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Abstract 

In the quest to mitigate demand for conventional petroleum derived transportation fuels 

and reduce their associated CO2 emissions, there are an increasing number of alternative 

fuels being proposed. Blending of such alternatives necessitates a comprehensive 

understanding of their combustion behaviour for effective and efficient commercial 

deployment. Therefore, characterisation of such blends fundamental combustion 

parameters relative to their constituents, under different operational conditions, is of 

essential importance. Two key parameters are that of laminar burning velocity and 

ignition delay time.  

The present work predominately focused on investigations of the former and the 

theoretical development of a universal predictive laminar burning velocity blending law, 

suitable for all commercial fuel types and those from chemically dissimilar families, 

such as methane and hydrogen. Aiding this development, an array of pure fuel/air 

mixtures and their blends burning velocities were measured by means of a constant 

volume combustion vessel, at a temperature of 360K, for pressures of 0.1, 0.5 and 1.0 

MPa, at equivalence ratios from 0.8 to 1.3. Blends comprised of pure fuels 

representative of the major chemical families found within Fischer-Tropsch synthetic 

gasoline, namely, iso-octane, n-heptane, toluene, 1-hexene, and that of promising bio-

derived alcohols, namely, ethanol and n-butanol.  

A proposed laminar burning velocity blending law was evaluated against existing laws, 

using the measured blend data, and existing data from other researchers, and on average, 

outperformed all. The acquired data also allowed investigations into linear and 

nonlinear flame speed/stretch relationships, and correlations between the critical Peclet 

and Karlovitz numbers with Markstein numbers, as a function of fuel type, pressure and 

equivalence ratio.  

Furthermore, during the present work, considerable efforts were made towards 

commissioning a rapid compression machine, which served to allow the concurrent 

collection of ignition delay data for the same blends by other researchers. This gave the 

opportunity for a conjoint investigation into the comparative effects of ethanol and n-

butanol addition to a TRF gasoline surrogates burning velocity and ignition delay 

behaviour.  
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Chapter 1 - Introduction 

 

1.1 General Overview and Motivation 

Over 66% of current World energy demands are met by an infrastructure based on the 

finite resource of fossil fuels, of which approximately 40% is consumed by the vastly 

expanding transportation sector (IEA, 2015). The transportation sectors energy demands 

are largely in the form of liquefied hydrocarbons derived from crude oil, which have 

traditionally served as the energy source of choice due to their high energy density, 

abundant low cost supply, relatively safe nature and ease of transportation and storage. 

However, the need to divert from such traditions is increasingly evident from dwindling 

supplies becoming harder to extract, the theory of peak oil, unsecure and capricious 

supply chains and the disconcerting environmental effects of combustion emissions 

such as carbon dioxide, nitrogen oxides, smog and soot (Minns, 2005).  

In the hope of mitigating such concerns, there is much research and development 

exploring the possibilities of optimising existing engine technologies and diverting to 

other potentially viable alternative fuels that can partially, if not fully, substitute 

conventional petroleum derived fuels. Ideally, alternative fuels should at least reduce 

the dependency on fossil based fuels and the release of noxious emissions, be fungible 

with existing infrastructure, of similar energy density, be scalable to demand, and offer 

potential for carbon neutral cycles. Promising alternatives to conventional fuels are first, 

that of Fisher Tropsch (FT) synthetic fuels, available from a multitude of feedstock’s, 

such as coal, gas, shale, biomass, waste or any other carbonous material. Second, are 

bio-fuels, such as ethanol and n-butanol, which are typically fermented from high starch 

content biomass. Such alternative fuels are already being phased into many commercial 

fuel blends, with the likelihood of increasing proportions. 

Characterisation of the combustion performance for blends comprised of alternative 

fuels in varying proportions, under different operational pressures and temperatures, is 

of vital importance to their effective use and optimisation within modern engines. They 

must therefore be properly assessed and understood, before their commercial 

deployment.  

Two fundamental areas for combustion characterisation within all engines are that 

involving burning velocity and autoignition. The former, is the rate of burn, and 
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characterised by the unstretched laminar burning velocity, ul, a fundamental phyiso-

chemical parameter of a propagating flame, which depends upon chemical reaction 

kinetics, exothermicity and molecular transport processes within the reaction zone. The 

latter, autoignition, is the sudden exothermic heat release from the oxidisation of a fuel 

under the influence of heat and pressure, via the establishment of a self-heating 

chemical mechanism. It is characterised by the ignition delay time, τi, defined as the 

period of time taken for the onset of combustion at a given pressure and temperature. 

Both ul and τi are dependent upon fuel/air mixture composition, pressure and 

temperature.  

In the case of spark ignition (SI) engines, both parameters are critically interrelated. The 

spark initiated flame duration is governed by ul and, autoignition, as pressure and 

temperature increase, can only occur if τi is shorter than the time required for the 

complete burn by the spark initiated flame front. Strong autoignition within SI engines 

gives rise to the phenomenon known as “knock”, which can potentially lead to severe 

engine damage due to high oscillating pressure rises. Furthermore, the volumetric 

efficiency of SI engines is knock limited via the compression ratio, thus limiting fuel 

efficiency and the potential emission reductions. Conversely, compression ignition (CI) 

engines rely on autoignition, in which again, τi is critical to efficiency and performance.  

Collaboration agreements between Shell Global Solutions UK, Sasol SA, the University 

of Leeds, and University of Cape Town, supported investigations into the ul and τi 

behaviour of blends of fuels relative to their constituents, under different conditions. 

The present work predominately focused on ul behaviour, as a function of pressure and 

equivalence ratio, and the development of a universal predictive ul blending law. 

Measurements of ul were performed using a spherical combustion vessel, for blends 

comprised of constituents representative of the major fuel groups found within 

commercial FT synthetic gasoline, namely, iso-octane, n-heptane, toluene and 1-hexene, 

and that of promising alternative bio-alcohols, namely, ethanol and n-butanol. 

Furthermore, blends comprised of the more chemically dissimilar fuels of methane and 

hydrogen, were also investigated to further aid the development of a universal 

predictive ul blending law. 



Chapter 1 - Introduction 

3 

 

1.2 Conventional and Alternative Transportation Fuel 

Sources 

The following subsections introduce the main implications of conventional and 

promising alternative transportation fuel sources.  

1.2.1 Conventional Fuels 

Conventional fuels are considered as those derived from petroleum, also known as 

crude oil. It is essentially a mixture of liquefied hydrocarbons and the result of 

anaerobic decomposition of organic matter. Primarily found trapped beneath 

sedimentary rock layers, the exposure to great pressure, temperature, time and lack of 

oxygen cause a chemically transforming process known as catagenesis to occur within 

the organic matter, creating the production of solid, liquid and gaseous hydrocarbons. 

Within which holds the captured energy the transportation sector has predominately 

exploited for over 100 years. Geologists perform seismic surveys where sound waves 

are projected into the earth generating feedback that is interpreted by computers 

producing three dimensional images that show the exact location and quantity of any oil 

pockets available for extraction. Drilling to such pockets is then carried out by 10-

100cm diameter drills creating high flow rate extraction paths that are typically lined 

with steel and concrete reinforcements, allowing petroleum to be pumped through pipe 

work or transported via road or rail to a refinery. At refineries the petroleum is heated 

up to temperatures of over 850K allowing separation of different molecular weight 

hydrocarbons with different boiling points in a fractionating column, the higher sections 

of the column capturing the more volatile products and vice versa. The heavier alkanes 

are often processed further by cracking, this producing more useful lighter alkanes and 

alkenes. With such refining and reforming, petroleum is transformed into a vast array of 

end products such as liquid petroleum gas (LPG), gasoline, naphtha, kerosene, diesels, 

heavy fuel oils, lubricants, waxes, solvents, petroleum coke and other products (Speight, 

2008). 

1.2.2 Fisher-Tropsch Synthetic Fuels 

Fisher-Tropsch (FT) synthetic fuels represent an array of fuels that share the common 

factor of being derived through catalytic chemical reaction conversions of one 

carbonaceous material to another via the gasification and FT processes. Production can 

stem from such feedstocks as tar sand, coal, natural gas, oil shale, biomass and waste, 
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where coal-to-liquid (CTL), gas-to-liquids (GTL) and biomass-to-liquids (BTL) are 

now coined terms representing various synthetic fuel types relative to their initial 

feedstock (Speight, 2008). 

Gasification is the first major chemical process for production, which serves to thermo-

chemically decomposes the feedstock, initially by pyrolysis to be followed by various 

other gas thermal upgrading steps under controlled oxygen conditions and high 

temperatures (>950K). This primarily produces a mixture of carbon monoxide and 

hydrogen, known as syngas. Further gas conditioning purifies the syngas mixture by the 

removal of contaminants such as sulphur, nitrogen and particulates which may be used 

as fertilisers. This gives major environmental benefits through substantially cleaner 

combustion of both syngas and end product fuels. Syngas is a valuable product in itself, 

providing a relatively clean fuel for gas turbines powering electrical generators in FT 

production, with only carbon dioxide and water vapour as combustion products, but 

typically contains less than half the energy density of natural gas. Heat recovery 

systems also power steam turbines generating more electricity for the overall process. 

Syngas also serves as an intermediate feedstock in the manufacture of fertilisers such as 

ammonia and the production of methane via the Sabatier process, via a nickel or 

ruthenium catalyst which may lead to the production of methanol and hydrogen 

(Speight, 2008). 

The syngas then undergoes a form of synthesis by the German originated Fischer-

Tropsch (FT) process pioneered by Franz Fischer and Hans Tropsch in 1925, which 

serves as the second major chemical process in the overall production. Although other 

synthesis processes exist such as the Bergius, Mobil and Karrick processes, the FT has 

become most favoured following its refinements in coal rich Germany during World 

War II and South Africa during apartheid. The FT process takes the syngas over a 

selected catalyst generating chemical reactions that form specific length hydrocarbon 

chains, the length of which is determined primarily by the catalyst material and 

temperature. For example, a cobalt based catalyst in the region of 500K can create high 

cetane number diesel and jet fuels, whilst an iron based catalyst at 610K can create the 

more challenging gasoline fuels. Such processes can offer high potential for a broad 

range of petroleum fuel, lubricant, solvent and waxes (Speight, 2008). 
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The following formula represents the main chemical reactions during the FT process, 

where carbon monoxide and hydrogen are converted to water and the desired 

hydrocarbons: 

 𝑛CO + (2𝑛 + 1)H2 → C𝑛𝐻(2𝑛+2) + 𝑛H2O (1.1) 

The prior endothermic gasification process can simply be represented by the 

carbonenaous feedstock and water being converted into syngas: 

 C + H2O → H2 + CO (1.2) 

Energy to support gasification is often generated from the simple exothermic 

combustion of carbon and oxygen: 

 2C + O2 → CO (1.3) 

In addition, partial combustion of the feedstock may also serve as a means of syngas 

production too: 

 C𝑛H(2𝑛+2) + 1
2⁄ 𝑛O2 → (𝑛 + 1)H2 + 𝑛CO (1.4) 

Historically, FT synthetic fuels have received little interest due to the low cost of 

abundant petroleum reserves such as in the Middle East, compared to the relatively high 

costs and increased complexities of synthetic fuel production. However, as production 

techniques are optimised and petroleum prices rise, alongside concerns of security and 

environmental impact, the viability of FT synthetic fuels increases. Feedstock flexibility 

alone forms an attractive factor that can potentially take advantage of vast coal, natural 

gas and tar sand reserves, although such feedstock’s increase the overall carbon cycle 

compared to conventional petroleum based fuels. That said, various forms of non-food 

biomass are often combined or totally substitute, offering much reduced carbon cycles, 

but often at the expense of increased costs. Carbon capture and storage (CCS) 

technologies also offer potential to drastically reduce onsite carbon emissions. A further 

significant advantage over many other competing alternative energy sources comes 

from being fully fungible with existing infrastructure and with little or no modification 

required on existing engine technologies (Speight, 2008). 

Sasol, has the World’s largest commercially based CTL plant in Secunda, South Africa, 

producing 160,000 barrels of oil equivalent per day (BOE/D), whilst Shell has the 

World’s largest GTL plant in Ras Laffan Industrial City, Qatar producing 140,000 

BOE/D and 120,000 BOE/D of natural gas liquids (NGL) and ethane. Both companies 
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have other GTL facilities and have expansion plans into USA and Canada, where the 

process can take direct advantage of abundant natural gas reserves.  

Shell has also developed three pioneering technologies that make use of the sulphur by-

product: 

 Shell Thiocrete - a cement replacement, not requiring water, with superior 

compressive strength and durability properties.  

 Shell Thiopave – a partial substitute for bitumen in asphalt mixtures to give 

increased load bearing roads with improved durability, whilst reducing green 

house gas (GHG) emissions through lower temperature production. 

 Shell Thiogro – sulphur based fertilisers that increase crop yields.  

Overall, FT synthetic fuel is an energy source that offers the prospect of a potentially 

sustainable, stable and secure supply with environmental benefits that can be 

immediately implemented into today’s transportation energy infrastructure, whilst 

concurrently producing many other petroleum based substitutes and useful end 

products.  

1.2.3 Bio-Fuels 

A bio-fuel may be gaseous, liquid or solid and is defined as being derived from 

biomass. This may constitute of any recent living organism or its metabolic by-products 

to qualify as a renewable energy source. A bio-fuel has been defined as “any fuel with 

an 80 percent minimum content by volume of materials derived from living organism 

harvested within the 10 years preceding its manufacture” Speight (2008). 

Photosynthesis is responsible for capturing more carbon dioxide from the atmosphere 

than any other natural or industrial process in the world. Around one seventh of carbon 

dioxide in the atmosphere is fixed by photosynthesis in terrestrial biomass forms each 

year, if as little as 7.5% of this was utilised to form feasible biofuels it would eradicate 

all carbon dioxide annually emitted to the atmosphere by fossil based fuels (Lee, 2012). 

Biofuels are considered to be relatively clean fuels, with lower sulphur dioxide, nitrogen 

oxides and soot emissions than conventional fossil fuels (Speight, 2008). 

Liquid biofuels were the initial fuels of choice of internal combustion engine inventor, 

Nikolaus August Otto, and the inventor of the diesel engine, Rudolf Diesel, who 

selected ethanol and peanut oil, respectively (Speight, 2008). However, again, the 

abundant discoveries of relatively cheap petroleum soon made them undesirable 
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options, with any further interest in biofuels coinciding with that of petroleum prices for 

most of the 20th century.  

Biofuels can be categorised into three main groups of first, second and third generation. 

First generation are considered conventional biofuels which are primarily derived from 

sugars, starches and vegetable oils from arable land crops such as wheat, corn, sugar 

cane and sugar beat. Example end product fuels include: biodiesel, biogasoline, green 

diesel, bioethers, biogas, bioalcohols and syngas. However, production is limited by 

thresholds on the amount of arable land available for this purpose relative to that for 

food production, whilst still requiring high amounts of potentially noxious fertilisers. 

Recent studies suggest relative reductions in overall GHG emissions by such means are 

often only marginal after allowances for processing, production and transportation. 

Therefore, their implementation can only fractionally reduce dependence on petroleum 

based fuel, whilst threatening to increase the cost of basic food supplies, as land is 

competed for, and with limited environmental benefit (Gnansounou et al., 2009; Lee 

and Lavoie, 2013). 

Second generation are considered advanced biofuels producing much the same end 

products as first generation but derived from only sustainable feedstock’s that do not 

significantly impose on arable land or negatively impact on the environment. Thus 

second generation biofuels solve many issues associated with first generation biofuels, 

often with the prospect of much larger yields. Non-food biomass may take the form of 

residuals from current crops such as leaves, stems and husks, industrial waste such as 

pulp and skins or specifically grown crops such as jatropha, miscanthus and switchgrass 

(Lee and Lavoie, 2013; Speight, 2008). 

There are two main streams of development for second generation biofuels, involving 

either thermochemical or biochemical processing. The former employs such methods as 

pyrolysis, gasification and torrefaction for the production of syngas and other 

hydrocarbons, which may be directly used as fuels, or produce an array of fuels via FT 

processing and thus essentially be considered synthetic BTL fuels. The latter focuses on 

chemically induced biological reactions that separate the complex carbohydrates of 

lignin, hemicellulose and cellulose found in all plant life. These may then undergo 

fermentation and other processes to produce such alcohols as ethanol, methanol and 

butanol (Lee and Lavoie, 2013; Speight, 2008). 
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Third generation are considered to be those derived from algal biomass with 

substantially higher yields compared to classical lignocellulosic biomass. These types of 

algae can again produce oil that can be refined into diesel fuels, however, they can also 

be genetically modified to directly produce ethanol, n-butanol and other fuels (Lee and 

Lavoie, 2013). Advancements in genetically modified algae have allowed n-butanol 

production to be potentially scalable to demand and therefore a serious contender to 

ethanol. Benefits include, a higher volumetric energy density, less corrosion and 

swelling to engines parts, without being hygroscopic. Furthermore, algae offers great 

diversity in terms of its cultivation, typically by means of opens ponds, closed loop 

systems or photo-bioreactors. The latter two techniques are both closed systems that 

allow the direct connection to CO2 sources which significantly increase growth. 

However, the large scale production of algae requires substantial quantities of water, 

nitrogen and phosphorus and the current energy input associated with their use often 

counters any CO2 reduction. Much on-going research continues towards biofuel 

technologies, with an increasing number of production techniques alongside new 

feedstock possibilities such as microalgae and fungi, all with the aims of increasing 

production efficiency, sustainability and yields (http://biofuel.org.uk/third-generation-

biofuels.html, 2015; Lee and Lavoie, 2013). 

1.3 Key Combustion Characteristics of Fuel Blends 

Blends of such conventional and alternative fuels necessitate an understanding of their 

combustion performance to ensure they are not only suitable for their intended 

application, but optimal. Furthermore, due to the synergistic nature of fuels and engines, 

there is potential for engines to be optimised to specific combustion characteristics of 

specific blends for increased efficiency. For example, in the case of an SI engine, a 

gasoline blend with a higher octane rating would potentially allow for a higher 

compression ratio, thus, giving higher volumetric efficiency and potentially, reduced 

fuel consumption.  

The science of combustion invokes a multitude of disciplines, including, 

thermodynamics, chemistry, physics and fluid mechanics. It may be defined as a self-

supporting exothermic chemical reaction between that of a fuel and oxidant, which 

includes the principle physical processes of mass and energy transportation, resulting in 

the liberation of heat and conversion of chemical species (Barnard, 1995).  
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In the case of engines and turbines, there are two primary modes of combustion, that of 

propagating deflagration flames, driven by the molecular transport processes of 

conduction and diffusion of species within a thin reaction zone, and autoignition, 

induced by reactant composition, temperature and pressure, typically as a result of 

localised hot spots. Flames can be categorised as either premixed or diffusion, the 

former with flame propagation through a homogenous fuel/air mixture, the latter with 

the mixing of fuel and air within the reaction zone. Flame propagation and autoignition 

are characterised by the laminar burning velocity, ul, and ignition delay time, i. These 

key parameters are discussed in the following sections, with techniques for their 

acquisition reviewed. 

1.4 Laminar Premixed Flames and Burning Velocity 

Premixed laminar flames are prevalent in an array of applications from residential 

cookers and heaters, to industry furnaces and burners. Whilst, the study of laminar 

flames has importance in its own right, their theoretical understanding serves as a vital 

prerequisite to the study of turbulent combustion, in which stretched laminar flamelets 

are considered in turbulent flows. This section introduces the concepts and assumptions 

surrounding the structure and dynamics of laminar premixed flames and the 

determination of the inherent physiochemical parameter of unstretched laminar burning 

velocity, ul. 

1.4.1 Historical Perspectives 

Mallard and Le Chatelier (1883) pioneered laminar flame speed theory, on the 

assumption of heat conduction from hot reaction gases to the unburned cold reactant 

mixture governing the rate of flame propagation. Thus, concluding the unstretched 

laminar flame speed was a function of the square root of the product of the reactant 

mixture thermal diffusivity, the reaction rate and the temperature gradient through the 

flame. Over five decades later, Zeldovich and Frank-Kamenetskii (1938) then 

emphasised the need to account for molecular diffusion of the reactants, alongside 

thermal conduction, and further introduced a temperature dependant reaction rate. 

Seminal studies of Semenov (1935) and Hinshelwood (1940) lead to a greater 

appreciation of chemical kinetic steps and the intrinsic formation and consumption of 

intermediate radicals. Later, Dixon-Lewis and Williams (1963) pioneered the 

computation of a laminar hydrogen/air flame structure, accounting for conduction, 
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chemical and chain reactions and species diffusion. Thus, elucidating the molecular 

diffusion and transportation properties within the flame. Concurrently, an analytical 

expression for laminar burning velocity was also proposed by Zeldovich and Barenblatt 

(1959). 

1.4.2 Flame Structure 

A premixed laminar flame is a thin self-propagating exothermic reaction zone within the 

flow field of reactants and products. Figure 1.1 shows the reactant and product 

concentrations, temperature profiles through an ideal premixed, laminar, one-

dimensional and adiabatic flame. It comprises four zones as the flame moves right to 

left: the cold reactant zone, the preflame zone, the reaction zone, and finally the product 

zone (Barnard, 1995). Heat conduction and the mass diffusion dominate the reactants in 

the preflame zone, whilst chemical reaction and mass diffusion dominate the reaction 

zone. As reactants in the preflame approach the reaction zone they are heated by 

conductive heat transfer, before further heating from chemical reaction. This process 

takes the unburned cold zone reactants, Tu to the adiabatic burned gas temperature, Tb in 

the product zone. The resulting nonlinear temperature profile is primarily caused by the 

nonlinear heat release and transport process. 

The laminar flame thickness, as denoted by δl, maybe described as the distance between 

the unburned gas at Tu, and the completely burned gas at Tb (Tripathi, 2012). There are 

many different definitions of laminar flame thickness (Gillespie et al., 2000; Haq, 1998; 

Poinsot and Veynante, 2005). In the present work, it is defined as a hydrodynamic 

length, given by: 

 𝛿𝑙 =
𝜈𝑢

𝑢𝑙
, (1.5) 

where, νu, denotes the reactants kinematic viscosity. 
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Figure 1.1: Concentration and temperature profiles associated with one-dimensional, 

premixed, adiabatic flame (Barnard, 1995). 

 

1.4.3 Flame Stretch  

Figure 1.2 shows an ideal planar flame in which the flame front travels from right to 

left, whereby the unburned reactants enter the reaction zone at ul and the products exit at 

the flame speed, Ss. The difference being, ug, caused by the expansion of the hot product 

gases, hence: 

 𝑆𝑠 = 𝑢𝑙 + 𝑢𝑔 (1.6) 

 

Figure 1.2: Schematic of one-dimensional planar flame, indicating the unstretched 

burning velocity, ul, the unstretched flame speed, Ss, and the gas expansion velocity, ug 

(Lawes, 2002). 
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Practical flames are seldom in such an ideal form, and are often within unsteady and 

non-uniform flow systems, subjecting the flame to transverse and tangential velocity 

components, alongside flame curvature, that “stretch” the flame. This causes changes to 

the frontal area of the flame which, in turn, affects the species concentrations and 

temperature profile through the flame, and subsequently, the flame thickness and 

burning velocity.   

The phenomenon of stretch was first investigated by Karlovitz et al. (1953) who 

interpreted its effect on flame extinction. Markstein (1964) followed with an 

investigation into the relationship between stretch and flame curvature. Williams (1985) 

defines the total stretch rate, α, as the time derivative of area, A, of an infinitesimal 

element over the area: 

 𝛼 =
1

𝐴
 
𝑑𝐴

𝑑𝑡
 (1.7) 

1.4.4 Determination of Unstretched Burning Velocity  

The unstretched laminar burning velocity, ul, is defined as the velocity of a plane flame 

front moving normal to its surface through adjacent unburned reactants which are 

converted to products (Barnard, 1995). It is a fundamental physio-chemical parameter 

of a flame, and dependent upon: the reaction chemical kinetics, exothermicity, 

molecular transport processes, equivalence ratio, pressure and temperature.  

Over the past fifty years or more, many experimental techniques have been developed 

and refined for the determination of unstretched laminar burning velocity. The 

following subsections serve to introduce those that have become well established and 

proven to be relatively accurate. 

1.4.4.1 Flat Flame Burners 

A schematic of a typical flat flame burner is shown in Figure 1.3. Premixed fuel/air flow 

through a perforated plate, ignites, and adjusted such that a flat flame is stabilised, 

normal to the upstream mixture flow, and located above the plate. Inert gases are often 

used to shroud the flame and reduce potential of any environmental influences. The 

burning velocity of the mixture can then be deduced by dividing the volumetric mixture 

flow rate by the area of the flame. However, due to heat transfer to the burner, the flame 

is not adiabatic, and therefore values of ul are reduced. Heat loss can be minimised by 
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high mixture flow rates, however, this is limited by the need to maintain a stable flame 

surface free from distortion.  

 

Figure 1.3: Schematic of typical flat flame burner, with perforated burner plate 

(Bosschaart and De Goey, 2003). 

 

In efforts to decouple this undesirable heat loss effect, Botha and Spalding (1954) 

introduced the concept of measuring the required cooling rate to achieve a flat flame for 

different mixture flow rates, such that a flow rate without heat loss could be estimated 

by extrapolating to a cooling rate of zero, yielding a ul without heat loss. Much 

development has since refined the technique, improving its accuracy, with advances in 

highly thermally insulating materials and more efficient perforated plate designs 

(Bosschaart and De Goey, 2003). 

1.4.4.2 Counter Flow Stagnation Burners 

Counter flow stagnation burners have been used in the measurement of many 

combustible mixture ul values (Hirasawa et al., 2002; Jayachandran et al., 2015; 

Yamaoka and Tsuji, 1985).  Figure 1.4 shows a schematic of a typical counter flow 

stagnation burner. The premixed combustible mixture is fed through two opposing jets 

and ignited, the mixture flow rates to each jet are then adjusted such that a planar 

stagnation flame is created equidistant from the nozzle of each jet, where y = 0. 

Different size flames are created by different mixture flow rates, in each case the 

velocity of each jet is the same, such that the point of stagnation remains central.  

Figure 1.5 shows a typical profile of the normal velocity component, v, where the 

stretch rate is given by a = dv/dy. The larger the gradient, the greater the stretch. From 

left to right, a linear decrease in velocity is shown prior to the main preheat zone. This is 

then reversed as the flame enters the main preheat zone due to intense heating and 

therefore thermal expansion. Finally, the velocity decreases again towards completion 

of heat release in the approach to the stagnation point. The flame is stabilised at the 

boundary of the main preheat zone. At this point the stretched burning velocity is 
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approximately the local burning velocity, un. With different mixture flow rates, different 

a and un values are measured. Plotting of these un values as a function a, allows the 

extrapolation to the point of zero a, thus, allowing for the determination of ul. (Tripathi, 

2012). 

 

Figure 1.4: Schematic of typical twin-flame counter flow stagnation burner (Tripathi, 

2012). 

 

Figure 1.5: Typical axial velocity for one of the flames corresponding to Fig. 1.6 

(Tripathi, 2012). 
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1.5.4.3 Spherical Combustion Vessels 

Spherical combustion vessels containing quiescent, premixed, homogenous mixtures, 

when centrally ignited, typically by an electrode or laser beam, create an outwardly 

propagating spherical flame. A distinct advantage over flat flame burner and counter 

flow stagnation jet methods is the potential for ul measurements at elevated pressures. 

Dependent upon the vessel design and ability for optical access, there are two 

techniques which are commonly used to deduce ul.  

First, the constant volume technique, this does not require optical access and ul is 

deduced from the pressure trace history from each explosion. Accuracy of this 

technique is limited by the neglection of flame stretch and/or instability influences. Hill 

and Hung (1988) outlined the main assumptions: the flame is taken to be spherical, 

smooth and thin; with spatially uniform pressure; both unburned and burned gases 

conform as ideal; equilibrium of the dissociation products; compression of the unburned 

mixture is isentropic; and buoyancy effects are negligible. 

Second, the constant pressure technique, was that used for all ul measurements in the 

present work by use of the Leeds CV2, as described in Chapter 3. The technique 

requires optical access such that the evolution of the outwardly propagating flame front 

can be observed. This allows the flame morphology to be studied, such that any 

deviation from a spherical and smooth flame can be detected. For example, the former 

could arise from the buoyancy of a slow burning mixture and the latter from cellular 

instabilities, as discussed in Section 1.5.5. In the case of the present work, high speed 

digital schlieren photography, described in Chapter 3, was employed to give a definitive 

and measureable flame edge. 

This allows for measured radii as a function of time, thus the stretched flame speed, Sn, 

is calculated by: 

 𝑆𝑛 =
𝑑𝑟

𝑑𝑡
 (1.8) 

Asides the merits of visual flame morphology, further merit of the technique, 

particularly with large vessels, such as the Leeds CV2, results from the negligible 

pressure and temperature rise and boundary influence, such that, the outwardly 

propagating spherically flame can be assumed to be under both isobaric and adiabatic 

conditions, and purely a function of stretch.  
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For spherically expanding flames the total flame stretch rate is defined by: 

 𝛼 =
1

𝐴
 
𝑑𝐴

𝑑𝑡
=

1

4𝜋𝑟2

(8𝜋𝑟)𝑑𝑟

𝑑𝑡
=

2

𝑟

𝑑𝑟

𝑑𝑡
=

2

𝑟
𝑆𝑛 (1.9) 

Bradley et al., (1996) showed the total stretch rate may be split into two separate stretch 

rate components, one associated with flame curvature, αc, and the other with 

aerodynamic strain, αs, hence: 

 𝛼 = 𝛼𝑐 + 𝛼𝑠 (1.10) 

The curvature stretch rate is an inevitable result of a finite flame thickness, in which the 

outer boundary is larger than the inner. The ratio between the outer and inner boundary 

at small radii is large relative to that at larger radii, thus curvature stretch rate is most 

dominant at smaller radii and tends to unity at larger radii to become negligible. The 

curvature of a flame consequently bears transverse and tangential velocity components 

that strain the flame, and account for the aerodynamic strain. However, the present work 

does not consider the separate effects of αc and αs, only their sum, 𝛼.  

The following subsections introduce methods to decouple the effects of α on Sn, to yield 

the unstretched flame speed Ss, and then ul, by accounting for the expansion of the 

combustion products. 

1.5.4.3.1 Linear Extrapolation Methodology 

In the stable regime of a flame, the Markstein theory (1964), and its later generalisation 

and extension Clavin (1985) neglected higher order terms and suggested a linear 

relationship between Sn and α, with Lb the gradient. Extrapolation of this relationship to 

the point of zero α, then yields a theoretical unstretched flame speed, Ss: 

 𝑆𝑠 − 𝑆𝑛 = 𝐿𝑏α (1.11) 

This linear methodology has been employed within many combustion studies. Larger 

vessels with larger windows, allow for measurement of larger flame radii with reduced 

stretch, thus reducing the extent of extrapolation required and therefore increasing the 

accuracy of Ss.  

Ideally, stretch rates should be as small as possible, such that the deviation from the 

measured Sn values to that of Ss is correspondingly small. However, this deviation can 

be large for flames subjected to high degrees of stretch and Lewis numbers. The Lewis 

number, Le, is defined by the ratio of thermal to mass diffusivity of a mixture, Le = α/D. 
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In such a case flames can exhibit nonlinear behaviour between Sn and α, which this 

methodology does not take account of, thus, leading to erroneous over estimations of Ss. 

1.5.4.3.2 Nonlinear Extrapolation Methodology 

A nonlinear methodology was presented by Kelley and Law (2009) from the seminal 

work of Ronney and Sivashinsky (1989). It accounts for deviation from the non-

adiabatic, planar and small stretch rate assumption of the linear approach for flames 

exhibiting nonlinear Sn and α behaviour, which are generally subjected to high degrees 

of stretch: 

 (
𝑆𝑛

𝑆𝑠
)

2

ln (
𝑆𝑛

𝑆𝑠
)

2

= −2
𝐿𝑏α

𝑆𝑠
 (1.12) 

It is becoming widely accepted that the use of this nonlinear approach will reduce the 

over estimation error incurred by the linear approach for flames exhibiting high stretch 

rate behaviour. As part of the present study, all ul measurements employed both 

methodologies to quantify any overestimation error associated with the linear approach 

and identify the influence of fuel type, pressure and ϕ. 

1.5.4.3.3 Accounting for Expansion of Combustion Products 

In the case of either of the above methodologies, the determination of ul is the same, via 

multiplying Ss by the thermal expansion factor. As the flame is under isentropic 

conditions within the view of the vessel windows, the thermal expansion factor of the 

flame is given by the ratio of burned, 𝜌𝑏, to unburned, 𝜌𝑢, gases: 

 𝑢𝑙 = 𝑆𝑠 (
𝜌𝑏

𝜌𝑢
) (1.13) 

In the present work, both 𝜌𝑢 and 𝜌𝑏 were obtained from the chemical equilibrium 

program, GasEq (Morley, 2005). 

1.4.5 Development of Flame Instabilities 

Instabilities within flame fronts have a significant influence on the burning rate of 

premixed laminar flames. Their form maybe characterised by cells, cracks or ridges 

within the flame front and their development is dependent upon Lb. Bradley et al., 

(1996) showed that low Lb values reduce flame stability, whilst high values increase it. 

With the use of schlieren photograph, Fig. 3.5, in Chapter 3 demonstrates a stable 

smooth flame and that of unstable flames with high cellularity for stoichiometric iso-
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octane/air mixtures. The high cellularity serves to increase the flame front surface area, 

resulting in a relative increase in Sn. Figure 1.6 demonstrates this using an Sn vs. α plot 

for a stoichiometric iso-octane/air flame at 1.0 MPa, with transition to instability and 

flame cellularity. 

 

Figure 1.6: Variation of flame speed, Sn, with flame stretch rate, α, for iso-octane/air at 

1.0 MPa, 360K and ϕ = 1.0, taken from the present work. 

 

 The point at which Sn rapidly deviates from its prior response to stretch is known as the 

critical radius, rc. This is commonly defined in terms of the dimensionless critical Peclet 

number, Pecl, where Pecl = rc/δl, with δl the flame thickness. However, because of the 

importance of a necessary minimal stretch rate to stabilise a flame, a more logical 

stability criterion is one based on the Karlovitz stretch factor, the minimal value of 

which for flame stability, Kcl is given by (Bradley et al., 2009): 

 Kcl = (2σ/Pecl)[1 + (2Mab/Pecl)]
-1 (1.14) 
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Beyond Pecl, the flame speed increases due to wrinkling by flame instabilities and Lb 

becomes meaningless. For  most hydrocarbon fuels, as pressure and equivalence ratio 

increase, the stable regime in which Lb can accurately be measured becomes 

increasingly limited, between the minimum unaffected spark radius and the onset of 

cellularity, at the critical radius, rc. In extreme cases, rc can nearly occur 

instantaneously, hence, the measurement of Lb and ul becomes impossible. In the 

present study, instabilities occurred for all pure fuel/air mixtures and their blends under 

elevated pressure, particularly under rich conditions, such that measurements at 1.0 

MPa were limited to stoichiometric conditions. 

These instabilities are indicative of the Darrieus-Landau (D-L) effect which accounts 

for the inevitability of hydrodynamic instability within a planar laminar flame 

(Darrieus, 1938; Landau, 1944). The flame is considered as a wave of density 

discontinuity with hydrodynamic disturbances creating the instabilities. The 

disturbances are a result of hot expanding products and vortices that develop within the 

reaction zone of the flame. Figure 1.7 shows a simplified schematic of a flame 

propagating at un. On the right side, reactants enter a convex flame front section which 

serves to slow their flow through divergence, however, as the burning velocity remains 

constant, a dynamic imbalance is induced which increases the protrusion. Similarly, on 

the left side, the reactants enter a concave flame front section causing a contrasting 

receding effect. The net result significantly deforms the overall flame surface, such that 

its area increases and subsequently increases the rate of reaction (Tripathi, 2012). 

 

Figure 1.7: Schematic of the hydrodynamic instability mechanism (Law, 1989). 
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These hydrodynamic instabilities can be augmented or countered by thermal and mass 

diffusive mechanisms, the ratio of their fluxes being represented by the Lewis number, 

Le, which can determine whether a flame is stable or unstable. A Lewis number of less 

than unity implies dominance of mass diffusion, which is indicative of an unstable 

flame, whilst if it is greater than unity it implies dominance of thermal diffusion, which 

is indicative of a stable flame. Figure 1.8 illustrates a stable and unstable flame front, in 

the case of the unstable flame, mass diffusion dominates, as indicated by the larger 

arrows, such that, at the crest convergence of the flame front occurs which increase the 

local enthalpy and burning velocity, in contrast, at the trough, divergence to the flame 

front occurs which decrease local enthalpy and burning velocity. Thus, the crest 

propagates faster relative to the trough and increases the amplitude of the flame, which 

serves to destabilise it.  

 

Figure 1.8: Schematic of the thermo-diffusive instability mechanism (Law, 1989). 

 

Conversely, in the case of the stable flame, thermal diffusion dominates, such that, at 

the crest divergence to the unburned gas occurs, which decrease the local enthalpy and 

burning velocity, in contrast, at the trough, convergence to the unburned gas occurs, 

which increase the local enthalpy and burning velocity. Thus, a flattening effect of the 

wavelike profiles occurs which serves to stabilises the flame.  
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1.5 Autoignition and Ignition Delay Time 

The phenomenon of autoignition occurs when a potentially reactive mixture of fuel and 

oxidiser is subjected to a sufficient magnitude of temperature, pressure and time to 

initiate sustained oxidisation of the fuel, via a self-heating manor. The period of time in 

which this happens is known as the ignition delay time. Autoignition is often assessed 

by this inherent property, which may be specifically defined as the duration between the 

time of sufficient autoignition conditions being met and the onset of actual ignition. 

Investigations into the ignition delay behaviour of different fuel blends play a vital role 

in their characterisation and mapping for optimum performance and efficiency in the 

modern reciprocating engines and turbines that employ them. Studies have also gained 

greater understanding of the potential risks and hazards associated with modern 

industrial processes that may lead to spontaneous combustion.  

The understanding of autoignition with regards to SI engines is of great importance as 

its occurrence becomes a limiting factor of performance, whereby part or all the fuel/air 

mixture ignite independently of the timed spark ignition, typically the end gas ignites 

before the arrival of the spark ignited flame front. This can lead to severe pressure 

oscillations within the cylinder that can cause serious engine damage, a phenomenon 

known as knock. Fuels used in spark ignition engines are therefore designed to resist 

ignition under engine conditions until a spark occurs, with the octane rating dictating 

the extent of the fuels ability, i.e. a higher octane number gives a higher resistance to 

autoignition and vice versa. The actual octane number corresponds to autoignition 

performance relative to the ratio of iso-octane and heptane in a specific test engine, 

where iso-octane gives very high resistance and heptane very low, a typical octane 

rating of 95 would equate to 95% octane and 5% heptane. Therefore, SI engine 

efficiency is knock limited, as their volumetric efficiency is largely dependent upon CR, 

the extent of which is dictated by the intended fuels ability to resist autoignition at high 

pressures and temperatures, before SI. 

Compression engines such as diesel engines on the other hand rely on autoignition to 

achieve combustion. Diesel engines compress air and then add high pressure vaporised 

fuel to the cylinder to initiate combustion via autoignition. This method allows much 

higher CR’s to be achieved hence increasing volumetric and thermal efficiency with 

reduced risk of autoignition. However, this is at the expense of much stronger 

components and slower engine response times. The cetane number is used as a measure 
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of diesels ignition delay and corresponds to the ignition delay time relative to the ratio 

of cetane and alpha-methylnapthalene in a specific test engine. Whereby a higher 

percentage of cetane produces shorter ignition delay times, thus a higher cetane number 

gives better performance as the shorter ignition delay allows more time for combustion 

within a cycle.  

1.5.1 Determination of Ignition Delay Time 

Autoignition behaviour is often characterised by the experimental measurement of the 

ignition delay time, τi. Another parameter of interest, within τi, is the excitation time, τe, 

this is the period of time in which the majority of heat release occurs. However, whereas 

τi is typically measured in the order of milliseconds, τe values are in the order of 

microseconds, making there accurate experimental measurement impossible due to 

insufficient response times achievable from dynamics pressure transducers, particularly 

under such high pressures and temperatures, where thermal shock becomes an issue.  

There have been many measurements of τi for a variety of fuels and blends under 

different equivalence ratios, temperatures and pressures using a variety of techniques 

and apparatus, reference to which are given in the following subsections for three of the 

most common experimental techniques.  

