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Abstract

The nuclear spin polarisation of Xe can be increased by four to five orders

of magnitude using the technique spin-exchange optical pumping (SEOP).

The resulting enhancement in polarisation can be utilised to dramatically

enhance the sensitivity of "Xe in nuclear magnetic resonance (NMR)

applications. This thesis is concerned with the physics of SEOP and NMR

spectroscopy of hyperpolarised '*Xe. Its general aims are to optimise the

production of hyperpolarised '*’Xe and to evaluate mechanisms that underpin

NMR phenomena of "Xe in blood. These goals are pursued in the following

four distinct projects:

Spin-exchange optical pumping physics

1.

Optimisation and characterisation of a continuous-flow *’Xe-Rb SEOP
polariser operating at a mid-range cell pressure of 2 bars with xenon
(Xe) concentrations of 3 %. It was found that the achievable
polarisation during gas flow using an external cavity diode laser
(ECDL) with 25 W incident on the SEOP cell (500 cm® volume) is ~15
% (flow rate of 100 sccm). The minimum number of photons required
to induce a single 'Xe nuclear spin flip was experimentally measured
to be 30, which approaches the theoretical limit of 20 photons per spin

flip.

Further optimisation of the SEOP polariser using a laser diode array
(LDA), frequency-narrowed with an internal volume holographic
grating (VHG), and collimated using a custom-built optical train (OT)
telescope system. In this project, improved optical collimation over the
25 cm length of the SEOP cell was achieved with the optical train and

the incident laser power was increased to 50 W. The "Xe polarisation
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during gas flow was measured to be 45 % (100 sccm), a factor of three
higher than that achieved with the ECDL. In addition, good
agreement between experimental and the theoretical *Xe polarisations

was observed using the LDA-VHG OT as an optical input.

Nuclear magnetic resonance of hyperpolarised '**Xe

3.

Evaluation of the relaxation and exchange dynamics of hyperpolarised
Xe in human blood at 1.5 T. It was found that the 'Xe relaxation
rate decreases non-linearly with increasing blood oxygenation. A two-
site exchange model was used to evaluate the '*Xe magnetisation
dynamics in whole blood samples, enabling the determination of
constants underpinning "Xe NMR relaxation and exchange in whole

blood samples.

Using hyperpolarised '"Xe NMR to probe pulmonary blood
oxygenation. A non-linear relationship between the chemical shift of
Xe in red blood cells and blood oxygenation was determined in vitro
on human blood samples at 1.5 T and 3 T. This relationship was used
for dynamic monitoring of pulmonary blood oxygenation in healthy

volunteers during breath-hold apnoea on a 3 T clinical scanner.
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Chapter 1

Introduction

The exploration of the physical phenomenon of nuclear magnetic resonance
(NMR) arose from measurements of nuclear spin in the early 1930s [1, 2] and
the first observation of NMR in 1937 [3] (work for which Rabi was awarded
the Nobel prize in Physics in 1944). The first observations of NMR in bulk
materials were made independently in 1946 by Bloch, Hansen and Packard
(proton resonance from water samples) [4] and Purcell, Torrey and Pound
(proton resonance from a block of paraffin) [5]. Since those early experiments,
NMR has developed into a broad field, and has widespread applications in
many disciplines; from structural studies of chemical compounds, following
the discovery of the NMR chemical shift [6], to medical diagnosis following
the invention of magnetic resonance imaging (MRI) [7]. Conventional MRI
relies on the high density of protons present in soft biological tissues, and is
therefore not suitable for probing areas of the body with low tissue density,
such as the lung airspaces, where the proton density is very low.

The use of hyperpolarised noble gas MRI for biomedical applications was
first demonstrated in 1994 with hyperpolarised *Xe images of the airspaces
of excised mouse lungs [8]. Following this, the first in wvivo images of

hyperpolarised *He and '“Xe in human lungs were reported [9, 10]. Since

10
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then, new techniques using hyperpolarised *He and 'Xe MR have been
developed, enabling numerous novel studies of lung structure and function
[11-15]. Xe has the added benefit of being soluble in biological tissues, and
will thus readily dissolve into blood and tissues within the lungs. To date,
this solubility has been utilised in MR experiments to quantify Xe gas
exchange [16-19] in the lungs and to monitor uptake in distal tissues such as
the brain [20, 21]. Crucial to the success of these “dissolved-phase” '*Xe
NMR experiments is sufficiently high levels of "Xe polarisation (to enable
signal detection of the '*Xe dissolved in biological tissues and blood) and
good knowledge of the Xe NMR parameters underpinning the '*Xe signal
dynamics in human blood.

