the unknowns on
the interface of §2; with other subdomains and u; represents all remaining unknowns.
The other blocks are formed similarly. Parallel application of the weakly overlapping
additive Schwarz preconditioner M given by (3.16), using the decomposition (3.40),

may now be described by considering the action of

z=M"y (3.43)
in the block matrix notation (3.42) as follows. On each process ¢, fort =0,...,p—1,
solve the system

Ai B; z; Y,
BZT BZT Ai75 Zi,s 22 s
where
y, = by
y. = Py, (3.45)
y. = Py

Here we note that

92

Chapter 3 3.4. Implementation

e P;is arectangular Boolean matrix that picks out the entries of y corresponding

to nodes inside (};.

e [, is arectangular Boolean matrix that picks out the entries of y correspond-

ing to nodes on interface of €2;.

e P, is arectangular Boolean matrix that picks out the entries of y corresponding

to nodes outside ;.

The above subproblem (3.44) is solved on process ¢, without any dependence on
subproblems solved on any of the other processes. Hence these subproblems may be
solved concurrently. Once the solution of each subproblem is available, its contribu-

tion towards overall global solution is then obtained as follows:

T
L

1,824,5

Il
=}

In equation (3.44) the blocks A; and B; are the components of the global stiffness
matrix assembled for elements of the mesh on process ¢ which cover the subdomain
Q;, the blocks A;, B; are the components of the global stiffness matrix assembled
for elements of the mesh on process i which cover the region Q\ Q;, and the blocks
A, form the remaining components of the global stiffness matrix for the elements of
the mesh on process ¢ which have at least one vertex at the interface of subdomain
; with the neighbouring subdomains.

The rectangular matrices M; in (3.44) are the hierarchical restriction operators
from the fine mesh covering subdomain §; on process j (for all j #1) to the coarse
mesh covering subdomain {2; on process . These hierarchical restriction operators
are similar to those generally used in multigrid algorithms [160]. The operators
MY in (3.46) are the corresponding hierarchical prolongation operators whose ac-
tion is the inverse to that of the hierarchical restriction operators. Application of
these operators require some communication of data across the processes. Further

details of these hierarchical operators and the algorithms describing the operations

of restriction and prolongation follows shortly. From equations (3.44-3.45) we note

93

Chapter 3 3.4. Implementation

that these subproblems are solved over the entire domain €2 such that on the mesh
owned by process ¢ subdomain €); is refined up to some desired level of refinement.

On this process all other subdomains contain just base level mesh elements except

Figure 3.3: Uniform refinement of subdomain €); owned by process .

for a small portion of neighbouring subdomains to €2;, which contain a single layer of
elements at each level of refinement around subdomain €2;. In other words, each of
the subproblems is a combination of the weakly overlapping subdomain solve with
the coarse mesh solve (see (3.39)), hence we are effectively solving a coarse mesh
problem on each process at each iteration. Although this is an extra amount of
work being undertaken it need not cause a significant overhead as this coarse mesh
is generally very small compared to the fully refined mesh (see Figure 3.3). Also,
each of the local problems approaches 719 times the size of full problem as A — 0,
even when this coarse mesh is included with these subproblems.

The major implementation issues to be discussed here are those of computing
the action of each of the restriction operations M;y. in (3.44) at each iteration before
each subproblem solve, and the corresponding prolongation operation M7z, at the
end of each preconditioning step. Evaluation of both of these actions is computed in
two phases: a setup phase and an iteration phase. The setup phase occurs only once,
before the first iteration, whereas the iteration phase occurs at each iteration. For

a parallel programming paradigm it is understood that a communication task is an

94

Chapter 3 3.5. Restriction

additional overhead on top of the computational tasks. Hence we have attempted
to implement both the setup phase and the iteration phase in such a way that
computations and communication overlap each other. Additionally, the introduction
of green elements and nodes to prevent non—conforming meshes create an additional
complexity in both of these phases. All of the above issues concerning the setup
phase and the iteration phase, which involve both coarsening and prolongation,
the update of green nodes and some other related issues (such as accuracy of the
subdomain solve, choice of best sequential solver, etc.) are discussed fully in the

following sections.

3.5 Restriction

The implementation strategy for our weakly overlapping two level additive Schwarz
DD preconditioner has been described in general in the previous section without spe-
cific detail of the construction of the components which build this preconditioner.
In this section we consider some of these components, particularly the setup phase
and the iteration phase of the hierarchical restriction operation. We also consider
the computation of different values at the green nodes which arise due to the refine-
ment strategy adopted in TETRAD. Recall the description of mesh adaption using
TETRAD in §1.3 where we discuss the nature and effect of green refinement. Some
of the computational work at each iteration is increased due to the use of green
refinement and this is discussed below.

On each process i, we have a residual vector with entries corresponding to the
interior and interface boundary nodes of the subdomain ;. The current values for
the nodes exterior to subdomain €2; on process ¢ are computed by coarsening from
fine mesh node values on other processes. In order to implement this coarsening,
some knowledge of coarse mesh nodes on process ¢ subdomain Q; (j #¢) and the
corresponding fine mesh nodes on process j is required. It is then necessary to
match these coarse mesh nodes with the corresponding fine mesh nodes on process

7. This requires some transfer of data between process ¢ and every other process.

95

Chapter 3 3.5. Restriction

In the following section we discuss the collection of data to be transferred and the

matching of this transferred data with the local data on each process.

3.5.1 Setup Phase

Let us consider the tasks to be undertaken by process :. We need to collect a set
of data corresponding to each subdomain ; for 7 # . This data consists of an
integer number of nodes and the (z,y,z) coordinate triples of each mesh point in
the interior of the respective subdomain. Each set of such data (for subdomain §;
on process 7) is then communicated to the corresponding process j. After the data
has been received, process j matches the (x,y, z) coordinates triples of the received
data with the (z,y, z) coordinates triples of the local mesh data for subdomain ;.
The subdomain 2; is owned by the process j and is fully refined. In this way each
process sends a list of coordinates triples to every other process. Similarly each
process receives a list of coordinates triples from every other process. Process 2, for
example, receives lists from each of the other processes j (7 #¢) and then matches
coordinates triples from the received lists with the local coordinates triples for the
fine mesh in ;. It is mandatory that each of the coordinate triples in the received
lists matches one of the local coordinate triples since all meshes are refinements
of the same coarse mesh. We now discuss the practical implementation of these

procedures in turn.

3.5.1.1 Data Collection

Let us continue to assume that the problem domain €2 is decomposed into p subdo-
mains {); for : = 0,...,p— 1. Recall from §3.3 that process ¢ refines the subdomain
; only and rest of the subdomains (£2;, for j #1) have the base level coarse mesh
except in the neighbouring subdomains, 2; € N; say (recall the definition of a neigh-
bouring subdomain from §2.2.1), where a single layer of elements at each refinement
level is required next to subdomain ;. This refinement of subdomain €; intro-
duces transition (also known as green) elements in the neighbouring subdomains

1, € N; when the mesh inside subdomain €2; is refined uniformly. In case of local

96

Chapter 3 3.5. Restriction

non—uniform refinement, green elements may also exist in subdomain); as well
(in which case the existence of green elements in the neighbouring subdomains is no
longer compulsory). These green elements and the corresponding green nodes (every
fourth node of a green element is referred to as a green node, which is introduced at
the centre of the parent element being green refined (whereas the first three nodes
of a green child element are the same as nodes of the parent element)) require a

special treatment which is clearly distinguishable in the following discussion.

P=2 subd=2

subd=0 P=0 P=1 subd=1

Figure 3.4: Data sets sent by process ¢ = 0 to every other process j.

We now describe how to determine the amount of data in each subdomain ;

(for j #1), on process 7, to be communicated to the corresponding process j. For

97

Chapter 3 3.5. Restriction

subdomain €); on process ¢, the type of each element is examined and classified as
being either regular or green. In the case where the element type is green, only the
first three local nodes of the element are considered and the fourth node (which is
green and therefore does not match with any node on process j) is ignored. There
is a separate treatment for the green nodes. If the element type is regular, all four
local nodes of the element are considered. Recall that for any finite element mesh
there exists a mesh connectivity relating the local node numbering of the elements
with the global node numbering of the mesh. For a local node being considered
here, the corresponding global node is tested to ensure that it is neither on the
Dirichlet boundary, the subdomain interface boundary and that it has not already
been visited as part of the list for subdomain ;. On passing this test the global
node is marked as visited[j] and the counter[j] is iterated (which must be initialized
for each subdomain Q; before it is iterated for first time). These global nodes are
marked to avoid listing multiple copies of the same node as every local node in the
interior of a subdomain is always shared by more than one element. Once this loop
over elements is complete, the counter[j] gives the length (size) of the list of (z,y, 2)
coordinate triples to be constructed, consisting of all nodes which have just been
marked for subdomain ;. In order to construct this list of coordinate triples, every
global node in the mesh is checked and the values of the (z,y, z) coordinate triples
are added to the list[j] for the nodes previously marked wvisited[j] for subdomain ;.
This procedure is repeated for every subdomain €, (j #¢) on process ¢, so that at
the completion of this procedure we know the number of marked nodes and have
a list of coordinate triples corresponding to the marked nodes for each subdomain
Q; (j #1). This number of marked nodes and the corresponding list of coordinate
triples for subdomain €2; is then communicated to process j (for each j #¢), as
illustrated in 2—d for p =4 in Figure 3.4.

With the completion of this communication, the sending part of the setup phase
for restriction on process ¢ is complete. On the other hand, each of the processes
must now receive p—1 lists of coordinate triples, one from every other process. Each

of these coordinate triples must then be matched with the corresponding node of

98

Chapter 3 3.5. Restriction

the fine mesh that belongs to the subdomain owned by that process. A record of
these matching fine mesh nodes corresponding to the received coarse mesh nodes is
necessary in order to implement the coarsening that is undertaken as part of the

preconditioner (3.44). This matching procedure is explained next.

3.5.1.2 Matching of Coarse and Fine Meshes

Again we consider the action of process i. This process receives data consisting of
an integer number representing the length of the list of (z,y,z) coordinate triples,
and the list of these coordinate triples from every other process 7. This is illustrated

in 2-d for p = 4 in Figure 3.5. It is guaranteed that each of the received coarse

P=2 subd=2

subd=0 P=0 P=1 subd=1

Figure 3.5: Data sets received by process ¢ = 0 from every other process j.

99

Chapter 3 3.5. Restriction

mesh coordinate triples in the received list matches one of the fine mesh coordinate
triples in the fine mesh of subdomain €; on process . To undertake this matching
efficiently a linked list of base level elements in the interior of subdomain €2; is used.
These base level elements are not part of the final mesh covering subdomain ; but
exist in the mesh hierarchy only. The hierarchical mesh data structures of TETRAD
are then exploited along with the fact that, for each of the base level elements in
the mesh hierarchy, all elements in the refinement tree of that element are bounded
by the base level element. Similarly the coordinate triples for any element in this
refinement tree are also bounded by the coordinate triples of the vertices of the base
level element. Therefore, once a coordinate triple from a received list is found to be
bounded by an element in the linked list of base level elements, the matching fine
mesh coordinate triples can be easily and efficiently reached by using the hierarchy
of the refinement tree. This search and match procedure is further optimized by
using the breadth first search algorithm. Furthermore, the use of a recursive search
algorithm ensures that the above mentioned guarantee for matching any coordinate
triples in the received list is fulfilled. We now look at the matching procedure as
implemented.

Assume that process 1 receives a list of coordinates triplets from process j, then
it immediately starts matching these coordinate triples one by one with those of
the fine mesh for subdomain €);. For each of the received coordinate triples, it is
examined and found to be bounded by the vertices of one of the base level elements
in the subdomain €;, which have already been arranged in the form of a linked list.
The received coordinate triple is then tested to match with any of the vertices of the
base level element. If a matching vertex is found, the corresponding global node is
marked matchfj] for process j and the matching procedure for this coordinate triple
is terminated. If no matching vertex found, all of the child elements of the current
base level element are examined to see which one bounds this coordinate triple.
The vertices of that particular bounding element are then tested to match with the
received coordinate triple. If a matching vertex found, the procedure is terminated

as described above. If no matching vertex found, all of the child elements of the

100

Chapter 3 3.5. Restriction

current element are examined in the same way as before and this procedure continues
until a match is found. The matches for all of the received coordinate triples are
found in this way. It is important to note that most of the received coordinate triples
match with vertices of base level elements, so this matching algorithm is particularly
efficient.

The setup phase for the restriction process is now complete except for the fol-
lowing description of how to construct the linked list of base level elements for
subdomain £2; on process 7. It is assumed that this subdomain has been refined and
the fine mesh consists of leaf elements only. These are all at the same level of refine-
ment in the case of uniform refinement but may be anywhere between the base level
and the maximum level of refinement in the case of local refinement. In general,
all of the base level elements exist in the mesh hierarchy however, for adaptive or
local refinement, some of the leaf elements may also be base level elements in regions
where base mesh in not refined at all.

The TETRAD [164] data structure is such that in the mesh hierarchy on process
¢ each element has a unique parent at the next lower level, except for the elements
at the base level. These base level elements are the target to construct the required
linked list. This phenomena is illustrated in 2—d in Figure 3.6. In order to construct
a linked list of base level elements, the parent element of each leaf element in the
mesh hierarchy is checked. For any element, if there does not exist a parent element
it is a base level element and is stored in the linked list of base elements. Otherwise,
if a parent element exists it is checked whether this has already been visited or not. If
it has already been visited there is nothing further to do since the base level element
in this refinement sub-tree has already been placed in the linked list. However, if
the element has not been visited, the same procedure is repeated with this element
which is now a leaf element at the next lower level in the mesh hierarchy. This
process continues until a previously visited element or a base level element is found
and added to the linked list. The same procedure is repeated for each leaf element

in the fine mesh in ; until all of the base level elements in the mesh hierarchy inside

); have been found and added to the linked list.

101

Chapter 3 3.5. Restriction

Refinement level 1

Refinement level 2 Refinement level 3

Figure 3.6: Refinement tree: Refinement levels between 0 and 3.

It is to be noted that for each base level element in the mesh hierarchy its own
refinement tree is completely traversed only once. For example, if a single tetrahedral
element is refined in a regular manner up to a fourth level of refinement, the final
mesh consists of 4096 leaf elements. To construct a linked list of base level elements
for this final mesh of 4096 leaf elements as described above, the refinement tree will
be completely traversed only once. The process of traversing this refinement tree
terminates 7 times at the first level, 56 times at the second level, 498 times at the
third level and 3584 times at the fourth level of refinement as the parent element
for all such elements in the mesh hierarchy has been visited previously or added to

the linked list of base level elements.

102

Chapter 3 3.5. Restriction

3.5.2 Iteration Phase

In the setup phase, the relation of correspondence between nodes in the mesh cover-
ing subdomain €; on process j (for j #¢) has been established with the nodes in the
mesh covering subdomain €); on process 1. We recall that on process ¢, only subdo-
main {); is refined and all other subdomains ; for j # 7 have the base level coarse
mesh except the neighbouring subdomains 2; € N;, which have a single layer of
fine elements at each level that surrounds the subdomain €);. This relation between
coarse mesh nodes and fine mesh nodes is exploited in the process of coarsening from
the fine mesh covering a particular subdomain on one process to the corresponding
coarse meshes that cover the same subdomain on the other processes. This process
of coarsening is made simple and efficient by creating a linked list of child edges
that exist at each level of refinement within each subdomain ;. Every child edge

included in this linked list must satisfy the following conditions.

1. Each edge must be a leaf edge at the level of refinement for which it is added
to the linked list.

2. Each edge must not be an orphan edge or a base level edge.
3. Each edge must be in the interior of subdomain €2;.
4. Neither of the two edge nodes may be a Dirichlet boundary node.

5. Neither of the two edge nodes may be at the interface boundary of subdomain

); with another subdomain.

Every edge in the mesh hierarchy that satisfies the above conditions is added to the
linked list of child edges. The one-time construction of such a linked list may take
place any time after the full refinement of the base level coarse mesh and before the
first iteration. We now discuss the construction of such a linked list of child edges.

Let us consider that on process ¢ subdomain €; is fully refined. This refinement
may be uniform or adaptive. Here we consider the part of the mesh that corresponds

to subdomain £2; only. Recall from §1.3.2 that edges in the mesh for each level of

103

Chapter 3 3.5. Restriction

refinement are stored separately (i.e. there is separate data structure for each level).
To construct the desired linked list of child edges we begin at the maximum level of
refinement. Note that any edge with no child edge in the mesh hierarchy is a leaf
edge. Similarly an edge with no parent in the mesh hierarchy is either an orphan
edge or a base level edge (base level edges are always orphan edges whereas orphan
edges are not always base level edges). In either case the inclusion of such edges in
the linked list of child edges is not appropriate as they have no contribution to make
towards the coarsening process. Further, the TETRAD data structure relating the
end nodes of each edge with the corresponding global nodes in the mesh is used to
ensure that neither of the nodes at the end of an edge being added to the linked list is
on the Dirichlet boundary or the interface boundary of subdomain €2;. Any edge that
satisfies the above conditions is marked wisited and a corresponding edge counter is
iterated. This process is repeated for the edges at each level of refinement in the
mesh hierarchy except for the base level mesh. Thus all child edges at each level in
the mesh hierarchy are marked visited and counted. During a second pass through
the edge lists for each level (except for base level), starting from the maximum level
of refinement, the edges previously marked visited are added to the required linked
list of child edges. Once the construction of this linked list of child edges that exist
at each level of mesh hierarchy is complete, we are ready to perform coarsening

which is described below.

3.5.2.1 Coarsening

We now consider the coarsening procedure which is performed at each iteration after
the computation of a residual vector and before the solve of subdomain problem
(3.44) on each process. It should be noted that only the part of the residual vector
that corresponds to the mesh covering subdomain §2; and its boundary is available
on process ¢. The remaining part of the residual vector corresponding to the mesh
covering all other subdomains Q; (for j #1¢) is obtained as a result of coarsening
from the fine mesh on process j to the corresponding coarse mesh of subdomain ;

ON Process t.

104

Chapter 3 3.5. Restriction

For the coarsening of fine mesh values from subdomain {2; on process j to the
coarse mesh values for the corresponding subdomain §2; on process t, the vector of
fine mesh values is available on process j. It is also the case that the construction of
the linked list of child edges is such that there always exists a unique parent edge to
every child edge in this list. Furthermore, for each child edge in the linked list and
the corresponding parent edge, it is necessary that any one end node of the child
edge is the same as one of the end nodes of the parent edge (whereas the second node
of the child edge lies at the mid point of the parent edge). It is also mandatory that
both end nodes of the parent edge are in the interior of subdomain €; on process
7. Without any loss of generality, we assume that the first end node of the child
edge is the first end node of the parent edge. Then, the second end node of the
child edge may or may not correspond to one of the global fine mesh nodes that are
marked match[j] with the corresponding coarse mesh nodes from the subdomain §;
on process 2. If it is one of these matching nodes, there is nothing further to do
for this child edge. Otherwise, one half of the residual value corresponding to the
second end node of the child edge is added to the residual value corresponding to
the first end node of the parent edge. On the other hand, if second node of the child
edge is the second end node of the parent edge, then the first node of the child edge
is tested as above. If it is one of the matching nodes, as explained above, then there
is nothing to do. Otherwise, one half of the residual value corresponding to the first
node of the child edge is added to the residual value corresponding to the second
node of the parent edge. This is repeated for each child edge in the linked list and
is illustrated for one such pair of child edges in Figure 3.7.

Once the coarsening of fine mesh values from subdomain }; on process j to the
coarse mesh values of subdomain {); on process ¢ is completed by process j, the
values corresponding to the nodes marked match/j] are communicated to process 1
and then copied to the appropriate node positions in subdomain }; on process .
Note that this process of coarsening is performed on a copy of the residual vector so
that the original residual vector remains unchanged. This procedure of coarsening

is repeated p— 1 times on each process so that on each process the residual vector is

105

Chapter 3 3.5. Restriction

node 1 node 2 node 1 node 2
Child Edge 1 Child Edge 2
_"1/2(node 2) 1/2(node 1) .
+A M 'd.PO' t &+
Node 1 : n Node 2

Parent Edge

Figure 3.7: Coarsening of a residual vector.

available for all subdomains and all nodes in the fine mesh except the green nodes.
The handling of these green nodes is the last milestone before we can solve the

subdomain problems. Such a treatment of green nodes follows.

3.5.2.2 How to Treat Green Nodes

Let us consider process ¢ after it has just received the necessary parts of its residual
vector from all of the other processes j and copied these values to the appropriate
node positions, which have been previously marked accordingly. The leftover green
nodes in these subdomains are then treated separately at each iteration. We recall
from §1.3.3 that green elements exist in the mesh only as the transition elements
between changes in the refinement levels. Therefore it is obvious that green elements
are fewer in number than regular elements in any mesh, especially in case of uniform
refinement. Furthermore, the only simple access to the green nodes permitted by
TETRAD is through the green elements (recall from §3.5.1 that every fourth node
of a green element is a green node). For these reasons, we first extract all green
elements from the final mesh and arrange them in the form of a linked list. This
is another one-time task that can be completed any time after the final mesh is
obtained and before the first iteration. The construction of the linked list of green

elements is simpler than that of any other linked list that we have constructed so

106

Chapter 3 3.6. Preconditioning Solve

far. Here we use the fact that TETRAD distinguishes between regular and green
elements and our knowledge that any green element in the final mesh is always
a leaf element, since further refinement of green elements is prohibited (see §1.3.3
for details). Thus a loop over leaf elements in the mesh and a simple test of each
leaf element to judge whether it is a regular or green extracts all green elements in
the mesh. The data structure that we use for these extracted green elements just
requires them to be placed in a linked list. We now discuss how to treat green nodes
in order to assign them appropriate values in the restricted residual vector.

