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AbstratThe Internet is urrently an IP datagram network, whih uses the TransmissionControl Protool (TCP) for guaranteed data delivery. In addition to providing areliable data transport layer, TCP aids the stability of a large sale internetworkthrough ongestion detetion and avoidane algorithms.Sine TCP's ineption in 1981, both the Internet, and the appliations whih useit, have evolved. The result is a broad spetrum of data traÆ, being transported byprotools whih were developed twenty, or more, years previously. Inreasingly, thetraÆ being arried over the Internet is part of an interative lient/server session,established between hosts on widely separated networks. The number of routerhops between suh hosts means that an aggressive transport protool for appliationdata may attempt to send data, whih exeeds the bottlenek apaity of a givennetwork path. The result is paket loss whih, for a guaranteed protool, impliesretransmission of data. Reent researh has shown that urrent implementations ofTCP, based on the original TCP algorithms, are inappropriate for the transportationof modern Internet traÆ.This thesis is onerned with the design, modelling, simulation, and study, ofan experimental transport protool. We aim to address the issues faed by urrentTCP implementations when transporting short, bursty, variable bit-rate, or bulkdata in ongested environments. In doing so, alternative methods of onnetioninitialisation, ow ontrol and ongestion avoidane are implemented and simulated.Through simulation with bulk, variable bit-rate and live HTTP trae data, weshow how our experimental protool is able to deliver data with suessful through-put omparable with urrently implementations of TCP. Due to its modi�ed startupand ongestion avoidane algorithms, however, it does so with signi�antly reduedpaket loss and overall paket transmissions.
i



AknowledgementsA number of people have aided the development of this work and thesis. Both Dr.Mourad Kara and Professor Peter Dew at the University of Leeds should be reditedwith this projet's supervision, and have given signi�ant input to its diretion andpubliations. Furthermore, the members of the ATM-MM group at the Universityof Leeds, in partiular, Dr. Karim Djemame, have provided invaluable feedbak onmy prototypes, mathematial and simulation models, and papers.I would also like to thank the members of the Support team at the Shoolof Computer Studies. Protool development beomes very diÆult without theability to break networks and OS staks in new and mysterious ways. Similarly, thedevelopment and prototyping of network protools would not be possible withoutsolid simulation tools. For these, I would like to thank the developers involved inthe NS and REAL projets.Torh Teleom were also instrumental in providing additional funding for myCASE studentship through the EPSRC.Finally, I would like to dediate this work to my parents, who have given tremen-dous support throughout my aademi areer. Without them, none of this wouldhave been possible. Thank you.

ii



DelarationsSome parts of the work presented in this thesis have been published in the fol-lowing artiles:Wade, Kara, Dew, \Proposed Modi�ations to TCP Congestion Control for High Band-width and Loal Area Networks", 6th IEEE Conferene on Teleommuniations,(July 1998).Wade, Kara, Dew, \Study of a Transport Protool Employing Bottlenek Probingand Token Buket Flow Control", IEEE International Symposium on ComputerCommuniations, (July 2000).Wade, Kara, Dew, \Modeling and Simulation of STTP, a Proative Transport Proto-ol", (pages 486{486), IEEE International Conferene on Networking, (September2000).

iii



Contents
1 Introdution and Bakground 11.1 The Transmission Control Protool . . . . . . . . . . . . . . . . . . . 21.1.1 A History of TCP . . . . . . . . . . . . . . . . . . . . . . . . . 31.1.1.1 1988 . . . . . . . . . . . . . . . . . . . . . . . . . . . 31.1.1.2 1990 . . . . . . . . . . . . . . . . . . . . . . . . . . . 41.1.1.3 1993 . . . . . . . . . . . . . . . . . . . . . . . . . . . 41.1.1.4 1996 . . . . . . . . . . . . . . . . . . . . . . . . . . . 51.1.1.5 1997 . . . . . . . . . . . . . . . . . . . . . . . . . . . 51.2 Interative Network Appliations . . . . . . . . . . . . . . . . . . . . 51.3 Internet Servies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61.4 TCP Issues and Alternative Implementations . . . . . . . . . . . . . . 71.5 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91.6 Researh Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101.7 Objetives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 Related Work 142.1 Traditional TCP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142.2 Alternative Implementations . . . . . . . . . . . . . . . . . . . . . . . 162.2.1 Real-Time Protools . . . . . . . . . . . . . . . . . . . . . . . 162.2.2 TCP Variants . . . . . . . . . . . . . . . . . . . . . . . . . . 182.2.3 TCP Modi�ations . . . . . . . . . . . . . . . . . . . . . . . . 212.3 High Speed Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . 242.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26iv



3 STTP: Rationale and Design 283.1 TCP Modi�ations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293.2 Rationale for Researh . . . . . . . . . . . . . . . . . . . . . . . . . . 303.3 Network Simulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323.3.1 REAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333.3.2 NS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343.3.3 Simulator Validation . . . . . . . . . . . . . . . . . . . . . . . 353.4 Framework/Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . 353.4.1 Paket-Pair Bandwidth Probing . . . . . . . . . . . . . . . . . 373.4.2 Token Buket Flow Control . . . . . . . . . . . . . . . . . . . 393.4.3 Congestion Avoidane . . . . . . . . . . . . . . . . . . . . . . 403.4.4 History Weighted Buket Manipulation . . . . . . . . . . . . . 423.5 Protool Implementation . . . . . . . . . . . . . . . . . . . . . . . . . 433.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 454 STTP: Testing and Results 464.1 Testing STTP Network Behaviour . . . . . . . . . . . . . . . . . . . . 484.1.1 Experiment 1, Funtional Testing using REAL . . . . . . . . . 484.2 Performane Testing STTP . . . . . . . . . . . . . . . . . . . . . . . 514.2.1 Experiment 2, Bulk Data Transfer using NS . . . . . . . . . . 524.2.2 Experiment 3, Protool Fairness of STTP . . . . . . . . . . . 554.2.3 Experiment 4, Variable Bit-Rate Appliations using NS . . . . 584.2.4 Experiment 5, HTTP Appliations using NS . . . . . . . . . . 614.2.5 Experiment 6, Mixed Simulation of TCP Reno, TCP Vegasand STTP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 644.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 664.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 685 Disussion and Evaluation 695.1 Disussion of Simulation Results . . . . . . . . . . . . . . . . . . . . 715.1.1 Funtionality Testing with the REAL Simulator . . . . . . . . 72v



5.1.2 Performane Testing with the NS Simulator . . . . . . . . . . 735.2 Evaluation and Lessons . . . . . . . . . . . . . . . . . . . . . . . . . . 765.2.1 Protool Performane . . . . . . . . . . . . . . . . . . . . . . . 765.2.2 Paket Pair in Congested Networks . . . . . . . . . . . . . . . 775.2.3 Aggressive vs Timid Soures { the �ne line . . . . . . . . . . . 785.2.4 Disussion of Software Simulation and Prototyping . . . . . . 795.2.5 Summary of Simulation Experiments . . . . . . . . . . . . . . 806 Conlusions and Future Work 816.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 816.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 826.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

vi



List of Figures
4.1 Experiment 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 494.2 Experiment 1: STTP and TCP Paket Transmissions . . . . . . . . . 514.3 Performane Simulation Topology . . . . . . . . . . . . . . . . . . . . 524.4 Experiment 2: TCP Reno, TCP Vegas and STTP Total Paket Trans-missions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 534.5 Experiment 2: TCP Reno, TCP Vegas and STTP Total Paket Loss . 544.6 Experiment 2: TCP Reno, TCP Vegas and STTP Suessfully Re-eived Pakets (Goodput) . . . . . . . . . . . . . . . . . . . . . . . . 544.7 Experiment 4: TCP Reno, TCP Vegas and STTP Total Paket Trans-missions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 604.8 Experiment 4: TCP Reno, TCP Vegas and STTP Total Paket Loss . 604.9 Experiment 4: TCP Reno, TCP Vegas and STTP Suessfully Re-eived Pakets (Goodput) . . . . . . . . . . . . . . . . . . . . . . . . 614.10 Experiment 5: TCP Reno, TCP Vegas and STTP Total TransmittedPakets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 624.11 Experiment 5: TCP Reno, TCP Vegas and STTP Total Paket Loss . 634.12 Experiment 5: TCP Reno, TCP Vegas and STTP Suessfully Re-eived Pakets (Goodput) . . . . . . . . . . . . . . . . . . . . . . . . 634.13 Experiment 6: TCP Reno, TCP Vegas and STTP Suessfully Re-eived Pakets in Mixed Simulation . . . . . . . . . . . . . . . . . . . 65

vii



List of Tables
2.1 Summary of Protool TraÆ Support . . . . . . . . . . . . . . . . . . 174.1 Summary of REAL and NS Simulator TraÆ Types . . . . . . . . . . 474.2 Summary of REAL and NS Simulator Protool Support . . . . . . . . 474.3 Experiment Information . . . . . . . . . . . . . . . . . . . . . . . . . 484.4 TCP and STTP Performane Summary . . . . . . . . . . . . . . . . . 494.5 STTP Fairness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 575.1 Experiment Information . . . . . . . . . . . . . . . . . . . . . . . . . 695.2 Long Duration (200 seonds) STTP and TCP Reno - 40 soures . . . 745.3 Long Duration (300 seonds) STTP and TCP Reno - 40 soures . . . 741 Table of Results for Experiment 2 . . . . . . . . . . . . . . . . . . . . 922 Table of Results for Experiment 4 . . . . . . . . . . . . . . . . . . . . 93

viii



AronymsACK Aknowledgement paketAPI Appliation Program InterfaeASCII Amerian Standard Code for Information InterhangeATM Asynhronous Transfer ModeBSD Berkeley Software DistributionCGI Common Gateway InterfaeDARPA Defene Advaned Researh Projets AgenyECN Expliit Congestion Noti�ationEPD Early Paket DisardFTP File Transfer ProtoolHTTP Hypertext Transfer ProtoolIEEE Institute of Eletrial and Eletronis EngineersIETF Internet Engineering Task ForeIP Internet ProtoolISP Internet Servie ProviderJPEG Joint Photographi Experts GroupLAN Loal Area NetworkMTU Maximum Transfer UnitNEST Network Simulation TestbedNS Network SimulatorOSI Open Systems InteronnetionRED Random Early DisardRFC Request for CommentsRSVP Resoure Reservation ProtoolRTP Realtime Transport ProtoolRTCP Realtime Control ProtoolRTSP Realtime Streaming ProtoolRTT Round Trip Time i



SMTP Simple Mail Transfer ProtoolTCP Transmission Control ProtoolTOS Type of ServieUDP User Datagram ProtoolUUCP Unix to Unix Copy ProtoolVPN Virtual Private NetworkWWW World Wide Web

ii



Chapter 1
Introdution and Bakground
The issue of transport protool design has beome an important fator in the futureof the Internet with the proliferation of multimedia and interative appliations. Themajority of Internet appliations are lient/server in nature and therefore requireommuniation between two, potentially widespread, network hosts.The number of hosts onneted to the Internet has grown at an unpreedentedrate, and its penetration into all orners of the globe has brought a wide varietyof network quality and apaity. In developed nations, rapid expansion has takenplae both for domesti and business users who, at the time of writing, generallyonnet at between 28.8kb/s and 128kb/s. Larger businesses with leased lines totheir Internet Servie Provider (ISP), may work with T1 (1.55Mb/s) onnetions andhigher. Government or eduational institutions generally have even higher apaitylinks up to T3 (45Mb/s).When a onnetion is initialised between two hosts, little is known about thephysial network's apaity or reliability. Even though both hosts may be loatedon high-apaity loal area networks, with high performane onnetions to theInternet, the all may be routed via highly ongested or unstable portions of thepubli network. This implies that the bottlenek for this onnetion is unknown,unpreditable and not under the ontrol of loal administration. It is thereforeunwise for an appliation to request or send data at a pre-determined rate.1



Chapter 1 2 Introdution and Bakground1.1 The Transmission Control ProtoolThe Internet is urrently an IP-based network whih runs TCP [41℄ (TransmissionControl Protool) or UDP [40℄ (User Datagram Protool) at the transport layer.For guaranteed data servies, TCP is the reommended protool as it provides win-dowed ow ontrol and retransmission of lost/orrupt data. Furthermore, a TCPstream will modify its transmission rate aording to urrent network ongestion.Conversely, UDP does not provide any ow ontrol or ongestion avoidane faili-ties, and is de�ned as an "unreliable" transport layer. UDP has been the soure ofmuh ontention over reent years due to multimedia network appliations suh asvoie and video streaming, ooding the Internet with unresponsive protool streams.Appliations whih use UDP may not inorporate TCP Friendly [44℄ ongestionavoidane mehanisms, thus a�eting the quality of servie available to ompetingdata streams.TCP initialises a onnetion with an algorithm known as slow start. The rate atwhih TCP transmits traÆ into a network is governed by the size of its ongestionwindow (wnd), whih is normally an integer value, representing the number ofsegments urrently allowed to be in transit on a given onnetion. By initialising thisvalue to 1, and inrementing it eah time an aknowledgement (ACK) is reeivedfrom the destination node, TCP an ahieve a self-loked method of bandwidthdisovery. In pratie, inrements to the ongestion window follow an exponentialurve and ontinue until either data is lost, or a pre-determined limit is reahed.This limit is known as the slow start threshold (ssthresh) and is set to 65535 bytesor the reeiving host's advertised window size.The ssthresh mehanism prevents the sender from overowing network bu�ersduring slow start. In pratie, however, this threshold ould be higher than thebottlenek apaity of the intervening network. One the ongestion window valuereahes that of ssthresh, TCP enters its ongestion avoidane phase. This involvesinrementing the wnd with every ACK that is reeived, therefore a linear proess.Ation is only taken if data is lost or three ACK's with the same sequene number



Chapter 1 3 Introdution and Bakgroundare reeived. This implies that the destination node is reeiving out of order pakets,or that data has been lost. In this situation, TCP dereases its ongestion windowby 50% and re-enters ongestion avoidane. If a timeout should our, i.e. the timetaken for the destination host to reply with an ACK paket exeeds a given limit,then the ongestion window is set to 1 and TCP re-enters slow start.Conversely, UDP does not support suh ow ontrol or error handling. It fallsto the appliation developer to provide these features in a ustom transport layer,should the be required. The onern is that if suh software is badly implemented,it may be unfair towards TCP Friendly onnetions whih share the same networklinks.1.1.1 A History of TCP1.1.1.1 1988Jaobson and Karels' paper [21℄ on TCP ongestion avoidane 4.3BSD Tahoe wasreleased, whih utilises:� Slow Start� Congestion Avoidane� Fast RetransmitThe Slow Start and Congestion Avoidane algorithms were doumented in [21℄,whereas Fast Retransmission failities were not rati�ed until 1997 in RFC 2001 1[48℄. Slow Start and Congestion avoidane were the result of a "ongestion ollapse",whih took plae in 1988 on the DARPA network at Berkeley. This added failities toTCP, whih gave it the ability to detet and avoid severe network ongestion. If TCPwere able to slow down its data transmission rate when ongestion is deteted, thenmassive paket loss will be prevented, and overall performane improved. Similarly,Fast Retransmission of data allows TCP to retransmit data whih it suspets has1RFC 2001 desribes in detail TCP Slow Start, Congestion Avoidane, Fast Retransmit, andFast Reovery Algorithms. Its aim is to doument and standardise urrent implementations.



Chapter 1 4 Introdution and Bakgroundbeen lost in transit due to the reeipt of dupliate aknowledgement pakets for aprevious piee of data.1.1.1.2 1990The Reno release of 4.3BSD hanged its TCP implementation only slightly. Thefaility whih was added permitted TCP to inrease its transmission (ongestion)window by the number of dupliate aknowledgements it had reeived after retrans-mission. This algorithm aelerates reovery of a stream's transmission rate afterpaket loss. A further enhanement of TCP for the 4.3BSD Reno release was toallow TCP to only halve its urrent transmission rate in ase of Fast Retransmission(detailed in 4.3BSD Tahoe). Prior to this extension, eah paket loss aused TCP toenter the Slow Start algorithm, and reset its ongestion window to a single segment.1.1.1.3 1993Lawrene Brakmo et al. at the University of Arizona, extended the Slow Start andongestion avoidane algorithms of TCP Reno. They implemented their new al-gorithm, alled TCP Vegas, on an experimental platform alled the X-Kernel, andpublished a performane study of Vegas in [11℄, at SIGCOMM 94. The modi�a-tions to Slow Start inlude a more autious expansion of the ongestion windowduring onnetion initialisation. This aims to prevent paket loss due to aggressivetransmission rates. Similarly the ongestion avoidane algorithm was improved tosense network ongestion, and adjust its transmission rate aordingly. This wasahieved by obtaining an expeted throughput �gure for a given time period, andomparing this with the atual onnetion statistis. If there is a notable disparitybetween these values, then the transmission rate will be adjusted. [11℄ inludes per-formane testing, whih shows 40-70% performane improvement over TCP Renoin Brakmo's simulation experiments.



Chapter 1 5 Introdution and Bakground1.1.1.4 1996RFC 2018 2 [33℄ details extensions to TCP Reno in the form of Seletive Aknowl-edgement Options. This enables a TCP reeiver to overome the limitation of umu-lative aknowledgements in TCP Reno. With umulative paket aknowledgements,a TCP sender an only learn about a single lost paket in eah round trip time. WithSeletive Aknowledgement options (SACK), a reeiver an aknowledge data as itis reeived. This enables the sender to only retransmit that whih has been lost,and not pakets whih have already been transported suessfully.1.1.1.5 1997RFC 1122 3 [8℄ detailed the basi requirements for a TCP implementation, thatit should use a Slow Start mehanism, and ongestion avoidane to prevent net-work overload. RFC 2001 [48℄ onsolidated RFC 1122 with work done by Jaobsonand Karels. Furthermore, it doumented the Fast Retransmit, and Fast Reoveryalgorithms for the Internet ommunity.1.2 Interative Network AppliationsWhile streaming appliations suh as voie over IP, audio or video streams mayuse UDP for their transport, the majority of Internet appliations use TCP forguaranteed data delivery. The most widespread of these is without doubt the WorldWide Web, whih is a lient-server appliation, used to present information and datathrough interative Hypertext douments, or Web pages. These are transmittedusing the HyperText Transfer Protool (HTTP) [17℄, whih in turn uses TCP.Under normal onditions, a Web lient will make a HTTP request for a givenpage. The server then initialises a separate TCP onnetion for eah page omponent2RFC 2018 desribes how TCP Seletive Aknowledgement Options an improve the perfor-mane of TCP onversations with bursty paket loss.3RFC 1122 douments the IP and TCP funtionality required for Internet-onneted nodes(hosts).



