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Abstract

High-dimensional data sets with a large number of explanatory variables are increasingly

important in applications of regression analysis. It is well known that most traditional

statistical techniques, such as the Ordinary Least Square (OLS) estimation do not

perform well with such data and are either ill-conditioned or undefined. Thus a need

for regularization arises. In the literature, various regularization methods have been

suggested; amongst the most famous is the Partial Least Squares (PLS) regression method.

The aim of this thesis is to consolidate and extend results in the literature to (a) show

that PLS estimation can be regarded as estimation under a statistical model based on

the so-called “Krylov hypothesis”, (b) introduce a derivation of the PLS estimator as

an approximate maximum likelihood estimator under this model and (c) propose an

algorithm to modify the PLS estimator to yield an exact maximum likelihood estimator

under the same model.

It will be shown that the constrained optimization problem in (c) can be recast as an

unconstrained optimization problem on the Grassmann manifold. Two simulation studies

consisting of a number of examples (using artificial data) in low dimensions will be

presented. These allow us to make a visual inspection of the Krylov maximum likelihood

as it varies over the Grassmann manifolds and hence characteristics of the data for which

KML can be expected to give better results than PLS can be identified. However it was

observed that these ideas make sense only when there is a small number of explanatory

variables. As soon as the number of explanatory variables is moderate (say p = 10)

or of order thousands, exploring how the different parameters effect the behaviour of

the objective function is not straight forward. The predictive ability of the Ordinary

Least Squares (OLS), Partial Least Squares (PLS) and Krylov Maximum Likelihood

(KML) regression methods when applied to artificial data (for which the sample size

is bigger than the number of explanatory variables) with and without multicollinearity

is explored. Finally the predictive ability of the Partial Least Squares (PLS) and Krylov

Maximum Likelihood (KML) regression methods was also compared on two real life

high-dimensional data sets from the literature.
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Chapter 1

Introduction

With the availability of high tech instruments which are capable of recording a large set of

variables along with the dramatically increased computational capabilities now available,

high-dimensional data sets have become readily available and increasingly popular in

applications of regression analysis. The term high-dimensional data set here refers to

a data set characterized by a large number of explanatory variables which outnumber

the observations available. Examples of such data sets are the spectrum of hundreds

of wavelengths (used to describe analyte concentration in Chemometrics) and gene

expression measurements. It is well known that most traditional statistical techniques,

such as the Ordinary Least Squares (OLS) estimation do not perform well with such data

and are either ill-conditioned or undefined. Thus a need for regularization arises. Various

regularization methods have been proposed in the literature; amongst the most famous is

the Partial Least Squares (PLS) regression method.

Although PLS regression has been used successfully for many years, it is often viewed

purely as an algorithm rather than as a principled statistical estimator. A number

of authors have studied the theoretical framework of this method and tackled the

problem of constructing a statistical model underlying PLS with the main contributions

being attributed to Helland (Helland, 1988, 1990, 2001). These contributions form the

foundations of this thesis.

In this thesis results in the literature will be consolidated and extended with three main

aims:
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1. The first aim shall be to show that the PLS estimation method can be regarded

as estimation under a statistical model based on a “Krylov hypothesis”, which

puts constraints on the joint covariance matrix. This task has been tackled by

Helland in the three papers mentioned earlier. Here we shall consolidate the

results in Helland’s papers and present them in a manner which we feel is easier

to comprehend.

2. The second aim shall be that of giving an interpretation of the PLS estimator as an

approximate maximum likelihood under this model. To our knowledge, such an

interpretation has not been presented in the literature.

3. Finally, the PLS estimator will be modified to find the exact maximum likelihood

estimate under the same model. An algorithm will be constructed for obtaining a

numerical solution to this optimization problem. Note that such a modification has

already been proposed by Helland (1992). Although the approach presented here is

equivalent to Helland’s, it differs from it in a number of ways which will be outlined

later on.

1.1 Structure of the Thesis

An outline of the thesis is provided hereunder.

Chapter 2 introduces the notational conventions, discusses the general setting for multiple

linear regression and summarizes basic concepts which are relevant for the rest of the

chapters.

In Chapter 3 the need for regularization is discussed in more detail. An overview of

the different regularization techniques available in the literature is also presented. This

chapter consists of review of the literature on regularization in regression.

Chapter 4 contains the relevant theoretical background for understanding the concepts and

deriving the results in Chapter 6. It is made up of a collection of well known results and

concepts, on Krylov subspace methods, which are found in various sources. These have

been organized, stated and proved as required to follow the developments in Chapters 6.



Chapter 1. Introduction 3

Chapter 5 contains the relevant theoretical background on Grassmann Optimization and

a discussion of the practical aspects related to such optimization problems that is needed

for the developments presented in Chapter 7.

Chapter 6 starts by consolidating and extending results in the literature to show that PLS

estimation can be regarded as an estimation technique under a statistical model based

on the so-called Krylov hypothesis. A historical overview of the development of PLS

regression is then presented. The algorithmic representation of the PLS regression method

is then briefly discussed. This is followed by a detailed description of the innovative

interpretation of the PLS method as an approximate ML estimator under the model

described in the first section of this chapter. Estimation of the Krylov dimension is then

discussed. In the last sections the properties of the PLS estimator are outlined.

Chapter 7 then treats the issue of modifying the PLS estimator to find the exact maximum

likelihood estimate under the same model. It will be shown that this constrained maximum

likelihood problem can be recast as an unconstrained optimization problem on the

Grassmann manifold and for brevity, the resulting estimate is referred to as the Krylov

maximum likelihood (KML) estimate. Optimization over Grassmann manifolds is a well

understood topic and efficient algorithms can be applied. An algorithm for obtaining a

numerical solution for the unconstrained optimization problem will be presented. In the

last section two simulation studies consisting of a number of examples (using artificial

data) in low dimensions (p = 2; 3; q = 1) will be presented in an attempt to identify the

characteristics of the data for which one can hope that the exact ML estimator performs

better than the PLS estimator.

Chapter 8 is divided into two parts. In the first part OLS, PLS and KML regression

techniques will be applied to simulated data sets while in the second part they will be

applied to a number of real data sets. In both cases the prediction ability of the methods

will be compared. Note that of course OLS is considered only for those data sets for

which the number of explanatory variables, p, is less than the number of observations, n.

Chapter 9 gives an overview of the main outcomes of this study and outlines

improvements and future work.

An attempt has been made to make this work as self-contained as possible by including
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detailed motivations and derivation of the main concepts and proofs of many stated results.

Nevertheless, background knowledge of linear algebra is assumed.



5

Chapter 2

Preliminaries

2.1 Introduction

The aim of this chapter is to introduce the basic notational conventions and summarize

basic concepts that are essential to comprehend the rest of the material presented in this

thesis.

2.2 Notational Conventions

Bold upper case letters (X,A,B,...) shall represent matrices. Their dimensions will be

stated in the text or in some instances represented by a subscript. For example, X(n×p)

denotes a matrix with n rows and p columns. Bold lower case letters (x, a,b,...) shall

represent vectors, while scalars will be represented by italic lower case letters (x, a, b,...).

The same convention will be applied when using Greek symbols to denote unknown

parameters.

The transpose of a matrix or a vector is denoted by the superscript ‘T’ as in XT ,xT .

Notation used does not distinguish between random variables (vectors or matrices) and

their realizations. In a particular context it will be stated explicitly whether the notation

refers to random quantities or observed quantities
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Given a random variable x, µx denotes its population mean, σxx denotes its population

variance, while x̄ denotes its sample mean and sxx its sample variance. For random

vectors x, µx denotes its population mean vector, Σxx denotes its population variance-

covariance matrix, while x̄ denotes its sample mean vector and Sxx its sample variance-

covariance matrix. Given a random variable y and a random vector x, σxy is a vector

whose elements are the population covariances of y with each component of x while the

corresponding vector of sample covariances is denoted by sxy. Let D denote a diagonal

matrix whose elements correspond to the square roots of the diagonal elements of Sxx,

thenRxx = D−1SxxD
−1 is the sample correlation matrix for x and rxy =

√
syy

−1D−1sxy

is the vector of pairwise sample correlations between x and y.

Let the general (n× p) data matrix with n sampling units (indexed by i = 1, . . . , n) and

p variables (indexed by j = 1, . . . , p), be denoted by X. The rows of X will be denoted

by xT
1 ,x

T
2 , . . . ,x

T
n . Note that

xi =
[
xi1 · · · xip

]T

is a p-dimensional column vector denoting the p observations on the ith object. On the

other hand the columns of X will be denoted by x(1),x(2), . . . ,x(p) where

x(j) =
[
x1j · · · xnj

]T

is an n-dimensional vector denoting the n observations on the jth variable.

The convention of using round brackets in the subscript to indicate that a vector represents

a column in a matrix will be used for all matrices and not just data matrices.

The hat symbol is used to denote estimated values of the unknown parameter. For example

if β is an unknown vector of parameters, β̂ denotes its estimate. In order to estimate the

unknown parameters we need a sampling framework which allows us to obtain a sample

of data points, (xi,yi) , i = 1, . . . , n. Let H = I− 1
n
1n1

T
n denote the centering matrix

which is symmetric
(
H = HT

)
and idempotent (H2 = H), then Sxx = n−1XTHX,

sxy = n−1XTHy and syy =
1
n
yTHy. syy denotes the sample variance of random variable

y.

The inner (or dot) product of two n-dimensional column vectors a =(a1, . . . , an)
T

and

b =(b1, . . . , bn)
T , is defined by

a · b = aTb = a1b1 + . . .+ anbn
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More generally the inner (or dot) product of two (n× p) matrices A and B, is defined by

A ·B = tr
(
ATB

)
= tr

(
BTA

)

Unless otherwise the norm of a vector, a, will be taken to be the L2−norm defined by

‖a‖ = ‖a‖2 = (a · a) 1
2 = (

∑

i

a2i )
1
2

Two matrix norms will be used. The Frobenius norm defined by

‖A‖F = (A ·A)
1
2 = tr

(
ATA

) 1
2 =

√√√√
min{n,p}∑

i=1

λ2
i

where λi denotes the ith singular value of A and the 2-norm defined by

‖A‖2 = λmax

where λmax denotes the largest singular value of A.

The notation vec(·) represents the vectorization of a matrix to a column vector by stacking

the columns of the matrix on top of one another. Hence

vec (X) =




x(1)

x(2)

...

x(p)



. (2.1)

The inverse of the ‘vec’ command is the ‘matrix’ command where, matrix(b,k, p − k)

represents the construction of a k × (p− k) matrix from a vector, b of dimensions

k (p− k), by taking successive blocks of length k from b and using these blocks to form

the columns of the matrix.

Given an (m× n) matrix A, span (A) denotes the vector space spanned by its columns.

Given matrices A(m×n),B(p×q) their Kronecker product is an (mp× nq) matrix defined

by

A⊗B =




a11B a12B · · · a1nB

a21B a22B · · · a2nB
...

...
...

...

am1B am2B · · · amnB



. (2.2)
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ei denotes a p-dimensional vector with 1 at the ith entry and 0 in all other entries. Such

vectors are used in constructing the special subspace, span
({
e1, e2, e3, . . . , eq

})
q ∈ R,

which for brevity can be denoted by Rq×0p−q. This subspace will be introduce in Chapter

4.

‘O’ shall be taken to denote a matrix whose elements are all zero while ‘0’ denotes a

vector whose elements are all zero.

In the section that follows we recall the general framework for multiple linear regression.

The main reference for this section is Myers (1990) though the material in subsections

2.3.2 to 2.3.4 have been written independent of any source.

2.3 General Framework for Linear Regression

Multiple regression analysis is a statistical technique applied to construct an adequate

mathematical model which explains or describes relationships that may exist between

two or more independent or explanatory variables, which are denoted by x1, x2, . . . , xp

p ≥ 2, and a dependent or response variable, which is denoted by y. It is assumed that the

true relationship between these variables can be approximated by the following equation

or model

y = g(x1, x2, . . . , xp) + ε (2.3)

where g(x1, x2, . . . , xp) denotes the general model used to relate the variables and ǫ is

assumed to be a random error accounting for the discrepancy between the general model

and the true underlying model. The function g (x1, x2, . . . , xp) can be linear or non-

linear. In regression the term ‘linear’ is overly used. It can refer either to the fact that

the regression parameters enter the equation linearly or that the explanatory variables

enter the equation linearly. For linear regression models the first definition of ‘linear’ is

required.

Regression analysis is conceptually simple and this makes it rather appealing to

researchers in different fields such as economics, physics, chemistry, medicine, biology,

finance, sociology and psychology to mention a few. Different regression models exist
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in the literature where the difference in the models results from the different assumptions

they make with regards to the data being analyzed.

There are different uses or goals of regression analysis and these can be grouped into four

different categories which are determined by the specific kind of inferences required for

the study being conducted. These categories are:

1. Variable Selection. This is often referred to as subset selection. It aims at

identifying those variables responsible for the greatest amount of variation in the

response variable. It is common practice to retain, for further studies, only those

variables that are found to explain a reasonable amount of variation in the response,

but this is not always the case.

2. Model Specification. In model specification the goal is that of identifying a

mathematical equation that best describes the mechanism by which the observations

at hand have been generated. Very often various candidate models in different

functional forms exists and one is faced with the problem of selecting the model

that best fits the data. Model specification is sometimes preceded by the variable

selection process which in this case is more of a means to an end.

3. Parameter Estimation. As the name suggest Parameter Estimation involves

estimating the parameters of a predefined model of the relationship between the

response and the explanatory variables.

4. Prediction. The aim of prediction is to investigate how the functional form of

the model, which is identified when solving the model specification problem or

is assumed, influences the estimation of unknown values of the response variable.

In this case we do not seek to identify the role of each explanatory variable with

strict preciseness. Here the main aim is to be able to obtain good estimates of the

response variable.

Distinguishing between these categories is very important because the estimation

procedure or even the model that is adopted may very well depend on the aim of the

regression study being conducted. For example PLS regression is typically used when the

aim for the regression analysis is prediction.
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2.3.1 Setup for Multiple Linear Regression

We start by considering the population framework while the sampling framework will be

introduced at a later stage.

Let random variables xj, j = 1, . . . , p and y represent different attributes of members

of a particular population of interest. In classical regression analysis the vector

x =(x1, . . . , xp)
T

is either assumed fixed or if it is considered random, analysis is

conditional on the observed values of x. The standard regression model, also known as

forward regression, looks at the conditional distribution, f (y | x) .

When dealing with prediction problems the worth of a ‘predicted’ value, ŷ, is evaluated

by the expected loss incurred (in information or accuracy) when that particular estimate

is chosen for the true value. In regression analysis this loss is often measured by means

of the quadratic loss function defined by

L (y, ŷ) = k (y − ŷ)2 (2.4)

where k denotes a real valued constant. The best predictor, ŷb, (where by ‘best’ we mean

the one that produces values which are closest to the true value) is the solution,

ŷb = min
ŷ

E
[
k (y − ŷ)2 | x

]
(2.5)

where E
[
k (y − ŷ)2 | x

]
is the prediction mean squared error (PMSE) and

E [L (y, ŷ) | x] =
∫

Ωy

L (y, ŷ) f (y | x) dy (2.6)

where Ωy denotes the set of all possible values of y. It is easily shown that the solution to

this minimization problem is

ŷb = E [y | x] (2.7)

Note that no assumption has been made on the form of f (y | x) since this has no influence

on the solution of (2.5).

The classical linear regression or forward regression model assumes a linear relation of

the form

y = E [y| x] + ε = β0 + β
Tx+ ε (2.8)

where β0 is known as the intercept or constant term, β = (β1, · · · , βp)
T

is a p-

dimensional vector of regression coefficients which, together with the intercept, are
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usually unknown parameters which need to be estimated, and ε is an error term which

is independent of x and it is assumed to have mean 0 and variance σ2. Under this model,

the only statistical uncertainty is that arising from the error terms. The β’s are often called

‘partial regression coefficients’ since if one considers for example the parameter β1, this

can be interpreted as the expected change in the response (positive or negative) per unit

change in x1, with the other x’s held constant. Clearly if the unit of measurement for

x1, changes then the value of β1 will also change. The coefficients in a regression model

depend on the units of measurement of the explanatory variables.

As in Naes and Martens (1985) and Helland (1990), the interpretation of Partial Least

Squares (PLS) regression which will be presented in this work requires the consideration

of a joint multivariate normal distribution of x(p×1) and y or equivalently the random

vector
(
xT ,y

)T
:


 x

y


 ∼ N




 µx

µy


 ,


 Σxx σxy

σyx σyy




 (2.9)

where µx is a p-dimensional column vector whose components are the means of the

random components of x(p×1), µy denotes the mean of y, Σxx is the (p× p) variance-

covariance matrix of x(p×1), σxy = Cov (x,y) is a p-dimensional column vector, σyx =

σT
xy and σyy = Var (y) = σ2

y . The joint density function, f (x, y), can be parametrized in

a variety of ways, based on the identities

f (x, y) = f (x) f (y | x) , (2.10)

= f (y) f (x | y) (2.11)

From the first identity it is clear that the joint distribution can be derived by introducing

the marginal distribution of x into the forward regression framework. The second identity

relates to a less common view of regression, known as inverse regression, which looks at

the conditional distribution f (x | y) and assumes a relation of the form

x = E [x | y] + ξ =γ0 + γ y + ξ (2.12)
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where γ and γ0 are p-dimensional vectors of regression coefficients and ξ is a p-

dimensional error term assumed to have a multivariate distribution with mean vector

0 and variance-covariance matrix Σx|y. Each component of γ0 is an intercept for

the line relating the corresponding component of x to y. Clearly, in the inverse

regression framework, in order to bring the joint distribution into the picture, the marginal

distribution of y needs to be introduced. Practical applications of inverse regression are

in calibration problems in Chemometrics (Wold et al., 1983).

Next, the forward and inverse regression models, under the assumption of a joint

multivariate normal distribution, will be explored in more detail.

2.3.2 Forward Regression

Consider the conditional distribution of y | x, given by

f (y | x) =
(
2πσy|x

)− 1
2 exp

{
− 1

2σy|x

(
y − µy|x

)2
}

(2.13)

where µy|x = µy + σT
xyΣ

−1
xx (x− µx) , σy|x = σ2 =

(
σ2
y

)
− σT

xyΣ
−1
xxσxy which are

both scalar. It follows that
(
y − µy|x

)
| x ∼ N (0, σ2) and since the parameters

of this distribution do not depend on x, N (0, σ2) is also the marginal distribution of
(
y − µy|x

)
= ε, which implies that ε is independent of x. If model (2.13) is true and all

parameters are known, the forward regression parameters are defined by

β0 =
(
µy − σT

xyΣ
−1
xxµx

)
,β(p×1) = Σ−1xxσxy. (2.14)

Parameters are typically unknown and are estimated using a training set (sample) of size

n for which one assumes a relation of the type

y = β01+Xβ + ε (2.15)

where y and ε are n-dimensional column vectors with elements {yi}i=1,...,n and

{εi}i=1,...,n, respectively, 1 is a p-dimensional vector with all elements equal to 1 andX is

the (n× p) data matrix. The εi’s are assumed to be independent and identically distributed

having a normal distribution with mean 0, standard deviation σ and cov(εi, εj) = 0 for all

i 6= j.
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There are a number of applications where the constant term, β0, is either zero or it is

removed from the model by centering the response and explanatory variables (centering

and scaling are discussed in section (2.3.5)). Once the parameter estimates are obtained it

is then possible to compute the estimated values ŷ as follows

ŷ = β̂01+Xβ̂ (2.16)

The residuals, r, are then the differences between the observed values and the estimated

values

r = y − ŷ (2.17)

Equation (2.16) can also be used to estimate the predicted values (the unknown values of

the response variable for which the values of the explanatory variables are known).

2.3.3 Inverse Regression

Consider the conditional distribution f (x | y) given by

f (x | y) = (2π)−
1
2

∣∣Σx|y
∣∣− 1

2 exp

{
−1

2

(
x− µx|y

)T
Σ−1
x|y

(
x− µx|y

)}
(2.18)

where µx|y = µx + σ
−1
yy (y − µy)σxy is a (p× 1) vector and Σx|y = Σxx − σ−1yy σxyσ

T
xy

is a (p× p) matrix. It follows that
(
x− µx|y

)
| y ∼ N

(
0p,Σx|y

)
. Since the parameters

of this distribution do not depend on y, N
(
0p,Σx|y

)
is also the marginal distribution of

x− µx|y.

If model (2.18) is true and all parameters are known the inverse regression parameters are

defined by

γ0 = µx − σ−1yy µyσxy,γ = σ−1yy σxy (2.19)

For a single observation (y,x) selected from model (2.9), ξ = x − (γ0 + γy)

has a multivariate normal distribution, N
(
0p,Σx|y

)
. Note that since the conditional

distribution of
(
x− µx|y

)
| y = ξ | y is equal to the marginal distribution of

(
x− µx|y

)
=

ξ, it follows that ξ is independent of y.

In the discussion in Chapters 6 and 7, the inverse regression framework will be considered.

As mentioned earlier, under this framework, in order to bring the joint distribution into
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the picture, the marginal distribution of y needs to be introduced. Then for a sample of n

independent observations (yi,xi) , i = 1, . . . , n selected from the joint distribution (2.9)

the joint likelihood is defined by,

l
(
µy, σyy,γ0,γ,Σx|y

)
= l (µy, σyy) + l

(
γ0,γ,Σx|y

)
(2.20)

where

l
(
γ0,γ,Σx|y

)
= −n

2
log (2π)− n

2
log

∣∣Σx|y
∣∣

−1

2

n∑

i=1

{
(xi − (γ0 + yiγ))

T
Σ−1
x|y (xi − (γ0 + yiγ))

} (2.21)

and of course

l (µy, σyy) = − log (2π)− n

2
log (σyy)−

1

2σyy

n∑

i=1

(yi − µy, )
2

(2.22)

Note that since the constant terms−n
2
log (2π) and− log (2π) do not effect the estimation

of the unknown parameters in equations (2.21) and (2.22) respectively, for the rest of the

thesis these constant terms will be removed from these equations. Furthermore by result

A5.6 in Appendix A we note that the last term in equation (2.21) is equal to:

−1

2
tr

[
Σ−1
x|y

n∑

i=1

{
(xi − (γ0 + yiγ)) (xi − (γ0 + yiγ))

T
}]

2.3.4 Mappings between different Parametrization

In conclusion there are three equivalent parametrization for the multivariate joint

distribution defined in equation (2.9). When considering,

1. f (x, y) for which the parameters are: µx, µy,Σxx,σxy, σyy

2. f (x) f (y | x) for which the parameters are: µx,Σxx, β0, β = (β1, · · · , βp)
T ,

σ2 = V ar [y | x]

3. f (y) f (x | y) for which the parameters are: µy, σyy,γ0,γ,Σx|y

The parameters in any parametrization can be mapped to the parameters in any other

parametrization, provided marginal distributions are considered. In particular, this is true
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for population parameters. Suppose the parameters of the inverse regression framework

are known, the parameters of the forward regression framework can be derived as follows

β =
[
Σx|y + σ−1yy γγ

T
]−1

γσyy (2.23)

µx = γ0 + µyγ (2.24)

β0 = µy − µT
x

[
Σx|y + σyyγγ

T
]−1

γσyy (2.25)

σ2 = σyy − σ2
yyγ

T
[
Σx|y + σ

−1
yy γγ

]−1
γ (2.26)

On the other hand if the parameters of the forward regression framework are known, the

parameters of the inverse regression framework can be derived as follows

γ =
[
σ2 + βTΣxxβ

]−1
Σxxβ (2.27)

µy = β0 + µ
T
xβ (2.28)

γ0 = µx−µy

[
σ2 + βTΣxxβ

]−1
Σxxβ (2.29)

Σx|y = Σxx − σ−1yy Σxxββ
TΣxx (2.30)

The above relations hold also for sample statistics.

2.3.5 Centering and Scaling

When dealing with models that have an intercept (constant term), such as (2.15), it

is sometimes convenient to center the variables, as such transformations of the data

simplify computations . The variables are centered by replacing each observation, xij,

by
(
xij −

−
xj

)
where

−
xj is the mean of the jth column of the data matrix and each yi

is replaced by
(
yi −

−
y
)

where
−
y is the mean of the response variable. In this way the

constant term is eliminated. Since the intercept term is a function of the other regression

parameters it can be easily calculated once the other parameters are estimated. Thus

centering does not change the original model, it only simplifies it.

Earlier it was observed that regression parameters depend on the scaling of the variables

and such scaling can mask the actual contribution of each explanatory variable to the

variation in the response. This problem can be overcome by scaling the variables to unit
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variance thus transforming all variables to a common standard measurement unit. In unit

length scaling each
(
yi −

−
y
)

and each
(
xij −

−
xj

)
are scaled as follows:

wi = d−1
(
yi −

−
y
)

and zij = c−1j

(
xij −

−
xj

)
(2.31)

where cj = sx,j where sx,j is the unbiased sample standard deviation of the jth column

of the data matrix, d = syy where syy is the unbiased sample standard deviation of the

response variable. Scaling changes the interpretation of the regression parameters in that

if the parameters are scaled the estimated regression parameters provide a measure of the

actual contribution of each parameter to the variation in the response variable.

From here onwards the centered and scaled data matrix will be referred to as the

standardized data matrix and will be denoted by X̃. Similarly the vector of standardized

responses will be denoted by ỹ.
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Chapter 3

Regularization

3.1 Need for Regularization

The most popular regression estimator is undoubtedly the ordinary least square (OLS)

estimator, β̂OLS (X,y) which (assuming the variables have been mean centered) is the

solution to

argmin
β

‖y −Xβ‖2 . (3.1)

This estimator is known to have very nice properties: it is unbiased and efficient (in the

sense that it achieves the minimum conditional variance-covariance matrix amongst all

the estimators in the class of all linear unbiased estimators hence it is said to be BLUE).

Furthermore when it comes to transformations of the data, the OLS estimator is

1. Regression Equivariant: β̂OLS (X,y +Xa) = β̂OLS (X,y) + a, for all a ∈ R
p

2. Scale Equivariant with respect to the response variable: β̂OLS (X, λy) =

λβ̂OLS (X,y), for all λ∈ R.

3. Affine Equivariant: For all non-singular, non-random (p× p) matrices A,

β̂OLS (XA,y) = A−1 β̂OLS (X,y).

These properties imply that a transformation of the data should transform the estimator

accordingly. From the last property it follows that the estimated values of the predictor
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variable, ŷ, are affine invariant. This property allows the use of alternative coordinate

systems for the explanatory variables without affecting ŷ.

Nowadays, data sets for which the number of explanatory variables, p, exceeds the number

of observations n are increasingly important in applications of regression analysis. Such

data are characterized by multicollinearity. In regression analysis multicollinearity

(multi implying ’many’ and collinear implying ’linear dependencies’) occurs when an

explanatory variable is highly correlated with one or more of the other explanatory

variables (when the correlation is close or equal to one, in which case X is not of

full rank). In the setting of multiple regression analysis it has been well documented

that such data exhibits undesirable effects on the OLS estimate. For starters, the OLS

regression estimate has infinite solutions all yielding the same fitted values. It tends

to produce models that fit the sampled data perfectly but fail to predict new data well.

This phenomenon is called over-fitting. Furthermore in presence of multicollinearity, the

minimum variance of the OLS regression estimates may be unacceptably large. Other

possible effects include: instability of the OLS estimates, conflicting conclusions from

usual significance tests and the possibility that the OLS coefficient estimates exhibit

different algebraic signs to what is expected from theoretical considerations. A detailed

overview of these effects as well as descriptions of diagnostic tests that can be applied

on the data to identify the presence of multicollinearity can be found in Myers (1990).

Identification of the presence of multicollinearity makes most sense when n > p since

multicollinearity cannot be avoided in high-dimensional data (n < p) and hence there is

no need for testing for its presence in the latter case. Multicollinearity diagnostics will be

discussed in more detail in Chapter 8.

The estimation problems just mentioned are usually tackled through regularization.

Various regularization methods exist in literature and these methods can be divided into

two groups: penalized least squares methods and dimension reduction methods. These

regularization methods attempt to reduce the variance of the estimators (a process known

as shrinkage) but in so doing a bias is introduced. In Chapter 8 of Myers (1990)

it is observed that in some practical situations the variance of a biased estimator can

be sufficiently smaller than the variance of an unbiased estimator, that it more than

compensates for the bias introduced.
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The quality of an estimator can be evaluated by measuring its average “closeness” to the

actual parameter. Such a measure is provided by the Mean Squared Error (MSE) which

is defined as

MSE(β̂) = E((β̂ − β)T (β̂ − β)). (3.2)

Hoerl and Kennard (1970b) show that for an unbiased estimators such as the OLS

estimator

MSE(β̂) = tr
(
V ar[β̂]

)
. (3.3)

Hence a large value for the variance results in estimates being far from the true parameter.

Hoerl and Kennard (1970b) prove that for a biased estimator:

MSE(β̂) = tr
(
V ar[β̂]

)
+ [b(β̂)Tb(β̂)] (3.4)

where b(β̂) = E[β̂]− β is the bias of β̂.

By reducing the variances of the estimated regression coefficients biased regression

stabilize the parameter estimates leading to more reliable predictions, provided the bias is

not very large.

3.2 Shrinkage

In regularization literature, the act of reducing the variance of an estimator is known as

shrinkage. Shrinkage has been studied by many authors, such as Butler and Denham

(2000), Hoerl and Kennard (1970b) and Krämer (2007), to mention a few. The simplest

explanation of the mechanism behind shrinkage uses the algebraic interpretation of linear

regression, and will be reproduced below.

Suppose that X has rank r and consider its singular value decomposition (SVD) which is

given by:

X = FDLT (3.5)

where F and L are orthonormal matrices, of dimensions (n× r) and (p× r) respectively,

and D is an r−dimensional diagonal matrix whose elements correspond to the non-zero

singular values of X.
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It is well known that the variance of the OLS estimator is given by

Var[β̂OLS (X,y)] = σ2(XTX)−1. (3.6)

From the SVD of X it follows that,

S = (XTX)−1 = LD−2LT =
r∑

i=1

1

d2i
lil

T
i .

It is clear that the variance of the OLS estimator depends on the non-zero eigenvalues of

S. If any of the eigenvalues is close to zero Var[β̂OLS (X,y)] will be very large leading

to a large MSE. Consider β̂OLS , from the SVD of X it follows that:

β̂OLS = LD−1FTy =
r∑

i=1

fTi y

di
li =

r∑

i=1

b̂i

where b̂i corresponds to the component of β̂OLS along fi. The basic idea behind

shrinkage is to consider modifications to the OLS estimator that shrink towards zero

those components which correspond to the directions of low sample spread. The principal

directions fi ofX which posses low sample spread correspond to the smallest eigenvalues

of X.

In general, a shrinkage estimator for β is of the form:

r∑

i=1

f(d2i )b̂i (3.7)

where f(.) is some real valued function. The values f(d2i ) are called shrinkage factors.

For the OLS case f(d2i ) = 1 for all i.

3.3 Penalized Least Squares Methods

The general form for these methods is given by

argmin
β

n∑

i=1

(yi − β0 −
p∑

j=1

(βjxij))
2 + λ

p∑

j=1

(|βj|)a (3.8)

where a ≥ 0. This corresponds to the OLS objective function (equation (3.1)) with an

added penalty function, hence the name penalized least squares. When
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• a = 2 the solution to the optimization in (3.8) corresponds to the Ridge Regression

(RR)

• a = 1 the solution to the optimization in (3.8) corresponds to the LASSO (Least

Absolute Shrinkage and Selection Operator) method.

3.3.1 Ridge Regression

Ridge Regression (RR) addresses the problem of multicollinearity by adding a small

quantity to the diagonal elements of theXTXmatrix in the equation of the OLS estimator

of the regression coefficients with the aim of improving the stability of the matrix

inversion and parameter estimates. The method was first proposed by Hoerl and Kennard

(1970a,b). The ridge regression (RR) estimator of the vector of regression coefficients β

is defined by

β̂RR (k) =
(
XTX+ kIp

)−1
XTy

where k > 0 and
(
XTX+ kI

)
is positive definite and singular. The constant value k has

been given different nomenclatures in literature the most obvious is, ridge parameter.

Note that k is essentially the parameter that distinguishes RR regression from OLS

regression. When k = 0 the RR estimator corresponds to the OLS estimator. Note that

as k −→ ∞, β̂RR −→ 0 where 0 is the null vector. The following relationship exists

between the RR estimator and the OLS estimator

β̂RR =
(
Ip + k

(
XTX

)−1)−1
β̂OLS.

The RR estimator is a biased estimator and its bias depends on the true value of the

parameter. Hoerl and Kennard (1970b) provide an explicit equation for the variance

and the mean square error (MSE) of the RR estimate. More importantly they prove

an existence theorem which asserts that there always exists an optimal value of the

ridge parameter k which results in the RR estimate having a smaller MSE than the OLS

estimate. This implies that the reduction in variance of the estimates achieved by the RR

estimator is more significant than the bias introduced. They also show that the shrinkage

factors for RR are given by

f(d2i ) =
d2i

d2i + k
(3.9)
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It can be shown that the RR estimator is not regression equivariant nor affine equivariant

but it is scale equivariant and rotation equivariant.

3.3.2 LASSO Regression

The Least Absolute Shrinkage and Selection Operator (LASSO) was first proposed by

Tibshirani (1996). Tibshirani observed that even though RR resulted in very stable models

they tended to be very difficult to interpret as all the explanatory variables are retained.

Interpretation can be improved when subset selection is considered. Thus LASSO was

proposed as a method which enjoys both these properties. The nature of the shrinkage

property of LASSO is not so straight forward and beyond the scope of this work. For

more details refer to Tibshirani (1996) and Hastie et al. (2009).

3.4 Dimension Reduction

Many alternative methods to the OLS try to reduce the number of explanatory variables,

a process known as dimension reduction. Dimension reduction in forward regression

assumes that there exists a (p× q) non-random matrix, G, of rank q < p such that the

information about y that is contained in x is entirely captured by w(q×1) = GTx despite

it being of a lower dimension then x. We shall refer to this special property of G as the

dimension reduction criteria. Hence the regression equation can be written as

y = α0 +α
T w + ε (3.10)

where the new coefficient vector is given by

α =
(
GTΣxxG

)−1
GTσxy (3.11)

and the new intercept is given by

α0 = µy −αTGTµx (3.12)

Equation (3.10) can be written as y = α0 + α
TGTx + ε. Hence it is clear that β =

Σ−1xxσxy and β0 =
(
µy − βTµx

)
in the usual regression equation are equal to Gα and α0
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respectively. So β can be defined as

β (x, y) = Gα = G
(
GTΣxxG

)−1
GTσxy (3.13)

Note that, if

• G = Ip then β is the classical OLS regression parameter,

• the columns of G are taken to be the first q eigenvectors of Σxx then β is the

standard principal component regression (PCR) parameter where XG consists of

the first q principal components,

• G =
[
σxy Σxxσxy Σ

2
xxσxy . . . Σq−1

xx σxy
]
, β is the partial least squares (PLS)

parameter with q factors (Helland (1988)).

The shrinkage factors for PCR are defined as

f(d2i ) =





1 if i ≥ q

0 if i < q

Since the main interest in this thesis is in PLS regression, the shrinkage properties of PLS

will be discussed in more detail in Chapter 6.
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Chapter 4

Krylov Subspaces

4.1 Introduction

In this chapter the mathematical background required for deriving results and

understanding concepts which will be presented in the chapters that follow are presented.

Krylov sequences, Krylov matrices and Krylov subspaces are defined and some of their

basic properties presented. The issue of tridiagonalizing a matrix is considered and it will

be shown that this special matrix structure can help to gain insight on the dimension of a

Krylov subspace.

Most of the material in this chapter is found in the literature but has been restated

according to our needs. The main references for this chapter are Golub and Van Loan

(1996), Stewart (2001), Parlett (1998) and Saad (2011). It will be stated clearly where

other references have been used. Unless otherwise stated, proofs provided have been

done independent of any source.

4.2 Definitions and Properties

Throughout this chapter, unless otherwise stated, let A be a (p× p) matrix and let u be a

p-dimensional column vector. Some results require special assumptions such as that A is

symmetric. If required, such assumptions will always be stated explicitly.
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Definition 4.1 The sequence u,Au,A2u,A3u, . . . is said to be the Krylov sequence

generated by A and u. The matrix Kr (A,u) = [u Au A2u . . .Ar−1u] is said to be

the Krylov Matrix of order r generated by A and u. The column space of Kr (A,u),

span
({
u,Au,A2u, . . . ,Ar−1u

})
, is known as the rth order Krylov subspace generated

by A and u and is denoted by Sr (A,u). The smallest possible value of r is 0 ( when

u = 0) and the largest possible value is p.

Note that if the columns of Kr (A,u) are linearly independent, the rth order Krylov

subspace is an r-dimensional vector space: dim(Sr (A,u)) = rank (Kr (A,u)) .

The following theorem summarizes some useful properties of Krylov subspaces. The first

five statements of this theorem were stated without proof in Chapter 4 of Stewart (2001).

Their proofs might be found in other sources which we do not know of. The last statement

to our knowledge is new.

Theorem 4.1 The sequence of Krylov subspaces generated by A and u satisfy,

1. Sr (A,u) ⊂ Sr+1 (A,u) and ASr (A,u) ⊂ Sr+1 (A,u)

2. For any non-zero scalar α, Sr (A,u) = Sr (αA,u) = Sr (A,αu) = Sr (αA,αu)

3. For any scalar c, Sr (A,u) = Sr (A−cIr,u)

4. For any non-singular (p× p) matrix, W: Sr
(
W−1AW,W−1u

)
=

W−1Sr (A,u)

5. If u is a non-zero, eigenvector of A, then Sr (A,u) = S1 (A,u) for r = 1, 2, . . .

6. For any α ∈ R: Sr
(
A+αuuT ,u

)
= Sr (A,u) for r = 1, 2, . . .

Proof

1. Any vector v ∈ Sr (A,u) can be written in the form,

v = a1u+ a2Au+a3A
2u+ · · ·+ar−1A

r−1u+arA
ru
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where ar = 0. It then follows that,

span
({
u,Au,A2u, . . . ,Ar−1u

})
⊂ span

({
u,Au,A2u, . . . ,Aru

})
,

and,

Aspan
({
u,Au,A2u, . . . ,Ar−1u

})
= span

({
Au,A2u,A3u, . . . ,Aru

})

⊂ span
({
u,Au,A2u, . . . ,Aru

})
.

