
The Design and Simulation of aTransport Proto
ol for Intera
tiveNetwork Appli
ations
byRi
hard James Wade

Submitted in a

ordan
e with the requirementsfor the degree of Do
tor of Philosophy.The University of LeedsS
hool of Computer Studies
June 2000

The
andidate
on�rms that the work submitted is his own and theappropriate
redit has been given where referen
e has been made to thework of others.

Abstra
tThe Internet is
urrently an IP datagram network, whi
h uses the TransmissionControl Proto
ol (TCP) for guaranteed data delivery. In addition to providing areliable data transport layer, TCP aids the stability of a large s
ale internetworkthrough
ongestion dete
tion and avoidan
e algorithms.Sin
e TCP's in
eption in 1981, both the Internet, and the appli
ations whi
h useit, have evolved. The result is a broad spe
trum of data traÆ
, being transported byproto
ols whi
h were developed twenty, or more, years previously. In
reasingly, thetraÆ
 being
arried over the Internet is part of an intera
tive
lient/server session,established between hosts on widely separated networks. The number of routerhops between su
h hosts means that an aggressive transport proto
ol for appli
ationdata may attempt to send data, whi
h ex
eeds the bottlene
k
apa
ity of a givennetwork path. The result is pa
ket loss whi
h, for a guaranteed proto
ol, impliesretransmission of data. Re
ent resear
h has shown that
urrent implementations ofTCP, based on the original TCP algorithms, are inappropriate for the transportationof modern Internet traÆ
.This thesis is
on
erned with the design, modelling, simulation, and study, ofan experimental transport proto
ol. We aim to address the issues fa
ed by
urrentTCP implementations when transporting short, bursty, variable bit-rate, or bulkdata in
ongested environments. In doing so, alternative methods of
onne
tioninitialisation,
ow
ontrol and
ongestion avoidan
e are implemented and simulated.Through simulation with bulk, variable bit-rate and live HTTP tra
e data, weshow how our experimental proto
ol is able to deliver data with su

essful through-put
omparable with
urrently implementations of TCP. Due to its modi�ed startupand
ongestion avoidan
e algorithms, however, it does so with signi�
antly redu
edpa
ket loss and overall pa
ket transmissions.
i

A
knowledgementsA number of people have aided the development of this work and thesis. Both Dr.Mourad Kara and Professor Peter Dew at the University of Leeds should be
reditedwith this proje
t's supervision, and have given signi�
ant input to its dire
tion andpubli
ations. Furthermore, the members of the ATM-MM group at the Universityof Leeds, in parti
ular, Dr. Karim Djemame, have provided invaluable feedba
k onmy prototypes, mathemati
al and simulation models, and papers.I would also like to thank the members of the Support team at the S
hoolof Computer Studies. Proto
ol development be
omes very diÆ
ult without theability to break networks and OS sta
ks in new and mysterious ways. Similarly, thedevelopment and prototyping of network proto
ols would not be possible withoutsolid simulation tools. For these, I would like to thank the developers involved inthe NS and REAL proje
ts.Tor
h Tele
om were also instrumental in providing additional funding for myCASE studentship through the EPSRC.Finally, I would like to dedi
ate this work to my parents, who have given tremen-dous support throughout my a
ademi

areer. Without them, none of this wouldhave been possible. Thank you.

ii

De
larationsSome parts of the work presented in this thesis have been published in the fol-lowing arti
les:Wade, Kara, Dew, \Proposed Modi�
ations to TCP Congestion Control for High Band-width and Lo
al Area Networks", 6th IEEE Conferen
e on Tele
ommuni
ations,(July 1998).Wade, Kara, Dew, \Study of a Transport Proto
ol Employing Bottlene
k Probingand Token Bu
ket Flow Control", IEEE International Symposium on ComputerCommuni
ations, (July 2000).Wade, Kara, Dew, \Modeling and Simulation of STTP, a Proa
tive Transport Proto-
ol", (pages 486{486), IEEE International Conferen
e on Networking, (September2000).

iii

Contents
1 Introdu
tion and Ba
kground 11.1 The Transmission Control Proto
ol 21.1.1 A History of TCP . 31.1.1.1 1988 . 31.1.1.2 1990 . 41.1.1.3 1993 . 41.1.1.4 1996 . 51.1.1.5 1997 . 51.2 Intera
tive Network Appli
ations . 51.3 Internet Servi
es . 61.4 TCP Issues and Alternative Implementations 71.5 Motivation . 91.6 Resear
h Context . 101.7 Obje
tives . 122 Related Work 142.1 Traditional TCP . 142.2 Alternative Implementations . 162.2.1 Real-Time Proto
ols . 162.2.2 TCP Variants . 182.2.3 TCP Modi�
ations . 212.3 High Speed Networks . 242.4 Summary . 26iv

3 STTP: Rationale and Design 283.1 TCP Modi�
ations . 293.2 Rationale for Resear
h . 303.3 Network Simulators . 323.3.1 REAL . 333.3.2 NS . 343.3.3 Simulator Validation . 353.4 Framework/Algorithms . 353.4.1 Pa
ket-Pair Bandwidth Probing 373.4.2 Token Bu
ket Flow Control 393.4.3 Congestion Avoidan
e . 403.4.4 History Weighted Bu
ket Manipulation 423.5 Proto
ol Implementation . 433.6 Summary . 454 STTP: Testing and Results 464.1 Testing STTP Network Behaviour . 484.1.1 Experiment 1, Fun
tional Testing using REAL 484.2 Performan
e Testing STTP . 514.2.1 Experiment 2, Bulk Data Transfer using NS 524.2.2 Experiment 3, Proto
ol Fairness of STTP 554.2.3 Experiment 4, Variable Bit-Rate Appli
ations using NS 584.2.4 Experiment 5, HTTP Appli
ations using NS 614.2.5 Experiment 6, Mixed Simulation of TCP Reno, TCP Vegasand STTP . 644.3 Analysis . 664.4 Summary . 685 Dis
ussion and Evaluation 695.1 Dis
ussion of Simulation Results . 715.1.1 Fun
tionality Testing with the REAL Simulator 72v

5.1.2 Performan
e Testing with the NS Simulator 735.2 Evaluation and Lessons . 765.2.1 Proto
ol Performan
e . 765.2.2 Pa
ket Pair in Congested Networks 775.2.3 Aggressive vs Timid Sour
es { the �ne line 785.2.4 Dis
ussion of Software Simulation and Prototyping 795.2.5 Summary of Simulation Experiments 806 Con
lusions and Future Work 816.1 Summary . 816.2 Contributions . 826.3 Future Work . 83

vi

List of Figures
4.1 Experiment 1 . 494.2 Experiment 1: STTP and TCP Pa
ket Transmissions 514.3 Performan
e Simulation Topology . 524.4 Experiment 2: TCP Reno, TCP Vegas and STTP Total Pa
ket Trans-missions . 534.5 Experiment 2: TCP Reno, TCP Vegas and STTP Total Pa
ket Loss . 544.6 Experiment 2: TCP Reno, TCP Vegas and STTP Su

essfully Re-
eived Pa
kets (Goodput) . 544.7 Experiment 4: TCP Reno, TCP Vegas and STTP Total Pa
ket Trans-missions . 604.8 Experiment 4: TCP Reno, TCP Vegas and STTP Total Pa
ket Loss . 604.9 Experiment 4: TCP Reno, TCP Vegas and STTP Su

essfully Re-
eived Pa
kets (Goodput) . 614.10 Experiment 5: TCP Reno, TCP Vegas and STTP Total TransmittedPa
kets . 624.11 Experiment 5: TCP Reno, TCP Vegas and STTP Total Pa
ket Loss . 634.12 Experiment 5: TCP Reno, TCP Vegas and STTP Su

essfully Re-
eived Pa
kets (Goodput) . 634.13 Experiment 6: TCP Reno, TCP Vegas and STTP Su

essfully Re-
eived Pa
kets in Mixed Simulation 65

vii

List of Tables
2.1 Summary of Proto
ol TraÆ
 Support 174.1 Summary of REAL and NS Simulator TraÆ
 Types 474.2 Summary of REAL and NS Simulator Proto
ol Support 474.3 Experiment Information . 484.4 TCP and STTP Performan
e Summary 494.5 STTP Fairness . 575.1 Experiment Information . 695.2 Long Duration (200 se
onds) STTP and TCP Reno - 40 sour
es . . . 745.3 Long Duration (300 se
onds) STTP and TCP Reno - 40 sour
es . . . 741 Table of Results for Experiment 2 . 922 Table of Results for Experiment 4 . 93

viii

A
ronymsACK A
knowledgement pa
ketAPI Appli
ation Program Interfa
eASCII Ameri
an Standard Code for Information Inter
hangeATM Asyn
hronous Transfer ModeBSD Berkeley Software DistributionCGI Common Gateway Interfa
eDARPA Defen
e Advan
ed Resear
h Proje
ts Agen
yECN Expli
it Congestion Noti�
ationEPD Early Pa
ket Dis
ardFTP File Transfer Proto
olHTTP Hypertext Transfer Proto
olIEEE Institute of Ele
tri
al and Ele
troni
s EngineersIETF Internet Engineering Task For
eIP Internet Proto
olISP Internet Servi
e ProviderJPEG Joint Photographi
 Experts GroupLAN Lo
al Area NetworkMTU Maximum Transfer UnitNEST Network Simulation TestbedNS Network SimulatorOSI Open Systems Inter
onne
tionRED Random Early Dis
ardRFC Request for CommentsRSVP Resour
e Reservation Proto
olRTP Realtime Transport Proto
olRTCP Realtime Control Proto
olRTSP Realtime Streaming Proto
olRTT Round Trip Time i

SMTP Simple Mail Transfer Proto
olTCP Transmission Control Proto
olTOS Type of Servi
eUDP User Datagram Proto
olUUCP Unix to Unix Copy Proto
olVPN Virtual Private NetworkWWW World Wide Web

ii

Chapter 1
Introdu
tion and Ba
kground
The issue of transport proto
ol design has be
ome an important fa
tor in the futureof the Internet with the proliferation of multimedia and intera
tive appli
ations. Themajority of Internet appli
ations are
lient/server in nature and therefore require
ommuni
ation between two, potentially widespread, network hosts.The number of hosts
onne
ted to the Internet has grown at an unpre
edentedrate, and its penetration into all
orners of the globe has brought a wide varietyof network quality and
apa
ity. In developed nations, rapid expansion has takenpla
e both for domesti
 and business users who, at the time of writing, generally
onne
t at between 28.8kb/s and 128kb/s. Larger businesses with leased lines totheir Internet Servi
e Provider (ISP), may work with T1 (1.55Mb/s)
onne
tions andhigher. Government or edu
ational institutions generally have even higher
apa
itylinks up to T3 (45Mb/s).When a
onne
tion is initialised between two hosts, little is known about thephysi
al network's
apa
ity or reliability. Even though both hosts may be lo
atedon high-
apa
ity lo
al area networks, with high performan
e
onne
tions to theInternet, the
all may be routed via highly
ongested or unstable portions of thepubli
 network. This implies that the bottlene
k for this
onne
tion is unknown,unpredi
table and not under the
ontrol of lo
al administration. It is thereforeunwise for an appli
ation to request or send data at a pre-determined rate.1

Chapter 1 2 Introdu
tion and Ba
kground1.1 The Transmission Control Proto
olThe Internet is
urrently an IP-based network whi
h runs TCP [41℄ (TransmissionControl Proto
ol) or UDP [40℄ (User Datagram Proto
ol) at the transport layer.For guaranteed data servi
es, TCP is the re
ommended proto
ol as it provides win-dowed
ow
ontrol and retransmission of lost/
orrupt data. Furthermore, a TCPstream will modify its transmission rate a

ording to
urrent network
ongestion.Conversely, UDP does not provide any
ow
ontrol or
ongestion avoidan
e fa
ili-ties, and is de�ned as an "unreliable" transport layer. UDP has been the sour
e ofmu
h
ontention over re
ent years due to multimedia network appli
ations su
h asvoi
e and video streaming,
ooding the Internet with unresponsive proto
ol streams.Appli
ations whi
h use UDP may not in
orporate TCP Friendly [44℄
ongestionavoidan
e me
hanisms, thus a�e
ting the quality of servi
e available to
ompetingdata streams.TCP initialises a
onne
tion with an algorithm known as slow start. The rate atwhi
h TCP transmits traÆ
 into a network is governed by the size of its
ongestionwindow (
wnd), whi
h is normally an integer value, representing the number ofsegments
urrently allowed to be in transit on a given
onne
tion. By initialising thisvalue to 1, and in
rementing it ea
h time an a
knowledgement (ACK) is re
eivedfrom the destination node, TCP
an a
hieve a self-
lo
ked method of bandwidthdis
overy. In pra
ti
e, in
rements to the
ongestion window follow an exponential
urve and
ontinue until either data is lost, or a pre-determined limit is rea
hed.This limit is known as the slow start threshold (ssthresh) and is set to 65535 bytesor the re
eiving host's advertised window size.The ssthresh me
hanism prevents the sender from over
owing network bu�ersduring slow start. In pra
ti
e, however, this threshold
ould be higher than thebottlene
k
apa
ity of the intervening network. On
e the
ongestion window valuerea
hes that of ssthresh, TCP enters its
ongestion avoidan
e phase. This involvesin
rementing the
wnd with every ACK that is re
eived, therefore a linear pro
ess.A
tion is only taken if data is lost or three ACK's with the same sequen
e number

Chapter 1 3 Introdu
tion and Ba
kgroundare re
eived. This implies that the destination node is re
eiving out of order pa
kets,or that data has been lost. In this situation, TCP de
reases its
ongestion windowby 50% and re-enters
ongestion avoidan
e. If a timeout should o

ur, i.e. the timetaken for the destination host to reply with an ACK pa
ket ex
eeds a given limit,then the
ongestion window is set to 1 and TCP re-enters slow start.Conversely, UDP does not support su
h
ow
ontrol or error handling. It fallsto the appli
ation developer to provide these features in a
ustom transport layer,should the be required. The
on
ern is that if su
h software is badly implemented,it may be unfair towards TCP Friendly
onne
tions whi
h share the same networklinks.1.1.1 A History of TCP1.1.1.1 1988Ja
obson and Karels' paper [21℄ on TCP
ongestion avoidan
e 4.3BSD Tahoe wasreleased, whi
h utilises:� Slow Start� Congestion Avoidan
e� Fast RetransmitThe Slow Start and Congestion Avoidan
e algorithms were do
umented in [21℄,whereas Fast Retransmission fa
ilities were not rati�ed until 1997 in RFC 2001 1[48℄. Slow Start and Congestion avoidan
e were the result of a "
ongestion
ollapse",whi
h took pla
e in 1988 on the DARPA network at Berkeley. This added fa
ilities toTCP, whi
h gave it the ability to dete
t and avoid severe network
ongestion. If TCPwere able to slow down its data transmission rate when
ongestion is dete
ted, thenmassive pa
ket loss will be prevented, and overall performan
e improved. Similarly,Fast Retransmission of data allows TCP to retransmit data whi
h it suspe
ts has1RFC 2001 des
ribes in detail TCP Slow Start, Congestion Avoidan
e, Fast Retransmit, andFast Re
overy Algorithms. Its aim is to do
ument and standardise
urrent implementations.

Chapter 1 4 Introdu
tion and Ba
kgroundbeen lost in transit due to the re
eipt of dupli
ate a
knowledgement pa
kets for aprevious pie
e of data.1.1.1.2 1990The Reno release of 4.3BSD
hanged its TCP implementation only slightly. Thefa
ility whi
h was added permitted TCP to in
rease its transmission (
ongestion)window by the number of dupli
ate a
knowledgements it had re
eived after retrans-mission. This algorithm a

elerates re
overy of a stream's transmission rate afterpa
ket loss. A further enhan
ement of TCP for the 4.3BSD Reno release was toallow TCP to only halve its
urrent transmission rate in
ase of Fast Retransmission(detailed in 4.3BSD Tahoe). Prior to this extension, ea
h pa
ket loss
aused TCP toenter the Slow Start algorithm, and reset its
ongestion window to a single segment.1.1.1.3 1993Lawren
e Brakmo et al. at the University of Arizona, extended the Slow Start and
ongestion avoidan
e algorithms of TCP Reno. They implemented their new al-gorithm,
alled TCP Vegas, on an experimental platform
alled the X-Kernel, andpublished a performan
e study of Vegas in [11℄, at SIGCOMM 94. The modi�
a-tions to Slow Start in
lude a more
autious expansion of the
ongestion windowduring
onne
tion initialisation. This aims to prevent pa
ket loss due to aggressivetransmission rates. Similarly the
ongestion avoidan
e algorithm was improved tosense network
ongestion, and adjust its transmission rate a

ordingly. This wasa
hieved by obtaining an expe
ted throughput �gure for a given time period, and
omparing this with the a
tual
onne
tion statisti
s. If there is a notable disparitybetween these values, then the transmission rate will be adjusted. [11℄ in
ludes per-forman
e testing, whi
h shows 40-70% performan
e improvement over TCP Renoin Brakmo's simulation experiments.

Chapter 1 5 Introdu
tion and Ba
kground1.1.1.4 1996RFC 2018 2 [33℄ details extensions to TCP Reno in the form of Sele
tive A
knowl-edgement Options. This enables a TCP re
eiver to over
ome the limitation of
umu-lative a
knowledgements in TCP Reno. With
umulative pa
ket a
knowledgements,a TCP sender
an only learn about a single lost pa
ket in ea
h round trip time. WithSele
tive A
knowledgement options (SACK), a re
eiver
an a
knowledge data as itis re
eived. This enables the sender to only retransmit that whi
h has been lost,and not pa
kets whi
h have already been transported su

essfully.1.1.1.5 1997RFC 1122 3 [8℄ detailed the basi
 requirements for a TCP implementation, thatit should use a Slow Start me
hanism, and
ongestion avoidan
e to prevent net-work overload. RFC 2001 [48℄
onsolidated RFC 1122 with work done by Ja
obsonand Karels. Furthermore, it do
umented the Fast Retransmit, and Fast Re
overyalgorithms for the Internet
ommunity.1.2 Intera
tive Network Appli
ationsWhile streaming appli
ations su
h as voi
e over IP, audio or video streams mayuse UDP for their transport, the majority of Internet appli
ations use TCP forguaranteed data delivery. The most widespread of these is without doubt the WorldWide Web, whi
h is a
lient-server appli
ation, used to present information and datathrough intera
tive Hypertext do
uments, or Web pages. These are transmittedusing the HyperText Transfer Proto
ol (HTTP) [17℄, whi
h in turn uses TCP.Under normal
onditions, a Web
lient will make a HTTP request for a givenpage. The server then initialises a separate TCP
onne
tion for ea
h page
omponent2RFC 2018 des
ribes how TCP Sele
tive A
knowledgement Options
an improve the perfor-man
e of TCP
onversations with bursty pa
ket loss.3RFC 1122 do
uments the IP and TCP fun
tionality required for Internet-
onne
ted nodes(hosts).

Chapter 1 6 Introdu
tion and Ba
kgroundba
k to the
lient. However, work has been
ondu
ted into Persistent HTTP [17℄whi
h aims to multiplex these
onne
tions together in order to form a single, strongerTCP
onne
tion.The nature of the Web is su
h that a user may make rapid page sele
tionsin order to obtain spe
i�
 information. Although a great amount of work has beendone to optimise Web
lient and server eÆ
ien
y, the underlying transport proto
ols
an still be
onsidered a fa
tor in user-per
eived laten
y. While HTTP itself hasundergone several revisions in re
ent years, the
omponents whi
h make up Webdo
uments are also evolving at an alarming rate. The result is that Web server anddo
ument te
hnologies are now able to present an in
reasingly intera
tive interfa
e tothe user with a wider variety of
omponents being presented to the
lient software.Furthermore, HTTP itself is under pressure to evolve in order to transport su
h
omponents eÆ
iently and in a manner whi
h is
ondu
ive to the interfa
e it aimsto provide.1.3 Internet Servi
esWhile the World Wide Web Consortium (W3C) revises the HTTP spe
i�
ation, itfalls to the Internet Engineering Task For
e (IETF) to improve
ommon Internetproto
ols and provide the ne
essary fun
tionality, performan
e and
exibility to theappli
ation layer. For example, the Internet Proto
ol version 6 (IPv6) has re
entlybeen spe
i�ed in order to a

ommodate future address spa
e requirements as wellas extended support for di�erentiated levels of network servi
e.The Ar
hite
ture for Di�erentiated Servi
es (Di�Serv) allows a network operatorto provide
ertain guarantees to their
ustomers in terms of Quality of Servi
e (QoS).In more detail, traÆ

an be
lassi�ed a

ording to
ertain bounds given by its Typeof Servi
e (TOS) spe
i�
ation. This TOS header, present in IPv4 and IPv6 pa
kets,
an be used to des
ribe a

eptable bounds for queueing delay, jitter, or pa
ket loss.It is therefore anti
ipated that di�erentiated servi
es will proliferate with
us-tomers subs
ribing to "Bronze", "Silver" and "Gold" levels of traÆ
 provision.

Chapter 1 7 Introdu
tion and Ba
kgroundBronze
ustomers may simply re
eive the
urrent standard of "best e�ort" withno performan
e guarantees for their traÆ
. Subs
ribers to the Silver
ategory mayhave their traÆ
 prioritised over the Bronze
ustomers a

ording to a subset of theQoS parameters. Gold
ustomers may be able to spe
ify all available QoS parame-ters while paying a premium fee for their traÆ
.Within the realms of a QoS-oriented, or Di�serv environment, the role of the IPtransport proto
ol is diminished somewhat as the se
ondary network servi
es takeon a portion of its fun
tionality. Whereas in a mixed media, best e�ort networksu
h as the
urrent Internet, the transport proto
ol aims to
ontend with varyingdelay, pa
ket loss and
ross traÆ
, a Di�serv network is able to guarantee at leasta subset of these parameters. Therefore, the requirements for next generation TCPare somewhat di�erent to those when it was spe
i�ed in 1981 for DARPA's RFC793 4 [41℄.1.4 TCP Issues and Alternative ImplementationsNaming
onventions for TCP are traditionally based around the BSD revision inwhi
h they appear. Both of the following appear in releases of 4.3 BSD Unix. First,there was TCP Tahoe whi
h implemented RFC 793 in the BSD kernel in additionto slow start and
ongestion avoidan
e algorithms from RFC 2001. TCP Tahoeis detailed in Ja
obson and Karels' paper on Congestion Avoidan
e and Control[21℄. This proto
ol was super
eded by TCP Reno, whi
h adds fast retransmit andfast re
overy from RFC 2001 [48℄, and sele
tive a
knowledgements from RFC 2018.TCP Reno is
urrently the most
ommon implementation used in network operatingsystems and as su
h, has been studied in great detail. The majority of performan
e
omparisons and models in this work will use TCP Reno as their ben
hmark proto-
ol.In 1994, Brakmo et al at the University of Arizona published [11℄, whi
h detailednew algorithms for TCP slow start and
ongestion avoidan
e. In parti
ular, TCP4RFC 793 des
ribes the initial Transmission Control Proto
ol for the ARPA network.

