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Abstract

The Internet is currently an IP datagram network, which uses the Transmission
Control Protocol (TCP) for guaranteed data delivery. In addition to providing a
reliable data transport layer, TCP aids the stability of a large scale internetwork
through congestion detection and avoidance algorithms.

Since TCP’s inception in 1981, both the Internet, and the applications which use
it, have evolved. The result is a broad spectrum of data traffic, being transported by
protocols which were developed twenty, or more, years previously. Increasingly, the
traffic being carried over the Internet is part of an interactive client/server session,
established between hosts on widely separated networks. The number of router
hops between such hosts means that an aggressive transport protocol for application
data may attempt to send data, which exceeds the bottleneck capacity of a given
network path. The result is packet loss which, for a guaranteed protocol, implies
retransmission of data. Recent research has shown that current implementations of
TCP, based on the original TCP algorithms, are inappropriate for the transportation
of modern Internet traffic.

This thesis is concerned with the design, modelling, simulation, and study, of
an experimental transport protocol. We aim to address the issues faced by current
TCP implementations when transporting short, bursty, variable bit-rate, or bulk
data in congested environments. In doing so, alternative methods of connection
initialisation, flow control and congestion avoidance are implemented and simulated.

Through simulation with bulk, variable bit-rate and live HTTP trace data, we
show how our experimental protocol is able to deliver data with successful through-
put comparable with currently implementations of TCP. Due to its modified startup
and congestion avoidance algorithms, however, it does so with significantly reduced

packet loss and overall packet transmissions.
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Chapter 1

Introduction and Background

The issue of transport protocol design has become an important factor in the future
of the Internet with the proliferation of multimedia and interactive applications. The
majority of Internet applications are client/server in nature and therefore require
communication between two, potentially widespread, network hosts.

The number of hosts connected to the Internet has grown at an unprecedented
rate, and its penetration into all corners of the globe has brought a wide variety
of network quality and capacity. In developed nations, rapid expansion has taken
place both for domestic and business users who, at the time of writing, generally
connect at between 28.8kb/s and 128kb/s. Larger businesses with leased lines to
their Internet Service Provider (ISP), may work with T1 (1.55Mb/s) connections and
higher. Government or educational institutions generally have even higher capacity
links up to T3 (45Mb/s).

When a connection is initialised between two hosts, little is known about the
physical network’s capacity or reliability. Even though both hosts may be located
on high-capacity local area networks, with high performance connections to the
Internet, the call may be routed via highly congested or unstable portions of the
public network. This implies that the bottleneck for this connection is unknown,
unpredictable and not under the control of local administration. It is therefore

unwise for an application to request or send data at a pre-determined rate.
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1.1 The Transmission Control Protocol

The Internet is currently an IP-based network which runs TCP [41] (Transmission
Control Protocol) or UDP [40] (User Datagram Protocol) at the transport layer.
For guaranteed data services, TCP is the recommended protocol as it provides win-
dowed flow control and retransmission of lost/corrupt data. Furthermore, a TCP
stream will modify its transmission rate according to current network congestion.
Conversely, UDP does not provide any flow control or congestion avoidance facili-
ties, and is defined as an "unreliable” transport layer. UDP has been the source of
much contention over recent years due to multimedia network applications such as
voice and video streaming, flooding the Internet with unresponsive protocol streams.
Applications which use UDP may not incorporate TCP Friendly [44] congestion
avoidance mechanisms, thus affecting the quality of service available to competing
data streams.

TCP initialises a connection with an algorithm known as slow start. The rate at
which TCP transmits traffic into a network is governed by the size of its congestion
window (cwnd), which is normally an integer value, representing the number of
segments currently allowed to be in transit on a given connection. By initialising this
value to 1, and incrementing it each time an acknowledgement (ACK) is received
from the destination node, TCP can achieve a self-clocked method of bandwidth
discovery. In practice, increments to the congestion window follow an exponential
curve and continue until either data is lost, or a pre-determined limit is reached.
This limit is known as the slow start threshold (ssthresh) and is set to 65535 bytes
or the receiving host’s advertised window size.

The ssthresh mechanism prevents the sender from overflowing network buffers
during slow start. In practice, however, this threshold could be higher than the
bottleneck capacity of the intervening network. Once the congestion window value
reaches that of ssthresh, TCP enters its congestion avoidance phase. This involves
incrementing the cwnd with every ACK that is received, therefore a linear process.

Action is only taken if data is lost or three ACK’s with the same sequence number
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are received. This implies that the destination node is receiving out of order packets,
or that data has been lost. In this situation, TCP decreases its congestion window
by 50% and re-enters congestion avoidance. If a timeout should occur, i.e. the time
taken for the destination host to reply with an ACK packet exceeds a given limit,
then the congestion window is set to 1 and TCP re-enters slow start.

Conversely, UDP does not support such flow control or error handling. It falls
to the application developer to provide these features in a custom transport layer,
should the be required. The concern is that if such software is badly implemented,
it may be unfair towards TCP Friendly connections which share the same network

links.

1.1.1 A History of TCP
1.1.1.1 1988

Jacobson and Karels’ paper [21] on TCP congestion avoidance 4.3BSD Tahoe was

released, which utilises:
e Slow Start
e Congestion Avoidance
e Fast Retransmit

The Slow Start and Congestion Avoidance algorithms were documented in [21],
whereas Fast Retransmission facilities were not ratified until 1997 in RFC 2001 '
[48]. Slow Start and Congestion avoidance were the result of a ” congestion collapse”,
which took place in 1988 on the DARPA network at Berkeley. This added facilities to
TCP, which gave it the ability to detect and avoid severe network congestion. If TCP
were able to slow down its data transmission rate when congestion is detected, then
massive packet loss will be prevented, and overall performance improved. Similarly,

Fast Retransmission of data allows TCP to retransmit data which it suspects has

IRFC 2001 describes in detail TCP Slow Start, Congestion Avoidance, Fast Retransmit, and

Fast Recovery Algorithms. Its aim is to document and standardise current implementations.
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been lost in transit due to the receipt of duplicate acknowledgement packets for a

previous piece of data.

1.1.1.2 1990

The Reno release of 4.3BSD changed its TCP implementation only slightly. The
facility which was added permitted TCP to increase its transmission (congestion)
window by the number of duplicate acknowledgements it had received after retrans-
mission. This algorithm accelerates recovery of a stream’s transmission rate after
packet loss. A further enhancement of TCP for the 4.3BSD Reno release was to
allow TCP to only halve its current transmission rate in case of Fast Retransmission
(detailed in 4.3BSD Tahoe). Prior to this extension, each packet loss caused TCP to

enter the Slow Start algorithm, and reset its congestion window to a single segment.

1.1.1.3 1993

Lawrence Brakmo et al. at the University of Arizona, extended the Slow Start and
congestion avoidance algorithms of TCP Reno. They implemented their new al-
gorithm, called TCP Vegas, on an experimental platform called the X-Kernel, and
published a performance study of Vegas in [11], at SIGCOMM 94. The modifica-
tions to Slow Start include a more cautious expansion of the congestion window
during connection initialisation. This aims to prevent packet loss due to aggressive
transmission rates. Similarly the congestion avoidance algorithm was improved to
sense network congestion, and adjust its transmission rate accordingly. This was
achieved by obtaining an expected throughput figure for a given time period, and
comparing this with the actual connection statistics. If there is a notable disparity
between these values, then the transmission rate will be adjusted. [11] includes per-
formance testing, which shows 40-70% performance improvement over TCP Reno

in Brakmo’s simulation experiments.
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1.1.1.4 1996

RFC 2018 2 [33] details extensions to TCP Reno in the form of Selective Acknowl-
edgement Options. This enables a TCP receiver to overcome the limitation of cumu-
lative acknowledgements in TCP Reno. With cumulative packet acknowledgements,
a TCP sender can only learn about a single lost packet in each round trip time. With
Selective Acknowledgement options (SACK), a receiver can acknowledge data as it
is received. This enables the sender to only retransmit that which has been lost,

and not packets which have already been transported successfully.

1.1.1.5 1997

RFC 1122 3 [8] detailed the basic requirements for a TCP implementation, that
it should use a Slow Start mechanism, and congestion avoidance to prevent net-
work overload. RFC 2001 [48] consolidated RFC 1122 with work done by Jacobson
and Karels. Furthermore, it documented the Fast Retransmit, and Fast Recovery

algorithms for the Internet community.

1.2 Interactive Network Applications

While streaming applications such as voice over IP, audio or video streams may
use UDP for their transport, the majority of Internet applications use TCP for
guaranteed data delivery. The most widespread of these is without doubt the World
Wide Web, which is a client-server application, used to present information and data
through interactive Hypertext documents, or Web pages. These are transmitted
using the HyperText Transfer Protocol (HTTP) [17], which in turn uses TCP.
Under normal conditions, a Web client will make a HTTP request for a given

page. The server then initialises a separate TCP connection for each page component

2RFC 2018 describes how TCP Selective Acknowledgement Options can improve the perfor-

mance of TCP conversations with bursty packet loss.
3RFC 1122 documents the IP and TCP functionality required for Internet-connected nodes

(hosts).
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back to the client. However, work has been conducted into Persistent HTTP [17]
which aims to multiplex these connections together in order to form a single, stronger
TCP connection.

The nature of the Web is such that a user may make rapid page selections
in order to obtain specific information. Although a great amount of work has been
done to optimise Web client and server efficiency, the underlying transport protocols
can still be considered a factor in user-perceived latency. While HTTP itself has
undergone several revisions in recent years, the components which make up Web
documents are also evolving at an alarming rate. The result is that Web server and
document technologies are now able to present an increasingly interactive interface to
the user with a wider variety of components being presented to the client software.
Furthermore, HTTP itself is under pressure to evolve in order to transport such
components efficiently and in a manner which is conducive to the interface it aims

to provide.

1.3 Internet Services

While the World Wide Web Consortium (W3C) revises the HTTP specification, it
falls to the Internet Engineering Task Force (IETF) to improve common Internet
protocols and provide the necessary functionality, performance and flexibility to the
application layer. For example, the Internet Protocol version 6 (IPv6) has recently
been specified in order to accommodate future address space requirements as well
as extended support for differentiated levels of network service.

The Architecture for Differentiated Services (DiffServ) allows a network operator
to provide certain guarantees to their customers in terms of Quality of Service (QoS).
In more detail, traffic can be classified according to certain bounds given by its Type
of Service (TOS) specification. This TOS header, present in IPv4 and TPv6 packets,
can be used to describe acceptable bounds for queueing delay, jitter, or packet loss.

It is therefore anticipated that differentiated services will proliferate with cus-

tomers subscribing to ”Bronze”, "Silver” and "Gold” levels of traffic provision.
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Bronze customers may simply receive the current standard of "best effort” with
no performance guarantees for their traffic. Subscribers to the Silver category may
have their traffic prioritised over the Bronze customers according to a subset of the
QoS parameters. Gold customers may be able to specify all available QoS parame-
ters while paying a premium fee for their traffic.

Within the realms of a QoS-oriented, or Diffserv environment, the role of the IP
transport protocol is diminished somewhat as the secondary network services take
on a portion of its functionality. Whereas in a mixed media, best effort network
such as the current Internet, the transport protocol aims to contend with varying
delay, packet loss and cross traffic, a Diffserv network is able to guarantee at least
a subset of these parameters. Therefore, the requirements for next generation TCP
are somewhat different to those when it was specified in 1981 for DARPA’s RFC
793 4 [41].

1.4 TCP Issues and Alternative Implementations

Naming conventions for TCP are traditionally based around the BSD revision in
which they appear. Both of the following appear in releases of 4.3 BSD Unix. First,
there was TCP Tahoe which implemented RFC 793 in the BSD kernel in addition
to slow start and congestion avoidance algorithms from RFC 2001. TCP Tahoe
is detailed in Jacobson and Karels’ paper on Congestion Avoidance and Control
[21]. This protocol was superceded by TCP Reno, which adds fast retransmit and
fast recovery from RFC 2001 [48], and selective acknowledgements from RFC 2018.
TCP Reno is currently the most common implementation used in network operating
systems and as such, has been studied in great detail. The majority of performance
comparisons and models in this work will use TCP Reno as their benchmark proto-
col.

In 1994, Brakmo et al at the University of Arizona published [11], which detailed

new algorithms for TCP slow start and congestion avoidance. In particular, TCP

4RFC 793 describes the initial Transmission Control Protocol for the ARPA network.
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Vegas claims "between 40% and 70% improvement” in performance over TCP Reno
with around one fifth the number of packet retransmissions. This performance in-
creased was achieved through better utilisation of available bandwidth by deploying
proactive congestion avoidance algorithms. An alternative, lightweight implemen-
tation of this solution to congestion avoidance is used in our experimental protocol
later in this work.

One fundamental criticism of TCP Reno and its variations, is that the core
algorithms rely on packet loss in order to detect network congestion. In essence,
they use a linear increase, multiplicative decrease algorithm which, despite having
been shown to exhibit fair behaviour between competing streams is both lossy and
inefficient when compared with proactive congestion avoidance [11].

In particular, TCP Reno has been observed to lose the majority of its data while
in slow start which, in comparison with the algorithms used by TCP Vegas, are ag-
gressive. The problem arises when, in slow start, TCP Reno doubles its transmission
rate every RTT. It continues to do so until it reaches the slow start threshold, the
remote hosts’s advertised window size, or loses data. In a highly congested network,
particularly one with a high bandwidth delay product, this means that when losses
do occur, they are likely to be in the order of half the current congestion window.
Given that TCP is a guaranteed delivery protocol, this data has be retransmitted
and if losses have occurred, this will be at a much lower rate (50%) than before. This
is due to TCP’s congestion avoidance algorithm, which will halve its transmission
rate upon data loss. TCP then enters its congestion avoidance algorithm.

Fast retransmission and recovery are defined in RFC 2001 [48]. Fast retransmis-
sion of data is triggered in TCP Reno by the source host receiving three duplicate
acknowledgements for data it has sent. The advantage of this mechanism is that it
does not have to wait for a timer to expire (a timeout) before retransmitting poten-
tially lost data. The receipt of three duplicate ACK’s at the source means that the
remote host has received three packets which contained out of order sequence num-
bers. Occasionally, packets may be re-routed in the Internet, so certain data may

arrive out of order and have to be re-ordered before being passed to the application.
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Once fast retransmission has been performed, TCP Reno uses fast recovery to
maintain its state in congestion avoidance. This means that unless a retransmission
is performed due to packet timeout, a slow start is not performed. If a timeout does
occur, ssthresh is set to one half of the current congestion window, the congestion
window is set to a single segment, and slow start ensues. In fast recovery, however,

the congestion window is set to the value of ssthresh as opposed to a single segment.

1.5 Motivation

The issue of flow control in modern computer networks has been highlighted in
recent years with a massive increase in the amount of bursty Internet traffic. The
proliferation of the World Wide Web (WWW) has lead to a desire for short, high-
bandwidth connections in order to transfer relatively small documents, images and
program code in the least time possible.

This is in contrast with traditional Internet applications such as FTP, which
generally consisted of longer duration connections. Furthermore, the relative fair-
ness of bandwidth allocation was considered more important than timely delivery.
Such lengthy conversations meant that the precise dynamics of individual connec-
tions were not of primary concern when, for example, slow start only formed a small
percentage of the total duration.

Given that the majority of current WWW pages contain a small amount of text
content, this can be transferred in a handful of TCP segments. In contrast, a lengthy
FTP connection may transfer hundreds or thousands of kilobytes and take several
minutes to complete. During this time, a strong, established TCP stream may be
formed and its bursty profile reduced compared with that of WWW traffic. While
TCP’s slow start and congestion avoidance algorithms are capable of efficiently
transporting lengthy data transfers, modern Internet applications no longer fit this
profile.

It is therefore of paramount importance to ameliorate the perceived performance

of WWW traffic through improvements to the transport layer. While HTTP is
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constantly being revised by the W3C, one way to increase data throughput in real
terms, is by optimisation and tuning of the Internet’s transport protocol.

Modern Internet applications set the criteria by which this performance will be
measured and allow us to derive suitable algorithms for their solution. We are
therefore faced with a set of user requirements, namely to deliver short, bursty

transfers of data in as short a time as possible.