For a green element in the linked list the residual corresponding to the fourth
local node, which is a green node, is initialized to zero. This is important as there
must always be some value at this position. Next, the parent element of this green
element (which must exist) is examined. If this is found to be visited already, there
is nothing to do for the green node corresponding to the green element currently
under consideration. This parent element may be found to be visited between 5 and
13 times depending upon the type of green refinement of the parent element. If the
parent element has not been visited yet, a weighted average of the residual values
corresponding to local nodes of the parent element that are not on the Dirichlet
boundary is added to the green node and then this parent element is marked as
visited. Similarly for all green elements in the linked list, the residual values for
the corresponding green nodes are interpolated from the values at the non—Dirichlet
nodes of the parent element. With the completion of this procedure, the computation
of all of the restricted residual vector entries on each process ¢ is complete, and

therefore we may proceed to solve the subdomain problems (3.44) on each process.

3.6 Preconditioning Solve

In this section we consider the sub tasks of solving the subdomain problems (3.44)
concurrently on each process ¢ = 0,...,p— 1. For our implementation of the weakly
overlapping domain decomposition preconditioner under consideration, these sub-

problems actually cover the entire domain of the problem, however most of the mesh

107

Chapter 3 3.6. Preconditioning Solve

refinement is confined within a single subdomain, owned by the process. The mesh
for the rest of the subdomains mostly consists of base level elements and therefore
the subproblems combine the subdomain solve and a coarse mesh solve (thus re-
placing a separate coarse mesh solve) at each iteration. The effectiveness of this
approach greatly depends on the efficiency with which we solve these subproblems
at each iteration. This in turn depends upon the quality of the partition of the
domain and the quality of the algorithm used to solve the subproblems.

3.6.1 Choice of Best Sequential Solver

The sequential solver that we have used here for the equations (3.44) on each process
is the incomplete LU preconditioned GMRES method, taken from the SPARSKIT
[151]. This has a number of parameters, such as a drop tolerance and level of fill-
in, to control and tune the preconditioner. Here we discuss the incomplete LU
factorization used to define the preconditioner very briefly.

An incomplete factorization of a sparse matrix A entails a decomposition of the
form A = LU — R, where L and U have the same non—zero structure as that of
the lower and upper parts of A respectively and R is the residual or error of this
factorization. This factorization is known as I LU(0), which is very simple and easy
to compute but may lead to a crude approximation. When such a factorization is
used as a preconditioner for a Krylov subspace solver it may require many iterations
to converge. To remedy this drawback, several variants of incomplete factorization
have been developed to allow more flexibility. Generally, a more accurate factor-
ization requires less iterations to converge but the computational cost for such a
factorization is certainly higher and so is the cost of each iteration (hence there is
a trade—off which must be balanced). Some variants of the LU factorization rely
only on the level of fill-in and, as such, are blind to the numerical values in the
matrix since the elements to be dropped depend only on the structure of the ma-
trix A. However, there are alternative methods with a more sophisticated dropping
strategy based on the magnitude of the elements rather than their location. The

ILUT preconditioner used in SPARSKIT is one of such technique which is now

108

Chapter 3 3.6. Preconditioning Solve

briefly discussed.

An incomplete LU factorization with threshold (/LUT) can be derived from
Gaussian elimination by adding certain conditions for dropping elements of small
magnitude. There are two parameters, ILUT (p,7), which control the dropping
strategy: p is known as the level of fill-in and 7 as the drop tolerance. The following

two rules [152] are used in the factorization.

1. An element in row ¢ with magnitude less than the relative tolerance 7; is
dropped where 7; is obtained by multiplying the drop tolerance 7 with the

2-norm of row z.

2. Again drop an element in row z when the magnitude is less than the relative
tolerance 7; but then only keep the p largest elements in the lower part of
the row, the p largest elements in the upper part of the row and the diagonal

element. The diagonal element is always kept.

The purpose of the second step is to control the number of elements in each row, and
thus it helps to control the usage of memory, whereas the drop tolerance helps to
control the computational cost. We are not concerned here with the implementation
difficulties which may arise: we only comment on the choice of parameters p and
7 in order to get the most out of the factorization that is used to precondition the
sequential solver for the subproblem on each process. These parameter choices are
based on our numerical experiments for different problems with uniform and local
mesh refinement and in the light of recommendations in [151]. A non—zero drop
tolerance of 0.005 or 0.001 usually gives reasonably good results, even for strong
non-symmetries in the coefficient matrix. The recommended level of fill-in is 5 to
10 elements in each of the lower and upper part of each row plus a diagonal element.
However, our experiments in three dimensions suggest that a higher amount of fill-
in, for example from 20 to 25 elements in each of the lower and upper part for
reasonably large problems, gives overall better results for the factorization time

when compared against the iteration count.

109

Chapter 3 3.7. Interpolation

3.7 Interpolation

The implementation of the hierarchical interpolation operation, given by equation
(3.46), on the solution vectors obtained from the subproblem solves (3.44) on each
process is described in this section. Since there are many similarities between compo-
nents of the hierarchical interpolation operation and those of hierarchical restriction

operation, we discuss only the main differences here.

3.7.1 Setup Phase

The solution vector obtained from the subproblem solve on each process ¢ corre-
sponds to the mesh on process ¢ covering the whole domain (this contains nodes at
the finest level in the interior and on the interface boundary of subdomain €2;). The
following steps are prerequisites in order to interpolate the solution from the part of

the mesh on process 7 which covers §; to the fine mesh that covers); on process 1.

1. Construct a list of coordinate triples for the nodes of the mesh on process ¢
(and mark them accordingly) which are in the interior and on the interface
boundary of each subdomain §; for j #¢ (except the green nodes which are

treated separately).

2. Communicate this list of coordinate triples from process ¢ to process j for each
subdomain §2; on process ¢ (j #¢). Similarly process ¢ receives p — 1 such lists

of coordinate triples; one from every other process j #z.

3. Construct a linked list of base level elements for subdomain €2; on process 2 to

be used in matching the coordinate triples in step 4 below.

4. Match the coordinate triples for each of the received lists with those of the fine

mesh for subdomain €2; on process ¢, and mark the matching nodes accordingly.

We note that the lists of coordinate triples for all subdomains §2; on process :
are slightly bigger than those lists used in the setup phase for restriction due to

the inclusion of the nodes on the subdomain interface with £2;. The computational

110

Chapter 3 3.7. Interpolation

time is therefore expected to increase marginally. This affects the implementation
very slightly for each of the above steps except for step 3 which is exactly the same
as required in the setup phase for restriction. The same linked list of base level

elements is used here as in the restriction operation.

3.7.2 Iteration Phase

In contrast to the setup phase for the hierarchical restriction operation and hierar-
chical interpolation operation, which are very similar to each other (and therefore
share some of the components in their implementation), the iteration phase for these
operations is the inverse of each other. However, a linked list of child edges that
exist at each level in the mesh hierarchy that is not fundamentally different from
the one used in the coarsening process is also used here. Hence, we introduce here
only a couple of modifications in the construction of the linked list of child edges to
be used in the prolongation process.

Let us again consider process ¢ where, as usual, subdomain €; is refined and
the rest of the subdomains, Q; for j # ¢, have the base level coarse mesh except a
single layer of refined elements at each mesh level in the neighbouring subdomains
1, € N; that surround the subdomain §2;. We note from step 1 in the setup phase
for interpolation (see §3.7.1) that nodes at the interface boundary of subdomain
}; on process ¢ are included in the list of coarse mesh coordinate triples that are
matched with corresponding fine mesh coordinate triples at the interface boundary
of subdomain 2; on process j. In order to interpolate these interface boundary
nodes in the prolongation process, every child edge in the linked list of child edges
(to be constructed) must satisfy only the first four of the conditions given in §3.5.2.
Therefore, we get a slightly bigger linked list of child edges as compared to the
one constructed previously for use when coarsening the residual vector. Note that
the processes of coarsening and prolongation are the inverse of each other: typically
coarsening starts from the finest level of mesh refinement and terminates at the base
level mesh whilst the prolongation starts at the base level mesh and terminates at the

finest level of mesh. Hence, the construction of the linked list of child edges should

111

Chapter 3 3.7. Interpolation

reflect the operation for which it is being constructed. In the case of prolongation,
the construction of such a linked list starts from the first level of the mesh hierarchy
and terminates at the finest level. We now use this newly constructed linked list
of child edges, that exist at each level in the mesh hierarchy for subdomain 2; on

process 2, to describe the prolongation process.

3.7.2.1 Prolongation

As the final stage of each preconditioning step, that is, after the subproblem solve on
each process, the solution from each subdomain Q; (j #¢) on process ¢ is prolongated
to the fine mesh covering the same subdomain on process j. To achieve this, each
process ¢ sends a set of solution values, corresponding to the part of the mesh on
process ¢ that covers Q; (j # ¢) to every other process j. Such a set consists of
solution values for nodes in the interior or on the interface boundary of subdomain
2;, which have been previously marked in the setup phase as described in §3.7.1.
Similarly, each process ¢ receives p — 1 sets of solution values, one from each process
J for j # 1. These phenomena are illustrated in Figure 3.4 and Figure 3.5 where
data sets now consist of solution values. Each of solution set received by process
¢ is then prolongated to the fine mesh of subdomain 2; and added to the solution
values computed by process ¢ during the subproblem solve. We now discuss this
prolongation.

Let us consider the process ¢ that has just received a set of solution values for
the mesh on process j that covers);. Note that for each node in the set of received
solution values, there always exists a corresponding node in subdomain {2; on process
¢ (which has already been marked accordingly). Also, each child edge in the pre—
formed linked list, with its corresponding parent edge, satisfies each of the properties
discussed in §3.5.2.1, with the exception that any of the end nodes of an edge may
lie on the interface boundary of €2;.

Suppose that the first end node of a given child edge is a node of the parent
edge, then the second end node of the child edge may or may not correspond to one

of the coarse mesh nodes on process j. If it is one of these matching nodes, there

112

Chapter 3 3.7. Interpolation

is nothing to do for this child edge. Otherwise one half of the solution value of the
first end node of the parent edge is added to the solution value of the second end
node of the child edge. Similarly, if the second end node of the child edge is a node
of the parent edge, then the first end node of the child edge is tested for a match
as before. There is nothing further to do for this child edge if the first end node
matches a node on process j as explained above. However, if the first end node is
not marked as a match then one half of the solution value of the second end node
of the parent edge is added to the solution value of the first end node of the child

edge. This is illustrated in Figure 3.8. This procedure is repeated for each child

node 1 node 2 node 1 node 2
Child Edge 1 74N Child Edge 2
~_"1/2(Node 1) 1/2(Node 2) .

+ M'd.PO' t +
Node 1 : n Node 2

Parent Edge

Figure 3.8: Prolongation of a solution vector.

edge in the linked list. In this way, each process 7 performs p — 1 prolongations, one
for each set of solution values received from every other process j.

We note that there is no prolongation associated with the green nodes. Instead
the solution value for each green node is manipulated in a similar manner to that
explained in §3.5.2.2 for the residual vector (and this is required only in case of
local refinement of subdomain 2; on process 7). This means that the solution of
subdomain solves at green nodes never gets used when assembling the preconditioned
solution in the case of uniform refinement of the subdomains. However, in case of
local refinement, the solution at those green nodes in the interior of subdomain €2;

does form part of the overall solution on that subdomain.

113

Chapter 3 3.8. Computational Results

3.8 Computational Results

We now present some numerical results to demonstrate the rapid convergence and
algorithmic efficiency of the weakly overlapping additive Schwarz DD preconditioner
described in this chapter. Two sample sets of partitions into 2, 4, 8 and 16 sub-
domains are used for all results presented here. These are based upon two simple

domain partitioning strategies shown in Figure 3.9.

Figure 3.9: Domain partitioning strategies for 2, 4, 8 and 16 subdomains: recursive

coordinate bisection (RCB) partitions (left) and anisotropic partitions (right).

The first is a simple variant of recursive coordinate bisection (RCB) [175], where
cuts are made perpendicular to the longest coordinate direction of the domain. In

the second case RCB is used but with the cuts constrained always to be parallel

114

Chapter 3 3.8. Computational Results

to the x—axis. The GMRES algorithm with right preconditioning and an initial
guess of 0 have been used for all of the presented results. A preconditioned GMRES
solver with an algebraic preconditioner based on the incomplete LU factorization
(as discussed §3.6) is used for the subproblem solves. It should also be noted that
as the norm of the computed solution depends on p, the number of subdomains, all
values of the L, norm and L., norm quoted in this chapter are for the worst case of

p € {2,4,8,16} (which is usually when p = 16).

3.8.1 Uniform Refinement

For the test problems in this section, we use sequences of uniformly refined meshes
Tr. The base level coarse mesh consists of just 768 tetrahedral elements and is
refined uniformly to between 1 and 4 levels. Two test problems are used but we

consider then one at a time.

Test Problem 1

~V-(Yu) = f on Q=(0,2) x(0,1) x (0,1) € R

u = g on Of.

Here f is chosen to permit the exact solution v = g = sin(w)sin(xy)sin(xz). The
number of iterations required to decrease the 2-norm of the residual by a factor
of 10° for the two representative partitioning strategies, the corresponding infinity
norm of the exact error, and the Ly norm are shown in Table 3.1 and Table 3.2. The
results in Table 3.1 correspond to the RCB partitioning strategy and the results in

Table 3.2 correspond to the anisotropic partitioning strategy.

Test Problem 2

102 0 0
-V 0 10 [Yu|l = F onQ=(0,2)x(0,1)x(0,1) e R®
0 01

u = g on Of.

115

Chapter 3 3.8. Computational Results

Refinement Level Iterations Error Norms
(Elements/Vertices) || p=2 | p=4 | p=8 | p=16 Lo Ly
1(6144/1377) 6 11 16 19 3.165x107% | 2.898x1073
2(49152/9537) 7 12 17 19 9.968x107% | 4.845x1074
3(393216/70785) 8 13 19 20 3.068%x1072 | 9.070x 1073
4(3145728/545025) 8 13 19 20 8.833x107* | 1.565x107°

Table 3.1: The number of GMRES iterations at different levels of refinement required

to reduce the residual by a factor of 10°, the infinity norm of the error and the L,

norm for Test Problem 1 using the RCB partitioning strategy.

Refinement Level Iterations Error Norms
(Elements/Vertices) || p=2 | p=4 | p=8 | p=16 Lo Ly
1(6144/1377) 7 11 11 10 3.165x107% | 2.119x1073
2(49152/9537) 7 12 15 17 9.968x107% | 4.967x1074
3(393216/70785) 8 13 15 16 3.068x1073 | 6.803x107°
4(3145728/545025) 8 14 14 15 8.832x107* | 1.574x107°

Table 3.2: The number of GMRES iterations at different levels of refinement required
to reduce the residual by a factor of 10°, the infinity norm of the error and the L,

norm for Test Problem 1 using the anisotropic partitioning strategy.

Again f is such that exact solution v = ¢ = sin(xa)sin(ry)sin(xz) is satisfied.
The results in Table 3.3 and Table 3.4 show the iterations required to decrease the
2-norm of the residual by a factor of 10°, the infinity norm of the exact error, and
the Ly norm, for the RCB and anisotropic partitioning strategies respectively.

It may be observed that the number of iterations is indeed independent of A
(with the possible exception of Table 3.3 where this independence is not yet evident).
Furthermore, as p increases the number of iterations appears to have almost stopped
growing by the time p = 16. We note that although it is theoretically necessary to
solve the local subproblems on each process exactly, in practice a sufficiently accurate
approximate solve will maintain the optimality of the preconditioner [44, 177]. Our

observation, based on numerical experiments, is that reducing the residual by a

116

Chapter 3

3.8. Computational Results

Refinement Level Iterations Error Norms
(Elements/Vertices) || p=2 | p=4 | p=8 | p=16 Lo Ly
1(6144/1377) 9 14 19 26 7.063x107% | 2.901x1073
2(49152/9537) 11 16 22 27 3.108x1072 | 4.926x1074
3(393216/70785) 12 18 25 27 1.241%107% | 9.153x107°
4(3145728/545025) 13 19 27 30 5.069x107* | 1.565x107°

norm for Test Problem 2 using the RCB partitioning strategy.

Table 3.3: The number of GMRES iterations at different levels of refinement required

to reduce the residual by a factor of 10°, the infinity norm of the error and the L,

Refinement Level Iterations Error Norms
(Elements/Vertices) || p=2 | p=4 | p=8 | p=16 Lo Ly
1(6144/1377) 8 12 11 11 7.063x107% | 2.121x1073
2(49152/9537) 8 13 15 17 3.108x107% | 4.996x1074
3(393216/70785) 9 14 15 17 1.241x1072 | 6.842x107°
4(3145728/545025) 9 14 15 15 5.069x107* | 1.572x107°

Table 3.4: The number of GMRES iterations at different levels of refinement required

to reduce the residual by a factor of 10°, the infinity norm of the error and the L,

norm for Test Problem 2 using the anisotropic partitioning strategy.

factor of 10? (and some times even 10) when solving local subproblems appears to

be sufficient.

3.8.2 Non—Uniform Refinement

In this section, the effectiveness of the preconditioner is demonstrated for the local

(as opposed to global) refinement of the base level coarse mesh.

Test Problem 3

Y- (Tw)

u

S

=49

on Q=(0,1) x (0,1) x (0,1) € R®

on 0f).

117

Chapter 3

3.8. Computational Results

Refinement Level Iterations Error Norms
(Elements/Vertices) || p=2 | p=4 | p=8 | p=16 Lo Ly
1(20832/4403) 8 12 15 21 4.594x1071 | 4.385x1073
2(198816/22237) 9 13 16 22 2.194x107 | 1.107x1074
3(499123/100708) 9 15 17 23 1.365%107" | 1.039x10™*
4(2139159/429435) 10 16 19 25 7.271x107% | 6.369x107°

Table 3.5: The number of GMRES iterations at different levels of refinement required

to reduce the residual by a factor of 10°, the infinity norm of the error and the L,

norm for Test Problem 3 using the RCB partitioning strategy.

Refinement Level Iterations Error Norms
(Elements/Vertices) || p=2 | p=4 | p=8 | p=16 Lo Ly
1(20832/4403) 8 12 15 22 4.594x1071 | 4.232x1073
2(198816/22237) 9 14 17 23 2.194x107% | 1.484 %1074
3(499123/100708) 9 15 18 24 1.365x107! | 8.061x107°
4(2139159/429435) 10 17 19 26 7.271x107% | 6.371x107°

Table 3.6: The number of GMRES iterations at different levels of refinement required
to reduce the residual by a factor of 10°, the infinity norm of the error and the L,

norm for Test Problem 3 using the anisotropic partitioning strategy.

Here f and ¢ are chosen so that the analytic solution is given by

u=(1-2z -1 -2y - 1) (1 - (22—1)) onQ, (3.47)

Note that this solution is unity in the interior of 2 but tends to zero very rapidly in
a thin layer (of width ~ 0.02) near the boundary; allowing the Dirichlet condition
u = 0 to be satisfied throughout 0f2.

A base level coarse mesh of 3072 tetrahedral elements is used with a prior: local
h-refinement undertaken in such a way that those mesh elements with an exact
interpolation error greater than some tolerance are refined. For this problem a
tolerance of 107 is used and most of the elements refined are close to the boundary

of the domain €2 (i.e. in the boundary layer). The number of iterations required to

118

Chapter 3 3.9. Discussion

decrease the 2-norm of the residual by a factor of 10° are presented in the Table 3.5
and Table 3.6 (along with the infinity norm and two norm of the exact error) for
the RCB and anisotropic partitioning strategies respectively. We observe that the
number of iterations is almost independent of h. The independence from p is less
evident however. We believe this to be due to the poor quality of both of the
partitions into 16 subdomains for this particular problem: in each case the number
of fine mesh elements in each mesh varies significantly for example. A full discussion

of the significance of the partitioning is presented in Chapter 5.

3.9 Discussion

A symmetric version of our weakly overlapping additive Schwarz DD precondition-
ing algorithm for elliptic problems in three dimensions has been described in this
chapter. Starting with a brief introduction to a symmetric model problem in §3.1,
some theoretical background to two level additive Schwarz solution methods is given
in §3.2 with details of our preconditioning algorithm in §3.3. Implementation issues
are discussed from §3.4 to §3.7 and results for a small number of test problems are
presented in §3.8. These include both an isotropic and an anisotropic diffusion prob-
lem, each with global uniform refinement, and an isotropic boundary layer problem
with local non—uniform refinement. All of the results are presented for two differ-
ent partitioning strategies. For the first, isotropic, test problem we see that the
number of iterations ceased to grow after just the third level of mesh refinement
for both partitioning strategies. Hence the number of iterations is independent of
h and bounded above. The results for the anisotropic problem with global uniform
refinement are somewhat different for the two different partitioning strategies. In
both cases the number of iterations would seem to be independent of A however for
the anisotropic partition this number is clearly much smaller than when using RCB.
This indicates that the partitioning strategy is important for the solution of any
particular problem and, although there is always a bound on the iteration count,

this constant may depend significantly upon the quality of the partition. The results

119

Chapter 3 3.9. Discussion

for the third test problem with local mesh refinement, whilst very encouraging, also

show the importance of the particular choice of partitioning strategy.