Chapter 1 6 Introdution and Bakgroundbak to the lient. However, work has been onduted into Persistent HTTP [17℄whih aims to multiplex these onnetions together in order to form a single, strongerTCP onnetion.The nature of the Web is suh that a user may make rapid page seletionsin order to obtain spei� information. Although a great amount of work has beendone to optimise Web lient and server eÆieny, the underlying transport protoolsan still be onsidered a fator in user-pereived lateny. While HTTP itself hasundergone several revisions in reent years, the omponents whih make up Webdouments are also evolving at an alarming rate. The result is that Web server anddoument tehnologies are now able to present an inreasingly interative interfae tothe user with a wider variety of omponents being presented to the lient software.Furthermore, HTTP itself is under pressure to evolve in order to transport suhomponents eÆiently and in a manner whih is onduive to the interfae it aimsto provide.1.3 Internet ServiesWhile the World Wide Web Consortium (W3C) revises the HTTP spei�ation, itfalls to the Internet Engineering Task Fore (IETF) to improve ommon Internetprotools and provide the neessary funtionality, performane and exibility to theappliation layer. For example, the Internet Protool version 6 (IPv6) has reentlybeen spei�ed in order to aommodate future address spae requirements as wellas extended support for di�erentiated levels of network servie.The Arhiteture for Di�erentiated Servies (Di�Serv) allows a network operatorto provide ertain guarantees to their ustomers in terms of Quality of Servie (QoS).In more detail, traÆ an be lassi�ed aording to ertain bounds given by its Typeof Servie (TOS) spei�ation. This TOS header, present in IPv4 and IPv6 pakets,an be used to desribe aeptable bounds for queueing delay, jitter, or paket loss.It is therefore antiipated that di�erentiated servies will proliferate with us-tomers subsribing to "Bronze", "Silver" and "Gold" levels of traÆ provision.



Chapter 1 7 Introdution and BakgroundBronze ustomers may simply reeive the urrent standard of "best e�ort" withno performane guarantees for their traÆ. Subsribers to the Silver ategory mayhave their traÆ prioritised over the Bronze ustomers aording to a subset of theQoS parameters. Gold ustomers may be able to speify all available QoS parame-ters while paying a premium fee for their traÆ.Within the realms of a QoS-oriented, or Di�serv environment, the role of the IPtransport protool is diminished somewhat as the seondary network servies takeon a portion of its funtionality. Whereas in a mixed media, best e�ort networksuh as the urrent Internet, the transport protool aims to ontend with varyingdelay, paket loss and ross traÆ, a Di�serv network is able to guarantee at leasta subset of these parameters. Therefore, the requirements for next generation TCPare somewhat di�erent to those when it was spei�ed in 1981 for DARPA's RFC793 4 [41℄.1.4 TCP Issues and Alternative ImplementationsNaming onventions for TCP are traditionally based around the BSD revision inwhih they appear. Both of the following appear in releases of 4.3 BSD Unix. First,there was TCP Tahoe whih implemented RFC 793 in the BSD kernel in additionto slow start and ongestion avoidane algorithms from RFC 2001. TCP Tahoeis detailed in Jaobson and Karels' paper on Congestion Avoidane and Control[21℄. This protool was supereded by TCP Reno, whih adds fast retransmit andfast reovery from RFC 2001 [48℄, and seletive aknowledgements from RFC 2018.TCP Reno is urrently the most ommon implementation used in network operatingsystems and as suh, has been studied in great detail. The majority of performaneomparisons and models in this work will use TCP Reno as their benhmark proto-ol.In 1994, Brakmo et al at the University of Arizona published [11℄, whih detailednew algorithms for TCP slow start and ongestion avoidane. In partiular, TCP4RFC 793 desribes the initial Transmission Control Protool for the ARPA network.



Chapter 1 8 Introdution and BakgroundVegas laims "between 40% and 70% improvement" in performane over TCP Renowith around one �fth the number of paket retransmissions. This performane in-reased was ahieved through better utilisation of available bandwidth by deployingproative ongestion avoidane algorithms. An alternative, lightweight implemen-tation of this solution to ongestion avoidane is used in our experimental protoollater in this work.One fundamental ritiism of TCP Reno and its variations, is that the orealgorithms rely on paket loss in order to detet network ongestion. In essene,they use a linear inrease, multipliative derease algorithm whih, despite havingbeen shown to exhibit fair behaviour between ompeting streams is both lossy andineÆient when ompared with proative ongestion avoidane [11℄.In partiular, TCP Reno has been observed to lose the majority of its data whilein slow start whih, in omparison with the algorithms used by TCP Vegas, are ag-gressive. The problem arises when, in slow start, TCP Reno doubles its transmissionrate every RTT. It ontinues to do so until it reahes the slow start threshold, theremote hosts's advertised window size, or loses data. In a highly ongested network,partiularly one with a high bandwidth delay produt, this means that when lossesdo our, they are likely to be in the order of half the urrent ongestion window.Given that TCP is a guaranteed delivery protool, this data has be retransmittedand if losses have ourred, this will be at a muh lower rate (50%) than before. Thisis due to TCP's ongestion avoidane algorithm, whih will halve its transmissionrate upon data loss. TCP then enters its ongestion avoidane algorithm.Fast retransmission and reovery are de�ned in RFC 2001 [48℄. Fast retransmis-sion of data is triggered in TCP Reno by the soure host reeiving three dupliateaknowledgements for data it has sent. The advantage of this mehanism is that itdoes not have to wait for a timer to expire (a timeout) before retransmitting poten-tially lost data. The reeipt of three dupliate ACK's at the soure means that theremote host has reeived three pakets whih ontained out of order sequene num-bers. Oasionally, pakets may be re-routed in the Internet, so ertain data mayarrive out of order and have to be re-ordered before being passed to the appliation.



Chapter 1 9 Introdution and BakgroundOne fast retransmission has been performed, TCP Reno uses fast reovery tomaintain its state in ongestion avoidane. This means that unless a retransmissionis performed due to paket timeout, a slow start is not performed. If a timeout doesour, ssthresh is set to one half of the urrent ongestion window, the ongestionwindow is set to a single segment, and slow start ensues. In fast reovery, however,the ongestion window is set to the value of ssthresh as opposed to a single segment.1.5 MotivationThe issue of ow ontrol in modern omputer networks has been highlighted inreent years with a massive inrease in the amount of bursty Internet traÆ. Theproliferation of the World Wide Web (WWW) has lead to a desire for short, high-bandwidth onnetions in order to transfer relatively small douments, images andprogram ode in the least time possible.This is in ontrast with traditional Internet appliations suh as FTP, whihgenerally onsisted of longer duration onnetions. Furthermore, the relative fair-ness of bandwidth alloation was onsidered more important than timely delivery.Suh lengthy onversations meant that the preise dynamis of individual onne-tions were not of primary onern when, for example, slow start only formed a smallperentage of the total duration.Given that the majority of urrent WWW pages ontain a small amount of textontent, this an be transferred in a handful of TCP segments. In ontrast, a lengthyFTP onnetion may transfer hundreds or thousands of kilobytes and take severalminutes to omplete. During this time, a strong, established TCP stream may beformed and its bursty pro�le redued ompared with that of WWW traÆ. WhileTCP's slow start and ongestion avoidane algorithms are apable of eÆientlytransporting lengthy data transfers, modern Internet appliations no longer �t thispro�le.It is therefore of paramount importane to ameliorate the pereived performaneof WWW traÆ through improvements to the transport layer. While HTTP is



Chapter 1 10 Introdution and Bakgroundonstantly being revised by the W3C, one way to inrease data throughput in realterms, is by optimisation and tuning of the Internet's transport protool.Modern Internet appliations set the riteria by whih this performane will bemeasured and allow us to derive suitable algorithms for their solution. We aretherefore faed with a set of user requirements, namely to deliver short, burstytransfers of data in as short a time as possible.1.6 Researh ContextIn our experiene with simulation experiments [49℄ [51℄ [50℄, TCP has not shownitself to be suitable for realtime, interative, network appliations. In partiular,those involving bursty, multimedia data exhange. The reason for this is that dueto its slow start algorithm, TCP is not able to quikly establish a onnetion whihfully utilises the available bandwidth. In fat if a network is highly ongested, a dataexhange may take muh longer than desired due to paket retransmission, whih islikely to our during aggressive expansion of the ongestion window.The arrival of more intelligent network servies suh as Di�serv [36℄ and RSVP[9℄, whih allow bandwidth alloation in addition to bounded QoS on a per on-netion basis, means that TCP is now operating in an environment whih is verydi�erent to that for whih it was designed. The reation of Virtual Private Net-works (VPN's) using suh tehnologies make it inreasingly unlikely that data willbe re-routed, unless some sort of tehnial problem ours. Furthermore, onne-tions between nodes on suh a network may have a given bandwidth alloation,whih makes slow start merely an ineÆient use of the available resoures.In addition to advanes in networking tehnologies, the physial layer upon whihTCP/IP operates, is now substantially more reliable than, ten years ago. Data lossor orruption due to physial error is now only likely every 10�6 pakets. The vastmajority of data loss is aused by network ongestion and overowing queues atthe router or swith. The major onern has therefore shifted from an unreliablenetwork to one whih is reliable, but highly and unpreditably ongested.



Chapter 1 11 Introdution and BakgroundThe objetives for TCPng are therefore to be more onerned with queue man-agement and eÆient retransmission, onnetion and reovery. However, muh ofthe network ongestion in e�et on the Internet will be ross traÆ streams whihmay, or may not be TCP friendly. The design of a next generation transport proto-ol must take into aount the diversity of traÆ on modern networks and behavefairly towards other users.There are two main de�nitions of fairness for transport protools, basi max-min fairness states that a protool should make maximal usage of available net-work resoures, but be able to share equally suh resoures amongst data streams.Given n onnetions operating on a given link, a state of equality would exist if thethroughput for eah onnetion was an equal share of the total link apaity. If anyonnetion were to inrease its throughput, it would be to the disadvantage of otherstreams in this situation.Alternatively, there is proportional fairness whih aims to maximise �R log�raording to a link's resoures, where �r is the rate alloated to a given TCP on-netion. Proportional fairness is a ongestion ontrol sheme in whih routing pri-ority is assigned to a given stream aording to the quality of servie assigned to,or purhased by, the user. In proportional fairness, every network resoure has a"prie" assoiated by the network administration. Users of the network are allo-ated network resoures aording to how muh they are able to "pay". The priealloated to eah resoure is adjusted in real time, aording to the urrent stateof resoure demand e.g. if demand is high, then the prie for a given resoure willinrease. The detailed proess and mathematial modelling an be found in [24℄,and [32℄.In addition to fair and onsiderate behaviour, a next generation transport proto-ol should be able to make full use of available network resoures. In a guaranteedQoS network, this may be reserved or alloated bandwidth. Given that suh reser-vations may be harged at a signi�antly higher rate than best e�ort servies, it isimportant for data to be exhanged in the most eÆient manner.



Chapter 1 12 Introdution and Bakground1.7 ObjetivesThe work presented in this thesis fousses on optimisations to the transport layer,whih yield greater performane in terms of suessfully transmitted data. Our aimwas to minimise lost data, while maximising overall throughput.The aim of suh optimisation is to update existing TCP protools in order forthem to funtion in aordane with forthoming network servies. Furthermore,tehnologies whih already exist on the physial layer mean that design onerns aresomewhat di�erent to those ten years ago. In summary, while ertain assumptionsan now be made with regard to modern networks, there are some very di�erentonerns with regard to ongestion avoidane and ontrol, partiularly with regardto real time and multimedia appliations.In order to address the issues faed by TCP and next generation transport pro-tools, this work will address several key areas:[K1℄ the survey of existing protool researh in order to identify key problem areas[K2℄ the evaluation of TCP modi�ations as a potential solution[K3℄ the design and simulation of an experimental protool, whih deploys proventehniques in bandwidth disovery, ow ontrol, and ongestion avoidane[3a℄ Connetion initialisation and startup[3b℄ Congestion avoidane and ontrol[3℄ Paket loss and reovery[K4℄ evaluation of the experimental protool against existing TCP implementationswith a variety of network traÆ modelsOriginal ontribution is made through modi�ations to the existing TCP Renoimplementation (referred to as C1) and with an experimental protool (C2), whihhas been designed spei�ally to address the issues mentioned above. C1 is addressedin setion 3.1, and C2 throughout hapter 3. Simulation of the resulting protool is



Chapter 1 13 Introdution and Bakgroundarried out in hapter 4 (C3). Further detailed analysis of our protool simulationsan be found in hapter 5 (C4).Chapter 2 disusses work whih is losely related to that overed in this thesis,namely publiations on TCP, related protools and ongestion avoidane algorithms.In order to address K1, variations on TCP's ongestion avoidane and slow startalgorithms are disussed, with referene to published work in this area. The bodyof this work is presented in hapters 3 through 4, where our experimental proto-ol, STTP, is desribed, tested and evaluated. The aronym, STTP, stands forShaped Token Transport Protool. K2, K3 and K4 are onsolidated in these hap-ters through simulation experiments. The rationale and design of STTP is overedin hapter 3, followed by performane testing and results in hapter 4. Chapter 3addresses K3 by desribing the algorithms used in STTP to address de�ienies inTCP when transporting modern Internet traÆ. Further disussion of the simula-tion results takes plae in hapter 5 with onlusions and future work in hapter6. K4 is disussed further in hapter 5, where simulation results from both NS andREAL are analysed, and their performane ompared.



Chapter 2
Related Work
2.1 Traditional TCPJaobson and Karels' key paper of 1988 [21℄ desribes how, in response to a onges-tion ollapse of the Internet in 1986, ongestion avoidane and ontrol algorithmswere inorporated into the transport ontrol protool (TCP) of the time.They desribe a "self-loking" protool whih uses windowed ow ontrol andpaket aknowledgements to gradually inrease the ow of data into a network. Thisontinues to the point at whih ongestion ours and data is lost, at whih timemultipliative derease algorithms are used to redue network load. This approahto ongestion ontrol is entral to TCP's ore algorithms and is operational in bothTCP Reno and TCP Tahoe, the most ommon ative implementations of TCP.The design of RFC 793 TCP (from the Jaobson and Karels' paper) is based onthe onept of "paket onservation" with TCP streams in "equilibrium". Equilib-rium is termed as the steady state in whih a new paket is not injeted into thenetwork until one has arrived at the destination node. In order to ahieve equilib-rium, a new slow start algorithm for onnetion startup was designed.Slow start was reated in order to kikstart the self-loking TCP algorithms.As TCP depends on the reeipt of aknowledgement (ACK) pakets to trigger therelease of new data into the network, there had to be some way of inreasing theow until it reahed equilibrium. Therefore, Jaobson and Karels' introdued a14



Chapter 2 15 Related Worknew slow start state to TCP. While in this state, TCP inrements its transmissionwindow (ongestion window, wnd) for every ACK that it reeives. To reah agiven window size W from slow start, RFC 793 TCP takes log2W round trips.This proess gives TCP the properties of a self-loking protool whih will regulateits transmission aording to the available network resoures. During slow start,TCP quikly inrements its transmission rate as data is reeived and aknowledgedby the remote host. Suh behaviour aims to redue paket loss during onnetioninitialisation.The TCP then sends the minimum of the ongestion window and the reeiver'sadvertised window (bu�er) size. This mehanism takes into aount the wide varietyand spei�ation of mahines on the Internet by not allowing a powerful host tooverload a less powerful one with oods of data. In this manner, Jaobson andKarels' TCP was able to resolve the issues of ongestion on the Internet of the time.A reeiver's advertised window size indiates the number of bytes available for dataat the reeiving end of a onnetion. Therefore, the transmitting side should notallow more than this amount of data to be unaknowledged at any time. To do sowould give a high risk of paket loss due to bu�er overow at the remote host.In this setion, we have overed the fundamental onepts of TCP, that it is a self-loking protool, whih guarantees data delivery and whih will reat to networkongestion in order to minimise paket loss. We ontinue with the examination ofalternative TCP implementations. An alternative implementation is a transmissionontrol protool whih has been designed with lear and distint riteria. Alterna-tive implementations are usually ompletely redesigned protools, whih derive fewalgorithms from standard TCP. Conversely, we will also disuss TCP variants. Avariant is an improvement on existing TCP whih aims to solve spei� problemareas, or to improve performane under ertain onditions.