The complex flow fields within engines and turbines serve to obscure τi measurements, 

therefore a common theme amongst typical τi measuring apparatus is to negate such 

effects by simplification of the environment in which it is measured. Three common 

techniques are introduced below: Flow reactors, shock-tubes and that used in the present 

work, rapid compression machines. Figure 1.9 shows their typical operational 

boundaries.  
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Figure 1.9: Typical operational boundaries of shock-tubes, rapid compression machines, 

and flow reactors. A comparison to a representative ignition delay curve of iso-octane is 

included; ignition delay of iso-octane is obtained from the reduced mechanism of 

Pepiot-Desjardins and Pitsch (2008) at an equivalence ratio of 0.6 and a pressure of 

2.0MPa (Grogan et al., 2015). 

1.5.1.1 Flow Reactors 

Flow reactors have been successfully employed in the measurement of τi values for 

many years, with Mullins (1951), Lezberg (1957) Chang et al., (1958) and Miller (1958) 

acquiring some of the earliest data. Figure 1.10 shows a schematic of typical flow 

reactor. Essentially, they comprise of a cylinder duct in which a preheated turbulent 

oxidiser (usually air) flow mixes with fuel that is usually radially injected, slightly 

downstream, this creates a homogeneous premixed combustible mixture, and under the 

heat and pressure of the flow, ignition of the combustible mixture occurs sometime 

further downstream.  

 

Figure 1.10: Schematic of a typical flow reactor (Beerer et al., 2009). 

 



Chapter 1 - Introduction 

24 

 

The measurement of τi is defined between the point at which the fuel and oxidiser are 

sufficiently mixed and the point at which ignition occurs, which is usually detected by 

light emission or a pressure spike. Heating is usually limited to 1000K and most 

systems operate in the range of 0.1-3.0 MPa. Using optical access, Beerer et al., (2009) 

employ a laser/photo-detector system to accurately detect the premixed charge just after 

the fuel is injected and photodiodes to detect luminescence at the onset of combustion. 

Fig. 1.11 shows a typical measurement of τi for a methane/air mixture using this setup. 

 
Figure 1.11: Measurement of τi for methane/air mixture using laser detection for 

entering mixture and photodiode detection for luminous from onset of combustion 

(Beerer et al., 2009). 

 

1.5.1.2 Shock Tubes 

Shock tubes are generally used in the measurement of relatively short τi values under the 

high temperatures (Campbell et al., 2015; Davidson et al., 2005; Hawthorn and Nixon, 

1966; Zhu et al., 2015). Figure 1.12 shows an operational schematic of a typical shock 

tube. They comprise of a length cylindrical duct in which an inert high pressure driving 

gas is separated from a relatively low pressure combustible test mixture via a thin 

diaphragm. Depending on the pressure ratio between the two gases, this is typically 

made from aluminium, copper or steel. Upon rupturing the diaphragm, usually by 

means of an electronically operated needle, a shock wave is generated by the high 

pressure driving gas as it enters the low pressure mixture zone. This shock wave, known 

as the incident shock wave, compresses the mixture up to a high autoignition pressure 
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and temperature to allow ignition to take place, with a reflective shock wave returning 

down the duct.  

 

Figure 1.12: Schematic of a typical shock (http://www.ucalgary.ca/johansen/node/7.) 

 

As indicated by the number five in Fig. 1.13 measurements of τi values are limited by 

the time between the point at which the incident shock wave compresses the mixture to 

sufficient pressure and temperature within the test zone and the return of the reflective 

shockwave, which is a function of the contact surface between that of the inert driving 

gas and the test mixture. Thus, only measurements of τi values shorter than this duration 

are possible and are typically within the range 1-3ms.  

http://www.ucalgary.ca/johansen/node/7
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Figure 1.13: Wave system in the shock tube (Campbell et al., 2015). 

However, recent developments have successfully increased this range by methods such 

as specifically tailored driving gases and extended driving gas sections, this has shown 

to increase the distance between the shock wave and the driving gas contact surface, 

resulting in increased times up to 55ms (Campbell et al., 2015).  

1.5.1.3 Rapid Compression Machines 

Many τi values for a variety of fuels over an array of conditions have been measured 

using rapid compression machines (Affleck and Thomas, 1968; Griffiths et al., 1993; 

Grogan et al., 2015; Mittal et al., 2014). They have since undergone much refinement 

with advances in technology allowing for higher pressures and temperatures to be 

achieved, typically in the region of 2.0-4.0 MPa and 900-1500K, and are responsible for 

a vast array of τi measurements for a large variety of fuels. Regardless of different 

operating mechanisms, a common theme to all RCM’s is the simplistic nature of rapidly 

compressing a premixed combustible mixture within a cylinder via a piston to a 

constant end of compression (EOC) volume. The compression increases the mixture 

pressure and temperature to autoignition conditions at EOC, and a pressure spike 

indicates the onset of ignition.  
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The value of τi is generally defined as the duration between the EOC and the point of the 

maximum rate of pressure rise (Griffiths and Nimmo, 1985; Mittal, 2006; Westbrook et 

al., 1998). Rapid compression is essential to reduce the likelihood of any pre-reactions 

during the pressure and temperature rise of compression. RCM’s are generally well 

suited to the measurement of longer τi values due to their ability to hold the required 

autoignition EOC pressures and temperatures for relatively long periods, typically over 

100ms, which is typically two fold that of shock tubes (Mittal and Bhari, 2013).  

1.6 Aims and Objectives 

An increased array of alternative fuels has subsequently led to an increased number of 

potential fuel blends. Developing understanding of different fuel blends behaviour 

relative to their constituents, particularly, key combustion parameters, ul and i, under 

different operational conditions is imperative within commercial fuel blending, to 

ensure blends are not only effective, but optimised for their intended conditions. Thus, 

the ability to accurately predict such parameters for different blends, regardless of their 

constituent chemical families is highly desirable.  

The present work aims to investigate the ul and associated Markstein length, Lb, 

behaviour of blends, relative to their constituents, which are representative of the major 

chemical families found within FT synthetic gasoline, and promising bio-alcohols, as a 

function of pressure and equivalence ratio. Thus, facilitating the development of 

universal predictive ul and Lb blending laws.  

Furthermore, the present work aims to revise the well-established Leeds CV2 auxiliary 

systems and operations, in the quest for higher fidelity ul measurements, and aid the 

commissioning of an RCM, to allow the concurrent collection of i data by M. Materego 

(2015) for fuels and blends also studied by the author in the Leeds CV2.  

Subsequently, the objectives of the present work may be summarised as follows: 

 Aid the commissioning of an RCM to achieve SI engine like pressures and 

temperatures in the region of 2.5 MPa and 1000K, and the accurate acquisition 

of τi values for premixed fuel/air mixtures, as studied in the Leeds CV2. 

 Upgrade the Leeds CV2 auxiliary systems to attain higher accuracy ul and 

Markstein length, Lb, data acquisition. Investigating the heating system and the 

internal gas temperature uniformity, as a function of initial pressure and 

temperature. 
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 Perform measurements of ul and Lb for pure fuels representative of the major 

fuel groups used within commercial FT synthetic gasoline and their binary 

equimolar blends, across ϕ = 0.8-1.3 for initial pressures of 0.1, 0.5 and 1.0 

MPa. Thus, allowing examination of blend behaviour relative to their 

constituents and the influence of pressure and equivalence ratio.  

 Perform measurements of ul and Lb for a high octane gasoline surrogate and the 

comparative effect of ethanol and n-butanol addition, across the same conditions 

as above - Forming part of a joint study with M. Materego (2015) measuring the 

corresponding τi behaviour for the same blends. 

 Investigate flame speed/stretch rate behaviour, and the effect of using linear and 

nonlinear extrapolation methodologies, and correlations between critical Peclet 

and Karlovitz numbers with Markstein numbers, as a function of pressure and 

equivalence ratio, for all measured constituent fuel/air mixtures and their blends. 

 Develop ul and Lb predictive blending laws, for chemically dissimilar fuels, 

including, multicomponent fuel blends, in which constituents may themselves be 

blends, thus on a ‘blends of blends’ basis of significant relevance to commercial 

fuel blending.  

 Analyse predictive performance of existing and any proposed ul and Lb blending 

laws, using data from the aforementioned binary blends, multicomponent 

gasoline surrogate/alcohol blends, and methane and hydrogen blends from other 

researchers.  

1.7 Thesis Structure 

 Chapter 2 reviews ul analytical approaches, which serve as foundations to many 

ul blending laws. Furthermore, a review of blending relations and stoichiometry 

is given, and existing and proposed ul and Lb blending laws are presented. 

 Chapter 3 describes the experimental apparatus, operating techniques and data 

processing involved to acquire ul and Lb for premixed fuel/air mixtures at 

elevated pressure and temperature. Verification of an array of upgrades to the 

Leeds CV2 and auxiliary systems are made, alongside, significant refinements to 

the previous operating techniques and data processing protocols.  

 Chapter 4 presents a substantial range of experimentally measured ul and Lb data 

for both liquid and gaseous fuel/air mixtures and their blends, over a wide 

equivalence ratio range at both elevated pressures and temperatures. The liquid 
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fuel/air mixtures are categorised into three groups: pure fuel constituents, binary 

equimolar blends, and TRF/Alcohol blends. The gaseous fuel/air mixtures are 

exclusively methane, hydrogen and their blends. 

 Chapter 5 presents discussions based on the measured data presented in Chapter 

4. These include:  

i. An assessment of linear and nonlinear extrapolation methodologies 

in deducing ul from Sn/α plots. 

ii. Observed correlations between the critical Peclet and Karlovitz 

numbers with Markstein numbers. 

iii. Comparisons to existing ul and Lb data. 

iv. The comparative effects of ethanol and n-butanol addition to a TRF 

gasoline surrogate blend, in terms of ul, Lb and i. 

v. The influence of hydrogen addition to premixed methane/air 

mixtures energy flux. 

 Chapter 6 presents the predictive performance of each ul and Lb blending law as 

presented in Chapter 2, for all blends presented in Chapter 4, with an overall 

evaluation of the most successful law. 

 Chapter 7 concludes the main discussions and findings, and makes 

recommendations for further work. 

 Appendix A presents the performance league tables for each blending law 

examined, for all blends studied. 

 Appendix B presents technical details on the commissioning of the Leeds RCM. 

 Appendix C presents stress calculations for the RCM fuel/air mixing chamber. 

 

 

 

 

 



Chapter 2 - Review of Laminar Burning Velocity 

Analytical Approaches and Blending Laws 

 

2.1 Introduction 

Since the 1960’s advances in digital computing have allowed significant progress in the 

development of fully detailed chemical kinetic modelling of laminar flame reactions and 

laminar burning velocity. Such models are exemplified in programs such as CHEMKIN, 

which enables a range of burning velocities to be computed over a range of conditions. 

However, blends of different pure fuels, as with real commercial fuels, particularly 

when of dissimilar nature, can result in significantly more complex chemistry, not 

always fully understood, and thus not accurately modelled. Consequently, relatively 

simple blending laws for the prediction of the unstretched laminar burning velocity, ul, 

and other parameters such as the associated burnt gas Markstein length, Lb, of blends of 

the constituent mixtures, which may themselves be blends, are invaluable. This is 

particularly so with the present availability of ranges of petroleum, Fischer-Tropsch, 

and bio-fuels (Broustail et al., 2011; van Lipzig et al., 2011). Such laws are typically 

based on traditional analytical approaches utilising various thermodynamic parameters. 

They usually assume a linear relationship between properties of constituent mixtures 

and their blends. This Chapter introduces the analytical foundations of ul blending laws 

in Section 2.2. Section 2.3 introduces the blending and stoichiometric relationships. 

Section 2.4 reviews existing and presents a proposed ul blending law, and finally, 

Section 2.5 presents proposed blending laws for Lb. 

2.2 Analytical Approaches to Laminar Burning Velocity 

Prominent analytical expressions for laminar burning velocity are reviewed in the 

following subsections. 

2.2.1 Spalding Expressions for Laminar Burning Velocity 

A useful starting point is the analytical expression for the laminar burning velocity, ul, 

derived by Spalding (1957a, b) for a flat, one dimensional, premixed flame. This 

followed earlier pioneering work by Zeldovich and Frank-Kamenetskii, ZF-K (1938). 

The flame equations with molecular diffusion of reactants and thermal conduction, 
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together with a temperature explicit reaction rate, and the energy and mass conservation 

equations yielded the expression (Spalding, 1957a):  
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(2.1) 

where lu
 
is the laminar burning velocity, uk  the thermal conductivity of unburned gas, 

bT  the adiabatic burned gas temperature, uT  the initial temperature, pc  the mean 

specific heat and u  is the density of unburned gas. The progress of the reaction at a 

temperature,T , is indicated by a reaction progress variable, c, given by
ub

u

TT

TT




. 

 dccR
1

0

 is the heat release rate source term integrated over the reaction, in which 

    mHkkcR u
 , where, H is the heat of reaction of the fuel, m  its mass volumetric 

rate of burning.   is a burning velocity eigenvalue with   GcTTRk pubu

2 , where 

uk
 
is unburned thermal conductivity, R  the area under the  cR  curve and G  the mass 

flow rate per unit area.  

Equation 2.1 assumes a Lewis number, DCkLe p , of unity, where D  is the 

diffusion coefficient of the deficient reactant. Spalding (1957a) employs a parameter  , 

which is 1Le , in which normal diffusion is characterised by 1 . If the deficient 

reactant is of low molecular mass,   is greater than unity. If it is of high molecular 

mass,  is less than unity. Spalding (1957a) shows how Eq. 2.1 is modified by a non– 

unity  . A large   increases   and subsequently decreases lu . The value of   was 

related to the centroid of the heat release rate versus reaction progress variable profiles. 

By considering various profiles numerically he derived an empirical expression for , in 

which,      

     .14283.016604.0
2

1 2

cc cc 
 

(2.2) 
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Here cc  is the value of c at the centroid of the area under the heat release rate curve, 

given by:  
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(2.3) 

Because of the influence of the profile of the heat release rate against c , it is instructive 

to study profiles for different mixtures, computed by detailed chemical kinetics. Shown 

in Fig. 2.1, taken from Bradley et al (1991), are some numerically computed heat 

release rates maxqq ,  namely mH   normalised by its maximum  value, plotted against c , 

which is    in the original figure. The profiles for H2 and CH4 are in sharp contrast: that 

for H2 peaks at a lower value of c  than those for CH4 and CH3OH. Clearly, cc  is 

smaller for the H2 mixture, and   also will be smaller.  

 

Figure 2.1: Computed heat release profiles for different CH4, CH3OH, H2 + air 

mixtures at initial temperatures and pressures of 300K and 0.1 MPa respectively. The 

full line curves are indicative of computations and the dotted of fitted algebraic 

expressions, where  = c. (Bradley et al., 1991). 
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A heat release rate that is weighted towards lower values of c  will on this count, give, 

from Eq. 2.1, a higher value of lu . In Fig. 2.2, Bradley et al (1991), shows the variation 

of centroid position and heat release rate integral with the product Qul for different 

fuel/air mixtures. 

 

Figure 2.2: Variation of centroid position and heat release rate integral with the product 

Qul for different fuel/air mixtures. Initial temperatures and pressures are shown in 

bracket (Bradley et al., 1991). 

 

2.2.2 Zel’dovich and Frank-Kamenetskii Approximations 

The chemical reaction rates that generate Hmq   are complex. Globally, they might be 

expressed by a term representing reactant concentrations and a rate constant, an 

Arrhenius “A” value multiplied by an exponential terms,  RTEexp , in which  E  is a 

global activation energy and RE  an activation temperature, Ta  , with R  the ideal gas 

constant. In practice, reactants are consumed and eventually, at c  = 1.0, q = 0. However, 

the fall in concentration of the reactant is countered in the Arrhenius term by the 

increase in T. ZF-K (1938) showed that, if all the heat release occurred at c = 1 then, cc

= 1.0 and  = 0.5. This follows from Eq. 2.2, which gives cc = 1.0. If S(c) represents the 

product of concentrations, Arrhenius “A” values, heat of reaction, ukk , and any effect 

of non-unity Le, then  

      .exp RTEcScR   (2.4) 
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Hence, 
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Now,  
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and, 
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with, 
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With the ZF-K high activation energy, asymptotic, assumption that all the heat release 

occurs at Tb. 
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(2.10) 

The value of E/R is the activation temperature, aT  and   is the Zel’dovich number, 

given by the square bracketed term in Eq. 2.10, so that 

   .2

ubba TTTT 
 

(2.11) 

The value of    bRTES exp1  represents the maximum volumetric heat release rate,

maxq , and consequently, bearing in mind     mHkkcR u
 , 
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(2.12) 

In Eq. (2.1), with cc = 1 and  = 0.5: 
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The expressions from ZF-K (1938) and Semenov (1942) assume Le  = 1 and all the heat 

release to occur at bT . This is more valid at high ba TT  and  , but the computed heat 

release rate profiles in Fig. 2.1 show the assumptions limitations. This approach was, 

however, a significant advance on the earlier simplified one of Mallard and Chatelier 

(1883), which neglected molecular transport. Kuo (2005) presents extensions to Eq. 

2.13 that allow for a greater variety of conditions, such as differences in Le , order of 

reaction and mole densities of reactants,
rn , and products, pn . For a first-order reaction 

he gives: 
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where A is the Arrhenius factor. For a second-order reaction he gives: 
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(2.15) 

with 0a  the number of molecules of reactant per unit volume. 

2.2.3 Activation Temperature influence on Laminar Burning Velocity 

With    ba TTSq  exp1max  for the ZF-K assumptions, together with Eq. 2.13, 
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Therefore, 

  .2exp balul TTu 
 

(2.18) 

Here alT  is an activation temperature for the laminar burning mass flux. However, it is 

clear that 
laT  is dependent upon pressure, P , Lewis number, Le , and temperature 

change,  ub TTT   and, in practice, the variation of q  with c . It follows from Eq. 

2.18 that, 
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This is a frequently used expression in asymptotic analyses (Peters and Williams, 1987) 

and (Bradley et al., 1998b). 

2.3 Blending Relationships and Stoichiometry 

The composition of a blend may be expressed in a number of formats, and often by the 

fractional concentration of each constituent within the blend. Concentrations can be in 

terms of the fuel and air mole fraction of each constituent within the total moles of the 

blend, or by the fuel mole fraction of each constituent within the total fuel moles of the 
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blend. Alternatively, mass fractions may be used. Commercially, for practicality, blends 

are usually expressed in terms of the fuel volume fraction of each constituent within the 

total fuel volume of the blend. A clear understanding of such relations and blend 

stoichiometry is paramount when assessing any blending law, and consequently a 

generalised overview is presented of the constituent relations within a blend. 

A generalised reaction for each pure constituent fuel is given by: 

 C𝑥H𝑦O𝑍 + 𝑎(0.21O2 + 0.79N2) → 𝑥CO2 + (
𝑦

2
) H2O + 0.79N2 (2.21) 

Where a denotes the number of air moles per mole of fuel, thus balancing Eq. 2.21 

gives: 

 𝑎 = 𝑥 +
𝑦

4
−

𝑧

2
 (2.22) 

Let subscript s denote stoichiometric conditions. If f represents the number of fuel 

moles, the equivalence ratio maybe expressed as: 

 𝜙 =
𝑓 𝑎⁄

(𝑓 𝑎)𝑠⁄
, ∴  𝑎 =

𝑓 𝜙⁄

(𝑓 𝑎)𝑠⁄
 , (2.23) 

to give: 

 𝑓 + 𝑎 = 𝑓 +
𝑓 𝜙⁄

(𝑓 𝑎)𝑠⁄
 (2.24) 

Thus, one mole of a fuel and air mixture compromises of: 

 [
𝑓

𝑓 + (𝑓/𝜙)/(𝑓 𝑎)⁄
𝑠

]
𝑓𝑢𝑒𝑙

+ [
(𝑓/𝜙)/(𝑓 𝑎)⁄

𝑠

𝑓 + (𝑓/𝜙)/(𝑓 𝑎)⁄
𝑠

]
𝑎𝑖𝑟

= 1 (2.25) 

Which may be simplified to: 

 [
𝜙

𝜙 + (𝑎 𝑓)⁄
𝑠

]
𝑓𝑢𝑒𝑙

+ [
(𝑎 𝑓)⁄

𝑠

𝜙 + (𝑎 𝑓)⁄
𝑠

]
𝑎𝑖𝑟

= 1 (2.26) 

Generalised blend expressions are now given to demonstrate how the proportion of each 

constituent within a blend is calculated, in terms of the five aforementioned units of 

measurement: moles of fuel and air, moles of fuel, mass of fuel and air, mass of fuel, 

and liquid volume of fuel.  
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First, consider one mole of a binary blend, where 𝑥̅𝑖 denotes the fuel and air mole 

fraction of the i’th constituent within the total moles of the blend. (e.g. 𝑥̅1 + 𝑥̅2= 1).  

This may be expressed by: 

 ∑ {[
𝜙

𝜙 + (𝑎 𝑓)⁄
𝑠

]
𝑓𝑢𝑒𝑙

+ [
(𝑎 𝑓)⁄

𝑠

𝜙 + (𝑎 𝑓)⁄
𝑠

]
𝑎𝑖𝑟

}

𝑖

𝑥̅𝑖

𝑛

𝑖=1

 (2.27) 

Therefore, 𝑥̅𝑖is given by: 

 𝑥̅𝑖 =

{[
𝜙

𝜙 + (𝑎 𝑓)⁄
𝑠

]
𝑓𝑢𝑒𝑙

+ [
(𝑎 𝑓)⁄

𝑠

𝜙 + (𝑎 𝑓)⁄
𝑠

]
𝑎𝑖𝑟

}

𝑖

{∑ {[
𝜙

𝜙 + (𝑎 𝑓)⁄
𝑠

]
𝑓𝑢𝑒𝑙

+ [
(𝑎 𝑓)⁄

𝑠

𝜙 + (𝑎 𝑓)⁄
𝑠

]
𝑎𝑖𝑟

}

𝑖

𝑛

𝑖=1

}

−1 (2.28) 

For blends considered in terms of solely their fuel moles, as is the case with CH4 and H2 

blends studied in forth coming Chapters, the fuel mole fraction of the i’th constituent 

within the total fuel moles of the blend is expressed by, 𝑥̅𝑓,𝑖: 

 𝑥̅𝑓,𝑖 = [
𝜙𝑥̅

𝜙 + (𝑎 𝑓)⁄
𝑠

]
𝑓𝑢𝑒𝑙 𝑖

{∑ [
𝜙𝑥̅

𝜙 + (𝑎 𝑓)⁄
𝑠

]
𝑓𝑢𝑒𝑙 𝑖

𝑛

𝑖=1

}

−1

 (2.29) 

Mass based equivalents of Eq. 2.28 and 2.29 are simply calculated by applying the 

following relationship: 

 𝑚 = 𝑛𝑀𝑤 (2.30) 

Thus, the fuel and air mass fraction of the i’th constituent within the total mass of the 

blend is given by, 𝑥𝑖: 

 𝑥𝑖 =

{[
𝜙𝑀𝑓

𝜙 + (𝑎 𝑓)⁄
𝑠

]
𝑓𝑢𝑒𝑙

+ [
(𝑎 𝑓)⁄

𝑠
𝑀𝑎

𝜙 + (𝑎 𝑓)⁄
𝑠

]
𝑎𝑖𝑟

}

𝑖

𝑥̅𝑖

{∑ {[
𝜙𝑀𝑓

𝜙 + (𝑎 𝑓)⁄
𝑠

]
𝑓𝑢𝑒𝑙

+ [
(𝑎 𝑓)⁄

𝑠
𝑀𝑎

𝜙 + (𝑎 𝑓)⁄
𝑠

]
𝑎𝑖𝑟

}

𝑖

𝑛

𝑖=1

𝑥̅𝑖}

−1 (2.31) 

Where, Mf and Ma denote the molecular mass of fuel and air respectively. And, the fuel 

mass fraction of the i’th constituent within the total fuel mass of the blend is given by, 

𝑥𝑓,𝑖: 
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 𝑥𝑓,𝑖 = [
𝜙𝑀𝑓𝑥̅

𝜙 + (𝑎 𝑓)⁄
𝑠

]
𝑓𝑢𝑒𝑙,𝑖

{∑ [
𝜙𝑀𝑓𝑥̅

𝜙 + (𝑎 𝑓)⁄
𝑠

]
𝑓𝑢𝑒𝑙,𝑖

𝑛

𝑖=1

}

−1

 (2.32) 

Commercially, liquid fuels are usually blended by volume for practicality, as is the case 

with the TRF and alcohol blends studied in forth coming Chapters. The liquid volume 

of a fuel is related to the number of moles, n, and mass by: 

 𝑉 =
𝑚

𝜌
=

𝑛𝑀𝑓

𝜌
 (2.33) 

Where, ρ denotes the liquid fuel density at 298K. Thus, the fuel liquid volume fraction 

of the i’th constituent within the total fuel liquid volume of the blend is found by, 𝑥𝑣,𝑖: 

 𝑥𝑣,𝑖 = [
𝜙𝑀𝑓𝑥̅

𝜙 + (𝑎 𝑓)⁄
𝑠

𝜌𝑓
]

𝑓𝑢𝑒𝑙,𝑖

{∑ [
𝜙𝑀𝑓𝑥̅

𝜙 + (𝑎 𝑓)⁄
𝑠

𝜌𝑓
]

𝑓𝑢𝑒𝑙,𝑖

𝑛

𝑖=1

}

−1

 (2.34) 

The corresponding fuel liquid volume percentage of the i’th constituent can then simply 

be found by, 𝐿𝑉%𝑖: 

 𝐿𝑉%𝑖 = 100𝑥𝑣,𝑖 (2.35) 

2.4 Laminar Burning Velocity Blending Laws 

This Section presents the existing and proposed ul blending laws. As discussed in 

Section 2.3, the fractional amounts of each constituent within a blend can be expressed 

in terms of moles of fuel and air, moles of fuel, mass of fuel and air, mass of fuel, and 

liquid volume of fuel. The following blending laws often make use of such fractional 

concentrations as weighting factors against various other parameters. Table 2.1 

summarises these different weighting factors and symbols: 

Weighting by Fractional Concentration of: 
Corresponding 

Equation 
Symbol 

(Fuel + Air Moles)/Total Moles Eq. 2.28 𝑥̅ 

Fuel Moles/Total Fuel Moles Eq. 2.29 𝑥̅𝑓 

(Fuel + Air Mass)/Total Mass Eq. 2.31 𝑥 

Fuel Mass/Total Fuel Mass Eq. 2.32 𝑥𝑓 

Fuel Liquid Volume/Total Fuel Liquid Volume Eq. 2.34 𝑥𝑣 

Table 2.1: Assigned symbols for the different weighting factors used in the forthcoming 

blending laws. 
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In all cases, subscripts i and bl denote the i’th constituent and blend. Throughout this 

thesis the constituent fuel/air mixtures that constitute a blend have the same ϕ. 

2.4.1 Mole Blending Law of Payman and Wheeler 

Perhaps the most rudimentary of blending laws is that proposed by Payman and 

Wheeler (1922), who investigated hydrogen, methane and carbon dioxide blends ul, 

using a flat plate burner at the initial pressure and temperature of 0.1 MPa and 298K. 

This led to the simple expression of weighting each constituent mixtures ul by that of its 

mole fraction within the blend, to yield the ul,bl of the blend: 

 𝑢𝑙,𝑏𝑙 = ∑(𝑥̅𝑢𝑙)𝑖

𝑛

𝑖=1

, (2.36) 

where, 𝑥̅, denotes the mole fraction of the i’th constituent mixture within the total moles 

of the blend. 

2.4.2 Mass Blending Law of Lipzig 

Lipzig et al. (2010) investigated a mass based version of the above blending law, thus 

weighting each constituent mixtures ul by its mass fraction within the blend, to yield the 

ul,bl of the blend:  

 𝑢𝑙,𝑏𝑙 = ∑(𝑥𝑢𝑙)𝑖

𝑛

𝑖=1

. (2.37) 

Here, 𝑥, denotes the mass fraction of the i’th constituent mixture within the total mass 

of the blend. 

2.4.3 Le Châtelier based Blending Law of Di Sarli   

Using the CHEMKIN PREMIX code with the GRI kinetic mechanism, Di Sarli and 

Benedetto (2007) studied methane and hydrogen blends, with hydrogen fractions 

between 0.1-0.95, over an extensive range of ϕ from 0.5 to 3, at an initial temperature 

and pressure of 300K and 0.1 MPa. A Le Châtelier rule-like formula was developed: 

 
𝑢𝑙,𝑏𝑙 =

1

∑ (
𝑥̅𝑓

𝑢𝑙
)

𝑖

𝑛
𝑖=1

 
(2.38) 
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Where 𝑥̅𝑓 denotes the fuel mole fraction of the i’th constituent within the total fuel 

moles of the blend. 

2.4.4 Equal Adiabatic Temperature Assumption Blending Law of 

Spalding 

Uniquely, Spalding (1956) proposed a blending law that relies on the assumption that if 

the adiabatic flame temperature, Tb, of the constituents and blend are the same, then their 

corresponding qmax/β will be very similar. It can be seen from ZF-K’s earlier work, Eq. 

2.13 that mixtures may be differentiated by: 

 𝐼 = [𝑢𝑙(𝑇𝑏 − 𝑇𝑢)𝑐𝑝̅𝜌𝑢]
2
 (2.39) 

Later Spalding (1957a) presents a revised expression for I:  

 𝐼 = 𝑢𝑙(𝑇𝑏 − 𝑇𝑢)0.5𝑐𝑝̅𝜌𝑢 (2.40) 

Thus, with all mixtures under the same Tb, Spalding proposed: 

 𝐼𝑏𝑙 =  𝑘𝑏𝑙 ∑ (
𝑥𝐼

𝑘
)

𝑖

𝑛

𝑖=1

, (2.41) 

where, 𝑥, denotes the mass fraction of the i’th constituent mixture within the total mass 

of the blend. 

With Ibl known, the ul of blend can be found by rearranging Eq. 2.40: 

 𝑢𝑙,𝑏𝑙 = [
𝐼

(𝑇𝑏 − 𝑇𝑢)0.5𝑐𝑝̅𝜌𝑢
]

𝑏𝑙

 (2.42) 

All present values for Tb, cp, k and ρu were obtained from the GasEq code (Morley, 

2005).  

However, for radically dissimilar fuels with large differences in Tb, such as methane and 

hydrogen, matching the Tb of both constituents and blend is often not possible without 

significantly varying at least one of the constituent equivalence ratios. This study 

focuses solely on blends and constituents at the same equivalence ratio. Hence this 

method was not possible to apply to the methane and hydrogen blends investigated in 

subsequent Chapters. 
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2.4.5 Activation Temperature Blending Law of Hirasawa  

Hirasawa et al. (2002) propose a blending law based on the fractional mole weighting 

the burning velocity activation temperature, 𝑇̃𝑎, of each constituent in the blend. 

However, 𝑇̃𝑎 is not based on mass flux, as discussed in section 2.2.3, but on ul: 

 𝑇̃𝑎 = −𝑇𝑏 𝑙𝑛( 𝑢𝑙). (2.43) 

Hence, the activation temperature of the blend, 𝑇̃𝑎,𝑏𝑙, is derived from: 

 𝑇̃𝑎,𝑏𝑙 =  ∑[𝑥̅𝑇𝑏 𝑙𝑛(𝑢𝑙)]𝑖

𝑛

𝑖=1

. (2.44) 

Here, 𝑥̅, denotes the mole fraction of the i’th constituent mixture within the total moles 

of the blend. All Tb values were obtained from GasEq (Morley, 2005). Finally, the blend 

laminar burning velocity, 𝑢𝑙,𝑏𝑙, is derived via the inverse of Eq. 2.44: 

 𝑢𝑙,𝑏𝑙 = 𝑒𝑥𝑝 (
−𝑇̃𝑎

𝑇𝑏
)

𝑏𝑙

 (2.45) 

2.4.6 Molar Heat of Reaction Correlations of Bradley et al. 

Although no direct blending law was proposed, Bradley et al. (1991) observed 

correlations between ul and heats of reaction per mole of reactants, Q̄, for an array of 

different fuels under lean conditions at different initial and pressures, as shown in Fig. 

2.3.  

The correlations show an approximate linear relationship, but only within specific fuel 

families and are pressure dependent. It was recognised that such a relationship may 

potentially lend itself to the development of a blending law for fuels within the same 

family. The resulting blending law involves plotting the Q̄ value of each constituent 

linearly against their respective ul and thus the ul of the blend can be deduced from the 

known value of its Q̄ and the linear relationship between its constituents. However, this 

approach was anticipated to fail with constituents from radically dissimilar chemical 

families such as methane and hydrogen, where the values of ul and chemical kinetics are 

very different. 
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Figure 2.3: ul of different fuels under lean conditions at an initial temperature of 300K. 

Symbols are experimental data, with the full lines indicating computations. A1, A2 and 

A3 denote CH4 and CH3OH at 0.01, 0.1 and 1.0 MPa respectively. Alkene experiments 

are represented by B at 0.1MPa, whilst C, D, E1 and E2 denote C2H4, C2H2, H2 and 

H2 at 0.1 MPa respectively. (Bradley et al., 1991). 

 

Here, Q̄ for all fuel/air mixtures were calculated using: 

 𝑄̅ = ∑ 𝑛(ℎ𝑓 − ∆ℎ) − ∑ 𝑛(ℎ𝑓 − ∆ℎ)

𝑅𝑃

, (2.46) 

where, subscripts R and P denote the reactants and products respectively, Q̄ the heat of 

reaction per mole of the reactants, n the number of moles, hf the enthalpy of formation 

at the standard state conditions of 298K and 0.1 MPa, and ∆ℎ the sensible enthalpy, 
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which is the difference in enthalpy between any given state and the enthalpy at standard 

state conditions. In this study Q̄ is based on the lower heating value, LHV, where the 

product H2O is assumed to be fully vaporised. Utilising the GasEq code, all fuel and 

species hf and ∆ℎ values were obtained, alongside values of n for a comprehensive 

range of product species, leading to more accurate values of Q̄ under lean conditions, 

where NO and O2 become significant, and rich conditions where CO and H2 become 

significant. Theses product species comprised: N2, H2O, CO2, CO, O2, OH, H, O, H2 

and NO. 

2.4.7 Q/k Blending Law of Present Work 

Finally, the proposed blending law from the present work is based on a reformulation of 

Spaldings analytical expression for ul as shown in Eq. 2.1. Such that, the macro 

parameters of ul, Q, ku, 𝑐𝑝̅ and 𝜌𝑢 are utilised to one side, where Q is the heat of reaction 

per mass of the reactants, whilst the remainder represent a measure of reactivty by 

describing the volumetric heat release rate profile through the flame: 

 𝑢𝑙𝜌𝑢 (
𝑄𝑐𝑝̅

𝑘𝑢
)

0.5

= [
∫ 𝑅(𝑐)𝑑𝑐

1

0

𝜆
]

0.5

 (2.47) 

On the assumption that the fractional mass weighted integrated volumetric heat release 

rate profile terms in c for the constuent mixtures can be added, to give a compararble 

term for blends comprising of i’th constituents, Eq. 2.47 then yeilds: 

 [𝑢𝑙𝜌𝑢 (
𝑄𝑐𝑝

𝑘𝑢
)

0.5

]
𝑏𝑙

= [
∫ 𝑅(𝑐)𝑑𝑐

1

0


]

𝑏𝑙

0.5

= ∑ 𝑥𝑖 [
∫ 𝑅(𝑐)𝑑𝑐

1

0


]

𝑖

0.5

,

𝑛

𝑖=1

 (2.48) 

whereby, x, denotes the mass fraction of each consituent mixture within the total mass 

of the blend. Applying the fractional mass weigting to the corresponding macro 

parameters, yields the blending law: 

 [𝑢𝑙𝜌𝑢 (
𝑄𝑐𝑝

𝑘𝑢
)

0.5

]
𝑏𝑙

= ∑ [𝑥𝑢𝑙𝜌𝑢 (
𝑄𝑐𝑝

𝑘𝑢
)

0.5

]
𝑖

𝑛

𝑖=1

 (2.49) 

The law implies the ul of any blend is ultimately dependant upon the volumetric heat 

release rate profile through the flame, which is assumed to be the sum of the fractional 

mass weighted constituent mixture volumetic heat relase rates. During the present work, 

Q, ku and 𝑐𝑝̅ values for all mixtures were aquired via the use of GasEq (Morley, 2005).  
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Uniquely, this law accounts for the influence of consituent mixutres with marked 

differences in thermal conductivity. The majority of liquid hydrocarbon/air mixtures 

have negligible difference in thermal conductivity, being similar with ϕ. However for 

gaseous mixtures, such as CH4/air and H2/air there are significant difference between 

their thermal conductivies. Figure 2.4 shows how ku values vary with ϕ for mixtures of 

CH4/air, H2/air and their blends. The ku values for CH4/air mixtures remain relatively 

similar across ϕ = 0.6-1.3, in significant contrast to those for H2/air which exhibit a 

strong linear increase with ϕ, in which the ku value of H2/air become over double that of 

CH4/air under stoichiometric conditions. The values of ku for all pure fuel and blend 

mixtures were obtained using the thermal equilibrium program GasEq (Morley, 2005).  

 

Figure 2.4: Variation of ku with ϕ, for methane/air, hydrogen/air, and their blends at 

303K. 

2.5 Review of Markstein Parameter Blending Laws 

As introduced in Chapter 1, the Markstein length, Lb, is an intrinsic property of any 

flame, describing the influence of stretch upon ul, thus being an important parameter in 

the study of fundamental combustion, and making a Lb blending law highly desirable. 

Whilst there are a number of ul blending laws proposed in literature, no Lb blending 
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laws were found. Three possible approaches were considered in the present work and 

are detailed in the following subsections. 

2.5.1 Deficient Reactant Blending Law 

The first Lb law was inspired by the role of the Lewis number in determining the 

Markstein number, in particular that of the deficient reactant. It involves weighting the 

value of Lb of each constituent mixture by the deficient reactant mole fraction. Under 

lean conditions the value of Lb,bl for the blend is found by weighting the Lb for each 

constituent mixture by the fuel mole fraction and under rich conditions by the oxygen 

mole fraction: 

 𝐿𝑏,𝑏𝑙 = ∑(𝑥̅𝑑𝐿𝑏)𝑖

𝑛

𝑖=1

, (2.50) 

where, 𝑥̅𝑑,𝑖, denotes the deficient reactant mole fraction of the i’th constituent within the 

total deficient reactant moles of the blend. Hence, under lean conditions, where solely 

the fuel moles are considered, 𝑥̅𝑑,𝑖 = 𝑥̅𝑓,𝑖, as per Eq. 2.29. However, under rich 

conditions, where solely the oxygen moles are considered, 𝑥̅𝑑,𝑖, becomes: 

 𝑥̅𝑑,𝑖 = 0.21 [
(𝑎 𝑓)⁄

𝑠
𝑥̅

𝜙 + (𝑎 𝑓)⁄
𝑠

]
𝑖

{∑ 0.21 [
(𝑎 𝑓)⁄

𝑠
𝑥̅

𝜙 + (𝑎 𝑓)⁄
𝑠

]
𝑖

𝑛

𝑖=1

}

−1

 (2.51) 

Similarly, the equivalent mass based version was also trialled during the present work. 

2.5.2 xulLb Blending Law  

This law involves a more empirical approach by the fractional mass weighting of the 

product xulLb for each constituent mixture:  

 𝐿𝑏,𝑏𝑙 = ∑
(𝑥𝑢𝑙𝐿𝑏)𝑖

𝑢𝑙,𝑏𝑙

𝑛

𝑖=1

, (2.52) 

where, 𝑥, denotes the mass fraction of the i’th constituent mixture within the total mass 

of the blend.  
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3.1 Introduction 

The measurement of both laminar and turbulent burning velocities of both liquid and 

gaseous fuels at various initial temperatures, pressures and equivalence ratios, have 

been made using a variety of experimental methods and apparatus (Broustail et al., 

2011; Saeed and Stone, 2004; van Lipzig et al., 2011). Many of these have become well 

established for combustion studies. Common examples include constant volume 

combustion vessels (Hu et al., 2009; Jerzembeck et al., 2009; Marshall et al., 2011), 

adiabatic perforated plate burners (Dirrenberger et al., 2014; Konnov et al., 2011; 

Sileghem et al., 2013) and the twin counter flame stagnation technique (Egolfopoulos et 

al., 1992; Yamaoka and Tsuji, 1985).  