120

Chapter 4

A Generalized Nonsymmetric

Additive Schwarz Preconditioner

The preconditioner developed in the previous chapter, for elliptic problems in three
dimensions which are symmetric positive definite (SPD), can be extended to more
general problems. A major motivation for this extension comes from [38] where
an important observation is made in the context of what Cai and Sarkis call a
“restricted additive Schwarz” method. We also note that this restricted additive
Schwarz approach provides the default parallel preconditioner for nonsymmetric
sparse linear systems in PETSc [160]. The generalization of this restricted additive
Schwarz technique to our weakly overlapping approach in three dimensions is the
main topic of this chapter. A similar generalization for elliptic problems in two
dimensions can be found in [9].

In addition to symmetric problems, this chapter also considers nonsymmetric
and convection—dominated elliptic problems. Since it is clear that many important
and practical problems lead to nonsymmetric linear systems when discretized by
the finite element method (FEM) [108], we consider a general nonsymmetric model
problem which is introduced and discretized in §4.1. This is followed, in §4.2, by a
description of the modifications required to generalize the existing weakly overlap-
ping additive Schwarz preconditioner, with the implementation of the corresponding

changes described in §4.3. The restricted preconditioner is then applied to the same

121

Chapter 4 4.1. Introduction

suit of symmetric test problems as in the previous chapter and the results are pre-
sented in §4.4, along with a discussion of the pros and cons of these two precondition-
ers. Application of this generalized preconditioner to nonsymmetric test problems
is considered in §4.5. In §4.6 and §4.7 respectively we solve convection—-dominated
problems using both the standard Galerkin FEM and a more stable streamline—
diffusion technique. The use of adaptivity through local refinement is considered in

§4.8.

4.1 Introduction

The symmetric weakly overlapping additive Schwarz algorithm described in the pre-
vious chapter is an optimal DD preconditioner that is suitable for the parallel adap-
tive finite element solution of second order self-adjoint elliptic problems in three
dimension. Here we generalize this algorithm is such a way that the theoretical
optimality results of [10] are no longer valid but the practical performance and ap-
plicability is improved. For this purpose we consider second order elliptic problems
in three dimension that are not necessarily self-adjoint (self-adjoint equations may
also be considered however). One of the most important class of problems that comes
into this category involves convection—diffusion equations. Such a model equation
can be extracted from the general class of elliptic problems (1.1) and can be written

as

—eV - (AVu)+b-Yu=f on QCTR’ (4.1)

Provided ¢ > 0 this is an elliptic problem (since A is SPD) but when b # 0 it is
not self-adjoint. Following the arguments given in §1.1.1, equation (4.1) may be
discretized as follows (we again assume, for simplicity, that « = 0 on the Dirichlet
boundary I'y).

First we express (4.1) as a weak formulation. Find v € Hg such that

E/Q(yv (AVu)) dO) _5/F gvdS+ /Q(@-zu)v 0 = /Qf v dQ (4.2)

122

Chapter 4 4.1. Introduction

for all v € H}. Here @ C R? is the physical domain of the problem,

Ho(Q) = {u e H'(Q) : wy,, = 0}, (4.3)

and I'y is the Neumann boundary where n - (AVu) = g¢. For this nonsymmetric

problem, the usual bilinear and linear forms are

Alu,v) = 6/(2’0 - (AVu))dQ + /(@ -Yu)v dQ (4.4)
Q Q
and
F(v) = / fodQ + 5/ gv d§) (4.5)
Q Iy
respectively. It is to be noted that the first integral in equation (4.4) is SPD whereas
the second is skew—symmetric. For the finite element solution of equation (4.2)
from the finite dimensional space, V", of continuous piecewise linear functions on

tetrahedral elements, 7%, the following discrete problem must be solved.

Find u"* € VN 'Hé(ﬂ) such that

Au”, ") = F(u") Vol e VENH(Q). (4.6)

For a given choice of basis for V", (4.6) leads to a system of linear equations that is
similar to the one given by (1.11). For the usual choice of local finite element basis
functions, ®;, the stiffness matrix A is sparse but not generally symmetric, since its

entries are given by

The nonsymmetric nature of the stiffness matrix requires a general Krylov sub-
space solver such as GMRES [154], as discussed in §1.6.3 and in §3.2, to be imple-
mented. For different choices of ¢, A and b, we note that our model problem can
represent symmetric, nonsymmetric and convection-dominated problems. We will
return to these problems in §4.4 after our generalization of the weakly overlapping

preconditioner in the following sections.

123

Chapter 4 4.2. The Preconditioner

4.2 The Preconditioner

While the theoretical results of the previous chapter and [10] demonstrate that the
preconditioner given by equations (3.44-3.46) is optimal for the class of linear self—
adjoint PDEs (leading to SPD linear systems) considered, it is clear that a number
of important practical problems cannot be realistically modelled by such equations.
Here we consider one such class of problems, as described in §4.1. Convection—
diffusion problems arise frequently in fluid mechanics, heat and mass transfer, en-
vironmental modelling, etc. and when discretized by the standard FEM [108], lead
to nonsymmetric linear systems. In this section, we consider a generalization of the
preconditioner from the previous chapter so that, in addition to symmetric prob-
lems, it is also suitable for nonsymmetric problems. In this regard we again refer to
[38]. This paper makes the empirical observation that the regular additive Schwarz

preconditioner (3.12) can be generalized to
T M., (4.8)

where M? has the action of mapping all terms corresponding to nodes outside €2; to
zero, preserving all terms corresponding to nodes inside); and scaling all terms on
the interface of €2; (in our case this scaling is a simple average as described below).
This modification to (3.12) not only has the effect of reducing the communication
cost of each iteration but also leads to a reduction in the number of iterations
required to converge provided an appropriate solver is used. In the case of our weakly
overlapping preconditioner the same philosophy may be applied and so equation

(3.46) is replaced by

(4.9)

(where D; s is a known diagonal scaling matrix), which means that the precondi-
tioner is no longer SPD. Hence, even for a self adjoint differential operator, instead
of the CG algorithm, a more general iterative solver such as the GMRES is required
(for details of a public domain implementation see [4] or [154]). Although the cost
per iteration is slightly greater for GMRES than CG, the reduced inter—process com-

124

Chapter 4 4.3. Implementation

munication during both the setup phase and the iteration phase for interpolation
(see §3.7 for details), and the corresponding decrease in the number of iterations
required to converge (see §4.4) always appears to ensure that the reduced precon-
ditioner is more effective. Such a comparison for the weakly overlapping additive
Schwarz preconditioner in two dimensions is given in [9].

Generalization of the entire weakly overlapping additive Schwarz DD algorithm
to nonsymmetric preconditioning may therefore be expressed by (3.44-3.45) and
(4.9). In the following section, we address the modifications required to imple-
ment this generalized nonsymmetric preconditioning algorithm. The corresponding
changes in the linear system (3.41) due to the nonsymmetric nature of the problems
to be considered will also be addressed. However this modification is not required

in the case of symmetric problems.

4.3 Implementation

Having described our proposed amendments to the weakly overlapping AS precon-
ditioning algorithm, in this section we discuss the corresponding implementation
details. It should be noted that the following discussion is restricted to the imple-
mentation of (4.9) only as no other component of the original algorithm presented
in Chapter 3 is altered. Recall from §1.1.1 and §4.1 that the standard Galerkin fi-
nite element discretization of (4.1) leads to a system of linear equations of the form
(1.11) where the coefficient matrix A is sparse and (generally) nonsymmetric. The
representation of this system of linear equations in block matrix notation can be

expressed as

AO BO Uy éO
Al Bl W él
= | : , (4.10)
Ap—l Bp—l Ep—l Zp—1
Co Oy Cp—l As Ug és

125

Chapter 4 4.3. Implementation

where u;, b, (for i =0,...,p— 1), u, and b, have their usual meanings as explained
in the previous chapter. Also the blocks A;, B;, C; and b, are sparse and can be
assembled on each process independently. The blocks A, and b, consist of contri-
butions from all processes, given by (1.29) and (1.30) respectively, which again can
be assembled and stored independently on each process. It is clear that an iterative
solver suitable for nonsymmetric problems, such as GMRES [154], is required to
solve this system of linear equations. The distributed matrix—vector product and
the distributed inner product required for parallel implementation of GMRES are
discussed in §1.6.4. On each process ¢, for ¢ = 0,...,p — 1, note that (4.10) may,

after a suitable permutation, be expressed as

A; B;

C; Ci Ai,s u;

(4.11)

Here w; still represents the unknowns inside €}; but u, ; represents the unknowns on
the interface of ; with other subdomains and u; represents all remaining unknowns.
The other blocks are formed similarly. Application of the generalized nonsymmetric
preconditioner, M say, by considering the action of z = A;l_ly is then given below.

Following the notation of Chapter 3 (equations (3.44-3.45)), on each process ¢,

fore=0,...,p— 1, solve the system

A; B; Z; 9,
A B z | = | My, | (4.12)
Ci Ci A, Zis Yi s
where
y, = Py
g, = Piy (4.13)
= Py

Zi,s

This is exactly as described in §3.4 and, as before, all subproblems are solved in-

dependently and concurrently. On completion of these subproblem solves at each

126

Chapter 4 4.3. Implementation

iteration, their contribution towards the overall parallel preconditioned solution is
now determined by equation (4.9) instead of (3.46). This operation requires com-
munication with the neighbouring processes only (as opposed to the global com-
munication required by (3.46)), matching the interface boundary nodes with the
same nodes from the neighbouring subdomains. Implementation details of these
communications of interface node values, and their subsequent scaling, is described
below.

After the preconditioning solve (4.12) is complete, each process ¢ has subdomain
solution values for three different types of node: nodes interior to subdomain €2;,
nodes exterior to subdomain 2; (which are discarded for the rest of the computation)
and nodes at the interface boundary of subdomain ;. Only those values obtained
from the preconditioning solve on process ¢ which correspond to the interior and the
interface boundary nodes of subdomain €2; contribute towards the overall parallel
solution. Furthermore, the subproblem solution values corresponding to the interface
boundary nodes need to be adjusted so that the contribution from each of the sharing
processes can be averaged. For this purpose, a list of subproblem solution values
for those interface boundary nodes of subdomain €; which are common with each
neighbouring subdomain 2; € N; are sent to process j. Similarly, process ¢ receives
such list of subproblem solution values from each neighbouring process j, for the
interface boundary nodes of subdomain €2; which are common with the neighbouring
subdomains §2; € IV;. The number of such lists to be sent from, and received by,
each process depends upon the number of neighbouring processes. These received
subdomain solution values from each neighbouring process j are then added to
the corresponding subdomain solution values for the interface boundary nodes of
subdomain €; on process 7. As a result, for each node on the interface boundary of
subdomain €);, process ¢ holds a sum of solution values from all sharing processes.
These solution values are then scaled by the number of sharing processes. Hence, for
each node at the interface boundary, we get an average of the subproblem solution
values from all sharing processes (and therefore the solution value for a particular

node at the interface boundary is same on each of the sharing processes).

127

Chapter 4 4.4. Application to Symmetric Problems

We note that our discussion of the generalized preconditioner described in §4.2,
and its implementation, focused on the modification of equation (3.46) to equation
(4.9). This means that the preconditioner is no longer SPD. However, it is still
equally suitable for symmetric problems as for nonsymmetric problems. It is shown
in the next section that one of the benefits of applying this nonsymmetric precon-
ditioner to a symmetric problem is a decrease in the number of iterations required

for convergence.

4.4 Application to Symmetric Problems

In order to demonstrate the quality and convergence behaviour of the generalized
nonsymmetric preconditioner, we present here numerical results for the same set of
test problems as considered in §3.8. The computational domain is again partitioned
into 2, 4, 8 and 16 subdomains (see Figure 3.9) using the RCB and the anisotropic
partitioning strategies. The results are obtained using GMRES with right precondi-
tioning and an initial guess of 0. Here we remind the reader that as the exact error
depends on p, the number of subdomains, so does the norm of this error. There-
fore, in this and the following sections, all values of the L., norm and the L, norm

presented are the maximum of the values over all choices of p € {2,4,8,16}.

4.4.1 Uniform Refinement

In this section we present the results for two test problems: the first problem is
a simple Poisson equation (Test Problem 1) and the second problem is a more
demanding anisotropic diffusion equation (Test Problem 2).

In each case the domain Q = (0,2) x (0,1) x (0,1) and Dirichlet boundary con-
ditions are applied throughout 9. The results in Tables 4.1-4.4 show the quality
and convergence behaviour of the generalized nonsymmetric preconditioning algo-
rithm for a tolerance of 107° relative to the initial residual. Each of the subdomain
problems is solved approximately but sufficiently accurately to ensure that the op-

timality of the preconditioner is maintained. A base level coarse mesh of just 768

128

Chapter 4

4.4. Application to Symmetric Problems

tetrahedral elements is used and is refined uniformly between 1 and 4 levels.

Refinement Level Iterations Error Norms
(Elements/Vertices) || ILU | p=2 | p=4 | p=8 | p=16 Lo Ly
1(6144/1377) 7 3 3 4 4 3.165x107% | 2.898x 1073
2(49152/9537) 12 3 5 5 6 9.968x1073 | 4.845x10~*
3(393216/70785) 22 4 6 7 8 3.068x1072 | 9.070x10~°
4(3145728/545025) 42 4 8 9 9 8.833x107* | 1.565x107°

Table 4.1: The number of GMRES iterations at different levels of refinement to
reduce the residual by a factor of 10°, plus the infinity norm and the two norm of

the error, for Test Problem 1 using the RCB partitioning strategy.

Refinement Level Iterations Error Norms
(Elements/Vertices) || ILU | p=2 | p=4 | p=8 | p=16 L Ly
1(6144/1377) 7 3 3 4 5 3.165x1072 | 2.119x1073
2(49152/9537) 12 3 4 6 6 9.968x1073 | 4.967x10~*
3(393216/70785) 22 4 5 7 8 3.068x1072 | 6.804x107°
4(3145728/545025) 42 4 7 9 10 8.832x107% | 1.574x107°

Table 4.2: The number of GMRES iterations at different levels of refinement to
reduce the residual by a factor of 10°, plus the infinity norm and the two norm of

the error, for Test Problem 1 using the anisotropic partitioning strategy.

We note that in all cases the increase in the number of iterations is very slow as
the number of subdomains and the level of refinement is increased. The difference in
the number of iterations shown in Table 4.3 and Table 4.4 is similar to that seen in
§3.8.1 for the symmetric preconditioning algorithm. Also the number of iterations
required in each case is significantly less than the number required by the original
symmetric preconditioning algorithm to reduce the residual by the same factor (Ta-
bles 3.1-3.4) — in some cases the iteration count is less than one half of the number
required by the original symmetric preconditioner. This clearly demonstrates the

superiority of the generalized nonsymmetric preconditioner.

129

Chapter 4 4.4. Application to Symmetric Problems
Refinement Level Iterations Error Norms
(Elements/Vertices) || ILU | p=2 | p=4 | p=8 | p=16 Lo Ly
1(6144/1377) 6 7 8 8 12 7.063x1072 | 2.901x10~3
2(49152/9537) 10 9 10 10 13 3.108x1073 | 4.926x10~*
3(393216/70785) 18 | 10 | 11 | 12 15 || 1.241x1073 | 9.153x107°
4(3145728/545025) || 34 | 11 | 13 | 14 18 || 5.069x107* | 1.565x107°

Table 4.3: The number of GMRES iterations at different levels of refinement to
reduce the residual by a factor of 10°, plus the infinity norm and the two norm of

the error, for Test Problem 2 using the RCB partitioning strategy.

Refinement Level Iterations Error Norms
(Elements/Vertices) || ILU | p=2 | p=4 | p=8 | p=16 L Ly
1(6144/1377) 6 3 3 3 3 7.063x1072 | 2.121x1073
2(49152/9537) 10 4 4 5 5 3.108x1073 | 4.996x10~*
3(393216/70785) 18 5 5 6 6 1.241x1073 | 6.842x1075
4(3145728/545025) 34 5 6 6 7 5.069x107* | 1.572x107°

Table 4.4: The number of GMRES iterations at different levels of refinement to
reduce the residual by a factor of 10°, plus the infinity norm and the two norm of

the error, for Test Problem 2 using the anisotropic partitioning strategy.

In Tables 4.1-4.4 an iteration count is also given (in the column labelled ILU) for
when the corresponding test problem is solved using the I'LU preconditioned GM-
RES iterative solver [151, 152]. We recall from §3.6.1 that this is the same sequential
solver that is used for the solution of the subdomain problems at each precondition-
ing step. The nature of this preconditioner, like our generalized preconditioner, is
nonsymmetric. The results quoted are obtained by using an amount of fill-in equal
to 25 and a drop tolerance of 0.005 to achieve a relative tolerance of 107°. The
benefit of the drop tolerance approach to the incomplete factorization of the sparse
matrix, into lower and upper triangular matrices, is that it is not blind to the numer-

ical values of the sparse matrix entries. In fact the parameters, p, the level of fill-in

and 7, the drop tolerance, supplement each other in determining the best possible

130

Chapter 4 4.4. Application to Symmetric Problems

factorization into the L and U parts, taking into account both the space available
for fill-ins and the numerical values of the matrix entries to keep or drop. This
is in contrast to the approach of using only the level of fill-in which depends only
upon the structure of the sparse matrix but not its particular numerical values. It
is clearly evident that the number of iterations required to converge almost doubles
every time the mesh is refined by one level. This is in contrast to the near—optimal
behaviour of our weakly overlapping generalized nonsymmetric two level additive
Schwarz preconditioner, where the number of iterations grows only very slowly as
the mesh is refined. Throughout the rest of this chapter an ILU column has been
included in all of the tables of iteration counts so that the growth in the number
of iterations of our additive Schwarz preconditioner may be contrasted with this for

each of the test problems that we consider.

4.4.2 Non—Uniform Refinement

The effectiveness of the generalized nonsymmetric preconditioner when applied to
a symmetric problem with non—uniform local h-refinement is demonstrated by the
results presented in this section for Test Problem 3 (previously considered in §3.8.2
using the symmetric preconditioning algorithm). For this problem, as in §3.8.2, a
slightly larger base level coarse mesh of 3072 tetrahedral elements for the domain

Q=(0,1) x (0,1) x (0,1) is used.

Refinement Level Iterations Error Norms
(Elements/Vertices) || ILU | p=2 | p=4 | p=8 | p=16 L Ly
1(20832/4403) 12 | 6 7 7 9 4.594x1071 | 4.384x107°

2(198816/22237) 5] 9 9 10 | 12 | 2.194x107' | 1.107x 1073
3(499123/100708) || 17 | 9 10 | 12 | 13 | 1.365x107! | 1.039x 1074
4(2139159/429435) || 18 | 10 | 12 | 14 16 || 7.271x107% | 3.369x107°

Table 4.5: The number of GMRES iterations at different levels of refinement to
reduce the residual by a factor of 10°, plus the infinity norm and the two norm of

the error, for Test Problem 3 using the RCB partitioning strategy.

131

Chapter 4 4.4. Application to Symmetric Problems

Refinement Level Iterations FError Norms
(Elements/Vertices) || ILU | p=2 | p=4 | p=8 | p=16 Lo Ly
1(20832/4403) 12 7 7 10 10 4.594x1071 | 4.232x1073

2(198816/22237) 15 | 8 0 | 11 12 | 2.194x107! | 1.484x1073
3(499123/100708) || 17 | 9 10 | 12 14 | 1.365x107! | 8.061x107°
4(2139159/429435) || 18 | 11 | 14 | 16 17 || 7.271x1072 | 6.371x107°

Table 4.6: The number of GMRES iterations at different levels of refinement to
reduce the residual by a factor of 10°, plus the infinity norm and the two norm of

the error, for Test Problem 3 using the anisotropic partitioning strategy.

As for the uniform refinement case, from Table 4.5 and Table 4.6 we are able
to observe that the number of iterations required to converge is again less than
the number required by the original symmetric preconditioning algorithm (see Ta-
bles 3.5 and 3.6). Also the increase in the number of iterations is again quite slow
as the number of subdomains and the refinement level are increased, despite the
fact that the refinement is only local in nature. Again, the overall superiority of the

generalized nonsymmetric preconditioning algorithm is apparent.

4.4.3 Generalized Preconditioner: Pros and Cons

In view of the results presented in §3.8 and this section, for the same set of test
problems, using our weakly overlapping symmetric and generalized nonsymmetric
additive Schwarz preconditioners respectively we may now consider the advantages
and the disadvantages of these two preconditioners. For some of these observations
we refer to [9, 38] whereas others reflect our numerical experiments during the code

development and testing.

