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AbstractThis thesis describes a new approach for the solution of two-dimensional, time-dependent, surface-tension-driven free-surface ows involving domains of arbitraryshape that may undergo large changes in shape during the course of a problem. BothStokes and Navier-Stokes problems are considered, a mixed Lagrangian-Eulerian�nite element formulation being employed for the latter. All meshes are generatedautomatically using a Delaunay mesh generator, the only user input required beingthe speci�cation of the initial free-surface shape. Very few constraints are placedon the shape of the initial domain and arbitrarily large deformations of the domainare permitted. A key feature of the new method is its ability to dynamically re�neand de-re�ne the free-surface discretisation as and when necessary to maintain anaccurate representation of the free surface, as is essential for surface-tension-drivenproblems. Full implementation details are included.Semi-implicit time integration schemes are employed for both Stokes and Navier-Stokes problems, the resulting systems of linear equations being solved by the con-jugate residual method preconditioned using high-quality, thresholded, incompleteLU factorisations. A novel scheme for the automatic selection of the maximum timestep size that ensures free-surface stability is described.A number of challenging problems are considered. First a Stokes-ow problemwith a known analytic solution is employed to con�rm that the expected rates ofconvergence in the solution are obtained. Next the Stokes-ow evolution of a �lmof viscous uid on a rotating cylinder is investigated, the time-dependent case be-ing modelled for the �rst time. Illustrations of the large free-surface deformationsleading up to load shedding are presented. In addition, the unexpected existence ofapparently stable oscillatory solutions is reported for certain con�gurations. Finallythe axisymmetric oscillations of droplets at low Reynolds numbers (Re � 100) areconsidered.
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Chapter 1Introduction
In this chapter the subject of free-surface modelling is introduced, and a numberof industrially important free-surface problems are described. Two typical non-dimensional forms of the Navier-Stokes equations are next introduced, the �rst cor-responding to the standard formulation for advection-dominated problems, the sec-ond to a formulation appropriate for Stokesian surface-tension-driven problems, il-lustrating the radically di�erent nature of free-surface problems in these two regimes.Finally a number of strategies commonly employed for the solution of free-surfaceproblems are described and their limitations discussed.1.1 Free-surface ow modellingThe study of incompressible Newtonian uids is of fundamental importance in mod-ern engineering. While the underlying physics, at the macroscopic scale at least, iswell understood, the mathematical problems that arise from all but the simplest ofproblem geometries cannot be solved analytically, and thus some form of numericalmethod must be employed. Free-surface problems by de�nition involve the furthercomplication that the boundary of the problem domain is not known in advance.Thus the solution of such a problem requires us to �nd both the location of thefree surface and the ow �eld bounded by it. At the current time no entirely satis-factory general-purpose methods exist for dealing with time-dependent free-surfaceproblems. 1



Chapter 1 2 IntroductionWhile a considerable number of papers have been published describing methodsfor obtaining solutions to steady-state free-surface problems, relatively few haveaddressed the subject of time-dependent problems. Free-surface problems can bedivided into two important classes: to the �rst belong problems in which the solutiondepends only weakly on the shape of the free surface e.g. most problems involvinguids with negligible surface tension; to the second class belong those problems inwhich surface tension is a dominant inuence. It is this latter class of problems towhich this work is addressed.To place the current work in context, it is useful at this point to describe brieya number of practical applications that arise in the study of free surfaces. One areain which free surfaces are frequently encountered is the application of a thin coatingof uid to a surface. A number of typical coating ow geometries are described inthe article by Kistler and Scriven [59].
Contact line

Figure 1.1: Extrusion coater.Fig. 1.1 shows an idealised coating apparatus | the extrusion coater. In suchan apparatus a uid is applied under pressure via a nozzle to a moving substrate.The �nal thickness of the resulting layer depends only on the ow rate in the nozzle.The uniformity of the coating depends critically on the ow rate and the velocity ofthe substrate. If the velocity of the substrate is too large then typically some formof dynamic instability will arise | resulting in an uneven application of the coatinguid or ultimately to a complete breakdown of the transfer mechanism. As Fig. 1.1shows, the problem geometry involves a number of contact lines (marked �) each ofwhich requires careful treatment with regard to boundary conditions if a well posedproblem is to be speci�ed.The curtain coater geometry illustrated in Fig. 1.2 has many features in commonwith the extrusion coater. The arti�cial truncation of the domain implicit in both



Chapter 1 3 Introduction
Figure 1.2: Curtain coater.

(a) (b)Figure 1.3: Dip coating.models requires decisions to be made at the modelling stage about the boundaryconditions to be applied at the inow and outow boundaries. Typically some formof steady fully-developed inow boundary condition is selected, such as an open-channel (Couette) ow for the curtain coater or a Poiseuille ow for the extrusioncoater. In the case of the curtain coater the presence of a free surface at the inowboundary requires the speci�cation of a boundary condition on the free-surface loca-tion. The speci�cation of outow boundary conditions is also frequently attemptedin a similar fashion, though care must be taken that the outow boundary condi-tion imposed does not interfere with the development of phenomena of interest e.g.oscillations in the free-surface elevation near the outow.Fig. 1.3 shows a somewhat simpler con�guration resulting frommodels of coatingin which a sheet of material is drawn upwards against gravity, through the freesurface of a reservoir of uid, at a �xed velocity. Note the presence of initial start-up contact lines in Fig. 1.3(a). The problem can be further simpli�ed by ignoring



Chapter 1 4 Introductionthe complications introduced by the initial contact lines, that is by assuming thefree surface has reached a stable steady-state con�guration and is thus parallel tothe sheet su�ciently far from the reservoir, as shown in Fig. 1.3(b). If in place ofa sheet of material, a wire with a circular cross section is considered, then one cantake advantage of the rotational symmetry of the problem to allow the modelling ofa fully three-dimensional problem (see for example [87]).
Figure 1.4: Reverse roll coating.One family of coating problems that is of particular commercial interest resultsfrom the study of the various types of roll coating process. Fig. 1.4 illustrates theindustrial process known as reverse roll coating [29]. In this, two counter-rotatingrollers are employed to transfer uid onto a moving substrate (known as the web)that passes around the upper roller.

Figure 1.5: Sintering a bundle of cylindrical �bres.Finally, as an example of a free-surface problem of commercial importance that isnot related to coating ows, Fig. 1.5 illustrates the process of the viscous sintering ofa bundle of cylindrical �bres [113, 69]. In this process, the bundle is heated uniformly,over a long period of time, until it melts, at which point the �bres coalesce underthe inuence of surface tension. In the industrial processes that motivate this typeof study, accurate knowledge of the rate of change of the density of the resulting



Chapter 1 5 Introductionmaterial is of importance if the properties of the resulting composite material areto be accurately predicted.1.2 The Navier-Stokes equationsThe ows considered here are all assumed to obey the Navier-Stokes equations sub-ject to the following further assumptions:1. The uids involved are incompressible i.e. have constant density �;2. The surface energy density (surface tension) associated with any free surfaceis a constant ;3. The uids are Newtonian and isothermal and thus have constant, isotropic,(dynamic) viscosity �.A number of important simpli�cations follow from these assumptions. Since all thematerial properties of the uids are taken to be constant, there is no need to considerthe e�ects of temperature when solving for the velocity �eld. Consequently there isno need to solve a separate energy equation. The assumption of constant densityhas the e�ect of removing any time-dependency from the continuity equation, andso the continuity equation becomes an algebraic constraint on the velocity �eld.The Eulerian form of the Navier-Stokes equations for a uid satisfying the aboveassumptions is � "@u@t + (u:r)u# = �r2u�rp� �gj; (1.1)r:u = 0; (1.2)where g is the acceleration due to gravity, and j a unit vector in the upward verticaldirection. The momentum equation (1.1) relates the velocity u at each point of theuid to the pressure p, while (1.2), the continuity equation, imposes the constraintthat the velocity �eld must be incompressible.In addition to the e�ects of gravity, viscosity and momentum, surface tensionmust also be incorporated into the formulation. The e�ects of surface tension enterinto (1.1) as boundary conditions. At points on a free surface the most convenientboundary condition is continuity of stress. For a gas/liquid interface involving a gas



Chapter 1 6 Introductionof negligible viscosity and density, the stress on the free surface takes the form� = � (pext + 2H)n; (1.3)where pext is the pressure of the surrounding gas, n is the (outward) free-surfacenormal, H is the mean curvature of the surface and  is the surface tension. Inthe present work, for simplicity, the assumption is made that the pressure of thesurrounding gas is zero. It should be noted that, for problems involving free-surfacestress boundary conditions there is no need to specify a hydrostatic pressure datum[24] as is necessary when the boundary conditions involve only the velocity.For a time-dependent free-surface problem, the boundary-value problem (1.1-1.2)must be augmented by the kinematic boundary condition i.e. @s@t � u! � n = 0; (1.4)where s corresponds to the position of a material particle on the free surface. Thus, amaterial particle on a free surface must remain on the free surface. Note that (1.4)places a constraint only on the normal component of the velocity, the tangentialcomponent being unconstrained.In the limit as �! 0 equations (1.1) and (1.2) reduce to the incompressible Eulerequations which are commonly used to model uids, such as water and air, whenviscous e�ects are negligible. It should be noted that the boundary conditions for theEuler equations are somewhat di�erent to those in the viscous case. In particular, ata free surface only a normal stress boundary condition need be speci�ed; a tangentialstress boundary condition being inappropriate since an Eulerian uid is incapableof supporting shear stresses.The �rst step in the non-dimensionalisation of a Navier-Stokes problem witha given geometry is the choice of characteristic scales for length L0 and velocityU0. These will of course be model speci�c. Once U0 and L0 have been chosen, foradvection-dominated problems (i.e. Re � 1) one typically de�nes a characteristictime interval T0 = L0U0 and a characteristic pressure P0 = �U02 [50]. The above scalesmay now be used to rewrite the problem in terms of non-dimensional variables, hereindicated by the superscripts (�). Thus length x is related to dimensionless lengthx� by L0 x� = x etc. In a Cartesian coordinate system the Navier-Stokes equationsthus become



Chapter 1 7 Introduction@u�@t� + (u�:r)u� = 1Re hr2u�i�rp� � 1Fr j; (1.5)r � u� = 0; (1.6)where Re = �L0U0� (1.7)is the Reynolds number appropriate for an advection dominated ow [34], andFr = U02gL0 (1.8)is the Froude number.The free-surface boundary condition (1.3) must also be non-dimensionalised.Setting pext = 0, and restricting attention the two-dimensional case, we have� = �2Hn = � Rcn; (1.9)where Rc is the radius of curvature of the free surface. Thus, the dimensionlessstress is given by �� = � 1We 1Rc�n; (1.10)where We = �U02L0 (1.11)is theWeber number, and Rc� is the dimensionless radius of curvature. For problemssuch as those involving the oscillation of viscous droplets released initially from rest[7], for which no obvious a priori choice of characteristic velocity is apparent, U0 iscommonly chosen so thatWe = 1. From now on the superscripts will be dropped anddimensionless variables together with the appropriate non-dimensional parametersemployed unless otherwise stated.1.3 The Stokes equationsAn important simpli�cation of the Navier-Stokes equations results when the e�ectsof momentum are negligible in comparison to those of viscosity. In such situationsthey reduce to the Stokes (or slow ow) equations of viscous ow:r2u�rp� gj = 0; (1.12)



Chapter 1 8 Introductionr:u = 0: (1.13)The absence of a material derivative in the Stokes equations allows the solutionof a transient Stokes ow to be obtained by solving a sequence of quasi-steady-stateboundary-value problems. Thus there are no initial conditions in the conventionalsense. The kinematic boundary condition (1.4) must still be satis�ed and nowcontains the only time-dependent terms in the system. Note, however, that in theabsence of boundary conditions constraining the total velocity and angular velocityof the domain (1.12) and (1.13) form a singular system. Thus additional constraintsmay be necessary to render a problem non-singular [114].Using an appropriate non-dimensionalisation procedure, (1.12) and (1.13) may bederived as a special case of the Navier-Stokes equations. One approach[67] involveschoosing a length scale L0 and de�ning characteristic scales for velocity U0, time T0and stress �0, using: U0 = �; (1.14)T0 = �L0 ; (1.15)�0 = L0 : (1.16)The dimensionless equations are thusSu "@u@t + (u:r)u# = r2u�rp�Bo j; (1.17)r:u = 0; (1.18)where Su is the dimensionless Suratman number de�ned bySu = �L0�2 ; (1.19)and Bo is the dimensionless Bond number de�ned byBo = �gL02 : (1.20)When the Suratman number is vanishingly small the Stokes approximation is appli-



Chapter 1 9 Introductioncable and the momentum equation reduces to the formr2u�rp�Bo j = 0: (1.21)In this case the non-dimensional form of the stress boundary condition is simply�� = � 1Rc�n: (1.22)Thus, there is no additional non-dimensional group associated with the free-surfaceboundary conditions.1.4 Overview of the di�culties involved infree-surface modellingWhen evaluating numerical schemes for the solution of free-surface problems thetwin, interrelated, issues of e�ciency and accuracy must always be borne in mind.The primary requirement for any practical numerical method is that it be capable ofproducing accurate results, employing a�ordable computational resources, within anacceptable period of time. The simulation of a two- or three-dimensional transientfree-surface problem typically requires the period of integration to be split into manyhundreds if not thousands of time steps. At each time step a linear or nonlinearalgebraic system, involving typically many thousands of variables, must be solvedto a high accuracy if the results are to be useful. Furthermore, in practice, a modelmay have to be run many times with di�erent parameter values e.g. as part of anoptimisation study.One way the computational resources required to solve a particular problemmay be minimised is by reducing the number of unknown variables to a minimum.O�set against this must be the need to employ a su�ciently �ne discretisation of thedomain to ensure adequate accuracy. By employing adaptive methods it is possible,in principle at least, to locate nodes in regions of the ow where they are mostneeded | allowing the solution of problems which would be prohibitively expensiveif the nodes where uniformly distributed.Another important consideration is the need to �nd a suitable balance betweenthe accuracy of the time-integration scheme and the accuracy of the computed owsolutions. In practice one would like to employ as large a time step as possible,



Chapter 1 10 Introductionsince for many free-surface problems even simple time-integration schemes give riseto errors that are small in comparison to those arising from the spatial discretisation.Unfortunately, however, it is often necessary to restrict the size of time step in orderto ensure stability of the solution.

Figure 1.6: Free-surface instability: arrows show velocity at nodes.Fig. 1.6 illustrates a form of instability that is frequently observed when too largea time step is employed for a scheme involving an explicit time discretisation of thekinematic boundary condition. Fig. 1.6 shows part of the free surface of a cylinderof viscous uid, with elliptical cross-section, evolving under the inuence of surfacetension, the governing equations being those of Stokes ow. Note that here, theow equations are being solved implicitly. The large velocities visible at a numberof free-surface nodes typically reverse sign at each time step. Since the amplitudeof these oscillations normally grows rapidly, the onset of this `saw-tooth' instabilityalmost invariably signals the imminent failure of a simulation.Similar instabilities have also been observed when solving viscous free-surface



Chapter 1 11 Introductionproblems using the boundary-element method (BEM) [60], and also with inviscidfree-surface problems [75]. Fully implicit methods (involving simultaneous solutionfor the velocity, pressure and free-surface position) are generally believed to be freefrom such stability restrictions on time-step size. Although the nonlinear nature offree-surface problems makes theoretical results di�cult to obtain, practical experi-ence appears to support the view that fully implicit schemes allow much larger timesteps to be employed [61]. Fully implicit methods are however considerably morecomplicated to implement, particularly when the nodes of the computational meshare in motion, as is generally necessary for free-surface problems. Fully implicitschemes are further discussed in Chapter 3.When surface tension is large enough to inuence a ow appreciably, the accuraterepresentation of the free-surface boundary becomes particularly important. Unlikethe majority of computational uids problems, in a free-surface problem one does notknow the boundary location a priori. For surface-tension-driven ows the boundaryconditions depend primarily on the curvature of the boundary. Since the accuracyof the computed boundary conditions depends on the accuracy of the free-surfacerepresentation, for a given free-surface shape, if the computational mesh is re�ned,the imposed boundary conditions will change, even at points that are common to bothmeshes. The overall rate of convergence of the error in the solution is potentiallycompromised by this e�ect.A related issue is the need to ensure that the accuracy of the free-surface repre-sentation and the accuracy of the velocity �eld used to update the free surface arecompatible. Thus, ideally, the velocity solution will have the same order of spatialaccuracy as the free-surface representation it is used to update.1.5 Methods for free-surface owsWith the exception of approaches employing a global basis, such as Fourier methods,numerical schemes typically require, as a �rst step, the division of the computationaldomain into a �nite number of discrete regions or elements. By de�ning a localbasis on each individual element, an approximation to the desired global solutioncan then conveniently be represented. The process of spatial discretisation resultsin a set of simultaneous, initial-value ordinary di�erential equations, involving a setof unknowns corresponding to the values of the dependent variables at each of thenodal points. Free-surface methods may be classi�ed according to the schemes theyemploy in forming a discretisation of the spatial domain and its boundary. The



Chapter 1 12 Introductionmain families of methods will now briey be described.1.5.1 Boundary-element methodsBoundary-element methods have the important advantage that they require thespatial discretisation only of the boundary of the domain, thereby resulting in muchsmaller systems of equations than those arising from methods that discretise theentire domain. A further practical advantage of boundary-element methods over�nite element methods is that the implementation is considerably simpli�ed, sincean interior mesh is unnecessary. An important limitation of this type of approach isthat the solution is computed only on the boundary. Computation of the interior owis only possible at signi�cant extra cost. Furthermore, boundary-element methodsare applicable only to a limited range of CFD problems; in particular they cannotbe employed for Navier-Stokes problems.Where only the free-surface evolution is required, the BEM would appear tohave a great advantage in that it considerably reduces the number of unknowns thatmust be found at each time step. However, since the resulting system of equations isnormally dense, whereas a �nite-element or �nite-di�erence method would typicallyresult in a sparse system, the advantages of the BEM are perhaps not as clear cutas they might at �rst seem.Boundary-element methods have been used successfully for the solution of two-dimensional Stokes-ow problems [65, 56, 51, 37, 60, 115, 114, 113, 38, 62], and alsofor two- and three-dimensional potential ow problems [122, 110, 116, 117].1.5.2 Finite-di�erence methodsOne of the most important advantages of employing a �nite-di�erence method is thesimplicity of the approach. A regular Cartesian grid is de�ned which is large enoughto encompass the entire region the uid is likely to occupy. At any given time theuid actually occupies only a portion of this grid, the location of the free surfacesbeing represented by auxiliary data structures. The regularity of the grid allowsthe economical assembly of the systems of equations involved. Regular grids alsohave the important property that the solutions obtained on them frequently exhibitthe property of superconvergence [103] i.e. that the solutions obtained at the nodesare of a higher degree of accuracy than would be obtained on unstructured meshes.The regularity of the grid can also have important advantages when it comes toconstructing preconditioning methods to speed the solution of the associated systems



Chapter 1 13 Introductionof equations by iterative methods.One disadvantage lies in the potentially large storage requirements of the ap-proach, if implemented naively, since storage must be reserved for the degrees offreedom at each grid point. The greatest di�culties, however, result from the needto reconstruct a smooth free-surface boundary at each time step in order that theboundary conditions can be computed. For surface-tension-dominated ows thisproblem becomes particularly troublesome. Furthermore, once the boundary condi-tions have been computed, there remains the di�culty of having to impose them ata set of discrete nodes which will not in general lie on the reconstructed free surface.While boundary �tted grids have been suggested [109, 122] as a remedy for thisdi�culty, it is not clear that they have any advantages over �nite element meth-ods. A further di�culty arises from the requirement that any free-surface schememust conserve mass (or uid volume) to considerable accuracy, if it is to be of anypractical use for time-dependent problems. This can be di�cult to achieve using�nite-di�erence methods.While the above problems make �nite-di�erence methods di�cult to apply tosurface-tension-driven ows, the great exibility of �nite-di�erence schemes for deal-ing with complex uid geometries has led to their continued use for problems inwhich the ows are dominated primarily by momentum and gravity, e.g. sloshing infuel tanks [106, 116, 100].1.5.2.1 Marker-and-cell methodsOne of the earliest �nite-di�erence schemes for free-surface ows, the marker-and-cellor MAC method [39, 88, 71] involves the use of a large number of massless markerparticles to track the motion of the free surface. Marker particles are distributedthroughout the uid, with greatest density near free surfaces, and move passivelywith the uid. At the end of a time step, their new locations are used to reconstructthe position of the free surface, as illustrated by Fig. 1.7. This necessarily involvessome form of numerical smoothing if the curvature of the resulting free surface is tobe computed accurately.One practical consideration is that a schememust be decided upon to control theinsertion and removal of marker particles so as to allow an accurate representationof the free surface to be maintained. The large number of marker cells that maybe required can lead to considerable overheads. While variants of the MAC methodare still in use for inviscid ows with negligible surface tension, for the reasonsdiscussed above they are rarely employed for surface-tension-driven ows, though
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Figure 1.7: The marker-and-cell (MAC) method: � marker particle; - - - - recon-structed free surface.a related approach | the immersed interface method [112, 61] | appears to holdpromise for surface-tension-driven ows.1.5.2.2 Volume-of-uid methodsAs an alternative to methods that attempt to model the motion of the free surfaceby direct application of the kinematic boundary condition, a number of so-calledvolume-of-uid (VOF) methods have been developed [42, 68, 58] that use consider-ations of mass conservation in updating the free surface's location. These methodsoperate by integrating the ux into regions adjacent to the free surface. The mostimportant advantage of such schemes is that in principle they conserve mass exactly,since each ux integral is repeated twice: once for material owing into a region andonce for material owing out of it.The need to know the regions over which the integrals are to be evaluated in ad-vance has hitherto restricted the application of such methods to problems that canbe tackled with regular meshes. There is, however, no reason why such an approachcould not be generalised to unstructured meshes. One potential theoretical con-cern stems from the fact that, since these methods discard the boundary velocitiescomputed by the ow solver in favour of their own estimates of what the velocities



Chapter 1 15 Introduction
ΩFigure 1.8: First-order accurate VOF method: - - - - exact free surface; | recon-structed free surface.should be, there is a potential for loss of accuracy since the kinematic boundarycondition is not satis�ed exactly. Whether this is ever a serious problem in practiceremains to be demonstrated.Fig. 1.8 illustrates a simple �rst-order-accurate VOF free-surface reconstructionscheme applied to a domain 
. The free surface is updated after each time step byintegrating the ux into each column of the mesh. The new column volume thendirectly gives the fraction of uid in the cell adjacent to the free surface. For thepurposes of computing free-surface boundary conditions a smooth curve must nowbe �tted in some fashion to the resulting free-surface data. A possible reconstructionof the free surface using cubic-splines is shown in Fig. 1.8.Fig. 1.9 depicts the reconstruction of the same free surface using a second-order-accurate boundary representation. This time, once the new column volumes havebeen computed, a set of simultaneous equations is solved [68] to give the anglesand positions of the segments of the piecewise-linear free-surface representation. Asmay be seen from Fig. 1.9 provided the free-surface curvature is not too great anapparently accurate representation of the free-surface may be obtained using sucha piecewise linear interpolant. VOF methods can also be applied in a �nite elementsetting [68], with the advantage that many of the di�culties of applying naturalboundary conditions to a �nite-di�erence discretisation do not arise.