Various imagining techniques are used; typically high speed digital schlieren and 

shadowgraphy (Broustail et al., 2011; Ormsby, 2005), and flow field imagining such as 

digital particle image velocimetry (DPIV) (Hirasawa et al., 2002; Jayachandran et al., 

2015). Selection of apparatus and technique is often influenced by the fuel type, desired 

initial conditions, diagnostic ability, setup complexity, operation practicality and 

required accuracy.  

In particular, constant volume combustion vessels have become popular due to their 

flexibility in allowing a range of combustion fundamentals to be studied over a wide 

range of variables: fuel type, blend and phase, including two phase mixtures (Bradley et 

al., 2014), temperature, pressure, equivalence ratio, r.m.s turbulence and its length scale.  

Furthermore, they allow experimentation in a convenient and simplified manner. Flame 

front measurements taken within the core region have no surface interaction with the 

vessel walls, and in the case of larger vessels, also remain under the constant initial 

pressure, allowing for the assumption of all thermodynamic properties to be under 

adiabatic and isobaric conditions. Also, the flame is not moored, as would be the case 

with burners, thus the operating range is not limited by flashback or blow off. Generated 

turbulence can usually be assumed to be homogenous and isotropic with no mean fluid 
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motion. These significant benefits make the constant volume combustion vessel the 

choice for the present work.  

The combustion vessel and accompanying auxiliary systems are presented in Section 

3.2, with the fuel handling and experimental procedures in Section 3.3. Section 3.4 

presents the various data processing operations and finally Section 3.5 presents a 

verification of the modifications made to the vessel during the present work. 

3.2 Experimental Apparatus 

A schematic of the apparatus used in the present work is shown in Fig. 3.1. Also shown 

is the inter-connectivity of its systems. The vessel is known as the Leeds Mk 2 

combustion vessel (CV2), or the “bomb” and has been extensively used in the 

acquisition of both laminar and turbulent burning velocities. Examples include (Al-

Shahrany et al., 2005; Bradley et al., 1998b; Bradley et al., 2009; Haq, 1998; Harker, 

2009; Mansour, 2011; Ormsby, 2005; Tripathi, 2012).  

However, the present work included significant upgrades to the auxiliary systems and 

refinements to the operating techniques in the quest for higher fidelity results. Physical 

upgrades to the auxiliary systems are discussed within Section 3.5, whilst refinements to 

operating techniques and procedures are discussed in Section 3.3.  
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Figure 3.1: Schematic of vessel and auxiliary systems. 
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3.2.1 Combustion Vessel 

Commissioned in 1991 by the Leeds combustion group, the Leeds CV2 as shown in 

Fig. 3.2 is a unique modular designed fan stirred combustion vessel (Bradley et al., 

1998b). Figure 3.3 shows an internal view with the main access port removed. The 

vessel is capable of withstanding temperatures and pressures associated with the 

combustion of mixtures at initial temperatures and pressure of up to 600K and 1.5 MPa, 

respectively. Comprising a stainless steel SAE316 spherical body with an internal 

diameter of 380mm, and three pairs of orthogonally opposed ports that allow for an 

array of auxiliary systems to be employed. These ports allow exceptional optical access 

via 150mm diameter quartz windows, allowing a range of imagining techniques to be 

employed. High speed digital schlieren photography was used in the present work. 

However, such techniques as DPIV (Larsson, 2008) and a laser swinging sheet system 

(Harker, 2009)  have also been used.  

Turbulence was generated by four identical eight bladed fans, symmetrically disposed in 

a regular tetrahedron configuration, powered by four 8kW three phase motors, each 

controlled by individual solid states variable frequency convertors with a speed control 

range of 200-10,000rpm (3.3-176Hz). All work reported in this thesis was under 

laminar conditions and the fans were used only for mixing prior to ignition. However, 

they have also frequently been used for turbulent combustion studies (Harker, 2009; 

Mansour, 2011; Ormsby, 2005).  
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Figure 3.2: The Leeds CV2 – external view. 

 

 

Figure 3.3: The Leeds CV2 – internal view. 
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3.2.2 Auxiliary Systems 

Several auxiliary systems were employed on the combustion vessel for the present 

work. These included: static and dynamic pressure measurement systems; a heating and 

temperature control system; an ignition system; a high speed digital schlieren system 

and a triggering and synchronisation system. These are discussed in detail in the 

following subsections.  

3.2.2.1 Pressure Measurement 

Two pressure transducers were employed, one for static measurements and the other for 

dynamic measurements. The static pressure transducer (Druck PDCR 911) had a range 

of 0-1.5 MPa and was connected to a four digit digital display within the control booth. 

It measured absolute pressure and was used in mixture preparation to monitor vacuum, 

partial pressures and final pressure. Prior to ignition it was isolated for protection via a 

swage lock ball valve.  

Variation in atmospheric pressure can strongly influence the mixture preparation hence 

calibration of the transducer was performed on a daily basis by taking readings from a 

mercury barometer. This helped reduce any error in the mixture equivalence ratio. 

During combustion of the mixture the associated pressure rise was measured by a 

dynamic pressure transducer (Kistler 701A) which was flush mounted to the vessel 

inner wall surface and had a range of 0-25 MPa. The charge from the transducer was 

then converted via a charge amplifier (Kistler 5007) to a +/- 10v analogue signal. An 

analogue to digital convertor (ADC) (Microlink 4000), then digitised the signal, which 

was interpreted by a virtual instrument (VI) panel using LabVIEW software to 

graphically display and record the pressure trace, at a sampling frequency of 50kHz.  

In order to optimise the voltage range for the associated pressure increase during 

combustion, the charge amplifier volts/pressure range was adjusted to 5v/bar for initial 

pressures of 0.1 and 0.5 MPa and 10v/bar for the initial pressure of 1.0 MPa. Typically, 

the maximum pressure rise from combustion was around six times the initial pressure of 

the mixture. Calibration of the static transducer was performed via a dead weight tester 

and found to be within ±0.25%. Calibration of the dynamic transducer was outsourced 

to Kistler Instruments Ltd. 

3.2.2.2 Heating System and Temperature Control 

The existing heating system was upgraded for the present work and a demonstration of 

the improvement is discussed in Section 3.5.1. As shown by Fig. 3.3, heating of the 
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vessel was performed by two internal 2kW coiled heating elements, one attached to the 

inside of the access cover and the other attached to the inside of the opposing port 

cover. The temperature was set, controlled and displayed by a PID controller (CAL 

Controls, CAL3200) mounted in the control panel, using feedback via a K type 

thermocouple (25μ chromel-alumel wire) sheathed by a 1.5mm stainless steel casing 

and positioned such that the junction end was 75mm away from the vessels inner wall 

surface. During heating, convective heat transfer was aided by turbulence generated by 

the four fans, this helped maintain a more uniform temperature across the vessel, 

ensured the elements did not over heat and reduced the risk of any pre-combustion 

reactions of the mixture due to excessive hot spots (Mandilas, 2008). A safe guard 

mechanism was employed which prevented heating unless the fans were activated.  

During the initial heating phase of the vessel, the set point temperature of the PID 

controller was set considerably higher than the desired initial mixture temperature, thus 

causing a more aggressive rate of heat transfer that significantly reduced the heat up 

time. Ceasing heating then lowered the vessel temperature towards the desired target 

while thermal conduction ensured a uniform temperature distribution as discussed in 

Section 3.5. The temperature was then maintained by the PID controller with the set 

point a few degrees above the desired mixture temperature. Depending on the heat of 

reaction generated by combustion and frequency of experiments, the vessel temperature 

could also be manipulated by either significantly increasing the set point temperature to 

give a higher heating rate or by flushing the vessel with air for longer periods after each 

experiment to increase cooling. 

3.2.2.3 Ignition System 

All mixtures were ignited with a centrally positioned spark plug within the vessel using 

a variable arc discharge ignition system. As shown in Fig. 3.4, a miniaturised spark plug 

assembly, developed at Leeds, was used to minimise aerodynamic influences on flame 

propagation.  
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Figure 3.4: Custom made mini sparkplug assembly.  

 

This compromised a central 1.5mm diameter high carbon steel electrode serving as the 

anode, being insulated by a ceramic sheath within a stainless steel tube with a 

protuberance to serve as the corresponding cathode. This assembly was then secured 

into an internally PTFE insulated 6.35mm stainless steel tube and mounted through the 

vessel wall. This grounded the outer stainless steel section to earth for the cathode side 

of the circuit, with an external standard male HT cable connection attached to the 

internal anode rod. This setup ensured the risk of uncontrolled ignition from residual 

ignition energy was avoided (Kondo et al. 1997).  

The central anode electrode was connected to the secondary coil windings on one side 

of a double ended VW ignition coil via a high tension (HT) cable, with the other side 

earthed to increase the original charge of the unit. The primary coil windings were 

supplied with a 12v supply and broken by a 12v CMOS signal to induce the spark. The 

spark energy was kept to the minimum ignition energy (MIE) required to initiate a 

sustained reaction. This minimised the influence of spark assisted flame propagation 

(Tripathi, 2012). This minimum energy was a function of fuel, equivalence ratio and 

initial pressure. In particular, the minimum energy reduced with increasing pressure. 

Suitable ignition energy variation was achieved by altering the spark plug gap and, 

hence, dissipation of the spark. For all mixtures, the spark plug gap was set to 1.5, 1 and 

0.5mm for initial pressures of 0.1, 0.5 and 1.0 MPa respectively. 
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3.2.2.4 High Speed Digital Schlieren Photography 

High speed schlieren cine photography was employed to track the development of 

spherically expanding flames within the vessel. The technique allowed the visual 

detection of the flame front through the density gradients between the burnt and un-

burnt mixtures that cause varying degrees of light refraction. The technique was first 

used at Leeds by Bradley and Hundy (1971) and has become well established for 

combustion studies at Leeds (Al-Shahrany et al., 2005; Ormsby, 2005; Tripathi, 2012) 

and at many other institutes (Broustail et al., 2011; Hu et al., 2009; Jerzembeck et al., 

2009).  

Figure 3.1 shows a schematic of the schlieren optical configuration. A near point source 

of light was provided by a 20mW (regulated to 5mW), 635nm LED laser, this expanded 

onto a f-1000mm plano-convex lens, collimating a 150mm beam through the vessel and 

its contents to another f-1000mm plano-convex lens, which focused the beam onto a 

variable diameter iris (1-15mm). A high speed digital Phantom M310 camera using an 

80mm Nikon lens, then recorded the resulting image to its internal memory of 512MB. 

The camera was positioned such that the maximum field of view of 150mm diameter, 

limited by the vessel windows, took full advantage of the camera resolution of 768 x 

768 pixels. This resulted in a recorded square view of 159 x 159mm and thus 

0.20708mm/pixel. This resolution was more than sufficient to capture a defined flame 

edge and detailed flame cellularity, whilst allowing the ample sampling rate of 5400 fps.  

The exposure time was set to 6μs. Phantom software controlled the camera via an 

Ethernet cable and allowed the recorded images to be converted from the standard 

“.cine” format to a string of “.bmp” images for interpretation by an automated image 

processing program, as discussed in Section 3.4.2. The software also featured an 

‘extreme dynamic range’ (EDR) function. This involved a pre-set pixel saturation 

threshold that, once exceeded, reset the exposure time within the global exposure time 

of 6μs. This essentially slowed down pixels that were charging so fast they would 

become saturated before the global exposure time expired, thus allowing much better 

definition of images featuring both low and high intensity light. 

The schlieren technique benefits from a relatively simple setup and allows quick and 

effective adaptation of the system sensitivity via variation of the iris diameter. At the 

smallest diameter of 1mm, the system was highly sensitive, giving true schlieren 

images. Increasing the iris diameter desensitises the system, whereby an intermediate 

between schlieren and shadowgraphy was reached. This allowed the system to be 
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optimised for different mixture conditions, of varying density, to show the maximum 

amount of surface detail, whilst ensuring a clearly definable flame front edge was 

always observed. Iris diameters of 1, 5 and 12.5mm were found to be best suited for 

initial pressures of 0.1, 0.5 and 1.0 MPa.  

Figure 3.5 demonstrates typical schlieren image quality at r = 65mm, for stoichiometric 

iso-octane/air at the three initial pressures used in the present work. A limitation of any 

schlieren setup is the 2D projection of a 3D flame, rendering an image overlapping 

effect. However, as long as the flame edge was clearly defined, the rate of propagation 

could be observed.  



Chapter 3 – Experimental Apparatus, Operating Techniques and Data Processing 

57 

 

 

Figure 3.5: Schlieren images of iso-octane/air taken at r = 65mm, ϕ = 1, Pi = a) 0.1 

MPa, b) 0.5 MPa, c) 1.0 MPa, Tu = 360K. 

a) 

b) 

c) 
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3.2.2.4.1 Schlieren Calibration 

At the start and end of every day of experiments, confirmation of the beam collimation 

and pixel resolution was achieved through recording an image, via the high speed 

camera, of a mounted transparent Perspex sheet with an imprinted 10mm2 grid within a 

section of the collimated beam on either side of the vessel. It was ensured that the beam 

was correctly adjusted such that both images displayed the same size grid, thus 

confirming a collimated bean through the vessel. The pixel size was confirmed by an 

image analysis tool developed in MATLAB, this allowed a computer generated best fit 

grid of known size and pixel resolution to be superimposed over each image of the 

Perspex grid. The average of both sides was taken, with variation typically within 0.1%.  

3.2.2.5 Triggering and Synchronisation System 

In order to simultaneously capture the schlieren images of the propagating flame and the 

associated pressure rise, synchronisation of the high speed camera, dynamic pressure VI 

and spark system was required. This was achieved via a purpose built triggering system, 

following the sequence of operation as shown by Fig 3.6. Upon pressing the ‘push to 

make’ ignition switch, a +5v TTL trigger signal was generated. Its rising edge triggered 

the start of both the camera and dynamic pressure transducer recording systems. The 

corresponding falling edge then initiated a +12v CMOS pulse to break the primary side 

of the coil, thus generating a spark. This sequence of operations ensured that all flame 

data were captured together with a small amount of reference data prior to ignition.  
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Figure 3.6: Sequence of triggering for camera, sparkplug and dynamic pressure 

transducer. 

3.3 Operating Techniques 

Past procedures for both fuel handling and rig operations have been revised within the 

present work in the quest for increased safety, reduced experimental time and higher 

fidelity data acquisition. These are detailed in the following subsections.  

3.3.1 Fuel Handling and Preparation 

A summary of all fuels used in the present work is given in Table 3.1. In accordance 

with University health and safety regulations, and operating in a fume cupboard, all 

fuels were decanted into 250ml narrow necked glass bottles and stored in a refrigerator 

at 5°C. Due to the hygroscopic nature of ethanol, the precaution of decanting the entire 

2.5litre supply bottle into ten 250ml bottles at once was taken to reduce its exposure 

time to atmospheric air. As a further precaution to minimise fumes, all fuel bottles had a 

silicone septum cap fitted, which was pierced by a 1mm diameter stainless steel Luer 

lock needle with the appropriately sized syringe attached. Therefore, it was not 

necessary to open any fuel bottle within the laboratory outside the fume cupboard. Any 

fuel required was taken from the refrigerator at least 30 minutes before use to allow 

equalisation to room temperature (25°C) to ensure its density corresponded to that used 

in calculations for subsequent syringe volume measurements.  
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Fuel Supplier Purity (ppm) 
Density 

(g/ml @ 25°C) 

Molecular 

Mass (g) 

iso-Octane 
Fisher 

Scientific 
99.91% 0.619 114.23 

n-Heptane 
Fisher 

Scientific 
99% 0.683 100.23 

Toluene 
Fisher 

Scientific 
99.8% 0.867 92.14 

1-Hexene 
Sigma- 

Aldrich 
99% 0.678 84.16 

Ethanol 
Fisher 

Scientific 
99.8% 0.7897 46.07 

n-Butanol 
Fisher 

Scientific 
99.89% 0.810 74.14 

Table 3.1: Summary of all liquid fuels used in the present work.  

 

For a fuel to fully vaporise its vapour pressure, which is a function of temperature, must 

be equal to or greater than its partial pressure, which is a function of the total pressure 

within a system. The initial temperature of all experiments in the present work was 

360K. This was selected on the basis of being sufficient to ensure complete vaporisation 

of all fuels, within a practical time, across an equivalence ratio range of, ϕ = 0.8-1.3, at 

initial pressures of 0.1, 0.5 and 1.0 MPa. It also facilitated a saturated steady state, with 

low risk of pre-combustion reactions on the vessel walls. Furthermore, a large number 

of previous burning velocity studies carried out at Leeds and other institutes were at the 

same temperature, which serve as means of comparison, as discussed in Chapter 5. 

However, the exception to this was n-butanol which was found to have an insufficient 

vapour pressure for complete vaporisation at the high pressure of 1.0MPa, Indeed, at  ϕ 

= 1.0,  droplets were visible on known cooler regions of the combustion vessel such as 

the quartz windows. Therefore, for this fuel, ϕ was limited to 0.9 at 1.0 MPa. 

In all cases the vessel fans were in operation during mixture preparation to improve 

mixing. Typically the fans were operated at 1000rpm, but for the alcohols, ethanol and 

n-butanol, the fan speed was increased to 2500rpm to increase convection and decrease 

vaporisation time.  

3.3.2 Experimental Procedure 

After the vessel had been sufficiently heated, as discussed in Section 3.2.2.2, an initial 

sealing test was performed, where the vessel was pressurised with dry air to the 

intended initial pressure of the mixture and monitored for at least five minutes to ensure 
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no leakage. This test was performed whenever the initial temperature or pressure of the 

mixture was altered. To ensure the vessel was free from any unwanted gaseous residuals 

from previous experiments, the vessel was vacuumed down to 0.05 MPa from 

atmospheric pressure, filled with dry air to 2 MPa, and again vacuumed down to 0.05 

MPa. This ensured any gaseous residuals were kept to a maximum of 0.3%. 

With the fuel at room temperature, the assumption of the ideal gas law, known volume 

of the vessel, fuel composition and density, the liquid volume of fuel required for each 

mixture was calculated. A Hamilton glass gas tight syringe, with an accuracy stated by 

the manufactures of 0.5% at full scale, was equipped with a Luer locked needle to 

pierce the silicone septum of the fuel bottles. Detaching the needle then allowed the 

syringe to be connected to the vessel’s gated Luer lock liquid fuel delivery port. With 

the vessel under vacuum at 0.05 MPa, the port valve was then opened and the fuel 

drawn in by the difference in room and vessel pressure. This significantly aided fuel 

vaporisation rate and initiated mixing with a small quantity of air. The valve was then 

closed and the associated partial pressure from evaporation of the fuel was confirmed 

via the digital static pressure gauge. Dry air was then added to the desired initial 

mixture pressure whilst ensuring the mixture temperature had stabilised to the desired 

initial mixture temperature. At this point, the fans were switched off and a 15s time 

period given to allow the mixture to equilibrate and become quiescent. This also 

allowed sufficient time to arm the triggering system, perform a final brief visual 

inspection and return to the protected control booth. Ensuring the initial mixture 

temperature and pressure were as desired, the inlet air supply and static pressure 

transducer were isolated by remotely closing ball valves and finally, the ignition button 

pressed. 

After combustion the resulting products were exhausted via a remotely operated exhaust 

valve, this ensured the vessel was depressurised to a safe level before leaving the 

protection of the control booth. The fans and heaters were then reactivated, the inlet air 

supply and static pressure transducers isolation valves reopened, and the vessel flushed 

with dry air for at least one minute to aid the evacuation of combustion products. 

During this time the acquired data was saved and the LabVIEW and Phantom programs 

reset. The vacuuming and dry air filling procedure as described above was then repeated 

to prepare the vessel for the next experiment.  
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3.4 Data Processing 

This Section serves to highlight the various stages of processing the acquired 

experimental data. First, the required thermodynamic data and assumptions are 

addressed in Section 3.4.1. Second, the schlieren image digitalisation technique and 

acquisition of the average flame front radius are discussed in Section 3.4.2. Finally, the 

automated technique of deducing ul via both linear and nonlinear approaches to 

measuring Lb, are discussed in Section 3.4.3. 

3.4.1 Thermodynamic Properties of Burned and Unburned Gases 

All Schlieren images used to deduce ul and Lb were taken with the full spherical flame 

front visible through the vessel windows. During this period any pressure rise is 

negligible such that constant pressure was assumed. Therefore all thermodynamic 

properties of the mixture during this stage were considered to be under isobaric and 

adiabatic conditions. As discussed in Chapter 1, Section 1.5, the calculation of ul 

requires the thermal expansion factor, which is the ratio of the burned to unburned 

density, ρb and ρu. These densities were obtained from the thermal equilibrium program 

GasEq, developed by Morley (2005). The program offers the calculation of 

thermodynamic and combustion parameters at a variety of conditions. However, for the 

present work the constant pressure and adiabatic temperature assumption was deemed 

most sufficient.  

3.4.2 Schlieren Image Processing  

The present work involved a large number of experiments and thus many thousands of 

flame images were processed. This, coupled with the subjective nature of defining a 

flame edge, particularly when faint and or with emerging cellularity, warranted the use 

of a partially automated and systematic image processing technique for the analysis of 

flame propagation. Software for this was developed by (Sharpe, 2011), using the 

MATLAB programming environment. During the present work the program has been 

refined and optimised for increased speed and the ability to deal with images of high 

cellularity.  

Figure 3.7 illustrates some of the steps undertaken to process a schlieren image. Figure 

3.7a shows an image of a typical cellular flame. The flame is essentially cellular except 

for a disturbance caused by the spark plug. Therefore, for accurate calculations it was 

necessary to eliminate the influence of this disturbance as follows. Initially, using the 



Chapter 3 – Experimental Apparatus, Operating Techniques and Data Processing 

63 

 

schlieren image immediately prior to ignition, the outer edge of the window and spark 

plug tip position was identified. A circa 20 degree section from the tip on either side of 

the spark plug probe was then masked off as shown in Fig 3.7b to negate the 

accelerative effects of its presence. The resulting coordinates were then saved to file and 

applied to every subsequent image as a frame of reference.  

The process of identifying the flame edge starts with the last fully observable flame 

front schlieren image within the vicinity of the window such as that in Fig 3.7a.  The 

outer window edge, sparkplug tip position and mask coordinates were then 

superimposed onto the image. A level set approach was then initiated from the window 

outer edge frame of reference towards the inner burnt gas region. The identified flame 

front was then highlighted, as shown in Fig. 3.7b by a black outline that neighbours the 

unburned mixture region highlighted in blue, with the burned gas region highlighted in 

grey. A best fit circle was then applied to the flame front as illustrated by the blue line 

in Fig. 3.7c. Hence, the average flame radius was calculated and saved to file. This 

process was then repeated for every image back to the point of ignition, with each 

previous flame front serving as an initial level set starting point. Details of this level set 

technique are given in  (Sethian, 1999; Tripathi, 2012). 
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Figure 3.7: a) Schlieren image, b) Digitised image with sparkplug masking, c) Best fit 

circle to digitised flame front edge. 

 

a) 

b) 

c) 
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3.4.3 Acquisition of ul and Lb 

From the process discussed above, each experiment resulted in a series of radii as a 

function of the time of each captured image. Subsequently, the stretched flame speed as 

a function of radius and stretch rate was calculated, as discussed in Chapter 1, Section 

1.5. These calculations were performed in a further MATLAB code that automatically 

generated plots of: r vs. t, Sn vs. r and Sn vs. α. Figure 3.8 shows typical examples of 

these.  

As also, discussed in Chapter 1, Section 1.5, both linear and nonlinear approaches to 

measuring Lb were automatically applied to Sn vs. α data in order to deduce ul via 

extrapolation to zero stretch rate, with the selected data range overseen at every stage to 

ensure a realistic fit and application only within the stable regime of the flame. Figure 

3.8c illustrates distinct linear and nonlinear behaviour, for rich and stoichiometric iso-

octane/air mixtures respectively. In cases such as the rich mixture, where no differences 

between the approaches occurred or were within the experimental error, the linear 

approach was assumed sufficient. However, in cases such as the stoichiometric mixture, 

where distinct nonlinear behaviour occurs, the linear approach is clearly inadequate, 

causing an over prediction of ul. Thus, the nonlinear ul value was used. Throughout the 

present work, solid red and blue lines on all Sn vs. α plots denote the linear and 

nonlinear approaches respectively, whilst highlighting the selected stable flame regime 

used.  
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Figure 3.8: a) r variation with t, b) Sn variation with r, c) Sn variation with α, for iso-

octane at Pi = 0.1 MPa, Tu = 360K for ϕ = 1 and 1.3. Solid red and blue lines denote 

linear and nonlinear relationships to Lb across used data points respectively. 
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3.5 Verification of Improvements due to Vessel Modifications 

During the present work, an array of modifications to the vessel and its auxiliary 

systems was carried out in order to improve safety, experimental efficiency and 

accuracy. These included, a new ignition system that allowed considerably higher spark 

energy, with controlled spark duration, a higher flow rate vacuum system, which 

reduced vacuuming time by around 70%, a revised schlieren system with significantly 

improved versatility and sensitivity, a more powerful and uniform heating system with 

improved temperature uniformity, and the introduction of a desiccant dryer to the main 

compressor air supply for improved air quality and reduced cylinder air use. The latter 

two modifications required some preliminary experimentation in order to verify their 

performance, which is presented in the following subsections. 

3.5.1 Heating System Upgrade 

Originally, the initial heating of the vessel was done either by the internal 2kW heating 

element attached to the access port, or by an independent 8kW heating element for 

reduced heating time and/or higher temperature, which was inserted via the access port. 

Both methods used running fans forcing convection to aid more uniform heating. In the 

case of the independent 8kW heating element, once the vessel reached the desired 

temperature it was removed and the internal 2kW heating element reattached, which 

was deemed sufficient to maintain spatially uniform temperature.  

Figure 3.9a shows temperature measurements taken by M. Lawes, from the vessel outer 

body surface, on the heater side and opposing side, using solely the 2kW heating 

element to initially heat the vessel from room temperature. The internal gas temperature 

target was set to 150°C. After the target temperature was reached and stabilised, at 

around 200 minutes, a mixture was added, hence, the slight fall in readings as the 

mixture heated. The mixture was then left for over an hour, with the PID temperature 

controller maintaining the target temperature. During this period, a circa 15°C 

temperature differential existed between either side of the vessel outer surface. Figure 

3.9b shows the corresponding temperature measurements using the 8kW heating 

element to initially heat the vessel. This was attached with the internal gas temperature 

target set to 150°C, for around an hour.  
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Figure 3.9: Temperature measurements of vessel surface as a function of time during 

initial heating stage, using: a) 2kW heater, b) 8kW booster heater and 2kW heater. 
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As expected, a much higher rate of heat transfer was observed. A 15 minute period was 

then required to remove the 8kW heater and install the 2kW heater. A rapid decrease in 

temperature readings on the heater side was then observed as the 2kW heating element 

and mounting plate absorbed heat from the vessel body. This caused the surface 

temperature readings on either side to nearly equalise at circa 75 minutes. However, this 

could not be maintained as the internal gas temperature dropped below target, activating 

the 2kW heater, causing surface readings on the heater side to rise again and depart 

from equalisation with the opposite side. Shortly after, the heater was switched off to try 

and counter this effect, but again, it was found that the internal gas temperature could 

not be maintained without having a relatively large temperature differential between 

either side of the vessel.  

As discussed in Section 3.2.2.2, the degree of temperature maintenance was influenced 

by the nature of the experiments. Preliminary experiments, also found low heat of 

reaction mixtures and/or relatively long periods between combustion events 

significantly destabilised the vessels heat saturation, even at relatively low initial gas 

temperatures of 360K. This, indicates that a single 2kW heating element was not 

sufficient to maintain spatially uniform temperature of the vessel during the course of a 

typical day of experimentation.  

In an effort to both reduce the time required to pre-heat the vessel and to improve 

temperature uniformity, the single 2kW heating element was removed and two new 

larger surface area 2kW heating elements were installed, as shown in Fig. 3.3. One was 

attached in the original position inside of the access port cover and the other 

symmetrically opposing it on the other port cover. In turn, these new heating elements 

fractionally reduced the internal volume of the vessel.  

To quantify the new internal volume, a measured quantity of water was carefully poured 

into the top access port of the vessel, with the heaters and electrode in place, until the 

level became flush with the top internal surface. The required water volume was 

30.372l, hence, the corresponding new internal volume of the combustion vessel was 

found to be 0.030372m3.  

The new heating system proved to be more effective in initially heating the vessel to the 

target initial mixture temperature of 360K than the independent 8kW heating element, 

reducing the initial heating time by around 20 minutes. This was particularly 

advantageous, as further time was saved by not having to install and remove the 
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independent heater, which subsequently eliminated the hazardous exposure to the large 

hot heating element upon its removal.   

A series of experiments was then conducted in order to quantify temperature 

distribution within the vessel and to ensure a stable and uniform core region (within the 

field of view through the windows) exists prior to ignition, at both elevated 

temperatures and pressures. For laminar studies, the fans were switched off prior to 

ignition giving a period of time to allow the mixture to become quiescent, arm systems 

and retreat to the safety of the main control booth.  

Thus, to quantify the effect on temperature uniformity from switching off the fans, 

initial measurements with them switched on were first required. As shown in Fig. 3.10, 

a custom made temperature measurement probe was manufactured in order to conduct 

such experiments. 

 

Figure 3.10: Custom made K-type thermocouple probe for internal temperature 

measurement at elevated pressure, with fans running. 

 

This allowed safe and measureable insertion of a K type thermocouple into the vessel 

with running fans and at elevated pressure. Fig. 3.11 illustrates the track of the probe via 

the four existing ports that oppose the centre of each fan. 
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Figure 3.11: Dashed red lines represent track of thermocouple probe from each of the 

four positions, denoted by P1, P2, P3 and P4.  

 

Ensuring the vessel was fully heated, such that the desired internal air temperature was 

stable with the fans running, a series of temperature measurements were made from the 

inner wall surface, in 20mm increments to the vessel centre, from each of the four 

symmetrically disposed positions. Then, for every position the fans were turned off and 

the temperature recorded every 5 seconds up to one minute. This procedure was carried 

out at initial temperatures of 360 and 393K for both initial pressures of 0.1 and 0.5 MPa.  

Thus, these four conditions allowed the effects of elevated temperature and pressure on 

internal gas temperature uniformity to be observed, whilst fans were on and after they 

were switched off. Figures 3.12-3.15 show the recorded temperature measurements for 

each position, across r = 0-190mm, relative to the time from the fans being switched 

off, for each of the four conditions. In all cases, with the fans running, all measurements 

taken within r = 175mm were within 1.5K of the target temperature.  

However, measurements at r = 190mm were significantly varied and considered to be 

within the thermal boundary layer of the inner wall surface. In all cases after the fans 

were switched off, measurements taken from positions 1 and 4 had a tendency to 

become lower with an increased rate at larger radii. This was anticipated as in both 
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positions the probe tracked downwards into cooler regions caused by heat rising. This 

effect for position 4 was further augmented by the cooler quartz window. In contrast, 

measurements from positions 2 and 3 had a tendency to become higher, with an 

increased rate at larger radii. Again this was anticipated as the probe tracks upwards into 

hotter regions due to heat rise. In particular measurements from position 2 at larger radii 

became very high due to heat radiation from the close proximity of the 2nd heating 

element. 
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Figure 3.12: Temperature measurements at each probe insertion position, denoted by 

P1, P2, P3 and P4, as a function of time after turning off the fans and heater, through r = 

0-190mm, where r = 0 denotes the vessel centre. Tu = 360K. Pi = 0.1 MPa. 
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Figure 3.13: Temperature measurements at each probe insertion position, denoted by 

P1, P2, P3 and P4, as a function of time after turning off the fans and heater, through r = 

0-190mm, where r = 0 denotes the vessel centre. Tu = 360K. Pi = 0.5 MPa. 
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Figure 3.14: Temperature measurements at each probe insertion position, denoted by 

P1, P2, P3 and P4, as a function of time after turning off the fans and heater, through r = 

0-190mm, where r = 0 denotes the vessel centre. Tu = 393K. Pi = 0.1 MPa. 
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Figure 3.15: Temperature measurements at each probe insertion position, denoted by 

P1, P2, P3 and P4, as a function of time after turning off the fans and heater, through r = 

0-190mm, where r = 0 denotes the vessel centre. Tu = 393K. Pi = 0.5 MPa. 
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In summary, Fig. 3.16 shows the average temperature measurements from all positions 

relative to the time after switching off the fans, at each condition. It can be seen that the 

overall temperature uniformity of the air within the vessel improved by the elevated 

initial pressure of 0.5 MPa for both initial temperatures of 360K and 393K. This 

increased stability at higher pressure was likely due to the increased density and thus 

thermal mass within the vessel. In contrast, deterioration of temperature uniformity 

occurred when increasing the initial temperature to 393K for both initial pressures of 

0.1 and 0.5 MPa. This was most likely due to increased heat transfer rates associated 

with the higher temperature differentials, the effects of which were exasperated at larger 

radii. However, the critical radius of interest was that of the windows in which flame 

front images were used, r = 75mm.  
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Figure 3.16: Symbols denote the average temperature measurement for all positions 

within r = 75mm, at a) 360K and 0.1 MPa, b) 360K and 0.5 MPa, c) 393K and 0.1 MPa, 

d) 393K and 0.5 MPa. Dashed lines and error bars indicate target temperatures and the 

minimum and maximum recorded temperatures respectively.  
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Temperature uniformity within this radius was significantly better for all conditions. 

Table 3.2 below summarises the average measured temperature for each condition, with 

the maximum positive and negative temperature deviations from the target temperature, 

Tu, , within the core region of r = 75mm and typical required time prior to ignition, after 

switching off the fans, t = 15s.  

Pi (MPa) Tu (K) 

Average 

Measured Temp. 

within r = 75mm, 

t = 15s. (K) 

Max. Positive 

Temp. Deviation 

from Tu (K) 

Max. Negative 

Temp. Deviation 

From Tu (K) 

0.1 360 360.4 2.6 2.2 

0.5 360 360.1 0.9 1.1 

0.1 393 392.8 2.6 2.9 

0.5 393 393 0.8 0.8 

Table 3.2: Summary of average temperature measurements and the maximum positive 

and negative temperature deviations from Tu within r = 75mm, t = 15s.  

 

With the exception of the ul vs. Tu benchmarking experiments discussed below, all ul 

experiments within the present work were fixed at Tu = 360K. However, Pi was varied: 

0.1, 0.5 and 1.0 MPa. The vessel gas temperature uniformity analysis has showed an 

increase in Pi improves temperature uniformity, hence the condition of Tu = 360K and 

Pi = 1.0 MPa was assumed to be well within acceptable tolerances. 

As a benchmark, a further series of experiments was then carried out to examine the 

effect of Tu on the ul of stoichiometric iso-octane at 0.1 MPa, from 300K to 400K in 

10K intervals. Figure 3.17 shows the variation of measured ul values as a function of Tu, 

indicating an approximate linear relationship equating to 0.002m/s/K.  
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Figure 3.17: Variation of ul with Tu for stoichiometric iso-octane/air mixtures. Each 

symbol denotes the average of three experiments, with the accompanying red error bars 

indicating the minimum and maximum values.  
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measured ul values. This air source was anticipated to contain the most water vapour out 

of the three available, and its consistent lowering effect on ethanol’s ul serves as an 

indication that only cylinder air or compressor air via the desiccant dryer are sufficient 

for consistent high fidelity ul ethanol measurements.  

Figure 3.18: Variation of ul with different air supplies for stoichiometric ethanol/air 

mixtures. Each symbol denotes the average of three experiments, with the 

accompanying red error bars indicating the minimum and maximum value.  
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Chapter 4 - Experimental Laminar Burning Velocity 

and Markstein Length Measurements of Pure Fuel/Air 

Mixtures and Blends 

 

4.1 Introduction 

This Chapter presents measured values of laminar burning velocities and their 

associated Markstein lengths for all the pure liquid hydrocarbon fuel/air mixtures and 

their blends, using the numerical and experimental techniques outlined in Chapters 1 

and 3. Also presented are existing laminar burning velocities and Markstein lengths for 

methane/air, hydrogen/air and their blends measured by other researchers. The liquid 

hydrocarbon pure fuels and their related blend behaviour are considered over 

equivalence ratios from 0.8 to 1.3, at pressures of 0.1, 0.5 and 1.0 MPa at 360K. For 

methane/air and hydrogen/air blends the equivalence ratio ranged from 0.6 to 1.3, at 0.1 

MPa and 303K.  

The liquid hydrocarbon fuel blends are classified into two groups comprising binary 

equimolar blends and toluene reference fuel (TRF) blends. The latter allows 

examination of blending law performance on a ‘blends of blends’ basis and the 

comparative effects of ethanol and n-butanol addition to a TRF. The laminar burning 

velocities and Markstein lengths for the pure liquid fuel/air mixtures are presented first 

in Section 4.2 and their binary equimolar and TRF/Alcohol blends in Sections 4.3 and 

4.4. Finally, the laminar burning velocities and Markstein lengths for methane/air and 

hydrogen/air and their blends are presented in Section 4.5. 

Subsequent discussions from the experimental data within this Chapter are presented in 

Chapter 5. An evaluation of the predictive performance of the different blending laws 

outlined in Chapter 2, is given in Chapter 6, by comparing the predicted values with the 

experimental values of this Chapter. 

4.2 Pure Liquid Hydrocarbon Fuels 

The pure liquid hydrocarbon fuels are listed in Table 4.1 and were selected as 

representatives of the major fuel groups of alkanes, alkenes, aromatics and alcohols, 

typically found within modern day commercial gasoline fuels. Their chemically 
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dissimilar compositions facilitate identification of any unique traits of a particular fuel 

group, which may be of significant interest to those concerned with commercial fuel 

blending.  

Fuel 
iso-

Octane 

n-

Heptane 
Toluene 1-Hexene Ethanol 

n-

Butanol 

Composition C8H18 C7H16 C7H8 C6H12 C2H5OH C4H9OH 

𝑀𝑤  114.26 100.23 92.15 84.18 46.08 74.14 

ρ @ 

298.15K 

(kg/m³) 

0.6919 0.683 0.867 0.678 0.7897 0.810 

Supplier  
Fisher 

Scientific 

Fisher 

Scientific 

Fisher 

Scientific 

Sigma- 

Aldrich 

Fisher 

Scientific 

Fisher 

Scientific 

Table 4.1: List of all pure liquid hydrocarbon based fuels studied and their basic 

properties.  

 

Figures 4.1-4.18 show the measured stretched laminar flame speed, Sn, variation with 

stretch rate, α, and corresponding Sn variation with r, for all the pure liquid fuel/air 

mixtures, at Pi = 0.1, 0.5, across ϕ = 0.8-1.3, and 1.0 MPa, across ϕ = 0.8-1.0. As 

discussed in Chapters 1 and 3, all ul measurements employed both linear and nonlinear 

flame speed/stretch rate extrapolation methodologies, in the measurement of Lb, within 

the stable regime of the flame. The solid red and blue lines indicate the linear and 

nonlinear stable regimes in which data points were used, and the corresponding dashed 

lines indicate their extrapolation to zero stretch rate. At Pi = 0.1 MPa, where ϕ = 0.8-1.2, 

distinct nonlinearity for all pure fuel/air mixtures was observed, particularly for iso-

octane/air mixtures, the slowest burning fuel/air mixtures studied here. In such cases, 

the linear approach consistently yielded higher values of Lb and subsequently ul, with 

the difference decreasing with ϕ. In contrast, at Pi = 0.5 and 1.0 MPa, linear behaviour 

was dominant for all fuel/air mixtures across the full equivalence ratio range, with 

negligible differences between the linear and nonlinear approaches, with any differences 

being within the margin of experimental error. 

In all cases, as both pressure and equivalence ratio increase, the stable regime in which 

Lb can accurately be measured becomes increasingly limited, between the minimum 

unaffected spark radius of r = 10 mm and the onset of cellularity, at the critical radius, 

rc, as indicated by red crosses. As previously discussed in Chapter 1, rc is defined as the 

radius above which, the flame speed sharply accelerates, deviating from the earlier 
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response to the stretch rate, due to the increasing rate of generation of surface area. At 

Pi = 0.1 MPa, with ϕ = 0.8-1.2, all pure fuel/air mixtures were observed to be stable. 