2. Any vector v ∈ Sr (αA,u) can be written in the form

v=a1u+ a2αAu+a3α
2A2u+ · · ·+ar−1α

r−1Ar−1u

= a1u+ b2Au+b3A
2u+ · · ·+br−1A

r−1u

where α, ai, bi ∈ R for all i, hence v ∈ Sr (A,u) . Similarly any vector w ∈
Sr (A,αu) can be written in the form

w=a1αu+ a2αAu+a3αA
2u+ · · ·+ar−1αA

r−1u

= c1u+ c2Au+c3A
2u+ · · ·+cr−1A

r−1u

where ci ∈ R for all i hence w ∈ Sr (A,u) . Using the previous two results it

follows that Sr (αA,αu) = Sr (A,u) for any α ∈ R.

3. Consider,

Sr (A−cIp,u) = span
({
u, (A−cIp)u, (A−cIp)2 u, . . . , (A−cIp)r−1 u

})

From the first statement of this theorem it follows that

(A−cIp)u =(Au−cu) ∈ S2 (A,u) ⊂ Sr (A,u)

Furthermore,

(A−cIp)2 u = A2u−2cAu−c2u ∈ S3 (A,u) ⊂ Sr (A,u) (4.1)

and in general for i < r

(A−cIp)i−1 u ∈ Si (A,u) ⊂ Sr (A,u) (4.2)
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Given that all the vectors forming a basis for Sr (A−cIp,u) are in a space which is

a subset of Sr (A,u) it follows that,

Sr (A−cIp,u) ⊂ Sr (A,u) (4.3)

Now let B = A−cIp and d = −c then,

Sr (B,u) ⊂ Sr (B−dIp,u) = Sr (A,u) (4.4)

Equations (4.3) and (4.4) imply that Sr (A,u) = Sr (A−cIp,u).

4. It can be easily shown that for j = 1, ..., q − 1,

(W−1AW)jW−1u = (W−1A)ju

and therefore it follows that,

Sr
(
W−1AW,W−1u

)
= span(

{
W−1u,W−1Au,W−1A2u, . . . ,W−1Ar−1u

}
)

= W−1span
({
u,Au,A2u, . . . ,Ar−1u

})

5. For eigenvalues and eigenvectors the following relations hold,

Au = λu,Aku = λku

Hence

Sk (A,u) = span
({
u,λu,λ2u, . . . ,λk−1u

})
= span ({u}) = S1 (A,u)

6.

Sr
(
A+αuuT ,u

)

= span
({
u,

(
A+αuuT

)
u,

(
A+αuuT

)2
u, . . . ,

(
A+αuuT

)r−1
u
})

but

(
A+αuuT

)
u = Au+αuuTu = Au+αcu ∈ S2 (A,u) ⊂ Sr (A,u)

where c = uTu ∈ R. Similarly

(
A+αuuT

)2
u =

(
A+αuuT

)
(Au+αu)

= A2u+ 2αAu+ α2u ∈ S3 (A,u) ⊂ Sr (A,u)
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it can be shown that for all j ∈ {3, . . . , q − 1}

(
A+αuuT

)j
u ∈ Sj+1 (A,u) ⊂ Sr (A,u)

which proves the statement.

✷

The second result in the previous theorem, states that when either A or u are rescaled

the Krylov subspace remains unchanged. The third result states that the Krylov subspace

is invariant under shifting and the fourth result explains how the subspace behaves under

similarity transformations of A and u. From the fifth result it is clear that when u is an

eigenvector of A, u contains all the information on the Krylov subspace.

The following proposition (stated as in Saad (2011), pg.126 ) shows how Krylov

subspaces can be characterized in terms of matrix polynomials.

Proposition 4.2 The Krylov subspace, Sr (A,u), is the subspace of all vectors x in Rp

which can be written as x = υ (A)u where

υ (A) = α1Ip + α2A+α3A
2+ · · ·+αr−1A

r−1 (4.5)

where υ is a polynomial of degree not exceeding r-1.

Proof

Any vector v ∈Sr (A,u) can be written in the form

v=α1u+ α2Au+α3A
2u+ · · ·+αq−1A

r−1u

= υ (A)u

αi ∈ R. On the other hand if v = υ (A)u for any polynomial of degree less than or equal

to r − 1 then v ∈Sr (A,u) . ✷

The next section is dedicated to an important attribute of Krylov sequences and spaces

which is fundamental for the work presented in some of the chapters that follow.
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4.3 Krylov Dimension

Definition 4.2 In general it is said that the Krylov sequence obtains its closure at k = q

if q is the smallest integer such that Sq+1 (A,u) = Sq (A,u). In other words q is

the smallest positive integer such that the vectors u,Au,A2u, . . . ,Aqu are linearly

dependent. When this is true we say that the Krylov dimension, denoted dimK (A,u) , is

equal to q.

Note that when u is non-zero, the maximum possible value of q = p where p is the

dimension of the column vector u and the smallest possible value is 1. When u is the zero

vector, q = 0. In the former case q = 1 implies thatAumust be a multiple of u. Therefore

Au = λu for some λ ∈ R which implies that u is an eigenvector of A and λ is the

corresponding eigenvalue. Furthermore Definition (4.2) implies that rank(Kp (A,u)) =

q.

The result that follows concerns the Krylov Dimension and is stated following Stewart

(2001).

Result 4.3 The Krylov dimension, dimK (A,u) = q where q ∈ N if and only if q is the

smallest integer such that dim [Sq+1 (A,u)] = dim [Sq (A,u)].

Proof

By definition, if dimK (A,u) = q then dim[Sq+1 (A,u)] = dim[Sq (A,u)] . From

theorem 4.1 it is known that Sq (A,u) ⊂ Sq+1 (A,u). If dim[Sq+1 (A,u)] =

dim[Sq (A,u)] it must be the case that the Krylov dimension = q. ✷

Before presenting the next theorem we shall recall the steps of the Gram-Schmidt

orthogonalization for a general (p× p) matrix A of rank p.

Gram-Schmidt orthogonalization

Given p non-zero linearly independent vectors a(1), ....a(p) (corresponding to the columns

of A) it is easy to form p orthonormal vectors ã(1), ....ã(p) that span the same space. This

is done sequentially as follows:



Chapter 4. Krylov Subspaces 30

1. ã(1) =
a(1)

‖a(1)‖

2. For j = 2, ..., p,

ã(j) =
r(j)∥∥r(j)

∥∥

where r(j) = a(j) −
j−1∑
k=1

aT(k)ã(k−1)ã(k−1)

The following theorem is a restatement of results presented in Helland (1990) while

describing the relationship between PCR and PLS.

Theorem 4.4 If the vectors w1, . . . ,wq+1 are defined through Gram-Schmidt

orthogonalization of the first q + 1 elements of the Krylov sequence generated by

A and u and dimK (A,u) = q then wq+1 = 0.

Proof

Consider Gram-Schmidt orthogonalization of the vectors u,Au,A2u, . . . ,Aqu.

dimK (A,u) = q implies that Aqu ∈ span
({
u,Au,A2u, . . . ,Aq−1u

})
. Applying

Gram-Schmidt yields,

wq+1 = Aqu−
q∑

j=1

wT
j A

quwj

wT
j wj

= Aqu−P
q
Aqu

where Pq = Wq

(
WT

q Wq

)−1
WT

q is the projection onto the space spanned by
{
w1, . . . ,wq

}
or equivalently

{
u,Au,A2u, . . . ,Aq−1u

}
. Hence P

q
Aqu = Aqu and

therefore wq+1 = 0. ✷

Proposition 4.5 For any non-singular (p× p) matrix, W, dimK

(
W−1AW,W−1u

)
=

dimK (A,u)

Proof

From theorem 4.1: Sr
(
W−1AW,W−1u

)
=W−1Sr (A,u) . If dimK (A,u) = q,

Aqu =

q∑

j=1

αjA
j−1u
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from which it follows that

W−1Aqu =

q∑

j=1

αjW
−1Aqu

✷

The following proposition presents a result which is of utmost importance for the

discussion on PLS presented in Chapter 6. It states that dimK (A,u) is bounded by the

number of distinct eigenvalues of A. This proposition is a restatement of a result found

in Helland (1990).

Proposition 4.6 If a Krylov sequence is based on a (p× p), symmetric matrix A and

a non-zero p-dimensional vector u, the Krylov dimension q is equal to the number of

distinct (non-zero) eigenvalues of A for which the projection of u onto their eigenspace

is non-zero.

Proof

From the definition of the Krylov dimension it follows that

dimK (A,u) = rank [Kp (A,u)]

Consider the spectral decomposition of A which is given by

A = ΓΛΓT =

p∑

j=1

λjγ(j)γ
T
(j) (4.6)

where Λ =diag(λ1, . . . λp), λ1 ≥ . . . ≥ λp are the eigenvalues of A and Γ is an

orthonormal matrix whose columns are eigenvectors corresponding to the eigenvalues

of A.

A well known result in matrix algebra states that if A is diagonalizable, for each

eigenvalue the dimension of the corresponding eigenspaces is equal to its algebraic

multiplicity. Suppose there are m ≤ p distinct eigenvalues which we denote by

λ(1), . . . , λ(m), then the projection matrix onto the jth eigenspace is defined by

Pj =
∑

{i:λi=λ(j)}
γ(i)γ

T
(i).
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Note that P2
j = Pj, PjPi = 0 for i 6= j. Then equation (4.6) can be rewritten as follows,

A =
m∑

j=1

λ(j)Pj. (4.7)

The columns of Γ form a basis for Rp and hence any vector in Rp can be written as a

linear combination of the eigenvectors of A. Therefore

u =

p∑

j=1

cjγ(j) = Γc, c ∈Rp.

Pju denotes the projection of u onto the jth eigenspace defined as,

Pju =
∑

{i:λi=λ(j)}
ciγ(i) (4.8)

Assume that the projection of u onto r ≤ m of these eigenspaces is non-zero. Then

u =
r∑

j=1

Pju =
r∑

j=1

uj= [u1, . . . ,um]




1

1
...

1




(4.9)

and then it can be shown that for k ≥ 1

Aku =
m∑

j=1

λ(j)kuj =
r∑

j=1

λ(j)kuj = [u1, . . . ,ur]




λ(1)k

λ(2)k

...

λ(r)k




Hence Aku ∈ span{u1, . . . ,ur} for all k ≥ 1. This implies that the Krylov matrix

Kr (A,u) = [u1, . . . ,ur]




1 λ(1)2 · · · λ(1)r−1

1 λ(2)2 · · · λ(2)r−1

...
...

...
...

1 λ(r)2 · · · λ(r)r−1



= UV.

Clearly rank(U) = r . Using the fact that, for arbitrary matrices B and C, where B is

non-singular, rank(BC) = rank (C), we can conclude that rank (Kr (A,u)) = rank (V)

Note that, matrix V has a special matrix structure. Matrices with such as structure are
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known as Vandermonde matrices. A well know result on such matrices tells us that V

has maximum rank r since the λ(j)s are distinct (Harville, 1997), hence in this case

rank(V) = r. It follows that Kυ (A,u) with υ > r, must have linear dependencies hence

the Krylov dimension q = r. ✷

Another interesting result which will be used in Chapter 7 is the one presented in

Proposition (4.7) below. To our knowledge the statement of this proposition is new to

the literature.

Proposition 4.7 For a Krylov sequence based on a symmetric matrix A and a non-zero

vector u, if dimK (A,u) = q and Sq (A,u) = span
({
e1, e2, e3, . . . , eq

})
= Rq × 0p−q

then

A =


 A11(q×q) O(q×p−q)

O(p−q×q) A22(p−q×p−q)




u =


 u1(q×1)

0(p−q×1)


 .

(4.10)

Recall from Chapter 2 that all elements of O and 0 are equal to zero.

Proof

Let

U =
[
u,Au, . . . ,Aq−1u

]

=
[
u(0),u(1), . . . ,u(q)

]
.

Given that Sq (A,u) = Rq × 0p−q and dimK (A,u) = q it follows that u(j) ∈ Rq × 0p−q

for all j ≥ 0. That is, if we partition u(j) into two pieces,

u(j) =


 u

(1)
(j)

u
(2)
(j)




then u
(2)
(j) = 0.
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Let

A =


 A11(q×q) A12(q×p−q)

AT
12(p−q×q) A22(p−q×p−q)


 .

Consider the following equation,

u(j) = Au(j−1)

=


 A11u

(1)
(j−1)

AT
12u

(1)
(j−1)


 .

From earlier observations we know that,

AT
12u

(1)
(j−1) = 0 for all j ≥ 0. (4.11)

Next partition matrix U as follows;

U =


 U1

U2




where U1 is a (q × q) matrix and U2 is a (p− q × q) matrix.

From equation (4.11) we know that AT
12U1 = 0. Since dimK (A,u) = q the columns

of U1 must be linearly independent. Hence U1 is a (square) non-singular matrix. If we

multiply AT
12U1 = 0, on the right, by U−1

1 we get AT
12 = 0

✷

There exist some useful results on dimK (A,u) when A is a tridiagonal matrix. The next

section is a review of those results which are most relevant to this work.

4.4 Krylov Sequences based on Tridiagonal Matrices

Algebraic manipulations as well as numerical computations can be simplified by

exploiting the structure of a matrix. A matrix structure that proves to be very useful

when working with Krylov sequence is that of a tridiagonal matrix. This section provides

an overview of some definitions and results on this type of matrix which are found in the

literature (see Golub and Van Loan (1996) and Parlett (1998)).
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Definition 4.3 A (p× p) matrix,T, is said to be tridiagonal if the only non-zero elements

it contains are found on its diagonal and lower and upper diagonal. That is if we denote its

ijth element by tij , then tij = 0 whenever |i− j| > 1, i, j ∈ {1, 2, . . . , p}. Furthermore

if for all |i− j| = 1, i, j ∈ {1, 2, . . . , p} , tij 6= 0 then T, is said to be unreduced.

For example a (4× 4) tridiagonal matrix would look as follows:

T =




t11 t12 0 0

t21 t22 t23 0

0 t32 t33 t34

0 0 0 t44




The main interest in this work shall be on symmetric matrices. Hence consider the

following (p× p) symmetric, tridiagonal matrix

T =




α1 β1 0 0 . . . 0

β1 α2 β2 0 . . . 0

0 β2 α3 β3 . . . 0

0 0 β3 α4
. . .

...
...

...
...

. . .
. . . βp−1

0 0 0 . . . βp−1 αp




Note that if for some k, βk = 0, then T has the following block diagonal form,

T =


 T1 0

0 T2




where T1 is a (k × k) tridiagonal matrix and T2 is a (p− k × p− k) tridiagonal matrix.

This results is easily generalized to the case when more then one of the βks is zero. The

results that follows present some important properties of tridiagonal matrices.

Lemma 4.8 The eigenvalues of an unreduced symmetric tridiagonal matrix T, are

distinct but may possibly be close to each other.

A proof of this result can be found in Parlett (1998, pg 134).
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Result 4.9 Let T =diag(T1,T2) and let Ti = ΨiΛiΨ
T
i be the spectral decomposition

of Ti, i = 1, 2. The spectral decomposition of T =Ψ̃ Λ̃ Ψ̃
T

where Λ̃=diag(Λ1,Λ2) and

Ψ̃ =diag(Ψ1,Ψ2) .

Proof

Assume Ψ̃ = diag(Ψ1,Ψ2) then it can be easily shown that Ψ̃
T
T Ψ̃ =diag(Λ1,Λ2) ✷

Let ei denote a p-dimensional vector with 1 at the ith entry and 0 in all other entries.

The statement and proof of the following proposition were inspired by work presented in

Chapter 8 of Golub and Van Loan (1996).

Proposition 4.10 If a Krylov sequence is generated by a (p× p) tridiagonal matrix A

and the p-dimensional vector e1 then

1. For any q ≤ p, if ai,i+1 6= 0 for i = 1, . . . , q − 1

Sq (A, e1) = span
({
e1,Ae1,A

2e1, . . . ,A
q−1e1

})

= span
({
e1, e2, e3, . . . , eq

})
= R

q × 0p−q

2. dimK (A, e1) = q⇔ q = min {i : for all j ≥ i, aj+1,j = 0} .

Proof

The first result will be proved by induction. For the second result, we shall show that it

holds for q = 1 and q = 2. Similar arguments can be applied for q ≥ 3.

1. Let a(j), j = 1, . . . , p, denote the column vectors of A. Since A is tridiagonal,

a(1) = a11e1 + a21e2 ∈ span(e1, e2) ⊂ R
p

for j = 2, . . . , p− 1,

a(j) = aj−1,jej−1 + ajjej + aj+1,jej+1 ∈ span(ej−1, ej, ej+1) ⊂ R
p

and for j = p,

a(p) = ap−1,pep−1 + appep ∈ span(ep−1, ep) ⊂ R
p.
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Now note that Aej = a(j) for all j and hence

Aa(1) = a11Ae1 + a21Ae2

= a11a(1) + a21a(2) ∈ span ({e1, e2, e3})

Aa(j) = aj−1,jAej−1 + ajjAej + aj+1,jAej+1 for j = 2, . . . , p− 2

= aj−1,ja(j−1) + ajja(j) + aj+1,ja(j+1) ∈ span
({
e1, e2, e3, . . . , ej+2

})

Similarly it can be shown that Aa(p) and Aa(p−1) are in span
({
e1, e2, e3, . . . , ep

})

Furthermore,

Ae1 = a(1),A
2e1 = Aa(1),A

3e1 = A
(
a11a(1) + a21a(2)

)
∈ span(e1, e2, e3, e4)

By induction it follows that

Aq−1e1 ∈ span ({e1, e2, e3, . . . , eq})

Hence span
({
e1,Ae1,A

2e1, . . . ,A
q−1e1

})
= span ({e1, e2, e3, . . . , eq})

2. Assume the Krylov dimension, q = 1, then

Sq (A, e1) = S1 (A, e1) = span ({e1}) for all q

which would mean that Aq−1e1 ∈ span ({e1}) for all q. In the proof of the first

result of this proposition, it was observed that

Aa(1) = a11Ae1 + a21Ae2

and for Aa(1) to be in span ({e1}) , a21 must be equal to 0. Now,

Aa(1) = A2e1 = a11 [a11e1 + a21e2] + a21 [a12e1 + a22e2 + a32e3]

= a11 [a11e1] ∈ span ({e1})

and hence for all q,Aq−1e1 ∈ span ({e1}) .

If on the other hand the Krylov dimension, q = 2, then

Sq (A, e1) = S2 (A, e1) = span ({e1, e2}) for all q.
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In proving the first result of this proposition it was observed that Ae1 ∈
span ({e1, e2}) and

A2e1 = a11 [a11e1 + a21e2] + a21 [a12e1 + a22e2 + a32e3] .

For A2e1 to be in span ({e1, e2}) , a32 must be equal to 0, then

A3e1 = (a11 [a11a1 + a21a2] + a21 [a12a1 + a22a2]) ∈ span ({e1, e2})

and it can be easily seen that for all q,Aq−1e1 ∈ span ({e1, e2})

From the above it can be deduced that in general we have that if Krylov dimension

equals q, aq+1,q = 0.

A similar argument can be used to show that if aq+1,q = 0 where q =

min {i : for all j ≥ i, aj+1,j = 0} then dimK (A, e1) = q

✷

Now consider the following partition for the (p× p) symmetric, tridiagonal matrix A

A =


 A11(q×q) A12(q×p−q)

AT
12(p−q×q) A22(p−q×p−q)




The second statement of the previous proposition tells us that for a Krylov sequence

generated by A and e1, dimK (A, e1) = q if and only if A12(q×p−q) = O(q×p−q) where O

is a matrix whose entries are all zeros. For a better understanding of this result consider

the following numerical example:

Example 4.11 Consider a Krylov sequence generated by

A =




1 a 0 0

b 1 0 0

0 0 1 c

0 0 d 1



, e1 =




1

0

0

0



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Note that since a3,2 = 0. Proposition 4.10 asserts that the Krylov dimension, q=2. To

check that this is true consider

Ae1 =




1

b

0

0




A2e1 =




1 + ab

2b

0

0




It can be shown that,

S1 (A, e1) = span ({ e1})

S2 (A, e1) = span ({ e1,Ae1}) = span ({ e1, , e2})

S3 (A, e1) = span
({
e1,Ae1,A

2e1
})

= span ({ e1, , e2}) .

It follows easily that any subspace of order greater than 3 is still equal to span ({ e1, e2})
hence q = 2.

4.5 Reducing an Arbitrary Symmetric Matrix to

Tridiagonal Form

The problem of reducing an arbitrary symmetric matrix to tridiagonal form using a

similarity transformation has been studied extensively in the literature. Most of the initial

literature on this problem was aimed at simplifying the problem of finding the eigenvalues

of a matrix. There are several ways to reduce an arbitrary square matrix to tridiagonal

form (see Golub and Van Loan, 1996; Parlett, 1998). Perhaps one of the most popular is

the Lanczos tridiagonalization algorithm (see Golub and Van Loan, 1996) which will

be used to prove the statement of the next theorem.
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Theorem 4.12 Given a (p × p) symmetric matrix A and some p−dimensional vector u

it is possible to find an orthogonal matrix Q such that

QTu = ce1 and QTAQ = T

where c is some scalar and T is a tridiagonal matrix.

Proof

Consider the k-dimensional Krylov subspace, generated by A and u,

Sk (A,u) = span
({
u,Au,A2u, . . . ,Ak−1u

})

An adaptation of the Gram-Schmidt orthogonalization process, known as the Lanczos

algorithm (Golub and Van Loan, 1996), can be applied to this basis to obtain an

orthonormal basis for this subspace, which will be denoted by
{
q(1),q(2),q(3), . . . ,q(k)

}
.

The matrix whose columns consist of the vectors of this basis will be shown to be the

required rotation matrix,Q in the statement of the theorem. This basis is obtained through

the following steps:

1. q(1) =
u
‖u‖

From Theorem (4.1) it follows that,

span(u,Au, . . . ,Ak−1u) = span(q(1),Aq(1), . . . ,A
k−1q(1))

2. Project Aq(1) onto q(1) and subtract the projection from Aq(1). Normalize the

resulting vector to obtain q(2). That is,

q(2) =
r1

‖r1‖

where r1 = Aq(1) −
(
qT
(1)Aq(1)

)
q(1). Let α1 = qT

(1)Aq(1) and β1 = ‖r1‖. It

follows that, r1 = β1q(2) and

Aq(1) =α1q(1) + β1q(2) ∈ span(q(1),q(2)). (4.12)

Furthermore note that,

A2q(1) = α1Aq(1) + β1Aq(2) ∈ span(q(1),q(2),Aq(2)). (4.13)
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It can be shown that for j = 3, . . . , k − 1, Ajq(1) ∈
span(q(1),q(2),Aq(2), . . . ,A

j−1q(2)). From which it can be concluded that,

Sk (A,q1) = span
(
q(1),q(2),Aq(2), . . . ,A

k−2q(2)

)

3. Using a similar step as above let,

q(3) =
r2

‖r2‖

where r2 = Aq(2)−
(
qT
(1)Aq(2)

)
q(1)−

(
qT
(2)Aq(2)

)
q(2). Let α2 = qT

(2)Aq(2) and

β2 = ‖r2‖. It follows that,

β2q(3) = Aq(2) −
(
qT
(1)Aq(2)

)
q(1) − α2q(2) (4.14)

Given that the qjs are orthogonal pre-multiplying equation (4.12) by qT
(1) yields,

qT
(1)Aq(2)=α1q

T
(1)q(2) + β1q

T
(2)q(2) = β1

Substituting this result in equation (4.14) yields β2q(3) = Aq(2) − β1q(1) − α2q(2)

which implies that

Aq(2) = β2q(3)+β1q(1) + α2q(2)

This in turn implies that,

span
(
q(1),q(2),Aq(2), . . . ,A

k−2q(2)

)
= span(q(1),q(2),q(3), . . . ,A

k−3q(3))

4. Similarly as in the previous steps, for j ≥ 4, the jth vector is orthogonalized by

computing its residual with respect to the plane formed by all the previous j − 1

orthogonal vectors. Therefore for the jth step we have:

rj−1 = Aq(j−1) −
j−1∑

i=1

(
qT
(i)Aq(j−1)

)
q(i) (4.15)

q(j) =
rj−1
‖rj−1‖

(4.16)

each time leading to a basis
{
q(1),q(2),q(3), . . . ,q(j), . . . ,A

k−jq(j)

}
.
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The iterative algorithm described above then leads to the orthonormal basis
{
q(1),q(2),q(3), . . . ,q(k)

}
for Sk (A,x) . This basis is known in literature as the Lanczos

basis and the q(i)s are known as Lanczos vectors.

LetQ(p×k) =
[
q(1),q(2),q(3), . . . ,q(k)

]
. Next we will show that this matrix is the rotation

matrix of the statement of the theorem.

Note that,

QTu =




qT
(1)

qT
(2)

...

qT
(k)



u = ‖u‖




qT
(1)

qT
(2)

...

qT
(k)



q(1) = ‖u‖ e1

Furthermore, since q(j) by construction is orthogonal to all the previous Lanczos vectors

qT
(j)rj−1 =

rTj−1
‖rj−1‖

rj−1 = qT
(j)Aq(j−1) −

j−1∑

i=1

(
qT
(i)Aq(j−1)

)
qT
(j)q(i) = qT

(j)Aq(j−1) = βj.

Note that since A is symmetric qT
(j−1)Aq(j) = qT

(j)Aq(j−1) = βj.

Let tij = qT
(i)Aq(j) then we can write,

rj−1 = Aq(j−1) −
j−1∑

i=1

ti,j−1q(i).

It can then be shown that in general,

Aq(j−1) =

j−1∑

i=1

ti,j−1q(i).

Using matrix notation this equation can be collected for j = 1, . . . k as follows

A(p×p)Q(p×k)= Q(p×k)T(k×k) (4.17)

Note that if a(i) denotes the ith column of A and ai denotes the ith row of A, a(i) =

ai by symmetry of A. Let t(j) denote the jth column of T then equation (4.17) can be

re-written as:
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


a1

a2
...

an




[
q(1),q(2), . . . ,q(k)

]
=




q1

q2

...

qn




[
t(1), t(2), . . . , t(k)

]

or equivalently as,

[
Aq(1),Aq(2), . . . ,Aq(k)

]
=

[
Qt(1)Qt(2), . . . ,Qt(k)

]
.

Note that

Aq(1) = α1q(1) + β1q(2) = t11q(1) + t21q(2) =




∑2
j=1 q1jtj1

∑2
j=1 q2jtj1

...
∑2

j=1 qnjtj1




Qt(1) =




q1t(1)

q2t(1)
...

qnt(1)



=




∑k
j=1 q1jtj1

∑k
j=1 q2jtj1

...
∑k

j=1 qnjtj1




Since Aq(1) = Qt(1) it follows that tj1 = 0 for j > 2 and by symmetry of A it follows

that t1i = 0 for i > 2.

Now,

Aq(2) =
∑3

i=1
ti2q(i) = β1q(1) + α2q(2) + β3q(3)

and

Qt(2) =




∑k
j=2q1jtj2

∑k
j=2q2jtj2

...
∑k

j=2qnjtj2



.

Since Aq(2) = Qt(2) it follows that tj2 = 0 for j > 3 and by symmetry of A it follows

that t2i = 0 for i > 3.
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Note that,

Aq(3) =
∑3

i=1
ti3q(i) = t23q(2) + t33q(3) + t43q(4) = β2q(2) + α3q(3) + β3q(4).

It can be shown that in general,

Aq(j) = βj−1q(j−1) + αjq(j) + βjq(j+1).

Then using similar arguments as for Aq(1) and Aq(2) it follows that

T =




α1 β1 0 0 . . . 0

β1 α2 β2 0 . . . 0

0 β2 α3 β3 . . . 0

0 0 β3 α4
. . .

...
...

...
...

. . .
. . . βk−1

0 0 0 . . . βk−1 αk




✷

It is a well documented fact in literature that Lanczos algorithm (presented in the previous

proof) is greatly afflicted by rounding errors.

In Golub and Van Loan (1996) one finds a detailed discussion of this algorithm in which

the authors outline the mathematical problems that afflict it. The main points of this

discussion are the following:

• If ‖rj‖ 6= 0 for each j = 1, . . . , p, T and Q are uniquely defined.

• The algorithm breaks down when rj−1 = 0, in which case βj = ‖rj‖ = 0 and T is

a reduced tridiagonal matrix. When this happens there are two options

– Add an extra constraint to the algorithm presented above whereby the

algorithm is stopped at the (j − 1)th iteration if ‖rj−1‖ = 0.

Or

– q(j+1) is chosen as an arbitrary unit vector orthogonal to the preceding qs .

The tridiagonalization process may then be continued but in this case T and

Q are no longer uniquely defined.
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The two options were coded using R software. The first option is referred to as

the adjusted Lanczos algorithm and the R function which computes this algorithm

is called adjtridiag. The second option is referred to as the modified Lanczos

algorithm and R function which computes this algorithm is called tridiagM. (See

Appendix E for codes).

• If a symmetric matrix A has zero eigenvalues and/or eigenvalues with multiplicity

greater then 1, the Lanczos algorithm terminates prematurely. To be more specific

it terminates at the q∗th iteration where q∗ denotes the number of non-zero, distinct

eigenvalues of A

Definition 4.4 The value m at which the Lanczos algorithm breaks down can be

considered to be an upper bound for the possible values of the Krylov dimension q. This

upper bound shall be referred to as the numerical Krylov dimension denoted by q∗.

The following well known results on similarity transformations which we state according

to our needs can be found on any standard textbook on Matrix algebra (see Harville,

1997):

Theorem 4.13 Given a symmetric matrix A(p×p) and an orthogonal matrix Q(p×p)

1. rank
(
QTAQ

)
=rank(A)

2. QTAQ and A have the same eigenvalues

3. If ψ is an eigenvector of A corresponding to λ, then QTψ is an eigenvector

of QTAQ corresponding to λ and similarly if ϕ is an eigenvector of QTAQ

corresponding to λ then Qϕ is an eigenvector of A corresponding to λ.

These results emphasize the fact that instead of considering Sk (A,u) we can work with

Sk
(
QTAQ,QTu

)
= Sk (T, e1) .
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Chapter 5

Grassmann Manifolds

5.1 Introduction

In optimization literature it has long been recognized that optimization problems with

orthogonality constraints can be simplified if such constraints are represented by some

matrix manifold such as the Grassmann manifold. Such a representation will be exploited

in Chapter 7.

Optimization over Grassmann manifolds is a well understood topic and efficient

algorithms can be applied. Edelmann et al. (1998) provide a framework for such

algorithms which draws upon ideas from optimization, numerical linear algebra and

differential geometry. A detailed theoretical analysis of optimization algorithms on matrix

manifolds can be found in the book by Absil et al. (2008).

The purpose of this chapter is to reproduce, from various sources, the theoretical and

practical aspects related to optimization over the Grassmann manifold that are relevant to

the maximization problem discussed in Chapter 7. The current chapter is organized as

follows: Section 5.2 contains the necessary theoretical concepts related to Grassmann

manifolds. Section 5.3 introduces Grassmann manifolds and presents some of their

different, yet equivalent, representations as well as some of their properties. Section 5.4

provides a basic understanding of the geometric structure of the Grassmann manifold

which is essential for the development of efficient algorithms on this manifold. The

topic of Section 5.5 is numerical optimization techniques. Starting from an overview
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of some unconstrained optimization techniques on Euclidean space, their generalization

to the Grassmann manifold is discussed. Computer dependent considerations required

when coding the algorithms on some computer are also presented. This chapter is not an

exhaustive survey of the subject. For a more detailed overview of the topics discussed

here see Edelmann et al. (1998), Mittal and Meer (2012), Plumbley (2004), Absil et al.

(2008), Dennis and Schnabel (1996) and references therein.

5.2 Definitions and Theoretical Concepts

This section presents definitions and results that are required to understand the different

representations of the Grassmann manifold presented in the following section. The first

definition is of the matrix exponential which will play a major role in this work.

Definition 5.1 Given A ∈ Rp×p, exp (A) is defined by the following power series

exp (A) =
∞∑

k=0

Ak

k!
∈ R

p×p. (5.1)

Now consider the direct sum of k matrices Ai, i = 1, . . . , k defined by

A1 ⊕A2 ⊕ . . .⊕Ak = diag (A1,A2, . . . ,Ak) . (5.2)

Then

exp (A1 ⊕A2 ⊕ . . .⊕Ak) = diag (exp (A1) , . . . , exp (Ak)) . (5.3)

This result follows immediately from the fact that if A = diag (A1, . . . ,Ak), A
i =

diag (Ai
1, . . . ,A

i
k) for all i ≥ 0.

Definition 5.2 The general linear group of degree n over R, denoted GL (p) is a group

whose elements are (p× p) invertible matrices with entries from R and for which the

group operation is the usual matrix multiplication. The group is so named because the

columns of an invertible matrix are linearly independent.

Definition 5.3 The orthogonal group of degree p over R, denoted O (p), is a group whose

elements are (p× p) orthogonal matrices with entries from R and for which the group

operation is the usual matrix multiplication. That is,
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O (p) =
{
Q ∈ GL (p) | QTQ = QQT = Ip

}
.

Note that, O(p) consists of two disjoint subgroups: the first subgroup denoted by

SO(p), consists of (p× p) orthogonal matrices with determinant 1, which correspond

to rotation matrices while the other subgroup consists of (p× p) orthogonal matrices

with determinant -1 corresponding to reflection matrices. SO(p) is known as the special

orthogonal group.

The following are well known results from Lie algebra which are stated here without

proof. For more detail see Hall (2000) and Plumbley (2004).

Result 1 The Lie algebra for SO (p) denoted by so (p) is the vector space of real

(p× p) skew-symmetric matrices, i.e.,

so (p) =
{
A ∈ R

p×p | A+AT = 0
}

(5.4)

Result 2 The exponential map from the set of skew-symmetric matrices to the set

of rotation matrices, exp : so (p)→ SO (p) is surjective. The point being here that

given A ∈ so (p) , ∀α ∈ R, exp (αA) = Γ ∈ SO (p) . Note that different choices

of A can generate the same Γ (see propositions 5.1 and 5.2.)

Result 3 The Lie algebra of a Lie group is its tangent space at the identity. In other

words so (p) is the space of all tangent vectors at Ip.

From Result 2 it follows that the exponential map allows a parametrization of SO (p) in

terms of elements of so (p).

In the next subsection the exponential map of skew-symmetric matrices is explored

further.

5.2.1 Skew-symmetric matrices and the exponential map

A skew-symmetric matrix, A, is a (p× p) matrix that satisfies the condition AT = −A.

Clearly this condition imposes that the diagonal elements of A are all zero and that if the

ijth element of A is equal to aij the jith element of A is equal to -aij. The following is
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a list of well known results on skew-symmetric matrices which are stated from literature.

For derivations see Meyer (2000), Paarderkooper (1971), Gower and Zeilman (1998), and

Harville (1997).

Let A be a (p× p), real skew-symmetric matrix. Then:

1. Its singular values occur in pairs and its eigenvalues are either 0 or purely imaginary,

that is, of the form ±iλj , λj ≥ 0. If p is odd A has at least one zero eigenvalue and

hence the set of eigenvalues is
{
±iλ1, . . . ,±iλ p−1

2
, 0

}
, whereas if p is even the set

of eigenvalues is
{
±iλ1, . . . ,±iλ p

2

}
. This means that the rank, denoted by r, of

such matrices (which is equal to the number of non-zero eigenvalues) must always

be an even number. It follows that if p is odd det(A) = 0 whereas if p is even

det(A) ≥ 0.

2. The singular value decomposition of A has the form

A =MΛJMT (5.5)

where Λ =diag{λ1, λ1, λ2, λ2, . . .} is a (p× p) diagonal matrix whose elements

are the singular values of A ordered in descending order. When p is even, J is a

block diagonal permutation matrix with (2× 2) blocks, defined by


 0 1

−1 0


 .

On the other hand when p is odd the last diagonal element of Λ must be 0 and the

corresponding block of J is then a (1× 1) matrix with element 1. To visualize this

better, consider a (5× 5) skew-symmetric matrix. For this matrix

J =




0 1 0 0 0

−1 0 0 0 0

0 0 0 1 0

0 0 −1 0 0

0 0 0 0 1




.

Note that J,M and JMT are (p× p) orthogonal matrices. The columns of M and

JMT are, respectively, left and right singular vectors of A. Hence if rank(A) =
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r ≤ p (which is always even)

A =

r/2∑

i=1

λi

(
m(2i−1)m

T
(2i) −m(2i)m

T
(2i−1)

)
.

Note that if r < p,

ΛJ = D = D1 ⊕ · · · ⊕Dr/2 ⊕ 0⊕ · · · ⊕ 0 (5.6)

where

Dj =


 0 λj

−λj 0




If r = p and p is even the zeros in the direct sum (5.6) are dropped. This direct sum

is known as Murnaghan’s canonical form. Paarderkooper (1971) gives a method for

computing such a reduction.

3. For any p-dimensional vector x, xTAx = 0.

Next we consider an interesting result related to (2× 2) skew-symmetric matrices which

take the form,

A (b) = b


 0 1

−1 0


 , b ∈ R (5.7)

Thus having one degree of freedom. It can be shown that the matrix exponential of such

matrices can be written in terms of sines and cosines of b. Note that the eigenvalues of

such matrices are ±ib.

Proposition 5.1 For a (2× 2) skew-symmetric matrix it can be shown that

exp


 0 b

−b 0


 =


 cos b sin b

− sin b cos b


 = R

where R is a rotation matrix.

Proof

Let I2 denote the 2-dimensional identity matrix and J =


 0 1

−1 0


. It can be shown

that for any k ∈ {0, 1, 2, ...}

A4k = b4kI2,A
4k+1 = b4k+1J,A4k+2 = −b4k+2I2,A

4k+3 = −b4k+3J
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then the matrix exponential of this matrix is given by

exp (A) =
∞∑

k=0

Ak

k!
=

∞∑

k=0

[
A4k

4k!
+

A4k+1

(4k + 1)!
+

A4k+2

(4k + 2)!
+

A4k+3

(4k + 3)!