1.6 Research Context

In our experience with simulation experiments [49] [51] [50], TCP has not shown
itself to be suitable for realtime, interactive, network applications. In particular,
those involving bursty, multimedia data exchange. The reason for this is that due
to its slow start algorithm, TCP is not able to quickly establish a connection which
fully utilises the available bandwidth. In fact if a network is highly congested, a data
exchange may take much longer than desired due to packet retransmission, which is
likely to occur during aggressive expansion of the congestion window.

The arrival of more intelligent network services such as Diffserv [36] and RSVP
[9], which allow bandwidth allocation in addition to bounded QoS on a per con-
nection basis, means that TCP is now operating in an environment which is very
different to that for which it was designed. The creation of Virtual Private Net-
works (VPN’s) using such technologies make it increasingly unlikely that data will
be re-routed, unless some sort of technical problem occurs. Furthermore, connec-
tions between nodes on such a network may have a given bandwidth allocation,
which makes slow start merely an inefficient use of the available resources.

In addition to advances in networking technologies, the physical layer upon which
TCP/IP operates, is now substantially more reliable than, ten years ago. Data loss
or corruption due to physical error is now only likely every 10~% packets. The vast
majority of data loss is caused by network congestion and overflowing queues at
the router or switch. The major concern has therefore shifted from an unreliable

network to one which is reliable, but highly and unpredictably congested.
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The objectives for TCPng are therefore to be more concerned with queue man-
agement and efficient retransmission, connection and recovery. However, much of
the network congestion in effect on the Internet will be cross traffic streams which
may, or may not be TCP friendly. The design of a next generation transport proto-
col must take into account the diversity of traffic on modern networks and behave
fairly towards other users.

There are two main definitions of fairness for transport protocols, basic max-
min fairness states that a protocol should make maximal usage of available net-
work resources, but be able to share equally such resources amongst data streams.
Given n connections operating on a given link, a state of equality would exist if the
throughput for each connection was an equal share of the total link capacity. If any
connection were to increase its throughput, it would be to the disadvantage of other
streams in this situation.

Alternatively, there is proportional fairness which aims to maximise Yy log A,
according to a link’s resources, where A, is the rate allocated to a given TCP con-
nection. Proportional fairness is a congestion control scheme in which routing pri-
ority is assigned to a given stream according to the quality of service assigned to,
or purchased by, the user. In proportional fairness, every network resource has a
"price” associated by the network administration. Users of the network are allo-
cated network resources according to how much they are able to "pay”. The price
allocated to each resource is adjusted in real time, according to the current state
of resource demand e.g. if demand is high, then the price for a given resource will
increase. The detailed process and mathematical modelling can be found in [24],
and [32].

In addition to fair and considerate behaviour, a next generation transport proto-
col should be able to make full use of available network resources. In a guaranteed
QoS network, this may be reserved or allocated bandwidth. Given that such reser-
vations may be charged at a significantly higher rate than best effort services, it is

important for data to be exchanged in the most efficient manner.
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1.7 Objectives

The work presented in this thesis focusses on optimisations to the transport layer,
which yield greater performance in terms of successfully transmitted data. Our aim
was to minimise lost data, while maximising overall throughput.

The aim of such optimisation is to update existing TCP protocols in order for
them to function in accordance with forthcoming network services. Furthermore,
technologies which already exist on the physical layer mean that design concerns are
somewhat different to those ten years ago. In summary, while certain assumptions
can now be made with regard to modern networks, there are some very different
concerns with regard to congestion avoidance and control, particularly with regard
to real time and multimedia applications.

In order to address the issues faced by TCP and next generation transport pro-

tocols, this work will address several key areas:

[K1] the survey of existing protocol research in order to identify key problem areas
[K2] the evaluation of TCP modifications as a potential solution

[K3] the design and simulation of an experimental protocol, which deploys proven
techniques in bandwidth discovery, flow control, and congestion avoidance
[3a] Connection initialisation and startup
[3b] Congestion avoidance and control
[3c] Packet loss and recovery

[K4] evaluation of the experimental protocol against existing TCP implementations

with a variety of network traffic models

Original contribution is made through modifications to the existing TCP Reno
implementation (referred to as C1) and with an experimental protocol (C2), which
has been designed specifically to address the issues mentioned above. C1 is addressed

in section 3.1, and C2 throughout chapter 3. Simulation of the resulting protocol is
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carried out in chapter 4 (C3). Further detailed analysis of our protocol simulations
can be found in chapter 5 (C4).

Chapter 2 discusses work which is closely related to that covered in this thesis,
namely publications on TCP, related protocols and congestion avoidance algorithms.
In order to address K1, variations on TCP’s congestion avoidance and slow start
algorithms are discussed, with reference to published work in this area. The body
of this work is presented in chapters 3 through 4, where our experimental proto-
col, STTP, is described, tested and evaluated. The acronym, STTP, stands for
Shaped Token Transport Protocol. K2, K3 and K4 are consolidated in these chap-
ters through simulation experiments. The rationale and design of STTP is covered
in chapter 3, followed by performance testing and results in chapter 4. Chapter 3
addresses K3 by describing the algorithms used in STTP to address deficiencies in
TCP when transporting modern Internet traffic. Further discussion of the simula-
tion results takes place in chapter 5 with conclusions and future work in chapter
6. K4 is discussed further in chapter 5, where simulation results from both NS and

REAL are analysed, and their performance compared.
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Related Work

2.1 Traditional TCP

Jacobson and Karels’ key paper of 1988 [21] describes how, in response to a conges-
tion collapse of the Internet in 1986, congestion avoidance and control algorithms
were incorporated into the transport control protocol (TCP) of the time.

They describe a "self-clocking” protocol which uses windowed flow control and
packet acknowledgements to gradually increase the flow of data into a network. This
continues to the point at which congestion occurs and data is lost, at which time
multiplicative decrease algorithms are used to reduce network load. This approach
to congestion control is central to TCP’s core algorithms and is operational in both
TCP Reno and TCP Tahoe, the most common active implementations of TCP.

The design of RFC 793 TCP (from the Jacobson and Karels’ paper) is based on
the concept of ”packet conservation” with TCP streams in "equilibrium”. Equilib-
rium is termed as the steady state in which a new packet is not injected into the
network until one has arrived at the destination node. In order to achieve equilib-
rium, a new slow start algorithm for connection startup was designed.

Slow start was created in order to kickstart the self-clocking TCP algorithms.
As TCP depends on the receipt of acknowledgement (ACK) packets to trigger the
release of new data into the network, there had to be some way of increasing the

flow until it reached equilibrium. Therefore, Jacobson and Karels’ introduced a
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new slow start state to TCP. While in this state, TCP increments its transmission
window (congestion window, cwnd) for every ACK that it receives. To reach a
given window size W from slow start, RFC 793 TCP takes log, W round trips.
This process gives TCP the properties of a self-clocking protocol which will regulate
its transmission according to the available network resources. During slow start,
TCP quickly increments its transmission rate as data is received and acknowledged
by the remote host. Such behaviour aims to reduce packet loss during connection
initialisation.

The TCP then sends the minimum of the congestion window and the receiver’s
advertised window (buffer) size. This mechanism takes into account the wide variety
and specification of machines on the Internet by not allowing a powerful host to
overload a less powerful one with floods of data. In this manner, Jacobson and
Karels’ TCP was able to resolve the issues of congestion on the Internet of the time.
A receiver’s advertised window size indicates the number of bytes available for data
at the receiving end of a connection. Therefore, the transmitting side should not
allow more than this amount of data to be unacknowledged at any time. To do so
would give a high risk of packet loss due to buffer overflow at the remote host.

In this section, we have covered the fundamental concepts of TCP, that it is a self-
clocking protocol, which guarantees data delivery and which will react to network
congestion in order to minimise packet loss. We continue with the examination of
alternative TCP implementations. An alternative implementation is a transmission
control protocol which has been designed with clear and distinct criteria. Alterna-
tive implementations are usually completely redesigned protocols, which derive few
algorithms from standard TCP. Conversely, we will also discuss TCP variants. A
variant is an improvement on existing TCP which aims to solve specific problem

areas, or to improve performance under certain conditions.
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2.2 Alternative Implementations

The rapid expansion of the Internet (from the mid 1990s), both physically and in
terms of traffic types has prompted a great deal of academic and industrial research.
In particular, the issue of streaming and interactive, multimedia traffic using UDP

and proprietary transport layers.

2.2.1 Real-Time Protocols

One such highly successful project was that of RTP, the Realtime Transport Proto-
col. RTP is an IP-based protocol which supports realtime, multicast and unicast,
audio and video streams. The essence of this work is published in RFC 1889 [45],
which specifies RTP and RTCP, the framework’s two main components.

RTP provides timestamping, sequence numbering, source identification and pay-
load format information. These fields can be used by multimedia applications to
ensure in-order, regulated playback of audio or video streams. Furthermore, it is
possible to combine such streams and to synchronise their output using RTP’s times-
tamp.

RTCP is the Real-Time Control Protocol, a feedback mechanism for Quality
of Service (QoS) applications. In conjunction with RTP, this provides facilities
for applications to exchange administrative information, such as the monitoring of
network resources.

RTP was adopted by Netscape in 1996 for use in their "Netscape LiveMedia”
audio/video streaming application. This led to further development in conjunction
with Columbia University and RealNetworks to produce RTSP [46]. RTSP, the Real-
Time Streaming Protocol, works in conjunction with RTP and RTCP to provide a
simple means of accessing remote multimedia services. In many cases, RTSP is used
in conjunction with HT'TP to allow clients simple Web access to stored multimedia
streams.

The RTP suite provides a great deal of useful functionality to multimedia appli-

cations, but relies on them to take appropriate action on receiving congestion notifi-
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cation. Furthermore, it does not explicitly provide any QoS facilities but depends on
lower network services, such as RSVP [9], to allocate resources. It is therefore most
suited to ATM or QoS-enabled IP environments where bandwidth and resource al-
locations can be controlled. However, both RealNetworks and Netscape have shown

that it can be used effectively in a best-effort Internetwork.

Table 2.1: Summary of Protocol Traffic Support
Protocol Bulk Transfer Bursty Traffic Multimedia Traffic Interactive Multimedia Traffic
TCP Reno - -
TCP Vegas
Dual/Tri-S
Packet Pair
RTP

[
H XA XN

Table 2.1 shows the transport protocols covered in this chapter, and the traffic
types to which they are suited. Those based on traditional TCP (Reno, Vegas and
Dual/Tri-S) are most suited to bulk transfer (FTP, SMTP, NNTP, etc.). Packet
Pair potentially provides greater support for bursty traffic (HTTP, Telnet) due to its
repeated estimation of the current network state using packet pair probes. However,
only RTP provides true support for (Interactive) Multimedia traffic. Features such
as stream synchronisation are of great importance, particularly for joint viewing or
interactive sessions.

In TCP’s lifetime, many propositions have been made to subtly alter the be-
haviour of certain algorithms. In particular, slow start has been the focus of much
attention. A wariant of TCP is a protocol which is able to provide transport layer
functionality, while exhibiting significantly different behaviour to standard TCP.
Variants of TCP often include experimental, or alternative, startup methods and
congestion avoidance algorithms. Section 2.2.2 will discuss variants of standard
TCP. Conversely, a TCP modification is an alteration to standard TCP algorithms
in order to improve performance under certain network conditions. TCP modifica-

tions are discussed in section 2.2.3.
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2.2.2 TCP Variants

While earlier TCP implementations used packet loss or timeout as their only indica-
tion of network congestion, a great deal of work has been done to examine alternative
methods of detecting resource availability. Given that TCP is an acknowledgement
based protocol, the Round Trip Time (RTT) measurement taken whenever an ACK
is received, has proven most useful when determining the state of the intervening
network [3] [38]. Increases in RTT, or drops in throughput over a given time period,
can indicate an increase in network cross traffic. This leads to increases in router
queue length on a given path, thus affecting a connection’s end-to-end latency.

Slow Start and Search, Tri-S [52], was proposed by Zheng Wang and Jon Crowcroft
and uses variations in RTT to detect possible network congestion. A normalised
throughput gradient is calculated, which represents the projected throughput for a
connection with a given congestion window size. Should the gradient fall below a
pre-defined threshold, the transmission rate is decreased. However, if an increase in
throughput is not making a significant impact on the perceived network load, then
the window is increased at TCP’s standard, linear, 1/cwnd rate.

In practice, Tri-S’s congestion avoidance exhibits similar behaviour to other
proactive systems. Its algorithms aim to reduce delay, and therefore minimise router
queues. The implication of this is that router buffers suffer less congestion, therefore
drop fewer packets. This property of a proactive system is a side effect of sensing
congestion by variation in RTT, but is dependent on threshold settings within the
protocol.

One potential hazard of using pre-defined thresholds is that a given value may
not be applicable to a wide variety of bandwidths or RTT’s. For example, threshold
values which yield the desired effect on a 10Mb/s LAN are unlikely to function in the
same manner on a high latency satellite connection. This is due to greatly increased
latency, which affects the behaviour of ACK-based protocols such as TCP.

A similar solution to Tri-S, the DUAL algorithm, was proposed by the same re-
search group in [53]. DUAL uses traditional TCP timeouts to detect heavy network

congestion, in which case it reduces the slow start threshold to 50% of its current
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value, and the congestion window to a single segment. Under normal congestion
avoidance, it compares each RTT measurement and, if necessary, will make adjust-
ments to its transmission rate every other round trip. If the RTT is sensed to be
increasing, the current transmission rate is reduced. The reason for adjusting the
transmission window every other round trip is to prevent rapid fluctuation in the
rate of transmission, and to allow a more smooth estimation of network congestion
to be made due to an increased number of data samples.

This mechanism is achieved by maintaining RT7,,;, and RTT,,,, variables,
which are initialised to a very large integer (out of the possible range for this
application) and zero respectively. When a new RTT measurement is obtained
these variables are updated accordingly to store the minimum and maximum RTT’s
experienced on the current connection. If the new RTT value is greater than
(RTT,in + RTT,,4,)/2, then the current window is adjusted to 7/8 of its current
value. During the course of Wang and Crowcroft’s experimentation and simulation,
7/8 of the current window size was shown to give "the best” compromise between
performance and fairness to other data streams. We discuss the compromise between
performance and fairness in section 5.2.3, chapter 5.

The aim of the DUAL algorithm is to reduce oscillation of TCP’s window size
after slow start. This phase is where TCP Reno relies on packet loss or timeout
to detect network congestion. Upon doing so, the window size is either reduced by
50%, or to a single segment, depending on the event. By detecting increases in RTT,
DUAL is able to reduce its transmission rate before such losses occur. This avoids
unnecessary timeouts or packet loss, hence reducing the amount of oscillation and
variance in the transmission window.

TCP Vegas [11] is one variant in which the authors claim specific, quantitative
performance improvements over TCP Reno. A 40% improvement in throughput
coupled with one fifth to one half the number of packet drops is cited in [11]. TCP
Vegas’s congestion avoidance algorithms compare the actual measured throughput
with an expected value. The expected throughput value is obtained using the cur-

rent measured RTT and congestion window size. Comparing this with the measured
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throughput for the following RTT will give an indication of the current state of net-
work congestion. This technique is also used in TCP Vegas’s modified slow start
algorithm, which only increases the congestion window every other round trip. This
allows throughput measurements to be taken and compared with the expected value
for that size window. Should congestion be experienced during slow start, TCP Ve-
gas can move into the congestion avoidance phase before packet loss occurs. It is
noted by the authors that packet loss during slow start is common among TCP
Reno implementations. Should congestion be encountered during the startup phase,
the aggressive nature of this algorithm loses around 50% of the current transmis-
sion window’s packets. Short, bursty, data transfers, such as Web page component
downloads, will often spend 100% of their time in TCP’s slow start algorithm. If
TCP is tranferring 1.5kilobytes in each packet, a single Web page component of less
than 10kilobytes will be completed in around six packet transmissions. For TCP,
this is only three round trips. A more cautious slow start algorithm can greatly
reduce the number of packets lost and retransmitted during the lifetime of a short
TCP connection.

Vegas measures the actual throughput for a connection as the number of bytes
transmitted in a given measured RTT. In a similar manner to DUAL, it also main-
tains a record of the minimum RTT (BaseRTT) experienced on the current connec-
tion. The expected throughput can then be calculated using WindowSize divided by
BaseRT'T. In congestion avoidance, the difference between the expected and actual
throughput is taken, and compared with two threshold values, o and [ where o < 3.