1. The symmetric preconditioner is based on a precise mathematical theory whereas
the generalized nonsymmetric preconditioner is a modification of this based

only on empirical observations (with no theoretical justification).

132

Chapter 4 4.5. Application to Nonsymmetric Problems

2. The symmetric preconditioner works well with CG, a specialized solver for
symmetric problems, whereas the generalized nonsymmetric preconditioner

requires a more general solver: GMRES for example.

3. The memory requirement of CG, used with the symmetric preconditioner, is
lower than that of GMRES, required for the generalized nonsymmetric pre-
conditioner, as it requires all previous Krylov vectors (search directions) to be

stored.

4. The number of iterations required to converge (to a particular tolerance) us-
ing the symmetric preconditioner is always higher than that required by the

generalized nonsymmetric preconditioner.

5. The inter—process communication cost for the setup phase and the iteration
phase is higher (by about 100%) for the symmetric preconditioner than for
the generalized nonsymmetric preconditioner. This is because the interpola-
tion is replaced by a simple scaling step which requires communication with

neighbouring processes only. This clearly reduces the cost of each iteration.

6. With the decreased communication cost and the decreased number of itera-
tions, the generalized nonsymmetric preconditioner is the preferred precondi-

tioner for parallel or distributed computing.

In rest of this chapter we provide evidence in support of a final observation, that
the generalized nonsymmetric preconditioner may also be applied successfully to

nonsymmetric and convection—-dominated problems.

4.5 Application to Nonsymmetric Problems

The results presented in §4.4 demonstrate the superiority of the generalized non-
symmetric preconditioner over our original symmetric preconditioner for a variety
of symmetric problems. In this section, we assess the quality of the generalized non-

symmetric preconditioning algorithm for nonsymmetric elliptic problems. We begin

133

Chapter 4 4.5. Application to Nonsymmetric Problems

by considering the following general nonsymmetric elliptic problem:

V- (Yu)+b¥ u=f onQ o

u=g¢ on Of.
As before we consider the effectiveness of the generalized nonsymmetric precon-
ditioning algorithm for nonsymmetric problems in terms of the iteration count for a
given tolerance. The infinity norm and the two norm of the error are also provided.

Two specific test problems are considered, see below, and the same two different

partitioning strategies are applied as in §3.8.

Test Problem 4

Test Problem 5

1
b = I
1
o= (=T -,

/o= (- M) (3—20)2(1 = 2) +y(1 - p)3 - 22)) +y(1 = y)z(1 - 2),

1 —e?

The two test problems are solved on the domain 2 = (0,2) x(0,1) x(0, 1) subject

to Dirichlet boundary conditions. Results for Test Problem 4 are given in Table 4.7

134

Chapter 4 4.5. Application to Nonsymmetric Problems
Refinement Level Iterations Error Norms
(Elements/Vertices) || ILU | p=2 | p=4 | p=8 | p=16 Lo Ly
1(6144/1377) 6 4 5 6 7 1.163x1073 | 1.060x10~*
2(49152/9537) 12 3 b) 6 6 5.977x107% | 1.899x10~°
3(393216/70785) 24 4 5 6 7 2.148x107% | 3.452x 1076
4(3145728/545025) 46 3 5 6 7 6.689x107° | 5.767x10~7

Table 4.7: The number of GMRES iterations at different levels of refinement to
reduce the residual by a factor of 10°, plus the infinity norm and the two norm of

the error, for Test Problem 4 using the RCB partitioning strategy.

Refinement Level Iterations Error Norms
(Elements/Vertices) || ILU | p=2 | p=4 | p=8 | p=16 L Ly
1(6144/1377) 6 4 5 5 7 1.163x1072 | 1.846x10™*
2(49152/9537) 12 5 6 12 18 5.977x107% | 2.336x107°
3(393216/70785) 24 5 5 7 8 2.148x107* | 4.970x10~¢
4(3145728/545025) 46 4 5 7 9 6.689x107° | 7.601x10~"7

Table 4.8: The number of GMRES iterations at different levels of refinement to
reduce the residual by a factor of 10°, plus the infinity norm and the two norm of

the error, for Test Problem 4 using the anisotropic partitioning strategy.

and Table 4.8 for the RCB and the anisotropic partitioning strategies respectively.
For Test Problem 5 the corresponding results are given in Table 4.9 and Table 4.10.
In each case the GMRES iterative solver with right preconditioning and an initial
guess of 0 was run until a relative residual of 107 was achieved. As can be seen,
the generalized nonsymmetric preconditioner behaves in an excellent manner for
these two nonsymmetric test problems using both partitioning strategies. It may
be observed that the total number of GMRES iterations grows very slowly as the
number of processes (subdomains) is increased or the mesh is refined (all calculations
are performed with a base level mesh of just 768 tetrahedral elements). The strange
jump in the number of iterations at level 2 in Table 4.8 is completely out of line

however and is not yet understood by the author.

135

Chapter 4

4.6. Convection—Dominated Problems

Refinement Level Iterations Error Norms
(Elements/Vertices) || ILU | p=2 | p=4 | p=8 | p=16 Lo Ly
1(6144/1377) 7 3 4 4 4 6.358x107* | 9.912x107°
2(49152/9537) 13 4 5 5 6 2.029%x107% | 1.261x107°
3(393216/70785) 26 4 6 7 7 5.908x107° | 3.028x107°
4(3145728/545025) 51 4 8 9 10 1.913x107° | 3.889x10~7

Table 4.9: The number of GMRES iterations at different levels of refinement to
reduce the residual by a factor of 10°, plus the infinity norm and the two norm of

the error, for Test Problem 5 using the RCB partitioning strategy.

Refinement Level Iterations Error Norms
(Elements/Vertices) || ILU | p=2 | p=4 | p=8 | p=16 L Ly
1(6144/1377) 7 4 4 5 6 6.358x107* | 5.083x107°
2(49152/9537) 13 3 5 7 7 2.029%x107% | 1.156x107°
3(393216/70785) 26 4 6 8 9 5.908x1075 | 1.603x10~°
4(3145728/545025) 51 5 8 10 11 1.913x1075 | 3.708x10~7

Table 4.10: The number of GMRES iterations at different levels of refinement to
reduce the residual by a factor of 10°, plus the infinity norm and the two norm of

the error, for Test Problem 5 using the anisotropic partitioning strategy.
4.6 Convection—-Dominated Problems

There is a great deal of practical interest in producing numerical methods which can
approximate the solutions of convection—diffusion equations such as (4.1), in the case
where the convection term dominates. It is well known however that if there is a
dominant convection term then standard numerical methods perform very poorly,
or fail to work at all. For example, classical finite element schemes such as Galerkin
methods frequently yield numerical solutions which suffer from very large, unrealis-
tic and non—physical oscillations. A number of numerical methods have been devised

to overcome these difficulties, usually through the introduction of a certain amount

of artificial dissipation (often in a problem—specific manner). Of these, along with

136

Chapter 4 4.6. Convection—-Dominated Problems

others such as artificial diffusion, polynomial upwinding, crosswind diffusion, etc.,
the streamline—diffusion method [108] has been particularly successful (see §1.1.2).
In this section we consider a model convection-dominated equation which is non
self-adjoint due to the directionality introduced by the presence of an odd order
derivative. It is first solved using the Galerkin method and the nonsymmetric pre-
conditioner outlined above. In the following section the same preconditioner will
also be shown to be effective for a more stable discretization. The model convection

dominated equation is:

eVu+b6-V u=f on (1.15)

u=g¢ on 0f,

where ¢ > 0 is a constant diffusion coefficient (assumed to be such that ¢ << ||b]|), b
is a constant convection vector and, for simplicity, homogeneous Dirichlet boundary
conditions are applied.

To gain insight into this class of convection—-dominated equation consider the

following analogous one dimensional problem [137]:
—cu'(z)+u'(z)=1 for O0<z<l, (4.16)
with «(0) = u(1) = 0. This one dimensional equation yields the analytical solution
u(z) =a+ S_J/i::# (4.17)

The first term is this solution satisfies (4.16) and the boundary condition u«(0) = 0.
The second term ensures that the other boundary condition is satisfied. Thus, when
¢ << 1 the solution essentially satisfies a pure convection problem except in a region
close to 1, where the solution exhibits an exponential boundary layer as shown in
Figure 4.1. A solution plot for a similar problem in two dimensions with an expo-
nential boundary layer increasing towards the corner at * = 1,y = 1, is shown in
Figure 4.2. In higher dimensions it is difficult to visualize the solution but (4.15)
can certainly yield a u(z,y, z) with similar behaviour.

As indicated above, a number of different numerical schemes exist for the solu-

tion of convection-dominated equations. In the next section we will apply a stable

137

Chapter 4 4.6. Convection—-Dominated Problems

Figure 4.1: Solution plot for u given by (4.17) and ¢ = 0.01.

streamline—diffusion finite element scheme however for the rest of this section we
present numerical results for the Galerkin finite element method. Although this is
not stable for large mesh Peclet numbers (when ¢/h is significant) we will see that
our weakly overlapping preconditioner is still effective so long as the mesh is not too

coarse.

4.6.1 Computational Results

In order to assess the quality of the generalized nonsymmetric preconditioner on a
convection—dominated problem we consider the specific test problem, of the form

(4.15), given below.

Test Problem 6

1
b =10
0
2(1 — e*/?)
u = <$ - W) y(1 —y)z(1l — =)
2(1 — e®/#)

f o= 25<x—21_ﬁ>(y(l—y)—l—z(l—z)>‘|‘3/(1_3/)Z(1_Z)

138

Chapter 4 4.6. Convection—-Dominated Problems

& 000000000
RORNWANON®O

Figure 4.2: Analogous solution plot for a two—dimensional generalization of Fig-

ure 4.1.

This problem is solved on the domain @ = (0,2) x (0,1) x (0,1) subject to the
Dirichlet boundary conditions on 9. The solution exhibits a steep layer of size
O(e) near the boundary = 2 when 0 < ¢ << ||b|| = 1. It should be noted that for
e =1.0and b= (1,1,1)T, this test problem reduces to Test Problem 5 considered
in §4.5.

Refinement Level Iterations Error Norms
(Elements/Vertices) || ILU | p=2 | p=4 | p=8 | p=16 L Ly
1(6144/1377) 7 3 4 4 5 3.534x1072 | 4.022x 104
2(49152/9537) 14 3 5 5 6 1.464x1073 | 7.068x107°
3(393216/70785) 27 4 6 7 8 5.497x107% | 1.013x 1076
4(3145728/545025) 54 4 7 9 10 1.903x 1074 | 2.442x1077

Table 4.11: The number of GMRES iterations at different levels of refinement re-
quired to reduce the residual by a factor of 10°, plus the infinity norm and the

two norm of the error, for Test Problem 6 using the RCB partitioning strategy and
e=1.0x10"".

139

Chapter 4

4.6. Convection—Dominated Problems

Refinement Level Iterations Error Norms
(Elements/Vertices) || ILU | p=2 | p=4 | p=8 | p=16 Lo Ly
1(6144/1377) 9 4 4 5 8 1.022x1071 | 8.208x10~*
2(49152/9537) 11 4 4 5 6 1.005x1071 | 1.717x10~*
3(393216/70785) 17 3 4 5 7 5.215x1072% | 1.266x 107>
4(3145728/545025) 32 3 5 6 8 1.884x107% | 1.650x 10~

Table 4.12: The number of GMRES iterations at different levels of refinement re-
quired to reduce the residual by a factor of 10, plus the infinity norm and the

two norm of the error, for Test Problem 6 using the RCB partitioning strategy and
e=1.0x10"2.

Refinement Level Iterations Error Norms
(Elements/Vertices) || ILU | p=2 | p=4 | p=8 | p=16 L Ly
1(6144/1377) 45 | 11 | 15 | 16 32 || 2.300x107! | 1.882x 1073
2(49152/9537) 29 7 8 8 12 2.732x107! | 3.372x1074
3(393216/70785) 19 6 6 6 9 2.641x107! | 9.800x10~°
4(3145728/545025) 23 5 5 5 8 2.105x107! | 8.841x107°

Table 4.13: The number of GMRES iterations at different levels of refinement re-
quired to reduce the residual by a factor of 10°, plus the infinity norm and the

two norm of the error, for Test Problem 6 using the RCB partitioning strategy and
e=1.0x1072.

Tables 4.11-4.16 show the number of iterations required to solve the discrete
finite element system to a moderately high level of accuracy using GMRES with our
parallel implementation of the weakly overlapping generalized nonsymmetric DD
preconditioner for two different partitioning strategies (see §3.8 for details). Results
are presented for a sequence of meshes which represent between one and four levels
of uniform refinement of a coarse tetrahedral mesh containing just 768 elements.
It may again be observed that, as the mesh is refined or the number of processes
(subdomains) is increased, the total number of GMRES iterations increases only very

slowly. It is not clear however whether this increase will be bounded as the mesh

140

Chapter 4

4.6. Convection—Dominated Problems

Refinement Level Iterations Error Norms
(Elements/Vertices) || ILU | p=2 | p=4 | p=8 | p=16 Lo Ly
1(6144/1377) 7 3 3 4 5 3.534x1073 | 4.432x10~*
2(49152/9537) 14 3 5 6 7 1.464x1073 | 7.671x1075
3(393216/70785) 27 4 6 8 8 5.497x107% | 1.226x107°
4(3145728/545025) 54 4 7 9 10 1.903x10~* | 2.592x10~°

Table 4.14: The number of GMRES iterations at different levels of refinement re-
quired to reduce the residual by a factor of 10°, plus the infinity norm and the two

norm of the error, for Test Problem 6 using the anisotropic partitioning strategy

and ¢ = 1.0 x 1071,

Refinement Level Iterations Error Norms
(Elements/Vertices) || ILU | p=2 | p=4 | p=8 | p=16 L Ly
1(6144/1377) 9 3 3 4 4 1.022x1071 | 9.043x10~*
2(49152/9537) 11 3 3 4 4 1.005x1071 | 1.717x107*
3(393216/70785) 17 3 4 4 5 5.215x1072 | 1.266x10~°
4(3145728/545025) 32 4 5 6 6 1.884x1072 | 1.650x107°

Table 4.15: The number of GMRES iterations at different levels of refinement re-
quired to reduce the residual by a factor of 10°, plus the infinity norm and the two
norm of the error, for Test Problem 6 using the anisotropic partitioning strategy

and ¢ = 1.0 x 1072.

size tends to zero as is proved in [10] for the symmetric version of the preconditioner
applied to pure diffusion problems.

It can be observed from Tables 4.11-4.13 that, for the RCB partition, the number
of iterations required to converge increases as the value of ¢ decreases on the two
coarsest meshes. For the finest mesh however, the number of iterations required
to converge decreases with a decrease in the value of . This behaviour may be
understood by looking at the infinity norm of the error in these three tables. On the
coarse grid the error grows as ¢ is decreased due to the instability of the Galerkin

scheme. The oscillations in the solution are proving hard for the preconditioned

141

Chapter 4 4.7. Streamline—Diffusion Method

Refinement Level Iterations Error Norms
(Elements/Vertices) || ILU | p=2 | p=4 | p=8 | p=16 Lo Ly
1(6144/1377) 45 8 10 12 13 2.230x1071 | 2.149x1073
2(49152/9537) 29 5 6 7 8 2.732x1071 | 3.372x10~*
3(393216/70785) 19 4 5 5 5 2.641x107! | 9.800x107°
4(3145728/545025) 23 4 4 4 4 2.105x1071 | 8.841x107¢

Table 4.16: The number of GMRES iterations at different levels of refinement re-
quired to reduce the residual by a factor of 10°, plus the infinity norm and the two

norm of the error, for Test Problem 6 using the anisotropic partitioning strategy

and ¢ = 1.0 x 1073.

iterative solver to resolve. On the finest grid however h is just sufficiently small
to be able to resolve the solution when ¢ = 107 and so the performance of the
preconditioner is not adversely affected.

Similar results are presented in Tables 4.14-4.16 for the anisotropic partition.
Provided the mesh Peclet number is small enough we actually see a reduction in the
number of iterations required as ¢ is decreased. A similar observation is made when
solving the problem sequentially using the package described in [151]. In this case
the preconditioner is based upon an incomplete LU (I LU) factorization of the finite
element matrix, and this is able to exploit the weak coupling between neighbouring
nodes with a common edge that is perpendicular to b when the problem is convection
dominated. Hence, although the discrete problem is more non-symmetric in this

case, it turns out to be less complex to solve in practice.

4.7 Streamline—Diffusion Method

The use of standard finite element discretization methods for convection—-dominated
problems generally leads to oscillatory numerical solution if the underlying mesh
is not sufficiently refined [88]. Such behaviour is evident in the numerical results

obtained using the Galerkin FEM in the previous section. In Table 4.13 and Ta-

142

Chapter 4 4.7. Streamline—Diffusion Method

ble 4.16 for example, the infinity norm of the error is hardly decreasing as the mesh
is refined. For one dimensional problems the exact character of these non—physical
oscillations is well understood, e.g., for linear elements for a problem with mesh size
h and constant convection velocity b, oscillations will occur if the ratio |b|h/2¢ is
greater than one [66]. The same is not true for problems in two or three dimensions
however. For example, for the two-dimensional case useful, closed—form, solutions
are hard to find and are often difficult to interpret when they are found [89]. A
limited discussion of oscillations in the standard finite element solution can also
be found in [157]. We are not aware of any work describing the precise nature of
the oscillations observed when using the Galerkin method for convection-dominated
equations in three dimensions with tetrahedral mesh elements.

A number of techniques have been proposed in an attempt to resolve this problem
of non—physical oscillations. In particular, the use of stabilized finite element formu-
lations [83, 101] has revolutionized the numerical analysis of convection-dominated
problems in last decade or so. Nevertheless, this recent progress still lacks a com-
pletely methodological approach to fully resolving some of the key issues, such as
the choice of stabilization parameters [33]. Typically the choice of a quasi-optimal
parameter is based upon some problem specific empirical studies. For this reason
the investigation of parameter free techniques for the solution of these problems has
begun to receive some recent attention: see, for example, [33, 149] and references
therein.

For the reminder of this section we restrict our attention to the streamline—
diffusion approach introduced in §1.1.2. Recall from that section that this involves an
upwinding parameter « defined by (1.27) and that a suitable choice of 6 is obtained
when « is of the form given by (1.27). If the problem is diffusion dominated then
the best choice is @ = 0, in which case the streamline diffusion formulation (1.23)
reduces to the standard Galerkin formulation (1.10). In practice, when using the
streamline—diffusion method to compute a solution with shock waves or boundary
layers, an appropriate choice of ¢ in (1.27) is crucial. In particular, the following

two aspects should be considered.

143

Chapter 4 4.7. Streamline—Diffusion Method

1. It is possible to over—stabilize so as to get a smooth solution which is funda-

mentally inaccurate.

2. The choice of ¢ influences the performance of the iterative solver that is applied

to the resulting linear algebraic system.

These two issues are related to each other in the sense that a good choice of ¢ to get
a stable and accurate solution often also triggers relatively rapid convergence of the
iterative solver [81]. In view of these observations, our choice of 6 for the solution of
the convection—dominated problems in this and the following sections is based upon
the trial and error approach suggested in [33]. The value of 6 = 0.11 is used in the

following computations.

4.7.1 Computational Results

The numerical results presented in §4.6.1 suggest that the generalized nonsymmetric
preconditioner works well in practice for three dimensional convection dominated
problems provided the mesh is sufficiently fine. However, when coarser meshes are
used the standard Galerkin method becomes oscillatory and the performance of the

preconditioner is affected.

Refinement Level Iterations Error Norms
(Elements/Vertices) || ILU | p=2 | p=4 | p=8 | p=16 L Ly
1(6144/1377) 7 3 4 4 5 6.008x107% | 4.181x1074
2(49152/9537) 14 3 5 5 6 2.779%x1072 | 6.425x107°
3(393216/70785) 27 4 6 7 8 1.409%x1073 | 1.071x107°
4(3145728/545025) 54 4 7 9 10 6.947x107% | 2.194x 1076

Table 4.17: The number of GMRES iterations at different levels of refinement re-
quired to reduce the residual by a factor of 10°, plus the infinity norm and the

two norm of the error, for Test Problem 6 using the RCB partitioning strategy and
e=1.0x10"".

144

Chapter 4

4.7. Streamline—Diffusion Method

Refinement Level Iterations Error Norms
(Elements/Vertices) || ILU | p=2 | p=4 | p=8 | p=16 Lo Ly
1(6144/1377) 7 3 4 4 6 6.803x107% | 5.527x 1074
2(49152/9537) 10 3 4 4 6 6.242x1072 | 1.138x10~*
3(393216/70785) 17 3 4 5 7 2.954x1072% | 1.252x107°
4(3145728/545025) 32 3 5 6 8 8.104x1073 | 1.652x 1076

Table 4.18: The number of GMRES iterations at different levels of refinement re-
quired to reduce the residual by a factor of 10, plus the infinity norm and the

two norm of the error, for Test Problem 6 using the RCB partitioning strategy and
e=1.0x10"2.

