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ABSTRACT 

Availability and sustainability of fuels for road and air transport is essential for economic 

development and growth of any nation. New alternative fuels provide an opportunity to 

limit the use of ever declining conventional petroleum oil reserves as well as offsetting 

CO2 generation from their use. Liquid fuels have the highest energy density for 

transportation applications and synthetic liquid fuels, which can be produced from 

renewable non-food bio feedstock offer an exciting opportunity for partial or even total 

substitution of remaining fossil fuel supplies. It is therefore of great interest to study the 

fundamental combustion characteristics of these fuels if they are to be used commercially. 

This work is aiming at characterising the auto-ignition properties of individual fuel 

components representative of the chemical families present in the synthetic fuels which 

in this case are toluene, iso-octane, n-heptane, and bio-alcohols; ethanol and n-butanol. 

The auto-ignition characterisation was made by measurements of ignition delay times, τ. 

The time τ for these fuels and their blends were measured after rapidly compressed to an 

elevated pressure and temperature using a Rapid Compression Machine (RCM). 

RCM provides good platform to study the fuel auto-ignition process without complicated 

physical effects in engines which are continually changing. However, they are not without 

problems, practical applications are usually not within the ideal conditions. Different 

machines have different extent of deviation from ideal conditions, making comparison of 

results between rigs difficult. In the present study, a dedicated work was conducted to 

study the difference between the measurements originated from these rigs and were 

characterised against their deviations from ideal conditions. These cover chemical 

reaction during the finite compression time, the effects of heat loss during the ignition 

delay period, the effects of piston displacement (piston bounce), and non-homogeneous 

auto-ignition. An interesting aspect of the study is that a plot of the measured different 

delay times at a given temperature, on the separate machines, against the corresponding 

degrees of reaction during compression, when extrapolated to zero reaction, yield a more 

accurate delay time for that condition. As the temperature is increased, so also are the 
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oscillatory pressure amplitudes generated at the auto-igniting hot spots. This is in line 

with other studies of hot spot auto-ignition. 

Measurements of ignition delay times of different chemical groups separately and when 

blended with each other were made. They provided an understanding of how their 

interaction influences the overall ignition delay times. When blended the change of their 

τ values do not vary linearly especially when the blended components have large 

difference in reactivities. Toluene for example, which is commonly known for its long 

ignition delay times, was made extremely reactive when blended with n-butanol. 

Comparison of addition of bio-alcohols (ethanol and n-butanol) on gasoline surrogate fuel 

(TRF) showed that at lower temperatures, they both increased the ignition delay times of 

TRF, while at high temperatures they reduced TRF delay times to almost the same value. 

n-butanol started to reduce TRF delay times at lower temperatures compared to ethanol.  

Development of auto-ignition blending laws offers an opportunity to enable quick 

methods for choosing an appropriate blend for a particular application. In this work, a 

Linear by Mole (LbM) auto-ignition blending law was proposed, it uses the measured 

ignition delay times of individual components in the blend and varies them linearly with 

the fractional concentration of each component. This was found to be satisfactory only 

for blends of chemical families without NTC behaviour such as CH4/H2, for fuels with 

NTC behaviour an empirical based law was generated for the conditions studied. 

Overall, this study has broadened our understanding in auto-ignition behaviour of selected 

individual fuel components and their blends at varying conditions of pressure, 

temperature and concentration. It has also enabled substantial development of Leeds 

RCM to achieve fast compression with good piston damping. 
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CHAPTER 1: INTRODUCTION 

1.1 General overview and motivation. 

After the industrial sector, the transportation sector is the second main consumer of world 

energy and has been so for many decades. Up to 26.6% of the world’s total energy 

consumption is in transportation [Energy Information Administration, 2014] and is 

increasing by an average of 1.1% per annum [Energy Information Administration, 2013]. 

Transportation is the biggest consumer of liquid fuels, contributing up to 63% of the total 

growth in the global consumption of liquid fuels [Energy Information Administration, 

2013]. Petroleum liquid fuels predominate due to their high energy content on both 

volumetric and mass basis, with good performance, availability, ease of handling and 

affordable price, compared with other fuels [Greg et al., 2006]. In addition, there is a 

highly developed infrastructure for their production, transportation and distribution. For 

many years, until recently, increasing demand and political instability in the Middle East 

have stimulated price rises. Increasing supply of fuels within the US will continue to 

lower prices in the coming years, until their reserves level off in the 2030s [Energy 

Information Administration, 2014].  

The increasing use of conventional petroleum liquid fuels in transport is expected to 

continue, and is one of the main contributors of greenhouse gases emissions to the 

atmosphere, amounting for 16% of the total [Energy Information Administration, 2014]. 

This results in devastating effects, such as global warming, smog formation and acid rain. 

It also has resulted in the introduction of strict counter measures against combustion 

products throughout the world, and increasing efforts to achieve higher engine 

efficiencies, with new cleaner and sustainable fuels. Increasing research in these areas is 

therefore inevitable.  

New, alternative, renewable, liquid fuels should be designed to be efficient, sustainable 

and clean. One approach commonly used is to mimic conventional petroleum based fuels 

in their physical and chemical characteristics [Nazim et al., 2008]. New fuels may be used 

alone or mixed with regular petroleum oil based fuel, thus reducing dependency upon 

conventional petroleum based fuels. Liquid fuels can be synthesised from syngas in the 

Fischer-Tropsch (F-T) process. Feed-stocks can be biomass, natural gas, coal or other 

carbon containing sources. For any new fuel, a clear understanding of the fundamental 
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combustion behaviour and properties under different conditions is necessary before they 

can be commercially used.  

Auto-ignition is one of the key fundamental fuel combustion characteristic which plays a 

vital role in combustion efficiency. It is a sudden exothermic heat release from the fuel, 

occurring without an application of external source after a delay time. It critically depends 

on pressure, temperature and mixture concentration. Even though the generation of new 

alternative, renewable fuels is a very attractive proposition, the auto-ignition of such fuels 

under different conditions provides a challenge for the new generation of fuels and 

engines. The phenomenon of “knock” in SI engines arises from the auto-ignition of the 

end gas, accompanied with a rapid rise and oscillatory pressures which can be very 

detrimental to the engine. Compression ratio in SI engines is knock limited, constraining 

fuel efficiency and reduction of CO2 emissions. In controlled auto-ignition (CA) engines, 

the auto-ignition influences the smooth operation and drivability especially under high 

load. In all these cases, auto-ignition usually arises at hotspots, due to the non-uniformity 

of temperature and/or composition [Mansfield et al., 2015; Bradley et al., 2015], a process 

not fully understood. Auto-ignition can also arise in fuel storage and transportation, and 

a study of such hazards is vital. 

Auto-ignition property is characterised using the ignition delay time, τi, which is the time 

lapsed before the onset of main combustion explosion. Measured τi values are ideally 

characterised for a homogeneous mixture, at a given temperature and pressure. It is the 

parameter that is most featured in the present study. The general nature of τi for non-

aromatic hydrocarbons is that, it decreases exponentially with increasing temperature, in 

the higher and lower temperatures ranges, whereas at intermediate temperatures, a 

negative temperature coefficient (NTC) occurs. Here τi increases, or remains constant 

with increasing temperature [Griffiths et al, 1993; Griffiths et al., 1997; Gersen et al., 

2010; Westbrook et al., 1998; Pfahl et al., 1996]. Near and within this region, combustion 

is usually taking place in two stages. After an initial delay, heat is released in a first stage 

in a “cool flame”, followed by the main heat release. Aromatic hydrocarbons do not 

exhibit NTC behaviour, nor two stage ignition phenomenon [Mittal et al., 2007; His-Ping 

et al., 2009]. A very interesting consideration is how the blending of such different fuel 

components will affect the resulting τi of the blend.  
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1.2 Scope of the work and methodology. 

The primary activity has been centred around the measurements and study of τi for 

different liquid fuels and their blends, under different conditions of pressure, temperature 

and mixture concentration, with τi measurements made using a Rapid Compression 

Machine (RCM). The principal measurements were taken at University of Leeds, with 

others at the SASOL Advanced Fuel Laboratory at the University of Cape Town. In the 

course of this research, the author was a participant in the first RCM workshop, which 

was conducted at the Argonne National Laboratory in Chicago in 2012. Researchers from 

thirteen different research groups around the world, users of RCMs, met to discuss the 

challenges associated with the use of these machines and the interpretation of their 

measurements, with the aim of reaching a universal consensus through their improved 

understanding of the RCMs. Detailed findings and agreements made in the workshop are 

subsequently discussed in Chapter 4. 

The scope of this work comprises: 

 Modification and Improvement of the Leeds RCM to achieve conditions of pressure and 

temperature relevant to engines. 

 Measurements of τi values for selected liquid fuels and their blends under various 

conditions of pressure, temperature and mixture concentration. 

 Interpretation of the measured τi values, taking into consideration the non-idealities 

existing in the RCM. 

 Development of τi blending laws for the fuels studied. 

This study ran in parallel with a study of burning velocity of similar liquid fuels and their 

blends, using the Leeds MK II combustion bomb. The complete combined study of 

ignition delay times and burning velocity will play an important role in characterizing 

new fuels and their blends, particularly with regards to the engine knocking phenomena. 

The nature of end gas auto-ignition in SI engines depends on τi values, their spatial 

distribution, temperature, pressure, composition and burning velocity. Such data are 

relevant to both spark ignition, SI and controlled auto-ignition (CA) engines. 

1.3 Alternative liquid fuels. 

Alternative fuels are possible substitutes to conventional fossil fuels. They can be either 

renewable or non-renewable, depending on the feedstock resources used in their 
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production. The main groups discussed here are the Fischer Tropsch (F-T) synthetic 

liquid fuels and biofuels. The following two sections overview both groups, covering their 

history, production and classification. 

1.3.1 Fischer-Tropsch (F-T) Synthetic liquid fuels. 

Synthetic liquid fuels are alternative fuels obtained from syngas, a combination of 

hydrogen and carbon-monoxide. Syngas is catalytically processed to produce liquid 

hydrocarbons fuels, with predetermined characteristics. The classifications of synthetic 

fuels depend on the feedstock used to make the syngas and the technology used to convert 

it into liquid fuel. This type of fuel can be considered as renewable, if the feedstock comes 

from renewable sources such as biomass.  

The F-T process is the most common method used for industrial production of synthetic 

liquid fuels. It is named after its founders, Prof. Franz Fischer and Dr. Hans Tropsch, who 

developed it in Germany during the World War II to satisfy demand for fuel at the time. 

It was thereafter further developed into a less expensive process by SASOL in South 

Africa. The F-T process is preceeded by a gasification process in which synthesis gas 

(H2+CO) is produced, usually through gasification. Syngas is then converted into long 

chain liquid hydrocarbons using a range of catalytic chemical reactions. The whole 

process can be thought of as catalytic polymerization of carbon monoxide together with 

reaction by hydrogen to generate the long straight chains of methylene units:                 

𝐶𝑂 + 𝐻2 →→→→ (𝐶𝐻2)𝑛 + 𝐻2𝑂. These are further processed and cracked into smaller 

units, rearranging some of the atoms to obtain liquids with a wide boiling range, ranging 

through gasoline naphtha, kerosene, and diesel fuel. The overall composition of the liquid 

fuels depends on the quality of the synthesis gas, process conditions and the catalyst 

employed. [Greg et al., 2006] 

The first South Africa F-T commercial plants used coal for the syngas but currently coal, 

natural gas, or biomass are used as raw materials. The naming of the process depends on 

the raw materials, CtL (coal to liquid), BtL (Biomass to liquid) and GtL (Gas to liquid). 

F-T synthesis gas is free from sulphur and aromatic compounds, cleaner than the 

petroleum fuels. However, the lack of aromatics may result in shrinkage of some types of 

elastomers during operation and promote fuel leakage. This is usually avoided by either 

finding additives that can reduce the shrinkage, or by the use the fuel produced from 

synthesis gas and blended with a conventional petroleum [Greg et al., 2006]. 

catalyst 
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Raw materials used for syngas production are widely available, compared to limited 

petroleum oil reserves. Coal is available worldwide with the biggest reserve in USA, 

China, Russia and India [World Coal Institute, 2005]. Natural gas is also available almost 

in every continent of the world with production growth estimated at 1.8% per annum 

[Energy Information Administration, 2010].  

F-T synthetic fuels, are characterised by their main components (alkanes, alkenes and 

ethers) followed by their blends, ranging from binary to more complex blending. 

Measurements of τi for selected individual components and their blends are reported in 

Chapter 4.  

1.3.2 Bio-fuels. 

Biofuels are hydrocarbons produced from organic materials such as plants, animals, and 

agricultural wastes. They can be liquid, such as ethanol and biodiesel; gaseous such as 

methane; or solid such as charcoal or wood pellets. As with the F-T fuels, they reduce the 

reliance on fossil based fuels, with advantages such as sustainability, environmental 

compatable, and good adaptability. Several technologies are used to convert feed stocks 

into biofuels. These include fermentation, hydrolysis, transesterifications, hydrocracking, 

pyrolysis and gasification. Biofuels are classified according to the feedstock or the 

conversion technology. These are categorised mainly in four “generations”. 

[“Generations of biofuels” (n.d), para. 1-4].  

First generation biofuels are made from sugars, starches, oil, and animal fats and are 

converted into fuel using well established processes. These fuels include biodiesel, bio-

alcohols, ethanol, and bio-gases, such as methane, captured from landfill decomposition. 

The second generation biofuels are made from non-food crops or agricultural waste, 

especially ligno-cellulosic biomass like switch-grass, willow, or wood chips. The third 

generation comprises algae or other quickly growing biomass sources. The fourth 

generation biofuels are made from specially bio-engineered plants or biomass that may 

have higher energy yields or lower barriers to cellulosic breakdown or grown on non-

agricultural land or in water. 

The most popular, well researched and widely used liquid biofuel is ethanol [Georgios et 

al., 2015; Jaeho et al., 2015; Ashraf et al. 2015; Jörg et al., 2015]. Its popularity came 

particularly from its high octane number (ON). Other fuels that have received research 

attention include biodiesels [Shahir et al., 2015; Jiang et al., 2014; Ndaba et al., 2015], 

methanol [Xudong et al., 2013; Chunhua et al., 2015; Vancoillie et al., 2013] and bio-
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butanol [Ivo et al., 2012; Abdullah et al., 2015; Weiqi et al., 2015]. Table 1.1 compares 

the characteristics of these biofuels with their oil based counterparts.  

Biofuel Fossil Fuel Differences 

Ethanol Gasoline Ethanol has about half the specific thermal energy of 

gasoline. It generates less CO2 and particulates than 

gasoline [Georgios et al., 2015; Jaeho et al., 2015; Ashraf 

et al. 2015]. Engines must be modified to run on ethanol 

due to corrosion effects [Jörg et al., 2015]. It is hygroscopic 

and hence makes transport through the existing 

infrastructure impossible. It cannot be blended with 

gasoline in refineries, but at the selling station. 

Biodiesel Diesel This has only slightly less specific thermal energy than 

regular low sulphur diesel [Jiang et al., 2014]. It is more 

corrosive to engine parts than standard diesel [Ndaba et al., 

2015]. It generally burns cleaner producing less particulate, 

CO and HC, but slightly higher NOx [Shahir et al., 2015]. 

Methanol Methane Methanol has less specific thermal energy than methane. It 

is liquid and easy to transport, whereas gaseous methane 

must be compressed for transportation. 

Biobutanol Gasoline Biobutanol has a similar specific thermal energy to 

gasoline. Engines do not require modifications. It is less 

hygroscopic than ethanol, making it easy to transport. It 

readily mixes with other fuels such as diesel and gasoline 

without separating. [Szwaja et al., 2010] 

Table 1.1. Comparison of properties for common biofuels with oil based fuels and 

methane. 

Comparisons of bio-butanol and ethanol with gasoline show bio-butanol properties are 

the closest to that of gasoline. Nevertheless, bio-butanol had not been able to replace 

ethanol as an engine fuel, one reason being its expensive production routes and very poor 

yields from traditional acetone-butanol-ethanol (ABE) fermentation discussed in [Jones 

et al., 1986]. Recent methods are more economical, with better yield [Tashiro et al., 2015], 
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making it competitive with ethanol. Measurements of τi for the blends of gasoline 

surrogate with butanol and ethanol are compared in Chapter 4.   

1.4 Combustion and auto-ignition. 

Combustion mainly occurs in either a propagating flame, driven by molecular transport 

processes and chemical reactions or as an auto-ignition in a region of near-uniform 

composition, temperature and pressure, but usually at localised hotspots. An example of 

both modes is illustrated in SI engines, shown in Fig 1.1, where flame propagation 

originates at the spark source causing the temperature and pressure to rise in the unburned 

gas sufficiently to create auto ignition at hot spots. Modes of flame propagation can be 

further classified, depending on whether the fuel and air are premixed (premixed flame), 

or separate (diffusion flame). The associated fundamental properties that need to be 

characterised for the new fuels and its individual components are the auto-ignition delay 

times and burning velocity. 

 

Figure 1.1 (a) Flame and (b) Auto-ignition mode of combustion in a spark ignition engine. 

[Turns, 2012]. (b) 
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Combustion and auto-ignition are complex phenomena involving the interactions 

between different disciplines including thermodynamics, chemical kinetics, fluid 

dynamics, heat and mass transfer and turbulence.  As a result, detailed solutions are 

difficult to achieve. Nevertheless, the development of new/improved experimental 

techniques (e.g high speed cameras and 3D laser imaging), advance in research devices 

such as Shock Tubes and Rapid Compression Machines (discussed in the preceding 

section), and improved mathematical modelling aided by computers, have greatly 

advanced understanding of flames and auto-ignition in recent years.  

1.5 Ignition delay time measurements. 

Experimental measurements of ignition delay time, τi, have been used to characterise 

auto-ignition behaviour. Within τi there is another important parameter known as 

excitation time τe, a time during which most of the heat release occurs [Andrew et al., 

1989]. While τi values are in the range of milliseconds, those of τe are in microseconds, 

making experimental measurements of τe very difficult. τe is therefore usually calculated 

using chemical kinetic models.  

Measurements of τi in engines or turbines would be very complex due to the continually 

changing conditions and the complex flow fields. Thus, in order to enhance fundamental 

understanding and interpretation, measurements are conducted under controllable 

conditions in relatively simple devices. Low pressure constant volume vessels, 

combustion bombs, and flow reactors have all been used. For the high pressure engine 

condition the most suitable devices are RCM and Shock Tubes, which are now described.  

1.5.1 Shock tubes. 

Shock tubes, STs, have been in use for over 115 years. The idea of a ST came primarily 

from the detection of deflagration-detonation transition in the flame propagation in tubes 

by the French physicists F. Mallard, H. Le Chatelier, M. Berthelot, and P. Vieille [Fomin 

N.A., 2010]. STs allow for variations of the pressure and temperature over a wide range 

by using a shock wave and study the high temperature combustion processes for various 

gases. The first ST was constructed by P Vieille [Vieille P., 1899]. However, it was not 

until 1937 that widespread interest was stimulated by the British scientists Payman and 

Shepherd [Payman et al.,1937], whose work led into designing of high pressure “pure” 

ST in which a shock wave was initiated by rupturing a diaphragm separating gases in high 

and low pressures sections [Payman et al., 1946]. Since then various developments have 
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been made including optical access to visualize and record the processes inside the ST 

[Pfahl et al., 1996; Westbrook et al., 1998]. They are now commonly employed for 

studying auto-ignition at high pressures and temperatures.  

A ST is basically a closed tube which is divided into two sections by a diaphragm. The 

two sections are at substantially different pressures. Depending on the shock pressure and 

temperature required, diaphragms are usually made from cellophane, aluminium, copper 

or steel. Fig. 1.2 shows the schematic for a typical shock tube facility operation. The 

principle of operation is based on shock wave theory. A shock wave is generated when 

the diaphragm that separates the low and high pressure sections is broken. The shock 

wave propagates to the low pressure section and instantaneously compresses the test 

mixture. The separation distance between the incident shock and contact surface dictates 

the upper limit of the test time in shock tubes as shown in Fig 1.3. Conventional shock 

tubes are limited to 1-3ms test time [Samitra et al., 2011; Huang et al., 2004], but recent 

advances, which includes extending the driver section, have increased the testing times. 

For example, the Princeton group attained testing times of up to 55 ms [Campbell et al., 

2015]. 

 

Figure 1.2. Schematic of shock tube operation. [Quinn et al., 2013]. 

Measurements of τ in the ST are usually derived from the measured pressure traces within 

the test section and detection of CH-radical band emissions [Pfahl et al., 1996], as shown 

in Fig. 1.4. Due to limitations in their testing times, ST are more suited for measuring 

relatively shorter τ values at higher temperatures. The main advantage of ST over other 

devices is its capability to compress the test mixture instantaneously using incident and 

reflected shocks and thus reduce the influences associated with the compression process. 

Moreover, Stanford group developed an aerosol ST which use modified end wall section 

to permit filling with aerosol mixture [Davidson et al., 2008]. This enabled measurements 
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of vapour-phase ignition delay times of low vapour pressure fuels and fuel surrogates 

such as JP-7 and n-dodecane without the need of heated ST and separate mixing chamber.  

 

 

Figure 1.3. Wave system in the shock tube and typical non-reactive pressure 

measurements showing testing time [Mathew et al., 2015]. 

 

Figure 1.4. Pressure history and CH-band emission for n-decane, 5.0MPa, 885K, 

stoichiometric [Pfahl et al., 1996]. 

1.5.2 Flow reactors. 

Like ST, these devices are cylindrical tubes with hot turbulent air flow, as shown in Fig. 

1.5. Fuel is rapidly injected into the stream of hot air at the throat of high velocity nozzle, 

and mixing takes place downstream. Usually the tube is covered with heaters to ensure 

uniform temperature. Auto-ignition occurs after fuel/air mixing and is observed by means 

Typical non-reactive 

pressure trace 

τ 
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of light emissions or a sudden temperature rise of at least 50K [Eric et al., 2007]. τ is 

measured as the time between the fuel/air mixing to the point of ignition, and the initial 

point of fuel/air mixing is usually detected using a laser detection system, as indicated in 

Fig. 1.6. 

Most flow reactors operate in the pressure range of 0.1-3.0MPa and at a maximum 

temperature of 1000K. However, due to difficulties associated with perturbations in the 

mixing region, they are commonly used to measure the longer τ values, in excess of 100 

ms [Petersen et al., 2007, Beerer, 2009].  

 

Figure 1.5. Schematic of flow reactor [Beerer D., 2009]. 

 

Figure 1.6. τ definition using laser and light output in flow reactor [Beerer et al., 2009].  

1.5.3 Rapid Compression Machines (RCM). 

This is a single stroke compression facility, where compression is achieved by a simple 

piston-cylinder configuration, as shown in Fig. 1.7. The motion of the piston is driven by 

high pressure at one side, at the other is the reactant mixture. The compression must be 
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rapid otherwise reaction will occur during compression. It is difficult to attain as rapid a 

compression as that in a ST. However, RCMs are capable of sustaining fairly constant 

pressure and temperatures after compression for about 120 ms, compared to that of, at 

most, 55 ms in a ST. [Mittal et al., 2007].  

 

Figure 1.7.Schematic of RCM operation [University of Illinois, 2014]. 

In RCMs, τ is obtained from pressure records and τ is usually defined as the duration from 

the end of compression (t = 0) to the point of maximum rate of pressure rise (i.e maximum 

𝑑𝑃 𝑑𝑡⁄ ) [Gersen et al., 2010; Westbrook et al., 1998; Gallagher et al., 1998; Mittal et al., 

2008], as shown in Fig. 1.8. Other definitions have been used, such as the elapsed time 

from the end of compression to the time when pressure reaches 20 or 50% of the 

maximum pressure rise [Ihara et al., 2009; Tanaka et al.,2003; Mittal et al., 2007]. 

Because of the rapid rise in pressure during ignition, all these methods produce similar 

results. Fig 1.9 summarises typical boundaries for the measured τ values for each device. 
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Figure 1.8. Typical pressure trace in the RCM showing Ignition delay time definition. 

 

 

Figure 1.9. Typical operational boundaries of ST, RCM and flow reactors. A comparison 

to a representative ignition delay curve of i-octane is included [Grogan et al., 2015]; 

ignition delay of iso-octane is obtained from the reduced mechanism of Pepiot-Desjardins 

and Pitsch [Pepiot-Desjardins et al., 2008] at an equivalence ratio of 0.6 and a pressure 

of 2.0 MPa.  
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1.6 Auto-ignition (AI) chemistry of hydrocarbons. 

The chemistry of hydrocarbon oxidation is very complex. A sequence of thousands of 

different elementary chemical reactions can take place during combustion. This section 

gives only the basic elementary chemistry involved during ignition of hydrocarbon fuels. 

In the present work no intermediate species were measured, only ignition delay times. 

Nevertheless, since the τi values of different hydrocarbons at different conditions are 

fundamentally controlled by their oxidation chemistry, it is aimed to give an overview of 

how reactions unfold at different temperatures. Reviews of detailed chemical mechanisms 

for alkanes and other hydrocarbons can be found in Battin-Leclerc [2008] and Simmie 

[2003]. 

A general understanding of hydrocarbon oxidation mechanisms has been developed over 

many years, and it is widely accepted that in a simple static combustion system, there are 

two distinct regions with different reactions behaviours which depends on the temperature 

of the fuel, on one side there is slow, low temperature reaction and the other side high 

temperature explosive reactions [Barnard et al., 1985].  

AI chemistry is mainly controlled by the chain branching reactions, which change with 

temperature and concentration. In the initiation process atoms or radicals are produced by 

either dissociation of the fuel molecule (RH) or by reaction between fuel and oxygen, to 

produce alkyl radical R, hydrogen H and hydroxide OH. This process is basically 

hydrogen abstraction for saturated hydrocarbons, such as alkanes. For unsaturated 

hydrocarbons addition of oxygen to the double bonds results in the formation of 

aldehydes. 

𝑅𝐻 → 𝑅 + 𝐻 

𝑅𝐻 + 𝑂2 → 𝑅 + 𝑂𝐻 

(1.1) 

(1.2) 

Decomposition of fuel molecules (Eq.1.1) is dominant at high temperatures, while at low 

temperatures dissociation is too slow and (Eq. 1.2) dominates. It is also important to note 

that these reactions are very slow because unimolecular dissociation (Eq. 1.1) would 

require an activation energy, equal or greater, than the bond dissociation energy of the 

fuel molecule. 

Hydrogen atom abstraction can also be initiated by fuel reaction with hydroxyl radical 

(OH) using the following reaction. 

𝑅𝐻 + 𝑂𝐻 → 𝑅 + 𝐻2𝑂 (1.3) 
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The production of alkyl radical, R, results in other important reactions that propagate the 

chain reactions with increasing temperature. The main reactions are decomposition and 

oxidation of the alkyl radical. The alkyl radical may decompose to alkenes and another 

alkyl radical: 

𝑅𝐶𝐻2𝐶𝐻𝑅′ → 𝑅 + 𝐶𝐻2 = 𝐶𝐻𝑅′ (1.4) 

The reaction of the alkyl radical with oxygen is very important, leading to the formation 

of the alkylperoxy radical RO2, which is essential to the formation of many combustion 

products.  

𝑅 + 𝑂2 → 𝐴𝑙𝑘𝑒𝑛𝑒 + 𝐻𝑂2  

𝑅 + 𝑂2 ↔ 𝑅𝑂2 

(1.5) 

(1.6) 

The RO2 radical may undergo a wide variety of reactions, but of particular importance is 

the hydrogen abstraction which can occur internally (isomerisation) and result in the 

formation of the hydroperoxyalkyl radical QOOH, where Q represents CnH2n species. 

External hydrogen abstraction might occur, provided RO2 has a sufficient life time. 

𝑅𝑂2 → 𝑄𝑂𝑂𝐻 → 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑠 (1.7) 

The equilibrium of Eq. 1.6 tends to move to the left as the temperature increases [Barnard 

et al., 1985], promoting the production of more alkenes and the HO2 radical.  

The products from alkyl peroxide isomerisation usually include aldehydes. At 

temperatures below 400oC the lowest aldehyde (formaldehyde) is stable and takes no part 

in branching. The higher aldehydes may cause some degenerate branching reactions, 

generating large amounts of the degenerate branching agent, hydroperoxide-HO2. 

𝐶𝐻3𝐶𝐻𝑂 + 𝑂2 → 𝐶𝐻3𝐶𝑂 + 𝐻𝑂2 (1.8) 

The increased amount of hydroperoxide from Eqs. 1.5 and 1.8 retards the branching 

process and overall reaction rate, and is the primary mechanism for the occurrence of 

Negative Temperature Coefficient (NTC) behaviour for alkanes, where ignition delay 

times increase with increase in temperature. This phenomenon occurs in the intermediate 

temperature range of 750-850K [Griffiths et al., 1993; Minetti et al., 1994; Vranckx et al., 

2013; Mittal et al., 2014]. The presence of peroxides in the radical pool has been reported 

in [Bardwell et al., 1951] as inducing cool flame ignition, prior to the main explosive 

ignition. This is commonly known as two stage ignition. The first stage is characterised 

by a blue luminescent cool flame and the second by a more intense high temperature 



CHAPTER 1: INTRODUCTION 

 

16 
 

explosion. [Falconer et al., 1983] have shown that cool flames represent the explosion of 

accumulated peroxides, as concentration of peroxides were found to reach peak 

concentration a few milliseconds before the cool flames, and decreased sharply soon after 

cool flame had occurred. Figure 1.10 shows typical pressure measurements in RCM 

indicating the two stage ignition of stoichiometric iso-octane at 2.0 MPa, as measured in 

the present study. 

 

Figure 1.10. Pressure trace for iso-octane combustion in RCM showing the two stage 

ignition phenomena. 