This thesis is concerned with the physics of spin-exchange optical pumping
(SEOP) — a technique used to enhance nuclear polarisation — and NMR
spectroscopy of hyperpolarised '*Xe. Its main aims are to optimise the
production of hyperpolarised '*Xe and to evaluate the mechanisms that
underpin NMR phenomena of *’Xe in blood. After introducing the theory of
NMR and in Chapter 2, Chapters 3 and 4 detail experiments and theoretical
modelling used to optimise the production of hyperpolarised *Xe on a
continuous-flow '"*Xe SEOP polariser. Chapters 5 and 6 are concerned with
understanding the fundamental NMR properties of Xe in human blood.
Chapter 5 describes a series of systematic in vitro experiments — combined
with a two-site (red blood cells and plasma) Xe exchange model — to
determine the oxygenation dependence of the spin-lattice relaxation rate of
Xe dissolved in human blood. Chapter 6 investigates the feasibility of using
Xe NMR as a probe for pulmonary blood oxygenation in vivo by utilising
the observation (from in wvitro experiments) of a mnon-linear relationship

between the *Xe red blood cell chemical shift and blood oxygenation.



Chapter 2

NMR and SEOP fundamentals

2.1 Introduction

This chapter covers the theory of NMR and SEOP relevant to the
experimental work and results in this thesis. First, the phenomenon of NMR
is explained from the point of view of a single spin magnetic moment, where
the fundamental interactions with external and internal magnetic fields are
described. The next section covers aspects of macroscopic magnetisation
necessary to understand and interpret basic NMR experiments, where the
equations of motion of the net magnetisation vector in the laboratory and
rotating reference frames are introduced, and the Bloch equations describing
the time evolution of interacting spins are derived. The solutions to the Bloch
equations are then used to explain the concept of pulsed Fourier transform
NMR spectroscopy. Next, the theory of spin-lattice relaxation applied to
homonuclear and heteronuclear spin systems is covered, where the spectral
density function is introduced to enable a quantitative description of the spin
relaxation process. The chapter concludes with an introduction to the
theoretical aspects of SEOP, the process used to enhance (hyperpolarise) the

polarisation of the "Xe nuclei samples experimented upon in this thesis.

12
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2.2 NMR principles

NMR stems from a quantum mechanical property of the nucleus: spin, a form
of angular momentum. Unlike conventional forms of angular momentum, spin
does not arise from particle rotations, but rather, like charge and mass, it is
an intrinsic property of the particle itself. Atomic nuclei that exhibit a non-
zero spin angular momentum, I, in their ground state have an associated
dipolar magnetic moment [22]

p = vyhl (2.1)
collinear with it, where ~ is the gyromagnetic ratio, which takes a unique
value for each nuclear species, and h 1is the reduced Planck’s constant

(h/27m). A spin system, ‘w(t)>, can be described quantum mechanically by the

time-dependent Schrodinger equation

. 0

ih—| w(0) = 1O ). 22)
The time evolution of ‘w(t)> is determined by the Hamiltonian operator,
‘H(t), which describes the total energy of the spin system. For a nucleus

located within a static magnetic field, the spin interactions can be described

phenomenologically by the NMR spin Hamiltonian [23]

Moo= My 4 My T 1+ Mg+ + 7y (23)

external internal

where ‘H, and H,, describe the static field (Zeeman effect) and the radio
frequency (RF) interaction, which both act externally on the spin system.
represents the direct (or through-space) dipole-dipole coupling between spins

(technically, spin-bearing nuclei); H.. represents the chemical shift

CS

interaction due to nuclear shielding effects; H, represents J-couplings,

J

indirect spin-spin interactions mediated by electron spins; and HQ, which

represents quadrupole electric interactions of I > 1/2 nuclei with the
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surrounding electric fields. H_ to H,are Hamiltonians that represent internal
spin interactions (interactions originating from within the NMR-sensitive
sample itself). Although the latter two interactions are important in the
study of a variety of systems, they are not relevant to the experiments
performed in this thesis, and are therefore not discussed in any further in this

chapter.

2.2.1 External spin interactions

Static field interaction: Zeeman effect

In the presence of a static magnetic field, B, , an interaction energy of the

0°?

amount —p-B = exists, so that the dipole moment can be described by a

simple Hamiltonian of the form

H =—p-B, = —hl-B,. (2.4)
If the magnetic field is directed along the zaxis (B, = B 2), then
M, = —p B, = —hl B,, (2.5)

where I denotes the z-component of angular momentum. The energies of the
dipole moments will take discrete values according to the eigenvalues of this
Hamiltonian, which are given by multiples (yAB,) of the eigenvalues of I_.