However under the richest condition where ϕ = 1.3, all became unstable at 

approximately rc = 60 mm.  

Figures 4.19a and b show the variation of rc with ϕ for all pure fuel/air mixtures at 0.5 

and 1.0 MPa. At this increased pressure, with the exception of iso-octane/air, n-

heptane/air and ethanol/air mixtures, at Pi = 0.5 MPa and ϕ = 0.8, all pure fuel/air 

mixtures became unstable within the observable window radius of 75 mm. For ϕ = 1.1-

1.3, at Pi = 1.0 MPa, the accurate measurement of Lb became impossible, as the stable 

range between the minimum unaffected spark radius and rc was too narrow. This 

phenomenon was observed for all pure fuel/air mixtures, consequently limiting the 

accurate acquisition of ul data at Pi = 1.0 MPa to ϕ = 0.8-1.0.  

A low vapour pressure can also limit ul data at the higher values of Pi and ϕ, where a 

completely gaseous mixture is unattainable. In the case of n-butanol/air mixture, the 

maximum ϕ at 1.0 MPa was limited to 0.9 at Tu = 360K. Beyond this, its required partial 

pressure would become higher than its vapour pressure, and vaporisation would be 

insufficient. 
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Figure 4.1: a) Sn variation with α, b) Sn variation with r, for iso-octane/air mixtures at Pi 

= 0.1 MPa, Tu = 360K and ϕ = 0.8-1.3. Solid red and blue lines denote linear and 

nonlinear relationships for Lb through data points, dashed lines indicate their 

extrapolation to zero stretch rate and red crosses indicate rc. 
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Figure 4.2: a) Sn variation with α, b) Sn variation with r, for n-heptane/air mixtures at Pi 

= 0.1 MPa, Tu = 360K and ϕ = 0.8-1.3. Solid red and blue lines denote linear and 

nonlinear relationships for Lb through data points, dashed lines indicate their 

extrapolation to zero stretch rate and red crosses indicate rc. 
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Figure 4.3: a) Sn variation with α, b) Sn variation with r, for toluene/air mixtures at Pi = 

0.1 MPa, Tu = 360K and ϕ = 0.8-1.3. Solid red and blue lines denote linear and 

nonlinear relationships for Lb through data points, dashed lines indicate their 

extrapolation to zero stretch rate and red crosses indicate rc. 
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Figure 4.4: a) Sn variation with α, b) Sn variation with r, for 1-hexene/air mixtures at Pi 

= 0.1 MPa, Tu = 360K and ϕ = 0.8-1.3. Solid red and blue lines denote linear and 

nonlinear relationships for Lb through data points, dashed lines indicate their 

extrapolation to zero stretch rate and red crosses indicate rc. 
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Figure 4.5: a) Sn variation with α, b) Sn variation with r, for ethanol/air mixtures at Pi = 

0.1 MPa, Tu = 360K and ϕ = 0.8-1.3. Solid red and blue lines denote linear and 

nonlinear relationships for Lb through data points, dashed lines indicate their 

extrapolation to zero stretch rate and red crosses indicate rc. 
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Figure 4.6: a) Sn variation with α, b) Sn variation with r, for n-butanol/air mixtures at Pi 

= 0.1 MPa, Tu = 360K and ϕ = 0.8-1.3. Solid red and blue lines denote linear and 

nonlinear relationships for Lb through data points, dashed lines indicate their 

extrapolation to zero stretch rate and red crosses indicate rc. 
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Figure 4.7: a) Sn variation with α, b) Sn variation with r, for iso-octane/air mixtures at Pi 

= 0.5 MPa, Tu = 360K and ϕ = 0.8-1.3. Solid red and blue lines denote linear and 

nonlinear relationships for Lb through data points, dashed lines indicate their 

extrapolation to zero stretch rate and red crosses indicate rc. 
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Figure 4.8: a) Sn variation with α, b) Sn variation with r, for n-heptane/air mixtures at Pi 

= 0.5 MPa, Tu = 360K and ϕ = 0.8-1.3. Solid red and blue lines denote linear and 

nonlinear relationships for Lb through data points, dashed lines indicate their 

extrapolation to zero stretch rate and red crosses indicate rc. 
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Figure 4.9: a) Sn variation with α, b) Sn variation with r, for toluene/air mixtures at Pi = 

0.5 MPa, Tu = 360K and ϕ = 0.8-1.3. Solid red and blue lines denote linear and 

nonlinear relationships for Lb through data points, dashed lines indicate their 

extrapolation to zero stretch rate and red crosses indicate rc. 
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Figure 4.10: a) Sn variation with α, b) Sn variation with r, for 1-hexene/air mixtures at Pi 

= 0.5 MPa, Tu = 360K and ϕ = 0.8-1.3. Solid red and blue lines denote linear and 

nonlinear relationships for Lb through data points, dashed lines indicate their 

extrapolation to zero stretch rate and red crosses indicate rc. 
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Figure 4.11: a) Sn variation with α, b) Sn variation with r, for ethanol/air mixtures at Pi = 

0.5 MPa, Tu = 360K and ϕ = 0.8-1.3. Solid red and blue lines denote linear and 

nonlinear relationships for Lb through data points, dashed lines indicate their 

extrapolation to zero stretch rate and red crosses indicate rc. 
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Figure 4.12: a) Sn variation with α, b) Sn variation with r, for n-butanol/air mixtures at Pi 

= 0.5 MPa, Tu = 360K and ϕ = 0.8-1.3. Solid red and blue lines denote linear and 

nonlinear relationships for Lb through data points, dashed lines indicate their 

extrapolation to zero stretch rate and red crosses indicate rc. 
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Figure 4.13: a) Sn variation with α, b) Sn variation with r, for iso-octane/air mixtures at 

Pi = 1.0 MPa, Tu = 360K and ϕ = 0.8-1.3. Solid red and blue lines denote linear and 

nonlinear relationships for Lb through data points, dashed lines indicate their 

extrapolation to zero stretch rate and red crosses indicate rc. 
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Figure 4.14: a) Sn variation with α, b) Sn variation with r, for n-heptane/air mixtures at 

Pi = 1.0 MPa, Tu = 360K and ϕ = 0.8-1.0. Solid red and blue lines denote linear and 

nonlinear relationships for Lb through data points, dashed lines indicate their 

extrapolation to zero stretch rate and red crosses indicate rc. 
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Figure 4.15: a) Sn variation with α, b) Sn variation with r, for toluene/air mixtures at Pi = 

1.0 MPa, Tu = 360K and ϕ = 0.8-1.0. Solid red and blue lines denote linear and 

nonlinear relationships for Lb through data points, dashed lines indicate their 

extrapolation to zero stretch rate and red crosses indicate rc. 
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Figure 4.16: a) Sn variation with α, b) Sn variation with r, for 1-hexene/air mixtures at Pi 

= 1.0 MPa, Tu = 360K and ϕ = 0.8-1.0. Solid red and blue lines denote linear and 

nonlinear relationships for Lb through data points, dashed lines indicate their 

extrapolation to zero stretch rate and red crosses indicate rc. 
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Figure 4.17: a) Sn variation with α, b) Sn variation with r, for ethanol/air mixtures at Pi = 

1.0 MPa, Tu = 360K and ϕ = 0.8-1.0. Solid red and blue lines denote linear and 

nonlinear relationships to Lb across used data points, with dashed lines indicating their 

extrapolation to zero stretch rate. Red crosses indicate rc.  
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Figure 4.18: a) Sn variation with α, b) Sn variation with r, for n-butanol/air mixtures at Pi 

= 1.0 MPa, Tu = 360K and ϕ = 0.8-0.9. Solid red and blue lines denote linear and 

nonlinear relationships to Lb across used data points, with dashed lines indicating their 

extrapolation to zero stretch rate. Red crosses indicate rc.  
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Figure 4.19: Variation of rc, with ϕ, for all pure liquid fuel/air mixtures, at a) 0.5 MPa 

and b) 1.0 MPa. 
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Figures 4.20, 4.21 and 4.22 present a selection of schlieren images showing the flame 

front evolution and the transition to cellularity of iso-octane/air mixtures at ϕ = 0.8, 1 

and 1.3, respectively, at Pi = 0.1, 0.5 and 1.0 MPa. The full extent of cellularity for each 

condition can be observed in Fig. 4.23 in the schlieren images, all at r = 65 mm. In all 

cases, it can be seen that the number of cracks or cells increases with radius, initial 

pressure and equivalence ratio, particularly with the latter.  

Measurements of ul and Lb for each pure fuel/air mixture are shown in Figs. 4.24 and 

4.25, respectively, at Tu = 360K, Pi = 0.1, 0.5 and 1.0 MPa, and ϕ = 0.8-1.3. During the 

present work, all experimental values indicated by symbols are the average of at least 

three experiments with the accompanying error bars indicating the scatter. The 

repeatability for all the results was good, with ul and Lb generally within 2 and 5%, 

respectively. To differentiate between ul measurements derived using either the linear or 

nonlinear approach, all unfilled symbols denote a justifiable linear approach and all 

filled symbols a necessary nonlinear approach.  

In general, the ul values of each pure fuel/air mixture in decreasing order are given by: 

1-hexene, ethanol, n-heptane, n-butanol, toluene and iso-octane. However, ethanol was 

observed to be differently pressure sensitive, with ul decreasing in relative rank as the 

initial pressure increased. Across all pressures the highest and lowest burning velocities 

are exhibited by 1-hexene and iso-octane, respectively. Peak burning velocities for all 

fuels at pressures of 0.1 and 0.5 MPa occur between ϕ = 1.1-1.2, although for the three 

fastest burning fuels, ethanol, n-butanol and 1-hexene this occurs closer to ϕ = 1.2 at 0.1 

MPa, with the two alcohols continuing this trend at the increased initial pressure of 0.5 

MPa. The relative difference in ul between the pure fuel/air mixtures is greatest at 0.1 

MPa and decreases as the pressure increases. All fuels share the common trend of a 

decrease in Markstein length as the equivalence ratio and pressure increase. 
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Figure 4.20: Schlieren images of iso-octane/air mixtures, f = 5400 fps, ϕ = 0.8, Tu = 

360K, Pi = 0.1, 0.5 and 1.0 MPa. 
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Figure 4.21: Schlieren images of iso-octane/air mixtures, f = 5400 fps, ϕ = 1.0, Tu = 

360K, Pi = 0.1, 0.5 and 1.0 MPa. 
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Figure 4.22: Schlieren images of iso-octane/air mixtures, f = 5400 fps, ϕ = 1.3, Tu = 

360K, Pi = 0.1, 0.5 and 1.0 MPa. 
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Figure 4.23: Schlieren images of iso-octane/air mixtures, f = 5400 fps, r = 65 mm, ϕ = 

0.8-1.3, Tu = 360K, Pi  =  0.1, 0.5 and 1.0 MPa. 
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Figure 4.24: Variation of ul with ϕ for all pure liquid fuel/air mixtures, Pi = a) 0.1 MPa, 

b) 0.5 MPa, c) 1.0 MPa, Tu = 360K. 
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Figure 4.25: Variation of Lb with ϕ for all pure liquid fuel/air mixtures, Pi = a) 0.1 MPa, 

b) 0.5 MPa, c) 1.0 MPa, Tu = 360K. 
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4.3 Binary Equimolar Liquid Hydrocarbon Blends 

Binary equimolar constituent mixture blends are a good starting point to identify any 

fuel groups or particular blends that behave in an unexpected manner relative to their 

constituent fuels and thus might challenge any blending laws. As discussed in Chapter 

2, Section 2.3, and illustrated by Eq. 2.28, the constituent mixtures always have the 

same equivalence ratios. From the five pure fuels chosen to represent the major fuel 

groups of gasoline, ten binary equimolar blends were investigated. Table 4.2 

summarises the composition of each binary blend, showing the relevant mole, mass, and 

liquid fuel fractions, based on the expressions in Chapter 2.  

The alcohols, ethanol and n-butanol, contain oxygen and therefore, for a given ϕ, 

generally require less air to oxidise their elemental carbon and hydrogen. Uniquely, the 

blend of toluene/1-hexene has the same fractional fuel and air moles, at a given ϕ, the 

result of both fuels requiring the same amount of air. Liquid volume fractions depend on 

the constituent fuel densities.  

Figures 4.26-4.45 show the values of ul and Lb for each blend, and those of their 

constituent mixtures at Pi = 0.1, 0.5 and 1.0 MPa. Again, whether a linear or nonlinear 

extrapolation to zero stretch rate was used is indicated by the symbols employed. 

Unfilled symbols denote a justifiable linear extrapolation, and filled symbols denote a 

necessary nonlinear extrapolation. For all blends, as with the pure fuel/air mixtures, 

nonlinear flame speed/stretch rate behaviour was only observed at 0.1 MPa between ϕ = 

0.8-1.2. At the elevated pressures of 0.5 and 1.0 MPa there was dominant linear 

behaviour across all equivalence ratios. 

In all cases, the ul and Lb behaviour of the blend relative to its constituents is best 

observed at 0.1 MPa, where the relative differences between the constituent ul and Lb 

values are greatest. In general there was a tendency for the blend mixtures ul and Lb 

values to be closer to the slower burning constituent, particularly under lean conditions 

and with iso-octane/ethanol/air and toluene/n-heptane/air blends, as shown in Figs. 

4.30-4.31 and Figs. 4.38-4.39. 
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Equimolar 

Blends of 

Constituent 

Fuel/Air 

Mixtures 

Fuel/Air Mass 

Ratio of 

Constituent 

Mixtures 

Fuel Mole Ratio 

of Constituent 

Fuels 

Fuel Mass Ratio 

of Constituent 

Fuels 

Fuel Liquid 

Volume Ratio of 

Constituent Fuels 

iso-Octane 

/Toluene 
1.004 0.724 0.901 1.128 

iso-Octane       

/1-Hexene 
1.004 0.724 0.984 0.965 

iso-Octane 

/Ethanol 
1.008 0.253 0.626 0.715 

iso-Octane       

/n-Heptane 
1.004 0.883 1.004 0.992 

Toluene           

/1-Hexene 
1.008 1 1.092 0.855 

Toluene  

/Ethanol 
1.012 0.348 0.695 0.634 

Toluene           

/n-Heptane 
1.004 1.217 1.123 0.883 

1-Hexene 

/Ethanol 
1.004 0.348 0.637 0.742 

1-Hexene         

/n-Heptane 
0.996 1.217 1.02 1.028 

Ethanol            

/n-Heptane 
0.992 3.484 1.604 1.387 

Table 4.2: Binary equimolar constituent mixtures showing different constituent ratios as 

discussed in Chapter 2, Section 2.3. Densities for all fuels are shown in Table 4.1. 
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Figure 4.26: Variation of ul with ϕ for iso-octane/air, toluene/air and their relative 

equimolar binary blend, Pi = a) 0.1 MPa, b) 0.5 MPa, c) 1.0 MPa, Tu = 360K. 
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Figure 4.27: Variation of Lb with ϕ for iso-octane/air, toluene/air and their relative 

equimolar binary blend, Pi = a) 0.1 MPa, b) 0.5 MPa, c) 1.0 MPa, Tu = 360K. 
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Figure 4.28: Variation of ul with ϕ for iso-octane/air, 1-hexene/air and their relative 

equimolar binary blend, Pi = a) 0.1 MPa, b) 0.5 MPa, c) 1.0 MPa Tu = 360K. 
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Figure 4.29: Variation of Lb with ϕ for iso-octane/air, 1-hexene/air and their relative 

equimolar binary blend, Pi = a) 0.1 MPa, b) 0.5 MPa, c) 1.0 MPa, Tu = 360K. 
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Figure 4.30: Variation of ul with ϕ for iso-octane/air, ethanol/air and their relative 

equimolar binary blend, Pi = a) 0.1 MPa, b) 0.5 MPa, c) 1.0 MPa, Tu = 360K. 
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Figure 4.31: Variation of Lb with ϕ for iso-octane/air, ethanol/air and their relative 

equimolar binary blend, Pi = a) 0.1 MPa, b) 0.5 MPa, c) 1.0 MPa, Tu = 360K. 
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Figure 4.32: Variation of ul with ϕ for iso-octane/air, n-heptane/air and their relative 

equimolar binary blend, Pi = a) 0.1 MPa, b) 0.5 MPa, c) 1.0 MPa, Tu = 360K. 
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Figure 4.33: Variation of Lb with ϕ for iso-octane/air, n-heptane/air and their relative 

equimolar binary blend, Pi = a) 0.1 MPa, b) 0.5 MPa, c) 1.0 MPa, Tu = 360K. 
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Figure 4.34: Variation of ul with ϕ for toluene/air, 1-hexene/air and their relative 

equimolar binary blend, Pi = a) 0.1 MPa, b) 0.5 MPa, c) 1.0 MPa, Tu = 360K. 
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Figure 4.35: Variation of Lb with ϕ for toluene/air, 1-hexene/air and their relative 

equimolar binary blend, Pi = a) 0.1 MPa, b) 0.5 MPa, c) 1.0 MPa, Tu = 360K. 
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Figure 4.36: Variation of ul with ϕ for toluene/air, ethanol/air and their relative 

equimolar binary blend, Pi = a) 0.1 MPa, b) 0.5 MPa, c) 1.0 MPa, Tu = 360K. 
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Figure 4.37: Variation of Lb with ϕ for toluene/air, ethanol/air and their relative 

equimolar binary blend, Pi = a) 0.1 MPa, b) 0.5 MPa, c) 1.0 MPa, Tu = 360K. 
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Figure 4.38: Variation of ul with ϕ for toluene/air, n-heptane/air and their relative 

equimolar binary blend, Pi = a) 0.1 MPa, b) 0.5 MPa, c) 1.0 MPa, Tu = 360K. 
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Figure 4.39: Variation of Lb with ϕ for toluene/air, n-heptane/air and their relative 

equimolar binary blend, Pi = a) 0.1 MPa, b) 0.5 MPa, c) 1.0 MPa, Tu = 360K. 
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Figure 4.40: Variation of ul with ϕ for 1-hexene/air, ethanol/air and their relative 

equimolar binary blend, Pi = a) 0.1 MPa, b) 0.5 MPa, c) 1.0 MPa, Tu = 360K. 
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Figure 4.41: Variation of Lb with ϕ for 1-hexene/air, ethanol/air and their relative 

equimolar binary blend, Pi = a) 0.1 MPa, b) 0.5 MPa, c) 1.0 MPa, Tu = 360K. 
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Figure 4.42: Variation of ul with ϕ for 1-hexene/air, n-heptane/air and their relative 

equimolar binary blend, Pi = a) 0.1 MPa, b) 0.5 MPa, c) 1.0 MPa, Tu = 360K. 
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Figure 4.43: Variation of Lb with ϕ for 1-hexene/air, n-heptane/air and their relative 

equimolar binary blend, Pi = a) 0.1 MPa, b) 0.5 MPa, c) 1.0 MPa, Tu = 360K. 
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Figure 4.44: Variation of ul with ϕ for ethanol/air, n-heptane/air and their relative 

equimolar binary blend, Pi = a) 0.1 MPa, b) 0.5 MPa, c) 1.0 MPa, Tu = 360K. 
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Figure 4.45: Variation of Lb with ϕ for ethanol/air, n-heptane/air and their relative 

equimolar binary blend, Pi = a) 0.1 MPa, b) 0.5 MPa, c) 1.0 MPa, Tu = 360K. 
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4.4 TRF and Alcohol Blends 

The blending of gasoline with bio-derived alcohols in the quest to mitigate demand on 

petroleum based fuels and reduce CO2 emissions is becoming increasingly common. 

Furthermore, within the combustion research community the use of toluene reference 

fuels (TRFs) as gasoline surrogates are becoming of increasing importance due to their 

ability to better emulate key modern gasoline combustion characteristic such, ignition 

delay time, burning velocity and heat realise rate, over that of traditional PRFs. They are 

typically a blend of iso-octane, toluene and n-heptane. However, unlike PRFs there are 

no industry standards for TRF compositions under agreed test conditions. Typically a 

TRF blend is tailored to characterise a specific parameter of the real gasoline fuel under 

specific conditions.  

Therefore, it is of great interest and importance to understand how TRF gasoline 

surrogates respond to the addition of promising bio-derived alcohols such as ethanol 

and n-butanol. During the present work, a joint effort with M. Materego (2015) was 

made to investigate the comparative effects of these alcohols to a high octane TRF 

gasoline surrogate, in terms of the two key combustion parameters, ul and i. 

Furthermore, the study also provided a comprehensive range of multicomponent blend 

data, which allowed blending law performances to be analysed on a “blends of blends” 

basis, whereby the base TRF was considered as a single component. This is of 

significant relevance to those concerned with commercial fuel blending, whereby real 

commercial gasoline’s comprise of hundreds of constituents, often with a base blend 

common to a number of tailored blends with specific additives to meet different 

performance requirements. 

The TRF blend selected represented a typical European high octane premium gasoline, 

Grön 98 MK1, with a RON of 98.5 and MON of 88 (Morgan et al., 2010). The 

composition was given in terms of the liquid fuel volumetric percentage of each 

constituent: 75.4% toluene, 18.7% n-heptane and 5.8% iso-octane. The composition was 

calculated using a second order response surface model that mapped the required TRF 

constituent fuel proportions to the RON and MON values of any real gasoline (Morgan 

et al., 2010). Experimental engines studies showed the surrogate to give very similar 

pressure traces to that of the real gasoline. This indicates the surrogate’s ability to 

strongly emulate the key combustion parameters of ignition delay, burning velocity and 

the heat release rate characteristics. Table 4.3 summarises the composition of the TRF 
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blend, showing the proportion of each constituent, in terms in terms of moles, mass and 

volume. 

TRF Blend 

Constituents 

Fuel Liquid 

Volume 

Fraction 

Fuel/Air Mole 

Fraction 

Fuel/Air Mass 

Fraction 

Fuel Mole 

Fraction 

Fuel Mass 

Fraction 

Toluene 0.754 0.777 0.778 0.814 0.796 

n-Heptane 0.187 0.17 0.169 0.146 0.155 

iso-Octane 0.058 0.053 0.053 0.04 0.049 

Table 4.3: Composition of TRF Blend, showing the different fractional proportions of 

each constituent within the blend, as discussed in Chapter 2, Section 2.3. Densities for 

all fuels are shown in Table 4.1. 

 

Both ethanol and n-butanol were separately added to the base TRF in 25% liquid 

volume increments, with the TRF constituents kept at their original liquid volume 

proportions. Let prefixes E and B denote ethanol and n-butanol. For example, 

E25/TRF75 implies a blend of 25% ethanol and 75% TRF by liquid fuel volume. Table 

4.4 shows the composition of the TRF/Alcohol blends, demonstrating the effect of 

alcohol addition on various mixture fractions in terms of moles, mass and volume. 

Alcohol/TRF 

Blends 

Liquid 

Volume 

Fraction of 

Alcohol  

Mole Fraction 

of 

Alcohol/Air  

Mass Fraction 

of 

Alcohol/Air 

Mole Fraction 

of Alcohol 

Mass Fraction 

of Alcohol 

E25/TRF75 0.25 0.179 0.177 0.395 0.242 

E50/TRF50 0.5 0.395 0.393 0.663 0.49 

E75/TRF25 0.75 0.661 0.659 0.855 0.742 

B25/TRF75 0.25 0.212 0.212 0.294 0.247 

B50/TRF50 0.5 0.446 0.447 0.556 0.496 

B75/TRF25 0.75 0.707 0.707 0.789 0.746 

Table 4.4: Effects on various mixture fractions of increasing liquid volume of ethanol 

and n-butanol to the base TRF liquid Fuel. All fractional calculations are as discussed in 

Chapter 2, Section 2.3. Densities for all fuels are shown in Table 4.1. 
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Figures 4.46-4.51 show ul and Lb values for the TRF/ethanol/air and TRF/n-butanol/air 

blends at Pi = 0.1, 0.5 and 1.0 MPa, as a function of the LV% of alcohol in the blend. 

Again, filled and unfilled symbols denote measurements of ul derived by nonlinear and 

linear approaches to Lb, respectively. All ul measurements at 0.1 MPa, with ϕ = 0.8-1.2 

were found to exhibit nonlinear behaviour. At the higher pressures linear behaviour was 

dominant, as found with all the pure fuel/air mixtures described in Section 4.2. 

The effects of adding either of the alcohols to the base TRF/air mixture are most 

significant at Pi = 0.1 MPa. Here the differences in constituent ul and Lb values are 

greatest. Across ϕ = 0.8-1.3, ul increases with the addition of either ethanol or n-butanol, 

at an increasing rate as ϕ increase. Peak ul values for all blends are observed to be in the 

region where ϕ = 1.1-1.2, with a tendency towards ϕ = 1.2 as either alcohol fraction was 

increased.  

Under lean conditions, particularly, where ϕ = 0.8, the addition of ethanol or n-butanol 

has little effect on the ul of TRF/air mixture, exhibiting only a gradual linear increase, 

but with a significant linear decrease in corresponding Lb values. This is most 

pronounced with the ethanol blends. Under stoichiometric conditions, values of ul 

continue to increase relatively linearly with the addition of either alcohol, but at an 

increased rate. The corresponding Lb values for ethanol addition, continue to decrease, 

but at a decreased rate, whilst for n-butanol addition, Lb values become relatively 

similar. Under rich conditions the addition of either alcohol begins to have a more 

pronounced effect on ul values, from as low as 25% LV, with ethanol addition 

exhibiting a more significant nonlinear increase. This was particularly so under the 

richest condition, ϕ = 1.3. The corresponding Lb values become relatively similar with 

addition of either alcohol where ϕ = 1.1-1.2. However, at the richest condition, ϕ = 1.3, 

Lb values increase with either alcohol addition, with n-butanol addition exhibiting a 

gradual linear increase, and ethanol addition, a sharp nonlinear increase from 50% LV. 

At Pi = 0.5 MPa, the difference between constituent mixture ul and Lb values is reduced, 

and the effect of addition of either alcohol is suppressed. Under lean conditions, where 

ϕ = 0.8-0.9, the addition of either alcohol has little effect on the ul value of the TRF/air 

mixture up to 50% LV. Beyond this ul values decrease with the addition of ethanol, 

whilst ul values remain relatively stable with the addition of n-butanol. Under 

stoichiometric to rich conditions, where ϕ = 1.0-1.3, ul values increase with the addition 
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of either alcohol, reflecting trends similar to that at Pi = 0.1 MPa, but with decreased 

severity. The corresponding Lb values at Pi = 0.5 MPa, across ϕ = 0.8-1.3, become 

remarkably similar due to very little difference between the constituent Lb values. 

Again, at Pi = 1.0 MPa, the equivalence ratio range now becomes limited to 

stoichiometric conditions due to the early onset of cellularity. Beyond this, the 

application of Lb is not possible. The difference between constituent ul values is further 

reduced, thus suppressing the effect of addition of either alcohol even further. However, 

the difference between constituent Lb values becomes slightly greater, and the 

corresponding Lb values show a relatively marginal decrease with the addition of either 

alcohol. 
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Figure 4.46: Variation of a) ul and b) Lb with ethanol addition to TRF/air mixtures, Pi = 

0.1 MPa and Tu = 360K. 
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Figure 4.47: Variation of a) ul and b) Lb with ethanol addition to TRF/air mixtures, Pi = 

0.5 MPa and Tu = 360K. 
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Figure 4.48: Variation of a) ul and b) Lb with ethanol addition to TRF/air mixtures, Pi = 

1.0 MPa and Tu = 360K. 
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Figure 4.49: Variation of a) ul and b) Lb with n-butanol addition to TRF/air mixtures, Pi 

= 0.1 MPa and Tu = 360K. 
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Figure 4.50: Variation of a) ul and b) Lb with n-butanol addition to TRF/air mixtures, Pi 

= 0.1 MPa and Tu = 360K. 
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Figure 4.51: Variation of a) ul and b) Lb with n-butanol addition to TRF/air mixtures, Pi 

= 1.0 MPa and Tu = 360K. 
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4.5 Methane and Hydrogen Blends 

The burning velocities of hydrogen/air and methane/air and their blends have received 

attention as an aspect of a hydrogen economy, with hydrogen being added to the natural 

gas distribution system. Burning velocity data is plentiful: (Bauer and Forest, 2001; 

Halter et al., 2005; Hu et al., 2009; Karim et al., 1996; Shrestha and Karim, 1999). Their 

radically contrasting chemical composition and kinetics are especially challenging for 

the development of their blending laws. As pure fuels, ul and Lb data over extensive 

equivalence ratio ranges, at different initial temperatures and pressures are plentiful, 

whereas comprehensive blend data are less so.  

However, the blend ul and Lb data of Hu et al., (2009), provide a suitable and 

challenging check for the different predictive blending laws. Their experiments were 

performed in a constant volume combustion vessel, at the initial temperature and 

pressure of 303K and 0.1 MPa, employing a schlieren technique to measure the flame 

propagation, with ul derived via extrapolation to zero stretch, using a justifiable linear 

approach. The H2 concentration in the CH4/H2 fuel blend was increased in fractional 

fuel mole increments of 0.1. In terms of the mixing of the H2/air and CH4/air both 

constituent mixtures have the same ϕ, equal of course to the blend ϕ. Table 4.5 

summarises the composition of the CH4/H2 blends, showing the proportion of each 

constituent, in terms of  moles and mass, as discussed in Chapter 2, Section 2.3. 

Figures 4.52a and b show ul for hydrogen/air, methane/air and their blends over the 

range of ϕ = 0.6-1.3. The addition of hydrogen increases ul, whilst shifting the peak 

value towards richer conditions. Hu et al., (2009), observed that the blend fractions may 

be classified into three regimes: a methane dominated regime when the hydrogen 

fraction is less than 60%, a transition regime between 60-80% and finally a hydrogen 

dominated regime at fractions over 80%. The methane and hydrogen dominated regimes 

both exhibit linear trends between the addition of hydrogen and increasing burning 

velocity, whilst the transition regime exhibits an exponential trend in burning velocity 

increase relative to hydrogen addition.  

Figures 4.53a and b show the corresponding Lb measurements for methane, hydrogen 

and their blends. The values for methane are positive across the entire equivalence ratio 

range, whilst values for hydrogen become negative under lean conditions. Lb for both 

methane/air and hydrogen/air mixtures increase with equivalence ratio, with methane/air 
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exhibiting a significantly increased rate under rich conditions. As the hydrogen fuel 

mole fraction of a blend increases, Lb decreases. Under lean conditions, particularly in 

the hydrogen dominated regime, with fractions over 0.8, blend Lb values become 

markedly negative. 

 Mole Fraction of 

H2 in CH4+H2  

Mass Fraction of H2 

in CH4+H2 

Mole Fraction of 

H2/Air in 

(CH4+H2)/Air 

Mass Fraction of 

H2/Air in 

(CH4+H2)/Air 

0.1 0.014 0.034 0.026 

0.2 0.031 0.074 0.057 

0.3 0.051 0.121 0.094 

0.4 0.077 0.176 0.139 

0.5 0.112 0.243 0.196 

0.6 0.159 0.325 0.267 

0.7 0.227 0.428 0.362 

0.8 0.335 0.562 0.493 

0.9 0.531 0.743 0.686 

Table 4.5: A compositional list of the CH4/H2/air blends, showing the proportion of 

each constituent within the blend by different units of measurement, as discussed 

in Chapter 2, Section 2.3.  
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.  

 

Figure 4.52: Variation of ul with hydrogen addition to methane/air mixtures, Pi = 0.1 

MPa, Tu = 303K, a) ϕ = 0.6-0.9, b) ϕ = 1-1.3. 
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Figure 4.53: Variation of Lb with hydrogen addition to methane/air mixtures, Pi = 0.1 

MPa, Tu = 303K, a) ϕ = 0.6-0.9, b) ϕ = 1.0-1.3. 
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Chapter 5 - Discussions of Measured Pure Fuel/Air 

Mixtures and Blend Behaviour 

5.1 Introduction 

This Chapter presents various discussions on the measured data for the pure constituent 

fuel/air mixtures and their blends presented in Chapter 4, considering the influence of 

fuel type, pressure and the equivalence ratio.  

Section 5.2 discusses observations of linear and nonlinear flame speed/stretch rate 

relations, and analyses the potential over estimation error associated in the linear 

extrapolation methodology, when used for mixtures exhibiting distinct nonlinear flame 

speed/stretch rate behaviour.  

Section 5.3 discusses the onset of cellularity indicative of Darrieus-Landau and thermo-

diffusive instabilities that occurred at elevated pressure, and the correlation of the 

critical Peclet and Karlovitz numbers with Markstein numbers. The potential for 

laboratory combustion vessels at elevated pressure to emulate such parameters for large-

scale atmospheric explosions was also investigated. 

Comparisons of the pure fuel/air mixtures are made with existing literature in Section 

5.4. Section 5.5 discusses the comparative effects of blending a TRF with ethanol and n-

butanol. Subsection 5.5.1 focuses on laminar burning velocities and Markstein lengths, 

whilst subsection 5.5.2 focuses on the ignition delay times for the same blends, as part 

of the conjoint effort into TRF/alcohol blend behaviour with M. Materego (2015), using 

the newly commissioned RCM, as presented in Appendix A. A summary of the joint 

investigation is then given in subsection 5.5.3. 

Lastly, Section 5.6 discusses methane/air energy flux variations with the addition of 

hydrogen. 

5.2 Linear and Nonlinear Flame Speed vs. Stretch Rate 

Relationships 

As detailed in Chapter 1, all real flames are subject to stretch in the form of strain and/or 

curvature imposed by their surroundings. As such, the different experimental 

configurations used in their study impose different degrees of stretch behaviour. 

Therefore, the notion of decoupling such effects to yield the fictitious laminar burning 
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velocity, ul, as a universal parameter has become standardised practise in combustion 

studies. Therefore, an accurate understanding of the relationship between flame 

propagation and stretch to ensure an accurate extrapolation to the point of zero stretch is 

of critical importance to the acquisition of ul. Flame stretch may be described as a 

measure of the temporal flame surface deformation and plays a fundamental role in the 

propagation, stability and structure of any premixed flame.  

Kelley and Law (2009) and Halter et al. (2010), have shown the traditional linear 

methodology is based on assumptions that will not account for distinct nonlinear flame 

speed/stretch behaviour exhibited by some mixtures under certain conditions. In such 

cases, the linear approach can give significant over estimation of ul and calls for the 

better suited nonlinear methodology. Details of each methodology are introduced in 

Chapter 1. 

During the present study, as presented in Chapter 4, a large number of spherical flame 

explosions were carried out for a variety of different fuel/air mixtures across an 

equivalence ratio range of 0.8 to 1.3, for pressures of 0.1, 0.5 and 1.0 MPa. This 

simultaneously allowed for the analysis of fuel type, equivalence ratio and pressure 

influence on flame speed/stretch behaviour. Furthermore, the processing of all mixtures 

ul values employed both aforementioned linear and nonlinear methodologies, such that 

any difference in the acquired ul was quantified. Therefore, an evaluation of any over 

estimation error caused by the traditional linear methodology was possible.  

At the elevated pressures of 0.5 and 1.0 MPa, dominant linear behaviour was observed 

for all fuel/air mixtures across the full equivalence ratio range. Only at 0.1 MPa was 

nonlinear behaviour observed, the degree of which decreased with an increase in ϕ. 

Figures 5.1a and b show the percentage over estimation error for ul and Lb by linear 

extrapolation relative to nonlinear extrapolation, as a function of ϕ, for each pure 

fuel/air mixture. As anticipated, mixtures under the highest degree of stretch show the 

highest errors.  
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Figure 5.1: Variation of a) ul and b) Lb percentage increase by linear extrapolation 

relative to nonlinear extrapolation with ϕ, for all pure liquid fuel/air mixtures, Pi = 0.1 

MPa and Tu = 360K. 
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For the measurement of ul, at 0.1 MPa, the differences between the two methodologies 

beyond stoichiometric condition, for all fuel types, are within the experimental error 

margin of roughly 2%, suggesting the traditional linear approach will suffice. However, 

under lean conditions, ϕ = 0.8-0.9, all fuels studied were subject to higher degree of 

stretch. The fuels, iso-octane, toluene, n-heptane and 1-hexene, were notably over 

estimated beyond the experimental error, particularly for the slowest burning fuel, iso-

octane, peaking with an over estimation error of 5%.  

The differences between the two methodologies in terms of Lb are significantly greater. 

Reflecting that of the ul data, the over estimation error by the linear methodology 

relative to the nonlinear methodology reduced with ϕ. Not until ϕ = 1.3, did the error 

reduce to within the experimental error margin of 5-8%. The highest over estimation 

error was again exhibited by lean iso-octane, ϕ = 0.8, peaking at over 85%. 

Whilst ul overestimations by the linear methodology were found to be relatively low, it 

is clear, that for the corresponding Lb values, the differences are strikingly high. This 

demonstrates the need for particular care when assessing the influence of stretch for 

such hydrocarbon fuels under lean, atmospheric conditions. It is likely that such 

neglection contributes towards the large degree of scatter for such Lb values in existing 

literature.  

5.3 Cellular Instabilities 

When the flame stretch rate in an exploding spherical flame falls below a certain 

threshold, the Darrieus-Landau and thermo-diffusive instabilities produce severe 

wrinkling of an initially smooth laminar flame. As the radius of a spherical flame 

increases, the wrinkling of the flame surface extends to an ever-increasing range of 

curvatures, resulting in an increasing flame speed and a strengthening of the pressure 

pulse (Bradley, 2011). The resolution of the wrinkled surface, the derivation of its 

surface area and its increasing flame speed have presented severe problems in attempts 

to mathematically model the phenomena, and solutions are not possible beyond a radius 

of a few cm. Consequently, semi-theoretical studies have involved a combination of 

fractal analyses (Bradley, 1999; Gostintsev et al., 1988) and experiments (Bradley et al., 

1998b; Gu et al., 2000), some on a larger scale of several metres (Bauwens et al., 2015a; 

Bauwens et al., 2015b; Bradley et al., 2001). 
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A key parameter for a spherical flame is the critical flame radius, rcl, that marks the 

onset of flame cellularity with an increasing flame speed. During the present work, 

measurements of rcl were taken at pressures of 0.5 and 1.0 MPa, at a temperature 360K, 

and between ϕ = 0.8-1.3 for all pure fuel/air mixtures. Such phenomena was not 

observed at the lower pressure of 0.1 MPa between ϕ = 0.8-1.2, where flames remained 

stable within the maximum observable radius of 75 mm. As introduced in Chapter 1, the 

appropriate dimensionless radius is the Peclet number, Pecl, comprising rcl, normalised 

by the flame thickness, δ, equal to the cold mixture kinematic viscosity divided by the 

ul. 

Due to the thermo-diffusive character of such instabilities, it of rational thought to 

expect their onset to be dependent upon the Markstein number, Mab. Furthermore, if 

such relationships are not pressure sensitive, it would suggest that high pressure 

laboratory explosions might be used to predict the effects of large-scale atmospheric 

explosions. To examine this theory, data from several large-scale atmospheric explosion 

experiments have been compared to that of data from explosions at elevated pressure in 

the Leeds combustion vessel during the course of the present work.  

Figures 5.2a and b present plots of Pecl variation with Mab for each pure fuel/air mixture 

form the present work, at 0.5 and 1.0 MPa, respectively, alongside that of corresponding 

data for large-scale explosions of methane and propane. For the present work data, all 

symbols are unfilled and represent the mean of at least three explosions. Bearing in 

mind the inevitable experimental scatter in both of the measured parameters, it is 

striking that the influences of the fuel and pressure are relatively small.  

The black diamond and bar symbols represent the large-scale astmopheric methane and 

propane explosions, conducted by Shell Research Ltd. in a large vented steel box 

structure 10m, long, 8.75m wide and 6.25m high (Bradley et al., 2001). Flame speeds 

were measured up to a radius of 3.5m for CH4/air, ϕ = 1.1, and C3H8/air, ϕ = 1.06. There 

is a satisfactory correlation, at each of the two presssures, between the Pecl and Mab 

values of the many different mixtures, irrespective of their value of ϕ. Furthermore, 

comparison of the two figures shows but a small influence of pressure. Importantly, the 

two sets of coordinates from the large atmospheric explosions are close to those from 

the small high pressure explosions at 0.5 MPa, and slightly higher at 1.0 MPa. This 

suggests that instability data from high pressure laboratory explosions might be used to 

predict instability effects in large scale atmospheric explosions. 
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Figure 5.2: Variation of Pecl with Mab for different liquid pure fuel/air mixtures 

measured in the Leeds CV2, at a) 0.5 MPa and b) 1.0 MPa. Alongside corresponding 

data of large-scale atmospheric explosions for methane/air and propane/air mixtures. 