Chapter 1 16 Introduction
ΩFigure 1.9: Second-order accurate VOF method: - - - - exact free surface; | recon-structed free surface.1.5.2.3 Phase �eld methodsPhase �eld methods avoid the need to maintain a discrete boundary representa-tion by introducing a new continuous variable �, a level set of which, typically�(x) = 0, is taken to represent the free surface. Potentially such methods com-bine great geometric exibility with the advantages of employing regular grids andmaintaining a continuous representation of the free surface. The main di�cultiescome from the need to solve an additional system of equations for � at each timestep and the need to incorporate surface-tension e�ects through a discontinuousforcing function. While the suitability of phase-�eld methods for surface-tension-driven incompressible-ow problems has only recently been demonstrated [104], theyappear to have great potential.1.5.3 Finite element methodsFinite element methods have a considerable advantage over �nite-di�erence methodsin the way in which boundaries and interfaces can be directly represented by theedges of elements. Furthermore, where such an edge forms part of the boundaryof the computational domain, the correct free-surface boundary conditions may beapplied in an elegant and direct manner by using an appropriate weak formulation



Chapter 1 17 Introduction[34] of the Navier-Stokes equations.1.5.3.1 Fixed-connectivity meshesThe simplest �nite element discretisation schemes for free-surface problems makeuse of a mesh with �xed connectivity. The mesh illustrated in Fig. 1.10 is typicalof those that might be employed in the simulation of a ow over a plane surface.To accommodate the evolution of the free surface without the mesh becoming toodistorted the interior nodes are moved vertically, according to a predetermined rule,in response to the motion of the free surface. For problems involving only smallchanges in the shape of the free surface the �xed-connectivity-mesh approach is oftensatisfactory. However where more severe free-surface motions arise the method isliable to fail, e.g. if the free surface becomes vertical, such as when an overturningwave develops. In such circumstances the set of discrete equations associated withthe problem becomes singular.
Figure 1.10: A �xed-connectivity mesh for the �nite element method.The advantages of the �xed mesh-connectivity approach, where it is applicable,are many. Maintaining a �xed mesh connectivity throughout a simulation meansthat the matrices associated with the discrete equations and with the ow solverwill have �xed sparsity patterns. In particular it allows the reuse over many timesteps of the Jacobian and any preconditioning matrices employed by iterative owsolvers.The method of spines is essentially a variation on the approach described above.It involves the selection of an origin and a set of �xed spines through the originthat intersect the free surface. The domain is then discretised as shown in Fig. 1.11.As the free surface evolves, free-surface and interior nodes move radially along the



Chapter 1 18 Introductionspines allowing the mesh to deform continuously. The mesh in Fig. 1.10 can be seento correspond to a spine representation with an origin at y = �1.

Figure 1.11: The method of spines: typical domain geometry.To deal with more complex geometries, multiple origins may be employed for dif-ferent regions of the domain, so long as the distribution of nodes along the boundaryof each region is carefully chosen. This is illustrated by Fig. 1.12, which shows adetail of a mesh that might be used for the extrusion coater geometry depicted inFig. 1.1. For liquid droplet problems involving large free-surface deformations, theuse of a moving origin for the spine representation has been described [68].The need to select the mesh connectivity and node movement scheme in advancefor each new problem geometry makes �xed-mesh-connectivity methods di�cult togeneralise to arbitrary domains. In particular it is unclear how they might be em-ployed in a fully automatic general-purpose code. Also, while super�cially elegant,they su�er from the drawback that they cannot easily be modi�ed to allow localmesh re�nement to take place where the solution requires it. Thus, in practice, a�xed-connectivity mesh is unlikely to be optimal.



Chapter 1 19 Introduction
Figure 1.12: Extrusion coater mesh: detail.1.5.3.2 Unstructured meshesOne approach that has considerable appeal as a route to developing general-purpose�nite element codes for free-surface problems, involves the use of unstructuredmeshes, that is, meshes about which no a priori assumptions about connectivityor regularity are to be made. Convenient methods have in recent years been devel-oped for generating unstructured meshes automatically for domains with arbitraryshape [96]. One of the more popular approaches involves the re�nement of a crudeinitial mesh by inserting points until the mesh has the required nodal density ineach region of the domain. By selecting insertion points using the Delaunay method[31] a mesh that is suitable for the �nite element method is readily obtained.Rather than remeshing the domain after each time step, it is often possible toreuse an existing mesh by simply displacing some or all of the interior nodes in somecontinuous fashion. This dual approach of employing a continuous motion of theinterior nodes whenever possible, but falling back on a fully automatic remeshingalgorithm when necessary, appears to be a promising method for applying the �niteelement method to complex free-surface geometries and is therefore the approachconsidered in the remainder of this thesis.



Chapter 1 20 Introduction1.6 ConclusionsMany commercially important free-surface problems require inow and outow bound-aries to be included in their models. The presence of dynamic and static contactlines is also a common feature of such problems. Nevertheless, much useful workcan be done without these added complications.There are considerable di�erences between the formulations required for time-dependent free-surface Stokes and Navier-Stokes problems. These have a profounde�ect on the solution strategies that must be employed.The �nite element method is adopted for reasons of generality, but also becauseof its suitability for modelling free surfaces. Conventional �nite element methodsare incapable of solving many interesting problems without the periodic interventionof the user, who must supply a new mesh whenever the old one becomes unsuitable.



Chapter 2The �nite element method
In this chapter methods for the automatic generation of meshes for time-dependentfree-surface problems are described. Once the �nite element basis has been intro-duced the convergence properties of unstructured meshes are investigated. Di�cul-ties associated with the computation of free-surface stress boundary are highlightedand techniques for reducing the cost of computations in the light of the di�cultiesidenti�ed are described.2.1 Elements for incompressible owThe �rst step in the application of the �nite element method to any problem is thedivision of the domain into a large number of non-overlapping polygonal regions orelements. In two dimensions the obvious choices for elements are quadrilaterals ortriangles. In the current work triangular elements are employed since they allow thegreatest exibility when dealing with arbitrary geometries. Since the intention is touse a primitive-variable formulation [34] of the Navier-Stokes equations, an elementis required that can be used to interpolate both velocity and pressure �elds. Theelement selected is the Taylor-Hood triangular element [36], shown in Fig. 2.1(c),with three corner or vertex nodes and three midpoint or edge nodes. All six nodeshave a pair of velocity variables associated with them, corresponding to the u andv velocity components. In addition, the three corner nodes have pressure variablesassociated with them, hence the designation V6-P3 for the element. Thus, with the21
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(a) (b)

(d)(c)Figure 2.1: Common elements for incompressible ows: � velocity degree of freedom;� pressure degree of freedom.basis employed, the element is capable of exactly interpolating a quadratic velocity�eld but only a linear pressure �eld. The fact that the nodes making up a typicaledge are common to the two elements sharing that edge means that a solutionrepresented on a mesh of these elements will be C0 continuous in both velocity andpressure.2.1.1 LBB stabilityThe elements shown in Fig. 2.1 are all potentially useful for the modelling of in-compressible ows. Their use is, however, complicated by the existence of a form ofinstability peculiar to incompressible-ow problems, but not restricted to �nite ele-ment methods. Without the use of appropriate stabilisation techniques [119, 97, 34]the elements (a), (b) and (d) all fail to satisfy the Ladyzhenskaya-Babushka-Brezzi(LBB) stability condition [36]. The failure of a discretisation to satisfy the LBBcondition often results in the occurrence of spurious mesh-scale oscillations in thepressure �elds computed. Essentially, the problem is that unstable elements resultin systems containing `too many' continuity constraints [34]. One solution is to em-ploy a lower-order approximation for the pressure than that used for the velocity,



Chapter 2 23 The �nite element methodas in (a) and (c), though even this is insu�cient in the case of element (a).While, for smooth solutions, higher-order interpolants are generally more ef-�cient, in that fewer elements are required to obtain the same accuracy, they areconsiderably more complicated to implement. The Taylor-Hood element, Fig. 2.1(c),appears to be a good compromise between accuracy and simplicity and, since it isintrinsically LBB stable, it is a natural choice.2.1.2 The isoparametric mappingCentral to the �nite element method is the idea of a continuous invertible mappingF between a master element in local-coordinate space and a general element locatedin the problem-coordinate space. The existence of such a mapping considerably sim-pli�es the setting-up of the �nite element matrices in that it allows all the necessaryintegrations to be performed over a �xed region | the master element. Figure 2.2
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xFigure 2.2: The isoparametric mapping F between master element and generalelement.shows the isoparametric mapping F between the master element and a general ele-ment. Where straight-sided triangular elements are employed, the mapping F takesthe form of an a�ne, subparametric transformation between the two spaces. Thisallows the master element to be mapped onto any non-degenerate triangular ele-ment, irrespective of its position, orientation, shape and size. The use of quadraticand higher-order elements opens up the possibility of employing an isoparametrictransformation [34], in which the basis functions used to de�ne the solution are alsoused to de�ne the mapping onto problem space, allowing quadratic and higher-order



Chapter 2 24 The �nite element methodelements to have curved edges. This is potentially very useful when dealing with adomain with a curved boundary and allows the accurate representation of curvedboundaries with far fewer elements than would be required with straight-sided ele-ments, as illustrated by Fig. 2.3.
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Figure 2.3: Free-surface boundary representation: (a) piecewise linear, (b) piecewisequadratic.The shape of a curved side of a general element may be selected by perturbingthe edge node from its initial mid-edge location, the resulting curved side beinggiven by the Lagrange interpolation polynomial through the three nodes specifyingthat edge.The important question arises as to whether the use of the isoparametric map-ping a�ects the accuracy of the interpolated solution. Strang and Fix [103] analysethe accuracy of quadratic interpolants on simple quadratic triangular elements inthe context of the solution of linear elasticity problems. They state that, providededge nodes are displaced by no more than a distance of O(h2) from the midpointof an edge of length h, the solution will have the same formal order of accuracy,O(h3), as it would have if an a�ne transformation were employed, though presum-ably with a larger constant in the leading term of the error estimate. Thus theuse of quadratic isoparametric elements potentially gives an extra order of accuracyfor the boundary representation without compromising the order of accuracy of thevelocity interpolant. While there does not appear to be any published theoreticalwork generalising Strang and Fix's results to mixed velocity/pressure formulations



Chapter 2 25 The �nite element methodfor incompressible-ow problems, the preliminary results recounted in Section 2.1.4show that there is good reason to believe that the use of curved-sided isoparametricelements to represent a free surface need not a�ect the orders of convergence invelocity and pressure solutions observed in such circumstances. The use of isopara-metric elements does however have a price: the integrals required in forming the�nite element matrices are considerably more expensive for curved-sided elementsthan for straight-sides ones, and thus it makes sense to employ curved sides only forthose elements adjacent to the free surface and other curved boundaries.2.1.3 Finite element basis functionsAn element's nodes are numbered locally in the anti-clockwise sense as shown inFig. 2.2. Thus on each element the velocity and pressure interpolants, u and p, aregiven by u = 6Xj=1 qjuj; (2.1)and p = 3Xj=1 ljpj ; (2.2)where the functions qj and lj are, respectively, the quadratic and linear Lagrangebasis functions [85] associated with node j of the element, and where uj and pj arethe unknowns associated with the node. The Lagrange basis functions are de�nedin terms of the local or element coordinates (�; �) as follows:l1 = 1� � � � (2.3)l2 = � (2.4)l3 = � (2.5)q1 = l1(2l1 � 1) = 2�2 + 4�� + 2�2 � 3� � 3� + 1 (2.6)q2 = l2(2l2 � 1) = 2�2 � � (2.7)q3 = l3(2l3 � 1) = 2�2 � � (2.8)q4 = 4l1l2 = �4�2 � 4�� + 4� (2.9)q5 = 4l2l3 = 4�� (2.10)q6 = 4l3l1 = �4�2 � 4�� + 4� (2.11)



Chapter 2 26 The �nite element methodIt is important to note that the velocity interpolants de�ned using the Taylor-Hoodelement are not guaranteed to be divergence free in either the pointwise sense noras an integral over the element. Interpolants that are divergence free, in the lattersense, can be obtained if an alternative element such as the augmented Taylor-Hood element [108] is employed. These add a further, piecewise-constant, pressuredegree of freedom to each element, resulting in solutions for which the integral of thedivergence over each element is zero, i.e. the net mass ux into the element is zero.Such elements however have the disadvantage that the pressure solution is now, ingeneral, discontinuous at element boundaries. Furthermore, the addition of the newpressure degrees of freedom complicates the imposition of boundary conditions, dueto the possible presence of additional spurious pressure modes [34].2.1.4 A Stokes-ow test problemBefore discussing the additional di�culties faced when solving surface-tension-drivenfree-surface problems on �nite element meshes it is appropriate to �rst consider theconvergence properties of the spatial discretisation employed here. In particular it isimportant to verify that the theoretical convergence rates are attained where naturalboundary conditions are employed, where unstructured meshes are used and wherethe boundary is represented by curved-sided isoparametric elements. In theory,when a �nite element discretisation is intrinsically LBB-stable the full asymptoticrate of convergence will be obtained in both the velocity and the pressure variables[36]. Thus for the element employed here, one would expect to �nd that the errorin the velocity components varies as O(h3) and that the error in the pressure variesas O(h2), where h is a measure of mesh resolution such as element diameter or edgelength | the mesh parameter. Checking that these convergence rates are observedis a useful way of testing the correctness of the implementation and, in the lightof the discussion in the remainder of this chapter, will be seen to be particularlyimportant. For this purpose a standard Stokes-ow test problem [18] is considered.It is easily con�rmed that the steady-state Stokes equationsr2u�rp+ g = 0; (2.12)r:u = 0; (2.13)



Chapter 2 27 The �nite element methodwith body force g = (gx; gy), given bygx = 2x� 4 �y(1� 3y + 2y2)(1 � 6x + 6x2) + 3x2(1 � 2x+ x2)(2y � 1)� ;gy = �2y + 4 �x(1 � 3x + 2x2)(1 � 6y + 6y2) + 3y2(1 � 2y + y2)(2x� 1)� ;have the following exact solutionu(x; y) = x2(1 � x)2(2y � 6y2 + 4y3);v(x; y) = y2(1� y)2(�2x+ 6x2 � 4x3);p(x; y) = x2 � y2:Such a solution cannot be represented exactly using the elements employed here andthus provides a convenient way of estimating the accuracy of solutions obtained.A family of circular meshes with radius 0:5 and centre (0:5; 0:5) are employed, asdetailed in Table 2.1. The second column of Table 2.1 gives the mesh parameter h foreach of four meshes, while the third column gives Nv the number of vertices in eachmesh. Figure 2.4 shows a typical mesh, corresponding to mesh 2 in Table 2.1. As canbe seen, the meshes are unstructured ones and have curved boundary edges 1. Themesh generation procedures used to generate the meshes are described in Section2.3. In order to solve this problem the �nite element formulation described inSection 3.7 is employed, the boundary being held �xed, and the resulting systems oflinear equations solved by the methods described in Section 3.10. Natural boundaryconditions corresponding to the stress � = (�x; �y), computed using the formulae�x = �(x2 � y2)nx+2nx h2x(1� x)2(2y � 6y2 + 4y3)� 2x2(1 � x)(2y � 6y2 + 4y3)i+ny hx2(1 � x)2(2� 12y + 12y2) + y2(1 � y)2(�2 + 12x� 12x2)i ;�y = �(x2 � y2)ny+2ny h2y(1 � y)2(�2x+ 6x2 � 4x3)� 2y2(1� y)(�2x+ 6x2 � 4x3)i+nx hx2(1� x)2(2 � 12y + 12y2) + y2(1 � y)2(�2 + 12x � 12x2)i ;1Note that the slight oscillations apparent on close inspection of the free surface are an artefactdue to the limited resolution of the method of reproduction employed. In reality all the interioredges are perfectly straight. When viewed at a higher resolution the free surface appears quitesmooth.
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Figure 2.4: Stokes-ow test problem, unstructured circular mesh of radius 0:5 cen-tred at (0:5; 0:5): mesh 2 of Table 2.1.were imposed at all but two boundary nodes. Dirichlet boundary conditions wereimposed at the two boundary nodes lying on the line y = 0:5 so as to make the prob-lem non-singular. Figures 2.5 and 2.6 show respectively the velocity and pressure�elds computed on mesh 2. Note that no post-processing of the velocity or pressure�elds is performed for this or any of the other �gures in this thesis.Mesh h Nv Max. error u Max. error p Mean error u Mean error p1 0.5000 41 3.11E-4 1.45E-2 8.19E-5 4.51E-32 0.2500 161 5.16E-5 2.30E-3 1.08E-5 5.34E-43 0.1250 663 5.30E-6 5.48E-4 1.36E-6 1.02E-44 0.0625 2594 6.81E-7 1.34E-4 1.43E-7 2.46E-5Table 2.1: Isoparametric V6-P3 element convergence-rate data.In order to assess the accuracy of the computed solutions as the mesh was re�ned,the maximum absolute nodal errors in the u component of the velocity and inthe pressure were recorded together with the corresponding average absolute nodalerrors. These are shown as columns four through seven of Table 2.1. Note that withan unstructured mesh superconvergence [123] is not expected to occur, and thusthe accuracy of the solution at nodes will be of the same order as that at arbitrary



Chapter 2 29 The �nite element methodpoints2. Least-squares analysis of the errors listed in Table 2.1 gave the followingapproximate relationships:Maximum nodal error in u � 2:7� 10�3 h3:0;Average nodal error in u � 7:1� 10�4 h3:1;Maximum nodal error in p � 6:0� 10�2 h2:2;Average nodal error in p � 2:1� 10�2 h2:5;con�rming that the error in the velocity components is O(h3), and that the errorin the pressure is O(h2) | the theoretical maximum obtainable rates. These re-sults give reason to be con�dent in the correctness of the implementation of the�nite element codes, as well as con�rming that the imposition of natural boundaryconditions, on a boundary comprised of curved-sided isoparametric edges, need notcompromise the asymptotic order of accuracy of the solutions obtained.
Figure 2.5: Stokes-ow test problem on an unstructured mesh, domain of radius 0:5centred at (0:5; 0:5): velocity �eld on mesh 2. v � 0:012 at (0:75; 0:5).2When regular meshes based on a uniform grid were investigated, convergence rates approachingO(h4) were observed in both u and p.
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Figure 2.6: Stokes-ow test problem on an unstructured mesh, domain of radius 0:5centred at (0:5; 0:5): pressure �eld on mesh 2, equispaced isobars, p = 0 on y = x,p � 0:75 at (1:0; 0:5).2.2 Boundary discretisationAs mentioned in Section 1.5.3, one of the main advantages of the �nite elementmethod for free-surface problems is that the free surface can be represented directlyusing the edges of elements. If the edges are linear then the boundary location willbe asymptotically O(h2) accurate. Allowing the use of piecewise-quadratic edges, asdescribed above, potentially allows O(h3) accuracy to be achieved for the locationof the boundary.If one restricts the quadratic Lagrange basis (2.6{2.11) to the lower edge of themaster element shown in Fig. 2.2, by setting � = 0, one obtains the following basisfor the edge: q1 = 2�2 � 3� + 1;q2 = 2�2 � �; (2.14)q4 = �4�2 + 4�:



Chapter 2 31 The �nite element methodThe edge is thus given by s(�) = Xj=1;4;2 sj(�)qj; (2.15)where 0 � � � 1, and s1, s4 and s2 are the positions of nodes 1,4 and 2. Clearly,the curve s(�) passes through the nodes s1, s4, and s2. Less obvious is the fact thatthe tangent to s at s4 is given by s2� s1, i.e. the tangent at an edge node is parallelto the chord drawn between the edge's endpoints. In principle, by de�ning a globalarc-length parameter s, one can represent a complete free surface using a singlepiecewise-quadratic parameterised curve s = s(s) and thus avoid the problems thatarise when non-parametric schemes are employed. Fortunately, the construction ofthe global arc-length parameter is not normally required, since all the boundaryintegrals required by the �nite element method can be evaluated using an element'slocal-coordinate system.As mentioned in Section 2.1.2, the displacement, �r, of each free-surface edgenode from its corresponding linear-edge midpoint, must be bounded so that�r � Ch2; (2.16)where C is a constant and where h is the length of the chord joining the edge'sendpoints. Clearly this imposes restrictions on the set of piecewise-quadratic freesurfaces that are representable for a given value of C, and it suggests that di�cultiesmight arise as a mesh is re�ned. In particular the question arises as to whether,for a given boundary, one can �nd a constant C that will bound �r uniformly ash ! 0. Consider a curve S. If S is smooth, then on a su�ciently small scale itwill have approximately constant curvature and may thus be accurately modelledby a circular arc of radius R. Let S initially be discretised into a number of edgessuch that (2.16) is satis�ed by each edge for some �xed value of C. Fig. 2.7 showsa single edge together with the chord joining its ends. The distance �r is given by�r = R�vuutR2 �  h2!2 = R �Rvuut1�  h2R!2: (2.17)Expanding as a Taylor series about h2R = 0 one may obtain the following asymptoticformula �r = R0@12 h2R!2 + 18 h2R!4 + 116 h2R!6 +O(h8)1A ; (2.18)in which the leading term in h is O(h2). Thus, so long as (2.16) is satis�ed by an
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Figure 2.7: Using an isoparametric element to represent a circular boundary: com-puting the edge displacement �r.initial discretisation of S, a regular subdivision of the discretisation will also satisfy(2.16). Consequently, as h ! 0, the full asymptotic rate of convergence in thesolution is potentially attainable.2.2.1 Tangent continuityThe next issue to consider is that of the degree of continuity of the piecewise bound-ary representation at boundary vertices. Along boundary edges the interpolatingcurve is smooth since it is a polynomial. At free-surface vertices, however, thereis no way to guarantee that the two tangents, t1 and t2, corresponding to the twoadjacent elements will remain parallel, even if they are so initially. Fig. 2.8 illus-trates a situation that might arise. In this case the angle between the two tangentsis �1 + �2. In practice one would hope that large jumps in the tangent would notarise, and experience suggests that, when a free surface is advected using a stablescheme, they do not. If a unit circle is discretised as 32 equally-sized edges (a fairlycoarse mesh) by placing all nodes on the boundary, then the initial angles betweentangents at vertices are of the order of 0:05�. The angles that arise in the course ofa typical simulation are generally comparable. While such discontinuities are barelyvisible to the naked eye, they potentially cause problems when free-surface stressboundary conditions are imposed, since at such vertices the free-surface normal isnot uniquely de�ned. As a result tangential stress errors may arise, an issue that isdiscussed in Section 4.4.2.
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Figure 2.8: Tangents and normals at a vertex of a piecewise-quadratic boundaryrepresentation.2.2.2 Computation of boundary conditionsThe speci�cation of stress boundary conditions, in general, requires the computationof both normal and tangential components of the stress. However, at an interfacebetween a liquid and a gas (the latter of negligible viscosity and density) the appro-priate stress boundary condition has only a normal component i.e. the tangentialstress is zero. The normal component of the stress is generally made up of twocontributions. The �rst is due to the pressure of the gas acting on the free surface.The second is due to a phenomenon that is not described by the Navier-Stokes equa-tions, and which is associated only with interfaces between immiscible uids. Thisis known as the pressure defect [105], the magnitude of which, p̂, is given at a pointon a free surface by p̂ = 2H =  (k1 + k2) =  � 1R1 + 1R2� ; (2.19)where H is the mean curvature of the surface, k1 and k2 are the principal curvaturesand R1 and R2 are the corresponding radii of curvature. For a two-dimensionalproblem one simply sets k2 = 0. The parameter , the surface tension or surfaceenergy, is typically assumed to be a constant for any given pair of immiscible uids.The computation of the curvature of the free surface is perhaps the most di�cultproblem faced when dealing with surface-tension-driven ows. Curvature is de�nedin two dimensions [74] for a free surface given in the parametric form (x(s); y(s)) byk(s) = xsyss � ysxss(xs2 + ys2)32 ; (2.20)



Chapter 2 34 The �nite element methodwhile the outward free-surface normal is given byn(s) = 1pxs2 + ys2 (ys;�xs)T : (2.21)The approach to the computation of boundary conditions adopted by Mattheijand van de Vorst [113, 114] (which was investigated as an alternative to the tech-niques employed here) involves the estimation of xs, xss etc. at free-surface nodesusing �nite-di�erence formulae involving the locations of neighbouring nodes. For afree surface de�ned by the ordered set of nodes fsi = (xi; yi) : i = 1; : : : ; NBg theyemploy the following estimates for the derivatives3 at node si:xs = 112h (xi�2 � 8xi�1 + 8xi+1 � xi+2) +O(h4); (2.22)ys = 112h (yi�2 � 8yi�1 + 8yi+1 � yi+2) +O(h4); (2.23)xss = 112h2 (�xi�2 + 16xi�1 � 30xi + 16xi+1 � xi+2) +O(h4); (2.24)yss = 112h2 (�yi�2 + 16yi�1 � 30yi + 16yi+1 � yi+2) +O(h4): (2.25)The formulae (2.22{2.25) are all formally fourth-order accurate, and may be derivedby �tting a fourth-degree Lagrange interpolation polynomial through a node and itsfour equally spaced neighbours.It is well known that numerical di�erentiation in �nite-precision arithmetic be-comes increasingly ill-conditioned as the distance between sampling points tendstowards zero [21, 40]. This results from the loss of accuracy when quantities of sim-ilar size are subtracted. Indeed it is easy to show that for a given problem there isan optimum nodal spacing h� that minimises the total error due to the combinationof truncation and rounding error. In practice experience shows that the di�erenceformulae (2.22{2.25) become increasingly inaccurate as the distances between nodesare reduced in an attempt to make the computations more accurate. Thus, while afree surface may appear smooth to the eye, its numerically computed �rst deriva-tives may display considerable errors, and its second and higher derivatives consistentirely of numerical noise. In �nite-precision arithmetic there thus appears to be alimit to the accuracy to which derivatives can be computed numerically, even whenthe shape of the free surface is known exactly.While the above approach may be adequate when the free surface is smooth, lo-cally non-oscillatory, and the nodes are not too close together; when the free surface3The formulas given here are actually taken from [16].



Chapter 2 35 The �nite element methodis non-smooth, and potentially contaminated with numerical noise, as will often bethe case in a discrete simulation, high-order interpolation polynomials can exhibitmarked oscillations and may thus result in highly inaccurate estimates of the freesurface's curvature. Mattheij and van de Vorst appear to avoid this problem byperiodically redistributing free-surface nodes | a process that implicitly involvessome local smoothing of the free-surface shape, removing the higher-frequency com-ponents of noise that can make higher-order di�erence formulae less accurate thanlower-order ones.While van de Vorst [113] suggests that the scheme (2.20|2.25) for computing kis third-order accurate, he does not attempt to demonstrate this numerically. Thisauthor's experience when investigating such methods suggests that van de Vorst'sscheme may in practice be no better than �rst-order accurate, particularly in thelimit as h! 0. The use of free-surface smoothing to enhance the accuracy of com-puted boundary conditions, whether explicitly performed, or `hidden' as part of aboundary node redistribution operation, may be criticised on the grounds that ite�ectively introduces non-physical forces into the problem. Thus, while smooth-ing allows the use of higher-order di�erence formulae with higher formal orders ofaccuracy, it is not clear that one actually gains any accuracy in practice. A fur-ther criticism arises from the fact that the �ve-point di�erence stencils make use ofnon-local information when applied to quadratic elements. That is, the boundaryconditions for an element depend on information from adjoining elements, as wellas the element itself, and may thus potentially introduce non-physical e�ects.In the current work numerical smoothing is not employed. For surface-tension-driven ows this appears to be satisfactory since surface tension acts locally soas to rapidly smooth out any small-scale oscillations that arise in the free-surfaceshape. Thus, provided the time-integration schemes employed are stable, stabilityof the free surface should follow as a consequence of the underlying physics. Fornon-surface-tension-dominated ows no such mechanism is present and the use ofsome form of smoothing appears to be an essential consequence of the use of discreteschemes.Boundary conditions are computed directly from the current free-surface repre-sentation using the approach to be described shortly. Since the free surface is atbest O(h3) accurate, the best estimates of xs and xss etc. that can be computed areonly O(h2) and O(h) accurate respectively. The approach adopted here makes useof the identity kn = @t@s; (2.26)



Chapter 2 36 The �nite element methodderived from the Frenet formulae for a unit-speed curve [74]. As will be shown inChapter 3, in two dimensions the �nite element formulation of the free-surface stressboundary condition involves integrals of the formZ BA qikn ds = Z BA qi@t@s ds; (2.27)where qi is the restriction of a quadratic basis function to the free surface, and Aand B are the limits of integration for a given edge. Integrating by parts in themanner suggested by Ruschak [91] one obtainsZ BA qi @t@s ds = qi[t]BA �  Z BA t@qi@s ds; (2.28)where t = Xk=1;4;2 sk @qk@s ; (2.29)and the sk are the positions of the three nodes comprising a free-surface edge. Notethat the integral on the right-hand side of (2.28) involves only the �rst derivatives ofthe basis functions, qi, which for quadratic elements are piecewise-linear functionsof s. Thus, while one gains no formal accuracy by using this approach, the needto form second derivatives numerically is avoided and, at the same time, one canconveniently allow for any discontinuities in the tangent at free-surface vertices,through the jump term on the right-hand side of (2.28). Note that if piecewiselinear free-surface edges were to be employed then the only contributions to thecurvature would result from the discontinuities at vertices and one would expect theerror in the boundary conditions to be O(1), i.e. convergence would not be expectedas the mesh is re�ned.2.2.3 Equidistribution of curvatureIn practice a typical free surface will not have constant curvature; indeed the curva-ture may vary by several orders of magnitude or even be of di�erent sign on di�erentparts of the free surface. Consequently, the free-surface normal stress and its gra-dient may vary considerably over the free surface. In such circumstances the useof a uniform mesh, selected so as to give a certain level of accuracy in the bound-ary conditions and thus the solution, will not be an e�cient use of resources. Thealternative, discretisation of the free surface with respect to an appropriate error in-dicator, thus appears attractive in such situations. For surface-tension-driven ows,



Chapter 2 37 The �nite element methodthe driving forces are greatest in regions of high curvature and it is appropriate tohave more free-surface nodes in these regions, so as to more accurately represent thefree surface's shape and thus minimise the errors in the boundary conditions.Consider the Taylor expansion for a smooth free surface S(s), about a point onthe free surface, designated s = 0 for convenience, i.e.S(s) = S(0) + @S@s s+ @2S@s2 s22 + @3S@s3 s36 +O(s4): (2.30)If one attempts to represent such a free surface using quadratic polynomials in sthen it is clear that the magnitude of the coe�cient in the leading term of thelocal-truncation error will be proportional to@3S@s3 ; (2.31)which in turn is proportional to @k@s (2.32)the rate of change of curvature with respect to arc length.If a known free surface is discretised using piecewise-quadratic elements, at atypical point on the free surface the discrete representation will be in error by anO(h3) quantity, where h is free-surface edge length, provided that the magnitude of(2.31) is bounded on the free surface. One way of proceeding would be to positionboundary vertices fsi : 1 = 1; : : : ; NBg, so that for each elementZ h0 �����@3S@s3 s22 ����� ds � �; (2.33)for a given choice of �. If one assumes that the rate of change of curvature withrespect to arc length is locally approximately constant thenZ h0 �����@3S@s3 s22 ����� ds = �����@3S@s3 ����� Z h0 s22 ds = �����@3S@s3 h36 ����� � �; (2.34)giving �����@3S@s3 s36 ����� � �����@3S@s3 h36 ����� � �; (2.35)and thus bounding the local truncation error uniformly. This is however hard toachieve in practice, due to the di�culty of computing (2.31) numerically with su�-cient accuracy. Thus, while it may be possible to �nd such an equidistribution for



Chapter 2 38 The �nite element methodan analytically de�ned curve, attempting to maintain such an equidistribution fora piecewise-quadratic representation would be di�cult.The alternative (less accurate) approach adopted here involves the discretisationof the free-surface boundary so as to approximately equidistribute curvature betweenelements. To understand why this is e�ective consider a Taylor expansion for thecurvature k(s) about a point s = 0 on a free surface, i.e.k(s) = k(0) + @k@s (0)s +O(s2): (2.36)If a curve is approximated using a piecewise-quadratic interpolant then the leadingterm in the error estimate for the curvature will be of O(h). Thus the interpolatedcurvature will have the same order of accuracy as would be the case if a piecewise-constant representation were employed for k(s). In such circumstances only theconstant term in the expression (2.36) can be represented and consequently thesecond term will be the leading term in the local truncation error for the curvature.It thus appears reasonable to employ the second term on the right-hand side of(2.36) as an error indicator when creating or updating a boundary mesh.In order to estimate the accuracy of the boundary conditions that will resultfrom a given distribution of free-surface nodes k(s) must be integrated along a free-surface edge. If the �nite element weighting function qi and the normal n are ignored(which is reasonable since jqinj is always less than one) and  = 1 is assumed, thenthe following expression for the magnitude of the discrete boundary condition thatwill be applied at a free-surface node may be obtained from (2.36) and (2.27)Z@
i k(s) ds = Z@
i k(0) ds + Z@
i @k@s (0)s ds+O(s2hi) (2.37)= k(0)hi + @k@s (0)hi22 +O(hi3); (2.38)where hi = Z@
i d s (2.39)is the length of edge @
i and again we assume @k@s is approximately constant. Inthe following it will be assumed, for simplicity, that k(s) � 0 on @
. Given that adiscretisation satis�es the equidistribution conditionZ@
i k(s) ds = kihi � � (2.40)



Chapter 2 39 The �nite element methodfor each edge @
i, where ki is the mean curvature of the edge, an estimate of (2.32)at vertex i may be obtained using the following �nite-di�erence approximation�����@k@s �����i ' 2 jki � ki�1jhi + hi�1� 2(jkij+ jki�1j)hi + hi�1� 2 � �hi + �hi�1 �hi + hi�1= 2�hihi�1 : (2.41)Thus the following bound for the second term in (2.38) is obtained�����@k@s (0)�����ihi22 � � hihi�1 : (2.42)Finally, if it is assumed that hi � �hi�1 (2.43)for some constant �, the following bound for the magnitude of the error in thediscrete boundary condition at a free-surface node is obtained�����@k@s (0)����� hi22 � 2��; (2.44)the additional factor of two appearing since a discrete boundary condition involvespotentially two free-surface edges. One thus arrives at the following somewhat dis-appointing conclusion: re�ning a piecewise-quadratic boundary mesh by halving �,and thus doubling the number of free-surface nodes, will approximately halve the er-ror in the discrete boundary condition imposed at any node common to both meshes,and consequently halve the error in the solution. The scheme is thus O(h) accurate.It is interesting to note that Mattheij and van de Vorst [113, 114] employ equidis-tribution with respect to free-surface curvature rather than the more sophisticatedschemes that would be required to truly reect the formal accuracy of their higher-order di�erence schemes.



Chapter 2 40 The �nite element method2.2.4 Initial boundary discretisationHaving discussed the theoretical issues relating to the piecewise-quadratic represen-tations of free surfaces it is now appropriate to turn to the algorithmic details ofthe free-surface discretisation scheme employed. One important question that arisesis whether one can reasonably expect to be able to model the evolution of a freesurface that initially contains a sharp corner i.e. a large discontinuity in its tangent.Consider the corner of a square; away from the corner the edges are straight, i.e.have zero curvature, but at the actual corner itself the curvature is unde�ned. Whilethe �nite element method is ideally suited to dealing with domains with corners un-der normal circumstances, if one attempts to model a free-surface corner using apair of elements, as depicted in Fig. 2.9(a) (being careful to `triangulate into thecorner'), one observes that after only a small number of time steps a con�gurationlike that shown in Fig. 2.9(b) arises. The �nite element method succeeds in �ndinga plausible evolution of the free surface, but the unfortunate bulging of the twoelements adjacent to the corner, due to the localisation of the driving force near tothe corner, rapidly leads to the isoparametric discretisation becoming singular.If the mesh is automatically re�ned as soon as the bulging starts to occur, it maybe possible to continue the simulation, but typically such re�nement rapidly leads toelements that are extremely small | necessitating the use of very small time steps ifan explicit time-integration scheme is employed. Thus explicit methods are unlikelyto be cost e�ective in such circumstances and implicit methods are necessary in orderto deal with the sti� systems of equations that arise. Furthermore, the considerablee�ort put into modelling the regions of high curvature that develop adjacent tothe corners is unjusti�ed since the shape of the free surface arises from an initiallycoarse mesh and is thus inaccurate. The simplest remedy, and the one employedin the current work, is to round-o� the corners in such situations. This does notappear to be too unreasonable a perturbation of the original problem, given thenatural tendency for corners to evolve into regions of locally high curvature. Whilethis allows for better error control in the vicinity of corners, it does not remove theproblem of the sti�ness of the systems of equations involved.2.2.5 Boundary discretisation constraintsThe �rst step in meshing a domain 
 is the discretisation of its boundary @
. Forsimplicity the discussion here is restricted to cases in which the free-surface boundarycan be represented by a single closed curve parameterised by arc-length s. In the
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Figure 2.9: Mesh failure at a free-surface corner.present work an initial boundary discretisation is chosen so that the curvature k(s)is equidistributed, i.e. Z@
i kds � ktol (2.45)for each free-surface edge @
i, where ktol is a prescribed parameter. It is furtherrequired that edge length be constrained so thatZ@
i ds � hmax; (2.46)for all i, where hmax is a prescribed parameter. This constraint imposes an upperlimit on the size of element generated. Finally, the following constraints on boundaryedge length are imposed: Z@
i ds � � Z@
i+1 ds; (2.47)Z@
i ds � � Z@
i�1 ds; (2.48)where � is a mesh smoothness parameter, chosen to prevent the ratio of lengthsof adjacent boundary edges being too large. Experience suggests that a value of� = 1:5 is satisfactory. Edge nodes are located so that they lie equidistant fromtheir neighbouring vertices. Note the correspondence of ktol and � here, with � and �in (2.44). The above mesh-quality constraints are further reected in the algorithms



Chapter 2 42 The �nite element methoddescribed in Section 2.4 that are employed to maintain mesh quality as the freesurface evolves.2.3 Interior mesh generationOnce a domain's boundary has been initially discretised, and thereafter wheneverit is modi�ed, a new interior mesh must be generated. This can be achieved conve-niently by the use of one of a number of widely available automatic mesh generatorssuch as Triangle [96], GRUMMP [72] and GEOMPACK [55]4. The package employedhere is Jonathan Shewchuk's 2-D Delaunay mesh generator Triangle [96].Based upon Ruppert's Delaunay re�nement algorithm [90], Triangle will selec-tively re�ne an initial mesh, deciding whether to split each triangle according to aset of area constraints associated with the triangles of the original mesh. Ruppert'sscheme has the important property that it is guaranteed to produce a mesh withno small internal angles, and thus no elements with large aspect ratio5. Speci�-cally, Triangle is guaranteed to produce a mesh with no internal angle less thanapproximately 20:7�. This property is however compromised if, as here, Triangleis employed to generate a boundary constrained mesh, i.e. Triangle is not allowedto split the original boundary edges. To prevent this becoming a serious problem,particularly where boundary discretisations with large variations in edge length areinvolved, here the interior mesh is graded so that edge length does not di�er toogreatly between neighbouring elements. This is achieved by associating with eachelement i of an initial coarse mesh a length li given byli = min�hmax;minj �hj + 12 jmj � cij�� ; (2.49)where mj is the location of the midpoint of boundary edge j and hj is its length,where ci is the centroid of element i, and where one minimises over the set ofboundary edges j = 1; : : : ; NB. This translates into a corresponding maximum-areaconstraint ai, given by ai = p32 li2: (2.50)In other words, ai is chosen to be the area of the equilateral triangle with sideli. While the choice of the above grading is purely motivated by the need to ensure4See http://www.andrew.cmu.edu/user/sowen/survey/index.html for an excellent short intro-duction to the various methods of mesh generation commonly employed in 2- and 3-D.5Longest edge divided by shortest altitude.