The allowed energies are therefore

E = —-m~yhB, . (2.6)
m is the referred to as the nuclear spin projection quantum number and may
be any one of the 21 +1 values I,I —1,...,—I, where [ represents the nuclear
spin quantum number, which can take half-integer or integer values. This
discretisation of nuclear dipole energy in the presence of an external static
magnetic field is referred to as the nuclear Zeeman interaction, and for any

value of I, the energy separation between adjacent levels is given by ~vhB, .

Fig. 2.1 below depicts degenerate Zeeman energy levels for I = 1/2 in the
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absence of a static external magnetic field (B, = 0) and also the resulting
energy level splitting in the presence of a finite external magnetic field

(B, = 0) for a nucleus with a positive gyromagnetic ratio.

m=-—1/2

H x Emzfl/Q

" B, =0 AFE = hw, B

m=+1/2

m=+1/2
Figure 2.1: Zeeman energy levels for a spin-1/2 system with a positive

gyromagnetic ratio.

The two allowed energies for m = + 1/2, according to Eq. 2.6, differ in value

by

AE=FE _p =2

m=—1/2 m=1/2 o ’yhBo - =hw (2.7)

0°?

1

where w, is known as the Larmor frequency, the frequency associated with
spin transitions between the nuclear energy levels. The sense of w, depends

on the sign of the gyromagnetic ratio of the nuclear species:

w, = —yB,, for v >0 (2.8a)
and

w, = +7B,, for v <0. (2.8b)

It is worth noting that Planck’s constant does not appear in the resonance

equation, suggesting that this result is closely related to a classical picture.
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Indeed, a classical treatment (as we shall see later in Section 2.2.3) also gives
Egs. 2.8a and 2.8b, where w, is understood as the precession frequency of a

macroscopic ensemble of nuclear magnetic moments around a static magnetic

field, B, .

Radiofrequency field interaction

In an NMR experiment, nuclei are exposed to a transient oscillating magnetic
field applied perpendicular to the static field. The effect of a linearly
polarised oscillatory field, B = B cos(wt), is most readily analysed by
splitting it into two counter-rotating circularly polarised components, each
with amplitude B, = B, /2 (see Fig. 2.2), denoted

B, = B Zcos(wt)+ gsin(wt) (2.9)

B = B, Zcos(wt)—gysin(wt) , (2.10)
where B and B, differ simply by a substitution of w with —w. One
component will rotate in the same sense as the precession spin moments and
is called the resonant component, while the other component rotates in the
opposite sense and is called the non-resonant component. It can be shown

that for B1 < B

,» under normal conditions, the non-resonant component has

no influence on the spins and may therefore be neglected. For generality, it is
convenient to introduce the symbol w_, which represents the component of w
along the zaxis, and may therefore be positive or negative. It is then possible
to consider a single circular field component

B, = B cos(w.t)+ysin(wt) , (2.11)
which will give either sense of rotation, depending on the sign of w . The
spin Hamiltonian due to spin interactions with the transient RF field may
therefore be written as [24]

Hye = —n-B = —hl-B = —yhB I cos(wt)+1I sin(wt) , (2.12)
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where I=12+1§+1z (I, =0 for spin interactions with an RF field

applied orthogonal to the zdirection).

+w

—Ww

Figure 2.2: Decomposition of a linear oscillating field into two counter-

rotating circularly polarised fields.

2.2.2 Internal spin interactions

Dipolar interaction

Within an assembly of nuclear spins, if each spin has an associated magnetic
moment, magnetic fields are generated that loop around in the surrounding
space corresponding to the direction of the spin magnetic moment. If
neighbouring nuclei are a distance r apart and have magnetic moment u, the

fields they produce are of the order
Hy p
B =t 2.13
loc 47T 7"3 ( )
The classical interaction energy between two magnetic dipole moments is [25]

_ & By By _ 3(“’1 ' rlg)(l“l‘g ) rlz)

FE
4| ? r

(2.14)
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where 1, is the radius vector from p, to p, (r could equally be taken from
B, to p,). Replacing the classical dipoles, p, with their quantum
equivalents, vAl (Eq. 2.1), and summing over all spin pairs within a nuclear

spin system, yields the dipolar Hamiltonian:

/~L k—1 fyfykh . r . r
H, = 4_7(;2,;2—7# L1, - - : (2.15)
J gk

Alternatively, the summation over pairs can be written

a>

I sens .
HD:_OZ .7§ [Ij'Ik—3(Ij'ejk)(Ik'

47T j<k 7"]/&

)

- ijk [Ij I _3(Ij 'éjk)(Ik 'éjk,)]; (2.16)

j<k

where €, =r, / r, denotes a unit vector pointing in the direction of r, and

My V%

_ 3
47 T

(2.17)