The solid black curve shows the best fit through the Leeds CV2 data. 
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However, the dotted and dashed curves represent further large-scale atmospheric 

explosion data for propane (2015a) and methane (2015b), respectively, aquired by 

Bauwens et al., which does not correlate as well. These flames were up to 2 m diameter, 

with ϕ ranging between 0.81-1.22. The reported Pecl values were plotted against values 

of Markstein numbers that were numerically closer to the strain rate Markstein numbers, 

Masr, rather than the flame speed Markstein numbers, Mab. Thus, to compare data from 

Bauwens et al. more closely with that in the present study, it was assumed that they 

were those of Masr and converted to Mab using the tabulated values of the different 

Markstein numbers in (Gu et al., 2000) for methane, and in (Bradley et al., 1998a) for 

propane. Necessary data for obtaining δ were taken from (Morley, 2005). 

Because of the importance of a necessary minimal stretch rate to stabilise a flame, it was 

proposed by Bradley et al. (2009), that a more logical criterion for the onset of this type 

of instability is one based on the flame stretch rate, such as the Karlovitz stretch factor, 

K, rather than Pecl. This approach was pursued by Bradley et al (2009), where it was 

shown that the minimal value of K for which a spherical premixed laminar flame is 

stable, Kcl, is given by: 

 Kcl = (2σ/Pecl)[1 + (2Mab/Pecl)]
-1. (Eq. 5.1) 

Values of Kcl for all the data of the present work were obtained using Eq. 5.1. Following 

Figs. 5.2a and b, for the purposes of comparisons, these values of Kcl are presented in 

terms of Mab. Figure 5.3a is the counterpart of Fig. 5.2a, and Fig. 5.3b that of Fig. 5.2b. 

Again, the same symbols are used to represent the large-scale atmospheric explosions of 

(Bradley et al., 2001). Transformed curves, equivalent to the broken curves that appear 

in Figs. 5.2a and b, show the data from the large-scale explosions reported by Bauwens 

et al. (2015a; 2015b) also appear in Figs. 5.3a and b.  

Ideally, the three correlation curves on each figure would collapse into a single 

correlating curve, but there are clearly three different correlations. In explanation, 

different forms of Markstein number may be relevant, and there can be no certainty that 

different research groups use the same Markstein number. Furthermore, even with 

agreement on the corrrect definition of the appropriate Markstein number, there are 

acute difficulties in obtaining accurate measurements of it. At atmospheric pressures, in 

some instances there are departures from linearity in the flame speeed/flame stretch rate 

relationship. In the present work, as discussed in Section 5.2, this was found to diminish 

as pressure increased. 
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Figure 5.3: Variation of Kcl with Mab for different liquid pure fuel/air mixtures 

measured in the Leeds CV2, at a) 0.5 MPa and b) 1.0 MPa. Alongside corresponding 

data of large-scale atmospheric explosions for methane/air and propane/air mixtures. 

The solid black curve shows the best fit through the Leeds CV2 data. 
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Figure 5.4 shows Kcl data from different groups, this time expressed entirely in terms of 

Masr. In this case, the high pressure ethanol/air data from explosions at elevated 

pressures is from the same combustion vessel as that used in the present work (Bradley 

et al., 2009), and combined with the large-scale atmospheric explosion data for propane 

and methane from Bawuens et al. (2015a; 2015b), and (Bradley et al., 2001). The three 

corresponding correlating curves on the figure are in fairly close agreement, and again 

support the view that small high pressure explosions can give a fairly good indication of 

the onset of instabilities in large-scale atmospheric explosions. It is, however, clear that, 

as Masr becomes highly negative, the regime of stability is severely narrowed. 

 

Figure 5.4: Variation of Kcl with Masr, for ethanol/air mixtures at different elevated 

pressures, measured in the Leeds CV2 by Bradley et al. (2009). Alongside 

corresponding data of large-scale atmospheric explosions for methane/air and 

propane/air mixtures. The solid black curve shows the best fit through the Leeds CV2 

data. 
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5.4 Comparisons of Measured ul and Lb Values to Existing 

Data 

The author is unaware of any previous data for mixtures of 1-hexene/air and n-

butanol/air at comparable conditions. Those for iso-octane/air, alongside the present 

measurements are shown in Figures 5.5-5.7. Agreement for the values of ul across all 

pressures amongst the different groups is satisfactory. However, at the lowest pressure 

of 0.1 MPa, the present measurements are noticeably lower under lean conditions and 

higher under rich conditions when compared with those of Bradley et al (1998b) and 

Ormsby (2005) in the same combustion vessel. The difference is likely due to the recent 

improvements in experimental techniques and upgrades to the Leeds CV2, as discussed 

in Chapter 3.  

Kumar et al (2007) also used a combustion vessel, whereas Dirrenberger et al (2014) 

and Sileghem et al (2013) used the flat plate adiabatic burner technique, as discussed in 

Chapter 1. A novel approach was taken by Al-Shahrany et al (2005), using the Leeds 

CV2, whereby ignition of the mixture occurs from two diametrically opposed spark 

electrodes near the walls, allowing the final stages of two inwardly propagating flame 

fronts to be observed at high pressure. However, as with the case of Ormsby (2005) at 

the high pressure of 1.0 MPa, under rich conditions, the resulting flame cellularity 

significantly reduces the stable regime of the flame in which in which a Markstein 

length can be applied and increases the margin of error. The need for high fidelity ul 

measurements within the present work was paramount, hence the present study only 

considered conditions up to ϕ = 1 at 1.0 MPa, where the limit of a sufficient stable 

flame regime for accurate ul data acquisition was found.  

Reported measurements of Lb are much more scarce, and comparable measurements are 

only available from the Leeds CV2. All measured values of Lb decrease with an increase 

in ϕ at all pressures, with all values remaining positive, except for ϕ = 1.3-1.4 at 0.1 and 

0.5 MPa and ϕ = 1, at 1.0 MPa. The decrease of Lb with ϕ is associated with the 

deceasing Lewis number. Variations of Lb values between workers are significantly 

greater than the corresponding ul values. A possible explanation of such differences may 

result from the employment of either a linear or nonlinear extrapolation methodology. 
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Figure 5.5: Comparison of a) ul and b) Lb measurements for iso-octane/air mixtures at 

0.1 MPa, 360K, across ϕ = 0.8-1.3. Solid black curves shows best fit through present 

data. 
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Figure 5.6: Comparison of a) ul and b) Lb measurements for iso-octane/air mixtures at 

0.5 MPa, 360K, across ϕ = 0.8-1.3. Solid black curves shows best fit through present 

data. 
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Figure 5.7: Comparison of a) ul and b) Lb measurements for iso-octane/air mixtures at 

1.0 MPa, 360K, across ϕ = 0.8-1.3. Solid black curves shows best fit through present 

data. 
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Figures 5.8-5.10 show the present and comparable measurements of ul and Lb, for 

ethanol/air mixtures by other workers. Agreement of ul at initial pressures of 0.1 and 0.5 

MPa are again satisfactory. However, at 1.0 MPa, present measurements for ethanol/air 

mixtures are noticeably higher than that of Bradley et al (2009). The corresponding Lb 

measurements at 0.1 and 0.5 MPa compare well with Bradley et al (2009). However, at 

0.1 MPa, data from Liao et al (2007) is significantly higher. At 1.0 MPa, present Lb 

values are much higher compared to that of Bradley et al (2009). Such variation for both 

ul and Lb, particularly at 1.0 MPa, may be attributed to the slightly higher initial 

temperature, refined experimental technique and improved protocol in handling the 

hygroscopic nature of ethanol, as discussed in Chapter 3.  

Figures 5.11a and b present measurements of ul for n-heptane/air and toluene/air at 0.1 

MPa, respectively. Unfortunately no Lb values for either fuel at comparable conditions 

are available. There is good agreement of ul for both fuels with values obtained from 

other combustion vessels (Kumar et al., 2007) and flat plate burners (Sileghem et al., 

2013) and (Dirrenberger et al., 2014). Measured values of ul and Lb for all pure liquid 

fuels studied can be viewed in Chapter 4, Section 4.2. 

 



Chapter 5 – Discussions of Measured Pure Fuel/Air Mixtures and Blend Behaviour 

161 

 

 

Figure 5.8: Comparison of a) ul and b) Lb measurements for ethanol/air mixtures at 0.1 

MPa, 360K, across ϕ = 0.8-1.3. Solid black curves shows best fit through present data. 
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Figure 5.9: Comparison of a) ul and b) Lb measurements for ethanol/air mixtures at 0.5 

MPa, 360K, across ϕ = 0.8-1.3. Solid black curves shows best fit through present data. 
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Figure 5.10: Comparison of a) ul and b) Lb measurements for ethanol/air mixtures at 1.0 

MPa, 360K, across ϕ = 0.8-1.3. Solid black curves shows best fit through present data. 
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Figure 5.11: Comparison of ul measurements for a) n-heptane/air and b) toluene/air 

mixtures at 0.1 MPa, 360K, across ϕ = 0.8-1.3. Solid black curves shows best fit 

through present data. 
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5.5 Comparative Effects of Ethanol and n-Butanol Addition to 

TRF/Air Mixtures ul and τi Behaviour 

As introduced in Chapter 4, the blending of petroleum derived gasoline with promising 

alternative bio-derived alcohols such as, ethanol and n-butanol, can potentially mitigate 

demand for petroleum and reduce the associated CO2 emissions. However, considerable 

care must be taken in assessing how the different properties and blend proportions of 

such alcohols affect gasoline.  

In efforts to further understanding of such blends fundamental combustion 

characteristics, the concurrent measurement of ul and τi values for a gasoline surrogate 

TRF/air mixture with the addition of either ethanol or n-butanol were made. Subsection 

5.5.1 reviews the ul and Lb measurements as presented in Chapter 4, and subsection 

5.5.2 reviews the i measurements made by Materego (2015), via the Leeds RCM, as 

described in Appendix A, the commissioning of which, formed part of the present work. 

A summary of the investigation is given in subsection 5.5.3. Furthermore, the 

investigation gave a vast array of multi-constituent blend data which allowed the 

blending laws, as presented in Chapter 2, to tested on a ‘blends of blends’ basis, such 

that the TRF was considered as one constituent in a binary blend with either alcohol. 

The predictive performances of which are presented in Chapter 6, Section 6.3.  

As detailed in Chapter 4, Section 4.4, the selected TRF gasoline surrogate represents 

that of a typical high octane European gasoline. Blends of the TRF with either ethanol 

or n-butanol were considered such that the TRF constituents remained constant at their 

original ratio, with the volumetric addition of either alcohol in 25% increments.  

A primary concern with blending such alcohols with gasoline is that of their lower 

volumetric energy. Figure 5.12 demonstrates the variation of volumetric energy with 

addition of either ethanol or n-butanol to the TRF. Whilst both serve to lower 

volumetric energy, here n-butanol clearly has an advantage. Furthermore, as both 

alcohols carry oxygen, their stoichiometric FAR’s are higher. A typical gasoline FAR is 

in the region of 0.068, whilst that for ethanol and n-butanol are 0.11 and 0.09, 

respectively, thus, as the proportion of either alcohol, particularly ethanol, within the 

blend increases, a higher volume of fuel injection is required. Therefore, assuming 

engine efficiency and fuel tank volume remain the same, the maximum run time would 

reduce between fuel refills.  
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Figure 5.12: Variation of volumetric energy with alcohol addition to TRF. 

 

However, both alcohols, particularly ethanol, have higher enthalpies of evaporation 

compared to conventional gasoline. Therefore, particularly, in the case of direct 

injection (DI) they serve to significantly lower the charge temperature, thus reducing the 

propensity for knock, which in turn, enables a higher compression ratio (CR) and thus 

higher volumetric efficiency. Furthermore, ethanol has a markedly higher RON value 

even compared to that of the high octane premium gasoline TRF surrogate, thus being 

more resistant to knock and again potentially allowing for a higher CR. Countering 

disadvantages of ethanol in comparisons to n-butanol are that of its significantly higher 

hygroscopic nature and thus increased promotion of phase separation. As a result, 

blends of high ethanol concentration cannot be distributed in conventional gasoline 

supply systems and must be locally blended. 

5.5.1 Analysis of Measured ul and Lb Data 

Figures 5.13-5.15 shows the ul and corresponding Lb values for all TRF/alcohol 
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Figure 5.13: Variation of a) ul and b) Lb with Pi, at ϕ = 0.8, for all TRF/alcohol/air 

mixtures. 
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Figure 5.14: Variation of a) ul and b) Lb with Pi, at ϕ = 1.0, for all TRF/alcohol/air 

mixtures. 
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Figure 5.15: Variation of a) ul and b) Lb with Pi, at ϕ = 1.2, for all TRF/alcohol/air 

mixtures. 
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The influence of either alcohol addition, on both the TRF/air mixtures ul and Lb values, 

across the ϕ range of 0.8 to 1.3, was most prominent under 0.1 MPa. This was due to the 

difference between the constituent fuel/air mixtures ul and Lb values being greater at low 

pressure and reducing with an increase in pressure. 

Measurements at 0.1 MPa show an increase in ul with the addition of either alcohol, 

more so for ethanol addition, with increasing effect as ϕ increases. This was anticipated 

as the ul difference between toluene, the main TRF constituent, and the alcohols was 

greatest under rich conditions. The corresponding Lb behaviour, with either alcohol 

addition, again, particularly ethanol, shows values to decrease under lean conditions, 

switching to increase values under rich conditions. This is a result of the alcohols being 

less sensitive to stretch under lean conditions, yet more under rich conditions than that 

of the TRF blend.  

At increased pressure the difference between the ul and Lb values of the TRF and either 

alcohol was reduced, therefore the variation of the base TRF ul and Lb values with the 

addition of either alcohol becomes less. However, a notable effect, particularly between 

0.1 and 0.5 MPa, was that of the high pressure sensitivity of ethanol, which significantly 

reduced its ul values to near that of n-butanol, in fact, under the lean and rich conditions 

of ϕ = 0.8 and 1.3, n-butanol ul values became higher. The corresponding Lb values 

remain remarkably steady with the addition of either alcohol. This was expected, due to 

such minimal difference between the TRF and alcohol Lb values across the full ϕ range 

at this increased pressure.  

At the pressure of 1.0 MPa, differences between the TRF and alcohol ul and Lb values 

became lesser still, as did the ϕ range due to the early onset of cellular instabilities. 

Values of ul remain almost steady with the addition of either alcohol, with only a 

marginal decrease at high proportions under the lean condition of ϕ = 0.8. Whilst, values 

of Lb are reflective of this, remaining relatively steady.  

The high pressure sensitivity of ethanol highlights the need for ul and Lb data at higher 

pressure, where ul values could potentially decrease below that of the TRF. Thus 

lowering the TRF/alcohol blend ul values as the ethanol proportion is increased, which 

is contrary behaviour to what might be inferred by measurements taken at only low 

pressure. The difficulty with such high pressure measurements is the simultaneous 

inducing of early onset cellular instabilities, resulting in an insufficient stable flame 

region to extrapolate to zero stretch, to deduce an accurate ul value. 
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5.5.2 Analysis of τi Data 

All measurements made were stoichiometric at 2.0 MPa, across Tc = 800-952K. Whilst 

these conditions are different from that of the ul and Lb measurements, they still serve to 

highlight valuable comparative ignition delay behaviour between the addition of either 

alcohol to a high octane gasoline TRF surrogate. 

Figure 5.16 shows τi values for TRF/air mixtures as a function of temperature. Values of 

τi decrease in the upper and lower temperature range, however, a clear negative 

temperature coefficient (NTC) region is exhibited in the range of 769-833K. This is 

symptomatic of many other PFR and TRF surrogates and gasoline mixtures. 

 

Figure 5.16: Variation of ignition delay with temperature, for TRF/air mixtures at 2.0 

MPa and ϕ = 1 (Materego, 2015).  

 

Figure 5.17 shows the variation of τi with the addition of either ethanol or n-butanol. 

The zero horizontal line denotes the pure TRF, with each curve showing the difference 

in τi between that and each of the TRF/alcohol blends. In the low temperature range, 

below 870K, there is significantly contrasting behaviour between the addition of either 

ethanol or n-butanol. Here, ethanol addition serves to significantly increase the 

resistance to autoignition by increasing τi values, whereas, n-butanol addition serves to 
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decrease the resistance to autoignition by decreasing τi values. In the mid temperature 

range, the addition of n-butanol is most prominent, casing a reduction in τi values. In the 

higher temperature range, the addition of either alcohol has the similar effect of 

marginally lowering τi values.  

 

Figure 5.17: Difference in ignition delay between the TRF and the TRF/alcohol blends 

as a function of temperature, at 2.0 MPa and ϕ = 1 (Materego, 2015). 

 

Unlike the TRF, ethanol exhibits only single stage ignition behaviour and has no NTC 

region, and its influence even at low LV% results in blends with no definitive NTC. 

However, all blends of n-butanol show two stage ignition behaviour, with a distinctive 

NTC region for B25 and B50 blends in the mid-temperature range.  

5.5.3 Summary of Investigation 

The influence of pressure was found to reduce any influence of ethanol or n-butanol 

addition to the base TRR/air mixtures ul and Lb values, such that near convergence 

occurred under 1.0 MPa. Assuming such convergence remains to that of SI engine like 

pressure in the region of 2-2.5 MPa, the burning velocity of high concentration ethanol 

or n-butanol blends will remain similar to that of the base gasoline. Though, it is 

stressed that ethanol’s pressure sensitivity should be investigated further to ensure its ul 

values do not reduce below that of the TRF’s under higher pressure.  
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Whilst the present work did not investigate the influence of temperature, the 

constituents of the TRF, namely, iso-octane, n-heptane and toluene, and that of ethanol 

and n-butanol have been shown to exhibit very similar temperature exponent powers. 

Therefore, it is likely that their blends will follow similar exponent powers and thus 

similar trends will remain. 

However, τi measurements reveal a striking contrast in the influence of ethanol and n-

butanol addition in the low temperature region. They suggest that the propensity for 

autoignition is increased by n-butanol addition, indicative of the lower τi values, whilst, 

conversely, it is significantly reduced by the addition of ethanol, which is indicative of 

its significantly higher τi values. Ideally, further τi measurements of such blends are 

required to investigate any influence of pressure and ϕ over the current findings. 

In conclusion, despite difficulties arising from ethanol’s hygroscopic nature, the 

findings from the present work suggest that the benefit of ethanol’s high resistance to 

autoignition is an attractive property that would allow for the use of higher CR SI 

engines and therefore higher volumetric efficiency, whilst maintaining a very similar 

burning velocity to that of the conventional gasoline under elevated pressure.  

5.6 Investigation into Methane/Air Mixtures Energy Flux 

Variations with Hydrogen Addition. 

As discussed in Chapter 4, there have been many previous studies into the effects of ul 

and Lb for methane/air mixtures as hydrogen is added, as part of investigations into the 

feasibility of utilising existing gas supply infrastructures to potentially fuel vehicles and 

increase domestic heating efficiency. Fortuitously, this has provided a comprehensive 

range of ul and Lb measurements for blends of fuel with significantly contrasting 

chemical kinetics (Hu et al., 2009), that have served to be particularly challenging tests 

for the predictive ul and Lb blending laws developed as part of the present work. The 

predictive performances of which are discussed in Chapter 6, Section 6.4. 

Furthermore, the blend data also allowed an investigation into the effect of the energy 

flux or burn power of methane/air mixtures as hydrogen was added. This is the rate at 

which heat energy is liberated and a direct function of the mass heat of reaction, Q, the 

unburned mixture density, ρu, and ul: 

 Energy Flux (kW/m2) =  𝑄𝑢𝑙𝜌𝑢 (5.2) 
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This is an important fundamental combustion parameter, and has direct relevance to 

many applications, from small domestic gas cookers and heating boilers, to large 

industrial smelting burners. Furthermore, it is a particularly interesting parameter for 

such fuel blends, due to hydrogen/air mixtures having a significantly lower heat of 

reaction values, yet significantly higher ul values relative to methane/air mixtures.  

Figure 5.18a and b show the energy flux as a function of the hydrogen mole fraction 

increase, for lean and stoichiometric to rich conditions, respectively. As the mole 

fraction of hydrogen is increased, the increased ul of the mixture more than compensates 

for the lower Q of hydrogen and the energy flux increases, with an increased rate at 

higher ϕ values. However, in all cases, a plateau exists up to hydrogen mole fractions of 

0.5-0.6, therefore, showing hydrogen addition up to such fractions has no influence on 

the rate of energy liberated.  
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Figure 5.18: Variation of energy flux as a function of hydrogen addition to methane/air 

mixtures, x̄H2, Pi = 0.1 MPa, Tu = 303K, a) ϕ = 0.6-0.9, b) ϕ = 1.0-1.3. 
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Chapter 6 - Predictive Performance of Laminar 

Burning Velocity and Markstein Length Blending 

Laws 

6.1 Introduction 

This Chapter discusses the predictive performances of the different ul and Lb blending 

laws outlined in Chapter 2, for all blends presented in Chapter 4. Section 6.2 starts the 

assessment with the liquid hydrocarbon binary equimolar blends. Section 6.3 assesses 

performance on a ‘blends of blends’ basis, such that the tertiary TRF blend was 

considered as one constituent in binary blend with either ethanol or n-butanol. Section 

6.4 examines predictions for the methane and hydrogen blends. Finally, Section 6.5 

evaluates the best overall blending laws.  

To evaluate the predictive performance of each ul and Lb blending law the expressions 

ulp/ul and Lbp/Lb are used respectively, where ulp and Lbp represent the predicted values 

by the blending laws and ul and Lb the experimentally measured values, with unity 

denoting 100% agreement. The standard deviation for each average is represented by σ. 

Assigned symbols are given to each blending law as summarised in Tables 6.1 and 6.2. 
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Reference Method Section Assigned Symbol 

(Payman, 1922) 
ul weighted by mole fraction 

of constituent mixture. 
2.4.1 x̄ 

(van Lipzig, 2010) 
ul weighted by mass fraction 

of constituent mixture. 
2.4.2 x 

(Di Sarli and 

Benedetto, 2007) 

ul weighted by reciprocal 

fuel mole fraction of 

constituent mixture 

2.4.3 LC 

(Spalding, 1956) Equal Tb assumption. 2.4.4 Tb 

(Hirasawa et al., 

2002) 

T̃ₐ weighted by mole fraction 

of consituent mixture to get 

blend T̃ₐ 

2.4.5 T̃a 

(Bradley et al., 1991) 
ul plotted against Q̄ of 

consituent mixture. 
2.4.6 Q̄ 

Present Work 

ul𝜌𝑢(Q𝑐𝑝̅/ku)
0.5 weighted by 

mass fraction of constituent 

mixture. 

2.4.7 Q/k 

Table 6.1: Summary of all existing and proposed ul blending laws investigated. 

 

Method Section Assigned Symbol 

Lb weighted by deficient mole fraction 

of constituent mixture. 
2.5.1 

x̄d 

Lb weighted by deficient mass fraction 

of constituent mixture. 
xd 

ulLb weighted by mass fraction of 

constituent mixture. 
2.5.2 xulLb 

Table 6.2: Summary of all proposed Lb blending laws investigated. 

6.2 Equimolar Binary Blends 

Tables A.1-A.9, within Appendix A present the ratios of predicted to measured burning 

velocities and Markstein lengths, ulp/ul and Lbp/Lb, for the different blending laws for 

each of the ten equimolar binary constituent fuel/air blends. The simple equimolar 

binary blends of pure fuels, each being representative of the major fuel groups within 

FT synthetic gasoline serve as a good starting point to highlight any particular pure fuel 

or combination that may challenge the blending laws. Varying the two key combustion 

parameters of equivalence ratio, over ϕ = 0.8-1.3 and initial pressure, where Pi = 0.1, 0.5 
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and 1.0 MPa, also serves to identify the blending laws ability in dealing with both lean 

and rich conditions and pressure sensitive fuels such as ethanol.  

For these particular blends and conditions all ul blending laws, with the exception of the 

Tb law, are able to predict a large majority of the blends ul very close to or within the 

experimental error margin of generally ±2% of the measured value, thus, in such cases 

rendering any marginal differences between the blending laws negligible or irrelevant. 

The Tb law consistently over predicted to the order of around 10%, peaking with the iso-

octane/n-heptane/air blend, with a ulp/ul value of 1.18, at 0.1 MPa and ϕ = 0.9. At 0.1 

MPa, under lean conditions, ϕ = 0.8-0.9, a number of the blends presented more of 

challenge for many of the ul laws, with over prediction occurring beyond the 

experimental error, particularly for the iso-octane/ethanol/air and iso-octane/toluene/air 

blends as shown in Tables A.3 and A.6, within Appendix A. Notably, maximum stretch 

rate occurs for all blends at such conditions.  

The performance of the Lb blending laws is significantly more varied. As discussed in 

Chapters 1 and 5, this was expected due to the tentative nature of applying Markstein 

lengths, where the error margins of measured values can reach ±15%.  

On average the best performance was seen by the x̄d and xd laws. There was little 

difference between them under lean to stoichiometric conditions, ϕ = 0.8-1.0, where the 

deficient reactant was taken to be the fuel fraction. Under rich conditions, where ϕ = 

1.1-1.3, the deficient reactant was the oxygen fraction, and the performance becomes 

identical due to the mole and mass fractions of oxygen being equal. Less success was 

found with the more empirical law of xulLb, which significantly under predicted for all 

blends and conditions.  

6.3 TRF and Alcohol Blends 

Tables A.11-A.22, within Appendix A present the ratios of predicted to measured 

burning velocities and Markstein lengths, ulp/ul and Lbp/Lb, for the different blending 

laws, for all TRF/ethanol and TRF/n-butanol blends respectively. The assessment was 

made whereby the three component base TRF blend represents one constituent in a 

binary blend with either ethanol or n-butanol, hence evaluating blending law 

performance on a ‘blends of blends’ basis, which will be of more interest to those 

concerned with commercial fuel blending.  
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A detailed summary of the TRF, TRF/ethanol and TRF/n-butanol blends compositions 

can be found in Table 4.4, Section 4.4 of Chapter 4. As a brief recap, by liquid 

volumetric percentage of each constituent the TRF blend comprised of: 75.4% toluene, 

18.7% n-heptane and 0.58% iso-octane. For the TRF/alcohol blends, each alcohol was 

added in 25% liquid volume increments to the base TRF with the TRF constituent fuels 

kept at their original liquid volume proportions.  

The majority of predictions by all ul laws was very good, with notably better averages in 

comparison to the binary blends, with predictions falling within or very near to the 

experimental error margin of the measured value, thus rendering any marginal 

differences between the blending laws negligible or irrelevant. The Lb laws on average 

all performed significantly better when comparing their performance to the simpler 

binary blends, giving relatively similar results. However, predictive performance for all 

markedly declined under the rich condition, ϕ = 1.3.  

6.4 Methane and Hydrogen Blends  

Tables A.23-A.30, with Appendix A present the ratios of predicted to measured burning 

velocities and Markstein lengths, ulp/ul and Lbp/Lb, for the different blending laws, for 

the CH4/air and H2/air blends, for ϕ = 0.6-1.3, as a function of the H2 fuel mole fraction, 

x̄f,H2 from 0.1-0.9, at 0.1 MPa and 303K. For each Table, at each ϕ, the average 

predicted to measured ratio over all blends is given for each law at the bottom of each 

column, alongside the corresponding standard deviation, σ. 

Figures 6.1-6.8 present the predicted values of ul and Lb for blends of CH4/air and H2/air 

compared with the experimentally measured values of ul and Lb of Hu et al. (2009) at 

the same conditions. Measured values of ul and Lb, with maximum standard errors of 

8.6% and 16.6% are shown by the dashed lines, while the predicted values by each 

blending law are shown by the coloured lines. As anticipated the properties of these 

blends proved to be the most challenging of all the blends for the blending laws to 

predict.  

The best predictions are those of the proposed Q/k law. This is not surprising, as it is the 

only law to account for different constituent mixture heat release rates and thermal 

conductivities, which as shown in Chapter 4, are markedly different for methane/air and 

hydrogen/air mixtures. The worst predictions were those from the x̄ and Q̄ laws. 

Expectations for the Q̄ law were bound to be low. Figure 2.1, in Chapter 2 demonstrates 
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the consequences of the two fuels belonging to quite different chemical families. Only 

for ϕ = 0.6 is this law satisfactory. It is rather more surprising that the fractional mole, x̄, 

law was so unsatisfactory and inferior to fractional mass weighting. The x̄ law 

consistently over-estimated ul, as did the Q̄ law, with the exception of blends at ϕ = 0.7, 

and tended to peak in the region of x̄fH2 = 0.5-0.7. Equally consistently, the T̃ₐ law 

under-estimated ul. This was based on fractional mole weighting. Fractional mass 

weighting gave even more pronounced under estimations. In contrast, the LC, modified 

Le Châtelier law, which was formulated specifically for CH4/H2 blends, both under and 

over-estimated ul. This was the only law based on the fraction of fuel, rather than of 

mixture. All the ul laws became unsatisfactory for ϕ values of 1.3 and higher.  

The prediction of Lb values proved to be more challenging than that of ul values, this 

perhaps at least partially attributable to the substantially larger error margin of the 

measured values at 16.6%. No Lb law was found to be satisfactory over the full 

equivalence ratio range, however, the xulLb and x̄d laws performed very well under lean 

to stoichiometric conditions, where ϕ = 0.6-1.0, particularly the former. Under rich 

conditions as ϕ increased their performance dramatically declined, more so for the xulLb 

law, peaking at x̄fH2 = 0.4-0.5. However, the x̄d law performance is satisfactory at x̄f,H2 

values up to 0.2.  The xd law, was by far the worst performing Lb law, with significant 

over prediction across the full ϕ range, although peaking at higher values of x̄fH2 = 0.7, 

which is in marked contrast to its performance with the liquid hydrocarbon fuels. 

Notably under the rich condition, were ϕ = 1.1-1.3, the performance of the xd and x̄d law 

are identical, this is because, the deficient reactant becomes the oxygen, and the oxygen 

mole and mass ratios become the same. 

6.5 Overall Evaluation  

An overall evaluation of the predictive performance of each ul and Lb blending law was 

made by comparing each laws average predicted to measured ratio, ulp/ul and Lbp/Lb, 

alongside the standard deviation, for all blends studied at all conditions, as shown by 

Table 6.3. In the case of ul blending laws, the proposed Q/k law takes first place, closely 

followed by the LC law in second place. The Q/k having a tendency to slightly over 

predict, whilst LC has a tendency to slightly under predict. The x law takes third place, 

with tendency to over predict. The Tb and T̃a laws share fourth place, with the Tb law 

having a tendency to over predict and the T̃a law having a tendency to under predict. 

The Q̄ and x̄ laws follow, both with an increased tendency to over predict. For Lb 
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blending laws, less success was achieved, though, the x̄d is the better of the three 

trialled, with a tendency to under predict. 

 

Average of All Blends Studied 

 

ul Laws Lb Laws 

 

x̄ x LC Tb T̃a Q̄ Q/k x̄d xd xulLb 

Av. 1.07 1.03 0.98 1.04 0.96 1.06 1.01 0.97 0.92 0.68 

σ 0.04 0.04 0.02 0.02 0.02 0.04 0.02 0.24 0.63 0.13 

Table 6.3: Average ulp/ul and Lbp/Lb values of each ul and Lb blending law, for all blends 

studied. 

 

However, these average values are based on a large number of liquid hydrocarbon 

blends that were successfully predicted by all laws to give ratios close to or of unity. 

Therefore, the relative difference in blending law performance is best assessed by the 

average values for exclusively methane/air and hydrogen/air blends, which proved to be 

significantly more challenging and the only blends to significantly push all the laws 

beyond the error margins of the experimentally measured values.  

Table 6.4 below shows the average predicted to measured ratios for each law, for every 

methane/hydrogen blend at every condition. The proposed Q/k law again leads, but by a 

notably higher degree, followed again by the LC and x laws. The Q̄ and x̄ laws again 

rank last, showing over prediction, but to a much higher degree. For the Lb blending 

laws, x̄d continues to lead. However, as shown by Figs. 6.1-6.5, the empirically based 

xulLb law performs remarkably well under lean to stoichiometric conditions for all 

blends.  

 

Average of All Methane/Air and Hydrogen/Air Blends Studied 

 
ul Laws Lb Laws 

 
x̄ x LC T̃ₐ Q̄ Q/k x̄d xd xulLb 

Av. 1.20 1.09 0.92 0.89 1.18 1.01 0.94 0.77 0.77 

σ 0.09 0.06 0.04 0.04 0.08 0.03 0.23 1.34 0.14 

Table 6.4: Average ul and Lb blending law performances (ulp/ul and Lbp/Lb), all methane 

and hydrogen Blends, ϕ = 0.6-1.3, Tu = 303K, Pi = 0.1 MPa. 
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Figure 6.1: Predictive performance of a) ul and b) Lb laws for blends of 

methane/hydrogen/air  mixtures as a function of x̄fH2, Pi = 0.1 MPa, Tu = 303K, ϕ = 0.6.  
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Figure 6.2: Predictive performance of a) ul and b) Lb laws for blends of 

methane/hydrogen/air  mixtures as a function of x̄fH2, Pi = 0.1 MPa, Tu = 303K, ϕ = 0.7.   
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Figure 6.3: Predictive performance of a) ul and b) Lb laws for blends of 

methane/hydrogen/air  mixtures as a function of x̄fH2, Pi = 0.1 MPa, Tu = 303K, ϕ = 0.8. 
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Figure 6.4: Predictive performance of a) ul and b) Lb laws for blends of 

methane/hydrogen/air  mixtures as a function of x̄fH2, Pi = 0.1 MPa, Tu = 303K, ϕ = 0.9. 
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Figure 6.5: Predictive performance of a) ul and b) Lb laws for blends of 

methane/hydrogen/air  mixtures as a function of x̄fH2, Pi = 0.1 MPa, Tu = 303K, ϕ = 1.0. 
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Figure 6.6: Predictive performance of a) ul and b) Lb laws for blends of 

methane/hydrogen/air  mixtures as a function of x̄fH2, Pi = 0.1 MPa, Tu = 303K, ϕ = 1.1. 
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Figure 6.7: Predictive performance of a) ul and b) Lb laws for blends of 

methane/hydrogen/air  mixtures as a function of x̄fH2, Pi = 0.1 MPa, Tu = 303K, ϕ = 1.2. 
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Figure 6.8: Predictive performance of a) ul and b) Lb laws for blends of 

methane/hydrogen/air  mixtures as a function of x̄fH2, Pi = 0.1 MPa, Tu = 303K, ϕ = 1.3. 
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Chapter 7 - Conclusions and Recommendations for 

Future Research 

7.1 Conclusions  

The following subsections serve to summarise the principle findings and conclusions of 

the present work. 

7.1.1 Measurements of ul and Lb for Pure Hydrocarbon/Air Mixtures 

and Blends 

The initial objective of upgrading the Leeds CV2 heating system and optical setup to 

improve the accuracy of measured ul and Lb values at elevated pressure and temperature 

was achieved. Measurements of pure fuel/air mixtures under the conditions for the 

present work are in satisfactory agreement with that of existing literature, and therefore 

validated the experimental apparatus for all subsequent measurements. All fuel/air 

mixtures were measured between an equivalence ratio range of 0.6 to 1.3 at initial 

pressures of 0.1, 0.5 and 1.0 MPa and an initial temperature of 360K. 

7.1.1.1 Pure Fuels 

The pure fuels investigated were representative of the major fuel groups found within 

commercial gasoline: iso-octane, n-heptane, toluene and 1-hexene, and that of 

promising alternative bio-alcohols, ethanol and n-butanol. The primary purpose of their 

measurement was to allow a relative comparison to that of their blends ul and Lb values, 

and the influence of pressure and equivalence ratio. Furthermore, the acquired data for 

both the pure fuel/air mixtures and their blends also provides valuable experimental data 

for the validation of chemical kinetic models. The key findings from the pure fuel/air 

mixtures are summarised below: 

i) iso-octane/air and 1-hexene/air mixtures were consistently the slowest and fastest 

burning mixtures measured for all initial pressure of 0.1, 0.5 and 1.0 MPa, across 

ϕ = 0.8-1.3.  

ii) The greatest difference between each pure fuel/air mixture ul values occurred at 

their peak ul in the region of ϕ = 1.1-1.2. Notably, the alcohols peaked more 

towards ϕ = 1.2.  
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iii) The greatest difference in the corresponding Lb values occurred under the leanest 

condition of ϕ = 0.8. Contrasting to the ul values, the minimal difference between 

the Lb values occurred in the peak ul region.  

iv) All liquid fuel/air mixtures studied, showed Lb values to decrease with ϕ. This is 

associated with a decreasing Lewis number, as the fuels thermal diffusivities were 

lower relative to the mixture than oxygen.  

v) The differences between each pure fuel/air mixtures ul and Lb values became 

significantly less with pressure, particularly in the case of Lb.  

vi) Ethanol was found to be particularly pressure sensitive, with ul decreasing with 

pressure, and was the only fuel to change rank with pressure.  

7.1.1.2 Equimolar Binary Blends 

Comprising of the pure fuel/air mixtures above, ten binary equimolar blends were 

measured across the same conditions. They provided a good starting point to identify 

any ul and Lb values of blends that do not reflect that of their constituent values. 

Furthermore, the measured blends provided a foundation for the assessment of existing 

and proposed ul and Lb blending laws, for blends of liquid hydrocarbons representative 

of the major fuel groups found within commercial gasoline. 

No significantly unusual ul and Lb behaviour of the equimolar binary blends were found 

in comparison to their constituent ul and Lb values. However, a clear emerged trend was 

that of the blend to nearer ul values of the slower burning constituent, particularly under 

lean conditions.  

7.1.1.3 Gasoline Surrogate/Alcohol Blends 

The comparative effects of ethanol and n-butanol addition to a high octane gasoline 

surrogate TRF/air mixtures ul and Lb values were measured, as part of a conjoint 

investigation into TRF/Alcohol blend behaviour in terms of ul and i with (Materego, 

2015). Measurements of i were undertaken by Materego (2015) for the same blends via 

the Leeds RCM, the commissioning of which, as described in Appendix A, also formed 

part of the present work. Furthermore, the multi-constituent blends provided a wealth of 

data in the assessment of ul and Lb blending laws, as discussed in Sections 7.1.4 and 

7.1.5. 

Measurements of ul and Lb for all TRF/Alcohol/air mixtures were taken at the same 

conditions as for the pure fuel/air mixtures and their binary blends. The addition of 
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either alcohol to the TRF base blend was by 25% liquid volume increments, with the 

TRF constituents fixed at their original ratio.  

The investigation showed that the addition of either alcohol markedly increased the ul 

value of the base TRF/air mixture, particularly, with ethanol and when beyond 50% LV, 

at 0.1 MPa. However, an increase in pressure served to supress their effects to the point 

of negligible difference at 1.0 MPa. The i measurements for the corresponding blends 

showed the addition of both alcohols to fractionally lower the fuels resistance to 

autoignition in the high temperature regime of 870-952K, however, in the low 

temperature regime of 800-850K, that is more reflective of SI engine temperatures, the 

addition of ethanol served to significantly increase i values, and thus resistance to 

autoignition. Therefore, the investigation suggests ethanol addition to gasoline will 

increase autoignition resistance, whilst maintaining a similar burning velocity to that of 

the base gasoline when under elevated pressures. This would potentially allow for the 

use of higher compression ratio engines with higher volumetric efficiency, and thus 

reduce fuel consumption.  

7.1.2 Error Analysis of Linear Sn-α Methodology 

In deducing the notional ul of a spherically expanding flame, the methodology of 

linearly extrapolating the stable regime of the flame on a Sn-α plot to zero stretch 

became convention for many years. However, it is becoming widely accepted that in the 

case of strong nonlinear Sn-α behaviour, a nonlinear extrapolation methodology is 

necessary as to avoid over estimation errors that the traditional methodology would 

likely incur.  

The present work measured a large array of pure fuel/air mixtures and their blends 

across different pressures and equivalence ratios. This simultaneously gave the 

opportunity to analyse Sn/α behaviour for different fuel types and the influence of 

pressure and equivalence ratio, and furthermore, quantify the associated error with use 

of the linear methodology for mixtures exhibiting distinct nonlinear Sn/α behaviour. 

i) Nonlinear behaviour was only observed at 0.1 MPa, particularly under lean 

conditions and for slower burning fuels, such as iso-octane. This showed the 

largest over predictions of ul and Lb at ϕ = 0.8, by 5 and 85%, respectively.  
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ii) At the elevated pressures of 0.5 and 1.0 MPa, all fuels across the full ϕ range 

tested, demonstrated distinct linear behaviour, such that any difference between 

the two methodologies was within the experimental error margin.  