Chapter 2 16 Related Work2.2 Alternative ImplementationsThe rapid expansion of the Internet (from the mid 1990s), both physially and interms of traÆ types has prompted a great deal of aademi and industrial researh.In partiular, the issue of streaming and interative, multimedia traÆ using UDPand proprietary transport layers.2.2.1 Real-Time ProtoolsOne suh highly suessful projet was that of RTP, the Realtime Transport Proto-ol. RTP is an IP-based protool whih supports realtime, multiast and uniast,audio and video streams. The essene of this work is published in RFC 1889 [45℄,whih spei�es RTP and RTCP, the framework's two main omponents.RTP provides timestamping, sequene numbering, soure identi�ation and pay-load format information. These �elds an be used by multimedia appliations toensure in-order, regulated playbak of audio or video streams. Furthermore, it ispossible to ombine suh streams and to synhronise their output using RTP's times-tamp.RTCP is the Real-Time Control Protool, a feedbak mehanism for Qualityof Servie (QoS) appliations. In onjuntion with RTP, this provides failitiesfor appliations to exhange administrative information, suh as the monitoring ofnetwork resoures.RTP was adopted by Netsape in 1996 for use in their "Netsape LiveMedia"audio/video streaming appliation. This led to further development in onjuntionwith Columbia University and RealNetworks to produe RTSP [46℄. RTSP, the Real-Time Streaming Protool, works in onjuntion with RTP and RTCP to provide asimple means of aessing remote multimedia servies. In many ases, RTSP is usedin onjuntion with HTTP to allow lients simple Web aess to stored multimediastreams.The RTP suite provides a great deal of useful funtionality to multimedia appli-ations, but relies on them to take appropriate ation on reeiving ongestion noti�-



Chapter 2 17 Related Workation. Furthermore, it does not expliitly provide any QoS failities but depends onlower network servies, suh as RSVP [9℄, to alloate resoures. It is therefore mostsuited to ATM or QoS-enabled IP environments where bandwidth and resoure al-loations an be ontrolled. However, both RealNetworks and Netsape have shownthat it an be used e�etively in a best-e�ort Internetwork.Table 2.1: Summary of Protool TraÆ SupportProtool Bulk Transfer Bursty TraÆ Multimedia TraÆ Interative Multimedia TraÆTCP Reno X X - -TCP Vegas X X - -Dual/Tri-S X X - -Paket Pair X X - -RTP - X X XTable 2.1 shows the transport protools overed in this hapter, and the traÆtypes to whih they are suited. Those based on traditional TCP (Reno, Vegas andDual/Tri-S) are most suited to bulk transfer (FTP, SMTP, NNTP, et.). PaketPair potentially provides greater support for bursty traÆ (HTTP, Telnet) due to itsrepeated estimation of the urrent network state using paket pair probes. However,only RTP provides true support for (Interative) Multimedia traÆ. Features suhas stream synhronisation are of great importane, partiularly for joint viewing orinterative sessions.In TCP's lifetime, many propositions have been made to subtly alter the be-haviour of ertain algorithms. In partiular, slow start has been the fous of muhattention. A variant of TCP is a protool whih is able to provide transport layerfuntionality, while exhibiting signi�antly di�erent behaviour to standard TCP.Variants of TCP often inlude experimental, or alternative, startup methods andongestion avoidane algorithms. Setion 2.2.2 will disuss variants of standardTCP. Conversely, a TCP modi�ation is an alteration to standard TCP algorithmsin order to improve performane under ertain network onditions. TCP modi�a-tions are disussed in setion 2.2.3.



Chapter 2 18 Related Work2.2.2 TCP VariantsWhile earlier TCP implementations used paket loss or timeout as their only india-tion of network ongestion, a great deal of work has been done to examine alternativemethods of deteting resoure availability. Given that TCP is an aknowledgementbased protool, the Round Trip Time (RTT) measurement taken whenever an ACKis reeived, has proven most useful when determining the state of the interveningnetwork [3℄ [38℄. Inreases in RTT, or drops in throughput over a given time period,an indiate an inrease in network ross traÆ. This leads to inreases in routerqueue length on a given path, thus a�eting a onnetion's end-to-end lateny.Slow Start and Searh, Tri-S [52℄, was proposed by ZhengWang and Jon Crowroftand uses variations in RTT to detet possible network ongestion. A normalisedthroughput gradient is alulated, whih represents the projeted throughput for aonnetion with a given ongestion window size. Should the gradient fall below apre-de�ned threshold, the transmission rate is dereased. However, if an inrease inthroughput is not making a signi�ant impat on the pereived network load, thenthe window is inreased at TCP's standard, linear, 1/wnd rate.In pratie, Tri-S's ongestion avoidane exhibits similar behaviour to otherproative systems. Its algorithms aim to redue delay, and therefore minimise routerqueues. The impliation of this is that router bu�ers su�er less ongestion, thereforedrop fewer pakets. This property of a proative system is a side e�et of sensingongestion by variation in RTT, but is dependent on threshold settings within theprotool.One potential hazard of using pre-de�ned thresholds is that a given value maynot be appliable to a wide variety of bandwidths or RTT's. For example, thresholdvalues whih yield the desired e�et on a 10Mb/s LAN are unlikely to funtion in thesame manner on a high lateny satellite onnetion. This is due to greatly inreasedlateny, whih a�ets the behaviour of ACK-based protools suh as TCP.A similar solution to Tri-S, the DUAL algorithm, was proposed by the same re-searh group in [53℄. DUAL uses traditional TCP timeouts to detet heavy networkongestion, in whih ase it redues the slow start threshold to 50% of its urrent



Chapter 2 19 Related Workvalue, and the ongestion window to a single segment. Under normal ongestionavoidane, it ompares eah RTT measurement and, if neessary, will make adjust-ments to its transmission rate every other round trip. If the RTT is sensed to beinreasing, the urrent transmission rate is redued. The reason for adjusting thetransmission window every other round trip is to prevent rapid utuation in therate of transmission, and to allow a more smooth estimation of network ongestionto be made due to an inreased number of data samples.This mehanism is ahieved by maintaining RTTmin and RTTmax variables,whih are initialised to a very large integer (out of the possible range for thisappliation) and zero respetively. When a new RTT measurement is obtainedthese variables are updated aordingly to store the minimum and maximum RTT'sexperiened on the urrent onnetion. If the new RTT value is greater than(RTTmin + RTTmax)=2, then the urrent window is adjusted to 7/8 of its urrentvalue. During the ourse of Wang and Crowroft's experimentation and simulation,7/8 of the urrent window size was shown to give "the best" ompromise betweenperformane and fairness to other data streams. We disuss the ompromise betweenperformane and fairness in setion 5.2.3, hapter 5.The aim of the DUAL algorithm is to redue osillation of TCP's window sizeafter slow start. This phase is where TCP Reno relies on paket loss or timeoutto detet network ongestion. Upon doing so, the window size is either redued by50%, or to a single segment, depending on the event. By deteting inreases in RTT,DUAL is able to redue its transmission rate before suh losses our. This avoidsunneessary timeouts or paket loss, hene reduing the amount of osillation andvariane in the transmission window.TCP Vegas [11℄ is one variant in whih the authors laim spei�, quantitativeperformane improvements over TCP Reno. A 40% improvement in throughputoupled with one �fth to one half the number of paket drops is ited in [11℄. TCPVegas's ongestion avoidane algorithms ompare the atual measured throughputwith an expeted value. The expeted throughput value is obtained using the ur-rent measured RTT and ongestion window size. Comparing this with the measured



Chapter 2 20 Related Workthroughput for the following RTT will give an indiation of the urrent state of net-work ongestion. This tehnique is also used in TCP Vegas's modi�ed slow startalgorithm, whih only inreases the ongestion window every other round trip. Thisallows throughput measurements to be taken and ompared with the expeted valuefor that size window. Should ongestion be experiened during slow start, TCP Ve-gas an move into the ongestion avoidane phase before paket loss ours. It isnoted by the authors that paket loss during slow start is ommon among TCPReno implementations. Should ongestion be enountered during the startup phase,the aggressive nature of this algorithm loses around 50% of the urrent transmis-sion window's pakets. Short, bursty, data transfers, suh as Web page omponentdownloads, will often spend 100% of their time in TCP's slow start algorithm. IfTCP is tranferring 1.5kilobytes in eah paket, a single Web page omponent of lessthan 10kilobytes will be ompleted in around six paket transmissions. For TCP,this is only three round trips. A more autious slow start algorithm an greatlyredue the number of pakets lost and retransmitted during the lifetime of a shortTCP onnetion.Vegas measures the atual throughput for a onnetion as the number of bytestransmitted in a given measured RTT. In a similar manner to DUAL, it also main-tains a reord of the minimum RTT (BaseRTT) experiened on the urrent onne-tion. The expeted throughput an then be alulated using WindowSize divided byBaseRTT. In ongestion avoidane, the di�erene between the expeted and atualthroughput is taken, and ompared with two threshold values, � and � where � < �.If the di�erene lies between � and �, no ation is taken. If the di�erene is below�, then linear inrease takes plae. If it is above �, then linear derease is enfored.In [11℄, several experiments were performed with di�erent values for both � and �and showed di�ering levels of throughput, timeouts and paket retransmission. Thee�et of inreasing the di�erene between � and � was to make the protool lesssensitive to variation in network ongestion. In order for a hange to be made toTCP's transmission rate, it has to fall outside either bound. If a protool beomesinsensitive to the urrent network state, then it is unlikely to take advantage of free



Chapter 2 21 Related Workbandwidth, or to redue its transmission rate when ongestion inreases. Brakmoet. al have published simulation results whih demonstrate this tehnique in [11℄.In her work with Expliit Congestion Noti�ation (ECN) [18℄, and Random EarlyDetetion (RED) [19℄, Floyd onduted experiments whih highlighted the bene�tsof alternative ongestion avoidane algorithms. In [18℄, TCP Reno was modi�ed torespond to ECN signals and is simulated on networks with routers employing REDalgorithms. RED employs a similar tehnique to that of Jain's DECbit [42℄, in whihrouter queue sizes are monitored and a ongestion bit set should they exeed a givenlimit. When marked pakets are reeived at the soure, TCP an then at on thisongestion feedbak with multipliative derease in its transmission (ongestion)window.The bene�ts of RED and ECN are omparable with that of pro-ative ongestionavoidane algorithms. Ation is taken by the transport layer prior to paket loss on aper-onnetion basis. The result is a derease in unneessary paket drops and timelyreation to the urrent network state. Suh bene�ts are quanti�ed in our experimentswith STTP in hapter 4. Our simulation results show that a transport protoolwith pro-ative ongestion avoidane is able to avoid paket loss, and ahieve paketgoodput omparable with traditional TCP, while transmitting signi�antly fewerpakets.2.2.3 TCP Modi�ationsIn ontrast to variant protools suh as TCP Vegas and alternative ongestion avoid-ane algorithms suh as DUAL, Tri-S et., there have been many attempts to im-prove TCP's performane with minor modi�ations. The most signi�ant of thesewere fast retransmit and reovery, desribed in RFC 2001 [48℄ and obsoleted by theproposed standards in RFC 2581 [4℄. In a note sent to the end2end mailing list byJaobson [22℄, he details modi�ations to TCP's ongestion avoidane algorithm.These modi�ations form the basis for TCP's fast retransmit and reovery meh-anisms. RFC 2581 lari�es and onsolidates many proposed hanges to TCP. Itre-spei�es the initial window size of a onnetion to be two TCP segments instead



Chapter 2 22 Related Workof one. This modi�ation will double the initial data transfer between two hosts,thus aiding the exhange of short bursts of data suh as Web page omponents. Therestart behaviour of an idle TCP onnetion is also re-de�ned in RFC 2581, as hav-ing to perform a slow start from the standard initial window size of two segments.The generation of ACK pakets is also spei�ed as adhering to the spei�ation laidout in RFC 1122 [8℄. A TCP reeiver should generate aknowledgements for at leastevery other full size TCP segment that it reeives. Furthermore, ACK's should bedelayed by at most 500ms.While suh modi�ations an signi�antly improve the performane of existingTCP implementations, the 1999 standards still adhere to traditional slow start anddupliate aknowledgement/paket loss ongestion indiators. RFC 2581 does referto experimental slow start mehanisms, suh as those outlined in RFC 2414 [37℄.Despite work in this area having been published, preise details were not inludedin RFC 2581. Furthermore, the work done on TCP Vegas and other proative on-gestion avoidane algorithms does not seem to have inuened urrent spei�ationsfor Internet transport layers.Work onduted by Allman, Hayes and Ostermann [2℄ examines the feasibility ofthe above slow start modi�ations. An inrease in TCP's initial window size to foursegments was shown to yield an 80% inrease in throughput for short onnetionsusing HTTP-like traÆ, ompared with standard TCP Reno. However, a side e�etof this more aggressive algorithm is a slight inrease in the paket drop rate, of 0.1segments per transfer. When used in onjuntion with the new reommendationsfor ACK generation, detailed in [4℄, a 150% inrease in throughput and one segmentper transfer in pakets dropped was noted.Further study in this area was onduted in [39℄, where further experiments werearried out using the NS simulator [5℄. Their onlusion was that an inreased win-dow size at TCP startup helped improve pereived TCP performane. In partiular,short data transfers will omplete more quikly, due to a larger initial window size.The matter of paket loss over low bandwidth onnetions was studied more loselyby Shepard and Partridge in [47℄. In their experiments, also with the NS simula-



Chapter 2 23 Related Worktor, they disovered that an inreased TCP window size of four segments was notdetrimental to the individual onnetion. Their results showed that a four-segmentinitial window size showed up to 30% performane improvement over the standardsingle-segment value. These results are disussed in RFC 2414 [37℄, in addition todisussing further related work. At this time, however, TCP implementors are re-lutant to impose a four segment slow start on the Internet. The reason for thisis that further study needs to be made of the potential impat to very large salenetwork performane. The body of this thesis is foussed on the design of a newtransport protool, and not on the modi�ation of existing TCP algorithms. Thereason for this deision is disussed in hapter 3.An alternative method of onnetion startup is addressed by Keshav in [26℄. Inthis work, the Paket-Pair Probe is proposed as a way of estimating the bottlenekbandwidth of a given onnetion. Its premise is that the delay introdued whenpakets are forwarded over the bottlenek link will be preserved and an be usedto disover the lowest link speed on a given network path. By transmitting paketsbak-to-bak, i.e. with no inter-paket delay, their spaing at the remote host anbe analysed to give a good indiation of the urrent path state. This method will bemore losely analysed in hapter 3, where it is inorporated as part of our protooldesign.Further researh has been done in this area by several groups. The Paket-PairProbe was used by Hoe in [20℄ to estimate a onnetion's bottlenek bandwidth.The probed value was then used to alulate the bandwidth-delay produt, thebyte equivalent of whih is taken to initialise the onnetion's slow start threshold(ssthresh). Performane improvements were seen when employing the probed valueover standard, default TCP settings. In partiular paket loss for short onnetions,suh as HTTP requests, was redued. This redution in paket loss also improvedoverall performane by eliminating unneessary timeouts during the startup period.In [38℄, Paxson disusses the Paket-Pair in great detail, and attempts to re-solve many of its shortomings through use of Paket-Pair bunhes and reeiver-sidebottlenek estimation. By using a number of pakets in suession, as opposed to



Chapter 2 24 Related Workonly two, the likelihood of paket loss is greatly redued. Furthermore, a more a-urate estimation of the bottlenek link an be taken using multiple probe values.In [38℄, Paxson onsiders the possibility of multiple hannels and routes for a TCPonnetion and onluded that by using "Paket Bunh Modes" (multiple probepakets) and reeiver-side alulations, the issue of multiple routes, load-balanedonnetions, and bottlenek hanges an be resolved.Further work in this area was onduted by Allman and Paxson in [3℄, wherePaket Bunh Mode algorithms were run on large network trae data sets of over11,000 onnetions. They onluded that using Paket Bunh Modes, in onjuntionwith reeiver-side bottlenek estimation, provides distint bene�ts to over 25% ofonnetions in their experiments.A similar approah was used by Ahlgren et al [1℄ where hains of one hundredpakets were transmitted between hosts in Uppsala (Sweden), Massahusetts (USA)and Cambridge (England). Their results orrespond with those of Carter and Crov-ella [12℄ and show stable estimations with trains of ten to �fteen pakets. Due to theinreased number of data samples, the auray of the bottlenek bandwidth estima-tion is inreased over standard paket-pair probing (whih uses only two pakets).Finally, the Paket-Pair tehnique is applied to dynami server seletion byCarter and Crovella [12℄. WWW doument data is dupliated aross a given net-work and when a request is made, the least ongested server/onnetion is seletedfor delivery. This seletion is made using a lightweight Paket-Pair probe, bprobe,whih sends at most 1% of the requested doument size in probe pakets. This limitis imposed in order to minimise the ongestion impat of paket probing in relationto real network data. Their experiments prove the funtionality of this method, andhighlight the bene�ts of dynami HTTP server seletion.2.3 High Speed NetworksThe range of physial and network layer tehnologies upon whih a onnetionmay run, has expanded greatly over reent years. This has prompted work in a



Chapter 2 25 Related Worknumber of areas, but partiularly the use of alternative ongestion avoidane al-gorithms. The need for these has been highlighted by tehnologies suh as ATM(http://www.atmforum.org) and Satellite onnetivity. When using suh tehnolo-gies, it is important to onsider their unique properties. In ATM, for example, itis possible that ongestion avoidane algorithms and bu�er alloations may on-it with the e�orts of the transport layer TCP [13℄. Furthermore, a wide varietyof network layers, means that TCP has to operate with varying degrees of paketfragmentation.ATM operates on �xed length 53 byte ells (48 bytes of data, 5 bytes of header),whih has been noted to ause problems for standard TCP implementations [6℄. Inpartiular, the loss of a single ATM ell will inur the retransmission of an entireTCP segment, when running TCP over IP over ATM. Due to the fragmentationof IP inurred when running over ATM, a single IP paket may onsist of tens ofATM ells. Similarly, a TCP segment may onsist of several IP pakets. Should asingle ATM ell be lost, then an IP paket will beome orrupt. This orruption alsoreahes the TCP layer, where an entire TCP segment will not math its heksumupon reeipt at the remote host. The reeiver will then be unable to aknowledgereeipt of the data and it will have to be retransmitted.Further problems arise with ATM when ongestion ours and ells are dropped.Should an individual ell be dropped, the impliation for IP pakets or TCP segmentsis muh greater. With part of its data having been lost, the remainder of thepaket in ight is essentially useless. Therefore, a great deal of work has beenarried out to address the issue of paket drop poliies in ATM servies. Amongthose most ommonly implemented in ATM hardware are Early and Partial PaketDisard (EPD/PPD), as reommended in [43℄. In PPD, an ATM swith will dropthe remained of a paket should any of its onstituent ells be lost. Conversely, EPDsuggests that entire pakets should be dropped before ongestion reahes a ritiallevel. In their experiments, it was shown that EPD gave higher overall performanedue to its bandwidth saving tehniques.However, it remains for the higher level transport protool to reover from any