Refinement Level Iterations Error Norms
(Elements/Vertices) || ILU | p=2 | p=4 | p=8 | p=16 L Ly
1(6144/1377) 8 5 5 5 7 1.545x10~% | 68.78x107*
2(49152/9537) 9 4 5 5 7 2.390x1072 | 5.566x 107>
3(393216/70785) 12 4 5 5 6 2.096x1072 | 1.283x107°
4(3145728/545025) 17 3 4 5 7 1.848%x107% | 1.651x107°

Table 4.19: The number of GMRES iterations at different levels of refinement re-
quired to reduce the residual by a factor of 10°, plus the infinity norm and the
two norm of the error, for Test Problem 6 using the RCB partitioning strategy and
e=1.0x1072.

In Tables 4.17-4.22 we now present numerical results for the solution of the same
convection—dominated problems using a more stable finite element technique based
upon the streamline-diffusion method. As expected, we see that the stabilized FEM
provides a less oscillatory solution with a smaller error in terms of the infinity norm,
and that the improvement over the standard Galerkin FEM is clearest when the
mesh is coarse and the value of ¢ is small, that is, the mesh Peclet number is largest.

Given that the streamline—diffusion method works well for small values of ¢,
in Tables 4.17-4.22, the iteration counts for the preconditioned GMRES algorithm

(implemented in parallel with right preconditioning) are seen to be very low in all

145

Chapter 4 4.7. Streamline—Diffusion Method
Refinement Level Iterations Error Norms
(Elements/Vertices) || ILU | p=2 | p=4 | p=8 | p=16 Lo Ly
1(6144/1377) 7 3 3 4 5 6.008x1072 | 4.583x10~*
2(49152/9537) 14 3 b) 6 7 2.779x1073 | 7.173x107°
3(393216/70785) 27 4 6 7 8 1.409x1073 | 1.303x1073
4(3145728/545025) 54 4 7 9 10 6.947x107% | 2.399x107¢

Table 4.20: The number of GMRES iterations at different levels of refinement re-
quired to reduce the residual by a factor of 10°, plus the infinity norm and the two

norm of the error, for Test Problem 6 using the anisotropic partitioning strategy

and ¢ = 1.0 x 1071,

Refinement Level Iterations Error Norms
(Elements/Vertices) || ILU | p=2 | p=4 | p=8 | p=16 L Ly
1(6144/1377) 7 3 3 3 4 6.803x1072 | 5.527x10~*
2(49152/9537) 10 3 3 4 4 6.242x107% | 1.138x1074
3(393216/70785) 17 3 4 4 5 2.954x1072 | 1.252x107°
4(3145728/545025) 32 3 5 6 6 8.104x1072 | 1.652x107°

Table 4.21: The number of GMRES iterations at different levels of refinement re-
quired to reduce the residual by a factor of 10°, plus the infinity norm and the two
norm of the error, for Test Problem 6 using the anisotropic partitioning strategy

and ¢ = 1.0 x 1072.

cases. The comparison with the solution of the discrete Galerkin equations given
in Tables 4.11-4.16 demonstrates the effectiveness of the solver for all of the values
of ¢ considered. It is also the case that for small values of ¢ and relatively coarse
meshes, the streamline—diffusion solutions are obtained in fewer iterations. In each
case the effectiveness and the quality of the preconditioner is demonstrated in terms
of the small numbers of iterations required. Finally, we observe that for the most
convection-dominated problems, the anisotropic partition (appropriately aligned
with the anisotropy in the problem) provides converged results in fewer iterations

than the isotropic RCB partition. This is consistent with the results obtained earlier

146

Chapter 4 4.8. Local Adaptivity

Refinement Level Iterations Error Norms
(Elements/Vertices) || ILU | p=2 | p=4 | p=8 | p=16 Lo Ly
1(6144/1377) 8 2 3 3 3 1.545x1072 | 7.291x10~*
2(49152/9537) 9 3 3 4 4 2.390x1072 | 5.566x10~°
3(393216/70785) 12 3 3 4 4 2.096x1072% | 1.283x107°
4(3145728/545025) 17 3 4 4 4 1.848x107% | 1.651x10°

Table 4.22: The number of GMRES iterations at different levels of refinement re-
quired to reduce the residual by a factor of 10°, plus the infinity norm and the two

norm of the error, for Test Problem 6 using the anisotropic partitioning strategy

and ¢ = 1.0 x 1073.

for the anisotropic diffusion problem (Test Problem 2).

4.8 Local Adaptivity

So far we have discussed the finite element solution of convection-dominated prob-
lems using uniform refinement of the subdomain meshes. It has been observed
however that the solution of Test Problem 6, whilst smooth almost everywhere,
varies very rapidly in a layer of size O(e) near the boundary z = 2.0 (where
0 < e << ||bf| = 1). Whilst it is necessary for the mesh to be refined in this
boundary layer in order to approximate the solution accurately, refinement is not
necessarily required everywhere else in). This is typical for convection-dominated
problems, which frequently admit solutions containing steep boundary or internal

layers. A further example of such a problem is given by Test Problem 7 below.

Test Problem 7

147

Chapter 4 4.8. Local Adaptivity

Figure 4.3: Solution plot when u is a function of z only, convection is dominating

along x—axis and ¢ = 0.01.

The nature of the solution u is illustrated (in two dimensions for clarity) in
Figure 4.3 for ¢ = 0.01. From this figure it is clear that mesh refinement only in
the region near * = 2.0 should be sufficient in order to accurately approximate the
solution. Moreover, Figure 4.3 also suggests that uniform refinement throughout
the region in the immediate neighbourhood of @ = 2.0 is required (i.e. no variation
in y and z is necessary). Provided we use the anisotropic partitioning strategy
introduced in §3.8 it should be possible to allow local adaptive refinement to take
place in the boundary layer in a load-balanced manner. This is discussed further in
Chapter 5.

This problem is also solved on the domain © = (0,2) x (0,1) x (0,1) using a
coarse mesh that consists of just 768 elements and the Dirichlet boundary conditions
applied throughout 9. Table 4.23 shows some typical results for Test Problem 7
using local adaptive refinement around the region x = 2.0. In order to control this
refinement, only the elements in a layer of size O(¢) near the region = = 2.0 are
refined. The results in Table 4.23 show the iteration count, the infinity norm and
the two norm of the error for a sequence of locally refined grids. We again see

only a very slow growth in the number of iterations as the mesh is refined or the

148

Chapter 4 4.9. Discussion

Refinement Level Iterations Error Norms
(Elements/Vertices) || ILU | p=2 | p=4 | p=8 | p=16 Lo Ly
1(2560/673) 8 4 5 5 6 6.628x 1071 | 5.622x 1073
2(9728/2166) 9 4 5 5 6 5.647x1071 | 9.127x10~*
3(38400/7835) 10 4 5 5 6 2.567x107! | 5.289x107°
4(153088/29920) 13 5 6 7 7 6.705x1072 | 9.628x 1076

Table 4.23: The number of GMRES iterations at different levels of local refinement
required to reduce the residual by a factor of 10°, plus the infinity norm and the
two norm of the error, for Test Problem 7 (when ¢ = 0.01) using the anisotropic

partitioning strategy.

number of subdomains is increased. The number of iterations taken again appears
to be bounded by a constant as the mesh is refined or the number of subdomains is

increased.

4.9 Discussion

A nonsymmetric generalization of our 3—d symmetric weakly overlapping two level
additive Schwarz preconditioner, proposed in Chapter 3, has been described. This
generalization is based upon the empirical observations made in [38] for more con-
ventional additive Schwarz preconditioners and in [9] for our weakly overlapping
preconditioner in two dimensions. Results have been presented to show that even
when applied to the solution of SPD problems this nonsymmetric generalization
is superior to the original symmetric algorithm. Empirically we observe that the
overall number of iterations required is cut by about 50%.

Furthermore, a nonsymmetric model problem is introduced in §4.1 and the mod-
ifications required for the generalization of the symmetric algorithm to the nonsym-
metric algorithm are discussed in §4.2. The corresponding implementation details
are described in §4.3. Following consideration of three SPD test problems in §4.4

a couple of nonsymmetric test problems are considered in §4.5. Here the excellent

149

Chapter 4 4.9. Discussion

performance of the generalized nonsymmetric preconditioning algorithm is shown to
apply to a simple convection—diffusion problem, despite the lack of any theoretical
justification for this.

At this point we note that the iteration counts achieved in this work compare
favourably with those reported in other published work, e.g. [37, 38, 159]. In [38]
the so called ‘restricted additive Schwarz’ (RAS) preconditioner shows a growth in
the number of iterations from 13 to 18 and from 15 to 20 for the two dimensional
Poisson and convection—diffusion equations respectively when the overlap is varied
from 3 to 1 (on a 128 by 128 mesh). A symmetrized version of this preconditioner,
incooprating harmonic overlaps (RASHO), is reported in [37]. In this case the
number of iterations varies between 19 and 28 with a variation of overlap between 3
and 1 for the Poisson equation in two dimensions (also on a 128 by 128 mesh). Other
examples against which we may compare include the optimal DD preconditioner for
linear elasticity problems described in [159]. The number of iterations required to
converge in this 2-d work varies between 10 and 12 for a variation in the overlap
from 8 and 1 when using membrane elements. Similar iteration counts are obtained
using shell elements.

In §4.6 we go on to consider convection—-dominated problems and results are
presented for a specific test case where convection dominates along the x—axis.
Three different values of the diffusion coefficient ¢ and two different partitioning
strategies are considered. For this anisotropic problem, the number of iterations
required is lower for the (appropriately aligned) anisotropic partition. Furthermore,
the expected oscillations in the solution using the standard Galerkin finite element
method are observed. To overcome this oscillatory behaviour, we consider use of
the streamline—diffusion method in §4.7 and results are presented in §4.7.1 for the
same test problems considered in the previous section. Once more we see that our
preconditioner works well for this class of linear system and again we find that the
number of iterations required is lower for the anisotropic partition, particularly when
the convection is more dominant. Also the non—physical oscillations in the solution

have been removed. Finally, in §4.8, we consider solving a convection—-dominated

150

Chapter 4 4.9. Discussion

problem using local, rather than global, refinement. In order to ensure a reasonable
load balance for the parallel solver, results are presented for the anisotropic partition
only. The number of iterations again appears to be almost independent of the level

of local mesh refinement and the number of subdomains.

151

Chapter 5

Parallel Performance

Performance analysis of a parallel program is generally based upon the time taken by
a number of processors to complete the execution of the program. Various quantities
such as speedup, efficiency and scalability may be calculated by varying the number
of processors and the size of the problem. There may be several issues which effect

the performance of a parallel program and some of these are listed below.

e The quantity and patterns of the inter—processor communications.
e The imbalance in the computational load between different processors.

e The level of the parallel overhead (i.e. the additional computations that must
be undertaken by the parallel algorithm compared to the best available se-
quential algorithm).

In addition to these it is also apparent that for DD methods such as those being
considered in this thesis the geometric shape of subdomains may also have an effect
on parallel performance.

The quality and effectiveness (in terms of iteration counts) of our symmetric
weakly overlapping two level additive Schwarz preconditioning algorithm has been
assessed in Chapter 3 whereas that of the generalized nonsymmetric algorithm has
been assessed in Chapter 4 for a variety of test problems. The comparison of the

two algorithms in §4.4.3 clearly suggests that the generalized nonsymmetric DD

152

Chapter 5 5.1. Assessment of Parallel Performance

preconditioning algorithm is superior since the number of iterations required to
converge, for the same test problems, are significantly fewer. Furthermore, lack of
the full interpolation step in the generalized preconditioner ensures that the inter—
processor communication cost (which consists of the setup phase and the iteration
phase) is almost half that of the symmetric algorithm at each iteration. Thus the
generalized nonsymmetric preconditioning algorithm is the obvious choice for the
assessment of parallel performance. In the following section we describe one of the
simplest ways of assessing the performance of a parallel program and discuss in more
detail some of the issues which can effect the parallel performance. Parallel results
for a typical set of test problems are then presented in §5.2 followed by a discussion
in §5.3. Throughout this chapter, unless explicitly stated to the contrary, it will
be assumed that the parallel implementation is such that each process runs on a

different processor and that each processor is identical.

5.1 Assessment of Parallel Performance

Performance of a parallel program may be assessed in terms of speedup, which is
defined as the ratio of the time required to solve a problem using the best available
algorithm (and implementation) on a single processor to the time required to solve
the same problem using the parallel algorithm on p processors. Another measure
is the parallel efficiency which is defined as the ratio of speedup to the number of
processors. The efficiency indicates how well the processors are being used, that is,
the higher the parallel efficiency, the better the use of the processors. Unfortunately,
for a fixed size of problem, an increase in the number of processors generally causes
the parallel efficiency to deteriorate. Therefore, it tends to be larger problems which
benefit most from the use of parallel computers. The scalability of an algorithm is a
measure that tries to express how much it is able to benefit from increased amounts
of parallelism (which is what large machines are designed to provide [160]).

There are several issues which affect the performance of a parallel program and

need to be taken into account. We address here those issues which we believe have a

153

Chapter 5 5.1. Assessment of Parallel Performance

substantial, direct or indirect, effect on the performance of our weakly overlapping

preconditioning algorithm.

5.1.1 Decomposition

It has been observed in both Chapters 3 and 4 that the domain partitioning strategy
that is used affects the number of iterations required to converge. In this context
recall that for the isotropic problems, the number of iterations required for the RCB
partition are generally less than those required for the anisotropic partition (see
Tables 4.7 and 4.8 for example). Conversely, the anisotropic partition (appropriately
aligned) tends to lead to fewer iterations than the RCB partition for the anisotropic
problems (see Tables 4.11-4.16 and 4.17-4.22 for example). This is an important
indication that the subdomain shape plays an important role in the convergence
behaviour of our additive Schwarz preconditioning algorithm. Similar observations
have been made for other DD-based solution algorithms (e.g. [23, 74, 76, 168, 169])
and has led to a number of lines of research into partitioning strategies that can
take this into account [51, 155, 171].

Most automatic mesh partitioning algorithms attempt to minimize the cut—edge
weight, a cost which approximates the communication volume required in the paral-
lel application of Krylov subspace iterative methods such as CG or GMRES. Whilst
minimization of the communication volume is an important achievement in any par-
allel application, when the convergence of the solver is influenced by the shape of the
subdomains the overall computational cost may be more dependent on the number
of iterations than on the communication overhead. Just as with the FEM, where the
condition number of the discrete matrix system is determined by the aspect ratio
of elements, the condition number of the preconditioned system can be dependent
on the aspect ratio of subdomains [171]. From the point of view of this work, we
observe from the results presented in Chapter 4, that for isotropic problems a small
aspect ratio is better (e.g. the RCB partition), whereas for the anisotropic problems
a large aspect ratio can be best (e.g. the anisotropic partition). This observation is

taken into account in the presentation of the results quoted in §5.2 for a typical set

154

Chapter 5 5.1. Assessment of Parallel Performance

of test problems.

5.1.2 Communication

In this section we discuss some of the main implementation issues pertaining to
the inter—processor communication required for the parallel implementation of our
DD preconditioner. We also comment on the effects of the synchronization points
which are a necessary part of the distributed inner products that are required for
the parallel application of each Krylov subspace iteration.

We begin by discussing the inter—processor communication required for the re-
striction procedure (see §3.5 for details) which forms part of both the symmetric
and the nonsymmetric preconditioning algorithms. The communication for the full
interpolation procedure (see §3.7 for details) is required only by the symmetric pre-
conditioning algorithm and has a similar pattern to that required by the restriction
procedure. This is replaced in the generalized nonsymmetric preconditioning al-
gorithm by the scaling of interface boundary terms (see §4.2 for details) which is
discussed below. The restriction procedure consists of two phases; the setup phase
and the iteration phase. In the setup phase on processor ¢, a data set corresponding
to each subdomain Q;, for j #¢, is selected and then communicated to processor j.
Similarly, processor ¢ receives a data set from every other processor j #:. In the
iteration phase, a coarsening step is carried out on processor ¢ for each processor
J #1, and the resulting values are than communicated to processor j. Processor
¢ then receives its own set of coarsened values from every other processor j # .
Thus every processor communicates (send and receive) with every other processor
once in the setup phase and once in the iteration phase (which is repeated at each
GMRES iteration). This quantity of global communication is due to our imple-
mentation of the additive Schwarz approach: where each processor undertake its
own coarse grid solve in addition to its own weakly overlapping subdomain solve.
A more conventional two level additive Schwarz implementation might perform the
coarse grid solve on a single processor only, which would require less global commu-

nication. The remaining inter—processor communication would then be restricted to

155

Chapter 5 5.1. Assessment of Parallel Performance

immediate neighbours only, as illustrated in Figure 4.2. In retrospect this is a clear

Figure 5.1: Communication required by a typical processor for our implementation of
the two level additive Schwarz preconditioner (left), and the communication required

by the same processor when the coarse grid solve is undertaken on a single processor

(right).

disadvantage of our decision to incorporate the coarse grid solve into the local solve
undertaken on each processor and almost affects the solution times which are shown
in §5.2.

It should also be noted that although the anisotropic partition is better in terms
of iteration counts for the anisotropic problems, it causes a higher volume of com-
munication amongst the processors due to the larger subdomain interface boundary
compared to the RCB partition. Also the size of subdomain problems becomes
greater due to a larger overlap region, hence the computational cost per iteration
increases in addition to the higher volume of inter—processor communication. This
also proves to be significant in the results presented below.

Synchronization is defined as a point in a parallel algorithm that all processors
are required to reach simultaneously. Having many synchronization points tends to
increase the total time spent by processors waiting (rather than computing) [160],

therefore a good implementation is usually one with as few synchronization points as

156

Chapter 5 5.1. Assessment of Parallel Performance

possible. For the GMRES algorithm at least one synchronization point is required at
each iteration, when the inner products are carried out as part of the Gram—Schmidt

orthogonalization step.

5.1.3 Load Balancing

For any parallel algorithm to perform well it is necessary to achieve a good load
balance across the processors. Often allocation of one subdomain to each processor
can result in an uneven work distribution since, in practice, there is often some
variation in the size of individual subdomains. The coarse grid problem adds another
source of load imbalance if solved on a single processor [160]. Today a number of
heuristics and software tools (see §2.6 for details) are available which can partition
almost any mesh into an arbitrary number of well-balanced submeshes. They can
also maintain the balance dynamically in the situation of adaptive mesh refinement
during the solution process. Dynamic load balancing is in itself a topic of much
current research in parallel computing but is beyond the scope of this thesis. Here
we restrict our calculations to the two representative partitioning strategies shown
in Figure 3.9 and consider the consequences of global uniform and local non—uniform

refinement of the subdomains in turn.

Figure 5.2: Global uniform refinement of three representative subdomains in an

isotropic partition.

Consider the global uniform refinement of the three different subdomains shown

157

Chapter 5 5.1. Assessment of Parallel Performance

in the two dimensional example of Figure 5.2. In the situation where a subdomain
at the corner is refined, a single layer of elements from the three neighbouring
subdomains is also refined at each level. For a subdomain which shares one of its
sides with the boundary of the domain (), there are five neighbouring subdomains
which each require a layer of refinement at each level. The number of neighbouring
subdomains increases to eight when a subdomain is completely inside the domain
Q. A similar sketch can be drawn for the three-dimensional RCB partition (also
into sixteen subdomains) shown in Figure 5.3, where there are only two types of
subdomain: those which are at a corner and those which are not at a corner of).
The subdomains at a corner each have seven neighbours and the others each have

eleven neighbours.

Figure 5.3: Two representative subdomains and their neighbouring subdomains for

the RCB partition of 2 = (0,2) x (0,1) x (0, 1) into sixteen subdomains.

We recall that in our weakly overlapping approach, each subproblem is solved

158

Chapter 5 5.1. Assessment of Parallel Performance

on the entire domain but only the subdomain €2; owned by the processor ¢ is re-
fined, along with a single layer of refinement at each mesh level of the neighbouring
subdomains Q; € N;. Due to this refinement of elements from the neighbouring
subdomains the size of each subproblem is affected by the number of neighbouring
subdomains and the overall length of the interface. Thus, even when each subdo-
main is an identical size, the higher the number of neighbouring subdomains, the
larger the size of the subproblem and vice versa. For the RCB partition of the do-
main = (0,2) x (0,1) x (0,1) shown in Figure 5.3, each subdomain has the same
number of neighbouring subdomains when €2 is partitioned into 2, 4 or 8 subdomains
(see Figure 3.9). However, the partition into 16 subdomains creates two types of
subdomain: with either seven or eleven neighbouring subdomains. This is a source
of slight load imbalance.

For the anisotropic partition the situation is slightly different. Each subdomain
has the same number of neighbours only when the domain €2 is partitioned into 2 or
4 subdomains. The partition into 8 subdomains generates two types of subdomain:
with either three or five neighbours. Finally, there are three types of subdomain
generated when the) is partitioned into 16 subdomains: with either three, five or
eight neighbours (again, see Figure 3.9). Refinement in this latter case leads to a
significant load imbalance. For example, four levels of refinement of an initial grid
with 768 elements leads to subproblems with between 300400 and 429816 elements
in this case. (In contrast, when the RCB partition into 16 subdomains is used, the
same refinement yields subproblems with between 276216 and 307406 elements. This
difference in size is due to the subdomain boundary being longer for the anisotropic
partition than the RCB partition.) Perhaps the best way to overcome this difficulty
in practice would be to employ less processors than subdomains and solve more than
one subproblem on each processor.