Chapter 1 8 Introdu
tion and Ba
kgroundVegas
laims "between 40% and 70% improvement" in performan
e over TCP Renowith around one �fth the number of pa
ket retransmissions. This performan
e in-
reased was a
hieved through better utilisation of available bandwidth by deployingproa
tive
ongestion avoidan
e algorithms. An alternative, lightweight implemen-tation of this solution to
ongestion avoidan
e is used in our experimental proto
ollater in this work.One fundamental
riti
ism of TCP Reno and its variations, is that the
orealgorithms rely on pa
ket loss in order to dete
t network
ongestion. In essen
e,they use a linear in
rease, multipli
ative de
rease algorithm whi
h, despite havingbeen shown to exhibit fair behaviour between
ompeting streams is both lossy andineÆ
ient when
ompared with proa
tive
ongestion avoidan
e [11℄.In parti
ular, TCP Reno has been observed to lose the majority of its data whilein slow start whi
h, in
omparison with the algorithms used by TCP Vegas, are ag-gressive. The problem arises when, in slow start, TCP Reno doubles its transmissionrate every RTT. It
ontinues to do so until it rea
hes the slow start threshold, theremote hosts's advertised window size, or loses data. In a highly
ongested network,parti
ularly one with a high bandwidth delay produ
t, this means that when lossesdo o

ur, they are likely to be in the order of half the
urrent
ongestion window.Given that TCP is a guaranteed delivery proto
ol, this data has be retransmittedand if losses have o

urred, this will be at a mu
h lower rate (50%) than before. Thisis due to TCP's
ongestion avoidan
e algorithm, whi
h will halve its transmissionrate upon data loss. TCP then enters its
ongestion avoidan
e algorithm.Fast retransmission and re
overy are de�ned in RFC 2001 [48℄. Fast retransmis-sion of data is triggered in TCP Reno by the sour
e host re
eiving three dupli
atea
knowledgements for data it has sent. The advantage of this me
hanism is that itdoes not have to wait for a timer to expire (a timeout) before retransmitting poten-tially lost data. The re
eipt of three dupli
ate ACK's at the sour
e means that theremote host has re
eived three pa
kets whi
h
ontained out of order sequen
e num-bers. O

asionally, pa
kets may be re-routed in the Internet, so
ertain data mayarrive out of order and have to be re-ordered before being passed to the appli
ation.

Chapter 1 9 Introdu
tion and Ba
kgroundOn
e fast retransmission has been performed, TCP Reno uses fast re
overy tomaintain its state in
ongestion avoidan
e. This means that unless a retransmissionis performed due to pa
ket timeout, a slow start is not performed. If a timeout doeso

ur, ssthresh is set to one half of the
urrent
ongestion window, the
ongestionwindow is set to a single segment, and slow start ensues. In fast re
overy, however,the
ongestion window is set to the value of ssthresh as opposed to a single segment.1.5 MotivationThe issue of
ow
ontrol in modern
omputer networks has been highlighted inre
ent years with a massive in
rease in the amount of bursty Internet traÆ
. Theproliferation of the World Wide Web (WWW) has lead to a desire for short, high-bandwidth
onne
tions in order to transfer relatively small do
uments, images andprogram
ode in the least time possible.This is in
ontrast with traditional Internet appli
ations su
h as FTP, whi
hgenerally
onsisted of longer duration
onne
tions. Furthermore, the relative fair-ness of bandwidth allo
ation was
onsidered more important than timely delivery.Su
h lengthy
onversations meant that the pre
ise dynami
s of individual
onne
-tions were not of primary
on
ern when, for example, slow start only formed a smallper
entage of the total duration.Given that the majority of
urrent WWW pages
ontain a small amount of text
ontent, this
an be transferred in a handful of TCP segments. In
ontrast, a lengthyFTP
onne
tion may transfer hundreds or thousands of kilobytes and take severalminutes to
omplete. During this time, a strong, established TCP stream may beformed and its bursty pro�le redu
ed
ompared with that of WWW traÆ
. WhileTCP's slow start and
ongestion avoidan
e algorithms are
apable of eÆ
ientlytransporting lengthy data transfers, modern Internet appli
ations no longer �t thispro�le.It is therefore of paramount importan
e to ameliorate the per
eived performan
eof WWW traÆ
 through improvements to the transport layer. While HTTP is

Chapter 1 10 Introdu
tion and Ba
kground
onstantly being revised by the W3C, one way to in
rease data throughput in realterms, is by optimisation and tuning of the Internet's transport proto
ol.Modern Internet appli
ations set the
riteria by whi
h this performan
e will bemeasured and allow us to derive suitable algorithms for their solution. We aretherefore fa
ed with a set of user requirements, namely to deliver short, burstytransfers of data in as short a time as possible.1.6 Resear
h ContextIn our experien
e with simulation experiments [49℄ [51℄ [50℄, TCP has not shownitself to be suitable for realtime, intera
tive, network appli
ations. In parti
ular,those involving bursty, multimedia data ex
hange. The reason for this is that dueto its slow start algorithm, TCP is not able to qui
kly establish a
onne
tion whi
hfully utilises the available bandwidth. In fa
t if a network is highly
ongested, a dataex
hange may take mu
h longer than desired due to pa
ket retransmission, whi
h islikely to o

ur during aggressive expansion of the
ongestion window.The arrival of more intelligent network servi
es su
h as Di�serv [36℄ and RSVP[9℄, whi
h allow bandwidth allo
ation in addition to bounded QoS on a per
on-ne
tion basis, means that TCP is now operating in an environment whi
h is verydi�erent to that for whi
h it was designed. The
reation of Virtual Private Net-works (VPN's) using su
h te
hnologies make it in
reasingly unlikely that data willbe re-routed, unless some sort of te
hni
al problem o

urs. Furthermore,
onne
-tions between nodes on su
h a network may have a given bandwidth allo
ation,whi
h makes slow start merely an ineÆ
ient use of the available resour
es.In addition to advan
es in networking te
hnologies, the physi
al layer upon whi
hTCP/IP operates, is now substantially more reliable than, ten years ago. Data lossor
orruption due to physi
al error is now only likely every 10�6 pa
kets. The vastmajority of data loss is
aused by network
ongestion and over
owing queues atthe router or swit
h. The major
on
ern has therefore shifted from an unreliablenetwork to one whi
h is reliable, but highly and unpredi
tably
ongested.

Chapter 1 11 Introdu
tion and Ba
kgroundThe obje
tives for TCPng are therefore to be more
on
erned with queue man-agement and eÆ
ient retransmission,
onne
tion and re
overy. However, mu
h ofthe network
ongestion in e�e
t on the Internet will be
ross traÆ
 streams whi
hmay, or may not be TCP friendly. The design of a next generation transport proto-
ol must take into a

ount the diversity of traÆ
 on modern networks and behavefairly towards other users.There are two main de�nitions of fairness for transport proto
ols, basi
 max-min fairness states that a proto
ol should make maximal usage of available net-work resour
es, but be able to share equally su
h resour
es amongst data streams.Given n
onne
tions operating on a given link, a state of equality would exist if thethroughput for ea
h
onne
tion was an equal share of the total link
apa
ity. If any
onne
tion were to in
rease its throughput, it would be to the disadvantage of otherstreams in this situation.Alternatively, there is proportional fairness whi
h aims to maximise �R log�ra

ording to a link's resour
es, where �r is the rate allo
ated to a given TCP
on-ne
tion. Proportional fairness is a
ongestion
ontrol s
heme in whi
h routing pri-ority is assigned to a given stream a

ording to the quality of servi
e assigned to,or pur
hased by, the user. In proportional fairness, every network resour
e has a"pri
e" asso
iated by the network administration. Users of the network are allo-
ated network resour
es a

ording to how mu
h they are able to "pay". The pri
eallo
ated to ea
h resour
e is adjusted in real time, a

ording to the
urrent stateof resour
e demand e.g. if demand is high, then the pri
e for a given resour
e willin
rease. The detailed pro
ess and mathemati
al modelling
an be found in [24℄,and [32℄.In addition to fair and
onsiderate behaviour, a next generation transport proto-
ol should be able to make full use of available network resour
es. In a guaranteedQoS network, this may be reserved or allo
ated bandwidth. Given that su
h reser-vations may be
harged at a signi�
antly higher rate than best e�ort servi
es, it isimportant for data to be ex
hanged in the most eÆ
ient manner.

Chapter 1 12 Introdu
tion and Ba
kground1.7 Obje
tivesThe work presented in this thesis fo
usses on optimisations to the transport layer,whi
h yield greater performan
e in terms of su

essfully transmitted data. Our aimwas to minimise lost data, while maximising overall throughput.The aim of su
h optimisation is to update existing TCP proto
ols in order forthem to fun
tion in a

ordan
e with forth
oming network servi
es. Furthermore,te
hnologies whi
h already exist on the physi
al layer mean that design
on
erns aresomewhat di�erent to those ten years ago. In summary, while
ertain assumptions
an now be made with regard to modern networks, there are some very di�erent
on
erns with regard to
ongestion avoidan
e and
ontrol, parti
ularly with regardto real time and multimedia appli
ations.In order to address the issues fa
ed by TCP and next generation transport pro-to
ols, this work will address several key areas:[K1℄ the survey of existing proto
ol resear
h in order to identify key problem areas[K2℄ the evaluation of TCP modi�
ations as a potential solution[K3℄ the design and simulation of an experimental proto
ol, whi
h deploys provente
hniques in bandwidth dis
overy,
ow
ontrol, and
ongestion avoidan
e[3a℄ Conne
tion initialisation and startup[3b℄ Congestion avoidan
e and
ontrol[3
℄ Pa
ket loss and re
overy[K4℄ evaluation of the experimental proto
ol against existing TCP implementationswith a variety of network traÆ
 modelsOriginal
ontribution is made through modi�
ations to the existing TCP Renoimplementation (referred to as C1) and with an experimental proto
ol (C2), whi
hhas been designed spe
i�
ally to address the issues mentioned above. C1 is addressedin se
tion 3.1, and C2 throughout
hapter 3. Simulation of the resulting proto
ol is

Chapter 1 13 Introdu
tion and Ba
kground
arried out in
hapter 4 (C3). Further detailed analysis of our proto
ol simulations
an be found in
hapter 5 (C4).Chapter 2 dis
usses work whi
h is
losely related to that
overed in this thesis,namely publi
ations on TCP, related proto
ols and
ongestion avoidan
e algorithms.In order to address K1, variations on TCP's
ongestion avoidan
e and slow startalgorithms are dis
ussed, with referen
e to published work in this area. The bodyof this work is presented in
hapters 3 through 4, where our experimental proto-
ol, STTP, is des
ribed, tested and evaluated. The a
ronym, STTP, stands forShaped Token Transport Proto
ol. K2, K3 and K4 are
onsolidated in these
hap-ters through simulation experiments. The rationale and design of STTP is
overedin
hapter 3, followed by performan
e testing and results in
hapter 4. Chapter 3addresses K3 by des
ribing the algorithms used in STTP to address de�
ien
ies inTCP when transporting modern Internet traÆ
. Further dis
ussion of the simula-tion results takes pla
e in
hapter 5 with
on
lusions and future work in
hapter6. K4 is dis
ussed further in
hapter 5, where simulation results from both NS andREAL are analysed, and their performan
e
ompared.

Chapter 2
Related Work
2.1 Traditional TCPJa
obson and Karels' key paper of 1988 [21℄ des
ribes how, in response to a
onges-tion
ollapse of the Internet in 1986,
ongestion avoidan
e and
ontrol algorithmswere in
orporated into the transport
ontrol proto
ol (TCP) of the time.They des
ribe a "self-
lo
king" proto
ol whi
h uses windowed
ow
ontrol andpa
ket a
knowledgements to gradually in
rease the
ow of data into a network. This
ontinues to the point at whi
h
ongestion o

urs and data is lost, at whi
h timemultipli
ative de
rease algorithms are used to redu
e network load. This approa
hto
ongestion
ontrol is
entral to TCP's
ore algorithms and is operational in bothTCP Reno and TCP Tahoe, the most
ommon a
tive implementations of TCP.The design of RFC 793 TCP (from the Ja
obson and Karels' paper) is based onthe
on
ept of "pa
ket
onservation" with TCP streams in "equilibrium". Equilib-rium is termed as the steady state in whi
h a new pa
ket is not inje
ted into thenetwork until one has arrived at the destination node. In order to a
hieve equilib-rium, a new slow start algorithm for
onne
tion startup was designed.Slow start was
reated in order to ki
kstart the self-
lo
king TCP algorithms.As TCP depends on the re
eipt of a
knowledgement (ACK) pa
kets to trigger therelease of new data into the network, there had to be some way of in
reasing the
ow until it rea
hed equilibrium. Therefore, Ja
obson and Karels' introdu
ed a14

Chapter 2 15 Related Worknew slow start state to TCP. While in this state, TCP in
rements its transmissionwindow (
ongestion window,
wnd) for every ACK that it re
eives. To rea
h agiven window size W from slow start, RFC 793 TCP takes log2W round trips.This pro
ess gives TCP the properties of a self-
lo
king proto
ol whi
h will regulateits transmission a

ording to the available network resour
es. During slow start,TCP qui
kly in
rements its transmission rate as data is re
eived and a
knowledgedby the remote host. Su
h behaviour aims to redu
e pa
ket loss during
onne
tioninitialisation.The TCP then sends the minimum of the
ongestion window and the re
eiver'sadvertised window (bu�er) size. This me
hanism takes into a

ount the wide varietyand spe
i�
ation of ma
hines on the Internet by not allowing a powerful host tooverload a less powerful one with
oods of data. In this manner, Ja
obson andKarels' TCP was able to resolve the issues of
ongestion on the Internet of the time.A re
eiver's advertised window size indi
ates the number of bytes available for dataat the re
eiving end of a
onne
tion. Therefore, the transmitting side should notallow more than this amount of data to be una
knowledged at any time. To do sowould give a high risk of pa
ket loss due to bu�er over
ow at the remote host.In this se
tion, we have
overed the fundamental
on
epts of TCP, that it is a self-
lo
king proto
ol, whi
h guarantees data delivery and whi
h will rea
t to network
ongestion in order to minimise pa
ket loss. We
ontinue with the examination ofalternative TCP implementations. An alternative implementation is a transmission
ontrol proto
ol whi
h has been designed with
lear and distin
t
riteria. Alterna-tive implementations are usually
ompletely redesigned proto
ols, whi
h derive fewalgorithms from standard TCP. Conversely, we will also dis
uss TCP variants. Avariant is an improvement on existing TCP whi
h aims to solve spe
i�
 problemareas, or to improve performan
e under
ertain
onditions.

Chapter 2 16 Related Work2.2 Alternative ImplementationsThe rapid expansion of the Internet (from the mid 1990s), both physi
ally and interms of traÆ
 types has prompted a great deal of a
ademi
 and industrial resear
h.In parti
ular, the issue of streaming and intera
tive, multimedia traÆ
 using UDPand proprietary transport layers.2.2.1 Real-Time Proto
olsOne su
h highly su

essful proje
t was that of RTP, the Realtime Transport Proto-
ol. RTP is an IP-based proto
ol whi
h supports realtime, multi
ast and uni
ast,audio and video streams. The essen
e of this work is published in RFC 1889 [45℄,whi
h spe
i�es RTP and RTCP, the framework's two main
omponents.RTP provides timestamping, sequen
e numbering, sour
e identi�
ation and pay-load format information. These �elds
an be used by multimedia appli
ations toensure in-order, regulated playba
k of audio or video streams. Furthermore, it ispossible to
ombine su
h streams and to syn
hronise their output using RTP's times-tamp.RTCP is the Real-Time Control Proto
ol, a feedba
k me
hanism for Qualityof Servi
e (QoS) appli
ations. In
onjun
tion with RTP, this provides fa
ilitiesfor appli
ations to ex
hange administrative information, su
h as the monitoring ofnetwork resour
es.RTP was adopted by Nets
ape in 1996 for use in their "Nets
ape LiveMedia"audio/video streaming appli
ation. This led to further development in
onjun
tionwith Columbia University and RealNetworks to produ
e RTSP [46℄. RTSP, the Real-Time Streaming Proto
ol, works in
onjun
tion with RTP and RTCP to provide asimple means of a

essing remote multimedia servi
es. In many
ases, RTSP is usedin
onjun
tion with HTTP to allow
lients simple Web a

ess to stored multimediastreams.The RTP suite provides a great deal of useful fun
tionality to multimedia appli-
ations, but relies on them to take appropriate a
tion on re
eiving
ongestion noti�-

Chapter 2 17 Related Work
ation. Furthermore, it does not expli
itly provide any QoS fa
ilities but depends onlower network servi
es, su
h as RSVP [9℄, to allo
ate resour
es. It is therefore mostsuited to ATM or QoS-enabled IP environments where bandwidth and resour
e al-lo
ations
an be
ontrolled. However, both RealNetworks and Nets
ape have shownthat it
an be used e�e
tively in a best-e�ort Internetwork.Table 2.1: Summary of Proto
ol TraÆ
 SupportProto
ol Bulk Transfer Bursty TraÆ
 Multimedia TraÆ
 Intera
tive Multimedia TraÆ
TCP Reno X X - -TCP Vegas X X - -Dual/Tri-S X X - -Pa
ket Pair X X - -RTP - X X XTable 2.1 shows the transport proto
ols
overed in this
hapter, and the traÆ
types to whi
h they are suited. Those based on traditional TCP (Reno, Vegas andDual/Tri-S) are most suited to bulk transfer (FTP, SMTP, NNTP, et
.). Pa
ketPair potentially provides greater support for bursty traÆ
 (HTTP, Telnet) due to itsrepeated estimation of the
urrent network state using pa
ket pair probes. However,only RTP provides true support for (Intera
tive) Multimedia traÆ
. Features su
has stream syn
hronisation are of great importan
e, parti
ularly for joint viewing orintera
tive sessions.In TCP's lifetime, many propositions have been made to subtly alter the be-haviour of
ertain algorithms. In parti
ular, slow start has been the fo
us of mu
hattention. A variant of TCP is a proto
ol whi
h is able to provide transport layerfun
tionality, while exhibiting signi�
antly di�erent behaviour to standard TCP.Variants of TCP often in
lude experimental, or alternative, startup methods and
ongestion avoidan
e algorithms. Se
tion 2.2.2 will dis
uss variants of standardTCP. Conversely, a TCP modi�
ation is an alteration to standard TCP algorithmsin order to improve performan
e under
ertain network
onditions. TCP modi�
a-tions are dis
ussed in se
tion 2.2.3.