Chapter 2 26 Related Workell loss at the ATM layer. A further problem arises due to many ATM onnetionsbeing given a guaranteed QoS onnetion. This implies that a ustomer may bepaying a premium fee for their network failities. Therefore, it is important tomaximise usage of the available bandwidth.With QoS in operation, a given onnetion may have pre-determined, alloatedbandwidth and guaranteed jitter/delay bounds. Therefore, any paket loss shouldertainly be transient in nature and fall within the spei�ation of the ustomer'sservie level agreement. Having a TCP, therefore, whih performs a lengthy timeoutand slow start under suh irumstanes, is not desirable. Provided the ell loss wasaused by transient network ongestion and not hardware or network managementissues, the TCP onnetion should resume transmission at the optimum rate as soonas possible.Mehanisms suh as Fast Retransmit and Reovery will ertainly help TCP inthe above situation, as they minimise the number of timeouts and help TCP tosustain the optimum transmission rate. However, should timeout our, furtheradjustments may be required in order to maintain the ow of data. In our work withTCP ongestion ontrol modi�ations, [49℄, this issue is addressed with modi�ationsto TCP's ongestion avoidane algorithms. A given TCP onnetion maintains anaverage ongestion window value, whih is used should it timeout and have to restart.TCP is then able to restore its onnetion at the rate prior to any paket loss withouthaving to go through slow start. Should ongestion persist, the TCP modi�ationmonitors the number of ACK's reeived after onnetion timeout and will drop bakto standard slow start if none are reeived within a given period.2.4 SummaryIn this hapter, we have surveyed work related to the evolution of TCP and alter-native transport layer protools. Our researh showed that a large perentage oftransport protool development was taking plae in produing alternatives to TCP,"TCP Variants". Work published by Brakmo et. al [11℄ introdued TCP Vegas



Chapter 2 27 Related Workand pro-ative ongestion avoidane algorithms to the transport layer. The resultspresented in the aforementioned paper show that pro-ative algorithms are apa-ble of signi�antly reduing the paket loss that a data stream will experiene onongested networks.Work onduted by Keshav [26℄ into paket-pair probing, allows a protool toalulate the urrent network bottlenek apaity on a given path. This value anthen be used to initiate transfer between two network hosts, at a rate whih isonduive to urrent network traÆ.At the appliation layer, inreased deployment and utilisation of bursty, Web-based appliations, has produed a requirement for appliation-foused Quality ofServie (QoS) [9℄. A side e�et of deploying QoS is that a given data stream may haveend-to-end bandwidth reservation and delay guarantees from intervening networkswithes and routers. At the very least, it will be assigned a queueing priority.This leads us to a oherent researh programme that investigates the potentialfor QoS support at the transport layer. Furthermore, we aim to provide a transportlayer protool whih exhibits lower paket loss than urrent TCP implementations,while maintaining paket goodput 1. Setion 3.2 in hapter 3 disusses the rationalebehind and bene�ts of this researh.Chapter 3 desribes our prototype transport protool and the environment forour simulation testing. The results of our simulations along with traÆ and topologyspei�ations are subsequently presented in hapter 4.

1Paket goodput is the rate of suessfully reeived pakets at a remote host. This is opposed tothroughput, whih is simply the rate of paket transmission from a TCP sender.



Chapter 3
STTP: Rationale and Design
In hapter 2 we outline a programme of researh whih addresses de�ienies inurrent transport protool (TCP) implementations. The aim of our researh isto improve performane while providing support for network Quality of Servie. Inorder to address the bursty nature of Web (HTTP) and multimedia data streams, theexperiments arried out in hapter 4 use real traÆ traes as input to transmittingsoures.This hapter disusses the design and implementation of our experimental pro-tool, STTP. The design work detailed here addressed ontribution C2, as outlinedin hapter 1. Our work with simulated and prototype network protools will bedesribed (setion 3.1) in addition to giving details of the simulation pakages used(setion 3.3). The rationale for our researh is explained in setion 3.2. We thenoutline the framework and implementation details of STTP (setion 3.5) and pro-vide seleted key performane results. Additional experiments, graphs and data anbe found in the appendies. The information presented here has been published in[49℄, [51℄ and [50℄, whih will provide the reader with further bakground detail ofour work.
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Chapter 3 29 STTP: Rationale and Design3.1 TCP Modi�ationsInitial work for key objetive areas K1 and K2 was foused on the improvement ofTCP Reno, the most ommon implementation of TCP at the time of writing. Thiswork is outlined by ontribution C1 in hapter 1. High bandwidth and Quality ofServie-aware networks an present the user with a reliable, sustainable alloationof bandwidth. The physial layer for suh onnetions is invariably �bre opti ablefor the majority of land-based ommuniation, or satellite/mirowave hannel formobile or air-based networks. In both types of network, paket loss is bursty andnot generally sustained due to prolonged ongestion.Standard TCP Reno will throttle its transmission rate and perform a slow startwhen paket loss ours or multiple dupliate aknowledgement pakets are reeived.In a high bandwidth environment, this an be damaging to the ommuniationstream between two hosts due to the time it will take TCP to resume transmissionat the rate prior to paket loss.Therefore, in [49℄, we proposed modi�ations to TCP Reno ongestion avoidanealgorithms whih addressed these issues. A feature was implemented to maintaina history-weighted average of the sender's ongestion window size. When the on-gestion window was updated, the average value would be re-alulated with, forexample, (0:1 � new window size + 0:9 � urrent average window value). The ef-fet of this weighting was to redue rapid utuation in the average window sizewhen bandwidth beame suddenly available or redued.The average window value was then used as the restart value when TCP Renoenountered paket loss. The protool was then able to resume transmission at theaverage window rate it had ahieved in the history of its urrent onversation. Inorder to prevent further paket loss in ase of sustained ongestion, the algorithmwas engineered to fall bak to traditional ongestion avoidane tehniques shouldpakets not be aknowledged after a restart had taken plae.These modi�ations were simulated in the REAL simulation pakage (see subse-tion 3.3.1). Results showed a performane inrease of up to 46% in highly ongested



Chapter 3 30 STTP: Rationale and Designonditions, using lengthy, sustained, transfers of FTP data. Tabular and graphedand simulation data is available in [49℄. In this report, we propose extensions toTCP ongestion ontrol whih, on a ongested network result in signi�antly betteruse of available bandwidth by eliminating the requirement for a slow start with eahTCP restart.Mehanisms are implemented whih enable the sending TCP to restart its dataow at a suitable level for the urrent onnetion. A fallbak mode is providedto prevent the soure from overloading intervening routers should ongestion besuÆiently high.Rigorous testing of the new algorithms was undertaken using the REAL networksimulator and various benhmark senarios. In addition to the benhmark senarios,further models were developed in order to simulate real-world situations.Over the suite of tests, our modi�ations showed on average a 20-30% speedinrease over REAL's standard TCP-RENO protool (whih is based on BSD'sTCP-RENO) with some soures showing up to a 100% improvement. In the worst-ase senarios, the modi�ed TCP funtioned at least as well as TCP-RENO.3.2 Rationale for ResearhIn reent years, a great deal of work has been onduted, aimed at addressing theissues posed by the transport of multimedia data with an inreasingly omplex pro-tool stak. Prior appliations inorporating bulk data transfer often involved asimple onnetion setup followed by lengthy (whole seonds or minutes) of TCPover IP ommuniation. The World Wide Web for example, is an objet-orientedenvironment, in whih the user is normally required to download several ompo-nents in order to view a single page item (HTTP objet). With the urrent HTTPspei�ation, this results in several short downloads, eah requiring a separate TCPonnetion. On a high-bandwidth onnetion, the download time for eah ompo-nent may be below one seond inluding setup and tear down.In [49℄, we examined the most ommon existing TCP implementation, TCP



Chapter 3 31 STTP: Rationale and DesignReno, and disussed ways in whih it ould be improved to aommodate highspeed and networks with support for Quality of Servie. However, the frameworkitself, with exponential slow start and lossy, reative ongestion avoidane, ouldnot be improved without substantial redesign.Therefore, our studies led to further pratial examination of this area. Webelieve that there exist a number of improvements whih an be made to the generalpro�le of a transport layer onnetion. Namely, the startup phase and the protool'sreation to network ongestion. This work is outlined in area K3 of our thesisobjetives in hapter 1.Our work in both ow ontrol and network bandwidth probing [50℄ [51℄ showedus that more suitable mehanisms were available for bursty, multimedia traÆ. Thetoken buket model allows bounded burstiness, but with a mean transmission ratebeing enfored over a given time period. Data may be transmitted from an STTPsoure provided that there is redit in the token buket. If not, transmission willommene when suÆient redit has been aumulated. Credit is added to thebuket in regular "drips" from a timed soure.Provided suh a model an be initialised with values whih will not overload anetwork path, or hinder data transmission, it would appear to be well suited forow ontrol in high speed networks with bursty traÆ pro�les. Furthermore, therelatively simple parameters of the token buket model mean that the rate at whihtransmission ours an be adjusted in real time to take into aount variation innetwork ongestion. The buket's burst size is an integer value, representing thenumber of tokens it is apable of holding, and the mean ow rate is a timer valuefor the introdution of new pakets to the holding area.In order to initialise the buket with appropriate values, we draw on Keshav'swork with paket-pair bandwidth probing [26℄. This allows us to initialise the tokenbuket parameter with suitable values in roughly a single round trip time.One established, a modi�ed pro-ative ongestion avoidane algorithm is usedto adjust the ow rate and burst size of the token buket. Using measured paketround trip times, we an sense variation in queuing delay and make proportional



Chapter 3 32 STTP: Rationale and Designadjustment to a onnetion's ow parameters.The result is a exible transport protool whih is apable of quikly and in-telligently measuring the available bandwidth on a network path. It an instantlyproeed to transmit bursty data whih is bounded by the urrent network apaity.However, over a given period, it will exhibit fairness with a mean ow omparablewith that of ompeting onnetions. We demonstrate this funtionality in hapter 4,setion 4.2.2, where STTP, TCP Reno and TCP Vegas are simulated in the REALnetwork simulator.3.3 Network SimulatorsIn order to experiment with alternative algorithms under a wide variety of senarios,we eleted to use network simulation software. Our requirements for suh softwarewere relatively demanding sine we needed full ontrol over and aess to the simu-lator ore. Therefore, our options were limited to the freely available pakages fromother researh groups or networking projets.Network simulation software was hosen for its ability to onstrut a wide rangeof topologies with a variable number of ommuniating hosts and routers. Networkhosts an then be on�gured to transmit a range of traÆ types, from FTP, HTTP,Telnet through to mathematially distributed data pro�les, suh as the poisson andexponential models. Similarly, most urrent simulators will allow the user to providetheir own traÆ traes whih an then be used by a network host to provide inputfor its data transmission.The ability to onstrut suh networks is of great value when examining ordesigning network protools. If only a single LAN topology were available, thenthe user ould not be ertain of the protool's performane on wide area or lowbandwidth networks, or under high ongestion.A network simulator suh as NS [5℄ or REAL [25℄ an provide these failities,but is only as reliable as its internal models and program ode auray. It is alsodiÆult for designers to model the random traÆ patterns and true burstiness of an



Chapter 3 33 STTP: Rationale and DesignInternet. Published protool work at this time relies mainly on mathematial andsimulation models. Not everyone hooses to progress through to the implementationand prototyping phase. The results from our simulation work with STTP, shown inhapter 4, demonstrate how e�etive and onsistent network simulation has beome.3.3.1 REALWhen work began on this thesis in 1996, there were few pakages stable and de-veloped enough to enable rigorous testing with reliable protool suites. At thistime, the REAL simulator version 4.5 [25℄ was widely used, well doumented, andhad been the foundation for signi�ant published work [26℄, [27℄, [28℄, [30℄, [31℄,[29℄. REAL is based on the NEST 2.5 (ftp://ftp.s.olumbia.edu/nest/) simulationtestbed and was used as the basis of the NS simulator reated by Floyd and othersat the University of Berkeley [5℄.The simulator itself is written entirely in C, but the user desribes networktopologies using a simple desription and sripting language. This is a simple, yeteÆient approah whih has been employed by many simulation pakages in thepast. Version 4.5 of REAL was used by many researh groups for simulation exper-iments. However, Version 5.0 released in 1997, introdued several new features ando�ered signi�ant speed improvements. The majority of our work was ondutedusing version 4.5 of the software and while it was relatively simple to port develop-ment ode between releases, we ontinued to do so after 5.0 was available. Despite5.0 o�ering more features, extensive use of the new ode showed 4.5 to be bothmore stable and less prone to errati behaviour. Our results from version 4.5 wereon�rmed by further experimentation in NS.STTP was implemented in C as part of the REAL ore simulator. One ompiled,we were able to experiment with it alongside TCP Reno using user-side sriptedsenarios.



Chapter 3 34 STTP: Rationale and Design3.3.2 NSIn ontrast with NS, REAL does not allow further funtionality to be inluded inits user-side sripts. These are used simply to desribe the network topology andevents whih will take plae during the ourse of the simulation.NS began as a variant of the REAL simulator in 1989, but did not see signi�antdevelopment e�ort until the late 1990's. Version 2.0 was released on September10th 1997. The urrent release at the time of writing (1999), 2.1b5, was used for oursimulation experiments. NS development is progressing, and further releases shouldnow be available to the reader.NS is an event-driven simulator, whih onsists of C++ ore methods, whihinterfae with an objet-oriented Tl (oTl) shell. This powerful framework allowsthe user to implement both network topologies and additional funtionality throughmethods and proedures in oTl sripts. For example, in order to monitor thebehaviour of spei� variables within a protool, the user has only to present thesevia the oTl interfae in the protool's ore C++ ode. An oTl simulation sriptis then able to read and manipulate these variables during runtime.The impliation of this is that experimental prototypes an easily be reated (us-ing oTl rather than a full C++ implementation), by alling on features or methodsalready implemented in the simulator ore. However in order to reate or modifyfully funtional network protools, it is better to build them in C++. The reasonfor this is that while an oTl prototype may be quik, it is not as integrated nor anit o�er the same level of funtionality as a full implementation.Variables and methods are made available to user-side sripts through the oTlinterfae, whih onsists of C++ funtion alls from the oTl libraries. It is thereforepossible to allow or deny user aess to protool data as required. While this doesfailitate program debugging and monitoring, the interfae is relatively omplexand not as intuitive as that of REAL, for example. Due to the inlusion of oTl,both on the user-side and as funtion alls in the C++ ode, the learning urvefor NS is quite steep. One overome, however, it provides a powerful and exiblesimulation environment. The NS simulation model of STTP is implemented entirely



Chapter 3 35 STTP: Rationale and Designin C++, but presents many variables to the oTl interfae. This permitted us totrae important variables suh as the Congestion Window size during the simulation.3.3.3 Simulator ValidationBoth REAL and NS are provided with a large olletion of validation and benh-marking user sripts. NS, in partiular, performs self validation as part of the buildproess.A detailed set of sripts are provided, whih test appliation, transport, routingand link-layer protools. The simulator is run using known input values and theoutput ompared with known, valid results. The validated set of protools extendsto all ommon Internet standards, with a smaller set of non-validated, yet workingode. As new builds of NS and its protools are produed, the pakage is validatedby its maintainers on a variety of platforms. The user is noti�ed should NS failto validate any of its protools during the build proess. This proess was usedto validate the funtionality of TCP Reno and TCP Vegas for the purposes of oursimulation experiments.Keshav modelled and desribed REAL in great detail, in [25℄. For many years,REAL was one of the premier network simulators in the aademi ommunity, onlynow supereded by NS (whih is derived from REAL).Both simulators have been used extensively by other researh groups and haveformed the basis for a great deal of published work. The REAL simulator was de-signed and validated as part of Keshav's thesis [27℄. NS is urrently being used bymany PhD researh students and networking groups. Full doumentation and exam-ple program ode for NS an be found at http://www.isi.edu/nsnam/ns/. Publishedbakground information on NS an be found in [5℄.3.4 Framework/AlgorithmsSTTP itself is a reliable transport layer, intended for use on IP networks in plae ofTCP. The algorithms, however, are portable and ould be used over any data-link



Chapter 3 36 STTP: Rationale and Designlayer.The aronym, STTP, stands for Shaped Token Transport Protool. This is takenfrom the design of its ore algorithms, whih are entered around the use of tokenand leaky bukets, used to shape the ow of data from a transmitting networkhost. By initialising these bukets with appropriate values and maintaining themin aordane with the urrent network state, we are able to provide a shaped owof data. It is antiipated that this ow will be more onduive to the support ofQuality of Servie (QoS) network appliations.We therefore have three main areas of onern, detailed below in paragraphs3a-3:3a An STTP onnetion is initialised with a dual-paket probe from thetransmitting host to the reeiver. This will inform the host of an inoming onnetionand allow it to prepare input bu�ers and start appliation server funtions. Theprobe onsists of two pakets, transmitted bak-to-bak, whih are used to measurethe bottlenek bandwidth on a given network path. This is desribed in detail insubsetion 3.4.1.Provided that the Maximum Transfer Unit (MTU) of the path is known, we arenow able to alulate the speed at whih new pakets an be put onto the link inorder to �ll the available bottlenek. The result of this alulation is used to triggerthe release of tokens into a token buket. The funtionality of this ow ontrolmehanism is desribed in subsetion 3.4.2.3b The token buket mehanism is used as a exible replaement for TCP'sCongestion Window. This addresses key area K3 of our objetives. We are ableto modify the ow of tokens into the buket in real time as we reeive networkongestion information bak from aknowledged pakets. In order to ahieve this,we use a pro-ative mehanism as desribed in subsetion 3.4.3.Our algorithms monitor the round trip time (RTT) of transmitted data, andrespond to inreases or dereases in network lateny. STTP is an aknowledgedprotool, whih means that eah paket reeived at a remote host will generate asmall aknowledgement pakets. This is returned to the transmitting host as proof