If the difference lies between o and [, no action is taken. If the difference is below
«, then linear increase takes place. If it is above (., then linear decrease is enforced.
In [11], several experiments were performed with different values for both « and g
and showed differing levels of throughput, timeouts and packet retransmission. The
effect of increasing the difference between o and  was to make the protocol less
sensitive to variation in network congestion. In order for a change to be made to
TCP’s transmission rate, it has to fall outside either bound. If a protocol becomes

insensitive to the current network state, then it is unlikely to take advantage of free
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bandwidth, or to reduce its transmission rate when congestion increases. Brakmo
et. al have published simulation results which demonstrate this technique in [11].

In her work with Explicit Congestion Notification (ECN) [18], and Random Early
Detection (RED) [19], Floyd conducted experiments which highlighted the benefits
of alternative congestion avoidance algorithms. In [18], TCP Reno was modified to
respond to ECN signals and is simulated on networks with routers employing RED
algorithms. RED employs a similar technique to that of Jain’s DECbit [42], in which
router queue sizes are monitored and a congestion bit set should they exceed a given
limit. When marked packets are received at the source, TCP can then act on this
congestion feedback with multiplicative decrease in its transmission (congestion)
window.

The benefits of RED and ECN are comparable with that of pro-active congestion
avoidance algorithms. Action is taken by the transport layer prior to packet loss on a
per-connection basis. The result is a decrease in unnecessary packet drops and timely
reaction to the current network state. Such benefits are quantified in our experiments
with STTP in chapter 4. Our simulation results show that a transport protocol
with pro-active congestion avoidance is able to avoid packet loss, and achieve packet
goodput comparable with traditional TCP, while transmitting significantly fewer

packets.

2.2.3 TCP Modifications

In contrast to variant protocols such as TCP Vegas and alternative congestion avoid-
ance algorithms such as DUAL, Tri-S etc., there have been many attempts to im-
prove TCP’s performance with minor modifications. The most significant of these
were fast retransmit and recovery, described in RFC 2001 [48] and obsoleted by the
proposed standards in RFC 2581 [4]. In a note sent to the end2end mailing list by
Jacobson [22], he details modifications to TCP’s congestion avoidance algorithm.
These modifications form the basis for TCP’s fast retransmit and recovery mech-
anisms. RFC 2581 clarifies and consolidates many proposed changes to TCP. It

re-specifies the initial window size of a connection to be two TCP segments instead
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of one. This modification will double the initial data transfer between two hosts,
thus aiding the exchange of short bursts of data such as Web page components. The
restart behaviour of an idle TCP connection is also re-defined in RFC 2581, as hav-
ing to perform a slow start from the standard initial window size of two segments.
The generation of ACK packets is also specified as adhering to the specification laid
out in RFC 1122 [8]. A TCP receiver should generate acknowledgements for at least
every other full size TCP segment that it receives. Furthermore, ACK’s should be
delayed by at most 500ms.

While such modifications can significantly improve the performance of existing
TCP implementations, the 1999 standards still adhere to traditional slow start and
duplicate acknowledgement/packet loss congestion indicators. RFC 2581 does refer
to experimental slow start mechanisms, such as those outlined in RFC 2414 [37].
Despite work in this area having been published, precise details were not included
in RFC 2581. Furthermore, the work done on TCP Vegas and other proactive con-
gestion avoidance algorithms does not seem to have influenced current specifications
for Internet transport layers.

Work conducted by Allman, Hayes and Ostermann [2] examines the feasibility of
the above slow start modifications. An increase in TCP’s initial window size to four
segments was shown to yield an 80% increase in throughput for short connections
using HT'TP-like traffic, compared with standard TCP Reno. However, a side effect
of this more aggressive algorithm is a slight increase in the packet drop rate, of 0.1
segments per transfer. When used in conjunction with the new recommendations
for ACK generation, detailed in [4], a 150% increase in throughput and one segment
per transfer in packets dropped was noted.

Further study in this area was conducted in [39], where further experiments were
carried out using the NS simulator [5]. Their conclusion was that an increased win-
dow size at TCP startup helped improve perceived TCP performance. In particular,
short data transfers will complete more quickly, due to a larger initial window size.
The matter of packet loss over low bandwidth connections was studied more closely

by Shepard and Partridge in [47]. In their experiments, also with the NS simula-
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tor, they discovered that an increased TCP window size of four segments was not
detrimental to the individual connection. Their results showed that a four-segment
initial window size showed up to 30% performance improvement over the standard
single-segment value. These results are discussed in RFC 2414 [37], in addition to
discussing further related work. At this time, however, TCP implementors are re-
luctant to impose a four segment slow start on the Internet. The reason for this
is that further study needs to be made of the potential impact to very large scale
network performance. The body of this thesis is focussed on the design of a new
transport protocol, and not on the modification of existing TCP algorithms. The
reason for this decision is discussed in chapter 3.

An alternative method of connection startup is addressed by Keshav in [26]. In
this work, the Packet-Pair Probe is proposed as a way of estimating the bottleneck
bandwidth of a given connection. Its premise is that the delay introduced when
packets are forwarded over the bottleneck link will be preserved and can be used
to discover the lowest link speed on a given network path. By transmitting packets
back-to-back, i.e. with no inter-packet delay, their spacing at the remote host can
be analysed to give a good indication of the current path state. This method will be
more closely analysed in chapter 3, where it is incorporated as part of our protocol
design.

Further research has been done in this area by several groups. The Packet-Pair
Probe was used by Hoe in [20] to estimate a connection’s bottleneck bandwidth.
The probed value was then used to calculate the bandwidth-delay product, the
byte equivalent of which is taken to initialise the connection’s slow start threshold
(ssthresh). Performance improvements were seen when employing the probed value
over standard, default TCP settings. In particular packet loss for short connections,
such as HTTP requests, was reduced. This reduction in packet loss also improved
overall performance by eliminating unnecessary timeouts during the startup period.

In [38], Paxson discusses the Packet-Pair in great detail, and attempts to re-
solve many of its shortcomings through use of Packet-Pair bunches and receiver-side

bottleneck estimation. By using a number of packets in succession, as opposed to
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only two, the likelihood of packet loss is greatly reduced. Furthermore, a more ac-
curate estimation of the bottleneck link can be taken using multiple probe values.
In [38], Paxson considers the possibility of multiple channels and routes for a TCP
connection and concluded that by using ”Packet Bunch Modes” (multiple probe
packets) and receiver-side calculations, the issue of multiple routes, load-balanced
connections, and bottleneck changes can be resolved.

Further work in this area was conducted by Allman and Paxson in [3], where
Packet Bunch Mode algorithms were run on large network trace data sets of over
11,000 connections. They concluded that using Packet Bunch Modes, in conjunction
with receiver-side bottleneck estimation, provides distinct benefits to over 25% of
connections in their experiments.

A similar approach was used by Ahlgren et al [1] where chains of one hundred
packets were transmitted between hosts in Uppsala (Sweden), Massachusetts (USA)
and Cambridge (England). Their results correspond with those of Carter and Crov-
ella [12] and show stable estimations with trains of ten to fifteen packets. Due to the
increased number of data samples, the accuracy of the bottleneck bandwidth estima-
tion is increased over standard packet-pair probing (which uses only two packets).

Finally, the Packet-Pair technique is applied to dynamic server selection by
Carter and Crovella [12]. WWW document data is duplicated across a given net-
work and when a request is made, the least congested server/connection is selected
for delivery. This selection is made using a lightweight Packet-Pair probe, bprobe,
which sends at most 1% of the requested document size in probe packets. This limit
is imposed in order to minimise the congestion impact of packet probing in relation
to real network data. Their experiments prove the functionality of this method, and

highlight the benefits of dynamic HTTP server selection.

2.3 High Speed Networks

The range of physical and network layer technologies upon which a connection

may run, has expanded greatly over recent years. This has prompted work in a
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number of areas, but particularly the use of alternative congestion avoidance al-
gorithms. The need for these has been highlighted by technologies such as ATM
(http://www.atmforum.org) and Satellite connectivity. When using such technolo-
gies, it is important to consider their unique properties. In ATM, for example, it
is possible that congestion avoidance algorithms and buffer allocations may con-
flict with the efforts of the transport layer TCP [13]. Furthermore, a wide variety
of network layers, means that TCP has to operate with varying degrees of packet
fragmentation.

ATM operates on fixed length 53 byte cells (48 bytes of data, 5 bytes of header),
which has been noted to cause problems for standard TCP implementations [6]. In
particular, the loss of a single ATM cell will incur the retransmission of an entire
TCP segment, when running TCP over IP over ATM. Due to the fragmentation
of IP incurred when running over ATM, a single IP packet may consist of tens of
ATM cells. Similarly, a TCP segment may consist of several IP packets. Should a
single ATM cell be lost, then an IP packet will become corrupt. This corruption also
reaches the TCP layer, where an entire TCP segment will not match its checksum
upon receipt at the remote host. The receiver will then be unable to acknowledge
receipt of the data and it will have to be retransmitted.

Further problems arise with ATM when congestion occurs and cells are dropped.
Should an individual cell be dropped, the implication for IP packets or TCP segments
is much greater. With part of its data having been lost, the remainder of the
packet in flight is essentially useless. Therefore, a great deal of work has been
carried out to address the issue of packet drop policies in ATM services. Among
those most commonly implemented in ATM hardware are Early and Partial Packet
Discard (EPD/PPD), as recommended in [43]. In PPD, an ATM switch will drop
the remained of a packet should any of its constituent cells be lost. Conversely, EPD
suggests that entire packets should be dropped before congestion reaches a critical
level. In their experiments, it was shown that EPD gave higher overall performance
due to its bandwidth saving techniques.

However, it remains for the higher level transport protocol to recover from any
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cell loss at the ATM layer. A further problem arises due to many ATM connections
being given a guaranteed QoS connection. This implies that a customer may be
paying a premium fee for their network facilities. Therefore, it is important to
maximise usage of the available bandwidth.

With QoS in operation, a given connection may have pre-determined, allocated
bandwidth and guaranteed jitter/delay bounds. Therefore, any packet loss should
certainly be transient in nature and fall within the specification of the customer’s
service level agreement. Having a TCP, therefore, which performs a lengthy timeout
and slow start under such circumstances, is not desirable. Provided the cell loss was
caused by transient network congestion and not hardware or network management
issues, the TCP connection should resume transmission at the optimum rate as soon
as possible.

Mechanisms such as Fast Retransmit and Recovery will certainly help TCP in
the above situation, as they minimise the number of timeouts and help TCP to
sustain the optimum transmission rate. However, should timeout occur, further
adjustments may be required in order to maintain the flow of data. In our work with
TCP congestion control modifications, [49], this issue is addressed with modifications
to TCP’s congestion avoidance algorithms. A given TCP connection maintains an
average congestion window value, which is used should it timeout and have to restart.
TCP is then able to restore its connection at the rate prior to any packet loss without
having to go through slow start. Should congestion persist, the TCP modification
monitors the number of ACK’s received after connection timeout and will drop back

to standard slow start if none are received within a given period.

2.4 Summary

In this chapter, we have surveyed work related to the evolution of TCP and alter-
native transport layer protocols. Our research showed that a large percentage of
transport protocol development was taking place in producing alternatives to TCP,

"TCP Variants”. Work published by Brakmo et. al [11] introduced TCP Vegas
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and pro-active congestion avoidance algorithms to the transport layer. The results
presented in the aforementioned paper show that pro-active algorithms are capa-
ble of significantly reducing the packet loss that a data stream will experience on
congested networks.

Work conducted by Keshav [26] into packet-pair probing, allows a protocol to
calculate the current network bottleneck capacity on a given path. This value can
then be used to initiate transfer between two network hosts, at a rate which is
conducive to current network traffic.

At the application layer, increased deployment and utilisation of bursty, Web-
based applications, has produced a requirement for application-focused Quality of
Service (QoS) [9]. A side effect of deploying QoS is that a given data stream may have
end-to-end bandwidth reservation and delay guarantees from intervening network
switches and routers. At the very least, it will be assigned a queueing priority.

This leads us to a coherent research programme that investigates the potential
for QoS support at the transport layer. Furthermore, we aim to provide a transport
layer protocol which exhibits lower packet loss than current TCP implementations,
while maintaining packet goodput !. Section 3.2 in chapter 3 discusses the rationale
behind and benefits of this research.

Chapter 3 describes our prototype transport protocol and the environment for
our simulation testing. The results of our simulations along with traffic and topology

specifications are subsequently presented in chapter 4.

Packet goodput is the rate of successfully received packets at a remote host. This is opposed to

throughput, which is simply the rate of packet transmission from a TCP sender.
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STTP: Rationale and Design

In chapter 2 we outline a programme of research which addresses deficiencies in
current transport protocol (TCP) implementations. The aim of our research is
to improve performance while providing support for network Quality of Service. In
order to address the bursty nature of Web (HTTP) and multimedia data streams, the
experiments carried out in chapter 4 use real traffic traces as input to transmitting
sources.

This chapter discusses the design and implementation of our experimental pro-
tocol, STTP. The design work detailed here addressed contribution C2, as outlined
in chapter 1. Our work with simulated and prototype network protocols will be
described (section 3.1) in addition to giving details of the simulation packages used
(section 3.3). The rationale for our research is explained in section 3.2. We then
outline the framework and implementation details of STTP (section 3.5) and pro-
vide selected key performance results. Additional experiments, graphs and data can
be found in the appendices. The information presented here has been published in
[49], [51] and [50], which will provide the reader with further background detail of

our work.
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3.1 TCP Modifications

Initial work for key objective areas K1 and K2 was focused on the improvement of
TCP Reno, the most common implementation of TCP at the time of writing. This
work is outlined by contribution C1 in chapter 1. High bandwidth and Quality of
Service-aware networks can present the user with a reliable, sustainable allocation
of bandwidth. The physical layer for such connections is invariably fibre optic cable
for the majority of land-based communication, or satellite/microwave channel for
mobile or air-based networks. In both types of network, packet loss is bursty and
not generally sustained due to prolonged congestion.

Standard TCP Reno will throttle its transmission rate and perform a slow start
when packet loss occurs or multiple duplicate acknowledgement packets are received.
In a high bandwidth environment, this can be damaging to the communication
stream between two hosts due to the time it will take TCP to resume transmission
at the rate prior to packet loss.

Therefore, in [49], we proposed modifications to TCP Reno congestion avoidance
algorithms which addressed these issues. A feature was implemented to maintain
a history-weighted average of the sender’s congestion window size. When the con-
gestion window was updated, the average value would be re-calculated with, for
example, (0.1 x new_window_size + 0.9 x current_average_window wvalue). The ef-
fect of this weighting was to reduce rapid fluctuation in the average window size
when bandwidth became suddenly available or reduced.

The average window value was then used as the restart value when TCP Reno
encountered packet loss. The protocol was then able to resume transmission at the
average window rate it had achieved in the history of its current conversation. In
order to prevent further packet loss in case of sustained congestion, the algorithm
was engineered to fall back to traditional congestion avoidance techniques should
packets not be acknowledged after a restart had taken place.

These modifications were simulated in the REAL simulation package (see subsec-

tion 3.3.1). Results showed a performance increase of up to 46% in highly congested
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conditions, using lengthy, sustained, transfers of FTP data. Tabular and graphed
and simulation data is available in [49]. In this report, we propose extensions to
TCP congestion control which, on a congested network result in significantly better
use of available bandwidth by eliminating the requirement for a slow start with each
TCP restart.

Mechanisms are implemented which enable the sending TCP to restart its data
flow at a suitable level for the current connection. A fallback mode is provided
to prevent the source from overloading intervening routers should congestion be
sufficiently high.

Rigorous testing of the new algorithms was undertaken using the REAL network
simulator and various benchmark scenarios. In addition to the benchmark scenarios,
further models were developed in order to simulate real-world situations.

Over the suite of tests, our modifications showed on average a 20-30% speed
increase over REAL’s standard TCP-RENO protocol (which is based on BSD’s
TCP-RENQO) with some sources showing up to a 100% improvement. In the worst-
case scenarios, the modified TCP functioned at least as well as TCP-RENO.