Jk

is the dipolar coupling constant. Considering a single homonuclear (same %)

spin pair (j,k) separated by a distance T the dipolar interaction represented

by Eqgs. 2.15 and 2.16 can also be written

HDJA. :I].-D-Ik = Ijm ij I].Z Dym ” Dyz Iky . (2.18)
sz Dzz/ Dzz Ikz

where the matrix D is a rank-two tensor whose elements can be determined
by inspection of Eq. 2.16. It is more useful, especially where it is necessary to
consider rotational effects of spin dipoles, to represent the dipole vectors in

spherical polar coordinates (Qk,%,qﬁﬂ). The dipolar interaction represented

for a single pair of spins can be re-written in the spherical tensor formalism
[26]:

Hy, =2 (CV"E"(0,.6,)L" (2.19)

where
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m 1/2 m
E'=-b, 24/5 Y, (2.20)
and Y)" are the spherical harmonics of order 2 and component m, while the
T, ™ terms are products of spin operators [27]. In the limit of high magnetic
field, where the dipolar interaction between spins is weak when compared to
the Zeeman interaction, only the so-called ‘secular’ (diagonal matrix

components), for which m = 0, are considered, and the ‘non-secular’ (off-

diagonal terms) can be discarded. The Y20 and TQ0 terms are given by

Figure: 2.3: Relationship between rectangular coordinates z, y, z (describing
the position of spin j relative to spin k) and the polar coordinates T ,ij Py

ij is used in the calculation of secular dipole-dipole coupling.

" = (5 /4w)1/2%(3c032(9 )—1) (2.21)

ik

and

1
0
T =—@3I1 ~1-1). (2.22)

]
Inserting Eqs. 2.20, 2.21 and 2.22 into Eq. 2.19, the secular Hamiltonian term

for a collection of homonuclear spin pairs is therefore
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M, (0,) =30, %[(1 —~3cos’(6,))(31 I, 1 -1)], (2.23)

j<k
and it can be shown that for heteronuclear spin pairs, the secular

Hamiltonian is given by [23]

M, (6,)=30, 1 (1—3cos?(0,))I,1,)|- (2.24)

o 2
The dipole-dipole Hamiltonian is of great significance in describing nuclear
spin systems. It is responsible for the anisotropic dipolar line-broadening
observed in rigid solids, where linewidths of the order of kHz can render
solid-state NMR signals unobservable under normal conditions. In liquids and
gases, the situation is very different, as molecular motion causes 9]% and gbjk

(and hence H, ) to rapidly fluctuate, which results in the dipolar

Hamiltonian being averaged to approximately zero. Static dipolar broadening
therefore makes no contribution to the NMR linewidth in liquids and gases.
The rapidly fluctuating non-secular (off-diagonal) terms in H, , however, can
induce transitions between nuclear energy levels and thus contribute
significantly to the transverse and longitudinal relaxation mechanisms, as we

shall see later, in liquids and gases, as well as in solids.

Chemical shift

Atomic or molecular electrons can cause the local magnetic field surrounding
a nucleus to vary. The change in field experienced by the nucleus alters the
Larmor frequency in a way which is characteristic of the chemical
environment. This effect is called the chemical shift. The physical process
giving rise to chemical shifts can be described in two steps: 1) the externally
applied field (B,) induces electric currents in atomic/molecular electron

clouds and 2) the currents in turn generate a magnetic field, B The

induced *
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magnetic field experienced at the nucleus is then a summation of the applied
field and induced field

Bloc = B() + Binduccd' (225)
The induced field is approximately linearly dependent on the applied field

and may be written

= —0B

induced 07

(2.26)
so that the local field is given by

B =(0-0)B,, (2.27)
where o is the chemical shift tensor, which describes the extent to how
“shielded” the nucleus is from the applied field; if the currents are set-up
such that direction of B, , =~ opposes the applied field (positive o), the field
experienced at the nucleus is reduced in comparison to that which would be

experienced by the ‘bare’ nucleus. The Hamiltonian for the chemical shift

interaction is given by

H

s =—hk-B =~k 0B . (2.28)
In solids, the chemical shift may be anisotropic, and thus the tensor
formalism is required to describe the effect. In liquids and gases, however, the
nuclei tumble rapidly through every possible molecular orientation (NB: Xe,

being a monatomic gas, has no preferred orientation) and thus any

anisotropy effects are averaged out, rendering o as a scalar.

2.2.3 Semi-classical treatment of nuclear

magnetisation

So far the phenomenon of nuclear magnetism has been described by
considering individual magnetic dipole interactions. This approach proves
cumbersome when attempting to evaluate the net magnetisation of large

numbers of spins within a given volume. In the semi-classical picture
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described in this section, the dynamics of the sum of all magnetic dipole
moments — the magnetisation vector, M — in a sample are described. Using
this picture of magnetisation make basic experiments in NMR easier to

understand, visualise and interpret.