Chapter 3 37 STTP: Rationale and Designof reeipt. These pakets are generated and returned immediately by the remotehost.If a onnetion's RTT falls outside a bounded window when ompared with pre-vious measurements, then the token buket's timer is modi�ed aordingly. Forexample, if the RTT should inrease, then this an be interpreted as ongestion onthis onnetion's network path. We an therefore derease the rapidity of the tokenbuket timer in proportion to this hange. The result is redued paket transmis-sion in line with the ongestion urrently being experiened. Similarly, if the RTTdereases, we an inrease the rate of paket transmission.3 In the ase of paket loss, or multiple dupliate aknowledgement pakets,STTP adopts the same approah as TCP Vegas, by reduing its transmission rateby 10%. This addresses item K3 of our objetives. However, as an be seen in ourexperimental results, STTP drops far fewer pakets than either TCP Reno or Vegas[51℄.3.4.1 Paket-Pair Bandwidth ProbingWhile TCP Reno's standard slow start algorithm ould have been used, past researhhas shown it to be lossy and poorly suited to multimedia appliations [16℄. Paket-pair probing tehniques have been examined in work by Keshav [26℄ and others overreent years. While there are some reservations as to its use in ertain networkon�gurations, our work has shown it to be reliable in almost all ommon ases withboth traditional and urrent traÆ pro�les. It has been reported that paket-pairreliability is redued when using ertain types of router queueing algorithm andnetwork link asymmetry [26℄. Keshav desribes a senario where traditional FirstCome First Server (FCFS) router algorithms present problems to paket-pair net-work probes. If a single soure were to send a large burst of data to an FCFS router,then aording to the sheduling algorithm, it would reeive a higher priority of ser-vie than ompeting ows. This is due to the transmitting soure sending a largenumber of pakets in quik suession, whih will be queued and proessed in orderby the router. In [26℄ Keshav reommends that Weighted Fair Queueing (WFQ) is



Chapter 3 38 STTP: Rationale and Designmore appropriate for use with paket-pair network probe tehniques. This algorithmavoids the problems assoiated with FCFS by preventing a high-bandwidth sourefrom monopolising a router's proessing apaity. Keshav reports that paket-pairalgorithms an be adversely a�eted by heavy traÆ at a FCFS router due to theinonsisteny in servie rate, whih is aused by high-bandwidth data ows fromompeting soures. He argues that WFQ provides paket-pair with a more realistiview of the network state due to eah ow being assigned a priority within a router'sservie model. Eah ow will therefore reeive its fair share of routing resoure.Allman and Paxson examine paket-pair in [3℄, where the issue of asymmetrinetwork onnetions is disussed. Additional modelling and theory behind paket-pair probing is presented in detail in [26℄, [27℄ and in our own work, [50℄, [51℄.Simply put, one an transmit two pakets bak-to-bak along a given networkpath. Given that we know the paket size, the amount by whih they are separatedby queueing delay at the reeiver allows us to alulate the urrent bottlenek linkapaity.The formula used to alulate the bottlenek bandwidth on a given onnetionis:bottlenekapaity(bits=seond) = PaketSize(bits)=InterarrivalGap(seonds)The proedure for initialising an STTP onnetion is therefore quite simple. Twopakets are transmitted bak-to-bak, i.e. queued and transmitted as lose togetheras the network adapter driver will allow. When reeived by the remote host, theyare simply ehoed bak to the reeiver without delay. When the pakets arrive bakat the sender, the gap between their arrival is measured and used in the abovealulation.This method is termed sender-side bandwidth probing by Allman in [3℄. Whenusing asymmetri onnetions, or multiple bonded hannels, it would be advisableto use reeiver-side measurement. An added advantage of this, as disussed byAllman in his work and Keshav in [26℄, is that the probability of error is halvedwhen using only the inward or outbound path. For the purposes of our simulations,



Chapter 3 39 STTP: Rationale and Designwe have used only sender-side bandwidth probing. The reason for this is that oursimulation topologies do not inorporate asymmetri links, and while the bene�tsof reeiver-side measurement will ertainly yield better results in real networks, ourimplementation of the paket-pair probe proved to be reliable and aurate.The bottlenek measurement an then be used to alulate an appropriate burstand feed value for a onnetion's token buket. During our experimentation, weused a variety of methods whih will be disussed later in this setion.3.4.2 Token Buket Flow ControlOne a network onnetion's bandwidth has been disovered, a token buket an beinitialised with an appropriate ow of tokens and initial burst size. For our work,the standard � � � model has been used, where � is the apaity of the buket (aonnetion's maximum burst size) and � is rate at whih tokens are permitted toenter. At any time, an appliation is only able to send data if there are tokensin the buket. In our simulations, we used �xed paket sizes and therefore madeeah token in the buket equal to a single paket of network data. In a kernelimplementation, however, it may be advisable to use an integer value for the buketand allow variable-size pakets to be transmitted. This would aommodate smalllient requests to a remote server. In order to sale the token buket in aordanewith the urrent network state, both the ow rate and burst size must be altered inreal time.During our simulation experiments, we used two distintly di�erent approahesto token buket management. The �rst, and initial implementation, did not rely ontraditional timers to trigger the release of tokens. Instead, we used a mehanism bywhih the aknowledgements reeived at the sender were added to a leaky buket.The leaky buket was then responsible for feeding tokens to the token buket at theurrent bottlenek rate. Our leaky buket implementation inremented its urrentvalue with eah new ACK paket reeived. With the advent of a timer event,the leaky buket is deremented and the token buket inremented to indiate thetransfer of a token.



Chapter 3 40 STTP: Rationale and DesignThe problem with this approah is that it requires the token buket to be ini-tialised with an appropriate number of tokens. These are needed to kik start theSTTP onnetion by providing a number of tokens to the newly opened onnetion.When in operation, the number of tokens in operation an be inreased or dereasedaording to the urrent state of network ongestion. A further variable for tuning isthe ow rate of the leaky buket omponent as this is responsible for the smoothingof token ow.The advantage with this mehanism is that tokens will only be fed into thetoken buket if pakets are being suessfully reeived and ACKs generated. Shouldthere be a sudden inux of network ongestion and ACK pakets do not arrive atthe transmitting host, then STTP will not blindly injet pakets into an alreadyongested network.The seond approah used was that of a traditional token buket, whih injeteda token into the buket with eah timer event. The timer was initialised to the raterequired to �ll the probed bottlenek onnetion. For example, a 64kbps bottlenekonnetion would yield a timer that generates 64000/paketSize(bits) events eahseond. Eah time an event ours, redit for one paket transmission is added tothe token buket.The latter was found to be the more elegant and appropriate solution. However,the di�erene in overall performane between the two in our simulations, was foundto be negligible. Due to the random nature of real network traÆ, we believe thata kernel implementation, and testing on a physial network would provide moredetailed data. The seond approah was a more aurate implementation of ourSTTP design, and so was used for the experiments in hapter 4.3.4.3 Congestion AvoidaneResearh has shown that pro-ative ongestion avoidane is both fair and less proneto paket loss than traditional TCP Reno algorithms. Early work by Wang andCrowroft [52℄, demonstrated the bene�ts of this approah. However, the mostsigni�ant work in this area was onduted by Brakmo et. al in their implementation



Chapter 3 41 STTP: Rationale and Designof TCP Vegas [11℄. Their results showed signi�ant performane improvements overTCP Reno when onsidering overall throughput and paket loss.TCP Vegas made approximations as to the antiipated throughput that wouldbe ahieved in a given time period (one Round Trip Time). If the atual throughputin this period was lower than expeted, then the protool took this as an indiationof network ongestion. It therefore redued its transmission rate aordingly. Con-versely, if atual throughput was higher than expeted, then the transmission rateis inreased.This approah to ongestion avoidane also lends itself to token buket owontrol. Rather than modelling the expeted and real throughput values, we hoseto monitor the �rst order statisti of onnetion Round Trip Time (RTT).When an STTP paket arrives at the reeiver, an ACK paket is generated andreturned to the sender. A single RTT is the time it takes for the data to arrive atits destination plus the time for the relevant ACK to reah the sender.A lear indiation of network ongestion, or outage, is an inrease in RTT. Thisis due to additional pakets being queued at routers along a given onnetion's path.Should router queues overow, then pakets will have to be dropped as they annotbe aommodated in router memory. In ontrast, TCP Reno does not sense networkongestion, and ontinues to send at its present rate until data is lost. It then reatsby reduing its transmission rate.In order to prevent rapid utuation in a onnetion's transmission rate, weprovide bounds to STTP's RTT monitor. For experimental purposes, we hose 5%,as this mehanism is also used by TCP Vegas. Therefore, if STTP sees a onnetion'sRTT hange by greater than 5% ompared with the last monitored value, it willredue both � and � by an amount proportional to the hange in RTT. Experimentswere onduted with values between 1% and 20%. However, with small values, theprotool beame too sensitive to variation in RTT, and vie versa with large values(greater than 10%). We found 5% to give the best ombination of sensitivity andstability for our experiments. The following funtion, alled eah time a new ACKis reeived, desribes the modi�ation of token buket depth (�) and ow rate (�).



Chapter 3 42 STTP: Rationale and DesignlastRTT is initialised to 0.0newRTT is set to the urrent measured RTTIF (lastRTT > 0.0)IF (newRTT > lastRTT*1.05)derease depth and flow of buketELSE IF (newRTT < lastRTT*0.95)inrease depth and flow of buketlastRTT := newRTTThis reation to RTT variation means that the ow of data from a STTP soureis saled in proportion to the available bandwidth on a given onnetion. We willdisuss the relative advantages and disadvantages of this approah in hapter 5.However, further to our work in [49℄, whih introdued the notion of smoothedwindow alulations, this tehnique is used in the real time manipulation of STTPdata ow, as this tehnique is outlined in setion 3.1 of this hapter.3.4.4 History Weighted Buket ManipulationIn [49℄, we developed a mehanism by whih a smoothed, average value for TCP'songestion window ould be maintained. The spei�s of this tehnique were dis-ussed in hapter 3, setion 3.2. Our simulation experiments showed that this teh-nique was required in order to prevent rapid utuation of window size in ongestednetworks. By maintaining a history-weighted ongestion window value, the e�et ofbursty network ongestion an be minimised, as TCP an attempt to restart at itsmean rate rather than with a single segment slow start upon paket loss or timeout.Our experiments with STTP in both REAL and NS, showed that this approahto transmission rate management was also appliable to token buket ow ontrol.Should the RTT of a onnetion hange by �5%, then a realulation is required. Ina similar vein to our TCP modi�ations, if high-bandwidth, bursty, ross traÆ isbeing experiened, then it may be short-lived, as most HTTP or multimedia transfersare. Therefore when alulations are performed, the urrent token buket values are



Chapter 3 43 STTP: Rationale and Designgiven a higher value, or weight, than those newly whih have been measured. Themethod we have used is to adopt two variables, � and �, where �+� = 1:0. � is usedfor the history weighting, and � for the newly measured value. Initial experimentsused a simple inrease or derease alulation whih was proportional to the hangein measured RTT.F = 1 + lastRTT=newRTT � = �F � = �FA history weighted alulation inludes terms where � and � are used to modifythe relative importane of these measurements.F = � + � � = �F � = �FThe e�et of using this tehnique is to redue utuation in token buket values.We found that high-bandwidth ross traÆ aused a sudden inrease in the measuredRTT of STTP onnetions. This resulted in a rapid redution in a given onnetion'stransmission rate. Conversely, when ompeting soures on a network ompletedtransmission, the measured RTT would suddenly redue. STTP would sense thisand inrease its traÆ ow aordingly. Partiularly in ases where on-o� or burstytraÆ soures were in use, this is undesirable behaviour.Rapidly utuating transmission rates are not network-friendly, nor desirablefrom a user perspetive with regard to appliation QoS. STTP therefore smoothsits transmission rate adjustments using the above tehnique. The details of ourwork with this tehnique are published in [51℄, but summary results are inluded inhapter 4, setion 4.2.2.3.5 Protool ImplementationWhile the TCP modi�ations desribed in setion 3.1 [49℄ were implemented in theREAL simulation pakage, the later stages of our researh were performed using NS.Due to the large amount of development urrently taking plae for NS, we foundthat its support of up-to-date network protools and tehnologies was far superior



Chapter 3 44 STTP: Rationale and Designto that of other simulation pakages. In order to test STTP with a broad range oftraÆ types, network on�gurations and TCP implementations, NS was an obvioushoie.A simulation prototype of STTP was implemented in the NS network simulator.The purpose of this was to implement our protool model in a familiar simulationenvironment. We were then able to test its funtionality and show that further workwould be valuable given initial performane results. The work done in [51℄ used NSas the algorithms and experiene gained in REAL were ported to the new simulationpakage.In both ases, standard TCP Reno was used as the basis of our implementation.By adopting the basi algorithms for paket proessing, transmission and retrans-mission, we were able to more faithfully test our adjustments and improvements.TCP has three basi setions to its program ode: Paket transmission, paketreeipt and timeout proessing. Paket transmission ensures that pakets are sentin sequene order and at a rate whih is in line with the bounds desribed by aonnetion's ongestion window variable. Paket reeipt proesses inoming ACK's,and is responsible for deteting out-of-order or dupliate pakets. When an in-orderACK is reeived, the appropriate adjustment to a onnetion's ongestion windowsize is made. This funtion will, however, note dupliate ACK's to a point wherefast retransmit is triggered, or a onnetion is restarted. When transmitted, TCPsegments have a timeout value assigned. Should this expire before the appropriateACK is reeived, telling of suessful delivery, then it is retransmitted and normallyaompanied by a slow start due to supposed network ongestion.In order to failitate our implementation, the retransmission and timeout odefrom TCP Reno was inorporated into the STTP framework. This provided an evenbasis for omparison when onsidering retransmitted or lost data. If any improve-ments were apparent, it was therefore due to our ow ontrol, ongestion avoidaneor startup algorithms.



Chapter 3 45 STTP: Rationale and Design3.6 SummaryIn this hapter we have addressed the design aspet of K3, as detailed in hapter 1.We have also overed the material related to C1 (setion 3.2) and C2 (throughoutthis hapter). The simulation of STTP (K3 and K4, resulting in C3), is presentedin hapter 4. The results of this experimentation is disussed in hapter 5 (K4 andC4).



Chapter 4
STTP: Testing and Results
In this hapter, we present results from network simulations using NS and REAL,with an implementation of our protool model, as desribed in hapter 3. This workis outlined as thesis ontribution C3 in hapter 1. We will proeed with detaileddisussion of the graphial and tabular results presented here, in hapter 5.This hapter omprises the funtional and subsequent performane testing of ourexperimental protool, STTP. Two simulation pakages are used, REAL and NS,whih provide a wide range of omparative protools and appliation traÆ types.STTP's algorithms were implemented and built as part of both simulation pak-ages. This allowed experimentation alongside other ommon variants of TCP, Renoand Vegas. The urrent de fato standard for TCP/IP networked systems is TCPReno. However, a great deal of work has been onduted into the researh, develop-ment and study of alternative ongestion avoidane algorithms suh as TCP Vegas.The resulting tehniques are beoming inreasingly ommon in a large number ofOperating Systems suh as Linux (http://www.linux.org).The REAL simulator does not have an implementation of TCP Vegas as partof its standard distribution. We therefore performed funtional testing of STTPagainst TCP Reno with bulk data ows. Further work with NS allowed more detailedperformane testing with TCP Reno, TCP Vegas and STTP, using di�erent traÆtypes. Tables 4.2 and 4.1 show a summary of the features of both NS and REAL interms of protool and traÆ type support. More detailed information an be found46



Chapter 4 47 STTP: Testing and Resultsfrom the projet development homepages (http://www.s.ornell.edu/skeshav/real/for REAL, and http://www-mash.s.berkeley.edu/ns/ for NS).Table 4.1: Summary of REAL and NS Simulator TraÆ TypesSimulator TCP Tahoe TCP Reno TCP Vegas Paket PairREAL x x - xNS x x x -Simulator FTP Telnet Statistial User TraesREAL x x x MPEG onlyNS x x x xTable 4.2: Summary of REAL and NS Simulator Protool SupportBoth simulation pakages allow the user to obtain statistial information regard-ing the number of pakets transmitted and dropped by eah traÆ soure. Giventhese values, it is possible to alulate the goodput for a given onnetion. Theterm goodput is used to desribe the rate at whih pakets have been suessfullyreeived at their destination. With a guaranteed delivery mehanism suh as TCP,the higher the goodput, the more eÆient the transport layer. A transport protoolwhih is reative to network ongestion and onservative with paket transmission,is likely to have a higher level of goodput than one whih is aggressive and eager toapture available bandwidth. This is shown in experiment 4.2.2, where a range ofvalues are simulated in NS with our STTP model.The majority of our more advaned simulation senarios were implemented inthe NS simulation pakage, due to the exibility that it o�ers in terms of usertraÆ types and sripting funtionality. Our work foused on the implementationand improvement of ongestion avoidane algorithms at the transport layer, and inorder to rigorously test our models, ustom sripts were developed during the ourseof our simulations. In partiular, we had the need to run bathes of simulationswith varying degrees of network ongestion. This was ahieved by running thesame simulation with an inreasing number of transmitting and reeiving nodes,whih were automatially added to the simulation sript �les between runs. Eah