Chapter 2 43 The �nite element methodadequate mesh quality, i.e. for essentially geometric reasons, in practice, for surface-tension-driven ows at least, the patterns of local re�nement that arise are similar tothose that might be chosen when adaptively re�ning with respect to stress gradientsin the solution.Fig. 2.10 illustrates the e�ect the parameter ktol has on the mesh produced by
(1)

(2)

(3) Figure 2.10: Meshes for an ellipse.
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Internal angle (degrees)Figure 2.11: Distribution of internal angles for graded-ellipse mesh 2.Mesh ktol hmax Elements Unknowns1 0.4 0.5 144 7212 0.2 0.5 228 11393 0.1 0.5 428 2129Table 2.2: Elliptical cylinder problem: mesh statistics.Triangle when grading is performed. The �gure shows three meshes for an ellipse,generated by holding hmax �xed while varying ktol. Table 2.2 summarises the meshstatistics for the three meshes, while Fig. 2.11 shows the distribution of internal ele-ment angles for mesh 2. The minimum and the maximum internal angles in mesh 2are 20:54� and 130:84� respectively, while the maximum element aspect ratio is 4:37.As Fig. 2.11 shows, internal angles are clustered around 60�, with the distributionbeing skewed towards larger angles. Thus while the theoretical Delaunay minimumangle is not quite being attained, presumably because a boundary-constrained tri-angulation is requested, the resulting mesh is perfectly satisfactory.One criticism of Triangle is that it occasionally produces meshes that have un-necessary elements, as illustrated in Fig. 2.12(a). In the absence of any a prioriknowledge of the solution expected, mesh (b) would generally be preferred, sinceit is likely to be just as accurate, but involves fewer nodes and thus lower compu-tational expense. Such anomalous con�gurations can easily be removed, requiringa search followed by local mesh repair. In the current work this is not attempted,primarily for reasons of simplicity but also because the potential gains in e�ciencyare small. A second criticism of Triangle is that the meshes are `noisy' and that
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(a) (b)Figure 2.12: Unnecessary elements: (a) a non-optimal mesh (b) a more e�cientmesh.a greater regularity of node spacing might be expected to improve the overall ac-curacy of the interpolated solution. Laplacian smoothing, as described in Section2.5.2, might usefully be employed to achieve this.The above discussion of mesh quality does not take into account the importante�ects that the interaction between mesh geometry and local solution gradients haveon solution accuracy. More sophisticated mesh quality indicators would take intoaccount whatever information was available about the nature of the solution in thevicinity of an element, typically by employing the solution from previous time steps.2.4 RemeshingIn general, as a free-surface mesh evolves with time, there will be regions of thefree surface in which the curvature is increasing or decreasing. In other regionsfree-surface edges may be increasing or decreasing in length. Clearly, if the qualityof the free-surface discretisation is to be maintained, re�nement and dere�nementmust be performed in such regions, and will involve the insertion and removal ofnodes.Whenever nodes are inserted into or removed from a free-surface representationthe regeneration of the interior mesh is necessary. For the relatively small meshesconsidered here, the cost of performing such a regeneration is su�ciently low thatthere is no need to consider more involved schemes that perform local mesh regen-eration. Since remeshing, locally or globally, typically requires a full restart of anytime-integration scheme involved, at considerable expense, and for the Navier-Stokesequations (but not the Stokes equations) requires interpolation of the velocity so-



Chapter 2 46 The �nite element methodlution, again at considerable expense and with potential loss of accuracy, it makessense to aim to perform remeshing as infrequently as possible. In the interests ofe�ciency it is thus normally appropriate to postpone coarsening of the free-surfacemesh until the next occasion a full mesh regeneration is necessary. Mesh re�ne-ment is, however, necessarily more urgent. This suggests the following strategy:re�ne aggressively, coarsen cautiously. In the scheme described here interior meshregeneration is carried out when dictated by one or more of the following criteria:1. a free-surface edge is too long, i.e.hi > hmax; (2.51)where hi is the length of edge i;2. the integral of the modulus of the curvature along a free-surface edge is toogreat, i.e. Z@
i jkj ds > ktol; (2.52)3. the minimum internal angle has fallen below a prescribed tolerance, i.e.�min < '; (2.53)where �min is the minimum internal angle in the current mesh, and ' is aprescribed minimum angle;4. a free-surface edge node is located too far from the midpoint of the chordjoining the ends of the edge, i.e.jei � sij > � hi (2.54)or jei � si+1j > � hi; (2.55)where ei is the position of edge node i, si and si+1 are the vertices associatedwith the edge and � is a parameter chosen to bound the displacement of afree-surface edge node from its edge midpoint.Criteria (2.53), (2.54) and (2.55) reect constraints that must be applied if theoptimum asymptotic rate of convergence of the solution is to be achieved [103].In particular (2.53) reects the need to bound the maximum interior angle in each



Chapter 2 47 The �nite element methodelement away from 180�. In practice one instead bounds the minimum interior angleaway from zero. For triangular elements (2.53) is equivalent to the bound�max < 180� � 2': (2.56)In practice a value of ' = 10� is found to be satisfactory. The avoidance of smallangles in the initial mesh is particularly important when the interior nodes of amesh are in motion due to the application of the mesh-update methods described inSection 2.5. Since it is in practice impossible to predict which angles will increaseand which will decrease in such circumstances, the only way of avoiding having toremesh too often is to employ meshes in which the minimum angle is maximised.For free-surface problems, bounding the minimum angle away from zero also helpsto avoid di�culties that can arise when an element with large aspect ratio occurswith one of its long sides forming part of a curved free surface.Criteria (2.54) and (2.55) trigger a mesh regeneration whenever a free-surfaceedge node is found to be displaced too far from the midpoint of the chord joining itsends. In such (rare) situations the edge node must be adjusted i.e. moved closer tothe edge midpoint. A value of � = 1:1 has been found to be satisfactory in practice.Finally, since in the current scheme only the need for re�nement can trigger a meshregeneration, it is necessary to place an upper limit on the number of time steps thatare attempted before a full mesh regeneration occurs, so as to allow dere�nement tooccur. In practice a limit of 50 time steps is often appropriate.Once the decision has been taken to remesh the domain, the opportunity toupdate the free-surface representation arises. This involves three distinct stages:re�nement, dere�nement and adjustment. The �rst stage, re�nement, involves theinsertion of new nodes into the free-surface representation. The second stage, dere-�nement, involves the removal of surplus nodes. Finally, any necessary adjustmentsof edges are performed. These processes are described below, and involve constraintsrelated to but not identical with those employed in Section 2.2.5.2.4.1 Boundary re�nementThere are three circumstances in which a boundary edge must be split:1. an edge is too long, i.e. hi > � hmax; (2.57)



Chapter 2 48 The �nite element methodwhere the constant � = 0:9 is included so that edges are split aggressively,minimising the risk that a forced remesh will be necessary too soon in thefuture.2. the integral of the modulus of the curvature along the side is too great, i.e.Z@
i jkj ds > � ktol; (2.58)where again the constant � = 0:9 is included so that edges are split aggressively,so as to minimise the risk that a forced remesh will occur too soon as a resultof (2.52) being violated.3. the ratio of adjacent edge lengths is too large, i.e.hi > � min(hi+1; hi�1): (2.59)Note that the value employed for � in (2.59) is considerably larger than that em-ployed for � in (2.47) and (2.48), when the initial boundary mesh is generated. Thevalue of the constant � is chosen as a compromise between maintaining acceptablegrading of the mesh's boundary and allowing dere�nement to occur unhindered. SeeTable 2.3 for suggested values of � and �.Once the decision has been taken to split an edge, the problem arises of howto perform the re�nement in such a way as to introduce the minimum error intothe free-surface representation. Two types of error are of particular concern. First,one would like each splitting operation to preserve domain area. Second, experienceshows that it important to ensure that when an edge is split the tangents at the endsof the edge do not change greatly. If the tangents at the edge endpoints are changedto a signi�cant extent then discontinuities in the tangent may be introduced atvertices, resulting in spurious transient motions of the free surface as surface tensionacts to smooth the discontinuities.Figure 2.13 shows an edge AB that is to be split near its midpoint C. Ideallyone would like to preserve the tangents at the original end points, and to have thetwo tangents at the newly inserted vertex parallel i.e.tA(n+1) = tA(n) (2.60)tC+ = tC� (2.61)tB(n+1) = tB(n) (2.62)
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Figure 2.13: Splitting an edge.where tA(n) is the tangent at A before re�nement, tA(n+1) the tangent at A afterre�nement and tC� and tC+ are the tangents, to the edges AC and CB respectively,at C after re�nement. Thus, if area must also be conserved, there are four constraintsto be satis�ed. In principle there are six degrees of freedom with which to satisfythese constraints (the locations of three nodes), and even if it is insisted that the twonew edge nodes lie on the bisectors of the chords AC and CB, there are still fourdegrees of freedom to work with. While such approaches were investigated as partof the current work, in practice the systems of simultaneous equations that ariseare often ill-conditioned, and consequently di�cult to solve accurately and reliably,resulting in the introduction of error in the free-surface shape. Such ill-conditioninggenerally becomes worse as the mesh is re�ned in response to these errors, and thusinvariably rapidly leads to the complete breakdown of a simulation.In the interests of robustness and simplicity it has been found to be necessaryto relax the constraints on the tangents and with regard to area conservation, andto adopt the following procedure for splitting an edge:take the location of the original edge node to be that of new vertex, andtake the two points on the original edge that lie on the perpendicularbisectors of the chords AC and CB to be the locations of the two newedge nodes.This procedure is the one that has been found to be most satisfactory in practice,even though it is recognised that it not only fails to preserve tangent continuity, butalso does not conserve mass exactly.



Chapter 2 50 The �nite element method2.4.2 Boundary dere�nementTwo adjacent edges, @
i and @
i+1, are merged in either of the following circum-stances:1. the curvature of the two edges is of the same sign andZ@
i jkj ds + Z@
i+1 jkj ds < � ktol; (2.63)where the constant, � = 0:7, is chosen so that edges are merged cautiously,2. The combined length of the pair of adjacent edges lies below a given tolerancei.e. Z@
i ds+ Z@
i+1 ds < 2 hmin; (2.64)where hmin is a prescribed parameter chosen to limit the minimum boundaryedge length.The second criterion is included as a pragmatic measure for dealing with di�cultfree-surface geometries such as those with sharp corners. In normal practice onewould set hmin = 0. Dere�nement would appear to be more di�cult than re�ne-
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Figure 2.14: Merging two edges.ment since the aim is to preserve the free surface's current shape but, at the sametime, to employ fewer nodes in representing it | which is clearly in general impos-sible. Fortunately, however, the fact that dere�nement is being attempted normallyindicates that the current discretisation is more than adequate to represent the freesurface locally, and thus that one can a�ord to sacri�ce some accuracy; the exception



Chapter 2 51 The �nite element methodbeing when a minimum edge length is imposed, i.e. hmin > 0. Attempts to matchthe existing tangents at A and B and to simultaneously preserve area will clearly notwork since there are only two degrees of freedom available. The procedure adoptedfor merging two edges AC and CB is as follows:A point is found that lies on either of the two existing edges, and whichis equidistant between A and C. This is taken to be the location of thenew edge node.Figure 2.14 illustrates this process. As with re�nement, this approach does notconserve mass exactly, nor does it preserve the tangents at the ends of the edge. Itdoes however appear to work well in practice.2.4.3 Boundary edge adjustmentFundamental to the success of the isoparametric free-surface scheme is the require-ment that the bound (2.16) be satis�ed at all times. Figure 2.15 shows the resultof applying an a�ne transformation to a general element with a single curved side,so as to map the node opposite the curved side to the origin and the two straightedges onto the x0 and y0 axes, two di�erent locations for the edge node being shown.The midpoint and straight side of the master element are also shown. The need tokeep the isoparametric mapping invertible [103] means that an edge node must liein the shaded region (i.e. x0 > 14 and y0 > 14) shown in Fig. 2.15. If an edge nodeis placed outside this region then the Jacobian of the isoparametric transformationwill be zero at some points in the element and thus the transformation will be sin-gular. Allowing an edge node to approach the boundary of this region will resultin a rapid loss of accuracy, potentially leading to the complete failure of the �niteelement method.The motion of an edge node along the perpendicular bisector of the chord de�nedby the end points of the edge has already been allowed for in that if, for example, itresults in the curvature of the edge becoming too large, the edge will automaticallybe split. Singularity of the isoparametric transformation may thus be avoided byselecting a su�ciently small values of ktol. The possibility of the tangential motion ofedge nodes along the free surface must also be allowed for. While the displacementof an edge node in a direction parallel to the chord joining the edge's end pointschanges the edge's curvature locally, as may be seen in Fig. 2.15, it need not changethe total curvature of the edge by very much. Thus such displacements will not,in general, be detected by the re�nement criterion (2.58). Since the kinetic bound-
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Figure 2.15: Permissible locations for an edge node of an isoparametric element:shaded area. See text for explanation of coordinate system.ary condition speci�es that free-surface nodes need only be moved in the normaldirection, one would expect that any tangential motion of the nodes would be min-imal and experience bears this out. While there is no reason why small tangentialdisplacements of free-surface edge nodes should not be tolerated, there remains thepossibility that the accumulation of such displacements may result in (2.16) beingviolated. Thus some form of intervention, termed here the adjustment of an edge,may occasionally be necessary. Adjustment is carried out ifjei � sij > �� hi (2.65)or jei � si+1j > �� hi; (2.66)the constant � = 0:9 being included here so that the need to adjust edges does nottrigger mesh generation too often. The procedure for adjusting an edge is as follows:the intersection of the current edge with the perpendicular bisector ofthe chord drawn between the edge's end points is selected to be the newlocation of the edge node.An alternative approach would be to split an edge in two whenever the edge node'sdisplacement becomes too large. As with free-surface re�nement and dere�nementno explicit attempt is made to preserve the tangents at end points or to conserve
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B AFigure 2.16: Adjusting an edge.area. In practice, the adjustment of edges is rarely necessary and thus is not a majorsource of error.2.4.4 Selection of parametersIn an investigation employing the methods described above, it is intended that theparameters ktol and hmax will be varied by the user, so as to control the overallaccuracy of the solution. For a surface-tension-driven ow ktol will normally be thekey parameter since it dictates the accuracy of the free-surface representation andthus that of the free-surface boundary conditions. Since, as shown in Section 2.2.3,the error in the discrete free-surface boundary conditions is proportional to ktol,halving the overall error will require a doubling of the number of free-surface nodes.If the global mesh parameter hmax is also halved then the number of nodes in theresulting mesh will approximately quadruple. Clearly this is an undesirable stateof a�airs, since, even if an optimal ow-solver is employed6, the computational costof any calculation will increase quadratically, while the accuracy will increase onlylinearly.The O(h3) accuracy of the velocity �elds computed using the �nite elementmethod described in Section 2.1.4 provides a means for overcoming this di�culty.When ktol is reduced by a factor of two hmax, which controls the mesh resolutionaway from the boundary, need only be reduced by a factor of 2 13 to achieve a linear6One for which computational cost is proportional to the number of unknowns involved.



Chapter 2 54 The �nite element methodrate of convergence in the velocity throughout the domain. Thus one may selecthmax / ktol 13 (2.67)and as a consequence the overall cost of such a computation, assuming an optimalsolver, will be O(ktol�1; hmax�2) = O(ktol�1; ktol� 23 ) = O(ktol�1): (2.68)Thus, asymptotically the computational cost will be proportional to the accuracyof the velocity �eld obtained.Constant Function Minimum Value Maximum� Initial boundary smoothness parameter 1.20 1.50 2.00� Isoparametric displacement tolerance 1.05 1.10 1.20� Aggression factor when splitting edges 0.70 0.90 0.95� Caution factor when merging edges 0.50 0.70 � - 0.1� Boundary mesh smoothness tolerance 2.20 2.50 3.00' Minimum interior angle 5.00 10.00 15.00Table 2.3: Constants employed in the adaptive mesh generator: Actual values em-ployed together with suggested ranges.Table 2.3 summarises the values of the various constants employed by the au-tomatic mesh generator described above, together with suggested minimum andmaximum values. The values are not particularly critical and may be varied withinthe ranges shown without compromising the robustness of the method.2.5 Continuous mesh updateConsider the section of a piecewise-linear free surface depicted in Fig. 2.17(a), withthe outward free-surface normal shown. If the free-surface nodes move outward butthe interior nodes are held �xed then, as illustrated in Fig. 2.17(b), the elementsadjacent to the free surface will rapidly become distorted, leading to a potential lossof accuracy. If on the other hand the free surface is retreating then the situationis even worse, and there is now the danger that free-surface nodes might cross-overinto the second layer of elements, causing the mesh to tangle. Clearly in any generalpurpose scheme the locations of the interior nodes must be updated at each timestep in some fashion, if only to allow them to escape a retreating free surface.
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(Figure 2.17: Stretching of elements during motion of a free surface, n = outwardfree-surface normal: (a) before motion of free surface; (b) after motion of free surfacewith interior nodes held �xed n = outward free-surface normal.Central to the strategy described in Section 2.4 is the idea that full mesh regen-eration is performed at the end of a time step only if it is absolutely necessary. Atthe end of all other time steps the mesh is updated using some form of continuousmapping. To this end two techniques were investigated: a method based upon aglobal linear-elasticity model and a local Laplacian smoothing method.2.5.1 Linear-elasticity modelIn the �rst approach considered, the interior mesh is updated at the end of a timestep, using an elastic-mesh model based on that proposed by Lynch [66]. Thisinvolves solving a linear-elasticity problem for a set of interior-vertex displacements,using the most recent boundary-vertex displacements as boundary conditions. Thelinear elasticity model takes the form of a Poisson problemr � (Crx) = f ; (2.69)



Chapter 2 56 The �nite element methodwhere x is a vector of interior-vertex displacements to be found, f a vector repre-senting an optional body force and C a fourth-order elasticity tensor. For simplicityf was taken to be the zero vector and C to be the identity tensor. The appar-ent advantage of Lynch's method results from the understanding that continuousboundary conditions will result in a continuous deformation of the elastic sheet, andthus any mesh embedded in the sheet will itself distort in a continuous manner.Thus tangling of the mesh should not occur.If an appropriate weak form of (2.69) is discretised using linear elements and theGalerkin method applied, a symmetric positive-de�nite system of linear-algebraicequations is obtained. This auxiliary system is typically much smaller than thesystem arising from the main problem, involving approximately 1=9 the number ofunknowns. Furthermore it need only be solved approximately. This can be achievedcost-e�ectively using an iterative method, such as those described in Chapter 3. Inpractice the cost of such a solution is small in comparison to that of the main systemof equations.
(a) (b) (c)

(d) (e) (f)Figure 2.18: Uniform growth of a circular domain: a, b, c | elastic-mesh method;d, e, f | elastic-mesh method with Laplacian smoothing.Practical experience has however shown that Lynch's elastic-meshmethod is not,on its own, su�cient to ensure acceptable mesh quality. One failing of the methodcan be illustrated by considering a particularly simple free-surface problem. Figure



Chapter 2 57 The �nite element method2.18 shows the evolution of a circular mesh in which the free-surface nodes areconstrained to move radially outwards at a constant velocity. The top row (a){(c)illustrates the distortions that arise when the interior mesh is updated using only theelastic-mesh method. As Fig. 2.18(c) shows, elements near to the free surface haveundergone the largest deformations, while elements near to the centre have deformedonly slightly. Similar e�ects are also observed for more complex geometries such asthose described in Chapter 4. While this problem might be addressed by varying Cin response to the sizes of nearby elements, such an approach would clearly requireconsiderable additional research.2.5.2 Laplacian smoothingIn view of the above di�culty Laplacian smoothing of the mesh [19, 64, 25, 73, 27]was also investigated. This involves the application of a weighted-Jacobi smoothingoperator a number of times after each elastic-mesh solve. The operator employedamounts to updating the position ri of each interior node according to the followingiterative scheme r(n+1)i = (1� !)r(n)i + !Ni NiXj=1 r(n)j ; (2.70)where j sums over the Ni neighbouring vertices of vertex i, and ! is a relaxationparameter, here taken to be 0:1. The operator (2.70) is applied a small numberof times (e.g. 40), rather than iterating to convergence; the Jacobi-type relaxationscheme being preferred to its Gauss-Seidel equivalent since it does not introduceany e�ects dependent upon node ordering. The cost of applying such a smoothingoperation is negligible in comparison to that of solving the main system of equations.The bottom row of Fig. 2.18 shows the evolution of the same mesh when Laplaciansmoothing is carried out in addition. Clearly the results obtained with Laplacian-smoothing are superior to those obtained using only the elastic-mesh approach, atleast for this sort of problem. Indeed there does not appear to be any obviousreason why Laplacian smoothing may not be used as the sole means of performingthe continuous mesh updates.In practice Laplacian smoothing appears to be remarkably robust. There arehowever certain situations in which it will fail, though in the current context thesecause no real di�culties since the mesh may be regenerated automatically if suchcon�gurations arise. Figure 2.19 illustrates one such pathological con�guration. Inthis situation, the possibility exists that the node indicated may jump over theintervening node | turning two of the elements `inside-out' in the process. Such
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�Figure 2.19: Laplacian smoothing: a mode of failure.con�gurations are possible only when a mesh contains small angles. The risk of thistype of failure occurring may be minimised by employing a suitably small relaxationparameter ! in (2.70), limiting the distance a node may move in any given sweepof the Laplacian-smoothing operator. It is also clear that bounding the minimummesh angle in (2.53) helps to prevent this type of con�guration arising. In practicefailures of this type have not been observed to occur under normal circumstances.2.6 ConclusionsThe convergence properties of Taylor-Hood elements have been investigated for prob-lems with natural boundary conditions on unstructured meshes and the theoreticalasymptotic rates of convergence con�rmed. Techniques for the automatic regen-eration of unstructured meshes have been described for time-dependent surface-tension-driven free-surface problems, and constraints on initial free-surface shapesdiscussed. The di�culty of accurately computing the free-surface curvature and thusthe stress on the boundary is pointed out. An analysis of the rate of convergence ofstress boundary conditions computed using Ruschak's method has been presentedfor quadratic isoparametric elements. The conclusion is reached that the overall rateof convergence of the scheme will be limited by the rate of convergence of the stressboundary conditions.The use of meshes with di�erent resolutions for the free surface and interiormeshes has been described. This technique allows the number of degrees of freedomin a problem to be substantially reduced, while at the same time allowing the fullrate of convergence dictated by the free-surface boundary conditions to be obtained.