Macroscopic magnetisation and Boltzmann
equilibrium

According to the Boltzmann law of statistical mechanics, the populations, P, ,
of the energy levels, E,, are governed by exp(—E /kT)= exp(myhB, / kT),
and the net equilibrium magnetisation of a sample containing N spins is [28]

1
z mexp(m~hB, / kT)
M, = Noyh 2=t , (2.29)

z exp(myhB, / kT)

m=—1I

where k is Boltzmann’s constant and 7T is the sample temperature. In the
case of nuclear magnetism, the ratio vAB, / kT is almost always a very small
number and it is possible to perform a linear expansion of Eq. 2.29 to

approximate M, as

232
y, = NI
3kT
For nuclei with spin I = 1/2 (e.g. for 'H, "Xe and *He) the net (or

(2.30)

equilibrium) magnetisation is equal to
y = NTB Ly~ ap (2.31)
o T 20 T '

where P, is the Boltzmann polarisation, which defines the fractional
population excess in one energy level relative to the other. Let the
populations of the two m states, +1/2 and —1/2, be specified by
N, =exp(—E, /kT) and N =exp(—E /kT), respectively, then F, can be

expressed as
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AN N —-N_ AE _|v|hB,
= ——= = tanh —— =~
N N+ + N 2kT 2kT

, (2.32)

for AF / kT <« 1. Typical field strengths used in NMR applications are of
the order of one to several teslas, leading to small excesses of nuclear spins
aligned with B at room temperature. For example, at a field of 1.5 T, the
Boltzmann polarisations of '*Xe, *'P and 'H nuclei are 1.4x10°° 2x107°,

5.1x10°°. The polarisation of a given spin system is related to the sensitivity

in NMR, which will be further discussed in Section 2.2.5.

Figure 2.4: Spin populations, N, and N ,for spin-1/2 nuclear species in the
presence of an applied field. The orientation of the spin angular momentum
and the net equilibrium magnetisation, M , with respect to the zcomponent
of the applied magnetic field is dependent upon the sign of the gyromagnetic

ratio of the nucleus.

Equations of motion and the rotating reference
frame

In the classical description of magnetism, while a spin is subject to an
external field, B, (which may vary with time) a torque of the amount
T = x B acts on the spin magnetic moment. The equation of motion of the

spin is given by equating T with the rate of change of angular momentum J
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dJ
—_ =T = XB, 2.33
m o (2.33)

and, since p = 7J, it is possible to write

B, (2.34)

dt

By writing the net magnetisation of N spins in a volume V

1 N
M=— | 2.35
M (2.35)

combination of Eqs. 2.34 and 2.35 then gives

-%%znyB, (2.36)

which is the equation of motion of M for ‘free’ (i.e. non-interacting) spin
ensembles in the laboratory frame. In order to solve Eq. 2.36, it is useful to
introduce a rotating coordinate system, a technique that greatly assists in the
description of the dynamics of M in NMR experiments.

Given a time-dependent vector, A(t), the time derivative, dA/d¢,
computed in the laboratory frame, and OA /Ot, the time derivative
computed in a coordinate system that is rotating with a constant arbitrary

angular frequency, €2, are related through

dA 0A
—=—+AXxQ. 2.37
dt ot ( )

Combination of Eqgs. 2.36 and 2.37 gives the equation of motion of M in the
rotating coordinate system,

oM
M M
ot

B+

v

. (2.38)

According to Eq. 2.38, the motion of M in the rotating coordinate system
obeys the same equation as in the laboratory system, so long as the applied

field, B, is replaced by an effective field
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B =B+ 2 (2.39)

Y
the sum of the laboratory field and a fictitious field B, = € /. It is possible

to solve the equation of motion of M for a static field B = B by choosing a
rotating frame with € = —yB_ such that the effective field disappears. For
B,, OM /0t =0, and the magnetisation is a fixed vector in the rotating
frame. This means that, with respect to the laboratory frame, M rotates with
an angular velocity Q= —yB 2, where B, is the Larmor precession
frequency, which is identical in magnitude to the resonance frequency derived

for Zeeman energy transitions in Section 2.2.1 (Egs. 2.8a and b).

Bloch equations

The Bloch equations describe, phenomenologically, the time evolution of M
under the influence of transient magnetic fields for interacting spins. The
heuristic argument leading to these equations is as follows.

1) The equation of motion of the nuclear magnetisation for an ensemble of
spins was shown in Section 2.2.3 to be dM /dt = yM x B (Eq. 2.36).