]

=
∞∑

k=0

[
b4k

4k!
− b4k+2

(4k + 2)!

]
I2 +

∞∑

k=0

[
b4k+1

(4k + 1)!
− b4k+3

(4k + 3)!

]
J

Now using Taylor expansions it can be shown that

∞∑

k=0

[
b4k

4k!
− b4k+2

(4k + 2)!

]
=

∞∑

k=0

(−1)k b2k

2k!
= cos (b)

∞∑

k=0

[
b4k+1

(4k + 1)!
− b4k+3

(4k + 3)!

]
=

∞∑

k=0

(−1)k b2k+1

(2k + 1)!
= sin (b)

Then

exp (A) = cos (b) I2 + sin (b)J = R

✷

Note that matrix R ∈ SO (2) ; in fact all matrices in SO (2) can be written in this form,

for some 0 ≤ b < 2π.

Proposition 5.2 For a (p× p) skew-symmetric matrix, A,

exp (A) =M exp (D)MT (5.8)

where if rank(A) = r < p, exp (D) =diag
(
exp (D1) , . . . exp

(
Dr/2

)
, exp (Ip−r)

)
and

for j = 1, . . . , r/2,

exp (Di) =


 cosλi sinλi

− sinλi cosλi


 = Ri

Proof

Result follows by considering proposition (5.1), Murnaghan’s canonical form given in

equation (5.6), and applying the result in equation (5.3). ✷

Proposition 5.3 If A is a (p× p) skew-symmetric matrix,exp (A) is a rotation matrix.
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Proof

To prove this result it suffices to show that exp (A)T exp (A) = Ip and |exp (A)| = 1.

These can be easily shown by applying Proposition 5.2. Note that

exp (D)T exp (D) = diag
(
RT

1R1, . . .R
T
r/2Rr/2, Ip−r

)
= Ip

|exp (D)| =




r/2∏

i

|Ri|


 |Ip−r| = 1

✷

Consider once again Proposition 5.2; partition M into two blocks, M =[
M

(1)
(p×r),M

(2)
(p×(p−r))

]
and then partition M(1) into blocks of two columns, M(1) =

[
M1, . . . ,Mr/2

]
. Then

R = exp (A) =M(2)M(2)T +

r/2∑

i=1

MiRiM
T
i (5.9)

This implies that after a suitable change of basis,R, is built up from a collection of (2× 2)

rotation matrices plus an identity on the non-rotated components. That is

MTRM = diag
(
R1, . . .Rr/2, Ip−r

)

Note that the columns ofM come in pairs corresponding to the same singular value. Each

pair spans a two-dimensional space (plane). For example vectors m(2i),m(2i−1) form a

basis for the ith plane.

5.2.2 Block skew-symmetric matrices

Of particular interest in this work are what shall be referred to as “block” skew-symmetric

matrices. A is said to be a block skew-symmetric matrix if it is of the form

A =


 0k×k Bk×(p−k)

−BT
(p−k)×k 0(p−q)×(p−k)


 (5.10)

where p > 2, k < p and B is an arbitrary ((p− k)× k) real matrix. It can be shown that

there is a link between the SVD of A and that of B. Suppose for simplicity that p is even
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and consider the SVD of B = M̃Λ̃Ñ
T

where Λ̃ is a k × (p− k) rectangular diagonal

matrix with diagonal elements, λj ≥ 0, j = 1, . . . , k and M̃ =
[
m̃(1), . . . , m̃(k)

]
and

Ñ =
[
ñ(1), . . . , ñ(p−k)

]
are (k × k) and (p− k × p− k) column orthonormal matrices,

respectively. Then


 Bk×(p−k) 0q×q

0(p−k)×(p−k) BT
(p−k)×k




=


 M̃k×k 0k×p−k

0(p−k)×k Ñ(p−k)×(p−k)




 Λ̃k×(p−k) 0k×k

0(p−k)×(p−k) Λ̃T
(p−k)×k




 ÑT

(p−k)×(p−k) 0(p−k)×k

0(p−k)×k M̃T
k×k


 ,


 ÑT

(p−k)×(p−k) 0(p−k)×k

0(p−k)×k M̃T
k×k




 0(p−k)×q I(p−k)

−Ik 0k×(p−k)


 =


 0(p−k)×k ÑT

(p−q)×(p−k)

−M̃T
k×k 0k×(p−k)




from which it follows that

A =


 M̃k×k 0k×p−k

0(p−k)×k Ñ(p−k)×(p−k)




 Λ̃k×(p−k) 0k×k

0(p−k)×(p−k) Λ̃T
(p−k)×k




 0(p−k)×k ÑT

(p−k)×(p−k)

−M̃T
k×k 0k×(p−k)




(5.11)

Comparing (5.11) with (5.5) and letting

I
(1)
k×k =


 Ik

0q×(p−k)


 , I

(2)
k×p−k =


 0k×p−k

Ip−k


 (5.12)

it follows that for i = 1, . . . , p/2,m(2i−1) ∈ span
{
I
(2)
k×p−k

}
and m(2i) ∈ span

{
I
(1)
k×k

}
. To

gain a better understanding of this relation consider the following examples:

Example 5.4 Suppose that p=4 and k=2 and let

B =


 0 3.141593

1.570796 3.141593



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Then

A =




0 0 0 3.141593

0 0 1.570796 3.141593

0 −1.570796 0 0

−3.141593 −3.141593 0 0




Note that B has rank 2 and A has rank 4 here. SVD for B = M̃Λ̃ÑT where

M̃=


 −0.6618026 −0.7496782
−0.7496782 0.6618026




=
[
m̃(1) m̃(2)

]

Ñ=


 −0.2566679 0.9664996

−0.9664996 −0.2566679




=
[
ñ(1) ñ(2)

]

Λ̃ =diag(4.587997, 1.075590)

SVD for A =MΛNT where

M=




0 0.6618026 0 0.7496782

0 0.7496782 0 −0.6618026
0.2566679 0 0.9664996 0

0.9664996 0 −0.2566679 0




=
[
m(1) m(2) m(3) m(4)

]

Λ = diag(4.587997, 4.587997, 1.075590, 1.075590)

N=




−0.6618026 0 0.7496782 0

−0.7496782 0 −0.6618026 0

0 0.2566679 0 −0.9664996
0 0.9664996 0 0.2566679




=
[
n(1) n(2) n(3) n(4)

]

=
[
−m(2) m(1) m(4) −m(3)

]
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From which we note that

m(1) = n(2) =




0

0

−ñ(1)


 ,m(2) = −n(1) =




−m̃(1)

0

0


 ,

m(3) = −n(4) =




0

0

ñ(2)


 ,m(4) = n(3) =




m̃(2)

0

0




Example 5.5 Suppose that p=6 and k=4 and let

B =




0 1.047193

1.570796 3.141593

3.141593 1.570796

1.047193 0




Then

A =




0 0 0 0 0 1.047193

0 0 0 0 1.570796 3.141593

0 0 0 0 3.141593 1.570796

0 0 0 0 1.047193 0

0 −1.570796 −3.141593 −1.047193 0 0

−1.047193 −3.141593 −1.570796 0 0 0




SVD for B = M̃Λ̃ÑT where

M̃=




−0.1533930 −0.3922323 0.8567980 0.29752593

−0.6902685 −0.5883484 −0.4159188 0.06623549

−0.6902685 0.5883484 0.2606389 −0.33082160
−0.1533930 0.3922323 −0.1580385 0.89311156




=
[
m̃(1) m̃(2) m̃(3) m̃(4)

]

Ñ=


 −0.7071068 0.7071068

−0.7071068 −0.7071068




=
[
ñ(1) ñ(2)

]
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Λ̃=




4.827342 0

0 1.887862

0 0

0 0




SVD for A =MΛNT where

M=




0 0.1533930 0 0.3922323 0.8567980 0.29752593

0 0.6902685 0 0.5883484 −0.4159188 0.06623549

0 0.6902685 0 −0.5883484 0.2606389 −0.33082160
0 0.1533930 0 −0.3922323 −0.1580385 0.89311156

0.7071068 0 −0.7071068 0 0 0

0.7071068 0 0.7071068 0 0 0




=
[
m(1) m(2) m(3) m(4) m(5) m(6)

]

Λ = diag(4.827342, 4.827342, 1.887862, 1.887862, 0, 0)

N=




−0.1533930 0 −0.3922323 0 0.29752593 0.8567980

−0.6902685 0 −0.5883484 0 0.06623549 −0.4156188
−0.6902685 0 0.5883484 0 −0.33082160 0.2606389

−0.1533930 0 0.3922323 0 0.89311156 −0.1580385
0 0.7071068 0.0000000 −0.7071068 0 0

0 0.7071068 0.0000000 0.7071068 0 0




=
[
n(1) n(2) n(3) n(4) n(5) n(6)

]

=
[
−m(2) m(1) −m(4) m(3) m(6) m(5)

]

From which we note that

m(1) = n(2) =




0

0

ñ(1)


 ,m(2) = −n(1) =




−m̃(1)

0

0


 ,

m(3) = n(4) =




0

0

−ñ(2)


 ,m(4) = −n(3) =




−m̃(2)

0

0



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Note thatm(5),m(6),n(5) and n(6) can be chosen arbitrarily here, as long as the resulting

matricesM andN are orthogonal, since these correspond to a 0 singular value. However

in this example m(5) = n(6) and m(6) = n(5).

Note that if B = 0, exp (A) = Ip.

From here onwards the set of block skew-symmetric matrices will be denoted by so
∗ (p) ,

i.e.

so
∗ (p) =



A ∈ R

p×p | A =


 0k×k Bk×(p−k)

−BT
(p−k)×k 0(p−q)×(p−k)








Note that so∗ (p) is a vector subspace of so (p)

5.3 The Grassmann Manifold

The Grassmann manifold or Grassmanian, denoted by G(p, k), is the set of all k-

dimensional subspaces of the vector space, Rp, where 0 ≤ k ≤ p, p ≥ 1. A point in

G(p, k) is a vector subspace of the Euclidean space, which may be specified by a (p× k)

semi-orthogonal matrix whose columns form an arbitrary basis for the vector subspace

of interest. The set of all (p× k) orthonormal matrices is known as a Stiefel Manifold,

denoted ST (p, k). Note that in the cases k = 0 and k = p, G(p, k) is trivial as it contains

only one point. The case k = 1 is known as real projective space, RPp−1 and is the set of

all straight lines passing through the origin of Rp. The special cases where p = 2 and 3

are known as the real projective line and the real projective plane respectively.

The representation of a subspace in terms of a basis is not unique and hence the need to

introduce the idea of equivalence classes, where two matricesU1,U2 ∈ ST (p, k) are said

to be equivalent if they span the same subspace. Let [U] denote an equivalence class of all

(p× k) orthonormal matrices whose columns span the same subspace in Rp as U. Then,

[U] = {URU | RU ∈ O(k)} (5.13)

represents a point on G (p, k). Note that, for each k-dimensional subspace there is a

unique, orthogonal, complementary (p− k)-dimensional subspace, such that the two
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subspaces form the whole of Rp. Let [V] denote the equivalence class representing the

subspace that is complementary to that represented by [U]. Then

[V] = {VRV | RV ∈ O(p− k)} (5.14)

which is an element of G (p, p− k). Hence there is a natural identification between

G (p, k) and G (p, p− k) .

By using equivalence classes and Lie group theory, a Grassmann manifold can also be

represented as a quotient space within the orthogonal group O(p) (Edelmann et al., 1998).

Note that it is not possible to move smoothly between the disjoint subgroups of O(p) since

multiplying by a matrix of determinant -1 moves the point from one subgroup to another

(Plumbley, 2004). The interest in this work is in subspaces, for which it is always possible

to choose orthonormal bases U and V such that [U,V] is in SO(p); allowing reflections

does not lead to any new subspaces. Hence, to simplify computations, the quotient space

representation which will be presented shortly will be restricted to SO(p).

Consider Γ(p×p) = [U,V] ∈ SO(p); then it follows that its column space is equal to Rp.

Then Γ I
(1)
p×k = U and ΓI

(2)
p×p−k= V (see (5.12)). A point on G (p, k) can be represented

by the equivalence class,

[Γ] =



Γ


 RU 0

0 RV


 | RU ∈ SO(k),RV ∈ SO(p− k)



 (5.15)

and corresponds to the subspace spanned by the first k columns of any (p× p) matrix in

this equivalence class. Note that SO (p) is a group with matrix multiplication as the group

operation. SO (k)× SO (p− k) is a subgroup of SO (p) defined by:

SO (k)× SO (p− k) =






 RU 0

0 RV


 | RU ∈ SO(k),RV ∈ SO(p− k)





The quotient space whose elements are defined as (5.15) is denoted by

SO (p) / (SO (k)× SO (p− k)) and corresponds to the Grassmann manifold. From

this representation it is clear that points on the Grassmann manifold are subsets of the

orthogonal matrices. It is well known that the dimension of both SO (p) and O (p)

is p (p− 1) /2. The term ’dimension’ here is taken to mean the number of ’free’ (not
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fixed by structure) parameters in a parametrization. The dimension of the quotient space

corresponding to G (p, k), is given by

p (p− 1)

2
−

[
k (k − 1)

2
+

(p− k) (p− k − 1)

2

]
= k (p− k) . (5.16)

An alternative representation of points in G(p, k) is by means of orthogonal projection

matrices of the form, P = UUT , which are idempotent of rank k. Such a representation

is unique but requires p2 parameters to represent a point in a manifold of dimension

k (p− k). Hence this representation will not be considered further. Edelmann et al. (1998)

observe that there exist applications in physics for which this representation proves to be

useful.

Earlier it was observed that the exponential map allows a parametrization of SO (p) in

terms of the lie algebra so (p). In the next section it will be shown that by writing

equivalence classes of the form (5.15) in terms of points in so (p) it is possible to

parametrize G (p, k) in terms of skew-symmetric matrices. This representation will play

an important role in Chapter 7.

5.4 Geometry of the Grassmann Manifolds

The differential geometry of Grassmann manifolds is well understood. Interested readers

are referred to Mittal and Meer (2012) and Edelmann et al. (1998). A brief description

of the basic geometric properties, namely, the geodesic, canonical metric and the tangent

and normal spaces will be presented here. Movement from one element to another on

the Grassmann manifold by means of geodesic curves, which are the curves of shortest

distance between two points on a manifold, will be explored.

It has been observed in the literature that geodesics in SO(p) are also geodesics in G (k, p)

provided that they are perpendicular to the orbits generated by SO (k) × SO (p− k)

(Gallivan et al., 2003). Thus before considering geodesics on the Grassmann manifold,

geodesics on SO(p) will be discussed.

Let the geodesic curve between two points Γ0,Γ1 ∈ SO(p) be denoted by Γ (t) such that

Γ0 = Γ (0) and Γ1 = Γ (δ) where 0 ≤ t ≤ δ, t ∈ R. Let Γ̇ (t) denote the first derivative
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of Γ (t) with respect to t. Mittal and Meer (2012) show that

Γ (t) = Γ (0) exp (At) (5.17)

Γ̇ (t) =
[
U̇ (t) V̇ (t)

]
= Γ (t)A (5.18)

where A is a p × p skew-symmetric matrix and hence, by Proposition 5.3, exp (At) ∈
SO(p). From which it follows that Γ (t) ∈ SO(p) for 0 ≤ t ≤ δ, since as we have seen

earlier on, SO(p) is a group with matrix multiplication as the group operation. Thus it

follows that points on the geodesics always lie on the manifold. Note that A exp (At) =

exp (At)A. Γ̇ (t) represents the velocity at any time t. Γ̇ (t) ∈ TΓ(t) for 0 ≤ t ≤ δ where

TΓ(t) denotes the tangent space at a point Γ (t), that is the set of all tangent vectors at Γ (t).

Intuitively the tangent space can be said to be a real vector space containing the possible

’directions’ from which one can tangentially pass through a point on the manifold. The

normal space, NΓ(t), at Γ (t) is the orthogonal complement of the tangent space. Note

that the normal space makes sense only for manifolds which are embedded in Euclidean

space, such as SO(p) (not for the Grassmann manifold as defined here).

Figure 5.1: An illustration of the tangent and normal spaces at a point X on SO(p) (Mittal and

Meer, 2012).

The Grassmann geodesics can be defined by [Γ (t)] where one amalgamates (5.17) with

(5.15). Note that, when performing computations on the Grassmann manifold some Γ ∈
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SO (p) is used to represent the entire equivalence class. Hence movement from one point

to another on the Grassmann manifold can be viewed as moving between points in SO(p).

This can be seen as moving back and forth from the Grassmann manifold to SO (p). Now

in SO (p), TΓ consists of two linear subspaces called the vertical and horizontal spaces

(see Figure (5.1)). These subspaces are orthogonal complements to each other. Movement

along the tangent vectors in the vertical space at Γ ∈ SO (p) keep the point in the same

equivalence class [Γ], in other words the point on the Grassmann manifolds remains fixed.

It is movements along the horizontal space at Γ ∈ SO (p) that corresponds to movement

between points on the Grassmann manifold. For this reason the geodesics for Grassmann

manifolds are restricted to the horizontal tangent space. Before defining horizontal and

vertical tangent spaces at a point on the Grassmann manifold their definition on SO (p)

will be presented since by now it is clear that there is a close link between these two

manifolds.

The horizontal tangent vectors at Γ ∈ SO (p) are of the form

∆Γ = ΓA =Γ


 0k×k Bk×(p−k)

−BT
(p−k)×k 0(p−k)×(p−k)


 =

[
−VBT UB

]
(5.19)

where B is an arbitrary k × (p− k) matrix. The dimension of the horizontal space is

(p− k) k. On the other hand the vertical tangent vectors at Γ are of the form

ΦΓ = Γ


 Ck×k 0k×(p−k)

0(p−k)×k D(p−k)×(p−k)


 =

[
UC VD

]
(5.20)

where C is a k × k skew-symmetric matrix and D is a (p− k) × (p− k) skew-

symmetric matrix. The dimension of the vertical space at Γ ∈ SO (p) is k (k − 1) /2 +

(p− k) (p− k) /2 = p (p− 1) /2− (p− k) k. Hence the dimension of the entire tangent

space, TΓ, which is the sum of the dimensions of the vertical and horizontal space, is

k (k − 1) /2 (Edelmann et al., 1998).

At any point [Γ] in the Grassmann manifold the horizontal tangent vectors are of the form:

[
∆Γ

]
=




[
−VBT UB

]

 RU 0

0 RV


 | RU ∈ SO(k),RV ∈ SO(p− k)




(5.21)

The vertical space is defined by transforming equation (5.19) in a similar way.
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In order to move from one point to another on the Grassmann manifold one can make use

of the Grassmann geodesics given by

[Γ (t)] = [Γ (0) exp (At)] (5.22)

where A is restricted to have the following block skew-symmetric form


 0k×k Bk×(p−k)

−BT
(p−k)×k 0(p−k)×(p−k)


 (5.23)

for some arbitrary k × (p− k) matrix, B 6= 0. (Although, as mentioned earlier, in

computations a particular matrix is taken to represent the entire equivalence class and

hence the SO (p) geodesic with B as in (5.23 ) is typically used). The sub-matrix B

specifies the direction of geodesic flow and therefore the Grassmann manifold can be

parametrized locally using the matrix B. To understand such a local parametrization,

consider the simple case when p = 2 and k = 1. As mentioned earlier, for these

dimensions the Grassmann manifold corresponds to the set of all straight lines passing

through the origin in R2. Such lines can be represented as unit vectors passing through

the origin in R2. In this case the sub-matrix B becomes a scalar which we denote by b1

and exp(A) can be viewed as a rotation matrix corresponding to a clockwise rotation of

the unit vector, aligned with the negative x-axis, by an angle of size |b1|.
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Figure 5.2: Points on G(2, 1) can be represented by unit vectors from (0, 0) to the green semi-

circle.

From Figure 5.2 it is clear that in order to consider distinct lines, one need only consider

values of b1 ∈ [0, π). In general, without loss of generality, it is possible to restrict

attention to matrices, B such that ‖B‖F = 1. For such matrices the sum of the squared

singular values ofB is equal to 1 which in turn implies that all the singular values are less

than 1. Singular values of tB are then equal to t times the singular values of B. From

section 5.2.1 it follows that the singular values of tB represent angles of rotation in a two

dimensional space. Figure 5.2 suggests that if we consider the lines passing through the

origins as axis, and if we take these axis in pairs (for example consider the lines marking

the positive x-axis and the positive y-axis in Figure 5.2) and rotate them an angle of

π/2, this results in the original vertical axis and the negative side of the horizontal axis

hence to avoid repetition in this case we need to consider angles smaller than π/2. This

suggests that for t ∈
[
0, π

2

)
each matrix tB determines a different point on the Grassmann

manifold in a neighborhood of the point [Γ]. If larger values of t are considered, one-

to-one correspondence can be lost. This implies that, at least locally, the correspondence

between every point on the manifold and the set of k×(p− k) real matrices is one-to-one.
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These observations lead us to make the following original claims:

Claim 5.6 Consider the Grassmann geodesics defined by (5.22). Let [Γ] denote a point

on the Grassmann manifold.

1. (Global Coverage) As B ranges through the space of q × (p− q) matrices, the

corresponding point [Γ] ranges through the whole Grassmann manifold.

2. (Local Coverage). If B varies in a neighborhood of the origin, then [Γ] varies in a

neighborhood of [Ip] .

3. (Lack of Uniqueness) Different choices of B can generate the same [Γ].

Absil et al. (2008) observe that the set Rk×(p−k) of (k × (p− k)) real matrices is itself a

manifold having a one-one correspondence to Rk(p−k) which is defined by the following

function (which in Riemannian geometry is known as a chart),

ϕ : Rk×(p−k) → R
k(p−k) : B 7→ vec (B) (5.24)

The notation vec(·), introduced in Chapter (2), represents the vectorization of a matrix to

a column vector. The manifold Rk×(p−k) can then be transformed into a Euclidean space

by endowing it with the inner product

〈B1,B2〉 := vec (B1)
T

vec (B2) = tr
(
BT

1B2

)
(5.25)

Using this inner product it is possible to define a metric on the Grassmann manifold,

which, as we have seen earlier, should be restricted to the horizontal tangent space. The

inner product between two horizontal vectors at some point [Γ] is given by:

〈
∆1

Γ,∆2
Γ
〉
= tr(

(
∆1

Γ)T∆2
Γ
)
= 2tr

(
BT

1B2

)
(5.26)

where ∆1
Γ and ∆2

Γ are of the form (5.19). This corresponds to the orthogonal group

metric restricted to the horizontal space. Edelmann et al. (1998) suggest that (5.26) is

multiplied by 1/2 to avoid factors of 2 when defining the metric.

Optimization techniques on the Grassmann manifold require the measure of the distances

between two points on the manifold, that is, a metric. Since the Grassmanian space is
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curved the distance between two points can be defined to be the length of the geodesic

curve between the points. On a computer any member of the equivalence class of the

form (5.15) can be used to represent the corresponding point on the manifold which is

then equivalent to span
(
ΓI

(1)
(p×k)

)
. Then the distance between two subspaces represented

by Γ0I
(1)
(p×k) = Γ (0) I

(1)
(p×k) and Γ1I

(1)
(p×k) is given by (see Wong (1967) and Edelmann et al.

(1998))

d
(
Γ0I

(1)
(p×k),Γ1I

(1)
(p×k)

)
=

∫ 1

0

tr
(

I
(1)T
(p×k)Γ̇ (0)T Γ̇ (0) I

(1)
(p×k)

)1/2

dt

= tr
(
I
(1)T
p×kA

TΓT
0Γ0AI

(1)
p×k

)(1/2)

= tr
(
BVT

0V0B
T
)(1/2)

= tr
(
BBT

)(1/2)

By considering the SVD of B = M̃Λ̃Ñ
T

where Λ̃ is a k × (p− k) rectangular diagonal

matrix with diagonal elements, λj ≥ 0, j = 1, . . . , k and M̃ and Ñ are (k × k) and

(p− k × p− k) column orthonormal matrices, respectively it follows that,

d (Γ0,Γ1) = d (U0,U1) = tr
(
Λ̃Λ̃T

)1/2

=

(
k∑

j=1

λ2
j

)1/2

(5.27)

Wong (1967) observes that the λjs correspond to the principal (or canonical) angles

between the subspaces generated by the first k columns of Γ0 and Γ1 and take values

between the range [0, π/2], for Γ(t), 0 ≤ t ≤ 1 to be the unique geodesic curve joining

these two points. If at least one of the λjs is greater than π/2, Γ(t) is not the curve of

shortest distance. This implies that to ensure that Γ(t) is the geodesic curve one needs to

check that all the singular values of B, satisfy λj < π/2.

5.5 Numerical Optimization Techniques

The main interest in this work is in problems involving the maximization of a function

f (U) (or equivalently minimization of −f (U)) where U is constrained to the set of

(p× k) matrices such that UTU = Ik and for which the homogeneity assumption,

f (U) = f (UQ) where Q is a (k × k) orthogonal matrix, holds. Such problems can

be recast as unconstrained optimization problems on the Grassmann manifold.
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Optimization techniques on manifolds usually involve rewriting the optimization problem

in terms of a local parametrization about some point [Γ] ∈ G (p, k) at each iteration

(Manton, 2002). There are numerous local parametrization one can look at. Here the

geodesic curve, which was discussed in the previous section, coupled with the chart

(5.24) will be considered. The main motivation for opting to use geodesics is that, as

was shown in the previous section, for the special orthogonal group, the geodesics have

simple expressions described by an exponential map.

Several traditional optimization methods such as the steepest descent method, Newton

method and the conjugate gradient have been extended to manifolds. By considering

the quotient space representation of the Grassmann manifold, Edelmann et al. (1998)

developed Newton-type and conjugate gradient algorithms on the Grassmann manifold.

Manton (2002) uses the projection matrix representation of the Grassmann manifold

and presents a steepest descent-type and Newton-type algorithm with complex-valued

constraints. The algorithms presented in these two papers are shown to converge to a local

minimum which is not necessarily the global minimum. Manton (2002) observes that both

steepest descent-type and Newton-type algorithms have their own advantages. However

steepest descent-type algorithms tend to converge to a local minimum at a much slower

rate then Newton-type algorithms. But for Newton-type algorithms convergence to a local

minimum is not guaranteed. Adragni et al. (2012) present gradient-based algorithms on

the Grassmann manifold which make use of the quotient space representation and the

corresponding geodesic representation. They code these algorithms into an R package

called ’GrassmannOptim’ and in this package they also included a method for searching

for the global optimizer. Details on this algorithm can be found in their paper.

Next a brief description of the Steepest Descent and Newton methods in Euclidean space

will be presented followed by an overview of how they can be extended to Grassmann

manifolds. The discussions in Euclidean space follow from the book by Dennis and

Schnabel (1996). The properties of finite-precision computer arithmetic that are relevant

to understand the computer-dependent considerations which affect the construction of

algorithms in R software will also be discussed here.
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5.5.1 Optimization in Euclidean Space

Optimization literature typically considers minimization problems where an

unconstrained minimization problem considers a function f : Rn → R and seeks

a vector xopt∈ R
n such that f (xopt) ≤ f (x) for all x ∈ R

n. It is well known that if xopt

minimizes −f then it maximizes f and hence the two problems are analogous. In this

dissertation, given that the interest is in the method of maximum likelihood which is a

maximization problem, the discussion will stray from optimization tradition in that the

results will be presented for the maximization problem which can be abbreviated by

max
x∈Rn

f : Rn → R (5.28)

Furthermore only non-linear functions f which are twice continuously differentiable will

be considered.

Definition 5.4 A continuous function f : Rn → R is said to be twice continuously

differentiable at x ∈ R
n if for i, j = 1, . . . , n

(

∂f
∂xi

)

(x) and
(

∂2f
∂xi∂xj

)

(x) exist and are

continuous. Then the gradient of f at x is defined by

∇f (x) =

[

∂f

∂x1

(x) , . . .
∂f

∂xn

(x)

]T

and the Hessian of f at x is defined as the (n× n) symmetric matrix

H (x) = ∇2f (x) =

[

∂2f

∂xi∂xj

]

i,j=1,...,n

Functions can have more than one critical value and hence can have both local and global

maxima (minima). xopt is said to be a global maximum if f (xopt) ≥ f (x) for all x ∈ R
n,

on the other hand it is a local maximum if there exists an ǫ > 0 such that f (xopt) ≥
f (x) for all x satisfying ‖x− xopt‖ < ǫ. The necessary conditions for xopt to be a local

maximimum of f are: the gradient, ∇f (xopt) , equals 0 and the Hessian, H (xopt), is at

least negative semi-definite. A sufficient condition is that H (xopt) is negative definite.

∇f (xopt) = 0 implies that xopt is either a maximum, a minimum or a saddle point.

Negative definite corresponds to the geometric interpretation of strict local concavity and

hence implies that the function curves down in all directions from xopt. The term globally

convergent algorithm will be used to refer to an algorithm that converges to a local
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maximizer from almost any starting point. Techniques that are not ’global optimizers’ do

not necessarily provide the highest point of f (x) when the function has more than one

critical value but are designed to converge to a local maximimum.

Here two strategies for solving (5.28) are considered: the Steepest Ascent method which

is globally convergent and the Newton’s method which is locally convergent. These are

iterative methods that produce a sequence of vectors x1,x2, . . . , from an initial guess x0.

Users of such methods are interested in knowing if such iterates converge to a solution,

and if so, how quickly is such a convergence achieved. To be able to discuss rates of

convergence some definitions are required.

Definition 5.5 A sequence of real vectors,{xk} , k = 1, 2, . . . is said to converge to a real

vector xopt if, lim
k→∞

‖xk − xopt‖2 = 0.

Definition 5.6 If there exists constant scalars b > 1, c ≥ 0 and K ≥ 0 such that {xk},
converges to xopt and for all k ≥ K, ‖xk+1 − xopt‖2 ≤ c ‖xk − xopt‖b2 holds, then {xk}
is said to converges to xopt with order b. If b = 1 the convergence is said to be linear while

if b = 2 the convergence is said to be quadratic.

Steepest Ascent (SA) Method

The basic idea behind the steepest ascent (SA) method is geometrically simple: take steps

in an “uphill direction”. This method consists of choosing a direction d from the current

point xk in which the objective function increases and then moving along this direction to

a new point xk satisfying f (xk+1) > f (xk) . Such a direction is referred to as an ascent

direction. Mathematically d is an ascent direction if

∇f (x)T d > 0. (5.29)

Note that ∇f (x)T d is equal to the directional derivative of f at x in the direction of d,

which is defined by
∂f

∂d
(x) ≡ lim

ǫ→0

f (x+ǫd)− f (x)

ǫ
. (5.30)

If d satisfies (5.29) then for small δ > 0, f (xk+1 + δd) > f (xk). The steepest ascent

direction is the vector d that maximizes the directional derivative, ∇f (x)T d, under the
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condition that ‖d‖ = 1. Explicitly this is defined by:

d =
∇f (x)

‖∇f (x)‖ (5.31)

What is left is to derive the step size δ to be taken in this steepest ascent which can be

calculated using a line-search method at each iteration. The steepest ascent algorithm can

be defined as follows:

Algorithm 5.1 Steepest Ascent method for unconstrained maximization.

1: Select an initial solution x0.

For k = 1, 2, 3, ... until a stopping criterion is satisfied repeat the following steps

1. Compute the Steepest Ascent Direction

dS
k = ∇f (xk) / ‖∇f (xk)‖

2. Compute the update

xk+1 = xk + δkd
S
k

where δk > 0 is the solution to max
δ

(

f
(

xk + δdS
k

))

It is known that the Steepest Ascent method is a globally convergent method which has a

very slow rate of convergence and is very sensitive to changes in the scale of x. In many

circumstances it is not computationally efficient.

Newton’s Method

In Newton’s method, the objective function, f, at the solution of the kth iteration is

modeled through the following quadratic approximation

f (xk + d) ≈ mk (xk+d) = f (xk) +∇f (xk)
T
d+

1

2
dTH (xk)d

where dTH (xk)d is equal to the second directional derivative of f at x in the direction

of d defined by

∂f 2

∂d2
(x) ≡ lim

ǫ→0

∂f
∂d

(x+ǫd)− ∂f
∂d

(x)

ǫ
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and a point xk+1 = xk + dN
k that maximizes mk is sought. The corresponding algorithm

is the following:

Algorithm 5.2 Newton’s method for unconstrained maximization.

1: Select an initial solution x0.

For k = 1, 2, 3, ... until a stopping criterion is satisfied repeat the following steps

1. Compute the Newton direction

dN
k = −H−1 (xk)∇f (xk)

2. Compute the update

xk+1 = xk + dN
k

Note that dN
k is an ascent direction if the Hessian is negative definite while if the Hessian

is positive definite it corresponds to a descent direction. Thus for maximization problems

if the Hessian at any iteration is not negative definite, the Newton step is not sensible

as it does not increase the objective function. It is well known that if the starting

point, x0, is chosen such that it is sufficiently close to a local maximizer, xopt, of

f at which the Hessian is negative definite and hence non-singular, Newton’s method

converges quadratically to xopt. Furthermore if f is strictly convex, xopt will be a unique

maximizer. This method however has an number of problems. First of all it is not a

globally convergent method. Secondly it requires analytical formulations of∇f (xk) and

H (x), which are not always possible. Thirdly it may converge to any critical point not

necessarily a maximum point. Each step simply goes to the closest critical point of the

local quadratic model which can be a maximum, minimum or a saddle point. If the

initial point taken is far from any critical point it may not converge at all. A well known

solution to the second problem is using finite-difference approximation of the derivatives.

Such approximations will not be considered in this thesis. To overcome the other two

problems, the philosophy which is typically used is that of constructing hybrid algorithms
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that combine a globally convergent method such as the Steepest Ascent with a fast local

method such as Newton’s. The general idea behind such hybrid algorithms is to use

Newton’s method or some modification of it when it seems to be working well, otherwise

fall back on a slower but global method such as the steepest ascent. Global methods for

unconstrained maximization make sure that at each step of the algorithm the value of the

objective function, f, increases. When x0 is far from a critical value of the function a

global method can be used to bring the updated values close to the critical value when

this is close enough the local method steps in to speed up the convergence towards the

critical value. By construction, provided the initial solution is not very far from the

maximum point, these hybrid algorithms are globally convergent and possess the fast

local convergence of Newton’s method. When the initial solution is very far from being

optimal the SA method may require quite a lot of iterations before the solution is brought

close enough for the Newton method to step in.

5.5.2 Optimization over the Grassmann Manifolds

This section briefly describes how the Steepest Ascent and Newton Methods can be

extended to solve optimization problems over the Grassmann Manifold.

Consider a twice continuously differentiable function F : G(p, k)→ R and suppose that

the aim here is to find [Γopt] ∈ G (p, k) such that F (Γopt) ≥ F (Γ) for all Γ ∈ SO (p).

One of the major differences when employing the Steepest Ascent and Newton methods

on the Grassmann manifold is in the update step which is done using geodesics instead

of the classical linear interpolation. Another important difference lies in the calculation

of the gradient and Hessian of a function which depend on the parametrization used and

the choice of metric (see Edelmann et al. (1998)). In the literature one finds various ways

of calculating these attributes of the function (see for example Edelmann et al. (1998),

Manton (2002) and Absil et al. (2008)). A method similar to that employed by Manton

(2002) will be considered here.

In constructing algorithms, it will be assumed that at each iteration step sizes should

be relatively small. This allows us to consider the local parametrization in term of the

set of (k × (p− k)) real matrices, B, which was described at the end of section 5.4.
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By considering the transformation of the manifold R(k×(p−k)) into a Euclidean space,

presented in equation (5.4), it is possible to consider the second-order Taylor series

approximation of F .

To simplify computations write B in terms of a unit norm matrix ,B0, i.e. ‖B0‖2F =

tr
(

BT
0B0

)

= 1. that is B = ǫB0. The Taylor series approximation of F as a function of

B, provided it is sufficiently differentiable, is given by

F (B) = F (0) + ǫtr
(

DT
BB0

)

+
ǫ2

2
vec (B0)

T
HBvec (B0) +O

(

ǫ2
)

(5.32)

where DB ∈ Rq×(p−q) is the derivative of F evaluated at B, tr
(

DT
BB0

)

=

vec(DB)
Tvec (B0), is the directional derivative of F in direction B0 evaluated at B0= 0

and HB ∈ Rq(p−q)×q(p−q) is the Hessian of F evaluated at B.

Once an explicit formulation for the gradient and Hessian of F are obtained, assuming

these exist, it is possible to define Steepest Ascent-type and Newton-type algorithms on

the Grassmann manifold. The general steps involved in such adaptations of these classical

optimization techniques are described next.

All optimization algorithms on the Grassmann manifold that are considered in this work,

start at Γ0 = Ip ∈ SO (p) = exp (0) where 0 ∈ so
∗ (p) which is equivalent to B0 = 0 ∈

R(k×(p−k)). The reason for selecting this initial solution will become clear in Chapter 7.

Newton Method

For the Newton method on the Grassmann Manifold the aim is to find a point B which

maximizes the quadratic form on the right hand side of (5.32). This is equivalent to

finding a k (p− k) × 1 vector b = vec (B) that maximizes (5.32). (Note that B =

matrix(b,k, p − k)-see Chapter 2). To find the optimal vector b, suppose that HB is

negative definite then the gradient of the following quadratic form

m (B) =
1

2
vec (B)T HBvec (B) + vec (DB)

T
vec (B) + f (0) (5.33)

is given by
∂m (B)

∂B
= HBvec (B) + vec (DB) . (5.34)
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Setting (5.34) equal to zero yields:

b = −H−1
B vec (DB) (5.35)

provided HB is invertible. Note that if HB is negative definite, b is an ascent direction

while if HB is positive definite b is a descent direction.

Algorithm 5.3 Newton’s method for unconstrained maximization on a Grassmann

manifold.

1: For k = 0, 1, 2, 3, ... until a stopping criterion is satisfied repeat the following steps

1. Compute the gradient, DB(k)
, and the Hessian HB(k)

of F in R(k×(p−k))

2. Compute bk = −H−1
B(k)

vec
(

DB(k)

)

3. The Newton direction and step size are than defined by B(k) =

matrix (bk, q, p− k).