Chapter 2 59 The �nite element methodFinally, Lynch's global elastic-mesh scheme is shown to have serious de�ciencieswhich are not shared by local Jacobi-type mesh-smoothing schemes.



Chapter 3Solvers for incompressible ows
In this chapter the weak form of the Navier-Stokes equations is introduced and the �-nite element formulation presented. Next, semi and fully implicit time discretisationschemes are described for both Stokes and Navier-Stokes problems. The conjugateresidual algorithm and a number of preconditioning schemes are next described.This is followed by a discussion of a number of simple interpolation schemes for thetransfer of solutions between meshes when mesh regeneration is necessary. Finallythe issue of the choice of time-step size is addressed, a novel approach to this issuebeing described.3.1 The Galerkin methodIn Eulerian form the dimensionless Navier-Stokes equations for an incompressibleNewtonian uid, as derived in Chapter 1 as (1.5) and (1.6), are"@u@t + (u:r)u# = 1Re hr2u+r(r:u)i�rp� 1Fr j; (3.1)r:u = 0: (3.2)Note that here the viscous term is written in the alternative stress-divergence form[34]. While r(r:u) is, by de�nition, zero at any point in an incompressible uid, ingeneral for the piecewise-continuous interpolants employed here this will not be the60



Chapter 3 61 Solvers for incompressible owscase. The use of the stress-divergence form is crucial to the success of the currentformulation in that, when the Galerkin �nite element method is applied, it leads toa weak form with physically meaningful natural boundary conditions, i.e. the stress.Writing (3.1) and (3.2) in Cartesian-component form one obtains@u@t + u@u@x + v@u@y!� 1Re  @2u@x2 + @2u@y2 + @@x  @u@x + @v@y!!+ @p@x+ 1Frjx = 0; (3.3)@v@t + u@v@x + v@v@y!� 1Re  @2v@x2 + @2v@y2 + @@y  @u@x + @v@y!!+ @p@y + 1Frjy = 0; (3.4)@u@x + @v@y = 0: (3.5)The global velocity and pressure trial solutions are given byu = NXj=1 ujqj; (3.6)v = NXj=1 vjqj; (3.7)p = MXj=1 pjlj; (3.8)where M is the number of pressure unknowns, and 2N is the number of velocityunknowns. The functions qj and lj are the quadratic and linear Lagrange basisfunctions described in Chapter 2, the variables uj, vj and pj the unknown values ofthe velocities and pressures at the nodes.In the Galerkin method [85] the basis functions used in de�ning the trial solutionare also used as test functions when constructing a weighted-residual formulation.To obtain the Galerkin weighted-residual formulation, the momentum equations(3.3) and (3.4) are �rst multiplied by each of the N quadratic test functions, qi,giving 2N discrete momentum equations. Similarly, the continuity equation (3.5)is multiplied by each of the linear test functions, li, to give M discrete continuityequations. The resulting discrete equations are then integrated over the domain, to



Chapter 3 62 Solvers for incompressible owsgive the following system of equationsZ
 qi (@u@t +  u@u@x + v@u@y!� 1Re  @2u@x2 + @2u@y2 + @@x  @u@x + @v@y!!+@p@x + 1Frjx) d
 = 0; (3.9)Z
 qi (@v@t +  u@v@x + v@v@y!� 1Re  @2v@x2 + @2v@y2 + @@y  @u@x + @v@y!!+@p@y + 1Frjy) d
 = 0; (3.10)Z
 li  @u@x + @v@y! d
 = 0; (3.11)i.e. 2N+M equations in 2N+M variables. Since each basis function is non-zero onlyon elements immediately adjacent to a node, the matrix of coe�cients correspondingto the above system of equations is sparse. The viscous and pressure terms in (3.9)and (3.10) are next integrated by parts, using Green's �rst identity (A.1{A.5) toobtain the following weak form [85] of the equationsZ
 qi@u@t d
 + Z
 qi  u@u@x + v@u@y! d
+Z
 2Re @qi@x @u@xd
 + Z
 1Re @qi@y  @u@y + @v@x!d
 � Z
 @qi@x pd
 + Z
 qi 1Frjxd
= Z@
 2Reqi@u@xnxds+ Z@
 1Reqi  @u@y + @v@x!nyds � Z@
 qipnxds; (3.12)Z
 qi@v@t d
 + Z
 qi  u@v@x + v@v@y! d
+Z
 2Re @qi@y @v@yd
 + Z
 1Re @qi@x  @u@y + @v@x!d
 � Z
 @qi@y pd
 + Z
 qi 1Frjyd




Chapter 3 63 Solvers for incompressible ows= Z@
 2Reqi@v@ynyds + Z@
 1Reqi  @u@y + @v@x! nxds� Z@
 qipnyds; (3.13)� Z
 li  @u@x + @v@y! d
 = 0; (3.14)where n = (nx; ny) is the outward free-surface normal. This leaves only �rst spatialderivatives of the velocity in the momentum equations, and eliminates the spatialderivatives of the pressure. Note that the continuity equation has been multiplied by�1 so that the matrix corresponding to the Stokes operator embedded in (3.12{3.14)is symmetric. Finally, the right-hand sides of (3.12) and (3.13) may be rearrangedto give Z@
 qi  �pnx + 2Re @u@xnx + 1Re  @u@y + @v@x!ny! ds; (3.15)Z@
 qi  �pny + 2Re @v@yny + 1Re  @u@y + @v@x!nx! ds: (3.16)As will be shown in the following section, the bracketed expressions in (3.15) and(3.16) take the same form as the stress at a point in an incompressible Newtonianuid. Thus the homogeneous natural boundary condition for this particular weakform of the Navier-Stokes equations, i.e. that obtained by setting the boundaryintegrals (3.15) and (3.16) to zero in the discrete formulation, corresponds to theimposition of zero stress on the boundary.3.1.1 The stress boundary conditionIn two dimensions the components of the stress, �, on a surface element with unitnormal n are given, at any point in or on the surface of a uid, by�i = 2Xj=1Tijnj; (3.17)where T is the stress tensor [2]. For an incompressible Newtonian uid of constantviscosity, �, the stress tensor takes the formTij = �p�ij + � @uj@xi + @ui@xj! : (3.18)



Chapter 3 64 Solvers for incompressible owsBy combining (3.17) and (3.18) it can be shown that, at a point on the surface ofan incompressible Newtonian uid with normal n, the x and y components of thestress are given by �x = �pnx + 2�@u@xnx + � @u@y + @v@x!ny; (3.19)�y = �pny + 2�@v@yny + � @u@y + @v@x!nx: (3.20)Since the non-dimensional forms of (3.19) and (3.20) may be obtained by simplyreplacing � with 1Re it may be seen that (3.19) and (3.20) correspond exactly withthe bracketed expressions in Eqs. (3.15) and (3.16). Clearly, this particular weakformulation of the Navier-Stokes equations is ideal for the imposition of physicallymeaningful stress boundary-conditions at free surfaces. The ease of implementationof the stress boundary-condition in this �nite element formulation contrasts sharplywith the di�culties involved in attempting to impose stress boundary-conditionswhen �nite-di�erence methods are employed [26].3.1.2 The kinematic boundary conditionEngelman et al. [24] draw attention to the need to compute �nite element boundarynormals with care. In particular they point out that an analytically or geometricallycomputed free-surface normal will not in general give rise to a well-posed problemwhen an essential normal boundary condition and a natural tangential boundarycondition are imposed at a node. Instead, they suggest that the �nite elementmass-consistent normal be employed. They derive the mass-consistent normal byconsidering the discrete global form of the continuity equationZ
 MXi=1(lir:u) d
 = 0; (3.21)which is obtained by summing the M discrete continuity equations. Since at everypoint in the domain MXi=1 li = 1; (3.22)it follows from (3.21) that Z
r:u d
 = 0: (3.23)



Chapter 3 65 Solvers for incompressible owsThus conservation of mass is imposed globally by the �nite element formulation.Note, however, that on individual elements continuity is imposed only in a discreteweighted sense, and thus mass is not conserved locally.Substituting the �nite element trial velocity solution (3.6{3.7) into (3.23) givesNXi=1  ui Z
 @qi@x d
 + vi Z
 @qi@y d
! = 0; (3.24)the summation being over all nodes. Here, for simplicity, it will be assumed thatthe free-surface nodes are numbered before the interior nodes. Using the divergencetheorem, (3.24) may be rewritten in the formFXi=1 �ui Z@
 qinx ds+ vi Z@
 qiny ds� = 0: (3.25)the sum reducing to one over the F free-surface nodes since qi is zero on @
 for eachbasis function corresponding to an internal node. It follows that the contributionsto (3.24) from the interior nodes must cancel one another out, and thus (3.24) mayalso be rewritten as a sum over the F free-surface nodes.The Cartesian velocity components ui and vi at free-surface node i may be ex-pressed in the form ui = nx;iun;i � ny;iut;i; (3.26)vi = ny;iun;i + nx;iut;i; (3.27)where (nx;i; ny;i) is the outward free-surface normal at node i, and un;i and ut;i arethe normal and tangential components of the velocity at node i. Substituting theseexpressions for ui and vi into (3.24) givesFXi=1 ((nx;iun;i � ny;iut;i) Z
 @qi@x d
 + (ny;iun;i + nx;iut;i) Z
 @qi@y d
) = 0; (3.28)which can be rearranged to giveFXi=1 ( nx;i Z
 @qi@x d
 + ny;i Z
 @qi@y d
! un;i +  nx;i Z
 @qi@y d
� ny;i Z
 @qi@x d
! ut;i) = 0:(3.29)Since (3.29) must hold for any set of tangential velocities, ut;i, regardless of the



Chapter 3 66 Solvers for incompressible owsvalues of the normal velocity components, un;i, it follows thatnx;i Z
 @qi@y d
 = ny;i Z
 @qi@x d
 (3.30)for all i. Thus, the mass-consistent normal at node i is de�ned usingnx;i = 1ni Z
 @qi@x d
; (3.31)ny;i = 1ni Z
 @qi@y d
; (3.32)where, since a unit normal is required, ni is given byni = vuut Z
 @qi@x d
!2 +  Z
 @qi@y d
!2; (3.33)the positive root being selected so as to give the outward normal. Engelman etal. [24] point out that the mass-consistent normal, computed in this fashion, givesacceptable results when applied to triangular elements with no more than two ver-tices on the boundary. Here this is ensured by triangulating into corners, so that noelement has two edges that form part of the boundary.In the current work the mass-consistent normal is employed when updating thelocations of free-surface nodes, so that the kinematic boundary conditionu:n = _s:n (3.34)may be implemented in a consistent manner. Note that the notation s is employedwhen referring to a particular free surface, and that si corresponds to the positionof free-surface node i. In a �rst-order explicit free-surface advection scheme, oncethe normals at the free-surface nodes have been computed, the locations of thefree-surface nodes si are updated using the rules(n+1)i = s(n)i + k(u(n)i � ni(n))ni(n); (3.35)where k is the size of the current time step, s(n)i the position of node i, ni(n) thenormal at node i and u(n)i the velocity at node i. Note, however, that while thechoice of normal direction is correct at the start of a time step, in general, it willnot be correct at the end of the time step. Thus conservation of mass will not beenforced exactly, although if the boundary is well resolved and moving su�ciently



Chapter 3 67 Solvers for incompressible owsslowly, and if the time-step size is su�ciently small, then the resulting errors can bevery small.3.2 Moving-mesh correctionsBoth methods described in Chapter 2 for updating the mesh between regenerationsgive rise to motions of the interior nodes. If the Laplacian smoother described inSection 2.5.2 is applied to a newly regenerated mesh, the boundary of which is mov-ing only slowly then for the �rst few time steps after the regeneration has occurredmany of the interior nodes will move relatively quickly. Eventually an equilibriumwill be reached and any movement of interior nodes due to the Laplacian smootherwill become negligible. Once such an equilibrium has been reached, application ofthe smoother at the end of each time step will result in motions of interior nodesthat reect the motion of the free surface. Similar behaviour is also observed wherethe elastic-mesh method is employed, though in this case there is no initial transientphase after mesh regeneration.After the initial transient phase interior nodes continue to move, now in responseto the evolution of the free surface. Thus the potential for errors to arise remains.One way of dealing with these errors is simply to ignore them. This is not entirelyunreasonable, since when the time-step size is small and the free surface is movingslowly the motions of the interior nodes will also be small. Thus, if the local velocityand pressure gradients are su�ciently small, then the errors that result from themovement of nodes may be negligible. Free-surface nodes, however, must alwaysmove with the same normal velocity as the uid. Consequently it is necessary toconsider ways in which such motions may be incorporated into the �nite elementformulation so as to remove this source of error.Two well-known approaches already exist for dealing with deforming meshes.The Lagrangian method [13, 4], makes use of the fact that the Navier-Stokes equa-tions may be written directly in terms of a moving coordinate system. If the interiornodes are required to move at the uid's local velocity, then no convective derivativeterms need be included in the Navier-Stokes equations. This has the major advan-tage that the �nite element sti�ness matrix that results is now symmetric, allowingmore e�cient solution techniques to be employed. The main disadvantage of thisapproach is that the nodes must always move at the same velocity as the uid, whichcan lead to the degeneration of mesh quality and even tangling of the mesh. Thus,in general, periodic regeneration of the mesh will be necessary more frequently than



Chapter 3 68 Solvers for incompressible owsif an Eulerian formulation were employed.The Arbitrary-Lagrangian-Eulerian (ALE) approach [41, 23, 49, 100] combinesthe Eulerian and Lagrangian methods, allowing interior nodes to have arbitraryvelocities, chosen independently of the uid's velocity. Thus the velocities of interiornodes may be chosen so as to maintain mesh quality. The ALE formulation requiresthe inclusion in the Navier-Stokes equations of a new term of the form �(_s � r)u,where _s corresponds to the local velocity of the mesh. Where _s = u, as in theLagrangian method, this new term exactly cancels the convective derivative.The approach adopted in the current work is essentially an ALE one. Here,however, the new moving-mesh terms, rather than being assembled as part of anonlinear �nite element problem, are evaluated explicitly at the start of a time stepand included in the data for the linear-algebraic systems solved for that time step.The correct form of the moving-mesh corrections for a �nite element formulationis derived in [54] and employs the following argument. Let mi denote the positionof node i in a mesh m = fmi : i = 1; : : : ; Ng, composed entirely of straight-sidedtriangular elements. For simplicity it is assumed that vertices are numbered beforeedges. The velocity u at a point x in the domain is given byu = NXj=1uj(t)qj(x;m(t)); (3.36)where uj is the velocity of the uid associated with node j, and qj the correspondingbasis function, now considered as a function of m as well as x. Thus for straight-sided elements the rate of change of u will be given by@u@t = NXj=1 dujdt qj + NXj=1uj VXk=1 @qj@mk � _mk! ; (3.37)where V is the number of vertices and _mk is the velocity of vertex k. The secondterm on the right-hand side of (3.37) may be written asVXk=1 @u@mk � _mk! (3.38)and must be included whenever the vertices forming a mesh are in motion relativeto one another.Since the Laplacian smoothing and elastic-mesh schemes both result in continu-ous deformations of the mesh, and since a Lagrange �nite element basis is involved,



Chapter 3 69 Solvers for incompressible owsJimack and Wathen's Theorem 2.4 [54] may be employed to rewrite (3.38) in theform � VXk=1 lkru � _mk; (3.39)or equivalently   VXk=1�lk _mk! � r!u: (3.40)This has a similar form to the standard convective term (u � r)u, the expressionPVk=1�lk _mk being a piecewise linear mesh-velocity �eld. Thus for a moving-meshproblem the material derivative has the form@u@t + (u:r)u� ( VXk=1(lk _mk)! � r)u: (3.41)Note that if u = VXk=1(lk _mk) (3.42)then the moving-mesh convective derivative will exactly cancel the standard con-vective derivative.The inclusion of the term (3.40) in the formulation of a problem necessarilyresults in the problem being nonlinear, even if the original Eulerian formulation islinear. Where functional iteration is employed as a means of handling the standardnonlinear convective derivative, i.e. by repeatedly linearising the problem about themost recent estimate for the velocity �eld at the end of the time step, (3.40) mayeither be incorporated directly into the �nite element matrix, giving rise to an non-symmetric linear-algebraic problem, or it may be evaluated explicitly and treatedas part of the data for the problem. The latter approach is adopted here.In the current work the expression� VXk=1(lk _mk) (3.43)is simply replaced with � _mj when assembling entries in the �nite element matrixcorresponding to the velocity degrees of freedom at node j, i.e. a pointwise weighted



Chapter 3 70 Solvers for incompressible owsform of the term. This simpli�cation is employed since it allows the assembly ofthe moving-mesh terms to be combined with that of the standard convective deriva-tives, reducing the overall computational cost considerably. At the end of each timestep the nodal velocities, _m(n+1)j , are estimated explicitly using mj(n) and mj(n+1).Consequently, such estimates are not available immediately after a mesh regenera-tion, though in principle there is no reason why the mesh-velocity �eld could notalso be interpolated when the mesh is regenerated. In practice, in the experimentsdescribed in Chapter 6, the inclusion of the moving-mesh terms was not found toa�ect greatly either the quality or the accuracy of the solutions obtained, suggestingthat, with the relatively coarse meshes employed here, spatial discretisation errorsdominate the computations.3.3 Matrix formulationIn order to solve (3.12{3.14) numerically the problemmust also be discretised in timeas well as in space. Temporal discretisation of �nite element formulations frequentlyinvolves the use of �nite-di�erence approximations for the temporal derivatives, theso-called method of lines. Here the additional complication arises that the mesh isrequired to deform as the free surface evolves, and thus the nodes will be in motionrelative to one another. Consequently, when solving over a time step it is oftennecessary to consider two di�erent meshes, the initial mesh at the start of the timestep, and the �nal mesh that represents the domain at the end of the time step.The following matrices are now de�ned[M1] = [M2] = Z
 qiqjd
 i, j = 1, . . . , N; (3.44)[A11] = Z
 2Re @qi@x @qj@x + 1Re @qi@y @qj@y d
 i, j = 1, . . . , N; (3.45)[A12] = Z
 1Re @qi@y @qj@x d
 i, j = 1, . . . , N; (3.46)[A21] = Z
 1Re @qi@x @qj@y d
 i, j = 1, . . . , N; (3.47)



Chapter 3 71 Solvers for incompressible ows[A22] = Z
 2Re @qi@y @qj@y + 1Re @qi@x @qj@x d
 i, j = 1, . . . , N; (3.48)[B1] = � Z
 @qi@x ljd
 i = 1, . . . ,N, j = 1, . . . , M; (3.49)[B2] = � Z
 @qi@y ljd
 i = 1, . . . ,N, j = 1, . . . , M; (3.50)[C11] = [C22] = Z
 qi  u�@qj@x + v�@qj@y ! d
 i, j = 1, . . . , N: (3.51)Note that C11 and C22 represent a linearisation of the convective derivative aroundan estimate of the velocity �eld u� = (u�; v�), and is only one of the schemes possible[33, 34]. Typically u� will be either the velocity �eld from the previous iteration ofthe nonlinear solver or the velocity �eld from the end of the previous time step.The following vectors are also de�ned, representing respectively, the gravitationalbody force, g1 = � Z
 qi 1Frjxd
 i = 1, . . . , N; (3.52)g2 = � Z
 qi 1Frjyd
 i = 1, . . . , N; (3.53)the free-surface stress boundary conditions,d1 = Z@
�qi 1We 1Rcnxds i = 1, . . . , N; (3.54)d2 = Z@
�qi 1We 1Rcnyds i = 1, . . . , N; (3.55)and the moving mesh correctionsh1 = NXj=1 Z
 qi _mj;x@qj@x ujd
 + Z
 qi _mj;y @qj@y ujd
! i = 1, . . . , N; (3.56)



Chapter 3 72 Solvers for incompressible owsh2 = NXj=1 Z
 qi _mj;x@qj@x vjd
 + Z
 qi _mj;y @qj@y vjd
! i = 1, . . . , N; (3.57)where _mj = ( _mj;x; _mj;y) is an estimate of the velocity of node j. The free-surfacestress boundary conditions included in (3.54) and (3.55) are those appropriate fora Navier-Stokes problem, as discussed in Section 1.2. If the factors 1We are deletedthen the stress boundary conditions for a Stokes-ow problem result (see Section1.3). Where general stress boundary conditions are known explicitly in the form� = (�x; �y), as in the Stokes-ow test problem described in Chapter 2, (3.54) and(3.55) may be replaced by d1 = Z@
 qi�xds; (3.58)d2 = Z@
 qi�yds: (3.59)All the above integrands, with the possible exceptions of the boundary conditions d1and d2, are polynomials and may thus be evaluated exactly using Gauss-Legendrequadrature rules [22] of appropriate degree. The boundary integrals in (3.54) and(3.55) are evaluated using the approach described in Section 2.2.2. Employing theabove de�nitions the system (3.12{3.14) may be rewritten as0BBB@ M1 0 00 M2 00 0 0 1CCCA0BBB@ _u_v_p 1CCCA+ 0BBB@ A11 A12 B1A21 A22 B2B1T B2T 0 1CCCA0BBB@ uvp 1CCCA+0BBB@ C11(u�; v�) 0 00 C22(u�; v�) 00 0 0 1CCCA0BBB@ uvp 1CCCA= 0BBB@ d1d20 1CCCA + 0BBB@ g1g20 1CCCA + 0BBB@ h1h20 1CCCA ; (3.60)were u, v and p are vectors representing the velocity and pressure unknowns.