2) In a static field, B = B/, the magnetisation, M_, approaches
equilibrium, M, according to the equation dM /dt=—(M - M) /T . T,
is called the spin-lattice or longitudinal relaxation time constant, which
characterises the time taken for M to establish Boltzmann equilibrium.

3) Through interactions with a transient RF field, B, (Eq. 2.11), applied

1
orthogonal to the static field, the nuclear magnetisation may gain transverse
components M and My. This ‘transverse magnetisation’, owing mainly to
mutual spin-spin interactions, decays at a rate represented by the equations

dM /dt=-M_/T,, dM /dt=—-M /T, where T, is called the transverse
T T Y Y

or spin-spin relaxation time.
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4) In the presence of an applied field, B, the sum of a static field and a
much smaller RF field (B, + B, ), the motion of M due to relaxation can be
superposed on the motion of free spins (Eq. 2.36), which leads to the

equation of motion in the laboratory frame

z (Lab. frame).  (2.40)

Consider a static field with amplitude B, = B/ = —w, /v and a RF field of
amplitude B, = —w, /~ that is rotating about zdirection at a frequency w,
(whose sign may be positive or negative depending on the gyromagnetic ratio
of the nucleus) in the vicinity of the value of w, (i.e. a slightly off-resonance
version of the circularly rotating field represented by Eq. 2.11). In the frame
rotating around B, at a frequency w = w , the effective field is no longer

zero and is given by

w
B, +—=
S

B =

e

2+ B == — . (241)

where #',9’,2' =2 are unit vectors in the rotating frame. In the rotating

frame, the equation of motion is

— =9MxB —— L = ¥ (Rot. frame), (2.42)

where M 1' and M ; are the transverse components of M in the rotating frame.

(NB: from now on, the primes shall be removed and the following treatments
in this chapter, unless otherwise stated, will correspond to M in the rotating

frame.) Making the substitution M = M 2 + Myg] + Mz, Eq. 2.42 can be re-

written as
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dM
£ = AWM, — M, /T,

W AGM —wM M T

5 - AwM,—wM —M /T, (2.43)
dM

S =w M, = (M = M)/ T,

which represents the Bloch equations in the rotating reference frame.

W

Figure 2.5: (a) Time evolution of the nuclear spin magnetisation, M, in the

laboratory frame, in the presence of a static field, B , and a transverse

0
rotating field, B,. When w = w , M simultaneously precesses about B, at w,
and about B, at w . (b) Same as (a) but in the rotating frame where B, is
fixed in position. (c) Precession (at frequency w_) of M in the rotating frame
when the RF field is off-resonant (w = w,) around an effective field B, .

Shown is the case in for a nucleus with positive gyromagnetic ratio where

w = —w in Eq. 2.41.

z
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Pulsed Fourier transform NMR

In the following, we consider the evolution of M after the application of a B,
field applied for a given duration, ¢, . In the rotating frame, M is ‘tipped’
away from its equilibrium position, subtending an angle (with respect to the
zaxis)

0 =B, (2.44)
During NMR experiments, RF ‘pulses’ (of given power and duration) are
transmitted into a coil that is set up to generate a B, orthogonal to B, so
that M is brought into the transverse plane according to Eq. 2.44. After B, is
turned off, the transverse components of M induce small currents in the coil
that was used to transmit the pulse. M will then relax back to its equilibrium
value, M, in a time characterised by the constant T .

In basic pulsed NMR experiments, where T >t . (f,, represents the

RF
duration over which the RF field is applied), the Bloch equations (Eq. 2.43)
describe the time evolution of the nuclear magnetisation in the intervals

separating RF pulses, where only B acts on M, so that Eq. 2.43 becomes

dM,
dMy
Y = —Ame —(My /TQ)
dM
= (M, M)/ T,. (2.45)

These three differential equations can be readily solved by introducing the
complex transverse magnetisation, M, = M _ —|—z'My, which reduces Eq. 2.45
to [29]