4. Let B̃(k) = B(k)/
∥

∥B(k)

∥

∥

5. Compute A(k) =





0 B̃(k)

−B̃T
(k) 0





6. Compute the update Γ(i+1) = Γ(i) exp
[

δiA(i+1)

]

. Here δi > 0 represents

the size of the step taken in the steepest ascent direction. Given the results

presented in Section 5.4 δi is chosen from the set [0, π/4] by using a

general line search method which solves max
δ

(

f
(

Γ(i) exp
[

δA(i+1)

]))

such

that f
(

Γ(i) exp
[

δA(i+1)

])

> f
(

Γ(i)

)

.

Each singular value of B represents an angle of rotation about a certain circle. In Section

5.4 it was observed that the geodesic curve requires that the maximum singular value ofB,

λmax be less than π/2. This makes sure we move small distances on the manifold. In order

to take very small steps from the solution of the previous iteration adequate measure are

taken when constructing the Newton-type algorithm to ensure that the maximum singular

value of the chosen B, at each Newton iteration, is bounded by π/4. Furthermore a line

search to find the optimal step size, similar to that applied to the SA algorithm, will be

applied at each iteration of the Newton method. Once again to ensure convergence the
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values of the step size are restricted to the set [0, π/4]. The general steps of the Newton

with line search method on the Grassmann manifold are defined in Algorithm (5.3). Note

that in this algorithm the operator matrix (·) divides the vector bk into (p− k) blocks of

length k which are used to make up the (p− k) columns of B(k).

Unfortunately this algorithm carries the same disadvantages of Algorithm (5.2). That

is, the initial value determines whether the algorithm converges to a local minimum,

maximum, saddle point or does not converge at all. The Newton algorithm can be unstable

if started at a point where the Hessian is not negative definite. If the Hessian is badly

behaved NR can be very erratic.

Steepest Ascent

The extension of the Steepest Ascent method on the Grassmann manifold is quite

straightforward as can be seen in Algorithm (5.4) found on the next page.

Algorithm 5.4 Steepest Ascent method for unconstrained maximization on Grassmann

manifold.

1: For k = 0, 1, 2, 3, ... until a stopping criterion is satisfied repeat the following steps

1. Compute the Steepest Ascent Direction on R(k×(p−k))

DS
k =

DB(k)
∥

∥

∥DB(k)

∥

∥

∥

where DB(k)
denotes the gradient of F in R(k×(p−k)), see equation (5.32)

2. Let B(k+1) = DS
k and compute A(k+1) =





0 B(k+1)

−B(k+1)T 0





3. Compute the update Γ(k+1) = Γ(k) exp
[

δkA(k+1)

]

. Here δk > 0 represents

the size of the step taken in the direction of steepest ascent direction. From

Section 5.4 it is known that δk should be smaller than π. In this algorithm

to ensure convergence δk is chosen from the set [0, π/4] by using a general

line search method which solves max
δ

(

f
(

Γ(k) exp
[

δA(k+1)

]))

such that

f
(

Γ(k) exp
[

δA(k+1)

])

> f
(

Γ(k)

)

.
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5.5.3 Computer Arithmetic

When it comes to implement the previously discussed algorithms on a computer it is

important to keep in mind that certain features of the algorithms, such as the convergence

criteria, depend on how accurately real numbers are represented by the machine being

used. When coding such algorithms a basic understanding of finite-precision arithmetic

(computer version of real arithmetic) is essential. For details see Dennis and Schnabel

(1996) and Golub and Van Loan (1996).

The term floating-point representation refers to a method of representing a real number

on a computer. Such representations are required because a real number can be infinite

(as great as desired), but its representation on a computer can only occupy a predefined

number of bits. Hence not every real number has an exact representation on a computer.

In many aspects a floating-point representation is similar to scientific notation where for

example the number 62.45 is written as 0.6245×102. The fields making up a floating-point

representation are: the sign bit, the base field, the exponent field, and the significand or

mantissa. For the number 62.45 these components are ’+’,10,+2 and 0.6245 respectively.

On a particular computer the floating-point system is made up of four integers: the base

b, the precision t (which is the length of the mantissa), and the exponent range [EL, EU ] .

Then the set ̥ of all numbers of the form

η = ±0.d1d2 . . . dt × be, 0 ≤ di ≤ b, d1 6= 0, EL ≤ e ≤ EU

is a subset of R whose elements are floating-numbers. In the double precision system

used by R software b = 2 on all machines but the exponent range may change from one

machine to the other.

Storing real numbers to only finite precision has important implications. First of all given

that some real number are represented only approximately on a computer, the best one can

expect is that the solutions obtained are as accurate as the computer precision. The results

of intermediate arithmetic operations are typically truncated or rounded to the accuracy of

the machine used and this results in an accumulation of inaccuracy due to finite precision

which decreases the accuracy of final solutions. These phenomena are called round-off

errors. Their effects on numerical solutions can be rather difficult to analyze but there are

situations where they can be of great harm to the computational accuracy. Two examples
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of such situations are: computing the sum of a sequence of numbers that are decreasing

in absolute values and calculating the difference of two almost identical numbers (Dennis

and Schnabel, 1996). Clearly finite-precision arithmetic has an effect on certain aspects

of the algorithms discussed earlier, such as the stopping criteria which depend on the

precision of the computer used. However a way exists for characterizing machine

precision such that computer programs are reasonably independent of the particular

machine used. This characterization is given by means of a concept known as machine

epsilon which refers to the smallest positive number τ such that 1 + τ > 1. Machine

epsilon may differ from one machine to another. Machine epsilon plays a major role

in computer programs when it is required to decide if a finite-precision number is small

enough to be considered approximately zero. A machine epsilon of 10−7 indicates that

there are 7 decimal digits of precision in the numeric values stored and manipulated by a

computer. R software uses a double precision arithmetic for its floating-point calculations

which are carried out with 53 binary digits. The machine precision is derived by typing

’.Machine$double.eps’ and this is typically equal to 2ˆ− 52 = 2.220446e− 16.

In Chapter 7 the concepts and ideas discussed in this chapter are applied in order to

define a ’hybrid’ algorithm which makes use of both steepest ascent and Newton steps

on the Grassmann manifold, and which will be used to obtain a numerical solution to a

constrained maximum likelihood problem.
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Chapter 6

Understanding Partial Least Squares

(PLS) Regression

6.1 Introduction

Partial Least Squares (PLS) is a popular regularization method in multiple regression

that has been used successfully as an algorithm for many years. In spite of this, to our

knowledge a standard text that gives an in-depth coverage of the statistical interpretation

of the method seems to be missing in the literature. The aim of this chapter is to

consolidate and extend results in the literature to show that PLS estimation can be

regarded as an estimation technique under a statistical model based on the so-called

“Krylov hypothesis”. An innovative interpretation of the PLS estimator as an approximate

maximum likelihood estimator under this model is then presented. This interpretation

underlines the fact that PLS regression is a statistical regression technique in its own

right. This chapter makes use of concepts and results presented in Chapters 2, 3 and 4.

6.2 Statistical Model for PLS Regression

The general idea behind the PLS regression model, is to reduce the number of explanatory

variables by projecting x ∈ R
p onto a lower dimensional subspace of its column space,

while retaining as much of the information in x that is required to predict y. This idea
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of dimension reduction has been introduced in Chapter 3. In this section we start by

presenting the population model for PLS regression and then move on to describing

the sampling framework. The general regression framework presented in Chapter 2 is

considered.

6.2.1 Population Model

The dependent variable and the explanatory variables are assumed to have a joint

multivariate normal distribution with parameters, E[y] = µy, E[x] = µx, Var[y] = σyy,

Var[x] = Σxx and Cov[x, y] = σxy. The PLS population model satisfies what shall be

referred to as the Krylov hypothesis of order q, which states that:

The structure of Σxx and σxy is such that dimK (Σxx,σxy) = q. (6.1)

Here dimK (Σxx,σxy) denotes the Krylov dimension which has been defined in Chapter 4,

Section 4.3. Given this hypothesis, it can be said that in the population version of the PLS

regression model (Helland, 1990), it is assumed that the vector of regression parameters

for the multiple linear regression (MLR) model of y on x, β (x, y), is in span(G) where

G is the following Krylov matrix,

Kq (Σxx,σxy) =
[

σxy Σxxσxy Σ
2
xxσxy . . . Σq−1

xx σxy
]

. (6.2)

Note that Kq (Σxx,σxy) has full rank, q under (6.1). Here span(G) corresponds to the

qth order Krylov subspace generated by Σxx and σxy and denoted by Sq (Σxx,σxy).

The following proposition shows that if x undergoes a similarity transformation (such as

location, scale and rotation) the Krylov hypothesis remains true.

Proposition 6.1 Assume that dimK (Σxx,σxy) = q. Then the following statements hold:

1. (Location) For any non-zero vector a ∈ R
p, if v = x− a, then dimK (Σvv,σvy) =

q.

2. (Scale) For any non-zero scalar c, if v =cx, then dimK (Σvv,σvy) = q.
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3. (Rotation) Let A denote a (p× p) rotation matrix and let v = ATx then

dimK (Σvv,σvy) = q.

Proof

1. Follows trivially from the fact that Σvv = Σxx,σvy = σxy.

2. Σvv = c2Σxx,σvy = cσxy. Any vector z ∈Sq (c2Σxx,cσxy) can be written in the

form

z=a1cσxy + a2c
2Σxxσxy+a3c

5Σ2
xxσxy+ · · ·+ar−1c

2q−1Σq−1
xx σxy

= b1σxy + b2Σxxσxy+b3Σ
2
xxσxy+ · · ·+bq−1Σ

q−1
xx σxy

hence z ∈Sq (Σxx,σxy). Therefore Sq (c2Σxx,cσxy) ⊂ Sq (Σxx,σxy) and the result

follows.

3. Σvv = ATΣxxA, σvy = ATσxy and the result then follows from Proposition (4.5)

in Chapter 4.

✷

At times, for numerical convenience, it is helpful to change the coordinate system of the

problem at hand. In the PLS framework the third result of the previous proposition asserts

that the Krylov Hypothesis still holds after such a change. Exploiting matrix structure is

another way of simplifying computations and given the myriad of results on tridiagonal

matrices presented in Chapter 4, this special matrix structure will be exploited in this

chapter.

Result 6.2 From the results in Chapter 4 it follows that:

1. It is possible to find a rotation matrixQ such that ifw = QTx, σwy = QTσxy=ce1

and Σww = QTΣxxQ is tridiagonal with the (q, q + 1)th and (q + 1, q)th entries

equal to 0.
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2. Sq (Σww,σwy) = QTSq (Σxx,σxy)

3. Sq (Σww,σwy) = span
({

e1, e2, e3, . . . , eq
})

= Rq × 0p−q.

Under the new coordinate system presented, in Result 6.2, the population PLS vector of

coefficients is given by

β (w, y) = cG̃
(

G̃TΣwwG̃
)−1

G̃Te1 (6.3)

where G̃ is the following Krylov matrix of rank q,

Kq (Σwwσxy) =
[

e1 Σwwe1 Σ
2
wwe1 . . . Σq−1

wwe1
]

(6.4)

Hence β (w, y) ∈ span
(

G̃
)

= Rq × 0p−q. Given that G̃ = QTG it follows that,

β (x, y) = Qβ (w, y) (6.5)

Later on in this chapter the PLS regression model shall be viewed from an inverse

regression perspective. This can be accomplished by considering Chapter 4, Theorem

(4.1), from which it can be noted that, since Σx|y = Σxx−σ−1yy σxyσ
T
xy it follows that for

any r

Sr (Σxx,σxy) = Sr
(

Σx|y,σxy
)

(6.6)

This result allows us to conclude that dimK (Σxx,σxy) = dimK

(

Σx|y,σxy
)

.

6.2.2 Sampling Framework

The previous formulation of the PLS estimator is in terms of the population parameters

which are usually unknown and need to be estimated. An estimator for the PLS vector of

regression coefficients can be obtained by replacing population covariances and variances

by sample covariances and variances in all the formulas in Section 6.2.1. The PLS

estimate of the vector of regression parameters can be defined as,

β̂PLS (X, y) = Ĝ
(

ĜTSxxĜ
)−1

ĜT sxy (6.7)
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where sxy is the vector of sample covariances between y and the variables in x and

Ĝ= [sxy Sxxsxy S
2
xxsxy . . . Sq−1

xx sxy]. This representation has been derived by Helland

(1988). Helland also derived various other equivalent representations with Ĝ replaced

by another matrix D such that Ĝ and D have the same column space. The different

algorithms for computing PLS regression that are available in the literature, derive

different matrices which span the same space as Ĝ. More detail on the algorithmic

representation of the PLS estimator will be given in Section 6.4. The formula for the

PLS estimator depends on the assumed value of the Krylov dimension, q which is taken

to be a known value here (and in most of the sections of this chapter). The issue of

estimating the value for the Krylov dimension will be discussed in section 6.6.

The first part of the first statement in Result 6.2 holds even when the population

parameters are replaced by sample estimates. That is, it is always possible to find

a rotation matrix which tridiagonalizes the sample variance-covariance matrix but the

(q, q + 1) and (q + 1, q) entries will not generally be equal to 0. Consider the change of

coordinate system where W = XQ, and Sww is tridiagonal. It is important to stress here

that Q , which is calculated using the Lanczos algorithm (see Chapter 4), depends on the

data available. Different samples will lead to a different Q which is of course different

from the population Q. The PLS solution is obtained by setting the the (q, q + 1)th

and (q + 1, q)th entries of Sww to zero and denoting this adjusted covariance matrix by

Sww,PLS . The second and third statements in Result 6.2 hold even when the population

parameters are replaced by these PLS sample estimates. Thus under this new coordinate

system

β̂PLS (W,y) = cĜw

(

ĜT
wSww,PLSĜw

)−1
ĜT
we1 (6.8)

where Ĝw =
[

ce1 cSww,PLSe1 cS2
ww,PLSe1 . . . cSq−1

ww,PLSe1
]

= QT Ĝ. Furthermore

span
(

Ĝw

)

= Rq × 0p−q = QT span(Ĝ) and

β̂PLS (X,y) = Qβ̂PLS (W,y) (6.9)

Note that Helland (1990) proved that the estimator in equation (6.8) is a consistent

estimator of the regression parameter in equation (6.3).
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6.3 Historical development of the Partial Least Squares

(PLS) Regression Method

This section presents a journey through time starting from the origins of Partial Least

Squares (PLS), outlining the different milestones in its development in the regression

framework with the aim of gaining a better understanding of the mechanism behind this

estimation technique.

The origins of PLS regression date back to the late sixties in the field of econometrics

and are attributed to the Swedish statistician Herman Wold. Wold proposed this new

technique, in his 1966 paper entitled ’Estimation of Principal Components and related

models by Iterative Least Squares’, as an algorithm for computing principal components

from a block of independent variables. In a second paper published in 1975 and entitled

’Soft modeling by latent variables: the nonlinear iterative partial least squares approach’,

Wold modified this algorithm in order to take into account the response variable(s) when

extracting latent variables. This algorithm has come to be known as the NIPALS algorithm

and the PLS method was built on its properties.

One of the areas in which PLS is highly and successfully applied is chemometrics.

In chemometrics PLS is typically applied to solve calibration problems. A calibration

problem is a spectrometric problem in which a combination of a large number of spectral

frequencies is used to estimate the concentration of constituents for which light absorption

does not occur in separate frequency regions. The aim is to seek an optimal combination

of the absorption at several frequencies which can then be used to approximate a measured

set of concentrations. The signals of each particular wavelength are considered as

explanatory variables. The number of wavelengths can be several hundred and often

exceed the number of chemical samples. Such data exhibits multicollinearity. Calibration

problems can be both multivariate, that is consider more than one constituent at a time

(multiple responses), and univariate, that is each constituent is modeled separately (one

response). The PLS method can be applied in both cases. When PLS is applied to

univariate multiple regression it is commonly referred to as PLS1, in the literature, and

corresponds to the model introduced in the first section of this chapter. In this work, due

to time and space limitations, only PLS1 will be considered.
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The introduction of the PLS method in the field of chemometrics is attributed to Wold’s

son, Svante, in collaboration with Harald Martens. In its initial years the PLS model

was developed mainly by chemometricians who in the most part relied on intuition and

heuristic arguments. Its properties were mostly investigated by practical examples. Hence

very little was known about its statistical properties. An attempt at providing a statistical

interpretation to the PLS method seems to have been started by Naes and Martens

(1985). However the main contributions in the literature concerned with a theoretical

understanding and a statistical model underlying PLS can be attributed to Helland (1988,

1992, 2001) and form the foundation of our work. In their papers Naes and Martens and

Helland focus on the PLS1 model.

In the initial development of PLS a population model was not defined. Naes and Martens

(1985) derived formulas for the population model parameters for which existing PLS

algorithms yield estimates, by concentrating on consistency (convergence in probability),.

Helland (1988) provides a formal proof of the equivalence of two seemingly different PLS

algorithms by looking at their algebraic structure. The first algorithm was presented in

Wold et al. (1983, 1984) and shall be referred to as the PLS Regression algorithm with

orthogonal scores. The second algorithm is the same as that used by Naes and Martens

(1985) to study some of the statistical aspects of the PLS method which Helland (1988)

revisits. This second algorithm shall be referred to as the PLS Regression algorithm with

non-orthogonal scores. By making use of the equivalence between these two algorithms

Helland derives an explicit formula for the resulting prediction equation and uses this

formula to study the regression models from several points of view.

Stone and Brooks (1990) provide a general framework of the PLS method and two other

regression methods. Their Continuum Regression method adds a continuous parameter

α, where 0 ≤ α ≤ 1, allowing the modeling method to vary continuously between

OLS regression (α = 0) , PLS regression (α = 0.5) and principal components regression

(PCR) (α = 1) .

It is known that the PLS model with q components is equivalent to the conjugate gradient

algorithm applied to OLS objective function but stopped after q iterations. For a detailed

overview of this relation see Phatak and De Hoog (2002).
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Throughout the years various alternatives to Wold’s original PLS algorithm have been

proposed. The difference between the algorithms lies in the way they construct a basis for

Sr
(

Sxx, sxy
)

. More detail on this will be given in Section 6.4.

Time frame for algorithmic Implementations of the PLS regression

• In 1957 H. Wold introduces the NIPALS (Non-linear iterative partial least squares)

algorithm.

• S.Wold et al. (1983, 1984) - PLS Regression algorithm with orthogonal scores -

modified version of original NIPALS algorithm.

• Naes and Martens (1985) - PLS Regression algorithm with non-orthogonal scores.

• De Jong (1993) - SIMPLS Algorithm. Shown to be very efficient when the number

of explanatory variables is very large.

• Rosipal (2001) - Kernel PLS algorithm for non linear dimension reduction and

regression. A detailed overview of this algorithm can be found in Blanchard and

Krämer (2010).

In the next section we shall briefly overview the general mechanism behind the PLS

algorithms.

6.4 Algorithmic Representation of the PLS Regression

Method

Note that in the definition of the PLS estimator given in equation (6.7) the matrix Ĝ can be

replaced by any other (p× q) matrix whose columns form a basis for Sr
(

Sxx, sxy
)

. It has

been observed, in the literature, that
(

ĜTSxxĜ
)−1

is often highly ill-conditioned making

equation (6.7) impractical for calculating β̂
q

PLS (x,y) . In fact, the different algorithms

which are presented in the literature generate an alternative basis for Sr
(

Sxx, sxy
)

. The

aim of this section is to give a general idea of how these algorithms work, limiting our

attention to the PLS1 case.
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It is common practice that prior to implementing the algorithms the vector of response

variables y and the data matrix X are either mean-centered or scaled or both. Scaling

corresponds to working with correlations instead of variances and covariances. Here the

centered and scaled versions will be used which are denoted by X̃ and ỹ. Mean centering

simplifies the model understudy while scaling the variables to unit variance will eliminate

any effects due to measurement units. Note that PLS is not scale-invariant and hence

standardized and un-standardized data lead to different estimates.

At the base of any PLS1 algorithm is the following bilinear decomposition:

X̃= t1l
T
1 + t2l

T
2 + · · ·+ tql

T
q + Eq

= TqL
T
q + Eq (6.10)

and

ỹ = c1t1 + c2t2 + · · ·+ cqtq + fq

= Tqc
T
q + fq (6.11)

where q ≤ p. For k = 1, ..., q : the tks are n-dimensional vectors called scores (or

latent variables), the lks are p-dimensional vectors called loadings and the cks are scalar

values. Furthermore Eq is a matrix of errors and fq is a vector of error terms. In practice

the components in (6.10) and (6.11) are unknown and the PLS algorithms are used to

calculate these components from the data available.

Helland (1988) observed that to obtain unique solutions one can impose various

conditions on the tks and lks. One common condition is to impose that the tks are selected

such that they are orthogonal in Rn. This condition leads to the univariate PLS Regression

(PLS1) algorithm with orthogonal scores of S. Wold et al. (1983, 1984). An alternative

common condition is to impose that the lks be mutually orthogonal in Rp, leading to

the univariate PLS Regression (PLS1) algorithm with non-orthogonal scores of Naes and

Martens (1985). Helland (1988) shows that the two previously mentioned algorithms give

the same prediction equation and hence are equivalent. He observes that the first algorithm

is computationally simpler than the second but the second algorithm is easier to use when

looking for a mathematical interpretation of the resulting PLS regression equation. Next,

following Helland (1988) we shall explore in more details the steps of the first algorithm

in an attempt to understand the general mechanism of these algorithms.
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In the PLS1 algorithm with orthogonal scores the components of (6.10) and (6.11) are

derived iteratively as follows :

1. Start with E0 = X̃ and f0 = ỹ

2. Let d1 = X̃T ỹ =nrxy this implies that for all j = 1, . . . , p the jth component of

d1, is proportional to the sample correlation between xj and y

3. t1 = X̃d1

4. c1 is the estimated coefficient for the regression equation : f0 = ỹ =c1t1+f1. Using

OLS we get:

c1 = tT1 ỹ/t
T
1 t1 (6.12)

5. f1 = ỹ−c1t1 where c1t1 is the projection of ỹ onto span(t1). f1is the residual vector

of this projection and hence by definition is orthogonal to c1t1, that is fT1 (c1t1) =

0p. It follows that f1 is orthogonal to t1.

6. l1 is the estimated coefficient for the inverse regression equation X̃ = tT1 l1 + E1.

Using OLS we get:

l1 = X̃T t1/t
T
1 t1 (6.13)

7. E1 = X̃− t1lT1 where t1l
T
1 is the projection of the rows of X̃ onto span(t1) . E1 is

the residual matrix of this projection and hence by definition is orthogonal to t1l
T
1 ,

that is ET
1

(

t1l
T
1

)

= Op×p.

8. For k = 2, . . . , q

(a) dk = ET
k−1fk−1

(b) tk = Ek−1dk = Ek−1E
T
k−1fk−1

(c) lk = ET
k−1tk/t

T
k tk

(d) Ek = Ek−1−tklTk

(

= X̃−
k
∑

j=1

tjl
T
j

)

where tkl
T
k is the projection ofEk−1 onto

span(tk) . Ek is the residual matrix of this projection and hence by definition

is orthogonal to tkl
T
k , that is ET

k

(

tkl
T
k

)

= Op×p.
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(e) ck = tTk fk−1/t
T
k tk

(f) fk = fk−1 − cktk

(

= ỹ−
k
∑

j=1

ĉjtj

)

where cktk is the projection of fk−1 onto

span(tk). fk is the residual vector of this projection and hence by definition is

orthogonal to cktk , that is fTk (ĉktk) = 0p. It follows that fk is orthogonal to

tk.

After q steps of the algorithm apart from calculating the components in equations (6.10)

and (6.11) we are also left with a weight matrix D = [d1, ...,d1]. Helland (1988) proves

that the columns of this matrix form a basis for Sr
(

Sxx, sxy
)

. The different algorithms

presented in the literature differ in the way the components in equations (6.10) and (6.11)

are calculated. Furthermore different algorithms yield different weight matrices. When

applying the different algorithms to the same data sets, authors have observed that when

there is only one response variable in the model, the algorithms yield equivalent results

but in the multivariate case results tend to be slightly different (De Jong, 1993).

6.5 An Approximate Maximum Likelihood

interpretation of Partial Least Squares Regression

The aim of this section is to give an interpretation of the PLS estimator as approximate

maximum likelihood estimator under the model presented in Section (6.2). To our

knowledge such an interpretation is new to the literature. This interpretation is achieved

by creating a sequential constrained optimization framework in which to view PLS

regression by considering the inverse regression point of view. Our philosophy is that

of estimating as many parameters as possible separately and introducing the constraint,

dimK (Σxx,σxy) = q, as late as possible.

The constrained optimization problem which we want to solve is the maximization of the

joint log-likelihood function with the introduction of the constraint given by the Krylov

hypothesis. This can be stated as follows:

max {l(µx, µy,Σxx,σxy, σyy) : dimK(Σxx,σxy) = q} (6.14)
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where maximization is over the population parameters, µx, µy,Σxx,σxy, σyy. We choose

to consider the inverse regression framework in which, as was observed in Chapter

2, the joint likelihood is represented as the product of the marginal distribution of y

with the conditional distribution of x | y. Under the inverse regression framework the

maximization of (6.14) is over µy, σyy,γ0,γ and Σx|y where

γ = σ−1yy σxy, γ0 = µx − µyγ and Σx|y = Σxx − σ−1yy σxyσ
T
xy.

Given relation (6.6) the Krylov hypothesis can be restated in terms of the inverse

regression parameters : dimK(Σx|y,σxy) = q.

One way of solving this constrained problem is by applying the maximum likelihood

estimation technique yielding to what shall be called a Krylov maximum likelihood

(KML) regression estimate of order q, KML(q), where the Krylov dimension, q, is

assumed to be known here. This KML estimate cannot be obtained analytically as will

be made clear in Chapter 7. Here an analytical approximate solution which makes use

of the ML estimation method will be presented. This solution will be referred to as the

approximate maximum likelihood (AML) estimator of order q, AML(q).

Under the inverse regression framework the joint log-likelihood function,

l
(

µy, σyy,γ0,γ,Σx|y
)

, is equal to l (µy, σyy) + l
(

µy, σx|y,Σx|y
)

. Thus for the AML(q)

solution, the parameters of this joint distribution are divided in the following groups:

1. µy, σyy,

2. γ0,γ,

3. Σx|y

First the constraint is ignored and the first set of parameters is estimated by applying

unconstrained maximum likelihood (UML) estimation on the marginal log-likelihood

of y. This is possible since the first set of parameters are independent of the Krylov

hypothesis. Second UML is applied on the conditional log-likelihood of x | y in order to

estimate the second set of parameters. For this second set of parameters start by assuming

γ is known and estimate γ0 then proceed to estimate γ. Both sets result in the following

classical UML estimates:
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1. µ̂y = ȳ, σ̂yy = syy

2. γ̂0 = x̄− ȳγ, γ̂ = s−1yy sxy

What is left is a profile likelihood in terms of the last parameter. At this point consider

the transformation from x to w defined in section 6.2.1 for the population parameters and

apply a similar transformation on the sample statistics which has been defined in section

6.2.2. The profile likelihood under these transformations is given by

− 2

n
h
(

Σw|y
)

= log
∣

∣Σw|y
∣

∣+ tr
(

Σ−1
w|y

{

Sww − c2s−1yy e1e
T
1

}

)

(6.15)

where Sww is tridiagonal and Sww− c2s−1yy e1e
T
1 = Sw|y. Note that the constant term

−n
2
log (2π) is removed from the equation since it has no influence on the results. Next

Σw|y is estimated, this time taking the constraint into account. Start by partitioning the

random vectorw into two blocks,w =
[

uT ,vT
]T

of dimensions, q and p−q respectively,

and similarly partition the conditional population and sample covariance matrices of w.

Let

Σw|y =





Σ11(q×q) Σ12(q×p−q)

ΣT
12(p−q×q) Σ22(p−q×p−q)



 (6.16)

and similarly Sw|y = (Sij)i,j=1,2. Now let

Sww =





Suu(q×q) Suv(q×p−q)

ST
uv(p−q×q) Svv(p−q×p−q)



 (6.17)

and J = e1e
T
1 for which the first element equals 1 and all other elements are zero. Denote

the first (q × q) block of J by J1, since Sw|y = Sww− c2s−1yy e1e
T
1 , it follows that

S11 = Suu − c2s−1yy J1, (6.18)

S12 = Suv, (6.19)

S22 = Svv (6.20)
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and therefore given that Sww is tridiagonal it follows that Sw|y is tridiagonal. Then

applying Appendix A equation (A.1) it follows that

∣

∣Σw|y
∣

∣ = |Σ11|
∣

∣Σ22−ΣT
12Σ

−1
11Σ12

∣

∣ (6.21)

and applying Appendix A, Result A.2, it follows that

Σ−1
w|y =





Σ11 Σ12

Σ21 Σ22



 (6.22)

whereΣ22 =
(

Σ22−ΣT
12Σ

−1
11Σ12

)−1
and if we letB = Σ−111Σ12, Σ11 = Σ−111 +BΣ22BT ,

Σ12 = −BΣ22 and Σ21 =
(

Σ21
)T

hence it follows that,

Σ−1
w|y =





Σ−111 +BΣ22BT −BΣ22

−Σ22BT Σ22



 (6.23)

Partition Σ−1
w|ySw|y into four blocks, (Aij)i,j=1,2 having the same dimension of the

partitions considered forΣ−1
w|y. Then if one post-multiplies (6.23) by Sw|y whose elements

are defined in equations (6.18 - 6.20) it follows that

A11 = Σ−111 S11 +BΣ22BTS11 −BΣ22ST
12,

A12 = Σ−111 S12 +BΣ22BTS12 −BΣ22S22,

A21 = −Σ22BTS11 +Σ22ST
12,

A22 = −Σ22BTS12 +Σ22S22.

Furthermore,

tr
(

Σ−1
w|ySw|y

)

= tr (A11) + tr (A22) (6.24)

Then by applying the relations presented in Appendix A (Result 5.4), it follows that,

tr (A11) = tr
(

Σ−111 S11

)

+ tr
(

BΣ22BTS11

)

− tr
(

BΣ22ST
12

)

= tr
(

Σ−111 S11

)

+ tr
(

Σ22BTS11B
)

− tr
(

Σ22BTS12

)

(6.25)

tr (A22) = −tr
(

Σ22BTS12

)

+ tr
(

Σ22S22

)

(6.26)

adding equations (6.25) and (6.26), yields:

tr
(

Σ−1
w|ySw|y

)

= tr
(

Σ−111 S11

)

+ tr
[

Σ22
(

S22 − 2BTS12 +BTS11B
)]

(6.27)
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Then substituting equations (6.21) and (6.27) in the profile likelihood defined in equation

(6.15) yields,

− 2

n
h
(

Σ11,Σ
22,B

)

= log |Σ11|+ log
∣

∣

∣

(

Σ22
)−1

∣

∣

∣
+ tr

(

Σ−111 S11

)

+tr
[

Σ22
(

S22 − 2BTS12 +BTS11B
)]

(6.28)

The constrained optimization procedure then proceeds sequentially as follows: Let,

g
(

Σ11,Σ
22,B

)

= − 2

n
h
(

Σ11,Σ
22,B

)

.

Note that

max
{

h
(

Σ11,Σ
22,B

)}

= min
{

g
(

Σ11,Σ
22,B

)}

where the maximization/minimization can be taken over one or more parameters. Start by

minimizing g over Σ11, ignoring the constraint. Proposition C14 in Appendix C asserts

that g is minimized when Σ11 = S11 hence Σ̂11 = S11 which from equation (6.20) is

known to be tridiagonal. Next B is estimated (or equivalently Σ12) this time introducing

the constraint. From Chapter 4, Propositions 4.7 and 4.10, it follows that in order to

satisfy the constraint, Σ̂w|y must be block diagonal. Therefore Σ̂12 must be a matrix of

zeros. Substituting these results into (6.28) yields:

g (Σ22) = log |S11|+ log |Σ22|+ tr
(

Σ−122 Svv
)

(6.29)

What is left is to minimize this function with respect to Σ22. The constraint has no effect

on this estimation and hence unconstrained maximum likelihood is used. Once again

Proposition C14 in Appendix asserts that Σ̂22 = S22. Then by combining all the estimates

obtained for the different partitions of Σw|y we can define its approximate maximum

likelihood estimate as,

Σ̂w|y,AML =





S11(q×q) O(q×p−q)

O(p−q×q) Svv(p−q×p−q)



 = Sww,PLS − s−1yy c
2e1e

T
1 (6.30)

where Sww,PLS was defined earlier in equation (6.8) to be equal to Sww with the (q, q+1)

and (q + 1, q) entries set to zero.
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The AML estimator for the vector of regression parameters is then defined by

β̂AML(q) (W,y) = S−1ww,PLSce1

=





cS−1
uu(q×q)e11(q×1)

0(p−q×1)





(6.31)

The first q columns of this vector are equivalent to the UML regression estimator

achieved by regressing y on the first q columns of W and ignoring the rest. Clearly

β̂AML(q) (W,y) is in Rq × 0p−q which is the column space of Ĝw in equation (6.8).

Hence β̂AML(q) (W,y) = β̂PLS (W,y). Furthermore from equation (6.9) it follows that

in terms of the original data we have

β̂AML(q) (X,y) = Qβ̂AML(q) (W,y) = β̂PLS (X,y) (6.32)

This result shows that the PLS estimator can be viewed as an AML estimator under the

Krylov hypothesis.

Note that the fitted values for the response variable are invariant under rotation of the data.

This follows from the following considerations:

ŷ = ȳ − w̄T β̂AML(q) (W,y) +wT β̂AML(q) (W,y)

= ȳ − x̄TQQT β̂AML(q) (X,y) + xTQQT β̂AML(q) (X,y)

= ȳ − x̄T β̂AML(q) (X,y) + xT β̂AML(q) (X,y) (6.33)

where w̄ = QT x̄,w = QTx,QQT = Ip.

6.6 Estimating the Krylov Dimension

In our discussions, up to this point, it was assumed that the Krylov dimension is known but

in practice this is practically never true. The Krylov dimension is typically evaluated by

considering estimates of the mean squared error of prediction (MSEP) obtained by C-Fold

or Leave-one-out (LOO) cross-validation. LOO CV is the most commonly used, since it

has been found to be unbiased and it is easy to implement and to understand, although

some authors do mention the use of bootstrapping methods (Denham, 2000; Mevik and

Cederkvist, 2005).
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From Chapter 4 it is known that that the maximum possible value that q can take is equal

to the number of distinct non-zero eigenvalues of Sxx or equivalently Sx|y (see Proposition

4.6). This gives us an upper bound, denoted by q⋆ for the range of possible values from

which to choose, q.

6.6.1 C-Fold Cross-Validation

In C-fold cross-validation the original sample, of size n, is divided into C segments where

each segment contains nk data points;
∑

k

nk = n. If n is divisible by C the

nk =
n

C
for k ∈ {1, . . . , C}

while if n is not divisible by C let length.seg=ceiling(n/C) (where the function ceiling

maps the real number n/C to the smallest integer which is greater or equal to n/C (for

example ceiling(2.2) = 3), d =length.seg∗C − n and length.seg2=lenght.seg-1. Then

nk =







length.seg if k ∈ {1, . . . , C − d}
length.seg2 if k ∈ {C − d+ 1, . . . , C}

There are various ways in which these segments can be selected. They could either be

selected randomly, for example by reordering the original sample randomly and then

setting the first n1 data points to form the 1st segment and so on, or simply allocating

the first n1 data points in the original sample to the 1st segment and so on. Then C-1

segments are grouped together to form what is referred to as the training set and this set

is used to estimate the regression parameters. The remaining segment is used to validate

the fit of the regression model obtained by fitting on the training set and is referred to as

the validation or test set. This procedure is repeated C times, with each segment being

used exactly once as a validation set.

For each feasible possible value of the Krylov dimension q, a PLS regression estimate

is calculated for each of the C training sets. The C-fold cross-validation estimate of

the MSEP, also known as the mean squared error of cross-validation (MSECV) is then

estimated using the following equation.

MSECVC (q) =
1

C

C
∑

k=1

1

nk

∑

i∈Vk

(

yi − xT
i β̂

−k
PLS,q

)2

(6.34)
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where Vk denotes the index set of the kth validation set, β̂
−k
PLS,q is the PLS regression

estimate fitted on the training set consisting of the original data with the kth segment

removed and under the assumption that the Krylov dimension is equal to q.

The value of q yielding the smallest MSEP is selected as the optimal q. Some authors

prefer to work with the Root means square error of prediction (RMSEP) rather then the

MSEP. RMSEP =
√

MSEP (q) and hence both yield the same optimal value for q.

6.6.2 Leave-one-out (LOO) Cross-Validation

A special case of the C-fold cross-validation is the leave one out cross-validation for

which C = 1. This technique works by leaving the data points out of the training set one

at a time. Hence for every iteration the training set is made up of (n− 1) data points and

the validation set consists of only 1 data point. In this case the MSEP is estimated by the

following equation:

MSEPLOO (q) =
1

n

n
∑

i=1

(

yi − xT
i β̂

−i
PLS,q

)2

(6.35)

where xT
i β̂

−i
PLS,q = ŷ−ii is the fitted value for the ith data point computed by leaving out

the ith data point from the training set.

6.7 Properties of the PLS Estimator

In many applications, prior to fitting a PLS regression, the vector of response variables

and the data matrix are centered and very often also scaled. The effects of centering and

scaling on a regression model have already been explained in section 2.3.5. Centering

is a very innocent transformation. It simply removes the intercept term from the

multiple linear regression model but the variances, covariances and consequently the

other regression parameters are not affected by this transformation. Scaling on the other

hand has great effect on the estimates of the variances, covariances which are replaced by

correlations yielding different parameter estimates than those obtained using the original

or centered variables. Next, we shall explore in more detail the effect of scaling on the
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PLS estimator. To simplify our discussion we shall consider the population model of

section 6.2.1 but results apply also when considering the sampling framework of section

6.2.2.

From Proposition 6.1 we know that the Krylov dimension is invariant under location,

scale and rotation transformation. From the discussions in Chapter 4 and in section 6.2 it

is clear that the Krylov subspace is rotation equivariant and this property carries over to

the PLS regression estimator.