Chapter 2 18 Related Work2.2.2 TCP VariantsWhile earlier TCP implementations used pa
ket loss or timeout as their only indi
a-tion of network
ongestion, a great deal of work has been done to examine alternativemethods of dete
ting resour
e availability. Given that TCP is an a
knowledgementbased proto
ol, the Round Trip Time (RTT) measurement taken whenever an ACKis re
eived, has proven most useful when determining the state of the interveningnetwork [3℄ [38℄. In
reases in RTT, or drops in throughput over a given time period,
an indi
ate an in
rease in network
ross traÆ
. This leads to in
reases in routerqueue length on a given path, thus a�e
ting a
onne
tion's end-to-end laten
y.Slow Start and Sear
h, Tri-S [52℄, was proposed by ZhengWang and Jon Crow
roftand uses variations in RTT to dete
t possible network
ongestion. A normalisedthroughput gradient is
al
ulated, whi
h represents the proje
ted throughput for a
onne
tion with a given
ongestion window size. Should the gradient fall below apre-de�ned threshold, the transmission rate is de
reased. However, if an in
rease inthroughput is not making a signi�
ant impa
t on the per
eived network load, thenthe window is in
reased at TCP's standard, linear, 1/
wnd rate.In pra
ti
e, Tri-S's
ongestion avoidan
e exhibits similar behaviour to otherproa
tive systems. Its algorithms aim to redu
e delay, and therefore minimise routerqueues. The impli
ation of this is that router bu�ers su�er less
ongestion, thereforedrop fewer pa
kets. This property of a proa
tive system is a side e�e
t of sensing
ongestion by variation in RTT, but is dependent on threshold settings within theproto
ol.One potential hazard of using pre-de�ned thresholds is that a given value maynot be appli
able to a wide variety of bandwidths or RTT's. For example, thresholdvalues whi
h yield the desired e�e
t on a 10Mb/s LAN are unlikely to fun
tion in thesame manner on a high laten
y satellite
onne
tion. This is due to greatly in
reasedlaten
y, whi
h a�e
ts the behaviour of ACK-based proto
ols su
h as TCP.A similar solution to Tri-S, the DUAL algorithm, was proposed by the same re-sear
h group in [53℄. DUAL uses traditional TCP timeouts to dete
t heavy network
ongestion, in whi
h
ase it redu
es the slow start threshold to 50% of its
urrent

Chapter 2 19 Related Workvalue, and the
ongestion window to a single segment. Under normal
ongestionavoidan
e, it
ompares ea
h RTT measurement and, if ne
essary, will make adjust-ments to its transmission rate every other round trip. If the RTT is sensed to bein
reasing, the
urrent transmission rate is redu
ed. The reason for adjusting thetransmission window every other round trip is to prevent rapid
u
tuation in therate of transmission, and to allow a more smooth estimation of network
ongestionto be made due to an in
reased number of data samples.This me
hanism is a
hieved by maintaining RTTmin and RTTmax variables,whi
h are initialised to a very large integer (out of the possible range for thisappli
ation) and zero respe
tively. When a new RTT measurement is obtainedthese variables are updated a

ordingly to store the minimum and maximum RTT'sexperien
ed on the
urrent
onne
tion. If the new RTT value is greater than(RTTmin + RTTmax)=2, then the
urrent window is adjusted to 7/8 of its
urrentvalue. During the
ourse of Wang and Crow
roft's experimentation and simulation,7/8 of the
urrent window size was shown to give "the best"
ompromise betweenperforman
e and fairness to other data streams. We dis
uss the
ompromise betweenperforman
e and fairness in se
tion 5.2.3,
hapter 5.The aim of the DUAL algorithm is to redu
e os
illation of TCP's window sizeafter slow start. This phase is where TCP Reno relies on pa
ket loss or timeoutto dete
t network
ongestion. Upon doing so, the window size is either redu
ed by50%, or to a single segment, depending on the event. By dete
ting in
reases in RTT,DUAL is able to redu
e its transmission rate before su
h losses o

ur. This avoidsunne
essary timeouts or pa
ket loss, hen
e redu
ing the amount of os
illation andvarian
e in the transmission window.TCP Vegas [11℄ is one variant in whi
h the authors
laim spe
i�
, quantitativeperforman
e improvements over TCP Reno. A 40% improvement in throughput
oupled with one �fth to one half the number of pa
ket drops is
ited in [11℄. TCPVegas's
ongestion avoidan
e algorithms
ompare the a
tual measured throughputwith an expe
ted value. The expe
ted throughput value is obtained using the
ur-rent measured RTT and
ongestion window size. Comparing this with the measured

Chapter 2 20 Related Workthroughput for the following RTT will give an indi
ation of the
urrent state of net-work
ongestion. This te
hnique is also used in TCP Vegas's modi�ed slow startalgorithm, whi
h only in
reases the
ongestion window every other round trip. Thisallows throughput measurements to be taken and
ompared with the expe
ted valuefor that size window. Should
ongestion be experien
ed during slow start, TCP Ve-gas
an move into the
ongestion avoidan
e phase before pa
ket loss o

urs. It isnoted by the authors that pa
ket loss during slow start is
ommon among TCPReno implementations. Should
ongestion be en
ountered during the startup phase,the aggressive nature of this algorithm loses around 50% of the
urrent transmis-sion window's pa
kets. Short, bursty, data transfers, su
h as Web page
omponentdownloads, will often spend 100% of their time in TCP's slow start algorithm. IfTCP is tranferring 1.5kilobytes in ea
h pa
ket, a single Web page
omponent of lessthan 10kilobytes will be
ompleted in around six pa
ket transmissions. For TCP,this is only three round trips. A more
autious slow start algorithm
an greatlyredu
e the number of pa
kets lost and retransmitted during the lifetime of a shortTCP
onne
tion.Vegas measures the a
tual throughput for a
onne
tion as the number of bytestransmitted in a given measured RTT. In a similar manner to DUAL, it also main-tains a re
ord of the minimum RTT (BaseRTT) experien
ed on the
urrent
onne
-tion. The expe
ted throughput
an then be
al
ulated using WindowSize divided byBaseRTT. In
ongestion avoidan
e, the di�eren
e between the expe
ted and a
tualthroughput is taken, and
ompared with two threshold values, � and � where � < �.If the di�eren
e lies between � and �, no a
tion is taken. If the di�eren
e is below�, then linear in
rease takes pla
e. If it is above �, then linear de
rease is enfor
ed.In [11℄, several experiments were performed with di�erent values for both � and �and showed di�ering levels of throughput, timeouts and pa
ket retransmission. Thee�e
t of in
reasing the di�eren
e between � and � was to make the proto
ol lesssensitive to variation in network
ongestion. In order for a
hange to be made toTCP's transmission rate, it has to fall outside either bound. If a proto
ol be
omesinsensitive to the
urrent network state, then it is unlikely to take advantage of free

Chapter 2 21 Related Workbandwidth, or to redu
e its transmission rate when
ongestion in
reases. Brakmoet. al have published simulation results whi
h demonstrate this te
hnique in [11℄.In her work with Expli
it Congestion Noti�
ation (ECN) [18℄, and Random EarlyDete
tion (RED) [19℄, Floyd
ondu
ted experiments whi
h highlighted the bene�tsof alternative
ongestion avoidan
e algorithms. In [18℄, TCP Reno was modi�ed torespond to ECN signals and is simulated on networks with routers employing REDalgorithms. RED employs a similar te
hnique to that of Jain's DECbit [42℄, in whi
hrouter queue sizes are monitored and a
ongestion bit set should they ex
eed a givenlimit. When marked pa
kets are re
eived at the sour
e, TCP
an then a
t on this
ongestion feedba
k with multipli
ative de
rease in its transmission (
ongestion)window.The bene�ts of RED and ECN are
omparable with that of pro-a
tive
ongestionavoidan
e algorithms. A
tion is taken by the transport layer prior to pa
ket loss on aper-
onne
tion basis. The result is a de
rease in unne
essary pa
ket drops and timelyrea
tion to the
urrent network state. Su
h bene�ts are quanti�ed in our experimentswith STTP in
hapter 4. Our simulation results show that a transport proto
olwith pro-a
tive
ongestion avoidan
e is able to avoid pa
ket loss, and a
hieve pa
ketgoodput
omparable with traditional TCP, while transmitting signi�
antly fewerpa
kets.2.2.3 TCP Modi�
ationsIn
ontrast to variant proto
ols su
h as TCP Vegas and alternative
ongestion avoid-an
e algorithms su
h as DUAL, Tri-S et
., there have been many attempts to im-prove TCP's performan
e with minor modi�
ations. The most signi�
ant of thesewere fast retransmit and re
overy, des
ribed in RFC 2001 [48℄ and obsoleted by theproposed standards in RFC 2581 [4℄. In a note sent to the end2end mailing list byJa
obson [22℄, he details modi�
ations to TCP's
ongestion avoidan
e algorithm.These modi�
ations form the basis for TCP's fast retransmit and re
overy me
h-anisms. RFC 2581
lari�es and
onsolidates many proposed
hanges to TCP. Itre-spe
i�es the initial window size of a
onne
tion to be two TCP segments instead

Chapter 2 22 Related Workof one. This modi�
ation will double the initial data transfer between two hosts,thus aiding the ex
hange of short bursts of data su
h as Web page
omponents. Therestart behaviour of an idle TCP
onne
tion is also re-de�ned in RFC 2581, as hav-ing to perform a slow start from the standard initial window size of two segments.The generation of ACK pa
kets is also spe
i�ed as adhering to the spe
i�
ation laidout in RFC 1122 [8℄. A TCP re
eiver should generate a
knowledgements for at leastevery other full size TCP segment that it re
eives. Furthermore, ACK's should bedelayed by at most 500ms.While su
h modi�
ations
an signi�
antly improve the performan
e of existingTCP implementations, the 1999 standards still adhere to traditional slow start anddupli
ate a
knowledgement/pa
ket loss
ongestion indi
ators. RFC 2581 does referto experimental slow start me
hanisms, su
h as those outlined in RFC 2414 [37℄.Despite work in this area having been published, pre
ise details were not in
ludedin RFC 2581. Furthermore, the work done on TCP Vegas and other proa
tive
on-gestion avoidan
e algorithms does not seem to have in
uen
ed
urrent spe
i�
ationsfor Internet transport layers.Work
ondu
ted by Allman, Hayes and Ostermann [2℄ examines the feasibility ofthe above slow start modi�
ations. An in
rease in TCP's initial window size to foursegments was shown to yield an 80% in
rease in throughput for short
onne
tionsusing HTTP-like traÆ
,
ompared with standard TCP Reno. However, a side e�e
tof this more aggressive algorithm is a slight in
rease in the pa
ket drop rate, of 0.1segments per transfer. When used in
onjun
tion with the new re
ommendationsfor ACK generation, detailed in [4℄, a 150% in
rease in throughput and one segmentper transfer in pa
kets dropped was noted.Further study in this area was
ondu
ted in [39℄, where further experiments were
arried out using the NS simulator [5℄. Their
on
lusion was that an in
reased win-dow size at TCP startup helped improve per
eived TCP performan
e. In parti
ular,short data transfers will
omplete more qui
kly, due to a larger initial window size.The matter of pa
ket loss over low bandwidth
onne
tions was studied more
loselyby Shepard and Partridge in [47℄. In their experiments, also with the NS simula-

Chapter 2 23 Related Worktor, they dis
overed that an in
reased TCP window size of four segments was notdetrimental to the individual
onne
tion. Their results showed that a four-segmentinitial window size showed up to 30% performan
e improvement over the standardsingle-segment value. These results are dis
ussed in RFC 2414 [37℄, in addition todis
ussing further related work. At this time, however, TCP implementors are re-lu
tant to impose a four segment slow start on the Internet. The reason for thisis that further study needs to be made of the potential impa
t to very large s
alenetwork performan
e. The body of this thesis is fo
ussed on the design of a newtransport proto
ol, and not on the modi�
ation of existing TCP algorithms. Thereason for this de
ision is dis
ussed in
hapter 3.An alternative method of
onne
tion startup is addressed by Keshav in [26℄. Inthis work, the Pa
ket-Pair Probe is proposed as a way of estimating the bottlene
kbandwidth of a given
onne
tion. Its premise is that the delay introdu
ed whenpa
kets are forwarded over the bottlene
k link will be preserved and
an be usedto dis
over the lowest link speed on a given network path. By transmitting pa
ketsba
k-to-ba
k, i.e. with no inter-pa
ket delay, their spa
ing at the remote host
anbe analysed to give a good indi
ation of the
urrent path state. This method will bemore
losely analysed in
hapter 3, where it is in
orporated as part of our proto
oldesign.Further resear
h has been done in this area by several groups. The Pa
ket-PairProbe was used by Hoe in [20℄ to estimate a
onne
tion's bottlene
k bandwidth.The probed value was then used to
al
ulate the bandwidth-delay produ
t, thebyte equivalent of whi
h is taken to initialise the
onne
tion's slow start threshold(ssthresh). Performan
e improvements were seen when employing the probed valueover standard, default TCP settings. In parti
ular pa
ket loss for short
onne
tions,su
h as HTTP requests, was redu
ed. This redu
tion in pa
ket loss also improvedoverall performan
e by eliminating unne
essary timeouts during the startup period.In [38℄, Paxson dis
usses the Pa
ket-Pair in great detail, and attempts to re-solve many of its short
omings through use of Pa
ket-Pair bun
hes and re
eiver-sidebottlene
k estimation. By using a number of pa
kets in su

ession, as opposed to

Chapter 2 24 Related Workonly two, the likelihood of pa
ket loss is greatly redu
ed. Furthermore, a more a
-
urate estimation of the bottlene
k link
an be taken using multiple probe values.In [38℄, Paxson
onsiders the possibility of multiple
hannels and routes for a TCP
onne
tion and
on
luded that by using "Pa
ket Bun
h Modes" (multiple probepa
kets) and re
eiver-side
al
ulations, the issue of multiple routes, load-balan
ed
onne
tions, and bottlene
k
hanges
an be resolved.Further work in this area was
ondu
ted by Allman and Paxson in [3℄, wherePa
ket Bun
h Mode algorithms were run on large network tra
e data sets of over11,000
onne
tions. They
on
luded that using Pa
ket Bun
h Modes, in
onjun
tionwith re
eiver-side bottlene
k estimation, provides distin
t bene�ts to over 25% of
onne
tions in their experiments.A similar approa
h was used by Ahlgren et al [1℄ where
hains of one hundredpa
kets were transmitted between hosts in Uppsala (Sweden), Massa
husetts (USA)and Cambridge (England). Their results
orrespond with those of Carter and Crov-ella [12℄ and show stable estimations with trains of ten to �fteen pa
kets. Due to thein
reased number of data samples, the a

ura
y of the bottlene
k bandwidth estima-tion is in
reased over standard pa
ket-pair probing (whi
h uses only two pa
kets).Finally, the Pa
ket-Pair te
hnique is applied to dynami
 server sele
tion byCarter and Crovella [12℄. WWW do
ument data is dupli
ated a
ross a given net-work and when a request is made, the least
ongested server/
onne
tion is sele
tedfor delivery. This sele
tion is made using a lightweight Pa
ket-Pair probe, bprobe,whi
h sends at most 1% of the requested do
ument size in probe pa
kets. This limitis imposed in order to minimise the
ongestion impa
t of pa
ket probing in relationto real network data. Their experiments prove the fun
tionality of this method, andhighlight the bene�ts of dynami
 HTTP server sele
tion.2.3 High Speed NetworksThe range of physi
al and network layer te
hnologies upon whi
h a
onne
tionmay run, has expanded greatly over re
ent years. This has prompted work in a

Chapter 2 25 Related Worknumber of areas, but parti
ularly the use of alternative
ongestion avoidan
e al-gorithms. The need for these has been highlighted by te
hnologies su
h as ATM(http://www.atmforum.org) and Satellite
onne
tivity. When using su
h te
hnolo-gies, it is important to
onsider their unique properties. In ATM, for example, itis possible that
ongestion avoidan
e algorithms and bu�er allo
ations may
on-
i
t with the e�orts of the transport layer TCP [13℄. Furthermore, a wide varietyof network layers, means that TCP has to operate with varying degrees of pa
ketfragmentation.ATM operates on �xed length 53 byte
ells (48 bytes of data, 5 bytes of header),whi
h has been noted to
ause problems for standard TCP implementations [6℄. Inparti
ular, the loss of a single ATM
ell will in
ur the retransmission of an entireTCP segment, when running TCP over IP over ATM. Due to the fragmentationof IP in
urred when running over ATM, a single IP pa
ket may
onsist of tens ofATM
ells. Similarly, a TCP segment may
onsist of several IP pa
kets. Should asingle ATM
ell be lost, then an IP pa
ket will be
ome
orrupt. This
orruption alsorea
hes the TCP layer, where an entire TCP segment will not mat
h its
he
ksumupon re
eipt at the remote host. The re
eiver will then be unable to a
knowledgere
eipt of the data and it will have to be retransmitted.Further problems arise with ATM when
ongestion o

urs and
ells are dropped.Should an individual
ell be dropped, the impli
ation for IP pa
kets or TCP segmentsis mu
h greater. With part of its data having been lost, the remainder of thepa
ket in
ight is essentially useless. Therefore, a great deal of work has been
arried out to address the issue of pa
ket drop poli
ies in ATM servi
es. Amongthose most
ommonly implemented in ATM hardware are Early and Partial Pa
ketDis
ard (EPD/PPD), as re
ommended in [43℄. In PPD, an ATM swit
h will dropthe remained of a pa
ket should any of its
onstituent
ells be lost. Conversely, EPDsuggests that entire pa
kets should be dropped before
ongestion rea
hes a
riti
allevel. In their experiments, it was shown that EPD gave higher overall performan
edue to its bandwidth saving te
hniques.However, it remains for the higher level transport proto
ol to re
over from any

Chapter 2 26 Related Work
ell loss at the ATM layer. A further problem arises due to many ATM
onne
tionsbeing given a guaranteed QoS
onne
tion. This implies that a
ustomer may bepaying a premium fee for their network fa
ilities. Therefore, it is important tomaximise usage of the available bandwidth.With QoS in operation, a given
onne
tion may have pre-determined, allo
atedbandwidth and guaranteed jitter/delay bounds. Therefore, any pa
ket loss should
ertainly be transient in nature and fall within the spe
i�
ation of the
ustomer'sservi
e level agreement. Having a TCP, therefore, whi
h performs a lengthy timeoutand slow start under su
h
ir
umstan
es, is not desirable. Provided the
ell loss was
aused by transient network
ongestion and not hardware or network managementissues, the TCP
onne
tion should resume transmission at the optimum rate as soonas possible.Me
hanisms su
h as Fast Retransmit and Re
overy will
ertainly help TCP inthe above situation, as they minimise the number of timeouts and help TCP tosustain the optimum transmission rate. However, should timeout o

ur, furtheradjustments may be required in order to maintain the
ow of data. In our work withTCP
ongestion
ontrol modi�
ations, [49℄, this issue is addressed with modi�
ationsto TCP's
ongestion avoidan
e algorithms. A given TCP
onne
tion maintains anaverage
ongestion window value, whi
h is used should it timeout and have to restart.TCP is then able to restore its
onne
tion at the rate prior to any pa
ket loss withouthaving to go through slow start. Should
ongestion persist, the TCP modi�
ationmonitors the number of ACK's re
eived after
onne
tion timeout and will drop ba
kto standard slow start if none are re
eived within a given period.2.4 SummaryIn this
hapter, we have surveyed work related to the evolution of TCP and alter-native transport layer proto
ols. Our resear
h showed that a large per
entage oftransport proto
ol development was taking pla
e in produ
ing alternatives to TCP,"TCP Variants". Work published by Brakmo et. al [11℄ introdu
ed TCP Vegas

Chapter 2 27 Related Workand pro-a
tive
ongestion avoidan
e algorithms to the transport layer. The resultspresented in the aforementioned paper show that pro-a
tive algorithms are
apa-ble of signi�
antly redu
ing the pa
ket loss that a data stream will experien
e on
ongested networks.Work
ondu
ted by Keshav [26℄ into pa
ket-pair probing, allows a proto
ol to
al
ulate the
urrent network bottlene
k
apa
ity on a given path. This value
anthen be used to initiate transfer between two network hosts, at a rate whi
h is
ondu
ive to
urrent network traÆ
.At the appli
ation layer, in
reased deployment and utilisation of bursty, Web-based appli
ations, has produ
ed a requirement for appli
ation-fo
used Quality ofServi
e (QoS) [9℄. A side e�e
t of deploying QoS is that a given data stream may haveend-to-end bandwidth reservation and delay guarantees from intervening networkswit
hes and routers. At the very least, it will be assigned a queueing priority.This leads us to a
oherent resear
h programme that investigates the potentialfor QoS support at the transport layer. Furthermore, we aim to provide a transportlayer proto
ol whi
h exhibits lower pa
ket loss than
urrent TCP implementations,while maintaining pa
ket goodput 1. Se
tion 3.2 in
hapter 3 dis
usses the rationalebehind and bene�ts of this resear
h.Chapter 3 des
ribes our prototype transport proto
ol and the environment forour simulation testing. The results of our simulations along with traÆ
 and topologyspe
i�
ations are subsequently presented in
hapter 4.

1Pa
ket goodput is the rate of su

essfully re
eived pa
kets at a remote host. This is opposed tothroughput, whi
h is simply the rate of pa
ket transmission from a TCP sender.

Chapter 3
STTP: Rationale and Design
In
hapter 2 we outline a programme of resear
h whi
h addresses de�
ien
ies in
urrent transport proto
ol (TCP) implementations. The aim of our resear
h isto improve performan
e while providing support for network Quality of Servi
e. Inorder to address the bursty nature of Web (HTTP) and multimedia data streams, theexperiments
arried out in
hapter 4 use real traÆ
 tra
es as input to transmittingsour
es.This
hapter dis
usses the design and implementation of our experimental pro-to
ol, STTP. The design work detailed here addressed
ontribution C2, as outlinedin
hapter 1. Our work with simulated and prototype network proto
ols will bedes
ribed (se
tion 3.1) in addition to giving details of the simulation pa
kages used(se
tion 3.3). The rationale for our resear
h is explained in se
tion 3.2. We thenoutline the framework and implementation details of STTP (se
tion 3.5) and pro-vide sele
ted key performan
e results. Additional experiments, graphs and data
anbe found in the appendi
es. The information presented here has been published in[49℄, [51℄ and [50℄, whi
h will provide the reader with further ba
kground detail ofour work.