Chapter 3 73 Solvers for incompressible owsWhen working with a problemwith essential boundary conditions at some bound-ary nodes, the equations corresponding to the degrees of freedom that are knowna priori need not be assembled as part of the linear-algebraic problem. Thus, therows and columns corresponding to these degrees of freedommay be eliminated fromthe problem, reducing its size considerably. When this is done, the contributions tothe remaining momentum equations that result when the unwanted equations arecondensed out of the system are incorporated as a vector e = (e1; e2; e3)T , which isadded to the right-hand side of (3.60).3.4 Time-discretisation schemesTemporal discretisation is performed using the �-method, a standard generalisationof the Crank-Nicholson or trapezoidal rule [16]. Thus (3.60) becomes0BBB@ M1 0 00 M2 00 0 0 1CCCA(n+1)0BBB@ uvp 1CCCA(n+1) � 0BBB@ M1 0 00 M2 00 0 0 1CCCA(n)0BBB@ uvp 1CCCA(n)+k�0BBB@ A11 A12 B1A21 A22 B2B1T B2T 0 1CCCA(n+1)0BBB@ uvp 1CCCA(n+1)+k(1� �)0BBB@ A11 A12 B1A21 A22 B2B1T B2T 0 1CCCA(n) 0BBB@ uvp 1CCCA(n)+k�0BBB@ C11(u�; v�) 0 00 C22(u�; v�) 00 0 0 1CCCA(n+1) 0BBB@ uvp 1CCCA(n+1)+k(1� �)0BBB@ C11(u(n); v(n)) 00 C22(u(n); v(n)) 00 0 1CCCA(n) 0BBB@ uvp 1CCCA(n)



Chapter 3 74 Solvers for incompressible ows= k� �d(n+1) + e(n+1) + g(n+1) + h(n+1)�+k(1 � �) �d(n) + e(n) + g(n) + h(n)� ; (3.61)where 0 < � � 1, k is the time-step size and the notation (n) denotes variables andoperators corresponding to the start of the time step, (n+1) those at the end.If one takes � = 1:0 then (3.61) reduces to a standard backward-Euler scheme[34], of temporal accuracy O(k). A value of � = 0:5, on the other hand, results in aCrank-Nicholson or central-di�erence scheme of accuracy O(k2). In practice, valuesof � other than 0:5 may be employed [12], despite the fact that then the scheme isonly formally O(k) accurate. Values of � other than 0:5 are often preferred since theCrank-Nicholson scheme has a tendency to propagate discontinuities in the initialconditions rather than damping them out. Including a small component of the moredi�usive backward-Euler scheme helps to damp out these transients though withoutsigni�cantly altering the scheme's accuracy. Indeed, for an appropriate choice of �the accuracy obtained may actually be better than that achievable with the Crank-Nicholson scheme [12]. Finally note that if � = 0 the system (3.61) is singular.The convective term in (3.61) that corresponds to the end of the time step isevaluated using the most recently obtained estimate u� for the velocity �eld u(n+1)at the end of the time step and incorporated as part of the data for the problem asthe vector fn+1 which is de�ned as followsf (n+1) = �0BBB@ C11(u�; v�) 0 00 C22(u�; v�) 00 0 0 1CCCA(n+1) 0BBB@ u�v�0 1CCCA(n+1) : (3.62)To obtain the computational formulation employed when solving a Navier-Stokesproblem (3.61) is rearranged in the following form0BBB@ M1 + k�A11 k�A12 k�B1k�A21 M2 + k�A22 k�B2k�B1T k�B2T 0 1CCCA(n+1) 0BBB@ uvp 1CCCA(n+1)



Chapter 3 75 Solvers for incompressible ows= 0BBB@ M1 � k(1� �)A11 �k(1� �)A12 �k(1� �)B1�k(1� �)A21 M2 � k(1 � �)A22 �k(1� �)B2�k(1� �)B1T �k(1� �)B2T 0 1CCCA(n) 0BBB@ uvp 1CCCA(n)+k� �d(n+1) + e(n+1) + f (n+1) + g(n+1) + h(n+1)�+k(1� �) �d(n) + e(n) + f (n) + g(n) + h(n)� : (3.63)The sti�ness and mass matrix terms that correspond to the start of the time step arenormally available from the previous time step and thus do not need recomputingunless the mesh is regenerated. Note that the matrix in the linear-algebraic problem(3.63) is symmetric and consequently the conjugate residual method may be applieddirectly. Since (3.63) is referred to frequently in the following sections, it will beconvenient to write it in the concise formKx = b; (3.64)where x = (u; v; p)T .By solving a sequence of linearised problems of the form (3.63) to obtain increas-ingly accurate approximations to u� = u(n+1) the solution of the nonlinear systemmay be obtained, a process known as formula or Picard iteration. While this is notguaranteed to converge, in practice convergence normally does occur provided thetime step is su�ciently small. If the mesh at the end of a time step is held �xedduring the nonlinear solution process, then at each outer iteration of the nonlinearsolver only the vectors f (n+1) and h(n+1) need be recomputed, it being possible tocompute the others as soon as the mesh at the end of the time step is known. Wherethe mesh at the end of the time step is allowed to change during the nonlinear so-lution process, the matrix on the left-hand side of (3.63) and the vectors on theright-hand side that correspond to the end of the time step must be reassembled foreach new mesh.



Chapter 3 76 Solvers for incompressible ows3.5 A semi-implicit scheme for free-surface Navier-Stokes problemsThe solution of time-dependent free-surface problems is complicated by the needto update the position of the free surface at each time step in accordance withthe kinematic boundary condition (1.4). In time-dependent problems the kinematicboundary condition gives rise to an additional set of nonlinear ordinary di�erentialequations that must, ideally, be solved simultaneously with the momentum andcontinuity equations. This is, however, potentially rather expensive, since wheneverthe free surface is modi�ed, the mesh must also be modi�ed, giving rise to a newsystem of discrete equations. One way of avoiding this complication is to assumethat the kinematic boundary condition may safely be decoupled from the momentumand continuity equations. Thus, the kinematic boundary condition may be appliedexplicitly at the start of a time step, using the velocity �eld computed at the endof the previous time step, so as to give the location of the free surface and thus thenew mesh at the end of the time step. The Navier-Stokes equations may then besolved on a pair of �xed meshes of identical connectivity to give the velocity andpressure at the end of the time step.This approach, when applied to the system (3.64), results in the semi-implicitalgorithm shown in Fig. 3.1. The algorithm assumes the existence of an initial meshm(n), with free surface s(n), on which the initial velocity �eld is u(n). Note that noinitial conditions are required for the pressure, though it would appear appropriateto make the �rst time step a backward-Euler one if the initial pressure �eld is notknown.As a �rst stage of each time step u(n) is used in conjunction with (3.35) toexplicitly compute s(n+1), the free surface at the end of the time step. Techniquessuch as those described in Section 2.5 are then used to modify m(n) in order togive m(n+1), the mesh at the end of the time step. Both m(n+1) and s(n+1) are nowheld �xed for the remainder of the step. The matrix on the left-hand side of (3.63)is now assembled on m(n+1) and the nonlinear Navier-Stokes problem solved usingfunctional iteration to give the velocity �eld u(n+1) at the end of the time step. Theprocedure may now be repeated, u(n+1) giving the initial conditions for the nexttime step.Note that once m(n+1), and s(n+1) have been found, d(n+1), e(n+1) and g(n+1)may all be computed immediately, and remain �xed throughout the remainder ofthe nonlinear solve. Thus only the vectors f (n+1) and h(n+1) must be recomputed



Chapter 3 77 Solvers for incompressible owswhenever a new approximation for u(n+1) becomes available. At each nonlineariteration the solution from the previous iteration, or from the previous time step, isemployed as an initial guess for the linear solver. The algorithm terminates when theL1 norm of the residual vector (pressure and velocity components) falls below anabsolute tolerance tol. This typically takes between �ve and ten outer iterations, theprecise number depending on the length of the time step and the degree of accuracyrequired. It is this algorithm that is employed in the investigations described inChapter 6.1. Generate a new free surface s(n+1), using u(n), s(n) and (3.35).2. Generate a new meshm(n+1) by updating m(n) using thetechniques described in Section 2.5.3. Assemble the matrix K on m(n+1).4. Set u� = u(n).5. Compute preconditioner for K.6. Assemble b, using u� to recompute f (n+1).7. Solve the linear system (3.64) to give x(n+1).8. If jx(n+1) � x(n)j1 < tol then proceed to next time step.9. Set u� = u(n+1)10. Go to step 6.Figure 3.1: A semi-implicit algorithm for free-surface Navier-Stokes problems.A potentially very advantageous simpli�cation arises if the convective and moving-mesh terms are implemented using a purely explicit scheme. Thus, for example,f (n+1) and h(n+1) may be approximated using f (n) and h(n). Experience has shownthat this modi�cation is, in practice, often satisfactory for the types of problemsconsidered here, and may be employed without seriously a�ecting the accuracy orcompromising the stability of the method. Where this is done each time step re-quires the solution of only a single system of linear equations, reducing the costper time step by up to an order of magnitude. Since, in such schemes, the viscousoperator is treated implicitly one would expect that any stability constraints on thetime-step size that will arise will be due entirely to the use of explicit schemes forthe update of the free surface and for the convective and moving-mesh terms. Thusthe maximum stable time step will be O(h) rather than the more restrictive O(h2)that would apply if the viscous term were treated explicitly [34].



Chapter 3 78 Solvers for incompressible ows3.6 An implicit scheme for free-surface Navier-Stokes problemsThe fully implicit scheme that is described here is similar in many ways to thesemi-implicit scheme described above. This time whenever a new estimate u(n+1)is computed it is used in conjunction with u(n) to re-apply the kinematic boundarycondition to the original free surface s(n), thus giving a better approximation tos(n+1). Since, generally, only the normal component of the motion of free-surfacenodes is of interest, the kinematic boundary condition (3.35) may be written in theform _si = ni(ui � ni); (3.65)where si is the position of free-surface node i and ni is the mass-consistent normalat node i. If (3.65) is discretised using the �-method, one obtains the followingexpression for s(n+1)is(n+1)i = s(n)i + k n�n(n+1)i (u(n+1)i � n(n+1)i ) + (1 � �)n(n)i (u(n)i � n(n)i )o : (3.66)The question must be asked as to whether (3.66) introduces any new stability con-straints on the time-step size. While one might intuitively expect that such a schemewould be unconditionally stable for � � 0:5, the scheme is clearly highly nonlinearsince n(n+1)i depends in a time-dependent manner on the locations of a number offree-surface nodes. The author's experience with fully implicit schemes howeversuggests that, in practice, the time-step size constraint associated with (3.66) is ofO(h).Figure 3.2 shows the fully implicit algorithm investigated as part of the currentwork for the solution of problems of the form (3.63). Note that now a new matrixKmust be assembled, and possibly a new preconditioner computed, at each iterationof the nonlinear solver. The algorithm terminates when the maximumchange in anycomponent of the pressure or velocity falls below a prescribed absolute tolerance tol1and the maximum free-surface nodal displacement falls below an absolute tolerancetol2.In practice, provided the time-step size k is small enough, the functional iterationscheme shown in Fig. 3.2 converges. If, however, an attempt is made to employa time step much larger than that indicated by the time-step constraint (3.79)then the scheme becomes unreliable. In such circumstances convergence may beextremely slow, if it occurs at all. Consequently, the maximum time-step size that



Chapter 3 79 Solvers for incompressible ows1. Set u� = u(n).2. Generate a new free-surface s(n+1), using u(n), u�, s(n) and (3.66).3. Generate a new mesh m(n+1) by updating m(n) using thetechniques described in Section 2.5.4. Assemble the matrix K on m(n+1).5. Compute preconditioner for K.6. Assemble b, using u� to compute f (n+1).7. Solve the linear system (3.64) to give x(n+1).8. If jx(n+1) � x(n)j1 < tol1 and js(n+1) � s(n)j1 < tol2 then proceed to next step.9. Set u� = u(n+1).10. Go to step 2.Figure 3.2: A fully implicit algorithm for free-surface Navier-Stokes problems.may be employed is now constrained by the need to ensure that the nonlinear solverconverges, and thus little is gained by the use of the fully implicit method. Since theadditional costs associated with having to re-assemble essentially the entire problemat each iteration of the nonlinear solver are large, the scheme is clearly ine�cient.Thus it appears prudent to postpone further investigation in this area until moresophisticated nonlinear solvers are available.3.7 A semi-implicit scheme for free-surface StokesproblemsA semi-implicit algorithm for Stokes-ow problems may be derived from that de-scribed above for the Navier-Stokes equations by making a number of simpli�cations.As mentioned in Section 1.3, the absence of temporal derivatives in the Stokes equa-tions means that at each time step only a quasi-steady-state problem need be solvedfor the velocity, with the only time-dependency resulting from the kinematic bound-ary condition (1.4). In this semi-implicit scheme the kinematic boundary conditionis implemented explicitly using only the velocity �eld at the start of the time step.The interior of the mesh is then updated and the ow problem is solved at the end ofthe time step on the new mesh. Thus, at each time step only a single linear-algebraic



Chapter 3 80 Solvers for incompressible owsproblem of the form0BBB@ A11 A12 B1A21 A22 B2B1T B2T 0 1CCCA(n+1) 0BBB@ uvp 1CCCA(n+1) = d(n+1) + e(n+1) + g(n+1) (3.67)must be solved. Note the absence of the moving-mesh correction terms in this case,since now the problem is solved on a �xed mesh. Figure 3.3 shows the semi-implicitalgorithm for free-surface Stokes-ow problems. This is the algorithm that was usedto obtain the results described in Chapters 4 and 5.1. Generate a new free surface s(n+1), using u(n), s(n) and (3.35).2. Generate a new mesh m(n+1) by updating m(n) using thetechniques described in Section 2.5.3. Assemble the matrix K on m(n+1).5. Compute preconditioner for K.6. Assemble b on m(n+1).7. Solve the linear system (3.64) to give x(n+1).8. Proceed to next time step.Figure 3.3: A semi-implicit scheme for free-surface Stokes-ow problems.3.8 A fully implicit scheme for free-surface StokesproblemsFor a Stokes-ow problem nonlinearity is present through both the free-surfacestress boundary condition and the kinematic boundary condition. The semi-implicitmethod described in the previous section avoids the need to solve a nonlinear prob-lem at each time step by employing an explicit free-surface update step. Thus thelinear part of the problem, the ow calculation, is solved implicitly while the moredi�cult nonlinear part of the problem is solved explicitly.An implicit scheme arises if the kinematic boundary condition is implementedusing the velocity �elds at both the start and the end of the time step, i.e. using(3.66). Consequently the free surface, and thus the mesh at the end of the time step,must be found by an iterative process. The problem that must be solved at each timestep is now nonlinear, the nonlinearity entering through the e�ects of the motions



Chapter 3 81 Solvers for incompressible owsof the free-surface nodes on the boundary conditions. Figure 3.4 gives the fullyimplicit algorithm investigated as part of this work for the solution of free-surfaceStokes-ow problems. At each iteration of the nonlinear solver, the solution from1. Set u� = u(n).2. Generate a new the free surface s(n+1), using u(n), u�, s(n) and (3.66).3. Generate a new mesh m(n+1) by updating m(n) using thetechniques described in Section 2.5.4. Assemble the matrix K on m(n+1).5. Compute preconditioner for K.6. Assemble b.7. Solve the linear system (3.64) to give x(n+1).8. If jx(n+1) � x(n)j1 < tol1 and js(n+1) � s(n)j1 < tol2 then proceed tonext time step.9. Set u� = u(n+1).10. Go to step 2.Figure 3.4: A fully implicit algorithm for free-surface Stokes-ow problems.the previous iteration, or from the end of the previous time step, is used as an initialestimate. The algorithm terminates when the maximum change in any componentof the pressure or velocity falls below a prescribed absolute tolerance tol1, and themaximum free-surface nodal displacement falls below an absolute tolerance tol2.Note that, in principle, if one sets � = 0:5 in (3.66) then the fully implicit schemewill have O(k2) temporal accuracy for velocity, as compared to the O(k) accuracy ofthe semi-implicit scheme described in Section 3.7. It does however appear to su�erfrom convergence problems similar to those observed with the fully implicit schemefor the Navier-Stokes equations described above. Consequently, little use has beenmade of it in the present work.3.9 Notes on alternative nonlinear solution meth-odsWhile the semi-implicit schemes described above may be used for many problems,the time-step constraints found to be necessary result in the need to take many smalltime steps when a mesh is �ne or the solution velocities are large. Fully implicitmethods would appear to be the answer to this problem, since in principle they are



Chapter 3 82 Solvers for incompressible owsnot bound by time-step constraints. However, as already mentioned, when functionaliteration is employed in order to solve the nonlinear problems that result from theseschemes, convergence is only reliable when relatively short time steps are employed.If large time steps are attempted then convergence may be arbitrarily slow, or indeedit may not occur at all. In such circumstances the solution computed at alternateiterations of the nonlinear solver typically cycles between two or more distinct basinsof attraction. It thus appears that the fully implicit schemes described above arenot globally convergent. Since, even when functional iteration is successful eachimplicit time step requires typically ten nonlinear iterations to reach convergence,it is unclear whether any advantage is gained in practice by the use of fully implicitschemes when they are solved using this approach.An alternative approach to solving nonlinear systems of equations, such as thosearising from free-surface Navier-Stokes or Stokes problems, involves the use of New-ton's method, or some modi�cation of it [36]. To allow Newton's method to beapplied, the problem must be reformulated to include the locations of the free-surface nodes as variables. This results in a somewhat larger system of equations,for which the Jacobian is non-symmetric.Since Newton's method is quadratically convergent when the initial estimate ofthe solution lies within its region of convergence, the method is potentially verye�cient, particularly where the system must be solved accurately. Other iterativeschemes [36] that are globally convergent, if only linearly so, are in general needed toobtain an initial estimate of the solution that lies within the region of convergence[17]. In the case of time-dependent problems it may be possible to obtain a suit-able initial guess for Newton's method using explicit predictors based on solutionscomputed at earlier time steps, though since the motivation for employing implicitschemes is generally to allow large time steps to be employed, the accuracy of suchpredictors cannot necessarily be relied upon.The main di�culty with implementing Newton's method is that the Jacobianmatrix for the system must be assembled at least once, and possibly a number oftimes. Assembly of the Jacobian is potentially a very expensive operation, even ifdone numerically, since for a nonlinear moving-mesh problem every ow variable iscoupled to the position of every free-surface node. Thus the Jacobian contains adense block that is expensive to assemble. It is however noted that techniques forapproximating the Jacobian at reduced cost might prove useful. For example, oneapproach to assembling the dense block would involve perturbing each free-surfacenode in turn, updating the interior mesh using a Laplacian-smoothing scheme in