7.1.3 Cellular Instability Phenomena  

Under elevated pressure, for all fuel/air mixtures studied, cellularity indicative of 

Darrieus-Landau and thermo-diffusive instabilities was observed. Therefore, alongside 

the measurement of ul and Lb, the critical radii, rc, at onset of cellularity, was also 

measured. This allowed for comparisons to the onset of such instabilities which occur in 

large-scale atmospheric explosions. Results have been expressed as values of both the 

critical Peclet number, Pecl, and the critical Karlovitz number, Kcl, as a function of 

either the flame speed Markstein number, Mab, or the strain rate Markstein number, 

Masr. Plotted in this form, there is surprisingly good correlation, irrespective of the fuel 

and of the pressure. This suggests that data on the onset of instabilities from small, high 

pressure, laboratory explosions might be used to predict their onset in large-scale 

atmospheric explosions. Details of such measurements in the present work are 

summarised below: 

i) Instability phenomena predominately occurred at the elevated pressures of 0.5 and 

1.0 MPa for all fuel/mixture across ϕ = 0.8-1.3. However, at 0.1 MPa, flames of 

all fuel/air mixtures were much more stable, and only at ϕ = 1.3, did some fuel/air 

mixtures exhibit a measureable rc within the limited window radii of 75mm. 

ii) For all fuel/air mixtures, measurements of rc were found to decrease with an 

increase in initial pressure and equivalence ratio. They allowed the calculation of 

Pecl and Kcl, which when plotted against the Markstein number, Mab, revealed a 

strikingly linear trend between ϕ = 0.8-1.2. At ϕ=1.3 a plateau was reached. 

iii) The repeatability of rc became reduced at higher pressure. At 1.0 MPa, 

measurements for ul and Lb were limited to stoichiometric conditions for all fuels. 

Beyond which the onset of rc, was near immediate, giving an insufficient stable 

regime to extrapolate from. 

7.1.4 ul Blending Laws 

Historically, empirical fractional mass or mole concentrations have been used to weight 

the contributions of constituent burning velocities. During the present work, it was 

found that as long as the mixtures are chemically not dissimilar such approaches are 
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shown to be reasonably successful. However, difficulties arise when the chemical 

kinetics and molecular transport processes for the constituent mixtures are dissimilar. In 

an attack on this problem CH4/air and H2/air blends were studied experimentally. 

Theoretically, blending laws were contemplated that drew heavily on the fundamental 

theories of burning velocity. Ultimately, with a degree of trial and error a blending law 

was reached based on heat of reaction and the thermal conductivities of the constituent 

mixtures.  

The predictive performance of the proposed ul blending law was analysed and compared 

against that of five existing laws for all liquid hydrocarbon blends measured in the 

present work, and for existing CH4/air and H2/air blend data. The performance of which 

is summarised below: 

i) Overall, the new proposed ul law, termed the Q/k law, performed best in the 

prediction of all ul blend values for all conditions studied in the present work. 

Having an average predicted to measured ratio of 1.01, with a standard deviation 

of 0.02. 

ii) The measured liquid hydrocarbon blends were generally well predicted by all ul 

laws, very close to or within the experimental error margin. This is likely due to 

their constituents having relatively similar underlying chemistry and ul values. 

iii) As anticipated, the CH4/air and H2/air blends proved to be significantly more 

challenging. This was due to their significantly contrasting chemistry, exhibiting 

very different heat release rate profiles and ul values, alongside notably 

contrasting thermal conductivities. They were the only blends to significantly 

push all blending laws beyond the experimental error margins, and thereby expose 

the most comprehensively developed blending law. However, the Q/k law again 

out performed all existing ul laws, across ϕ = 0.6-1.3, within an average predicted 

to measured ratio of 1.01 with a standard deviation of 0.03. Although this ratio is 

worse than the average ratio for all blends studied, the relative difference to that of 

the other laws is much greater, thus, highlighting the superior performance of the 

proposed law. The merit of the Q/k law, particularly for blends such as CH4/ 

H2/air, results from its unique consideration for the influence of each constituent 

mixtures heat realise rate profile and thermal conductivity.  
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7.1.5 Lb Blending Laws 

The development of an accurate Lb blending law was less successful. This is not 

surprising due to the relatively tentative nature of measuring Lb and its increased 

experimental error margin. The predictive performance of all trailed Lb blending laws 

was analysed over the same blends as that for the ul blending laws. However, no other 

existing Lb blending laws were found in literature for comparison. Their performance is 

summarised below: 

i) For the liquid hydrocarbon blends, Lb values were generally well predicted by 

both the deficient reactant mole and mass fraction based laws, x̄d and xd, whilst the 

more empirically based xulLb law significantly under predicted. 

ii) For the CH4/air and H2/air blends, conversely, the xulLb law proved to be 

exceptionally good under lean to stoichiometric conditions, followed closely by 

the x̄d law, whilst the xd law significantly over predicted. 

7.2 Recommendations for Future Research  

The following subsections give recommendations based on the findings of the present 

work in terms of further research paths and the experimental apparatus used. 

7.2.1 Further Research Paths 

i) Full characterisation of the pure fuels and blends studied in the present work 

requires further measurements at a greater range of pressures, temperatures and 

equivalence ratios. 

ii) Testing of the proposed Q/k law over more conditions, with further fuel types 

would improve its validity over a greater range. Of particular practical 

importance, further testing on a “blends of blends” basis with real commercial 

fuel blends would also be very interesting. Furthermore, testing of the laws 

performance using blends with gases common to exhaust gas recirculation would 

potentially be useful in engine studies.  

iii) More work into the potential for an Lb law is required. The author recommends 

following the rational of the deficient reactant based law. 

iv) Just as a ul blending law is highly desirable for the prediction of different 

alternative fuel blends, so is that of a τi blending law, few exist in current literature 

and often have limited range. 
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v) Further large-scale explosion data is required to bolster the notion of laboratory 

combustion vessels being able to simulate their Pecl and Kac values at elevated 

pressure.  

7.2.2 Experimental Apparatus - The Leeds CV2 Bomb 

i) Further investigation into mixture temperature uniformity at higher pressures and 

temperatures is required, particularly under laminar conditions, whereby the 

degree of temperature uniformity was found to be a function of the time after 

which the fans are switched off, and the initial pressure and temperature.  

ii) A known cool spot of the vessel is that of the bottom port, due to the attaching 

metal stand which acts as a heat stink. An improvement in the vessels temperature 

uniformity could be achieved by the use of a gasket made from a high thermally 

insulating material, such as PTFE, mounted between the bottom port and the 

metal stand. 

iii) Remotely operated electronic solenoid valves on the exhaust line, mixture inlet 

and static pressure transducer would allow for full operation behind the protected 

control booth. This would improve safety, particularly during high pressure 

experiments, as the pressure of the combustion products after combustion could 

be exhausted without passing the vessel windows. 

iv) High fan speeds used to generate high turbulence, limit the lowest initial mixture 

temperature due to the heat generation from the fan shaft seals. Therefore, the 

development of an external water cooled jacket would lower mixture temperatures 

under high turbulence and increase the vessels operating range. 

 



Appendix A - Blending Law Performance League 

Tables  

This Appendix presents the league tables showing the performance of each ul and Lb 

blending law, for each blend studied. Section A.1 presents tables for each binary 

equimolar blend, Section A.2 presents tables for each TRF/alcohol blend, and finally, 

Section A.3 presents tables for each methane and hydrogen blend. 
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iso-Octane/Air and Toluene/Air Equimolar Blends 

Pi 

(MPa) 
ϕ 

ul Laws Lb Laws 

x̄ x LC Tb T̃a Q Q/k x̄d xd xulLb 

0.1 

0.8 1.03 1.03 1.03 1.03 1.03 1.03 1.03 0.92 0.93 0.31 

0.9 0.99 0.99 0.99 1.08 0.99 1.00 0.99 0.86 0.87 0.36 

1 1.04 1.04 1.04 1.13 1.04 1.04 1.04 0.99 0.99 0.44 

1.1 1.02 1.02 1.02 1.11 1.02 1.01 1.02 1.03 1.03 0.49 

1.2 1.00 1.00 1.00 1.08 1.00 1.00 1.00 0.83 0.84 0.40 

1.3 1.00 1.00 0.99 1.09 0.99 0.99 1.00 1.04 1.05 0.44 

Av. 1.01 1.01 1.01 1.08 1.01 1.01 1.01 0.95 0.95 0.41 

σ 0.02 0.02 0.02 0.03 0.02 0.02 0.02 0.09 0.08 0.06 

0.5 

0.8 1.01 1.01 1.01 1.10 1.01 1.01 1.01 0.94 0.94 0.20 

0.9 1.00 1.00 1.01 1.09 1.00 1.01 1.00 0.94 0.94 0.26 

1 1.02 1.02 1.03 1.11 1.02 1.01 1.02 0.87 0.87 0.27 

1.1 0.99 0.99 0.99 1.07 0.99 1.00 0.99 0.86 0.86 0.29 

1.2 1.01 1.01 1.01 1.10 1.01 1.01 1.01 1.05 1.05 0.34 

1.3 1.02 1.02 1.03 1.12 1.02 1.03 1.02 1.36 1.34 0.38 

Av. 1.01 1.01 1.01 1.10 1.01 1.01 1.01 1.01 1.00 0.29 

σ 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.19 0.18 0.06 

1.0 

0.8 0.98 0.98 0.99 0.98 0.98 0.98 0.98 1.06 1.07 0.19 

0.9 1.01 1.01 1.01 1.10 1.01 1.01 1.01 1.02 1.02 0.23 

1 1.01 1.01 1.02 1.10 1.01 0.95 1.01 8.68 11.60 2.93 

Av. 1.00 1.00 1.01 1.06 1.00 0.98 1.00 3.59 4.56 1.12 

σ 0.02 0.02 0.02 0.07 0.02 0.03 0.02 4.41 6.09 1.57 

Table A.1: ul and Lb blending law performances (ulp/ul and Lbp/Lb), equimolar fuel/air 

blend of iso-octane/air and toluene/air, ϕ = 0.8-1.3, Tu = 360K, Pi = 0.1, 0.5 and 

1.0MPa. Figures 4.26 and 4.27, in Chapter 4 show the related ul and Lb measured 

values. 
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iso-Octane/Air and 1-Hexene/Air Equimolar Blends 

Pi 

(MPa) 
ϕ 

ul Laws Lb Laws 

x̄ x LC Tb T̃a Q Q/k x̄d xd xulLb 

0.1 

0.8 1.01 1.01 1.01 1.01 1.00 1.01 1.01 0.91 0.92 0.33 

0.9 0.99 0.99 1.00 1.08 0.99 1.00 0.99 0.97 0.97 0.43 

1 1.02 1.02 1.02 1.11 1.01 1.02 1.02 0.94 0.94 0.46 

1.1 1.01 1.01 1.01 1.10 1.00 1.01 1.01 1.01 1.01 0.53 

1.2 0.95 0.95 0.96 1.04 0.95 0.96 0.95 0.77 0.78 0.44 

1.3 0.96 0.96 0.96 1.05 0.95 0.96 0.96 0.78 0.80 0.41 

Av. 0.99 0.99 1.00 1.06 0.99 0.99 0.99 0.89 0.91 0.43 

σ 0.03 0.03 0.03 0.04 0.03 0.03 0.03 0.10 0.09 0.07 

0.5 

0.8 0.98 0.98 0.98 1.07 0.97 0.98 0.98 0.97 0.99 0.23 

0.9 1.03 1.03 1.03 1.12 1.02 1.03 1.03 0.90 0.91 0.26 

1 1.02 1.02 1.03 1.11 1.02 1.03 1.02 0.85 0.86 0.29 

1.1 1.03 1.02 1.03 1.11 1.02 1.03 1.02 0.95 0.93 0.33 

1.2 1.02 1.02 1.03 1.11 1.01 1.03 1.02 1.01 0.98 0.34 

1.3 1.03 1.03 1.03 1.12 1.02 1.03 1.03 1.47 1.44 0.45 

Av. 1.02 1.02 1.02 1.11 1.01 1.02 1.02 1.03 1.02 0.32 

σ 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.23 0.21 0.08 

1.0 

0.8 1.02 1.02 1.02 1.02 1.01 1.02 1.02 0.98 1.00 0.19 

0.9 1.01 1.01 1.01 1.10 1.00 1.01 1.01 0.88 0.88 0.21 

1 1.00 1.00 1.01 1.09 1.00 1.01 1.00 0.43 0.27 0.11 

Av. 1.01 1.01 1.01 1.07 1.00 1.01 1.01 0.76 0.72 0.17 

σ 0.01 0.01 0.01 0.04 0.01 0.01 0.01 0.29 0.39 0.05 

Table A.2: ul and Lb blending law performances (ulp/ul and Lbp/Lb), equimolar fuel/air 

blend of iso-octane/air and 1-hexene/air, ϕ = 0.8-1.3, Tu = 360K, Pi = 0.1, 0.5 and 

1.0MPa. Figures 4.28 and 4.29, in Chapter 4 show the related ul and Lb measured 

values. 
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iso-Octane/Air and Ethanol/Air Equimolar Blends 

Pi 

(MPa) 
ϕ 

ul Laws Lb Laws 

x̄ x LC Tb T̃a Q Q/k x̄d xd xulLb 

0.1 

0.8 1.09 1.09 1.14 1.09 1.08 1.09 1.09 0.75 0.82 0.28 

0.9 1.06 1.06 1.11 1.16 1.06 1.06 1.06 0.93 0.98 0.41 

1 1.04 1.04 1.08 1.13 1.03 1.04 1.03 0.90 0.93 0.45 

1.1 1.03 1.03 1.08 1.12 1.02 1.04 1.03 1.08 1.05 0.54 

1.2 1.01 1.01 1.07 1.10 1.00 1.02 1.01 0.86 0.90 0.48 

1.3 0.99 0.99 1.04 1.09 0.98 0.99 0.99 0.82 0.90 0.46 

Av. 1.03 1.03 1.09 1.11 1.03 1.04 1.03 0.89 0.93 0.44 

σ 0.04 0.04 0.04 0.03 0.04 0.03 0.04 0.11 0.08 0.09 

0.5 

0.8 0.99 0.99 1.01 1.09 0.99 0.99 0.99 0.96 0.98 0.21 

0.9 1.04 1.04 1.06 1.14 1.04 1.04 1.04 0.97 0.98 0.26 

1 1.04 1.04 1.08 1.13 1.04 1.05 1.04 0.94 0.95 0.30 

1.1 1.03 1.03 1.08 1.12 1.03 1.08 1.03 0.95 0.93 0.31 

1.2 1.02 1.02 1.08 1.12 1.01 1.05 1.02 1.01 0.97 0.32 

1.3 1.01 1.01 1.05 1.11 1.00 1.01 1.01 -0.70 -0.48 
-

0.09 

Av. 1.02 1.02 1.06 1.12 1.02 1.04 1.02 0.69 0.72 0.22 

σ 0.02 0.02 0.03 0.02 0.02 0.03 0.02 0.68 0.59 0.16 

1.0 

0.8 1.01 1.01 1.04 1.02 1.01 1.01 1.01 1.02 1.02 0.17 

0.9 1.00 1.00 1.04 1.09 1.00 1.00 1.00 0.92 0.91 0.21 

1 1.01 1.01 1.04 1.09 1.00 1.01 1.01 2.07 1.71 0.40 

Av. 1.01 1.01 1.04 1.07 1.00 1.01 1.01 1.34 1.21 0.26 

σ 0.01 0.01 0.00 0.05 0.01 0.01 0.01 0.64 0.43 0.12 

Table A.3: ul and Lb blending law performances (ulp/ul and Lbp/Lb), equimolar fuel/air 

blend of iso-octane/air and ethanol/air, ϕ = 0.8-1.3, Tu = 360K, Pi = 0.1, 0.5 and 

1.0MPa. Figures 4.30 and 4.31, in Chapter 4 show the related ul and Lb measured 

values. 
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iso-Octane/Air and n-Heptane/Air Equimolar Blends 

Pi 

(MPa) 
ϕ 

ul Laws Lb Laws 

x̄ x LC Tb T̃a Q Q/k x̄d xd xulLb 

0.1 

0.8 1.03 1.03 1.03 1.03 1.03 1.03 1.03 0.90 0.90 0.30 

0.9 1.08 1.08 1.08 1.18 1.08 1.09 1.08 0.97 0.97 0.39 

1 1.03 1.02 1.02 1.12 1.02 0.44 1.02 0.99 0.99 0.48 

1.1 1.01 1.01 1.01 1.10 1.01 1.01 1.01 1.02 1.02 0.51 

1.2 0.99 0.99 0.99 1.08 0.99 0.99 0.99 0.93 0.94 0.48 

1.3 1.00 1.00 1.00 1.10 1.00 1.00 1.00 1.15 1.16 0.53 

Av. 1.02 1.02 1.02 1.10 1.02 0.93 1.02 0.99 1.00 0.45 

σ 0.03 0.03 0.03 0.05 0.03 0.24 0.03 0.09 0.09 0.09 

0.5 

0.8 1.04 1.04 1.04 1.15 1.04 1.04 1.04 1.05 1.05 0.23 

0.9 1.03 1.03 1.03 1.12 1.03 1.04 1.03 0.88 0.88 0.25 

1 1.03 1.03 1.03 1.12 1.03 1.05 1.03 0.96 0.96 0.31 

1.1 0.98 0.98 0.98 1.06 0.98 0.97 0.98 1.01 1.00 0.35 

1.2 1.00 1.00 1.00 1.09 1.00 1.01 1.00 1.57 1.56 0.53 

1.3 1.02 1.02 1.02 1.12 1.02 1.02 1.02 0.11 0.08 0.01 

Av. 1.02 1.02 1.02 1.11 1.01 1.02 1.02 0.93 0.92 0.28 

σ 0.02 0.02 0.02 0.03 0.02 0.03 0.02 0.47 0.48 0.17 

1.0 

0.8 1.02 1.02 1.01 1.02 1.01 1.01 1.02 0.95 0.95 0.17 

0.9 0.99 0.99 0.99 1.08 0.99 0.99 0.99 0.97 0.97 0.23 

1 0.99 0.99 0.98 1.07 0.98 0.99 0.99 1.21 1.20 0.33 

Av. 1.00 1.00 1.00 1.06 0.99 0.99 1.00 1.04 1.04 0.24 

σ 0.02 0.02 0.01 0.04 0.02 0.01 0.02 0.15 0.14 0.08 

Table A.4: ul and Lb blending law performances (ulp/ul and Lbp/Lb), equimolar fuel/air 

blend of iso-octane/air and n-heptane/air, ϕ = 0.8-1.3, Tu = 360K, Pi = 0.1, 0.5 and 

1.0MPa. Figures 4.32 and 4.33, in Chapter 4 show the related ul and Lb measured 

values. 
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Toluene/Air and 1-Hexene/Air Equimolar Blends 

Pi 

(MPa) 
ϕ 

ul Laws Lb Laws 

x̄ x LC Tb T̃a Q Q/k x̄d xd xulLb 

0.1 

0.8 1.03 1.03 1.02 1.03 1.03 1.03 1.03 0.95 0.95 0.35 

0.9 1.03 1.03 1.03 1.13 1.03 1.04 1.03 0.98 0.98 0.43 

1 1.00 0.99 0.99 1.08 0.99 1.00 1.00 1.03 1.03 0.53 

1.1 1.01 1.01 1.00 1.10 1.01 1.01 1.01 1.11 1.12 0.59 

1.2 1.00 1.00 0.99 1.09 1.00 1.00 1.00 0.96 0.96 0.50 

1.3 0.98 0.98 0.97 1.07 0.98 0.98 0.98 0.88 0.89 0.43 

Av. 1.01 1.01 1.00 1.08 1.01 1.01 1.01 0.99 0.99 0.47 

σ 0.02 0.02 0.02 0.03 0.02 0.02 0.02 0.08 0.08 0.08 

0.5 

0.8 1.00 1.00 0.99 1.09 0.99 1.00 1.00 0.98 0.98 0.24 

0.9 1.00 1.00 0.99 1.09 1.00 1.00 1.00 0.95 0.95 0.29 

1 1.02 1.02 1.02 1.11 1.02 1.02 1.02 0.82 0.83 0.29 

1.1 1.00 1.00 0.99 1.09 1.00 1.01 1.00 0.90 0.89 0.33 

1.2 1.01 1.01 1.00 1.10 1.00 1.01 1.01 0.89 0.88 0.33 

1.3 1.00 1.00 0.99 1.09 0.99 1.25 0.99 0.47 0.46 0.16 

Av. 1.01 1.01 1.00 1.09 1.00 1.05 1.00 0.83 0.83 0.27 

σ 0.01 0.01 0.01 0.01 0.01 0.10 0.01 0.19 0.19 0.07 

1.0 

0.8 1.01 1.01 1.00 1.01 1.00 1.01 1.01 1.09 1.09 0.22 

0.9 1.00 1.00 0.99 1.09 0.99 1.00 1.00 1.08 1.09 0.28 

1 1.00 1.00 1.00 1.09 1.00 1.00 1.00 0.73 0.71 0.22 

Av. 1.00 1.00 1.00 1.06 1.00 1.00 1.00 0.97 0.96 0.24 

σ 0.00 0.00 0.01 0.05 0.00 0.00 0.00 0.21 0.22 0.04 

Table A.5: ul and Lb blending law performances (ulp/ul and Lbp/Lb), equimolar fuel/air 

blend of toluene/air and 1-hexene/air, ϕ = 0.8-1.3, Tu = 360K, Pi = 0.1, 0.5 and 1.0MPa. 

Figures 4.34 and 4.35, in Chapter 4 show the related ul and Lb measured values. 
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Toluene/Air and Ethanol/Air Equimolar Blends 

Pi 

(MPa) 
ϕ 

ul Laws Lb Laws 

x̄ x LC Tb T̃a Q Q/k x̄d xd xulLb 

0.1 

0.8 1.09 1.09 1.11 1.09 1.08 1.08 1.09 0.96 0.99 0.35 

0.9 1.02 1.02 1.05 1.12 1.02 1.07 1.02 0.92 0.94 0.41 

1 1.01 1.01 1.04 1.11 1.01 1.03 1.01 0.93 0.95 0.48 

1.1 1.03 1.02 1.06 1.12 1.02 1.08 1.02 1.03 1.02 0.52 

1.2 1.01 1.01 1.05 1.10 1.00 0.97 1.01 1.00 1.01 0.53 

1.3 0.95 0.95 0.99 1.04 0.94 0.93 0.95 0.79 0.84 0.44 

Av. 1.02 1.02 1.05 1.10 1.01 1.03 1.02 0.94 0.96 0.45 

σ 0.04 0.05 0.04 0.03 0.05 0.06 0.05 0.08 0.06 0.07 

0.5 

0.8 1.05 1.05 1.03 1.15 1.05 1.05 1.05 1.01 1.01 0.22 

0.9 1.01 1.01 1.02 1.11 1.01 1.01 1.01 0.87 0.88 0.25 

1 1.01 1.01 1.01 1.10 1.01 1.01 1.01 0.99 1.00 0.34 

1.1 1.01 1.01 1.04 1.10 1.01 0.98 1.01 0.96 0.95 0.34 

1.2 1.00 1.00 1.03 1.09 0.99 0.99 1.00 1.01 0.97 0.34 

1.3 0.99 0.99 1.02 1.09 0.99 0.99 0.99 1.02 0.70 0.14 

Av. 1.01 1.01 1.02 1.10 1.01 1.00 1.01 0.97 0.92 0.27 

σ 0.02 0.02 0.01 0.02 0.02 0.03 0.02 0.05 0.12 0.08 

1.0 

0.8 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.19 1.16 0.21 

0.9 0.98 0.98 0.98 1.07 0.98 0.98 0.98 1.07 1.06 0.26 

1 0.99 0.99 1.00 1.08 0.99 1.00 0.99 1.74 1.34 0.31 

Av. 0.99 0.99 1.00 1.05 0.99 1.00 0.99 1.33 1.19 0.26 

σ 0.02 0.02 0.01 0.04 0.02 0.02 0.02 0.36 0.14 0.05 

Table A.6: ul and Lb blending law performances (ulp/ul and Lbp/Lb), equimolar fuel/air 

blend of toluene/air and ethanol/air, ϕ = 0.8-1.3, Tu = 360K, Pi = 0.1, 0.5 and 1.0MPa. 

Figures 4.36and 4.37, in Chapter 4 show the related ul and Lb measured values. 
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Toluene/Air and n-Heptane/Air Equimolar Blends 

Pi 

(MPa) 
ϕ 

ul Laws Lb Laws 

x̄ x LC Tb T̃a Q Q/k x̄d xd xulLb 

0.1 

0.8 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.36 

0.9 1.06 1.06 1.05 1.15 1.06 1.01 1.06 0.93 0.93 0.39 

1 1.06 1.06 1.05 1.15 1.06 1.07 1.06 0.97 0.97 0.46 

1.1 1.01 1.01 1.01 1.10 1.01 1.04 1.01 1.07 1.07 0.54 

1.2 1.00 1.00 0.99 1.09 1.00 0.99 1.00 1.00 1.00 0.50 

1.3 1.00 1.00 0.99 1.09 1.00 1.00 1.00 0.94 0.94 0.42 

Av. 1.02 1.02 1.01 1.09 1.02 1.01 1.02 0.98 0.98 0.44 

σ 0.03 0.03 0.03 0.07 0.03 0.03 0.03 0.05 0.05 0.07 

0.5 

0.8 1.00 1.00 1.00 1.10 1.00 1.00 1.00 0.95 0.95 0.23 

0.9 1.02 1.02 1.01 1.11 1.01 1.01 1.02 1.09 1.09 0.32 

1 1.02 1.02 1.02 1.11 1.02 1.04 1.02 0.90 0.89 0.30 

1.1 0.97 0.97 0.97 1.05 0.97 0.96 0.97 0.86 0.86 0.32 

1.2 0.99 0.99 0.98 1.07 0.98 0.83 0.98 0.82 0.83 0.30 

1.3 0.99 0.99 0.98 1.08 0.99 0.99 0.99 -0.02 0.00 0.00 

Av. 1.00 1.00 0.99 1.09 1.00 0.97 1.00 0.77 0.77 0.24 

σ 0.02 0.02 0.02 0.02 0.02 0.07 0.02 0.40 0.39 0.12 

1.0 

0.8 1.01 1.01 1.00 1.01 1.01 1.01 1.01 1.07 1.07 0.21 

0.9 1.00 1.00 0.99 1.09 1.00 1.00 1.00 1.06 1.06 0.27 

1 1.01 1.01 1.01 1.09 1.01 1.03 1.01 0.44 0.47 0.15 

Av. 1.01 1.01 1.00 1.06 1.00 1.01 1.01 0.86 0.87 0.21 

σ 0.00 0.01 0.01 0.05 0.01 0.02 0.00 0.36 0.34 0.06 

Table A.7: ul and Lb blending law performances (ulp/ul and Lbp/Lb), equimolar fuel/air 

blend of toluene/air and n-heptane/air, ϕ = 0.8-1.3, Tu = 360K, Pi = 0.1, 0.5 and 1.0MPa. 

Figures 4.38 and 4.39, in Chapter 4 show the related ul and Lb measured values. 
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1-Hexene/Air and Ethanol/Air Equimolar Blends 

Pi 

(MPa) 
ϕ 

ul Laws Lb Laws 

x̄ x LC Tb T̃a Q Q/k x̄d xd xulLb 

0.1 

0.8 1.00 1.00 0.99 1.00 1.00 1.00 0.99 0.99 1.01 0.42 

0.9 0.98 0.98 0.97 1.07 0.98 0.98 0.98 1.00 1.02 0.52 

1 1.01 1.01 1.00 1.10 1.01 1.01 1.01 0.92 0.94 0.51 

1.1 1.01 1.01 1.01 1.10 1.01 1.01 1.01 1.09 1.07 0.60 

1.2 0.99 0.99 0.99 1.08 0.99 0.99 0.99 1.02 1.02 0.60 

1.3 0.99 0.99 0.99 1.09 0.99 0.99 0.99 1.08 1.09 0.58 

Av. 0.99 0.99 0.99 1.07 0.99 1.00 0.99 1.02 1.02 0.54 

σ 0.01 0.01 0.01 0.04 0.01 0.01 0.01 0.06 0.05 0.07 

0.5 

0.8 1.02 1.02 0.97 1.12 1.02 1.02 1.02 1.01 1.00 0.23 

0.9 0.99 0.99 0.95 1.08 0.99 1.00 0.99 1.03 1.01 0.31 

1 1.00 1.00 0.96 1.09 1.00 1.00 1.00 0.97 0.95 0.34 

1.1 1.00 1.00 0.98 1.09 1.00 1.00 1.00 1.13 1.15 0.47 

1.2 0.99 0.99 0.97 1.08 0.99 0.99 0.99 1.28 1.30 0.54 

1.3 0.99 0.99 0.96 1.09 0.99 0.99 0.99 1.98 1.42 0.38 

Av. 1.00 1.00 0.97 1.09 1.00 1.00 1.00 1.23 1.14 0.38 

σ 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.38 0.19 0.11 

1.0 

0.8 1.00 1.00 0.95 1.01 1.00 1.01 1.00 1.16 1.12 0.22 

0.9 1.03 1.03 0.98 1.12 1.02 1.03 1.03 1.08 1.06 0.27 

1 1.00 1.00 0.96 1.09 1.00 1.00 1.00 2.09 1.53 0.27 

Av. 1.01 1.01 0.97 1.07 1.01 1.01 1.01 1.45 1.24 0.25 

σ 0.02 0.02 0.01 0.06 0.01 0.01 0.02 0.56 0.25 0.03 

Table A.8: ul and Lb blending law performances (ulp/ul and Lbp/Lb), equimolar fuel/air 

blend of 1-hexene/air and ethanol/air, ϕ = 0.8-1.3, Tu = 360K, Pi = 0.1, 0.5 and 1.0MPa. 

Figures 4.40 and 4.41, in Chapter 4 show the related ul and Lb measured values. 
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1-Hexene/Air and n-Heptane/Air Equimolar Blends 

Pi 

(MPa) 
ϕ 

ul Laws Lb Laws 

x̄ x LC Tb T̃a Q Q/k x̄d xd xulLb 

0.1 

0.8 1.06 1.06 1.07 1.06 1.06 1.06 1.06 1.02 1.02 0.37 

0.9 1.02 1.02 1.02 1.11 1.02 1.02 1.02 1.02 1.02 0.48 

1 1.02 1.02 1.02 1.11 1.02 1.02 1.02 1.01 1.01 0.53 

1.1 1.00 1.00 1.01 1.09 1.00 1.01 1.00 1.10 1.10 0.61 

1.2 0.98 0.98 0.99 1.07 0.98 0.99 0.98 1.07 1.07 0.60 

1.3 0.98 0.98 0.98 1.07 0.98 0.98 0.98 0.91 0.92 0.48 

Av. 1.01 1.01 1.01 1.09 1.01 1.01 1.01 1.02 1.02 0.51 

σ 0.03 0.03 0.03 0.02 0.03 0.03 0.03 0.06 0.06 0.09 

0.5 

0.8 1.01 1.01 1.01 1.11 1.01 1.01 1.01 1.06 1.06 0.27 

0.9 1.02 1.02 1.02 1.11 1.02 1.02 1.02 0.95 0.95 0.30 

1 1.01 1.01 1.01 1.09 1.01 1.01 1.01 0.86 0.87 0.32 

1.1 0.98 0.98 0.98 1.07 0.98 0.98 0.98 0.89 0.89 0.35 

1.2 1.01 1.01 1.02 1.10 1.01 1.02 1.01 0.95 0.95 0.37 

1.3 0.99 0.99 0.99 1.08 0.99 0.99 0.99 -0.04 0.00 0.01 

Av. 1.00 1.00 1.00 1.09 1.00 1.00 1.00 0.78 0.79 0.27 

σ 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.41 0.39 0.13 

1.0 

0.8 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.05 1.06 0.22 

0.9 0.98 0.98 0.98 1.07 0.98 0.98 0.98 1.01 1.01 0.28 

1 1.00 1.00 1.00 1.08 0.99 1.00 0.99 0.54 0.28 0.12 

Av. 0.99 0.99 1.00 1.05 0.99 1.00 0.99 0.87 0.78 0.21 

σ 0.01 0.01 0.01 0.04 0.01 0.01 0.01 0.28 0.44 0.08 

Table A.9: ul and Lb blending law performances (ulp/ul and Lbp/Lb), equimolar fuel/air 

blend of 1-hexene/air and n-heptane/air, ϕ = 0.8-1.3, Tu = 360K, Pi = 0.1, 0.5 and 

1.0MPa. Figures 4.42 and 4.43, in Chapter 4 show the related ul and Lb measured 

values. 
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Ethanol/Air and n-Heptane/Air Equimolar Blends 

Pi 

(MPa) 
ϕ 

ul Laws Lb Laws 

x̄ x LC Tb T̃a Q Q/k x̄d xd xulLb 

0.1 

0.8 1.05 1.05 1.07 1.06 1.05 1.05 1.05 0.85 0.87 0.32 

0.9 1.02 1.02 1.03 1.12 1.02 1.02 1.02 1.05 1.08 0.51 

1 1.01 1.01 1.02 1.11 1.01 1.01 1.01 0.98 1.00 0.54 

1.1 1.01 1.01 1.03 1.10 1.01 1.01 1.01 0.99 0.97 0.53 

1.2 0.98 0.98 1.01 1.08 0.98 0.99 0.98 1.05 1.03 0.57 

1.3 0.98 0.98 0.99 1.07 0.97 0.98 0.98 1.07 1.11 0.59 

Av. 1.01 1.01 1.02 1.09 1.01 1.01 1.01 1.00 1.01 0.51 

σ 0.03 0.03 0.03 0.02 0.03 0.03 0.03 0.08 0.09 0.10 

0.5 

0.8 0.96 0.96 0.93 1.06 0.96 0.96 0.96 1.00 1.00 0.24 

0.9 0.99 0.99 0.97 1.08 0.99 0.99 0.99 0.94 0.93 0.28 

1 1.00 1.00 0.99 1.09 1.00 1.00 1.00 1.06 1.06 0.37 

1.1 0.98 0.98 0.99 1.06 0.98 0.96 0.98 1.03 1.05 0.41 

1.2 0.99 0.99 1.01 1.09 0.99 1.03 0.99 0.89 0.89 0.34 

1.3 0.97 0.97 0.97 1.07 0.97 0.97 0.97 
-

11.75 

-

10.41 

-

3.32 

Av. 0.98 0.98 0.97 1.08 0.98 0.98 0.98 -1.14 -0.91 
-

0.28 

σ 0.01 0.01 0.03 0.01 0.02 0.03 0.01 5.20 4.65 1.49 

1.0 

0.8 1.03 1.03 1.00 1.03 1.03 1.03 1.03 1.08 1.07 0.20 

0.9 1.00 1.00 0.98 1.09 1.00 0.99 1.00 1.00 0.99 0.25 

1 1.00 1.00 0.99 1.09 1.00 0.99 1.00 1.14 0.98 0.25 

Av. 1.01 1.01 0.99 1.07 1.01 1.00 1.01 1.07 1.01 0.23 

σ 0.02 0.02 0.01 0.03 0.02 0.02 0.02 0.07 0.05 0.03 

Table A.10: ul and Lb blending law performances (ulp/ul and Lbp/Lb), equimolar fuel/air 

blend of ethanol/air and n-heptane/air, ϕ = 0.8-1.3, Tu = 360K, Pi = 0.1, 0.5 and 1.0MPa. 