28

Chapter 3 29 STTP: Rationale and Design3.1 TCP Modi�
ationsInitial work for key obje
tive areas K1 and K2 was fo
used on the improvement ofTCP Reno, the most
ommon implementation of TCP at the time of writing. Thiswork is outlined by
ontribution C1 in
hapter 1. High bandwidth and Quality ofServi
e-aware networks
an present the user with a reliable, sustainable allo
ationof bandwidth. The physi
al layer for su
h
onne
tions is invariably �bre opti

ablefor the majority of land-based
ommuni
ation, or satellite/mi
rowave
hannel formobile or air-based networks. In both types of network, pa
ket loss is bursty andnot generally sustained due to prolonged
ongestion.Standard TCP Reno will throttle its transmission rate and perform a slow startwhen pa
ket loss o

urs or multiple dupli
ate a
knowledgement pa
kets are re
eived.In a high bandwidth environment, this
an be damaging to the
ommuni
ationstream between two hosts due to the time it will take TCP to resume transmissionat the rate prior to pa
ket loss.Therefore, in [49℄, we proposed modi�
ations to TCP Reno
ongestion avoidan
ealgorithms whi
h addressed these issues. A feature was implemented to maintaina history-weighted average of the sender's
ongestion window size. When the
on-gestion window was updated, the average value would be re-
al
ulated with, forexample, (0:1 � new window size + 0:9 �
urrent average window value). The ef-fe
t of this weighting was to redu
e rapid
u
tuation in the average window sizewhen bandwidth be
ame suddenly available or redu
ed.The average window value was then used as the restart value when TCP Renoen
ountered pa
ket loss. The proto
ol was then able to resume transmission at theaverage window rate it had a
hieved in the history of its
urrent
onversation. Inorder to prevent further pa
ket loss in
ase of sustained
ongestion, the algorithmwas engineered to fall ba
k to traditional
ongestion avoidan
e te
hniques shouldpa
kets not be a
knowledged after a restart had taken pla
e.These modi�
ations were simulated in the REAL simulation pa
kage (see subse
-tion 3.3.1). Results showed a performan
e in
rease of up to 46% in highly
ongested

Chapter 3 30 STTP: Rationale and Design
onditions, using lengthy, sustained, transfers of FTP data. Tabular and graphedand simulation data is available in [49℄. In this report, we propose extensions toTCP
ongestion
ontrol whi
h, on a
ongested network result in signi�
antly betteruse of available bandwidth by eliminating the requirement for a slow start with ea
hTCP restart.Me
hanisms are implemented whi
h enable the sending TCP to restart its data
ow at a suitable level for the
urrent
onne
tion. A fallba
k mode is providedto prevent the sour
e from overloading intervening routers should
ongestion besuÆ
iently high.Rigorous testing of the new algorithms was undertaken using the REAL networksimulator and various ben
hmark s
enarios. In addition to the ben
hmark s
enarios,further models were developed in order to simulate real-world situations.Over the suite of tests, our modi�
ations showed on average a 20-30% speedin
rease over REAL's standard TCP-RENO proto
ol (whi
h is based on BSD'sTCP-RENO) with some sour
es showing up to a 100% improvement. In the worst-
ase s
enarios, the modi�ed TCP fun
tioned at least as well as TCP-RENO.3.2 Rationale for Resear
hIn re
ent years, a great deal of work has been
ondu
ted, aimed at addressing theissues posed by the transport of multimedia data with an in
reasingly
omplex pro-to
ol sta
k. Prior appli
ations in
orporating bulk data transfer often involved asimple
onne
tion setup followed by lengthy (whole se
onds or minutes) of TCPover IP
ommuni
ation. The World Wide Web for example, is an obje
t-orientedenvironment, in whi
h the user is normally required to download several
ompo-nents in order to view a single page item (HTTP obje
t). With the
urrent HTTPspe
i�
ation, this results in several short downloads, ea
h requiring a separate TCP
onne
tion. On a high-bandwidth
onne
tion, the download time for ea
h
ompo-nent may be below one se
ond in
luding setup and tear down.In [49℄, we examined the most
ommon existing TCP implementation, TCP

Chapter 3 31 STTP: Rationale and DesignReno, and dis
ussed ways in whi
h it
ould be improved to a

ommodate highspeed and networks with support for Quality of Servi
e. However, the frameworkitself, with exponential slow start and lossy, rea
tive
ongestion avoidan
e,
ouldnot be improved without substantial redesign.Therefore, our studies led to further pra
ti
al examination of this area. Webelieve that there exist a number of improvements whi
h
an be made to the generalpro�le of a transport layer
onne
tion. Namely, the startup phase and the proto
ol'srea
tion to network
ongestion. This work is outlined in area K3 of our thesisobje
tives in
hapter 1.Our work in both
ow
ontrol and network bandwidth probing [50℄ [51℄ showedus that more suitable me
hanisms were available for bursty, multimedia traÆ
. Thetoken bu
ket model allows bounded burstiness, but with a mean transmission ratebeing enfor
ed over a given time period. Data may be transmitted from an STTPsour
e provided that there is
redit in the token bu
ket. If not, transmission will
ommen
e when suÆ
ient
redit has been a

umulated. Credit is added to thebu
ket in regular "drips" from a timed sour
e.Provided su
h a model
an be initialised with values whi
h will not overload anetwork path, or hinder data transmission, it would appear to be well suited for
ow
ontrol in high speed networks with bursty traÆ
 pro�les. Furthermore, therelatively simple parameters of the token bu
ket model mean that the rate at whi
htransmission o

urs
an be adjusted in real time to take into a

ount variation innetwork
ongestion. The bu
ket's burst size is an integer value, representing thenumber of tokens it is
apable of holding, and the mean
ow rate is a timer valuefor the introdu
tion of new pa
kets to the holding area.In order to initialise the bu
ket with appropriate values, we draw on Keshav'swork with pa
ket-pair bandwidth probing [26℄. This allows us to initialise the tokenbu
ket parameter with suitable values in roughly a single round trip time.On
e established, a modi�ed pro-a
tive
ongestion avoidan
e algorithm is usedto adjust the
ow rate and burst size of the token bu
ket. Using measured pa
ketround trip times, we
an sense variation in queuing delay and make proportional

Chapter 3 32 STTP: Rationale and Designadjustment to a
onne
tion's
ow parameters.The result is a
exible transport proto
ol whi
h is
apable of qui
kly and in-telligently measuring the available bandwidth on a network path. It
an instantlypro
eed to transmit bursty data whi
h is bounded by the
urrent network
apa
ity.However, over a given period, it will exhibit fairness with a mean
ow
omparablewith that of
ompeting
onne
tions. We demonstrate this fun
tionality in
hapter 4,se
tion 4.2.2, where STTP, TCP Reno and TCP Vegas are simulated in the REALnetwork simulator.3.3 Network SimulatorsIn order to experiment with alternative algorithms under a wide variety of s
enarios,we ele
ted to use network simulation software. Our requirements for su
h softwarewere relatively demanding sin
e we needed full
ontrol over and a

ess to the simu-lator
ore. Therefore, our options were limited to the freely available pa
kages fromother resear
h groups or networking proje
ts.Network simulation software was
hosen for its ability to
onstru
t a wide rangeof topologies with a variable number of
ommuni
ating hosts and routers. Networkhosts
an then be
on�gured to transmit a range of traÆ
 types, from FTP, HTTP,Telnet through to mathemati
ally distributed data pro�les, su
h as the poisson andexponential models. Similarly, most
urrent simulators will allow the user to providetheir own traÆ
 tra
es whi
h
an then be used by a network host to provide inputfor its data transmission.The ability to
onstru
t su
h networks is of great value when examining ordesigning network proto
ols. If only a single LAN topology were available, thenthe user
ould not be
ertain of the proto
ol's performan
e on wide area or lowbandwidth networks, or under high
ongestion.A network simulator su
h as NS [5℄ or REAL [25℄
an provide these fa
ilities,but is only as reliable as its internal models and program
ode a

ura
y. It is alsodiÆ
ult for designers to model the random traÆ
 patterns and true burstiness of an

Chapter 3 33 STTP: Rationale and DesignInternet. Published proto
ol work at this time relies mainly on mathemati
al andsimulation models. Not everyone
hooses to progress through to the implementationand prototyping phase. The results from our simulation work with STTP, shown in
hapter 4, demonstrate how e�e
tive and
onsistent network simulation has be
ome.3.3.1 REALWhen work began on this thesis in 1996, there were few pa
kages stable and de-veloped enough to enable rigorous testing with reliable proto
ol suites. At thistime, the REAL simulator version 4.5 [25℄ was widely used, well do
umented, andhad been the foundation for signi�
ant published work [26℄, [27℄, [28℄, [30℄, [31℄,[29℄. REAL is based on the NEST 2.5 (ftp://ftp.
s.
olumbia.edu/nest/) simulationtestbed and was used as the basis of the NS simulator
reated by Floyd and othersat the University of Berkeley [5℄.The simulator itself is written entirely in C, but the user des
ribes networktopologies using a simple des
ription and s
ripting language. This is a simple, yeteÆ
ient approa
h whi
h has been employed by many simulation pa
kages in thepast. Version 4.5 of REAL was used by many resear
h groups for simulation exper-iments. However, Version 5.0 released in 1997, introdu
ed several new features ando�ered signi�
ant speed improvements. The majority of our work was
ondu
tedusing version 4.5 of the software and while it was relatively simple to port develop-ment
ode between releases, we
ontinued to do so after 5.0 was available. Despite5.0 o�ering more features, extensive use of the new
ode showed 4.5 to be bothmore stable and less prone to errati
 behaviour. Our results from version 4.5 were
on�rmed by further experimentation in NS.STTP was implemented in C as part of the REAL
ore simulator. On
e
ompiled,we were able to experiment with it alongside TCP Reno using user-side s
ripteds
enarios.

Chapter 3 34 STTP: Rationale and Design3.3.2 NSIn
ontrast with NS, REAL does not allow further fun
tionality to be in
luded inits user-side s
ripts. These are used simply to des
ribe the network topology andevents whi
h will take pla
e during the
ourse of the simulation.NS began as a variant of the REAL simulator in 1989, but did not see signi�
antdevelopment e�ort until the late 1990's. Version 2.0 was released on September10th 1997. The
urrent release at the time of writing (1999), 2.1b5, was used for oursimulation experiments. NS development is progressing, and further releases shouldnow be available to the reader.NS is an event-driven simulator, whi
h
onsists of C++
ore methods, whi
hinterfa
e with an obje
t-oriented T
l (oT
l) shell. This powerful framework allowsthe user to implement both network topologies and additional fun
tionality throughmethods and pro
edures in oT
l s
ripts. For example, in order to monitor thebehaviour of spe
i�
 variables within a proto
ol, the user has only to present thesevia the oT
l interfa
e in the proto
ol's
ore C++
ode. An oT
l simulation s
riptis then able to read and manipulate these variables during runtime.The impli
ation of this is that experimental prototypes
an easily be
reated (us-ing oT
l rather than a full C++ implementation), by
alling on features or methodsalready implemented in the simulator
ore. However in order to
reate or modifyfully fun
tional network proto
ols, it is better to build them in C++. The reasonfor this is that while an oT
l prototype may be qui
k, it is not as integrated nor
anit o�er the same level of fun
tionality as a full implementation.Variables and methods are made available to user-side s
ripts through the oT
linterfa
e, whi
h
onsists of C++ fun
tion
alls from the oT
l libraries. It is thereforepossible to allow or deny user a

ess to proto
ol data as required. While this doesfa
ilitate program debugging and monitoring, the interfa
e is relatively
omplexand not as intuitive as that of REAL, for example. Due to the in
lusion of oT
l,both on the user-side and as fun
tion
alls in the C++
ode, the learning
urvefor NS is quite steep. On
e over
ome, however, it provides a powerful and
exiblesimulation environment. The NS simulation model of STTP is implemented entirely

Chapter 3 35 STTP: Rationale and Designin C++, but presents many variables to the oT
l interfa
e. This permitted us totra
e important variables su
h as the Congestion Window size during the simulation.3.3.3 Simulator ValidationBoth REAL and NS are provided with a large
olle
tion of validation and ben
h-marking user s
ripts. NS, in parti
ular, performs self validation as part of the buildpro
ess.A detailed set of s
ripts are provided, whi
h test appli
ation, transport, routingand link-layer proto
ols. The simulator is run using known input values and theoutput
ompared with known, valid results. The validated set of proto
ols extendsto all
ommon Internet standards, with a smaller set of non-validated, yet working
ode. As new builds of NS and its proto
ols are produ
ed, the pa
kage is validatedby its maintainers on a variety of platforms. The user is noti�ed should NS failto validate any of its proto
ols during the build pro
ess. This pro
ess was usedto validate the fun
tionality of TCP Reno and TCP Vegas for the purposes of oursimulation experiments.Keshav modelled and des
ribed REAL in great detail, in [25℄. For many years,REAL was one of the premier network simulators in the a
ademi

ommunity, onlynow super
eded by NS (whi
h is derived from REAL).Both simulators have been used extensively by other resear
h groups and haveformed the basis for a great deal of published work. The REAL simulator was de-signed and validated as part of Keshav's thesis [27℄. NS is
urrently being used bymany PhD resear
h students and networking groups. Full do
umentation and exam-ple program
ode for NS
an be found at http://www.isi.edu/nsnam/ns/. Publishedba
kground information on NS
an be found in [5℄.3.4 Framework/AlgorithmsSTTP itself is a reliable transport layer, intended for use on IP networks in pla
e ofTCP. The algorithms, however, are portable and
ould be used over any data-link

Chapter 3 36 STTP: Rationale and Designlayer.The a
ronym, STTP, stands for Shaped Token Transport Proto
ol. This is takenfrom the design of its
ore algorithms, whi
h are
entered around the use of tokenand leaky bu
kets, used to shape the
ow of data from a transmitting networkhost. By initialising these bu
kets with appropriate values and maintaining themin a

ordan
e with the
urrent network state, we are able to provide a shaped
owof data. It is anti
ipated that this
ow will be more
ondu
ive to the support ofQuality of Servi
e (QoS) network appli
ations.We therefore have three main areas of
on
ern, detailed below in paragraphs3a-3
:3a An STTP
onne
tion is initialised with a dual-pa
ket probe from thetransmitting host to the re
eiver. This will inform the host of an in
oming
onne
tionand allow it to prepare input bu�ers and start appli
ation server fun
tions. Theprobe
onsists of two pa
kets, transmitted ba
k-to-ba
k, whi
h are used to measurethe bottlene
k bandwidth on a given network path. This is des
ribed in detail insubse
tion 3.4.1.Provided that the Maximum Transfer Unit (MTU) of the path is known, we arenow able to
al
ulate the speed at whi
h new pa
kets
an be put onto the link inorder to �ll the available bottlene
k. The result of this
al
ulation is used to triggerthe release of tokens into a token bu
ket. The fun
tionality of this
ow
ontrolme
hanism is des
ribed in subse
tion 3.4.2.3b The token bu
ket me
hanism is used as a
exible repla
ement for TCP'sCongestion Window. This addresses key area K3 of our obje
tives. We are ableto modify the
ow of tokens into the bu
ket in real time as we re
eive network
ongestion information ba
k from a
knowledged pa
kets. In order to a
hieve this,we use a pro-a
tive me
hanism as des
ribed in subse
tion 3.4.3.Our algorithms monitor the round trip time (RTT) of transmitted data, andrespond to in
reases or de
reases in network laten
y. STTP is an a
knowledgedproto
ol, whi
h means that ea
h pa
ket re
eived at a remote host will generate asmall a
knowledgement pa
kets. This is returned to the transmitting host as proof

Chapter 3 37 STTP: Rationale and Designof re
eipt. These pa
kets are generated and returned immediately by the remotehost.If a
onne
tion's RTT falls outside a bounded window when
ompared with pre-vious measurements, then the token bu
ket's timer is modi�ed a

ordingly. Forexample, if the RTT should in
rease, then this
an be interpreted as
ongestion onthis
onne
tion's network path. We
an therefore de
rease the rapidity of the tokenbu
ket timer in proportion to this
hange. The result is redu
ed pa
ket transmis-sion in line with the
ongestion
urrently being experien
ed. Similarly, if the RTTde
reases, we
an in
rease the rate of pa
ket transmission.3
 In the
ase of pa
ket loss, or multiple dupli
ate a
knowledgement pa
kets,STTP adopts the same approa
h as TCP Vegas, by redu
ing its transmission rateby 10%. This addresses item K3 of our obje
tives. However, as
an be seen in ourexperimental results, STTP drops far fewer pa
kets than either TCP Reno or Vegas[51℄.3.4.1 Pa
ket-Pair Bandwidth ProbingWhile TCP Reno's standard slow start algorithm
ould have been used, past resear
hhas shown it to be lossy and poorly suited to multimedia appli
ations [16℄. Pa
ket-pair probing te
hniques have been examined in work by Keshav [26℄ and others overre
ent years. While there are some reservations as to its use in
ertain network
on�gurations, our work has shown it to be reliable in almost all
ommon
ases withboth traditional and
urrent traÆ
 pro�les. It has been reported that pa
ket-pairreliability is redu
ed when using
ertain types of router queueing algorithm andnetwork link asymmetry [26℄. Keshav des
ribes a s
enario where traditional FirstCome First Server (FCFS) router algorithms present problems to pa
ket-pair net-work probes. If a single sour
e were to send a large burst of data to an FCFS router,then a

ording to the s
heduling algorithm, it would re
eive a higher priority of ser-vi
e than
ompeting
ows. This is due to the transmitting sour
e sending a largenumber of pa
kets in qui
k su

ession, whi
h will be queued and pro
essed in orderby the router. In [26℄ Keshav re
ommends that Weighted Fair Queueing (WFQ) is

Chapter 3 38 STTP: Rationale and Designmore appropriate for use with pa
ket-pair network probe te
hniques. This algorithmavoids the problems asso
iated with FCFS by preventing a high-bandwidth sour
efrom monopolising a router's pro
essing
apa
ity. Keshav reports that pa
ket-pairalgorithms
an be adversely a�e
ted by heavy traÆ
 at a FCFS router due to thein
onsisten
y in servi
e rate, whi
h is
aused by high-bandwidth data
ows from
ompeting sour
es. He argues that WFQ provides pa
ket-pair with a more realisti
view of the network state due to ea
h
ow being assigned a priority within a router'sservi
e model. Ea
h
ow will therefore re
eive its fair share of routing resour
e.Allman and Paxson examine pa
ket-pair in [3℄, where the issue of asymmetri
network
onne
tions is dis
ussed. Additional modelling and theory behind pa
ket-pair probing is presented in detail in [26℄, [27℄ and in our own work, [50℄, [51℄.Simply put, one
an transmit two pa
kets ba
k-to-ba
k along a given networkpath. Given that we know the pa
ket size, the amount by whi
h they are separatedby queueing delay at the re
eiver allows us to
al
ulate the
urrent bottlene
k link
apa
ity.The formula used to
al
ulate the bottlene
k bandwidth on a given
onne
tionis:bottlene
k
apa
ity(bits=se
ond) = Pa
ketSize(bits)=InterarrivalGap(se
onds)The pro
edure for initialising an STTP
onne
tion is therefore quite simple. Twopa
kets are transmitted ba
k-to-ba
k, i.e. queued and transmitted as
lose togetheras the network adapter driver will allow. When re
eived by the remote host, theyare simply e
hoed ba
k to the re
eiver without delay. When the pa
kets arrive ba
kat the sender, the gap between their arrival is measured and used in the above
al
ulation.This method is termed sender-side bandwidth probing by Allman in [3℄. Whenusing asymmetri

onne
tions, or multiple bonded
hannels, it would be advisableto use re
eiver-side measurement. An added advantage of this, as dis
ussed byAllman in his work and Keshav in [26℄, is that the probability of error is halvedwhen using only the inward or outbound path. For the purposes of our simulations,

Chapter 3 39 STTP: Rationale and Designwe have used only sender-side bandwidth probing. The reason for this is that oursimulation topologies do not in
orporate asymmetri
 links, and while the bene�tsof re
eiver-side measurement will
ertainly yield better results in real networks, ourimplementation of the pa
ket-pair probe proved to be reliable and a

urate.The bottlene
k measurement
an then be used to
al
ulate an appropriate burstand feed value for a
onne
tion's token bu
ket. During our experimentation, weused a variety of methods whi
h will be dis
ussed later in this se
tion.3.4.2 Token Bu
ket Flow ControlOn
e a network
onne
tion's bandwidth has been dis
overed, a token bu
ket
an beinitialised with an appropriate
ow of tokens and initial burst size. For our work,the standard � � � model has been used, where � is the
apa
ity of the bu
ket (a
onne
tion's maximum burst size) and � is rate at whi
h tokens are permitted toenter. At any time, an appli
ation is only able to send data if there are tokensin the bu
ket. In our simulations, we used �xed pa
ket sizes and therefore madeea
h token in the bu
ket equal to a single pa
ket of network data. In a kernelimplementation, however, it may be advisable to use an integer value for the bu
ketand allow variable-size pa
kets to be transmitted. This would a

ommodate small
lient requests to a remote server. In order to s
ale the token bu
ket in a

ordan
ewith the
urrent network state, both the
ow rate and burst size must be altered inreal time.During our simulation experiments, we used two distin
tly di�erent approa
hesto token bu
ket management. The �rst, and initial implementation, did not rely ontraditional timers to trigger the release of tokens. Instead, we used a me
hanism bywhi
h the a
knowledgements re
eived at the sender were added to a leaky bu
ket.The leaky bu
ket was then responsible for feeding tokens to the token bu
ket at the
urrent bottlene
k rate. Our leaky bu
ket implementation in
remented its
urrentvalue with ea
h new ACK pa
ket re
eived. With the advent of a timer event,the leaky bu
ket is de
remented and the token bu
ket in
remented to indi
ate thetransfer of a token.

Chapter 3 40 STTP: Rationale and DesignThe problem with this approa
h is that it requires the token bu
ket to be ini-tialised with an appropriate number of tokens. These are needed to ki
k start theSTTP
onne
tion by providing a number of tokens to the newly opened
onne
tion.When in operation, the number of tokens in operation
an be in
reased or de
reaseda

ording to the
urrent state of network
ongestion. A further variable for tuning isthe
ow rate of the leaky bu
ket
omponent as this is responsible for the smoothingof token
ow.The advantage with this me
hanism is that tokens will only be fed into thetoken bu
ket if pa
kets are being su

essfully re
eived and ACKs generated. Shouldthere be a sudden in
ux of network
ongestion and ACK pa
kets do not arrive atthe transmitting host, then STTP will not blindly inje
t pa
kets into an already
ongested network.The se
ond approa
h used was that of a traditional token bu
ket, whi
h inje
teda token into the bu
ket with ea
h timer event. The timer was initialised to the raterequired to �ll the probed bottlene
k
onne
tion. For example, a 64kbps bottlene
k
onne
tion would yield a timer that generates 64000/pa
ketSize(bits) events ea
hse
ond. Ea
h time an event o

urs,
redit for one pa
ket transmission is added tothe token bu
ket.The latter was found to be the more elegant and appropriate solution. However,the di�eren
e in overall performan
e between the two in our simulations, was foundto be negligible. Due to the random nature of real network traÆ
, we believe thata kernel implementation, and testing on a physi
al network would provide moredetailed data. The se
ond approa
h was a more a

urate implementation of ourSTTP design, and so was used for the experiments in
hapter 4.3.4.3 Congestion Avoidan
eResear
h has shown that pro-a
tive
ongestion avoidan
e is both fair and less proneto pa
ket loss than traditional TCP Reno algorithms. Early work by Wang andCrow
roft [52℄, demonstrated the bene�ts of this approa
h. However, the mostsigni�
ant work in this area was
ondu
ted by Brakmo et. al in their implementation

Chapter 3 41 STTP: Rationale and Designof TCP Vegas [11℄. Their results showed signi�
ant performan
e improvements overTCP Reno when
onsidering overall throughput and pa
ket loss.TCP Vegas made approximations as to the anti
ipated throughput that wouldbe a
hieved in a given time period (one Round Trip Time). If the a
tual throughputin this period was lower than expe
ted, then the proto
ol took this as an indi
ationof network
ongestion. It therefore redu
ed its transmission rate a

ordingly. Con-versely, if a
tual throughput was higher than expe
ted, then the transmission rateis in
reased.This approa
h to
ongestion avoidan
e also lends itself to token bu
ket
ow
ontrol. Rather than modelling the expe
ted and real throughput values, we
hoseto monitor the �rst order statisti
 of
onne
tion Round Trip Time (RTT).When an STTP pa
ket arrives at the re
eiver, an ACK pa
ket is generated andreturned to the sender. A single RTT is the time it takes for the data to arrive atits destination plus the time for the relevant ACK to rea
h the sender.A
lear indi
ation of network
ongestion, or outage, is an in
rease in RTT. Thisis due to additional pa
kets being queued at routers along a given
onne
tion's path.Should router queues over
ow, then pa
kets will have to be dropped as they
annotbe a

ommodated in router memory. In
ontrast, TCP Reno does not sense network
ongestion, and
ontinues to send at its present rate until data is lost. It then rea
tsby redu
ing its transmission rate.In order to prevent rapid
u
tuation in a
onne
tion's transmission rate, weprovide bounds to STTP's RTT monitor. For experimental purposes, we
hose 5%,as this me
hanism is also used by TCP Vegas. Therefore, if STTP sees a
onne
tion'sRTT
hange by greater than 5%
ompared with the last monitored value, it willredu
e both � and � by an amount proportional to the
hange in RTT. Experimentswere
ondu
ted with values between 1% and 20%. However, with small values, theproto
ol be
ame too sensitive to variation in RTT, and vi
e versa with large values(greater than 10%). We found 5% to give the best
ombination of sensitivity andstability for our experiments. The following fun
tion,
alled ea
h time a new ACKis re
eived, des
ribes the modi�
ation of token bu
ket depth (�) and
ow rate (�).