Chapter 3 83 Solvers for incompressible owseach case, but only assembling entries in the Jacobian that correspond to nodesthat lie close enough to the perturbed free-surface node to be signi�cantly a�ected.The inversion of the Jacobian, required by Newton's method, may be achievedby employing iterative methods such as GMRES [94], though note that now theJacobian will be non-symmetric, and thus convergence may be problematic. In thediscrete case the uniqueness of a solution of a system of nonlinear equations dependson the Jacobian being non-singular [36]. This must be veri�ed for the particulardiscrete formulation employed and for the problem under consideration.3.10 The conjugate residual methodThe solutions of the discrete linear sub-problems required by the Stokes and Navier-Stokes solvers described above may be obtained using either direct or iterative meth-ods. For large systems of equations naive implementations of direct methods suchas those based on Gaussian-elimination require large amounts of memory for thestorage of the �ll-in generated and are thus prohibitively expensive. While the largestorage requirements of direct methods can be considerably reduced by the use ofbandwidth-reducing node reorderings [30] and sophisticated memory managementschemes [43], iterative methods typically require considerably less storage, and forsu�ciently large systems, are nowadays generally recognised to be more e�cientthan direct methods when applied to problems arising from �nite element discreti-sations of partial di�erential equations. A further advantage that iterative methodshave over direct methods is that, in a sense, direct methods always attempt tosolve a problem to machine precision regardless of whether this is actually required.Iterative methods on the other hand may be terminated once the desired level ofaccuracy has been obtained.Where a time-dependent ow is being modelled and short time steps are in useiterative methods are potentially highly cost-e�ective for two reasons. The �rstis that since accurate predictors for the desired solution may be computed, theiterative solver may require very few iterations in order to improve the solutionsu�ciently to satisfy the convergence criteria. Direct solvers cannot take advantageof predictors. The second reason is that in such circumstances the possibility ofreusing preconditioners arises, and thus the cost of computing a good preconditionermay be o�set against savings made over a number of time steps.The iterative method employed here is the conjugate residual (CR) or MINRESmethod [3], a variant of the popular conjugate gradient (CG) method that is di-



Chapter 3 84 Solvers for incompressible owsrectly applicable to symmetric inde�nite systems of linear equations. The algorithmimplemented here is the more e�cient ORTHOMIN form of the conjugate residualmethod, which uses a two-term recurrence relationship to generate a sequence oforthogonal search directions. The related algorithm GMRES [94], which is com-monly employed for the solution of inde�nite and non-symmetric problems, requiresthe storage of a much larger number (typically 20|50) of previous search directionsand thus has considerably larger storage requirements and execution costs.1. x = x02. r = b�Kx3. p =M�1r4. w = Kp5. y =M�1w6. s = p7. If jrj2 < � then �nished.8. � = y �w9. � = (s �w)=�10. x = x+ �p11. r = r� �w12. s = s� �y13. z =Ks14. � = �(z � y)=�15. p = s+ �p16. w = z+ �w17. y =M�1w18. Go to step 7.Figure 3.5: The preconditioned conjugate residual method: implementation of theORTHOMIN algorithm for the problem Kx = b.The implementation of the preconditioned conjugate residual (PCR) algorithmemployed in the current work is shown in Fig. 3.5. It is based on that describedby Ramage and Wathen [82]. The inputs to the solver are a matrix K, an initialestimate of the solution x0, an absolute convergence tolerance �, and a precondi-tioning operator M�1. The implementation requires a single sparse matrix-vectorproduct (step 13), a single application of the preconditionerM�1 (step 17), and theequivalent of eight vector scalar-products per iteration. The algorithm terminateswhen the L2 norm of the residual vector falls below the prescribed tolerance, andreturns the solution in the vector x.



Chapter 3 85 Solvers for incompressible owsIn the simplest cases, the preconditioning operator involves multiplication of avector by a diagonal matrix M�1. More sophisticated preconditioners may also beemployed, involving, for example, incomplete Cholesky [32] or incomplete LU [94, 20]factorisations. In these cases each preconditioning step will require the solution of alinear-algebraic problem, though since the matrix is already factorised, this may beachieved e�ciently. A third type of preconditioner [10, 94] involves the computationof an approximate inverse of the matrix, i.e. M�1 � K�1. The latter types ofpreconditioner have a computational cost associated with them that is proportionalto the number of non-zero entries in the approximate factorisation or inverse.Note that, theoretically, the ORTHOMIN method is applicable only when thematrices K and M are both Hermitian positive-de�nite, and that the more ro-bust ORTHODIR [3] method must be employed where K is inde�nite. In practicethe ORTHOMIN algorithm has been found to converge for the inde�nite matricesconsidered here, and thus it has not been necessary to employ the less e�cient OR-THODIR form of the algorithm as a backup, as recommended in [82]. That is to say,in the work described here, no situation has been observed in which ORTHODIRconverges but ORTHOMIN does not.The numbers of conjugate residual iterations required to solve the problemsconsidered here are typically considerably larger than the numbers quoted in theliterature for similarly sized problems. In part this is due to the fact that here theproblems must be solved to a high degree of accuracy in order to conserve mass. Asa convenient rule of thumb, the number of iterations required is roughly proportionalto the number of bits required in the solution. Consequently, reducing the size of theconvergence tolerance � will increase the number of iterations required approximatelylogarithmically.A considerable di�culty faced when relying on iterative solution methods is thatno e�cient reliable method is available for estimating the condition number of thelinear problem at each time step. Thus, it is hard to arrange for the convergencetolerance � to be automatically varied as a problem progresses so as to avoid un-necessary work being performed. Estimates of the condition number for some ofthe smaller problems have however been obtained using the NAG routine F02WEF[35]. These suggest that even for the smallest meshes considered here the conditionnumber is of the order of 106. It thus appears likely that for all the meshes em-ployed in this work the condition number lies in the range 106|108. Thus a value of� = 10�10 appears to be the largest that guarantees at least two digits of accuracy ineach component of the solution. Consequently, in the current work, a �xed absolute



Chapter 3 86 Solvers for incompressible owstolerance of � = 10�10 is employed as the convergence criterion for the solution ofall linear systems unless otherwise stated. Practical experience, however, suggeststhat error estimates such as these may well be excessively pessimistic.3.11 Node re-orderingThe use of bandwidth-reducing node reorderings as a means of improving both thee�ciency and accuracy of incomplete LU factorisations is a well-known technique[30]. A good node ordering for a sparse linear-algebraic problem will result in amatrix in which all the non-zero entries lie within a narrow diagonal band. Since, inGaussian-elimination-based methods, �ll-in can only occur within the band, band-width minimisation reduces the number of �ll-in entries that must be either storedor discarded. Thus, where an incomplete LU factorisation of a matrix is required,a bandwidth-reduced node ordering will simultaneously reduce storage costs andimprove the accuracy of the resulting factorisation. For �nite element problemsthe minimum bandwidth achievable is primarily dictated by domain geometry. Onepopular node-ordering scheme is the Reverse Cuthill-McKee (RCM) ordering [30].While numerous, alternative schemes for computing node reorderings exist, nonewould appear to have any clear advantage over the Cuthill-McKee method wherearbitrary unstructured meshes are involved [30].The algorithm shown in Fig. 3.6 is based on that given in [30], with modi�cationsfor the quadratic elements employed here. It numbers the N nodes forming a two-dimensional mesh starting at the vertex firstnode. The resulting Cuthill-McKeeordering is then reversed before being used to number the degrees of freedom asso-ciated with each individual node in turn. The set of neighbours of a node is de�nedto be all the nodes in the elements adjacent to the node in question, with the ex-ception of the node itself. The degree of a node is simply the number of neighboursit possesses. Note that when computing the degree and the neighbours of a nodeboth edge and vertex nodes must be included, i.e. every node has �ve neighbours ineach element in which it occurs.Figure 3.7 shows the sparsity patterns associated with both the original and theRCM orderings for the Stokes-ow test problem described in Section 2.1.4, whenassembled on the mesh illustrated in Fig 2.4. Note that in the original ordering theu degrees of freedom are assembled �rst, followed by the v degrees of freedom and�nally the pressure degrees of freedom. Thus a zero block may be seen in the lowerright corner of Fig. 3.7(a). In Fig. 3.7(b) the e�ects of the reordering can clearly be



Chapter 3 87 Solvers for incompressible ows1. do i := 1 to N�nd neighbours of node i and store asneighbours(i,j).enddo2. do i := 1 to N�nd degree of node i and store as degree(i)enddo3. Find maximum and minimum node degrees maxdeg and mindeg.4. do i := 1 to N dovisited(i) := falseenddo5. next := 16. ptr := 17. ordering(next) := �rstnode8. visited(�rstnode) := true9. cnode := ordering(ptr)10. ptr := ptr + 111. do d := mindegree to maxdegreedo j := 1 to degree(cnode)node := neighbour(cnode,j)if (degree(node) = d) and (not visited(node)) thenvisited(node) := truenext := next + 1ordering(next) = nodeendifenddoenddo12. if next < N then go to step 9.13. Reverse the ordering.14. Number degrees of freedom at each node (velocity �rst,then pressure) using the reverse node ordering.15. Finished.Figure 3.6: Reverse Cuthill-McKee node re-ordering algorithm for V6-P3 elements.seen. The non-zero entries in the matrix now all lie within a relatively narrow band.Since elimination proceeds from the top row down, the re-ordered matrix is clearlyfar superior, as much of the \�ll-in" will now be added to entries in the matrix whichare already non-zero.While the reverse Cuthill-McKee ordering is capable of producing node order-ings for which the bandwidth is close to optimal, the results are to a large extent
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(a)

(b)

Figure 3.7: Finite element sti�ness-matrix sparsity patterns for mesh 2: (a) originalordering of degrees of freedom; (b) Reverse Cuthill-McKee ordering.dependent upon the choice of initial node and the geometry of the problem. A usefulrule of thumb is that: if the reverse Cuthill-McKee ordering is used with an appro-



Chapter 3 89 Solvers for incompressible owspriate choice of initial node, then long thin domains tend to give rise to narrowerbands, and thus require less storage for their preconditioners than ones that areroughly circular. While automatic methods for selecting optimal initial nodes for agiven ordering scheme have been described [30], in practice a near optimal choiceis often fairly easy to make by visual inspection of the mesh and by employing anunderstanding of the Cuthill-McKee algorithm. Typically, a reasonable choice ofinitial node will be one lying on the boundary, in a corner, or at one end of a longthin domain. Since the costs associated with the Cuthill-McKee algorithm are fairlysmall, it appears that automatic methods for the optimal choice of the initial nodemight well be practical for time-dependent free-surface problems.3.12 PreconditioningThe use of a good preconditioner can markedly improve the e�ciency of an iterativesolver, such as the conjugate residual method, in that it considerably reduces thenumber of iterations required to achieve a given level of accuracy. Furthermore,where the matrix involved is ill-conditioned, or non-symmetric, the use of a goodpreconditioner may be essential to ensure the solver converges at all [94].One family of solution techniques that has been extensively studied in recentyears are the multigrid methods [14, 15, 120, 86, 97]. Although potentially very ef-�cient, such methods are relatively complicated to implement, requiring a hierarchyof meshes of di�erent resolutions, and operators for transferring residuals and cor-rections between the meshes. The main di�culty in implementing a multigrid solverfor free-surface problems results from the requirement that a hierarchy of meshes, ofdi�ering resolutions, must be employed. While techniques have been described forautomatically coarsening unstructured meshes in order to generate a hierarchy ofmeshes from the �nest mesh [6], applying multigrid techniques in such circumstancesrequires boundary conditions on the coarser meshes to be estimated in some fash-ion, since edge nodes will not necessarily correspond to nodes in �ner meshes in thehierarchy. While multigrid techniques have been described for problems where thedomain is convex [95], concave domains introduce additional complications, sincewhere a concave boundary is present some of the edge nodes forming the coarsermeshes will actually lie outside the true domain (as de�ned by the �nest mesh).Thus it is unclear as to whether the convergence properties of the multigrid meth-ods apply when non-homogeneous natural boundary conditions are imposed, as isnecessary in surface-tension driven problems. While algebraic or black-box multigrid



Chapter 3 90 Solvers for incompressible owstechniques have been developed [14] which avoid the need to maintain a hierarchyof meshes, again the published schemes have typically been for regular meshes withhomogeneous boundary conditions, making them di�cult to adapt to free-surfaceproblems. Recently, however, it has been demonstrated [94] that the use of iterativemethods with high-quality preconditioners, based on incomplete LU factorisations,may result in solvers that are comparable in e�ciency to multigrid schemes. Sincesuch preconditioners are relatively simple to compute it was this approach that waschosen for further investigation as part of the current work.In the current context a preconditioner for the solution of a system of N linear-algebraic equations, of the form Kx = b; (3.68)is a matrix or product of matrices M, chosen to have similar spectral properties tothe matrix K [119]. A preconditioner is normally applied at each iteration of aniterative solver and, for the implementation of the conjugate residual method shownin Fig. 3.5, requires the solution of a linear-algebraic system of the formMy = w: (3.69)Clearly, it is advantageous that the system (3.69) should be easy to solve.The time-discretisations of the Navier-Stokes equations, based on (3.63), requirethe solution of linear-algebraic systems in which the matrix is formed by takinga linear combination of the �nite element sti�ness and mass matrices. For shorttime steps such problems are dominated by the contribution from the mass matrix.Since the mass matrix is symmetric positive-de�nite when the Galerkin method isemployed, it is somewhat easier to `invert' than the corresponding inde�nite sti�nessmatrix. Thus it appears reasonable to suppose that any preconditioning scheme thatperforms well for the sti�ness matrix will perform at least as well when the problemis dominated by a contribution from the mass matrix.3.12.1 Diagonal preconditioningThe simplest preconditioning technique, known as diagonal preconditioning, requiresa diagonal matrixM to be selected, whereM is of full rank. Since a diagonal matrixmay be trivially inverted, the application of the preconditioner at each iterationof the solver requires only the product of a diagonal matrix and a vector to becomputed, an operation of cost O(N) where there are N degrees of freedom. While



Chapter 3 91 Solvers for incompressible owsdiagonal preconditioning is cheap to implement, a large number of iterations ofthe conjugate residual solver are often found to be necessary to obtain an accuratesolution. Thus the correct choice of preconditioner is important.In order to allow comparison of preconditioners the steady-state Stokes-owproblem introduced in Section 2.1.4 is here revisited. Table 3.1 lists V , the numberof vertices, and N , the number of unknowns, together with the values of Ktol andhmax employed for each of the ungraded meshes considered. The values of hmax werechosen so that the maximumedge length in the mesh decreased proportionately eachtime ktol was reduced. Note that meshes 1, 3, 5 and 7 correspond to meshes 1, 2, 3and 4 in Section 2.1.4. Table 3.2 gives the numbers of iterations required to solvethe test problem on each of the meshes, together with the run time in seconds, forthree di�erent diagonal preconditioners, M1, M2 and M3. If no reordering of theunknowns is performed then these may be de�ned as followsM1 = 0BBB@ I 1CCCA ; (3.70)M2 = 0BBB@ diag(A11) diag(A22) I 1CCCA ; (3.71)M3 = 0BBB@ diag(A11) diag(A22) diag(Mp) 1CCCA : (3.72)The diagonal matrices diag(A11) and diag(A22) are formed from the leading diagonalof the viscous block of the Stokes operator, while diag(Mp) is formed from theleading diagonal of the pressure-mass matrix de�ned by[Mp] = Z
 liljd
 i, j = 1, . . . , M; (3.73)where i and j range over the M pressure basis functions. The identity matrix I ischosen in each case to give a matrix of full rank. The conjugate residual solver washalted when the L2 norm of the residual vector had been reduced to below 10�10.Initial residual norms were in the range 1�10�1 to 3�10�1. The times given in Table3.2 were obtained on a 180MHz Silicon Graphics R5000 workstation with 96Mb ofmain memory and 32Kb of primary cache, employing statistical processor-counter



Chapter 3 92 Solvers for incompressible owsMesh V N Ktol hmax1 41 327 0.5000 0.25002 71 581 0.3540 0.17703 161 1367 0.2500 0.11004 310 2676 0.1770 0.07805 663 5805 0.1250 0.05256 1293 11411 0.0880 0.03717 2594 23032 0.0625 0.0260Table 3.1: Meshes for preconditioning studies (ungraded): statistics.Mesh M1 Itns M1 Time M2 Itns M2 Time M3 Itns M3 Time1 613 0.60 408 0.39 270 0.292 884 1.86 640 1.33 410 0.933 1427 9.46 1027 6.78 695 4.684 2214 34.60 1562 25.02 1151 19.535 3452 137.25 2335 95.97 2048 85.106 5296 462.54 3619 311.85 3289 281.007 7834 1445.71 5401 1013.18 5726 1054.00Table 3.2: Diagonal scaling, PCR iterations to convergence and run time (in sec-onds): M1 | no preconditioning; M2 | preconditioning using viscous terms only;M3 | preconditioning using viscous terms and pressure-mass matrix.sampling. For the smaller meshes timings were obtained by solving the linear-algebraproblem a number of times, so as to allow more accurate measurements to be taken.The timings must in any case be interpreted with caution, and only the �rst digitshould be taken as signi�cant for the smaller meshes. As Table 3.2 shows, M2 andM3 considerably reduce the number of iterations required to attain convergence.While for the smaller problems M3 signi�cantly out performs M2, for the �nestmesh the situation is reversed; M3 requiring more iterations than M2 1. For M31Interestingly, if the pressure-mass matrix MP in (3.72) is replaced by its mass-lumped form[MLP ] = Z
 lid
 i, j = 1, . . . , M; (3.74)then the situation is reversed. For large problemsM3 now requires fewer iterations than M2 (5070for mesh 7) but for small problems requires more. For a regular mesh, using the diagonal of thelumped pressure-mass matrix results in a preconditioner in which the entries for the continuityequations are equal to the area of an element. While Wathen and Silvester [119] describe bothtypes of preconditioner they make no reference to the poor performance of preconditioners basedon the diagonal of the pressure-mass matrix for �ne meshes. Further work thus appears necessaryto clarify this issue. The form ofM3 based on the diagonal of the pressure-mass matrix is preferredin the current work since it is more e�cient for small meshes.