As the temperature is increased, further chain branching occurs, leading to the production 

of hydrogen peroxides 

𝐻𝑂2 + 𝑅𝐻 → 𝐻2𝑂2 + 𝑅 

𝐻𝑂2 + 𝐻𝑂2 → 𝐻2𝑂2 + 𝑂2 

(1.9) 

(1.10) 

These are followed further with the chain branching reaction: 

𝐻2𝑂2(+𝑀) → 2𝑂𝐻(+𝑀)  (1.11) 

These reactions become more important at higher temperatures [Barnard et al., 1985] and 

eventually cause the rate of reaction to increase again with temperature. 

For aromatics, their C-C and C-H bonds are substantially stronger than those of alkanes 

and therefore their low temperature oxidation initiation is usually through reaction with 

the OH radical which may abstract a hydrogen atom or add directly to the ring’s 𝜋-system, 

generating an allylic type radical system. These two pathways compete and contribute to 

the combustion chemistry of aromatic species. Addition of OH to the aromatic ring is 



CHAPTER 1: INTRODUCTION 

 

17 
 

more prevalent at 298K [Atkinson, 1994]. Once a radical is generated either on the 

aromatic ring or side chain of toluene, rapid oxidation can occur. At high temperatures, 

initiation occur through different routes. Emdee et al. [1992] and Dagaut et al. [2002] 

proposed that the toluene combustion mechanism is most sensitive to its reaction with O2 

(H-abstraction) to form the benzyl radical and HO2. The benzyl radical can further 

decompose to form acetylene and cyclopentadienyl or react with an additional O2 and 

decompose to form phenyl and formyl radicals (via benzalydehyde, 𝐶6𝐻5 − 𝐶(= 𝑂)𝐻). 

Djurisic et al. [2001] and Sivaramakrishnan et al. [2005] summarised the overall toluene 

auto-ignition reaction to proceed through 𝐶6𝐻5𝐶𝐻3 → 𝐶6𝐻5𝐶𝐻2 → 𝐶6𝐻5𝐶𝐻𝑂 →

𝐶6𝐻5𝐶𝑂 → 𝐶6𝐻5 → 𝐶6𝐻5𝑂 → 𝐶6𝐻5𝑂𝐻, followed by the ring breaking reactions. The 

major consumption of toluene was found to be due to the reaction of 𝐶6𝐻5𝐶𝐻3 + 𝑂𝐻. 

For alcohols, the presence of a hydroxyl group brings about different behaviour of its 

associated rate constants and product channels compared to hydrocarbons. These effects 

include pre-reaction complexes when reacting with OH that cause negative temperature 

dependence in their rate constants at low temperature [Zhou et al., 2011]. Also their 

molecular structure allows faster reaction of the 1-hydroxyl radical with reactive 

molecules and radicals such as O2 and OH compared to an analogous hydrocarbon radical 

[Silva et al., 2009]. Key chemical mechanisms that drive alcohol auto-ignition are 

described in Section 4.4.3. 

As demonstrated, the temperature plays a vital role in determining the fuel oxidation 

progress and its route. Different intermediate radicals are generated which speed up, or 

retard, the reactions and this affects the overall auto-ignition characteristics of a fuel at 

different temperatures. Measurements of τ for hydrocarbon fuels under varying 

temperatures, pressure and concentration, provide a good input towards validation of the 

detailed chemical kinetics models, and broaden our understanding of how these 

intermediate radicals interact. Moreover, numerical simulations such as Tomlin et al. 

[1992]; Tauranyi et al. [2015]; Bansal et al. [2015] have been able to use experimental 

measurements and detailed chemical mechanisms to reduce these complex mechanisms 

into fewer steps and reactions which can be extrapolated to conditions where experiments 

have not been performed. 
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1.7 Use of experimental ignition delay times for chemical kinetic 

studies. (Case of RCM) 

Measurements of ignition delay times in controllable conditions such as in shock tubes 

and RCMs are important for understanding low to high temperature fundamental auto-

ignition chemistry under engine-like conditions. Complementary combination of RCM 

and shock tube data has allowed validation and refinement of various reaction 

mechanisms over a wide range of pressures and temperatures. Various mechanisms such 

as that of iso-octane [Curran et al., 2002], n-heptane [Westbrook et al., 2011] and toluene 

[Pitz et al., 2001] have been successfully validated using experimental ignition delay 

times and are now widely used as building blocks for reaction mechanisms for the 

surrogate blends such as in Cancino et al. [2009].  

Direct comparison between the measured ignition delay data and predictions of reaction 

mechanism is not always possible because experimental measurements are usually 

subjected to facility dependent effects such as mixture non-homogeneity, pre-reactions 

during compression and heat loss during and after compression. Therefore, careful 

interpretation of these data need to be made before they can be used by modellers. Mixture 

inhomogeneity is usually overcome by proper design of the reaction chamber and piston 

as will be discussed in Section 3.2.3, but heat loss is quantified by experimentally 

measured pressure traces using non-reactive mixtures. These measurements quantify the 

amount of pressure drop as a result of heat loss in a particular facility, numerical models 

are therefore generated to match the pressure history of non-reactive mixture to account 

for the heat loss effect. Two main approaches are typically used; one is the addition of 

heat loss term in the energy equation while keeping the reaction chamber volume constant 

e.g. in Ribaucour et al. [2000] while the other is to specify a volume expansion term while 

applying the adiabatic core assumption e.g. in Tanaka et al. [2003]. Comparison of these 

two approaches with the CFD simulation of non-reactive RCM experiments using N2 in 

Mittal et al. [2006], showed that the latter approach was found to be computationally valid 

because it matched the CFD pressure and temperature for a longer period than the former 

one.  

The procedure for obtaining volume expansion term is as follows: for compression stroke, 

an empirically determined parameter is added to the time dependent actual geometric 

volume of the combustion chamber in order to match experimental pressure measurement 

and thus simulate the heat loss during compression. After compression, the effective 
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volume history is calculated from the actual measured pressure using the adiabatic core 

relation in eqn. 1.12, 

𝑣(𝑡) = 𝑣𝑜(𝑃(𝑡) 𝑃𝑜⁄ )1 𝛾⁄  (1.12) 

Mittal et al. [2007] have used a detailed chemical kinetic mechanism to simulate ignition 

delay times for syngas, and their results agreed fairly well with experimental pressure 

traces for both reactive and corresponding non-reactive using volume expansion 

approach. The excellent agreement between pressure traces during and after compression 

indicates the adequacy of the heat transfer model described above. Furthermore, 

computationally a study of H2 ignition in RCM by Mittal et al. [2014] showed that zero 

dimensional simulations in conjunction with the approach of volume expansion performs 

very well in predicting ignition delay as compared with the results obtained by CFD 

simulations.  

 

Figure 1.11 Experimental and simulated pressure records for 0.5CO/N2 + 0.5H2 in a 

mixture comprising (CO/N2 + H2)/O2/N2/Ar = 12.5/6.25/18.125/63.125 and the 

equivalent non-reactive composition compressed to 30 bar and 1007.0 ± 0.5 K. [Mittal et 

al., 2007] 

During compression, radicals can start to accumulate and affect the overall measured 

ignition delay times (as will be well described in Chapter 3). This effect can be captured 

when simulations are conducted based upon initial conditions from the start of 

compression covering the entire experiment. Comparisons were made using dimethyl 

ether (DME) in Mittal et al. [2008], between (1) simulations which used the initial 

experimental conditions to simulate the entire compression and post end of compression 

processes and (2) simulation used only the post end of compression processes using end 
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of compression as initial conditions. At higher temperatures, calculated ignition delay 

times using end of compression as initial conditions gave longer delay times by about 

60% compared to that which used initial experimental conditions, whereas at lower 

temperatures the difference is only about 7%. This indicates that the technique of using 

end of compression as an initial condition failed to capture the effect on delay times 

caused by pre-reactions during compression. It is therefore recommended to simulate the 

entire experiment process to include compression stroke and post compression.  

 

Figure 1.12 . Effect of the compression stroke on modelled pressure traces for a 

DME/O2/N2 mixture (1/4/30 M composition). Open symbols represent calculations 

performed considering the RCM compression stroke; lines are results obtained by 

initializing the calculations at the end of compression for the compressed pressure and 

temperature conditions listed and using the initial mixture composition. The heat loss 

effect is included in both calculations. [Mittal et al., 2008]. 
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1.8 Thesis outline. 

This thesis is divided into six Chapters. A brief introduction to their content is highlighted 

below. 

 Chapter 2 This Chapter gives a description and the operation procedures of University 

Leeds and University of Cape Town RCMs with their associated modifications.  It also 

includes techniques which are used for measuring ignition delay times in RCM.  

 Chapter 3 In this Chapter, issues related to the deviation of RCM operation from ideal 

conditions are discussed and corrections are made for the measured delay times to account 

for non-ideal conditions in RCM operations and measurements using experimental data 

from seven different RCMs around the world.    

 Chapter 4 This Chapter presents the experimental measurements of ignition delay times 

for various individual fuels and their blends at different equivalence ratios and 

temperatures. The purpose of this work is first to test the performance of the machine 

after modifications by comparing the results with the existing literature results and then 

measurements are made for the blends of Toluene Reference Fuel (TRF) surrogate with 

ethanol and n-butanol to study the effect of alcohols on the AI behaviour of a TRF 

surrogate. 

 Chapter 5 This Chapter introduces a blending law which is based on the measured 

ignition delay times of the constituent fuels. 

 Chapter 6 This Chapter concludes this study by summarising the important findings as 

well as giving recommendation for future research.  
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CHAPTER 2: EXPERIMENTAL APPARATUS, 

TECHNIQUES AND MODIFICATIONS. 

 2.1 Introduction. 

A Rapid Compression Machine is, essentially, a piston inside a cylinder. Its purpose is 

to rapidly compress a combustible mixture to a higher temperature and pressure at which 

its auto ignition characteristics can be studied. As in the present work, such machines 

find application in the study of engine fuels because they are a reasonable representation 

of a single stroke compression ignited engine. There are different RCM designs and 

techniques but they all have the same main objectives of rapidly compressing the 

mixture while producing the minimum amounts of heat and mass loss, turbulence and 

pressure oscillations due to piston oscillations. The operation of RCMs was discussed in 

Chapter 1 and results from several are compared and discussed in Chapter 3. This 

chapter describes the design and measurement techniques for the two RCMs used in the 

present work. One was a recently developed machine at the University of Cape Town 

(UCT-SAFL) and the other was a significantly modified version of a well-established 

machine at the University of Leeds. These machines are very different in a number of 

ways and each has its advantages and disadvantages. Together they have provided 

valuable insight into auto-ignition of fuels and fuel blends as discussed in Chapter 4. 

2.2 University of Leeds RCM. 

The Leeds RCM was initially developed at Shell Thornton Research Centre by Affleck 

and Thomas [Affleck et al., 1968]. It was subsequently acquired by the Chemistry 

Department at the University of Leeds in the 1970’s and much published work was 

undertaken with it by J. Griffiths et al. [e.g. Griffiths et al., 1996; Griffiths et al., 1988; 

Griffiths et al., 1993; Griffiths et al., 1997]. Finally, it was transferred to the School of 

Mechanical Engineering at Leeds where it was significantly developed from 2010 by 

the present author and R. Mumby as part of an EPSRC research grant [Sharpe et al., 

2009]. 
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2.2.1 Main design and configuration. 

The Leeds RCM was designed and constructed based on one half of a dual opposed 

piston RCM from Shell Thornton research centre [Affleck et al., 1968]. Shown in Fig. 

2.1(a) is a photograph of the complete system and its corresponding interior sectional 

view. It is a single piston horizontal machine which is pneumatically driven by 

compressed air and damped hydaulically. This technique is widely used by other RCMs 

[Mittal et al, 2006; Dracy et al., 2014; Lee et al., 2012] due to its proven ability. The 

Leeds RCM is approximately 2m in length and 1.5m height. It is capable of achieving a 

range of compression ratios between 10.5 and 13.58, attained by varying the 

compression stroke between 170mm-230mm. The stroke variation was achieved by 

adjusting the number of removable spacers which varied the length of the hydraulic 

chamber and consequently the initial volume before compression. 

The machine consisted of three main sections, A: The driving air reservoir, B: The 

hydraulic oil chamber and C: The combustion cylinder and chamber. These sections 

were interconnected by a piston assembly. 

Each of these sections and piston assembly are discussed below. 

 

Figure 2. 1. University of Leeds RCM showing main sections. 
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2.2.2 Driving air reservoir. 

The piston was driven and held at its final position by compressed air from the driving 

air reservoir. The reservoir was capable of handling up to 2.0 MPa, but in practise a 

driving pressure of 1.4 MPa was used. This is because higher pressures would exceed 

the piston holding force and cause the piston to move before firing. The reservoir was 

connected to two main pressure line feeds; one was the low pressure from the 

compressed laboratory air (limited to 0.7 MPa) and the other was the high pressure from 

a compressed air tank (regulated at 2.0 MPa). A pressure relief valve was put in place 

and was set at the activation pressure of 1.9 MPa.  

2.2.3 Hydraulic oil chamber. 

The hydraulic oil chamber section, shown as section B in Fig. 2.1, was between the 

driving air tank and combustion chambe. This was used to hold the piston in place before 

firing and it was also used for piston damping. Using the hydraulic oil, the high speed 

piston assembly was damped through the use of a damping ring and groove mechanism, 

as shown in Fig. 2.2. In this mechanism as the damping ring enters the damping groove, 

the small volume of oil that is trapped between the ring and groove is highly compressed 

and the pressure that is generated in the hydraulic oil acts as the transfer of kinetic energy 

from the moving piston rod and the piston is damped and brought to a halt. The precise 

machined clearance between the damping ring and groove is vital for the fast and smooth 

deceleration, this clearance is designed to give progressive venting of the hydraulic oil 

back to the oil reservoir at a rate which gives fast and uniform piston decelaration.  

 

Figure 2.2. Sectional view sketch of Leeds RCM showing piston damping mechanism. 

Spacers 
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2.2.4 Combustion cylinder and chamber. 

The combustion cylinder and chamber, shown as section C in Fig. 2.1 and detailed in 

Fig. 2.3, were both made of stainless steel with the cylinder having a bore diameter of 

46 mm and 228 mm length; and a stepped combustion chamber having a diameter of 

44.5mm and 19.5mm length. The combustion chamber was designed to withstand high 

pressure generated during combustion and had ports for pressure transducer and gas 

inlet/outlet. Special care was taken in design of gas inlet/outlet port to minimize the dead 

volume in the combustion chamber by using a poppet valve. The end plug of the 

combustion chamber was made of mild steel and had six ports machined for inserting 

cartridge heaters for heating the combustion chamber.  

 

Figure 2.3. Combustion cylinder and chamber detail. 

2.2.5 The piston assembly. 

The piston assembly connected between the three main sections of the Leeds RCM. 

Shown in Fig. 2.4 are different parts of the piston assembly. It was machined from 

stainless steel and had two ends with a damping ring in the middle. One end was the 

driving piston which was in contact with the driving compressed air and the other was 

the driven/compression piston which was used for compressing the mixture in the 

combustion chamber. The ratio between the driven and drive piston diameters was 1:2 

thus allowing the driving air pressure needed to hold the piston assembly after 

compression to be a factor of 4 smaller than the pressure in the combustion chamber. 



CHAPTER 2: EXPERIMENTAL APPARATUS, TECHNIQUES AND 

MODIFICATIONS. 

 

26 
 

The compression piston was fitted with Teflon seals to ensure excellent sealing during 

compression, the driven/compression piston head was made of aluminium. 

 

Figure 2.4. Piston rod assembly.2.2.6 Mixing Chamber. 

To avoid errors caused by inconsistent mixture preparation in the combustion chamber, 

a separate fuel mixing chamber was used. In the mixing chamber the liquid fuel is pre-

vapourized and mixed with the oxygen and other diluents to make a homogeneous 

reactive mixture, the use of the mixing chamber increases efficiency, control as well as 

safety. For reasons of compactness, a constant volume, high pressure system was used 

as shown in Figs. 2.5 and 2.6. This system was developed by the present author and 

R.Mumby, stress analysis was first conducted during designing to ensure safe and proper 

operation, calculations are shown in appendix A. The chamber had a cylindrical shape 

with an cap at each end, the two caps were connected to the middle turbular part with 

external restraining bolts. The end plates were made from 303 (EN 1.4305) stainless 

steel and a turbular section from 316L (EN 1.4404) stainless steel. Ports were made for 

gas inlet, fuel injection, pressure transducer and mixture outlet. 



CHAPTER 2: EXPERIMENTAL APPARATUS, TECHNIQUES AND 

MODIFICATIONS. 

 

27 
 

 

Figure 2.5. Fuel mixing chamber (front view). 

 

Figure 2.6. Fuel mixing chamber (cross section view) 

2.2.7 Auxiliary equipments. 

2.2.7.1 Pressure instrumentation. 

The pressure measurement was made by dynamic or static pressure transducers 

depending on the requirements. These were located, respectively, on the side and top of 

the combustion chamber as shown in Fig 2.3. Initial pressure in the combustion chamber 

was measured by a static pressure transducer COMARK C9557 with a measuring range 

of 0 MPa to 0.8 MPa absolute pressure. For measuring pressure in the combustion 

chamber during and after compression, several dynamic pressure transducers were 

Inlet and outlet 

ports to control 
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investigated because of the importance of accurate dynamic pressure recordings, but 

with the complication of large temperature variations. This is discussed in Section 

2.2.9.1. The piezoelectric dynamic pressure transducer Kistler 6045A was chosen to be 

used in the Leeds RCM. This transducer was mounted flush to the wall of the combustion 

chamber and could withstand a maximum pressure of 25 MPa and operating 

temperatures of -20oC to 350oC. The pressure inside the mixing chamber was measured 

by a static pressure transducer UNIK 5000 with maximum pressure of 0.4 MPa. Pressure 

in the driving air reservoir was measured by a RS (3100 series) pressure transducer with 

a maximum pressure of 2.5 MPa. All the static pressure transducers were connected to 

the control box and wired to digital display units which had measurement resolution of 

0.0001 MPa. The dynamic pressure transducer in the combustion chamber was 

connected to the charge amplifier Kistler 5015 which converted the generated charge 

into voltage (0-10V). The data acquisition (DAQ) board NI PCI-6110 which featured a 

dedicated analogue-to-digital converter (ADC) for each channel, was used to digitise the 

voltage from the charge amplifier. This DAQ had 12 bit resolution and therefore with 

sensivity set at 20bar/volt it gave smallest measurable increment of 0.00244 volts and 

4.88*10-4 MPa. Sampling was performed at 50 kHz.  

2.2.7.2 Temperature instrumentation. 

To ensure uniform initial heat distribution within the combustion cylinder and chamber 

prior to compression, different heating arrangements were tried and the optimum was 

chosen. This is discussed in Section 2.2.10. The combustion cylinder was heated by 5 

different band heaters each with 375W power and a cylinder head heated by 6 cartridge 

heaters fitted circumferentially in the end plug with 10W/m each.  

The lines that take the fuel from the mixing chamber to the combustion chamber are 

4mm diameter stainless steel pipes. These pipes were wrapped up with a heating cable 

to ensure no fuel condensation occurs along the line. The RS constant wattage heating 

cable with a power of 20W/m was used. These heaters were capable of heating up to 

200oC. A flexible polyethylene pipe insulation was also used for increased efficiency. 

The mixing chamber was heated by a single Mica band heater fitted around its tubular 

section with 2 KW power.  

The initial temperature in the combustion cylinder and chamber prior to compression, 

and that of the mixture pipeline were measured using K-type thermocouples each placed 

on the surface of the metal which it measured. It was not possible to measure transient 
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temperature during compression and combustion. Instead, this was estimated as 

discussed in Section 3.2.2 of Chapter 3. The temperatures were displayed and controlled 

using PID temperature controllers. 

2.2.7.3 Piston displacement measurements. 

To accurately measure the displacement of the piston assembly during operation, several 

methods and approaches were considered as discussed in section 2.2.11. A class 2 laser 

which was targeted, at a slight angle, onto a reflecting circular plate attached to the piston 

extension rod, was chosen as a suitable method, as shown in Fig. 2.7. The displacement 

of the reflected beam was measured by a 2D linear displacement laser sensor, model 

LK-G82 from Keyence and recorded at a sampling rate of 20 KHz by its own 

independent control unit. This converted the digitally measured displacement to 

analogue output of +/- 10v which can be read by LabView VI. This system had a 

measurable range of 30 mm and a resolution of 0.6 mm.  

 

Figure 2.7. Piston displacement measurement system. 

2.2.8 Mixture preparation and machine operation. 

Fuel-air mixtures were prepared in a separate mixing chamber (Section 2.2.6). The 

mixing chamber was first heated to a pre-determined temperature to ensure a test fuel 

would be fully vapourised. For most fuels tested in this work this temperature was 

typically 80oC. This was followed by a purging of the mixing chamber to remove all 

residuals by flushing it with pressurised laboratory air for about 2 minutes. The chamber 

was then filled with laboratory air up to 0.2 MPa and finally evacuated to less than 0.002 

MPa. This process was repeated twice using dry air to ensure that there was less than 

0.01% residual gas from the previous mixture. The temperature within the chamber and 
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volume of liquid fuel injected was pre-determined so that fuel partial pressure was less 

than its vapour pressure; this was done to ensure that the liquid fuel was fully vapourized. 

An excel spreadsheet was created to perform the partial presure calculations based on 

the type of fuel and conditions. Shown in Fig. 2.8 is the variation of pressure with 

temperature for a stoichiometric mixture of iso-octane and air. The solid line shows the 

iso-octane vapour pressure at different temperatures and the dotted horizontal line is its 

partial presure when the total mixture pressure was 0.2 MPa. The dashed vertical line is 

at 80oC which is the typical mixture preparation temperature in the present work. The 

plot shows that the fuel is potentially fully evaporated down to a temperature of about 

40oC. The pre-determined liquid volume of fuel was injected into the mixing chamber 

under partial vacuum through a stainless steel Luer-lok inlet. After fuel injection, the 

increase in pressure (the fuel partial pressure) was measured and was typically found to 

be within +/- 0.0001 MPa of that expected from a partial pressure calculation. After fuel 

injection, the gaseous components, usually comprising various amount of N2, CO2, Ar 

and O2 as discussed in Section 3.2.4. in Chapter 3, were carefully introduced into the 

mixing chamber using the high precision needle valves and the fuel mixture was left in 

the chamber for about 2 hours for proper mixing before it was used.  

 

Figure 2.8. Vapour pressure and partial pressure for stoichiometric i-octane in the mixing 

chamber, showing mixture fully vapourised at preparation temperature 80oC. 

Once the mixture was prepared, the RCM combustion cylinder and chamber walls were 

heated to the pre-determined initial pre-compression temperature. Similar to the mixing 
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chamber, the combustion chamber was flushed of all residual gas from the previous 

experiment by pressurising the chamber with laboratory air up to 0.2 MPa and then 

evacuated to less than 0.002 MPa to ensure less than 0.01% residual gas. The pre-

determined amount of reactant mixture from the mixing chamber was introduced into a 

combustion chamber through a high precision needle valve. 

The hydraulic oil was then pumped into the oil chamber, using a hand pump, up to 4.0 

MPa. This ensured the piston assembly (shown in Figs 2.1 and 2.4) was held in its initial 

position before firing. The driving air was next fed into the driving reservoir in two 

stages. First, laboratory compressed air was introduced at the available maximum 

pressure of about 0.7 MPa. This was then topped up with compressed nitrogen gas to 

yield a total driving pressure of 1.4 MPa. 

Once the mixture had been introduced into the combustion chamber and attained the 

required temperature, and once the hydraulic and driving pressures were as required, the 

machine was fired by use of a triger button which was electrically connected to the 

solenoid valve in the hydraulic oil chamber. This vented the hydraulic oil back into the 

hand pump, thus reducing its pressure/force. Once the driving force exceeded the 

hydraulic oil force, the piston was driven forward to compress the mixture in the 

combustion chamber. A trigger signal was also sent to the DAQ card for collection and 

recording of pressure and piston displacement data.  

A special labview virtual instrument (VI) was produced by the present author to collect, 

display and save the pressure measurements within the combustion chamber during and 

after compression. Also, this VI collected and saved data from piston displacement 

measurements, described in section 2.2.7.3. Shown in Fig. 2.9 is a block diagram for the 

VI used and Fig. 2.10 is the user interface with typical results obtained from 

stoichiometric iso-octane compression at end of compression pressure 2.0 MPa. For the 

top plot in Fig. 2.10, the white line shows the pressure measurement while the red line 

is the piston displacement, and the bottom plot shows the rate of pressure change, the 

vertical axis measures the magnitude (pressure, displacement and rate of pressure 

change in this case) and the horizontal axis measures time. 
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Figure 2.9. Typical pressure trace for stoichiometric iso-octane captured by Labview 

VI.
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Figure 2.10. Block diagram for the Labview VI used for data collection in Leeds RCM 
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2.2.9 Modifications made to Leeds RCM during the course of this 

research. 

2.2.9.1 Pressure measurements and thermal shock error protection. 

The accurate measurement of pressure in the RCM can not be over-emphasised. Pressure 

results are used to derive the temperature of the fuel-air mixture in the combustion 

chamber as well as ignition delay times as will be described in Chapter 3. Measurements 

of pressure histories during and after compression in the RCM usually use dynamic 

pressure transducers, their preference comes from high frequency response, accuracy, 

durability and repeatability. The Leeds RCM uses a piezoelectric dynamic pressure 

transducer. This type of transducer uses special piezoelectric crystals which generate 

charge when force is applied, the charge obtained is then amplified and converted into 

voltage using a charge amplifier. The crystals are properly packed in the stainless steel 

housing and use a thin stretched diaphragm as its sensing face. In a steady thermal 

condition, the sensitivity to change of these transducers is very small (less than 1%), but 

when exposed to very high rates of temperature changes the accuracy is highly degraded. 

The sudden change of temperature imposes thermal stresses on the transducer diaphragm 

and its housing, and in response it results in momentary deformation/expansion which 

eventually lessens the preload force on the crystals, causing a negative signal output and 

hence gives an erroneous pressure signal.  

Previous experiments from RCMs by Mittal et al. [2013] have shown that a thermal 

shock error of 0.5 MPa was experienced at the end of compression when nitrogen was 

compressed. This is about an 18.5% reduction in pressure from when the transducer was 

protected from thermal shock. Similar results have been reported in engines by Lee et 

al. [2005], Randoplh [2010] and combustion bombs by Dibbern et al. [2009]. 

To ensure accurate pressure measurements, it is therefore vital to evaluate the amount 

of thermal shock error in the present RCM. Experiments were therefore conducted to 

measure the effects of different thermal shock protections on pressure transducer 

measurements. All experiments were conducted using air at atmospheric initial 

conditions and fixed compression ratio of 13.58. Temperature gradients of up to 

110K/ms are achieved during compression. Four different commonly used techniques 

for thermal shock protection were tested at these conditions. These are recess mounting, 

silicon grease, Room Temperature Vulcanizing (RTV) silicon rubber, and vinyl tape. To 
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obtain accurate results, pressure transducers were first calibrated using two reference 

pressure transducers 6052C and 6045A from Kistler, these transducers have very low 

thermal shock error of less than +/- 1%. The charge amplifier Kistler 5015 was sent to 

the manufacturer for calibration. A total of four different Kistler pressure transducers 

(601A, 701A, 7005 and 6061B) were tested. These were the available transducers in the 

laboratory store commonly used in different rigs including RCM. 6061B is a water 

cooled transducer designed to minimize the thermal shock error by cooling the crystal 

housing during measurements. A 7005 has a reinforced diaphragm to enable measuring 

higher pressures of up to 60 MPa, 601A has very high natural frequency making it 

suitable for applications where vibrations are high and 701A has high sensitivity for 

increased accuracy. These were tested simultaneously using specially designed end 

plugs in which they were mounted. 

Two types of end plugs were designed and manufactured, one for flush mounting and 

the other was for recess mounting as shown in Figs. 2.11 and 2.12. Dimensions of the 

slots are based on the size and shape of the transducers tested.  

 

Figure 2.11. End plug for flush mount pressure transducers 
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Figure 2.12. End plug for recess mounted pressure transducers. 

1. Thermal shock test. 

The initial test was conducted to check the amount of thermal shock error for each 

transducer. The pressure measurements were made simultaneously with all transducers 

flush mounted using the end plug in Fig. 2.11. Shown in Fig 2.13 are the pressure 

readings for the five transducers (including reference transducer) when air was 

compressed from an initial pressure of 0.1 MPa and temperature of 293K. The time zero 

in Fig 2.13, and for all other similar plots in this section, denotes the time when the 

piston reached the end of compression (EOC). In this test, the magnitude of thermal 

shock error was measured by the pressure difference between the measurements with 

the reference transducer (6045A) and the one being compared. Values are shown in Fig. 

2.14. 

Transducers 601A and 701A show the maximum effect to the thermal shock, they record 

the lowest end of compression pressures of all the transducers tested, a difference of 0.11 

MPa (3.6%) is seen at the end of compression. The water cooled 6061B shows the least 

deviation from the reference transducer 6045A. Transducer 7005 recorded less pressure 

drop at the end of compression than 601A and 701A. However, a sharp pressure drop 
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was seen after the end of compression, this could be due to the lower thermal response 

of its reinforced diaphragm. All transducers showed reduced pressure difference after 

the compression which indicates their recovery from the thermal shock effect as time 

progressed. 

With the exception of the water cooled transducer 6061B, all other pressure transducers 

were noticeably affected by the thermal shock due to the very rapid temperature rise 

during compression. Different methods commonly used for thermal shock protection 

were investigated by the present author and are reported in the following Sections.  

 

Figure 2.13. Air pressure traces in the RCM during and after compression. Measurements 

were made using five different pressure transducers simultaneously.  
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Figure 2.14. Magnitude of thermal shock error using pressure difference between the 

reference, 6045A and that under test.  