3.2 Rationale for Research

In recent years, a great deal of work has been conducted, aimed at addressing the
issues posed by the transport of multimedia data with an increasingly complex pro-
tocol stack. Prior applications incorporating bulk data transfer often involved a
simple connection setup followed by lengthy (whole seconds or minutes) of TCP
over IP communication. The World Wide Web for example, is an object-oriented
environment, in which the user is normally required to download several compo-
nents in order to view a single page item (HTTP object). With the current HTTP
specification, this results in several short downloads, each requiring a separate TCP
connection. On a high-bandwidth connection, the download time for each compo-
nent may be below one second including setup and tear down.

In [49], we examined the most common existing TCP implementation, TCP



Chapter 3 31 STTP: Rationale and Design

Reno, and discussed ways in which it could be improved to accommodate high
speed and networks with support for Quality of Service. However, the framework
itself, with exponential slow start and lossy, reactive congestion avoidance, could
not be improved without substantial redesign.

Therefore, our studies led to further practical examination of this area. We
believe that there exist a number of improvements which can be made to the general
profile of a transport layer connection. Namely, the startup phase and the protocol’s
reaction to network congestion. This work is outlined in area K3 of our thesis
objectives in chapter 1.

Our work in both flow control and network bandwidth probing [50] [51] showed
us that more suitable mechanisms were available for bursty, multimedia traffic. The
token bucket model allows bounded burstiness, but with a mean transmission rate
being enforced over a given time period. Data may be transmitted from an STTP
source provided that there is credit in the token bucket. If not, transmission will
commence when sufficient credit has been accumulated. Credit is added to the
bucket in regular ”drips” from a timed source.

Provided such a model can be initialised with values which will not overload a
network path, or hinder data transmission, it would appear to be well suited for
flow control in high speed networks with bursty traffic profiles. Furthermore, the
relatively simple parameters of the token bucket model mean that the rate at which
transmission occurs can be adjusted in real time to take into account variation in
network congestion. The bucket’s burst size is an integer value, representing the
number of tokens it is capable of holding, and the mean flow rate is a timer value
for the introduction of new packets to the holding area.

In order to initialise the bucket with appropriate values, we draw on Keshav’s
work with packet-pair bandwidth probing [26]. This allows us to initialise the token
bucket parameter with suitable values in roughly a single round trip time.

Once established, a modified pro-active congestion avoidance algorithm is used
to adjust the flow rate and burst size of the token bucket. Using measured packet

round trip times, we can sense variation in queuing delay and make proportional
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adjustment to a connection’s flow parameters.

The result is a flexible transport protocol which is capable of quickly and in-
telligently measuring the available bandwidth on a network path. It can instantly
proceed to transmit bursty data which is bounded by the current network capacity.
However, over a given period, it will exhibit fairness with a mean flow comparable
with that of competing connections. We demonstrate this functionality in chapter 4,
section 4.2.2, where STTP, TCP Reno and TCP Vegas are simulated in the REAL

network simulator.

3.3 Network Simulators

In order to experiment with alternative algorithms under a wide variety of scenarios,
we elected to use network simulation software. Our requirements for such software
were relatively demanding since we needed full control over and access to the simu-
lator core. Therefore, our options were limited to the freely available packages from
other research groups or networking projects.

Network simulation software was chosen for its ability to construct a wide range
of topologies with a variable number of communicating hosts and routers. Network
hosts can then be configured to transmit a range of traffic types, from FTP, HT'TP,
Telnet through to mathematically distributed data profiles, such as the poisson and
exponential models. Similarly, most current simulators will allow the user to provide
their own traffic traces which can then be used by a network host to provide input
for its data transmission.

The ability to construct such networks is of great value when examining or
designing network protocols. If only a single LAN topology were available, then
the user could not be certain of the protocol’s performance on wide area or low
bandwidth networks, or under high congestion.

A network simulator such as NS [5] or REAL [25] can provide these facilities,
but is only as reliable as its internal models and program code accuracy. It is also

difficult for designers to model the random traffic patterns and true burstiness of an
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Internet. Published protocol work at this time relies mainly on mathematical and
simulation models. Not everyone chooses to progress through to the implementation
and prototyping phase. The results from our simulation work with STTP, shown in

chapter 4, demonstrate how effective and consistent network simulation has become.

3.3.1 REAL

When work began on this thesis in 1996, there were few packages stable and de-
veloped enough to enable rigorous testing with reliable protocol suites. At this
time, the REAL simulator version 4.5 [25] was widely used, well documented, and
had been the foundation for significant published work [26], [27], [28], [30], [31],
[29]. REAL is based on the NEST 2.5 (ftp://ftp.cs.columbia.edu/nest/) simulation
testbed and was used as the basis of the NS simulator created by Floyd and others
at the University of Berkeley [5].

The simulator itself is written entirely in C, but the user describes network
topologies using a simple description and scripting language. This is a simple, yet
efficient approach which has been employed by many simulation packages in the
past. Version 4.5 of REAL was used by many research groups for simulation exper-
iments. However, Version 5.0 released in 1997, introduced several new features and
offered significant speed improvements. The majority of our work was conducted
using version 4.5 of the software and while it was relatively simple to port develop-
ment code between releases, we continued to do so after 5.0 was available. Despite
5.0 offering more features, extensive use of the new code showed 4.5 to be both
more stable and less prone to erratic behaviour. Our results from version 4.5 were
confirmed by further experimentation in NS.

STTP was implemented in C as part of the REAL core simulator. Once compiled,
we were able to experiment with it alongside TCP Reno using user-side scripted

scenarios.
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3.3.2 NS

In contrast with NS, REAL does not allow further functionality to be included in
its user-side scripts. These are used simply to describe the network topology and
events which will take place during the course of the simulation.

NS began as a variant of the REAL simulator in 1989, but did not see significant
development effort until the late 1990’s. Version 2.0 was released on September
10th 1997. The current release at the time of writing (1999), 2.1b5, was used for our
simulation experiments. NS development is progressing, and further releases should
now be available to the reader.

NS is an event-driven simulator, which consists of C+4 core methods, which
interface with an object-oriented Tcl (oTcl) shell. This powerful framework allows
the user to implement both network topologies and additional functionality through
methods and procedures in oTcl scripts. For example, in order to monitor the
behaviour of specific variables within a protocol, the user has only to present these
via the oTcl interface in the protocol’s core C++ code. An oTcl simulation script
is then able to read and manipulate these variables during runtime.

The implication of this is that experimental prototypes can easily be created (us-
ing oTcl rather than a full C++ implementation), by calling on features or methods
already implemented in the simulator core. However in order to create or modify
fully functional network protocols, it is better to build them in C++. The reason
for this is that while an oTcl prototype may be quick, it is not as integrated nor can
it offer the same level of functionality as a full implementation.

Variables and methods are made available to user-side scripts through the oTcl
interface, which consists of C++ function calls from the oTcl libraries. It is therefore
possible to allow or deny user access to protocol data as required. While this does
facilitate program debugging and monitoring, the interface is relatively complex
and not as intuitive as that of REAL, for example. Due to the inclusion of oTcl,
both on the user-side and as function calls in the C++ code, the learning curve
for NS is quite steep. Once overcome, however, it provides a powerful and flexible

simulation environment. The NS simulation model of STTP is implemented entirely
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in C++, but presents many variables to the oTcl interface. This permitted us to

trace important variables such as the Congestion Window size during the simulation.

3.3.3 Simulator Validation

Both REAL and NS are provided with a large collection of validation and bench-
marking user scripts. NS, in particular, performs self validation as part of the build
process.

A detailed set of scripts are provided, which test application, transport, routing
and link-layer protocols. The simulator is run using known input values and the
output compared with known, valid results. The validated set of protocols extends
to all common Internet standards, with a smaller set of non-validated, yet working
code. As new builds of NS and its protocols are produced, the package is validated
by its maintainers on a variety of platforms. The user is notified should NS fail
to validate any of its protocols during the build process. This process was used
to validate the functionality of TCP Reno and TCP Vegas for the purposes of our
simulation experiments.

Keshav modelled and described REAL in great detail, in [25]. For many years,
REAL was one of the premier network simulators in the academic community, only
now superceded by NS (which is derived from REAL).

Both simulators have been used extensively by other research groups and have
formed the basis for a great deal of published work. The REAL simulator was de-
signed and validated as part of Keshav’s thesis [27]. NS is currently being used by
many PhD research students and networking groups. Full documentation and exam-
ple program code for NS can be found at http://www.isi.edu/nsnam/ns/. Published

background information on NS can be found in [5].

3.4 Framework/Algorithms

STTP itself is a reliable transport layer, intended for use on IP networks in place of

TCP. The algorithms, however, are portable and could be used over any data-link
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layer.

The acronym, STTP, stands for Shaped Token Transport Protocol. This is taken
from the design of its core algorithms, which are centered around the use of token
and leaky buckets, used to shape the flow of data from a transmitting network
host. By initialising these buckets with appropriate values and maintaining them
in accordance with the current network state, we are able to provide a shaped flow
of data. It is anticipated that this flow will be more conducive to the support of
Quality of Service (QoS) network applications.

We therefore have three main areas of concern, detailed below in paragraphs
3a-3c:

3a An STTP connection is initialised with a dual-packet probe from the
transmitting host to the receiver. This will inform the host of an incoming connection
and allow it to prepare input buffers and start application server functions. The
probe consists of two packets, transmitted back-to-back, which are used to measure
the bottleneck bandwidth on a given network path. This is described in detail in
subsection 3.4.1.

Provided that the Maximum Transfer Unit (MTU) of the path is known, we are
now able to calculate the speed at which new packets can be put onto the link in
order to fill the available bottleneck. The result of this calculation is used to trigger
the release of tokens into a token bucket. The functionality of this flow control
mechanism is described in subsection 3.4.2.

3b The token bucket mechanism is used as a flexible replacement for TCP’s
Congestion Window. This addresses key area K3 of our objectives. We are able
to modify the flow of tokens into the bucket in real time as we receive network
congestion information back from acknowledged packets. In order to achieve this,
we use a pro-active mechanism as described in subsection 3.4.3.

Our algorithms monitor the round trip time (RTT) of transmitted data, and
respond to increases or decreases in network latency. STTP is an acknowledged
protocol, which means that each packet received at a remote host will generate a

small acknowledgement packets. This is returned to the transmitting host as proof



Chapter 3 37 STTP: Rationale and Design

of receipt. These packets are generated and returned immediately by the remote
host.

If a connection’s RTT falls outside a bounded window when compared with pre-
vious measurements, then the token bucket’s timer is modified accordingly. For
example, if the RTT should increase, then this can be interpreted as congestion on
this connection’s network path. We can therefore decrease the rapidity of the token
bucket timer in proportion to this change. The result is reduced packet transmis-
sion in line with the congestion currently being experienced. Similarly, if the RTT
decreases, we can increase the rate of packet transmission.

3c In the case of packet loss, or multiple duplicate acknowledgement packets,
STTP adopts the same approach as TCP Vegas, by reducing its transmission rate
by 10%. This addresses item K3 of our objectives. However, as can be seen in our
experimental results, STTP drops far fewer packets than either TCP Reno or Vegas
[51].

3.4.1 Packet-Pair Bandwidth Probing

While TCP Reno’s standard slow start algorithm could have been used, past research
has shown it to be lossy and poorly suited to multimedia applications [16]. Packet-
pair probing techniques have been examined in work by Keshav [26] and others over
recent years. While there are some reservations as to its use in certain network
configurations, our work has shown it to be reliable in almost all common cases with
both traditional and current traffic profiles. It has been reported that packet-pair
reliability is reduced when using certain types of router queueing algorithm and
network link asymmetry [26]. Keshav describes a scenario where traditional First
Come First Server (FCFS) router algorithms present problems to packet-pair net-
work probes. If a single source were to send a large burst of data to an FCF'S router,
then according to the scheduling algorithm, it would receive a higher priority of ser-
vice than competing flows. This is due to the transmitting source sending a large
number of packets in quick succession, which will be queued and processed in order

by the router. In [26] Keshav recommends that Weighted Fair Queueing (WFQ) is
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more appropriate for use with packet-pair network probe techniques. This algorithm
avoids the problems associated with FCFS by preventing a high-bandwidth source
from monopolising a router’s processing capacity. Keshav reports that packet-pair
algorithms can be adversely affected by heavy traffic at a FCFS router due to the
inconsistency in service rate, which is caused by high-bandwidth data flows from
competing sources. He argues that WFQ provides packet-pair with a more realistic
view of the network state due to each flow being assigned a priority within a router’s
service model. Each flow will therefore receive its fair share of routing resource.

Allman and Paxson examine packet-pair in [3], where the issue of asymmetric
network connections is discussed. Additional modelling and theory behind packet-
pair probing is presented in detail in [26], [27] and in our own work, [50], [51].

Simply put, one can transmit two packets back-to-back along a given network
path. Given that we know the packet size, the amount by which they are separated
by queueing delay at the receiver allows us to calculate the current bottleneck link
capacity.

The formula used to calculate the bottleneck bandwidth on a given connection

is:
bottleneckcapacity(bits/second) = PacketSize(bits)/Interarrival Gap(seconds)

The procedure for initialising an STTP connection is therefore quite simple. Two
packets are transmitted back-to-back, i.e. queued and transmitted as close together
as the network adapter driver will allow. When received by the remote host, they
are simply echoed back to the receiver without delay. When the packets arrive back
at the sender, the gap between their arrival is measured and used in the above
calculation.

This method is termed sender-side bandwidth probing by Allman in [3]. When
using asymmetric connections, or multiple bonded channels, it would be advisable
to use receiver-side measurement. An added advantage of this, as discussed by
Allman in his work and Keshav in [26], is that the probability of error is halved

when using only the inward or outbound path. For the purposes of our simulations,
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we have used only sender-side bandwidth probing. The reason for this is that our
simulation topologies do not incorporate asymmetric links, and while the benefits
of receiver-side measurement will certainly yield better results in real networks, our
implementation of the packet-pair probe proved to be reliable and accurate.

The bottleneck measurement can then be used to calculate an appropriate burst
and feed value for a connection’s token bucket. During our experimentation, we

used a variety of methods which will be discussed later in this section.

3.4.2 Token Bucket Flow Control

Once a network connection’s bandwidth has been discovered, a token bucket can be
initialised with an appropriate flow of tokens and initial burst size. For our work,
the standard o — p model has been used, where o is the capacity of the bucket (a
connection’s maximum burst size) and p is rate at which tokens are permitted to
enter. At any time, an application is only able to send data if there are tokens
in the bucket. In our simulations, we used fixed packet sizes and therefore made
each token in the bucket equal to a single packet of network data. In a kernel
implementation, however, it may be advisable to use an integer value for the bucket
and allow variable-size packets to be transmitted. This would accommodate small
client requests to a remote server. In order to scale the token bucket in accordance
with the current network state, both the flow rate and burst size must be altered in
real time.

During our simulation experiments, we used two distinctly different approaches
to token bucket management. The first, and initial implementation, did not rely on
traditional timers to trigger the release of tokens. Instead, we used a mechanism by
which the acknowledgements received at the sender were added to a leaky bucket.
The leaky bucket was then responsible for feeding tokens to the token bucket at the
current bottleneck rate. Our leaky bucket implementation incremented its current
value with each new ACK packet received. With the advent of a timer event,
the leaky bucket is decremented and the token bucket incremented to indicate the

transfer of a token.
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The problem with this approach is that it requires the token bucket to be ini-
tialised with an appropriate number of tokens. These are needed to kick start the
STTP connection by providing a number of tokens to the newly opened connection.
When in operation, the number of tokens in operation can be increased or decreased
according to the current state of network congestion. A further variable for tuning is
the flow rate of the leaky bucket component as this is responsible for the smoothing
of token flow.

The advantage with this mechanism is that tokens will only be fed into the
token bucket if packets are being successfully received and ACKs generated. Should
there be a sudden influx of network congestion and ACK packets do not arrive at
the transmitting host, then STTP will not blindly inject packets into an already
congested network.

The second approach used was that of a traditional token bucket, which injected
a token into the bucket with each timer event. The timer was initialised to the rate
required to fill the probed bottleneck connection. For example, a 64kbps bottleneck
connection would yield a timer that generates 64000/packetSize(bits) events each
second. Each time an event occurs, credit for one packet transmission is added to
the token bucket.

The latter was found to be the more elegant and appropriate solution. However,
the difference in overall performance between the two in our simulations, was found
to be negligible. Due to the random nature of real network traffic, we believe that
a kernel implementation, and testing on a physical network would provide more
detailed data. The second approach was a more accurate implementation of our

STTP design, and so was used for the experiments in chapter 4.