Chapter 3 42 STTP: Rationale and DesignlastRTT is initialised to 0.0newRTT is set to the
urrent measured RTTIF (lastRTT > 0.0)IF (newRTT > lastRTT*1.05)de
rease depth and flow of bu
ketELSE IF (newRTT < lastRTT*0.95)in
rease depth and flow of bu
ketlastRTT := newRTTThis rea
tion to RTT variation means that the
ow of data from a STTP sour
eis s
aled in proportion to the available bandwidth on a given
onne
tion. We willdis
uss the relative advantages and disadvantages of this approa
h in
hapter 5.However, further to our work in [49℄, whi
h introdu
ed the notion of smoothedwindow
al
ulations, this te
hnique is used in the real time manipulation of STTPdata
ow, as this te
hnique is outlined in se
tion 3.1 of this
hapter.3.4.4 History Weighted Bu
ket ManipulationIn [49℄, we developed a me
hanism by whi
h a smoothed, average value for TCP's
ongestion window
ould be maintained. The spe
i�
s of this te
hnique were dis-
ussed in
hapter 3, se
tion 3.2. Our simulation experiments showed that this te
h-nique was required in order to prevent rapid
u
tuation of window size in
ongestednetworks. By maintaining a history-weighted
ongestion window value, the e�e
t ofbursty network
ongestion
an be minimised, as TCP
an attempt to restart at itsmean rate rather than with a single segment slow start upon pa
ket loss or timeout.Our experiments with STTP in both REAL and NS, showed that this approa
hto transmission rate management was also appli
able to token bu
ket
ow
ontrol.Should the RTT of a
onne
tion
hange by �5%, then a re
al
ulation is required. Ina similar vein to our TCP modi�
ations, if high-bandwidth, bursty,
ross traÆ
 isbeing experien
ed, then it may be short-lived, as most HTTP or multimedia transfersare. Therefore when
al
ulations are performed, the
urrent token bu
ket values are

Chapter 3 43 STTP: Rationale and Designgiven a higher value, or weight, than those newly whi
h have been measured. Themethod we have used is to adopt two variables, � and �, where �+� = 1:0. � is usedfor the history weighting, and � for the newly measured value. Initial experimentsused a simple in
rease or de
rease
al
ulation whi
h was proportional to the
hangein measured RTT.F = 1 + lastRTT=newRTT � = �F � = �FA history weighted
al
ulation in
ludes terms where � and � are used to modifythe relative importan
e of these measurements.F = � + � � = �F � = �FThe e�e
t of using this te
hnique is to redu
e
u
tuation in token bu
ket values.We found that high-bandwidth
ross traÆ

aused a sudden in
rease in the measuredRTT of STTP
onne
tions. This resulted in a rapid redu
tion in a given
onne
tion'stransmission rate. Conversely, when
ompeting sour
es on a network
ompletedtransmission, the measured RTT would suddenly redu
e. STTP would sense thisand in
rease its traÆ

ow a

ordingly. Parti
ularly in
ases where on-o� or burstytraÆ
 sour
es were in use, this is undesirable behaviour.Rapidly
u
tuating transmission rates are not network-friendly, nor desirablefrom a user perspe
tive with regard to appli
ation QoS. STTP therefore smoothsits transmission rate adjustments using the above te
hnique. The details of ourwork with this te
hnique are published in [51℄, but summary results are in
luded in
hapter 4, se
tion 4.2.2.3.5 Proto
ol ImplementationWhile the TCP modi�
ations des
ribed in se
tion 3.1 [49℄ were implemented in theREAL simulation pa
kage, the later stages of our resear
h were performed using NS.Due to the large amount of development
urrently taking pla
e for NS, we foundthat its support of up-to-date network proto
ols and te
hnologies was far superior

Chapter 3 44 STTP: Rationale and Designto that of other simulation pa
kages. In order to test STTP with a broad range oftraÆ
 types, network
on�gurations and TCP implementations, NS was an obvious
hoi
e.A simulation prototype of STTP was implemented in the NS network simulator.The purpose of this was to implement our proto
ol model in a familiar simulationenvironment. We were then able to test its fun
tionality and show that further workwould be valuable given initial performan
e results. The work done in [51℄ used NSas the algorithms and experien
e gained in REAL were ported to the new simulationpa
kage.In both
ases, standard TCP Reno was used as the basis of our implementation.By adopting the basi
 algorithms for pa
ket pro
essing, transmission and retrans-mission, we were able to more faithfully test our adjustments and improvements.TCP has three basi
 se
tions to its program
ode: Pa
ket transmission, pa
ketre
eipt and timeout pro
essing. Pa
ket transmission ensures that pa
kets are sentin sequen
e order and at a rate whi
h is in line with the bounds des
ribed by a
onne
tion's
ongestion window variable. Pa
ket re
eipt pro
esses in
oming ACK's,and is responsible for dete
ting out-of-order or dupli
ate pa
kets. When an in-orderACK is re
eived, the appropriate adjustment to a
onne
tion's
ongestion windowsize is made. This fun
tion will, however, note dupli
ate ACK's to a point wherefast retransmit is triggered, or a
onne
tion is restarted. When transmitted, TCPsegments have a timeout value assigned. Should this expire before the appropriateACK is re
eived, telling of su

essful delivery, then it is retransmitted and normallya

ompanied by a slow start due to supposed network
ongestion.In order to fa
ilitate our implementation, the retransmission and timeout
odefrom TCP Reno was in
orporated into the STTP framework. This provided an evenbasis for
omparison when
onsidering retransmitted or lost data. If any improve-ments were apparent, it was therefore due to our
ow
ontrol,
ongestion avoidan
eor startup algorithms.

Chapter 3 45 STTP: Rationale and Design3.6 SummaryIn this
hapter we have addressed the design aspe
t of K3, as detailed in
hapter 1.We have also
overed the material related to C1 (se
tion 3.2) and C2 (throughoutthis
hapter). The simulation of STTP (K3 and K4, resulting in C3), is presentedin
hapter 4. The results of this experimentation is dis
ussed in
hapter 5 (K4 andC4).

Chapter 4
STTP: Testing and Results
In this
hapter, we present results from network simulations using NS and REAL,with an implementation of our proto
ol model, as des
ribed in
hapter 3. This workis outlined as thesis
ontribution C3 in
hapter 1. We will pro
eed with detaileddis
ussion of the graphi
al and tabular results presented here, in
hapter 5.This
hapter
omprises the fun
tional and subsequent performan
e testing of ourexperimental proto
ol, STTP. Two simulation pa
kages are used, REAL and NS,whi
h provide a wide range of
omparative proto
ols and appli
ation traÆ
 types.STTP's algorithms were implemented and built as part of both simulation pa
k-ages. This allowed experimentation alongside other
ommon variants of TCP, Renoand Vegas. The
urrent de fa
to standard for TCP/IP networked systems is TCPReno. However, a great deal of work has been
ondu
ted into the resear
h, develop-ment and study of alternative
ongestion avoidan
e algorithms su
h as TCP Vegas.The resulting te
hniques are be
oming in
reasingly
ommon in a large number ofOperating Systems su
h as Linux (http://www.linux.org).The REAL simulator does not have an implementation of TCP Vegas as partof its standard distribution. We therefore performed fun
tional testing of STTPagainst TCP Reno with bulk data
ows. Further work with NS allowed more detailedperforman
e testing with TCP Reno, TCP Vegas and STTP, using di�erent traÆ
types. Tables 4.2 and 4.1 show a summary of the features of both NS and REAL interms of proto
ol and traÆ
 type support. More detailed information
an be found46

Chapter 4 47 STTP: Testing and Resultsfrom the proje
t development homepages (http://www.
s.
ornell.edu/skeshav/real/for REAL, and http://www-mash.
s.berkeley.edu/ns/ for NS).Table 4.1: Summary of REAL and NS Simulator TraÆ
 TypesSimulator TCP Tahoe TCP Reno TCP Vegas Pa
ket PairREAL x x - xNS x x x -Simulator FTP Telnet Statisti
al User Tra
esREAL x x x MPEG onlyNS x x x xTable 4.2: Summary of REAL and NS Simulator Proto
ol SupportBoth simulation pa
kages allow the user to obtain statisti
al information regard-ing the number of pa
kets transmitted and dropped by ea
h traÆ
 sour
e. Giventhese values, it is possible to
al
ulate the goodput for a given
onne
tion. Theterm goodput is used to des
ribe the rate at whi
h pa
kets have been su

essfullyre
eived at their destination. With a guaranteed delivery me
hanism su
h as TCP,the higher the goodput, the more eÆ
ient the transport layer. A transport proto
olwhi
h is rea
tive to network
ongestion and
onservative with pa
ket transmission,is likely to have a higher level of goodput than one whi
h is aggressive and eager to
apture available bandwidth. This is shown in experiment 4.2.2, where a range ofvalues are simulated in NS with our STTP model.The majority of our more advan
ed simulation s
enarios were implemented inthe NS simulation pa
kage, due to the
exibility that it o�ers in terms of usertraÆ
 types and s
ripting fun
tionality. Our work fo
used on the implementationand improvement of
ongestion avoidan
e algorithms at the transport layer, and inorder to rigorously test our models,
ustom s
ripts were developed during the
ourseof our simulations. In parti
ular, we had the need to run bat
hes of simulationswith varying degrees of network
ongestion. This was a
hieved by running thesame simulation with an in
reasing number of transmitting and re
eiving nodes,whi
h were automati
ally added to the simulation s
ript �les between runs. Ea
h

Chapter 4 48 STTP: Testing and Resultssimulation would produ
e an output �le, whi
h
ould later be parsed with a simplePerl s
ript, and input to Gnuplot for presentation.4.1 Testing STTP Network BehaviourIn this se
tion, simulation experiments are
ondu
ted with the REAL simulationpa
kage. The aim of this work is to validate the proto
ol model and to
ompareinitial performan
e with that of existing TCP implementations using simple datatransfer.Experiment # Demonstrates1 (se
tion 4.1.1) The fun
tionality of STTP's
ongestion avoidan
ealgorithms and
ow
ontrol2 (se
tion 4.2.1) The performan
e of STTP with bulkdata transfers3 (se
tion 4.2.2) The fairness of STTP in
omparisonwith TCP Reno and TCP Vegas4 (se
tion 4.2.3) STTP and TCP performan
e with VariableBit-Rate video sour
es5 (se
tion 4.2.4) STTP and TCP performan
e with burstyHTTP traÆ
 sour
es6 (se
tion 4.2.5) The performan
e of STTP, TCP Reno andTCP Vegas in a mixed proto
ol environmentTable 4.3: Experiment Information4.1.1 Experiment 1, Fun
tional Testing using REALFigure 4.1 depi
ts a network topology with several sour
es (transmitting nodes) anda single sink (destination node). The traÆ
 traverses two routers with all links being64kb/s
apa
ity.In order to examine STTP's bandwidth probe and
ongestion avoidan
e algo-rithms, six STTP sour
es were started at regular intervals (T=0,10,20..50). Theimpli
ation being that subsequent sour
es would be probing into a busy
onne
-tion and so have to
ompete with other sour
es for available bandwidth. Similarly,

Chapter 4 49 STTP: Testing and Results
1

0

2

10

3

20

4

30

5

40

6

50

rx

FCFS

1 2

FCFS
64kb 64kb

64kb

source #

start time

keyFigure 4.1: Experiment 1existing traÆ
 would have to relinquish bandwidth in order to a

ommodate newsour
es. Furthermore, ea
h end node has a dedi
ated 64kb/s
onne
tion but whi
his of the same
apa
ity as the network's shared segments. This implies that anybandwidth probe will be required to probe bottlene
k segments in the main networkand will always en
ounter links whi
h have a greater
apa
ity.node transmits(pkts) [sd℄ drops(pkts) [sd℄ RTT(ms) [sd℄Reno STTP Reno STTP Reno STTP1 34.56 [19.52℄ 37.89 [17.55℄ 24.89 [38.17℄ 0 1.89 [3.00℄ 3.71 [1.9℄2 39.00 [15.99℄ 37.56 [17.08℄ 14.11 [23.05℄ 0 2.13 [3.43℄ 3.71 [1.9℄3 28.33 [20.27℄ 13.13 [2.48℄ 3.89 [8.54℄ 0 2.67 [2.81℄ 2.66 [1.19℄4 23.89 [15.52℄ 12.77 [2.95℄ 11.44 [17.15℄ 0 4.09 [4.95℄ 3.12 [1.95℄5 21.67 [16.31℄ 13.07 [2.97℄ 5.22 [11.11℄ 0 3.61 [4.73℄ 3.11 [2.49℄6 12.56 [17.30℄ 13.22 [1.63℄ 1.44 [3.74℄ 0 1.05 [2.23℄ 1.75 [1.65℄Table 4.4: TCP and STTP Performan
e SummaryTable 4.4 shows raw transmission, drop, retransmission and RTT data for bothSTTP and TCP Reno run on the same network topology and simulation model. Inall
olumns, [sd℄ indi
ates the standard deviation en
ountered a
ross data samples.While TCP transmits a similar number of pa
kets to STTP, the a
tual goodput ofSTTP is signi�
antly higher due to there being no dropped or retransmitted pa
k-ets. Parti
ularly sour
es 3, 4 and 5 in Appendix table 4.4 exhibit greatly improvedperforman
e, even when an error margin of �5% is taken into a

ount on our sim-

Chapter 4 50 STTP: Testing and Resultsulation results. It is important to note that the values given in these tables are theaverage over the duration of an experiment as the
omplete results are too verbose toin
lude in these pages. The methodology for ea
h of our experiments was to dumpall available data to a single �le. It was then possible to write Perl or Shell s
ripts,whi
h would extra
t the information required for the tables and graph presentedhere. This proved itself to be a sound methodology, as we did not have to re-runsimulations to obtain further information, and all inter-related data was present ina single �le. While STTP shows few or no pa
ket drops and retransmissions, TCPhas a higher transmission rate. This means that while TCP may transmit morepa
kets, this over-subs
ription by several sour
es in
urs pa
ket loss and results in alower overall throughput (goodput) after dropped data is taken into a

ount.STTP's improvement is due to a

urate bandwidth dis
overy algorithms andproa
tive
ongestion avoidan
e. Our experiments show that STTP is able to initiatetransfer at a speed whi
h is appropriate to the
urrent state of network
ongestion.Furthermore, the results of every experiment show that STTP exhibits lower pa
ketloss than TCP Reno on the same simulation topology. As the RTT of a sour
ein
reases, STTP will ba
k o� its transmission rate so as to avoid bu�er
ongestionat the routers. These results are supported by work done by the NRG at Arizona,when developing the TCP Vegas proa
tive
ongestion avoidan
e algorithms [11℄,[10℄.Figure 4.2 highlights a key feature of STTP. While the summary tables showaverage, per-
ow statisti
s, we are able to see how ea
h stream performs over theduration of the simulation. Ea
h graph in �gure 4.2 follows the same format. Withsour
es starting in
rementally, ea
h bar represents the performan
e of a TCP orSTTP
onne
tion for a given time period. The x axis is segmented into intervalsfor the experiment at whi
h data was written to the output �le. We
an thereforesee how ea
h sour
e performs as the simulation progresses and how new
onne
tionsa�e
t existing traÆ
.It is interesting to note in table 4.4 that TCP has (in general) a mu
h higherstandard deviation than STTP in its transmission rate. This is highlighted in �gure

Chapter 4 51 STTP: Testing and Results

time

0

40

80

120

160

#p
kt

s

STTP Transmissions

2010 4030 50 60 70 80 90 100

time

0

40

80

120

160

#p
kt

s

Reno Transmissions

10 20 30 8070605040 90 100Figure 4.2: Experiment 1: STTP and TCP Pa
ket Transmissions4.2, where we
an see large
u
tuations in TCP's transmission rate, even when insteady-state
ongestion avoidan
e. STTP, on the other hand, exhibits mu
h smallervariations in its
ows and may therefore be
onsidered a smoother traÆ
 sour
e.Considering data in table 4.4, the result of this smoother traÆ
 pro�le meansthat STTP has fewer pa
ket drops and
ould be said to be more router-friendly. Byrea
ting before pa
kets are dropped, STTP does not try to send more pa
kets thana link is
apable of holding. Conversely, if it dete
ts a de
rease in RTT, STTP willin
rease its pa
ket transmission rate and take advantage of spare bandwidth.4.2 Performan
e Testing STTPSubsequent experiments were performed using the NS simulation pa
kage. We
hoseto move our work to this pa
kage due to its expanded fun
tionality and support formodern network proto
ols. TCP Vegas is in
luded as part of NS's transport proto
ollibrary, in addition to ri
h support for user-de�ned data streams and tra
e �les. Inthis se
tion, we test STTP with a variety of di�erent traÆ
 types, in
luding variablebit-rate and HTTP request traÆ
 tra
es.

Chapter 4 52 STTP: Testing and Results4.2.1 Experiment 2, Bulk Data Transfer using NSThe network topology used for the performan
e testing of STTP
an be seen in�gure 4.3. Here, we have 1..n transmitting nodes and 1..n re
eiving nodes. In ea
h
ase, node t1 transmits to node r1, node t2 to node r2 et
. Similar topologiesare re
ommended by Keshav in his ben
hmark suite for the REAL [25℄ simulator,as they permit the rigorous testing of simulated proto
ols through a
ombinationof
ongestion paths and dedi
ated
onne
tions. The topologies in themselves ares
alable to support many hundreds or thousands of sending and transmitting nodes,and
ombine the ability to implement bottlene
k links and
ross traÆ
 in order totest a proto
ol's
ongestion avoidan
e algorithms.By varying the number of sour
es and the link bandwidths, we were able to
reatea wide variety of s
enarios under whi
h to test both STTP and TCP Reno. Our
omparisons fo
us on TCP Reno and TCP Vegas, as a large amount of modeling andsimulation
ondu
ted in the past, provides a
lear understanding of their positiveand negative attributes.
t1

t2

tn

r1

r2

rn

a b

Figure 4.3: Performan
e Simulation TopologyExperiment 2, the raw data for whi
h is depi
ted in table 1 uses the same net-work topology as in previous simulations and bulk transfer, FTP sour
es. It does,however,
over a large number of sour
es whi
h is varied from 10 to 200 and forthis reason, the ba
kbone link is upgraded from 0.5Mb/s to 2Mb/s. Similarly, toa

ommodate the additional traÆ
, the port bu�ers were in
reased from 64kB to128kB. These modi�
ations were required to prevent massive pa
ket loss with ahigher number of sour
es.Simulations were run with between 10 and 200 sour
es, in
remented by 10 sour
es

Chapter 4 53 STTP: Testing and Results

2.25e+082.3e+082.35e+082.4e+082.45e+082.5e+082.55e+082.6e+082.65e+082.7e+08

0 20 40 60 80 100 120 140 160 180 200
Number of pa
kets

Number of sour
es

RenoVegasSTTP

Figure 4.4: Experiment 2: TCP Reno, TCP Vegas and STTP Total Pa
ket Trans-missionswith ea
h iteration. Ea
h s
enario was run with TCP Reno, TCP Vegas and STTP.The data depi
ted in table 1 show how many bytes were transmitted, how manywere dropped and the mean, high, and low for bytes transmitted. Simulations wererun for 900 se
onds.Figures 4.4, 4.5 and 4.6 show the information from table 1 in a graphi
al format.In ea
h
ase, the number of pa
kets is plotted on the Y-axis, and the number oftraÆ
 sour
es on the X-axis. Ea
h graph
ontains the information obtained fromthe entire suite of experiments, run from 10 to 200 sour
es for ea
h proto
ol.From these graphs, it is
lear that while TCP Reno and TCP Vegas have verysimilar pro�les, STTP transmits only 2.25e+08 (10 transmitting sour
es) to 2.3e+08(200 transmitting sour
es) pa
kets (�gure 4.4). Compared with the exponential
urve, rising to around 2.7e+08, shown by both TCP Reno and Vegas, this showsthat STTP is rea
ting to network
ongestion and restri
ting its transmission rate.Figure 4.5 shows that STTP also has mu
h lower pa
ket loss, with between 0 (10transmitting sour
es) and 5e+06 (200 transmitting sour
es) pa
kets dropped, andas a result, has goodput whi
h is
omparable to, if not better than, both of the

Chapter 4 54 STTP: Testing and Results

05e+061e+071.5e+072e+072.5e+073e+073.5e+074e+074.5e+07

0 20 40 60 80 100 120 140 160 180 200
Number of pa
kets

Number of sour
es

RenoVegasSTTP

Figure 4.5: Experiment 2: TCP Reno, TCP Vegas and STTP Total Pa
ket Loss

2.2502e+082.2503e+082.2504e+082.2505e+082.2506e+082.2507e+082.2508e+082.2509e+082.251e+08

0 20 40 60 80 100 120 140 160 180 200
Number of pa
kets

Number of sour
es RenoVegasSTTP
Figure 4.6: Experiment 2: TCP Reno, TCP Vegas and STTP Su

essfully Re
eivedPa
kets (Goodput)