dM
dtt =—(1/T, —2im/" )M,

dM
= (M~ M)/ T, (2.46)
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where »'=Aw/2r =(w, —w)/2r is the precession frequency in the
rotating frame. Assuming initial conditions of M (t=0)= M  and
M _(t = 0) =0 — the condition after an RF pulse has tipped M fully into the
transverse plane (0 =m/2 in Eq. 2.44) — the complex transverse
magnetisation is obtained
M, = M exp(—t / T,)exp(2im't) , (2.47)
and, therefore, the solutions to the Bloch equations in the rotating frame can
be written
M (t) = M, exp(—t / T,)cos(2mv't)
M (t) = M exp(~t / T,)sin(2m't)
M (t) = M, |1 —exp(~t / T))|. (2.48)
The meaning of T, and 7T, is apparent from inspection of Eq. 2.48: when
t — oo, M_ recovers to equilibrium magnetisation, M , while any transverse
magnetisation vanishes. The transverse relaxation time 7T, characterises the
loss of coherence of spins, and thus reduction of the transverse magnetisation,
within a sample. Spatial inhomogeneities of B result in a distribution of the
precession frequency, »’, which contributes to the coherence loss in the
transverse plane. T, is thus replaced by
1/T) =1/T,+1/T/ ~1/T, +~yAB, / 2. (2.49)
T, is mediated by spin-spin interactions, where each nuclear spin experiences
a local magnetic field due to its neighbours, and TQI characterises the
coherence loss due to static B, inhomogeneity. (It is clear from Eq. 2.49 that
T, <T,.) The complex transverse magnetisation (Eq. 2.47) is then re-written
M, = M exp(—t / T, )exp(2imv/'t). The transverse magnetisation components,
M and M ,» contain cosine and sine factors, hence the NMR signal induced
in the coil comprises damped cosine and sine functions. This signal, a

superposition of damped cosine (sine) functions, is referred to as ‘free
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induction decay’ (FID). In order to retrieve the frequency-domain NMR

spectrum, a complex Fourier transform is performed on the complex signal,

M

t
F(M,(t) = f M, (t) exp(—2im/'t)dt (2.50)
0
Evaluation of the integral in Eq. 2.50 yields the Lorentzian function

_ M,T, _Z_ M,T, 27(v — 1/’) .
1+ 47T2’T; (v — 7/’)2 1+ 47r2T; (v — 1/’)2

F(M,(1)) (2.51)

The first term (the real part of the Fourier transform) corresponds to an
absorption Lorentzian lineshape with a maximum value of MOT; occurring at
v/ and a full-width half maximum (FWHM) equal to 1/, . The second
term (the imaginary part of the Fourier transform) corresponds to a
dispersion Lorentzian lineshape with a maximum value of MOT; /2 and a
max-min peak distance of 1/ 7TT;. (NB: In realistic cases, NMR lineshapes
can be non-Lorentzian (Gaussian or Voigt) due to e.g. field inhomogeneities,

diffusion and bulk sample motion.)

absorption
FT

-~

RF acquisition .
P + |le— 1/ 7T,

(a) Uu : FID (b)

Figure 2.6: (a) Free induction decay following an RF pulse. The solid and
dashed black lines represent the real and imaginary parts of the complex
transverse magnetisation. (b) NMR spectrum after a Fourier transform. The
real and imaginary parts of the Fourier transform are termed absorption and
dispersion spectra, respectively. The full-width half maximum of the

absorption Lorentzian has the value 1/ 7TT; .
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In practice, while post-processing of NMR spectra, it is generally necessary to

‘phase’ the spectrum by adding a factor exp(ip) to M

,» Where ¢ is chosen

such that the absorption and dispersion lineshapes correspond to the real and

imaginary parts of the spectrum, respectively.

2.2.4 Nuclear spin relaxation

In the presence of a static magnetic field, nuclear spins within a sample will
reach a state of magnetic (thermal) equilibrium, where the spin moments
exhibit net alignment with the static field, and the energy level population
difference is given by the Boltzmann distribution. In order for a spin moment
(in the case of 7> 0) that is antiparallel to the field to become parallel, it
must lose energy. The medium in which this energy exchange occurs is
referred to as the ‘lattice’ (the molecular environment of the nuclear spins).

The lattice — named so following the early studies of NMR relaxation in
solids where the surroundings were genuinely a solid lattice — describes the
thermodynamic ensemble in which all relaxation pathways available for the
nuclear spins to transfer energy take place. The rate at which the nuclear
magnetisation, M, establishes equilibrium depends on how efficient energy
transfer is from the spin system to the lattice (hence the term spin-lattice
relaxation). Within the context of an NMR experiment, M will relax back to
equilibrium at a rate determined by spin-lattice interactions following
application of an RF pulse.