2. Flush mounting and surface coating method. 

In this method of thermal shock protection, the pressure transducers were flush mounted 

and a coating was applied on the face of the transducer diaphragm. Vinyl tape and RTV 

silicon rubber have been suggested by manufacturers as one of the methods for thermal 

shock protection because they delay the thermal effects for the duration of measurements 

[PCB piezotronic, 2015], it is most relevant for short duration measurements such as in 

shock tubes and RCMs. In this work, a vinyl tape and a 1mm coating of Loctite 5399 

RTV rubber were applied separately over the face of flush mounted pressure transducers 

and the pressure measurements were taken. Shown in Figs. 2.15 to 2.18 are pressure 

traces for the different transducers when mounted flush with the chamber walls, with 

and without the protective coatings over the transducer diaphragm. The effect of the 

vinyl tape is minimal for the 601A and 701A transducers in Figs. 2.15 and 2.17. 

However, results for the 7005 in Fig. 2.18 shows a slight increase in pressure at the end 

of compression when the tape is present. Interestingly, the vinyl taped water cooled 

transducer 6061B recorded lower pressure at and after the end of compression compared 

to its corresponding non-taped measurements. This suggests that, although vinyl tape 
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can protect the transducer diaphragm against thermal shock, it also makes transducers 

less sensitive to rapid pressure change as seen in Fig 2.17 for the 6061B. This effect 

negates the thermal shock protection advantage. There was no change in recorded 

pressure for 601A and 701A when a coating of Loctite 5399 was applied whilst for 7005 

there was a slightly higher pressure reading with the surface coating.  Therefore, with 

the current RCM set up, using flush mounted transducers tested in this work, a vinyl 

tape and Loctite 5399 coatings have very minimal effect in protecting transducers 601A, 

701A and 6061B against thermal shock. Transducer 7005 was well protected when 

coated with vinyl tape, a pressure increase of 0.12 MPa from its non-protected 

recordings was obtained at the end of compression. However, an abrupt pressure drop 

within 4 milliseconds after the end of compression was seen, which suggests that the 

vinyl tape could only delay the heat flux reaching the transducer for a very short time 

and thus cause only a temporary thermal protection.  

 

Figure 2.15. Pressure traces for air with atmospheric initial conditions using pressure 

transducer 601A flush mounted, with and without coatings 
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Figure 2.16. Pressure traces for air with atmospheric initial conditions using pressure 

transducer 6061B flush mounted, with and without coatings. 

 

Figure 2.17. Pressure traces for air with atmospheric initial conditions using pressure 

transducer 701A flush mounted, with and without coatings. 
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Figure 2.18. Pressure traces for air with atmospheric initial conditions using pressure 

transducer 7005 flush mounted, with and without coatings 

3. Recess mounting and silicon filling method. 

The recessed mounting technique involved mounting a pressure transducer in a recessed 

position from the wall of the combustion chamber, the aim is to protect the transducer 

diaphragm from coming into contact with hot gases within the combustion chamber. It 

is a common method especially used in engines where the transducers are repeatedly 

exposed to high temperature flames. A combination of mounting a pressure transducer 

in a recess position and filling a recess hole with a silicon grease or rubber has also been 

suggested by manufacturers [PCB group, 2015].  

In this work, tests were conducted with three pressure transducers (601A, 701A and 

7005) using the recess mounted end plug shown in Fig. 2.12. Three types of silicon 

fillings were tested, these were 2 pack RTV, Loctite 5399 RTV and silicon grease. 

Shown in Figs. 2.19-2.21 are the pressure traces for recessed mounted transducers when 

with and without RTV coatings. Also for comparison, pressure records for flush 

mounted transducers without coating are included. 
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 For all transducers tested, the recess mounted measurements, with or without coatings, 

recorded lower pressures compared to when flush mounted. Application of both RTV 

coatings (Loctite 5399 and 2 pack) in the recess mounted transducers reduced the 

transducer’s sensitivity and lead to measurements that were significantly lower than 

those measured without coating. However, when silicone grease was applied, and 

pressure records were compared with those of recess without coatings, a pressure 

increase of 0.1483 MPa for 601A and 0.19 MPa for 7005 was obtained. This increase is 

equivalent to about 55% recovery from pressure drop caused by thermal shock as was 

shown in Fig 2.14. There was a slight pressure increase for 701A compared to when 

recessed and non-coated. 

Therefore, in the current RCM set up, transducers 601A and 7005 can be fairly well 

protected from thermal shock effects using the recess mounting technique together with 

the silicon grease. However, the new Kistler pressure transducer models, such as the one 

used as the reference in this work (6045A), have better thermal shock error properties 

compared to those tested in this work even with the different protection methods tried, 

thus transducer 6045A was acquired from Kistler and it was used for the remainder of 

this work.  

 

Figure 2.19. Pressure traces for air with atmospheric initial conditions using pressure 

transducer 601A when recess mounted with and without coating, and when flush mounted 

without coating. 
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Figure 2.20. Pressure traces for air with atmospheric initial conditions using pressure 

transducer 7005 when recess mounted with and without coating, and when flush mounted 

without coating. 

 

Figure 2.21. Pressure traces for air with atmospheric initial conditions using pressure 

transducer 701A when recess mounted with and without coating, and when flush mounted 

without coating. 
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2.2.9.2. Combustion cylinder and chamber heating modifications. 

Among other things such as fuel concentration and pressure, autoignition properties 

depend on temperature. Therefore, one of very important feature of an RCM is its 

capability to control the initial temperature of the combustible mixture before 

compression. Initially, heating was only achieved by using the band heaters installed on 

the combustion cylinder, and there was no heating on the combustion chamber end, 

which was in contact with the machine’s frame metal block, as shown in Fig. 2.1. This 

arrangement frequently resulted to an overheating of combustion cylinder and not 

enough heating was attained on the combustion chamber end. Different heating 

arrangements were then tried by the present author to ensure uniform temperature 

throughout the combustion cylinder and chamber at the start of compression. 

Temperature measurements were taken longitudinally along the centre of the 

combustion cylinder and chamber for air at atmospheric conditions. These mesurements 

were made using a type K thermocouple which was protected within a ceramic tube. The 

tube had markings on the outside to enable determining the position of the thermocouple 

in the combustion cylinder and chamber. A special end plug with a hole machined at the 

centre, for inserting the ceramic tube, was used. During measurements, the ceramic tube 

was carefully pushed through to the chamber length and measurements were taken every 

20mm. 

Different methods were investigated. Fig. 2.23 shows three curves of temperature 

distribution within the combustion cylinder using two heating arrangements. One (black 

curve) using two band heaters, each with 375W and 30mm wide, which are fitted around 

the combustion cylinder, one on each end and both set at 70oC, and another arrangment 

(red curves) using a combination of 5 band heaters each with 375W around combustion 

cylinder and six cartridge heaters 50W each fitted circumferentially into the walls of the 

end plug, as shown in Fig.2.22. The length axis in Figs. 2.23 was measured from the 

combustion chamber end to the piston face as shown in Fig. 2.22. Therefore, a value of 

0 mm represents chamber end face and a value of 245mm represents the length of the 

combustion chamber at the start of compression. It is clear from Fig. 2.23 that when 

using only band heaters on the combustion cylinder, a substantial variation in 

temperature along the length of the combustion chamber is obtained, with the lowest 

temperature, at the cylinder head, being some 35oC below the maximum temperature 

which ocured at approximately the mid point between cylinder head and piston face. 
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Fairly uniform temperature distributions were obtained, at different set temperatures, 

when a combination of band heaters on combustion cylinder and cartridge heaters on the 

end plug were used. This heating arrangement was therefore chosen as the optimum 

heating solution and was used for the rest of this work.  

 

Figure 2.22. Combustion cylinder and chamber heating arrangement. 

 

Figure 2.23. Temperature distribution along the centre of the combustion cylinder and 

chamber, at different set temperatures, using two different heating arrangements. 

 



CHAPTER 2: EXPERIMENTAL APPARATUS, TECHNIQUES AND 

MODIFICATIONS. 

 

46 
 

2.2.9.3 Piston position/displacement measurements. 

Prior to the start of this work, no means of measuring the piston position was available. 

However, the present author believed that this was an essential requirement. This was 

particularly so because any piston bounce after the end of compression would affect the 

volume, hence pressure and temperature, during the autoignition delay period. Further, 

the reactant temperature can be inferred, as will be discussed in Section 3.2.2, from the 

changing volume of the chamber during compression. 

Initially, a linear potentiometric displacement transducer (PS-C15) was used for 

measuring piston position as shown in Fig. 2.24. A slider arm was attached to the end of 

the driving piston while the other end was fixed on the end cap of the driving air 

reservoir. However, this was unreliable and suffered from frequent failures. Therefore, 

an improved system was designed and implemented by the present author. An extension 

rod was connected to the driving piston and a high speed camera was used to film the 

rod movement past an externally installed fixed ruler as shown in Fig. 2.25. However, 

this method required manual synchronisation of high speed movie images with digitally 

recorded pressure records. It proved to be very time consuming and prone to errors.The 

final solution, used throughout the rest of this thesis comprised a class 2 laser system, 

where a laser beam was targeted, at a slight angle, onto a reflecting circular plate attached 

to the driving piston extension rod. Details of this system are described in section 2.2.7.3. 

Given the initial interest was to capture piston behaviour, such as bounce or creeping, at 

the final stages of compression, a KEYENCE laser model LK-G82 was chosen. It has a 

measurable range of 30 mm which is sufficient to accurately measure these behaviours.  
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Figure 2.24. Piston displacement measurement system using a linear position 

potentiometer. 

 

Figure 2.25. Piston displacement measurement system using a high speed camera and 

externally installed fixed ruler. 
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Figure 2.26. Piston displacement measurement system using a class 2 laser system. 

2.2.9.4 Piston damping. 

As explained in Section 2.2.3, the hydraulic piston damping mechanism requires very 

accurate clearance between the damping ring and groove so as to ensure smooth and 

progressive piston damping. Shown in Fig. 2.27 is the variation of piston position with 

time after the end of compression of air at an initial pressure of 0.1 MPa. The dashed 

line shows measurements obtained during initial tests before any improved piston 

damping was considered. It shows massive piston bounce in excess of 25mm, which was 

typical of  all pressures investigated. Therefore, an investigation by the present author 

revealed a slight misalignment between the damping ring (see Fig. 2.2) and its mating 

groove. Therefore, the damping groove was remanufactured, to a high precision of 0.01 

mm such that it was just enough for the damping ring to pass through.  This, produced a 

rather abrupt piston arrest followed by a reduced bounce back due to combination of 

impact force from damping oil and the back pressure from the combustion chamber. The 

piston then creeped slowly to the end of compression position over an excessive period 

of time.  

Laser sensor 

Circular plate 
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Figure 2.27. Piston displacement before and after damping groove change. 

Improvements were obtained by experimentally varying the driving pressure and oil 

composition. The effect of changing the driving pressure is shown in Figs. 2.28 and 2.29. 

 

Figure 2.28 Piston displacement showing the effect of increasing driving pressure (Pdr) 

while keeping combustion chamber initial pressure (Pi) constant at 0.1 MPa. 
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Figure 2.29. Piston bounce reduction with driving/initial pressure ratios 

However, adequate damping required a significant redesign of the damping arrangement 

by the present author in collaboration with a collegue, Richard Mumby, as shown in Fig. 

2.30. This comprised an alternative, and highly controllable, route through which the 

damping oil could leave the damping section.  

 

Figure 2.30. Needle valve damping mechanism. 
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It involved the use of alternative return paths from the back of the damping groove to 

the oil reservoir, which were regulated by needle valves as shown in Fig. 2.30. The use 

of the needle valve allowed precise control of the rate of oil displacement for a given 

driving cylinder to combustion chamber pressure ratio. Three equidistant needle valves 

controlled return paths were installed and these provided efficient and uniform damping 

as shown in Fig 2.31. Here, the variation of piston displacement with time is shown for 

a number of tests with different amounts of damping. The damping was characterised 

by the position of the needle valves in terms of the number of revolutions (turns) of the 

valve from fully clossed. Tests were made at a constant driving to initial chamber 

pressure ratio of 13, the curves in Fig. 2.31 show pressure measurements in the 

combustion chamber together with the corresponding piston displacement 

measurements. With the needle valve fully closed as shown by the black solid curve in 

Fig 2.31, the damping is very poor and similar to that shown by the solid line in Fig 2.27. 

As the needle valve is opened to 1 turn, the piston quickly attaines the end of 

compression position, without evidence of creep, before showing significant bounce 

back oscillations of about 2mm. With increased number of turns of the needle valve, the 

amount of bounceback and duration of bounceback oscillations diminishes. The 

maximum effect, and the best operating condition was found to be with 20 turns of the 

needle valve. It is possible that further design improvements may produce better 

performance, but the damping obtained with 20 turns was considered sufficient for the 

present work. 
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 Figure 2.31. Pressure traces showing the effect of needle valves turning, at driving 

pressure of 1.3 MPa and initial pressure of 0.1 MPa. 

Nevertheless, tests were conducted with damping oils of different viscosity. Highly 

viscous oil was more difficult to displace through the needle valves and required higher 

driving pressure to force it through the back of the damping groove. However, they had 

better damping behaviour than less viscous oil. Shown in Fig 2.32 are pressure 

measurements for air under the same conditions using three different damping oils. Shell 

Tellus 22 which has lower viscosity, Shell Tellus 68 with slightly higher viscosity and 

the most viscous Shell Tellus 220. The low viscosity oil allows more oil to be displaced 

from the back of the damping groove and thus the piston reaches near the top dead centre 

and achieves slightly higher pressure. However, a substantial piston bounce occurs 

making it less desirable for effective damping. With application of higher driving 

pressure to help push through the more viscous oil, Tellus 220 was able to give very 

good piston damping capabilitiy without rebound, as shown in the Fig 2.32. 

Therefore, a high viscosity Shell oil Tellus 220 was chosen as a damping oil for all work 

reported in the rest of this thesis. This oil together with the use of three needle valves 

and high driving pressure of up to 1.4 MPa,  yielded  very rapid piston arrest, with good 
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damping and without rebound, this was possible for end of compression pressures of up 

to 2.5 MPa. 

 

Figure 2.32. Pressure trace showing the damping effect of different damping oils. 

2.3 University of Cape-Town RCM (UCT-SAFL RCM). 

Shown in Fig 2.33 is a photograph of the RCM developed by the Sasol Advanced Fuel 

Laboratory (SAFL) at the University of Cape Town (UCT) [Ezevard, 2011]. In the 

present work, it is designated as UCT-SAFL RCM. While the piston driving mechanism 

was somewhat similar to most RCMs, the UCT-SAFL RCM used a novel concept for 

the piston arresting and damping mechanism. It utilised the principle of impact 

mechanics (like a Newton’s cradle).  It was capable of achieving higher compressed 

mixture pressures, of up to 4.0 MPa in the combustion chamber, than those currently 

achieved by the Leeds RCM (up to 2.5 MPa). The machine and its development have 

been fully described in Ezevard [2011]. This section gives a brief overview of the 

machine and its auxiliary components, followed by a description of the operating 

procedures used in the present work. 

The UCT-SAFL RCM comprised four main systems as shown in Fig 2.33 and in the 

schematic of Fig 2.34. These are: 
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i.) The air delivery section which provided pneumatic pressure to drive the piston within 

the combustion cylinder; 

ii.) The combustion chamber which comprised a cylinder and piston; 

iii.) Momentum trap to stop the piston by transferring its momentum to a second rod;  

iv.)  Hydraulic damping unit to arrest the second rod. 

Each of the four systems are discussed below.  

 

Figure 2.33. A picture of UCT-SAFL RCM showing the main sections. 

 

Figure 3.34. A schematic representation of UCT-SAFL RCM [Ezevard, 2011] 
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2.3.1 Air delivery and piston driving system 

The combustion piston was connected directly to the driving piston which was located 

in the driving cylinder. Air pressure within the driving cylinder drove the combustion 

piston to its final position and then held it in place.  A low pressure (LP) reservoir 

initiated piston motion followed by the high pressure (HP) reservoir which accelerated 

the driving piston to the end of compression.  

  

Figure 2.35. Section view of the air delivery system. [Ezevard, 2011] 

2.3.2 Combustion piston and chamber section. 

This system is shown in Fig. 2.36, it contained the combustion piston and cylinder. The 

combustion piston was machined from a solid metal rod and consisted of two enlarged 

sections. One of the enlarged sections was used to rest against the end stop which 

allowed for absolute positioning of the piston at the end of compression; the other was 

used for compressing the test mixture. The cylinder head was machined so that a section 

of the reduced cross-section of the piston rod protruded through the combustion chamber 

and acted as a point of contact with the momentum trap for piston stopping which is 

explained in Section 2.3.3. This design resulted in a semi-toroidal combustion chamber. 

Six 250W cartridge heaters are fitted on the circumference of the combustion cylinder 

and controlled remotely on a PC using software written in LabView (Section 2.3.5). The 

cylinder pressure is measured by a water cooled dynamic pressure transducer AVL 

QC43D which is mounted in a machined recess in the cylinder wall. 
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Figure 2.36. Section view of combustion cylinder. [Ezevard, 2011] 

2.2.3 Momentum Trap. 

One of the essential requirement of an ideal RCM is that the piston must accelerate 

instantaneously, stop instantaneously at the end of compression and have zero rebound. 

These requirements are impossible to achieve in a real machine and various designs have 

been produced to approximate these requirements. All such designs require 

compromises. The present design, shown schematically in Fig. 2.37, was unique in that 

it used the application of Newton’s third law to transfer momentum from the combustion 

piston rod to a secondary rod (momentum trap) in a similar way to that of a Newton’s 

cradle. However, implementation of this method is complex due to elasticity of working 

components and induced pressure waves generated in the materials. This is the subject 

of impact mechanics and its analysis is discussed in Spotts [1964]. Further, the present 

implementation makes use of an elongated piston rod which resulted in a toroidal 

combustion chamber with its associated increase in heat loss due to large surface area. 

Nevertheless, the system produced the fastest deceleration and minimum rebound of any 

RCM known at the time of writing. 

 

Figure 2.37. Schematic representation of momentum trap technique. 

2.2.4 Damping Unit. 

The momentum trap rod from section 2.3.3 was damped by a special hydraulic damping 

unit shown in Fig. 2.38. Inside this unit sits a floating piston which when coming into 
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contact with the momentum trap rod, pushes the hydraulic fluid in front through an 

orifice plate.  

 

Figure 2.38. Section view of the hydraulic damper. [Ezevard, 2011]. 

2.2.5. Mixture preparation and Machine operation. 

Similar to the Leeds RCM decribed in Section 2.2.6, a separate mixing chamber was 

used. Shown in Fig. 2.39 is a schematic of the mixing chamber. It is a collapsible 

cylindrical tank made of flexible aluminium ducting which was clamped at either end to 

the tank lid and base.  A maximum of 20 tests including purge cycles between tests could 

be obtained from a full tank.  

 

Figure 2.39. Schematic representation of mixing chamber at UCT-RCM, where (a) shows 

initial state of chamber before mixture was made and (b) after fuel and gas were let in. 

(a) (b) 
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The main internal features of the mixing chamber included a mixing fan for ensuring 

fast and thorough mixing, inlet ports for allowing gases (oxygen and diluents) into the 

chamber, outlet port to transfer the mixture to the combustion cylinder, a heating tray to 

ensure full fuel evaporation, fuel injection port, dead volume spacers to insure a dead 

volume at the “empty” position and provide a clearance volume for the mixing fan, and 

a safety burst diaphragm which would direct expanding gases away from the user in case 

ignition occurs in the mixing tank. 

During filling, a mass balance which had the same weight as the tank lid was placed and 

diluent gases were added sequentially through the inlet port controlled by a needle valve. 

This extended the aluminium ducting and thereby increasing the tank volume accrued to 

a predetermined amount for each particular gas, Fig. 2.39(b) shows the tank volume 

increase as gases were added. Fuel was finally added using the needle onto the heating 

tray inside the mixing chamber. The mass was then removed during testing or purging.  

The UCT SAFL RCM was fully automated using various circuits which were made up 

of several solenoids valves, sensors and pneumatic actuators. Operation of the whole 

system, except for filling the mixing chamber, was controlled by a computer programme, 

developed in Labview Software and running on a PC.   

Tests were conducted by running different Labview Sub-VI (Virtual Instrument) which 

controlled different stages of the machine operation using the following sequence of 

operations; 

1. Initial settings were made by entering the initial pressure, temperature, compression 

ratio and number of experiments to be conducted. 

2. Purge cycle in which a mixture was transferred from the mixing tank to the 

combustion chamber for purging the combustion chamber from previous test. 

3. Charge cycle in which an appropriate amount of mixture was filled into the 

combustion chamber. 

4. Fire cycle in which a solenoid valve was opened and move a spool valve to allow 

compressed air into the driving cylinder and push the piston forward to compress the 

mixture in the combustion chamber. 
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CHAPTER 3: RCM IDEAL OPERATION AND 

CONSORTIUM STUDY OF MEASUREMENTS OF ISO-

OCTANE IGNITION DELAY TIMES. 

3.1 Introduction 

Ignition delay times, τ, and excitation times are key parameters in the characterisation 

of auto-ignition [Fieweger et al., 1997; Lutz et al., 1988]. The latter time, during which 

the heat release occurs, is approximately on the micro-second time scale and at present 

has to be derived computationally [Gu et al., 2003]. Mentioned in Chapter 1, Shock tube 

measurements [Hanson et al., 2014] are well suited to the higher values of temperatures 

and pressure, and rapid compression machines, RCM, to the lower values [Sung et al., 

2014]. Comparison of ignition delay times measured from different RCMs has not 

always been possible. This is due to difference in thermal behaviour within the 

combustion chamber during and after compression for each machine. These differences 

are mainly brought about by dissimilarities in operation characteristics such as 

compression times and piston vs chamber walls interactions. As will be shown in the 

following section, all RCMs deviate from their ideal behaviour each with different 

extent, and this will cause the ignition delay times of the same fuel and conditions to 

differ from different RCMs. This Chapter is divided into two main parts. The first part 

describes the key aspects of the operation of RCMs, including their limitations and 

methods to reduce those limitations, and the second part is aiming at characterising the 

discrepancies of measured ignition delay times from different RCMs by using their 

limitations and deviations from ideal performance.  

3.2 Issues related to RCM ideal operation. 

The design of any RCM is based around key aims which act as a machine’s performance 

criteria. However, these aims cannot be perfectly achieved in practise and for many 

years, RCM researchers have been developing methods to ensure that the machines run 

as close as possible to these aims. It is important to understand the limitations that arise 

in practise, in aiming to achieve these aims. This section describes the main 

characteristics that govern the operation of an RCM.  
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3.2.1 Ideal RCM operation and core gas hypothesis. 

The accuracy of measured ignition delay times using an RCM depends on how close the 

actual operation of a given machine is to achieve these aims. After the compression, the 

aim is to achieve a uniform temperature of the charge. This is impossible throughout the 

charge and an adiabatic core is assumed. This assumes that the core gas away from the 

thermal boundary layer is compressed isentropically to a uniform temperature. Heat loss 

to the walls during and after compression is restricted to the thin boundary layer along 

the walls and the core charge is unaffected by the heat loss. This unaffected area is called 

the core region, in which the temperature is assumed to be uniform. 

To meet this condition, RCMs should ideally compress the test gas very rapidly, 

minimising time for the heat transfer between the core gas and boundary layer to take 

place. This way the core gas can be considered as spatially uniform (homogeneous). 

Typical compression times for different RCMs, around the world, are in the range of 20-

50 ms, but the most important part of compression is the final half of compression. Here 

the higher temperature and pressure promote both heat transfer and chemical reaction. 

This time is commonly known as t50, and is in the range of 1-5 ms. 

After compression, the reaction chamber volume should remain constant, with the piston 

coming to rest instantaneously, with no rebound. Temperature and pressure are then 

expected to stay constant throughout the delay period, and the main ignition occurs 

homogeneously throughout the mixture. Figure 3.1 shows a representative pressure trace 

within the reaction chamber for ideal RCM operation, time=0 is the end of compression. 

3.2.2 Core gas temperature determination. 

Measurements of ignition delay times are usually related to the end of compression 

conditions of pressure Po and temperature To. Pressure is measured by using a high 

response dynamic pressure transducer usually installed flush with the reaction chamber 

wall. It is difficult to measure the temperature inside the reaction chamber directly during 

and after compression. Any intrusive measurement method, such as a thermocouple 

would affect the aerodynamics inside chamber. It is difficult to find thermocouple that 

can match the response time required. Non-intrusive optical methods are difficult to set 

up and require extensive calibration.  
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Figure 3.1 Pressure trace for ideal RCM operation. 

Consequently the most common indirect method for determining the temperature is to 

use the adiabatic core hypothesis. This method has been previously validated 

experimentally [Das et al., 2012] and computationally [Mittal et al., 2008]. The truly 

isentropic temperature of the gas within the core region at the end of compression, Tad, 

can be determined using the following relation: 

∫
1

𝛾 − 1

𝑇𝑎𝑑

𝑇𝑖

𝑑𝑇

𝑇
= ln (𝐶𝑅) 

 

(3.1) 

Where, Ti is the initial temperature, 𝛾 is temperature dependent specific heat ratio and 

CR is the volumetric compression ratio. 

However, the compression is not perfectly isentropic and there is a small heat loss within 

the core gas, resulting in slightly lower values of pressure and temperature than predicted 

by isentropic compression. Previous studies by Desgroux et al. [1995] and Griffiths et 

al. [1993] have shown that, the adiabatic core assumption can be reasonably met by 

using an effective compression ratio modified by heat transfer to the wall. This effective 

compression ratio can be obtained by using the actual measured pressures within the 

core region by the following relation: 

𝑃𝑜

𝑃𝑖
= (𝐶𝑅)𝛾 

(3.2) 
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Based on this assumption, the end of compression temperature, To, is calculated from: 

∫
𝛾

𝛾 − 1

𝑇𝑜

𝑇𝑖

𝑑𝑇

𝑇
= ln (

𝑃𝑜

𝑃𝑖
) 

(3.3) 

Where Pi is initial pressure, Po is end of compression pressure and other variables are 

same as in Eq. (3.1). 

3.2.3 RCM non-idealities, limitations and methods to overcome them. 

Despite the adiabatic core assumption, one of the main deviations from ideal conditions 

is the heat loss. Heat loss during compression is limited by the short time scales 

associated with the compression. But compression is not instantaneous and heat loss 

occurs, making the pressure and temperature at the end compression lower than that 

predicted by the adiabatic assumption. After compression the heat loss is evident from 

the pressure drop in the measured pressure traces. For some machines and large ignition 

delay times the pressure drop could be near 20% as shown in Fig. 3.2 from 

Goldsborough [2012]. Such a drop is a severely limiting factor. For large delay times 

the heat loss can quench the chemical reactions and there can be no ignition. The 

measured ignition delay times are usually associated with the end of compression 

conditions of temperature and pressure but these conditions may not remain uniform 

during the delay time. Consequently, the measured delay times are not associated with 

end of compression conditions. In Section 3.3.2, a method of making allowance for these 

changing conditions is proposed.  

The non-instantaneous compression can also impose another limitation due to the onset 

of chemical reactions during compression [Griffiths et al., 1993; Cox et al., 1996; 

Mohamed et al., 1998]. This is aggregated by slow compression and an increase in 

reaction rate with temperature. Thus, the compression time, particularly t50, acts as a 

limiting factor for accurate delay time measurements of very reactive fuels. This is 

discussed on Section 3.3.3 and a method is developed to correct the measured delay 

times to the conditions at the end of instantaneous compression. 
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Figure 3.2. Pressure traces for actual [Goldsborough, 2012] and ideal RCM operations, 

showing pressure drop due to heat loss. 

Ideally, the reactive mixture within the chamber remains a homogeneous mixture before, 

during and after compression. However, the high speed of the piston, when suddenly 

brought to rest at the end of compression can induce complex flows inside the chamber 

which can influence the temperature distribution in the reactive mixture. Several 

researches [eg. Lee and Hochgreb, 1998; Mittal and Sung, 2006; Wurmel and Simmie, 

2005] have shown the generation of a roll up vortex caused by the piston scraping off 

the cold boundary layer during compression. This results in the mixing of colder gas 

from the cylinder wall with the hotter gases in the core zone, creating an inhomogeneous 

mixture inside the chamber, the exact nature of which cannot be accurately 

characterised.  

In attempts to avoid this, modern RCMs use specially designed piston faces with 

crevices on the sides of the piston, designed to suppress the vortex formation during 

compression, and greatly limit the movement of colder gas to the core zone. Figure 3.3 

illustrates vortex formation during the piston compression stroke and its suppression 

using the creviced piston [Sung et al., 2014]. Temperature fields within the combustion 

chamber, predicted by CFD, showed improved, more uniform temperature distributions 

when a creviced piston head was used, as opposed to the non-crevice piston head, as 

presented in Fig. 3.4 [Wurmel, 2004].  
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Figure 3.3. Illustration of creation of roll up vortex due to piston motion during 

compression (lower section) and containment of boundary layer through a crevice (upper 

section) through proper design [Sung et al., 2014]. 

 

Figure 3.4. Comparison of predicted temperature fields at 10.4ms from the end of 

compression for N2 gas using creviced and non-creviced piston heads [Wurmel, 2004]. 

A creviced piston introduces other multidimensional effects, specifically for fuels that 

manifest two staged ignition [Mittal et al., 2011]. During the first stage (cool flame) 

ignition, significant heat release can take place in the hotter core region, but with no heat 

release in the cooler crevices. This can cause additional mass transfer from the reaction 

chamber to the crevice volume, reducing the overall pressure and temperature rise. 

Mittal et al. [2013] have suggested the use of crevice containment method to overcome 

this problem. This employs a normal seal (O-ring) to isolate the crevice from the main 

reaction chamber when the piston reaches end of compression (Fig. 3.5). During 

compression, the crevice is connected to the reaction chamber to capture the roll up 

vortex but after compression they are disconnected to avoid mass transfer from the 

reaction chamber to the crevice. 
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Figure 3.5. Schematic of stepped combustion chamber with O-ring seal for crevice 

containment [Mittal et al., 2012]. 