The situation of local non—uniform refinement is somewhat more complex in the
sense that it is almost totally problem dependent. Recall that for Test Problem 3,
the refinement of a thin layer (of width &~ 0.02) near the boundary of the domain

Q is sufficient to resolve the solution to a reasonable accuracy. Hence, an optimal

159

Chapter 5 5.1. Assessment of Parallel Performance

partition for this problem will assign to each subdomain an approximately equal
share of the domain boundary. However, in the case of Test Problem 7, mesh
refinement near the boundary = = 2.0 only is sufficient to resolve the boundary
layer. Therefore, the RCB partition of the coarse mesh would distribute the workload
highly unevenly since only the subdomains containing the part of domain boundary
at * = 2.0 would be refined. This is not the case for the anisotropic partition
however which leads to a reasonably good load—balance in this particular situation.

When there is an imbalance in the workload of the processors some subproblem
solves will be completed earlier than the others. When this occurs prior to a syn-
chronization point these processors will have to wait for subproblem solves to be
completed on all of the other processors. The issue of waiting, often referred to as

idle time, is addressed briefly in the following section.

5.1.4 Parallel Overhead

Parallel overhead may be defined as the total time taken by all activities which
are not required when the same problem is solved sequentially. This includes extra
computation, inter—processor communication and waiting time. There are numer-
ous opportunities for a parallel program to do extra computation. Some of the
most obvious are performing calculations not required by the best sequential pro-
gram and replicated calculations on more than one processor. Another example of
parallel overhead comes in the call to reduction operations (e.g. MPI_Reduce or
MPI_Allreduce), where the bulk of the time for such functions is taken up with
communication. The need for inter—processor communication and its effects on par-
allel performance have been discussed in §5.1.2. Here we describe the time that some
processors may spend waiting or idle. It should be noted that our implementation is
such that waiting or idle time is minimized by overlapping the communication with
useful computations whenever possible, as will be described shortly.

Recall from §5.1.3 that some processors are typically allocated a greater workload
than others. Hence, in the preconditioning step, some processors complete the

solution of their subdomain problem earlier than others. In the preconditioned

160

Chapter 5 5.2. Sample Execution

GMRES algorithm this preconditioning step is soon followed by the Gram—Schmidt
orthogonalization step, which requires parallel inner products to be computed. At
this point those processors completing their subdomain solve first must wait for the
rest before they can continue.

A second source of idle time may be found in the coarsening procedure. Let us
consider the coarsening that is being performed on processor z. Note that the number
of coordinate triples from subdomain €2; on processor ¢ that match coordinate triples
from €); on processor j (j # i) is greatest when j is neighbour of ¢ due to the
single layer of refinement around subdomain 2; on processor j. Therefore, the
computational cost of the coarsening procedure on processor ¢ depends upon the
number of neighbouring subdomains that subdomain ; has. When € is partitioned
into 16 subdomains (as well as into 8 subdomains for the anisotropic partition), the
number of neighbours per subdomain varies (see above) and therefore so does the
total cost of the coarsening phase.

We note that processor ¢ performs p — 1 coarsening operations, one for each
other processor j # ¢ and then communicates the restricted residual to the same
processor j #¢. Similarly, each processor receives p— 1 restricted residuals, one from
every other processor. This communication (of restricted residuals) and computation
(coarsening) are overlapped to minimize the parallel overhead. In the setup phase,
communication (of selected data) and computation (data collection and matching

of fine and coarse meshes) are also overlapped.

5.2 Sample Execution

In this section we assess the parallel performance of our generalized nonsymmetric
preconditioning algorithm described in Chapter 4 by considering a specific imple-
mentation of the preconditioned GMRES algorithm using ANSI C and the MPI
communication library [125, 126]. We consider a selection of representative test
problems (previously considered in Chapters 3 and 4). Global uniform refinement

is used for the first three of these test problems and local non—uniform refinement

161

Chapter 5 5.2. Sample Execution

for the last one. The calculations presented in Tables 5.1 to 5.7 are performed on
a SG Origin 2000 computer which has a non—uniform memory access (NUMA) ar-
chitecture. The non—uniform nature of the memory access means that timings of a
given calculation may vary significantly between runs depending upon how memory
has been allocated, hence, even for dedicated runs, timings of the same run may
vary by a few percent according to allocation of the memory. For this reason, all
timings quoted in the following tables represent the best time that is achieved over
numerous repetitions of the same computation.

In this section we have chosen four representative test problems amongst those
previously considered in Chapters 3 and 4. These consist of an isotropic problem
(Test Problem 1), a nonsymmetric problem (Test Problem 4) and a convection—
dominated problem (Test Problem 6). These test problems are solved using a fine
conforming mesh of 3145728 tetrahedral elements obtained by global uniform re-
finement of the subdomains from a base level coarse mesh consisting of just 768
tetrahedral elements. The last problem considered is again convection—-dominated
(Test Problem T7) but is solved using a fine mesh of 153088 tetrahedral elements ob-
tained through local non—uniform refinement. Again a base level coarse mesh of just
768 tetrahedral elements is used. For each of these test problems either the RCB
partition or the anisotropic is used, with the exception of Test Problem 6 which is
solved for both partitions. The choice of partitioning strategy is somewhat problem
dependent and is briefly described when each problem is discussed in turn.

For each of the test problems considered here the figures quoted are referred to as
Parallel Time and Sequential Time, and corresponding Speedups are provided. The
Parallel Time consists of the time taken by the parallel preconditioned implemen-
tation of the GMRES solver: this includes the time required to refine the base level
coarse mesh to the desired level of refinement (level four for the problems solved
using global uniform or local non—uniform refinement) and to assemble the sparse
matrices for the local and global systems of linear equations plus the time taken
by both the setup phase (one time tasks only) and all operations in the iteration
phase of the preconditioned GMRES algorithm. The Speedup is defined as the time

162

Chapter 5 5.2. Sample Execution

required to solve the problem using the best available (to us) sequential algorithm
(and implementation) on a single processor divided by the time required to solve the
problem using the parallel algorithm on p processors. The Sequential Time consists
of the same ingredients which make up the Parallel Time but with the difference
that this time is for the sequential implementation of the same preconditioner for
p subdomains. The ratio of this Sequential Time to the Parallel Time is used to
demonstrate the level of parallelism for the p subdomain implementation. This is
referred as the Parallel Speedup in our tables. Note that one can assess the quality
of the preconditioner for p subdomains by comparing the sequential time with that
obtained for other choices of p and with the best sequential time.

Before presenting any of these results, we highlight a number of important is-
sues relating to the solution of all of the problems considered in this section. These
include the accuracy to which the subdomain problems at the preconditioning step
are solved on each processor at each iteration and the drop tolerance and the level
of fill-in that should be used in the sequential /LU preconditioner [151] that is used
for these subproblems. The first of these issues that we address is the accuracy to
which it is necessary to solve subproblems at the preconditioning step. If these sub-
problems are solved very accurately then unnecessary time is wasted since they are
only an intermediate step in the overall solution process. On the other hand, highly
inaccurate solutions lead to a reduction in the quality of the preconditioner and an
increased number of GMRES iterations. As mentioned in the previous chapters, a
reduction in the two norm of the residual by a factor of 10? (and some times even
10') appears to give near—optimal solution times. In the timings presented in this
section, the quoted figures are always obtained for the best of these two parameter
choices. This brings us on to the second of the issues noted above. It is well un-
derstood that the best sequential solution algorithm may vary from one problem to
another within the wide class of elliptic PDEs considered in this thesis. The best
general sequential linear system solver available to us is GMRES with an /LU pre-
conditioner (as implemented in [151]), however this contains a number of adjustable

parameters such as the amount of fill-in and the drop tolerance. Our choice of these

163

Chapter 5 5.2. Sample Execution
Processors p=1 p=2 p=4 p=8 p=16
Parallel Time 751.80 | 567.79 | 489.87 | 331.99 | 131.70
Speedup - 1.3 1.5 2.3 5.7
Sequential Time - 1123.06 | 1908.46 | 2506.54 | 1814.79
Parallel Speedup - 2.0 3.9 7.6 13.8

Table 5.1: The performance of the parallel solver for the Galerkin FE discretization
when solving Test Problem 1 using the RCB partition. The times are quoted in

seconds and the speedups are relative to the best sequential solution time.

parameters, determined empirically, may well also contribute to some variation in
timings.

We conclude this preamble by noting that there are a number of additional
factors that limit the efficiency of the current parallel implementation. In all cases
the sequential execution time of the preconditioned solver (which is different for each
choice of p) is greater than that of the best available sequential solver. Hence even
a perfect parallel implementation would not deliver 100% efficiency. Furthermore,
the deficiencies in our simple mesh partitioning and coarse grid solution strategies,
outlined in §5.1, certainly contribute to an increased parallel overhead.

We now discuss in turn each of the test problems considered and the correspond-
ing computational results. The figures in Table 5.1 correspond to Test Problem 1
which is solved using the RCB partition of the domain = (0,2) x (0,1) x (0,1).
The solution of this problem is smooth and isotropic therefore the RCB partition is
preferred over the anisotropic partition. This choice is based not only on the number
of iterations required to converge when using the two partitions (see Tables 4.1 and
4.2) but also because both the surface—area to volume ratio and total surface area
of the subdomains is smaller for this partition. Hence the communication volume
is smaller (see §5.1.2) and the overlapping subdomains have a better load balance
(see §5.1.3). It is interesting to note from Table 5.1 that there is a large positive
jump in performance between the 8 and 16 processors cases. This is because, as

shown by the Sequential Time, 16 subdomains provide a more efficient algorithm

164

Chapter 5 5.2. Sample Execution
Processors p=1 p=2 p=4 p=8 p=16
Parallel Time 804.16 | 443.39 | 321.44 | 218.07 | 105.90
Speedup - 1.8 2.5 3.7 7.6
Sequential Time - 882.39 | 1231.92 | 1628.51 | 1459.41
Parallel Speedup - 2.0 3.8 7.5 13.8

Table 5.2: The performance of the parallel solver for the Galerkin FE discretization
when solving Test Problem 4 using the RCB partition. The times are quoted in

seconds and the speedups are relative to the best sequential solution time.

than 8 subdomains and so could lead to faster solutions on 8 processors if we were
to allow more than one subdomain per processor. This is not surprising for the RCB
partition given the subdomain shapes (see Figure 3.9).

A similar behaviour pattern can be observed for the results in Table 5.2 for Test
Problem 4: a nonsymmetric problem where odd order derivatives are present. Recall
that, for this problem, the number of iterations required to converge for the RCB
partition (see Table 4.7) is always less than the number of iterations required for the
anisotropic partition (see Table 4.8). Hence the isotropic nature of the solution of
this problem appears to imply that the parallel performance using the RCB partition
will always be the better of the two strategies considered here. The RCB partitions
are therefore used for the results given in Table 5.2. We also observe that the
performance for this particular problem is significantly better than that given in
Table 5.1. Since the parallel speedups are about the same in this example however,
we conclude that the reason for the improved performance in this case is solely due
to the improvement in the Sequential Time of the p subdomain solver. As before,
a large jump in performance between 8 and 16 processors is also observed for this
problem, providing further evidence to suggest that the use of more subdomains
than processors could lead to a better parallel performance.

Now we consider the more anisotropic situation given by Test Problem 6, where

convection dominates along the x—axis. We consider this problem for two values

of the diffusion coefficient &, 1.0 x 1072 and 1.0 x 1072 for both the RCB and the

165

Chapter 5 5.2. Sample Execution

Processors p=1 p=2 p=4 p=8 p=16
Parallel Time 770.65 | 497.39 | 341.78 | 227.98 | 113.81
Speedup - 1.5 2.3 3.4 6.8
Sequential Time - 984.72 | 1326.91 | 1725.23 | 1597.15
Parallel Speedup - 2.0 3.9 7.6 14.0

Table 5.3: The performance of the parallel solver for the stabilized FE discretization
when solving Test Problem 6 using the RCB partition and € = 1.0 x 1072, The times

are quoted in seconds and the speedups are relative to the best sequential solution

time.
Processors p=1 p=2 p=4 p=8 p=16
Parallel Time 770.65 | 595.91 | 412.71 | 316.99 | 195.35
Speedup - 1.3 1.9 2.4 3.9
Sequential Time - 1178.91 | 1615.54 | 2231.65 | 2210.97
Parallel Speedup - 2.0 3.9 7.0 11.3

Table 5.4: The performance of the parallel solver for the stabilized FE discretization
when solving Test Problem 6 using the anisotropic partition and ¢ = 1.0 x 1072,
The times are quoted in seconds and the speedups are relative to the best sequential

solution time.

anisotropic partitioning strategies. We recall from Chapter 4 that the number of
iterations required to converge is always greater for the RCB partition than for
the anisotropic partition (for ¢ = 1.0 x 107% see Tables 4.18 and 4.21 whereas for
e = 1.0 x 1072 see Tables 4.19 and 4.22). This suggests that the anisotropic partition
may be better for convection-dominated problems provided the subdomains are
aligned appropriately. That is, if the dominating convection term is aligned with
the x—axis, as considered here, the subdomains should also be aligned along the x—
axis as shown in Figure 3.9 (RHS). However, if we look at the results in Tables 5.3
and 5.4 corresponding to Test Problem 6 when using ¢ = 1.0 x 107% for the RCB

and the anisotropic partitions respectively, the actual timings contradict the above

166

Chapter 5 5.2. Sample Execution

Processors p=1 p=2 p=4 p=8 p=16
Parallel Time 668.12 | 431.68 | 271.66 | 175.48 98.93
Speedup - 1.5 2.5 3.8 6.8
Sequential Time - 854.68 | 1062.95 | 1342.11 | 1398.79
Parallel Speedup - 2.0 3.9 7.6 14.1

Table 5.5: The performance of the parallel solver for the stabilized FE discretization
when solving Test Problem 6 using the RCB partition and € = 1.0 x 1073, The times

are quoted in seconds and the speedups are relative to the best sequential solution

time.
Processors p=1 p=2 p=4 p=8 p=16
Parallel Time 668.12 | 481.61 | 297.77 | 191.86 | 134.22
Speedup - 1.4 2.2 3.5 5.0
Sequential Time - 952.01 | 1163.88 | 1377.96 | 1600.40
Parallel Speedup - 2.0 3.9 7.2 11.9

Table 5.6: The performance of the parallel solver for the stabilized FE discretization
when solving Test Problem 6 using the anisotropic partition and ¢ = 1.0 x 1072,
The times are quoted in seconds and the speedups are relative to the best sequential

solution time.

observation in support of the anisotropic partition.

Thus our preconditioning algorithm for the convection—dominated problems may
be evaluated in two different ways: if we are concerned about the number of iter-
ations required by the preconditioning algorithm then the anisotropic partition is
better whereas, in terms of the practical performance of the algorithm, the RCB
partition is superior. This leads us to the important observation that for the RCB
partition the number of iterations is larger but the cost per iteration is smaller than
for the anisotropic partition. In this case the trade—off between these two factors
favours the RCB partition. There are at least two reasons for this higher cost per

iteration for the anisotropic partition: the surface—area of the subdomains is larger

167

Chapter 5 5.2. Sample Execution

(see Figure 3.9) and the imbalance in the workload distribution across the proces-
sors is greater (since the size of overlap regions varies more, see §5.1.3). The first
of these factors causes both a higher volume of communication amongst the subdo-
mains and larger individual subproblems to be solved on each processor since the
overlap region is larger. The second factor causes a significant time to be spent
waiting at synchronization points by some of the processors: those with the least
computational load. For these reasons we see a drop in both the speedup and the
parallel speedup when the anisotropic partition is used in these examples.

Although the specific solution times shown in Tables 5.5 and 5.6 for Test Prob-
lem 6 when ¢ = 1.0 x 107 are lower than the corresponding times when ¢ =
1.0 x 1072, all of the above observations are valid in this case too. The improvement
in the individual timings may be because the [LU preconditioner used for the prob-
lems on each processor performs better for more convection-dominated problems (as
illustrated by the times for p = 1). Recall that in Chapter 4 such an improvement,
when convection is more dominant, has already been observed.

Next we consider Test Problem 7, the last in this series of performance eval-
uations of our generalized preconditioning algorithm. This is again a convection—
dominated problem but this time, instead of global uniform refinement, local non—
uniform refinement is used in one particular part of the domain only. Consequently,
both the total communication volume and the computational cost per iteration are
decreased. This is evident from the timings presented in Table 5.7.

The solution of this problem is smooth everywhere except in a thin layer of size
O(e) near the boundary & = 2.0, where it varies very rapidly. Thus refinement of
the region near x = 2.0 is sufficient to accurately resolve the solution everywhere,
including the boundary layer. This situation is totally unsuitable for the RCB par-
tition of the coarse grid because of the highly uneven workload distribution that
results from local non—uniform refinement. Hence the anisotropic partition is used
for these calculations since it provides a relatively well-balanced workload distribu-
tion. From these results we see that the figures quoted for the the Parallel Time and

the Sequential Time are very small. This is because the use of local mesh refinement

168

Chapter 5 5.2. Sample Execution

Processors p=1 | p=2 | p=4 | p=8 | p=16
Parallel Time 29.19 | 14.61 | 8.73 | 6.30 | 4.80
Speedup - 2.0 3.3 4.6 6.1
Sequential Time - 28.90 | 33.63 | 43.72 | 59.84
Parallel Speedup - 2.0 3.9 6.9 12.5

Table 5.7: The performance of the parallel solver for the stabilized FE discretization
when solving Test Problem 7 using the anisotropic partition and ¢ = 1.0 x 1072,
The times are quoted in seconds and the speedups are relative to the best sequential

solution time.

causes the size of the problem being solved to become relatively small.

We conclude this section with a few remarks concerning the issues which affect
the performance of our weakly overlapping two level additive Schwarz DD precon-
ditioning algorithm. Amongst these, the most important is the Sequential Time
required to solve the problems using the p subdomain algorithm. We observe from
the Tables 5.1-5.7 that these can vary significantly but that the Parallel Speedup is
generally very good. This indicates that the parallel implementation of our weakly
overlapping two level additive Schwarz DD preconditioning algorithm is good. It
appears that the reasons for the undesirable variation in the Sequential Time as p
varies are complex however. We make the following observations in this regard: the
number of subproblems increase as the value of p increases but the size of each sub-
problem decreases. This is further complicated by the fact that the overall iteration
count increases very slowly (at least for the values of p considered here). Hence the
cost per iteration may decrease a little as p increases but more iterations may be
needed to converge.

After the variation in the Sequential Time the next most important factor to
influence the parallel efficiency is the occurrence of an uneven work load across the
processors in certain examples. Although there is always some variation in the size
of subdomain problems, we look at this issue here in the context of two partitioning

strategies, the RCB partition and the anisotropic partition (see §3.8 for details).

169

Chapter 5 5.3. Discussion

In the first situation the resulting subproblems are reasonably well balanced for
p € {2,4,8} whereas this is true only for p € {2,4} for the anisotropic partition.
Consider a base level coarse mesh of just 768 tetrahedral elements partitioned for 16
subdomains and refining each subdomain up to level four, the resulting meshes for
the individual subdomains varies between 276216 and 307406 elements in case of the
RCB partition whereas this variation is between 300400 and 429816 elements for the
anisotropic partition. If the base level coarse mesh is partitioned for 8 subdomains
than the final meshes consist of between 522530 and 526432 elements for the RCB
partition and between 544560 and 653712 elements for the anisotropic partition.
These imbalances are clearly reflected in the Parallel Speedup rows of all of the
Tables in this section. When the load balance is good, the Parallel Speedups are
quite close to being optimal, thus illustrating that the other parallel overheads and

communication costs are quite small.

5.3 Discussion

Parallel performance of the generalized nonsymmetric preconditioner is evaluated
for a variety of test problems using the RCB and the anisotropic partitioning strate-
gies as appropriate. Experiments are performed for global uniform refinement and
local non—uniform refinement. Some of the issues which have an impact on the
performance are discussed in §5.1. These include decomposition of the domain into
subdomains, where aspect ratios of the resulting subdomains influence the perfor-
mance, discussed in §5.1.1, and inter—processor communication, discussed in §5.1.2.
Here the size of interface boundary of the subdomains and the cost of all-to-all com-
munications are amongst the primary concerns. In §5.1.3, the issue of load balance
is also considered (this is a source of idleness for some processors when others are
still doing useful computations) and other causes of parallel overhead in the context
of our implementation are discussed in §5.1.4.

Sample performance results are presented in §5.2 for a selection of the test prob-

lems considered in this thesis. These results are encouraging but also highlight

170

Chapter 5 5.3. Discussion

a number of weaknesses in our parallel implementation that should be addressed.
These include the need for a more robust partitioning strategy that is able to provide
a good load balance when taking into account the elements in the overlap region.
This strategy should also be able to balance the, possibly conflicting, requirements
of yielding subdomains with low surface—area to volume ratios but that are also of
an appropriate shape and alignment for anisotropic problems. Further issues raised
by the results in §5.2 include the desirability of allowing more than one subdomain
per processor and also the possible drawback of including the global coarse grid
solve on each processor. Whilst this simplified the coding somewhat, it introduces
the need for an all-to—all communication at each iteration rather than an all-to—one
communication followed by a short broadcast.