Chapter 4 55 STTP: Testing and Resultsstandard TCP implementations (�gure 4.6).While the number of pa
kets dropped (�gure 4.5) is proportional to the numbertransmitted (�gure 4.4), the goodput of ea
h proto
ol (�gure 4.6) is very similarabove 20 sour
es. STTP, however, shows less variation than the TCP implementa-tions.In summary, the results from this experiment show that while the overall goodputbetween TCP Reno, TCP Vegas and STTP is similar, STTP a
hieves this standardof data transport with far lower pa
ket transmission rates. This is a very positiveattribute, and will aid the user-per
eived quality of servi
e by avoiding pa
ket re-transmission and by minimising the end-to-end delay through smaller pa
ket queuesat routers.4.2.2 Experiment 3, Proto
ol Fairness of STTPTraditional Internet transport proto
ols based on TCP Reno sense
ongestion throughlost pa
kets or ex
essive delay in the network. They then respond using multipli
a-tive de
rease in the
ongestion window. Normally, this results in a 50% redu
tionin the transmission rate in order to allow other
ompeting streams to obtain their"fair share" of bandwidth. While this approa
h eventually attains the goal of fair-ness among streams, it is a lossy and often aggressive method, as shown in ourexperiments.As the number of streams are in
remented, lost pa
kets in TCP Reno
onne
tionsin
rease at an exponential rate as data is lost in order to a

ommodate new streams.As des
ribed in se
tions 2 and 3, STTP uses a simpli�ed version of TCP Vegas's
ongestion avoidan
e algorithms. By monitoring in
reases and de
reases in pa
kets'Round Trip Time (RTT), it
an sense pending
ongestion and so adjust its pa
ket
ow a

ordingly. This is done by proportional modi�
ation of the token bu
ket sizeand
urrent token values. The result is mu
h lower pa
ket loss as
an be seen in theabove experiments.However, the disadvantage of STTP's
ongestion avoidan
e me
hanism is that itdoes not respond to new
ows as qui
kly as that of TCP Reno. New TCP sour
es

Chapter 4 56 STTP: Testing and Resultsbegin transmission with an exponential in
rease known as Slow Start. ExistingTCP
onne
tions will
ontinue to send at their
urrent speed until diÆ
ulties areen
ountered and a redu
tion (50%) is made. New sour
es are then able to "grab"a larger share of bandwidth. STTP, on the other hand, does not experien
e su
hpa
ket loss by aiming to avoid
ongested queues.We will now assess the relative fairness of STTP
ompared with that of TCPReno. Table 4.5 shows the results of further simulations
ondu
ted on the topologyshown in �gure 4.3. This time, simulations were run for 2000 se
onds and all linkswere 128kb/s.In order to highlight the e�e
ts of our history-based
ongestion avoidan
e al-gorithm, we have in
luded simulations run on three di�erent implementations ofSTTP. These are shown in �gure 4.5 with "STTP �:�". When re
al
ulating thebu
ket size and number of tokens in operation, � is the weight assigned to STTP'sexisting values. � is the weight assigned to the result of new
al
ulations. Forexample, if a 15% de
rease in RTT is dete
ted, the following
al
ulation is used:bu
ketValue = ((� * bu
ketValue) + (� * (1.15 * bu
ketValue))). The sum of �and � is 1.0 at all times.By shifting more emphasis to � the proto
ol be
omes more oriented towards theexisting network state and will rea
t more qui
kly to
urrent events. However, byweighting the formula towards �, we obtain a more stable data
ow whi
h is not soqui
kly a�e
ted by new
onne
tions.Table 4.5 shows results from a number of simulations using various weightingsand it is evident that 5:5 or 1:9 ratios provide mu
h better performan
e and fairnessthan more history-biased values. The fairness index laid out by Jain in [23℄, assigns avalue between 0 and 1 with Fairness = fA(x) = [Pni=1 xi℄2=Pni=1 x2i ; xi � 0. Usingthis formula to pro
ess the results in table 4.5, we
an see that for all experimentswith more than a single sour
e, TCP Reno yields an index of 0.99, as does STTP5:5. STTP 1:9 gives 0.99 (2 sour
es) and 0.98 (4 sour
es), and STTP 9:1, 0.84 and0.75 respe
tively. In this
ase, an index of 1.0 is totally fair and 0.0, totally unfair.Traditional max-min fairness [14℄ states that given a set of limited network re-

Chapter 4 57 STTP: Testing and Results
Proto
ol Sour
e # #pa
kets transmitted #pa
kets dropped1 Sour
eTCP Reno 1 31980 0STTP 9:1 1 31980 0STTP 5:5 1 31980 0STTP 1:9 1 31985 02 Sour
esTCP Reno 1 16093 02 15924 0STTP 9:1 1 22899 02 9108 0STTP 5:5 1 16084 02 15918 0STTP 1:9 1 16081 02 15919 04 Sour
esTCP Reno 1 7773 772 8156 733 8244 674 8124 70STTP 9:1 1 13790 02 5464 03 6079 04 6699 2STTP 5:5 1 8181 02 7146 03 7943 04 8754 0STTP 1:9 1 7118 02 6949 03 9440 04 8517 0Table 4.5: STTP Fairness

Chapter 4 58 STTP: Testing and Resultssour
es, bandwidth should be shared as equally as possible between
ompeting
on-ne
tions. At the same time, maximal usage of the available resour
es should bemaintained.Given the parameters of this simulation, the maximum number of 1000 bytepa
kets whi
h
an be transmitted is 32,000. Table 4.5 shows that in single sour
esimulations, both STTP and TCP Reno use around 99% of this
apa
ity by su

ess-fully transmitting 31980 pa
kets. In subsequent simulations, the link's resour
es areshared between a number of greedy FTP sour
es running over the relevant transportproto
ol. In some
ases, the total number of pa
kets transmitted ex
eeds 32,000,this is due to queueing whi
h has taken pla
e prior to sour
es being stopped att=2000.While neither TCP Reno, nor STTP
onform pre
isely to max-min fairness,the results in table 4.5 show that through more aggressive, lossy
ows, TCP Renoa
hieves more balan
ed
ows. This is due to
onne
tions relinquishing large portions(50%) of bandwidth when data is lost and therefore allowing
ompeting
onne
tionsto expand their transmission rate. STTP exhibits signi�
antly lower pa
ket loss andso only balan
es its
ows through variations in RTT.From the above experiment, we have shown that given a number of streams,STTP will fully utilise the available bandwidth. Using a 9:1 ratio, it is not as qui
kto rea
t to new traÆ
 as TCP Reno, however, it does so fairly and with far fewerpa
ket losses. The impli
ation of this is that fewer segments of data would have tobe retransmitted, and therefore give an improved per
eption of servi
e quality tothe user.4.2.3 Experiment 4, Variable Bit-Rate Appli
ations usingNSOur third set of experiments were
ondu
ted using the same build and STTP im-plementation as in previous se
tions. The network topology used was that depi
tedin �gure 4.3, and used in Experiment 2.

Chapter 4 59 STTP: Testing and ResultsA proto
ol's performan
e for
onstant bit-rate, greedy sour
es, su
h as FTP orSMTP transfers, is potentially di�erent to that when dealing with variable bit-rateor intera
tive data streams. With a window-based
ow
ontrol me
hanism, it ispossible for there to be delays in transmission of time-
riti
al data (with the Naglealgorithms, for example [35℄). STTP was designed with intera
tive and bursty datain mind, so fa
ilitated by the use of token-bu
ket
ow
ontrol, it is anti
ipated thatits performan
e in data delivery and pa
ket loss will be an improvement over existingTCP-like proto
ols.In order to test STTP's performan
e with variable bit-rate appli
ations, sim-ulations were run in NS using the aforementioned network topology. A suite ofsimulations were run with between 10 and 100 traÆ
 sour
es, ea
h iteration in
reas-ing the number of sour
es by 10. Ea
h traÆ
 sour
e took input in the form ofa tra
e �le, obtained from http://www.resear
h.att.
om/~breslau/vint/tra
e.html.This variable bit-rate stream is an NS tra
e of the Star Wars movie, and ea
h streamis initialised at a random point within the tra
e �le. Ea
h iteration of the simulationis s
heduled to run for 900 se
onds, with sour
es being added at 2 se
ond intervals.The resulting traÆ
 statisti
s are shown in table 2 and �gures 4.7, 4.8 and 4.9.In our simulations with variable bit-rate traÆ
, STTP exhibits similar
hara
ter-isti
s to those in previous, bulk transfer experiments. Both the number of pa
ketstransmitted and dropped is signi�
antly lower than either TCP Reno or TCP Vegas.However, the goodput obtained is
omparable, if not ex
eeding, that of TCP-basedproto
ols (�gure 4.9).In all experiments, the measurements for transmitted and dropped pa
kets weretaken from
ore NS network monitors, not from within the proto
ol implementationitself. This gives an independent monitor of ea
h proto
ol's performan
e withoutthe possibility of distortion by a parti
ular implementation's internal
ounters oralgorithms.In order to monitor ea
h
ow of data, a NS Flow Monitor was atta
hed to theba
kbone, bottlene
k
onne
tion (see �gure 4.3), through whi
h all traÆ
 passes.For ea
h traÆ
 sour
e, the Flow Monitor re
ords transmitted and dropped pa
kets.

Chapter 4 60 STTP: Testing and Results

5.6e+075.8e+076e+076.2e+076.4e+076.6e+076.8e+077e+077.2e+07

10 20 30 40 50 60 70 80 90 100
Number of pa
kets

Number of sour
es

RenoVegasSTTP

Figure 4.7: Experiment 4: TCP Reno, TCP Vegas and STTP Total Pa
ket Trans-missions

02e+064e+066e+068e+061e+071.2e+071.4e+071.6e+07

10 20 30 40 50 60 70 80 90 100
Number of pa
kets

Number of sour
es

RenoVegasSTTP

Figure 4.8: Experiment 4: TCP Reno, TCP Vegas and STTP Total Pa
ket Loss

Chapter 4 61 STTP: Testing and Results

5.6275e+075.628e+075.6285e+075.629e+075.6295e+075.63e+075.6305e+075.631e+07

10 20 30 40 50 60 70 80 90 100
Number of pa
kets

Number of sour
es RenoVegasSTTP
Figure 4.9: Experiment 4: TCP Reno, TCP Vegas and STTP Su

essfully Re
eivedPa
kets (Goodput)Pla
ing this monitor on the ingress ports to the bottlene
k
onne
tion allows us tore
ord the network a
tivity of interest in these experiments. We were able to re
ordthe number of pa
kets transmitted and dropped by individual proto
ol streams, andtherefore
onstru
t the tables and graphs presented in this thesis.4.2.4 Experiment 5, HTTP Appli
ations using NSThis set of simulation experiments with STTP in the NS simulator was
ondu
tedusing a tra
e�le of real HTTP traÆ
 from the University of Leeds Virtual S
i-en
e Park servers. These HTTP servers o�er an intera
tive Web interfa
e to arelational database. For further information, visit the proje
t's Web pages athttp://www.vsp.
o.uk.In order to gather data, a ma
hine was
onne
ted via a hub to the live VSP HTTPserver. This allowed us to
apture all TCP so
ket port 80 requests arriving at theserver using 't
pdump' for a three day mid-week period. On
e
aptured, we �lteredthe tra
e �le to give only in
oming requests. A s
ript was then written to
apture

Chapter 4 62 STTP: Testing and Results

5.6e+075.8e+076e+076.2e+076.4e+076.6e+076.8e+077e+077.2e+07

0 10 20 30 40 50 60 70 80 90 100
Number of pa
kets

Number of sour
es

RenoSTTPVegas

Figure 4.10: Experiment 5: TCP Reno, TCP Vegas and STTP Total TransmittedPa
ketsonly the pa
ket interarrival gap and request size. This data was then en
oded in NStra
e�le format and used as input for the traÆ
 sour
es in this experiment. For thepurposes of this experiment, only the pa
ket size and their inter-arrival gaps wererequired. The data was therefore anonymous.The bursty nature of intera
tive HTTP traÆ
 is typi
al of present Internet ap-pli
ations, and allows us to test both
ongestion avoidan
e me
hanisms in additionto the behaviour of STTP's token-bu
ket
ow
ontrol.The network topology and simulation
on�guration are identi
al to that in Ex-periment 4, with suites of simulations being run with between 10 and 100 sour
es, fora duration of 900 se
onds. Ea
h traÆ
 sour
e begins its transmission at a randompoint within the HTTP tra
e �le.Figure 4.10 shows the number of pa
kets transmitted for ea
h proto
ol; Figure4.11 shows the number of pa
kets lost due to network
ongestion; and Figure 4.12shows the di�eren
e in terms of data goodput.

Chapter 4 63 STTP: Testing and Results

02e+064e+066e+068e+061e+071.2e+071.4e+071.6e+07

0 10 20 30 40 50 60 70 80 90 100
Number of pa
kets

Number of sour
es

RenoSTTPVegas

Figure 4.11: Experiment 5: TCP Reno, TCP Vegas and STTP Total Pa
ket Loss

5.61e+075.612e+075.614e+075.616e+075.618e+075.62e+075.622e+075.624e+075.626e+075.628e+075.63e+075.632e+07

0 10 20 30 40 50 60 70 80 90 100
Number of pa
kets

Number of sour
es RenoSTTPVegas
Figure 4.12: Experiment 5: TCP Reno, TCP Vegas and STTP Su

essfully Re
eivedPa
kets (Goodput)

Chapter 4 64 STTP: Testing and Results4.2.5 Experiment 6, Mixed Simulation of TCP Reno, TCPVegas and STTPIn this simulation we
ompare the performan
e of TCP Reno, TCP Vegas andSTTP running simultaneously on a given network with variable-rate data sour
esfor transportation.Experiment 6 was
ondu
ted using the topology depi
ted in �gure 4.3, as usedfor other experiments in this
hapter. The simulation was run with between 3 and99 transmitting / re
eiving network nodes. The bottlene
k link between routerson the network was set at 100Mb/s with 1ms laten
y. Lo
al
onne
tions to bothtransmitting and re
eiving nodes were
on�gured at 10Mb/s with 1ms laten
y.Transmitting nodes were equally divided between TCP Reno, TCP Vegas andSTTP (33 nodes running ea
h proto
ol) and
on�gured sequentially. The simulations
ript started ea
h node in turn, two se
onds apart, thus giving a roughly balan
edpro�le of transmitting sour
es. The entire simulation ran for 900 se
onds beforeterminating. All sour
es were therefore a
tive 200 se
onds into the experiment. ThetraÆ
 sour
e used for ea
h transmitting node was the live HTTP tra
e �le, obtainedfrom the University of Leeds Virtual S
ien
e Park Web servers. This traÆ
 typewould give a bursty pro�le, and would test the startup and
ongestion avoidan
ealgorithms of ea
h proto
ol.This experiments link speeds and laten
ies were sele
ted to approximate thebandwidth available to LAN users with
ampus area
onne
tivity, and is designed totest high speed medium-area network performan
e. In parti
ular, this test allows usto observe the performan
e of TCP Reno, TCP Vegas and STTP in states of normal
ow, and
ongestion. With fewer than 10 sour
es transmitting at full line speed, it isnot possible to �ll the bottlene
k network segment. Ea
h transmitting and re
eivingnode is
onne
ted to the bottlene
k link with a 10Mb/s link. Therefore,
ongestion
an only o

ur when simulating more than 10 nodes. Furthermore, when
ongestiondoes o

ur, it will not be as heavy as in previous experiments, due to the in
reasebottlene
k link
apa
ity. This is designed to test the intera
tion between
ongestion

Chapter 4 65 STTP: Testing and Results

01e+092e+093e+094e+095e+096e+097e+098e+099e+09

0 10 20 30 40 50 60 70 80 90 100

RenoVegasSTTP

Figure 4.13: Experiment 6: TCP Reno, TCP Vegas and STTP Su

essfully Re
eivedPa
kets in Mixed Simulationavoidan
e algorithms as opposed to simply the way in whi
h ea
h proto
ol will rea
tto extreme
ongestion s
enarios.The goodput results for TCP Reno, TCP Vegas and STTP in this simulations
enario are presented in �gure 4.13. Initial performan
e �gures for TCP Renoand Vegas with between 3 and 12 sour
es are very similar. It is only when TCPReno's
ongestion avoidan
e algorithms are
ompeting with delay-sensitive ones inTCP Vegas and STTP, that TCP Reno begins to obtain signi�
antly higher pa
ketgoodput.Both TCP Vegas and STTP will proa
tively redu
e their transmission rate ifnetwork
ongestion is sensed. TCP Reno, on the other hand, will only redu
e itstransmission rate if pa
kets are lost, or in
ur ex
essive delay. Therefore, TCP Renowill
ontinue to in
rease its transmission rate at the expense of both TCP Vegasand STTP. As
an be seen from �gure 4.13, TCP Vegas and STTP follow a similartrend in their pa
ket goodput as the number of sour
es in
reases. Throughout theexperiment, pa
ket loss is very low, at less and 1%, whi
h gives goodput whi
h isroughly equal to the number of pa
kets transmitted by a given sour
e.

Chapter 4 66 STTP: Testing and ResultsThis simulation shows us that proa
tive
ongestion avoidan
e me
hanisms areunlikely to obtain a fair share of the available bandwidth on a given link whenworking alongside TCP Reno, or other lega
y IP transport proto
ols su
h as TCPTahoe.In order to
ountera
t the aggressive nature of TCP Reno's
ongestion avoidan
ealgorithms, the parameters, as dis
ussed in se
tion 4.2.2,
ould be adjusted. How-ever, this leaves the proa
tive proto
ol in a situation similar to that of TCP Reno, inwhi
h it will behave in an aggressive manner towards delay-sensitive algorithms. Wetherefore
onsider that future work in the area of intelligent
ongestion avoidan
ealgorithms would be most bene�
ial to this thread of resear
h. This topi
 is furtheroutlined in se
tion 6.3.4.3 AnalysisThroughout our simulation experiments, STTP has been
onsistent in its perfor-man
e. In addition to highlighting key features of the experimental proto
ol, this
onsisten
y and
onforman
e with our algorithmi
 spe
i�
ation also aids the vali-dation of the simulation pa
kages themselves. This
hapter has seen the simulationtesting of STTP in
omparison with TCP Reno and Vegas with a variety of traÆ
types. This ful�lls obje
tive K4 of our thesis obje
tives from
hapter 1.Experiment 1 in se
tion 4.1.1 showed that in basi
 fun
tionality testing, STTPexhibited zero pa
ket loss and smoother pa
ket transmission,
ompared with TCPReno, whi
h in
urred signi�
ant pa
ket loss with even a single data-
ow. Table 4.4shows how STTP's pro-a
tive
ongestion avoidan
e was able to de
rease variation inits transmission rate (RTT
olumn). Here, we
an see that the standard deviation(sd) for STTP sour
es is up to 50% of that for TCP Reno in the same s
enario.Experiment 2 showed that STTP transmits up to 20% fewer pa
kets (�gure 4.4and exhibits up to 10% less pa
ket loss (�gure 4.5) than TCP Reno and TCP Vegasin bulk data transfer simulations. Figure 4.6, however, shows that the goodputfor STTP in this experiment is within 1% of TCP Reno and TCP Vegas. This

Chapter 4 67 STTP: Testing and Resultsexperiment demonstrates that STTP is more eÆ
ient than TCP Reno or TCP Vegas,as it is able to a
hieve a
omparable rate of goodput but with the transmitting nodehaving to retransmit signi�
antly fewer pa
kets.Experiment 3 demonstrated that given a number of
ompeting data streams,STTP will fully utilise the available bandwidth on a network path. We ran individualsimulations with STTP, TCP Reno and TCP Vegas streams, whi
h
ompeted forbandwidth on a bottlene
k link. While no proto
ols entirely
onformed to traditionalmax-min fairness, we
al
ulated that the fairness index for TCP Reno and STTPwas 0.99. An index value of 1.0 is totally fair, and 0.0 totally unfair.Experiment 4 presented data from simulations with STTP, TCP Reno and TCPVegas, using variable bit-rate traÆ
 sour
es. In this simulation, STTP again trans-mitted up to 20% fewer pa
kets, with up to 10% fewer pa
kets being dropped in thenetwork. The goodput graph (�gure 4.9 for this simulation showed that all proto
olsa
hieved the same (within 1%) level of goodput. From this information, we
on
urthat STTP is able to maintain its performan
e with variable bit-rate traÆ
 sour
esas seen with bulk data in experiment 2.Experiment 5 used HTTP tra
e �les to run individual simulations with TCPReno, TCP Vegas and STTP. The results show that all proto
ols a
hieve the samelevels of goodput (again within 1%), but this time with
omparable levels of pa
kettransmission and loss.Experiment 6 ran
ombined simulations with TCP Reno, TCP Vegas and STTPbeing used simultaneously on the same network topology. We dis
overed that bothTCP Vegas and STTP were adversely a�e
ted by TCP Reno's aggressive
ongestionavoidan
e algorithms. This experiment showed (�gure 4.13) that proa
tive
onges-tion avoidan
e algorithms need spe
i�
 tuning in order to
ompete with lega
y,aggressive proto
ols.When
ompared with TCP Reno and Vegas variants, we noted several majorimprovements in performan
e. These bene�ts are related to key area K3, 3a, 3b and3
, as des
ribed in
hapter 1.� Goodput
omparable to that of TCP variants

Chapter 4 68 STTP: Testing and Results� Signi�
antly lower pa
ket loss� Lower number of transmitted pa
kets� Lower RTT and deviation measurements4.4 SummaryThe goodput of a
onne
tion, i.e. the number of transmitted pa
kets whi
h su
-
essfully arrive at their destination, is an a

epted metri
 for the performan
e eval-uation of a transport proto
ol. In the se
tion on Fairness (se
tion 4.5), we showedhow STTP's parameters
an be modi�ed in order to make it more or less aggressivewhen rea
ting to network
ongestion. While an aggressive proto
ol may initialiseits
onne
tions at a higher rate and be able to take advantage of newly availablebandwidth on a given path, it is also more sus
eptible to pa
ket loss. In
ompari-son with our standard STTP model, used in our main experiments, TCP Reno andVegas
an be
onsidered to be aggressive transport proto
ols.In further experiments with varied traÆ
 types, TCP Reno and Vegas wereshown to a
hieve a similar overall level of pa
ket goodput to STTP, while havingin
reased pa
ket transmissions and loss. In a real world implementation, this wouldyield greater CPU utilisation by the re
eiving hosts, as they would have to
ontendwith re-ordering in
oming pa
kets as lost data was retransmitted. The transmittinghost would in
ur additional overhead through in
reased pa
ket transmissions.Chapter 5 will go on to dis
uss our simulation results in greater detail.