Let ∆ be a p-dimensional diagonal matrix whose elements correspond to the standard

deviations of the components of x. Then let x̃ = ∆−1x. Here x̃ corresponds to the

rescaled version of x having unit variance. In this case:

Σx̃x̃ =∆−1Σxx∆
−1,σx̃y =∆−1σxy,Σx̃x̃σx̃y =∆−1Σxx∆

−2σx̃y,

and in general for any integer i,

Σi
x̃x̃σx̃y =∆−1 (Σxx∆

−2)i σxy.

If one then considers the Krylov matrix in equation (6.2), it is clear that the column space

of Kq (Σxx,σxy) is not equal to the column space of Kq (Σx̃x̃,σx̃y). This implies that the

Krylov subspace and consequently the PLS estimator are not invariant to scaling of the

explanatory variables.

Using a similar line of thought it is easy to show that the PLS estimator is invariant under

centering of the response variable and equivariant under scaling of the response variable.

The next section is a review of the literature concerning the the shrinkage properties of

the PLS estimator.

6.7.1 Shrinkage

The concept of shrinkage has already been defined in Chapter 3. Note that the notation

introduced in Section 3.2 will be used again here. In a nutshell, the goal of a shrinkage

parameter is to shrink the vector of estimated coefficients away from directions of low

sample spread (eigendirections corresponding to the small eigenvalues of Sxx) in an

attempt to reduce the variance of the estimated coefficients.
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The shrinkage properties of the PLS estimator have been studied extensively. Some

references include Frank and Friedman (1993), Butler and Denham (2000), Krämer

(2007) and references there in.

Frank and Friedman (1993) attempted to gain insight into the shrinkage structure of PLS

by expanding the PLS solution in term of the eigenvalues of Sxx and the OLS estimate.

This led them to derive the following formulation of the shrinkage factors:

For a q component PLS solution

f(d2j) =

q
∑

k=1

αkd
2k
j (6.36)

where 0 ≤ d21 ≤ d22 ≤ · · · ≤ d2q denote the q eigenvalues of Sxx, α = (α1, ..., αq)
T =

M−1c, M−1 is a (q × q) matrix whose elements are defined as:

mkl =

p
∑

j=1

β̂2
OLS,jd

2(k+l+1)
j ,

where β̂OLS,j is the jth OLS estimated coefficient, and c is a q−dimensional vector with

elements defined as

ck =

p
∑

j=1

β̂2
OLS,jd

2(k+1)
j .

Frank and Friedman (1993) also studied the behaviour of the PLS regression method when

applied to four different numerical examples which consider different combinations of

OLS estimates and eigenvalues. From these examples they observe that the PLS solutions

shrinks the OLS solution in some eigendirections but expands it in others. They observe

that for a PLS regression with q components, the OLS solution is:

• expanded in the eigendirections corresponding to the eigenvalues which are close

to the jth eigenvalue,

• slightly shrunk in the eigendirections corresponding to the eigenvalues larger than

the jth eigenvalue,

• substantially shrunk in the eigendirections corresponding to the small eigenvalues

Butler and Denham (2000) derive an alternative representation of the shrinkage factors

of PLS and show that the degree of shrinkage in a q component PLS model is linked
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to an underlying polynomial of degree q. They observe that Frank and Friedman’s

conclusions hold only for special cases. Butler and Denham (2000) show that in PLS

with q components the eigenvalues (arranged in ascending order) are divided into (q + 1)

non-empty disjoint sets. All the coefficients associated with a set are either shrunk or

expanded. Coefficients associated with the set containing the smallest eigenvalues are

always shrunk while other sets of coefficients are either shrunk or expanded. They observe

that values of f(d2j) 6= 1 introduce bias into the estimation process but if f(d2j) < 1 the

variance of the vector of estimated coefficients is reduced. An f(d2j) > 1 results in

an increase of both the bias and variance and hence MSE is increased. This behaviour

complicates the shrinkage properties of PLS since when coefficients are expanded, f(d2j)

is greater than zero. Krämer (2007) studies the effect of bounding the absolute value of

the shrinkage factors by 1 by comparing the effect that inclusion and exclusion of the

bound have on the mean square error when applied on several artificial and real data sets.

She concludes that in most cases bounding the absolute value of the shrinkage factors by

1 seems to lead to lower mean square errors. Heuristic results in the literature seem to

suggest that PLS might perform worse than OLS is some situations. However no formal

proofs were given to sustain these observations since, as was observed by Krämer (2007),

deriving theoretical results is a rather complicated task given that the quantities of interest

have a complicated, nonlinear relation to the vector of responses.
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Chapter 7

Maximum Likelihood Estimation

Under the Krylov Hypothesis

7.1 Introduction

In Chapter 6 it was shown that the PLS estimator can be interpreted as an approximate

maximum likelihood (AML) estimator. This was done by first assuming a joint

multivariate normal distribution for the response and explanatory variables, then

formulating the Krylov hypothesis of order q and finally creating a sequential constrained

optimization framework in which to view PLS regression. This framework built heavily

on the tridiagonalization of Sxx and the inverse regression framework, which considers

the joint distribution as the product of the marginal distribution of the response variable

times the conditional distribution of the vector of explanatory variables given the

response. A detailed discussion on inverse and forward regression models has been

presented in Chapter 2.

For a better understanding of why the PLS solution to the maximization problem

discussed in Section 6.5 is approximate, consider the following simple example.

Example:

Let f (x, y) = −x2 − y2 be a real-valued function of two variables. Suppose that

the objective is to maximize f . This problem will be tackled in two settings: (a)

unconstrained and (b) constrained. In each setting the maximization will be conducted
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by two procedures: (i) global optimization over both variables, and (ii) sequential

optimization in which any constraint is ignored at the first optimization and introduced

only at the second optimization. Below are the details.

(a) Unconstrained setting:

For procedure (i) it is easy to show that the global maximum is attained at x = y = 0

with f (0, 0) = 0. For procedure (ii) let x (y) = argmax
x

{f (x, y)} denote the value of

x which maximizes f for a given y. Note that, x (y) is obtained by taking the derivative

of f (x, y) with respect to x and setting it equal to zero. This yields x (y) = 0 which

does not depend on y in this example, and the “profile” objective function becomes

f (x (y) , y) = −y2. Optimizing the “profile” objective function over y yields y = 0

which together with x(0) = 0, means that both procedures reach the same solution, that

is, argmax
{x,y}

{f (x, y)} = argmax
y

{f (x (y) , y)}.

(b) Constrained setting:

Now suppose a constraint is added. Let φ (x, y) = x + y − 2 and suppose that the new

objective function is to maximize f (x, y) subject to φ (x, y) = 0. For procedure (i),

consider the constraint φ (x, y) = 0 which is satisfied when x = 2 − y. Substituting

this value in f (x, y) we get f (x, y) = − (2− y)2 − y2. Taking the first derivative of

this function with respect to y and setting it equal to zero, yields y = 1 and hence x =

2 − y = 1. So the global maximum is attained by (1, 1) for which f (x, y)=-2. We refer

to such a solution as an exact solution. On the other hand for procedure (ii), the first step

is to find x (y) as in setting (a) without taking the constraint into account. This yields

the “profile” objective function f (x (y) , y) = −y2, as before. The constraint is taken

into account at the second stage when maximizing the “profile” objective function over y.

Now φ (x, y) = x (y) + y − 2 = 0 + y − 2 = 0 has only one solution which is, y = 2.

Therefore the solution from this procedure is the point (0, 2) for which f (x, y) = −4.

Note that the sequential constrained procedure does not attain the global maximum in this

case. We refer to such a solution as an approximate solution.

In Section 6.5 it was shown that PLS can be given an interpretation as a sequential

constrained procedure attempting to maximize the log likelihood. In section 7.5 it will

be shown that in general the PLS estimator does not maximize the log likelihood under

the Krylov hypothesis.
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This chapter tackles ways of obtaining exact maximum likelihood type estimators of the

parameters in the inverse regression model under the Krylov hypothesis. In other words,

these parameter estimates should satisfy the following constrained optimization problem:

max
{

l(µy,σyy,γ0,γ,Σx|y) : dimK(Σx|y,σxy) = q
}

(7.1)

where

γ = σ−1yy σxy, γ0 = µx − µyγ and Σx|y = Σxx − σ−1yy σxyσ
T
xy.

The resulting parameter estimates can then be used to derive estimates of the forward

regression parameters using the relations derived in Chapter 2 Section 2.3.4. For

brevity’s sake, from here onwards such estimates will be referred to as Krylov Maximum

Likelihood (KML) estimates. Note that throughout this chapter it will be assumed that

the Krylov dimension, q, is known. The issue of estimating q will be discussed in Chapter

8.

In the first two sections of this chapter it will be shown that if the Krylov subspace

is assumed to be known, the likelihood can be maximized analytically with respect to

the remaining parameters. In the first section we assume that the Krylov subspace is

span
({

e1, e2, e3, . . . , eq
})

= Rq × Op−q. In the second section a more general form

for the Krylov subspace is assumed. It will be shown that there is a relation between

any Krylov subspace and the space Rq × 0p−q. This relation is exploited to simplify the

derivations in the second section.

The third section tackles the issue of maximizing the profile likelihood with respect to

the choice of Krylov subspace. It will be shown that in this case an analytical solution

does not exist and an algorithm for obtaining a numerical solution will be presented. In

constructing this algorithm we shall make use of the fact that the constrained optimization

problem being solved here can be reformulated as an unconstrained optimization problem

over the Grassmann manifold, G (p, q) where q is the Krylov dimension. Hence we shall

make use of the results discussed in Chapter 5 section 5.5.

In the last section a series of simulation studies are presented in which the behaviour of the

Krylov Maximum likelihood when applied to data having different covariance structures

is explored. The aim in this section is to attempt to gain insight on the type of data for
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which one can hope that PLS and KML give equivalent results and if there are any data

structures for which one can hope that the KML method outperforms the PLS method.

The Krylov Maximum Likelihood (KML) method presented in this chapter is equivalent

to the Modified Maximum Likelihood method introduced by Helland (1992). The main

differences between the two techniques are that Helland considers the forward regression

framework instead of the inverse regression framework and gives a different formulation

of the Krylov hypothesis from the one presented here. In fact Helland does not make

any direct reference to Krylov sequences in his 1992 paper, despite the fact that he

was the first to thoroughly explore the link between PLS and Krylov spaces (Helland,

1988, 1990). Instead, he assumes that the number of relevant components in the data

matrix X is fixed to some real number q. In other words in the population model,

he assumes that x can be decomposed into two orthogonal subspaces and a set of

components is said to be irrelevant if they are not correlated with the response variable

y and with the other part of the decomposition. A more detailed definition of relevant

components can be found in Helland (1990). Helland (1992) does not reformulate the

problem as an unconstrained optimization problem over the Grassmann manifold as we

do, consequently, the algorithm for obtaining the numerical solution that is presented

here is different from that presented in Helland (1992). Helland’s algorithm is analogous

to the inverse power method for finding eigenvectors. The algorithm presented here

makes use of adaptations of the Steepest Ascent and Newton optimization techniques

for optimization over the Grassmann manifold.

7.2 Analytical solution under the assumption that the

Krylov subspace is known and has a specific form

Assume that the Krylov dimension, q, is known and that the Krylov subspace has the

following simple form:

Sq
(

Σx|y,σxy
)

= S̃q = span
({

e1, e2, e3, . . . , eq
})

= R
q ×Op−q. (7.2)

Here the notation S̃q is introduced for brevity’s sake. Let PS̃ and PS̃⊥ denote the



Chapter 7. Maximum Likelihood Estimation Under the Krylov Hypothesis 102

projection matrices of S̃q and its orthogonal complement,

S̃⊥q = span
({

eq+1, . . . , ep
})

= Oq × R
p−q, (7.3)

respectively. These projection matrices are defined as follows:

PS̃=





I(q×q) O(q×p−q)

O(p−q×q) O(p−q×p−q)



 = U0U
T
0 with U0 =





I(q×q)

O(p−q×q)



 ,

PS̃⊥ =





O(q×q) O(q×p−q)

O(p−q×q) I(p−q×p−q)



 = V0V
T
0 with V0 =





O(q×q)

I(p−q×q)



 .

(7.4)

From Chapter 4 Proposition 4.7 we know that in this caseΣx|y and σxy can be partitioned

as follows:

σxy =





σ
(1)
xy(q×1)

0(p−q×1)



 = PS̃σxy, (7.5)

Σx|y =





Σ11.y(q×q) O(q×p−q)

O(p−q×q) Σ22.y(p−q×p−q)



 (7.6)

= PS̃Σx|yPS̃ +PT
S̃⊥Σx|yP

T
S̃⊥ . (7.7)

In Chapter 6 Section 6.5 it was observed that the joint log-likelihood for a sample of size

n selected from such a population satisfies,

l
(

µy, σyy,γ0,γ,Σx|y
)

= l (µy, σyy) + l
(

γ0,γ,Σx|y
)

. (7.8)

In the same section parameters of this joint likelihood were divided into three groups

which were estimated sequentially. A similar strategy is applied in this section but in this

case the groups are as follows

1. µy, σyy,

2. µx,
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3. Σx|y and σxy.

Since the parameters in the first two groups are unaffected by the Krylov hypothesis their

estimates are simply the classical maximum likelihood estimates, that is, ȳ, syy and x̄,

respectively. For the last set of parameters consider the following profile likelihood,

obtained after replacing the parameters in the first two groups with their estimates,

lpro
(

σxy,Σx|y
)

= −n

2
log

∣

∣Σx|y
∣

∣− n

2
tr
(

Σ−1
x|y

[

Sxx − 2s−1yy sxyσ
T
xy + s−1yy σxyσ

T
xy

]

)

.

(7.9)

Next consider similar partitions for the sample covariances as those considered for the

population covariances in equations (7.5) and (7.6), that is,

Sxx =





S11(q×q) S12(q×p−q)

S21(p−q×q) S22(p−q×p−q)



 , sxy =





s
(1)
xy(q×1)

s
(2)
xy(p−q×1)



 (7.10)

Consider equation (7.6) by applying results A1 and A2 in Appendix A it follows that

∣

∣Σx|y
∣

∣ = |Σ11.y| |Σ22.y| (7.11)

Furthermore,

Σ−1
x|y =





Σ−111.y(q×q) O(q×p−q)

O(p−q×q) Σ−122.y(p−q×p−q)



 (7.12)

Substituting equations (7.10) - (7.12) in equation (7.9) yields,

2

n
lpro

(

σ(1)
xy ,Σx|y

)

= − log [|Σ11.y|+ log |Σ22.y|]

−tr
[

Σ−111.y

(

S11 − 2s−1yy s
(1)
xyσ

(1)T
xy + s−1yy σ

(1)
xyσ

(1)T
xy

)]

+ tr
(

Σ−122.yS22

)

.

(7.13)

Maximizing the profile likelihood over σxy yields:

σ̂(1)
xy = s(1)xy ⇒ σ̂xy = PS̃sxy. (7.14)

Substituting equation (7.14) in (7.13) yields:
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2

n
h
(

Σx|y
)

= − [log |Σ11.y|+ log |Σ22.y|]−
[

tr
(

Σ−111.y

(

S11 − s−1yy s
(1)
xy s

(1)T
xy

))

+ tr
(

Σ−122.yS22

)]

.

(7.15)

By applying the results in Appendix C, it follows that maximizing (7.15) over Σ11.y and

Σ22.y yields the following ML estimates,

Σ̂11.y = S11 − s−1yy s
(1)
xy s

(1)T
xy = UT

0 Sx|yU0 (7.16)

Σ̂22.y = S22 = VT
0 SxxV0. (7.17)

It follows that,

Σ̂x|y= PS̃Sx|yPS̃+PS̃⊥SxxPS̃⊥ . (7.18)

Then the estimate for the vector of regression parameters is given by

β̂KML (X,y) = Σ̂−1xx,KMLσ̂xy,KML

= [PS̃SxxPS̃+PS̃⊥SxxPS̃⊥ ]
−1
PS̃sxy

=





S−111 s
(1)
xy

0





= U0

(

UT
0 SxxU0

)−1
UT

0 sxy (7.19)

From equation (7.8) it follows that joint log-likelihood evaluated at the above estimated

values, l
(

µ̂y, σ̂yy, γ̂0, γ̂, Σ̂x|y

)

, is the sum of the following log-likelihood functions,

l (µ̂y, σ̂yy) = −n

2
log (syy) +

n

2
(7.20)

l
(

γ̂0, γ̂, Σ̂x|y

)

= −n

2

[

log
∣

∣UT
0 Sx|yU0

∣

∣+ log
∣

∣VT
0 SxxV0

∣

∣

]

− np

2
.

(7.21)

Recall from Chapter 2 section 2.3.3 that in the previously defined likelihoods any

constants that do not affect estimation have been removed.
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Since the marginal likelihood in equation (7.20) is independent of the Krylov subspace,

when applying optimization over the Krylov subspace, attention is restricted to the

conditional log-likelihood given in equation (7.21).

7.3 Analytical solution under the assumption that the

Krylov subspace is known but has a general form

Before tackling this optimization problem the results presented in the previous section

need to be generalized for any Krylov subspace.

Once again we assume that the Krylov dimension is equal to q, but this time we do not

assume the Krylov subspace has the simple form denoted by S̃q (see the previous section)

but assume it has the following general form,

Sq
(

Σx|y,σxy
)

= span
({

u1,u2,u3, . . . ,uq

})

(7.22)

where each ui ∈ Rp. For brevity we shall drop the terms in brackets on the right hand side

and denote this Krylov subspace simply by Sq. Without loss of generality we can assume

that
{

u1,u2,u3, . . . ,uq

}

form an orthonormal basis for Sq. Note that here we are using

an explicit basis for Sq but later it will be shown that answers do not depend on the choice

of basis. Let U =
[

u1,u2,u3, . . . ,uq

]

then PS= UUT defines the projection matrix

onto this space and UTU = Iq. Let the orthogonal complement of this vector space be

defined by

S⊥q = span
({

v1, . . . ,vp−q
})

(7.23)

where
{

v1, . . . ,vp−q
}

represents an orthonormal basis. Then Γ(p×p) =
[

u1,u2,u3, . . . ,uq,v1, . . . ,vp−q
]

is an orthogonal matrix. It is easy to see that for

all k ∈ {1, . . . , q}, ΓTuk = ek and for all l ∈ {1, . . . , p− q}, ΓTvl = el+q. It follows

that,

ΓTSq = S̃q (7.24)

and PS̃= ΓTUUTΓ = ΓTPSΓ.
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Consider the transformation,

z = ΓTx =

(

z1

z2

)

=

(

UTx

VTx

)

. (7.25)

Applying this transformation yields, σzy = ΓTσxy and Σz|y = ΓTΣx|yΓ and then

from the relation in equation (7.24) it follows that σzy ∈ S̃q and Σ
j
z|yσwy ∈ S̃q, j ∈

{1, . . . , q − 1}. From Chapter 4 Proposition 4.7 we know that in this case Σz|y and σzy

can be partitioned as follows:

σzy =





UTσxy(q×1)

0(p−q×1)



 = PS̃σzy, (7.26)

Σz|y =





UTΣx|yU O

O VTΣx|yV



 (7.27)

= PS̃Σz|yPS̃ +PS̃⊥Σz|yP
T
S̃⊥ . (7.28)

Applying the same transformation to the sample values, one can then proceed using

similar steps as those applied in the previous section, that is, first consider the joint

likelihood presented in equation (7.8) but this time we replace Σx|y and σxy by Σz|y

and σzy. The parameters of the joint distribution are divided into the following three

groups:

1. µy, σyy,

2. µz,

3. Σz|y and σzy.

Since the parameters in the first two groups are unaffected by the Krylov hypothesis their

estimates are simply the classical maximum likelihood estimates, that is, ȳ, syy and z̄,

respectively. For the last set of parameters consider the following profile likelihood,

obtained after replacing the parameters in the first two groups with their estimates,

lpro
(

σzy,Σz|y
)

= −n

2
log

∣

∣Σz|y
∣

∣− n

2
tr
(

Σ−1
z|y

[

Szz − 2s−1yy szyσ
T
zy + s−1yy σzyσ

T
xy

]

)

.

(7.29)
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Under the new coordinate system, equations (7.10)-(7.12) become

Szz =





UTSxx(q×q)U UTSxx(q×p−q)V

VTSxx(p−q×q)U VTSxx(p−q×p−q)V



 , sxy =





UT sxy(q×1)

VT sxy(p−q×1)



 (7.30)

∣

∣Σz|y
∣

∣ =
∣

∣UTΣx|yU
∣

∣

∣

∣VTΣx|yV
∣

∣ (7.31)

Furthermore,

Σ−1
z|y =





(

UTΣx|yU
)−1
(q×q) O(q×p−q)

O(p−q×q)
(

VTΣx|yV
)−1
(p−q×p−q)



 (7.32)

Substituting equations (7.30) - (7.32) in equation (7.29) yields,

2

n
lpro

(

UTσxy,Σz|y
)

= − log
[∣

∣UTΣx|yU
∣

∣+ log
∣

∣VTΣx|yV
∣

∣

]

−tr
[

(

UTΣx|yU
)−1 (

UTSxx(q×q)U− 2s−1yy s
(1)
zy σ

(1)T
zy + s−1yy σ

(1)
zy σ

(1)T
zy

)

]

+tr
[

(

VTΣx|yV
)−1

VTSxxV
]

(7.33)

where σ
(1)
zy = UTσxy and s

(1)
zy = UT sxy. Maximizing the profile likelihood over σxy

leads to the following ML estimate:

σ̂zy = PS̃szy =
[

(

UT sxy
)T

,0T
]T

(7.34)

Substituting (7.34) in (7.33) yields:

2

n
hpro

(

Σz|y
)

= − log
[∣

∣UTΣx|yU
∣

∣+ log
∣

∣VTΣx|yV
∣

∣

]

−tr
[

(

UTΣx|yU
)−1 (

UTSxx(q×q)U− s−1yy s
(1)
zy s

(1)T
zy

)

]

+tr
[

(

VTΣx|yV
)−1

VTSxxV
]

(7.35)

By applying the results in Appendix C, it follows that maximizing (7.35) overΣx|y yields

the following ML estimates,
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UT Σ̂x|yU = UTSx|yU (7.36)

VT Σ̂x|yV = VTSxxV (7.37)

Σ̂z|y = PS̃Sz|yPS̃+PS̃⊥SzzPS̃⊥ (7.38)

The estimated vector of regression parameters is then defined by:

β̂KML (Z,y) = U0

(

UT
0 SzzU0

)−1
UT

0 szy (7.39)

From equation (7.25) it can be noted that rotating back to the original coordinate system

is easy, it simply involves multiplying z by Γ and results in the following parameter

estimates,

σ̂xy = Γσ̂zy = PSsxy, γ̂0 = x̄−ȳs−1yyPSsxy (7.40)

Σ̂x|y = ΓΣ̂z|yΓ
T= PSSx|yPS+PS⊥SxxPS⊥ (7.41)

β̂KML (X,y) = Γβ̂KML (Z,y) = U
(

UTSxxU
)−1

UT sxy (7.42)

where (7.40), (7.41) and ( 7.42) are explicit formulations for the ML estimates of the

population parameters conditional on the Krylov subspace being known and having a

general form.

Recall that the Krylov Hypothesis is not invariant to scaling of the explanatory variables.

This invariance property carries over to the estimates defined above.

Note that
∣

∣

∣
Σ̂x|y

∣

∣

∣
=

∣

∣

∣
Σ̂z|y

∣

∣

∣
, hence the conditional log-likelihood evaluated at the above

estimated values is given by

l
(

γ̂0, γ̂, Σ̂x|y

)

= −n

2

[

log
∣

∣UTSx|yU
∣

∣+ log
∣

∣VTSxxV
∣

∣

]

− 1. (7.43)
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7.4 Optimization with respect to the Krylov Subspace.

The Krylov subspace is unknown in practice and hence the next step is to numerically

maximize equation (7.43) with respect to the q-dimensional Krylov Subspace, Sq, or

equivalently with respect to U which is a (p× q) column orthonormal matrix whose

columns represent an orthonormal basis of Sq. V is a completion of U in the sense that

the columns of Γ = [U,V] represent an orthonormal basis of Rp henceV is a (p× p− q)

semi-orthogonal matrix, such that VTV = Ip−q. In Chapter 5 it was observed that a

constrained optimization problem of this type can be converted into an unconstrained one

on the Grassmann manifold G (p, q). Such a reformulation simplifies the problem.

The aim in this section is to maximize the real-valued objective function:

f (U) = −
[

log
∣

∣UTSx|yU
∣

∣+ log
∣

∣VTSxxV
∣

∣

]

(7.44)

over the Grassmann manifold, denote by G (p, q). In Chapter 5 it was observed that

the Grassmann manifold has many equivalent parametrization. For convenience in this

section the quotient space parametrization which was defined in equation (5.15) will

be considered. Under this parametrization, an element of G (p, q) is represented as an

equivalence class of the orthogonal matrices Γ = [U,V]. If RU and RV are orthogonal

matrices of dimensions q and p− q, then Γ and [URU ,VRV ] lie in the same equivalence

class and hence represent the same element of G (p, q). Under this parametrization ΓI
(1)
p×q

= U, ΓI
(2)
p×p−q= V where

I
(1)
p×q =





Iq

0q×(p−q)



 , I
(2)
p×p−q =





0q×p−q

Ip−q



 .

Then in terms of Γ the log likelihood can be written as:

f (Γ) = −
[

log
∣

∣

∣
I
T (1)
p×q Γ

TSx|yΓI
(1)
p×q

∣

∣

∣
+ log

∣

∣

∣
I
T (2)
p×p−qΓ

TSxxΓI
(2)
p×p−q

∣

∣

∣

]

(7.45)

.
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Note that the log likelihood is unchanged if Γ is replaced by any other element of the

equivalence class since for any O ∈ SO (q)× SO (p− q),

f (ΓO) = −n

2

[

log
∣

∣RT
UU

TSx|yURU

∣

∣+ log
∣

∣RT
VV

TSxxVRV

∣

∣

]

= f (Γ) (7.46)

whereRU ∈ SO(k) andRV ∈ SO(p−k) and SO(k) denotes the the special orthogonal

group consisting of (k × k) orthogonal matrices with determinant 1 (that is, rotation

matrices). In other words the matrix U in (7.44) is of interest only by virtue of the

subspace generated by its columns.

The objective here is to find subspace Ŝ such that

Ŝ = argmax
[Γ]∈G(p,q)

f ([Γ]) (7.47)

Note that in this section we have used three parametrizations for the elements of G (p, q)

which are [Γ] , [U] and Sq. In equation (7.47) two of these parametrizations are being used

simultaneously, the reason being that we want to emphasize that although the aim is to

optimize over the Krylov subspaces, numerically this can only be done if an explicit basis

(chosen from the equivalence class of bases corresponding to a point on the manifold) is

used to represent the point.

A ’hybrid’ algorithm which combines the steepest ascent (SA)-type and Newton-type

algorithms presented in Chapter 5 section 5.5.2 will be employed to solve (7.47). This

algorithm will be referred to as the SA-Newton Algorithm and will be presented in section

7.4.2. The homogeneity property of the objective function allows us to work with a basis

for which Sxx is tridiagonal and sxy ∝ e1. Such a transformation is mathematically

more convenient. Furthermore under the resulting coordinate system the PLS solution

is easily identified and hence can be considered as the starting point of our algorithm.

Before presenting this algorithm explicit formulations of the gradient and Hessian of the

objective function need to be derived.

7.4.1 Gradient and Hessian

In Chapter 5 it was observed that optimization techniques on manifolds typically involve

rewriting the optimization problem in terms of a local parametrization about some point
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[Γ] ∈ G (p, q) at each iteration. In section 5.5.2 the geodesic curve, which is the curve

of shortest distance between two points on the manifold, coupled with the vec operator

(see equation 5.24) was used to describe movement between points on the manifold. The

same strategy is applied here.

If the starting point, or ”origin”, on the manifold is the one represented by

Γ(0) =
[

U(0) V(0)
]

=





Iq 0q×(p−q)

0q×(p−q) Ip−q



 .

one needs to alter Γ(0) in order to increase the likelihood. Thus consider the values of

the objective function (7.45) in a neighbourhood of Γ(0). Given a block skew symmetric

matrix, A, of the form

A =





0q×q Bq×(p−q)

−BT
(p−q)×q 0(p−q)×(p−q)



 ,

for some arbitrary q × (p− q) matrix, B, another point on the manifold is given by

Γ(1) =
[

U(1) V(1)
]

=
[

U(0) V(0)
]

exp (A)

which can be viewed as a perturbation of the original point and hence one can write

Γ(1) = Γ(1)
(

B;Γ(0)
)

. The likelihood at the new point is given by

f
(

Γ(1)
(

B;Γ(0)
))

=
− log

∣

∣

∣
U(1)T

(

B;Γ(0)
)

Sx|yU
(1)

(

B;Γ(0)
)∣

∣

∣

− log
∣

∣

∣V(1)T
(

B;Γ(0)
)

SxxV
(1)

(

B;Γ(0)
)∣

∣

∣

(7.48)

From equation (7.48) it is clear that for some fixed origin Γ(0) the likelihood as a function

of the Grassmann manifold can be looked at as a real valued function of (q × (p− q))

matrices, B, i.e. f
(

Γ(1)
)

= f
(

B;Γ(0)
)

hence one may write, f : Rq×(p−q) → R. This

is a local parametrization in terms of B. For convenience we can consider unit matrices

B0, such thatB = ǫB0. This allows us to focus on ǫ getting smaller. In order to derive the

gradient and Hessian of our objective function, under this local parametrization, start by

obtaining the second-order Taylor series approximation of f
(

B0; ǫ,Γ
(0)

)

with respect to

ǫ for fixed B0 and compare the result with equation (5.32).
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Using the second-order approximation of exp (ǫA0) it follows that,

Γ
(

B0; ǫ,Γ
(0)

)

= Γ(0)

[

Ip + ǫA0+
ǫ2

2
A2

0 +O
(

ǫ3
)

]

(7.49)

≈ Γ(0)





Iq − ǫ2

2
B0B

T
0 ǫB0

−ǫBT
0 Ip−q − ǫ2

2
BT

0B0



 .

Note that,

exp (ǫA0) I
(1)
p×q ≈







Iq − ǫ2

2 B0B
T
0 ǫB0

−ǫBT
0×q Ip−q − ǫ2

2 B
T
0B0













Iq

0






=







Iq − ǫ2

2 B0B
T
0

−ǫBT
0






,

exp (ǫA0) I
(2)
p×p−q ≈







Iq − ǫ2

2 B0B
T
0 ǫB0q×(p−q)

−ǫBT
0(p−q)×q

Ip−q − ǫ2

2 B
T
0B0













0q

Iq×(p−q)






=







ǫB0

Ip−q − ǫ2

2 B
T
0B0






,

[

U(0) V(0)
]





Iq − ǫ2

2
B0B

T
0

−ǫBT
0



 = U(0)

(

Iq −
ǫ2

2
B0B

T
0

)

− ǫV(0)BT
0 ,

[

U(0) V(0)
]





ǫB0,

Ip−q − ǫ2

2
BT

0B0



 = ǫU(0)B0+V(0)

(

Ip−q −
ǫ2

2
BT

0B0

)

.

Therefore the objective function, f
(

B0; ǫ,Γ
(0)

)

can be approximated as follows,

− log

∣

∣

∣

∣

(

U
(0) − ǫV(0)

B
T
0 − ǫ2

2U
(0)
B0B

T
0

)T
Sx|y

(

U
(0) − ǫV(0)

B
T
0 − ǫ2

2U
(0)
B0B

T
0

)

∣

∣

∣

∣

− log

∣

∣

∣

∣

(

ǫU(0)
B0+V

(0) − ǫ2

2 V
(0)
B

T
0B0

)T
Sxx

(

ǫU(0)
B0+V

(0) − ǫ2

2 V
(0)
B

T
0B0

)

∣

∣

∣

∣

.

To simplify notation let:

S11|y = U(0)TSx|yU
(0),S12|y = U(0)TSx|yV

(0),S22|y = V(0)TSx|yV
(0).

S11 = U(0)TSxxU
(0),S12 = U(0)TSxxV

(0),S22 = V(0)TSxxV
(0).

If terms of order ǫ3 and higher are ignored, the following approximations are obtained:

log

∣

∣

∣

∣

∣

(

U(0) − ǫV(0)BT
0 −

ǫ2

2
U(0)B0B

T
0

)T

Sx|y

(

U(0) − ǫV(0)BT
0 −

ǫ2

2
U(0)B0B

T
0

)

∣

∣

∣

∣

∣

≈ log
∣

∣

∣ S11|y − ǫ
(

S12|yB
T
0 +B0S

T
12|y

)

+ ǫ2

2

(

2B0S22|yB
T
0 −B0B

T
0 S11|y − S11|yB0B

T
0

)

∣

∣

∣
,
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and

log

∣

∣

∣

∣

∣

(

ǫU(0)B0+V(0) − ǫ2

2
V(0)BT

0B0

)T

Sxx

(

ǫU(0)B0+V(0) − ǫ2

2
V(0)BT

0B0

)

∣

∣

∣

∣

∣

≈ log
∣

∣

∣

ǫ2

2

(

2BT
0 S11B0 − S22B

T
0B0 −BT

0B0S22

)

+ ǫ
(

ST
12B0 +BT

0 S12

)

+ S22

∣

∣

∣

To simplify further our notation let:

G1 = S12|yB
T
0 +B0S

T
12|y, (7.50)

G̃1 =
(

2B0S22|yB
T
0 −B0B

T
0 S11|y − S11|yB0B

T
0

)

, (7.51)

G2 = ST
12B0 +BT

0 S12, (7.52)

G̃2 =
(

2BT
0 S11B0 − S22B

T
0B0 −BT

0B0S22

)

(7.53)

F1 (ǫ) = S
−1/2
11|y

(

ǫ2

2
G̃1 − ǫG1

)

S
−1/2
11|y (7.54)

and

F2 (ǫ) = S
−1/2
22

(

ǫG2 +
ǫ2

2
G̃2

)

S
−1/2
22 . (7.55)

Note that, G1, G̃1 and F1 (ǫ) are (q × q) symmetric matrices, while G2, G̃2 and F2 (ǫ)

are (p− q × p− q) symmetric matrices. The objective function can then be written as

follows,

f
(

B0; ǫ,Γ
(0)

)

≈ − log

∣

∣

∣

∣

S11|y − ǫG1 +
ǫ2

2
G̃1

∣

∣

∣

∣

− log

∣

∣

∣

∣

S22 + ǫG2 +
ǫ2

2
G̃2

∣

∣

∣

∣

= − log
∣

∣S11|y
∣

∣− log |Iq + F1 (ǫ)| − log |S22| − log |Ip−q + F2 (ǫ)| .

(7.56)

Now consider the SVD of F1 (ǫ) = Ψ1ΛΨ
T
1 and F2 (ǫ) = Ψ2Λ

∗ΨT
2 . From these

decompositions it follows that,

log |Iq + F1 (ǫ)| = log
∣

∣Ψ1 (Iq +Λ)ΨT
1

∣

∣

= log |(Iq +Λ)|

= log

q
∏

i=1

(1 + λi)

=

q
∑

i=1

log (1 + λi) (7.57)
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where λ1 ≥ . . . ≥ λq are the eigenvalues of F1 (ǫ) and similarly,

log |Ip−q + F2 (ǫ)| =
p−q
∑

i=1

log (1 + λ∗i ) . (7.58)

where λ∗1 ≥ . . . ≥ λ∗p−q are the eigenvalues of F2 (ǫ). The second order Taylor series

expansion log (1 + λi) = λi − 1
2
λ2
i +O (λ3

i ) yields the following approximation,

f
(

B0; ǫ,Γ
(0)

)

≈ − log
∣

∣S11|y
∣

∣− log |S22| −
q

∑

i=1

(

λi −
1

2
λ2
i

)

−
p−q
∑

i=1

(

λ∗i −
1

2
λ∗2i

)

= f (0)−
(

tr (F1 (ǫ)) + tr (F2 (ǫ)) +
1

2

(

tr
(

F2
1 (ǫ)

))

+ tr
(

F2
2 (ǫ)

)

)

.