The parallel preconditioning algorithms proposed in this thesis are designed to
make maximum use of standard sequential algorithms: mesh adaption algorithms
based upon local h-refinement [164] and iterative solution algorithms [151] for the
solution of local subproblems. The use of these algorithms is intended with the
requirement for little or no modifications. The behaviour of these sequential compo-
nent algorithms clearly affects the overall parallel performance. Recall from §1.3.3
that green refinement of an element by introducing a new node at the centre of
the element (when all six edges of the element are not marked for refinement) has
a serious knock—on effect on the performance of the refinement algorithm: we also
observe in this chapter its negative effect on the preconditioning algorithm. This is
in addition to the extra coding effort that is needed to treat these green nodes (see
§3.5.2.2). This adverse effect of green refinement could have been avoided if it were
not for the introduction of a new node at the centre of the tetrahedral elements. Any
continuation of this work should therefore address this issue or just abandon green
refinement altogether (and treat hanging nodes as having their values prescribed
by the values at the nodes at the ends of the edge). Similarly, the best sequential
solver available to us for this work, used for the solution of subdomain problems
on each processor, is an [LU preconditioned GMRES implementation [151]. It is

certainly possible that the parallel performance could be significantly improved if

171

Chapter 5 5.3. Discussion

the sequential algorithm for solving the subdomain problems when p > 1 were to be

improved (e.g. using multigrid [34]).

172

Chapter 6

Conclusion and Future Directions

This chapter concludes the research presented in this thesis. A brief summary of the
work undertaken is given in §6.1 whereas in §6.2 suggestions to improve the parallel

efficiency and a number of possible extensions of the work are outlined.

6.1 Summary

The basic components involved in this research work are introduced in Chapter 1
and then in Chapter 2 some of the well known domain decomposition solution tech-
niques and related issues are discussed. The contribution of this thesis starts with a
generalization, from two dimensions to three dimensions, of the symmetric weakly
overlapping two level additive Schwarz preconditioner [11], undertaken in Chapter 3.
Despite certain inconsistencies in the available tools for this generalized implemen-
tation in three dimensions with those used for two dimensions in [11], we have
successfully demonstrated that the optimal convergence theory works in practice.
The next step undertaken was the extension of this symmetric weakly overlapping
preconditioner to a more general nonsymmetric case, undertaken in Chapter 4. This
is achieved by replacing the full interpolation operation after each solve of the sub-
domain problems by a simple scaling of the subdomain interface boundary terms.
At this time there is no theoretical evidence available to us for this generalization

to the nonsymmetric preconditioning algorithm, which is simply based on empirical

173

Chapter 6 6.2. Future Directions

observations. From the results so obtained it is observed that this generalized algo-
rithm outperforms the original symmetric algorithm in every aspect. Hence, when
applied to an SPD problem both the cost per iteration and the number of iterations
are reduced.

In addition to the above comparison, the generalized algorithm is also applied
to nonsymmetric and convection—dominated problems, with excellent results. Due
to non—physical oscillations in the solution of convection-dominated problems when
discretized by the Galerkin method, a more stable discretization technique, the
streamline—diffusion method, is also implemented. Again, numerical evidence con-
firms the success of our generalized nonsymmetric weakly overlapping algorithm for
this discretization technique and this class of problem. Furthermore, both of these
three—dimensional algorithms perform well for local non—uniform as well as global
uniform refinement of the subdomain meshes. All numerical results presented in
this thesis, for a wide variety of test problems, are obtained by the parallel imple-
mentation of both algorithms. Parallel performance is discussed in Chapter 5 in
the case of the generalized nonsymmetric algorithm only due to the demonstrated
superiority of this algorithm over the original symmetric version. Some issues con-
cerning the parallel performance are described and results are presented to show the
speedups for a selection of typical test problems. An analysis of possible bottlenecks

and parallel overheads is also provided.

6.2 Future Directions

There are numerous possible ways in which the research described in this thesis could
be improved and extended. A few of these, those of most interest to the author, are
suggested here.

One important possibility for improving the parallel efficiency of the described
two level algorithms could be some modification of the coarse grid solve. In our ex-
isting implementation, each processor ¢ maintains a coarse mesh which covers whole

of the domain € but refines this only in the subdomain €; and its neighbourhood.

174

Chapter 6 6.2. Future Directions

In effect this means that each processor undertakes its own coarse grid solve at each
iteration. A more conventional approach would be to only store on processor i the
mesh on €; and its neighbourhood, whilst maintaining a single copy of the coarse
grid on just one processor. Instead of requiring an all-to—all communication at each
iteration in order to restrict the residual to the coarse grid on each processor, this
would require only an all-to-one communication at each iteration to restrict the
residual to the single coarse grid. Neighbour—to—neighbour communications would
still be required to deal with the overlap regions but the total amount of commu-
nication required at each iteration would decrease, together with a corresponding
decrease in the computations and communication required in the setup phase. A
similar improvement in the interpolation procedure would also be obtained for the
symmetric preconditioning algorithm. The only disadvantage of this approach would
be that a separate coarse grid solve will be required on just one processor and that
it will be much harder to use this solver within the framework of [8], which was one
of the original motivations for this work.

Since load imbalance is one of the major factors which effects the performance

of a parallel program, we suggest the following two areas for further investigation.

1. Using fewer processors than subdomains, so that some or all of the processors
solve more than one subproblem. It is possible that one processor may solve
the largest subproblem and the smallest subproblem and other processors solve

two subproblems of medium size for example.

2. Obtaining a more general partition of the mesh, so that each subdomain is of
almost the same size and shape, with close to the minimum edge—cut. This

might be achieved by using one of the software packages described in §2.6.5.

In other possible future work, our weakly overlapping approach could also be
extended for the solution of nonlinear elliptic partial differential equations. When
such an equation is discretized by the finite element method it results in a nonlinear

algebraic system of the form

F(z)=0, where F:R"—>TR", (6.1)

175

Chapter 6 6.2. Future Directions

and F' is assumed to be continuously differentiable. Newton’s method for solving
(6.1) requires, at the kth step, the solution of the linear Newton equation

E(Ik)Sk = —F(:L’k), (62)

where xj is the current approximate solution and % is the Jacobian of F. A Newton
iterative method, or quasi-Newton method, requires an iterative solver to determine
an approximate solution of (6.2) at each step. This approximate solution, at each
Newton iteration, may be determined by using a DD preconditioner based upon
our weakly overlapping solution algorithm. In this regard we would propose making
use of a nonlinear Krylov solver such as NITSOL [138], which is sufficiently flexible
in its data structure to allow users to implement their preferred preconditioner for
the solution of the linear Newton equations without any serious difficulty. The user
is also allowed to specify an inner product and associated norm which allows easy
adaptation to a parallel environment. Qur preconditioned solution method should
fit precisely within this framework.

A further extension could also be the generalization of the presented algorithms
to the solution of systems of partial differential equations. In principal, we do not
see any fundamental difficulty in undertaking this generalization: it should be just

a matter of time and coding effort!

176

Bibliography

[1] Ainsworth, M. and Oden, J. T. A unified approach to a posteriori error es-

timation using element residual methods. Numerische Mathematik, 65:23-50,

1993.

[2] Alaghband, G. Parallel sparse matrix solution and performance. Parallel

Computing, 21(9):1407-1430, 1990.

[3] Ashby, S. F. Minimax polynomial preconditioning for hermitian linear systems.

SIAM J. Matriz Analysis and Applications, 12:766—-789, 1991.

[4] Ashby, S. F., Manteuffel, T. A., and Taylor, P. E. A taxonomy for conjugate
gradient methods. STAM J. Numer. Anal., 27:1542-1568, 1989.

[5] Axelsson, O. [terative Solution Methods. Cambridge University Press, Cam-
bridge, 1994.

[6] Babuska, I., Craig, A., Mandel, J., and Pitkdranta, J. Efficient preconditioning
for the p-version finite element method in two dimensions. SIAM J. Numer.

Anal., 28(3):624-661, 1991,

[7] Babuska, I. and Suri, M. The p— and h-p versions of finite element methods,
basic principles and properties. SIAM Review, 36(4):578-632, 1994.

[8] Bank, R. E. and Holst, M. J. A new paradigm for parallel adaptive meshing
algorithms. SIAM J. on Scientific Computing, 22(4):1411-1443, 2000.

177

Bibliography

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Bank, R. E. and Jimack, P. K. A new parallel domain decomposition method
for the adaptive finite element solution of elliptic partial differential equations.

Concurrency and Computation: Practice and Fzxperience, 13:327-350, 2001.

Bank, R. E., Jimack, P. K., Nadeem, S. A., and Nepomnyaschikh, S. V. A
weakly overlapping domain decomposition preconditioner for the finite element
solution of elliptic partial differential equations. SIAM Journal of Scientific
Computing, 2001. To appear.

Bank, R. E., Jimack, P. K., and Nepomnyaschikh, S. V. A weakly overlapping
domain decomposition for the adaptive finite element solution of elliptic partial
differential equations. Research Report 1999.17, School of Computer Studies,
The University of Leeds, Leeds, LS2 9JT, September 1999.

Barnard, S. T. and Clay, R. L. A portable MPI implementation of the SPAI
preconditioner in ISIS4++. In Heath, M. et al., editor, Preceedings of the
FEight STAM Conference on Parallel Processing for Scientific Computing. STAM
Press, 1997.

Barret, R., Berry, M., Chan, T. F., Demmel, J., Donato, J., Dongarra, J.,
Eijkhout, V., Pozo, R., Romine, C., and Van der Vorst, H. Templates for
the Solution of Linear Systems: Building Blocks for Iterative Methods. STAM,
Philadelphia, PA, 1994.

Ben-israel, A. and Greville, T. Generalized Inverses: Theory and Applications.
John Wiley, 1973.

Benzi, M. and Tuma, M. Numerical experiments with two sparse approximate

inverse preconditioners. BIT, 38:234-241, 1998.

Benzi, M. and Tuma, M. A sparse approximate inverse preconditioner for
nonsymmetric linear systems. SIAM J. Scientific Computing, 19(3):968-994,
1998.

178

Bibliography

[17]

[18]

[19]

[20]

[21]

[22]

23]

[24]

[25]

Berzins, M. A solution—-based triangular and tetrahedral mesh quality indica-

tor. SIAM. J. Sci. Comput., 19:2051-2060, 1998.

Bhardwaj, M., Day, D., Farhat, C., Lesoinne, M., Pierson, K., and Rixen, D.
Application of the FETI method to ASCI problems — scalability results on 1000
processors and discussion of highly heterogeneous problems. Int. J. Numer.

Meth. Engrg., 47:513-535, 2000.

Biswas, R. and Strawn, R. C. A new procedure for dynamic adaption of three

dimensional unstructured grids. Appl. Numer. Math., 13:437-452, 1994.

Bjorstad, P. E. A large scale, sparse, secondary storage, direct linear equation
solver for structural analysis and its implementation on vector and parallel

architectures. J. Parallel Comput., 5, 1987.

Bjorstad, P. E. and Widlund, O. B. TIterative methods for the solution of
elliptic problems on regions partitioned into substructures. SIAM J. Numer.

Anal., 26(6):1093-1120, 1986.

Bjorstad, P. E. and Widlund, O. B. To overlap or not to overlap: A note
on a domain decomposition method for elliptic problems. SIAM J. Sei. Stat.
Comput., 10(5), September 1989.

Blazy, S., Brochers, W., and Dralle, U. Parallelization methods for a charecter-
istic’s pressure correction scheme. In Hirschel, E. H., editor, Flow Simulation
With High Performance Computers II, Notes on Numerical Fluid Mechanics,
1995.

Bornemann, F. A., Erdmann, B., and Kornhuber, R. A posteriori error es-

timates for elliptic problems in two and three space dimensions. SIAM J.

Numer. Anal., 33:1188-1204, 1996.

Bornemann, F. A. and Yserentant, H. A basic norm equivalence for the theory

of multilevel methods. Numerische Mathematik, 64:455-476, 1993.

179

Bibliography

[26]

[27]

31]

32]

33]

[34]

Bramble, J. H., Pasciak, J. E., and Schatz, A. H. The construction of precondi-
tioners for elliptic problems by substructuring, I. Mathematics of Computation,

47:103-134, 1986.

Bramble, J. H., Pasciak, J. E., and Schatz, A. H. An iterative method for
elliptic problems on regions partitioned into substructures. Math. Comp.,

46:361-369, 1986.

Bramble, J. H., Pasciak, J. E., and Schatz, A. H. The construction of precon-
ditioners for elliptic problems by substructuring, II. Mathematics of Compu-
tation, 49:1-16, 1987.

Bramble, J. H., Pasciak, J. E., and Schatz, A. H. The construction of precon-
ditioners for elliptic problems by substructuring, III. Mathematics of Compu-
tation, 51:415-430, 1988.

Bramble, J. H., Pasciak, J. E., and Schatz, A. H. The construction of precon-
ditioners for elliptic problems by substructuring, IV. Mathematics of Compu-
tation, 53:1-24, 1989.

Bramble, J. H., Pasciak, J. E., Wang, J., and Xu, J. Convergence estimates for
product iterative methods with applications to domain decomposition. Math-

ematics of Computation, 57(195):1-21, 1991.

Bramble, J. H., Pasciak, J. E., and Xu, J. Parallel multilevel preconditioners.
Mathematics of Computation, 55:1-21, 1990.

Brezzi, F., Franca, L., Hughes, T. J. R., and Russo, A. Stabilisation techniques
and subgrid scales capturing. In Duff, [. 5. and Watson, G. A., editors, State of
the Art in Numerical Analysis, pages 391-406. Oxford University Press, 1997.

Briggs, W. L., Henson, V, E., and McCormick, S. F. A Multigrid Tutorial.
STAM Books, Philadelphia, 2000. Second Edition.

180

Bibliography

[35] Cai, X.-C. An optimal two-level overlapping domain decomposition method

[36]

[40]

[41]

[42]

[43]

for elliptic problems in two and three dimensions. SIAM J. Seci. Comp., 14:239—
247, 1993.

Cai, X.-C. A family of overlapping Schwarz algorithms for nonsymmetric
and indefinite elliptic problems. In Keyes, D., Saad, Y., and Truhlar, D.,
editors, Domain-Based Parallelism and Problem Decomposition Methods in

Computational Science and Engineering. STAM, 1994.

Cai, X.—C., Dryja, M., and Sarkis, M. RASHO: A restricted additive schwarz
preconditioner with harmonic overlap. In Proceedings of the 13th International

Conference on Domain Decomposition Methods, France, 9-12 October 2000.

Cai, X.—C. and Sarkis, M. A restricted additive Schwarz preconditioner for
general sparse linear systems. SIAM J. on Sci. Comp., 21:792-797, 1999.

Cai, X.—C. and Widlund, O. B. Multiplicative Schwarz algorithms for some
nonsymmetric and indifinite problems. STAM J. Numer. Anal., 30(4):936-952,
1993.

Cao, W., Huang, W., and Russell, R. D. An r-adaptive finite element method
based upon moving mesh PDEs. J. Comp. Phys., 149:221-244, 1999.

Chan, T. F. and Goovaerts, D. On the relationship between overlapping and
nonoverlapping domain decomposition methods. SIAM Journal on Matriz

Analysis and Applications, 13:663-670, 1992.

Chan, T. F. and Mathew, T. Domain decomposition algorithms. Acta Nu-
merica, pages 61-143, 1994.

Chan, T. F. and Resasco, D. C. Analysis of domain decomposition precondi-
tioners on irregular regions. In Vichnevetsky, R. and Stepleman, R., editors,
Advances in Computer Methods for Partial differentials Equations, IMACS,
pages 317-322, 1997.

181

Bibliography

[44]

[52]

[53]

Chan, T. F. and Zou, J. Additive Schwarz domain decomposition methods for
elliptic problems on unstructured meshes. Numerical Algorithms, 8:329-346,
1994.

Chow, E. and Saad, Y. Approximate inverse preconditioners via sparse—sparse

iterations. SIAM J. Scientific Computing, 19:995-1023, 1998.

Ciarlet, P. G. The Finite Element Method for Elliptic Problems. North-Holland
Publishing Company, 1978.

Cosgrove, J. D. F., Diaz, J. C., and Griewank, A. Approximate inverse pre-
conditionings for sparse linear systems. Int. J. Computer Math., 44:91-110,
1992.

Cottle, R. W. Manifestations of the schur complement. Linear Algebra and
Its Applications, 8:189-211, 1974.

Davis, T. A. and Yew, P. C. A nondeterministic parallel algorithm for general
unsymmetric sparse LU factorization. SIAM J. Matriz Analysis and Applica-
tions, 11:383-402, 1990.

Demmel, J. Applications of parallel computers. Available over the World Wide
Web at http://www.cs.bekeley.edu/~demmel/cs267_Spr99, Spring 1999.

Diekmann, R., Schlimbach, F., and Walshaw, C. Quality balancing for paralle
adaptive FEM. In Ferreira, A. et al., editor, Irreqular’98: Solving Irregu-
larly Structured Problems in Parallel, volume 1457 of LNCS, pages 170-181.

Springer, 1998.

Diniz, P., Plimpton, S., Hendrickson, B., and Leland, R. Parallel algorithms
for dynamically partitioning unstructured grids. In Seventh SIAM Conference
on Parallel Processing for Scientific Computing, STAM Philadelphia, 1995.

Dongarra, J. J., Duff, I. S., Sorensen, D. C., and Van der Vorst, H. A. Solv-
ing Linear Systems on Vector and Distributed Memory Computers. STAM
publications, Philadelphia, PA, 1991.

182

Bibliography

[54]

[55]

[57]

[58]

[59]

[60]

[61]

Dryja, M. An additive Schwarz algorithm for two and three dimensional finite
element elliptic problems. In Chan, T. F. et al., editor, 2nd International
Symposium on Domain Decomposition Methods, STAM, Philadelphia, 1989.

Dryja, M., Smith, B. F., and Widlund, O. B. Schwarz analysis of iterative
substructuring algorithms for elliptic problems in three dimensions. STAM J.
Numer. Anal., 31(6):1662-1694, 1994.

Dryja, M. and Widlund, O. B. An additive variant of the Schwarz alternating
method for the case of many subregions. technical report 339, also ultracom-

puter note 131, Department of Computer Science, Courant Institute, 1987.

Dryja, M. and Widlund, O. B. Some domain decomposition algorithms for
elliptic problems. In Hayes, H. and Kincaid, D., editors, Iterative Methods for
Large Linear Systems, pages 273-291, San Diego, Calefornia, 1989. Academic

Press.

Dryja, M. and Widlund, O. B. Multilevel additive methods for elliptic finite
element problems. In Hackbusch, W., editor, Parallel Algorithms for Par-
tial Differential Equations, Proceedings of the Sizth GAMM-Seminar, Vieweg,
Braunschweig, Germany, 1990.

Dryja, M. and Widlund, O. B. Towards a unified theory of domain decom-
position algorithms for elliptic problems. In Chan, T. F., Glowinski, R.,
Périaux, J., and Widlund, O. B., editors, Third International Symposium
on Domain Decomposition Methods for Partial Differential Equations, STAM
Philadelphia, PA, 1990.

Duff, 1. S. Direct methods for solving sparse systems of linear equations. STAM
J. Seci. Statist. Comput., 5:605—-619, 1984.

Duft, I. S. MA32 — A package for solving sparse unsymmetric systems using
frontal methods. Report 10079, HMSO, AERE, Harwell, 19809.

183

Bibliography

[62] Duff, I. S., Erisman, A. M., and Reid, J. K. Direct Methods for Sparse Matrices.
Oxford University Press, London, 1986.

[63] Duff, I. S. and Reid, J. K. The multifrontal solution of unsymmetric sets of
linear systems. STAM J. Sei, Statist. Comput., 1984.

[64] Eijkhout, V. and Chan, T. F. Parpre a parallel preconditioners package, ref-
erence manual for version 2.0.17. Tech. rep, CAM report 97-24, UCLA, 1997.

[65] Elman, H. C. and Shih, Y. T. Modified streamline diffusion schemes
for convection—diffusion problems. Comput. Methods Appl. Mech. Engrg.,
174:137-151, 1999.

[66] Elman, H. C. and Streit, R. L. Polynomial iteration for nonsymmetric indefi-
nite linear systems. In Hennart, J. P., editor, Lecture Notes in Mathematics,

volume 1230. Springer—Verlag, Berlin, 1984.

[67] Faber, V. and Manteuffel, T. A. Necessary and sufficient conditions for the
existence of a conjugate gradient method. SIAM J. Numer. Anal., 21:315-339,
1984.

[68] Farhat, C. A simple and efficient automatic FEM domain decomposer. Com-
puters and Structures, 28(5):579-602, 1988.

[69] Farhat, C. Lagrange multiplier based divide and conquer finite element algo-
rithm. J. Comput. Sys. Engrg., 2:149-156, 1991.

[70] Farhat, C., Chen, P. S., Risler, F., and Roux, F-X. A unified framework for
accelerating the convergence of iterative substructuring methods with lagrange

multipliers. Int. J. Numer. Meth. Engrg., 42:257-288, 1998.

[71] Farhat, C. and Lesoinne, M. Automatic partitioning of unstructured meshes

for the parallel solution of problems in computational mechanics. Internet J.

Numer. Meth. Engrg., 36(5):745-764, 1993.