Chapter 5
Dis
ussion and Evaluation
In this
hapter, we will dis
uss the results from our simulation experiments in
hap-ter 3. Ea
h suite of experiments from fun
tionality and performan
e testing are
onsidered in turn with fo
us being pla
ed on metri
s su
h as pa
ket loss, overallpa
ket goodput, and fairness.Experiment # Demonstrates1 (se
tion 4.1.1) The fun
tionality of STTP's
ongestion avoidan
ealgorithms and
ow
ontrol2 (se
tion 4.2.1) The performan
e of STTP with bulkdata transfers3 (se
tion 4.2.2) The fairness of STTP in
omparisonwith TCP Reno and TCP Vegas4 (se
tion 4.2.3) STTP and TCP performan
e with VariableBit-Rate video sour
es5 (se
tion 4.2.4) STTP and TCP performan
e with burstyHTTP traÆ
 sour
es6 (se
tion 4.2.5) The performan
e of STTP, TCP Reno andTCP Vegas in a mixed proto
ol environmentTable 5.1: Experiment InformationTable 5.1 shows the experiments
ondu
ted in
hapter 3. Our experiments were
entered around two main types of network traÆ
. Firstly, traditional Internet ap-pli
ations, su
h as FTP, generally transfer large quantities of data in a single bulktransfer. A separate FTP transfer is initiated for ea
h �le requested and generally69

Chapter 5 70 Dis
ussion and Evaluationlasts for se
onds rather than minutes. Se
ondly, modern appli
ations, su
h as theWorld Wide Web (WWW),
an use HTTP to transfer WWW page
omponentsfrom an Internet server to the viewing
lient. A given page may
onsist of many in-dividual, small,
omponents. User intera
tion during a WWW session will thereforeimpa
t the network with bursty transfer of many page
omponents. Furthermore,the arrival of broadband a

ess means that Internet users are likely to view an in-
reasing amount of multimedia
ontent. In parti
ular, movie and informational data(news broad
asts, for example) form an in
reasing per
entage of Internet traÆ
.Our simulation experiments therefore use three traÆ
 models. In order to ad-dress traditional Internet traÆ
 requirements, a bulk data transfer model (FTP) wasused. This model simulates a greedy traÆ
 sour
e, one whi
h always has data totransmit. Data will be transmitted as qui
kly as possible, and will not end untilexpli
itly instru
ted to do so by the simulator. This traÆ
 model was used in ex-periments 1,2 and 3. A HTTP tra
e�le was used in experiments 5 and 6 in order toa

urately represent HTTP transfers over the Internet. The
ontents of this tra
e-�le were obtained using the method des
ribed in se
tion 4.2.4 of
hapter 3. AnMPEG tra
e�le was used to simulate extended multimedia streams being
arriedby a reliable transport me
hanism. The sour
e of this tra
e�le is given in se
tion4.2.3. Experiment 4 examines the performan
e of TCP Reno, TCP Vegas and STTPtransporting bursty, variable bit-rate data.In order to address K4 and C3 (as detailed in
hapter 1), the above simulationswere
arried out using bulk data and bursty traÆ
 models. In this manner, wewere able to demonstrate the e�e
tiveness of STTP in
omparison with
urrentimplementations of TCP.In se
tion 5.1, we dis
uss the results of our experiments (C4), whi
h is sum-marised in subse
tion 5.2.5. Se
tion 5.2 presents lessons learned during the
ourseof our work, and general observations on proto
ol development.

Chapter 5 71 Dis
ussion and Evaluation5.1 Dis
ussion of Simulation ResultsIn sustained FTP transfers, simulations of STTP showed that overall link utilisationwas at least as good as that of TCP. In most
ases, STTP made better use of theavailable resour
es due to its fast startup model, and pa
ket-pair probing. Theonly
ases in whi
h the prototype model of STTP was not su

essful in obtaininga fair share of network bandwidth was when
ompeting with aggressive
ongestionavoidan
e algorithms, used in TCP Reno, or in
ases of extreme
ongestion. Thelatter
ase posed a problem for STTP be
ause network probe pa
kets would be lost,and the prototype model was not programmed to re-attempt
onne
tion setup. Theability to dis
over available bandwidth and
ommen
e transmission at a suitablerate meant that in a given simulation period, STTP
ould transmit several morepa
kets than TCP by this method alone.Further advantages to STTP's transmission pro�le were gained by its proa
tive
ongestion avoidan
e algorithms. Whereas TCP Reno relies on aggressive transmis-sion and pa
ket loss to dis
over
ongestion, STTP was able to redu
e its rate beforesu
h losses o

urred. This resulted in signi�
antly lower pa
ket loss ratios for all theexperiments
ondu
ted in the
ourse of our resear
h. In se
tion 5.2, we dis
uss howit is possible to modify STTP's parameters to give an aggressive, lossy proto
ol,similar to TCP Reno.Due to STTP's default
ongestion avoidan
e parameters being weighted towardsminimising queue lengths, the round trip times experien
ed in its
onversationswere notably shorter than those of TCP Reno. The reason for this is that STTPwill de
rease its transmission rate if there is a signi�
ant in
rease in the measuredRTT's. By doing so, it prevents long queues from building up and hen
e redu
esthe likelihood of pa
ket loss. Conversely, TCP Reno will transmit at an in
rementalrate until pa
kets are lost, or timeouts o

ur.The result of this behaviour is that TCP Reno often experien
es pa
ket lossand leads to the famous "sawtooth" traÆ
 pro�le of a stable TCP sour
e. In thisstate, traditional TCP Reno will perform linear in
rements to its
ongestion to the

Chapter 5 72 Dis
ussion and Evaluationpoint of pa
ket loss or timeout. At this point, it redu
es its window by 50% andre
ommen
es linear
ongestion avoidan
e. It has been shown in many publi
ationsthat the "linear in
rease, multipli
ative de
rease" algorithm is both fair and stable.The sawtooth behaviour of TCP Reno a�e
ts the RTT of its own, and
ompeting
onversations. As in
remental
ongestion avoidan
e advan
es, the queue length ata given router on a
onversation's path will in
rease, hen
e steadily in
reasing theRTT. When a
onversation rea
hes its point of
ongestion (and data is lost), itstransmission rate is halved, resulting in a drasti
 redu
tion in the number of pa
ketsqueued at any one time. With fewer pa
kets now queued, the RTT for
onversationsusing a given router will now drop.5.1.1 Fun
tionality Testing with the REAL SimulatorFigure 4.4 shows this e�e
t in the standard deviation times for various TCP andSTTP
onversations. In every
ase, the standard deviation for STTP
onne
tions issigni�
antly lower than that of TCP Reno under the same
onditions. Furthermore,STTP exhibited zero pa
ket loss in this experiment.The simulation topology used in Experiment 1 was designed to test a proto
ol'srea
tion to
ongested, bottlene
k links. By adding sour
es at regular intervals,we were able to in
rease the load on routers and network links, thus adding toexisting queues. As further
onversations were added during heavy
ongestion, wealso tested the startup algorithms for ea
h proto
ol. A �nal obje
tive was to measurethe relative bandwidth allo
ation for ea
h
onversation during the simulation.While �rst impressions may be that TCP has su

essfully transmitted many morepa
kets during the simulation than STTP, the number of pa
kets dropped must alsobe taken into a

ount. For example, for
onversation 1 of table 4.4, TCP Renotransmits on average 35.56 pa
kets, and STTP 37.89. On average, 24.89 of TCPReno's pa
kets were dropped by the network. STTP dropped 0 pa
kets. Similarly,in the later
onversations, TCP loses a signi�
ant number of its transmitted pa
ketsthrough poor bandwidth management. STTP transmits fewer pa
kets but has asigni�
antly higher overall goodput.

Chapter 5 73 Dis
ussion and EvaluationThe behaviour of STTP in this
ase shows better management of available net-work resour
es and greater
onsideration to
ompeting data streams. Fewer pa
ketdrops and retransmissions would lead to an improved Quality of Servi
e to the enduser, as a more
onstant
ow of data is maintained. Furthermore, su
h a stable
onne
tion would allow easier management of the network by its administration asif s
aled a

ordingly, traÆ
 as a whole would be mu
h less bursty.5.1.2 Performan
e Testing with the NS SimulatorIn our experiments with NS, we examined the performan
e of STTP and TCPReno/Vegas. STTP
ontinued to show many good
hara
teristi
s su
h as droppingfewer pa
kets and a
hieving higher rates of goodput. An important feature of ourproa
tive
ongestion avoidan
e algorithm was also highlighted.On
e established, STTP uses variation in RTT to dete
t
ongestion. If pa
ketsare lost then it rea
ts just as TCP Reno. However, with new STTP
onne
tionsprobing for available bandwidth and setting their transmission rate a

ordingly, ourresults show that fair allo
ation of bandwidth is not a
hieved as qui
kly as TCPReno.The reason for this is STTP's startup me
hanism. TCP Reno adopts a lossy,aggressive approa
h with its slow start algorithm. This has been identi�ed as
ausingthe majority of TCP's pa
ket loss during the lifetime of a
onne
tion [47℄. As TCPexpands its window (exponentially), other
ompeting sour
es are for
ed to droppa
kets and ba
k o�. This
ould be by 50% through
ongestion avoidan
e, or to afull slow start if timeout o

urs. This allows the new sour
es to start up and obtaina share of the newly available bandwidth. While this te
hnique is more
ondu
iveto short-term bandwidth sharing, our results have shown it to be both bursty andlossy.Tables 5.2 and 5.3 present
oarse grained results for two experiments, whi
h wererun in NS. There were 40 FTP traÆ
 sour
es, traveling over 10Mb, 1ms links. Thesimulation durations were 200 and 300 se
onds a

ordingly with sour
es starting at�ve se
ond intervals. The network topology used for these experiments is the same

Chapter 5 74 Dis
ussion and Evaluationas that depi
ted in �gure 4.3. Ea
h table shows the number of pa
kets transmittedand dropped, grouped by proto
ol.Table 5.2: Long Duration (200 se
onds) STTP and TCP Reno - 40 sour
esproto
ol duration bytes Tx bytes dropped goodputreno 199.900 22407000 2613000 19794000sttp 199.900 21187120 1429640 19757480
Table 5.3: Long Duration (300 se
onds) STTP and TCP Reno - 40 sour
esproto
ol duration bytes Tx bytes dropped goodputreno 299.900 33244000 3451000 29793000sttp 299.900 30167600 416240 29751360The tables show that TCP has a signi�
antly higher rate of pa
ket loss when
ompared with STTP and therefore a higher rate of retransmission. Given this,we
an
on
lude that STTP will make more e�e
tive use of available bandwidthin
ongested networks by dete
ting
ongestion before pa
ket loss takes pla
e. It isimportant, however, to examine how ea
h individual stream performs.In se
tion 4.5 [50℄, we examine the issue of fairness more
losely. The results ofrunning more lengthy simulations with
ompeting sour
es were as anti
ipated. Giventime to stabilise, STTP a
hieves levels of fairness
omparable with that of TCP Renoin the same environment. This pro
ess
an be made faster through modi�
ation ofSTTP's internal variables, whi
h will be dis
ussed further in subse
tion 5.2.3, andlater in se
tion 6.To
on
lude the simulation of STTP and its
omparison with TCP Reno andTCP Vegas, a range of simulations was run with all three proto
ols on the sametopology, while varying the number of sour
es from 10 to 200. Di�erent traÆ
 typeswere used; bulk transfer, variable bit-rate tra
e �le, and HTTP request tra
e �le.In Appendix table 1, it is evident that both TCP Reno and TCP Vegas transmita far greater number of pa
kets than STTP. However, given the data shown in �gure

Chapter 5 75 Dis
ussion and Evaluation4.5, we
an see that a relatively high per
entage of this is dropped. The di�eren
ebetween the number of pa
kets transmitted and the number of pa
kets dropped, istermed the "goodput" of a
onne
tion. This indi
ates how many pa
kets su

essfullyarrived at their destination. This is shown graphi
ally in �gure 4.6.In all
ases, STTP transmitted and dropped signi�
antly fewer pa
kets duringthe
ourse of the simulations. It did, however a
hieve a
omparable level of good-put. This indi
ates that STTP is able to transmit just the right amount of data tokeep a bottlene
k
onne
tion full, while not being too ambitious. The advantages ofthis approa
h are numerous and in
lude; STTP does not load routers with aggres-sive pa
ket transmission, appli
ations using STTP will be given a better Qualityof Servi
e due to fewer transport layer frames having to be retransmitted,
ompu-tationally expensive tasks su
h as frame retransmission are less frequent than withexisting TCP implementations.In �gures 4.6, 4.9 and 4.12, STTP is shown to have goodput
omparable withthat of TCP Reno and TCP Vegas. In many iterations of our simulation, it a
hievesthe highest goodput of all the tested proto
ols. This result should be
onsideredin
onjun
tion with the graphs showing dropped pa
kets, �gure 4.5, 4.8 and 4.11.Given that the goodput of all proto
ols is at least similar, STTP in
urs far fewerpa
ket drops than other proto
ols. The result of this is that the available bandwidthis used mu
h more eÆ
iently by STTP streams. We
an therefore
on
lude that thealgorithmi
 framework adopted by STTP is more eÆ
ient than that used by existingstandard TCP implementations. The framework within whi
h STTP was developedadds to our
on�den
e in these results. The design of NS is highly modular. In orderto implement STTP, only the algorithms dire
tly related to the transport layer weremodi�ed. In order to aid this design, the NS TCP Reno model was modi�ed toin
orporate STTP's algorithms. The rest of the simulator was left untou
hed.A fundamental
on
ern with
ow
ontrolled transport proto
ols is to ensure thatthey make good use of available bandwidth. With the advent of Virtual PrivateNetworks, where bandwidth is often reserved and guaranteed, a proto
ol should beable to qui
kly utilise available resour
es. However, it is also important to share

Chapter 5 76 Dis
ussion and Evaluationthese resour
es eÆ
iently between
ompeting
onne
tions.Unfortunately, as the number of sour
es in
reases, the inability of the Pa
ket-Pair probe to allo
ate bandwidth in a
ongested environment is highlighted. Withmore than 40 sour
es in operation, our detailed tra
es show that
ertain STTP
owswere only able to transmit two probe pa
kets of 40 bytes. In
ases of high
ongestion,either a probe pa
ket is lost, or the result yields su
h a low bandwidth that the tokenbu
ket
annot be initialised with even a single full-size token. This behaviour is alsonoted in TCP Reno where, as the number of sour
es in
reases,
ertain ones are notable to su

essfully establish a
onne
tion with the remote host.In our experimental implementation, STTP is not programmed to re-attempt
onne
tion in these
ases, so su
h
ows do not su

eed in
onne
ting to their desti-nation host. There are several potential solutions to this problem. Firstly a Pa
ket-Pair train
ould be used, as dis
ussed in [1℄. This would redu
e the probability ofprobe pa
ket loss and also give a more a

urate estimation of the available band-width. Se
ondly, a fast retransmission me
hanism
ould be formulated for Pa
ket-Pair probing, whi
h would re-attempt
onne
tion setup after a short timeout period.Probe pa
ket responses should really be a
knowledged within one se
ond ex
ept in
ases of extremely high laten
y. Furthermore, a retransmission of probe data wouldnot signi�
antly impa
t network performan
e and
ould be used to realign tokenbu
ket settings when re
eived, even if previous attempts proved to be su

essful,but with high laten
y.5.2 Evaluation and LessonsIn this se
tion we will dis
uss our �ndings, in parti
ular how they relate to spe
i�
te
hniques we have
hosen to deploy in our experiments.5.2.1 Proto
ol Performan
eIn designing STTP, we have produ
ed a proto
ol whi
h exhibits very low pa
ketloss, and timely, guaranteed delivery of appli
ation data. The results in
hapter 3

Chapter 5 77 Dis
ussion and Evaluationshow that it is
apable of su
h performan
e even when transporting bursty, variablebit-rate data.Intera
tive network appli
ations generally
onsist of small user requests, whi
hneed to be delivered qui
kly and without unne
essary retransmission. A proto-
ol with higher levels of pa
ket loss (and therefore retransmission) will a�e
t theuser-per
eived quality of servi
e to a greater extent, depending on the regularityand burst size of loss periods. Irregular, variable-length pa
ket loss will degradatethe performan
e of an intera
tive network appli
ation to a point where it be
omesunusable.From our experimental results, we
an therefore
on
lude that the proto
ol modeladopted by STTP will fa
ilitate the delivery of su
h appli
ations. There are, how-ever, some lessons to be learned from the implementation of Pa
ket Pair probingand Pro-a
tive
ongestion avoidan
e algorithms.5.2.2 Pa
ket Pair in Congested NetworksThe Pa
ket Pair bandwidth probing te
hnique proved to be reliable in our simula-tions for dis
overing the available bandwidth on a network path. Even in s
enarioswhere a new
onne
tion was probing into an already
ongested network, this te
h-nique produ
ed a

urate reports.When
ongestion is heavy, however, there are issues with our approa
h to proto-
ol startup. STTP may only be able to probe a small amount of bandwidth availableon a network path. This means that the initial bu
ket size for the
onne
tion is min-imal, and the proto
ol will depend on variations in RTT to in
rease its transmissionrate. However, as a new sour
e has entered the path, the in
reased queue lengthshould be suÆ
ient to trigger a redu
tion in
ompeting traÆ
. The fairness of su
ha model is dis
ussed further in [11℄ [34℄ [7℄. Our work in this area was reported inse
tion 4.5.

Chapter 5 78 Dis
ussion and Evaluation5.2.3 Aggressive vs Timid Sour
es { the �ne lineGiven the range of tunable parameters in STTP, it
an take on a variety of
hara
-teristi
s. By adjusting its sensitivity to variation in RTT, the proto
ol
an be mademore or less aggressive to
ompeting traÆ
 sour
es. This is a
hieved using the � and� parameters of STTP's
ongestion avoidan
e algorithm. In order to make STTPmore sensitive to in
reases in RTT, the di�eren
e between these values should beredu
ed around 1.0.Simulation experiments were
ondu
ted in [51℄ using these parameters, wherethe di�eren
e in behaviour between aggressive and timid sour
es was noted. As� is de
reased, so STTP's sensitivity to de
reased RTT is redu
ed. The e�e
t ofthis is that the proto
ol is slower to rea
t to newly available bandwidth. Thisis due to the RTT having to redu
e by a more signi�
ant amount before STTPwill in
rease its mean transmission rate. Conversely, as � is in
reased, so STTPbe
omes less sensitive to in
reases in RTT and slower to relinquish bandwidth tonew or expanding
onne
tions.The result of adjustments as des
ribed above, is a very strong transport proto
olwhi
h, on
e established, will defend its bandwidth share. Unfortunately, this isnot
ondu
ive to equal and fair performan
e between
ompeting streams. Papersreferen
ed in
hapter 2, se
tion 2.2.2, dis
uss potential solutions to unfair behaviour,and alternative implementations of TCP's
ongestion
ontrol.At the other extreme, a small delta between � and �
an be sele
ted. The e�e
tof this would be to have STTP rea
t qui
kly to both in
reases and de
reases in RTT.Unfortunately, our experiments show that this results in bursty and unpredi
tablebehaviour whi
h, while this may be in the favour of
ompeting streams, does notfa
ilitate the QoS for the appli
ation being served.A further point parti
ular to STTP, is that the degree to whi
h the proto
ol issensitive to de
reases in RTT is dire
tly related to the rate at whi
h it will in
reaseits rate of transmission. It is therefore of great importan
e that appropriate valuesfor � and � be sele
ted.During the
ourse of our work, we have
ondu
ted many hundreds of simulations

Chapter 5 79 Dis
ussion and Evaluationwith STTP over a broad range of network topologies. The stati
 settings we have
hosen to use have proven to be reliable in our s
enarios, and to deliver satisfa
toryperforman
e, delivering pa
ket goodput
omparable with that of TCP Reno andTCP Vegas. We do, however, believe that there remains a great deal of interestingand highly useful work to be
ondu
ted in this area. Se
tion 6
overs this in moredetail.5.2.4 Dis
ussion of Software Simulation and PrototypingDuring the
ourse of our experimentation, areas were
overed whi
h provided use-ful insight into the issues surrounding proto
ol development. In
ertain
ases, theproblems en
ountered were parti
ular to a given simulation pa
kage, but others weremore general in nature.A
ommon issue with the simulation pa
kages used for this resear
h was thatdespite normally reliable behaviour,
ertain s
enarios, topologies, or proto
ol mixes,would result in early termination or
rashing of the software. A
ommon issue withboth REAL and NS was for simulations of extended duration with a large numberof sour
es to be
ome unstable. It be
ame evident that
ertain high speed topologieswould not run for extended periods without terminating abnormally. This behaviourwas, however,
on�ned to a small number of
ases.Fortunately, we were able to �nd stable parameters for more lengthy simulationruns and used them a

ordingly. This allowed us to test proto
ols under a varietyof environments, not only short and medium length, low bandwidth s
enarios.Conversely, when performing a kernel implementation of our TCP modi�
ations[49℄, it be
ame diÆ
ult to suÆ
iently stress the lo
al area network (10Mb/s). Ouraim was to for
e TCP to timeout and restart its
onne
tions. However, with su
ha large amount of bandwidth and relatively low laten
ies, it was ne
essary to uselower
apa
ity modem links to examine its behaviour more
losely. We were sub-sequently able to indu
e
onne
tion restarts on the LAN implementation throughfurther kernel enhan
ements.This approa
h was su

essful, and we were able to test the fun
tionality of our

Chapter 5 80 Dis
ussion and Evaluationmodi�
ations and to see that they performed a

ording to our models. Unfortu-nately, without more extensive equipment and resour
es, it was not possible toexhaustively test them in a high speed LAN environment.5.2.5 Summary of Simulation ExperimentsIn the above dis
ussion, we have seen how the fun
tionality of STTP was provenusing Keshav's REAL simulation pa
kage and
ompared with TCP Vegas usingbulk data
ows. We
on
luded from these tests that the STTP framework was aviable resear
h proje
t, and that the se
ond stage of performan
e testing should bepursued.An implementation of STTP in NS allowed us to perform more detailed testingwith a wider variety of appli
ation traÆ
 types and transport proto
ols. The resultsseen in REAL were supported by those from NS and further enhan
ed with �ne-grained, large-s
ale simulation experiments. Lengthy simulations whi
h
omparedSTTP, TCP Reno and TCP Vegas highlighted key features of our
ongestion avoid-an
e algorithms and start-up model. We saw that a pro-a
tive
ongestion avoidan
emodel
an be highly e�e
tive in minimising pa
ket loss while maintaining the overallrate of transmission. The result is a transport proto
ol whi
h yields signi�
antlyhigher goodput than existing Internet layer four implementations.Key areas K3 and K4, as des
ribed in
hapter 1, outline the aims of our proto-
ol design. The simulation results (providing C3) show that we have developed atransport layer proto
ol whi
h performs at least as well as existing TCP implementa-tions. Experiments 4 and 5 demonstrate STTP's ability to deliver
omparable levelsof goodput (within 1% of existing TCPs) but with up to 20% fewer pa
kets beingtransmitted, and up to 10% fewer pa
kets being dropped in the network. STTP hasbeen simulated with a key set of traÆ
 models, with as mu
h data as possible beingbased on live traÆ
 tra
es. This methodology gives sound foundation to the resultsof
hapter 3 (C3).The above study and dis
ussion of our experimental results
on
lude thesis
on-tribution C4.