To achieve the same effect, the University of Leeds RCM had a slightly different 

arrangement between its piston head and combustion chamber. The machine uses a 

stepped combustion chamber with piston seals which are wider than the piston end (by 

1.5 mm), therefore creating a gap between the cylinder wall and the actual piston end 

(Fig. 3.6). The roll up vortices generated from the movement of the seal against the 

cylinder will be rotated within this gap. At the end of compression, the piston end makes 

a close fit contact with the stepped combustion chamber entrance and thus essentially 

separates the chamber from the cold gas. This helps to suppress the cold gas entering the 

main combustion chamber as well as ensuring no mass transfer occurs between the 

crevice and main mixture during heat release.  

  

Figure 3.6. Sketch of the Leeds RCM piston and combustion chamber arrangement 

Shown in Fig. 3.7 are CFD model results for heat distribution within the combustion 

chamber from the end of compression up to 50 ms after compression. The model was 

conducted by Dr. Gary Sharpe, University of Leeds, using air at initial conditions of 

atmospheric pressure and temperature. Only a small jet of cold stream gets into the 



CHAPTER 3: RCM IDEAL OPERATION AND CONSORTIUM STUDY OF 

MEASUREMENTS OF ISO-OCTANE IGNITION DELAY TIMES. 

 

66 
 

combustion chamber at the end of compression. The bulk section virtually remains 

homogeneous during this time.  

 

Figure 3. 7. CFD model for heat distribution for Leeds RCM combustion chamber  

3.2.4 Use of diluent gases and their effects in RCM experiments. 

Inert gases are normally used as diluents in the fuel mixture in order to change the 

specific heats and therefore increase the range of temperature that can be achieved at the 

end of compression. In RCM experiments, the reactant fuel is only a small fraction of 

the mixture volume (fuel mole fractions of < 2%) [Donovan et al., 2004]. The bulk of 

test gas mixture is made up of diluent gases which take no part in the chemical reactions, 

yet their thermal properties have the potential to affect the measured delay times. 

Wurmel et al. [2007] conducted experiments in an RCM using pure helium, xenon, argon 

and nitrogen, and compared their pressure traces during and after compression. As 

shown in Fig. 3.8 Xe, Ar and He have higher ratios of specific heats (𝛾) than N2, and 

therefore from the same initial pressure and compression ratio, N2 attains lower pressure 

and temperature at the end of compression pressure than monatomics. However, after 

compression N2 shows the least whilst He shows the highest pressure drop, due to the 

higher 𝛾 and thermal diffusivity of He, see Table 3.1. Consequently, the use of He results 

in significant heat loss after compression and the measured delay times will be longer 

than with N2. For this reason, He is not recommended as a diluent in RCM experiments, 

and Ar is preferred. However, care must be taken, especially when the ignition delay 
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times measured are longer than 20 ms. Fig. 3.9 from Wurmel et al. [2007] shows the 

measured ignition delay times of 2, 3-dimethylpentane (DMP) using different diluent 

gases. Clearly, He as the diluent gives significantly longer ignition delay times than 

argon over a comparable temperature range.  

 

 

Figure 3.8. Pressure traces for typical diluent gases, compressed from the same initial 

pressure (0.04MPa) and temperature (298K) [Wurmel et al., 2007].  

 

Table 3.1. Thermal and physical properties of diluents used in RCMs. [Wurmel et al., 

2007] 
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Figure 3.9. Ignition delay times of stoichiometric Dimethylpentane (DMP), Pressure 1.5 

MPa; bath gas: (  ) N2 only, ( ) 0.50 N2:0.50 Ar, (  ) Ar only, (  ) He only [Wurmel et al., 

2007]. 

3.3 Characterisation of discrepancies of ignition delay times of iso-

octane measured from different RCMs. 

To advance our understanding of the non-ideal behavior of RCM operation, and how 

they affect the measured ignition delay times, an international collaborative effort was 

initiated by thirteen diverse research groups that included experimentalists, modellers, 

and theoreticians, with expertise in their use. The aim was to evaluate and understand 

the differences in the ignition delay times that were measured with the different RCMs 

[Goldsborough, 2012].  

A Consortium was created for this initiative and it was agreed that the various machines, 

of different designs, should measure the ignition delay times of iso-octane under 

nominally the same conditions. The composition was to be stoichiometric, with a fixed 

oxygen content of 21%, pressure at the end of compression, Po, of 2.0 MPa, and in the 

temperature range 650K-950K. The required variations of temperature at the end of 

compression, To, were to be attained by changing the initial temperature, varying the 

amounts of diluents with different specific heats (N2, Ar and CO2), or adjusting the 

compression ratio via stroke and/or clearance height modification. The results were 

submitted and collated by the workshop organisers, Argonne National Laboratory, and 

presented at the 2nd International RCM Workshop [Argonne National Laboratory, 2012]. 
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The collection of experimental data from the consortium presented an opportunity to 

attempt corrections for the various experimental errors. The present Chapter analyses 

these diverse experimental measurements of delay time, τe, obtained from the different 

RCMs, in an attempt to increase understanding of the departures of the RCMs from their 

ideal performance, and suggest how allowances for these departures might yield more 

accurate values of τ. 

3.3.1 Experimental Results and Derivation of τe 

Figure 3.10 shows the experimental values of auto-ignition delay times, 𝜏𝑒, following 

normal custom, plotted against 1000/To, measured with the seven RCMs of the 

Consortium. Each point is identified by a numbered symbol, unique to the RCM of each 

participating group. Table 3.2 shows these assigned RCM numbers together with their 

corresponding groups. It can be seen that there is significant scatter in 𝜏𝑒, especially at 

the intermediate and low temperatures. It is emphasised that the performances of all the 

RCMs are those at the time that the data were submitted to the Consortium. They are no 

guide to their present performance at the different centres. 

Assigned RCM numbers Participating group 

RCM 1 Argonne National Laboratory  

RCM 2 National University of Ireland Galway 

RCM 3 University of Akron (with crevice containment) 

RCM 4 University of Lille 

RCM 5 University of Leeds 

RCM 6 University of Connecticut 

RCM 7 University of Akron (without crevice containment) 

Table 3.1. Different participating groups with their corresponding assigned RCM 

numbers. 

Three rather different compression pressure-time traces, aimed at attaining similar 

conditions, on RCMs 1, 5 and 6 are shown in Fig. 3.11. The experimental ignition delay 

time, characterised by Po and To, is, the difference in the times measured from the end 

of compression (point o at time zero) to the maximum rate of pressure rise, designated 

as point i (i.e. τe = ti-to). 
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Clearly, the machines have different compression times, and because of the different 

rates of change of pressure and temperature, different degrees of reaction occur during 

compression. This contributes to the different values of τe. Other contributory causes are 

heat loss after compression, possible piston bounce, and non-uniform ignition. All these 

causes are considered in turn. 

 

Figure 3.10 Auto-ignition delay times, τe, of stoichiometric iso-octane from the different 

RCMs, plotted against end of compression reciprocal temperature To (Po~2.0MPa) 

[Argonne National Laboratory, 2012].  
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Figure 3.11 Pressure traces for RCMs 1, 5, and 6 at end of compression conditions 

(Po~2.0MPa, To= (790K-797K)). 

3.3.2 Effects of heat loss. 

3.3.2.1 Derivation of τm 

During the cooling following compression, and due to any piston bounce, which is 

considered in detail in Section 3.3.4.2, the temperature of the adiabatic core, T, is 

determined from the measured pressure, P, using the isentropic law: 

𝑇

𝑇𝑜
= (

𝑃

𝑃𝑜
)

𝛾−1
𝛾

 

(3.4) 

where γ is the ratio of specific heats for the mixture. 

It is clear that the auto-ignition is not determined uniquely by the values at Po and To, 

but by values that are continually changing. To allow for the changing values during the 

auto-ignition delay time, a mean temperature and pressure, Tm, and Pm, are calculated, 

and the original measured delay time τe is then attributed to these mean values, rather 

than to To and Po.  

The mean temperature is obtained from: 
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𝑇𝑚 =
1

𝑡𝑖 − 𝑡𝑜
∫ 𝑇 𝑑𝑡

𝑡𝑖

𝑡𝑜

  

                               (3.5) 

and the mean pressure similarly, from: 

𝑃𝑚 =
1

𝑡𝑖 − 𝑡𝑜
∫ 𝑃 𝑑𝑡

𝑡𝑖

𝑡𝑜

 

                                            (3.6) 

Leakage of reactants from the cylinder and combustion chamber, during and after 

compression, is assumed to be negligible. 

The original experimental delay time τe is now attributed to Tm and Pm, rather than To 

and Po.  

Figure 3.12 shows the values of τe, as in Fig. 3.10, but now designated as τm for the mean 

temperature, Tm, plotted against 1000/Tm. Values of Pm ranged between 1.8 and 2.28 

MPa. The solid line in Fig. 3.12 represents the polynomial curve fit through the data 

points. Comparison of Fig. 3.12 with Fig. 3.10 shows an improved agreement between 

the different RCMs, especially at the high and low temperature limits. However, a 

substantial scatter is still evident, particularly, in the negative temperature coefficient, 

NTC, region. It should be noted that there are fewer data points in this case. This is 

because not all the pressure traces were available at the time of analysis. 

 

Figure 3.12 Delay time, τm, for stoichiometric iso-octane plotted against reciprocal mean 

temperature, Tm, Pm =1.8-2.28 MPa. 
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3.3.2.2 Derivation of 𝝉𝒐 

The measured delay times, τm, now associated with Tm and Pm, following convention, 

should be attributed to the values at the end of compression, To and Po.The influence of 

this pressure change on τ was expressed by an inverse pressure proportionality, P-n. 

Localised values of the exponent n were obtained from the pressure law adopted at the 

Argonne National Laboratory for iso-octane in the ranges of equivalence ratio, ϕ, 0.2-

2.0, pressure 0.1-6.0 MPa and temperature 650K-2000K [Goldsborough, 2009]. Figure 

3.13 shows these values of n for different temperatures at a pressure of 2.0 MPa and ϕ = 

1.0. 

The influence of temperature was expressed by: 

 RTEexp   .                                                        (3.7) 

Localised values of E/R, the activation temperature, were found, iteratively, initially by 

differentiating the values of lnτm after applying the pressure correction, with respect to 

the inverse of Tm, using:  

.                        (3.8) 

Figure 3.14 shows the localised values of E/R found by differentiations of the curved 

line relationship in Fig. 3.12, throughout the temperature range. 

Values of the revised delay time, 𝜏𝑜 , in terms of Po and To, were found from those of τm 

using these values of n and E/R in the expression: 

𝜏𝑜(𝑃𝑜 , 𝑇𝑜) = 𝜏𝑚 (
𝑃𝑜

𝑃𝑚
⁄ )

−𝑛

𝑒𝑥𝑝 (𝐸
𝑅⁄ (

1

𝑇𝑜
−

1

𝑇𝑚
)) (3.9) 

The resulting values of 𝜏𝑜 for the seven different RCMs are plotted against 1000/To in 

Fig. 3.15. It can be seen that the scatter, particularly in the negative temperature 

coefficient, NTC, region, has been reduced. 

 mm TRE 1ln   
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Figure 3.13 Values of n for stoichiometric iso-octane at Po=2.0 MPa and different 

compression temperatures, To, from Goldsborough [2009]. 

 

Figure 3.14. Localised activation temperatures, E/R, at Po =2.0MPa, derived from Fig. 

3.12. 
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Figure 3.15. Corrected delay time, τo, of stoichiometric iso-octane for To, and Po =2.0 

MPa. 

3.3.3 Effects of Reaction during Compression and Derivation of 𝝉𝒄. 

3.3.3.1 Livengood-Wu integral during compression. 

It was proposed at the Workshop to employ the time, t50, for compression from 50% of 

the peak pressure, P50, to Po to characterise the rapidity of compression. The significant 

increases in temperature during compression will initiate reaction, and the different 

compression pressure traces in Fig. 3.11 are indicative of the different degrees of 

reaction to be expected in each RCM. 

An attempt was made to allow for this effect by evaluating the value of the Livengood-

Wu integral (LWI) [Livengood and Wu, 1955] for the duration of the compression, at 

the end of which, Po and To are attained. This integral evaluates the progress towards 

auto-ignition through an integration of the reciprocal ignition delay time with regard to 

time, under the changing P and T of the compression:  

  o

t

t

LWI
TP

dto

s

)(  
,


,                    (3.10) 
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where ts and to are the times at the start and end of compression, respectively. The 

ultimate approach of the integral towards unity is a good guide of the progress towards 

auto-ignition. 

Evaluation of the integral requires a knowledge of τ (P, T) under the changing conditions 

of P and T, at values below Po and To. These values were obtained from the ignition 

delay correlation model generated in [Goldsborough, 2009]. The model is based on a 

detailed chemical kinetic mechanism of iso-octane auto-ignition and tested against 661 

iso-octane experimental points from different RCMs and shock tubes. Very good 

agreement was attained between the model and experimental results in the pressure 

range of 0.1-6 MPa, and the temperature range of 650-2000K.  

Fig. 3.16 shows typical calculated values of LWI during and after compression for 

different RCMs at more or less similar temperatures. Each RCM shows different 

progression towards iso-octane auto-ignition, values of (LWI)o are extracted from such 

plots at time=0, which indicates end of compression. For different end of compression 

temperatures, To, the calculations of (LWI)o showed, not surprisingly, that its value 

increased with To and that it had significantly different values for all the RCMs. Those 

with shorter compression times had smaller values of (LWI)o. Shown in Fig. 3.17 are 

plots of (LWI)o for the different RCMs as a function of 1000/To. Values of t50 also are 

given. There is significant scatter in the points, but clear trends nevertheless emerge, 

with (LWI)o increasing with the higher reaction rates at higher temperatures, at which 

there is, on average, about 10% reaction progress towards auto-ignition. The 

compression time t50 for a given RCM remained unchanged.  
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Figure 3.16. Calculated values of LWI during and after compression for different RCMs 

at similar temperatures. 

 

Figure 3.17. Calculated (LWI)o for different RCMs at selected temperatures To, Po=2.0 

MPa. 

3.3.3.2 Derivation of 𝝉𝒄. 

From Fig. 3.17 it is possible to find the values of (LWI)o at any value of To for each 

RCM. Values of τo are known for all these conditions from the individual points in Fig. 

3.15. These τo values are plotted against (LWI)o for all the different RCMs, at 
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sequentially decreasing values of To in Figs. 3.18-3.21. The smallest error in the 

measurement of τo occurs at the lowest To, see, for example, Fig. 3.21. Ideally, the 

compression should be instantaneous, in which case (LWI)o would be zero. 

Consequently, in these figures, the values of τo are extrapolated to (LWI)o = 0, to give a 

corrected value of τo, namely τc. These “corrected” values, τc, are plotted against 1000/To 

by the full line curve on Fig. 3.22. The symbols indicate the originally measured RCM 

values of 𝜏𝑒. 

 

Figure 3.18. Derivation of τc from τo by extrapolation to (LWI)o=0 for different RCMs, 

at different To, Po=2.0 MPa. 

 

Figure 3.19. Derivation of τc from τo by extrapolation to (LWI)o=0 for different RCMs, at 

different To, Po=2.0 MPa. 
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Figure 3.20. Derivation of τc from τo by extrapolation to (LWI)o=0 for different RCMs, at 

different To, Po=2.0 MPa. 

 

Figure 3.21. Derivation of τc from τo by extrapolation to (LWI)o=0 for different RCMs, at 

different To, Po=2.0 MPa. 
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Figure 3.22. Continuous curve shows derived ideal “corrected” values of ignition delay 

times,τc, for stoichiometric iso-octane at the measured To and Po=2.0 MPa. Symbols show 

original measured points, τe. 

This methodology advantageously uses the different compression times of all the 

different RCMs to estimate the ignition delay for an ideal RCM. Apart from the low 

temperature values, where there is less reaction during compression, τc is higher than the 

original experimentally measured values and τo. In general, the values of τc are higher 

than those of τo, a consequence of the absence of reaction during compression. Values of 

E/R obtained from the full line curve in the figure were close to those originally derived, 

and a second round of computational iteration produced no significant change in τc. 

Figure 3.23 summarises the different stages in this attempt to derive the ignition delay 

times for idealised RCM operation. The different lines are the polynomial curve fits from 

Figs. 3.10, 3.12, 3.15 and 3.22. They show the associated sequential values of delay 

times at each stage (τe, τm, τo and τc) plotted against 1000/To. 
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Figure 3.23. Original experimental, τe, and derived ignition delay times (τm, τo, τc) for 

stoichiometric iso-octane at Po=2.0MPa. 

It is very interesting to note in Fig 3.23 that the measured delay time error caused by 

reactions during compression is substantial compared to that caused by heat loss, there is 

no much difference between the corrected delay times based on heat loss, τo, and the 

original measured values, τe. It can also be noted that the largest overall correction is seen 

within the intermediate temperature range. Fig. 3.24 shows a plot of the difference 

between the final corrected values, τc, and the original measured values, τe, throughout 

the temperature range. It can be seen that the largest correction occurs at the temperature 

range where NTC behaviour occurs and diminishes towards the lower and higher 

temperatures. This shows measured delay times are more reliable at high and low 

temperatures but less so at the intermediate temperatures. Differences of up to 5.6 ms are 

obtained for this temperature range. It is also important to note that this correction may 

be different for different fuels due to their differences in reactivity. Therefore, it is 

difficult at this stage to generalise this correction for all fuels and conditions. More studies 

are needed from the consortium to enable such generalisations to be made. Nevertheless, 

this particular work has shown a possible way to make corrections to the measured 

ignition delay times caused by non-ideal behaviour of different rigs.   
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Figure 3.24. Difference between overall corrected values, τc, from experimental values τe 

throughout the temperature range. 

3.3.4 Implications of the corrections to Leeds RCM measurements. 

As it was discussed in section 3.2.3, the extent of reactions during compression is affected 

by the compression time. The longer the compression time the higher the amount of 

reactions during compression. NUIG (RCM 2) has the shortest compression time 

followed by Leeds (RCM 5) as shown in Fig. 3.17. Due to its relatively faster 

compression, correction of measured delay times to account for reactions during 

compression is limited to a maximum of 15% for Leeds RCM whereas for slower RCMs 

such as RCM 3 the required corrections were up to 36%. 

The difference in the heat loss characteristics of these RCMs is mainly affected by their 

combustion chamber geometry and corresponding surface area to volume ratio (S/V). 

Since all RCMs studied in this work had cylindrical shape then their S/V ratio played a 

major role. It was not possible to get the actual dimensions of the combustion chambers 

and their crevices for different rigs in this study. However, it was evident that the RCMs 

with non-contained crevice after compression (RCMs 1, 2, 4, 6 and 7) had higher heat 

loss than others. This is due to their associated higher S/V ratio after compression, the 

additional crevice volumes result into increased ratio and hence higher heat loss. Shown 

in Fig. 3.25 is the amount of pressure drop after end of compression (t=0) for different 

RCMs and it can be seen that Leeds RCM (RCM 5) and Akron with crevice containment 

(RCM 3) show the least post compression pressure drop than others and this makes the 
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required correction due to heat loss to be less significant for Leeds RCM. At lower 

temperatures where heat loss effects are maximum, Leeds RCM shows a maximum 

correction of delay times up to 2.5ms which is 7.4% decrease of original measured value, 

whereas RCM 7 shows a maximum decrease of 22%. This is in line with the results 

obtained in section 4.7 in chapter 4 when comparison for Leeds RCM was made between 

simulated delay times calculated using variable and constant volume approaches. No 

significant difference between them was obtained. 

 

Figure 3.25. The amount of pressure drop with time after end of compression (t=0) for 

different RCMs. 

For the rest of the data presented in this work pressure measurements of non-reactive 

mixtures for different fuels at different temperatures were compared and shown in Figs. 

3.26-3.28 for three different temperatures. The pressure histories after compression were 

seen to follow the same trend which confirms that there is no substantial change in heat 

loss characteristics for the fuels studied in this work. Compression time was kept constant 

for all experiments during this work to ensure reactions during compression is minimum. 

Therefore, the corrections due to heat loss and reactions during compression for the rest 

of the data in this work can be considered to be within similar range to those seen by iso-

octane in this chapter. 
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Figure 3.26. Pressure history for non-reactive mixtures at To=676+/-2K. 

 

Figure 3.27. Pressure history for non-reactive mixtures at To=763+/-2K. 

 

Figure 3.28. Pressure history for non-reactive mixtures at To=855+/-5K. 
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3.3.5 Overall Livengood-Wu integrals,. Auto-ignitive Explosions, and 

Piston Bounce. 

3.3.5.1 The overall Livengood–Wu integral. 

The ultimately derived values of auto-ignition delay time, τc, and the associated 

corrected experimental pressures and derived temperatures for each RCM, were 

employed to evaluate the Livengood-Wu integral, that now extended from the start of 

compression at time ts up to the auto-ignition at point i, at ti. Values of this integral, 

(LWI)i, are given by: 

∫
𝑑𝑡

𝜏𝑐(𝑃, 𝑇)
= (LWI)𝑖

𝑡𝑖

𝑡𝑠

 

 

(3.11) 

These are shown by the associated symbols for each RCM, plotted against 1000/To, in 

Fig. 3.29. The best full line curve through the points has values close to unity, with a 

tendency to fall below unity at the highest temperatures. 

This is in sharp contrast to values of the integral, that were based on the original 

experimental auto-ignition delay times, τe, temperatures and pressures, as indicated by 

Fig. 3.10, for the different RCMs. These integrals, the separate points for which are not 

shown, exhibited a much greater scatter and deviation from unity, with limits that 

extended to the broken curves in Fig. 3.29. The integral values based on τc are much 

closer to unity and this is indicative of improved accuracy. 
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Figure 3.29. Calculated (LWI)i values using the original experimental temperatures and 

pressures in the different RCMs, but with the associated derived values, τc. Broken 

curves show the upper and lower limits of the integral when the original experimental 

values, τe, were employed in the evaluation. 

The end of the auto-ignition delay time is marked by a rapid explosion, the severity of 

which increases with To. A single RCM, namely RCM5, was selected for a detailed study 

of such auto-ignition, and the pressure-time traces in Fig. 3.30 show this mounting 

severity, and the onset of pressure oscillations, over a range of To values. There are no 

oscillations at To = 650K, but they begin to emerge at To = 713K. The pressure traces 

show them to intensify as To increases. 
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Figure 3.30. Pressure records from RCM 5 with auto-ignitions at six different end of 

compression temperatures, To. Po = 2.0 MPa. 

3.3.5.2 Piston bounce. 

The question arises as to whether the high frequency pressure oscillations are gas 

dynamic manifestations of the explosion, or consequences of the piston re-bounding, or 

“bouncing”, from its intended stationary position, and even oscillating about it. To 

explore this further, an attempt was made to measure the displacement of the extended 

piston rod optically, as described in Section 2.1.7.3. In normal operation the piston 

bounce was minimised, but in order to study its effects, controlled amounts of more 

extensive bounce were introduced by fine tuning of the piston damping mechanism and 

the compression pressure. 

Air was compressed to 2.7 MPa in an initial investigation of controlled larger piston 

displacements. The sharply decreasing, near-vertical, line in Fig. 3.31 shows the rapid 

compression to time 0. Thereafter, the piston bounce is indicated by a positive 

displacement that diminishes relatively slowly as the piston returns to its intended 

position, with no displacement, after 18 ms. The volume of air is correspondingly 

increased and decreased, and the pressure decreased and increased. These changes 

induce an, assumed isentropic, cooling and heating, from which the associated pressure 
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changes could be calculated. There was also cooling of the air due to heat transfer at the 

walls, apparent from the pressure record after 20 ms. 

 

Figure 3.31. Pressure and piston displacement measurements for non-reactive mixture 

(air) with piston bounce. 

The dotted pressure curve on Fig. 3.31 was calculated from these mean volume changes, 

neglecting the high frequency displacement oscillations, with the heat transfer inferred 

from the falling pressure after 20 ms. When allowance was made for the high frequency 

displacement oscillations the calculated pressures also showed such oscillations. The 

dotted, non-oscillatory, pressure curve on this figure was close to that measured by a 

high resonant frequency (≥80 kHz) Kistler 6045A dynamic pressure transducer. 

Importantly, the fact that the measured pressure trace only responded to the mean 

displacements, and not to the initial two high frequency cycles measured by the laser 

beam, implies that the origin of the high frequency component of the piston rod 

oscillation did not lie in the piston bounce. It would appear that the high frequency 

vibrations monitored by the reflected beam were generated by the combined RCM with 

its support structure, and the externally extended piston rod, laser head, and reflection 

plate. 
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3.3.5.3 Auto-ignition explosions. 

Returning to the origins of the high frequency pressure oscillations, of the type shown 

in Fig. 3.30, at auto-ignition, Figs. 3.32 and 3.33 show the temporal variations of 

pressure and piston displacement during both the initial compression, and also the two 

contrasting auto-ignitions. As in all the auto-ignition delay time measurements, the 

piston bounce was minimised in these measurements. In contrast to the greater bounce 

in Fig. 3.31, in, both Fig. 3.32, To=650K, and Fig. 3.33, To=802K, the initial compression 

bounce is similar, and only occupies about 3 ms, with no significant associated pressure 

decrease after the compression. At auto-ignition the displacements are similarly 

comparable, but there are no significant pressure oscillations at 650K. In contrast, there 

are strong pressure oscillations at 802 K. After a delay of about 3 ms there is a greater 

displacement than at the end of compression, very similar in both cases. Only at 802K 

do strong pressure oscillations develop, and this occurs before there is any piston 

displacement. Clearly, the high frequency oscillations at auto-ignition at 802K are not 

related to piston bounce and there must be some other cause. 

 

Figure 3.32. Pressure trace and piston displacement measurements at To =650K. 
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Figure 3.33. Pressure trace and piston displacement measurements at To =802K. 

At the higher temperatures, the decrease in values of (LWI)i below unity with increasing 

temperature in Fig. 3.29 suggest the possibility of hot spot auto-ignitions that are more 

reactive and stronger than the milder ones at lower temperatures. Hot spot temperature 

elevations can be quite small, of the order 1K, which does not represent severe 

heterogeneity. Perfect homogeneity is unlikely, and it is normal for auto-ignition to be 

initiated at hot spots [Bradley, 1996]. Gradients of reactivity at hot spots can induce 

appreciable localised velocities, ua, which at a spherical hot spot of radius, r, are given 

by  r . When this gradient is associated with a temperature difference [Gu et al., 

2003]:  

   1
    


 TTrrua                                                   (3.12) 

[Meyer and Oppenheim, 1971] showed experimentally that “strong ignitions” were 

associated with low values of  T  and “mild ignitions” with high values of both 

 T  and τ. [Fieweger et al.,1997] suggested in their shock tube studies that  localised 

low temperature auto-ignitions were mild, with ensuing slower flame speeds and an 

absence of pressure oscillations. In contrast, at higher temperatures the auto-ignitions 

were strong, with a higher rate of change of the energy release rate and the generation 

of shock waves. The evidence of Figs. 3.29, 3.32 and 3.33 is in line with these 

observations. 
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At low values of  T  ua can become appreciable and approach the acoustic velocity, 

a. The pressure pulse amplitude, generated by the rate of change of the heat release rate 

at a hot spot, increases in proportion to (ua/a)2 [Bradley and Kalghatgi, 2009]. If the 

excitation time is short enough for sufficient energy to feed into the pressure pulse, a 

detonation can develop [Gu et al., 2003]. The relevance of hot-spot auto-ignition to the 

intensity of engine knock is discussed in Bates et al. [2015]. 

3.3.5 Summary. 

The diversity of the different RCMs has been advantageously utilised to increase 

understanding of the departures of the RCMs from their ideal performance. It is 

emphasised that the performances of all the RCMs are those at the time that the data was 

submitted to the Consortium. They are no guide to their present performance at the 

different centres. Allowances have been made for the effects of reaction during 

compression, the heat loss thereafter, and piston bounce. The different corrections to the 

measured auto-ignition delay times result in an increase in their values at intermediate 

and high temperatures. Auto-ignition is usually at hot spots, which initiate a flame or a 

propagating auto-ignition that, depending upon the strength of the associated shock 

wave, might initiate detonation. The strong pressure oscillations observed at the higher 

temperatures arise from this evolution. 

More accurate values of auto-ignition delay times can be derived when 

(i). Piston bounce is minimised. 

(ii). The compression time is minimised, and allowance made for the effects of reaction 

during compression. 

(iii). Corrections are made for the heat loss and any piston bounce during the auto-

ignition delay time. 

(iv). The mixture should be homogeneous. Even so, ignition is likely to occur initially 

at a hot spot. This may not introduce serious error. Ideally, homogeneous auto-ignition 

should occur in a thermal explosion, but this is usually not possible [Gu et al., 2003].  
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CHAPTER 4: MEASUREMENTS OF AUTOIGNITION 

DELAY TIMES. 

4.1 Introduction 

This Chapter presents the experimental results of ignition delay times of the selected 

synthetic fuels and their blends. The Rapid Compression Machine described in Chapter 2 

was employed to measure the instantaneous pressure within the combustion chamber 

during and after compression. Ignition delay times were obtained from these pressure 

traces, as defined and described in Section 1.6.3. The measured ignition delay times are 

attributed to the end of compression conditions, of pressure, Po, and temperature, To. An 

isentropic law is used to determine the temperature To of the adiabatic core in the 

combustion chamber; 

𝑇𝑜

𝑇𝑖
= (

𝑃𝑜

𝑃𝑖
)

𝛾−1
𝛾⁄

 , (4.1) 

where Ti, Pi are the initial temperature and pressure, and To, Po are those at the end of 

compression temperature and pressure, and γ is the ratio of specific heats. The initial 

pressure Pi, initial temperature Ti and γ were varied to attain a required end of 

compression pressure Po. Variations of γ were made by changing the diluent (Ar, N2 or 

CO2) and/or its concentration in the mixture. The chemical kinetic effects of these diluents 

on the measured ignition delay times were assumed to be negligible. 