3.4.3 Congestion Avoidance

Research has shown that pro-active congestion avoidance is both fair and less prone
to packet loss than traditional TCP Reno algorithms. Early work by Wang and
Crowcroft [52], demonstrated the benefits of this approach. However, the most

significant work in this area was conducted by Brakmo et. al in their implementation
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of TCP Vegas [11]. Their results showed significant performance improvements over
TCP Reno when considering overall throughput and packet loss.

TCP Vegas made approximations as to the anticipated throughput that would
be achieved in a given time period (one Round Trip Time). If the actual throughput
in this period was lower than expected, then the protocol took this as an indication
of network congestion. It therefore reduced its transmission rate accordingly. Con-
versely, if actual throughput was higher than expected, then the transmission rate
is increased.

This approach to congestion avoidance also lends itself to token bucket flow
control. Rather than modelling the expected and real throughput values, we chose
to monitor the first order statistic of connection Round Trip Time (RTT).

When an STTP packet arrives at the receiver, an ACK packet is generated and
returned to the sender. A single RTT is the time it takes for the data to arrive at
its destination plus the time for the relevant ACK to reach the sender.

A clear indication of network congestion, or outage, is an increase in RTT. This
is due to additional packets being queued at routers along a given connection’s path.
Should router queues overflow, then packets will have to be dropped as they cannot
be accommodated in router memory. In contrast, TCP Reno does not sense network
congestion, and continues to send at its present rate until data is lost. It then reacts
by reducing its transmission rate.

In order to prevent rapid fluctuation in a connection’s transmission rate, we
provide bounds to STTP’s RTT monitor. For experimental purposes, we chose 5%,
as this mechanism is also used by TCP Vegas. Therefore, if STTP sees a connection’s
RTT change by greater than 5% compared with the last monitored value, it will
reduce both o and p by an amount proportional to the change in RTT. Experiments
were conducted with values between 1% and 20%. However, with small values, the
protocol became too sensitive to variation in RTT, and vice versa with large values
(greater than 10%). We found 5% to give the best combination of sensitivity and
stability for our experiments. The following function, called each time a new ACK

is received, describes the modification of token bucket depth (o) and flow rate (p).
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lastRTT is initialised to 0.0
newRTT is set to the current measured RTT
IF (1lastRTT > 0.0)
IF (newRTT > lastRTTx1.05)
decrease depth and flow of bucket
ELSE IF (newRTT < lastRTT*0.95)
increase depth and flow of bucket

1lastRTT := newRTT

This reaction to RTT variation means that the flow of data from a STTP source
is scaled in proportion to the available bandwidth on a given connection. We will
discuss the relative advantages and disadvantages of this approach in chapter 5.
However, further to our work in [49], which introduced the notion of smoothed
window calculations, this technique is used in the real time manipulation of STTP

data flow, as this technique is outlined in section 3.1 of this chapter.

3.4.4 History Weighted Bucket Manipulation

In [49], we developed a mechanism by which a smoothed, average value for TCP’s
congestion window could be maintained. The specifics of this technique were dis-
cussed in chapter 3, section 3.2. Our simulation experiments showed that this tech-
nique was required in order to prevent rapid fluctuation of window size in congested
networks. By maintaining a history-weighted congestion window value, the effect of
bursty network congestion can be minimised, as TCP can attempt to restart at its
mean rate rather than with a single segment slow start upon packet loss or timeout.

Our experiments with STTP in both REAL and NS, showed that this approach
to transmission rate management was also applicable to token bucket flow control.
Should the RTT of a connection change by +£5%, then a recalculation is required. In
a similar vein to our TCP modifications, if high-bandwidth, bursty, cross traffic is
being experienced, then it may be short-lived, as most HT'TP or multimedia transfers

are. Therefore when calculations are performed, the current token bucket values are
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given a higher value, or weight, than those newly which have been measured. The
method we have used is to adopt two variables, @ and 3, where a4+ = 1.0. «a is used
for the history weighting, and [ for the newly measured value. Initial experiments
used a simple increase or decrease calculation which was proportional to the change

in measured RTT.

F =14 1astRTT/newRTT o =0F p=pF

A history weighted calculation includes terms where o and 3 are used to modify

the relative importance of these measurements.

F=a+p o=0cF p=pF

The effect of using this technique is to reduce fluctuation in token bucket values.
We found that high-bandwidth cross traffic caused a sudden increase in the measured
RTT of STTP connections. This resulted in a rapid reduction in a given connection’s
transmission rate. Conversely, when competing sources on a network completed
transmission, the measured RTT would suddenly reduce. STTP would sense this
and increase its traffic flow accordingly. Particularly in cases where on-off or bursty
traffic sources were in use, this is undesirable behaviour.

Rapidly fluctuating transmission rates are not network-friendly, nor desirable
from a user perspective with regard to application QoS. STTP therefore smooths
its transmission rate adjustments using the above technique. The details of our
work with this technique are published in [51], but summary results are included in

chapter 4, section 4.2.2.

3.5 Protocol Implementation

While the TCP modifications described in section 3.1 [49] were implemented in the
REAL simulation package, the later stages of our research were performed using NS.
Due to the large amount of development currently taking place for NS, we found

that its support of up-to-date network protocols and technologies was far superior
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to that of other simulation packages. In order to test STTP with a broad range of
traffic types, network configurations and TCP implementations, NS was an obvious
choice.

A simulation prototype of STTP was implemented in the NS network simulator.
The purpose of this was to implement our protocol model in a familiar simulation
environment. We were then able to test its functionality and show that further work
would be valuable given initial performance results. The work done in [51] used NS
as the algorithms and experience gained in REAL were ported to the new simulation
package.

In both cases, standard TCP Reno was used as the basis of our implementation.
By adopting the basic algorithms for packet processing, transmission and retrans-
mission, we were able to more faithfully test our adjustments and improvements.

TCP has three basic sections to its program code: Packet transmission, packet
receipt and timeout processing. Packet transmission ensures that packets are sent
in sequence order and at a rate which is in line with the bounds described by a
connection’s congestion window variable. Packet receipt processes incoming ACK’s,
and is responsible for detecting out-of-order or duplicate packets. When an in-order
ACK is received, the appropriate adjustment to a connection’s congestion window
size is made. This function will, however, note duplicate ACK’s to a point where
fast retransmit is triggered, or a connection is restarted. When transmitted, TCP
segments have a timeout value assigned. Should this expire before the appropriate
ACK is received, telling of successful delivery, then it is retransmitted and normally
accompanied by a slow start due to supposed network congestion.

In order to facilitate our implementation, the retransmission and timeout code
from TCP Reno was incorporated into the STTP framework. This provided an even
basis for comparison when considering retransmitted or lost data. If any improve-
ments were apparent, it was therefore due to our flow control, congestion avoidance

or startup algorithms.
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3.6 Summary

In this chapter we have addressed the design aspect of K3, as detailed in chapter 1.
We have also covered the material related to C1 (section 3.2) and C2 (throughout
this chapter). The simulation of STTP (K3 and K4, resulting in C3), is presented
in chapter 4. The results of this experimentation is discussed in chapter 5 (K4 and

C4).
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STTP: Testing and Results

In this chapter, we present results from network simulations using NS and REAL,
with an implementation of our protocol model, as described in chapter 3. This work
is outlined as thesis contribution C3 in chapter 1. We will proceed with detailed
discussion of the graphical and tabular results presented here, in chapter 5.

This chapter comprises the functional and subsequent performance testing of our
experimental protocol, STTP. Two simulation packages are used, REAL and NS,
which provide a wide range of comparative protocols and application traffic types.

STTP’s algorithms were implemented and built as part of both simulation pack-
ages. This allowed experimentation alongside other common variants of TCP, Reno
and Vegas. The current de facto standard for TCP/IP networked systems is TCP
Reno. However, a great deal of work has been conducted into the research, develop-
ment and study of alternative congestion avoidance algorithms such as TCP Vegas.
The resulting techniques are becoming increasingly common in a large number of
Operating Systems such as Linux (http://www.linux.org).

The REAL simulator does not have an implementation of TCP Vegas as part
of its standard distribution. We therefore performed functional testing of STTP
against TCP Reno with bulk data flows. Further work with NS allowed more detailed
performance testing with TCP Reno, TCP Vegas and STTP, using different traffic
types. Tables 4.2 and 4.1 show a summary of the features of both NS and REAL in

terms of protocol and traffic type support. More detailed information can be found
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from the project development homepages (http://www.cs.cornell.edu/skeshav/real/

for REAL, and http://www-mash.cs.berkeley.edu/ns/ for NS).

Table 4.1: Summary of REAL and NS Simulator Traffic Types

Simulator | TCP Tahoe | TCP Reno | TCP Vegas | Packet Pair
REAL X X - X
NS X X X -
Simulator | FTP | Telnet | Statistical | User Traces
REAL X X X MPEG only
NS X X X X

Table 4.2: Summary of REAL and NS Simulator Protocol Support

Both simulation packages allow the user to obtain statistical information regard-
ing the number of packets transmitted and dropped by each traffic source. Given
these values, it is possible to calculate the goodput for a given connection. The
term goodput is used to describe the rate at which packets have been successfully
received at their destination. With a guaranteed delivery mechanism such as TCP,
the higher the goodput, the more efficient the transport layer. A transport protocol
which is reactive to network congestion and conservative with packet transmission,
is likely to have a higher level of goodput than one which is aggressive and eager to
capture available bandwidth. This is shown in experiment 4.2.2, where a range of
values are simulated in NS with our STTP model.

The majority of our more advanced simulation scenarios were implemented in
the NS simulation package, due to the flexibility that it offers in terms of user
traffic types and scripting functionality. Our work focused on the implementation
and improvement of congestion avoidance algorithms at the transport layer, and in
order to rigorously test our models, custom scripts were developed during the course
of our simulations. In particular, we had the need to run batches of simulations
with varying degrees of network congestion. This was achieved by running the

same simulation with an increasing number of transmitting and receiving nodes,

which were automatically added to the simulation script files between runs. Each
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simulation would produce an output file, which could later be parsed with a simple

Perl script, and input to Gnuplot for presentation.

4.1 Testing STTP Network Behaviour

In this section, simulation experiments are conducted with the REAL simulation
package. The aim of this work is to validate the protocol model and to compare
initial performance with that of existing TCP implementations using simple data

transfer.

Experiment # Demonstrates

1 (section 4.1.1) | The functionality of STTP’s congestion avoidance
algorithms and flow control

2 (section 4.2.1) | The performance of STTP with bulk

data transfers

3 (section 4.2.2) | The fairness of STTP in comparison

with TCP Reno and TCP Vegas

4 (section 4.2.3) | STTP and TCP performance with Variable
Bit-Rate video sources

5 (section 4.2.4) | STTP and TCP performance with bursty
HTTP traffic sources

6 (section 4.2.5) | The performance of STTP, TCP Reno and
TCP Vegas in a mixed protocol environment

Table 4.3: Experiment Information

4.1.1 Experiment 1, Functional Testing using REAL

Figure 4.1 depicts a network topology with several sources (transmitting nodes) and
a single sink (destination node). The traffic traverses two routers with all links being
64kb/s capacity.

In order to examine STTP’s bandwidth probe and congestion avoidance algo-
rithms, six STTP sources were started at regular intervals (T=0,10,20..50). The
implication being that subsequent sources would be probing into a busy connec-

tion and so have to compete with other sources for available bandwidth. Similarly,
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Figure 4.1: Experiment 1

existing traffic would have to relinquish bandwidth in order to accommodate new
sources. Furthermore, each end node has a dedicated 64kb/s connection but which
is of the same capacity as the network’s shared segments. This implies that any
bandwidth probe will be required to probe bottleneck segments in the main network

and will always encounter links which have a greater capacity.

node | transmits(pkts) [sd] drops(pkts) [sd] RTT(ms) [sd]
Reno STTP Reno STTP | Reno STTP

1 34.56 [19.52] | 37.89 [17.55] | 24.89 [38.17] | 0 1.89 [3.00] | 3.71 [1.9]
2 |39.00 [15.99] | 37.56 [17.08] | 14.11 [23.05] | 0 2.13 [3.43] | 3.71 [L.9]
3 98.33 [20.27] | 13.13 [2.48] | 3.89 [8.54] |0 2.67 [2.81] | 2.66 [1.19]
4 93.89 [15.52] | 12.77 [2.95] | 11.44 [17.15] | 0 4.09 [4.95)] | 3.12 [1.95]
5 21.67 [16.31] | 13.07 [2.97] | 5.22 [11.11] |0 3.61 [4.73] | 3.11 [2.49]
6 12.56 [17.30] | 13.22 [1.63] | 1.44 [3.74] | 0 1.05 [2.23] | 1.75 [1.65]

Table 4.4: TCP and STTP Performance Summary

Table 4.4 shows raw transmission, drop, retransmission and RTT data for both
STTP and TCP Reno run on the same network topology and simulation model. In
all columns, [sd] indicates the standard deviation encountered across data samples.
While TCP transmits a similar number of packets to STTP, the actual goodput of
STTP is significantly higher due to there being no dropped or retransmitted pack-
ets. Particularly sources 3, 4 and 5 in Appendix table 4.4 exhibit greatly improved

performance, even when an error margin of +5% is taken into account on our sim-
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ulation results. It is important to note that the values given in these tables are the
average over the duration of an experiment as the complete results are too verbose to
include in these pages. The methodology for each of our experiments was to dump
all available data to a single file. It was then possible to write Perl or Shell scripts,
which would extract the information required for the tables and graph presented
here. This proved itself to be a sound methodology, as we did not have to re-run
simulations to obtain further information, and all inter-related data was present in
a single file. While STTP shows few or no packet drops and retransmissions, TCP
has a higher transmission rate. This means that while TCP may transmit more
packets, this over-subscription by several sources incurs packet loss and results in a
lower overall throughput (goodput) after dropped data is taken into account.

STTP’s improvement is due to accurate bandwidth discovery algorithms and
proactive congestion avoidance. Our experiments show that STTP is able to initiate
transfer at a speed which is appropriate to the current state of network congestion.
Furthermore, the results of every experiment show that STTP exhibits lower packet
loss than TCP Reno on the same simulation topology. As the RTT of a source
increases, STTP will back off its transmission rate so as to avoid buffer congestion
at the routers. These results are supported by work done by the NRG at Arizona,
when developing the TCP Vegas proactive congestion avoidance algorithms [11],
[10].

Figure 4.2 highlights a key feature of STTP. While the summary tables show
average, per-flow statistics, we are able to see how each stream performs over the
duration of the simulation. Each graph in figure 4.2 follows the same format. With
sources starting incrementally, each bar represents the performance of a TCP or
STTP connection for a given time period. The x axis is segmented into intervals
for the experiment at which data was written to the output file. We can therefore
see how each source performs as the simulation progresses and how new connections
affect existing traffic.

It is interesting to note in table 4.4 that TCP has (in general) a much higher

standard deviation than STTP in its transmission rate. This is highlighted in figure
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Figure 4.2: Experiment 1: STTP and TCP Packet Transmissions

4.2, where we can see large fluctuations in TCP’s transmission rate, even when in
steady-state congestion avoidance. STTP, on the other hand, exhibits much smaller
variations in its flows and may therefore be considered a smoother traffic source.
Considering data in table 4.4, the result of this smoother traffic profile means
that STTP has fewer packet drops and could be said to be more router-friendly. By
reacting before packets are dropped, STTP does not try to send more packets than
a link is capable of holding. Conversely, if it detects a decrease in RT'T, STTP will

increase its packet transmission rate and take advantage of spare bandwidth.

4.2 Performance Testing STTP

Subsequent experiments were performed using the NS simulation package. We chose
to move our work to this package due to its expanded functionality and support for
modern network protocols. TCP Vegas is included as part of NS’s transport protocol
library, in addition to rich support for user-defined data streams and trace files. In
this section, we test STTP with a variety of different traffic types, including variable

bit-rate and HTTP request traffic traces.
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4.2.1 Experiment 2, Bulk Data Transfer using NS

The network topology used for the performance testing of STTP can be seen in
figure 4.3. Here, we have 1..n transmitting nodes and 1..n receiving nodes. In each
case, node t1 transmits to node rl, node t2 to node r2 etc. Similar topologies
are recommended by Keshav in his benchmark suite for the REAL [25] simulator,
as they permit the rigorous testing of simulated protocols through a combination
of congestion paths and dedicated connections. The topologies in themselves are
scalable to support many hundreds or thousands of sending and transmitting nodes,
and combine the ability to implement bottleneck links and cross traffic in order to
test a protocol’s congestion avoidance algorithms.