Chapter 4 48 STTP: Testing and Resultssimulation would produe an output �le, whih ould later be parsed with a simplePerl sript, and input to Gnuplot for presentation.4.1 Testing STTP Network BehaviourIn this setion, simulation experiments are onduted with the REAL simulationpakage. The aim of this work is to validate the protool model and to ompareinitial performane with that of existing TCP implementations using simple datatransfer.Experiment # Demonstrates1 (setion 4.1.1) The funtionality of STTP's ongestion avoidanealgorithms and ow ontrol2 (setion 4.2.1) The performane of STTP with bulkdata transfers3 (setion 4.2.2) The fairness of STTP in omparisonwith TCP Reno and TCP Vegas4 (setion 4.2.3) STTP and TCP performane with VariableBit-Rate video soures5 (setion 4.2.4) STTP and TCP performane with burstyHTTP traÆ soures6 (setion 4.2.5) The performane of STTP, TCP Reno andTCP Vegas in a mixed protool environmentTable 4.3: Experiment Information4.1.1 Experiment 1, Funtional Testing using REALFigure 4.1 depits a network topology with several soures (transmitting nodes) anda single sink (destination node). The traÆ traverses two routers with all links being64kb/s apaity.In order to examine STTP's bandwidth probe and ongestion avoidane algo-rithms, six STTP soures were started at regular intervals (T=0,10,20..50). Theimpliation being that subsequent soures would be probing into a busy onne-tion and so have to ompete with other soures for available bandwidth. Similarly,
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keyFigure 4.1: Experiment 1existing traÆ would have to relinquish bandwidth in order to aommodate newsoures. Furthermore, eah end node has a dediated 64kb/s onnetion but whihis of the same apaity as the network's shared segments. This implies that anybandwidth probe will be required to probe bottlenek segments in the main networkand will always enounter links whih have a greater apaity.node transmits(pkts) [sd℄ drops(pkts) [sd℄ RTT(ms) [sd℄Reno STTP Reno STTP Reno STTP1 34.56 [19.52℄ 37.89 [17.55℄ 24.89 [38.17℄ 0 1.89 [3.00℄ 3.71 [1.9℄2 39.00 [15.99℄ 37.56 [17.08℄ 14.11 [23.05℄ 0 2.13 [3.43℄ 3.71 [1.9℄3 28.33 [20.27℄ 13.13 [2.48℄ 3.89 [8.54℄ 0 2.67 [2.81℄ 2.66 [1.19℄4 23.89 [15.52℄ 12.77 [2.95℄ 11.44 [17.15℄ 0 4.09 [4.95℄ 3.12 [1.95℄5 21.67 [16.31℄ 13.07 [2.97℄ 5.22 [11.11℄ 0 3.61 [4.73℄ 3.11 [2.49℄6 12.56 [17.30℄ 13.22 [1.63℄ 1.44 [3.74℄ 0 1.05 [2.23℄ 1.75 [1.65℄Table 4.4: TCP and STTP Performane SummaryTable 4.4 shows raw transmission, drop, retransmission and RTT data for bothSTTP and TCP Reno run on the same network topology and simulation model. Inall olumns, [sd℄ indiates the standard deviation enountered aross data samples.While TCP transmits a similar number of pakets to STTP, the atual goodput ofSTTP is signi�antly higher due to there being no dropped or retransmitted pak-ets. Partiularly soures 3, 4 and 5 in Appendix table 4.4 exhibit greatly improvedperformane, even when an error margin of �5% is taken into aount on our sim-



Chapter 4 50 STTP: Testing and Resultsulation results. It is important to note that the values given in these tables are theaverage over the duration of an experiment as the omplete results are too verbose toinlude in these pages. The methodology for eah of our experiments was to dumpall available data to a single �le. It was then possible to write Perl or Shell sripts,whih would extrat the information required for the tables and graph presentedhere. This proved itself to be a sound methodology, as we did not have to re-runsimulations to obtain further information, and all inter-related data was present ina single �le. While STTP shows few or no paket drops and retransmissions, TCPhas a higher transmission rate. This means that while TCP may transmit morepakets, this over-subsription by several soures inurs paket loss and results in alower overall throughput (goodput) after dropped data is taken into aount.STTP's improvement is due to aurate bandwidth disovery algorithms andproative ongestion avoidane. Our experiments show that STTP is able to initiatetransfer at a speed whih is appropriate to the urrent state of network ongestion.Furthermore, the results of every experiment show that STTP exhibits lower paketloss than TCP Reno on the same simulation topology. As the RTT of a soureinreases, STTP will bak o� its transmission rate so as to avoid bu�er ongestionat the routers. These results are supported by work done by the NRG at Arizona,when developing the TCP Vegas proative ongestion avoidane algorithms [11℄,[10℄.Figure 4.2 highlights a key feature of STTP. While the summary tables showaverage, per-ow statistis, we are able to see how eah stream performs over theduration of the simulation. Eah graph in �gure 4.2 follows the same format. Withsoures starting inrementally, eah bar represents the performane of a TCP orSTTP onnetion for a given time period. The x axis is segmented into intervalsfor the experiment at whih data was written to the output �le. We an thereforesee how eah soure performs as the simulation progresses and how new onnetionsa�et existing traÆ.It is interesting to note in table 4.4 that TCP has (in general) a muh higherstandard deviation than STTP in its transmission rate. This is highlighted in �gure
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10 20 30 8070605040 90 100Figure 4.2: Experiment 1: STTP and TCP Paket Transmissions4.2, where we an see large utuations in TCP's transmission rate, even when insteady-state ongestion avoidane. STTP, on the other hand, exhibits muh smallervariations in its ows and may therefore be onsidered a smoother traÆ soure.Considering data in table 4.4, the result of this smoother traÆ pro�le meansthat STTP has fewer paket drops and ould be said to be more router-friendly. Byreating before pakets are dropped, STTP does not try to send more pakets thana link is apable of holding. Conversely, if it detets a derease in RTT, STTP willinrease its paket transmission rate and take advantage of spare bandwidth.4.2 Performane Testing STTPSubsequent experiments were performed using the NS simulation pakage. We hoseto move our work to this pakage due to its expanded funtionality and support formodern network protools. TCP Vegas is inluded as part of NS's transport protoollibrary, in addition to rih support for user-de�ned data streams and trae �les. Inthis setion, we test STTP with a variety of di�erent traÆ types, inluding variablebit-rate and HTTP request traÆ traes.



Chapter 4 52 STTP: Testing and Results4.2.1 Experiment 2, Bulk Data Transfer using NSThe network topology used for the performane testing of STTP an be seen in�gure 4.3. Here, we have 1..n transmitting nodes and 1..n reeiving nodes. In eahase, node t1 transmits to node r1, node t2 to node r2 et. Similar topologiesare reommended by Keshav in his benhmark suite for the REAL [25℄ simulator,as they permit the rigorous testing of simulated protools through a ombinationof ongestion paths and dediated onnetions. The topologies in themselves aresalable to support many hundreds or thousands of sending and transmitting nodes,and ombine the ability to implement bottlenek links and ross traÆ in order totest a protool's ongestion avoidane algorithms.By varying the number of soures and the link bandwidths, we were able to reatea wide variety of senarios under whih to test both STTP and TCP Reno. Ouromparisons fous on TCP Reno and TCP Vegas, as a large amount of modeling andsimulation onduted in the past, provides a lear understanding of their positiveand negative attributes.
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Figure 4.3: Performane Simulation TopologyExperiment 2, the raw data for whih is depited in table 1 uses the same net-work topology as in previous simulations and bulk transfer, FTP soures. It does,however, over a large number of soures whih is varied from 10 to 200 and forthis reason, the bakbone link is upgraded from 0.5Mb/s to 2Mb/s. Similarly, toaommodate the additional traÆ, the port bu�ers were inreased from 64kB to128kB. These modi�ations were required to prevent massive paket loss with ahigher number of soures.Simulations were run with between 10 and 200 soures, inremented by 10 soures
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Figure 4.4: Experiment 2: TCP Reno, TCP Vegas and STTP Total Paket Trans-missionswith eah iteration. Eah senario was run with TCP Reno, TCP Vegas and STTP.The data depited in table 1 show how many bytes were transmitted, how manywere dropped and the mean, high, and low for bytes transmitted. Simulations wererun for 900 seonds.Figures 4.4, 4.5 and 4.6 show the information from table 1 in a graphial format.In eah ase, the number of pakets is plotted on the Y-axis, and the number oftraÆ soures on the X-axis. Eah graph ontains the information obtained fromthe entire suite of experiments, run from 10 to 200 soures for eah protool.From these graphs, it is lear that while TCP Reno and TCP Vegas have verysimilar pro�les, STTP transmits only 2.25e+08 (10 transmitting soures) to 2.3e+08(200 transmitting soures) pakets (�gure 4.4). Compared with the exponentialurve, rising to around 2.7e+08, shown by both TCP Reno and Vegas, this showsthat STTP is reating to network ongestion and restriting its transmission rate.Figure 4.5 shows that STTP also has muh lower paket loss, with between 0 (10transmitting soures) and 5e+06 (200 transmitting soures) pakets dropped, andas a result, has goodput whih is omparable to, if not better than, both of the
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Chapter 4 55 STTP: Testing and Resultsstandard TCP implementations (�gure 4.6).While the number of pakets dropped (�gure 4.5) is proportional to the numbertransmitted (�gure 4.4), the goodput of eah protool (�gure 4.6) is very similarabove 20 soures. STTP, however, shows less variation than the TCP implementa-tions.In summary, the results from this experiment show that while the overall goodputbetween TCP Reno, TCP Vegas and STTP is similar, STTP ahieves this standardof data transport with far lower paket transmission rates. This is a very positiveattribute, and will aid the user-pereived quality of servie by avoiding paket re-transmission and by minimising the end-to-end delay through smaller paket queuesat routers.4.2.2 Experiment 3, Protool Fairness of STTPTraditional Internet transport protools based on TCP Reno sense ongestion throughlost pakets or exessive delay in the network. They then respond using multiplia-tive derease in the ongestion window. Normally, this results in a 50% redutionin the transmission rate in order to allow other ompeting streams to obtain their"fair share" of bandwidth. While this approah eventually attains the goal of fair-ness among streams, it is a lossy and often aggressive method, as shown in ourexperiments.As the number of streams are inremented, lost pakets in TCP Reno onnetionsinrease at an exponential rate as data is lost in order to aommodate new streams.As desribed in setions 2 and 3, STTP uses a simpli�ed version of TCP Vegas'songestion avoidane algorithms. By monitoring inreases and dereases in pakets'Round Trip Time (RTT), it an sense pending ongestion and so adjust its paketow aordingly. This is done by proportional modi�ation of the token buket sizeand urrent token values. The result is muh lower paket loss as an be seen in theabove experiments.However, the disadvantage of STTP's ongestion avoidane mehanism is that itdoes not respond to new ows as quikly as that of TCP Reno. New TCP soures



Chapter 4 56 STTP: Testing and Resultsbegin transmission with an exponential inrease known as Slow Start. ExistingTCP onnetions will ontinue to send at their urrent speed until diÆulties areenountered and a redution (50%) is made. New soures are then able to "grab"a larger share of bandwidth. STTP, on the other hand, does not experiene suhpaket loss by aiming to avoid ongested queues.We will now assess the relative fairness of STTP ompared with that of TCPReno. Table 4.5 shows the results of further simulations onduted on the topologyshown in �gure 4.3. This time, simulations were run for 2000 seonds and all linkswere 128kb/s.In order to highlight the e�ets of our history-based ongestion avoidane al-gorithm, we have inluded simulations run on three di�erent implementations ofSTTP. These are shown in �gure 4.5 with "STTP �:�". When realulating thebuket size and number of tokens in operation, � is the weight assigned to STTP'sexisting values. � is the weight assigned to the result of new alulations. Forexample, if a 15% derease in RTT is deteted, the following alulation is used:buketValue = ((� * buketValue) + (� * (1.15 * buketValue))). The sum of �and � is 1.0 at all times.By shifting more emphasis to � the protool beomes more oriented towards theexisting network state and will reat more quikly to urrent events. However, byweighting the formula towards �, we obtain a more stable data ow whih is not soquikly a�eted by new onnetions.Table 4.5 shows results from a number of simulations using various weightingsand it is evident that 5:5 or 1:9 ratios provide muh better performane and fairnessthan more history-biased values. The fairness index laid out by Jain in [23℄, assigns avalue between 0 and 1 with Fairness = fA(x) = [Pni=1 xi℄2=Pni=1 x2i ; xi � 0. Usingthis formula to proess the results in table 4.5, we an see that for all experimentswith more than a single soure, TCP Reno yields an index of 0.99, as does STTP5:5. STTP 1:9 gives 0.99 (2 soures) and 0.98 (4 soures), and STTP 9:1, 0.84 and0.75 respetively. In this ase, an index of 1.0 is totally fair and 0.0, totally unfair.Traditional max-min fairness [14℄ states that given a set of limited network re-
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Protool Soure # #pakets transmitted #pakets dropped1 SoureTCP Reno 1 31980 0STTP 9:1 1 31980 0STTP 5:5 1 31980 0STTP 1:9 1 31985 02 SouresTCP Reno 1 16093 02 15924 0STTP 9:1 1 22899 02 9108 0STTP 5:5 1 16084 02 15918 0STTP 1:9 1 16081 02 15919 04 SouresTCP Reno 1 7773 772 8156 733 8244 674 8124 70STTP 9:1 1 13790 02 5464 03 6079 04 6699 2STTP 5:5 1 8181 02 7146 03 7943 04 8754 0STTP 1:9 1 7118 02 6949 03 9440 04 8517 0Table 4.5: STTP Fairness



Chapter 4 58 STTP: Testing and Resultssoures, bandwidth should be shared as equally as possible between ompeting on-netions. At the same time, maximal usage of the available resoures should bemaintained.Given the parameters of this simulation, the maximum number of 1000 bytepakets whih an be transmitted is 32,000. Table 4.5 shows that in single souresimulations, both STTP and TCP Reno use around 99% of this apaity by suess-fully transmitting 31980 pakets. In subsequent simulations, the link's resoures areshared between a number of greedy FTP soures running over the relevant transportprotool. In some ases, the total number of pakets transmitted exeeds 32,000,this is due to queueing whih has taken plae prior to soures being stopped att=2000.While neither TCP Reno, nor STTP onform preisely to max-min fairness,the results in table 4.5 show that through more aggressive, lossy ows, TCP Renoahieves more balaned ows. This is due to onnetions relinquishing large portions(50%) of bandwidth when data is lost and therefore allowing ompeting onnetionsto expand their transmission rate. STTP exhibits signi�antly lower paket loss andso only balanes its ows through variations in RTT.From the above experiment, we have shown that given a number of streams,STTP will fully utilise the available bandwidth. Using a 9:1 ratio, it is not as quikto reat to new traÆ as TCP Reno, however, it does so fairly and with far fewerpaket losses. The impliation of this is that fewer segments of data would have tobe retransmitted, and therefore give an improved pereption of servie quality tothe user.4.2.3 Experiment 4, Variable Bit-Rate Appliations usingNSOur third set of experiments were onduted using the same build and STTP im-plementation as in previous setions. The network topology used was that depitedin �gure 4.3, and used in Experiment 2.



Chapter 4 59 STTP: Testing and ResultsA protool's performane for onstant bit-rate, greedy soures, suh as FTP orSMTP transfers, is potentially di�erent to that when dealing with variable bit-rateor interative data streams. With a window-based ow ontrol mehanism, it ispossible for there to be delays in transmission of time-ritial data (with the Naglealgorithms, for example [35℄). STTP was designed with interative and bursty datain mind, so failitated by the use of token-buket ow ontrol, it is antiipated thatits performane in data delivery and paket loss will be an improvement over existingTCP-like protools.In order to test STTP's performane with variable bit-rate appliations, sim-ulations were run in NS using the aforementioned network topology. A suite ofsimulations were run with between 10 and 100 traÆ soures, eah iteration inreas-ing the number of soures by 10. Eah traÆ soure took input in the form ofa trae �le, obtained from http://www.researh.att.om/~breslau/vint/trae.html.This variable bit-rate stream is an NS trae of the Star Wars movie, and eah streamis initialised at a random point within the trae �le. Eah iteration of the simulationis sheduled to run for 900 seonds, with soures being added at 2 seond intervals.The resulting traÆ statistis are shown in table 2 and �gures 4.7, 4.8 and 4.9.In our simulations with variable bit-rate traÆ, STTP exhibits similar harater-istis to those in previous, bulk transfer experiments. Both the number of paketstransmitted and dropped is signi�antly lower than either TCP Reno or TCP Vegas.However, the goodput obtained is omparable, if not exeeding, that of TCP-basedprotools (�gure 4.9).In all experiments, the measurements for transmitted and dropped pakets weretaken from ore NS network monitors, not from within the protool implementationitself. This gives an independent monitor of eah protool's performane withoutthe possibility of distortion by a partiular implementation's internal ounters oralgorithms.In order to monitor eah ow of data, a NS Flow Monitor was attahed to thebakbone, bottlenek onnetion (see �gure 4.3), through whih all traÆ passes.For eah traÆ soure, the Flow Monitor reords transmitted and dropped pakets.
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Figure 4.7: Experiment 4: TCP Reno, TCP Vegas and STTP Total Paket Trans-missions
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Figure 4.8: Experiment 4: TCP Reno, TCP Vegas and STTP Total Paket Loss
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Figure 4.9: Experiment 4: TCP Reno, TCP Vegas and STTP Suessfully ReeivedPakets (Goodput)Plaing this monitor on the ingress ports to the bottlenek onnetion allows us toreord the network ativity of interest in these experiments. We were able to reordthe number of pakets transmitted and dropped by individual protool streams, andtherefore onstrut the tables and graphs presented in this thesis.4.2.4 Experiment 5, HTTP Appliations using NSThis set of simulation experiments with STTP in the NS simulator was ondutedusing a trae�le of real HTTP traÆ from the University of Leeds Virtual Si-ene Park servers. These HTTP servers o�er an interative Web interfae to arelational database. For further information, visit the projet's Web pages athttp://www.vsp.o.uk.In order to gather data, a mahine was onneted via a hub to the live VSP HTTPserver. This allowed us to apture all TCP soket port 80 requests arriving at theserver using 'tpdump' for a three day mid-week period. One aptured, we �lteredthe trae �le to give only inoming requests. A sript was then written to apture
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Figure 4.10: Experiment 5: TCP Reno, TCP Vegas and STTP Total TransmittedPaketsonly the paket interarrival gap and request size. This data was then enoded in NStrae�le format and used as input for the traÆ soures in this experiment. For thepurposes of this experiment, only the paket size and their inter-arrival gaps wererequired. The data was therefore anonymous.The bursty nature of interative HTTP traÆ is typial of present Internet ap-pliations, and allows us to test both ongestion avoidane mehanisms in additionto the behaviour of STTP's token-buket ow ontrol.The network topology and simulation on�guration are idential to that in Ex-periment 4, with suites of simulations being run with between 10 and 100 soures, fora duration of 900 seonds. Eah traÆ soure begins its transmission at a randompoint within the HTTP trae �le.Figure 4.10 shows the number of pakets transmitted for eah protool; Figure4.11 shows the number of pakets lost due to network ongestion; and Figure 4.12shows the di�erene in terms of data goodput.
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Figure 4.11: Experiment 5: TCP Reno, TCP Vegas and STTP Total Paket Loss
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Figure 4.12: Experiment 5: TCP Reno, TCP Vegas and STTP Suessfully ReeivedPakets (Goodput)