184

Bibliography

[72]

73]

[74]

[75]

[76]

[77]

(78]

Farhat, C., Lesoinne, M., LeTallec, P., Pierson, K., and Rixen, D. FETI-DP: A
dual-primal unified FETI method — part I: A faster alternative to the two-level
FETI method. International Journal for Numerical Methods in Engineering,
50(7):1523-1544, 2000.

Farhat, C., Lesoinne, M., and Pierson, K. A scalable dual-primal domain de-
composition method. Numerical Linear Algebra with Applications, 7(7-8):687—
714, 2000.

Farhat, C., Maman, N., and Brown, G. Mesh partitioning for implicit compu-
tations via domain decomposition. Int. J. Num. Meth. Engng., 38:989-1000,
1995.

Farhat, C. and Mandel, J. Scalable substructuring by lagrange multipliers in
theory and prectice. In Bjorstead, P., Espedal, M., and Keyes, D., editors,
DD9 Proceedings. John Wiley & Sons Ltd., 1994.

Farhat, C., Mandel, J., and Roux, F-X. Optimal convergence properties of the
FETT domain decomposition method. Comput. Methods Appl. Mech. Engrg.,
115:367-388, 1994.

Farhat, C. and Roux, F-X. A method of finite element tearing and inter-
connecting and its parallel solution algorithm. Int. J. Numer. Meth. Engrg.,
32:1205-1227, 1991.

Farhat, C. and Roux, F-X. An unconventional domain decomposition method
for an efficient parallel solution of large scale finite element system. SIAM J.

Sci. Stat. Comput., 13:379-396, 1992.

Farhat, C. and Roux, F-X. Implicit parallel processing in structural mechan-

ics. Comput. Mech. Advances, 2(1):1-124, 1994.

Fiduccia, C. M. and Mattheyses, R. M. A linear time heuristic for improving
network partitions. In Proceedings of the Nineteenth IEEE Design Automation
Conference, pages 175—-181. IEEE, 1982.

185

Bibliography

[81] Fischer, B., Ramage, A., Silvester, D. J., and Wathen, A. J. On parame-

[82]

[83]

[84]

[85]

[89]

[90]

[91]

ter choice and iterative convergence for stabilized discretization of advection—

diffusion problems. Comput. Methods Appl. Mesh. Engrg., 179:179-195, 1999.

Flynn, M. Very high—speed computing systems. In Proceedings of the IEEE,
pages 1901-1909, December 1966.

Franca, L. P., Frey, S. L., and Hughes, T. J. R. Stabilized finite element
methods: 1. Application to the advective—diffusive model. Compt. Methods
Appl. Mech. Engrg., 95:253-276, 1992.

Freitag, L. A. and Ollivier—gooch, C. Tetrahedral mesh improvement using

swapping and smoothing. Int. J. Numer. Meth. Engrg., 40:3979-4002, 1997.

George, A. and Liu, J. W. Computer Solution of Large Sparse Positive Definite
Systems. Prentice Hall, 1981.

Golub, G. H. and Van Loan, C. F. Matriz Computations. John Hopkins
University Press, Baltimore, 1989.

Greibel, M. and Oswald, P. On the abstract theory of additive and multiplica-
tive Schwarz algorithms. Numer. Math., 70:163-180, 1995.

Gresho, P. M. and Lee, R. L. Don’t suppress the wiggles — they’re telling you
something. In Hughes, T. J. R., editor, Finite Flement methods for Convection
Dominated Flows, volume 34 of AMD, pages 37-61, ASME, New York, 1979.

Gresho, P. M. and Sani, L. R. Incompressible Flow and the Finite Element
Method. John Wiley and Sons, 1999.

Grote, M. J. and Huckle, T. Parallel preconditionings with sparse approximate
inverses. SIAM J. Scientific Computing, 18:838-853, 1997.

Gustafsson, I. and Lindskog, G. A preconditioning technique based on element

matrix factorization. Comput. Methods Appl. Mech. Eng., 55:201-220, 1986.

186

Bibliography

[92]

[93]

[94]

[95]

[98]

[99]

[100]

Hendrickson, B. and Leland, R. Multidimensional spectral load balancing.
Technical Report SAND93-2339, Sandia National Laboratories, Albuquerque,
NM, 1993.

Hendrickson, B. and Leland, R. The Chaco user’s guide: Version 2.0. Technical
report SAND95-2344, Sandia National Laboratories, Albuquerque, NM, July
1995.

Hendrickson, B. and Leland, R. An improved spectral graph partitioning
algorithm for mapping parallel computations. SIAM Journal on Scientific
Computing, 16:452-469, 1995.

Hodgson, D. C. Efficient Mesh Partitioning and Domain Decomposition Meth-
ods on Parallel Distributed Memory Machines. PhD thesis, School of Computer
Studies, The University of Leeds, Leeds, 1995.

Hodgson, D. C. and Jimack, P. K. Efficient mesh partitioning for parallel
P.D.E. solvers on distributed memory machines. In Swxth SIAM Conference
on Parallel Processing for Scientific Computing, Norfolk, VA, 1993.

Hodgson, D. C. and Jimack, P. K. A domain decomposition preconditioner for

a parallel finite solver on distributed unstructured grids. Parallel Computing,

1997.

Hood, P. Frontal solution program for unsymmetric matrices. Int. J. Num.

Meth. Eng., 10:379-400, 1976.

Hooper, M. J. Harwell subroutine library: A catalogue of subroutines. Report

AERE R-9185 9th ed., Harwell, 1989.

Hughes, T. J. R. and Brooks, A. A multidimensional upwind scheme with
no crosswind diffusion. In Hughes, T. J. R., editor, Finite Element methods
for Convection Dominated Flows, volume 34 of AMD, pages 120-131, ASME,
New York, 1979.

187

Bibliography

[101]

[102]

[103]

[104]

[105]

[106]

[107]

Hughes, T. J. R., Franca, L. P., and Hulbert, G. M. A new finite element for-
mulation for computational fluid dynamics: VIII. The Galerkin/Least squares
methods for advective—diffusive equations. Compt. Methods Appl. Mech. En-
grg., 73:173-189, 1989.

Hughes, T. J. R., Levit, ., and Winget, J. An element-by—element solution

algorithm for problems of structural and solid mechanics. J. Comput. Methods

in Appl. Mech. Eng., 36:241-254, 1983.

Irons, B. M. A frontal solution program for finite element analysis. Int. J.

Num. Meth. Eng., 2:5-32, 1970.

Jimack, P. K. An optimal finite element mesh for elastostatic structural anal-

ysis problems. Computers and Structures, 64:192-208, 1997.

Jimack, P. K. and Nadeem, 5. A. A weakly overlapping parallel domain decom-
position preconditioner for the finite element solution of elliptic problems in
three dimensions. In Arabnia, H. R., editor, Proceedings of the 2000 Interna-
tional Conference on Parallel and Distributed Processing Techniques and Ap-
plications (PDPTA’2000), volume 111, pages 1517-1523. CSREA Press, USA,
2000.

Jimack, P. K. and Nadeem, S. A. Parallel application of a novel domain
decomposition preconditioner for the stable finite element solution of three—
dimensional convection—dominated PDEs. In Sakellariou, R. et al., editor,
Furo—Par 2001 Parallel Processing, Lecture Notes in Computer Science 2150,
pages 592-601. Springer, 2001.

Jimack, P. K. and Nadeem, 5. A. A weakly overlapping parallel domain decom-
position preconditioner for the finite element solution of convection—dominated
problems in three dimensions. In Proceedings of International Parallel CFD

2001 Conference, Fgmond ann Zee, The Netherlands, 21-23 May 2001. To

appear.

188

Bibliography

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115)

[116]

Johnson, C. Numerical Solution of Partial Differential Equations by the Finite
Element Method. Cambridge University Press, 1987.

Johnson, C. The streamline diffusion finite element method for compressible
and incompressible fluid flow. In Griffiths, D. F. and Watson, G. A., editors,
Numerical Analysis 1989, Pitman Research Notes in Mathematics, pages 155—
181. Longman, London, 1989.

Kahan,W. Gauss—Seidel Methods for Solving Large Systems of Linear Fqua-
tions. PhD thesis, University of Toronto, 1958.

Kallinderis, Y., Parthasarathy, V., and Wu, J. A new euler scheme and adap-
tive refinement/coarsening algorithm for tetrahedral grids. ATAA Paper 92-
0446, 1992.

Karypis, G. and Kumar, V. A software package for partitioning unstructured
graphs, partitioning meshes and computing fill-reducing orderings of sparse

matrices. Technical report, University of Minnesota, Department of Computer

Science/Army HPC Research Center, Minneapolis, MN, September 1998.

Kernighan, B. W. and Lin, S. An efficient heuristic procedure for partitioning
graphs. The Bell System Technical Journal, 49:291-307, 1970.

Klawonn, A. and Widlund, O. B. A domain decomposition method with
lagrange multipliers and inexact solvers for linear elasticity. SIAM J. Scu.

Comput., 22(4):1199-1219, 2000.

Klawonn, A. and Widlund, O. B. FETI and Neumann—Neumann iterative
substructuring methods: Connections and new results. Comm. Pure Appl.

Math., 54:57-90, 2001.

Kumar, V. and et al. Introduction to Parallel Computing:Design and Analysis
of Algorithms. Benjamin/Cummings, Redwood City, CA, 1994.

189

Bibliography

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

Kuznetsov, S., Lo, G. C., and Saad, Y. Parallel solution of large sparse lin-
ear systems. Tech. Rep. UMSI 97/98, Minnesota Supercomputer Institute,
University of Minnesota,Minneapolis, MN, 1997.

Larson, M. G. A posteriori and a priori error analysis for finite element ap-
proximations of self-adjoint elliptic eigenvalue problems. SIAM J. Numer.

Anal., 38(2):608-625, 2000.

LeTallec, P. Domain decomposition methods in computational mechanics.

Compt. Mech. Adv., 2:121-220, 1994.

Lohner, R. and Baum, J. D. Adaptive h-refinement on 3D unstructured grids
for transient problems. Int. J. Num. Methods Fluids, 14:1407-1419, 1992.

Mandel, J. Balancing domain decomposition. Comm. Numer. Meth. Eng.,

9:233-241, 1993.

Mandel, J. and Tezaur, R. Convergence of a substructuring method with

lagrange multipliers. Numer. Math, 73:473-487, 1996.

Mandel, J. and Tezaur, R. On the convergence of a dual-primal substructuring

method. Numer. Math., 88(3):534-558, 2001.

Matsokin, A. M. and Nepomnyaschikh, S. V. A Schwarz alternating method
in a subspace. Soviet Mathematics, 29(10):78-84, 1985.

Message Passing Interface Forum. MPI: A message passing interface standard.

International Journal of Supercomputer Applications, 8(3/4), 1994.

Message Passing Interface Forum. MPI-2: Extensions to the message pass-
ing interface. http://www.mpi-forum.org/docs/mpi-20-html/mpi2-report.html,
1997.

Miller, K. Moving finite elements. II. SIAM Journal of Numerical Analysis,
18(6):1033-1057, 1981.

190

Bibliography

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

Miller, K. and Miller, R. N. Moving finite elements. I. SIAM Journal of
Numerical Analysis, 18(6):1019-1032, 198]1.

Morton, K. W. Numerical Solution of Convection Diffusion Problems. Chap-
man and Hall, London, 1996.

Nadeem, S. A. and Jimack, P. K. Parallel implementation of an optimal
two level additive Schwarz preconditioner for the 3-d finite element solution
of elliptic partial differential equations. [Int. J. Num. Meth. Fluids, 2001.
Submitted.

Ong, M. E. G. Uniform refinement of tetrahedron. SIAM J. Sci. Comput.,
15(5), 1994.

Oswald, P. On discrete norm estimates related to multilevel preconditioners in
the finite element method. In Ivanov, K. and Sendov, B., editors, Proceedings

of the International Conference on Constructive Theory of Functions, pages

203-241, 1992.

Pacheco, P. Parallel Programming with MPI. Morgan Kaufmann Publishers,
Inc., 1997.

Paige, C., Parlett, B., and Van der Vorst, H. Approximate solutions and
eigenvalue bounds from krylov subspaces. Numer. Lin. Alg. Appls., 29:115-
134, 1995.

Paige, C. and Saunders, M. Solution of sparse indefinite systems of linear

equations. SIAM J. Numer. Anal., 12:617-629, 1975.

Pepper, D. W. and Heinrich, J. C. The Finite Element Method: Basic Concepts

and Applications. Hemisphere Publishing Corporation, 1992.

Perella, A. J. A Class of Petrov—Galerkin Finite Element Methods for the Nu-
merical Solution of the Stationary Convection—Diffusion Fquation. PhD the-
sis, Department od Mathematical Sciences, University of Durham, Durham,

DHI 3LE, England, September 1996.

191

Bibliography

[138]

[139]

[140]

[141]

[142]

[143]

[144]

[145)

[146]

[147]

[148]

Pernice, M. and Walker, H. F. NITSOL: A newton iterative solver for nonlinear
systems. STAM J. Sci. Comp., 19(1):302-318, 1998.

Preis, R. and Diekmann, R. The PARTY partitioning library: User guide
version 1.1. Technical report, Heinz Nixdorf Institut, Univertitat Paderborn,

1996.

Przemieniecki, J. S. Theory of Matriz Structural Analysis. (Reprint of
McGraw—Hill, 1968), 1985.

Quarteoni, A. and Valli, A. Domain Decomposition Methods for Partial Dif-
ferential Fquations. Oxford University Press, UK, 1999.

Ramage, A. A multigrid preconditioner for stabilized discretization of
advection—diffusion problems. Mathematics research Report 33/98, Univer-

sity of Strathclyde, 1998.

Ramage, A. A note on parameter choice and iterative convergence for stabi-
lized discretization of advection—diffusion problems in three dimensions. Math-

ematics research Report 32/98, University of Strathclyde, 1998.

Reddy, J. N. An Introduction to the Finite Element Method. McGraw—Hill,
1984.

Ripa, S. and Schiff, B. Minimum energy triangulations for elliptic problem:s.
Computer Methods in Applied Mechanics and Engineering, 84:257-274, 1990.

Rivara, M.—C. A grid generator based on 4-triangles conforming mesh refine-

ment algorithm. Int. J. Numer. Meth. Eng., 24:1343-1354, 1987.

Rixen, D. and Farhat, C. A simple and efficient extension of a class of substruc-

ture based preconditioners to heterogeneous structural mechanics problems.

Int. J. Numer. Meth. Engng., 44:489-516, 1999.

Rixen, D., Farhat, C., Tezaur, R., and Mandel, J. Theoretical comparison
of the FETI and algebraically partitioned FETI methods, and performance

192

Bibliography

[149]

[150]

[151]

[152]

[153]

[154]

[155]

[156]

[157]

comparisons with a dirichlet sparse solver. [Int. J. Numer. Meth. Engng.,

46:501-534, 1999.

Roos, H.—G., Stynes, M., and Tobiska, L. Numerical Methods for Singularly
Perturbed Differential Equations. Springer—Verlag, Berlin, 1996.

Saad, Y. A flexible inner—outer preconditioned GMRES algorithm. SIAM
Journal on Scientific and Statistical Computing, 14:461-469, 1993.

Saad, Y. SPARSKIT: A basic tool kit for sparse matrix computation, version
2. Technical report, Center for Supercomputing Research and Development,

University of Illinois at Urbana—Champaign, Urbana, 1L, 1994.

Saad, Y. [terative Methods for Sparse Linear Systems. PWS Publishing, New
York, 1996.

Saad, Y. and Malevsky, A. PSPARSLIB: A portable library of distributed
memory sparse iterative solvers. In Malyshev, V. E. et al., editor, Proceedings
of Parallel Computing Technologies (PaCT-95), St Petersburg, Russia, 1995.

3rd International Conference.

Saad, Y. and Schultz, M. H. GMRES: A generalized minimal residual algo-
rithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput.,
7:856-869, 1986.

Schlimbach, F. Optimising Subdomain Aspect Ratios for Parallel Load Balanc-
ing. PhD thesis, School of Computing and Mathematical Sciences, University
of Greenwich, 2000.

Schwarz, H. A. Gesammelte mathematische abhandlungen. Vierteltahrsschrift

der Naturgorschenden Gesellschaft in Zurich, 15:272-286, 1870.

Semper, B. Numerical crosswind smear in the streamline diffusion method.

Compt. Methods Appl. Mech. Engrg., 113:99-108, 1994.

193

Bibliography

[158]

[159]

[160]

[161]

[162]

[163]

[164]

[165]

[166]

[167]

Simon, H. D. Partition of unstructured problems for parallel processing. Com-

puting Systems in Engineering, 2(2/3):135-148, 1991.

Smith, B. F. An optimal domain decomposition preconditioner for the fi-
nite element solution of linear elasticity problems. SIAM J. Sci. Comput.,
13(1):364-378, January 1992.

Smith, B. F., Bjorstad, P. E., and Gropp, W. D. Domain Decomposition: Par-
allel Multilevel Methods for Elliptic Partial Differential Fquations. Cambridge
University Press, New York, 1996.

Smith, B. F., Gropp, W. D., and Mclnnes, L. C. PETSc 2.0 user’s manual.

Tech. rep., Argonne National Laboratory, 1995.

Sonneveld, P. CGS, A fast lanczos—type solver for nonsymmetric linear sys-

tems. SIAM J. Sci. Statist. Comput., 10, 1989.

Speares, W. E. and Berzins, M. A fast 3-D unstructured mesh adaptation
algorithm with time-dependent upwind Euler shock diffraction calculations. In
Hafez, M. and Oshima, K., editors, Proc. of 6th Int. Symp. on Computational
Fluid Dynamics, volume 111, pages 1181-1188, 1995.

Speares, W. E. and Berzins, M. A 3-D unstructured mesh adaptation algo-

rithm for time dependent shock dominated problems. [nternational Journal

for Numerical Methods in Fluids, 25:81-104, 1997.

Strang, G. W. and Fix, G. J. An Analysis of the Finite Element Method.
Prentice-Hall, 1973.

Tong, C. H., Chan, T. F., and Jay Kuo, C. C. A domain decomposition
preconditioner based on a change to a multilevel nodal basis. SIAM J. Scu.

Stat. Comput., 12(6):1486-1495, 1991.

Van der Vorst, H. Bi-CGSTAB: A fast and smoothly converging variant of
bi—cg for the solution of nonsymmetric linear systems. SIAM J. Sci. Statist.
Comput., 13(631-644), 1992.

194

Bibliography

[168]

[169]

[170]

[171]

[172]

[173]

[174]

[175]

[176]

Vanderstraeten, D., Farhat, C., Chen, P. S., Keunings, R., and Zone, O. A
retrofit based methodology for the fast generation and optimization of large—
scale mesh partition: Beyond the minimum interface size criterion. Comp.

Meth. Appl. Mech. Engrg., 133:25-45, 1996.

Vanderstraeten, D., Keunings, R., and Farhat, C. Beyond conventional mesh
partitioning algorithms and the minimum edge cut criterion: Impact on real-
istic applications. In Bailey, D. et al., editor, Parallel Processing for Scientific
Computing, pages 611-614. STAM, 1995.

Walshaw, C. and Berzins, M. Dynamic load balancing for PDE solvers
on adaptive unstructured meshes. Concurrency: Practice and Fzperience,

7(1):17-28, 1995.

Walshaw, C., Cross, M., Diekmann, R., and Schlimbach, F. Multilevel mesh
partitioning for optimising subdomain aspect ratio. In VecPar’98, pages 285—

300, 1998.

Walshaw, C., Cross, M., and Everett, M. Parallel dynamic graph partitioning
for adaptive unstructured meshes. J. Par. Dist. Comput., 47(2):102-108, 1997.

Walshaw, C., Cross, M., and McManus, K. Multiphase mesh partitioning.
Appl. Math. Modelling, 25(2):123-140, 2000.

Widlund, O. B. Some Schwarz methods for symmetric and nonsymmetric
elliptic problems. In Keyes, D. E. et al., editor, 5th International Symposium
on Domain Decomposition Methods, STAM, Philadelphia, 1992.

Williams, R. D. Performance of dynamic load balancing for unstructured mesh

calculations. Concurrency: Practice and Fzxperience, 3:457-481, 1991.

Wohlmuth, B. . Discretization Methods and Iterative Solvers Based on Do-
main Decomposition. Number 17 in Lecture Notes in Computational Science

and Engineering. Springer, 2001.

195

Bibliography

[177]

[178]

[179]

[180]

[181]

[182]

Xu, J. Iterative methods by space decomposition and subspace correction.

SIAM Review, 34:581-613, 1992.

Xu, J. and Zou, J. Some nonoverlapping domain decomposition methods.

SIAM Review, 40(4):857-914, December 1998.

Young, D. [terative Solution of Large Linear Systems. Academic Press, New

Yark, 1971.

Zhang, X. Studies in Domain Decomposition: Multilevel Methods and the
Biharmonic Dirichlet Problem. PhD thesis, Courant Institute, New York Uni-
versity, USA, September 1991.

Zienkiewicz, O. C. The Finite Element Methods in FEngineering Science.
McGraw—Hill, London, 1971.

Zienkiewicz, O. C. and Taylor, R. L. The Finite Element Method, volume I.
McGraw—Hill Book Company, Europe, fourth edition, 1994.

196