By varying the number of sources and the link bandwidths, we were able to create
a wide variety of scenarios under which to test both STTP and TCP Reno. Our
comparisons focus on TCP Reno and TCP Vegas, as a large amount of modeling and
simulation conducted in the past, provides a clear understanding of their positive

and negative attributes.

Figure 4.3: Performance Simulation Topology

Experiment 2, the raw data for which is depicted in table 1 uses the same net-
work topology as in previous simulations and bulk transfer, FTP sources. It does,
however, cover a large number of sources which is varied from 10 to 200 and for
this reason, the backbone link is upgraded from 0.5Mb/s to 2Mb/s. Similarly, to
accommodate the additional traffic, the port buffers were increased from 64kB to
128kB. These modifications were required to prevent massive packet loss with a
higher number of sources.

Simulations were run with between 10 and 200 sources, incremented by 10 sources
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with each iteration. Each scenario was run with TCP Reno, TCP Vegas and STTP.
The data depicted in table 1 show how many bytes were transmitted, how many
were dropped and the mean, high, and low for bytes transmitted. Simulations were
run for 900 seconds.

Figures 4.4, 4.5 and 4.6 show the information from table 1 in a graphical format.
In each case, the number of packets is plotted on the Y-axis, and the number of
traffic sources on the X-axis. Each graph contains the information obtained from
the entire suite of experiments, run from 10 to 200 sources for each protocol.

From these graphs, it is clear that while TCP Reno and TCP Vegas have very
similar profiles, STTP transmits only 2.25e+08 (10 transmitting sources) to 2.3e+08
(200 transmitting sources) packets (figure 4.4). Compared with the exponential
curve, rising to around 2.7e+408, shown by both TCP Reno and Vegas, this shows
that STTP is reacting to network congestion and restricting its transmission rate.
Figure 4.5 shows that STTP also has much lower packet loss, with between 0 (10
transmitting sources) and 5e+06 (200 transmitting sources) packets dropped, and

as a result, has goodput which is comparable to, if not better than, both of the
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standard TCP implementations (figure 4.6).

While the number of packets dropped (figure 4.5) is proportional to the number
transmitted (figure 4.4), the goodput of each protocol (figure 4.6) is very similar
above 20 sources. STTP, however, shows less variation than the TCP implementa-
tions.

In summary, the results from this experiment show that while the overall goodput
between TCP Reno, TCP Vegas and STTP is similar, STTP achieves this standard
of data transport with far lower packet transmission rates. This is a very positive
attribute, and will aid the user-perceived quality of service by avoiding packet re-
transmission and by minimising the end-to-end delay through smaller packet queues

at routers.

4.2.2 FExperiment 3, Protocol Fairness of STTP

Traditional Internet transport protocols based on TCP Reno sense congestion through
lost packets or excessive delay in the network. They then respond using multiplica-
tive decrease in the congestion window. Normally, this results in a 50% reduction
in the transmission rate in order to allow other competing streams to obtain their
"fair share” of bandwidth. While this approach eventually attains the goal of fair-
ness among streams, it is a lossy and often aggressive method, as shown in our
experiments.

As the number of streams are incremented, lost packets in TCP Reno connections
increase at an exponential rate as data is lost in order to accommodate new streams.
As described in sections 2 and 3, STTP uses a simplified version of TCP Vegas’s
congestion avoidance algorithms. By monitoring increases and decreases in packets’
Round Trip Time (RTT), it can sense pending congestion and so adjust its packet
flow accordingly. This is done by proportional modification of the token bucket size
and current token values. The result is much lower packet loss as can be seen in the
above experiments.

However, the disadvantage of STTP’s congestion avoidance mechanism is that it

does not respond to new flows as quickly as that of TCP Reno. New TCP sources
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begin transmission with an exponential increase known as Slow Start. Existing
TCP connections will continue to send at their current speed until difficulties are
encountered and a reduction (50%) is made. New sources are then able to ”grab”
a larger share of bandwidth. STTP, on the other hand, does not experience such
packet loss by aiming to avoid congested queues.

We will now assess the relative fairness of STTP compared with that of TCP
Reno. Table 4.5 shows the results of further simulations conducted on the topology
shown in figure 4.3. This time, simulations were run for 2000 seconds and all links
were 128kh/s.

In order to highlight the effects of our history-based congestion avoidance al-
gorithm, we have included simulations run on three different implementations of
STTP. These are shown in figure 4.5 with "STTP «:5”. When recalculating the
bucket size and number of tokens in operation, « is the weight assigned to STTP’s
existing values. [ is the weight assigned to the result of new calculations. For
example, if a 15% decrease in RTT is detected, the following calculation is used:
bucketValue = ((a * bucketValue) + (5 * (1.15 * bucketValue))). The sum of a
and [ is 1.0 at all times.

By shifting more emphasis to 3 the protocol becomes more oriented towards the
existing network state and will react more quickly to current events. However, by
weighting the formula towards a, we obtain a more stable data flow which is not so
quickly affected by new connections.

Table 4.5 shows results from a number of simulations using various weightings
and it is evident that 5:5 or 1:9 ratios provide much better performance and fairness
than more history-biased values. The fairness index laid out by Jain in [23], assigns a
value between 0 and 1 with Fairness = fa(z) = [X, x]?/ X, 22, 2; > 0. Using
this formula to process the results in table 4.5, we can see that for all experiments
with more than a single source, TCP Reno yields an index of 0.99, as does STTP
5:5. STTP 1:9 gives 0.99 (2 sources) and 0.98 (4 sources), and STTP 9:1, 0.84 and
0.75 respectively. In this case, an index of 1.0 is totally fair and 0.0, totally unfair.

Traditional max-min fairness [14] states that given a set of limited network re-
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‘ Protocol ‘ Source # ‘ #packets transmitted ‘ #packets dropped

1 Source
TCP Reno 1 31980 0
STTP 9:1 1 31980 0
STTP 5:5 1 31980 0
STTP 1:9 1 31985 0
2 Sources
TCP Reno 1 16093 0
2 15924 0
STTP 9:1 1 22899 0
2 9108 0
STTP 5:5 1 16084 0
2 15918 0
STTP 1:9 1 16081 0
2 15919 0
4 Sources
TCP Reno 1 7773 77
2 8156 73
3 8244 67
4 8124 70
STTP 9:1 1 13790 0
2 5464 0
3 6079 0
4 6699 2
STTP 5:5 1 8181 0
2 7146 0
3 7943 0
4 8754 0
STTP 1:9 1 7118 0
2 6949 0
3 9440 0
4 8517 0

Table 4.5: STTP Fairness
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sources, bandwidth should be shared as equally as possible between competing con-
nections. At the same time, maximal usage of the available resources should be
maintained.

Given the parameters of this simulation, the maximum number of 1000 byte
packets which can be transmitted is 32,000. Table 4.5 shows that in single source
simulations, both STTP and TCP Reno use around 99% of this capacity by success-
fully transmitting 31980 packets. In subsequent simulations, the link’s resources are
shared between a number of greedy F'TP sources running over the relevant transport
protocol. In some cases, the total number of packets transmitted exceeds 32,000,
this is due to queueing which has taken place prior to sources being stopped at
t=2000.

While neither TCP Reno, nor STTP conform precisely to max-min fairness,
the results in table 4.5 show that through more aggressive, lossy flows, TCP Reno
achieves more balanced flows. This is due to connections relinquishing large portions
(50%) of bandwidth when data is lost and therefore allowing competing connections
to expand their transmission rate. STTP exhibits significantly lower packet loss and
so only balances its flows through variations in RTT.

From the above experiment, we have shown that given a number of streams,
STTP will fully utilise the available bandwidth. Using a 9:1 ratio, it is not as quick
to react to new traffic as TCP Reno, however, it does so fairly and with far fewer
packet losses. The implication of this is that fewer segments of data would have to
be retransmitted, and therefore give an improved perception of service quality to

the user.

4.2.3 Experiment 4, Variable Bit-Rate Applications using
NS

Our third set of experiments were conducted using the same build and STTP im-
plementation as in previous sections. The network topology used was that depicted

in figure 4.3, and used in Experiment 2.
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A protocol’s performance for constant bit-rate, greedy sources, such as FTP or
SMTP transfers, is potentially different to that when dealing with variable bit-rate
or interactive data streams. With a window-based flow control mechanism, it is
possible for there to be delays in transmission of time-critical data (with the Nagle
algorithms, for example [35]). STTP was designed with interactive and bursty data
in mind, so facilitated by the use of token-bucket flow control, it is anticipated that
its performance in data delivery and packet loss will be an improvement over existing
TCP-like protocols.

In order to test STTP’s performance with variable bit-rate applications, sim-
ulations were run in NS using the aforementioned network topology. A suite of
simulations were run with between 10 and 100 traffic sources, each iteration increas-
ing the number of sources by 10. Each traffic source took input in the form of
a trace file, obtained from http://www.research.att.com/ breslau/vint/trace.html.
This variable bit-rate stream is an NS trace of the Star Wars movie, and each stream
is initialised at a random point within the trace file. Each iteration of the simulation
is scheduled to run for 900 seconds, with sources being added at 2 second intervals.
The resulting traffic statistics are shown in table 2 and figures 4.7, 4.8 and 4.9.

In our simulations with variable bit-rate traffic, STTP exhibits similar character-
istics to those in previous, bulk transfer experiments. Both the number of packets
transmitted and dropped is significantly lower than either TCP Reno or TCP Vegas.
However, the goodput obtained is comparable, if not exceeding, that of TCP-based
protocols (figure 4.9).

In all experiments, the measurements for transmitted and dropped packets were
taken from core NS network monitors, not from within the protocol implementation
itself. This gives an independent monitor of each protocol’s performance without
the possibility of distortion by a particular implementation’s internal counters or
algorithms.

In order to monitor each flow of data, a NS Flow Monitor was attached to the
backbone, bottleneck connection (see figure 4.3), through which all traffic passes.

For each traffic source, the Flow Monitor records transmitted and dropped packets.
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Placing this monitor on the ingress ports to the bottleneck connection allows us to
record the network activity of interest in these experiments. We were able to record
the number of packets transmitted and dropped by individual protocol streams, and

therefore construct the tables and graphs presented in this thesis.

4.2.4 Experiment 5, HIT'TP Applications using NS

This set of simulation experiments with STTP in the NS simulator was conducted
using a tracefile of real HT'TP traffic from the University of Leeds Virtual Sci-
ence Park servers. These HTTP servers offer an interactive Web interface to a
relational database. For further information, visit the project’s Web pages at
http://www.vsp.co.uk.

In order to gather data, a machine was connected via a hub to the live VSP HTTP
server. This allowed us to capture all TCP socket port 80 requests arriving at the
server using 'tcpdump’ for a three day mid-week period. Once captured, we filtered

the trace file to give only incoming requests. A script was then written to capture
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only the packet interarrival gap and request size. This data was then encoded in NS
tracefile format and used as input for the traffic sources in this experiment. For the
purposes of this experiment, only the packet size and their inter-arrival gaps were
required. The data was therefore anonymous.

The bursty nature of interactive HT'TP traffic is typical of present Internet ap-
plications, and allows us to test both congestion avoidance mechanisms in addition
to the behaviour of STTP’s token-bucket flow control.

The network topology and simulation configuration are identical to that in Ex-
periment 4, with suites of simulations being run with between 10 and 100 sources, for
a duration of 900 seconds. Each traffic source begins its transmission at a random
point within the HT'TP trace file.

Figure 4.10 shows the number of packets transmitted for each protocol; Figure
4.11 shows the number of packets lost due to network congestion; and Figure 4.12

shows the difference in terms of data goodput.
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4.2.5 Experiment 6, Mixed Simulation of TCP Reno, TCP
Vegas and STTP

In this simulation we compare the performance of TCP Reno, TCP Vegas and
STTP running simultaneously on a given network with variable-rate data sources
for transportation.

Experiment 6 was conducted using the topology depicted in figure 4.3, as used
for other experiments in this chapter. The simulation was run with between 3 and
99 transmitting / receiving network nodes. The bottleneck link between routers
on the network was set at 100Mb/s with 1ms latency. Local connections to both
transmitting and receiving nodes were configured at 10Mb/s with 1ms latency.

Transmitting nodes were equally divided between TCP Reno, TCP Vegas and
STTP (33 nodes running each protocol) and configured sequentially. The simulation
script started each node in turn, two seconds apart, thus giving a roughly balanced
profile of transmitting sources. The entire simulation ran for 900 seconds before
terminating. All sources were therefore active 200 seconds into the experiment. The
traffic source used for each transmitting node was the live HT'TP trace file, obtained
from the University of Leeds Virtual Science Park Web servers. This traffic type
would give a bursty profile, and would test the startup and congestion avoidance
algorithms of each protocol.

This experiments link speeds and latencies were selected to approximate the
bandwidth available to LAN users with campus area connectivity, and is designed to
test high speed medium-area network performance. In particular, this test allows us
to observe the performance of TCP Reno, TCP Vegas and STTP in states of normal
flow, and congestion. With fewer than 10 sources transmitting at full line speed, it is
not possible to fill the bottleneck network segment. Each transmitting and receiving
node is connected to the bottleneck link with a 10Mb/s link. Therefore, congestion
can only occur when simulating more than 10 nodes. Furthermore, when congestion
does occur, it will not be as heavy as in previous experiments, due to the increase

bottleneck link capacity. This is designed to test the interaction between congestion
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avoidance algorithms as opposed to simply the way in which each protocol will react
to extreme congestion scenarios.

The goodput results for TCP Reno, TCP Vegas and STTP in this simulation
scenario are presented in figure 4.13. Initial performance figures for TCP Reno
and Vegas with between 3 and 12 sources are very similar. It is only when TCP
Reno’s congestion avoidance algorithms are competing with delay-sensitive ones in
TCP Vegas and STTP, that TCP Reno begins to obtain significantly higher packet
goodput.

Both TCP Vegas and STTP will proactively reduce their transmission rate if
network congestion is sensed. TCP Reno, on the other hand, will only reduce its
transmission rate if packets are lost, or incur excessive delay. Therefore, TCP Reno
will continue to increase its transmission rate at the expense of both TCP Vegas
and STTP. As can be seen from figure 4.13, TCP Vegas and STTP follow a similar
trend in their packet goodput as the number of sources increases. Throughout the
experiment, packet loss is very low, at less and 1%, which gives goodput which is

roughly equal to the number of packets transmitted by a given source.
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This simulation shows us that proactive congestion avoidance mechanisms are
unlikely to obtain a fair share of the available bandwidth on a given link when
working alongside TCP Reno, or other legacy IP transport protocols such as TCP
Tahoe.

In order to counteract the aggressive nature of TCP Reno’s congestion avoidance
algorithms, the parameters, as discussed in section 4.2.2, could be adjusted. How-
ever, this leaves the proactive protocol in a situation similar to that of TCP Reno, in
which it will behave in an aggressive manner towards delay-sensitive algorithms. We
therefore consider that future work in the area of intelligent congestion avoidance
algorithms would be most beneficial to this thread of research. This topic is further

outlined in section 6.3.

4.3 Analysis

Throughout our simulation experiments, STTP has been consistent in its perfor-
mance. In addition to highlighting key features of the experimental protocol, this
consistency and conformance with our algorithmic specification also aids the vali-
dation of the simulation packages themselves. This chapter has seen the simulation
testing of STTP in comparison with TCP Reno and Vegas with a variety of traffic
types. This fulfills objective K4 of our thesis objectives from chapter 1.
Experiment 1 in section 4.1.1 showed that in basic functionality testing, STTP
exhibited zero packet loss and smoother packet transmission, compared with TCP
Reno, which incurred significant packet loss with even a single data-flow. Table 4.4
shows how STTP’s pro-active congestion avoidance was able to decrease variation in
its transmission rate (RTT column). Here, we can see that the standard deviation
(sd) for STTP sources is up to 50% of that for TCP Reno in the same scenario.
Ezperiment 2 showed that STTP transmits up to 20% fewer packets (figure 4.4
and exhibits up to 10% less packet loss (figure 4.5) than TCP Reno and TCP Vegas
in bulk data transfer simulations. Figure 4.6, however, shows that the goodput

for STTP in this experiment is within 1% of TCP Reno and TCP Vegas. This
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experiment demonstrates that STTP is more efficient than TCP Reno or TCP Vegas,
as it is able to achieve a comparable rate of goodput but with the transmitting node
having to retransmit significantly fewer packets.