The results in this Chapter are presented in terms of pressure traces during and after 

compression, and ignition delay times are derived from pressure traces measured at 

different end of compression temperatures. 

The fuel and “air” mixture was premixed in the separately heated mixing chamber for 1 

hour to ensure proper mixing, as described in section 2.2.6. The required volume of each 

fuel injected into the mixing chamber was obtained from their mole fraction and total 

pressure as explained in Section 3.3, and the partial pressure obtained from addition of 

each individual fuel was checked against the calculated partial pressure and the values 

were always within ±100 Pa. The temperature and pressure were based on the vapour 

pressure of the individual fuel, and in the case of the fuel blends, the settings were based 
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on the lowest vapour pressure of the fuel components mixed. This ensured all individual 

fuels in the blend are fully vapourised. The fuels used and the test conditions are 

summarised in the tables in each section. The experimental results presented in this 

Chapter are compared, where possible, with those of other researchers. 

4.2 Selection of fuels. 

Commercial gasolines contain different classes of hydrocarbons. Tests have shown that 

up to 80% (by weight) of the gasoline composition consists mainly of alkanes and 

aromatics [Thomas et al., 1984], of which, more than 12% are aromatics with an 

appreciable amount of toluene [Diehl et al., 1993]. In this work, the branched alkane (i-

octane), linear alkane (n-heptane) and aromatic (toluene) are chosen as representative of 

existing commercial gasolines. In addition, alcohols (ethanol and n-butanol) are selected 

because of their growing importance, as described in Chapter 1. 

There are few ignition delay measurements for pure n-butanol and its blends with other 

fuels, something the present work attempts to rectify. Ignition delay measurements are 

made for pure i-octane, toluene and n-butanol followed by those of blends of i-octane/n-

butanol, toluene/n-butanol, toluene/n-heptane/i-octane/n-butanol and toluene/n-

heptane/i-octane/ethanol. 

4.3 Blending of fuel/air mixtures. 

In all the fuel/air blends in the present work, the blended mixtures have the same 

equivalence ratio, ∅. Mixtures have been designated in different ways: by mass, mole and 

liquid fuel volume. In so far as reaction in terms of moles, conversion between different 

units is often necessary. This section gives general expressions for conversion between 

the different units. 

From the fundamental definition of stoichiometry, equivalence ratio, ∅, is given as; 

∅ =
(𝐹 𝑎⁄ )

(𝐹 𝑎⁄ )𝑠
 

, (4.2) 

where F is the number of moles of fuel and 𝑎 is the number of moles of air, and a suffix 

s indicates a stoichiometric mixture. 

Thus, 𝑎 =
(𝐹 ∅⁄ )

(𝐹 𝑎⁄ )𝑠
 

. (4.3) 

The total number of moles for fuel and air mixture is given as; 
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𝐹 + 𝑎 = 𝐹 +
(𝐹 ∅⁄ )

(𝐹 𝑎)⁄
𝑠

 
. (4.4) 

One mole of fuel/air mixture is comprised of; 

𝐹

𝐹 +
(𝐹 ∅⁄ )
(𝐹 𝑎)⁄

𝑠

 
fuel  + (𝐹 ∅)⁄ /(𝐹/𝑎)𝑠

𝐹 +
(𝐹 ∅⁄ )
(𝐹 𝑎)⁄

𝑠

 
air, which  (4.5) 

 If there are 𝑥1 moles of mixtures 1 and 𝑥2 moles of mixture 2, the composition of the 

blend for these mixtures will be; 

[
1

∅ + (𝑎 𝐹1)⁄
𝑠

(∅ + (𝑎/𝐹1)𝑠)] 𝑥1 + [
1

∅ + (𝑎 𝐹2)⁄
𝑠

(∅ + (𝑎/𝐹2)𝑠)] 𝑥2, 
(4.7) 

If there is one mole of mixture then 𝑥1 + 𝑥2 = 1. 

At the same ∅, the ratio moles of fuel 1/moles of fuel 2 is given as: 

(∅ + (𝑎/𝐹2)𝑠)

(∅ + (𝑎/𝐹1)𝑠)

𝑥1

𝑥2
 

, (4.8) 

Blends are not always composed of binary constituent fuel/air mixtures, sometimes more 

than two constituent mixtures are in the blend. In general, the fractional number of moles 

of all the constituent mixtures is: 

∑ [
∅

∅ + (𝑎 𝐹𝑖⁄ )𝑠
+

(𝑎 𝐹𝑖⁄ )𝑠

∅ + (𝑎 𝐹𝑖⁄ )𝑠
] 𝑥𝑖

𝑁

𝑖=1

, with (4.9) 

∑ 𝑥𝑖

𝑁

𝑖=1

= 1, (4.10) 

The above form of Eq. (4.8) is helpful because it separates fuel moles and the moles of 

air. It makes possible to express the mixture in terms of either its fractional fuel ratio or 

fractional fuel/air ratio for a particular constituent mixture. For example, the mole fraction 

of constituent fuel/air mixture 1 is:  

[
∅

∅ + (𝑎 𝐹1⁄ )𝑠
+

(𝑎 𝐹1⁄ )𝑠

∅ + (𝑎 𝐹1⁄ )𝑠
] 𝑥1 ∑ [

∅

∅ + (𝑎 𝐹𝑖⁄ )𝑠
+

(𝑎 𝐹𝑖⁄ )𝑠

∅ + (𝑎 𝐹𝑖⁄ )𝑠
] 𝑥𝑖

𝑁

𝑖=1

⁄  

(4.11) 

= ∅

∅ + (𝑎 𝐹⁄ )𝑠
 
fuel  + (𝑎 𝐹⁄ )𝑠

∅ + (𝑎 𝐹⁄ )𝑠
 

air (4.6) 
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Fuel/air constituent mixtures blends can also be presented in terms of their fractional mass 

weighting. For example in a binary mixture, the ratio of mass of fuel/air constituent 1 to 

that of fuel/air constituent 2 is: 

[
∅𝑀𝐹,1

∅ + (𝑎 𝐹1⁄ )𝑠
+

(𝑎 𝐹1⁄ )𝑠𝑀𝑎

∅ + (𝑎 𝐹1⁄ )𝑠
] 𝑥𝐴 ([

∅𝑀𝐹,2

∅ + (𝑎 𝐹2⁄ )𝑠
+

(𝑎 𝐹2⁄ )𝑠𝑀𝑎

∅ + (𝑎 𝐹2⁄ )𝑠
] 𝑥2)

−1

, 
(4.12) 

where 𝑀𝐹 is fuel molecular weight and 𝑀𝑎 is that for air. 

Finally, for practical reasons relative amounts of liquid fuels are often measured 

volumetrically. If 𝑉1 𝑉2⁄  is relative volume of fuel 1 to fuel 2 then the mole ratio of fuel 

1 to fuel 2 is; 

where 𝜌𝐹, 𝑀𝐹 are liquid fuel densities and molecular masses, given in the Table (4.1) for 

the different fuels studied in this work. 

 Molecular mass, 𝑀𝐹 (g/mole)  Density, 𝜌𝐹 (kg/m3) 

i-octane (C8H18)  114.23 690 

n-heptane (C7H16) 100.21 684 

Toluene (C7H8) 92.14 865.14 

n-butanol (C4H10O) 74.12 806.11 

Ethanol (C2H6O) 46.07 789 

Table 4.1. Fuel densities, obtained from supplier’s technical data sheet, and molecular 

masses for the fuels studied in this work. 

The volume of liquid fuel injected into the mixing chamber was derived from the mole 

fraction of fuel to fuel and air. The total number of moles in the mixing chamber was 

obtained from its total volume and the conditions of pressure and temperature during 

mixing using the ideal gas expression. 

𝑛𝑡𝑜𝑡𝑎𝑙 =
𝑃𝑉

𝑅𝑇
 

(4.14) 

Moles of fuel needs to be injected in the mixing chamber at these conditions will be; 

𝑛𝐹 = 𝑥𝐹 ∗ 𝑛𝑡𝑜𝑡𝑎𝑙  (4.15) 

(𝑉1 𝑉2⁄ )(𝜌𝐹,1 𝜌𝐹,2⁄ )(𝑀𝐹,2 𝑀𝐹,1⁄ ) = 
(∅ + (𝑎/𝐹1)𝑠)

(∅ + (𝑎/𝐹2)𝑠)

𝑥1

𝑥2
 

(4.13) 



CHAPTER 4: MEASUREMENTS OF AUTOIGNITION DELAY TIMES. 

 

96 
 

These moles are converted into liquid volume using the following expression; 

𝑣𝐹 =
𝑛𝐹𝑀𝐹

𝜌𝐹
 

(4.16) 

4.4 Single fuels results. 

Table 4.2 summarises the individual pure fuels and conditions under which they were 

tested. 

Fuel Condition 

∅ Pressure (MPa) Temperature(K) 

iso-octane 0.8,1.0,1.2 2.0 640-940 

Toluene 0.5 1.0-1.5 1090-1170 

1.0 2.0 915-1050 

n-butanol 0.5 2.0 730-945 

1.0 2.0 666-862 

Table 4.2. Testing conditions for single fuels. 

Repeatability tests were performed to confirm that same results can be reproduced for the 

same initial conditions. Fig. 4.1 shows 5 different pressure traces for non-reactive mixture 

(air), measured separately. The curves are in very good agreement which confirm high 

repeatability. During the course of this work, at least 3 repeats of experiments were 

performed for each condition. Measurement of total spread between maximum and 

minimum measured ignition delay times were made and presented by error bars. These 

were determined by first calculating the mean of collected data points for a particular 

temperature and then the difference between maximum value and mean was determined 

to get positive error bar and the difference between minimum value and mean to get 

negative error bar.  
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Figure 4.1 Repeatability test for Leeds RCM using pressure history for non-reactive 

mixture (air). 

4.4.1 iso-octane. 

Shown in Figs. 4.2-4.4 are measured RCM pressure records for stoichiometric, lean 

(∅=0.8) and rich (∅=1.2) iso-octane when compressed to a pressure of 2.0 MPa at 

different compression temperatures. At low to medium temperatures (650K-802K), the 

occurrence of two stages of ignition is evident, where the first stage is usually attributed 

to the occurrence of cool flames and the second stage to the main exothermic ignition. At 

higher temperatures (>900K) a non- cool flame, single stage, main ignition is obtained. 

Fig. 4.5 shows the corresponding ignition delay times derived directly from these pressure 

traces. The negative temperature coefficient (NTC) behaviour, where the reaction rates 

decreases with the increase of temperature, is seen in the medium temperature range 

(725K-833K). These results agree fairly well with those obtained by other researchers 

[e.g Griffiths et al., 1993; Westbrook et al., 1998; Davidson et al., 2005; Fieweger et 

al.,1994]. The effect of equivalence ratio is more pronounced in the NTC region, where 

the lean mixture (∅= 0.8) shows an increased delay time, relative to the stoichiometric 

mixture, while the rich mixture (∅=1.2) results in a reduced delay time. At higher 

temperatures there is no significant change of delay times for the equivalence ratios 
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studied in this work, while at the lower temperatures the trends are similar to those in the 

NTC regime. 

 

Figure 4.2. Pressure records for stoichiometric (∅=1) iso-octane at the end of compression 

pressure 2.0 MPa. 

 

Figure 4.3. Pressure records for lean (∅=0.8) iso-octane at the end of compression 

pressure 2.0 MPa. 
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Figure 4.4. Pressure records for rich (∅=1.2) iso-octane at the end of compression pressure 

2.0 MPa. 

 

Figure 4.5. Ignition delay times for stoichiometric (∅=1), lean (∅=0.8) and rich (∅=1.2) 

iso-octane at compressed pressure of 2.0 MPa. 
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Comparison of iso-octane ignition delay times obtained from Leeds RCM and those 

measured using UCT RCM under the same conditions of pressure, temperatures and 

concentration are shown in Fig. 4.6. Leeds RCM measures shorter τ that UCT RCM, 

throughout the temperature range studied. This is due to higher heat loss that is 

experienced by the UCT RCM. The UCT RCM, as described in Chapter 2, has a 

protruding piston rod that goes in the middle of the combustion chamber. This additional 

cool mass resulted in increased heat loss within the combustion chamber during and after 

compression, and thus longer delay times were measured. Shown in Fig 4.7 are the 

pressure records for the two devices at the same end of compression pressure of 2.0 MPa 

and temperature 895K, the heat loss with associated longer delay times is evident in these 

records. It is therefore not possible to compare results quantitatively between these two 

rigs, extensive comparison of results measured from different rigs at different research 

groups under the same conditions of pressure, temperature and concentration were 

discussed in detail in Chapter 3. 

 

Figure 4.6. Ignition delay times for stoichiometric iso-octane at compressed pressure of 

2.0 MPa measured using UCT RCM and Leeds RCM. 
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Figure 4.7. Pressure records for stoichiometric iso-octane at the end of compression 

pressure 2.0 MPa and temperature 895K, measured from UCT and Leeds RCM. 

4.4.2 Toluene. 

Pressure records for stoichiometric toluene/air mixture at different compression 

temperatures and a compression pressure of 2.0 MPa are shown in Fig. 4.8. The delay 

time versus reciprocal temperature relationship shown in Fig. 4.9 is very different from 

that for iso-octane in Fig. 4.5, with the complete absence of an NTC regime. This trend 

is common to aromatic hydrocarbons, as revealed by experiments and chemical kinetic 

simulations under different conditions [Mittal et al., 2007; Davidson et al., 2005; Roubaud 

et al., 2000; Shen et al., 2009]. For temperatures below 900K, with τ >100ms, the delay 

times were too large to be measured accurately. There was appreciable non-homogeneity 

within the cylinder and the core gas had lost heat to the chamber walls, to the extent that 

the mixture became non-ignitable. Previous RCM work at Lille [Roubaud et al., 2000] 

showed that stoichiometric toluene could not auto-ignite below 917K at 1.7 MPa. 

Comparison with other published measurements for RCMs and Shock Tubes are shown 

in Fig. 4.10 for lean (∅=0.5) toluene mixtures, in the pressure and temperature ranges of 

0.9-1.4 MPa and 1090-1170 K. Very good agreement is obtained for the current results 

with those from Davidson et al. [2005] and Shen et al. [2009]. There is however, 

substantial difference with the results of Mittal et al. [2007] at low temperatures. The 

principal reason, amongst others, would appear to be the amount of heat loss experienced 
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by the mixture during the extensive delay time, a problem addressed in Mittal et al. [2007] 

and in Chapter 3.  

 

Figure 4.8. Pressure records for stoichiometric toluene/air at compression pressure of 2.0 

MPa. 

 

Figure 4.9. Ignition delay time for stoichiometric toluene/air at a compression pressure of 

2.0 MPa. 
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Figure 4.10. Comparison of ignition delay times from different researchers for lean (∅= 

0.5) toluene/air at a compression pressure of 1.0-1.5 MPa. 

4.4.3 n-Butanol. 

The pressure records for n-butanol also show that they have single stage ignition, with a 

near-linear change in τ, with no NTC, throughout the temperature range. Figs. 4.11 and 

4.12 show the records for stoichiometric (∅=1) and lean (∅=0.5) mixtures. For both 

equivalence ratios the ignition delay time generally decreases with increase of 

temperature, while the leaner mixture has longer ignition delay times throughout the 

temperature range. A monotonic change in the slope is clear in Fig. 4.13 for a 

stoichiometric mixture in the temperature range (705K-725K). This finding is similar to 

that obtained by Heuffer et al. [2013]. No ignition measurements were possible for the 

lean mixture at temperatures lower than 730K.  

The key mechanism driving auto-ignition of n-butanol are well described in Dagaut et al. 

[2008], Moss et al. [2008], Sarathy et al. [2012] and Black et al. [2010]. Here only a 

summary of reaction pathways suggested by Sarathy et al. [2012] for low and high 

temperatures is given. At low temperatures, the first chain branching process is the 

addition of molecular oxygen to fuel radicals (hydroxybutyl) which leads to formation of 

a chain branching radical hydroxyalkyl peroxy (ROO) and hydroperoxide radical (HO2). 

The formation of HO2 essentially inhibits the low temperature ignition behaviour of 

butanol, however it can be an important reaction during blending with other fuels as will 



CHAPTER 4: MEASUREMENTS OF AUTOIGNITION DELAY TIMES. 

 

104 
 

be discussed for the case of toluene in section 4.5.2. The second step involves the 

isomerisation reaction where intramolecular H-abstraction of ROO occurs to form 

hydroxyalkyl hydroperoxide radicals (QOOH) which further propagates the chain 

reaction. QOOH further reacts with molecular oxygen to form hydroperoxyalkylperoxy 

radicals (OOQOOH) which then isomerise to form carbonyl alkylhydroxy 

hydroperoxides and OH. The last reaction path for the low temperature oxidation is the 

decomposition of carbonyl alkylhydroxy hydroperoxides to form the OH radical, small 

oxygenated radicals and stable oxygenates (i.e aldehydes or ketones). For high 

temperatures, the most important and relatively faster reaction is the H-abstraction of the 

weaker alpha C-H bond by OH radical. This bond is weaker than similar bonds in alkanes 

due to the nearby presence of the OH group. The importance of this reaction is reduced 

with increasing temperature as contribution from HO2 chemistry and formation of H2O2 

becomes more significant [ Miller et al., 2005]. 

The model described above has been validated using different experimental studies such 

as premixed laminar flame velocity [Veloo et al., 2011], [Oßwald et al. 2011], [Hansen 

et al.,2011], ignition delay times from shock tubes and RCM [Weber et al., 2011], [Heufer 

et al.,2010], Vranckx et al.,2011], [Stranic et al., 2011] and species profile from jet-stirred 

reactors [C. Togbé et al, 2010], [Dagaut et al., 2009]. A wide variety of combustion data 

in these studies were well predicted using this model.  

In this particular study, a comparison was made between measured τ values at ∅=1 and 

calculated values obtained from Energy Research Institute University of Leeds using 

numerical modelling and a detailed chemical kinetic model by Sarathy et al. [2012]. 

Details of this work are given in Agbro et al. [2015]. Very good agreement was obtained 

at intermediate temperatures between 735K and 793K, whilst an over prediction is seen 

at higher and lower temperatures as shown in Fig. 4.13. 
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Figure 4.11. Pressure records for lean (∅= 0.5) n-butanol at a compressed pressure of 2.0 

MPa. 

 

Figure 4.12. Pressure records for stoichiometric (∅=1) n-butanol at a compressed pressure 

of 2.0 MPa. 
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Figure 4.13. Ignition delay time of lean (∅= 0.5) and stoichiometric (∅= 1.0) n-butanol at 

a compressed pressure of 2.0 MPa. 

4.5 Binary blend results. 

The binary blends are those of iso-octane/n-butanol and toluene/n-butanol. These blends 

were selected to show the effect of n-butanol addition on the auto-ignition of paraffins 

and aromatics, represented by iso-octane and toluene, respectively. Table 4.3 shows 

compositions of the blends and the conditions under which they were tested. 

 

 Constituents fuels Fuel  Conditions 

 i-octane toluene n-butanol designation 
 

Press. (MPa) Temp. (K) 

Fuel mole fraction 0.7 0 0.3 I70 1 2  650-926 

Fuel mole fraction 0.5 0 0.5 I50 1 2  650-893 

Fuel mole fraction 0 0.7 0.3 T70 1 2  735-1000 

Fuel mole fraction 0 0.5 0.5 T50 1 2  690-917 

 Table 4.3. Composition and test conditions for binary blends of iso-octane/n-butanol and 

toluene/n-butanol. 

 

∅ 
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4.5.1 iso-octane/n-butanol blends. 

Figs. 4.14-4.16 show the experimental results for the iso-octane/n-butanol blends, all 

conducted at stoichiometric concentration and a pressure of 2.0 MPa. In general, at the 

higher temperatures the addition of n-butanol in the iso-octane mixture decreases the 

overall ignition delay time, while, at the lower temperatures it increases. This is due to 

the n-butanol delay times being lower than those of iso-octane at the higher temperatures, 

while they are higher at lower temperatures. The change of delay time due to the addition 

of n-butanol is not linear, Figs. 4.17-4.19 summarise the changes in delay time, as a 

function of the proportions of n-butanol in the blend mixture, at different temperatures.  

At the higher temperatures (>760K), the addition of n-butanol decreases the delay time, 

and the trend can be presented by a second order function, as seen in Figs. 4.17-4.18. The 

middle temperature range, between 750K-660K in Fig. 4.16, shows an interesting 

behaviour where the addition of n-butanol increases the delay time but there is visually 

no difference in τ values between I50 and I70, whereas at the lowest temperature (660K) 

there is a significant increase.  

 

Figure 4.14. Pressure records for stoichiometric I70 blend at a compressed pressure of 2.0 

MPa. 
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Figure 4.15. Pressure records for stoichiometric I50 blend at a compressed pressure of 2.0 

MPa. 

 

 

Figure 4.16. Ignition delay times for stoichiometric pure iso-octane, n-butanol and their 

blends I70, I50 at a compressed pressure of 2.0 MPa. 

iso-octane 
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Figure 4.17. Ignition delay times of iso-octane/n-butanol at ∅=1.0 as a mole % of n-

butanol in the blend mixture, at a compressed pressure of 2.0 MPa, in the temperature 

range (816K-869K). 

 

Figure 4.18. Ignition delay times of iso-octane/n-butanol at ∅=1.0 as a mole % of n-

butanol in the blend mixture, at a compressed pressure of 2.0 MPa, in the temperature 

range (769K-800K). 
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Figure 4.19. Ignition delay times of iso-octane/n-butanol at ∅=1.0 as a mole % of n-

butanol in the blend mixture, at a compressed pressure of 2.0 MPa, in the temperature 

range (666K-740K). 

The effect of pressure on I50 and I70 blends were investigated using UCT RCM. 

Measurements were made at 2.0 MPa and 4.0 MPa and results presented in Figs 4.20 and 

4.21. For both blends, pressure increase results in shorter τ values. The NTC strength is 

also reduced with pressure increase. Using these results, pressure exponent, n, was 

calculated, for each blend, based on the relation 𝜏𝛼𝑃−𝑛, and it was found that n values 

changes with temperature, with higher values of n obtained in the intermediate range and 

fairly constant values at higher and lower temperatures, as shown in Fig. 4.22. 
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Figure 4.20. Ignition delay times for stoichiometric blend I70, at a compressed pressure 

of 2.0 MPa and 4.0 MPa. 

 

Figure 4.21. Ignition delay times for stoichiometric blend I50, at a compressed pressure 

of 2.0 MPa and 4.0 MPa. 
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Figure 4.22. Values of pressure exponent, n, for stoichiometric blends I70 and I50 and 

different compression temperatures. 

4.5.2 Toluene and n-butanol blends. 

Figs. 4.23 and 4.24 show the pressure records for stoichiometric T70 and T50 blends at a 

compressed pressure 2.0 MPa, in which, single stage ignition was obtained with no NTC 

regime throughout the temperature range. The ignition delay times for the blends and the 

pure constituent fuels are shown in Fig. 4.25. Fig. 4.26 summarises the effect of increasing 

the percentage of n-butanol on the delay times. Generally, an increasing concentration 

reduces τ, particularly, at low temperatures. Interestingly, within a temperature range of 

735K-835K, the ignition delay times of T50 blend are slightly less than both constituent 

mixtures whilst those for T70 are very close to those of n-butanol. This suggests that 

within this temperature range n-butanol generates chain branching radicals that 

overwhelm those created by toluene and thus n-butanol dominates the kinetics of the 

blend. This behaviour is analogous to the results reported for the auto-ignition studies of 

toluene/n-heptane blends from Di Sante [2012], Hartmann et al. [2011] and Vanhove et 

al. [2006]. In these studies, due to the difference in reactivity between toluene and n-

heptane, the more reactive fuel (n-heptane) controls the kinetics of the blend. At lower 

temperatures, toluene has a high resistance to auto-ignition due to the lack of any forceful 

initiating reaction that could produce the chain carrier OH. n-heptane on the other hand, 

can readily generate the OH. and HO2
. radicals during its low temperature oxidation. The 
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presence of these radicals results into cross acceleration effect, where the radicals 

produced during oxidation of n-heptane dramatically increase the oxidation rate of 

toluene compared to when toluene alone was oxidized. A detailed chemical kinetic 

mechanism for toluene/n-heptane blend developed by Andrae et al [2012] identified the 

main chemical reaction responsible for increase toluene consumption/reactivity due to 

cross acceleration effects as 𝐶6𝐻5𝐶𝐻2
. + 𝐻𝑂2

. → 𝐶6𝐻5𝐶𝐻2𝑂. + 𝑂𝐻..  

Described in section 4.4.3, n-butanol generates HO2 radicals at low temperatures and will 

therefore promote cross acceleration effects similar to that occurring in the case of n-

heptane. 

 

Figure 4.23. Pressure records for stoichiometric T70 blend at a compressed pressure of 

2.0 MPa. 
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Figure 4.24. Pressure records for stoichiometric T50 blend at a compressed pressure of 

2.0 MPa. 

 

Figure 4.25. Ignition delay times for stoichiometric pure toluene, n-butanol and their 

blends T70 and T50 at a compressed pressure of 2.0 MPa. 
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Figure 4.26. Ignition delay times of toluene/n-butanol at ∅=1.0 as a mole % of n-butanol 

in the blend mixture, at a compressed pressure of 2.0 MPa, in the temperature range 

(730K-866K). 

4.6 Gasoline surrogate and its blends with alcohol. 

4.6.1 Introduction. 

The blending of gasoline and bio-based fuels is one of the methods of reducing the use of 

petroleum based fuels and eradicating its negative environmental effects. A surrogate for 

gasoline of growing importance is Toluene Reference Fuel (TRF), comprised of ternary 

blends of Toluene and PRF [Goutham et al., 2013; Cancino et al., 2009; Goutham et al., 

2012]. Because of their importance, this chapter reports the ignition delay times of the 

blends of TRF and two bio-alcohols, namely ethanol and butanol. Ethanol has been 

proven to improve the anti-knock properties of gasoline. However, its use is not without 

disadvantages and these have been explained in Chapter 1. On the other hand, n-butanol 

provides an alternative to ethanol, without some of its disadvantages. Clearly, it is 

necessary to know how the autoignition times of respective blends of the gasoline 

surrogate, with n-butanol and ethanol, compare. 

There are numerous proposed TRF surrogate mixtures in the literature [Vanhove et al., 

2006, Morgan et al., 2010; Gauthier et al., 2004; Lenhert et al., 2009; Mehl et al., 2011] 
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and the choice of surrogate composition depends on the end applications. In the present 

work, the objective is to measure the effect of alcohol on the ignition delay times of a 

typical high octane European standard gasoline. Morgan et al. [2010] was able to suggest 

a TRF mixture which was based on this standard, and in their work a response surface 

model was proposed which can give the composition of a mixture based on the specified 

values of RON and sensitivity. Using this model, it was possible to obtain the volume 

fractions of the three components (toluene, n-heptane and iso-octane) in TRF mixtures 

which can emulate gasoline with specified values of RON and MON. Calculations of the 

composition of a TRF mixture were made to emulate a high octane (RON=98.5 and 

MON=88) commercial gasoline (Gron 98 MK1). The obtained TRF comprised of 

0.75418 toluene/0.05833 iso-octane/0.18749 n-heptane (by liquid volume fraction). 

Comparison of cylinder pressure profiles between Gron 98 MK1 and simulation results 

of the obtained TRF showed excellent agreement. This surrogate mixture is adopted in 

the present study and its equivalent fuel mole fraction is shown in Table 4.5. The liquid 

densities (ρ) were obtained from the supplied fuel bottles and were shown in Table 4.1. 

4.6.2 Ignition delay times and pressure profiles for TRF blend. 

The chosen TRF blend was tested in the RCM under stoichiometric conditions, at an end 

of compression pressure of 2.0 MPa, in the temperature range of 660K-960K. The results 

are presented in Figs. 4.26-4.27. In Fig. 4.27, the symbols represent the measured ignition 

delay times data while the solid line in the best fit line through these data, the decrease of 

ignition delay time with the increase of temperature is clearly seen for the higher and 

lower temperature ranges. In the mid-range temperatures, Fig. 4.26 shows two stages 

ignition whilst Fig. 4.27 shows a region of negative temperature coefficient (NTC) in the 

temperature range of 769K to 833K. These findings are similar to those obtained in the 

other heavy hydrocarbons such as PRFs [Fieweger et al., 1997; Halstead et al., 1977], 

gasoline and other TRFs surrogates mixtures [Goutham et al., 2013; Cancino et al., 2009; 

Goutham et al., 2012]. Shown in Fig 4.28 also is a comparison between the ignition delay 

time of the current TRF mixture with those of research gasoline (RD387) from 

Kukkadapu et al. [2012] and a gasoline surrogate from LLNL [Mehl et al., 2011] and 

Stanford A TRF mixture from Gauthier et al. [2004]. The solid line is the best fit line 

through the measured delay times for the current work. Measurements were made at 

stoichiometric conditions and an end of compression pressure of 2.0 MPa. All blends 

show to possess NTC behaviour. The current TRF measures longer ignition delay times 

throughout the temperature range due to its high content of toluene as shown in Table 4.5. 
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Blend Compositiona (by volume) 

Current TRF mixture 5.833/18.75/75.418 

Gasoline (RD387) [Kukkadapu et al.,2012] 42.3/9.5/26.4/4.7/16 

Stanford A [Gauthier et al., 2004] 63/17/20/0/0 

LLNL [Mehl et al., 2011] 57/16/23/4/0 

a Composition order: iso-octane/n-heptane/toluene/olefins/napthenes 

Table 4.4.Composition of gasoline and surrogates investigated in this and other studies. 