Chapter 4 64 STTP: Testing and Results4.2.5 Experiment 6, Mixed Simulation of TCP Reno, TCPVegas and STTPIn this simulation we ompare the performane of TCP Reno, TCP Vegas andSTTP running simultaneously on a given network with variable-rate data souresfor transportation.Experiment 6 was onduted using the topology depited in �gure 4.3, as usedfor other experiments in this hapter. The simulation was run with between 3 and99 transmitting / reeiving network nodes. The bottlenek link between routerson the network was set at 100Mb/s with 1ms lateny. Loal onnetions to bothtransmitting and reeiving nodes were on�gured at 10Mb/s with 1ms lateny.Transmitting nodes were equally divided between TCP Reno, TCP Vegas andSTTP (33 nodes running eah protool) and on�gured sequentially. The simulationsript started eah node in turn, two seonds apart, thus giving a roughly balanedpro�le of transmitting soures. The entire simulation ran for 900 seonds beforeterminating. All soures were therefore ative 200 seonds into the experiment. ThetraÆ soure used for eah transmitting node was the live HTTP trae �le, obtainedfrom the University of Leeds Virtual Siene Park Web servers. This traÆ typewould give a bursty pro�le, and would test the startup and ongestion avoidanealgorithms of eah protool.This experiments link speeds and latenies were seleted to approximate thebandwidth available to LAN users with ampus area onnetivity, and is designed totest high speed medium-area network performane. In partiular, this test allows usto observe the performane of TCP Reno, TCP Vegas and STTP in states of normalow, and ongestion. With fewer than 10 soures transmitting at full line speed, it isnot possible to �ll the bottlenek network segment. Eah transmitting and reeivingnode is onneted to the bottlenek link with a 10Mb/s link. Therefore, ongestionan only our when simulating more than 10 nodes. Furthermore, when ongestiondoes our, it will not be as heavy as in previous experiments, due to the inreasebottlenek link apaity. This is designed to test the interation between ongestion
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Figure 4.13: Experiment 6: TCP Reno, TCP Vegas and STTP Suessfully ReeivedPakets in Mixed Simulationavoidane algorithms as opposed to simply the way in whih eah protool will reatto extreme ongestion senarios.The goodput results for TCP Reno, TCP Vegas and STTP in this simulationsenario are presented in �gure 4.13. Initial performane �gures for TCP Renoand Vegas with between 3 and 12 soures are very similar. It is only when TCPReno's ongestion avoidane algorithms are ompeting with delay-sensitive ones inTCP Vegas and STTP, that TCP Reno begins to obtain signi�antly higher paketgoodput.Both TCP Vegas and STTP will proatively redue their transmission rate ifnetwork ongestion is sensed. TCP Reno, on the other hand, will only redue itstransmission rate if pakets are lost, or inur exessive delay. Therefore, TCP Renowill ontinue to inrease its transmission rate at the expense of both TCP Vegasand STTP. As an be seen from �gure 4.13, TCP Vegas and STTP follow a similartrend in their paket goodput as the number of soures inreases. Throughout theexperiment, paket loss is very low, at less and 1%, whih gives goodput whih isroughly equal to the number of pakets transmitted by a given soure.



Chapter 4 66 STTP: Testing and ResultsThis simulation shows us that proative ongestion avoidane mehanisms areunlikely to obtain a fair share of the available bandwidth on a given link whenworking alongside TCP Reno, or other legay IP transport protools suh as TCPTahoe.In order to ounterat the aggressive nature of TCP Reno's ongestion avoidanealgorithms, the parameters, as disussed in setion 4.2.2, ould be adjusted. How-ever, this leaves the proative protool in a situation similar to that of TCP Reno, inwhih it will behave in an aggressive manner towards delay-sensitive algorithms. Wetherefore onsider that future work in the area of intelligent ongestion avoidanealgorithms would be most bene�ial to this thread of researh. This topi is furtheroutlined in setion 6.3.4.3 AnalysisThroughout our simulation experiments, STTP has been onsistent in its perfor-mane. In addition to highlighting key features of the experimental protool, thisonsisteny and onformane with our algorithmi spei�ation also aids the vali-dation of the simulation pakages themselves. This hapter has seen the simulationtesting of STTP in omparison with TCP Reno and Vegas with a variety of traÆtypes. This ful�lls objetive K4 of our thesis objetives from hapter 1.Experiment 1 in setion 4.1.1 showed that in basi funtionality testing, STTPexhibited zero paket loss and smoother paket transmission, ompared with TCPReno, whih inurred signi�ant paket loss with even a single data-ow. Table 4.4shows how STTP's pro-ative ongestion avoidane was able to derease variation inits transmission rate (RTT olumn). Here, we an see that the standard deviation(sd) for STTP soures is up to 50% of that for TCP Reno in the same senario.Experiment 2 showed that STTP transmits up to 20% fewer pakets (�gure 4.4and exhibits up to 10% less paket loss (�gure 4.5) than TCP Reno and TCP Vegasin bulk data transfer simulations. Figure 4.6, however, shows that the goodputfor STTP in this experiment is within 1% of TCP Reno and TCP Vegas. This



Chapter 4 67 STTP: Testing and Resultsexperiment demonstrates that STTP is more eÆient than TCP Reno or TCP Vegas,as it is able to ahieve a omparable rate of goodput but with the transmitting nodehaving to retransmit signi�antly fewer pakets.Experiment 3 demonstrated that given a number of ompeting data streams,STTP will fully utilise the available bandwidth on a network path. We ran individualsimulations with STTP, TCP Reno and TCP Vegas streams, whih ompeted forbandwidth on a bottlenek link. While no protools entirely onformed to traditionalmax-min fairness, we alulated that the fairness index for TCP Reno and STTPwas 0.99. An index value of 1.0 is totally fair, and 0.0 totally unfair.Experiment 4 presented data from simulations with STTP, TCP Reno and TCPVegas, using variable bit-rate traÆ soures. In this simulation, STTP again trans-mitted up to 20% fewer pakets, with up to 10% fewer pakets being dropped in thenetwork. The goodput graph (�gure 4.9 for this simulation showed that all protoolsahieved the same (within 1%) level of goodput. From this information, we onurthat STTP is able to maintain its performane with variable bit-rate traÆ souresas seen with bulk data in experiment 2.Experiment 5 used HTTP trae �les to run individual simulations with TCPReno, TCP Vegas and STTP. The results show that all protools ahieve the samelevels of goodput (again within 1%), but this time with omparable levels of pakettransmission and loss.Experiment 6 ran ombined simulations with TCP Reno, TCP Vegas and STTPbeing used simultaneously on the same network topology. We disovered that bothTCP Vegas and STTP were adversely a�eted by TCP Reno's aggressive ongestionavoidane algorithms. This experiment showed (�gure 4.13) that proative onges-tion avoidane algorithms need spei� tuning in order to ompete with legay,aggressive protools.When ompared with TCP Reno and Vegas variants, we noted several majorimprovements in performane. These bene�ts are related to key area K3, 3a, 3b and3, as desribed in hapter 1.� Goodput omparable to that of TCP variants



Chapter 4 68 STTP: Testing and Results� Signi�antly lower paket loss� Lower number of transmitted pakets� Lower RTT and deviation measurements4.4 SummaryThe goodput of a onnetion, i.e. the number of transmitted pakets whih su-essfully arrive at their destination, is an aepted metri for the performane eval-uation of a transport protool. In the setion on Fairness (setion 4.5), we showedhow STTP's parameters an be modi�ed in order to make it more or less aggressivewhen reating to network ongestion. While an aggressive protool may initialiseits onnetions at a higher rate and be able to take advantage of newly availablebandwidth on a given path, it is also more suseptible to paket loss. In ompari-son with our standard STTP model, used in our main experiments, TCP Reno andVegas an be onsidered to be aggressive transport protools.In further experiments with varied traÆ types, TCP Reno and Vegas wereshown to ahieve a similar overall level of paket goodput to STTP, while havinginreased paket transmissions and loss. In a real world implementation, this wouldyield greater CPU utilisation by the reeiving hosts, as they would have to ontendwith re-ordering inoming pakets as lost data was retransmitted. The transmittinghost would inur additional overhead through inreased paket transmissions.Chapter 5 will go on to disuss our simulation results in greater detail.



Chapter 5
Disussion and Evaluation
In this hapter, we will disuss the results from our simulation experiments in hap-ter 3. Eah suite of experiments from funtionality and performane testing areonsidered in turn with fous being plaed on metris suh as paket loss, overallpaket goodput, and fairness.Experiment # Demonstrates1 (setion 4.1.1) The funtionality of STTP's ongestion avoidanealgorithms and ow ontrol2 (setion 4.2.1) The performane of STTP with bulkdata transfers3 (setion 4.2.2) The fairness of STTP in omparisonwith TCP Reno and TCP Vegas4 (setion 4.2.3) STTP and TCP performane with VariableBit-Rate video soures5 (setion 4.2.4) STTP and TCP performane with burstyHTTP traÆ soures6 (setion 4.2.5) The performane of STTP, TCP Reno andTCP Vegas in a mixed protool environmentTable 5.1: Experiment InformationTable 5.1 shows the experiments onduted in hapter 3. Our experiments wereentered around two main types of network traÆ. Firstly, traditional Internet ap-pliations, suh as FTP, generally transfer large quantities of data in a single bulktransfer. A separate FTP transfer is initiated for eah �le requested and generally69



Chapter 5 70 Disussion and Evaluationlasts for seonds rather than minutes. Seondly, modern appliations, suh as theWorld Wide Web (WWW), an use HTTP to transfer WWW page omponentsfrom an Internet server to the viewing lient. A given page may onsist of many in-dividual, small, omponents. User interation during a WWW session will thereforeimpat the network with bursty transfer of many page omponents. Furthermore,the arrival of broadband aess means that Internet users are likely to view an in-reasing amount of multimedia ontent. In partiular, movie and informational data(news broadasts, for example) form an inreasing perentage of Internet traÆ.Our simulation experiments therefore use three traÆ models. In order to ad-dress traditional Internet traÆ requirements, a bulk data transfer model (FTP) wasused. This model simulates a greedy traÆ soure, one whih always has data totransmit. Data will be transmitted as quikly as possible, and will not end untilexpliitly instruted to do so by the simulator. This traÆ model was used in ex-periments 1,2 and 3. A HTTP trae�le was used in experiments 5 and 6 in order toaurately represent HTTP transfers over the Internet. The ontents of this trae-�le were obtained using the method desribed in setion 4.2.4 of hapter 3. AnMPEG trae�le was used to simulate extended multimedia streams being arriedby a reliable transport mehanism. The soure of this trae�le is given in setion4.2.3. Experiment 4 examines the performane of TCP Reno, TCP Vegas and STTPtransporting bursty, variable bit-rate data.In order to address K4 and C3 (as detailed in hapter 1), the above simulationswere arried out using bulk data and bursty traÆ models. In this manner, wewere able to demonstrate the e�etiveness of STTP in omparison with urrentimplementations of TCP.In setion 5.1, we disuss the results of our experiments (C4), whih is sum-marised in subsetion 5.2.5. Setion 5.2 presents lessons learned during the ourseof our work, and general observations on protool development.



Chapter 5 71 Disussion and Evaluation5.1 Disussion of Simulation ResultsIn sustained FTP transfers, simulations of STTP showed that overall link utilisationwas at least as good as that of TCP. In most ases, STTP made better use of theavailable resoures due to its fast startup model, and paket-pair probing. Theonly ases in whih the prototype model of STTP was not suessful in obtaininga fair share of network bandwidth was when ompeting with aggressive ongestionavoidane algorithms, used in TCP Reno, or in ases of extreme ongestion. Thelatter ase posed a problem for STTP beause network probe pakets would be lost,and the prototype model was not programmed to re-attempt onnetion setup. Theability to disover available bandwidth and ommene transmission at a suitablerate meant that in a given simulation period, STTP ould transmit several morepakets than TCP by this method alone.Further advantages to STTP's transmission pro�le were gained by its proativeongestion avoidane algorithms. Whereas TCP Reno relies on aggressive transmis-sion and paket loss to disover ongestion, STTP was able to redue its rate beforesuh losses ourred. This resulted in signi�antly lower paket loss ratios for all theexperiments onduted in the ourse of our researh. In setion 5.2, we disuss howit is possible to modify STTP's parameters to give an aggressive, lossy protool,similar to TCP Reno.Due to STTP's default ongestion avoidane parameters being weighted towardsminimising queue lengths, the round trip times experiened in its onversationswere notably shorter than those of TCP Reno. The reason for this is that STTPwill derease its transmission rate if there is a signi�ant inrease in the measuredRTT's. By doing so, it prevents long queues from building up and hene reduesthe likelihood of paket loss. Conversely, TCP Reno will transmit at an inrementalrate until pakets are lost, or timeouts our.The result of this behaviour is that TCP Reno often experienes paket lossand leads to the famous "sawtooth" traÆ pro�le of a stable TCP soure. In thisstate, traditional TCP Reno will perform linear inrements to its ongestion to the



Chapter 5 72 Disussion and Evaluationpoint of paket loss or timeout. At this point, it redues its window by 50% andreommenes linear ongestion avoidane. It has been shown in many publiationsthat the "linear inrease, multipliative derease" algorithm is both fair and stable.The sawtooth behaviour of TCP Reno a�ets the RTT of its own, and ompetingonversations. As inremental ongestion avoidane advanes, the queue length ata given router on a onversation's path will inrease, hene steadily inreasing theRTT. When a onversation reahes its point of ongestion (and data is lost), itstransmission rate is halved, resulting in a drasti redution in the number of paketsqueued at any one time. With fewer pakets now queued, the RTT for onversationsusing a given router will now drop.5.1.1 Funtionality Testing with the REAL SimulatorFigure 4.4 shows this e�et in the standard deviation times for various TCP andSTTP onversations. In every ase, the standard deviation for STTP onnetions issigni�antly lower than that of TCP Reno under the same onditions. Furthermore,STTP exhibited zero paket loss in this experiment.The simulation topology used in Experiment 1 was designed to test a protool'sreation to ongested, bottlenek links. By adding soures at regular intervals,we were able to inrease the load on routers and network links, thus adding toexisting queues. As further onversations were added during heavy ongestion, wealso tested the startup algorithms for eah protool. A �nal objetive was to measurethe relative bandwidth alloation for eah onversation during the simulation.While �rst impressions may be that TCP has suessfully transmitted many morepakets during the simulation than STTP, the number of pakets dropped must alsobe taken into aount. For example, for onversation 1 of table 4.4, TCP Renotransmits on average 35.56 pakets, and STTP 37.89. On average, 24.89 of TCPReno's pakets were dropped by the network. STTP dropped 0 pakets. Similarly,in the later onversations, TCP loses a signi�ant number of its transmitted paketsthrough poor bandwidth management. STTP transmits fewer pakets but has asigni�antly higher overall goodput.



Chapter 5 73 Disussion and EvaluationThe behaviour of STTP in this ase shows better management of available net-work resoures and greater onsideration to ompeting data streams. Fewer paketdrops and retransmissions would lead to an improved Quality of Servie to the enduser, as a more onstant ow of data is maintained. Furthermore, suh a stableonnetion would allow easier management of the network by its administration asif saled aordingly, traÆ as a whole would be muh less bursty.5.1.2 Performane Testing with the NS SimulatorIn our experiments with NS, we examined the performane of STTP and TCPReno/Vegas. STTP ontinued to show many good harateristis suh as droppingfewer pakets and ahieving higher rates of goodput. An important feature of ourproative ongestion avoidane algorithm was also highlighted.One established, STTP uses variation in RTT to detet ongestion. If paketsare lost then it reats just as TCP Reno. However, with new STTP onnetionsprobing for available bandwidth and setting their transmission rate aordingly, ourresults show that fair alloation of bandwidth is not ahieved as quikly as TCPReno.The reason for this is STTP's startup mehanism. TCP Reno adopts a lossy,aggressive approah with its slow start algorithm. This has been identi�ed as ausingthe majority of TCP's paket loss during the lifetime of a onnetion [47℄. As TCPexpands its window (exponentially), other ompeting soures are fored to droppakets and bak o�. This ould be by 50% through ongestion avoidane, or to afull slow start if timeout ours. This allows the new soures to start up and obtaina share of the newly available bandwidth. While this tehnique is more onduiveto short-term bandwidth sharing, our results have shown it to be both bursty andlossy.Tables 5.2 and 5.3 present oarse grained results for two experiments, whih wererun in NS. There were 40 FTP traÆ soures, traveling over 10Mb, 1ms links. Thesimulation durations were 200 and 300 seonds aordingly with soures starting at�ve seond intervals. The network topology used for these experiments is the same



Chapter 5 74 Disussion and Evaluationas that depited in �gure 4.3. Eah table shows the number of pakets transmittedand dropped, grouped by protool.Table 5.2: Long Duration (200 seonds) STTP and TCP Reno - 40 souresprotool duration bytes Tx bytes dropped goodputreno 199.900 22407000 2613000 19794000sttp 199.900 21187120 1429640 19757480
Table 5.3: Long Duration (300 seonds) STTP and TCP Reno - 40 souresprotool duration bytes Tx bytes dropped goodputreno 299.900 33244000 3451000 29793000sttp 299.900 30167600 416240 29751360The tables show that TCP has a signi�antly higher rate of paket loss whenompared with STTP and therefore a higher rate of retransmission. Given this,we an onlude that STTP will make more e�etive use of available bandwidthin ongested networks by deteting ongestion before paket loss takes plae. It isimportant, however, to examine how eah individual stream performs.In setion 4.5 [50℄, we examine the issue of fairness more losely. The results ofrunning more lengthy simulations with ompeting soures were as antiipated. Giventime to stabilise, STTP ahieves levels of fairness omparable with that of TCP Renoin the same environment. This proess an be made faster through modi�ation ofSTTP's internal variables, whih will be disussed further in subsetion 5.2.3, andlater in setion 6.To onlude the simulation of STTP and its omparison with TCP Reno andTCP Vegas, a range of simulations was run with all three protools on the sametopology, while varying the number of soures from 10 to 200. Di�erent traÆ typeswere used; bulk transfer, variable bit-rate trae �le, and HTTP request trae �le.In Appendix table 1, it is evident that both TCP Reno and TCP Vegas transmita far greater number of pakets than STTP. However, given the data shown in �gure