FExperiment 3 demonstrated that given a number of competing data streams,
STTP will fully utilise the available bandwidth on a network path. We ran individual
simulations with STTP, TCP Reno and TCP Vegas streams, which competed for
bandwidth on a bottleneck link. While no protocols entirely conformed to traditional
max-min fairness, we calculated that the fairness index for TCP Reno and STTP
was 0.99. An index value of 1.0 is totally fair, and 0.0 totally unfair.

Experiment 4 presented data from simulations with STTP, TCP Reno and TCP
Vegas, using variable bit-rate traffic sources. In this simulation, STTP again trans-
mitted up to 20% fewer packets, with up to 10% fewer packets being dropped in the
network. The goodput graph (figure 4.9 for this simulation showed that all protocols
achieved the same (within 1%) level of goodput. From this information, we concur
that STTP is able to maintain its performance with variable bit-rate traffic sources
as seen with bulk data in experiment 2.

Experiment 5 used HT'TP trace files to run individual simulations with TCP
Reno, TCP Vegas and STTP. The results show that all protocols achieve the same
levels of goodput (again within 1%), but this time with comparable levels of packet
transmission and loss.

Experiment 6 ran combined simulations with TCP Reno, TCP Vegas and STTP
being used simultaneously on the same network topology. We discovered that both
TCP Vegas and STTP were adversely affected by TCP Reno’s aggressive congestion
avoidance algorithms. This experiment showed (figure 4.13) that proactive conges-
tion avoidance algorithms need specific tuning in order to compete with legacy,
aggressive protocols.

When compared with TCP Reno and Vegas variants, we noted several major
improvements in performance. These benefits are related to key area K3, 3a, 3b and

3c, as described in chapter 1.

e Goodput comparable to that of TCP variants
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e Significantly lower packet loss
e Lower number of transmitted packets

e Lower RTT and deviation measurements

4.4 Summary

The goodput of a connection, i.e. the number of transmitted packets which suc-
cessfully arrive at their destination, is an accepted metric for the performance eval-
uation of a transport protocol. In the section on Fairness (section 4.5), we showed
how STTP’s parameters can be modified in order to make it more or less aggressive
when reacting to network congestion. While an aggressive protocol may initialise
its connections at a higher rate and be able to take advantage of newly available
bandwidth on a given path, it is also more susceptible to packet loss. In compari-
son with our standard STTP model, used in our main experiments, TCP Reno and
Vegas can be considered to be aggressive transport protocols.

In further experiments with varied traffic types, TCP Reno and Vegas were
shown to achieve a similar overall level of packet goodput to STTP, while having
increased packet transmissions and loss. In a real world implementation, this would
yield greater CPU utilisation by the receiving hosts, as they would have to contend
with re-ordering incoming packets as lost data was retransmitted. The transmitting
host would incur additional overhead through increased packet transmissions.

Chapter 5 will go on to discuss our simulation results in greater detail.



Chapter 5

Discussion and Evaluation

In this chapter, we will discuss the results from our simulation experiments in chap-
ter 3. Each suite of experiments from functionality and performance testing are
considered in turn with focus being placed on metrics such as packet loss, overall

packet goodput, and fairness.

Experiment # Demonstrates

1 (section 4.1.1) | The functionality of STTP’s congestion avoidance
algorithms and flow control

2 (section 4.2.1) | The performance of STTP with bulk

data transfers

3 (section 4.2.2) | The fairness of STTP in comparison

with TCP Reno and TCP Vegas

4 (section 4.2.3) | STTP and TCP performance with Variable
Bit-Rate video sources

5 (section 4.2.4) | STTP and TCP performance with bursty
HTTP traffic sources

6 (section 4.2.5) | The performance of STTP, TCP Reno and
TCP Vegas in a mixed protocol environment

Table 5.1: Experiment Information

Table 5.1 shows the experiments conducted in chapter 3. Our experiments were
centered around two main types of network traffic. Firstly, traditional Internet ap-
plications, such as F'TP, generally transfer large quantities of data in a single bulk

transfer. A separate FTP transfer is initiated for each file requested and generally
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lasts for seconds rather than minutes. Secondly, modern applications, such as the
World Wide Web (WWW), can use HTTP to transfer WWW page components
from an Internet server to the viewing client. A given page may consist of many in-
dividual, small, components. User interaction during a WWW session will therefore
impact the network with bursty transfer of many page components. Furthermore,
the arrival of broadband access means that Internet users are likely to view an in-
creasing amount of multimedia content. In particular, movie and informational data
(news broadcasts, for example) form an increasing percentage of Internet traffic.

Our simulation experiments therefore use three traffic models. In order to ad-
dress traditional Internet traffic requirements, a bulk data transfer model (FTP) was
used. This model simulates a greedy traffic source, one which always has data to
transmit. Data will be transmitted as quickly as possible, and will not end until
explicitly instructed to do so by the simulator. This traffic model was used in ex-
periments 1,2 and 3. A HTTP tracefile was used in experiments 5 and 6 in order to
accurately represent HT'TP transfers over the Internet. The contents of this trace-
file were obtained using the method described in section 4.2.4 of chapter 3. An
MPEG tracefile was used to simulate extended multimedia streams being carried
by a reliable transport mechanism. The source of this tracefile is given in section
4.2.3. Experiment 4 examines the performance of TCP Reno, TCP Vegas and STTP
transporting bursty, variable bit-rate data.

In order to address K4 and C3 (as detailed in chapter 1), the above simulations
were carried out using bulk data and bursty traffic models. In this manner, we
were able to demonstrate the effectiveness of STTP in comparison with current
implementations of TCP.

In section 5.1, we discuss the results of our experiments (C4), which is sum-
marised in subsection 5.2.5. Section 5.2 presents lessons learned during the course

of our work, and general observations on protocol development.
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5.1 Discussion of Simulation Results

In sustained FTP transfers, simulations of STTP showed that overall link utilisation
was at least as good as that of TCP. In most cases, STTP made better use of the
available resources due to its fast startup model, and packet-pair probing. The
only cases in which the prototype model of STTP was not successful in obtaining
a fair share of network bandwidth was when competing with aggressive congestion
avoidance algorithms, used in TCP Reno, or in cases of extreme congestion. The
latter case posed a problem for STTP because network probe packets would be lost,
and the prototype model was not programmed to re-attempt connection setup. The
ability to discover available bandwidth and commence transmission at a suitable
rate meant that in a given simulation period, STTP could transmit several more
packets than TCP by this method alone.

Further advantages to STTP’s transmission profile were gained by its proactive
congestion avoidance algorithms. Whereas TCP Reno relies on aggressive transmis-
sion and packet loss to discover congestion, STTP was able to reduce its rate before
such losses occurred. This resulted in significantly lower packet loss ratios for all the
experiments conducted in the course of our research. In section 5.2, we discuss how
it is possible to modify STTP’s parameters to give an aggressive, lossy protocol,
similar to TCP Reno.

Due to STTP’s default congestion avoidance parameters being weighted towards
minimising queue lengths, the round trip times experienced in its conversations
were notably shorter than those of TCP Reno. The reason for this is that STTP
will decrease its transmission rate if there is a significant increase in the measured
RTT’s. By doing so, it prevents long queues from building up and hence reduces
the likelihood of packet loss. Conversely, TCP Reno will transmit at an incremental
rate until packets are lost, or timeouts occur.

The result of this behaviour is that TCP Reno often experiences packet loss
and leads to the famous "sawtooth” traffic profile of a stable TCP source. In this

state, traditional TCP Reno will perform linear increments to its congestion to the
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point of packet loss or timeout. At this point, it reduces its window by 50% and
recommences linear congestion avoidance. It has been shown in many publications
that the ”linear increase, multiplicative decrease” algorithm is both fair and stable.

The sawtooth behaviour of TCP Reno affects the RTT of its own, and competing
conversations. As incremental congestion avoidance advances, the queue length at
a given router on a conversation’s path will increase, hence steadily increasing the
RTT. When a conversation reaches its point of congestion (and data is lost), its
transmission rate is halved, resulting in a drastic reduction in the number of packets
queued at any one time. With fewer packets now queued, the RTT for conversations

using a given router will now drop.

5.1.1 Functionality Testing with the REAL Simulator

Figure 4.4 shows this effect in the standard deviation times for various TCP and
STTP conversations. In every case, the standard deviation for STTP connections is
significantly lower than that of TCP Reno under the same conditions. Furthermore,
STTP exhibited zero packet loss in this experiment.

The simulation topology used in Experiment 1 was designed to test a protocol’s
reaction to congested, bottleneck links. By adding sources at regular intervals,
we were able to increase the load on routers and network links, thus adding to
existing queues. As further conversations were added during heavy congestion, we
also tested the startup algorithms for each protocol. A final objective was to measure
the relative bandwidth allocation for each conversation during the simulation.

While first impressions may be that TCP has successfully transmitted many more
packets during the simulation than STTP, the number of packets dropped must also
be taken into account. For example, for conversation 1 of table 4.4, TCP Reno
transmits on average 35.56 packets, and STTP 37.89. On average, 24.89 of TCP
Reno’s packets were dropped by the network. STTP dropped 0 packets. Similarly,
in the later conversations, TCP loses a significant number of its transmitted packets
through poor bandwidth management. STTP transmits fewer packets but has a

significantly higher overall goodput.
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The behaviour of STTP in this case shows better management of available net-
work resources and greater consideration to competing data streams. Fewer packet
drops and retransmissions would lead to an improved Quality of Service to the end
user, as a more constant flow of data is maintained. Furthermore, such a stable
connection would allow easier management of the network by its administration as

if scaled accordingly, traffic as a whole would be much less bursty.

5.1.2 Performance Testing with the NS Simulator

In our experiments with NS, we examined the performance of STTP and TCP
Reno/Vegas. STTP continued to show many good characteristics such as dropping
fewer packets and achieving higher rates of goodput. An important feature of our
proactive congestion avoidance algorithm was also highlighted.

Once established, STTP uses variation in RTT to detect congestion. If packets
are lost then it reacts just as TCP Reno. However, with new STTP connections
probing for available bandwidth and setting their transmission rate accordingly, our
results show that fair allocation of bandwidth is not achieved as quickly as TCP
Reno.

The reason for this is STTP’s startup mechanism. TCP Reno adopts a lossy,
aggressive approach with its slow start algorithm. This has been identified as causing
the majority of TCP’s packet loss during the lifetime of a connection [47]. As TCP
expands its window (exponentially), other competing sources are forced to drop
packets and back off. This could be by 50% through congestion avoidance, or to a
full slow start if timeout occurs. This allows the new sources to start up and obtain
a share of the newly available bandwidth. While this technique is more conducive
to short-term bandwidth sharing, our results have shown it to be both bursty and
lossy.

Tables 5.2 and 5.3 present coarse grained results for two experiments, which were
run in NS. There were 40 F'TP traffic sources, traveling over 10Mb, 1ms links. The
simulation durations were 200 and 300 seconds accordingly with sources starting at

five second intervals. The network topology used for these experiments is the same
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as that depicted in figure 4.3. Each table shows the number of packets transmitted
and dropped, grouped by protocol.

Table 5.2: Long Duration (200 seconds) STTP and TCP Reno - 40 sources

Table 5.3: Long Duration (300 seconds) STTP and TCP Reno - 40 sources

protocol | duration | bytes Tx | bytes dropped | goodput
reno 199.900 | 22407000 | 2613000 19794000
sttp 199.900 | 21187120 | 1429640 19757480

protocol | duration | bytes Tx | bytes dropped | goodput
reno 299.900 | 33244000 | 3451000 29793000
sttp 299.900 | 30167600 | 416240 29751360

The tables show that TCP has a significantly higher rate of packet loss when
compared with STTP and therefore a higher rate of retransmission. Given this,
we can conclude that STTP will make more effective use of available bandwidth
in congested networks by detecting congestion before packet loss takes place. It is
important, however, to examine how each individual stream performs.

In section 4.5 [50], we examine the issue of fairness more closely. The results of
running more lengthy simulations with competing sources were as anticipated. Given
time to stabilise, STTP achieves levels of fairness comparable with that of TCP Reno
in the same environment. This process can be made faster through modification of
STTP’s internal variables, which will be discussed further in subsection 5.2.3, and
later in section 6.

To conclude the simulation of STTP and its comparison with TCP Reno and
TCP Vegas, a range of simulations was run with all three protocols on the same
topology, while varying the number of sources from 10 to 200. Different traffic types
were used; bulk transfer, variable bit-rate trace file, and HT'TP request trace file.

In Appendix table 1, it is evident that both TCP Reno and TCP Vegas transmit

a far greater number of packets than STTP. However, given the data shown in figure



Chapter 5 75 Discussion and Evaluation

4.5, we can see that a relatively high percentage of this is dropped. The difference
between the number of packets transmitted and the number of packets dropped, is
termed the ”goodput” of a connection. This indicates how many packets successfully
arrived at their destination. This is shown graphically in figure 4.6.

In all cases, STTP transmitted and dropped significantly fewer packets during
the course of the simulations. It did, however achieve a comparable level of good-
put. This indicates that STTP is able to transmit just the right amount of data to
keep a bottleneck connection full, while not being too ambitious. The advantages of
this approach are numerous and include; STTP does not load routers with aggres-
sive packet transmission, applications using STTP will be given a better Quality
of Service due to fewer transport layer frames having to be retransmitted, compu-
tationally expensive tasks such as frame retransmission are less frequent than with
existing TCP implementations.

In figures 4.6, 4.9 and 4.12, ST'TP is shown to have goodput comparable with
that of TCP Reno and TCP Vegas. In many iterations of our simulation, it achieves
the highest goodput of all the tested protocols. This result should be considered
in conjunction with the graphs showing dropped packets, figure 4.5, 4.8 and 4.11.
Given that the goodput of all protocols is at least similar, STTP incurs far fewer
packet drops than other protocols. The result of this is that the available bandwidth
is used much more efficiently by STTP streams. We can therefore conclude that the
algorithmic framework adopted by STTP is more efficient than that used by existing
standard TCP implementations. The framework within which STTP was developed
adds to our confidence in these results. The design of NS is highly modular. In order
to implement STTP, only the algorithms directly related to the transport layer were
modified. In order to aid this design, the NS TCP Reno model was modified to
incorporate STTP’s algorithms. The rest of the simulator was left untouched.

A fundamental concern with flow controlled transport protocols is to ensure that
they make good use of available bandwidth. With the advent of Virtual Private
Networks, where bandwidth is often reserved and guaranteed, a protocol should be

able to quickly utilise available resources. However, it is also important to share
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these resources efficiently between competing connections.

Unfortunately, as the number of sources increases, the inability of the Packet-
Pair probe to allocate bandwidth in a congested environment is highlighted. With
more than 40 sources in operation, our detailed traces show that certain STTP flows
were only able to transmit two probe packets of 40 bytes. In cases of high congestion,
either a probe packet is lost, or the result yields such a low bandwidth that the token
bucket cannot be initialised with even a single full-size token. This behaviour is also
noted in TCP Reno where, as the number of sources increases, certain ones are not
able to successfully establish a connection with the remote host.

In our experimental implementation, STTP is not programmed to re-attempt
connection in these cases, so such flows do not succeed in connecting to their desti-
nation host. There are several potential solutions to this problem. Firstly a Packet-
Pair train could be used, as discussed in [1]. This would reduce the probability of
probe packet loss and also give a more accurate estimation of the available band-
width. Secondly, a fast retransmission mechanism could be formulated for Packet-
Pair probing, which would re-attempt connection setup after a short timeout period.
Probe packet responses should really be acknowledged within one second except in
cases of extremely high latency. Furthermore, a retransmission of probe data would
not significantly impact network performance and could be used to realign token
bucket, settings when received, even if previous attempts proved to be successful,

but with high latency.

5.2 FEvaluation and Lessons

In this section we will discuss our findings, in particular how they relate to specific

techniques we have chosen to deploy in our experiments.