(7.59)

Note that:

tr (F1 (ǫ)) = tr

((

ǫ2

2
G̃1 − ǫG1

)

S−111|y

)

=
ǫ2

2
tr
(

G̃1S
−1
11|y

)

− ǫtr
(

G1S
−1
11|y

)

(7.60)

tr (F2 (ǫ)) = tr

((

ǫG2 +
ǫ2

2
G̃2

)

S−122

)

=
ǫ2

2
tr
(

G̃2S
−1
22

)

+ ǫtr
(

G2S
−1
22

)

, (7.61)

tr
(

F2
2 (ǫ)

)

= tr

(

S
−1/2
22

(

ǫG2 +
ǫ2

2
G̃2

)

S
−1/2
22 S

−1/2
22

(

ǫG2 +
ǫ2

2
G̃2

)

S
−1/2
22

)

= tr

((

ǫG2 +
ǫ2

2
G̃2

)

S−122

(

ǫG2 +
ǫ2

2
G̃2

)

S−122

)

≈ tr
(

ǫ2G2S
−1
22G2S

−1
22

)

(7.62)

and

tr
(

F2
1 (ǫ)

)

= tr

(

S
−1/2
11|y

(

ǫ2

2
G̃1 − ǫG1

)

S−111|y

(

ǫ2

2
G̃1 − ǫG1

)

S
−1/2
11|y

)

= tr

((

ǫ2

2
G̃1 − ǫG1

)

S−111|y

(

ǫ2

2
G̃1 − ǫG1

)

S−111|y

)

≈ tr
(

ǫ2G1S
−1
11|yG1S

−1
11|y

)

. (7.63)
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If we substitute equations (7.60) to (7.63) in equation (7.59) we obtain,

f
(

B0; ǫ,Γ
(0)

)

≈ − log
∣

∣S11|y
∣

∣− log |S22|+ ǫ
(

tr
(

G1S
−1
11|y

)

− tr
(

G2S
−1
22

)

)

+
ǫ2

2

(

tr
(

G2S
−1
22G2S

−1
22

)

+ tr
(

G1S
−1
11|yG1S

−1
11|y

))

−ǫ2

2

(

tr
(

G̃1S
−1
11|y

)

+ tr
(

G̃2S
−1
22

))

= f (0) + ǫtr
(

G1S
−1
11|y −G2S

−1
22

)

+
ǫ2

2

(

tr
(

G2S
−1
22G2S

−1
22

)

+ tr
(

G1S
−1
11|yG1S

−1
11|y

))

−ǫ2

2

(

tr
(

G̃1S
−1
11|y

)

+ tr
(

G̃2S
−1
22

))

(7.64)

where

tr
(

G1S
−1
11|y −G2S

−1
22

)

= 2tr
((

BT
0

(

S−111|yS12|y − S12S
−1
22

)))

(7.65)

Now let Eij be the q × (p− q) matrix with 1 in the (i, j)th position and zeros elsewhere,

and let

P⋆ =

q
∑

i=1

p−q
∑

j=1

(

Eij ⊗ ET
ij

)

(7.66)

be a (q (p− q)× q (p− q)) permutation matrix such that P⋆ vec(B0) = vec
(

BT
0

)

. Then

it follows that,

tr
(

G1S
−1
11|yG1S

−1
11|y

)

= tr
((

S12|yB
T
0 +B0S

T
12|y

)

S
−1
11|y

(

S12|yB
T
0 +B0S

T
12|y

)

S
−1
11|y

)

= tr









S12|yB
T
0 S

−1
11|yS12|yB

T
0 + S12|yB

T
0 S

−1
11|yB0S

T
12|y

+B0S
T
12|yS

−1
11|yS12|yB

T
0 +B0S

T
12|yS

−1
11|yB0S

T
12|y



S
−1
11|y





= 2tr
(

B0S
T
12|yS

−1
11|yB0S

T
12|yS

−1
11|y

)

+ 2tr
(

S12|yB
T
0 S

−1
11|yB0S

T
12|yS

−1
11|y

)

= 2vec
(

B
T
0

)T
(

S
−1
11|yS12|y ⊗ ST

12|yS
−1
11|y

)

vec
(

B
T
0

)

+2vec (B0)
T
(

S
T
12|yS

−1
11|yS12|y ⊗ S−111|y

)

vec (B0)

= 2vec (B0)
T
Lvec (B0) (7.67)

where

L =
{

P
⋆T

(

S
−1
11|yS12|y ⊗ ST

12|yS
−1
11|y

)

+
(

S
T
12|yS

−1
11|yS12|y ⊗ S−111|y

)}

.
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Furthermore,

tr
(

G2S
−1
22G2S

−1
22

)

= tr
((

S
T
12B0 +B

T
0 S12

)

S
−1
22

(

S
T
12B0 +B

T
0 S12

)

S
−1
22

)

= 2tr
(

B
T
0 S12S

−1
22 B

T
0 S12S

−1
22

)

+ 2tr
(

S
T
12B0S

−1
22 B

T
0 S12S

−1
22

)

= vec (B0)
T {

2
(

S
−1
22 S

T
12 ⊗ S12S

−1
22

)

Pq(p−q) +
(

S
−1
22 ⊗ S12S

−1
22 S

T
12

)}

vec (B0) ,

(7.68)

−tr
(

G̃1S
−1
11|y

)

= −tr
(

2B0S22|yB
T
0 S

−1
11|y −B0B

T
0 − S11|yB0B

T
0 S

−1
11|y

)

= −2tr
(

B0S22|yB
T
0 S

−1
11|y −B0B

T
0

)

= −2vec (B0)
T
{(

S22|y ⊗ S−111|y

)

− Iq(p−q)
}

vec (B0) , (7.69)

and

−tr
(

G̃2S
−1
22

)

= −2tr
(

B
T
0 S11B0S

−1
22 −BT

0B0

)

= −2vec (B0)
T {(

S
−1
22 ⊗ S11

)

− Iq(p−q)
}

vec (B0) . (7.70)

Substituting equations (7.65) and (7.67) to (7.70) into equation (7.64) we get,

f
(

B0; ǫ,Γ
(0)

)

≈ f (0) + 2ǫtr
(

B
T
0

(

S
−1
11|yS12|y − S12S

−1
22

))

+
ǫ2

2
vec (B0)

T 2



























































P
⋆T

(

S
−1
11|yS12|y ⊗ ST

12|yS
−1
11|y

)

+
(

S
T
12|yS

−1
11|yS12|y ⊗ S−111|y

)

+
(

S
−1
22 S

T
12 ⊗ S12S

−1
22

)

P
⋆

+
(

S
−1
22 ⊗ S12S

−1
22 S

T
12

)

−
(

S22|y ⊗ S−111|y

)

−
(

S
−1
22 ⊗ S11

)

+ 2Iq(p−q)



























































vec (B0) .

(7.71)

Comparing (7.71) with (5.32) the following explicit formulations for the gradient and

Hessian, that can be used when optimizing over the space of B matrices are obtained:

DB = 2
(

S−111|yS12|y − S12S
−1
22

)

(7.72)

HB = 2











P⋆T
(

S−111|yS12|y ⊗ ST
12|yS

−1
11|y

)

+
(

ST
12|yS

−1
11|yS12|y ⊗ S−111|y

)

+
(

S−122 S
T
12 ⊗ S12S

−1
22

)

P⋆ +
(

S−122 ⊗ S12S
−1
22 S

T
12

)

−
(

S22|y ⊗ S−111|y

)

−
(

S−122 ⊗ S11

)

+ 2Iq(p−q)











(7.73)



Chapter 7. Maximum Likelihood Estimation Under the Krylov Hypothesis 117

where DB is a (q × (p− q)) matrix and HB is a (q (p− q)× q (p− q)) matrix. Note

that the gradient and Hessian can be derived in two ways; either with respect to matrix B

or with respect to vec(B). The second derivative with respect to matrix B can be rather

messy. Here we choose to tackle the derivation with respect to vec(B) as described in

Chapter 5 section 5.5.2, equation (5.32). However we opt to represent the gradient in

matrix form by applying the first result presented in Appendix A.1.

7.4.2 SA-Newton Algorithm

In Chapter 5 an overview of the classical Steepest Ascent (SA) and Newton optimization

methods was given. Their advantages and disadvantages were outlined. Furthermore a

brief discussion on how these methods can be extended to solve optimization problems

over the Grassmann manifold was provided. It was observed that while the SA method is

a globally convergent algorithm (that is, it converges to a local maximizer from practically

any starting point), Newton may converge to any critical point, not necessarily a maximum

point. If the initial point is taken far from any critical point, Newton method may fail to

converge.

To overcome these problems here we propose a hybrid algorithm which exploits the

globally convergent properties of the SA method with the fast convergence properties

of the Newton method. The algorithm starts with the SA method until the update value is

brought close to the critical value at which stage the Newton method takes over to speed

up the convergence to the critical point. The general steps of the SA-Newton algorithms

are presented as Algorithm (7.5).
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Algorithm 7.5 SA-Newton algorithm for unconstrained maximization on Grassmann

manifold.

1: Rotate the data (W = XQ) such that, swy ∝ e1 and Sww is tridiagonal, and let the

initial point be Γ(0) =
[

U(0) V(0)
]

= Ip , which is equivalent toB0 = 0 ∈ R(k×(p−k))

and corresponds to the PLS solution.

2: For k = 0, 1, 2, 3, ... until a stopping criterion is satisfied repeat the following steps

a. Let S
(k)
11|y = U(k)TSw|yU

(k), S
(k)
12|y = U(k)TSw|yV

(k), S
(k)
22 = V(k)TSwwV

(k),

S
(k)
12 = U(k)TSwwV

(k), S
(k)
11 = U(k)TSwwU

(k) and Pq(p−q) be defined by

equation (7.66).

b. Compute the gradient, DB(k)
= 2

(

(

S
(k)
11|y

)−1
S12|y − S(k)

12

(

S
(k)
22

)−1
)

c. Compute the Hessian using equation (7.73) but with the covariance matrices

replaced with those in step 2.a, above.

d. Compute the update ΓS
(k+1), using the steps of algorithm (5.4). This update

consist of a steepest ascent step coupled with a simple line search for the step

size.

e. If HB(k)
is negative definite,

i. Compute the update ΓN
(k+1) using algorithm (5.3). This update consists

of a Newton step coupled with a simple line search for the step size.

ii. If f
(

ΓN
(k+1)

)

< f
(

ΓS
(k+1)

)

then let Γ(k+1) = ΓS
(k+1) else let Γ(k+1) =

ΓN
(k+1)

else Γ(k+1) = ΓS
(k+1).
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7.5 Exploring the behavior of the Krylov Maximum

Likelihood (KML)

Loosely speaking the terms PLS estimator and KML estimator can be taken to refer to

the estimators of the vector of regression parameters. From the discussions in Chapter

6 sections 6.5, and sections 7.2 and 7.3, we know that these terms have a much broader

definition which includes the parameters of the joint multivariate normal distribution. In

describing these estimates it was noted that the Krylov subspace affects only σxy andΣxx

(or equivalently Σx|y). Since for both KML and PLS β̂ = Σ̂
−1
xxσ̂xy, in this section we

shall look at how the Krylov maximum likelihood function changes for different values

of Σ̂xx and σ̂xy.

From here onwards the terms PLS estimator and KML estimator will refer to estimators

of Σxx,σxy and β (or γ- recall from Chapter 2 that the parameters of the forward

regression framework can be derived from those of the inverse regression framework and

vice versa). The terms PLS solution and KML solution refer to the resulting estimates of

these parameters. In the case of the KML technique, the term KML solutions refers also

to the ’estimated’ matrix whose columns span the Krylov subspace.

This section presents two simulation studies consisting of a number of toy examples

(examples using artificial data) in low dimensions (p = 2, 3, q = 1) which allow a visual

inspection of the Krylov maximum likelihood (or the objective function, to use the term

from optimization) as it varies over the Grassmann Manifold. Such a visual inspection is

not possible in higher dimensions. The aim here is to try to identify the characteristics

of the data for which one can hope that: (i) the KML estimator gives good results and

(ii) KML performs better than PLS. For the different scenarios considered, the extent to

which the PLS solution and the KML solution differ will be explored.

7.5.1 Preliminary processing of the sample data

Since the KML estimator, like the PLS estimator, is built on the Krylov Hypothesis,

it shares most of the properties of the PLS estimator discussed earlier in Chapter 6

section 6.7. That is, the KML estimator is invariant under centering of the response
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and explanatory variables, equivariant under scaling of the response variable, and is not

invariant under scaling of the explanatory variables.

It is standard practice that when regression estimators are not scale invariant all the

variables in the data set are standardized (centered and scaled). Recall from Chapter

2 section 2.3.5 that centering reduces the complexity of the model by eliminating

the intercept term while scaling eliminates any measurement scale issues. For the

standardized data, (X̃, ỹ), Sx̃x̃ corresponds to the sample correlation matrix of the

explanatory variables and sx̃ỹ is a vector of sample correlations of the explanatory

variables with the response variable. Such a standardization will be employed in all

examples presented in this thesis.

Recall that the KML technique was first defined as a constrained optimization problem

and then reformulated as an unconstrained optimization problem over the Grassmann

manifold G (p, q). Under this new reformulation by applying results from Chapter 5 it

was possible to define a local parametrization in terms of matrices B ∈ Rq×(p−q) (see

equation (7.48)). By fixing the starting point on the manifold the objective function can

be written as a function of B,

f (B) =
− log

∣

∣

∣U(1)T
(

B;Γ(0)
)

Sx̃|ỹU
(1)

(

B;Γ(0)
)∣

∣

∣

+ log
∣

∣

∣
V(1)T

(

B;Γ(0)
)

Sx̃x̃V
(1)

(

B;Γ(0)
)∣

∣

∣
.

(7.74)

In obtaining a numerical solution for the KML technique, using Algorithm 7.5, once the

variance covariance matrices are tridiagonalized, the starting point on the manifold is the

one represented by

Γ(0) =
[

U(0) V(0)
]

=





Iq 0p−q×(q)

0q×(p−q) Ip−q



 .

In this coordinate system the starting point corresponds to the PLS solution. Another

point on the manifold close to Γ(0) is given by

Γ(1) =
[

U(1) V(1)
]

=
[

U(0) V(0)
]

exp (A)

where A is a block skew symmetric matrix of the form
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



0q×q Bq×(p−q)

−BT
(p−q)×q 0(p−q)×(p−q)





and B has singular values which lie in the set [0, π/2). (The need for such a restriction

was explained in Chapter 5 Section 5.4). This local parametrization will be used in all

examples presented in this section.

Let us recapitulate. For all numerical examples presented in this section prior to fitting

any regression model the data is processed as follows:

1. First, the data is standardized by centering and scaling yielding: Sx̃x̃ and sx̃ỹ which

are equivalent to the correlation matrix Rxx and the vector of pairwise correlations

rxy.

2. Second, we rotate the data to tridiagonal form, yielding Sw̃w̃ which is tridiagonal

and sw̃ỹ ∝ e1.

7.5.2 General design of the simulation studies

All the original (prior to processing) data sets considered in this section are generated

from some multivariate normal distribution, that is,





x

y



 ∼ Np+1









µx

µy



 ,





Σxx σxy

σyx σyy









Without loss of generality, in all cases, it will be assumed that
(

µT
x , µy

)T
= 0.

For the estimation problem at hand, after standardization, Sx̃x̃, sx̃ỹ and sỹỹ are sufficient

statistics. One of the main themes of this section shall be to explore how the following

three scenarios:

1. ‖sx̃ỹ‖ > 0,

2. ‖sx̃ỹ‖ ≈ 0,

3. ‖sx̃ỹ‖ = 0,
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which reflect different degrees of correlation between the explanatory variables and the

response variable, affect the objective function in equation (7.74).

Regression analysis makes sense only when the explanatory variables are correlated

with the response variable. The third scenario under consideration corresponds to the

case where the explanatory variables are uncorrelated with the response variable. From

a regression point of view, the third scenario is not of any practical use, but from a

mathematical point of view it is interesting to see how the PLS and the KML estimation

procedure behave in this scenario.

Note that when we come to tridiagonalizing the variance covariance structures, for

‖sx̃ỹ‖ 6= 0, Lanczos tridiagonalization, which has been explained in detail in Chapter

4, will be used. When sx̃ỹ = 0, diagonalization by means of the spectral decomposition

(which is a special form of tridiagonalization) will be applied.

From the results in Chapter 4 and earlier discussions in the current chapter we know that:

1. If σxx is an eigenvalue of Σxx then the Krylov hypothesis of dimension 1 holds.

Consequently if sx̃ỹ is an eigenvalue of Sx̃x̃ the PLS solution with q = 1 is maximal.

For such data, the KML solution is equivalent to the PLS solution.

2. If sx̃ỹ = 0 then the Krylov dimension is equal to 0. For such data Sx̃|ỹ = Sx̃x̃

and for both PLS and KML σ̂x̃ỹ and β̂ are equal to 0. On the other hand Σx̃x̃

can be estimated in a number of ways. A possible estimator is obtained by

diagonalizing Sx̃x̃; if the p eigenvalues of Sx̃x̃ are distinct then there are p! possible

diagonalizations. Alternatively Lanczos tridiagonalization can be applied with an

arbitrary vector used instead of sx̃ỹ in the process. In this chapter we shall focus

on diagonalizations since these involve partitioning the eigenvalues of Sx̃x̃. Given

that there is no unique estimate for Σx̃x̃ when sx̃ỹ = 0, we would expect that the

likelihood function has multiple maxima.

Numerical examples which explore the previous two statements will be presented in this

section. The possible effect of the correlation between the explanatory variables on the

performance of PLS and KML techniques will also be explored. All examples will be

conducted using R software. All figures are reported up to two decimal places (except



Chapter 7. Maximum Likelihood Estimation Under the Krylov Hypothesis 123

when more decimal places are needed for comparison purposes), but full resolution is

used when running these examples on a computer.

7.5.3 First simulation study (p = 2, q = 1)

In this first study suppose that p = 2 and q = 1. In this case B becomes a scalar, b, and

the Grassmann manifold over which one optimizes the objective function corresponds to

lines passing through the origin (that is the point (0, 0)) in R2.

Figure 7.1: An illustration of an element of G (2, 1).

Consider the vector a = (10, 10)T in Figure 7.1. It represents a point on the dashed

line representing an element of the manifold, G (2, 1). Any point, w = (x, y), found

on the line on which point a is located, can be written in terms of the unit vector u =

(0.71, 0.71) (= a/ ‖a‖). That is, w = cu for some c ∈ R. Using polar coordinates any

2−dimensional unit vector can be written in terms of an angle θ, hence we can write
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u =(cos θ,− sin θ)T . Note that by convention polar coordinates are typically defined

using the columns of a counter-clockwise rotation matrix but here a clockwise rotation

matrix is considered so that the discussions presented here coincide with those of Chapter

5. For the dashed line in Figure 7.1 it is easy to show that θ = π− π/4 rad = 135o where

’rad’ stands for radians and ’o’ stands for degrees. From here onwards, unless stated

otherwise, radians will be used to define angles. Clearly the manifold can be parametrized

in terms of θ. By looking at Figure 7.1 it is clear that in order to consider distinct elements

of G (2, 1) (distinct lines) one needs only consider values of θ in [0, π) or equivalently in

(−π, 0] or (−π/2, π/2] since θ and θ + π define the same line. Note that θ = 0, θ = π

and θ = −π all represent the x-axis. Consequently, the subspaces we are interested in,

have the form

Sq
(

Σx|y,σxy
)

= H = span ({u}) (7.75)

where

u (θ)=





cos θ

− sin θ



 , θ ∈ [0, π) . (7.76)

The complementary subspace is spanned by

v (θ) =





sin θ

cos θ



 , θ ∈ [0, π) (7.77)

and

Γ = Γ (θ) =





cos θ sin θ

− sin θ cos θ



 . (7.78)

From Chapter 5 we know that in this case B = b = θ.

Numerical examples (p = 2, q = 1)

We now turn to considering a number of numerical examples on artificial data.

Assume that all the variables in the data sets under study have been standardized. Then
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the sufficient statistics are given by,

Sx̃x̃ =





1 ρ

ρ 1



 , sỹỹ = 1, sTx̃ỹ =





a

c



 , a, c ∈ R

where, for the examples that follows, a, c are chosen in such a way as to ensure that Sx̃|ỹ

is positive definite. We shall assume that ρ is positive here.

The equicorrelation matrix Sx̃x̃ has two eigenvalues: ξ1 = (1 + ρ) (largest eigenvalue)

and ξ2 = {1− ρ}, both having multiplicity 1 (See Appendix D). The eigenspace of ξ1 is

equal to span
{

1√
2
[1, 1]T

}

while that of ξ2 is equal to span
{

1√
2
[1,−1]T

}

.

The examples considered here will be divided into three categories corresponding to

different Sxx matrices, the difference lying in the strength of the correlation between

the explanatory variable. The matrices that will be considered are:

1. Strong correlation : ρ = 0.9, ξ1 = 1 + 0.9 = 1.9 and ξ2 = 1− 0.9 = 0.1.

2. Average correlation : ρ = 0.5, ξ1 = 1 + ρ = 1.5 and ξ2 = 1− ρ = 0.5.

3. Weak correlation: ρ = 0.1, ξ1 = 1 + ρ = 1.1 and ξ2 = 1− ρ = 0.9.

For each one of these equicorrelation matrices a number of cases from the following

scenarios are considered:

(a) sx̃ỹ = 0 is compared with cases for which sx̃ỹ is in the eigenspace of ξ1. In general

one can write sx̃ỹ =
α√
2
[1, 1]T = a [1, 1]T and ‖sxy‖ = α where α ∈ R.

(b) sx̃|ỹ is in the eigenspace of ξ2. In this case one can write sx̃ỹ = δ√
2
[1,−1]T =

a [1,−1]T and ‖sx̃ỹ‖ = δ where δ ∈ R.

(c) sx̃ỹ is partly in the eigenspace of ξ1 and partly in that of ξ2. Hence sx̃ỹ =
α√
2
[1, 1]T+

δ√
2
[1,−1]T = [a, c]T and ‖sx̃ỹ‖ =

√
α2 + δ2 = η. Here α, δ ∈ R

Scenarios (a) and (b) are considered in order to confirm the two observations made at the

end of section 7.5.2. Scenario (c) is then considered to see what happens to the objective

function when sx̃|ỹ is non-zero and is not in any eigenspace of Sx̃|ỹ.
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Equicorrelation Matrix Scenario Cases

(i) (ii) (iii) (iv)

1 (a) a 0 0.02 0.50 0.90

(ρ = 0.9 ) α 0 0.03 0.71 1.27

(b) a 0.02 0.10 0.22

δ 0.03 0.14 0.31

(c) a 0.20 0.3 0.10 0.75

c -0.10 -0.10 -0.30 0.65

η 0.22 0.32 0.32 0.99

2 (a) a 0 0.02 0.50 0.80

(ρ = 0.5) α 0 0.03 0.71 1.13

(b) a 0.02 0.20 0.40 0.49

δ 0.03 0.28 0.57 0.69

(c) a 0.02 0.3 0.4 0.75

c -0.01 -0.1 -0.5 0.65

η 0.022 0.32 0.64 0.99

3 (a) a 0.2 0.5 0.7

(ρ = 0.1) α 0.28 071 0.99

(b) a 0.20 0.40 0.60

δ 0.28 0.57 0.85

(c) a 0.2 0.3 0.4 0.75

c -0.1 -0.1 -0.5 0.65

η 0.22 0.32 0.64 0.99

Table 7.1: Characteristics of the different examples considered. Note that the cases (i) − (iv)

represent different values of sx̃ỹ.

The characteristics (equicorrelation matrix, scenario and cases - different values of sx̃ỹ) of

the examples that will be considered here are summarized in Table 7.1. For each example

the behaviour of the objective function (7.74), based on the tridiagonalized covariance
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structures, as b varies in the interval [0, π] will be explored in order to evaluate how close

the PLS and KML solutions are in each case. For brevity’s sake, the numbering in Table

7.1 will be used to refer to the different examples. For example; 1(a)(i) refers to the

example which considers a data set for which the correlation matrix is equal to correlation

matrix 1, that is ρ = 0.9, the correlation vector is in the eigenspace of ξ1 and its elements

are defined under case (i). Similarly for the other examples.

The tridiagonalized covariance structures for each examples are noted below (See Table

7.1 for values of α, δ and η):

1(a) For all cases, the following tridiagonalized forms are obtained,

Sw̃w̃ =





1.9 0

0 0.1





and sw̃ỹ = α [1, 0]T .

1(b) For all cases, the following tridiagonalized forms are obtained,

Sw̃w̃ =





0.1 0

0 1.9





and sw̃ỹ = δ [1, 0]T .

1(c) The following tridiagonalized forms are obtained,

Cases (i) and (ii): Sw̃w̃ =





0.46 0.72

0.72 1.54



 ,

Case (iii): Sw̃w̃ =





0.28 0.54

0.54 1.72



 ,

Case (iv): Sw̃w̃ =





1.9 0.07

0.07 0.96





and sw̃ỹ = η [1, 0]T .

2(a) For all cases, the following tridiagonalized forms are obtained,

Sw̃w̃ =





1.5 0

0 0.5





and sTw̃ỹ = α [1, 0]T .
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2(b) For all cases, the following tridiagonalized forms are obtained,

Sw̃w̃ =





0.5 0

0 1.5





and sw̃ỹ = δ [1, 0]T .

2(c) The following tridiagonalized forms are obtained,

Case (i): Sw̃w̃ =





0.60 0.30

0.30 1.40



 ,

Case (ii): Sw̃w̃ =





0.70 0.40

0.40 1.30



 ,

Case (iii): Sw̃w̃ =





0.51 0.11

0.11 1.49



 ,

Case iv. Sw̃w̃ =





1.50 0.07

0.07 0.51





and sw̃ỹ = η [1, 0]T .

3(a) For all cases, the following tridiagonalized forms are obtained,

Sw̃w̃ =





1.1 0

0 0.9





and sTw̃ỹ = α [1, 0]T .

3(b) For all cases, the following tridiagonalized forms are obtained,

Sw̃w̃ =





0.9 0

0 1.1





and sw̃ỹ = δ [1, 0]T .
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3(c) The following tridiagonalized forms are obtained,

Case (i): Sw̃w̃ =





0.92 0.06

0.06 1.08



 ,

Case (ii): Sw̃w̃ =





0.94 0.08

0.08 1.06



 ,

Case (iii): Sw̃w̃ =





0.90 0.02

0.02 1.10



 ,

Case (iv): Sw̃w̃ =





1.10 0.01

0.01 0.90





and sw̃ỹ = η [1, 0]T .

We now move on to look at the plots of the objective function for each example listed

in Table 7.1. For the plots presented in this section attention is restricted to values of

b1 ∈ [0, π] which corresponds to one period of the function and extra point at b1 = π.

Superimposed on the graph of each objective function one finds:

• a vertical red line, and a horizontal red line marking, respectively, the value of b and

the value of the objective function corresponding to the KML solution and

• vertical green lines at b = 0 and π which correspond to the PLS solution.

If a graph contains superimposed red and green lines than only the red line is plotted.

Furthermore if there is a plotted red line at θ = 0, then there is an implied (but not

plotted) equivalent red line at θ = π. Note that the scaling of the y-axis may change

from one graph to the other.
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Figure 7.2: Plot of the objective functions corresponding to the set of cases in 1(a), Table 7.1.
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Figure 7.3: Plot of the objective functions corresponding to the set of cases in 1(b), Table 7.1.
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Figure 7.4: Plot of the objective functions corresponding to the set of cases in 1(c), Table 7.1.
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Figure 7.5: Plot of the objective functions corresponding to the set of cases in 2(a), Table 7.1.
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Figure 7.6: Plot of the objective functions corresponding to the set of cases in 2(b), Table 7.1.
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Figure 7.7: Plot of the objective functions corresponding to the set of cases in 2(c), Table 7.1.
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Figure 7.8: Plot of the objective functions corresponding to the set of cases in 3(a), Table 7.1.
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Figure 7.9: Plot of the objective functions corresponding to the set of cases in 3(b), Table 7.1.
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Figure 7.10: Plot of the objective functions corresponding to the set of cases in 3(c), Table 7.1.

It was observed that for sets of cases having the same Sw̃w̃ but different sw̃ỹ the value of

the objective function at b = θ = π/2 is fixed as sw̃ỹ changes. This is not surprising given

the form of the objective function. To see this more clearly consider the cases in 1 (a).

For these cases:

Sw̃w̃ =





1.9 0

0 0.1



 ,Sw̃|ỹ =





1.9− α2 0

0 0.1



 .

Substituting θ = π/2 in equation (7.78) yields:

Γ =





0 1

−1 0



 .

Consider the objective function, given in equation (7.74), in this case U(1)T
(

B;Γ(0)
)

=
[

0 −1
]

and V(1)T
(

B;Γ(0)
)

=
[

1 0
]

, B is scalar and equal to π
2
, hence the

objective function for the cases in 1(a) is defined by,
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f
(π

2

)

= − log





[

0 −1
]

Sw̃|ỹ





0

−1







− log





[

1 0
]

Sw̃w̃





1

0









= − log (0.1)− log (1.9)

which corresponds to minus the sum of the log of the diagonal elements of Sw̃w̃. This

shows that when θ = π/2 the objective function does not depend on sw̃ỹ.

The plots in Figures 7.2, 7.3, 7.5, 7.6, 7.8 and 7.9 confirm that when sw̃ỹ is an eigenvector

of Sw̃w̃ the PLS solution (which corresponds to b = 0 or b = π) has maximal likelihood

and the KML solution obtained using Algorithm 7.5 is equal to the PLS solution.

Cases (i) in Figures 7.2 and 7.5 confirm that when ‖sxy‖ = 0 the objective function has

multiple modes (in this case two) of the same height. The two modes occur at b = 0

and b = π/2. This implies that when ‖sxy‖ = 0 the PLS solution is one of the maximal

points.

The plots in Figures 7.2 to 7.7 indicate that for fixed ρ of large or medium value:

• As ‖sxy‖ increases, the difference between the two modes increases and in some

cases the function ends up unimodal (like in the last cases in Figures 7.5 and 7.7)

or almost unimodal (like in the last cases in Figures 7.2 and 7.6).

• For the cases for which sw̃ỹ is an eigenvector of Sw̃w̃ the two modes occur always

at b = 0 and b = π/2.

• When sw̃ỹ is not an eigenvector of Sw̃w̃ the position of the modes depends on the

data. The highest mode may be far from the PLS solution (see for example cases (i)

and (ii) in Figures 7.4 and 7.7). These examples suggests that in practice for data

for which sw̃ỹ is not an eigenvector of Sw̃w̃ the KML solution can be expected to

have a higher likelihood than the PLS solution; at least in some cases. In Figures 7.4

and 7.7 we note that as ‖sxy‖ increases the biggest mode moves closer to the PLS

solution indicating that when there is a strong correlation between the explanatory

variables and the response, one can expect that KML and PLS give solutions which

are close to each other.
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• When ‖sw̃ỹ‖ is close to zero the height of the two modes are nearly equal. For

example, consider the plots in Figure 7.2. The value of the objective function

at b = π/2 was found to be equal to 1.6607 in all cases. The values of the

objective function at b = 0 are 1.6607, 1.6612, 1.97, 3.58 respectively. The first

two values were given to four decimal places to show that there is a very slight

difference between the two, which could be considered negligible. These two values

correspond to the case when ‖sw̃ỹ‖ = 0 and ‖sw̃ỹ‖ is close to zero respectively.

Similar results were obtained for cases (i) and (ii) in Figure 7.5 and case (i) in

Figures 7.3, 7.6 and 7.7. The values of the objective function at the two modes for

the plots in the previously mentioned figures are given below.

For the plots in Figure 7.3 the value of the objective function at b = π/2 was found to

be equal to 1.66 (of course this applies to all cases). The values of the objective function

at b = 0 are 1.67, 1.88, 5.10 respectively. The rate of increase of the highest mode as

‖sw̃ỹ‖ increases seems to be much faster in the cases in 1(b) for which sw̃ỹ is in the

eigenspace corresponding to the smallest eigenvalue than those in 1(a) for which sw̃ỹ is

in the eigenspace corresponding to the largest eigenvalue.

Cases (ii) and (iii), in Figure 7.4, yield the same objective function (top right) since

they have the same tridiagonal covariance matrix, Sw̃w̃, and sw̃ỹ, despite the fact that the

elements of sx̃ỹ were different from one case to another. Recall that when explaining the

procedure for constructing the data used in these examples earlier on, it was observed

that sw̃ỹ = ‖sx̃ỹ‖ [1, 0]T . These observations confirms that it is the dimension of sx̃ỹ that

affects the objective function not the values of its elements.

For the plots in Figure 7.5 the value of the objective function at b = π/2 was found to be

equal to 0.29. The values of the objective function at b = 0 are 0.2877, 0.2882, 0.69, 2.21

respectively. When comparing Figure 7.5 with Figure 7.2 it can be noted that the rate of

increase of the highest mode, as ‖sw̃ỹ‖ increases, is much faster when ρ = 0.5. Recall

that for the set of examples to which Figures 7.2 and 7.5 belong, sw̃ỹ is in the eigenspace

corresponding to the largest eigenvalue of Sw̃w̃. The previous observations suggest

that the decrease between the correlation of the explanatory variables also affects the

difference between the two modes. It would seem that an average correlation between the

explanatory variables together with a strong correlation between the explanatory variables
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and response variable lead to a unimodal function.

For the plots in Figure 7.6 the value of the objective function at b = π/2 is 0.2877 while

the values of the objective function at b = 0 are 0.2893, 0.46, 1.31, 3.51, respectively.

Once again we observe a small difference between the values of the objective function

at the two modes for the first case which corresponds to ‖sw̃ỹ‖ ≈ 0. When comparing

Figures 7.6 and 7.3 it can be noted that the rate of increase of the highest mode as ‖sw̃ỹ‖
increases seems to be the same in both figures, unlike the comparison made earlier on

Figures 7.2 and 7.5. The decrease between the correlation of the explanatory variables

does not seem to affect the difference between the two modes. Furthermore, for the cases

in Figures 7.6 and 7.3 the highest possible value of δ (such that Sw̃|ỹ to be positive definite)

does not lead to uni-modality. These differences might be due to the fact that in Figures

7.6 and 7.3, sw̃ỹ is in the eigenspace of the smallest eigenvalue.

The plots in Figures 7.8 to 7.10 indicate that for fixed ρ of small dimensions:

• If ‖sw̃ỹ‖ is close to zero the function is bimodal with two modes of almost equal

heights. (Case (i) in Figure 7.8)

• If ‖sw̃ỹ‖ > 0 the objective function is unimodal.

• When sw̃ỹ is not in an eigenspace of Sw̃w̃: If ‖sw̃ỹ‖ is average the KML solution is

not very far from the PLS solution while if ‖sw̃ỹ‖ is large PLS solution is maximal

and hence KML solution is equivalent to the PLS solution.

Thus Figures 7.8 to 7.10 suggest that when multicollinearity is missing between the

explanatory variables and the KML solution and the PLS solution are either equal or

very close to one another, depending on the orientation and size of sw̃ỹ.

The intuitions derived from the previous examples will be summarized at the end of the

section.

7.5.4 Second simulation study (p = 3, q = 1).

The second set of examples consider the case when p = 3 and q = 1. In this case,

the matrix B becomes a row vector which will be denoted by bT = (b1, b2)
T

and the
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Grassmann manifold over which one optimizes the objective function corresponds to lines

passing through the origin (that is the point (0, 0, 0)) in R3. Each one of these lines touches

the sphere of radius 1 centered at the origin at exactly two points and any point on the line

is a multiple of the unit vector from the origin to any one of these two points.

Figure 7.11: An illustration of an element of G (3, 1) which corresponds to the dotted line which

touches the unit sphere (r = 1) at point P.

Figure 7.11 displays the unit sphere and one such line. Using spherical polar coordinates

any unit vector, u, in R3 can be written in terms of an angle θ ∈ [0, π] and an angle

φ ∈ [0, 2π) (see Figure 7.11), that is, u = (cos (θ) , sin (θ) cos (φ) , sin (θ) sin (φ))T .

In Chapter 5 a number of results on block skew-symmetric matrices and their exponential

were presented and from these it follows that the singular value decomposition of a

(3× 3) block skew symmetric matrix has one zero singular value and a pair of non-

zero singular values having value λ, say. Therefore such a matrix is of rank 2. In

the same chapter a relation was presented between the SVD of B and the SVD the

of the corresponding block skew-symmetric matrix, A, where it was observed that if

A has singular values
{

λ1, λ1, . . . , λ p−1
2
, λ p−1

2
, 0

}

then the singular values of B are
{

λ1, . . . , λ p−1
2

}

. This result allows us conclude that λ is equal to the singular value of the

2 dimensional vector b. Therefore the usual SVD in terms of column orthonormal and
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diagonal matrices for a p − 1-dimensional vector, b, takes the form: b = mλn where

m = b/ ‖b‖ , λ = ‖b‖ and n = 1. Therefore, in this case, λ =
√

b21 + b22. Furthermore

it was observed that this singular value corresponds to the angle of rotation in a 2-

dimensional plane. To obtain a one-to-one mapping (except for extremely distant points)

between values of b and the Grassmann manifold, one can restrict λ to vary in [0, π/2)

which corresponds to selecting b such that its values satisfy 0 ≤
√

b21 + b22 < π/2. The

values that satisfy this equation lie inside a circle with center (0, 0) and radius π/2.

Since plotting the objective function in these dimensions is more challenging, due to

time and space limitations, in this subsection a different strategy will be considered to

that taken in the previous subsection. We shall give only one example with three cases

corresponding to ‖sx̃ỹ‖ > 0, ‖sx̃ỹ‖ ≈ 0, and , ‖sx̃ỹ‖ = 0.

Numerical examples (p = 3, q = 1)

Suppose that all the variables in the data set under study have been standardized and that

the sufficient statistics are given by:

sỹỹ = 1,Sx̃x̃ =











1 0.6 0.5

0.6 1 0.4

0.5 0.4 1











and consider three cases for sx̃ỹ:

a. sx̃ỹ =











0.5

0.6

0.5











, b. sx̃ỹ =











0.05

0.06

0.05











, c. sx̃ỹ =











0

0

0











After tridiagonalization for (a) and (b) we get:

Sw̃w̃ =











1.99 0.16 0

0.16 0.41 0.04

0 0.04 0.60











, sw̃w̃ = ‖sx̃ỹ‖
(

1 0 0
)T

where

a. ‖sx̃ỹ‖ = 0.93, b. ‖sx̃ỹ‖ = 0.09
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For case (c) tridiagonalization is obtained using the SVD (diagonalization)

Sw̃w̃ =











2 0 0

0 0.61 0

0 0 0.38











, ‖sx̃ỹ‖ = 0

Here the diagonal elements of Sw̃w̃ correspond to the eigenvalues ordered in descending

order as is done in the SVD. However any ordering of the eigenvalues can be

considered. In this case there are 3! possible ways of ordering the eigenvalues. Hence

tridiagonalization is not unique here.

Next for each of the cases presented above we shall present a plot of the objective function

followed by a contour plot. To investigate further the behavior of the objective function,

a plot of the function for b2 fixed at 0 and b1 allowed to vary between 0 and π will also be

presented.

When plotting contour plots of the objective functions:

• A green circle with center b1 = 0, b2 = 0 and having radius π/2 will be

superimposed on the contour plot. The green circle and the region enclosed by

it cover the whole Grassmann manifold. There is a one-to-one relation between the

points in the region identified by this circle, except on the green boundary where the

relation is two-to-one. That is, opposite green points represent the same element of

the Grassmann manifold.

• A blue circle with radius π will also be superimposed with the aim of gaining a

better picture of the behavior of the function. The area between the green and

blue circle cove/rs the Grassmann manifold again. On the circumference of the

blue circle the likelihood is constant, and the circumference of the blue circle

corresponds to the point on the origin.

• Two red lines, one horizontal and one vertical, will be superimposed on the contour

plot. Their point of intersection marks the maximum point on the objective function.

Note that the scaling of the y-axis may change from one graph to the other.
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Figure 7.12: Plot of the objective function as a function of b1, b2 ∈ [−π, π] after tridiagonalization.

(Second simulation study part a)
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Figure 7.13: Contour plot corresponding to the plot in Figure 7.12.
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Figure 7.14: Plot of objective function for b1 ∈ [0, π) and b2 fixed at 0. (Second simulation study

part a)
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Figure 7.15: Plot of the objective function as a function of b1, b2 ∈ [−π, π] after tridiagonalization.