Figures 4.44 and 4.45, in Chapter 4 show the related ul and Lb measured values. 
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TRF/Air and Ethanol/Air Blends, ϕ = 0.8 

Pi 

(MPa) 

LV% 

of 

Eth. 

ul Laws Lb Laws 

x̄ x LC Tb T̃a Q Q/k x̄d xd xulLb 

0.1 

25 1.00 1.00 1.02 1.00 1.00 0.99 1.00 0.97 1.02 1.03 

50 1.01 1.01 1.03 1.01 1.01 1.00 1.01 0.97 1.03 1.05 

75 1.00 1.00 1.02 1.01 1.00 1.00 1.01 0.94 0.99 1.00 

Av. 1.01 1.01 1.02 1.01 1.00 1.00 1.01 0.96 1.01 1.03 

σ 0.01 0.00 0.01 0.01 0.00 0.00 0.01 0.01 0.02 0.02 

0.5 

25 1.00 1.00 0.98 1.00 1.00 1.00 1.00 0.99 1.00 1.00 

50 1.00 1.00 0.98 1.00 1.00 1.01 1.00 1.00 1.01 1.01 

75 0.98 0.98 0.96 0.98 0.98 0.98 0.98 1.00 1.00 1.00 

Av. 0.99 0.99 0.97 0.99 0.99 1.00 0.99 0.99 1.00 1.00 

σ 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.00 

1.0 

25 0.96 0.96 0.96 0.96 0.96 0.96 0.96 1.00 1.00 0.83 

50 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.08 1.09 0.66 

75 0.98 0.98 0.98 0.98 0.98 0.98 0.98 1.03 1.04 0.36 

Av. 0.98 0.98 0.97 0.98 0.98 0.98 0.98 1.04 1.04 0.61 

σ 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.04 0.04 0.24 

Table A.11: ul and Lb blending law performances (ulp/ul and Lbp/Lb), TRF/ethanol blends, ϕ = 

0.8, Tu = 360K, Pi = 0.1, 0.5 and 1.0MPa. Figures 4.46-4.48, in Chapter 4 show the related ul 

and Lb measured values. 
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TRF/Air and Ethanol/Air Blends, ϕ = 0.9 

Pi 

(MPa) 

LV% 

of 

Eth. 

ul Laws Lb Laws 

x̄ x LC Tb T̃a Q Q/k x̄d xd xulLb 

0.1 

25 0.99 0.99 1.01 0.99 0.99 1.01 1.00 0.97 0.99 1.00 

50 1.00 1.00 1.02 1.00 1.00 1.02 1.01 0.96 1.00 1.00 

75 1.00 1.00 1.01 1.00 1.00 1.02 1.01 0.95 0.97 0.97 

Av. 1.00 1.00 1.02 1.00 1.00 1.01 1.00 0.96 0.99 0.99 

σ 0.00 0.00 0.01 0.00 0.00 0.01 0.01 0.01 0.02 0.02 

0.5 

25 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 

50 0.98 0.98 0.98 0.99 0.98 0.99 0.99 0.99 1.00 1.00 

75 0.96 0.96 0.96 0.96 0.96 0.96 0.97 0.99 1.00 1.00 

Av. 0.98 0.98 0.98 0.98 0.98 0.99 0.99 0.99 1.00 1.00 

σ 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.00 0.00 0.00 

1.0 

25 1.01 1.01 1.00 1.01 1.01 1.01 1.01 1.13 1.18 1.19 

50 1.02 1.01 1.01 1.02 1.02 1.02 1.02 1.00 1.05 1.07 

75 1.00 1.00 0.99 1.00 1.00 1.00 1.00 0.97 1.00 1.01 

Av. 1.01 1.01 1.00 1.01 1.01 1.01 1.01 1.03 1.07 1.09 

σ 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.09 0.09 0.09 

Table A.12: ul and Lb blending law performances (ulp/ul and Lbp/Lb), TRF/ethanol blends, ϕ = 

0.9, Tu = 360K, Pi = 0.1, 0.5 and 1.0MPa. Figures 4.46-4.48, in Chapter 4 show the related ul 

and Lb measured values. 
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TRF/Air and Ethanol/Air Blends, ϕ = 1.0 

Pi 

(MPa) 

LV% 

of 

Eth. 

ul Laws Lb Laws 

x̄ x LC Tb T̃a Q Q/k x̄d xd xulLb 

0.1 

25 0.99 1.00 1.02 1.00 0.99 1.00 1.00 0.97 0.99 1.00 

50 1.01 1.01 1.04 1.02 1.01 1.02 1.02 0.96 0.99 0.99 

75 1.00 1.00 1.02 1.01 1.00 1.01 1.01 0.97 0.99 0.99 

Av. 1.00 1.00 1.03 1.01 1.00 1.01 1.01 0.97 0.99 0.99 

σ 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.00 

0.5 

25 1.00 1.01 1.01 1.01 1.00 1.01 1.01 0.99 0.99 1.00 

50 1.00 1.01 1.01 1.01 1.00 1.01 1.01 0.99 1.00 1.00 

75 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.01 1.00 

Av. 1.00 1.00 1.01 1.00 1.00 1.01 1.01 0.99 1.00 1.00 

σ 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.01 0.01 0.00 

1.0 

25 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.02 1.05 1.02 

50 0.99 1.00 1.00 1.00 0.99 1.00 1.00 0.98 1.01 0.94 

75 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.01 0.88 

Av. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.02 0.95 

σ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.02 0.07 

Table A.13: ul and Lb blending law performances (ulp/ul and Lbp/Lb), TRF/ethanol blends, ϕ = 

1.0, Tu = 360K, Pi = 0.1, 0.5 and 1.0MPa. Figures 4.46-4.48, in Chapter 4 show the related ul 

and Lb measured values. 
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TRF/Air and Ethanol/Air Blends, ϕ = 1.1 

Pi 

(MPa) 

LV% 

of 

Eth. 

ul Laws Lb Laws 

x̄ x LC Tb T̃a Q Q/k x̄d xd xulLb 

0.1 

25 1.00 1.00 1.03 1.00 1.00 1.03 1.00 1.03 1.02 1.05 

50 1.01 1.01 1.05 1.01 1.00 1.06 1.02 1.08 1.07 1.07 

75 0.99 1.00 1.02 1.00 0.99 1.04 1.00 1.10 1.09 1.05 

Av. 1.00 1.00 1.03 1.00 1.00 1.04 1.01 1.07 1.06 1.06 

σ 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.04 0.04 0.01 

0.5 

25 1.00 1.00 1.01 1.00 1.00 0.99 1.00 0.98 0.97 0.99 

50 1.01 1.01 1.03 1.01 1.01 1.00 1.02 1.01 1.00 1.00 

75 1.00 1.00 1.01 1.00 1.00 0.98 1.01 1.04 1.03 1.00 

Av. 1.00 1.00 1.02 1.01 1.00 0.99 1.01 1.01 1.00 1.00 

σ 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.03 0.03 0.01 

Table A.14: ul and Lb blending law performances (ulp/ul and Lbp/Lb), TRF/ethanol blends, ϕ = 

1.1, Tu = 360K, Pi = 0.1, 0.5 and 1.0MPa. Figures 4.46-4.48, in Chapter 4 show the related ul 

and Lb measured values. 
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TRF/Air and Ethanol/Air Blends, ϕ = 1.2 

Pi 

(MPa) 

LV% 

of 

Eth. 

ul Laws Lb Laws 

x̄ x LC Tb T̃a Q Q/k x̄d xd xulLb 

0.1 

25 1.00 1.00 1.03 1.00 0.99 0.98 1.00 1.08 1.08 1.10 

50 0.99 1.00 1.04 1.00 0.99 0.96 1.00 1.08 1.07 1.07 

75 1.01 1.01 1.04 1.01 1.00 0.98 1.01 1.09 1.08 1.05 

Av. 1.00 1.00 1.04 1.00 0.99 0.97 1.01 1.09 1.08 1.08 

σ 0.01 0.01 0.00 0.01 0.01 0.01 0.01 0.00 0.00 0.02 

0.5 

25 1.01 1.02 1.04 1.02 1.01 1.01 1.02 0.92 0.90 0.98 

50 1.01 1.01 1.04 1.01 1.00 1.00 1.01 1.02 0.99 1.00 

75 1.01 1.01 1.03 1.01 1.00 1.00 1.01 1.11 1.09 1.00 

Av. 1.01 1.01 1.04 1.01 1.01 1.00 1.01 1.02 0.99 0.99 

σ 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.09 0.09 0.01 

Table A.15: ul and Lb blending law performances (ulp/ul and Lbp/Lb), TRF/ethanol blends, ϕ = 

1.2, Tu = 360K, Pi = 0.1, 0.5 and 1.0MPa. Figures 4.46-4.48, in Chapter 4 show the related ul 

and Lb measured values. 
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TRF/Air and Ethanol/Air Blends, ϕ = 1.3 

Pi 

(MPa) 

LV% 

of 

Eth. 

ul Laws Lb Laws 

x̄ x LC Tb T̃a Q Q/k x̄d xd xulLb 

0.1 

25 0.97 0.97 1.01 0.98 0.97 0.96 0.98 1.43 1.49 1.29 

50 0.97 0.97 1.01 0.97 0.96 0.95 0.98 1.20 1.25 1.24 

75 0.96 0.97 0.99 0.97 0.96 0.95 0.97 0.84 0.87 0.98 

Av. 0.97 0.97 1.00 0.97 0.96 0.95 0.97 1.16 1.20 1.17 

σ 0.00 0.00 0.01 0.00 0.01 0.01 0.00 0.30 0.31 0.17 

0.5 

25 0.99 1.00 1.02 1.00 0.99 0.99 1.00 0.08 -0.18 0.75 

50 1.01 1.01 1.03 1.01 1.00 1.00 1.01 1.94 0.87 1.27 

75 1.00 1.00 1.02 1.00 0.99 0.99 1.00 1.19 0.92 -0.12 

Av. 1.00 1.00 1.02 1.00 1.00 0.99 1.00 1.07 0.54 0.63 

σ 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.93 0.62 0.70 

Table A.16: ul and Lb blending law performances (ulp/ul and Lbp/Lb), TRF/ethanol blends, ϕ = 

1.3, Tu = 360K, Pi = 0.1, 0.5 and 1.0MPa. Figures 4.46-4.48, in Chapter 4 show the related ul 

and Lb measured values. 
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TRF/Air and n-Butanol/Air Blends, ϕ = 0.8 

Pi 

(MPa) 

LV% 

of 

But. 

ul Laws Lb Laws 

x̄ x LC Tb T̃a Q Q/k x̄d xd xulLb 

0.1 

25 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.02 1.02 1.03 

50 1.00 1.00 1.01 1.00 1.00 1.00 1.01 0.96 0.97 0.97 

75 1.00 1.00 1.00 1.00 1.00 1.00 1.01 0.97 0.98 0.98 

Av. 1.00 1.00 1.00 1.00 1.00 1.00 1.01 0.98 0.99 0.99 

σ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.03 0.03 

0.5 

25 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 

50 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.00 1.00 1.00 

75 1.01 1.01 1.01 1.01 1.01 1.01 1.02 1.01 1.01 1.00 

Av. 1.01 1.01 1.01 1.01 1.01 1.01 1.02 1.01 1.01 1.00 

σ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

1.0 

25 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.98 0.98 0.98 

50 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.97 0.98 0.98 

75 0.98 0.98 0.98 0.98 0.98 0.98 0.99 0.95 0.96 0.95 

Av. 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.97 0.97 0.97 

σ 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.02 0.02 

Table A.17: ul and Lb blending law performances (ulp/ul and Lbp/Lb), TRF/n-butanol blends, ϕ 

= 0.8, Tu = 360K, Pi = 0.1, 0.5 and 1.0MPa. Figures 4.49-4.51, in Chapter 4 show the related 

ul and Lb measured values. 
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TRF/Air and n-Butanol/Air Blends, ϕ = 0.9 

Pi 

(MPa) 

LV% 

of 

But. 

ul Laws Lb Laws 

x̄ x LC Tb T̃a Q Q/k x̄d xd xulLb 

0.1 

25 0.99 0.99 0.99 0.99 0.99 0.99 0.99 1.03 1.04 1.02 

50 1.00 1.00 1.00 1.00 1.00 1.00 1.01 0.96 0.97 0.92 

75 1.01 1.01 1.01 1.01 1.01 1.01 1.02 1.02 1.02 0.95 

Av. 1.00 1.00 1.00 1.00 1.00 1.00 1.01 1.00 1.01 0.96 

σ 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.04 0.04 0.05 

0.5 

25 1.00 1.00 1.01 1.00 1.00 1.00 1.01 0.99 0.99 0.98 

50 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.00 1.00 0.96 

75 1.01 1.01 1.01 1.01 1.01 1.01 1.02 1.00 1.00 0.94 

Av. 1.01 1.01 1.01 1.01 1.01 1.01 1.02 1.00 1.00 0.96 

σ 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.02 

1.0 

25 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.19 1.20 1.21 

50 0.97 0.97 0.97 0.97 0.97 0.97 0.98 1.04 1.05 1.06 

75 0.99 0.99 0.99 0.99 0.99 0.99 1.00 0.95 0.96 0.97 

Av. 0.99 0.99 0.99 0.99 0.99 0.99 0.99 1.06 1.07 1.08 

σ 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.12 0.12 0.12 

Table A.18: ul and Lb blending law performances (ulp/ul and Lbp/Lb), TRF/n-butanol blends, ϕ 

= 0.9, Tu = 360K, Pi = 0.1, 0.5 and 1.0MPa. Figures 4.49-4.51, in Chapter 4 show the related 

ul and Lb measured values. 
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TRF/Air and n-Butanol/Air Blends, ϕ = 1.0 

Pi 

(MPa) 

LV% 

of 

But. 

ul Laws Lb Laws 

x̄ x LC Tb T̃a Q Q/k x̄d xd xulLb 

0.1 

25 0.99 0.99 1.00 0.99 0.99 0.99 1.00 0.99 0.99 0.98 

50 1.00 1.00 1.01 1.00 1.00 1.00 1.01 0.95 0.96 0.93 

75 1.01 1.01 1.01 1.01 1.01 1.01 1.03 1.01 1.01 0.97 

Av. 1.00 1.00 1.01 1.00 1.00 1.00 1.01 0.98 0.99 0.96 

σ 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.03 0.03 0.03 

0.5 

25 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.00 1.00 0.99 

50 1.01 1.01 1.02 1.01 1.01 1.01 1.02 0.99 0.99 0.97 

75 1.02 1.02 1.03 1.02 1.02 1.02 1.04 1.00 1.00 0.97 

Av. 1.01 1.01 1.02 1.01 1.01 1.01 1.02 0.99 1.00 0.97 

σ 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

Table A.19: ul and Lb blending law performances (ulp/ul and Lbp/Lb), TRF/n-butanol blends, ϕ 

= 1.0, Tu = 360K, Pi = 0.1, 0.5 and 1.0MPa. Figures 4.49-4.51, in Chapter 4 show the related 

ul and Lb measured values. 
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TRF/Air and n-Butanol/Air Blends, ϕ = 1.1 

Pi 

(MPa) 

LV% 

of 

But. 

ul Laws Lb Laws 

x̄ x LC Tb T̃a Q Q/k x̄d xd xulLb 

0.1 

25 1.00 1.00 1.00 1.00 0.99 1.00 1.00 0.96 0.96 0.97 

50 0.99 0.99 1.00 0.99 0.99 0.99 1.00 0.95 0.94 0.95 

75 1.00 1.00 1.01 1.00 1.00 1.01 1.02 1.04 1.04 1.03 

Av. 1.00 1.00 1.00 1.00 0.99 1.00 1.01 0.98 0.98 0.98 

σ 0.01 0.01 0.00 0.01 0.01 0.01 0.01 0.05 0.05 0.04 

0.5 

25 1.00 1.00 1.01 1.00 1.00 1.00 1.01 0.94 0.93 1.04 

50 0.99 0.99 1.00 0.99 0.99 1.00 1.00 1.01 1.00 1.06 

75 1.00 1.00 1.00 1.00 1.00 1.00 1.01 1.08 1.07 1.07 

Av. 1.00 1.00 1.00 1.00 1.00 1.00 1.01 1.01 1.00 1.06 

σ 0.01 0.01 0.00 0.01 0.01 0.00 0.01 0.07 0.07 0.02 

Table A.20: ul and Lb blending law performances (ulp/ul and Lbp/Lb), TRF/n-butanol blends, ϕ 

= 1.1, Tu = 360K, Pi = 0.1, 0.5 and 1.0MPa. Figures 4.49-4.51, in Chapter 4 show the related 

ul and Lb measured values. 
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TRF/Air and n-Butanol/Air Blends, ϕ = 1.2 

Pi 

(MPa) 

LV% 

of 

But. 

ul Laws Lb Laws 

x̄ x LC Tb T̃a Q Q/k x̄d xd xulLb 

0.1 

25 0.99 0.99 0.99 0.99 0.98 0.99 0.99 1.03 1.04 1.01 

50 0.99 0.99 1.00 0.99 0.99 1.00 1.00 0.97 0.98 0.96 

75 1.00 1.00 1.01 1.00 1.00 1.01 1.02 0.96 0.96 0.95 

Av. 0.99 0.99 1.00 1.00 0.99 1.00 1.00 0.99 0.99 0.97 

σ 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.04 0.04 0.03 

0.5 

25 1.00 1.01 1.01 1.01 1.00 1.01 1.01 0.84 0.83 1.03 

50 0.99 0.99 1.00 0.99 0.98 1.00 1.00 1.01 0.99 1.08 

75 1.01 1.02 1.02 1.02 1.01 1.03 1.03 1.16 1.14 1.09 

Av. 1.00 1.00 1.01 1.00 1.00 1.01 1.01 1.00 0.99 1.07 

σ 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.16 0.16 0.03 

Table A.21: ul and Lb blending law performances (ulp/ul and Lbp/Lb), TRF/n-butanol blends, ϕ 

= 1.2, Tu = 360K, Pi = 0.1, 0.5 and 1.0MPa. Figures 4.49-4.51, in Chapter 4 show the related 

ul and Lb measured values. 
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TRF/Air and n-Butanol/Air Blends, ϕ = 1.3 

Pi 

(MPa) 

LV% 

of 

But. 

ul Laws Lb Laws 

x̄ x LC Tb T̃a Q Q/k x̄d xd xulLb 

0.1 

25 0.97 0.98 0.98 0.98 0.97 0.98 0.98 1.10 1.11 1.09 

50 0.99 1.00 1.00 1.00 0.98 1.00 1.01 0.98 0.99 1.07 

75 0.98 0.99 0.99 0.99 0.98 0.99 1.00 0.93 0.94 1.12 

Av. 0.98 0.99 0.99 0.99 0.98 0.99 1.00 1.00 1.01 1.09 

σ 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.09 0.09 0.02 

0.5 

25 1.00 1.00 1.01 1.01 1.00 1.01 1.01 -0.85 -0.97 0.58 

50 0.99 1.00 1.01 1.00 0.99 1.00 1.01 -0.27 -0.50 0.32 

75 1.03 1.04 1.04 1.04 1.03 1.04 1.05 0.44 0.32 -0.14 

Av. 1.01 1.01 1.02 1.01 1.00 1.02 1.02 -0.23 -0.38 0.25 

σ 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.64 0.65 0.36 

Table A.22: ul and Lb blending law performances (ulp/ul and Lbp/Lb), TRF/n-butanol blends, ϕ 

= 1.3, Tu = 360K, Pi = 0.1, 0.5 and 1.0MPa. Figures 4.49-4.51, in Chapter 4 show the related 

ul and Lb measured values. 
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Methane/Air and Hydrogen/Air Blends, ϕ = 0.6 

H2 Fuel 

Mole 

Fraction 

ul Laws Lb Laws 

x̄ x LC T̃ₐ Q̄ Q/k x̄d xd xulLb 

0.1 1.10 1.07 1.02 0.99 1.08 1.05 - - - 

0.2 1.09 1.04 0.94 0.90 1.05 0.99 -0.95 -3.41 0.46 

0.3 1.11 1.05 0.91 0.85 1.05 0.98 - - - 

0.4 1.12 1.04 0.87 0.80 1.04 0.96 0.54 -0.76 1.14 

0.5 1.13 1.04 0.85 0.78 1.04 0.96 - - - 

0.6 1.23 1.14 0.91 0.83 1.12 1.04 0.80 -0.25 1.17 

0.7 1.19 1.10 0.88 0.81 1.07 1.02 - - - 

0.8 1.18 1.11 0.90 0.84 1.06 1.04 0.83 0.11 1.01 

0.9 1.13 1.08 0.93 0.90 1.00 1.04 - - - 

Av. 1.14 1.07 0.91 0.86 1.06 1.01 0.31 -1.08 0.94 

σ 0.05 0.03 0.05 0.07 0.03 0.03 0.85 1.59 0.33 

Table A.23: ul and Lb blending law performances (ulp/ul and Lbp/Lb), methane and 

hydrogen blends, ϕ = 0.6, Tu = 303K, Pi = 0.1 MPa. Figures 6.1a and b show the 

corresponding measured ul and Lb values alongside the predicted values from each 

blending law. 
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Methane/Air and Hydrogen/Air Blends, ϕ = 0.7 

H2 Fuel 

Mole 

Fraction 

ul Laws Lb Laws 

x̄ x LC T̃ₐ Q̄ Q/k x̄d xd xulLb 

0.1 1.07 1.04 1.01 0.98 1.02 1.02 - - - 

0.2 1.03 0.99 0.93 0.88 0.91 0.95 1.12 1.69 0.96 

0.3 1.08 1.02 0.93 0.87 0.88 0.96 - - - 

0.4 1.15 1.07 0.95 0.87 0.89 0.99 2.04 6.91 0.82 

0.5 1.25 1.15 1.01 0.92 0.91 1.07 - - - 

0.6 1.33 1.23 1.07 0.96 0.91 1.13 0.31 -1.82 0.75 

0.7 1.30 1.20 1.04 0.94 0.83 1.11 - - - 

0.8 1.14 1.06 0.93 0.86 0.68 0.99 0.72 -0.55 0.92 

0.9 1.10 1.05 0.96 0.91 0.60 1.01 - - - 

Av. 1.16 1.09 0.98 0.91 0.85 1.02 1.05 1.56 0.86 

σ 0.11 0.08 0.05 0.04 0.13 0.06 0.74 3.85 0.09 

Table A.24: ul and Lb blending law performances (ulp/ul and Lbp/Lb), methane and 

hydrogen blends, ϕ = 0.7, Tu = 303K, Pi = 0.1 MPa. Figures 6.2a and b show the 

corresponding measured ul and Lb values alongside the predicted values from each 

blending law. 
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Methane/Air and Hydrogen/Air Blends, ϕ = 0.8 

H2 Fuel 

Mole 

Fraction 

ul Laws Lb Laws 

x̄ x LC T̃ₐ Q̄ Q/k x̄d xd xulLb 

0.1 1.03 1.00 0.97 0.94 1.06 0.97 - - - 

0.2 1.07 1.02 0.96 0.91 1.13 0.97 1.18 1.69 1.09 

0.3 1.13 1.06 0.97 0.91 1.24 0.99 - - - 

0.4 1.20 1.11 0.99 0.92 1.34 1.03 1.21 6.91 0.93 

0.5 1.29 1.18 1.04 0.94 1.46 1.08 - - - 

0.6 1.27 1.16 1.01 0.91 1.48 1.06 -1.22 -1.82 -0.20 

0.7 1.30 1.19 1.03 0.94 1.53 1.09 - - - 

0.8 1.14 1.06 0.93 0.86 1.38 0.99 0.52 -0.55 0.81 

0.9 1.05 1.00 0.91 0.87 1.29 0.96 - - - 

Av. 1.16 1.08 0.98 0.91 1.32 1.02 0.42 1.56 0.66 

σ 0.11 0.08 0.04 0.03 0.16 0.05 1.14 3.85 0.58 

Table A.25: ul and Lb blending law performances (ulp/ul and Lbp/Lb), methane and 

hydrogen blends, ϕ = 0.8, Tu = 303K, Pi = 0.1 MPa. Figures 6.3a and b show the 

corresponding measured ul and Lb values alongside the predicted values from each 

blending law. 
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Methane/Air and Hydrogen/Air Blends, ϕ = 0.9 

H2 Fuel 

Mole 

Fraction 

ul Laws Lb Laws 

x̄ x LC T̃ₐ Q̄ Q/k x̄d xd xulLb 

0.1 1.05 1.02 0.99 0.96 1.07 0.99 - - - 

0.2 1.08 1.02 0.97 0.92 1.11 0.97 1.17 1.45 1.12 

0.3 1.12 1.04 0.96 0.90 1.17 0.97 - - - 

0.4 1.19 1.08 0.98 0.90 1.25 1.00 1.29 2.16 1.18 

0.5 1.27 1.15 1.02 0.93 1.35 1.05 - - - 

0.6 1.18 1.07 0.94 0.85 1.27 0.97 1.06 2.72 0.86 

0.7 1.26 1.14 1.01 0.92 1.37 1.05 - - - 

0.8 1.17 1.08 0.96 0.89 1.27 1.00 -2.29 -15.42 -1.08 

0.9 1.05 0.99 0.91 0.87 1.14 0.95 - - - 

Av. 1.15 1.06 0.97 0.91 1.22 1.00 0.31 -2.27 0.52 

σ 0.08 0.06 0.03 0.03 0.11 0.04 1.73 8.78 1.08 

Table A.26: ul and Lb blending law performances (ulp/ul and Lbp/Lb), methane and 

hydrogen blends, ϕ = 0.9, Tu = 303K, Pi = 0.1 MPa. Figures 6.4a and b show the 

corresponding measured ul and Lb values alongside the predicted values from each 

blending law. 
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Methane/Air and Hydrogen/Air Blends, ϕ = 1.0 

H2 Fuel 

Mole 

Fraction 

ul Laws Lb Laws 

x̄ x LC T̃ₐ Q̄ Q/k x̄d xd xulLb 

0.1 1.04 1.01 0.98 0.96 1.07 0.98 - - - 

0.2 1.11 1.04 0.98 0.94 1.15 0.99 1.07 1.27 1.05 

0.3 1.08 0.99 0.91 0.86 1.13 0.93 - - - 

0.4 1.17 1.05 0.94 0.88 1.23 0.97 1.13 1.67 1.08 

0.5 1.30 1.16 1.02 0.94 1.38 1.06 - - - 

0.6 1.20 1.07 0.93 0.85 1.29 0.97 0.98 1.88 0.90 

0.7 1.27 1.14 0.99 0.91 1.37 1.04 - - - 

0.8 1.12 1.02 0.89 0.84 1.20 0.94 1.23 3.29 1.09 

0.9 1.05 0.99 0.91 0.87 1.13 0.95 - - - 

Av. 1.15 1.05 0.95 0.89 1.22 0.98 1.10 2.03 1.03 

σ 0.09 0.06 0.04 0.04 0.11 0.04 0.11 0.88 0.09 

Table A.27: ul and Lb blending law performances (ulp/ul and Lbp/Lb), methane and 

hydrogen blends, ϕ = 1.0, Tu = 303K, Pi = 0.1 MPa. Figures 6.5a and b show the 

corresponding measured ul and Lb values alongside the predicted values from each 

blending law. 
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Methane/Air and Hydrogen/Air Blends, ϕ = 1.1 

H2 Fuel 

Mole 

Fraction 

ul Laws Lb Laws 

x̄ x LC T̃ₐ Q̄ Q/k x̄d xd xulLb 

0.1 1.08 1.04 1.00 0.98 1.09 1.01 - - - 

0.2 1.18 1.10 1.02 0.99 1.20 1.04 1.08 1.08 0.89 

0.3 1.13 1.03 0.93 0.88 1.15 0.95 - - - 

0.4 1.22 1.09 0.96 0.90 1.24 1.00 1.18 1.18 0.78 

0.5 1.32 1.17 1.00 0.94 1.35 1.06 - - - 

0.6 1.17 1.03 0.87 0.82 1.20 0.93 1.11 1.11 0.56 

0.7 1.30 1.15 0.97 0.92 1.34 1.05 - - - 

0.8 1.14 1.03 0.88 0.85 1.18 0.95 2.08 2.08 0.77 

0.9 1.05 0.98 0.88 0.86 1.09 0.93 - - - 

Av. 1.18 1.07 0.95 0.90 1.21 0.99 1.36 1.36 0.75 

σ 0.09 0.06 0.06 0.06 0.09 0.05 0.48 0.48 0.14 

Table A.28: ul and Lb blending law performances (ulp/ul and Lbp/Lb), methane and 

hydrogen blends, ϕ = 1.1, Tu = 303K, Pi = 0.1 MPa. Figures 6.6a and b show the 

corresponding measured ul and Lb values alongside the predicted values from each 

blending law. 
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Methane/Air and Hydrogen/Air Blends, ϕ = 1.2 

H2 Fuel 

Mole 

Fraction 

ul Laws Lb Laws 

x̄ x LC T̃ₐ Q̄ Q/k x̄d xd xulLb 

0.1 1.14 1.08 1.00 0.99 1.12 1.04 - - - 

0.2 1.28 1.16 1.02 1.00 1.26 1.08 1.10 1.10 0.88 

0.3 1.23 1.09 0.90 0.88 1.21 0.99 - - - 

0.4 1.32 1.15 0.91 0.89 1.30 1.03 1.09 1.09 0.68 

0.5 1.36 1.17 0.90 0.88 1.33 1.04 - - - 

0.6 1.27 1.09 0.82 0.81 1.24 0.97 1.13 1.13 0.54 

0.7 1.35 1.17 0.88 0.88 1.33 1.05 - - - 

0.8 1.17 1.04 0.80 0.82 1.16 0.95 2.75 2.75 1.03 

0.9 1.06 0.98 0.81 0.85 1.07 0.93 - - - 

Av. 1.24 1.10 0.89 0.89 1.23 1.01 1.52 1.52 0.79 

σ 0.10 0.07 0.08 0.07 0.09 0.05 0.82 0.82 0.22 

Table A.29: ul and Lb blending law performances (ulp/ul and Lbp/Lb), methane and 

hydrogen blends, ϕ = 1.2, Tu = 303K, Pi = 0.1 MPa. Figures 6.7a and b show the 

corresponding measured ul and Lb values alongside the predicted values from each 

blending law. 
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Methane/Air and Hydrogen/Air Blends, ϕ = 1.3 

H2 Fuel 

Mole 

Fraction 

ul Laws Lb Laws 

x̄ x LC T̃ₐ Q̄ Q/k x̄d xd xulLb 

0.1 1.27 1.16 0.98 0.98 1.22 1.08 - - - 

0.2 1.48 1.28 0.93 0.95 1.39 1.14 1.03 1.03 0.74 

0.3 1.54 1.30 0.85 0.88 1.45 1.12 - - - 

0.4 1.66 1.37 0.82 0.87 1.53 1.16 1.09 1.09 0.57 

0.5 1.50 1.23 0.69 0.75 1.38 1.04 - - - 

0.6 1.69 1.40 0.75 0.85 1.56 1.19 1.22 1.22 0.48 

0.7 1.45 1.22 0.65 0.77 1.34 1.06 - - - 

0.8 1.21 1.06 0.59 0.73 1.14 0.95 2.44 2.44 0.80 

0.9 1.05 0.96 0.62 0.77 1.02 0.90 - - - 

Av. 1.43 1.22 0.76 0.84 1.34 1.07 1.44 1.44 0.65 

σ 0.21 0.14 0.14 0.09 0.18 0.10 0.67 0.67 0.15 

Table A.30: ul and Lb blending law performances (ulp/ul and Lbp/Lb), methane and 

hydrogen blends, ϕ = 1.3, Tu = 303K, Pi = 0.1 MPa. Figures 6.8a and b show the 

corresponding measured ul and Lb values alongside the predicted values from each 

blending law. 

 



Appendix B - Commissioning a Rapid Compression 

Machine 

B.1 Introduction 

The ignition delay time, τi, is a fundamental combustion parameter required in the 

characterisation of a fuels performance. Measurements of τi have been made for both 

liquid and gaseous fuels, at various temperatures, pressures and equivalence ratios, 

using a range of experimental methods and apparatus (Griffiths et al., 1993; Spadaccini 

and Colket Iii, 1994; Vasu et al., 2008). Established and common methods include  

shock tubes (Davidson et al., 2005; Hawthorn and Nixon, 1966; Zhu et al., 2015), rapid 

compression machines (Gersen et al., 2008; Mittal et al., 2014; Park and Keck, 1990) 

and flow reactors (Beerer et al., 2009; Dryer and Chaos, 2008). Rapid compression 

machines are, in general, capable of maintaining the required autoignition pressures and 

temperatures for longer periods, thus allowing sufficient time for the measurement of 

relatively long τi values across a wide range of fuels and conditions. This coupled with 

their potential for high accuracy and continuity make the RCM the preferred choice for 

measuring τi values at Leeds. 

This Appendix presents the Leeds RCM and the significant modifications undertaken 

during the present work, to achieve the high end of compression (EOC) pressures, Pc, 

and temperatures, Tc, associated with modern SI engines and the accurate and efficient 

acquisition of τi values. The ideal and real behaviour of RCM’s are first discussed in 

Section B.2, followed by an overview of the Leeds RCM in Section B.3, giving details 

of each main section and the principle operations. Section B.4 presents a detailed 

description of the modifications and developments to the rig during the present work. 

Section B.5 presents the experimental procedure, detailing the mixture preparation and 

operating techniques. Finally, Section B.6 presents τi values for iso-octane acquired 

from the Leeds RCM as part of an international collaboration investigating the 

discrepancies between different RCM’s. 

B.2 Ideal and Real RCM Behaviour 

The ideal RCM would instantaneously and isentropically compress a given combustible 

mixture, with spatial uniformity, to a thermally stable constant volume. However, in 

practice, the laws of thermodynamics prevail, making this a physical impossibility. 

Therefore, the main aims for any RCM are to approach such an ideal by compressing 
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the combustible mixture as rapidly as possible, to a constant EOC volume with 

minimised heat loss to its surroundings. Subsequently, key challenges are rapidly 

accelerating the piston, then arresting and absorbing its considerable kinetic energy such 

that no significant turbulence generation, vibration and piston rebound occur. These 

should be achieved whilst, simultaneously minimising the inevitable influence of the 

inner cylinder and chamber thermal boundary layer, such that the rate of heat loss is 

minimised and an adiabatic core region can be approximated. Figure B.1 shows the step 

change pressure trace behaviour of the ideal RCM in comparison to a typical real RCM, 

in which compression is far from instantaneous and heat loss at the EOC results in a 

decreasing pressure. 

 

Figure B.1: Ideal vs typical RCM pressure trace. 

 

The importance of rapid compression is to ensure reduced time for pre-reactions to 

occur before EOC and reduced mixture exposure time to cooler thermal boundary layers 

(Cox et al., 1996; Griffiths et al., 1993). The speed of the latter half of compression is 

most crucial due to the higher pressures and temperatures that increase the likelihood of 

pre-reaction and heat loss rate via the higher temperature differentials. For this reason, a 

universal RCM parameter of interest is the time taken to reach the last 50% of Pc, 

known as t50. These times are typically in the region of 1-5ms, as appose to typical full 

compression times in the region of 20-50ms. 
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After compression, the rate of pressure drop due to heat loss must be carefully 

considered, such that the ignition delay time of the combustible mixture occurs within a 

period of minimal heat loss from the combustion chamber, to prevent excessive 

deviation from the intended EOC conditions. In extreme cases, significant pressure and 

temperature drops can reduce the chemical reactivity of the mixture and totally inhibit 

the onset of combustion. The use of varying diluent gases with different specific heat 

capacitance and thermal diffusivity to help counter the EOC heat loss is common 

practise and is discussed in Section B.5.1. 

Furthermore, several past studies have shown that the homogeneity of compressed 

mixtures is compromised by the generation of roll up vortices at the edge of the rapidly 

accelerated piston, causing the mixing of the cold cylinder wall boundary layer into the 

core region of the mixture, as shown by Fig. B.2.  

 

Figure B.2: Illustration of creation of roll up vortex due to piston motion during 

compression (lower section) and containment of boundary layer through crevice (upper 

section) through proper design (Sung and Curran, 2014). 

 

Using CFD, as shown in Fig. B.3, Würmel (2004), demonstrated that the use of a 

creviced piston allows entrapment of the cold boundary layer, giving much improved 

temperature uniformity in comparison to conventional pistons.  
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Figure B.3: Computed mixture temperature uniformity for conventional and creviced 

piston design, using N2 at 10.4ms (Würmel, 2004). 

 

However, it was latter shown by Mittal and Bhari (2013), that at the EOC the mixture 

homogeneity may be compromised by the movement of the crevice collected cooler gas 

back into the combustion chamber. Therefore, the use of creviced pistons should, 

ideally, employ an EOC crevice containment feature, such that, the crevice volume is 

isolated from the combustion chamber volume at the EOC. Figure B.4 shows how a 

simply O-ring can be used to contain the crevice at the EOC. 

 

Figure B.4: Crevice containment via O-ring sealing at EOC (Mittal and Bhari, 2013)
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The direct accurate temperature measurement of the mixture during and after 

compression is extremely challenging. Any internal temperature probe is likely to 

induce complex aerodynamic effects that detract from the adiabatic core region 

assumption. Furthermore, a temperature probe of sufficient response rate is unlikely to 

have the structural integrity for such repeated extreme conditions. Optical temperature 

measurement methods are possible but the inherent vibration of RCM’s present timely 

calibration issues. Therefore, it is common practise to exploit the adiabatic core region 

hypothesis and indirectly deduce temperature measurements from the pressure trace. 

This approach has been both experimentally and computationally validated by Das et al.  

(2012) and Mittal et al. (2011), respectively.  

For isentropic compression, the EOC adiabatic temperature, Tad, is expressed as: 

 ∫
1

 − 1
(

𝑑𝑇

𝑇
)

𝑇𝑎𝑑

𝑇𝑢

= ln(𝐶𝑅), (B.1) 

where Tu is the initial mixture temperature, CR, the compression ratio and , the ratio of 

specific heat capacitances.  

However, as discussed above, isentropic compression is impossible due to heat loss and 

therefore the real values of Pc and Tc will always be below this ideal. Desgroux et al. 

(1995) and Griffiths et al. (1993) showed that an approximate EOC adiabatic core gas 

temperature can be attained by the use of an effective CR, that accounts for heat loss 

during compression, by knowledge of the actual Pc value:  

 
𝑃𝑐

𝑃𝑖
= 𝐶𝑅 (B.2) 

Therefore, using this assumption, Eq. B.2 may substituted into Eq. B.1 to yield Eq. B.3: 

 ∫
1

 − 1
(

𝑑𝑇

𝑇
)

𝑇𝑐

𝑇𝑢

= ln (
𝑃𝑐

𝑃𝑖
) (B.3) 

B.3 The Leeds RCM 

The RCM was originally designed and built in 1968 as one half of a dual opposed 

piston design by Affleck and Thomas (1968) at Shell Thornton Research Centre. 

Shortly after, it was acquired by the School of Chemistry at the University of Leeds, 

where a number of studies were undertaken by Prof. J. Griffths (Griffiths et al., 1997; 

Griffiths et al., 1993; Griffiths and Hasko, 1984; Griffiths et al., 2002; Griffiths and 
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Nimmo, 1985; Westbrook et al., 1998). Later, in 2010 the RCM was transferred to the 

University’s School of Mechanical Engineering, where it has undergone significant 

development by the present author in the quest for the high fidelity measurements of τi 

values at higher pressures and temperatures that are reflective of modern SI engine 

conditions. 

The Leeds RCM uses a pneumatically driven and hydraulically arrested piston assembly 

to compress a premixed and preheated combustible mixture to a constant volume 

combustion chamber. Here, a dynamic pressure transducer records any pressure rises 

from combustion, allowing the acquisition of the combustible mixtures τi value to be 

calculated from the difference in time between the EOC and the onset of a pressure rise. 

The following subsections give an overview of the RCM’s configuration, principle 

operations and details of the main sections. During the RCM’s development in the 

present work, all existing auxiliary systems were modified, alongside the introduction of 

new systems, the validation and details of which are presented in Section B.4.  

B.3.1 Configuration and Operation Overview 

Figure B.5 shows an external photograph of the RCM alongside a virtual SolidWorks 

model cross section to show an internal perspective of the RCM, highlighting the three 

main sections that are interconnected by the piston assembly. Details of these main 

sections are discussed in the following subjections. Figure B.6 shows SolidWorks 

model cross section views of the RCM with the piston rod assembly at the start of 

compression (SOC) and EOC.  

The fundamental operation involves hydraulically locking the piston assembly at the 

SOC, metering the combustible mixture into the combustion chamber, pressurising the 

driving reservoir with compressed air, arming the recording devices, and initiating the 

rapid piston movement by the sudden drop of hydraulic pressure via a high speed 

hydraulic solenoid valve. Nearing the EOC, a hydraulic oil displacement damping 

mechanism was used to absorb the kinetic energy of the piston rod assembly. 

Subsequent autoignition pressure traces were then automatically saved to file for 

processing outside the laboratory. A more detailed description of the operating 

technique, including mixture preparation is given in Section B.5. 
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Figure B.5: Photograph of external view of Leeds RCM and SolidWorks model cross section internal perspective view, with different coloured parts to 

highlight main section interfaces (Piston assembly at EOC). Increased detail of each section can be viewed in Figs. B.7-B.10. 
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Figure B.6: SolidWorks model cross section view to show piston rod assembly in SOC (top view) and EOC (bottom view).

Start of Compression (SOC) 

End of Compression (EOC) 
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B.3.2 Pneumatic Driving Reservoir 

The driving reservoir, shown as section A, in Fig. B.5, and detailed in Fig. B.7, uses 

compressed air to provide the energy to rapidly move the piston assembly and hold it at 

the end of its stroke. The reservoir was supplied with two air lines, one from the 

laboratory compressor, limited to 0.7 MPa, and the other from a BOC cylinder regulated 

to just under the 2 MPa maximum safe working pressure of the reservoir. As a further 

safety precaution, a pressure relief valve (PRV) was also fitted to the reservoir and set to 

activate at just under 2 MPa. In practice, the reservoir was only pressured to a maximum 

of 1.6 MPa, beyond which there was insufficient force from the hydraulic locking 

mechanism (Section B.3.3) to hold the piston assembly back before firing.  

 

 

Figure B.7: SolidWorks model cross section of section A: Pneumatic driving reservoir 

(Piston assembly at EOC). 

 

B.3.3 Hydraulic Locking and Damping Chamber 

Shown as section B, in Fig B.5, and detailed in Fig. B.8, the hydraulic section has two 

main purposes, to lock the piston rod assembly in position at the SOC, and dampen its 

arrest just before the EOC. The piston assembly was locked in position by pressuring 

the containing hydraulic oil to 4 MPa via a hand pump, forcing a seal between the rear 

of the damping ring section on the piston rod assembly and an O-ring within the inner 

hydraulic chamber wall.  
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The principle operation of the original damping system was the displacement of oil 

from the fixed ringed groove in the hydraulic chamber, as the insertion of the slightly 

smaller corresponding ringed protrusion on the piston rod assembly entered to a depth 

of 6mm. Thus, the kinetic energy of the piston rod assembly was absorbed by the 

frictional forces opposing the oil that was forced out between the narrow gap of the 

ringed groove and the ringed protrusion on the piston rod assembly. This concept is 

common in many other RCM designs due to its reliability and potential to absorb very 

high energy. However, as with many other RCM’s, the original Leeds RCM damping 

system was not adjustable. Section B.4.6 details the modifications to the system that 

allowed variable damping control. 

The ratio between the pneumatic driving and hydraulic locking/dampening piston area 

was 1:0.93. The compression ratio could be altered between 10.5 and 13.93 by varying 

the quantity of spacers between the inner and outer hydraulic chamber and, therefore, 

varying the piston assembly stroke between 170 and 230mm.  

 

 

 

 

 

 

 

 

Figure B.8: SolidWorks model cross section of section B: Hydraulic locking/damping 

chamber (Piston assembly at EOC).  
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B.3.4 Combustion Chamber and Cylinder 

The combustion chamber and cylinder are shown as section C, in Fig. B.5, and detailed 

in Fig. B.9. They were designed to withstand pressures associated with the compression 

and autoignition of combustible mixtures. The modular design of the chamber allows 

different end plugs to be employed, such as transparent quartz plugs for optical work 

and fanned plugs for turbulence generation. However, the present work used a large 

heated end plug to ensure uniform heating of the combustible mixtures at high 

temperatures. Both the cylinder and chamber were machined from 304 stainless steel, 

where the larger cylinder diameter creates a step to the chamber diameter, in which the 

piston enters by 2.25mm at EOC. Orbiting the chamber are four ports, the top port was 

used as an inlet for the combustible mixture via a poppet valve, whereby, the static 

pressure transducer was connected via a ‘T’ section joint. The rear port was used to 

flush mount the dynamic pressure transducer and the front and bottom ports were not 

used so they were blanked off with flush mounted chamber wall plugs.  