 

 i-octane n-heptane toluene 

Liquid fuel volume fraction 0.05833 0.1875 0.75418 

Fuel mole fraction  0.0411 0.146 0.8125 

Table 4.5. Constituents fuel proportions in the current TRF mixture, at ∅=1. 

 

Figure 4.27. Pressure records for stoichiometric TRF/air (81.25% toluene/4.11% iso-

octane/14.64% n-heptane (by mole) at a compressed pressure of 2.0 MPa. 



CHAPTER 4: MEASUREMENTS OF AUTOIGNITION DELAY TIMES. 

 

118 
 

 

Figure 4.28. Ignition delay times for stoichiometric TRF/air at a compressed pressure of 

2.0 MPa, compared with those of gasoline and other TRF surrogate at the same 

conditions. 

 

4.6.3 Ignition delay times and pressure records for TRF/Ethanol 

blends. 

As for the case of pure toluene, ethanol has very low reactivity at low temperatures. 

Experimental measurements of ignition delay times for pure ethanol have not been 

possible at low temperatures and pressures, a trend consistent with its high octane number. 

It is well known that high octane number fuels such as ethanol, methanol, MTBE etc are 

widely used as anti-knock additives due to their long ignition delay times especially at 

low temperatures [Lu et al., 2004], [De Caro et al., 2001], [Rothamer et al., 2012] as well 

as improving spark ignition engine performance [Kar et al., 2009], [Hsieh et al.,2002], 

[Wallner et al., 2009]. However, due to its very high sensitivity, ethanol has shorter 

ignition delay times at higher temperatures and this can enhance auto-ignition of the 

blended fuel. For example, in a study by Saisirirat et al. [2001], a blend of ethanol and n-

heptane have been shown to suppress auto-ignition of n-heptane at low and intermediate 

temperatures while at high temperatures there was no significant change for low ethanol 

content. However, when it was increased to 57% by volume, n-heptane auto-ignition was 

enhanced and shorter ignition delay times were obtained. Tien et al. [2014] measured the 

change of traditional research octane number (RON) and sensitivity when ethanol was 
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added to gasoline, PRF and TRF mixtures. For all these mixtures, addition of ethanol 

increased their RON and sensitivity values as shown in Fig. 4.29.  

 

Figure 4.29. (a) Measured RONs and (b) Sensitivity for different ethanol/TRF blends 

versus ethanol content. Tien et al. [2014] is indicated as “this study” in the plot. Data from 

Anderson et al. [2002] is included for reference. 

 

This Section reports ignition delay times for the blends of TRF/air and ethanol/air, with 

∅=1.0 for both component mixtures. The experimental end of compression pressure was 

2.0 MPa, in the temperature range of 700-1000K. The chosen TRF mixed with air at 

∅=1.0 was blended with different mole proportions of ethanol/air also at ∅=1.0. The 

blends are characterised by the liquid volume percentage of ethanol in the liquid blend 

fuel. E25 indicates 25% liquid volume of ethanol in the blend mixture, the remainder is 

TRF mixture which is comprised of constituent fuels having the same ratio as that of pure 

TRF shown in Table 4.5. Table 4.6 shows all the blends tested, their composition in terms 

of liquid volume fraction and their equivalent fuel mole fraction in the blend. Table 4.7 

shows the conditions under which they were tested. 
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 iso-octane n-heptane toluene ethanol Fuel designation 

Liquid volume 

fraction 0.04375 0.14062 

0.5656

4 0.25   

Fuel mole fraction  0.0248 0.0883 0.4903 0.3966 E25 

Liquid volume 

fraction 0.02917 0.09375 

0.3770

9 0.5   

Fuel mole fraction  0.0138 0.0493 0.2734 0.6635 E50 

Liquid volume 

fraction 0.01458 0.04687 

0.1885

5 0.75   

Fuel mole fraction  0.0059 0.0212 0.1175 0.8554 E75 

Table 4.6. Liquid fuel blends designation and constituent proportions. 

 

Table 4.7. Test conditions for chosen blends. 

Pressure records and ignition delay times for the blends of TRF/air and ethanol/air at 

∅=1.0 are shown in Figs. 4.30-4.33. The results from all three blends show single stage 

ignition under the conditions studied, with no NTC behaviour anywhere in the 

temperature range.  
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Figure 4.30. Pressure records for stoichiometric E25 blend at a compressed pressure of 

2.0 MPa. 

 

Figure 4.31. Pressure records for stoichiometric E50 blend at a compressed pressure of 

2.0 MPa. 
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Figure 4.32. Pressure records for stoichiometric E75 blend at a compressed pressure of 

2.0 MPa. 

 

 

Figure 4.33. Ignition delay times for TRF/Ethanol blends at compressed pressure 2.0MPa. 

Interestingly, NTC behaviour is only shown for the TRF on Fig. 4.33, whereas ethanol 

and the blends hardly show such a trend. This trend is in agreement with the results 
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obtained by Yates et al. [2010], where addition of ethanol or methanol to the PRF80 

mixture weakened its NTC behaviour which was eventually completely eliminated with 

higher content of ethanol. Fig. 4.34 summarises the change of ignition delay times of the 

blends with ethanol addition. At low temperatures < 860K, ethanol increases the 

resistance to auto-ignition and there is an appreciable increase in τ. In the mid-temperature 

range there is relatively small change in ignition delay times for all blends, with their 

delay times almost similar. In the range 860K-910K, τ values are slightly lower than those 

of the main components. At high temperatures > 910K, ethanol addition reduces the 

autoignition resistance of TRF, due to the shorter ignition delay times of pure ethanol. 

Similar results were obtained by Saisirirat et al. [2001] where ethanol addition to n-

heptane supressed auto-ignition of n-heptane at low and intermediate temperatures and 

enhanced it at high temperatures.   

 

Figure 4.34. Change of ignition delay time with the proportion of ethanol in the blend for 

∅=1.0, compressed pressure 2.0 MPa, in the temperature range 800K-950K. 
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4.6.4 Ignition delay times and pressure records for TRF/n-butanol 

blends. 

Table 4.8 shows the composition and concentration of the TRF/air and n-butanol/air 

tested and Table 4.9 the test conditions.  

 

 iso-octane n-heptane toluene n-butanol 

Fuel 

designation 

Liquid volume 

fraction 0.04375 0.14062 0.56564 0.25   

Fuel mole fraction  0.0289 0.1031 0.5725 0.2955 B25 

Liquid volume 

fraction 0.02917 0.09375 0.37709 0.5   

Fuel mole fraction  0.0182 0.0648 0.3598 0.5572 B50 

Liquid volume 

fraction 0.01458 0.04687 0.18855 0.75   

Fuel mole fraction  0.0086 0.0307 0.1702 0.7906 B75 

Table 4.8. Liquid fuel blends designation and constituents proportions. 

Fuel designation 
Condition 

∅ Pressure (MPa) Temperature (K) 

B25 1.0 2.0 671-917 

B50 1.0 2.0 671-900 

B75 1.0 2.0 671-855 

Table 4.9. Test conditions for chosen blends. 

Figs 4.35-4.37 show the pressure records for B25, B50 and B75 blends at different 

temperatures, two stages ignition is evident in the mid-temperature range for all blends. 

Fig. 4.38 shows the ignition delay times for all blends, where B25 and B50 show NTC 

behaviour, while B75 behaves more like n-butanol with monotonic change at 

temperatures between 755K and 769K.  Between 700K and 769K, the addition of n-

butanol has insignificant effect on the ignition delay times of TRF, whilst at temperatures 
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lower than 700K ignition delay times are increased, but B25 has the same delay times as 

that of TRF at temperatures below 769K. At high temperatures, generally, the addition of 

n-butanol decreases delay times of TRF, and as for the TRF/ethanol blends, it can be seen 

that B75 has delay times shorter than the individual components fuels at temperatures 

above 769K. The effect of n-butanol addition to TRF delay times at different temperatures 

is summarised in Figs. 4.39-4.40. 

 

Figure 4.35. Pressure records for stoichiometric B25 blend at a compressed pressure of 

2.0 MPa. 

  

Figure 4.36. Pressure records for stoichiometric B50 blend at a compressed pressure of 

2.0 MPa. 
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Figure 4.37. Pressure records for stoichiometric B75 blend at a compressed pressure of 

2.0 MPa. 

 

Figure 4.38. Ignition delay times for stoichiometric TRF/air and n-butanol/air blends at a 

compressed pressure of 2.0 MPa. 
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Figure 4.39. Change of ignition delay time with addition of n-butanol on TRF at 

stoichiometric condition, compressed pressure 2.0MPa and temperature range (833K-

1000K). 

 

Figure 4.40. Change of ignition delay time with addition of n-butanol on TRF at 

stoichiometric condition, compressed pressure 2.0 MPa and temperature range (667K-

741K). 
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4.7 Use of the experimental data in this work for simulation. 

As discussed in Chapter 1, one of the main objectives of measuring ignition delay times 

in the RCM is to enable accurate modelling of the auto-ignition characteristic of a 

particular fuel at varying conditions of pressure, temperature and concentration using its 

chemical kinetics. Pressure traces for non-reactive mixtures are usually required to 

accurately simulate RCM experiments. This will help to account for heat loss during and 

after compression and also to avoid missing out any reactions that might have started to 

take place during compression. As pointed out in Section 1.7, non-reactive pressure traces 

with the same specific heat and initial condition of pressure and temperature as the 

reactive mixture are used to calculate volume expansion term using equation 1.12  

Different RCMs have different extents of heat loss after compression due to their design 

and operating conditions. Those with substantial amounts of heat loss will necessitate the 

use of non-reactive pressure measurements for each particular fuel and condition in order 

to obtain a time dependent volume expansion term before carrying out chemical kinetic 

simulations. However, those with negligible heat loss will have their time dependent 

effective volume almost the same as that of the actual chamber and therefore simulations 

can be done using constant volume. 

In this section comparison was made using Leeds RCM between the measured ignition 

delay times of TRF mixture and TRF/n-butanol blend at stoichiometric condition and end 

of compression pressure of 2.0 MPa and their corresponding simulations using constant 

volume approach (assuming negligible heat loss during delay period) and variable 

effective volume approach. Figs. 4.41&4.42 show the ignition delay times for these fuels 

using the two approaches (data measured and simulated by PhD student Edirin Agbro). 

Comparison with research gasoline RD387 from Kukkadapu et al. [2012] is also made. It 

can be seen that there is no substantial difference between the constant and variable 

volume approaches and therefore the experimental data in this work can be reasonably 

simulated using constant volume approach because all measurements were made at 

similar conditions to those shown in Figs 4.41&4.42. However, it should be noted that, 

since the heat loss characteristic for a particular machine depends on operating conditions, 

then non-reactive pressure traces need to be measured for new operating condition and 

run simulations using variable effective volume to compare with constant volume.  
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Figure 4.41. Comparison between measured and simulated of ignition delay times for 

gasoline and TRF mixture. Simulations were run using constant and variable volume 

approaches. 

    

 

Figure 4.42. Comparison between measured and simulated of ignition delay times for 

gasoline/butanol and TRF/butanol blends. Simulations were run using constant and 

variable volume approaches. 
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4.8 Summary. 

Comparison of measurements taken from Leeds and UCT RCMs at the same conditions 

have shown to differ. The main reason for this difference is due to their difference in heat 

loss behaviour, with UCT shows higher heat loss and thus measures longer delay times 

than Leeds.  

Butanol is considered as one of the alternative biofuels which can potentially replace 

ethanol. Its effect on the ignition delay times of iso-octane and toluene was studied in this 

Chapter. Addition of n-butanol in iso-octane and toluene show a rather different outcome. 

iso-octane was made more reactive at higher temperature and thus shorter delay times 

were measured, and less reactive at lower temperatures with longer delay times. Toluene 

reactivity was significantly increased with butanol addition throughout the temperature 

range. 

Comparison of addition of n-butanol and ethanol on TRF gasoline surrogate was also 

made, and Fig 4.43 shows a summary of the effect of adding equivalent amount of ethanol 

and n-butanol to the TRF surrogate in the temperature range between 800K and 952K. 

The curves are the difference between the measured delay times of the blends and that of 

pure TRF, ∆𝜏. The “zero” horizontal line represents pure TRF. Within this temperature 

range, n-butanol and ethanol have generally shown to have similar effect on TRF ignition 

delay times at lower temperatures and higher temperatures, where τ values of TRF are 

increased at lower temperatures and decreased at higher temperatures. Ethanol starts to 

increase τ values of TRF at substantially higher temperatures compared to n-butanol. 

Interestingly, in the temperature range between 709K and 752K addition of n-butanol has 

no substantial effect to the τ values of TRF.  
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Figure 4.43. Ignition delay time difference between those of the blends and pure TRF at 

the end of compression pressure of 2.0 MPa. 
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CHAPTER 5: AUTOIGNITION BLENDING LAW. 

5.1 Introduction 

To be able to predict the auto-ignition behaviour of fuels under varying conditions of 

pressure, temperature and composition would be a very powerful tool.  It could be used 

to increase and optimise engine performance and reduce pollution, as well as act as a 

safety tool for fuel storage. In an era which searches for new sources of liquid fuels, the 

optimal blends of different classes of fuel for efficient power generation with clean 

combustion have to be found. A major factor in the selection of these blends is their auto-

ignition behaviour under varying conditions of pressure, temperature and concentration. 

It is therefore beneficial to develop auto-ignition blending laws that are able to predict the 

ignition delay times of different fuel blends. 

Numerous empirical ignition delay correlation models have been proposed by different 

research groups [Yates et al., 2010; Qin et al., 2001; He et al., 2005; Goldsborough, 2009; 

Zhu et al., 2015; Li et al., 2014]. These are usually for single pure fuel components at 

relatively high temperature and are validated against chemical kinetic and/or 

experimental measurements. Measurements of ignition delay times, τ, in shock tubes, 

RCMs, engines, and constant volume bombs, have shown them to be very dependent on 

temperature, pressure and fuel concentration [Yates et al., 2010; He et al., 2005; Zhu et 

al., 2015; Li et al., 2014; Goutham et al.,2012]. A useful simplification is to characterise 

auto-ignition behaviour of a fuel by a global one step mechanism represented by an 

Arrhenius expression: 

𝜏 = 𝐴𝑃−𝑛exp (𝐸 𝑅𝑇⁄ ),                                                                                           (5.1) 

where A and n are calibrations factors that change with fuel/air concentrations and 

temperature.                                                         

These empirical models have been used successfully to predict τ for both single 

component fuels and blends of different fuels under specified conditions. However, many 

of these models are only validated using fuels and/or conditions that do not show negative 

temperature coefficient (NTC) behaviour. This has been relatively easy and convenient, 

as the values of activation energy in these models are nearly constant over a wider 

temperature range. To the author’s knowledge only the empirical correlation model of 
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Goldsborough et al. [2009] predicts NTC behaviour of iso-octane, including different 

pressure and temperature conditions.  

Practical gasoline and diesel fuels are composed of different classes of hydrocarbons in 

hundreds of different compounds, and their measured τ confirm negative temperature 

coefficient behaviour [Goutham et al., 2013; Fieweger et al., 1997; Herzler et al., 2007]. 

As described in Section 4.2, gasoline surrogate mixtures comprise a limited number of 

carefully selected individual hydrocarbons components, which collectively mimic the 

properties of the practical fuels, have been widely adopted. The use of these surrogate 

mixtures can simplify the derivation of τ values of blends based on the τ values for each 

constituent fuel. However, very little has been published on auto-ignition blending laws, 

a brief summary of which is highlighted below. 

An extensive shock tube study of the ignition delay times of hydrogen and methane blends 

at pressures and temperatures, ranging from 800K to 2000K and 0.1 to 0.3 MPa, was 

conducted by Cheng and Oppenheim [1984]. The delay times of the blend mixture were 

correlated using the empirical expression, 

𝜏 = 𝜏𝐻2
𝛽𝜏𝐶𝐻4

(1−𝛽),                                                                                                 (5.3) 

where 𝜏𝐻2
 and 𝜏𝐶𝐻4

 are the ignition delay times for hydrogen and methane, and 𝛽 is the 

mole fraction of hydrogen in the mixture. Very good agreement was obtained at the tested 

blends and conditions. Further studies were conducted by Gersen et al. [2008] for the 

stoichiometric blend mixtures of hydrogen and methane at higher pressure (1.0-7.0 MPa) 

in the temperature range 950K-1060K. Their results led to an Arrhenius like empirical 

relation for determining the delay times of their blend mixtures, incorporating the 

pressure and temperature dependency of ignition delay time for the pure individual fuels 

to be blended, of the form: 

𝜏 = 𝐴𝐻2

𝛽𝐴𝐶𝐻4

(1−𝛽) (
𝑃𝑐

𝑇𝑐
)

𝑛𝐻2𝛽+𝑛𝐶𝐻4(1−𝛽)

exp (
𝐸𝐻2𝛽+𝐸𝐶𝐻4(1−𝛽)

𝑅𝑇
).                           (5.4) 

Recently, Sileghem et al., 2015 have suggested the use of an energy fraction 𝛼𝑖 instead 

of mole or volume fraction 𝑥𝑖 used in Cheng and Oppenheim [1984]. 𝛼𝑖, see below, is the 

heat of reaction of one fuel in the blend as a fraction of the total heats of reaction. Their 

method yielded a relatively good agreement with PRF-methanol blends calculated from 

detailed chemical kinetics.  

𝛼𝑖 =
∆𝑐𝐻𝑖

𝑜𝑥𝑖

∑ ∆𝑐𝐻𝑖
𝑜𝑥𝑖

𝑛
𝑖=1

 ,                                                                                                (5.5) 
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where ∆𝑐𝐻𝑖 is the heat of reaction of the mixture components. The delay time for the 

blend mixture was given as: 

𝜏𝑏𝑙𝑒𝑛𝑑 = ∏ 𝜏𝑖
𝛼𝑖𝑛

𝑖=1 .                                                                                                       (5.6) 

There have been no further reported tests of the validity of these methods with other 

blends. It would be interesting to check if these methods could accurately predict ignition 

delay times of other blends, especially those that show NTC behaviour. 

In this Chapter, an attempt is made to formulate a mixing rule that can be used to predict 

the ignition delay time of fuel blends using the ignition delay times of the fuel components 

under different conditions of pressures and temperatures, including the NTC region, and 

to compare this new approach with the reported existing ones. 

5.2 A suggested auto-ignition blending law. 

A two parameter blending law is developed for binary mixtures based on the fractional 

mole weighting of the principal parameters in an Arrhenius expression, A and E/R, at 

constant pressure: 

𝑙𝑛𝜏 = 𝑙𝑛𝐴 + (𝐸 𝑅𝑇⁄ ).                                                                                             (5.7) 

This method will be termed, the linear by mole (LbM) method. The ignition delay time 

of the mixture of two fuels B and C to form a blend D will then be given as; 

𝑙𝑛𝜏𝐷(𝐿𝑏𝑀)
= 𝑥𝐵(𝑙𝑛𝐴𝐵 + (𝐸 𝑅𝑇)⁄

𝐵
) + 𝑥𝐶(𝑙𝑛𝐴𝐶 + (𝐸 𝑅𝑇)⁄

𝐶
),                              (5.8) 

with 𝑥𝐵 and 𝑥𝐶 are the mole fractions of fuel B and C in the mixture of fuel B and C. The 

two fuels are assumed to be mixed with air at the same value of . The values of E/R for 

individual fuel components are obtained from Eq. (5.9), and the values of A are obtained 

from the measured values of τ and E/R for a given pressure, using Eq. (5.10); 

𝐸 𝑅⁄ = 𝑑𝑙𝑛𝜏 𝑑(1 𝑇)⁄⁄ ,                                                                                                 (5.9) 

𝐴 = 𝜏exp (−𝐸 𝑅𝑇)⁄ .                                                         (5.10) 

Eq. (5.8) allows for different activation temperatures, E/R, and for values of A to change, 

but only linearly, with fractional fuel concentration. 

As shown in Chapter 3, for fuels which show NTC behaviour, the values of E/R and A 

vary with temperature and therefore using the actual values of these parameters at a 

particular temperature will potentially enable more accurate prediction of ignition delay 

time of blends with and without NTC behaviour. This makes LbM method different to 
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those suggested by Cheng and Oppenheim, [1984 and Gersen et al. [2008] which were 

only designed and tested for fuels without NTC behaviour and at high temperatures. 

5.2.1 Blends investigated. 

The predicted data points employing this approach are compared with the experimental 

results. Some values were obtained by other workers and some in the course of the present 

studies. The fuel blend mixtures studied in this work are given in Table 5.1 together with 

the source from which relevant data were obtained. 

Table 5.1. Constituent fuels studied in this work and their source. 

[PW] Present Work 

[TRF*] Constituent fuels that make this TRF mixture are shown in Table 4.4 in Chapter 

4. 

5.2.2 CH4/H2 blends. 

For these blends, experimental ignition delay times were obtained entirely from an 

external source, [Gersen et al., 2008] who used a shock tube, under stoichiometric 

conditions at pressures between 1.5 and 7.0 MPa, and temperatures between 950 and 

1060K. The blends are presented as a mole fraction of hydrogen in a mixture of both 

fuels, (H2/(H2+CH4)). In Gersen et al. [2008], ignition delay times for different pressures 

were presented in a single plot by dividing τ values with the ratio (𝑃𝑜 𝑇𝑜⁄ ) raised to the 

pressure dependency, n, i.e 𝜏 (𝑃𝑜 𝑇𝑜⁄ )𝑛⁄ . Gersen et al. [2008] used constant values of the 

pressure dependency coefficients, for H2 as -1.3 and CH4 as -2.3 throughout the 

Fuels Data source for fuel/air Data source for blends 

B C B C   

CH4 H2 [Gersen et al.,2008] [Gersen et al.,2008] [Gersen et al.,2008] 

i-C8H18  n-C7H16  [Fieweger et al., 1997] [Fieweger et al., 1997] [Fieweger et al., 1997] 

C7H8 n-C7H16 [Herzler et al., 2007] [Herzler et al., 2007] [Herzler et al., 2007] 

C7H8 n-C4H10O [PW] [PW]  [PW] 

i-C8H18 n-C4H10O [PW] [PW]  [PW] 

TRF* n-C4H10O [PW] [PW]  [PW] 

TRF* C2H6O [PW] [Mittal et al.,2014]  [PW] 
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temperature range they studied. Also in their work, the values of n for the blends were 

obtained by mole weighting of the individual pure fuel values i.e. 𝑛 = 𝑛𝐻2
𝑥𝐻2

+

𝑛𝐶𝐻4
𝑥𝐶𝐻4

, where 𝑥𝐻2
and 𝑥𝐶𝐻4

are the mole fractions of H2 and CH4 in the blend. 

To obtain τ predictions for the data presented in Gersen et al. [2008] using the LbM 

method, E/R values were obtained from the gradient of the curve for constituent mixtures 

(CH4 and H2) using Eq. (5.9) and corresponding values of A calculated from Eq. (5.10). 

Predicted values of τ were then calculated using Eq. (5.8). Figs. 5.1-5.3 show the results 

obtained from the LbM method, together with the experimental results from Gersen et al. 

[2008]. Excellent agreement is found between these sets of results for all blends, 

throughout the temperature range. 

 

Figure 5.1. Ignition delay time divided by (Po/To) to the power of pressure dependency n 

upon reciprocal temperatures for stoichiometric pure individual constituents (CH4 and 

H2) represented by solid lines and their blend, H2/H2+CH4=0.1, represented by circles 

[Gersen et al., 2008], LbM results represented by asterisks. Pressure 1.5-7.0 MPa.  
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Figure 5.2. Ignition delay time divided by (Po/To) to the power of pressure dependency n 

upon reciprocal temperatures for stoichiometric pure individual constituents (CH4 and 

H2) represented by solid lines and their blend, H2/H2+CH4=0.2, represented by circles 

[Gersen et al., 2008], LbM results represented by asterisks. Pressure 1.5-7.0 MPa. 

 

Figure 5.3. Ignition delay time divided by (Po/To) to the power of pressure dependency n 

upon reciprocal temperatures for stoichiometric pure individual constituents (CH4 and 
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H2) represented by solid lines and their blend, H2/H2+CH4=0.5, represented by circles 

[Gersen et al., 2008], LbM results represented by asterisks. Pressure 1.5-7.0 MPa. 

5.2.3 Primary Reference Fuel (PRF) blends. 

In this instance, experimental ignition delay times for different PRF blends of 

stoichiometric mixtures were obtained from an external source, namely [Fieweger et al., 

1997]. Shock tube measurements of τ, for PRF60 (0.6 iso-octane/0.4 n-heptane, by liquid 

volume fraction), PRF80 (0.8 iso-octane/0.2 n-heptane, by liquid volume fraction) and 

PRF90 (0.9 iso-octane/0.1 n-heptane, by liquid volume fraction) were conducted with 

stoichiometric constituent mixtures at the pressure of 4.0 MPa and temperature range of 

710K-1175K. The fuel mole fractions and fuel/air mole fractions for constituent fuels in 

PRF blends were obtained using Eqs. (5.10) and (5.11), with the liquid densities given in 

Table 5.1, in Section 4.3. Data sources are summarised in Table 5.2. 

Fig. 5.4 compares the percentage moles of iso-octane/air in the PRF/air mixture with 

octane number. Similar conversion procedure was used for TRF/n-butanol and 

TRF/ethanol blends, which were prepared using liquid volumes. The results are 

summarised in Tables 4.5 and 4.7 in Sections 4.6.3 and 4.6.4.  

 PRF mixture composition Fuel  

 iso-octane n-heptane Designation 

Liquid volume fraction 0.6 0.4 

PRF60 
Fuel mole fraction  0.57 0.43 

Liquid volume fraction 0.8 0.2 
PRF80 

Fuel mole fraction  0.78 0.22 

Liquid volume fraction 0.9 0.1 
PRF90 

Fuel mole fraction  0.89 0.11 

Table 5.2. Composition of constituent fuels in the PRF mixtures. 
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Figure 5.4. Percentage mole of i-octane/air in a PRF/air mixture vs octane number. The 

curve is the best fit line through the points. 

Ignition delay times from the LbM method were obtained using Eq. (5.8). The obtained 

results, shown by asterisks, in Figs. 5.5-5.7, are in fair agreement with the experimental 

measurements, shown by circles, at the higher temperatures (T > 885K) but are over-

predicted at the lower temperatures, where an NTC region develops. This trend is seen 

for all the PRF blends studied. 
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Figure 5.5. Ignition delay time versus reciprocal temperature for stoichiometric pure 

individual constituents (PRF0 and PRF100) represented by solid lines and their blend, 

PRF60, represented by circles, measurements made at 4.0 MPa. LbM results are 

represented by asterisks. 

 

Figure 5.6. Ignition delay time versus reciprocal temperature for stoichiometric pure 

individual constituents (PRF0 and PRF100) represented by solid lines and their blend, 

PRF80, represented by circles, measurements made at 4.0 MPa. LbM results are 

represented by asterisks. 
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Figure 5.7. Ignition delay time versus reciprocal temperature for stoichiometric pure 

individual constituents (PRF0 and PRF100) represented by solid lines and their blend, 

PRF90, represented by circles, measurements made at 4.0 MPa. LbM results are 

represented by asterisks. 

5.2.4 Toluene/n-heptane blend. 

Experimental delay times for a stoichiometric toluene/n-heptane blend with fractional 

liquid volume ratios of 0.35 of n-heptane and 0.65 of toluene were obtained from the 

shock tube measurements of Herzler et al. [2007]. All mixtures were stoichiometric at a 

pressure of 3.0 MPa and temperatures between 620 and 1180K. Table 5.3 shows the 

proportions of constituent fuels in the blend in different fractions, derived from Eqs. 

(4.11) and (4.13). The blend was designated as T78, indicative of the toluene mole 

fraction in the fuel.  

 Composition 
Fuel designation 

 toluene n-heptane 

Liquid volume fraction 0.65 0.35 

T78 
Fuel mole fraction  0.78 0.22 

Table 5.3. Liquid fuel blends designation and constituents proportions. 

Similar to the procedure for PRF blends, the LbM predictions are presented along with 

the measurements. The predictions in Fig. 5.8 agree relatively well with the experimental 
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results at the higher temperatures. However, there is substantial disagreement at the low 

temperatures, from where the n-heptane NTC region starts. The asterisked predicted 

values become rather closer to the toluene values than to the measured blend values. 

 

Figure 5.8. Experimental ignition delay time versus reciprocal temperatures for Toluene 

and n-heptane represented by solid curves and their blend, T78, represented by circles. 

LbM results are represented by asterisks. (∅=1.0, Pressure 3.0 MPa). 

5.2.5 iso-octane/n-butanol blend. 

Figs. 5.9 and 5.10 show both the LbM predictions, the measured ignition delay times of 

the constituent mixtures, and of their blends for stoichiometric I50 and I70, the 

compositions of which are shown in Table 4.3. Measurements were at 2.0 MPa for both 

blends. Results for the constituent fuels and their blends are shown in more detail in 

Section 4.5.1. Here only the experimental points for blend results are shown for 

comparison with the LbM predictions. For I50, LbM over-predicts the values of τ 

throughout the temperature range. For I70, fairly good predictions occur throughout the 

temperature range, but with slightly over-prediction at low temperature. In general, 

predictions were better at the higher temperatures. 
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Figure 5.9. Experimental ignition delay time against reciprocal temperatures for iso-

octane and n-butanol represented by solid curves and their blend, I50, represented by 

circles, LbM predictions are represented by asterisks. (∅=1.0, Pressure 2.0 MPa). 

   

Figure 5.10. Experimental ignition delay time against reciprocal temperatures for iso-

octane and n-butanol represented by solid curves and their blend, I70, represented by 

circles, LbM predictions are represented by asterisks. (∅=1.0, Pressure 2.0 MPa). 
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5.2.6 Toluene/n-butanol blend. 