(Second simulation study part b)
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Figure 7.16: Contour plot corresponding to the plot in Figure 7.15.
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Figure 7.17: Plot of objective function for b1 ∈ [0, π) and b2 fixed at 0. (Second simulation study

part b)
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Figure 7.18: Plot of the objective function as a function of b1, b2 ∈ [−π, π] after tridiagonalization.

(Second simulation study part c)
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Figure 7.19: Contour plot corresponding to the plot in Figure 7.18.
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Figure 7.20: Plot of objective function for b1 ∈ [0, π) and b2 fixed at 0. (Second simulation study

part c)

Note that the little dips at the top of the surfaces in Figures 7.12 and 7.15 are graphical

artifacts. For all the plots of objective functions the points on the outer circle of radius π

correspond to the same point on the manifold and hence the objective function is equal

for these points. The plots of the objective function are rather complex and difficult to

interpret thus in what follows the focus will be on the contour plots.

(a) Consider the first case. The contour plot in Figure 7.13 suggests that the objective

function varying over G (3, 1) has three modes of different heights with the tallest

being found somewhere close to the center of the green circle. Figure 7.14, shows

that in the range b1 ∈ [0, π), which corresponds to one entire period of the function

there are two modes, one bigger than the other. This continues to confirm that the

function is not unimodal. In the examples in the previous section we had seen that

when ‖sx̃ỹ‖ > 0 and there is a strong or average correlation between the explanatory

variables, as is the case in this example, the objective function can have multiple

modes with only one corresponding to the global maximum. This example confirms

that result.
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Using Algorithm 7.5 the maximum value was found to be at (b1, b2)
T =

(0.03π,−0.0006π)T ≈ (4.49◦,−0.12◦)T at which the value of the objective

function is equal to 1.31. This point corresponds to the point of intersection of

the red lines on Figure 7.13. The PLS solution corresponds to the point (b1, b2)
T =

(0, 0)T . The Euclidean distance between bKML which denotes the vector b at the

KML solution and bPLS which denotes the vector b at the PLS solution is 0.08.

Hence the points are very close to each other. Note that the value of the objective

function at the PLS solution is equal to 1.29.

(b) Now consider the second case. The contour plot in Figure 7.16 suggests that the

objective function varying over G (3, 1) has three modes, it seems that two are of the

same height and one, found somewhere close to the center of the green circle, is a bit

taller. From Figure 7.17, it is clear that in the range b1 ∈ [0, π), which corresponds

to one entire period of the function, there are two modes one bigger than the other.

Unlike in part (a) the heights of the modes are very close to each other. In the

examples in the previous subsection it was observed that when ‖sx̃ỹ‖ ≈ 0, as is

the case in this example, the objective function can have multiple modes but their

heights are very close. This example confirms that result.

Using Algorithm 7.5 the maximum value was found to be at (b1, b2)
T =

(0.03π, 0.0009π)T ≈ (5.72◦, 0.17◦)T at which the value of the objective function

is equal to 0.76. This point corresponds to the point of intersection of the red lines

on Figure 7.13. The PLS solution corresponds to the point (b1, b2)
T = (0, 0)T . The

Euclidean distance between bKML which denotes the vector b at the KML solution

and bPLS which denotes the vector b at the PLS solution is 0.10. Hence the points

are close to each other. Note that the value of the objective function at the PLS

solution is equal to 0.73.

(c) Now consider the third case. The contour plot in Figure 7.19 suggests that the

objective function varying over G (3, 1) has three modes. From the plot it is not

clear whether these are of the same height but from our the theoretical results

presented earlier in this chapter we know that they are. From Figure 7.20, it is

clear that in the range b1 ∈ [0, π), which corresponds to one entire period of the

function, there are two modes of the same size and one of the modes is at the PLS
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solution. This confirms that when ‖sx̃ỹ‖ = 0 the objective function has multiple

modes of the same height. By construction Algorithm 7.5 selects the mode which

is found at (b1, b2)
T = (0, 0)T which corresponds to the PLS solution.

7.5.5 Intuitions derived from the examples

The numerical examples presented in this chapter have confirmed a number of results

which were known from the analytical analysis made in earlier chapters. Furthermore

they helped us gain more insight on the behaviour of the objective function. Intuitions are

summarized below.

The numerical examples presented in this chapter:

1. Confirm that when ‖sx̃ỹ‖ = 0, the objective function is multimodal, having various

global maxima. The PLS solution corresponds to one of these maxima and the KML

solution obtained using Algorithm 7.5 corresponds to the PLS solution. Selection

of the PLS solution as the optimal solution is somewhat arbitrary in this case.

2. Show that when ‖sx̃ỹ‖ ≈ 0 the objective function is multimodal. There is one global

maximum but the heights of the local maxima are very close to that of the global

maximum. Often the difference between the heights is negligible. PLS solution

typically has maximal likelihood and the KML solution obtained using Algorithm

7.5 corresponds to the PLS solution.

3. Indicate that when ‖sx̃ỹ‖ > 0 the objective function can be unimodal or multimodal

depending on the size of ‖sxy‖ and the correlation between the explanatory

variables.

4. Confirm that if sx̃ỹ is in an eigenspace of Sxx, then the PLS solution has maximal

likelihood and the KML solution obtained using Algorithm 7.5 corresponds to the

PLS solution.

5. Suggest that if sx̃ỹ is not in an eigenspace of Sx̃x̃, the global maximum can be far

from the PLS solution but moves closer to the PLS solution as ‖sxy‖ increases. For

large enough values of ‖sxy‖ the global maximum is approximately equal to the



Chapter 7. Maximum Likelihood Estimation Under the Krylov Hypothesis 148

PLS solution and the function becomes unimodal. It was observed that, at least

when p = 2, the ”rate of convergence” to the PLS solution as ‖sxy‖ increases, is

faster when the correlation between the explanatory variables is low.

6. For the case p = 2 it was observed that when the correlation between the

explanatory variables is small, the objective function is unimodal no matter the

size of ‖sx̃ỹ‖.

Thus there seems to be three features that affect the shape and behaviour of the likelihood:

(1) size of p, (2) size of ‖sx̃ỹ‖ and how close this value is to forcing Sx̃|ỹ to be singular,

(3) orientation of sx̃ỹ, that is, whether it lies on an eigenspace or not.

In this chapter we considered only examples with very small values of p in an attempt to

deduce some likely consequences in real life examples which typically involve very large

values of p. The examples in this chapter indicate that when ‖sx̃ỹ‖ is small or equal to

zero, one can expect that the objective function has pCq modes while when ‖sx̃ỹ‖ is large

and multicollinearity is absent, the objective function tends to have one mode.

Furthermore, if the PLS estimator is interpreted as the matrix tridiagonalization of

(sx̃ỹ,Sx̃x̃), it was observed that such a tridiagonalization requires the estimation of an

orthogonal matrix Q such that QTSxxQ is tridiagonal and sx̃ỹ ∝ e1. When ‖sx̃ỹ‖ > 0

often this Q is unique (up to the sign of its columns) for a given sxy. When ‖sx̃ỹ‖ = 0

there are various ways of estimating Q. In our examples we opted to seek a Q such that

QTSx̃x̃Q is diagonal since such a transformation involves partitioning the eigenvalues

of Sx̃x̃. If the p eigenvalues of Sx̃x̃ are unique, there are p! possible choices for such

a Q, which generate easily the pCq different PLS ”solutions”. We could have also

tridiagonalized Sx̃x̃ with respect to any real, non-zero p-dimensional vector c, instead

of sx̃ỹ, which leads to other possible choices for Q.
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Chapter 8

A Comparison of different Multiple

Linear Regression Techniques.

8.1 Introduction

The aim of this chapter is that of comparing the predictive ability of the Ordinary

Least Squares (OLS), Partial Least Squares (PLS) and Krylov Maximum Likelihood

(KML) regression methods when these are applied to data having different characteristics.

Section 8.2 is dedicated to explaining how the predictive ability of the models will be

evaluated.

This chapter will be divided into two parts:

In the first part the performance of the techniques when applied to low dimensional (n >

p) artificial data, with and without multicollinearity, will be explored. Multicollinearity

has been defined in Chapter 2, where its negative effects on the OLS estimator were

recalled. Section 8.3 presents an overview of some multicollinearity diagnostics available

in the literature. Section 8.5 is somewhat an extension of section 7.5 where the behaviour

of the Krylov maximum likelihood was explored for small values of p (2 and 3) and where

the Krylov dimension, q, was assumed to be known and equal to 1 in all cases. In this

chapter we introduce the estimation of the Krylov dimension into the problem.

In the second part of this chapter the performance of PLS and KML when applied to two
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real life high dimensional (n < p) data sets will be explored. In the literature, PLS has

been found to be very successful when the data under study is high dimensional. Such

data is known to be plagued with multicollinearity. When working with high dimensional

data, OLS is known to be ill-conditioned or undefined, hence it will not be considered in

the second part of this chapter. The aim of this second part shall be that of exploring the

possibility that the KML solution may perform better than PLS, at least in some cases.

Numerical calculations are done using R software. All figures are reported up to two

decimal places (except when more decimal places are needed for comparison purposes),

but full resolution is used when running these examples on a computer.

8.2 Evaluation of the Prediction Ability of the Models

In regression literature the estimated mean squared error of prediction (MSEP), or its

square root (RMSEP), is typically used to evaluate the prediction ability of a model.

In PLSR and Principal Components Regression (PCR) it is also used to determine the

optimal number of components that should be retained which corresponds to the Krylov

dimension, q.

When the sample size, n is large enough, it is divided into a training set, denoted Xtrain

and containing nT observations, and a validation or test set, denoted Xtest and containing

the remaining nV observations; n = nT + nV . The model is then fit on the training set

and the MSEP is estimated using the validation set. This method is known as external

validation. The resulting estimator of the MSEP will be referred to as the validation mean

squared error (VMSE) and is defined by:

VMSE =
1

nV

nV
∑

i=1

(

yi − ŷTr
i

)2
(8.1)

where ŷTr denotes the predictor obtained by fitting a MLR model on the training set.

When the sample size is small and one cannot afford to divide it into two parts, cross-

validation is typically used to estimate the MSEP with, in order of preference, leave-

one-out (LOO), adjusted 5− and adjusted 10− fold being the most popular (Mevik and

Cederkvist, 2005). The last two are less computationally demanding than LOO-CV.

However LOO-CV still remains the most popular. Cross-validation has already been
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described in Chapter 6, Section 6.6, where its use in evaluating the Krylov dimension

when considering PLS, has been discussed.

8.3 Multicollinearity Diagnostics

There is no single diagnostic for identifying the presence of multicollinearity. In

the literature it is usually suggested to consider a collection from the many existing

diagnostics. The most popular diagnostics seem to be: pairwise correlations, variance

inflation factors, and the condition indices. A brief description of each will be presented

next. The main reference for this section is Myers (1990).

1. Pairwise Correlations: The first step in identifying the presence of collinearity in

the data is by looking at the off diagonal elements of the sample correlation matrix

Rxx. The values of these elements describe the strength of the pairwise correlation

between the explanatory variables. However, multicollinearity usually involves

multiple associations which cannot be detected by these pairwise correlations.

2. Variance Inflation Factors (VIFs): The VIFs measure the increase in the variance

experienced by each regression coefficient estimate. The VIF of the ith regression

coefficient is defined by:

V IFj =
1

1−R2
j

(8.2)

where R2
j is the multiple coefficient of determination that is produced when variable

Xj is regressed against the other explanatory variables Xk (for all j 6= k) . A

VIF value close to 1 indicates that multicollinearity is absent or insignificantly

small while a ’large’ value indicates that the explanatory variable to which it

belongs is highly correlated with the other explanatory variables. No theoretical

benchmark exists to determine what ’large’ means here. Myers (1990) observes

that if there are VIF values greater than 10, the data under study may exhibit severe

multicollinearity problems. Note that VIFs can be computed only when n > p.

3. Condition Indices (CIs): The condition indices are the ratios of the maximum

eigenvalue of Rxx with all other eigenvalues. There are as many condition indices
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as there are eigenvalues. The eigenvalues are typically ordered in ascending order.

The jth condition index is defined by

κj (Rxx) =
λmax

λj

(8.3)

where λmax and λj corresponds to the largest and jth eigenvalues of Rxx,

respectively. The last condition number is usually considered as a diagnostic on

its own and is known as the condition number. It is denoted by κ (Rxx) and

corresponds to the ratio of the largest to the smallest eigenvalue of the sample

correlation matrix, that is

κ (Rxx) =
λmax

λmin

(8.4)

Belsley et al. (1980) observe that the number of large (> 5) condition indices

corresponds to the number of near dependencies in the columns of X. Values

between 5 and 10 indicate the presence of weak dependencies while values

greater than 30 indicate the presence of moderate or strong relations between the

explanatory variables. A condition number which is much greater than 30 is an

indication of serious multicollinearity while values between 5 and 10 indicate that

weak dependencies may be starting to affect the regression estimates.

In this chapter since our interest will be mainly in the presence or absence of

multicollinearity we will consider only the last two diagnostics as the correlation matrix

can be infinite for large values of p and pairwise correlations will offer no additional

information, regarding the presence or absence of multicollinearity, then the VIFs and

the CIs . Furthermore note that testing for multicollinearity makes sense only when

working with low dimensional (n > p) data since for high dimensional data the presence

of multicollinearity is inevitable. Hence when working with high dimensional data we

shall only report the condition number of the correlation matrix just to give an idea of the

severity of the multicollinearity present in the data.

8.4 Fitting Linear Regression Models using R Software

In R, OLS multiple linear regression is fitted using the ’lm’ command found in the

package ’stats’.
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For the PLS regression a script was written which evaluates the PLS solution using the

approximate ML interpretation of Chapter 6. The results were compared with those

obtained using the command plsr found in the R package ’pls’. It was observed that

while both scripts gave equivalent results in low dimensions, for high dimensions the plsr

command required less computation time. Hence it was decided that this command should

be used when fitting a PLS regression model. The ’pls’ package has been written by

Ron Wehrens and Bjørn-Helge Mevik. It implements both partial least squares regression

(PLSR) and principal component regression (PCR). A detailed description of this package

can be found in Mevik and Wehrens (2007).

The ’pls’ package offers the option of using various algorithms (available in the literature)

for fitting the PLS model. In this thesis the SIMPLS algorithm (De Jong, 1993) will

be applied. It has been observed in the literature that for univariate multiple regression

(PLS1) all the available algorithms give the same results (De Jong, 1993; Denham, 1995).

When it comes to estimating the Krylov dimension, q, for PLS, leave-one-out cross-

validation (LOO CV) will be used (see Section 6.6).

For KML regression, Algorithm 7.5, which has been discussed in Chapter 7, was coded

in an R script in order to estimate the matrix whose column space corresponds to the

Krylov subspace of interest. Another script was written to derive the parameter estimates

for the KML method. These scripts can be found in Appendix E. Note that Algorithm 7.5

requires a lot of computational time and is numerically challenging when p and q are large.

Time cost comes in two measures: number of iterations and time per iteration. The time

for conducting one iteration can be very long. This is mainly due to the computation

of large matrices at each iterations such as the Hessian matrix which has dimension

(q (p− q)× q (p− q)). For example, if p = 100, q = 4, at each iteration of the algorithm,

a Hessian matrix of dimension (240× 240) needs to be computed. It was observed that in

some cases, when the data exhibits near multicollinearity (that is κ is large but still finite)

and q > 2, the algorithm requires over 3000 iterations to converge. This did not happen

for all nearly multicollinear data sets. The reason for these slow convergence rates has not

been identified. When estimating the Krylov dimension q, given that the KML technique

already requires a lot of computational time, LOO CV was found infeasible as it greatly

increases the computation time. Thus for the KML external cross-validation will be used
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to estimate q.

8.5 Simulation study on low dimensional data

In this section the predictive ability of the OLS, PLS and KML regression techniques

will be compared on a number of low dimensional, artificial data sets. As explained in

the introduction in this section we want to extend the ideas of Chapter 7 section 7.5 by

introducing the estimation of q into the problem. Of course given the higher dimensions

of the problem plotting the objective function for the Krylov maximum likelihood is not

possible. It is important to note that the estimates, q̂, of the Krylov dimension, obtained

for KML and PLS may be different in which case the results obtained by the different

techniques would be located on different manifolds and thus a comparison between the

two solutions is not as straight forward as it was in Chapter 7 section 7.5.

In generating the data sets used in this section the parameters of the assumed populations

will be chosen arbitrary but in a way that the Krylov dimension is clearly identified.

8.5.1 The Design

All the original (prior to processing) data sets considered in this section are generated

from some multivariate normal distribution, that is,





x

y



 ∼ Np+1









µx

µy



 ,





Σxx σxy

σyx σyy







 .

Without loss of generality, in all cases, it will be assumed that
(

µT
x , µy

)T
= 0.

The generated data sets are divided into a training set and a test set. The data is then

pre-processed in a similar way as was explained in Chapter 7 section 7.5.1. That is,

1. Prior to fitting any regression model the variables in the training set are standardized

by centering and scaling yielding: Sx̃x̃ and sx̃ỹ which are equivalent to the

correlation matrix Rxx and the vector of pairwise correlations rxy.
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2. When conducting KML regression using Algorithm 7.5 further processing is done

which involves rotating the training data into tridiagonal form, that is, finding a

(p× p) orthogonal matrix,Q, which transforms the training data is such a way that

QT sx̃ỹ=ce1 = sw̃ỹ and QTSx̃x̃Q = Sw̃w̃ (8.5)

where c is some constant, Sw̃w̃ is tridiagonal and W̃train = X̃trainQ.

Since the KML estimator (like the PLS estimator) is rotation equivariant, rotations defined

in the second transformation above do not affect its solution. Once the optimal model is

selected, the KML regression estimates can be rotated to the original coordinate system

as follows

β̂KML

(

X̃, ỹ
)

= Qβ̂KML

(

W̃, ỹ
)

.

This is however not required if the aim is only to compare the predictive ability (provided

the test set is also rotated to the new coordinate system). In this chapter prediction will be

calculated on the rescaled variables in the original coordinate system (that is using X̃, ỹ),

since the R scripts used to conduct OLS and PLS regression give results with respect to

the rescaled variables in the original coordinate system. Note that the data in the test set

is standardized using the sample statistics of the training set.

When discussing Krylov closure we had a result that stated that if a Krylov sequence is

based on a (p× p) matrix A and a p-dimensional vector u =(u1, . . . , up)
T

, the Krylov

dimension q is equal to the number of distinct eigenvalues of A for which the projection

of u onto their eigenspace is non-zero. From this result we conclude that the value of q

cannot be greater than the number of distinct non-zero eigenvalues of Sxx (or equivalently

Sx̃x̃). This upper bound, for the possible values of q, shall be denoted by q∗. Note that q∗

depends on the sample selected.

8.5.2 The Study

Consider the case when p = 10. Two samples, of different sizes, will be drawn from

each of two populations. The two population models are assumed to follow a multivariate
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normal distribution as explained in section 8.5.1. They have the same parameters, except

for Σxx. The parameters are:

σyy = 1.51,σxy = 0.39e1.

For the first population Σxx = A where,

A =





















































1.54 0.13 0 0 0 0 0 0 0 0

0.13 1.56 0.18 0 0 0 0 0 0 0

0 0.18 1.47 0.19 0 0 0 0 0 0

0 0 0.19 1.68 0.2 0 0 0 0 0

0 0 0 0.2 1.62 0.18 0 0 0 0

0 0 0 0 0.18 1.25 0.07 0 0 0

0 0 0 0 0 0.07 1.33 0.25 0 0

0 0 0 0 0 0 0.25 1.51 0.03 0

0 0 0 0 0 0 0 0.03 1.44 0.25

0 0 0 0 0 0 0 0 0.25 1.64





















































is an unreduced tridiagonal matrix. For the second populationΣxx is taken to be a reduced

tridiagonal matrix whose elements correspond to those of matrix A but with elements

a34 = a43 = 0. From the results in Chapter 4, it is known that, for the first population the

Krylov dimension is equal to p, while for the second population the Krylov hypothesis

holds and the Krylov dimension, q, is equal to 3.

Furthermore consider the correlation structures for these two populations:

ρyy = 1,ρxy = 0.2e1.

For the first population, the population correlation matrix for the explanatory variables is

defined as



Chapter 8. A Comparison of different Multiple Linear Regression Techniques. 157

Pxx =





















































1 0.09 0 0 0 0 0 0 0 0

0.09 1 0.12 0 0 0 0 0 0 0

0 0.12 1 0.12 0 0 0 0 0 0

0 0 0.12 1 0.12 0 0 0 0 0

0 0 0 0.12 1 0.12 0 0 0 0

0 0 0 0 0.12 1 0.05 0 0 0

0 0 0 0 0 0.05 1 0.18 0 0

0 0 0 0 0 0 0.18 1 020 0

0 0 0 0 0 0 0 0.20 1 0.16

0 0 0 0 0 0 0 0 0.16 1





















































.

For the second population, the population correlation matrix for the explanatory variables

has the same elements as that for the first population except for elements ρ34 and ρ43

which for the second population are equal to zero. Note that the tridiagonal structure of

the covariance parameters is retained by the correlation parameters. It was observed that

both correlation matrices have p distinct eigenvalues and that for both populations if one

calculates Pxxρxy this is not proportional to ρxy and hence it can be concluded that ρxy

is not an eigenvector of Pxx. Had ρxy been an eigenvector of Pxx the Krylov dimension

would be equal to one (see results in Chapter 4) but since this is not the case for both

populations our previous observations on the respective Krylov dimensions still hold.

Note that
∥

∥ρxy
∥

∥ = 0.2 which indicates that the correlations between the response and the

explanatory variables are rather weak. Furthermore from matrix, Pxx, we note that any

correlations present between the explanatory variables are very small.

As explained earlier for all samples considered the variables will be standardized prior to

fitting any regression model. Hence sx̃ỹ and Sx̃x̃ will correspond to estimates of ρxy and

Pxx, respectively.

For large samples taken from the two population, estimated parameters will be very close

to the population parameters. Thus it can be expected that for large samples taken from

the first population multicollinearity is absent and hence OLS can be expected to have

the best predictive ability. On the other hand for large samples taken from the second

population multicollinearity is absent but the estimated Krylov dimension should be equal
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to 3 and hence it is expected that PLS and KML perform better or as good as OLS. For

large samples taken from any one of the populations the observations made in Chapter 7,

section 7.5 suggest that if the estimated Krylov dimensions are equal, the KML solution

should perform better than the PLS solution but the solutions can be expected to be very

close (see cases (i) and (ii) in Figure 7.10). For small samples a different picture might be

observed as in this case the parameter estimates tend to be far from the actual population

parameters.

Note that if the KML and PLS solutions have the same estimate for the Krylov dimension,

it would be possible to measure the closeness of the two solutions. As mentioned earlier

in Chapter 7 the term ”solution” here has a broad definition which includes the estimates

of Pxx,ρxy,β (or γ) and, in the case of the KML solution, the matrix Γ whose first

q̂ columns span the Krylov subspace. In order to compare solutions we shall consider

points on the Grassmann manifolds corresponding to the solutions and hence we need a

metric on the Grassmann manifold which measures the distance between the two points

on the manifold. Such a metric was defined in Chapter 5 equation (5.27). From equation

(5.27) it follows that if the PLS solution corresponds to the origin on the manifold which

is represented by Ip then the distance on the manifold from the PLS solution to any other

point on the manifold represented by Γ = exp(A) can be defined by,

d (Ip,Γ) =
1

2

(

r
∑

j=1

λ2
j

)1/2

(8.6)

where r is the rank of A and λj j = 1, . . . , r are the non-zero singular values of

A. Note that in writing equation (8.6) the link between the SVD of A and that of B

presented in Chapter 5, section 5.2.2 has been considered. Note that if the estimates of

the Krylov dimensions are different for PLS and KML it does not make sense to measure

the closeness of the two solutions given that these are found on different manifolds.
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Sample Number Population ntrain ntest q

1 1 2000 1000 10

2 1 12 1000 10

3 2 2000 1000 3

4 2 12 1000 3

Table 8.1: Attributes of the different samples: sample number, the population from which it has

been selected and its Krylov dimension, q, ntrain (sample size for training set) and ntest (sample

size for test set). Here p = 10.

Sample 1 Sample 2 Sample 3 Sample 4

VIFs CIs VIFs CIs VIFs CIs VIFs CIs

1.01 1.00 11.15 1.00 1.01 1.00 5.09 1.00

1.03 1.04 22.58 1.39 1.02 1.03 6.62 1.38

1.03 1.07 5.41 1.71 1.02 1.07 6.47 1.94

1.03 1.15 30.75 2.47 1.01 1.11 2.20 3.08

1.05 1.26 4.27 3.27 1.04 1.22 9.29 4.48

1.03 1.35 101.68 4.11 1.02 1.27 6.45 6.56

1.04 1.45 63.26 6.72 1.04 1.44 3.43 11.67

1.04 1.59 93.03 9.47 1.04 1.51 7.44 13.49

1.04 1.62 97.30 34.89 1.04 1.52 3.45 59.94

1.04 1.67 16.31 1193.78 1.04 1.63 4.11 70.81

Table 8.2: Variance inflation factors (VIFs) and Condition Indices (CIs), using the standardized

variables, for the four samples. Note that the rows represent the eigenvalues in descending order.

Thus the last condition index corresponds to the condition number denoted by κ.

The attributes for the four different samples considered, are summarized in Table 8.1.

Variance inflation factors (VIFs) and Condition Indices (CIs) were computed for each

data set. Recall that the last condition index corresponds to the condition number denoted

by κ. The resulting values can be found in Table 8.2.

For samples 1 and 3 (those having a large sample size) all the condition indices (CIs)

are less than 5 and all the variance inflation factors (VIFs) are close to 1. These values

indicate that multicollinearity is absent in these data sets (as was the case in the respective
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populations).

On the other hand samples 2 and 4 (those having small sample sizes) have very large

condition numbers, 1193.8 and 70.8. Sample 2 has two CIs which are between 5 and 10

and two which are greater than 30. Sample 4 has three CIs which are between 5 and 10

and two which are greater than 30. Sample 2 has eight VIFs which are greater than ten,

three of which are very large (greater than ninety). For sample 4 the VIFs are all smaller

than ten with one being close to ten. The previous observations suggest that sample 2

has strong dependencies between the explanatory variables while sample 4 has weak to

moderate dependencies between the explanatory variables.

Sample 1 Sample 2

‖sx̃ỹ‖ = 0.26 ‖sx̃ỹ‖ = 1.20

Model q̂ VMSE Model q̂ VMSE

PLS 2 1.01 PLS 1 1.11

KML 1 1.00 KML 3 2.14

OLS p 1.01 OLS p 26.38

Sample 3 Sample 4

‖sx̃ỹ‖ = 0.28 ‖sx̃ỹ‖ = 0.88

Model q̂ VMSE Model q̂ VMSE

PLS 2 0.99 PLS 3 3.06

KML 1 0.98 KML 3 3.49

OLS p 0.99 OLS p 4.26

Table 8.3: Attributes of fitted models: ‖sx̃ỹ‖, estimate, q̂ of the Krylov dimension and VMSE.

For each sample, after pre-processing the data as explained in section 8.5.1, PLS, KML

and OLS regression models were fitted. For each model fitted, the values of ‖sx̃ỹ‖, the

estimate, q̂, of the Krylov dimension and the VMSE are presented in Table 8.3.

For the samples derived from the first population the estimates, q̂, of the Krylov dimension

are much less than the true value, p. For the samples derived from the second population

the estimates, q̂, of the Krylov dimension are close or equal to the true value which is
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equal to 3. Furthermore we note that the estimates of q̂ derived for KML and PLS are

identical only for the last sample. Thus it only made sense to calculate the distance

d (Ip,Γ) between the points on the manifold corresponding to the PLS and KML solutions

(using equation (8.6)) for sample 4 for which it resulted that d (Ip,Γ) = 0.36; which is not

a small distance. Note that for sample 4, PLS has the smallest VMSE and hence the best

prediction ability. In section 7.5, we saw that if we assume that the Krylov dimension is

the same for both KML and PLS, when ‖sx̃ỹ‖ is large and sx̃ỹ is not an eigenvalue of Sx̃x̃,

PLS and KML solutions tend to be very close to each other with KML being maximal

and thus we would have expected that KML would have a better predictive ability in this

case.

It is known that for samples, like 1 and 3, which are not characterized by multicollinearity

OLS should perform best. However, from Table 8.3, we note that for samples 1 and 3 the

value of the VMSE is approximately equal to 1 for the three techniques being considered.

This indicates that they have almost equal predictive ability.

On the other hand, for samples 2 and 4, which are characterized by dependencies amongst

the explanatory variables and ”large” values for ‖sw̃ỹ‖, the PLS model exhibited the

smallest VMSE and hence offers the best predictive ability. For samples 4, which

is characterized by weak to moderate dependencies the VMSE of the KML model is

’relatively’ close to that of the PLS model (a difference of 0.43 between the two values).

On the other hand for sample 2 which is characterized by strong dependencies the VMSE

of the KML model is higher than that of the PLS model with a difference of 1.03. On the

other hand the VMSE of the OLS model confirms what is already well known, that is, in

the presence of multicollinearity OLS models have very poor predictive ability.

The previous observations suggest that for low dimensional data with no multicollinearity,

OLS, PLS (with q < p) and KML (with q < p) have equivalent predictive performance.

Thus if the main aim of the regression analysis is prediction all methods can be used

successfully when working with such data. On the other hand for low dimensional data

plagued with multicollinearity it seems that the best prediction ability is attained by PLS.

The previous exercise was repeated but this time a total of 40 different samples were

generated; 10 samples having the same attributes as sample 1, 10 samples having same

attributes as sample 2, and so on. Samples having same attributes as samples 1,2,3,4 will



Chapter 8. A Comparison of different Multiple Linear Regression Techniques. 162

be referred to as Type 1,2,3,4 samples, respectively.

Averages

Type 1 Type 2

κ = 1.76 κ = 696.80

‖sx̃ỹ‖ = 0.27 ‖sx̃ỹ‖ = 0.97

Model q̂ VMSE Model q̂ VMSE

PLS 1.9 0.95 PLS 2.4 1.78

KML 2.6 0.94 KML 2.4 2.06

OLS p 0.95 OLS p 16.26

Type 3 Type 4

κ = 1.62 κ = 585.2

‖sx̃ỹ‖ = 0.27 ‖sx̃ỹ‖ = 0.99

Model q̂ VMSE Model q̂ VMSE

PLS 2.0 0.94 PLS 2.4 2.69

KML 4.6 0.93 KML 1.9 3.12

OLS p 0.94 OLS p 23.65

Table 8.4: For each type of sample we have the averages on 10 samples for : κ,‖sx̃ỹ‖, the estimate,

q̂ of the Krylov dimension, and the VMSE.

Table 8.4 displays the averages for κ (to give an idea of the multicollinearity present in

each group of samples), ‖sx̃ỹ‖, q̂ and VMSE for each group of 10 samples. Note that the

average κ for Type 2 and 4 samples is much bigger than 30 indicating that samples of these

types tend to exhibit strong dependencies between the explanatory variables. Average κ

for samples of Type 1 and 3 is close to 1 indicating the absence of multicollinearity in

these data sets. Furthermore from Table 8.4 in can be noted that, on average,

• PLS and KML rarely yield the same estimates for the Krylov dimension q and hence

their solutions are rarely found on the same Grassmann manifold.

• When multicollinearity is absent (samples of Type 1 and 3) it can be noted that:

– q̂ for the KML is bigger than that for PLS,



Chapter 8. A Comparison of different Multiple Linear Regression Techniques. 163

– the average VMSE value for KML is slightly smaller than the average VMSE

value corresponding to PLS and the OLS (a difference of 0.01),

– PLS with (q̂ < p) and OLS have the same average VMSE.

.

• When multicollinearity is present (samples of Type 2 and 4)

– OLS performs very poorly,as expected,

– the average VMSE for PLS is smaller than the value for KML but the

difference between the two is on average less than 0.5,

– q̂ for the PLS tends to be bigger than that for KML.

The previous results suggest that when working with low-dimensional data, if

multicollinearity is absent the three techniques will have equal predictive ability while

if multicollinearity is present PLS has the best predictive ability.

In this section we have seen that when p > 3 and the estimation of q is introduced into

the problem the observations made in Chapter 7, section 7.5 do not seem to hold, at least

for the case when sx̃ỹ is not in an eigenspace of Sx̃x̃.

More in depth analysis is needed here and this would involve considering examples with

different combinations of size and orientation of sxy, and with presence and absence of

multicollinearity. Due to space and time limitations such examples are left for future

research.

8.6 Applications on Real data

In this section KML and PLS regression methods will be applied to two high dimensional

real data sets which are available in the literature.

Note that Algorithm 7.5 requires a Sx̃x̃ which is positive definite, as part of its input.

When n < p, Sx̃x̃ is not positive definite, thus for such data, when tridiagonalizing Sx̃x̃

with respect to sx̃ỹ prior to running the algorithm, only the upper (q∗ × q∗) block of Sw̃ỹ,
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which is non-singular and which will be denoted by S̃w̃ỹ will be retained. Hence the

following joint variance-covariance matrix is used as an input of the algorithm,

Ŝ =





S̃w̃w̃(q∗×q∗) s̃w̃ỹ(q∗×1)

s̃Tw̃ỹ(1×q∗) sỹỹ(1×1)



 .

This adjustment is in line with the theoretical framework described in Chapter 7 since, in

the KML technique, the interest is in subspaces whose dimensions are less than or equal

to q∗.

8.6.1 Gasoline Data

The first data set which shall be analyzed is found in R as part of package ’pls’. It is

called gasoline and consists of octane number (octane) and Near-Infrared (NIR) spectra

of n = 60 gasoline samples. Each NIR spectrum consists of p = 401 diffuse reflectance

measurements from 900 to 1700 nanometers (nm). For a detailed description of this data

see (Kalivas, 1997).

q∗ = 49

κ =∞

κ∗ = 240181593

‖sx̃ỹ‖ = 6.99

Model q̂ VMSE

PLS 4 0.01

KML 4 0.01

Table 8.5: Gasoline dataset : upper bound, q∗, for Krylov dimension, q , the condition number for

Sx̃x̃, κ , the condition number for the upper of q∗ × q∗ block of Sx̃x̃, κ∗, ‖sx̃ỹ‖ and VMSE for

models fitted.

Here octane is a (60× 1) vector of responses and NIR is a (60× 401) data matrix. The

first 50 samples are assigned to the training set while the last 10 samples will constitute
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the test or validation set. Prior to fitting the PLS and KML regression models the training

and test sets are standardized in the same way as explained earlier in Section 8.5.1.

Table 8.5 displays the upper bound, q∗, for Krylov dimension, q , the condition number

for Sx̃x̃, κ , the condition number for the upper of q∗ × q∗ block of Sx̃x̃, κ∗, ‖sx̃ỹ‖ and the

VMSE for the KML model and the PLS model, which were obtained for this sample.

For this data set the upper bound for the Krylov dimension, which corresponds to the

number of distinct eigenvalues of Sx̃x̃, is 49, the condition number κ is infinite and κ∗

is very large indicating that the data is characterized by severe multicollinearity. The

large value for ‖sx̃ỹ‖ shows that for this data set the explanatory variables are strongly

correlated with the response variable. The estimate, q̂, for the PLS fitted model is equal

to that of the KML fitted model. Both models seem to have equal predictive ability.
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Figure 8.1: A plot of the difference between the KML parameter estimates and the PLS parameter

estimates for the p, scaled explanatory variables. (Gasoline data)

Figure 8.1 depicts that the difference between the estimated parameters, for the scaled

explanatory variables, obtained from the two techniques. This plot shows that the

resulting parameter estimates from the two techniques are very close. For this data both

techniques yield models which have a very small VMSE indicating a very good predictive
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ability.

8.6.2 Near-Infrared (NIR) Spectroscopy of Cookie Doughs

The second data set that shall be analyzed is found in R as part of package ’ppls’ which

contains linear and nonlinear regression methods based on Partial Least Squares and

penalization techniques. This package was written by Nicole Krämer and Anne-Laure

Boulesteix. The data is called cookie in this package and it contains measurements from

quantitative NIR spectroscopy, hence we shall refer to it as the Cookies NIR data. For

more detail about this data set see Osborne et al. (1984) and Brown et al. (2001).

The data seems to have been the result of an experiment which was conducted in order to

investigate the feasibility of NIR spectroscopy to obtain accurate measurements of four

important ingredients which are considered the dependent variables in regression analysis.

These are, the calculated percentages of fat (Y1), sucrose (Y2), dry flour (Y3), and water

(Y4). The data set consists of 72 observations, typically the first 40 observations are taken

to form the calibration or training set and the last 32 observations are taken to form the

prediction or validation set. It has been observed that the 32nd and 61st observations are

outliers (Brown et al., 2001; Osborne et al., 1984). In creating this data the standard recipe

for cookie doughs was varied to provide a large range for each of the four ingredients

under study. An NIR reflectance spectrum is available for each dough piece. The spectral

data consist of 700 different wavelengths (predictor variables) measured from 1100 to

2498 nanometers (nm) in steps of 2 nm.

Although this data can be analyzed by multivariate regression in this example only the

univariate case will be considered. One dependent variable is considered which was

chosen arbitrarily to be the percentage of fat in the dough (Y1). Furthermore the outliers

mentioned earlier were removed from the data leaving us with a training set consisting of

39 observations and validation set consisting of 31 observations.

Prior to fitting the regression models the data was processed in the same way as the

Gasoline data of the previous section.
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q∗ = 38

κ =∞

κ∗ = 19650334185

‖sx̃ỹ‖ = 16.5

Model q̂ VMSE

PLS 5 0.33

KML 7 0.02

Table 8.6: Cookie NIR data: upper bound, q∗, for Krylov dimension, q , the condition number for

Sx̃x̃, κ, the condition number for the upper of q∗ × q∗ block of Sx̃x̃, κ∗, ‖sx̃ỹ‖ and VMSE for

models fitted.

Table 8.6 displays the upper bound, q∗, for Krylov dimension, q , the condition number

for Sx̃x̃, κ, the condition number for the upper of q∗ × q∗ block of Sx̃x̃, κ∗, ‖sx̃ỹ‖ and

VMSE for KML and PLS models fitted to the Cookies NIR data.