Chapter 6
Con
lusions and Future Work
6.1 SummaryIn this thesis, we have presented our work on the examination, design, modelling,implementation and simulation of STTP, an alternative transport proto
ol. Wehave studied the
urrently de fa
to standard of TCP (K1), and performed pra
ti
alexperimentation with the Reno and Vegas TCP variants. We have identi�ed areasin whi
h
urrent TCP
ongestion avoidan
e algorithms
ould be improved (K2) andprodu
ed prototype modi�
ations to TCP Reno (C1 in
hapter 3). C2, the design ofa repla
ement transport proto
ol is presented in
hapter 3. This
ontribution
overskey area K3. The subsequent simulation of our prototype is presented in
hapter 4and realises
ontribution C4.Our simulation experiments have shown how a pro-a
tive
ongestion avoidan
emodel may be more appropriate for use with traditional, or bursty, network appli-
ations than
urrent de-fa
to standards su
h as TCP Reno or TCP Vegas. Oursolutions, whi
h utilise pa
ket-pair startup te
hniques, pro-a
tive
ongestion avoid-an
e, and token bu
ket
ow
ontrol, have shown themselves to give performan
e
omparable with that of
urrent TCP variants. However, the number of pa
k-ets dropped and retransmitted is signi�
antly redu
ed using pro-a
tive
ongestionavoidan
e me
hanisms. Furthermore, the use of token-bu
ket
ow
ontrol allowsappli
ations to send bounded bursts of data while maintaining an overall mean rate,81

Chapter 6 82 Con
lusions and Future Workwhi
h is in a

ordan
e with the
urrently estimated bottlene
k bandwidth.The impli
ation of our simulation results for intera
tive network traÆ
 is tofa
ilitate user-per
eived Quality of Servi
e in addition to making more eÆ
ient useof available network resour
es. A transport proto
ol, whi
h will deliver data in atimely manner with a low degree of pa
ket loss, is able to provide the appli
ationlayer with smooth inter-host
ommuni
ation. From the user's perspe
tive, the arrivalof information be
omes more predi
table and the appli
ation therefore more usable.If immediately su

essful, a simple pa
ket pair probe should allow the appli
ationto open a so
ket and burst data up to the
apa
ity of the bottlene
k link. In
ontrast with TCP Reno's Slow Start algorithm, this pro
ess should greatly aidbrief intera
tive sessions, su
h as those seen with Web-based servi
es. Experiment5 in
hapter 4 demonstrates the e�e
tiveness of STTP in this s
enario.6.2 ContributionsThe framework used in the design of STTP employs proven
omponents from avariety of sour
es. The problem spa
e asso
iated with existing TCP algorithmswhen transporting bursty or short-lived data streams, was broken down into threekey areas (K3).� Conne
tion initialisation and startup� Congestion avoidan
e and
ontrol� Pa
ket loss and re
overyEa
h of these was addressed in turn with the Pa
ket-Pair startup, Token Bu
ket
ow
ontrol and Pro-a
tive
ongestion avoidan
e algorithms. The fun
tionality test-ing, exe
uted in
hapter 3, illustrated the intera
tion of these algorithms and howthis modular design was able to operate in line with existing TCP implementations.Further testing was then
arried out in a more advan
ed simulation environmentwith varied traÆ
 types and
ongestion s
enarios. Throughout these experiments,the advantages of the STTP framework was
onsistent with our proje
ted model.

Chapter 6 83 Con
lusions and Future WorkThe resulting experimental proto
ol exhibits pa
ket goodput
omparable withexisting TCP implementations, transporting a variety of traÆ
 types. Its fundamen-tal advantages are that signi�
antly fewer pa
kets are transmitted and dropped dueto the improved proto
ol framework. The available bottlene
k bandwidth is probedand dis
overed in a single round-trip, and a
tive data transmission
ommen
es at anappropriate rate. Congestion is then sensed pro-a
tively, whi
h helps avoid network
ongestion, minimise router queues, and relieve pa
ket loss and retransmission.The main
ontributions of this work are therefore:[K1℄ the survey of existing proto
ol resear
h in order to identify key problem areas[K2℄ the evaluation of TCP modi�
ations as a potential solution[K3℄ the design and simulation of an experimental proto
ol, whi
h deploys provente
hniques in bandwidth dis
overy,
ow
ontrol, and
ongestion avoidan
e1. Conne
tion initialisation and startup2. Congestion avoidan
e and
ontrol3. Pa
ket loss and re
overy[K4℄ evaluation of the experimental proto
ol against existing TCP implementationswith a variety of network traÆ
 modelsOriginal
ontribution was made through modi�
ations to the existing TCP Renoimplementation (referred to as C1) and with an experimental proto
ol (C2), whi
hhas been designed spe
i�
ally to address the issues mentioned above. C1 is addressedin se
tion 3.1, and C2 throughout
hapter 3. Simulation of the resulting proto
ol is
arried out in
hapter 4 (C3). Further detailed analysis of our proto
ol simulations
an be found in
hapter 5 (C4).6.3 Future WorkThe results reported here open up several further avenues for investigation. Thete
hniques employed by TCP Vegas and other pro-a
tive transport proto
ols often

Chapter 6 84 Con
lusions and Future Workemploy hard-
oded (or set) variables for RTT or throughput measurements. Giventhe highly dynami
 nature of network traÆ
, and the rapid evolution of physi
allayer te
hnologies, we feel that an a
tive approa
h to
ongestion avoidan
e is needed.In order to provide a solution whi
h will s
ale with future developments, indi
ationsfrom our experiments suggest that a self-modifying approa
h may be required inorder to yield optimal performan
e.If the delta of � and � is small around 1.0, then STTP be
omes highly responsiveto
u
tuations in RTT. Conversely, as � de
reases and � in
reases, a more stableyet stubborn behaviour is produ
ed. It would be our intention that the proto
ol beable to modify these parameters in run-time a

ording to a given set of heuristi
s.For example, should a stream's transmission rate being to
u
tuate rapidly, thenthe delta may be in
reased in order to stabilise the
urrent
onne
tion. Alterna-tively, if a
onne
tion senses that it is be
oming "squashed" by
ompeting traÆ
,it may be
ome more aggressive in order to sustain the
urrent level of QoS for anappli
ation. Su
h responses are likely to signi�
antly bene�t user-per
eived QoS.It has also be
ome apparent during the
ourse of this work, that the rigid sep-aration between traditional OSI layers may not provide the most eÆ
ient means of
ommuni
ation between Internet hosts. The advent of ATM has shown how dupli-
ation of e�ort at di�erent layers in the sta
k
an produ
e
on
i
ting results. Thereis, however, ongoing resear
h whi
h suggests that
ommuni
ation between ATM's
ongestion avoidan
e algorithms and TCP will resolve su
h issues [15℄.The suggestion that open, dire
t
ommuni
ation between layers should take pla
eis
learly ludi
rous, as this may well lead to
haoti
 behaviour due to
on
i
tinginformation. While the network layer may believe there to be available bandwidthon a
onne
tion, the appli
ation may wish to redu
e transmission rates for QoSmanagement.The solution ultimately falls to kernel design and the provision of an appropriateAPI for appli
ation and hardware driver developers. If a shared area of memory wereallo
ated for the presentation and retrieval of QoS and network information, thevarious layers
ould obtain the data required in order to govern their transmission

Chapter 6 85 Con
lusions and Future Workrates and o�ered QoS. Similarly, they
ould display their own variable data in orderto inform other layers of their performan
e and measurements.Expli
it
ommuni
ation has been show to be e�e
tive in work
ondu
ted byFloyd [18℄ and we believe that su
h a framework, if implemented on a lo
al host,
ould be used to great e�e
t both for
urrent
onne
tions and in the initialisationof new streams.In order to deliver end-to-end QoS for intera
tive network appli
ations, it isbe
oming in
reasingly apparent that more expli
it
ommuni
ation must take pla
ebetween proto
ol layers, and a
ross network
omponents. The
o-ordinated deliveryof intera
tive data requires that there not be
on
i
t or disagreement on networkstate in the proto
ol sta
k. Only with a
ommon interfa
e, set of agreed
ommuni-
ation paths, and organised information
ow,
an this be a
hieved.

Bibliography
[1℄ B. Ahlgren, M. Bjo�rkman, and B. Melander. Network Probing Using Pa
ketTrains. Submitted to Global Internet '99, Mar
h 1999.[2℄ M. Allman, C. Hayes, and S. Ostermann. An Evaluation of TCP with LargerInitial Windows. ACM Computer Communi
ation Review, 28(3), July 1998.[3℄ M. Allman and V. Paxson. On Estimating End-to-End Network Path Proper-ties. In ACM SIGCOMM '99, Cambridge, MA, USA, September 1999.[4℄ M. Allman, V. Paxson, and W. Stevens. TCP Congestion Control. InternetRFC 2581, April 1999.[5℄ Sandeep Bajaj, Lee Breslau, Deborah Estrin, Kevin Fall, Sally Floyd, PadmaHaldar, Mark Handley, Ahmed Helmy, John Heidemann, Polly Huang, SatishKumar, Steven M
Canne, Reza Rejaie, Puneet Sharma, Kannan Varadhan,Ya Xu, Haobo Yu, and Daniel Zappala. Improving Simulation for NetworkResear
h. Te
hni
al Report 99-702, University of Southern California, Mar
h1999.[6℄ A. Bestavros and G. Kim. TCP Boston - A Fragmentation-tolerant TCP Pro-to
ol for ATM Networks. In Pro
eedings of IEEE INFOCOM'97, 1997.http://
s-www.bu.edu/te
hreports/96-014-t
p-boston.ps.Z.[7℄ T. Bonald. Comparison of TCP Reno and TCP Vegas via Fluid Approximation.Workshop on the Modelling of TCP, ENS, Paris, 1998.

86

Chapter 6 87 BIBLIOGRAPHY[8℄ R. Braden. Requirements for Internet Hosts { Communi
ation Layers. InternetRFC 1122, 1989.[9℄ R. Braden, L. Zhang, S. Berson, S. Herzog, and S. Jamin. RFC 2205, Resour
eReSerVation Proto
ol (RSVP) . Internet RFC 2205, 1997.[10℄ L. Brakmo and L. Peterson. TCP Vegas: End to End Congestion Avoidan
eon a Global Internet. IEEE Journal on Sele
ted Areas in Communi
ation,13(8):1465{1480, O
tober 1995.[11℄ L.S. Brakmo, S. W. O'Malley, and L.L. Peterson. TCP Vegas: New Te
hniquesfor Congestion Dete
tion and Avoidan
e. In Pro
eedings of SIGCOMM '94,Aug 1994. ftp://ftp.
s.arizona.edu/xkernel/Papers/vegas.ps.[12℄ R.L. Carter and M.E. Crovella. Dynami
 Server Sele
tion using BandwidthProbing in Wide-Area Networks. Mar
h 1996.[13℄ D. Comer and J. Lin. TCP Bu�ering and Performan
e Over an ATM Network.Internetworking: Resear
h and Experien
e, 1995.[14℄ R. Gallager D. Bertsekas. Data Networks. Prenti
e Hall, 1992.[15℄ K. Djemame and M. Kara. Agent-Based Rate Coordination Between TCP andABR Congestion Control Algorithms. To appear in the Journal of ComputerCommuni
ations - Spe
ial Issue on Performan
e Evaluation of Tele
ommuni-
ation Systems: Models, Issues and Appli
ations.[16℄ R. Engel, D. Kandlur, A. Mehra, and D. Saha. Exploring the Performan
eImpa
t of QoS Support in TCP/IP Proto
ol Sta
ks. In IEEE Info
om, Mar
h1998.[17℄ R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Lea
h, andT. Berners-Lee. RFC 2616, Hypertext Transfer Proto
ol { HTTP/1.1. InternetRFC 2616, 1999.

Chapter 6 88 BIBLIOGRAPHY[18℄ S. Floyd. TCP and Expli
it Congestion Noti�
ation. ACM Computer Commu-ni
ation Review, 24(5):8{23, O
t 1994.[19℄ S. Floyd and V. Ja
obson. Random Early Dete
tion Gateways for CongestionAvoidan
e. IEEE/ACM Transa
tions on Networking, 1(4):397{413, August1993.[20℄ J.C. Hoe. Improving the Start-up Behavior of a Congestion Control S
hemefor TCP. In Pro
eedings of the ACM SIGCOMM '96, pages 270{280, August1996.[21℄ V. Ja
obson. Congestion Avoidan
e and Control. ACM Computer Communi-
ation Review, 18:314{329, Aug 1988. Pro
eedings of Sig
omm'88 Symposium,Stanford, CA.[22℄ V. Ja
obson. Modi�ed TCP Congestion Avoidan
e Algorithm. end2endinterestmailing list, April 1990.[23℄ R. Jain, D. Chiu, and W. Hawe. A Quantitative Measure Of FairnessAnd Dis
rimination For Resour
e Allo
ation In Shared Computer Systems.Te
hni
al Report TR-301, DEC, September 1984. http://www.
is.ohio-state.edu/~jain/papers/fairness.htm.[24℄ F. Kelly. Charging and rate
ontrol for elasti
 traÆ
. European Transa
tionson Tele
ommuni
ations, 8:33{37, 1997.[25℄ S. Keshav. REAL: A Network Simulator. Te
hni
al Report 88/472, Departmentof Computer S
ien
e, UC Berkeley, 1988.[26℄ S. Keshav. A Control-Theoreti
 Approa
h to Flow Control. In Pro
eedings ofACM SIGCOMM 1991, 1991.[27℄ S. Keshav. Congestion Control in Computer Networks. PhD thesis, Departmentof EECS, UC Berkeley, 1991.

Chapter 6 89 BIBLIOGRAPHY[28℄ S. Keshav. Flow Control in High-Speed Networks with Long Delays. In Pro-
eedings of INET 1992, June 1992.[29℄ S. Keshav. An Engineering Approa
h to Computer Networking. AddisonWesley,1997.[30℄ S. Keshav, A. Agrawala, and S. Singh. Design and Analysis of a Flow ControlAlgorithm for a Network of Rate Allo
ating Servers. Proto
ols for High SpeedNetworks II, April 1991. Published on IFIP Press.[31℄ S. Keshav and A. Banerjea. Queueing Delays in Rate-Controlled Networks. InPro
eedings Info
om 1993, Mar
h 1993.[32℄ J.Roberts L. Massouile. Bandwidth sharing: obje
tives and algorithms. CNET-Fran
e Tele
om, 1998.[33℄ M. Mathis, J. Madhavi, S. Floyd, and A. Romanow. TCP Sele
tive A
knowl-edgment Options. Internet RFC 2018, O
t 1996.ftp://ftp.ee.lbl.gov/papers/rf
2018.ps.[34℄ J. Mo, R. La, V Anantharam, and J Warlrand. Analysis and Comparison ofTCP Reno and Vegas. In INFOCOM 99, 1999.[35℄ J. Nagle. Congestion Control in IP/TCP Internetworks. Internet RFC 896,1984.[36℄ K. Ni
hols, S. Blake, F. Baker, and D. Bla
k. RFC 2474, De�nition of theDi�erentiated Servi
es Field (DS Field) in the IPv4 and IPv6 Headers. InternetRFC 2474, 1998.[37℄ C. Partridge, S. Floyd, and M. Allman. In
reasing TCP's Initial Window.Internal Draft, Internet Engineering Task For
e, Sep 1998.ftp://ftp.isi.edu/in-notes/rf
2414.txt.[38℄ V. Paxson. End-to-end internet pa
ket dynami
s. ACM SIGCOMM ComputerCommuni
ation Review, 27(4):139{152, O
tober 1997.

Chapter 6 90 BIBLIOGRAPHY[39℄ K. Poduri and K. Ni
hols. Simulation Studies of In
reased Initial TCP WindowSize. Informational Internet RFC 2415, 1998.[40℄ J. Postel. RFC 768, User Datagram Proto
ol. Internet RFC 768, 1980.[41℄ J. Postel. RFC 793, Transmission Control Proto
ol. Internet RFC 793, 1981.[42℄ K. Ramakrishnan and R. Jain. A Binary Feedba
k S
heme for CongestionAvoidan
e in Computer Networks. ACM Transa
tions on Computer Systems,8(2):158{181, 1990.[43℄ A. Romanow and S. Floyd. Dynami
s of TCP TraÆ
 over ATM Networks. IEEEJournal on Sele
ted Areas in Communi
ations, 13(4):633{641, May 1995.[44℄ S. Floyd et al. T
p friendly web site.http://www.ps
.edu/networking/t
p friendly.html.[45℄ H. S
hulzrinne, S. Casner, and V. Ja
obson R. Frederi
k. A Transport Proto
olfor Real-Time Appli
ations. Internet RFC 1889, 1996.[46℄ H. S
hulzrinne, A. Rao, and R. Lanphier. Real Time Streaming Proto
ol(RTSP). Internet RFC 2326, 1998.[47℄ T. Shepard and C. Partridge. When TCP Starts Up With Four Pa
kets IntoOnly Three Bu�ers. Informational Internet RFC 2416, 1998.[48℄ W. Stevens. TCP Slow Start, Congestion Avoidan
e, Fast Retransmit and FastRe
overy Algorithms. Internet RFC 2001, 1997.[49℄ R. Wade, M. Kara, and P.M. Dew. Proposed Modi�
ations to TCP CongestionControl for High Bandwidth and Lo
al Area Networks. In Pro
eedings of the6th IEEE Conferen
e on Tele
ommuni
ations (ICT'98), July 1998.[50℄ R. Wade, M. Kara, and P.M. Dew. Modeling and Simulation of STTP, a Proa
-tive Transport Proto
ol. In Pro
eedings of the IEEE International Conferen
eon Networking (ICON 2000), pages 485{486, September 2000.

Chapter 6 91 BIBLIOGRAPHY[51℄ R. Wade, M. Kara, and P.M. Dew. Study of a Transport Proto
ol EmployingBottlene
k Probing and Token Bu
ket Flow Control. In Pro
eedings of theIEEE International Symposium on Computer Communi
ations (ISCC 2000),pages 225{229, July 2000.[52℄ Z. Wang and J. Crow
roft. A New Congestion Control S
heme: Slow Start andSear
h (Tri-S). ACM Computer Communi
ation Review, 21:32{43, 1991.[53℄ Z. Wang and J. Crow
roft. Eliminating Periodi
 Pa
ket Losses in the 4.3-TahoeBSD TCP Congestion Control Algorithm. ACM Computer Communi
ationReview, 22:9{16, April 1992.

Chapter 92 BIBLIOGRAPHYTable 1: Table of Results for Experiment 2Num Sour
es Proto
ol bytes tx bytes drop10 Reno 226345000 126400010 Vegas 225025000 010 STTP 225064800 020 Reno 230285000 519000020 Vegas 225370000 28300020 STTP 225520600 43500030 Reno 234791000 969600030 Vegas 230131000 504300030 STTP 225997400 90408040 Reno 239531000 1443600040 Vegas 236000000 1091100040 STTP 226253200 116116050 Reno 241044000 1595400050 Vegas 241185000 1609600050 STTP 227099000 200512060 Reno 243972000 1888000060 Vegas 244975000 1988800060 STTP 226860800 176768070 Reno 247247000 2216500070 Vegas 248030000 2294800070 STTP 227146600 205436080 Reno 250221000 2512600080 Vegas 250684000 2559500080 STTP 227614400 251836090 Reno 253429000 2833400090 Vegas 253156000 2807900090 STTP 227507200 2412560100 Reno 255582000 30487000100 Vegas 255914000 30825000100 STTP 227681000 2585840110 Reno 257234000 32142000110 Vegas 258223000 33135000110 STTP 227537800 2442600120 Reno 258980000 33890000120 Vegas 259093000 34004000120 STTP 227872600 2777280130 Reno 261137000 36042000130 Vegas 262281000 37192000130 STTP 228831400 3737800140 Reno 262140000 37046000140 Vegas 262223000 37138000140 STTP 228737200 3641840150 Reno 262968000 37873000150 Vegas 264653000 39564000150 STTP 228412000 3315920160 Reno 264286000 39195000160 Vegas 266033000 40946000160 STTP 229956800 4861520170 Reno 264828000 39733000170 Vegas 267471000 42382000170 STTP 229206600 4111640180 Reno 265320000 40225000180 Vegas 268390000 43302000180 STTP 229552400 4456400190 Reno 265871000 40776000190 Vegas 269193000 44105000190 STTP 228915200 3819680200 Reno 265593000 40501000200 Vegas 268748000 43660000200 STTP 229738000 4641920

Chapter 93 BIBLIOGRAPHY

Table 2: Table of Results for Experiment 4Num Sour
es Proto
ol bytes tx bytes drop10 Reno 57884000 160800010 Vegas 56302000 300010 STTP 56895800 59800020 Reno 60352000 406300020 Vegas 58348000 204400020 STTP 56770600 46900030 Reno 61939000 564200030 Vegas 61468000 516500030 STTP 56989400 68800040 Reno 63661000 735600040 Vegas 63087000 678500040 STTP 57251200 94912050 Reno 65407000 910200050 Vegas 64992000 868700050 STTP 57503000 120004060 Reno 67252000 1096200060 Vegas 66076000 977200060 STTP 57719800 141616070 Reno 68611000 1230600070 Vegas 67666000 1136300070 STTP 57931600 162916080 Reno 69429000 1312800080 Vegas 68590000 1228700080 STTP 58255400 195204090 Reno 70152000 1385500090 Vegas 69982000 1368000090 STTP 58596200 2291000100 Reno 70927000 14623000100 Vegas 70463000 14159000100 STTP 58798000 2494040