Figs. 5.11 and 5.12 compare the LbM predictions, the measured ignition delay times of 

the constituent mixtures, and of the stoichiometric T50 and T70 blends, measured in the 

course of present work at 2.0 MPa. Detailed composition of these blends are shown in 

Table 4.3, along with their experimental measurements in Section 4.5.2. As with the iso-

octane/n-butanol blends, only experimental points for blends are shown in this case, to 

allow clear comparison between the experimental results and LbM predictions. The LbM 

ignition delay times strongly over-predict the blends’ measured ignition delay times 

throughout the temperature range. 

 

Figure 5.11. Experimental ignition delay time against reciprocal temperatures for Toluene 

and n-butanol represented by solid curves and their blend, T50, represented by circles, 

LbM predictions are represented by asterisks. (∅=1.0, Pressure 2.0 MPa). 

 

A very surprising feature is observed with these blends, in that the experimental values 

for the blends are so close to the values of n-butanol. The reason for this feature was 

suggested in Section 4.5.2, that, n-butanol generates chain branching radicals that 

overwhelm those created by toluene and thus the n-butanol reactions dominate over those 

of the toluene. This feature makes the LbM blending law fails to predict correctly the τ 

values. 
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Figure 5.12. Experimental ignition delay time against reciprocal temperatures for Toluene 

and n-butanol represented by solid curves and their blend, T70, represented by circles, 

LbM predictions are represented by asterisks. (∅=1.0, Pressure 2.0 MPa). 

5.2.7 TRF/ethanol and TRF/n-butanol blends. 

A further analysis of LbM predictions was conducted on the blends of TRF/ethanol and 

TRF/n-butanol. Fuel mole fraction, fuel/air mole fractions of ethanol and n-butanol in the 

TRF/ethanol (E blends) and TRF/n-butanol (B blends) were calculated from their 

corresponding liquid volume fractions using Eq. (4.11). The data are summarised in 

Tables 4.5 and 4.7 in Chapter 4. The measured ignition delay times for the TRF mixture 

and the blends were presented in Sections 4.6.3 and 4.6.4 in Chapter 4. Only experimental 

data points for blends are shown here, in order to feature a clear comparison with LbM 

predictions. 

Figs. 5.13-5.15 show the plots of measured ignition delay times together, with the LbM 

predicted values for TRF/ethanol. The best predictions occur with E25 in Fig. 5.13, but 

otherwise the ethanol blend values are over-predicted, particularly at low temperatures.  



CHAPTER 5: AUTOIGNITION BLENDING LAW. 

 

146 
 

 

Figure 5.13. Experimental ignition delay time against reciprocal temperatures for TRF 

and Ethanol represented by solid curves and their blend E25 represented by circles, LbM 

predictions represented by asterisks. (∅=1.0, Pressure 2.0 MPa). 

 

 

Figure 5.14. Experimental ignition delay time against reciprocal temperatures for TRF 

and Ethanol represented by solid curves and their blend E50 represented by circles, LbM 

predictions represented by asterisks. (∅=1.0, Pressure 2.0 MPa). 
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Figure 5.15. Experimental ignition delay time against reciprocal temperatures for TRF 

and Ethanol represented by solid curves and their blend E75 represented by circles, LbM 

predictions represented by asterisks. (∅=1.0, Pressure 2.0 MPa). 

 

The TRF/n-butanol data extend to lower values of temperatures than those for ethanol 

and the experimental values indicate some influence of the TRF NTC regime. This is 

particularly so for B50 in Fig. 5.17. The predicted values show less influence. 

It is striking that the τ values for some of the blends are lower than those of the pure 

constituent fuel. This is particularly evident for B75 blend for temperatures below 800K 

in Fig. 5.18. At such conditions the LbM blending law fails to predict τ values.  
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Figure 5.16. Experimental ignition delay time against reciprocal temperatures for TRF 

and n-butanol represented by solid curves and their blend B25 represented by circles, 

LbM predictions represented by asterisks. (∅=1.0, Pressure 2.0 MPa). 

 

Figure 5.17. Experimental ignition delay time against reciprocal temperatures for TRF 

and n-butanol represented by solid curves and their blend B50 represented by circles, 

LbM predictions represented by asterisks. (∅=1.0, Pressure 2.0 MPa). 
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Figure 5.18. Experimental ignition delay time against reciprocal temperatures for TRF 

and n-butanol represented by solid curves and their blend B75 represented by circles, 

LbM predictions represented by asterisks. (∅=1.0, Pressure 2.0 MPa). 

5.3 Improved blending law for PRF mixture. 

A further development was made to improve the LbM blending law empirically for the 

PRF mixtures. More generally, the results obtained from the above 14 different blends 

show that the blending linearity of Eq. (5.8) is most closely followed when there is no 

NTC behaviour. A good example of this is the good predictability of the blending law for 

CH4/H2 blends in Section 5.2.1. The LbM predictions begin to deviate from the 

experimental values when one, or both, of the components show NTC behaviour. In this 

section the LbM predicted ignition delay times for PRF mixtures are compared with 

experimental values. In the PRF mixtures, the presence of n–heptane ensures the 

occurrence of NTC behaviour. The onset of NTC in this case was defined by the 

corresponding temperature at the inflexion point after the local maximum, 𝜏, of n-heptane 

curve, which is about 870K. For temperatures below 870K, it was found that the 

experimental ignition delay times of the PRF mixtures from Fieweger et al. [1997] could 

be related to the octane number (ON), temperature To, LbM predicted delay times 𝜏𝐿𝑏𝑀 

and an exponential factor m using the following empirical expression for 𝜏𝑖.  
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𝜏𝑖 = 𝜏𝐿𝑏𝑀(𝑂𝑁. 1000 𝑇𝑜⁄ )𝑚 , for 1000 𝑇𝑜⁄  > 1.15.                                                    (5.11) 

With 𝜏𝑖 equal to the experimental values, and those of m were calculated from;  

𝑚 =
log (𝜏𝑖 𝜏𝐿𝑏𝑀)⁄

log (𝑂𝑁. 1000 𝑇𝑜⁄ )
 

(5.12) 

Fig. 5.19 shows values of m for different PRF mixtures and temperatures at a pressure of 

2.0 MPa. Evaluated in this way, a linear fit curve is fitted through the data points and 

there suggest a constant value of -0.8 for 1000 𝑇𝑜⁄  > 1.19. 

 

Figure 5.19. Values of m for PRF mixtures at different temperature, Pressure 2.0 MPa. 

The dotted line is the best fit through the values of m. 

With this value of m, and application of Eq. (5.11) for the temperatures below 870K, the 

values of 𝜏𝑖 are plotted in Figs. 5.20-5.22, by the square symbols. There is very good 

agreement between the three PRFs and conditions shown, and the measurements, shown 

by the circle symbols. However, such a direct procedure was not applicable to the other 

blends in Section 5.2. 
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Figure 5.20. Experimental ignition delay time against reciprocal temperatures for n-

heptane and iso-octane represented by solid curves and their blend, PRF60, represented 

by circles. 𝜏𝐿𝑏𝑀 PRF corrected values are shown by square symbols. (∅=1.0, Pressure 4.0 

MPa). 

   

Figure 5.21. Experimental ignition delay time against reciprocal temperatures for n-

heptane and iso-octane represented by solid curves and their blend, PRF80, represented 
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by circles. 𝜏𝐿𝑏𝑀 PRF corrected values are shown by square symbols. (∅=1.0, Pressure 4.0 

MPa). 

 

   

Figure 5.22. Experimental ignition delay time against reciprocal temperatures for n-

heptane and iso-octane represented by solid curves and their blend, PRF90, represented 

by circles. 𝜏𝐿𝑏𝑀PRF corrected values are shown by square symbols. (∅=1.0, Pressure 4.0 

MPa). 

 

5.3 Generalisation of deviations of LbM ignition delay times from 

experimental measurements. 

This Section reports a study of the difference between the LbM predictions and 

experimental measurements, for all the fuel blends studied in Section 5.2. The aim was 

to generalise these differences as a function of temperature and fuel concentration. 

Changes are made to the Arrhenius parameters employed in the LbM method in Eq. (5.7).  

 The starting point is the predictions of the values of 𝑙𝑛𝐴, rather than 𝐸 𝑅⁄ , on the grounds 

that concentrations of intermediate radicals and species are likely to centre on changes in 

collision frequencies, and hence values of A. These cannot be derived by simple mole 

PRF 90, exp [Fieweger et al., 1997 

PRF 90, improved prediction 
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weighting. Changes in 𝑙𝑛𝐴 are assumed to vary nonlinearly with fuel concentration and 

temperature. Hence the methodology is termed as the non-linear by mole (nLbM) method. 

Essentially, values of 𝑙𝑛𝐴 for each fuel/air constituent mixture, obtained from Eq. (5.10), 

𝐴 = 𝜏exp (−𝐸 𝑅𝑇)⁄ , are “tweaked” to obtain a perfect fit to their experimental τ values 

using their known values of (𝐸 𝑅)⁄ . These modified values of 𝑙𝑛𝐴 are identified as 𝑙𝑛𝐴𝑓. 

The difference between the original measured values of 𝑙𝑛𝐴 and those of 𝑙𝑛𝐴𝑓 are 

calculated for each constituent mixture B and C. Importantly, the differences are 

designated as 𝑙𝑛𝐴′
𝐵 and 𝑙𝑛𝐴′

𝐶 . These values are regarded as the deviation values from 

the “true” values of 𝑙𝑛𝐴. Thus: 

𝑙𝑛𝐴𝑓𝐵 = 𝑙𝑛𝐴𝐵 − 𝑙𝑛𝐴′
𝐵, and                                                                                      (5.12) 

𝑙𝑛𝐴𝑓𝐶 = 𝑙𝑛𝐴𝐶 − 𝑙𝑛𝐴′
𝐶.                                                                                              (5.13) 

Similarly, for their blend, D, 

𝑙𝑛𝐴𝑓𝐷 = 𝑙𝑛𝐴𝐷 − 𝑙𝑛𝐴′
𝐷                                                                                              (5.14) 

Values of 𝑙𝑛𝐴′
𝐷, for blend D are expressed in terms of the mole weightings 𝑥𝐵 and 𝑥𝐶 of 

the constituent mixtures by: 

𝑙𝑛𝐴′𝐷 = 𝑥𝐵𝑙𝑛𝐴′𝐵 + 𝑥𝐶𝑙𝑛𝐴′
𝐶.                                               (5.15) 

From all the calculated values in this equation for the different mixtures, it was found that 

the values of the two terms on the right side of the equation were always within 10% of 

each other. From Eq. (5.15) 𝑙𝑛𝐴′
𝐷was readily evaluated. The proposed revised values of 

𝑙𝑛𝐴𝐷, namely 𝑙𝑛𝐴𝑓𝐷, are found from Eqs. (5.8), (5.14) and (5.15). 

𝑙𝑛𝐴𝑓𝐷 = (𝑥𝐵. 𝑙𝑛𝐴𝐵 + 𝑥𝐶 . 𝑙𝑛𝐴𝐶) − (𝑥𝐵. 𝑙𝑛𝐴′
𝐵 + 𝑥𝐶 . 𝑙𝑛𝐴′

𝐶)                                      (5.16) 

Fig. 4.23 shows the deviation parameters 𝑥𝑇𝑅𝐹𝑙𝑛𝐴′𝑇𝑅𝐹 and 𝑥𝑏𝑢𝑡𝑙𝑛𝐴′𝑏𝑢𝑡 for the TRF/n-

butanol blend, B25, at different reciprocal temperatures and a pressure 2.0 MPa. 

With these revised Arrhenius A, but with the original values (𝐸 𝑅)⁄  values for the 

constituent mixtures the revised ignition delay times, 𝜏𝐷(𝑛𝐿𝑏𝑀)
; 

𝑙𝑛𝜏𝐷(𝑛𝐿𝑏𝑀)
= 𝑥𝐵(𝑙𝑛𝐴𝐵 + (𝐸 𝑅𝑇)⁄

𝐵
) + 𝑥𝐶(𝑙𝑛𝐴𝐶 + (𝐸 𝑅𝑇)⁄

𝐶
) − (𝑥𝐵. 𝑙𝑛𝐴′

𝐵)

− (𝑥𝐶 . 𝑙𝑛𝐴′
𝐶) 

 

(5.17) 

𝑙𝑛𝜏𝐷(𝑛𝐿𝑏𝑀)
= 𝑙𝑛𝜏𝐷(𝐿𝑏𝑀)

− 2(𝑥𝐵. 𝑙𝑛𝐴′
𝐵)                                                                   (5.18) 
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Figure 5.23. Values of 𝑥. 𝑙𝑛𝐴′ for n-butanol and TRF obtained from blend B25, at 

different reciprocal temperatures, pressure 2.0 MPa. 

The procedure adopted was to express values of  𝑥𝐵. 𝑙𝑛𝐴′𝐵 as a function of reciprocal 

temperature for different blend compositions. These were then used to re-evaluate the 

values of 𝜏𝐷 for the blends. Results are highlighted, first for the PRF blends, which are 

followed by other blends. 

5.3.1 Primary Reference Fuel (PRF) blends. 

The three PRF blends which were considered in Section 5.2.3 were subjected to this same 

analysis and the calculated 𝑥𝑖𝑠𝑜−𝑜𝑐𝑡𝑎𝑛𝑒. 𝑙𝑛𝐴′𝑖𝑠𝑜−𝑜𝑐𝑡𝑎𝑛𝑒 values are plotted against 

reciprocal temperature in Fig. 5.24. A fairly general trend in values was obtained for the 

three PRF mixtures and second order best fit curve was fitted through the data points. The 

ignition delay times were calculated from Eq. (5.18) with the values of 

𝑥𝑖𝑠𝑜−𝑜𝑐𝑡𝑎𝑛𝑒. 𝑙𝑛𝐴′𝑖𝑠𝑜−𝑜𝑐𝑡𝑎𝑛𝑒  from the best fit curve in Fig. 5.24. The values of 𝜏 are plotted 

against the reciprocal temperature in Figs. 5.25-5.27, along with the LbM predictions and 

experimental values. The revised blend values of 𝜏 are close to the measured values. 
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Figure 5.24. Values of the correction factors 𝑥𝑖𝑠𝑜−𝑜𝑐𝑡𝑎𝑛𝑒 . 𝑙𝑛𝐴′𝑖𝑠𝑜−𝑜𝑐𝑡𝑎𝑛𝑒 for 

stoichiometric PRF blends, at pressure of 4.0 MPa and different reciprocal temperatures. 

 

Figure 5.25. Experimental and predicted ignition delay time against reciprocal 

temperature for PRF0 and PRF100 represented by solid curves. Their blend, PRF60, is 

represented by circles. Predicted values from LbM and nLbM methods are also shown. 

(∅=1.0, Pressure 4.0 MPa). 
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Figure 5.26. Experimental and predicted ignition delay time against reciprocal 

temperature for PRF0 and PRF100 represented by solid curves. Their blend, PRF80, is 

represented by circles. Predicted values from LbM and nLbM methods are also shown. 

(∅=1.0, Pressure 4.0 MPa). 

 

Figure 5.27. Experimental and predicted ignition delay time against reciprocal 

temperature for PRF0 and PRF100 represented by solid curves. Their blend, PRF90, is 

represented by circles. Predicted values from LbM and nLbM methods are also shown. 

(∅=1.0, Pressure 4.0 MPa). 
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It is clear from these three figures that the nLbM approach is accurately descriptive. The 

same approach was adapted for other blends. 

5.3.2 Toluene/n-heptane blend. 

In contrast, for the toluene/n-heptane blend [Herzler et al., 2007], the correction factor 

𝑥𝑡𝑜𝑙 . ln 𝐴′
𝑡𝑜𝑙 was found to vary linearly with reciprocal temperature, as shown in Fig. 

5.28. The nLbM and experimental results are shown in Fig. 5.29 for the T78 blend, and 

an excellent agreement between them is observed. 

 

 

Figure 5.28. Values of correction factor 𝑥𝑡𝑜𝑙 . 𝑙𝑛𝐴′𝑡𝑜𝑙 for T78 blend, ∅=1.0, at Pressure 

3.0 MPa and different reciprocal temperatures. 
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Figure 5.29. Experimental and predicted ignition delay time against reciprocal 

temperature for Toluene and n-heptane represented by solid curves and their blend, T78, 

represented by circles, LbM and nLbM results are respectively represented by asterisks 

and triangles. (∅=1.0, Pressure 3.0 MPa). 

5.3.3 Toluene/n-butanol blends. 

Fig. 5.30 shows the correction factor 𝑥𝑏𝑢𝑡. ln 𝐴′
𝑏𝑢𝑡 for T50 and T70 blends at different 

reciprocal temperatures. A general expression was obtained for this factor as a function 

of percentage mole fraction of n-butanol in the blend and the temperature. This took the 

form;  

𝑥𝑏𝑢𝑡. 𝑙𝑛𝐴′𝑏𝑢𝑡 = 𝑓𝑜 + 𝑓[100𝑥𝑏𝑢𝑡],                                                                              (5.19) 

𝑓𝑜 and 𝑓 are linear functions with their coefficients given by: 

𝑓𝑜 = 8.49𝑇∗ − 6.66                                                                                                   (5.20) 

𝑓 = −0.049𝑇∗ + 0.028                                                                                             (5.21) 

where 𝑇∗= 1000/To, 

Results from the nLbM methodology using Eq. (5.19) gives excellent agreement with the 

experimental ignition delay times for T50 and T70, as is shown in Figs. 5.31 and 5.32. It 

is noteworthy that the ignition delay times for T50 and T70 blends are now accurately 

predicted as close to those of pure n-butanol. 
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Figure 5.30. Values of 𝑥𝑏𝑢𝑡 . 𝑙𝑛𝐴′𝑏𝑢𝑡 for T50 and T70 blends, at changing temperature. 

 

 

Figure 5.31. Experimental and predicted ignition delay time against reciprocal 

temperature for Toluene and n-butanol represented by solid curves and their blend, T50, 

represented by circles, LbM and nLbM results are respectively represented by asterisks 

and triangles. (∅=1.0, Pressure 2.0 MPa). 
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Figure 5.32. Experimental and predicted ignition delay time against reciprocal 

temperature for Toluene and n-butanol represented by solid curves and their blend, T70, 

represented by circles, LbM and nLbM results are respectively represented by asterisks 

and triangles. (∅=1.0, Pressure 2.0 MPa). 

5.3.4 iso-octane/n-butanol blends. 

The same technique was used to obtain correction factors for the I50 and I70 blends. In 

this case, the functions 𝑓𝑜 and 𝑓 necessitated 4th degree polynomials. Different 

coefficients were obtained for three main regions; the pre-NTC region (T<703K), the 

NTC region (T=703-815K) and post-NTC region (T>815K) indicated by (i), (ii) and (iii), 

respectively. 

(i) 𝑓𝑜 = −918.65𝑇∗4 + 4657.47𝑇∗3 − 8767.3𝑇∗2 + 7270.8𝑇∗ − 2243.9, (5.22) 

      𝑓 = 49.03𝑇∗4 − 268.9𝑇∗3 + 541.6𝑇∗2 − 477.2𝑇∗ + 155.6, (5.23) 

(ii) 𝑓𝑜 = 6376.8𝑇∗4 − 33746.46𝑇∗3 + 66871.9𝑇∗2 − 58805.7𝑇∗ + 19361.9,      (5.24) 

       𝑓 = −22.68𝑇∗4 + 125.4𝑇∗3 − 258.3𝑇∗2 + 235.1𝑇∗ − 79.8, (5.25) 

(iii) 𝑓𝑜 = 6666.8𝑇∗4 − 38303.16𝑇∗3 + 82559.7𝑇∗2 − 79125.49𝑇∗ + 28450.9, (5.26) 

        𝑓 = −1122.1𝑇∗4 + 6399.7𝑇∗3 − 13686𝑇∗2 + 13007.3𝑇∗ − 4635.5, (5.27) 

Again, 𝑥𝑏𝑢𝑡. 𝑙𝑛𝐴′𝑏𝑢𝑡 = 𝑓𝑜 + 𝑓[100𝑥𝑏𝑢𝑡]. 



CHAPTER 5: AUTOIGNITION BLENDING LAW. 

 

161 
 

 

Figure 5.33. Best fit lines for values of fo at different temperatures, with their R-squared 

values. 

 

Figure 5.34. Best fit lines for values of f at different temperatures, with their R-squared 

values. 
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Ignition delay times were recalculated from Eq. (5.18) with the respective correction 

factors from Eqs. (5.22-5.27). These are plotted against reciprocal temperature for I50 

and I70 blends in Figs. 5.35 and 5.36. Predictions from the nLbM method are compared 

with experimental values for the two blends, the nLbM predictions for these blends are 

good, but at the expense of a fourth order curve fit. 

   

Figure 5.35. Experimental ignition delay times against reciprocal temperatures for iso-

octane and n-butanol represented by solid curves and their blend, I50, represented by 

circles. nLbM results are represented by triangles. (∅=1.0, Pressure 2.0 MPa). 
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Figure 5.36. Experimental ignition delay times against reciprocal temperatures for iso-

octane and n-butanol represented by solid curves and their blend, I70, represented by 

circles. nLbM results are represented by triangles. (∅=1.0, Pressure 2.0 MPa). 

5.3.5 TRF/ethanol and TRF/n-butanol blends. 

The nLbM method was further tested using the experimental results for TRF/Ethanol and 

TRF/n-butanol blends. The relevant correction factors for the different blends are shown 

in Fig 5.37. The best fit curves for the same liquid volume percentage of ethanol and n-

butanol in TRF are also shown in Fig. 5.37. Values of correction factors 𝑥𝑇𝑅𝐹 . 𝑙𝑛𝐴′
𝑇𝑅𝐹 as 

a function of temperature and percentage of ethanol or n-butanol liquid volume in the 

blend, are expressed by the quadratic equation; 

𝑥𝑇𝑅𝐹 . 𝑙𝑛𝐴′
𝑇𝑅𝐹 = −2.04𝑏𝑇∗2 + 5.07𝑐𝑇∗ − 2.92𝑑,                                                   (5.28) 

Where,𝑏 = (𝐴𝐿𝑉% 25)⁄ 1.83
, 𝑐 = (𝐴𝐿𝑉% 25)⁄ 1.86

, 𝑑 = (𝐴𝐿𝑉% 25)⁄ 1.94
 

ALV% = Ethanol or n-butanol liquid volume percentage in the blend mixture.       

Figs. 5.38-5.43 show the measured and predicted values of ignition delay times for the 

different blends. The τ values obtained using the correction factor in Eq. (5.28) show 

fairly good agreement with experimental τ values for all the blends and conditions.   
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Figure 5.37. Values of 𝑥𝑇𝑅𝐹 . 𝑙𝑛𝐴′𝑇𝑅𝐹 at 2.0 MPa at different reciprocal temperatures for 

TRF/ethanol and TRF/n-butanol blends. The lines are the best fit curves through the same 

percentage of liquid volume of ethanol and n-butanol in the blends. (∅=1.0, Pressure 2.0 

MPa). 

 

Figure 5.38. Experimental ignition delay time against reciprocal temperatures for TRF 

and Ethanol represented by solid curves and their blend E25 represented by circles. nLbM 
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results are represented by triangles and corresponding LbM results by asterisks. (∅=1.0, 

Pressure 2.0 MPa). 

  

Figure 5.39. Experimental ignition delay time against reciprocal temperatures for TRF 

and Ethanol represented by solid curves and their blend E50 represented by circles. nLbM 

results are represented by triangles and corresponding LbM results by asterisks. (∅=1.0, 

Pressure 2.0 MPa). 

  

Figure 5.40. Experimental ignition delay time against reciprocal temperatures for TRF 

and Ethanol represented by solid curves and their blend E75 represented by circles. nLbM 
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results are represented by triangles and corresponding LbM results by asterisks. (∅=1.0, 

Pressure 2.0 MPa). 

  

Figure 5.41. Experimental ignition delay time against reciprocal temperatures for TRF 

and n-butanol represented by solid curves and their blend B25 represented by circles. 

nLbM results are represented by triangles and corresponding LbM results by asterisks. 

(∅=1.0, Pressure 2.0 MPa). 

 

Figure 5.42. Experimental ignition delay time against reciprocal temperatures for TRF 

and n-butanol represented by solid curves and their blend B50 represented by circles. 

nLbM results are represented by triangles and corresponding LbM results by asterisks. 

(∅=1.0, Pressure 2.0 MPa). 
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Figure 5.43. Experimental ignition delay time against reciprocal temperatures for TRF 

and n-butanol represented by solid curves and their blend B75 represented by circles. 

nLbM results are represented by triangles and corresponding LbM results by asterisks. 

(∅=1.0, Pressure 2.0 MPa). 

 

Figure 5.44. Deviations of predicted from measured blend delay times, x.lnA', against 

reciprocal temperatures for different blends. 
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5.4 Summary. 

Limitations in the predictions of 𝜏 values of blends using the LbM method necessitated 

the introduction of a further correction method, which is generalized for different fuel 

classes. Fig. 5.44 summarises these correction values, x.lnA’, for the different blends, at 

different temperatures. These correction values give an insight into the difference 

between experimental and predicted 𝜏 values, described below.  

5.4.1 Toluene/n-butanol blends. 

 The differences for Toluene/n-butanol blends are the highest of all the blends tested, and 

decline with the increase in temperature and amount of n-butanol in the blend. The 

chemistry of the more reactive component in the blend, n-butanol in this case, dominates 

at lower temperatures and blends delay times are closer to those of pure n-butanol. This 

suggests that at lower temperatures, n-butanol generates chain branching radicals faster 

than toluene and these then make toluene more reactive, with consequent shorter delay 

times. Similar results have been reported by Di Sante [2012], Hartmann et al. [2011] and 

Vanhove et al. [2006] for toluene/n-heptane, with n-heptane having a similar effect on 

toluene like n-butanol.  

5.4.2 TRF/ethanol and TRF/n-butanol blends. 

For these blends, at higher and lower temperatures, measured ignition delay times are 

fairly well predicted using the LbM method, although an over prediction is seen in the 

temperature range where TRF NTC behaviour is observed. In this intermediate 

temperature range, as it was the case with toluene/n-butanol blends, the more reactive 

component in the blend tends to dominate the chemistry and generate chain branching 

radicals at the faster rate than the less reactive component in quantities sufficient enough 

to initiate auto-ignition reactions. This reduces the delay times to values shorter than those 

predicted by LbM. This effect increases with the proportion of n-butanol (or ethanol) in 

the blend. 

5.4.3 iso-octane/n-butanol blends. 

These blends show relatively better agreement between measured and predicted delay 

times, throughout the temperature range. However, with the increase of n-butanol in the 

blend the same effect as that observed with the other classes of blends occurs. At the 

higher temperatures the more reactive n-butanol makes iso-octane more reactive, while 

at the lower temperatures the iso-octane is more reactive than n-butanol.  
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5.4.4 Conclusion. 

It is evident that it is difficult to accurately predict the ignition delay times of blends with 

components of different reactivities based on the delay times of each component. Chain 

branching radicals generated during reactions play a big role in determining the overall 

ignition delay time. At the same temperature, the more reactive component tends to 

generate these radicals first in quantities which are sufficient to initiate the chain reactions 

within the blend. This can quickly elevate the temperature of the bulk mixture and 

promote earlier ignition.  

It is further observed that the over prediction of LbM values is more pronounced with the 

increase in the differences in reactivity of the constituent fuels. Fig. 5.45 shows the 

relationship between the deviations of predicted delay times from the measured ones, 

x.lnA’, and the differences in τ for the separate components, 𝜏𝐵 − 𝜏𝐶. For (𝜏𝐵 − 𝜏𝐶) > 20 

ms, the increased difference in τ values results in larger deviation of predicted from 

measured delay times, where as there is no substantial change of x.lnA’ when values of 

(𝜏𝐵 − 𝜏𝐶) are lower. 

 

Figure 5.45. Deviations of predicted from measured blend delay times, x.lnA', against the 

difference in measured delay times of individual components in the blend. 

 

 

 

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 10 100 1000

x.
ln

A
'

τB-τC (ms)

T50 T70 E25 E50 E75 B25 B50 I50 I70



CHAPTER 6: CONCLUSIONS SUMMARY AND FUTURE RESEARCH. 

 

170 
 

 

CHAPTER 6: CONCLUSIONS SUMMARY AND FUTURE 

RESEARCH. 

6.1 Introduction. 

Alternative fuels provide an opportunity to achieve improved engine performance, less 

pollution production, and reduce reliance on conventional petroleum based fuels. These 

new fuels can be synthetically developed by combining the different individual 

components of hydrocarbons present in conventional fuels, with sometimes addition of 

bio-alcohols. The motivation behind this work was to broaden our understanding of the 

combustion behaviours, specifically auto-ignition property, of, first, the individual 

components that make synthetic fuels and then followed by their blends under different 

conditions of pressure, temperature and concentration.  

The work in this thesis has measured and investigated ignition delay times using RCM 

mostly at constant pressure of 2.0 MPa and varying temperatures (650K-1000K) (Chapter 

4). Leeds RCM was significantly modified before collecting these measurements 

(Chapter 2), and this has allowed to improve accuracy as well as reach conditions that 

were not achievable before. Key conclusions from various work that were conducted in 

this research are summarised in the following section, together with the recommendations 

for future research.  

6.2 Conclusions. 

6.2.1 RCM strength and limitations. 

In this work, RCMs from UCT (Section 2.2) and Leeds (Section 2.3) were used to 

measure τ values of the tested fuels. RCM is an attractive machine for accurately 

measuring long range of τ over other machines, this is due to:  

i) Fairly fast compression comparable to those occurs in engines, the current machine has 

an average piston speed of 12.7m/s. 

ii) Unlike shock tubes, RCMs can maintain its end of compression conditions relatively 

longer circa 100ms compared to circa 10ms for shock tubes.  
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iii) Ability to isolate other physical effects such as those occur in engines eg. Valve operation, 

gas mixing and expansion strokes. 

The Leeds RCM was substantially modified to meet the requirements of the current study. 