Chapter 5 75 Disussion and Evaluation4.5, we an see that a relatively high perentage of this is dropped. The di�erenebetween the number of pakets transmitted and the number of pakets dropped, istermed the "goodput" of a onnetion. This indiates how many pakets suessfullyarrived at their destination. This is shown graphially in �gure 4.6.In all ases, STTP transmitted and dropped signi�antly fewer pakets duringthe ourse of the simulations. It did, however ahieve a omparable level of good-put. This indiates that STTP is able to transmit just the right amount of data tokeep a bottlenek onnetion full, while not being too ambitious. The advantages ofthis approah are numerous and inlude; STTP does not load routers with aggres-sive paket transmission, appliations using STTP will be given a better Qualityof Servie due to fewer transport layer frames having to be retransmitted, ompu-tationally expensive tasks suh as frame retransmission are less frequent than withexisting TCP implementations.In �gures 4.6, 4.9 and 4.12, STTP is shown to have goodput omparable withthat of TCP Reno and TCP Vegas. In many iterations of our simulation, it ahievesthe highest goodput of all the tested protools. This result should be onsideredin onjuntion with the graphs showing dropped pakets, �gure 4.5, 4.8 and 4.11.Given that the goodput of all protools is at least similar, STTP inurs far fewerpaket drops than other protools. The result of this is that the available bandwidthis used muh more eÆiently by STTP streams. We an therefore onlude that thealgorithmi framework adopted by STTP is more eÆient than that used by existingstandard TCP implementations. The framework within whih STTP was developedadds to our on�dene in these results. The design of NS is highly modular. In orderto implement STTP, only the algorithms diretly related to the transport layer weremodi�ed. In order to aid this design, the NS TCP Reno model was modi�ed toinorporate STTP's algorithms. The rest of the simulator was left untouhed.A fundamental onern with ow ontrolled transport protools is to ensure thatthey make good use of available bandwidth. With the advent of Virtual PrivateNetworks, where bandwidth is often reserved and guaranteed, a protool should beable to quikly utilise available resoures. However, it is also important to share



Chapter 5 76 Disussion and Evaluationthese resoures eÆiently between ompeting onnetions.Unfortunately, as the number of soures inreases, the inability of the Paket-Pair probe to alloate bandwidth in a ongested environment is highlighted. Withmore than 40 soures in operation, our detailed traes show that ertain STTP owswere only able to transmit two probe pakets of 40 bytes. In ases of high ongestion,either a probe paket is lost, or the result yields suh a low bandwidth that the tokenbuket annot be initialised with even a single full-size token. This behaviour is alsonoted in TCP Reno where, as the number of soures inreases, ertain ones are notable to suessfully establish a onnetion with the remote host.In our experimental implementation, STTP is not programmed to re-attemptonnetion in these ases, so suh ows do not sueed in onneting to their desti-nation host. There are several potential solutions to this problem. Firstly a Paket-Pair train ould be used, as disussed in [1℄. This would redue the probability ofprobe paket loss and also give a more aurate estimation of the available band-width. Seondly, a fast retransmission mehanism ould be formulated for Paket-Pair probing, whih would re-attempt onnetion setup after a short timeout period.Probe paket responses should really be aknowledged within one seond exept inases of extremely high lateny. Furthermore, a retransmission of probe data wouldnot signi�antly impat network performane and ould be used to realign tokenbuket settings when reeived, even if previous attempts proved to be suessful,but with high lateny.5.2 Evaluation and LessonsIn this setion we will disuss our �ndings, in partiular how they relate to spei�tehniques we have hosen to deploy in our experiments.5.2.1 Protool PerformaneIn designing STTP, we have produed a protool whih exhibits very low paketloss, and timely, guaranteed delivery of appliation data. The results in hapter 3



Chapter 5 77 Disussion and Evaluationshow that it is apable of suh performane even when transporting bursty, variablebit-rate data.Interative network appliations generally onsist of small user requests, whihneed to be delivered quikly and without unneessary retransmission. A proto-ol with higher levels of paket loss (and therefore retransmission) will a�et theuser-pereived quality of servie to a greater extent, depending on the regularityand burst size of loss periods. Irregular, variable-length paket loss will degradatethe performane of an interative network appliation to a point where it beomesunusable.From our experimental results, we an therefore onlude that the protool modeladopted by STTP will failitate the delivery of suh appliations. There are, how-ever, some lessons to be learned from the implementation of Paket Pair probingand Pro-ative ongestion avoidane algorithms.5.2.2 Paket Pair in Congested NetworksThe Paket Pair bandwidth probing tehnique proved to be reliable in our simula-tions for disovering the available bandwidth on a network path. Even in senarioswhere a new onnetion was probing into an already ongested network, this teh-nique produed aurate reports.When ongestion is heavy, however, there are issues with our approah to proto-ol startup. STTP may only be able to probe a small amount of bandwidth availableon a network path. This means that the initial buket size for the onnetion is min-imal, and the protool will depend on variations in RTT to inrease its transmissionrate. However, as a new soure has entered the path, the inreased queue lengthshould be suÆient to trigger a redution in ompeting traÆ. The fairness of suha model is disussed further in [11℄ [34℄ [7℄. Our work in this area was reported insetion 4.5.



Chapter 5 78 Disussion and Evaluation5.2.3 Aggressive vs Timid Soures { the �ne lineGiven the range of tunable parameters in STTP, it an take on a variety of hara-teristis. By adjusting its sensitivity to variation in RTT, the protool an be mademore or less aggressive to ompeting traÆ soures. This is ahieved using the � and� parameters of STTP's ongestion avoidane algorithm. In order to make STTPmore sensitive to inreases in RTT, the di�erene between these values should beredued around 1.0.Simulation experiments were onduted in [51℄ using these parameters, wherethe di�erene in behaviour between aggressive and timid soures was noted. As� is dereased, so STTP's sensitivity to dereased RTT is redued. The e�et ofthis is that the protool is slower to reat to newly available bandwidth. Thisis due to the RTT having to redue by a more signi�ant amount before STTPwill inrease its mean transmission rate. Conversely, as � is inreased, so STTPbeomes less sensitive to inreases in RTT and slower to relinquish bandwidth tonew or expanding onnetions.The result of adjustments as desribed above, is a very strong transport protoolwhih, one established, will defend its bandwidth share. Unfortunately, this isnot onduive to equal and fair performane between ompeting streams. Papersreferened in hapter 2, setion 2.2.2, disuss potential solutions to unfair behaviour,and alternative implementations of TCP's ongestion ontrol.At the other extreme, a small delta between � and � an be seleted. The e�etof this would be to have STTP reat quikly to both inreases and dereases in RTT.Unfortunately, our experiments show that this results in bursty and unpreditablebehaviour whih, while this may be in the favour of ompeting streams, does notfailitate the QoS for the appliation being served.A further point partiular to STTP, is that the degree to whih the protool issensitive to dereases in RTT is diretly related to the rate at whih it will inreaseits rate of transmission. It is therefore of great importane that appropriate valuesfor � and � be seleted.During the ourse of our work, we have onduted many hundreds of simulations



Chapter 5 79 Disussion and Evaluationwith STTP over a broad range of network topologies. The stati settings we havehosen to use have proven to be reliable in our senarios, and to deliver satisfatoryperformane, delivering paket goodput omparable with that of TCP Reno andTCP Vegas. We do, however, believe that there remains a great deal of interestingand highly useful work to be onduted in this area. Setion 6 overs this in moredetail.5.2.4 Disussion of Software Simulation and PrototypingDuring the ourse of our experimentation, areas were overed whih provided use-ful insight into the issues surrounding protool development. In ertain ases, theproblems enountered were partiular to a given simulation pakage, but others weremore general in nature.A ommon issue with the simulation pakages used for this researh was thatdespite normally reliable behaviour, ertain senarios, topologies, or protool mixes,would result in early termination or rashing of the software. A ommon issue withboth REAL and NS was for simulations of extended duration with a large numberof soures to beome unstable. It beame evident that ertain high speed topologieswould not run for extended periods without terminating abnormally. This behaviourwas, however, on�ned to a small number of ases.Fortunately, we were able to �nd stable parameters for more lengthy simulationruns and used them aordingly. This allowed us to test protools under a varietyof environments, not only short and medium length, low bandwidth senarios.Conversely, when performing a kernel implementation of our TCP modi�ations[49℄, it beame diÆult to suÆiently stress the loal area network (10Mb/s). Ouraim was to fore TCP to timeout and restart its onnetions. However, with suha large amount of bandwidth and relatively low latenies, it was neessary to uselower apaity modem links to examine its behaviour more losely. We were sub-sequently able to indue onnetion restarts on the LAN implementation throughfurther kernel enhanements.This approah was suessful, and we were able to test the funtionality of our



Chapter 5 80 Disussion and Evaluationmodi�ations and to see that they performed aording to our models. Unfortu-nately, without more extensive equipment and resoures, it was not possible toexhaustively test them in a high speed LAN environment.5.2.5 Summary of Simulation ExperimentsIn the above disussion, we have seen how the funtionality of STTP was provenusing Keshav's REAL simulation pakage and ompared with TCP Vegas usingbulk data ows. We onluded from these tests that the STTP framework was aviable researh projet, and that the seond stage of performane testing should bepursued.An implementation of STTP in NS allowed us to perform more detailed testingwith a wider variety of appliation traÆ types and transport protools. The resultsseen in REAL were supported by those from NS and further enhaned with �ne-grained, large-sale simulation experiments. Lengthy simulations whih omparedSTTP, TCP Reno and TCP Vegas highlighted key features of our ongestion avoid-ane algorithms and start-up model. We saw that a pro-ative ongestion avoidanemodel an be highly e�etive in minimising paket loss while maintaining the overallrate of transmission. The result is a transport protool whih yields signi�antlyhigher goodput than existing Internet layer four implementations.Key areas K3 and K4, as desribed in hapter 1, outline the aims of our proto-ol design. The simulation results (providing C3) show that we have developed atransport layer protool whih performs at least as well as existing TCP implementa-tions. Experiments 4 and 5 demonstrate STTP's ability to deliver omparable levelsof goodput (within 1% of existing TCPs) but with up to 20% fewer pakets beingtransmitted, and up to 10% fewer pakets being dropped in the network. STTP hasbeen simulated with a key set of traÆ models, with as muh data as possible beingbased on live traÆ traes. This methodology gives sound foundation to the resultsof hapter 3 (C3).The above study and disussion of our experimental results onlude thesis on-tribution C4.



Chapter 6
Conlusions and Future Work
6.1 SummaryIn this thesis, we have presented our work on the examination, design, modelling,implementation and simulation of STTP, an alternative transport protool. Wehave studied the urrently de fato standard of TCP (K1), and performed pratialexperimentation with the Reno and Vegas TCP variants. We have identi�ed areasin whih urrent TCP ongestion avoidane algorithms ould be improved (K2) andprodued prototype modi�ations to TCP Reno (C1 in hapter 3). C2, the design ofa replaement transport protool is presented in hapter 3. This ontribution overskey area K3. The subsequent simulation of our prototype is presented in hapter 4and realises ontribution C4.Our simulation experiments have shown how a pro-ative ongestion avoidanemodel may be more appropriate for use with traditional, or bursty, network appli-ations than urrent de-fato standards suh as TCP Reno or TCP Vegas. Oursolutions, whih utilise paket-pair startup tehniques, pro-ative ongestion avoid-ane, and token buket ow ontrol, have shown themselves to give performaneomparable with that of urrent TCP variants. However, the number of pak-ets dropped and retransmitted is signi�antly redued using pro-ative ongestionavoidane mehanisms. Furthermore, the use of token-buket ow ontrol allowsappliations to send bounded bursts of data while maintaining an overall mean rate,81



Chapter 6 82 Conlusions and Future Workwhih is in aordane with the urrently estimated bottlenek bandwidth.The impliation of our simulation results for interative network traÆ is tofailitate user-pereived Quality of Servie in addition to making more eÆient useof available network resoures. A transport protool, whih will deliver data in atimely manner with a low degree of paket loss, is able to provide the appliationlayer with smooth inter-host ommuniation. From the user's perspetive, the arrivalof information beomes more preditable and the appliation therefore more usable.If immediately suessful, a simple paket pair probe should allow the appliationto open a soket and burst data up to the apaity of the bottlenek link. Inontrast with TCP Reno's Slow Start algorithm, this proess should greatly aidbrief interative sessions, suh as those seen with Web-based servies. Experiment5 in hapter 4 demonstrates the e�etiveness of STTP in this senario.6.2 ContributionsThe framework used in the design of STTP employs proven omponents from avariety of soures. The problem spae assoiated with existing TCP algorithmswhen transporting bursty or short-lived data streams, was broken down into threekey areas (K3).� Connetion initialisation and startup� Congestion avoidane and ontrol� Paket loss and reoveryEah of these was addressed in turn with the Paket-Pair startup, Token Buketow ontrol and Pro-ative ongestion avoidane algorithms. The funtionality test-ing, exeuted in hapter 3, illustrated the interation of these algorithms and howthis modular design was able to operate in line with existing TCP implementations.Further testing was then arried out in a more advaned simulation environmentwith varied traÆ types and ongestion senarios. Throughout these experiments,the advantages of the STTP framework was onsistent with our projeted model.



Chapter 6 83 Conlusions and Future WorkThe resulting experimental protool exhibits paket goodput omparable withexisting TCP implementations, transporting a variety of traÆ types. Its fundamen-tal advantages are that signi�antly fewer pakets are transmitted and dropped dueto the improved protool framework. The available bottlenek bandwidth is probedand disovered in a single round-trip, and ative data transmission ommenes at anappropriate rate. Congestion is then sensed pro-atively, whih helps avoid networkongestion, minimise router queues, and relieve paket loss and retransmission.The main ontributions of this work are therefore:[K1℄ the survey of existing protool researh in order to identify key problem areas[K2℄ the evaluation of TCP modi�ations as a potential solution[K3℄ the design and simulation of an experimental protool, whih deploys proventehniques in bandwidth disovery, ow ontrol, and ongestion avoidane1. Connetion initialisation and startup2. Congestion avoidane and ontrol3. Paket loss and reovery[K4℄ evaluation of the experimental protool against existing TCP implementationswith a variety of network traÆ modelsOriginal ontribution was made through modi�ations to the existing TCP Renoimplementation (referred to as C1) and with an experimental protool (C2), whihhas been designed spei�ally to address the issues mentioned above. C1 is addressedin setion 3.1, and C2 throughout hapter 3. Simulation of the resulting protool isarried out in hapter 4 (C3). Further detailed analysis of our protool simulationsan be found in hapter 5 (C4).6.3 Future WorkThe results reported here open up several further avenues for investigation. Thetehniques employed by TCP Vegas and other pro-ative transport protools often



Chapter 6 84 Conlusions and Future Workemploy hard-oded (or set) variables for RTT or throughput measurements. Giventhe highly dynami nature of network traÆ, and the rapid evolution of physiallayer tehnologies, we feel that an ative approah to ongestion avoidane is needed.In order to provide a solution whih will sale with future developments, indiationsfrom our experiments suggest that a self-modifying approah may be required inorder to yield optimal performane.If the delta of � and � is small around 1.0, then STTP beomes highly responsiveto utuations in RTT. Conversely, as � dereases and � inreases, a more stableyet stubborn behaviour is produed. It would be our intention that the protool beable to modify these parameters in run-time aording to a given set of heuristis.For example, should a stream's transmission rate being to utuate rapidly, thenthe delta may be inreased in order to stabilise the urrent onnetion. Alterna-tively, if a onnetion senses that it is beoming "squashed" by ompeting traÆ,it may beome more aggressive in order to sustain the urrent level of QoS for anappliation. Suh responses are likely to signi�antly bene�t user-pereived QoS.It has also beome apparent during the ourse of this work, that the rigid sep-aration between traditional OSI layers may not provide the most eÆient means ofommuniation between Internet hosts. The advent of ATM has shown how dupli-ation of e�ort at di�erent layers in the stak an produe oniting results. Thereis, however, ongoing researh whih suggests that ommuniation between ATM'songestion avoidane algorithms and TCP will resolve suh issues [15℄.The suggestion that open, diret ommuniation between layers should take plaeis learly ludirous, as this may well lead to haoti behaviour due to onitinginformation. While the network layer may believe there to be available bandwidthon a onnetion, the appliation may wish to redue transmission rates for QoSmanagement.The solution ultimately falls to kernel design and the provision of an appropriateAPI for appliation and hardware driver developers. If a shared area of memory werealloated for the presentation and retrieval of QoS and network information, thevarious layers ould obtain the data required in order to govern their transmission



Chapter 6 85 Conlusions and Future Workrates and o�ered QoS. Similarly, they ould display their own variable data in orderto inform other layers of their performane and measurements.Expliit ommuniation has been show to be e�etive in work onduted byFloyd [18℄ and we believe that suh a framework, if implemented on a loal host,ould be used to great e�et both for urrent onnetions and in the initialisationof new streams.In order to deliver end-to-end QoS for interative network appliations, it isbeoming inreasingly apparent that more expliit ommuniation must take plaebetween protool layers, and aross network omponents. The o-ordinated deliveryof interative data requires that there not be onit or disagreement on networkstate in the protool stak. Only with a ommon interfae, set of agreed ommuni-ation paths, and organised information ow, an this be ahieved.
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