For this sample κ is infinite and κ∗ is very large, indicating that the data is characterized

by severe multicollinearity. The large value for ‖sx̃ỹ‖ shows that for this data set the

explanatory variables are strongly correlated with the response variable. The KML fitted

model obtained a larger q̂ than the PLS fitted model but the KML fitted model has a

smaller VMSE than the PLS fitted model (a difference of 0.31) indicating that it has a

better predictive ability. However both techniques yield models which have a very small

VMSE indicating a very good predictive ability.
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Figure 8.2: A plot of the difference between the KML parameter estimates and the PLS parameter

estimates for the p, scaled explanatory variables. (Cookie NIR data)

Figure 8.2 depicts the difference between the KML parameter estimates and the PLS

parameter estimates for the p, scaled explanatory variables. It can be noted that there is a

bigger difference between the parameter estimates obtained from the two techniques than

was observed in Figure 8.1, however the differences are not very large.

8.7 Conclusion

From the observations made in this section, it would seem that, most often, when

working with low dimensional data plagued with multicollinearity, out of the techniques

considered in this thesis, PLS seems to be the one that offers the best prediction ability.

For the Gasoline data the KML fitted model’s predictive ability was equivalent to that of

the PLS fitted model. For the Cookie NIR data the KML fitted model’s predictive ability

was found to be better than that of the PLS fitted model by a difference of 0.31. The results

obtained for the Cookie data suggest that when working with high-dimensional data there

are cases where KML performs better then PLS. However more research is needed to

identify the characteristics of the data for which KML performs better than PLS.
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Chapter 9

Conclusions and Future Research

9.1 Introduction

The aim of this short chapter is to give a general overview of the work done in this thesis,

summarize the main results and outline possible improvements to the study and future

research.

9.2 Overview of Work Done

The need for regularization in regression was outlined clearly in Chapter 3, where two

families of regularization methods where discussed.

Chapters 4 and 5 then present a detailed discussion of the relevant theoretical background

needed to understand the discussions presented in the chapters that followed. A lot of the

material in these chapters is already found in the literature although it is not so clearly

presented and tends to be scattered throughout the literature.

In Chapter 6 a clear statistical interpretation of the PLS was given through the

interpretation of the PLS estimator as AML estimator under the Krylov model. This

was done by first assuming a joint multivariate normal distribution for the response

and explanatory variables, then formulating the Krylov hypothesis of order q and

finally creating a sequential constrained optimization framework in which to view PLS
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regression. This framework built heavily on the tridiagonalization of Sxx and the inverse

regression framework which considers the joint distribution as the product of the marginal

distribution of the response variable times the conditional distribution of the vector of

explanatory variables given the response. A detailed discussion on inverse and forward

regression models was presented in Chapter 2 where it was observed that under the

assumption of a joint multivariate normal distribution for the response and explanatory

variables, the parameters of the forward regression framework can be derived from those

of the inverse regression framework and vice versa.

In Chapter 7 exact maximum likelihood type estimators of the parameters in the inverse

regression model under the Krylov hypothesis were derived. Prior to this chapter the terms

PLS estimator and KML estimator were taken to refer to the estimators of the vector of

regression parameters. In this chapter these terms were given a broader definition which

included the parameters of the joint multivariate normal distribution. More specifically

in Chapter 7 the terms PLS estimator and KML estimator were redefined to refer to

estimators of Σxx,σxy and β (or γ). Then the terms PLS solution and KML solution

refer to the resulting estimates of these parameters. In the case of the KML technique, the

term KML solutions refers also to the estimated (p× q̂) matrix whose columns span the

Krylov subspace.

In Chapter 7 it was shown that the exact maximum likelihood under the Krylov hypothesis

is a constrained optimization problem that can be recast as an unconstrained optimization

problem on the Grassmann manifold. We refer to this method as the Krylov maximum

likelihood method. Optimization over the Grassmann manifold is a very well understood

topic. Many unconstrained optimization techniques on Euclidean space, such as the

Steepest Descent method, Newton method and the Conjugate gradient, have been

generalized to the Grassmann manifold (Edelmann et al., 1998). The generalizations of

the Steepest Descent (or equivalently Steepest Ascent) and the Newton method have been

discussed in Chapter 5. A hybrid algorithm which makes use of these two generalizations

has been presented in Chapter 7 and used throughout the rest of this thesis to obtain

numerical solutions for the Krylov maximum likelihood method. This hybrid algorithm

exploits the globally convergent properties of the Steepest Ascent method with the fast

convergence properties of the Newton method. The Krylov Maximum Likelihood (KML)
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method presented in this thesis is equivalent to the Modified Maximum Likelihood

method introduced by Helland (1992), though a number of differences have been outlined

in Chapter 7. In simple words, the general idea behind the two methods is the same

but different ’routes’ (statement of the problem and algorithm) are considered to obtain a

solution.

9.3 Summary of Results

From the theoretical discussions in Chapters 4 and 7 it is possible to conclude that:

1. If σxx is an eigenvalue of Σxx then the Krylov hypothesis of dimension 1 holds.

Consequently if sx̃ỹ is an eigenvalue of Sx̃x̃ the PLS solution with q = 1 is maximal.

For such data, the KML solution is equivalent to the PLS solution.

2. If sx̃ỹ = 0 then the Krylov dimension is equal to 0. For such data Sx̃|ỹ = Sx̃x̃

and for both PLS and KML σ̂x̃ỹ and β̂ are equal to zero 0. On the other hand

Σx̃x̃ can be estimated in a number of ways. A possible estimator is obtained by

diagonalizing Sx̃x̃; if the p eigenvalues of Sx̃x̃ are distinct then there are p! possible

diagonalizations. Alternatively Lanczos tridiagonalization can be applied with an

arbitrary vector used instead of sx̃ỹ in the process. In this thesis the focus was

on diagonalizations since these involve partitioning the eigenvalues of Sx̃x̃ and

hence generate the pCq different PLS solutions easily. Given that there is no unique

estimate for Σx̃x̃ when sx̃ỹ = 0, the likelihood function has multiple maxima.

In Chapter 7 section 7.5 two simulation studies consisting of a number of examples on

artificial data with different values of Sx̃x̃ and sx̃ỹ, where presented in order to explore the

behaviour of the Krylov maximum likelihood as it varies over the Grassmann manifold.

The simulation studies considered very low dimensions; p = 2 for the first simulation and

p = 3 for the second simulation. For both simulation studies the Krylov dimension was

assumed to be known and to be equal to q = 1. These low dimensions were considered in

order to be able to conduct a visual inspection of the Krylov maximum likelihood.

The simulation studies in Chapter 7, section 7.5 led us to conclude that, if the Krylov

dimension is fixed at the same value for both techniques, there are three features of the
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data that affect the shape and behaviour of the likelihood: (1) size of p, (2) size of ‖sx̃ỹ‖
and how close this value is to forcing Sx̃|ỹ to be singular, (3) orientation of sx̃ỹ, that is,

whether it lies on an eigenspace or not. A detailed description of the intuitions derived

from the simulation studies in section 7.5 was presented in section 7.5.5.

In Chapter 8 we then introduced the estimation of the Krylov dimension into the problem

and also consider data with higher dimensions (p ≥ 10). In this chapter it was observed

that for low dimensional data with no multicollinearity, OLS, PLS (with q < p) and

KML (with q < p) have equivalent predictive performance. Thus if the main aim of

the regression analysis is prediction all methods can be used successfully when working

with such data. On the other hand for low dimensional data exhibiting weak to strong

dependencies between the explanatory variables, PLS has the best predictive ability,

although the KML performs only slightly worse than PLS. Furthermore in Chapter 8 the

PLS and KML regression techniques were applied to two real high-dimensional data sets

found in the literature. For the Gasoline data the KML and PLS models’ predictive ability

was found to be equivalent. For the Cookie NIR data the KML fitted model’s predictive

ability was found to be better than that of the PLS fitted model with a difference of 0.31

in the values of the VMSE.

We have seen that PLS is easier to compute than KML. The results obtained for the

Cookie data suggest that there are cases where KML performs slightly better then PLS.

However more research is needed to identify the characteristics of the data for which

KML performs better than PLS.

9.4 Improvement to the Study and Future Research

The observations made in Chapter 8, section 8.5.2 suggest that when p > 3 and the

estimation of q is introduced into the problem the observations made in Chapter 7,

section 7.5 cease to hold, at least for the case when sx̃ỹ is not in an eigenspace of Sx̃x̃.

More in depth analysis is needed here. This would involve considering examples with

different combinations of size and orientation of sxy and with presence and absence of

multicollinearity. Due to space and time limitations such examples are left for future

research.
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It has been noted that Algorithm 7.5 requires a lot of computational time and is

numerically challenging when p and q are large. Time cost comes in two measures:

number of iterations and time per iteration. The time for conducting one iteration

can be very long as explained in Chapter 8. The algorithm involves the computation

of large matrices at each iterations such as the Hessian matrix which has dimension

(q (p− q)× q (p− q)). Although for a great number of simulated data our SA-Newton

algorithm converged in relatively few iterations, there were some data for which the

algorithm failed to converge after 4000 iterations. This means that in some cases

the SA method may require over 4000 iterations to bring the updated values close to

the critical point. This happened mostly for data for which n > p but which were

characterized by severe multicollinearity. Perhaps this problem could have been solved

by considering the extension of the conjugate gradient applied to Grassmann manifolds

presented in Edelmann et al. (1998). It is known that the Steepest Ascent may find

itself choosing directions which were already chosen in earlier steps thus introducing

unnecessary iterations while conjugate gradient is constructed in a such a way that each

direction is chosen only once.

For future work it would be interesting to see if our innovative interpretation of the PLS

as an approximate MLE can be extended to multivariate PLS (PLS2). Another future

direction is to try and identify the situations where the KML outperforms PLS. This task

has been started in this thesis but it has not been completed due to lack of time.
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Appendices

A Matrix Algebra

Here we shall list some results from matrix and linear algebra which were used in various

proofs throughout this work. All of the following results except for those with a specific

reference can be found in Mardia et al. (1988)

Result A1 For a Matrix A with corresponding partition (Aij) i, j = 1, 2, the

determinant satisfies

|A| =

∣

∣

∣

∣

∣

∣

A11 A12

A21 A22

∣

∣

∣

∣

∣

∣

= |A11|
∣

∣A22 −A21A
−1
11A12

∣

∣ (A.1)

= |A22|
∣

∣A11 −A12A
−1
22A21

∣

∣ (A.2)

Result A2 The inverse of matrix A is as follows

A−1 =





A11 A12

A21 A22



 (A.3)

where

A11 =
(

A11 −A12A
−1
22A21

)−1
(A.4)

A12 = −A11A12A
−1
22 (A.5)

= −A−111A12A
22 (A.6)

A22 =
(

A22 −A21A
−1
11A12

)−1
(A.7)
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A21 = −A−122A21A
11 (A.8)

= −A22A21A
−1
11 (A.9)

Result A3 Let Ip denote a (p× p) identity matrix. Provided that all the necessary

inverses exist, then for (p× p) matrices A and E, a (p× n) matrix B, an (n× n) matrix

C, an (n× p) matrix D and (p× 1) vectors a and b, we have:

(A+BCD)−1 = A−1 −A−1B
(

C−1 +DA−1B
)−1

DA−1 (A.10)

(

A+ abT
)−1

= A−1 −
{

(

A−1a
) (

bTA−1
) (

1+ bTA−1a
)−1

}

(A.11)

(

AT
)−1

=
(

A−1
)T

(A.12)

|A+BD| = |A|
∣

∣Ip+A
−1BD

∣

∣ = |A|
∣

∣In+DA
−1B

∣

∣ (A.13)

∣

∣A+ abT
∣

∣ = |A|
(

1+ bTA−1a
)

(A.14)

|AE| = |A| |E| = |E| |A| = |EA| (A.15)

given a constant value c, |cA| = cp |A| (A.16)

If A is triangular or diagonal : |A| = ∏

aii (A.17)

|A| =
∣

∣AT
∣

∣ (A.18)

Result A4 For any p-dimensional vectors a , b and a (p× p) symmetric matrix A :

(a− b)T A (a− b) = aTAa− 2aTAb+ bTAb

= (b− a)T A (b− a) (A.19)

Result A5 The trace function, defined by trA =
∑

aii , satisfies the following properties

for A(p×p),B(p×p),C(p×n),D(n×p),xi(p×1) and scalar α

1. trα = α

2. tr(A±B) =trA±trB

3. trαA = αtrA
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4. trA =trAT

5. tr(CD) =tr(DC) =
∑

i,j

cijdji

6. tr
∑

xT
i Axi =trAT where T =

∑

xix
T
i

Note that
∑

xT
i Axi is a scalar hence by property 1

∑

xT
i Axi = tr

∑

xT
i Axi then

tr
∑

xT
i Axi =

∑

trxT
i Axi by property 2 above

=
∑

trAxix
T
i by property 5

= tr
(

A
∑

xix
T
i

)

by property 2

7. (From Gentle (2007)) IfA(p×p) is partitioned such that the diagonal submatrices or

blocks are square, that is,

A =





A11 A12

A21 A22





where A11 and A22 are both square matrices (not necessarily of the same

dimension) then

trA =tr (A11) + tr (A22)

Result A6 Vector Differentiation

Let x be a (p× 1) vector. If f is a function of x, the derivative of f with respect to x is

the (p× 1) vector of partial derivatives denoted by

∂f (x)

∂x
=

(

∂f (x)

∂xi

)

Then let x and a be (p× 1) vectors and let A be a (p× p) matrix

1. ∂xT a
∂x

= a = ∂aTx
∂x

2. ∂xTAx
∂x

=
(

A+AT
)

x or 2Ax if A is symmetric

3. ∂xTAa
∂x

= Aa

Result A7 Differentiation of a Trace of a Matrix

(From Mardia et al. (1988) and Gentle (2007))
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1. Let X be an (n× p) matrix for which all elements are distinct and let Y be a

(p× n) matrix

∂tr (XY)

∂X
= YT (A.20)

∂tr
(

XTX
)

∂X
= 2XT (A.21)

2. On the other hand ifX(p×p) is symmetric, for constant matricesA(p×p),B(m×p) and

C(p×q),
∂tr (X)

∂X
= Ip (A.22)

∂tr
(

Xk
)

∂X
= kXk−1 (A.23)

∂tr (XC)

∂X
= C+CT − diag (C) (A.24)

∂tr
(

BX−1C
)

∂X
= −

(

X−1CBX−1
)T

(A.25)

∂tr
(

XBXTC
)

∂X
= CTXBT +CXB (A.26)

∂tr
(

BXTC
)

∂X
= BC (A.27)

∂tr (BXC)

∂X
= CTBT (A.28)

Result A8 Differentiation of the Determinant of a Matrix

(From Harville (1997) and Gentle (2007))

The derivative with respect to X(n×p) of the determinant |X| of a matrix X is

∂ |X|
∂X

= [adj (X)]T = |X|
(

X−1
)T

(A.29)

Then

∂ log |X|
∂X

=
(

X−1
)T

(A.30)

If k ≥ 0
∂ |X|k
∂X

= k |X|k
(

X−1
)T

(A.31)
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Note that when X(p×p) is symmetric

∂ |X|
∂X

= |X|
(

2X−1 − diag
(

X−1
))

(A.32)

∂ log |X|
∂X

= 2X−1 − diag
(

X−1
)

(A.33)

where diag (X−1) is a diagonal matrix having the same diagonal elements as X−1.

Provided that XTAX is invertible

∂
∣

∣XTAX
∣

∣

∂X
=

∣

∣XTAX
∣

∣

{

AX
(

XTAX
)−1

+ATX
[

(

XTAX
)−1

]T
}

(A.34)

Result A9 If F is a non-singular matrix function of X with |F| > 0,

∂ log |F|
∂X

= |F|−1 ∂ |F|
∂X

A.1 Some properties of the ’vec’ operator and the Kronecker

product

The results of this section are stated following Seber (2008).

Given matrices A(m×q),B(q×p−q),C(p−q×n),D(m×q), E(m×p−q)we have:

1. tr(AD) =vec
(

AT
)T

vec(D)→tr(A,D) =vec(A)Tvec(D)

2.

tr(A(m×q)B(q×p−q)C(p−q×n)) = vec
(

AT
)T

(In ⊗B) vec (C)

= vec
(

BT
)T

(Iq ⊗C) vec (A)

= vec
(

CT
)T

(Ip−q ⊗A) vec (B)

3. vec(cA) = cvec(A)

4. vec(A+D) =vec(A)+vec(D)

5. vec
(

ATD
)

=vec(A)Tvec(D)

6. vec(ABC) =
(

CT ⊗A
)

vec(B)
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7. vec(AB) =
(

BT ⊗A
)

vec(Iq) =
(

BT ⊗ Im
)

vec(A)

For any three matrices A,B,C where B and C have the same size:

1. (A⊗B)T = AT ⊗BT

2. A⊗ (B+C) = A⊗B+A⊗C

3. (B+C)⊗A = B⊗A+C⊗A

4. (A⊗B)−1 = A−1 ⊗B−1

Given matrices A,B,C,D,X

1.

tr(ABCD) = vec
(

AT
)T

(D⊗B) vec (C)

= vec
(

DT
)T (

CT ⊗A
)

vec (B)

= vec (D)T
(

A⊗CT
)

vec
(

BT
)

2.

tr(AXBXTC) = tr(XTCAXB)

= vec (X)T
(

BT ⊗CA
)

vec (X)

tr(AXTBXC) = tr(XTBXCA)

= vec (X)T
(

ATCT ⊗B
)

vec (X)

3. LetA be an m×n matrix we define the matrixPmn and the mn×mn permutation

matrix such that

vec (A) = Pmn vec(AT ),

PT
mnvec (A) = vec(AT ).

Note that PT
mn = P−1mn for permutation matrices. If Eij is the m× n matrix with 1

in the (i, j)th position and zeros elsewhere, then

Pmn =
n

∑

i=1

m
∑

j=1

(

ET
ij ⊗ Eij

)

PT
mn =

n
∑

i=1

m
∑

j=1

(

Eij ⊗ ET
ij

)
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B 3-Dimensional Rotation Matrices

The result presented in this section was used in some examples, presented in Chapter 7,

to derive the values of the components of b after SA-Newton algorithm was used to find

the Gamma matrix whose first q columns span the subspace of the KML solution.

Proposition B10 It can be shown that if b=(θ cosφ, θ sinφ)T ∈ R
2,

exp











0 b1 b2

−b1 0 0

−b2 0 0











=











cos θ sin θ cosφ sin θ sinφ

− sin θ cosφ sin2 φ+ cos2 φ cos θ cosφ sinφ (cos θ − 1)

− sin θ sinφ cosφ sinφ (cos θ − 1) cos2 φ+ sin2 φ cos θ











Proof

Recall that

exp (A) =
∞
∑

k=0

Ak

k!
.

Note that if b=(θ cosφ, θ sinφ)T , ‖b‖ = θ

By opening up the first few terms it can be noted that:

A0

0!
= I3

A2k+1

(2k + 1)!
=

(−1)k
(2k + 1)!











0 b1θ
2k b2θ

2k

−b1θ2k 0 0

−b2θ2k 0 0











k ≥ 0

A2k

(2k)!
=

(−1)k
2k!











θ2k 0 0

0 b21θ
2k−2 b1b2θ

2k−2

0 b1b2θ
2k−2 b22θ

2k−2











k > 0.

Then,
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exp (A) =











i iv vii

ii v viii

iii vi ix











where

∞
∑

k=0

(−1)k
(2k + 1)!

θ2k =
∞
∑

k=0

(−1)k
(2k + 1)!

θ2k+1 = sin θ,

∞
∑

k=0

(−1)k
2k!

θ2k−2 =

[
1

θ2

∞∑

k=0

(−1)k
2k!

θ2k

]
− 1

θ2
=

1

θ2
(cos θ − 1)

hence,

i =
∞∑

k=0

(−1)k
(2k + 1)!

θ2k = cos θ,

ii = −b1
∞∑

k=0

(−1)k
(2k + 1)!

θ2k = −b1
θ
sin θ = − cosφ sin θ,

iii = −b2
∞∑

k=0

(−1)k
(2k + 1)!

θ2k = −b2
θ
sin θ = − sinφ sin θ,

iv = cosφ sin θ,

vii = sinφ sin θ

v = 1 +
b21
θ2

(cos θ − 1) = 1 + cos2 φ cos θ − cos2 φ = sin2 φ+ cos2 φ cos θ

vi =
b1b2
θ2

(cos θ − 1) = cosφ sinφ (cos θ − 1)

viii = vi

ix = 1 +
b22
θ2

(cos θ − 1) = cos2 φ+ sin2 φ cos θ.

✷

From the previous result it follows that if

Γ =




γ11 γ12 γ13

γ21 γ22 γ23

γ31 γ32 γ33


 = exp (A (b))
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is known, then θ = cos−1 (γ11) , φ = tan−1 (γ13/γ12) then b1 = θ cosφ and b2 = θ sinφ.

C Optimization Results

This section presents a number of results which are useful when conducting optimization.

But before presenting these result we shall recall a number of results on positive definite

matrices which we state from Mardia et al. (1988).

Theorem C11 Consider a symmetric, (p× p) matrix, A. If A is positive definite then :

1. its eigenvalues are all greater then zero,

2. A is non-singular and determinant of A is greater than zero,

3. A−1 is also positive definite,

4. given any (p× p) non-singular matrix C, CTAC is also positive definite.

Proposition C12 Consider the function

f (λ) =
1

λ
+ log (λ) λ > 0

This is minimized when λ = 1.

Proof

The minimum value for this function is found as follows:

df (λ)

dλ
= − 1

λ2
+

1

λ
= 0

⇒ −λ+ 1 = 0

⇒ λ = 1

Therefore the function has a turning point at λ = 1. To confirm that this is in fact a

minimum point we consider the second derivative

d2f (λ)

dλ
=

2

λ3
− 1

λ2

d2f (1)

dλ
= 1 > 0
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Therefore we confirm that λ = 1 is the minimum value for the function. ✷

Proposition C13 Let A be a (p× p) symmetric positive definite matrix with eigenvalues

λi, i = 1, . . . , p. Consider the following function of A,

f (A) = tr
(

A−1
)

+ log |A|

f is minimized over symmetric positive definite matrices A when A = I.

Proof

By applying the Spectral decomposition theorem (SDT)

A = ΓΛΓT

where Λ is a diagonal matrix of eigenvalues of X and Γ is an orthogonal matrix whose

columns are standardized eigenvectors. Then by properties of the determinant

log |A| = log
∣

∣ΓΛΓT
∣

∣ = log
∣

∣ΓΓTΛ
∣

∣ = log |Λ| =
n
∏

i=1

log λi

and using the properties of the trace we have

tr
(

A−1
)

= tr
(

ΓΛ−1ΓT
)

= tr
(

ΓΓTΛ−1
)

= tr
(

Λ−1
)

=
n

∑

i=1

λi

Hence

f (A) =
n

∑

i=1

λi +
n
∏

i=1

log λi

minimizing this function over all λt
is by proposition 1 it follows that λi = 1 ∀i. This

implies that A = ΓIΓT = I.

As an alternative proof consider the first derivative of the function:

df (A)

dA
= −A−2 +A−1 = 0

⇒ A−1 = A−2

⇒ I = A−1

⇒ A = I

Here we are applying results (A.23) and (A.30) in Appendix A. ✷
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Proposition C14 The function

f (Σ) = tr
(

Σ−1S
)

+ log |Σ|

where S is a fixed (p× p) symmetric positive definite matrix, is minimized when Σ = S.

Proof

Let A = S−1/2ΣS−1/2 where S−1/2 denoted the symmetric matrix square root of S−1.

From Theorem C11 it follows that A is also positive definite. The function f can be

written in terms of A as follows

f (Σ) = tr

(

S
(

S1/2AS1/2
)−1

)

+ log
∣

∣

∣
S1/2AS1/2

∣

∣

∣

= tr (A) + log
∣

∣

∣AS
1/2S1/2

∣

∣

∣

= tr (A) + log |A|+ log |S|

Using proposition C13, this function is minimized when A = S−1/2ΣS−1/2 = I⇒ Σ =

S ✷

D Equicorrelation Matrices

In this section we shall recall a number of well known results on equicorrelation matrices

since such matrices were used in the simulation studies presented in Chapter (8 ). Results

will be stated without proof from (Mardia et al., 1988).

Definition .1 Let Jp denote a (p× p) matrix with all elements equal to 1 and ρ ∈
(

− (p− 1)−1 , 1
)

. Then the (p× p) matrix defined as

E = (1− ρ) Ip + ρJp

is known as an equicorrelation matrix. Note that eii = 1, for all i = 1, ..., p, and eij = ρ

for i 6= j.
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Result D15 The inverse, E−1 = (1− ρ)−1
[

Ip − ρ {1 + ρ (p− 1)}−1 Jp
]

exists if and

only if ρ 6= 1 or − (p− 1)−1 .

Result D16 The determinant, |E| = (1− ρ)p−1 {1 + ρ (p− 1)} which is equal to the

product of the eigenvalues ofE. This implies thatE had two distinct eigenvalues : (1− ρ)

with multiplicity p− 1, and {1 + ρ (p− 1)} with multiplicity 1.

Theorem D17 Let λi denote any particular eigenvalue of E with eigenspace H of

dimension r. If k denotes the multiplicity of λi then 1 ≤ r ≤ k. If E is symmetric

r = k.
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E R Scripts

This section contains the most important R scripts which were used in this thesis.

1. adjtridiag.R - Script for adjusted Lanczos algorithm discussed in Chapter 4.

#------------------------------------------------------------

#Adjusted Lanczos

#Here the tridiagonalization algorithm if norm(Q[,i])=0 .

#This algorithm is equivalent to the Lanczos iteration

#presented in Golub and Van Loan (1996).

#The tridiagonalization stops at

#q* = number of distinct eigenvalues of A.

#-------------------------------------------------------------

#uses functions :proj,norm,stdze and gs

adjtridiag<-function(b,A) {

p=ncol(A); Q=matrix(0,p,p)

Q[,1]=stdze(b)

stop=0

qstar=min(qr(A)$rank,length(unique(eigen(A)$values)))

for(i in 2:qstar) {

Q[,i]=gs(A%*%Q[,i-1],Q[,1:(i-1)]) ##############

if(norm(Q[,i])==0) {

Q[,i]=gs(rnorm(p),Q[,1:(i-1)])

stop=c(stop,i)

qstar=stop[2]-2

}

}

Q<-Q[,1:qstar]

list(Q=Q,xnew=t(Q)%*%b,Anew=t(Q)%*%A%*%Q)
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}

2. tridiagM.R - Script for modified Lanczos algorithm discussed in Chapter 4.

#Modified Lanczos

#uses functions :proj,norm,stdze and gs

tridiagM<-function(b,A) {

p=ncol(A); Q=matrix(0,p,p)

Q[,1]=stdze(b)

for(i in 2:p) {

Q[,i]=gs(A%*%Q[,i-1],Q[,1:(i-1)]) ##############

if(norm(Q[,i])==0) Q[,i]=gs(rnorm(p),Q[,1:(i-1)])

}

list(Q=Q,xnew=t(Q)%*%b,Anew=t(Q)%*%A%*%Q)

}

#--------------------------------------------------------

3. Scripts used in adjtridiag.R and tridiagM.R

# gram-Schmidt - find that part of x orthogonal to columns of A

gs=function(b,A) stdze(b-proj(A)%*%b)

#L2 vector norm

norm=function(b) sqrt(sum(bˆ2))

# define orthogonal projection of p by q matrix A of rank q

proj=function(A) A%*%solve(t(A)%*%A)%*%t(A)

# standardize a vector to unit norm

stdze=function(b) {

nrm=norm(b)

if(nrm<1e-12) out=0*b

else out=b/nrm
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out

}

4. KML SANM.R -Script for Algorithm 7.5.

#The Krylov maximum likelihood using hybrid algorithm.

KML_SANM<-function(Shat,q,tau=1E-10,maxiter=100,detail=TRUE){

m=ncol(Shat)

p=m-1

Sxx=Shat[1:p,1:p]

sxy=Shat[1:p,m]

syy=Shat[m,m]

Sxgiveny<-Sxx-(1/syy)*(sxy%*%t(sxy))

if (p==q){

cat(’KML is equivalent to ML when the Krylov

dimension equals q’)

objcum=’NA’;counter=0

Gammafinal=diag(p)

Gopt=’NA’;Hopt=’NA’;tau=’NA’;iteration_type=’NA’

fopt<-objfEMLE(Gammafinal,Sxgiveny,Sxx,q)

}else{

if (frobenius.norm(sxy)==0){

#we diagonalize

s<-svd(Sxx)

Sww=diag(s$d) ;swy=sxy

Swgiveny<-Sww-(1/syy)*(swy%*%t(swy))

Q<-s$u

}else{

#We start by tridiagonalizing the sample covariances

Transf<-tridiagM(sxy,Sxx)

Sww=Transf$Anew

swy=Transf$xnew

Q<-Transf$Q

Swgiveny<-Sww-(1/syy)*(swy%*%t(swy))
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}

Gamma0=diag(p)

Gammak=Gamma0

objcum<-objfEMLE(Gammak,Swgiveny,Sww,q)

previous_sol<-objfEMLE(Gammak,Swgiveny,Sww,q)

loglike<-objcum

criterion=10

counter=0

iteration_type=0

gradnorm=0

#If PLS is the optimal solution than the gradient will be

#zero and hence algorithm stops at the initial iteration

if (frobenius.norm(Gradient(Gammak,Swgiveny,Sww,q))<=tau){

criterion =0

Gammafinal=Gamma0

}

while (criterion>tau){

counter=counter+1

if(detail==TRUE){

cat(" ","\n")

cat("Iteration number ",counter, "\n")

cat("--------------------------------------", "\n")

}

#Computing the gradient

Gradk<-Gradient(Gammak,Swgiveny,Sww,q)

gradnorm<-c(gradnorm,frobenius.norm(Gradk))

#Computing the hessian

Hessk<-Hessian(Gammak,Swgiveny,Sww,q)

#If the Hessian at the kth iteration is semi-definite

#the newton step cannot be calculated as the hessian
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#is not invertible.

#We run a check and if the Hessian is found to

#be singular the Newton method

#refrains from taking a step.

E<-eigen(Hessk,symmetric=TRUE)$values

maxE<-max(E)

minE<-min(E)

if(sign(maxE)!=sign(minE)|(minE==0)) {NS=’No’}else{NS=’Yes’}

#computing the SA update

Gammakplus1S<-SAGrassman(Gammak,Gradk,Swgiveny,Sww,q)

SAObj<-objfEMLE(Gammakplus1S,Swgiveny,Sww,q)

if (NS==’Yes’){

#Compute the Newton update

Gammakplus1N<-NMGrassman(Gammak,Gradk,Hessk,Swgiveny,Sww,q)

NewtObj<-objfEMLE(Gammakplus1N,Swgiveny,Sww,q)

if (NewtObj<SAObj){

Gammakplus1<-Gammakplus1S

iteration_type=c(iteration_type,"SA selected")

if (detail==TRUE){

cat("SA selected","\n")

iteration_type=c(iteration_type,"SA selected")}

}else{

Gammakplus1<-Gammakplus1N

iteration_type=c(iteration_type,"NA selected")

if (detail==TRUE){

cat("NA selected","\n")

iteration_type=c(iteration_type,1)}

}

} else {

Gammakplus1<-Gammakplus1S

iteration_type=c(iteration_type,"SA considered")}

#First criterion that objf previous-current <tau

objatcurrentsol<-objfEMLE(Gammakplus1,Swgiveny,Sww,q)
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objcum<-c(objcum,objatcurrentsol)

criterion<-objatcurrentsol-previous_sol

loglike<-c(loglike,objatcurrentsol)

previous_sol<-objatcurrentsol

Gammafinal<-Gammakplus1

Gammak<-Gammakplus1

if (counter==2000){

tau=1E-6

print("2000 iterations tau reduced to 1E-6")

}

if (counter==3000){

tau=1E-5

print("3000 iterations tau reduced to 1E-5")

}

if (counter==maxiter){

criterion=0

print("maximum number of iterations

reached without convergence")

}

}

if(counter==0){

gradnorm="NA"

loglike="NA"

iteration_type="NA"

}else{

gradnorm=gradnorm[-1]

loglike=loglike[-1]

iteration_type=iteration_type[-1]

iter<-seq.int(1,counter,by=1)

if (detail==TRUE){

result<-cbind(iter,loglike,gradnorm,iteration_type)

colnames(result) <- c("Iter","loglike","Gradnorm","Steptype")
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print(result)}

}

Gammafinal=Gammafinal

#Gradient at optimal solution

Gopt<-Gradient(Gammafinal,Swgiveny,Sww,q)

#Hessian at optimal solution

Hopt<-Hessian(Gammafinal,Swgiveny,Sww,q)

#objective funtion at optimal

fopt<-objfEMLE(Gammafinal,Swgiveny,Sww,q)

}

list(Values_of_Obj= objcum,No_of_iterations=counter,

Gammafinal=Gammafinal, Gopt=Gopt,Hopt=Hopt,fopt=fopt,

Convergence_criterion=tau, iteration_type=iteration_type)

}

5. Scripts used in KML SANM.R

#-------------------------------------------

#Gradient of our objective function

#-------------------------------------------

Gradient<-function(Gam,Sxgiveny,Sxx,q){

p=dim(Sxx)[2]

UandV<-UV(Gam,q)

U<-UandV$U

V<-UandV$V

sumV<-sum(V)

t1<-t(U)%*%Sxgiveny%*%U

t2<-t(U)%*%Sxgiveny%*%V

term1<-solve(t1,t2)

if(sumV==0){

term2=0
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}else{

term2<-(t(U)%*%Sxx%*%V)%*%solve(t(V)%*%Sxx%*%V)

}

D=2*(term1-term2)

return(D)

}

#-----------------------------------------------------

#Hessian Matrix

#-----------------------------------------------------

Hessian<-function(Gamma,Sxgiveny,Sxx,q){

p=ncol(Sxx)

if (p==q){

# Hessian does not exits since B does not exist

} else{

P<-Per(p,q)

UandV<-UV(Gamma,q)

U<-UandV$U

V<-UandV$V

Sxgiveny_11<-t(U)%*%Sxgiveny%*%U

Sxgiveny_12<-t(U)%*%Sxgiveny%*%V

Sxgiveny_22<-t(V)%*%Sxgiveny%*%V

S_11<-t(U)%*%Sxx%*%U

S_22<-t(V)%*%Sxx%*%V

S_12<-t(U)%*%Sxx%*%V

I1<-solve(Sxgiveny_11)

I2<-solve(S_22)

H11<-t(P)%*%kronecker(I1%*%Sxgiveny_12,t(Sxgiveny_12)%*%I1)

H12<-kronecker(t(Sxgiveny_12)%*%I1%*%Sxgiveny_12,I1)

H21<-kronecker(I2%*%t(S_12),S_12%*%I2)%*%P
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H22<-kronecker(I2,S_12%*%I2%*%t(S_12))

H1<-H11+H12

H2<-H21+H22

H3<-kronecker(Sxgiveny_22,I1)-diag(q*(p-q))+kronecker(I2,S_11)

-diag(q*(p-q))

H<-2*(H1+H2-H3)

}

return(H)

}

#-------------------------------

#objective function for exact MLE

#-------------------------------

objfEMLE<-function(Gam,Sxgiveny,Sxx,q){

p=dim(Sxx)[2]

if(q==p){

U<-Gam

fun<-det(t(U)%*%Sxgiveny%*%U)

}else{

UandV<-UV(Gam,q)

U<-UandV$U

V<-UandV$V

sumV<-sum(V)

#cat("V is","\n" )

#print(V)

f1<-det(t(U)%*%Sxgiveny%*%U)

f2<-det(t(V)%*%Sxx%*%V)

fun<--(log(f1)+log(f2))

}

return (fun)

}

6. KML.coef.R for computing the regression coefficients for the KML method.
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KML.coef<-function(Gamma,X,y,q){

#Estimating PLS regression coefficients

#with q components using our KML method

Sxx<-as.matrix(cov(X))

sxy<-as.vector(cov(X,y))

p=ncol(X)

if (q==p){

U=Gamma

}else{

if(q==1){

U<-matrix(as.vector(Gamma[,1]),p,q)}else{

U<-matrix(Gamma[,1:q],p,q)

}

}

#Tridiagonalize the covariance structure

Tri<-tridiagM(sxy,Sxx)

Sww<-Tri$Anew

swy<-Tri$xnew

Q<-Tri$Q

W=X%*%Q#rotation of the data

#recall that fitted values are invariant under rotation

#So we can use X instead of W to computed the fitted values

#Statistics for intercept term:

Wbar<-as.matrix(colMeans(W))

ybar<-mean(y)

betaKMLEW<-U%*%solve(t(U)%*%Sww%*%U)%*%t(U)%*%swy

beta0<-ybar-(t(Wbar)%*%betaKMLEW)

#beta0 is invariant to rotation of the data.

betaKMLEX<-Q%*%betaKMLEW

list(intercept=beta0, betaKMLEW=as.vector(betaKMLEW),

betaKMLX=betaKMLEX,Q=Q)
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}

7. Testset MSEP.R - Script for calculating the estimated MSEP on the test set.

Used for external cross-validation and for evaluating the predictive ability of any

regression method discussed in this dissertation.

#Training-Test MSEP External CV

#Can be used with any regression method.

#Care had to be taken to input the right information.

#Xtest ytest might need to be transformed.

#For example, if Xtrain and ytrain are scaled.

Testset_MSEP<-function(Xtest,ytest,beta0,beta, Intercept=TRUE){

#For intercept, a column of ones in the X data matrix

#is not required here

if(is.matrix(Xtest)==TRUE){

ntest=nrow(Xtest)

if (Intercept ==TRUE){

yhattest<-as.vector(beta0%*%rep(1,ntest))+Xtest%*%beta

} else{

yhattest<-Xtest%*%beta

}

} else{

if (Intercept ==TRUE){

yhatest<-beta0+t(beta)%*%Xtest

} else{

yhattest<-t(beta)%*%Xtest

}

}

diff=(yhattest-ytest)ˆ2

MSEP_test<-mean(diff)

return(MSEP_test)

}
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