These modifications were made to achieve the following; (a) Increase end of compression 

pressure up to 2.0MPa, (b) Increase and control end of compression temperatures between 

600K and 1000K, (c) Improve piston rapidity during compression and ensure it is 

effectively damped without rebound at the end of compression, (d) Improve mixture 

preparation accuracy between tests by using a separate mixing chamber and (e) Accurate 

measurement of piston displacement during compression. Chapter 2 has described details 

of different modifications that were made to achieve the above said requirements 

successfully, together with the performance characterisation of machine using well 

researched fuels of iso-octane and toluene in Chapter 3. The results were compared with 

existing literature data and good agreement was found. 

The modified RCM however still had the following limitations; 

i)  The delay times longer than 120 ms could not be accurately measured, significant non-

homogeneity within the core gas occurred resulted into poor measurement repeatability 

and in some cases mixtures could not be ignited.  

ii) The machine could only compress the mixture up to a maximum pressure of 2.7 MPa 

without piston rebound during ignition. This was due to the limited initial piston holding 

force by the hydraulic oil which restricted the driving force to a certain amount to ensure 

the driving force is less than the holding force before firing.  

iii) Piston displacement measurements restricted to the final 30 mm of compression, this is 

due to the type of displacement laser head that is used. 

iv) Current set up limits the chamber optical access.   

6.2.2 Consortium study of τ measurements of iso-octane.  

The problems with discrepancy of τ values measured in different RCMs has existed for a 

while. Differences in heat loss and compression times between machines are reported as 

the main factors for such discrepancy. Since measurements from RCMs are commonly 

used to validate and generate chemical kinetic mechanisms, it is very important to 

understand and quantify these discrepancies between machines. An international RCM 

workshop was held to address, among other things, this issue where it was decided to 
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measure τ values of iso-octane at exactly the same conditions using different RCMs. 

Analysis of the measured τ values from the consortium yielded the following conclusions: 

 Heat loss during the delay time was indeed different for different RCMs. Those with large 

heat loss measured longer delay times than those with small heat loss. Correction for this 

effect was made using mean pressure and temperature during delay time. 

 Compression times for different RCMs was also different. For machines with slower 

compression times, combustion reactions start to take place during compression and thus 

measures shorter ignition delay times than those with faster compression. Corrections 

were made using values of Livengood-Wu integrals at the end of compression, (LWI)o, 

for different machines, and extrapolation to (LWI)o=0 was made to obtain ideal τ values. 

 At higher temperatures, the auto-ignition is very strong which is evident from the 

generated pressure oscillations and the calculated LWI falls below unity which suggests 

that auto-ignition is initiated from hot spots at these conditions. 

 Final corrected τ values are generally longer than the original measured values with the 

big difference seen at the intermediate temperature range where NTC occurs. 

 This study can be considered and used as a foundational study to quantify the error in 

delay times caused by non-ideal behaviour of practical RCMs. Additional studies using 

these RCMs (or more even better) and different fuels at different conditions, is warranted 

in order to make possible the generation of an empirical relationship between 

compression time, heat loss and measured delay times to obtain an ideal τ values. This 

will isolate the facility dependent errors from the reported experimental results and hence 

making generation and validation of chemical kinetic mechanism simpler and faster. 

6.2.3 τ measurements of hydrocarbon blends with alcohol. 

The addition of alcohol, particularly ethanol, in hydrocarbon fuels has received much 

attention for the past years due to their high resistance to auto-ignition and thus would act 

as the octane booster when blended with conventional gasoline fuels, and reduce the 

reliance of petroleum based fuels in transports which are known for its high contribution 

to CO2 production. Ethanol is currently widely used in the fuel pumps around the world, 

with as much as 85% by volume in the US [Davis, 2008]. However, as it was well 

described in Chapter 1, n-butanol has number of advantages over ethanol and potentially 

provides an opportunity to replace the latter. 
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Chapter 4 has reported the measured τ values of different hydrocarbons when blended 

with ethanol and n-butanol, and the following main conclusions can be drawn: 

 When compared with the hydrocarbons which exhibit NTC behaviour, the τ values of 

both n-butanol and ethanol are higher at lower temperatures and lower at higher 

temperatures. This is vital to understand the change of fuel behaviour when alcohol is 

added to these hydrocarbons. Generally, this study shows that, at higher temperatures the 

addition of alcohol makes those hydrocarbons fuels with NTC behaviour less resistant to 

auto-ignition, while at lower temperatures it makes them more resistant.  

 Increased end of compression pressure reduces the ignition delay times for the individual 

and blend fuels tested in the intermediate temperature range within the NTC region. Less 

effect is seen for higher and lower temperatures.  

 The addition of alcohol affects the NTC behaviour of the hydrocarbons tested. n-butanol 

greatly weakens their NTC strength while ethanol completely eliminates this behaviour.  

 Addition of n-butanol to toluene, an aromatic, significantly reduces the τ values of toluene 

for all temperatures studied in this work. There is substantial difference in reactivity 

between toluene and n-butanol, particularly at lower temperatures. This possibly suggests 

the more reactive n-butanol to dominate the reactions and making its blend with toluene 

significantly more reactive than pure toluene.   

 For the first time τ values were measured (Section 4.6.2) for a high octane TRF surrogate 

(RON=98.5), proposed by [Morgan et al., 2010], as a representative of European standard 

commercial gasoline (Gron 98 MK1), at stoichiometric conditions and a pressure of 

2.0MPa and temperatures 600K-1000K. Similar to other gasoline surrogates, it was found 

to have two stage ignition and NTC behaviour within the intermediate temperature range 

(769K-833K). Addition of alcohol (n-butanol and ethanol) in this TRF surrogate affected 

its auto-ignition property differently at different temperatures, in a similar fashion as that 

explained above.  

 Based on the results shown in this work, some blending strategies can be recommended. 

Suitability of different blends of hydrocarbons and alcohols, for use in engines, depends 

on the operating conditions of a given engine. In spark ignited (SI) engines, performance 

is mainly limited by the occurrence of knock in the end gas. The addition of n-butanol or 

ethanol in gasoline will improve its antiknock properties and thus enable operation at 

higher temperatures and pressures, and consequently improving performance and 

reducing emissions. Ethanol improves antiknock property substantially more than n-



CHAPTER 6: CONCLUSIONS SUMMARY AND FUTURE RESEARCH. 

 

174 
 

butanol, with higher effects seen for increased volume. However, this advantage can only 

be realised at lower temperatures. For example, for TRF mixtures increased delay times 

are obtained at temperatures lower than 740K when blended with n-butanol and 860K 

with ethanol. At higher temperatures these alcohols promote occurrence of auto-ignition 

and make them less suitable for use in SI engines and favourable for compression ignition 

(CI) engines. For use in CI engines, addition of either n-butanol or ethanol leads to almost 

the same auto-ignition effect, with their volume percentage in the blend playing no role. 

This would favour the use of n-butanol over ethanol because ethanol has low energy 

density as well as limited solubility in diesel fuel; hence the amounts of ethanol-diesel 

mixtures are restricted to small percentages (typically up to 20%). Availability of this data 

is also relevant to the efficient operation of homogeneous charge compression ignition 

(HCCI) engines which are purely controlled by the chemical kinetics of the fuel. 

Measured ignition delay times at different pressures, temperatures and concentrations 

make it possible to determine, for a particular fuel, the required initial conditions for 

HCCI engines as well as the point at which fuel should be injected so that it can be fully 

premixed before ignition occurs and set a compression ratio that will result to auto-

ignition at or near top dead centre (TDC). 

 Data collected in this work is also relevant to the chemical kinetics modellers. It was 

shown in Chapter 4 that, using the Leeds RCM, there was no substantial difference 

between simulations conducted using constant and variable volume approaches. This 

makes the lack of non-reactive pressure traces less critical. However, for different 

conditions of pressures and fuels with longer ignition delay times it will be necessary to 

obtain non-reactive pressure histories to accurately model the RCM experiment.   

6.2.4 Auto-ignition blending law. 

 A first attempt at an auto-ignition blending law was based on the mole weighting of 

Arrhenius parameters, namely, the pre-exponential factor A and the activation 

temperature, E/R. The method was designated as LbM. 

 Good agreement between LbM predictions and experimental results was obtained when 

the individual fuels in the blend did not show NTC behaviour, such as methane/hydrogen 

blends (Section 4.2.2). This was in good agreement with the previous proposed auto-

ignition blending laws by Cheng et al. [1984] and Gersen et al. [2008]. 

 For blends of fuels in which either one or both of them has NTC behaviour, a good 

agreement was obtained between LbM and experimental values only at high temperatures 
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but poor agreement at lower temperatures, where the NTC behaviour occurs. Very 

significant differences between predictions and experimental results were obtained when 

the two components had very different reactivities, such as that for toluene/n-butanol 

blends. (Chapter 4.2.6)  

 An attempt was made to empirically generalise, with greater complexity, the differences 

between the LbM predictions and experimental values for the different classes of 

hydrocarbons. Using the empirical relations, it was possible to obtain good agreement 

between the predictions (now designated as nLbM) and experiments, but the relationships 

were different for different fuels.  

  Such auto-ignition blending laws provide quick answers to the key auto-ignition 

problems in the combustion industry without the need to refer to any specific chemical 

reactions. More tests using this approach are warranted at different conditions to test its 

validity at these conditions.  

6.3 Future research.  

 More development of Leeds RCM is required. This includes, increased end of 

compression pressure of at least 4.0MPa to closely mimic the pressures achieved in the 

engines, incorporate crevices in the compression piston head together with the system of 

crevice containment at the end of compression to contain roll up vortices generated during 

compression and stop the transfer of mass from the core gas to the crevices after 

compression, full automation of the machine operation to increase efficiency, 

measurements of piston displacement for the full compression stroke and make access for 

optical measurements. 

 The author finds the significant change of τ values when n-butanol was added to toluene 

very interesting, and it is proposed that similar studies will be conducted but this time 

using a more commonly commercially used ethanol and determine whether the same 

effect will hold. 

  To fully characterise the individual fuels and the blends tested in this work, more studies 

are required at different pressures and equivalence ratios. 
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Appendix  

A.  Mixing chamber stress analysis. 

Stress analysis for the mixing chamber was conducted at the design level to ensure 

safety is achieved during operation. In all these calculations reference was made 

from Raymond and Warren., 1975. 

 

Flanges 

 

1. Top and bottom flanges bending stress. 

 

 

 

Maximum bending moment  𝑀𝑚𝑎𝑥 =
𝑊

4𝜋
[(1 + 𝑣)𝑙𝑛

𝑎

𝑟𝑜
+ 1] 

 

𝑤 = 𝑞𝜋𝑟2 = 5𝑥105𝑥𝜋𝑥(0.075)2 = 8.8357 kN 

 

𝑃𝑜𝑖𝑠𝑠𝑜𝑛′𝑠 𝑟𝑎𝑡𝑖𝑜, 𝑣 = 0.3 

 

𝑀𝑚𝑎𝑥 =
8835.7

4𝜋
[(1 + 0.3) ln (

0.1025

0.075
) + 1] = 988.65𝑁 

 

Assumptions: Uniform thickness 20 mm 
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                     : Factor of 6 for accidental combustion 

 

𝐵𝑒𝑛𝑑𝑖𝑛𝑔 𝑠𝑡𝑟𝑒𝑠𝑠, 𝛿𝑏 =
6𝑀

𝑡2
𝑥6 =

36𝑥988.65

0.022
= 88.978𝑀𝑃𝑎 

 

Yield strength for Stainless Steel 303 is 240MPa. Therefore there is a safety factor 

of; 

 
240

88.978
= 2.697 

 

2. Shear stresses on flanges 

 

𝑆ℎ𝑒𝑎𝑟 𝑎𝑟𝑒𝑎, 𝐴𝑠 = 𝜋𝑥𝑑𝑥𝑡  

d=0.15m, t=0.02m 

 

𝑆ℎ𝑒𝑎𝑟 𝑎𝑟𝑒𝑎, 𝐴𝑠 = 𝜋𝑥0.15𝑥0.02 = 9.424𝑥10−3 𝑚2  

 

Force exerted on the flange due to internal pressure is given as; 

𝐹 = 6𝑥𝑝𝑥𝐴 = 6𝑥5𝑥105𝑥
𝜋𝑥0.152

4
= 53.014 𝑘𝑁 
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𝑆ℎ𝑒𝑎𝑟 𝑠𝑡𝑟𝑒𝑠𝑠, 𝛿𝑠 =
𝐹

𝐴𝑠
=

53.014𝑥103

9.424𝑥10−3
= 5.625 𝑀𝑃𝑎 

 

Compare with yield strength of 240MPa, a safety factor in this case is 
240

5.625
= 42.6 

 

Vessel tube 

Assumptions: Thin wall pressure vessel 

                                 : Factor of 6 for accidental combustion 

 

𝐻𝑜𝑜𝑝 𝑠𝑡𝑟𝑒𝑠𝑠, 𝛿ℎ = 6𝑥
𝑝𝑑

2𝑡
 

            t = 0.00913m, d = 0.15m 

𝐻𝑜𝑜𝑝 𝑠𝑡𝑟𝑒𝑠𝑠, 𝛿ℎ = 6𝑥
5𝑥105𝑥0.15

2𝑥0.00913
= 24.64 𝑀𝑃𝑎 

 

Yield strength for stainless steel 316L is 170MPa.  

Therefore there is a safety factor of  
170

24.64
= 6.899 

 

Bolts 

Bolts used are M10 class 12.9. 

For these bolts the preload is given as 43.85kN (from thread specification 

catalogue) 
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This is compared against the force that each bolt will carry, assuming accidental 

combustion occurs in the mixing chamber.  

Total force in the mixing chamber with accidental combustion is 53.014 kN (as 

calculated above) and there are a total of 8 bolts fastened around the chamber. 

Therefore each bolt will carry; 

𝐹𝑏 =
53.014

8
= 6.626 𝑘𝑁  

Therefore a safety factor in the bolts is 
43.85

6.626
= 6.617 

 

Flange bending stress due to bolt preload (when no mixture in the mixing 

chamber) 

 

 

𝑀𝑚𝑎𝑥 =
𝑤𝑎2

𝑏
𝑥

𝐶9

𝐶8
 

 

𝐶9 =
𝑏

𝑎
{

1 + 𝑣

2
ln (

𝑎

𝑏
) +  

1 − 𝑣

4
[1 −  (

𝑏

𝑎
)

2

]} 

𝐶9 =
0.075

0.1025
{

1 + 0.3

2
ln (

0.1025

0.075
) +  

1 − 0.3

4
[1 −  (

0.075

0.1025
)

2

]} = 0.208 

𝐶8 =
1

2
[1 + 𝑣 + (1 − 𝑣) (

𝑏

𝑎
)

2

] 

𝐶8 =
1

2
[1 + 0.3 + (1 − 0.3) (

0.075

0.1025
)

2

] = 0.837388 



Appendix 

 

180 
 

𝑤 =
𝐹

2𝜋𝑟
=

43850

2𝑥𝜋𝑥0.1025
= 68.087 𝑘𝑁/𝑚 

 

𝑀𝑚𝑎𝑥 =
68087𝑥0.10252

0.075
𝑥

0.208

0.837388
= 2369𝑁 

 

𝐵𝑒𝑛𝑑𝑖𝑛𝑔 𝑠𝑡𝑟𝑒𝑠𝑠, 𝛿𝑏 =
6𝑥𝑀𝑚𝑎𝑥

𝑡2
=

6𝑥2369

0.022
= 35.5𝑀𝑃𝑎 

 

Therefore a safety factor is  
240

35.5
= 6.75 
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B. Table for stoichiometric coefficient and operating conditions. 

Fuel Stoichiometric coefficients Operating conditions 

    Pi(MPa) Ti(K) Tc(K) 

iso-octane 

 

0.0789 304 640 
 

0.792 310 650 

  0.766 312 676 

  0.771 322 694 
 

0.74 318 713 

  0.744 328 731 
 

0.708 319 752 

  0.712 328 769 
 

0.644 306 802 

  0.65 321 833 

  0.661 353 900 
 

0.589 321 925 

  0.591 328 941 

Toluene 

 

0.624 333 916 
 

0.571 322 970 

  0.572 328 985 

  0.574 334 999 

  0.575 340 1014 

  0.575 347 1031 

Table B.1. Stoichiometric coefficients and operating conditions for fuel mixtures studied in this work. 

 

 

𝐶8𝐻18 + 12.5𝑂2 + 47𝑁2 

𝐶8𝐻18 + 12.5𝑂2 + 35.1𝑁2 + 11.9𝐴𝑟 

𝐶8𝐻18 + 12.5𝑂2 + 47𝐴𝑟 

𝐶8𝐻18 + 12.5𝑂2 + 16.06𝑁2 + 30.94𝐴𝑟 

𝐶7𝐻8 + 9𝑂2 + 8.14𝑁2 + 25.7𝐴𝑟 

𝐶7𝐻8 + 9𝑂2 + 33.84𝐴𝑟 

𝐶8𝐻18 + 12.5𝑂2 + 35.1𝑁2 + 11.9𝐶𝑂2 

𝐶8𝐻18 + 12.5𝑂2 + 41.05𝑁2 + 5.95𝐶𝑂2 
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Table B.2. Stoichiometric coefficients and operating conditions for fuel mixtures studied in this work. 

 

 

Fuel Stoichiometric coefficients

P i (MPa) T i (K) T c (K)

0.86 353 670

0.75 323 688

0.75 333 706

0.731 323 721

0.675 314 745

0.68 331 778

0.67 353 865

0.815 322 652

0.77 324 685

0.764 338 733

0.69 325 805

0.694 340 835

0.7 355 865

0.659 344 895

0.662 355 918

0.816 322 651

0.772 325 687

0.75 323 715

0.76 347 760

0.695 326 805

0.7 341 835

0.665 346 895

I70

I50

n -butanol

Operating conditions

𝐶4𝐻10𝑂 + 6𝑂2 + 8.28𝑁2 + 14.28𝐶𝑂2

𝐶4𝐻10𝑂 + 6𝑂2 + 18.28𝑁2 + 4.28𝐶𝑂2

𝐶4𝐻10𝑂 + 6𝑂2 + 16.85𝑁2 + 5.71𝐴𝑟

𝐶4𝐻10𝑂 + 6𝑂2 + 22.56𝑁2

𝐶4𝐻10𝑂 + 6𝑂2 + 10.57𝑁2 + 11.99𝐴𝑟

0.3(𝐶4𝐻10𝑂) + 0.7 𝐶8𝐻18 + 10.55𝑂2 + 25.61𝑁2 + 14.06𝐶𝑂2

0.3(𝐶4𝐻10𝑂) + 0.7 𝐶8𝐻18 + 10.55𝑂2 + 32.14𝑁2 + 7.53𝐶𝑂2

0.3(𝐶4𝐻10𝑂) + 0.7 𝐶8𝐻18 + 10.55𝑂2 + 37.16𝑁2 + 2.51𝐶𝑂2

0.3(𝐶4𝐻10𝑂) + 0.7 𝐶8𝐻18 + 10.55𝑂2 + 18.58𝑁2 + 21.09𝐴𝑟

0.3(𝐶4𝐻10𝑂) + 0.7 𝐶8𝐻18 + 10.55𝑂2 + 9.54𝑁2 + 30.13𝐴𝑟

0.5(𝐶4𝐻10𝑂) + 0.5 𝐶8𝐻18 + 9.25𝑂2 + 22.45𝑁2 + 12.33𝐶𝑂2

0.5(𝐶4𝐻10𝑂) + 0.5 𝐶8𝐻18 + 9.25𝑂2 + 28.18𝑁2 + 6.6𝐶𝑂2

0.5(𝐶4𝐻10𝑂) + 0.5 𝐶8𝐻18 + 9.25𝑂2 + 34.78𝑁2

0.5(𝐶4𝐻10𝑂) + 0.5 𝐶8𝐻18 + 9.25𝑂2 + 16.29𝑁2 + 18.49𝐴𝑟

0.5(𝐶4𝐻10𝑂) + 0.5 𝐶8𝐻18 + 9.25𝑂2 + 8.36𝑁2 + 26.42𝐴𝑟
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Table B.3. Stoichiometric coefficients and operating conditions for fuel mixtures studied in this work. 

Fuel Stoichiometric coefficients

P i (MPa) T i (K) T c (K)

0.73 323 735

0.738 337 763

0.671 316 805

0.66 326 835

0.63 331 895

0.59 328 960

0.74 318 690

0.746 335 716

0.73 341 765

0.645 317 810

0.631 336 895

0.634 346 917

0.822 329 670

0.83 347 700

0.735 323 735

0.74 335 758

0.665 328 815

0.711 361 870

0.631 333 907

0.637 343 929

0.583 323 960

0.585 343 1008

Operating conditions

T70

T50

TRF

0.3(𝐶4𝐻10𝑂) + 0.7 𝐶7𝐻8 + 8.1𝑂2 + 30.46𝑁2

0.3(𝐶4𝐻10𝑂) + 0.7 𝐶7𝐻8 + 8.1𝑂2 + 14.26𝑁2 + 16.2𝐴𝑟

0.3(𝐶4𝐻10𝑂) + 0.7 𝐶7𝐻8 + 8.1𝑂2 + 7.32𝑁2 + 23.13𝐴𝑟

0.3(𝐶4𝐻10𝑂) + 0.7 𝐶7𝐻8 + 8.1𝑂2 + 30.46𝐴𝑟

0.5(𝐶4𝐻10𝑂) + 0.5 𝐶7𝐻8 + 7.5𝑂2 + 22.85𝑁2 + 5.35𝐶𝑂2

0.5(𝐶4𝐻10𝑂) + 0.5 𝐶7𝐻8 + 7.5𝑂2 + 13.2𝑁2 + 15𝐴𝑟

0.5(𝐶4𝐻10𝑂) + 0.5 𝐶7𝐻8 + 7.5𝑂2 + 6.8𝑁2 + 21.4𝐴𝑟

0.5(𝐶4𝐻10𝑂) + 0.5 𝐶7𝐻8 + 7.5𝑂2 + 28.2𝐴𝑟

0.041(𝐶8𝐻18) + 0.146(𝐶7𝐻16) + 0.813 𝐶7𝐻8 + 9.44𝑂2 + 22.02𝑁2 + 13.48𝐶𝑂2

0.041(𝐶8𝐻18) + 0.146(𝐶7𝐻16) + 0.813 𝐶7𝐻8 + 9.44𝑂2 + 35.5𝑁2

0.041(𝐶8𝐻18) + 0.146(𝐶7𝐻16) + 0.813 𝐶7𝐻8 + 9.44𝑂2 + 22.02𝑁2 + 13.48𝐴𝑟

0.041(𝐶8𝐻18) + 0.146(𝐶7𝐻16) + 0.813 𝐶7𝐻8 + 9.44𝑂2 + 8.54𝑁2 + 26.96𝐴𝑟

0.041(𝐶8𝐻18) + 0.146(𝐶7𝐻16) + 0.813 𝐶7𝐻8 + 9.44𝑂2 + 35.5𝐴𝑟
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Table B.4. Stoichiometric coefficients and operating conditions for fuel mixtures studied in this work. 

 

 

 

Fuel Stoichiometric coefficients

P i (MPa) T i (K) T c (K)

0.698 327 800

0.7 332 810

0.704 342 830

0.714 352 850

0.718 363 870

0.637 329 890

0.64 339 910

0.643 348 930

0.646 357 950

0.705 330 800

0.707 335 810

0.712 346 830

0.716 356 850

0.72 366 870

0.648 334 890

0.651 344 910

0.654 353 930

0.657 363 950

Operating conditions

E25

E50

0.0248(𝐶8𝐻18) + 0.0883(𝐶7𝐻16) + 0.4903 𝐶7𝐻8 + 0.3966(𝐶2𝐻6𝑂) + 6.88𝑂2 + 6.22𝑁2 + 19.65𝐴𝑟

0.0248(𝐶8𝐻18) + 0.0883(𝐶7𝐻16) + 0.4903 𝐶7𝐻8 + 0.3966(𝐶2𝐻6𝑂) + 6.88𝑂2 + 16.05𝑁2 + 9.82𝐴𝑟

0.0138(𝐶8𝐻18) + 0.0493(𝐶7𝐻16) + 0.2734 𝐶7𝐻8 + 0.6635(𝐶2𝐻6𝑂) + 5.17𝑂2 + 12.06𝑁2 + 7.38𝐴𝑟

0.0138(𝐶8𝐻18) + 0.0493(𝐶7𝐻16) + 0.2734 𝐶7𝐻8 + 0.6635(𝐶2𝐻6𝑂) + 5.17𝑂2 + 4.68𝑁2 + 14.76𝐴𝑟
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Table B.5. Stoichiometric coefficients and operating conditions for fuel mixtures studied in this work. 

Fuel Stoichiometric coefficients

P i (MPa) T i (K) T c (K)

0.715 334 800

0.716 339 810

0.674 325 830

0.653 321 850

0.656 330 870

0.627 322 890

0.63 331 910

0.633 340 930

0.636 349 950

0.832 318 649

0.84 333 671

0.845 348 697

0.745 313 710

0.75 323 729

0.705 338 820

0.71 348 840

0.639 328 885

0.643 343 918

Operating conditions

B25

E75

0.0059(𝐶8𝐻18) + 0.0212(𝐶7𝐻16) + 0.1175 𝐶7𝐻8 + 0.8554(𝐶2𝐻6𝑂) + 3.93𝑂2 + 9.17𝑁2 + 5.61𝐴𝑟

0.0059(𝐶8𝐻18) + 0.0212(𝐶7𝐻16) + 0.1175 𝐶7𝐻8 + 0.8554(𝐶2𝐻6𝑂) + 3.93𝑂2 + 5.42𝑁2 + 9.35𝐴𝑟

0.0059(𝐶8𝐻18) + 0.0212(𝐶7𝐻16) + 0.1175 𝐶7𝐻8 + 0.8554(𝐶2𝐻6𝑂) + 3.93𝑂2 + 3.55𝑁2 + 11.22𝐴𝑟

0.0059(𝐶8𝐻18) + 0.0212(𝐶7𝐻16) + 0.1175 𝐶7𝐻8 + 0.8554(𝐶2𝐻6𝑂) + 3.93𝑂2 + 1.31𝑁2 + 13.47𝐴𝑟

0.0289(𝐶8𝐻18) + 0.1031(𝐶7𝐻16) + 0.5725 𝐶7𝐻8 + 0.2955(𝐶4𝐻10𝑂) + 8.42𝑂2 + 19.64𝑁2 + 12.02𝐶𝑂2

0.0289(𝐶8𝐻18) + 0.1031(𝐶7𝐻16) + 0.5725 𝐶7𝐻8 + 0.2955(𝐶4𝐻10𝑂) + 8.42𝑂2 + 19.64𝑁2 + 12.02𝐴𝑟

0.0289(𝐶8𝐻18) + 0.1031(𝐶7𝐻16) + 0.5725 𝐶7𝐻8 + 0.2955(𝐶4𝐻10𝑂) + 8.42𝑂2 + 31.66𝑁2

0.0289(𝐶8𝐻18) + 0.1031(𝐶7𝐻16) + 0.5725 𝐶7𝐻8 + 0.2955(𝐶4𝐻10𝑂) + 8.42𝑂2 + 7.61𝑁2 + 24.05𝐴𝑟
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Table B.6. Stoichiometric coefficients and operating conditions for fuel mixtures studied in this work. 

 

 

 

 

 

 

Fuel Stoichiometric coefficients

P i (MPa) T i (K) T c (K)

0.83 328 662

0.825 333 672

0.752 316 711

0.757 327 731

0.746 338 754

0.705 327 790

0.624 337 902

0.715 334 800

0.716 339 810

0.674 325 830

0.653 321 850

0.656 330 870

0.627 322 890

0.63 331 910

0.633 340 930

0.636 349 950

Operating conditions

B50

B75

0.0182(𝐶8𝐻18) + 0.0648(𝐶7𝐻16) + 0.3598 𝐶7𝐻8 + 0.5572(𝐶4𝐻10𝑂) + 7.52𝑂2 + 17.54𝑁2 + 10.74𝐶𝑂2

0.0182(𝐶8𝐻18) + 0.0648(𝐶7𝐻16) + 0.3598 𝐶7𝐻8 + 0.5572(𝐶4𝐻10𝑂) + 7.52𝑂2 + 28.28𝑁2

0.0182(𝐶8𝐻18) + 0.0648(𝐶7𝐻16) + 0.3598 𝐶7𝐻8 + 0.5572(𝐶4𝐻10𝑂) + 7.52𝑂2 + 17.54𝑁2 + 10.74𝐴𝑟2

0.0182(𝐶8𝐻18) + 0.0648(𝐶7𝐻16) + 0.3598 𝐶7𝐻8 + 0.5572(𝐶4𝐻10𝑂) + 7.52𝑂2 + 6.8𝑁2 + 21.47𝐴𝑟

0.0086(𝐶8𝐻18) + 0.0307(𝐶7𝐻16) + 0.1702 𝐶7𝐻8 + 0.7906(𝐶4𝐻10𝑂) + 6.72𝑂2 + 15.67𝑁2 + 9.6𝐴𝑟

0.0086(𝐶8𝐻18) + 0.0307(𝐶7𝐻16) + 0.1702 𝐶7𝐻8 + 0.7906(𝐶4𝐻10𝑂) + 6.72𝑂2 + 9.28𝑁2 + 16𝐴𝑟

0.0086(𝐶8𝐻18) + 0.0307(𝐶7𝐻16) + 0.1702 𝐶7𝐻8 + 0.7906(𝐶4𝐻10𝑂) + 6.72𝑂2 + 6.08𝑁2 + 19.19𝐴𝑟

0.0086(𝐶8𝐻18) + 0.0307(𝐶7𝐻16) + 0.1702 𝐶7𝐻8 + 0.7906(𝐶4𝐻10𝑂) + 6.72𝑂2 + 2.24𝑁2 + 23.03𝐴𝑟
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