5.2.1 Protocol Performance

In designing STTP, we have produced a protocol which exhibits very low packet

loss, and timely, guaranteed delivery of application data. The results in chapter 3
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show that it is capable of such performance even when transporting bursty, variable
bit-rate data.

Interactive network applications generally consist of small user requests, which
need to be delivered quickly and without unnecessary retransmission. A proto-
col with higher levels of packet loss (and therefore retransmission) will affect the
user-perceived quality of service to a greater extent, depending on the regularity
and burst size of loss periods. Irregular, variable-length packet loss will degradate
the performance of an interactive network application to a point where it becomes
unusable.

From our experimental results, we can therefore conclude that the protocol model
adopted by STTP will facilitate the delivery of such applications. There are, how-
ever, some lessons to be learned from the implementation of Packet Pair probing

and Pro-active congestion avoidance algorithms.

5.2.2 Packet Pair in Congested Networks

The Packet Pair bandwidth probing technique proved to be reliable in our simula-
tions for discovering the available bandwidth on a network path. Even in scenarios
where a new connection was probing into an already congested network, this tech-
nique produced accurate reports.

When congestion is heavy, however, there are issues with our approach to proto-
col startup. STTP may only be able to probe a small amount of bandwidth available
on a network path. This means that the initial bucket size for the connection is min-
imal, and the protocol will depend on variations in RTT to increase its transmission
rate. However, as a new source has entered the path, the increased queue length
should be sufficient to trigger a reduction in competing traffic. The fairness of such
a model is discussed further in [11] [34] [7]. Our work in this area was reported in

section 4.5.
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5.2.3 Aggressive vs Timid Sources — the fine line

Given the range of tunable parameters in STTP, it can take on a variety of charac-
teristics. By adjusting its sensitivity to variation in RTT, the protocol can be made
more or less aggressive to competing traffic sources. This is achieved using the o and
B parameters of STTP’s congestion avoidance algorithm. In order to make STTP
more sensitive to increases in RTT, the difference between these values should be
reduced around 1.0.

Simulation experiments were conducted in [51] using these parameters, where
the difference in behaviour between aggressive and timid sources was noted. As
« is decreased, so STTP’s sensitivity to decreased RT'T is reduced. The effect of
this is that the protocol is slower to react to newly available bandwidth. This
is due to the RTT having to reduce by a more significant amount before STTP
will increase its mean transmission rate. Conversely, as [ is increased, so STTP
becomes less sensitive to increases in RTT and slower to relinquish bandwidth to
new or expanding connections.

The result of adjustments as described above, is a very strong transport protocol
which, once established, will defend its bandwidth share. Unfortunately, this is
not conducive to equal and fair performance between competing streams. Papers
referenced in chapter 2, section 2.2.2, discuss potential solutions to unfair behaviour,
and alternative implementations of TCP’s congestion control.

At the other extreme, a small delta between « and 3 can be selected. The effect
of this would be to have STTP react quickly to both increases and decreases in RTT.
Unfortunately, our experiments show that this results in bursty and unpredictable
behaviour which, while this may be in the favour of competing streams, does not
facilitate the QoS for the application being served.

A further point particular to STTP, is that the degree to which the protocol is
sensitive to decreases in RTT is directly related to the rate at which it will increase
its rate of transmission. It is therefore of great importance that appropriate values
for a and [ be selected.

During the course of our work, we have conducted many hundreds of simulations
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with STTP over a broad range of network topologies. The static settings we have
chosen to use have proven to be reliable in our scenarios, and to deliver satisfactory
performance, delivering packet goodput comparable with that of TCP Reno and
TCP Vegas. We do, however, believe that there remains a great deal of interesting
and highly useful work to be conducted in this area. Section 6 covers this in more

detail.

5.2.4 Discussion of Software Simulation and Prototyping

During the course of our experimentation, areas were covered which provided use-
ful insight into the issues surrounding protocol development. In certain cases, the
problems encountered were particular to a given simulation package, but others were
more general in nature.

A common issue with the simulation packages used for this research was that
despite normally reliable behaviour, certain scenarios, topologies, or protocol mixes,
would result in early termination or crashing of the software. A common issue with
both REAL and NS was for simulations of extended duration with a large number
of sources to become unstable. It became evident that certain high speed topologies
would not run for extended periods without terminating abnormally. This behaviour
was, however, confined to a small number of cases.

Fortunately, we were able to find stable parameters for more lengthy simulation
runs and used them accordingly. This allowed us to test protocols under a variety
of environments, not only short and medium length, low bandwidth scenarios.

Conversely, when performing a kernel implementation of our TCP modifications
[49], it became difficult to sufficiently stress the local area network (10Mb/s). Our
aim was to force TCP to timeout and restart its connections. However, with such
a large amount of bandwidth and relatively low latencies, it was necessary to use
lower capacity modem links to examine its behaviour more closely. We were sub-
sequently able to induce connection restarts on the LAN implementation through
further kernel enhancements.

This approach was successful, and we were able to test the functionality of our
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modifications and to see that they performed according to our models. Unfortu-
nately, without more extensive equipment and resources, it was not possible to

exhaustively test them in a high speed LAN environment.

5.2.5 Summary of Simulation Experiments

In the above discussion, we have seen how the functionality of STTP was proven
using Keshav’s REAL simulation package and compared with TCP Vegas using
bulk data flows. We concluded from these tests that the STTP framework was a
viable research project, and that the second stage of performance testing should be
pursued.

An implementation of STTP in NS allowed us to perform more detailed testing
with a wider variety of application traffic types and transport protocols. The results
seen in REAL were supported by those from NS and further enhanced with fine-
grained, large-scale simulation experiments. Lengthy simulations which compared
STTP, TCP Reno and TCP Vegas highlighted key features of our congestion avoid-
ance algorithms and start-up model. We saw that a pro-active congestion avoidance
model can be highly effective in minimising packet loss while maintaining the overall
rate of transmission. The result is a transport protocol which yields significantly
higher goodput than existing Internet layer four implementations.

Key areas K3 and K4, as described in chapter 1, outline the aims of our proto-
col design. The simulation results (providing C3) show that we have developed a
transport layer protocol which performs at least as well as existing TCP implementa-
tions. Experiments 4 and 5 demonstrate STTP’s ability to deliver comparable levels
of goodput (within 1% of existing TCPs) but with up to 20% fewer packets being
transmitted, and up to 10% fewer packets being dropped in the network. STTP has
been simulated with a key set of traffic models, with as much data as possible being
based on live traffic traces. This methodology gives sound foundation to the results
of chapter 3 (C3).

The above study and discussion of our experimental results conclude thesis con-

tribution C4.
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Conclusions and Future Work

6.1 Summary

In this thesis, we have presented our work on the examination, design, modelling,
implementation and simulation of STTP, an alternative transport protocol. We
have studied the currently de facto standard of TCP (K1), and performed practical
experimentation with the Reno and Vegas TCP variants. We have identified areas
in which current TCP congestion avoidance algorithms could be improved (K2) and
produced prototype modifications to TCP Reno (C1 in chapter 3). C2, the design of
a replacement transport protocol is presented in chapter 3. This contribution covers
key area K3. The subsequent simulation of our prototype is presented in chapter 4
and realises contribution C4.

Our simulation experiments have shown how a pro-active congestion avoidance
model may be more appropriate for use with traditional, or bursty, network appli-
cations than current de-facto standards such as TCP Reno or TCP Vegas. Our
solutions, which utilise packet-pair startup techniques, pro-active congestion avoid-
ance, and token bucket flow control, have shown themselves to give performance
comparable with that of current TCP variants. However, the number of pack-
ets dropped and retransmitted is significantly reduced using pro-active congestion
avoidance mechanisms. Furthermore, the use of token-bucket flow control allows

applications to send bounded bursts of data while maintaining an overall mean rate,
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which is in accordance with the currently estimated bottleneck bandwidth.

The implication of our simulation results for interactive network traffic is to
facilitate user-perceived Quality of Service in addition to making more efficient use
of available network resources. A transport protocol, which will deliver data in a
timely manner with a low degree of packet loss, is able to provide the application
layer with smooth inter-host communication. From the user’s perspective, the arrival
of information becomes more predictable and the application therefore more usable.

If immediately successful, a simple packet pair probe should allow the application
to open a socket and burst data up to the capacity of the bottleneck link. In
contrast with TCP Reno’s Slow Start algorithm, this process should greatly aid
brief interactive sessions, such as those seen with Web-based services. Experiment

5 in chapter 4 demonstrates the effectiveness of STTP in this scenario.

6.2 Contributions

The framework used in the design of STTP employs proven components from a
variety of sources. The problem space associated with existing TCP algorithms
when transporting bursty or short-lived data streams, was broken down into three

key areas (K3).
e Connection initialisation and startup
e Congestion avoidance and control
e Packet loss and recovery

Each of these was addressed in turn with the Packet-Pair startup, Token Bucket
flow control and Pro-active congestion avoidance algorithms. The functionality test-
ing, executed in chapter 3, illustrated the interaction of these algorithms and how
this modular design was able to operate in line with existing TCP implementations.
Further testing was then carried out in a more advanced simulation environment
with varied traffic types and congestion scenarios. Throughout these experiments,

the advantages of the STTP framework was consistent with our projected model.
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The resulting experimental protocol exhibits packet goodput comparable with
existing TCP implementations, transporting a variety of traffic types. Its fundamen-
tal advantages are that significantly fewer packets are transmitted and dropped due
to the improved protocol framework. The available bottleneck bandwidth is probed
and discovered in a single round-trip, and active data transmission commences at an
appropriate rate. Congestion is then sensed pro-actively, which helps avoid network
congestion, minimise router queues, and relieve packet loss and retransmission.

The main contributions of this work are therefore:

[K1] the survey of existing protocol research in order to identify key problem areas
[K2] the evaluation of TCP modifications as a potential solution

[K3] the design and simulation of an experimental protocol, which deploys proven

techniques in bandwidth discovery, flow control, and congestion avoidance
1. Connection initialisation and startup
2. Congestion avoidance and control
3. Packet loss and recovery

[K4] evaluation of the experimental protocol against existing TCP implementations

with a variety of network traffic models

Original contribution was made through modifications to the existing TCP Reno
implementation (referred to as C1) and with an experimental protocol (C2), which
has been designed specifically to address the issues mentioned above. C1 is addressed
in section 3.1, and C2 throughout chapter 3. Simulation of the resulting protocol is
carried out in chapter 4 (C3). Further detailed analysis of our protocol simulations

can be found in chapter 5 (C4).

6.3 Future Work

The results reported here open up several further avenues for investigation. The

techniques employed by TCP Vegas and other pro-active transport protocols often
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employ hard-coded (or set) variables for RTT or throughput measurements. Given
the highly dynamic nature of network traffic, and the rapid evolution of physical
layer technologies, we feel that an active approach to congestion avoidance is needed.
In order to provide a solution which will scale with future developments, indications
from our experiments suggest that a self-modifying approach may be required in
order to yield optimal performance.

If the delta of o and 3 is small around 1.0, then STTP becomes highly responsive
to fluctuations in RT'T. Conversely, as a decreases and [ increases, a more stable
yet stubborn behaviour is produced. It would be our intention that the protocol be
able to modify these parameters in run-time according to a given set of heuristics.
For example, should a stream’s transmission rate being to fluctuate rapidly, then
the delta may be increased in order to stabilise the current connection. Alterna-
tively, if a connection senses that it is becoming ”squashed” by competing traffic,
it may become more aggressive in order to sustain the current level of QoS for an
application. Such responses are likely to significantly benefit user-perceived QoS.

It has also become apparent during the course of this work, that the rigid sep-
aration between traditional OSI layers may not provide the most efficient means of
communication between Internet hosts. The advent of ATM has shown how dupli-
cation of effort at different layers in the stack can produce conflicting results. There
is, however, ongoing research which suggests that communication between ATM'’s
congestion avoidance algorithms and TCP will resolve such issues [15].

The suggestion that open, direct communication between layers should take place
is clearly ludicrous, as this may well lead to chaotic behaviour due to conflicting
information. While the network layer may believe there to be available bandwidth
on a connection, the application may wish to reduce transmission rates for QoS
management.

The solution ultimately falls to kernel design and the provision of an appropriate
API for application and hardware driver developers. If a shared area of memory were
allocated for the presentation and retrieval of QoS and network information, the

various layers could obtain the data required in order to govern their transmission
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rates and offered QoS. Similarly, they could display their own variable data in order
to inform other layers of their performance and measurements.

Explicit communication has been show to be effective in work conducted by
Floyd [18] and we believe that such a framework, if implemented on a local host,
could be used to great effect both for current connections and in the initialisation
of new streams.

In order to deliver end-to-end QoS for interactive network applications, it is
becoming increasingly apparent that more explicit communication must take place
between protocol layers, and across network components. The co-ordinated delivery
of interactive data requires that there not be conflict or disagreement on network
state in the protocol stack. Only with a common interface, set of agreed communi-

cation paths, and organised information flow, can this be achieved.
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Table 1: Table of Results for Experiment 2

| Num Sources | Protocol | bytes tx | bytes drop |

10 Reno 226345000 1264000
10 Vegas 225025000 0

10 STTP 225064800 0

20 Reno 230285000 5190000
20 Vegas 225370000 283000
20 STTP 225520600 435000
30 Reno 234791000 9696000
30 Vegas 230131000 5043000
30 STTP 225997400 904080
40 Reno 239531000 14436000
40 Vegas 236000000 10911000
40 STTP 226253200 1161160
50 Reno 241044000 15954000
50 Vegas 241185000 16096000
50 STTP 227099000 2005120
60 Reno 243972000 18880000
60 Vegas 244975000 19888000
60 STTP 226860800 1767680
70 Reno 247247000 22165000
70 Vegas 248030000 22948000
70 STTP 227146600 2054360
80 Reno 250221000 25126000
80 Vegas 250684000 25595000
80 STTP 227614400 2518360
90 Reno 253429000 28334000
90 Vegas 253156000 28079000
90 STTP 227507200 2412560
100 Reno 255582000 30487000
100 Vegas 255914000 30825000
100 STTP 227681000 2585840
110 Reno 257234000 32142000
110 Vegas 258223000 33135000
110 STTP 227537800 2442600
120 Reno 258980000 33890000
120 Vegas 259093000 34004000
120 STTP 227872600 2777280
130 Reno 261137000 36042000
130 Vegas 262281000 37192000
130 STTP 228831400 3737800
140 Reno 262140000 37046000
140 Vegas 262223000 37138000
140 STTP 228737200 3641840
150 Reno 262968000 37873000
150 Vegas 264653000 39564000
150 STTP 228412000 3315920
160 Reno 264286000 39195000
160 Vegas 266033000 40946000
160 STTP 229956800 4861520
170 Reno 264828000 39733000
170 Vegas 267471000 42382000
170 STTP 229206600 4111640
180 Reno 265320000 40225000
180 Vegas 268390000 43302000
180 STTP 229552400 4456400
190 Reno 265871000 40776000
190 Vegas 269193000 44105000
190 STTP 228915200 3819680
200 Reno 265593000 40501000
200 Vegas 268748000 43660000
200 STTP 229738000 4641920
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Table 2: Table of Results for

Experiment 4

| Num Sources | Protocol | bytes tx | bytes drop |

10 Reno 57884000 1608000
10 Vegas 56302000 3000
10 STTP 56895800 598000
20 Reno 60352000 4063000
20 Vegas 58348000 2044000
20 STTP 56770600 469000
30 Reno 61939000 5642000
30 Vegas 61468000 5165000
30 STTP 56989400 688000
40 Reno 63661000 7356000
40 Vegas 63087000 6785000
40 STTP 57251200 949120
50 Reno 65407000 9102000
50 Vegas 64992000 8687000
50 STTP 57503000 1200040
60 Reno 67252000 10962000
60 Vegas 66076000 9772000
60 STTP 57719800 1416160
70 Reno 68611000 12306000
70 Vegas 67666000 11363000
70 STTP 57931600 1629160
80 Reno 69429000 13128000
80 Vegas 68590000 12287000
80 STTP 58255400 1952040
90 Reno 70152000 13855000
90 Vegas 69982000 13680000
90 STTP 58596200 2291000
100 Reno 70927000 14623000
100 Vegas 70463000 14159000
100 STTP 58798000 2494040