For spin-1/2 nuclei, relaxation is caused by fluctuating magnetic fields
(arising due to thermal motion of the molecules) at the sites of the nuclear
spins. To quantify the effect that fluctuating fields have on nuclear relaxation

at a given frequency, it is necessary to introduce the autocorrelation function.
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Autocorrelation function of a fluctuating field

Consider a magnetic field, F(t), that fluctuates randomly over time. These
fields will have zero average, i.e. <F (t)>:0, where the angular bracket
notation here refers to either the average field experienced by one spin over a
long time, or the average field experienced by many spins instantaneously.
These averages are assumed to be equivalent (ergodic hypothesis). Since the
average field is zero, the magnitude of the fluctuating field is determined by
consideration of the mean square value of the fluctuating field, <F 2(t)> =0.
The autocorrelation function is used to describe how rapidly the field
fluctuates with respect to a time interval ¢ + 7, and is defined:
G(r) = (F(t)F(t +7)). (2.52)
If the interval 7 is much longer than the time-scale of the fluctuations, then
the system is said to lose its ‘memory’ — i.e. the function decorrelates with
itself. In general, the autocorrelation function is large for small values of 7
and tends to zero for large values 7. The so-called correlation time, 7, is
used to characterise the loss of correlation; rapid fluctuations have small T
and slow fluctuations have large 7 . If one assumes a simple exponential form
for the autocorrelation function, 7_ is related to G(7) by
G(1)=G0)exp(—|T]/T,). (2.53)
G(7) has a maximum value of <F 2(t)> at 7=0, and approaches zero for
| 7 > 7_, as shown in Fig. 2.7. In practice, the correlation time depends on
physical parameters of the spin system/lattice, such as temperature and
viscosity. For example, correlation times are generally decreased by warming
the sample (increase in temperature implies more rapid molecular motion)

and the opposite holds true for sample cooling.
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Figure 2.7: (a) Rapidly fluctuating magnetic field and (b) autocorrelation

function of the fluctuating field with correlation time _.

Spectral density

Fields that fluctuate at the Larmor frequency induce nuclear energy level
transitions and thus contribute to relaxation. The amount of motion present
at a given angular frequency, w, within a system, can be measured using the
spectral density function, which is twice the Fourier transform of the

autocorrelation function

o0

J(w) =2 f G(1) exp(—iwr)dr . (2.54)

0

The real part of the resulting integral leads to a Lorentzian

J(w) = G(O)W =2G(0)J(w), (2.55)

where J(w)=7_/ (14 w’r’) is the normalised spectral density. J(w) for two
different correlation times is shown in Fig. 2.8, where the area under the
spectral density function remains fixed and is independent of 7 . The
maximum of the spectral density at the Larmor frequency, J(w,), is reached
for w,r. =1 (as shown in Fig. 2.9). The spin-lattice relaxation rate is thus

expected to be the most rapid when this condition is satisfied.
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T =22 7',:213

Figure 2.8: Spectral density functions for two fields fluctuating with different

correlation times, 7 . NB: the area under J(w) is independent of 7 .
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Figure 2.9: Spectral density for *Xe at 1.5 T for three different values of

correlation time, 7 . J(w,) has maximum value when w7 =1.
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Transition probabilities
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Figure 2.10: Dynamic balance between the two spin energy eigenstates, ‘a>

and ‘ 6>, at thermal equilibrium.

Consider a spin-1/2 nuclear spin system with the two spin eigenstates
denoted by ﬁg amd\5),“&mna\a>=\1/2,+1/2> mui\ﬁ>:\1/2,-1/2>
(notation ‘I , m>), each populated with N, and N, spins. It can be shown
that for spin-independent randomly fluctuating fields, the transition
probabilities for spins going from ‘a> to ‘6>, W | and vice-versa, ‘B> to ‘a>,
W, can be written [23]

W =W(Q1-R)

W =W({I+PF), (2.56)
where P, is the Boltzmann polarisation, defined by Eq. 2.32 in Section 2.2.3,

and W is the mean transition probability, which is given by
1
W= ()T (w,). (2.57)

The rate of change of spin state population between the two spin eigenstates

can be written

dN
o= WN WA, (2.58)

and
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Nﬁ
L= AWN WA, (2.59)

These are referred to as the master equations describing the spin system. The
zcomponent of the macroscopic magnetisation vector, introduced in Section
2.2.3, is proportional to the fractional difference in the spin state populations.
As a consequence, it follows that the time dependence of M can be written

sz d(N(\ B N,d)

dt dt

AN dN,
=—o__ 7 (2.60)
¢ dt

By setting N + N, =1 and substituting Eqgs. 2.58 and 2.59 into Eq. 2.60, it

follows that

dM
= -2 (M, 1) (2.61)

which is equivalent to dM_/dt in Eq. 2.45, provided M is normalised to

one and the spin-lattice relaxation rate (1/7;) is set equal to
1
— =W (2.62)
T

Therefore, for a model of a fluctuating random field, the spin-lattice

relaxation rate can be written

% = 2 (F(0)) T () = 7 <F2<t>>1+TW' (2.63)

The weakness of the above model is the assumption of spin-independent
random fields. In a realistic spin system, the random fields have a molecular
origin and must therefore be correlated with nuclear spin energy transfer
through, for example, dipole-dipole interactions, whose influence on

relaxation will be discussed in the next section.
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