 

 

 

 

 

 

Figure B.9: SolidWorks model cross section of section C: Combustion chamber and 

cylinder (Piston assembly at EOC). 
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B.3.5 Piston Assembly 

Figure B.10 shows the entire piston assembly which interconnects the three main 

sections A, B and C in Fig. B.5. The piston assembly mass was minimised to reduce its 

inertia, hence, aiding its acceleration and de-acceleration. Thus, it has been machined 

from two lightweight 6061 billet aluminium tubes that join in the middle of the 

hydraulic damping ring section. Both the driving and the compression piston were also 

machined from aluminium using PTFE seals. The area ratio between the driving piston 

and the compression piston is 4:1, hence, only a quarter of the EOC pressure was 

required to drive the piston to the end of its stroke. However, nearly three times that 

amount was required to ensure rapid acceleration of the piston assembly. 

Figure B.10: SolidWorks model of Leeds RCM piston rod assembly. 

B.4 Modifications and Developments 

The section provides a detailed description of the modifications and developments made 

to the RCM during the present work. The aims and objectives are first presented, with 

the following subsections detailing the methods in which they were achieved.  

B.4.1 Aims and Objectives 

The main development aims were to increase the EOC pressure, Pi, and temperature, Ti, 

to emulate that of modern high compression ratio SI engines, with an emphasis on 

increased accuracy in the acquisition of τi, whilst having an efficient operating 

procedure.  
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Subsequently, the following objectives arose:  

1 Create 3D virtual model to aid design process, track modifications and 

demonstrate internal mechanisms. 

2 Acquire accurate piston position monitoring within +/- 1mm, to quantify piston 

dynamics in relation to combustion chamber pressure dynamics.  

3 Increase piston driving pressure to allow higher initial combustion chamber 

pressures to be used under the same compression ratio, with reduced piston 

rebound. 

4 Revise damping mechanism to reduce piston bounce and allow optimisation 

with varying driving to combustion chamber pressure ratios. 

5 Investigate credibility of combustion chambers dynamic pressure transducer and 

quantify effect of thermal shock. 

6 Design variable combustion chamber heating system with accurate temperature 

control. 

7 Design mixing chamber to allow batches of pre-vaporised, preheated and 

homogenous combustible mixtures to be safely and accurately regulated to the 

combustion chamber at the required temperature.  

8 Develop LabVIEW interface, with data synchronisation and acquisition upon 

triggering. 

B.4.2 Initial Performance 

The EOC pressure, Pc is primarily a function of the CR and the initial pressure, Pi, to 

which a sufficient driving pressure, Pd, must be applied in order to achieve rapid 

acceleration and minimum rebound of the piston assembly, whilst not exceeding the 

tolerance of the damping mechanism. Thus, at any fixed CR, there was an optimal Pd/Pi 

ratio that was critical to the dynamic behaviour of the piston assembly. Throughout the 

present work, the CR was set to the maximum of 13.93, as discussed in section B.3.3. 

Figure B.11 shows a typical pressure trace with the corresponding piston movement 

near EOC (piston position monitoring is discussed in Section B.4.4) for the compression 

of dry air, using a Pd/Pi ratio of 10 and Pi of 0.1 MPa.  
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Figure B.11: Example of initial performance, prior to modification, using air. Pd/Pi = 

10, with a driving pressure of 0.7 MPa.  

 

A single large piston rebound of 9.48mm from the EOC occurred, resulting in a 

pressure drop of 0.58 MPa. Following this, a further 93ms was taken for the piston to 

come to rest as the damper ring engaged in the damper groove, over a 6mm stroke. This 

period of time was termed the damper creep-in duration. Minimising both piston 

rebound and damper creep-in duration is paramount to desirable piston dynamics and 

thus pressure traces. Furthermore, a finite distance from the EOC at the point of the 

inevitable initial piston rebound must always be maintained to ensure the damper ring 

does not simply crash into the end of the damper groove, which could potentially cause 

permanent structural damage. Using the original maximum driving pressure of 0.7 MPa, 

a series of experiments were performed whereby Pi was altered between 0.117 and 

0.023 MPa. This allowed the dynamic behaviour of the piston to be examined under 

Pd/Pi ratios between 6-30. However, the subsequent lowering of Pi to increase the Pd/Pi 

ratio, naturally lowered Pc. Figures B.12a and b show the corresponding combustion 

chamber pressure traces and piston movement near EOC, as the Pd/Pi ratio was varied. 

As anticipated, under this limited Pd, increasing the Pi, such that the Pd/Pi ratio 

decreased, induced significant piston rebound and creep-in duration that was 

unacceptable. In contrast, reducing Pi increased the Pd/Pi ratio and reduced piston 
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rebound to more acceptable levels. However, prolonged creep-in duration still persisted. 

Figure B.12: Performance, prior to modifications, showing variation of a) combustion 

chamber pressure and b) piston distance from EOC with time, for compression of air, 

with varying Pd/Pi ratio between 6-30, at a fixed driving pressure of 0.7 MPa.  
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Figure B.13 shows the maximum piston rebound, damper ring creep-in duration and the 

distance from EOC at the point of initial rebound as a function of the Pd/Pi ratio. A 

significant decrease in the maximum piston rebound and creep-in duration was shown 

between Pd/Pi ratios of 7 and 13, beyond which a plateau was reached, whilst the point 

of initial rebound remained relatively constant at ~3mm, across the entire Pd/Pi ratio 

range tested. However, even at a Pd/Pi ratio of 14, the prolonged damper creep-in 

duration, resulted in a well sustained pressure deviation. Not until a Pd/Pi ratio of 30 

was an acceptable pressure trace acquired, at which Pc was a mere 0.5 MPa. Therefore, 

the RCM clearly required significant modification, primarily, in the form of increased 

driving pressure, and a revised damping system, to attain the required Pc values with 

acceptable piston dynamics/post EOC pressure traces. 

Figure B.13: Maximum piston rebound and creep-in duration as a function of Pd/Pi. 
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drawn components was then made to create the virtual model. This allowed the 

interconnectivity of each component to be shown though any cut through plane 

specified. For example, this was particularly useful in the development of the damping 

system, whereby the required angle and tolerances for oil channels was instantly shown 

by the model. Furthermore, the model demonstrates all the internal workings, which are 

otherwise hidden. Figures B.14 shows example screen shots of the assembled 3D virtual 

model.  

 

Figure B.14: Example 3D screen shots of Leeds RCM SolidWorks model. 

 

B.4.4 Piston Position Monitoring  

The ability to directly and accurately monitor the piston position and movement allows 

the damping system to be optimised to varying Pd/Pi ratios. Furthermore, it allows 

inevitable piston rebound to be quantified and the associated pressure drop can to be 
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calculated. Initially, as shown in Fig. B.15, a piston position measuring device was 

trialled in the form of a linear potentiometer that connected to a steel rod that attached 

through the air driving cylinder to the back end of the piston rod assembly. However, 

the device was found to frequently fail under the extreme de-acceleration of the piston 

rod assembly.  

 

Figure B.15: Photo of side view of linear potentiometer setup used as first piston 

position monitoring method trailed.  

 

As shown in Fig. B.16, a non-contact approach was then trialled by means of a high 

speed camera filming an exposed steel rod that attached to the back end of the piston 

rod assembly against a fixed scaled ruler. However, the limited rod diameter resulted in 

excessive vibration, giving tentative readings that were extremely time consuming to 

analyse.  

 

Figure B.16: Photo of side view of high speed camera and ruler setup as second piston 

position monitoring method trailed.  
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The solution came in the form of a 2D linear displacement laser that focused on an 

aluminium disc attached to a stainless steel rod that attached to the back end of the 

piston rod assembly. Figures B.17 shows the how the displacement laser was mounted, 

such that the disc moves towards the laser head during compression. The principle 

being that the linear distance between the laser head and the target disc was calculated 

by the change in angle between that of the linearly emitted laser beam and the reflected 

beam from the target disc that was picked up by a RS-CMOS sensor in the laser head. 

The disc shaped target was essential due to the susceptible nature of the entire piston 

rod assembly to rotate during operation, thus the disc always provided a target 

regardless of the piston rods rotation. As a safety guard, the system was enclosed by a 

large plastic tube, such that the area of the rapid moving target disc was always isolated 

along with the laser beam.  

The selected laser system was supplied by Keyence, model LK-G82, with a maximum 

power output of 0.95mW, wavelength of 650nm, and a potential sampling rate of up to 

20kHz at a resolution of 0.2μm over a distance of 30mm. The system was controlled via 

an independent control unit with built-in calibrating software that converted the digitally 

measured 30mm range to a proportional analogue +/- 10v output, hence 1.5mm/volt, 

which allowed compatibility with existing National Instrument hardware and software. 

The maximum measureable distance of 30mm was clearly short of the full piston stroke 

of 230mm, however, the measurable distance of interest was that in which rebound 

occurs, which was always well within 30mm from the EOC. 

Figure B.17: Photo of overhead view of Keyence LK-G32 linear displacement laser, 

mount and target disc attached to rear of piston rod assembly, with safety guard 

removed. Red lines show the laser beam direction. 
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B.4.5 Increasing Piston Driving Pressure  

As detailed in Section B.4.2, the Pd/Pi ratio was critical to optimum piston dynamics, 

and thus to desirable compression pressure traces. To attain the target Pc of ~2.5 MPa 

under the maximum CR of 13.58, a Pi value of ~0.9 MPa was required. Therefore, a 

substantial increase in driving pressure was required in order to maintain a sufficiently 

high Pd/Pi ratio. To achieve higher driving pressure, a secondary high pressure air 

supply from a regulated 2 MPa BOC cylinder was coupled to the driving reservoir. As 

was a static pressure transducer, RS3100, having an increased range of 0-2.5 MPa, 

coupled to a four digit digital display in the main control box. Further details of the 

reservoir are discussed in Section B.3.2. 

Figures B.18a and b show combustion chamber pressure traces and piston movement 

near the EOC, for a series of experiments using air, with Pi fixed at 0.1 MPa and Pd 

increasing from 0.7 to 1.4 MPa, thus varying the Pd/Pi  ratio from 7-14. The target Pc of 

2.5 MPa was met, and as expected, increasing the Pd/Pi ratio significantly reduced both 

piston rebound and creep-in duration. However, it was clear the piston assembly was 

being over damped, such that the creep-in duration was too long, causing the noticeable 

pressure dip after peak Pc. At a Pd/Pi ratio of 14, the creep-in duration was still 40ms, 

whilst the distance from EOC at the point of initial piston rebound was only a mere 

1mm, indicating the near upper Pd/Pi ratio limit. Thus, the need to adjust the level of 

piston damping was essential.  
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Figure B.18: a) Chamber pressure and b) piston laser displacement measurements for 

varying Pd/Pi ratios, with Pi fixed at 0.1 MPa, and Pd varying between 7-14.
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B.4.6 Adaptable Piston Damping  

Arresting and absorbing the kinetic energy from the rapidly fired piston assembly is a 

key challenge in the design of any RCM, with the Pd/Pi ratio being critical to the piston 

assembly dynamic behaviour. As the ratio between these pressures is altered, so is, the 

acceleration, peak velocity and de-acceleration of the piston assembly, which in turn 

affects the required level of damping. Therefore, to allow full optimisation of the piston 

rod assembly dynamics in the Leeds RCM, adjustable damping was required. However, 

as discussed in Section B.3.3 the original damping system was not adjustable. As shown 

by Fig. B.19, adjustability to the system was achieved via the introduction of a needle 

valve that regulated the flow of oil from a conduit on the back side of the damping 

groove to the oil reservoir. This gave potential for a variable and increased flow rate of 

oil out of the damping groove in a controlled manor. Preliminary tests proved the single 

needle valve to have negligible effect, so two more needle values were introduced, such 

that each value was offset by 120 degrees around the damping section. Due to the high 

operating hydraulic oil pressures, a steel guard band was used to cover the needle valve 

heads as a safety precaution.  

An optimum Pd/Pi ratio of 16.67 was found, such that Pi = 0.9 MPa and Pd = 1.5 MPa. 

A series of compression experiments were then performed at these conditions, using air, 

with the needle valves incrementally turned out to increase the oil displacement flow 

rate from the damper groove. Figure B.20a and b show the pressure traces and piston 

movement near EOC as a function of the number of needle valve turns, with 0 

indicating fully closed. Opening the needle valves by 18 turns successfully reduced the 

creep-in duration by 94%, to a mere 10ms, giving the post peak Pc pressure curve a 

much more desirable plateau. Figure B.21 shows the creep-in duration and distance 

from EOC at the point of initial rebound as a function of needle valve turns. The first 

five opening turns show a sudden decrease in creep-in duration, followed by a steady 

decline to the limit of 18 turns. Beyond this, the distance from EOC at the point of 

initial rebound became too small, as not ensure crashing of the damper ring and groove.  

To further enhance the variability of the system, higher viscosity hydraulic oils were 

trialled: Shell Tellus 22, 68 and 220, the latter being the highest viscosity. This allowed 

further optimisation such that the Pd/Pi ratio could be slightly increased without the risk 

of the damping mechanism crashing. Figure B.22 shows the highest Pc value of 2.6MPa 

acheived whilst maintaining good damping characteristics.  
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Figure B.19: SolidWorks model cross section view of internal dampening mechanism, with the hydraulic oil conduits highlighted in red. This system is 

circumferentially employed three times over at 120 offsets.

Damping Ring 
Damping Groove 

Needle (with two O-ring seals) 

PTFE Seals 

Brass Guides 

Piston Rod Assembly 

Hydraulic Chamber 

Cylinder 

Conduit to Needle Valve 

Conduit Return to Reservoir 

Main O-ring Seal 



Appendix B – Commissioning a Rapid Compression Machine 

251 

 

Figure B.20: a) Chamber pressure and b) piston laser displacement measurements for 

varying needle valve positions, where 0 = fully closed, with Pi  and Pd fixed at 0.9 and 

1.5 MPa, respectively.  
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Figure B.21:  Creep-in duration and point of initial piston rebound as a function of 

needle values turns for with Pi  and Pd fixed at 0.9 and 1.5 MPa, respectively. 

Figure B.22: Chamber pressure and piston laser displacement measurements for Pi = 0.9 

MPa, and Pd = 1.5 MPa. 
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B.4.7 Investigation into Thermal Shock Error of Dynamic Pressure 

Transducers 

The accurate acquisition of the combustion chamber and cylinder pressure rise during 

the compression and ignition of a combustible mixture was critical to the accurate 

derivation of temperature and measurement of τi values. As common to most RCM’s, a 

piezoelectric dynamic pressure transducer was employed in the combustion chamber to 

measure such pressure rises, due to their accuracy, high frequency response, durability 

and repeatability. Figure B.23 shows the cross section of a typical piezoelectric dynamic 

pressure transducer. Quartz crystals are typically preloaded within a housing to ensure 

stable, repeatable and linear operation. When a pressure is applied to the diaphragm, the 

compression of the crystals induces a charge which is then amplified to a measurable 

voltage. Their electrical insulation is generally very high, however, the charge inevitable 

leaks to zero, thus the charge leak rate is a function of the electrical insulation resistance 

and the capacitance of the crystal and its supporting electronics. It is important to ensure 

this discharge rate is under the heat loss rate at the EOC as to not give an erroneous 

pressure reading. 

 

Figure B.23: Cross section view of typical piezoelectric dynamic pressure transducer 

(PCB, 2015).  
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Under steady thermal conditions the sensitivity change of such transducers is very 

small, typically less than 1%, however, their ability is compromised by rapid 

temperature gradients – thermal shock. The sensitivity of quartz to thermal shock is low, 

however, its housing and preloaded diaphragm is not. Localised heat can cause 

expansion and unloading of the quartz to give an erroneous negative signal. Techniques 

to help counter such effects are suggested by manufactures PCB Ltd. (2015), these 

include, recess mounting, and a variety of coatings: silicone grease, RTV and vinyl tape. 

However, reduced sensitivity is often the trade-off.  

High temperature gradients and thus thermal shock are intrinsic to the rapid 

compression of any mixture within in an RCM, typically reaching gradients of over 

100K/ms. Mittal and Bhari (2013), showed thermal shock errors to reduce Pc by as 

much as 0.5 MPa (18.5%) when no protection measures were taken in the compression 

of nitrogen using an RCM. Further significant pressure drops associated with thermal 

shock have also been reported in combustion vessel and engines. Therefore, thermal 

shock error must be quantified to ensure accurate pressure measurement within the 

RCM. The original Leeds RCM pressure transducer was a Kistler 601A, flush mounted 

in the bottom port of the combustion chamber. A consultation with Kistler Instruments 

Ltd. concluded that this transducer was not ideally suited and likely prone to thermal 

shock error. Therefore, a series of experiments were performed, whereby, a specifically 

designed thermal shock resistant transducer, the Kistler 6045A, with a known thermal 

shock error of less than ±1% was acquired and used as a reference to quantify any 

thermal shock error of the original 601A, alongside other existing and potentially viable 

pressure transducers available in the laboratory, as shown in Table B.1. The charge from 

each transducer was amplified by a Kistler 5007 charge amplifier. Further details of 

signal processing and data acquisition are given in Section B.4.10. 
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Kistler dynamic 

pressure transducer 

model 

Features 

6045A 

(Reference) 

Low thermal shock 

error < ± 1% for 

high temperature 

gradients 

601A 

High natural 

frequency for high 

vibration 

701A 
High sensitivity for 

increased accuracy 

7005 

Reinforced 

diaphragm for high 

pressure use 

6061B 

Water cooled for 

constant high temp 

environments 

Table B.1: Summary of all Kistler dynamic pressure transducers examined in the 

present work. 

 

A further series of experiments were also carried out to investigate the effects of the 

various manufacture recommend thermal shock protection techniques, as described 

above, for each of the four questionable transducers. To ensure an accurate comparative 

analysis, two specially designed end plugs were manufactured to simultaneously mount 

the pressure transducers in either a flush or recessed position. Figures B.24a and b show 

SolidWorks models with dimensions of the custom machined multi dynamic pressure 

transducer flush and recess mounted end plugs.  
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Figure B.24: SolidWorks model of custom machined multi a) recess and b) flush 

mounted dynamic pressure transducer end plugs.  

a) 

b) 
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B.4.7.1 Quantification of Thermal Shock Error  

A series of air compression experiments at atmospheric pressure and temperature were 

first conducted to quantify the thermal shock error of each pressure transducer, with 

reference to the 6045A, which was specifically designed to reduce thermal shock error. 

This was flush mounted in the rear port of the combustion chamber and the other four 

transducers were flush mounted in the specially manufactured end plug as shown in Fig. 

B.24, allowing simultaneous pressure measurements of all pressure transducers.  

Figure B.25 shows each transducers pressure trace, whilst Fig. B.26 shows the 

difference in pressure between each tested transducer and the reference transducer, 

hence, quantifying their thermal shock error relative to the reference transducer with a 

known thermal shock error of less than ± 1%. 

At the EOC, the original 601A and the 701A show the most significant pressure 

deviation from the reference transducer, by circa -0.12 MPa (4%), followed closely by 

the 7005. The water cooled 6061B fares significantly better with a mere deviation of 

circa -0.025 MPa (0.8%).  

B.4.7.2 Flush Mounting with Coatings 

As recommend by pressure transducer manufactures, PCB Ltd. (2015), the first thermal 

shock protection techniques trailed were that of applying either vinyl tape or a 1mm 

coating of RTV Silicone directly to the surface of the pressure transducer diaphragm, 

that was flush mounted to the chamber wall. The vinyl tape used was Scotch Supper 

33+ electrical tape, of 0.177mm thickness and the RTV silicone used was Loctite 5399. 

A flat steel bar with a 1mm cut out was used to accurately level off the silicone and 

ensure an evenly distributed coat across the diaphragm, and at least 24hrs curing time 

was given.  

Figures B.27-B.30 show the pressure traces for each flush mounted pressure transducer, 

with and without the two different coatings. For the 601A and 701A transducers, both 

coatings have negligible effect. For the water-cooled 6061B transducer, both coatings, 

particularly the vinyl tape, consistently reduce pressure at EOC and thereafter, 

indicating an ability to reduce thermal shock error but blighted by reduced sensitivity. 

In contrast, the 7005 transducer shows consistently increased pressure readings for both 

coatings, particularly the vinyl tape at EOC.  
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Figure B.25: Chamber pressure traces for all dynamic pressure transducers tested. 

Figure B.26: Pressure difference between each pressure transducer and reference 

transducer 6045A. 
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Figure B.27: Chamber pressure traces for flush mounted 601A transducer with different 

coatings.  

Figure B.28: Chamber pressure traces for flush mounted 6061B transducer with 

different coatings.  
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Figure B.29: Chamber pressure traces for flush mounted 701A transducer with different 

coatings. 

Figure B.30: Chamber pressure traces for flush mounted 7005 transducer with different 

coatings. 
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B.4.7.3 Recessed Mounting with Silicone Fillings 

The second thermal shock protection technique trailed, again, recommend by PCB Ltd. 

(2015), and common practice within engine studies, was that of recess mounting the 

pressure transducer diaphragm from the chamber wall such that it was less exposed to 

hot gases, flames etc. Further to this, a silicone filling can be added for increased 

thermal protection. In the present work, three types of silicone fillings were trailed: 

Loctite 5399 (as previously used in the flush mounted coating tests), 2 Pack RTV and 

silicone grease.  

Figures B.31-B.33 show the pressure traces for each recess mounted pressure 

transducer; both unfilled and filled with the three types of silicone. For comparison, the 

corresponding flush mounted pressure traces as described in section B.4.7.3 are also 

shown. The open recessed mounting technique reduced the readings of all transducers in 

comparison to the standard flush mounting technique. Both the Loctite 5399 and 2 Pack 

RTV silicone recess filled techniques significantly reduced all transducer readings, 

particularly for the 701A and 7005, where the 2 Pack RTV reduced EOC pressure by 

79% and 73%, respectively. The silicone grease filled recess technique was the only 

technique to show an increase in pressure readings above the standardised flush 

mounted technique, which consistently occurred for all transducers. In the case of the 

601A and 7005, this technique gave results close to that of the flush mounted reference 

transducer. This indicates the technique was effective in reducing thermal shock error 

without reducing sensitivity. However, in practice, the silicone grease was prone to 

dislodging after repeated compressions and therefore was not considered a practical 

solution. As a result the specifically designed thermal shock resistant reference 6045A 

transducer was chosen for use in the Leeds RCM. 
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Figure B.31: Chamber pressure traces for recess mounted 601A transducer with 

different silicone fillings. 

Figure B.32: Chamber pressure traces for recess mounted 701A transducer with 

different silicone fillings. 

0

0.5

1

1.5

2

2.5

3

0 0.01 0.02 0.03 0.04 0.05 0.06

P
re

ss
u
re

 (
M

P
a)

Time (s)

Recessed/Open

Recessed/2 Pack RTV

Recessed/Loctite 5399

RTV
Recessed/Silicone

Grease
Flush/No Coating

0

0.5

1

1.5

2

2.5

3

0 0.01 0.02 0.03 0.04 0.05 0.06

P
re

ss
u
re

 (
M

P
a)

Time (s)

Recessed/Open

Recessed/2 Pack RTV

Recessed/Loctite 5399

RTV

Recessed/Silicone

Grease

Flush/No Coating



Appendix B – Commissioning a Rapid Compression Machine 

263 

 

Figure B.33: Chamber pressure traces for recess mounted 7005 transducer with different 

silicone fillings. 

B.4.8 Combustion Chamber Heating and Temperature Control 

As discussed in Chapter 1, the autoignition of a combustible mixture is not only a 

function of its composition and pressure, but temperature. Therefore, the accurate and 

precise control of the initial mixture temperature, Tu, within the combustion chamber 

and cylinder was crucial to accurate acquisition of τi data.  

As shown in Fig. B.34, the original heating system was limited to five 75W heating 

bands positioned around the cylinder. Whilst being more than powerful enough, their 

operation caused significant temperature gradients between the cylinder, which tended 

to overheat, and the unheated combustion chamber, which tended to under heat, due to 

its larger mass and mounting to the heavy gauge steel frame, acting as a heat sink. 

Figure B.35 shows a custom manufactured temperature probe to allow temperature 

measurements to be taken internally, down the central length of the cylinder and 

combustion chamber. This comprised of an exposed K-type thermocouple junction at 

the end of a 4mm outer diameter ceramic twin core tube that was fed through a specially 

machined end plug with an O-ring sealing access port. This ensured temperature 

measurements could be taken in line with intended Pi values that were below 
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atmospheric pressure. The ceramic tube was externally marked at 20mm intervals to 

accurately position the thermocouple junction within the cylinder and chamber.  

To increase heating of the combustion chamber, a specially designed end plug was 

machined out of mild steel that circumferentially embedded six 50W heating cartridges 

and a central sealing access port for the internal temperature probe. Figure B.36 shows a 

photograph of the installed end plug, whilst Fig. B.9 shows a SolidWorks model cross 

section view. The long ‘top hat’ design gave both a large surface area of contact 

between the end plug and the combustion chamber and a high thermal mass to ensure 

uniform and stable heating. Separate control of the band and cartridge heaters was 

achieved via two CAL3200 PID temperature controllers mounted in the main control 

box, with feedback from two K type thermocouples. The band heaters thermocouple 

was placed under the central band heater, and the cartridge heaters thermocouple was 

centrally embedded into the end plug. 

A series of experiments were performed, trailing different heater configurations and 

temperature target set points. Figure B.37 shows three temperature profiles from 

measurements taken within the cylinder and chamber using the internal custom 

temperature probe, for two different heater configurations. 0mm indicates the chamber 

end face and 245mm the piston face at SOC. The dashed line shows the temperature 

profile for the use of two of the original band heaters at either end of the cylinder, the 

notion being, that two bands at higher set points nearer the cooler regions would help 

dissipate heat more uniformly. However, whilst measurements within the cylinder 

remained relatively stable and uniform, temperatures measurements dived towards the 

unheated chamber, rendering this configuration insufficient. The two other solid lines 

show temperature profiles for both high and low temperature set points, using both the 

five original band heaters on low power and the heated end plug that incorporated six 

cartridge heaters. This configuration was found to give the best internal gas temperature 

uniformity for both low and high temperatures, with variation typically no more than 

5% from the target temperature. 
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Figure B.34: Photo of the original five 75W cylinder heating bands. 

 

Figure B.35: Photo of custom manufactured internal combustion cylinder and chamber 

temperature measurement probe.  
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Figure B.36: Photo of combustion chamber end view, with inserted heated end plug 

containing six 50W cartridge heaters. 

 

Figure B.37: Combustion chamber and cylinder temperature measurements, using 

custom internal temperature probe. Config. 1: 2x75W cylinder band heaters, config. 2: 

5x75W cylinder band heaters and 6x50W cartridge heaters in large end plug. 
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B.4.9 Fuel/Oxidiser/Diluent Mixing Chamber and Delivery System 

A mixing chamber was designed and manufactured to allow batches of homogenous 

and preheated fuel/oxidiser/diluent mixtures to be made-up in one procedure. This 

dramatically increased productivity, reduced fuel handling, and increased the 

consistency of the mixture. Figure B.38 shows a SolidWorks drawing of the completed 

mixing chamber. It comprised of a seamless stainless steel 316 cylinder with two O-ring 

sealed stainless steel 304 end plates held in place by eight external high carbon steel 

bolts.  

Stress calculations for the mixing chamber are presented in Appendix C. A simple mild 

steel support frame was then used to mount the mixing chamber nearby the combustion 

chamber, within the main frame work of the RCM, minimising the length of the 

required delivery system pipework. The internal volume of the chamber was 1.7671 x 

10−3 m³ and had a maximum working chamber pressure of 0.5 MPa. This would 

typically allow 15-25 mixture shots for experimentation, dependant on fuel type, 

equivalence ratio, temperature and the initial combustion chamber pressure. A static 

pressure transducer, UNIK 5000, was used to measure pressure in the mixing chamber, 

having a range of 0-0.4 MPa. This was wired to a four digit digital display mounted in 

the main control box.  

Heating was achieved by an external Mica 2kW band heater wrapped around the inner 

cylinder, with the temperature controlled via a PID CAL3200 mounted in the main 

control box, using feedback from a K-type thermocouple positioned under the heating 

element. There were four frontal ports, the top was connected the combustion chamber 

delivery line, the bottom port was connected to a pressure relieve valve, set to just 

below 0.5 MPa and venting to the exhaust line, the left port was connected to the 

gaseous inlet manifold, with the static pressure transducer fitted to an intercepting T-

section, and finally, the right port was connected to a luer lock fuel injection port. The 

delivery line consisted of a main open and shut ball valve and a precision needle valve 

for accurately controlling the mixture flow when filling the combustion chamber. A 

handheld static pressure transducer, Comark C9557, connected to the front port of the 

combustion chamber was used to monitor the initial combustion chamber pressure, Pi, 

and thus quantify the incoming mixture. 

To ensure preheated mixtures did not condense within the 4mm ID stainless steel 

delivery line, it was heated using RS 50W/m heating element cable that was also 

controlled by another CAL3200 PID controller, mounted in the main control box, using 
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a K-type thermocouple attached midway between the mixing and combustion chamber 

as feedback. The entire line was also heavily insulated with specialist thermal pipe foam 

and wrapped in aluminium insulation tape to help maintain an evenly distributed 

temperature.  

Figure B.38: SolidWorks model of mixing chamber. Dimensions and stress calculations 

can be found in Appendix C. 
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position, at a sampling frequency of 50kHz. The DAQ card had a 12 bit resolution, 

therefore, with the charge amplifier set to 2 MPa/volt, increments of pressure 

measurement were 2.44mV, thus, 4.88x10-4 MPa. 

B.5 Experimental Procedure  

B.5.1 Mixture Preparation 

All fuel/oxidiser/diluent mixtures were made up in batches within the specifically 

designed preheated mixing chamber as discussed in Section B.4.9. Details of the 

laboratory liquid fuel handling and preparation protocol prior to injection are as 

discussed in Chapter 3. 

In order to achieve different Tc values, the initial mixture temperature was varied 

alongside the ratio of different inert diluent gases, with varying specific heats, thermal 

conductivities and diffusivities, for an increased range. The practise of using such gases 

to manipulate Tc is common within RCM studies, and are assumed to be chemically 

inactive to the main combustion reactions, with the proportion of reactants typically 

below 2%. 

Using an RCM, a series of experiments were performed by Würmel et al. (2007) 

investigating the pressure effects of compressing: argon, helium, nitrogen and xenon, 

under the same CR and Pi. Table B.2 shows their thermal characteristics.  

 

Table B.2: Thermal properties for common diluents gases (Würmel et al., 2007). 

 

Figure B.39 shows the pressure traces for the compression of each gas. Notably, the 

nitrogen shows significantly lower Pc and therefore Tc values in comparison to the other 

gases as a result of its relatively high specific heat capacitance. Xenon, argon and 

helium all reach similar and much higher Pc values due to their lower specific heat 

capacitance. However, in comparison, helium suffers from a much higher rate of post 

compression pressure decline from a higher rate of heat loss due to its high thermal 

diffusivity. Such aggressive heat loss rates are not desirable in RCM’s and therefore 

helium is not recommended.  
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Figure B.39: Pressure traces for the compression of different gases with an RCM 

(Würmel et al., 2007). 

 

As shown in Fig B.40, Würmel et al. (2007) also demonstrated the direct effect of such 

diluents on the ignition delay time for 2,3-dimethlypentane (DMP). As anticipated, 

when using helium, the high rate of heat loss, lowers the reactivity and therefore 

increases the ignition delay time. This emphasises the need to carefully select 

appropriate diluents and ratios to ensure post compression heat loss rates are minimised.  
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Figure B.40: Ignition delay time variation with reciprocal Tc, for stoichiometric 

dimethylepentane (DMP), for different dilutent gases, at Pi = 1.5MPa,  = N2, ○ = He, 

▲= Ar,  = N2:Ar (Würmel et al., 2007).  

 

B.5.2 Operating Technique 

First, with the piston at the SOC position, the end plug was removed and the 

combustion chamber was examined to ensure it was free from any soot build ups or any 

other foreign particulates. Acetone was found to be an effect cleaning agent when 

required. The combustion chamber, mixing chamber and its delivery pipe work was 

then sufficiently heated to the required target temperature. Typically, for a target 

temperature of 360K, it would take circa 2hrs for all systems to reach a steady state.  

The combustion chamber was purged of any potential exhaust gas residuals from 

previous experiments, by vacuuming down to 0.05 MPa from atmospheric pressure, 

filling with dry air to 2 MPa, and again vacuuming down to 0.05 MPa. This ensured any 

gaseous residuals were kept to a maximum of 0.3%. The piston was then hydraulically 

locked in the SOC position under the maximum safe working pressure of 0.4 MPa, via 

the hydraulic hand pump. The combustible mixture from the mixing chamber was then 
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delivered to the combustion chamber via a high precision needle valve up to the 

required initial combustion chamber pressure. The driving reservoir was then filled with 

laboratory compressed air, up to the limited 0.7 MPa line pressure, and then with dry 

cylinder air up to the 1.4 MPa.  

Ensuring the combustion chamber temperatures were stable, the LabView software was 

armed to record incoming data, a verbal warning of “firing” was given, and the machine 

was triggered to initiate the rapid compression of the combustible mixture via the push 

to make firing button. All recorded data was then saved to file.  

The combustion product gases were then evacuated to the main exhaust line and the 

piston reset to the start of compression position by pressuring the combustion chamber 

with lab air to 0.7 MPa, which simultaneously aided the exhausting process. The 

combustion chamber was then purged as above and prepared for the next experiment.  

B.6 Iso-Octane Ignition Delay Data for International 

Collaborative 

In the effort to further understanding of non-ideal RCM behaviour and evaluate the 

discrepancies between different RCM’s, an international collaborative of thirteen 

research groups, consisting of experimentalists, modellers and theoreticians was formed 

at the 1st International RCM Workshop at Argon National Laboratory (Goldsborough, 

2012). The newly commissioned Leeds RCM was one of seven RCM’s to participate in 

the collection of iso-octane ignition delay data under set conditions, to help highlight 

any correlations in ignition delay variation with any particular RCM characteristics.  

The equivalence ratio was stoichiometric with a fixed oxygen content of 21%, Pc = 2.0 

MPa, and Tc = 650-950K. The variation of Tc could be achieved via altering Ti, CR or 

the ratio of the following diluent gases: argon, nitrogen and carbon dioxide. Table B.3 

shows the composition of each mixture, Pi and Ti for each Tc measurement made using 

the Leeds RCM. Figure B.41 shows the Leeds RCM τi results in comparison to the other 

six RCM’s that participated. This data was first presented at the 2nd RCM International 

Workshop (Goldsborough, 2014). 

As anticipated, results show considerable spread between the different RCM’s, 

particularly at lower temperatures, and much speculation as to the nature of these 

discrepancies continues. However, efforts by Materego (2015) to decouple the varying 
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characteristic causes of heat loss from each RCM to reveal universal ignition delay data 

have since been made at Leeds and are pending review by the consortium. 

Composition 
Pi 

(MPa) 

Ti 

(K) 

Tc 

(K) 

C8H18+12.5O2+11.98CO2+35.02N2 
0.0789 304 640 

0.0792 310 650 

C8H18+12.5O2+5.99CO2+41.01N2 
0.0766 312 676 

0.0771 322 694 

C8H18+12.5O2+47N2 
0.074 318 713 

0.0744 328 731 

C8H18+12.5O2+11.9Ar+35.1N2 
0.0708 319 752 

0.0712 328 769 

C8H18+12.5O2+30.95Ar+16.05N2 

0.0644 306 802 

0.065 321 833 

0.0661 353 900 

C8H18+12.5O2+47Ar 
0.0589 321 925 

0.0591 328 941 

Table B.3: Mixture composition and initial conditions for iso-octane experiments at Pc  

= 2.0 MPa and Tc  = 640-941K. 

 

 

Figure B.41: Ignition delay time variation with reciprocal Tc, for stoichiometric iso-

octane, at Pi = 2.0 MPa (Goldsborough, 2012). Table B.4 shows legend for the different 

RCM’s.  
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RCM Participant 

1 Argon National Laboratory 

2 National University of Galway 

3 University of Akron 

4 University of Lille 

5 University of Leeds 

6 University of Connecticut 

7 University of Akron 

Table B.4: Summary of participants who provided iso-octane τi data via a RCM for 1st 

international RCM Workshop (Goldsborough, 2012). 

 

 

 

 

 



Appendix C - Stress Calculations for RCM Mixing 

Chamber  

 

The following equations are in relation to the dimensions shown in Fig. C.1, and based 

on equivalent case examples by Roark, J. R. (Roark, 1975). 

Assumptions: 

 Poisson’s ratio = ѵ = 0.3 

 Uniform thicknesses of materials 

 Maximum working pressure of 5 MPa 

 Combustion pressure increase factor of 6 

 Yield stress of stainless steel 303 = 240 MPa 

 Yield stress of stainless steel 316L = 170 MPa 

Front and Rear Flange Bending Stress: 

Force exerted on the flange due to pressure (including combustion factor):  

F = Pπr² = 5 x 10⁵ x π x 0.075² x 6 = 53.014kN 

Maximum bending moment equation: 𝑀𝑏−𝑚𝑎𝑥 = 
𝐹

4𝜋
 [(1+ ѵ) ln 

𝑟𝑜

𝑟𝑖
 + 1] 

𝑀𝑏−𝑚𝑎𝑥 = 
53014

4𝜋
 [(1+ 0.3) ln 

0.1025

0.075
 + 1] = 7.198kN 

Bending Stress = 𝛿𝑏 = 
6𝑀𝑏−𝑚𝑎𝑥

𝑧²
 = 

6 𝑥 7198

0.02²
 = 107.97 MPa 

Safety Factor = 
240

107.97
 = 2.223 

Front and Rear Flange Shear Stress: 

Shear Area = 𝐴𝑠 = πdz = π x 0.15 x 0.02 = 9.425x10−3m² 

Shear Stress = 𝛿𝑠= 
𝐹

𝐴𝑠
 = 

53014

9.425𝑥10−3 = 5.625MPa 

Safety Factor = 
240

5.625
 = 42.667 

Main Tube Body Hoop Stress: 

Hoop Stress = 𝛿ℎ = 
6𝑃𝑑

2𝑧
 = 

6 𝑥 5 x 105 x 0.15

2 𝑥 9.13 x 10−3  = 24.644 MPa 

Safety Factor = 
170

24.644
 = 6.898 
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Tie Bolts: 

Industry Specification and Assumptions: 

 M10 x 1.25 x 180mm (35mm of thread) 

 Class 12.9 = Tensile Strength = 1220 MPa 

 Preload Torque = 43.85kN 

F = 6PA = 6 x 5 x 10⁵ x π x 0.075² = 53.014kN 

𝐹𝑏 = 
𝐹

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐵𝑜𝑙𝑡𝑠
 = 

53014

8
 = 6.627kN 

Safety Factor = 
43850

6627
 = 6.617 

Front and Rear Flange Bending Stress (with bolt preload): 

𝑀𝑏−𝑚𝑎𝑥 = 
𝑤𝑟𝑜²

𝑟𝑖
 x 

𝐶9

𝐶8
 

𝐶9 = 
𝑟𝑖

𝑟𝑜
{

1+ѵ

2
 ln(

𝑟𝑜

𝑟𝑖
) + 

1−ѵ

4
 [1 − (

𝑟𝑖

𝑟𝑜
)

2

]} 

𝐶9 = 
0.075

0.1025
{

1+0.3

2
 ln(

0.1025

0.075
) + 

1−0.3

4
 [1 − (

0.075

0.1025
)

2

]} = 0.208 

𝐶8 = 
1

2
 [1 +  ѵ + (1 − ѵ) (

𝑟𝑖

𝑟𝑜
)

2

] 

𝐶8 = 
1

2
 [1 +  0.3 + (1 − 0.3) (

0.075

0.1025
)

2

] = 0.837388 

W = 
𝐹

𝜋𝑑
 = 

43850

𝜋 𝑥 0.205
 = 68.087kN/m 

𝑀𝑏−𝑚𝑎𝑥 = 
68087 𝑥 0.1025²

0.075
 x 

0.208

0.837388
 = 2.369kN 

Bending Stress = 𝛿𝑏 = 
6𝑀𝑏−𝑚𝑎𝑥

𝑧²
 = 

6 𝑥 2369

0.02²
 = 35.535 MPa 

Safety Factor = 
240

35.535
 = 6.754 
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Figure C.1: SolidWorks virtual model of RCM mixing chamber – radial cross section. 
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