Chapter 3 93 Solvers for incompressible owsit can be seen that as the number of unknowns grows, the number of iterationsrequired per unknown falls considerably, from around 0:8 for mesh 1 to around 0:25for mesh 7. Analysis of the results shown suggests that the total number of iterationsrequired scales approximately as N0:75 for all three preconditioners, but that runtime scales as approximately N2. While the approximately O(N0:75) iteration countwas expected forM3 [119], the failure of the favourable exponent to translate into ahoped-for O(N1:75) run time was not. Since the number of oating-point operationsper solve is certainly proportional to N1:75 the failure to achieve an O(N1:75) runtime must, presumably, be due to an increase in the frequency of cache misses asthe program's data structures grow in size.
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Chapter 3 94 Solvers for incompressible owstimes. There is, however, no real tendency for the rate of reduction in the residual toslow as the residuals become small; indeed, experience has shown that convergenceto tolerances near to machine precision is attainable with no loss of performance.3.12.2 ILUT preconditioningRecent work by Saad and others [94] has highlighted the possibility that, by em-ploying su�ciently accurate preconditioners, solutions to linear-algebraic systemsderived from �nite element problems may be computed at a cost comparable to thatof multigridmethods, i.e. at cost approaching O(N). Clearly such e�ciency is highlydesirable in a solver for large systems of equations. While here only one of the manyapproaches is explored, the reader's attention is drawn to the existence of numerousalternative schemes for computing preconditioners e.g. `element-by-element' meth-ods [107, 63], independent set orderings [93] and graph-based factorisation methods[5]. The ILUT approach developed by Saad is based on an incomplete-LU factorisa-tion of the matrix K [94]. This involves �nding a pair of sparse lower- and upper-triangular matrices L and U such thatM = LU � K: (3.75)Given the special structure of L and U (3.69) may be solved directly by backwardand forward substitution, a process having roughly the same computational cost asa sparse matrix-vector product.The computation of an ILU preconditioner requires a considerable investmentof work but potentially results in a very large decrease in the number of iterationsrequired. Furthermore, experience suggests that it is often possible to reuse a pre-conditioner over many (perhaps 20 to 50) time steps, and indeed within a time stepwhere the iterative solution of a nonlinear problem is sought. Thus, where an ILUpreconditioner need only be recomputed infrequently the preconditioned conjugateresidual method is potentially highly e�cient.An important advantage of Saad's approach [94] is that it may be directly appliedto inde�nite and non-symmetric problems, though there is in general no guaranteeof the accuracy of the LU factorisation, or of the stability of the resulting lower- andupper-triangular systems in these cases [20]. Saad's method is also convenient inthat it may be applied directly to problems for which additional algebraic constraintsmust be applied, such as those required for the free-surface location at inow and



Chapter 3 95 Solvers for incompressible owsoutow boundaries. It should be emphasised, however, that little theory presently isavailable to guide investigations in this active area of research. In this work emphasishas been placed on obtaining practical experience of the use of such methods, andthe gathering of empirical evidence as regards their e�ciency for problems of theform (3.63).
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Chapter 3 96 Solvers for incompressible owswith pivoting would be considered necessary [20]. Despite this, in the current workSaad's non-pivoting ILUT routine has been found to be most satisfactory, and whencombined with the conjugate residual solver employed here, out performs Saad'spreconditioned GMRES solver (PGMRES) with a preconditioner computed usingpivoting. Mesh lfil droptol nza nzlu1 60 1 � 10�4 8520 202412 100 1 � 10�5 15488 553723 200 5 � 10�6 37612 1633984 200 5 � 10�6 74716 4745015 200 5 � 10�6 164000 13369606 300 2 � 10�6 324472 3728512Table 3.3: ILUT preconditioning: problem and preconditioner statistics.Figure 3.9 shows the convergence history for the solution of the test problemon mesh 4. As may be seen, the use of the ILUT preconditioner greatly reducesthe number of iterations required compared to the best diagonal preconditionerM3.Table 3.3 gives details of the ILUT preconditioners selected for each of the six meshesconsidered. The columns are as follows: lfil, the maximum number of entries perrow in the L and U factors; droptol, the absolute threshold for dropping �ll-in; nza,the number of non-zero entries in the original matrix; nzlu, the number of non-zeroentries in L and U . The values of lfil and droptol were chosen by trial and error.Selecting a smaller value for lfil, or a larger one for droptol, will in general resultin a smaller preconditioner, but will require a larger number of iterations. If anattempt is made to employ too small a value of lfil, or too large a value of droptolthen convergence will not occur.No real attempt was made to optimise the values of lfil and droptol given inTable 3.3. For time-dependent problems, in which the size and di�culty of theproblem changes with time, the choices of lfil and droptol must be made with care.More sophisticated approaches than that employed here might involve automaticadaptive selection of lfil and droptol. Thus the number of iterations required mightbe monitored, and the value of droptol decreased when the number of iterationsgrows too large, but increased whenever the number of iterations falls. Similarlylfil might also be varied automatically. Note, however, that for time-dependentproblems, in which the intention is to reuse the preconditioner over a number oftime steps, the choice of an optimal preconditioner is more di�cult, since as a



Chapter 3 97 Solvers for incompressible owspreconditioner ages the number of iterations required grows approximately linearly.Indeed, if too crude a preconditioner is employed then it will require recomputingat almost every time step. Further work on this issue is thus necessary if ILUTpreconditioners are to be employed e�ciently and reliably for general free-surfaceproblems. Mesh Iterations ilut lusol prodmv Total time1 10 0.059 0.040 0.015 0.1142 4 0.300 0.071 0.015 0.3863 4 1.300 0.240 0.038 1.5784 7 5.100 0.980 0.140 6.2205 14 24.000 4.800 0.400 29.2006 9 110.000 9.900 0.700 120.600Table 3.4: ILUT preconditioning: iterations and timings (times in seconds).For mesh 7, no values of lfil and droptol were found to result in a preconditionerthat lead to convergence within the memory available. For this mesh it is estimatedthat the minimumstorage required for a satisfactory preconditioner would be around80Mb, i.e. nzlu � 5 � 106.Table 3.4 gives the following �gures for each of the problems: the number ofiterations required; ilut, the time spent computing the ILUT factorisation; lusol,the time spent in upper- and lower-triangular solves; prodmv, the time spent inperforming the matrix-vector products required by the conjugate residual algorithm,and �nally, the total solver run time. As can be seen, the number of iterations isnow essentially independent of the number of unknowns in each problem. A simpleanalysis of column 5 of Table 3.3 shows that the number of non-zero entries in thepreconditioner is roughly proportional to N1:5. Thus, on an ideal machine, ignoringfactorisation time, one would expect run time to be proportional to N1:5, sincethen lusol will dominate the run time for su�ciently large problems. As column6 of Table 3.4 shows, in practice overall run time is roughly O(N2), i.e. the sameorder as was observed for diagonal preconditioners. Figure 3.10 shows the run timefor each of the three preconditioners M1, M3 and ILUT when applied to the testproblem on meshes 1 through 6. As may be seen, even if factorisation is performedat every time step, the ILUT preconditioner is still around 50% faster than the bestdiagonal preconditioner M3 for all the problems considered.In practice it is often possible to reuse a preconditioner over many time steps,particularly when the mesh changes little from step to step as is normally the case



Chapter 3 98 Solvers for incompressible ows
0

50

100

150

200

250

300

350

400

450

500

0 200 400 600 800 1000 1200 1400

T
im

e 
(s

ec
on

ds
)
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Chapter 3 99 Solvers for incompressible owsdiagonal preconditioner M3 was employed. Figure 3.11 shows a selection of thesemeshes. Note that here hmax is held �xed while ktol alone is varied. Mesh 12 has thegreatest disparity in element size with a ratio of roughly 1:25 between the smallestand largest elements' areas.
(a)

(b)

(c)Figure 3.11: Selected graded meshes for preconditioning study: (a) mesh 8; (b) mesh10; (c) mesh 12.



Chapter 3 100 Solvers for incompressible owsMesh ktol hmax Vertices Unknowns Iterations Time8 0.400 0.5 41 319 274 0.2849 0.238 0.5 60 474 369 0.67910 0.200 0.5 99 801 558 1.97911 0.141 0.5 165 1363 784 5.54012 0.100 0.5 237 1963 983 11.070Table 3.5: Graded mesh statistics, iterations and timings: diagonal preconditioningusing M3.From Table 3.5 it can be seen that mesh 11 with 1363 unknowns requires 784iterations. In contrast the ungraded mesh 3 with 1367 unknowns requires only 695iterations, around 10% fewer. Figure 3.12 shows the number of iterations requiredfor both graded and ungraded meshes as a function of the number of vertices. Ascan be seen a graded mesh generally takes around 10|20% more iterations thanan ungraded one with the same number of vertices. Thus it may be concluded thatprovided an appropriate diagonal preconditioner is employed mesh grading causesno great increase in the number of iterations required.
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Chapter 3 101 Solvers for incompressible owsMesh lfil droptol ilut lusol prodmv Iterations Time8 60 10�4 0.067 0.044 0.009 6 0.1209 100 10�5 0.300 0.100 0.021 5 0.42110 100 10�5 0.390 0.130 0.030 6 0.55011 100 10�5 1.300 0.290 0.057 6 1.64712 100 10�5 2.300 0.630 0.110 9 3.040Table 3.6: Graded mesh statistics, iterations and timings: ILUT preconditioning.
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Chapter 3 102 Solvers for incompressible owsexperiments should however only be taken as a guide, since in practice additionalfactors such as mesh geometry can have a profound inuence on the accuracy ande�ciency of preconditioners.3.13 PredictorsFor time-dependent problems the computation of simple explicit predictors for useas initial estimates of the solution for the linear solver has been found to be advan-tageous. For both Stokes and Navier-Stokes problems an obvious choice of initialestimate is the solution from the previous time step. A more sophisticated approachinvolves using the solutions at a number of previous time steps to form a more accu-rate explicit predictor. In the current work explicit predictors computed using theprevious two solutions are employed whenever possible. These are found using the�nite-di�erence formulau(n+1) = u(n) + �u(n) � u(n�1)� k(n+1)k(n) ; (3.76)which gives a predictor that is second-order accurate in time. For the time stepimmediately after a mesh regeneration (3.76) cannot be used. Instead for Stokes-ow problems a �xed vector (of all ones) is employed as the initial guess, while forNavier-Stokes problems the interpolated velocity �eld is used. Predictors for thepressure components of the solution are not necessary and in any case appear tohave little e�ect on the number of iterations required. For the second time stepafter a mesh regeneration the solution at the end of the previous step is availableand is used to give �rst-order accurate predictors for both Stokes and Navier-Stokesproblems.Both �rst- and second-order predictors are observed to result in considerable re-ductions in the number of conjugate residual iterations required to obtain a solutionto a given accuracy. A good second-order accurate predictor can reduce the normof the initial residual vector by a factor of 103, cutting the number of iterationsrequired by 20|60% (see for example Fig. 4.21). Even where an ILUT precondi-tioner is used, the resulting saving of perhaps one or two iterations per time stepcan be considerable. Finally, note that attempts to compute second-order predictorsfor Navier-Stokes problems using interpolation of solutions from time steps immedi-ately prior to mesh regeneration were unsuccessful, the resulting predictors provingno better than the �rst-order ones already mentioned.



Chapter 3 103 Solvers for incompressible ows3.14 InterpolationWhen solving the Navier-Stokes equations it is necessary to be able to transfer avelocity �eld from one mesh to another in order to continue integration after a meshregeneration. This reects the fact that initial conditions are required for a time-dependent Navier-Stokes problem. Such transfers are potentially both expensiveand a source of error. Fortunately they need only be performed for the velocity�eld, since no initial conditions are required for the pressure. While the velocityat a free-surface node that is present in both the new and the old meshes needsno modi�cation, at nodes introduced when free-surface edges are split some meansof estimating the solution at the new node is required. Here this is done usinginterpolation. As for the velocity �eld on the interior of the mesh, three methodsfor performing its transfer are immediately apparent. The �rst involves the simpleinterpolation of the old solution onto the new mesh, i.e. the value of the solution at anode in the new mesh is set to the value of the old solution at the corresponding pointin the old mesh. Such an approach has a number of drawbacks. Firstly, it does not,in general, conserve momentum or kinetic energy. Secondly, it results in velocity�elds that are not divergence free, i.e. that do not satisfy the discrete continuityequations (3.14). While conservative interpolation schemes have been described forlow-order elements [83], the generalisation of such schemes to quadratic elementsin two dimensions has not, to the author's knowledge, been described and wouldappear to be a non-trivial exercise.The second type of transfer scheme that might be considered involves a projectionmethod [34] requiring the solution of a system of linear equations for a correction toa velocity �eld obtained using interpolation. When the correction is subtracted fromthe original velocity �eld a divergence-free velocity �eld results. Such an approach,while considerably more expensive than simple interpolation schemes, also fails toconserve momentum and kinetic energy exactly. Since by their implicit nature thetime-integration schemes employed here enforce incompressibility at the end of eachtime step, even if the initial conditions are not divergence free the velocity �eld atthe end of the �rst time step will be. Thus little appears to be gained from the useof this approach.The third type of scheme that might be employedmakes use of the �nite elementformulation directly. In essence it involves the solution of a Navier-Stokes problemon the new mesh with a very small or even zero time step, the old solution's con-tributions to the right-hand side of the linear-algebraic problem being computed by



Chapter 3 104 Solvers for incompressible owsexact integration. Such a scheme would conserve momentum globally, and wouldautomatically result in a divergence-free velocity �eld. The main di�culty wouldappear to be that of exactly integrating a piecewise-continuous velocity �eld, thediscontinuous nature of the integrand making numerical quadrature a non-trivialoperation in such circumstances. One solution is to �rst smooth the old solutionby, for example, �tting a local cubic-spline basis using a least-squares procedure[11]. Thus, while some accuracy will be sacri�ced (momentum will not be exactlyconserved), numerical integration will be greatly facilitated.In the present work the transfer of solutions between meshes was performedusing the �rst of these schemes, i.e. simple interpolation. Two approaches wereinvestigated, details of which are given in the following section.3.14.1 Linear and quadratic interpolationA major complication when performing interpolation between unstructured meshesis the need to be able to e�ciently �nd the element in which a particular point islocated. Where the internal mesh edges are linear, deciding whether a point lieswithin a given triangular element is straightforward and fairly inexpensive. Findingthe element, however, requires some form of search. Since this process must berepeated for each element, it is clear that, if naively implemented, interpolation willhave complexity O(N2) where N is the number of elements. By employing moresophisticated search procedures, involving additional data structures, the searchcost may be reduced to O(NlogN), using lists of nodes sorted by their x and ycoordinates, or even O(N), by employing an heuristic search that makes use ofthe element adjacency graph. In the current work elements were located using asimple linear search, an approach that has proved satisfactory for the relativelysmall meshes employed.The simplest interpolation scheme considered here is a linear one. In this anelement's edge nodes are ignored. Thus the local coordinates, (�; �), of a point inan element may be computed directly by solving a pair of linear equations. Oncethis has been done, computing the velocity components at the point is trivial.A quadratic interpolation scheme using the full isoparametric basis is also possi-ble though somewhat more complicated, since �nding (�; �) now, in general, involvesthe solution of the following pair of simultaneous nonlinear equations6Xi=1 xiqi(�; �)� x = 0; (3.77)
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(a)

(b)

(c)Figure 3.14: Pressure �eld resulting after interpolation of velocity �eld, Re = 10,axisymmetric oscillation of a droplet: (a) pressure �eld before interpolation; (b)pressure �eld after linear interpolation; (c) pressure �eld after quadratic interpola-tion. 6Xi=1 yiqi(�; �)� y = 0; (3.78)where xi and yi are the coordinates of the nodes forming the element. Here, equa-tions (3.77) and (3.78) are solved for � and � using Newton's method, which typicallytakes three or four iterations to reach machine precision.The improvement in accuracy resulting from the use of quadratic rather thanlinear interpolation may be seen from Fig. 3.14, which illustrates the e�ects of in-terpolation on the pressure �eld computed for an oscillating axisymmetric droplet.The simulation was conducted at Re = 10, on an unstructured mesh, using themethods described in Chapter 6. Fig. 3.14(a) shows the pressure �eld immediatelybefore a mesh regeneration takes place, while (b) and (c) show the pressure �eldsobserved at the end of the �rst time step after regeneration, for linear and quadratic



Chapter 3 106 Solvers for incompressible owsinterpolation respectively. Note that only the velocity �eld is transferred onto thenew mesh; the oscillations visible in the pressure in (b) are due to the velocity �eldresulting from linear interpolation not being divergence free. After only a singlefurther time step these oscillations disappear. To the naked eye, the velocity �eldscorresponding to (b) and (c) appear identical and for this reason are not shown. Itis this quadratic interpolation scheme that is employed for the problems describedin Chapter 6.3.15 Time-step selectionSince all the semi-implicit schemes employed in this work have explicit components,one would naturally expect constraints on the maximum time step to be necessaryif the schemes are to be stable. For the semi-implicit Stokes-ow solver described inSection 3.7, the constraint is due to the explicit treatment of the kinematic boundarycondition. For the semi-implicit Navier-Stokes solver described in Section 3.5 theexplicit treatment of the convective term and the moving-mesh correction termalso potentially introduce constraints on the maximum permissible step size. Theauthor's experience is that in practice it is always the explicit free-surface advectionscheme that causes the greatest problems. Figure 1.6 illustrates the form of the free-surface instabilities that are invariably observed if too large a time step is employed.The rapid motions of the free-surface nodes visible reverse in direction at alternatetime steps. If automatic free-surface remeshing is performed in such circumstances,at some point the highly curved edges will be split, resulting, if time steps of �xedsize are employed, in an even more unstable situation. Thus the solver typically failsshortly after the onset of such instability, due to excessive re�nement of the mesh.Although it is possible to solve a free-surface problem using a �xed time-stepsize, the need to ensure stability throughout a problem will inevitably mean that anunnecessarily large number of time steps will be required. Clearly it would be usefulto have some means of choosing the time-step size adaptively so that it remains aslarge as possible, while at the same time ensuring free-surface stability.Experience has shown that the semi-implicit schemes described in Sections 3.5and 3.7 are satisfactory for many problems provided that the time-step size, k, isselected so that k � C1hminvmax ; (3.79)where hmin is the minimum edge length in the mesh, vmax is the maximum velocity



Chapter 3 107 Solvers for incompressible owsat a node and C1 is a constant. In practice taking C1 = 14 is often su�cient toprevent instability of the free-surface advection scheme arising. For a regular mesh ofequilateral elements, using this value of C1 in (3.79) e�ectively restricts the distancea notional particle of uid can travel during a time step to half the minimumdistancebetween nodes. Thus (3.79) may be seen to be a form of Courant-Friedrichs-Lewy(CFL) condition [98]. While (3.79) limits the maximum size of time step that maybe employed, it is far less restrictive than thek � C2hmin2vmax (3.80)constraint on time-step size that would be necessary if the viscous term in theNavier-Stokes equations were to be treated explicitly [34].Employing (3.79) as a sole guide to choosing the time step is however problem-atic, a smaller value of C1 often being necessary to ensure stability. It is easy tosee why this might be the case. In an arbitrary unstructured mesh of quadratic ele-ments the minimum edge length hmin does not give a reliable guide to the minimumdistance between nodes. At other times the time step constraint (3.79) is likely tobe excessively pessimistic since it employs global measures of the solution's velocityand the mesh's resolution.Note that the choice of time-step size a�ects not only the stability of a time-integration scheme but also its accuracy. Thus, while a given size of time step maybe adequate to ensure stability, it may not give su�cient temporal accuracy. Thisis most likely to be a problem when a stable steady-state con�guration is beingapproached, and for this reason a maximum time-step size (typically 0:005 � k �0:01) is generally imposed.In the course of the current investigations a novel scheme for the selection oftime-step size has been found to be particularly useful. Since the stability problemappears essentially to be one of ensuring free-surface stability, and, since experiencehas shown that such instabilities invariably manifest themselves in the form of time-step-scale temporal oscillations in the sign of the normal velocity at free-surfacenodes, the instability has a clear and well-de�ned signature that may easily bedetected. Whenever such instability is present, the expression�����ui(n+1) � 2ui(n) + ui(n�1)k2 ����� ; (3.81)



Chapter 3 108 Solvers for incompressible owsi.e. a central-di�erence approximation for�����@2u@t2 ����� ; (3.82)will be large at the free-surface nodes e�ected. Since under normal circumstances(3.81) is relatively small, its rapid growth is a clear and convenient indicator thatthe time step is too large.The stability method of time-step size selection operates as follows. At each timestep an estimate of the maximum allowable time step, tc, is computed usingtc =  lte� ! 13 ; (3.83)where � is the maximum value of (3.81) at a node, and lte is a prescribed tolerance,the form of (3.83) being justi�ed only by the observation that it works well inpractice. To prevent the possibility of oscillation in the time-step size itself, ateach time step the value of tc computed using (3.83) is combined with the currenttime-step size, k, using the following exponentially-weighting schemek(n+1) = 0:9k(n) + 0:1t(n)c : (3.84)This tends to smooth out rapid uctuations in time-step size and while it makesthe scheme slower to respond when, for example, the mesh is re�ned and a smallertime step is required, this does not appear to be a great problem in practice sinceoscillations due to free-surface instability typically grow in amplitude only slowly at�rst.In practice a small initial value is chosen for the time-step size. This then growssteadily until the maximumstable time-step size for the con�guration is approached.Again, for reasons of accuracy, an upper limit on the time step is also generallyimposed. In the current work a value of lte = 10�6 is employed, resulting in timesteps of comparable size to those found necessary by trial and error. Adaptive time-step size selection using this approach has proved to be very reliable in practice.3.16 ConclusionsIn this chapter the weak form of the Navier-Stokes equations has been introducedand the �nite element formulation described. The issue of choosing the appropriate



Chapter 3 109 Solvers for incompressible owsfree-surface normal for use in the implementation of the kinematic boundary condi-tion has been addressed. The question of the need to allow for the motion of nodeshas also be raised, and methods for incorporating such motions into the formulationhave been outlined.A number of simple semi- and fully-implicit time-discretisation schemes havebeen described. The relative costs of these schemes are discussed as are techniquesfor their solution. Fully implicit schemes, at least when solved using functional iter-ation, have been found not to be cost-e�ective due to the small time steps necessaryto ensure convergence of the functional iteration scheme.The form of the preconditioned conjugate residual method employed here hasbeen described and investigations into the relative e�ciencies of a number of pre-conditioners are reported. In particular, Saad's ILUT preconditioner has been foundto considerably reduce the overall run time compared to the best diagonal precondi-tioner considered, even when the cost of computing an LU factorisation is incurredat each linear solve. The run times measured for the various preconditioners werefound to increase more rapidly with problem size than theoretical estimates wouldlead one to expect. In practice, all the preconditioning schemes considered were ob-served to result in approximately O(N2) solution times. Despite this, comparison ofthe conjugate residual method, as implemented here, with a standard direct solverindicates that, even for relatively small problems, the conjugate residual methodconsiderably out-performs the direct solver. A number of suggestions have beenmade which should allow ILUT preconditioners to be used reliably and e�cientlyfor a wider range of free-surface problems.A variant of the Cuthill-McKee algorithm has been described for the orderingof the unknowns associated with quadratic mixed-variable �nite elements. Meth-ods for transferring solutions between piecewise triangular meshes have been brieydiscussed, and the implementation of a simple quadratic approach is described.Finally, the problem of automatically selecting the largest time step that is smallenough to ensure stability of the free-surface advection has been considered. A novelapproach to this problem is described.



Chapter 4The coalescence of two cylinders
The material contained in this chapter is the subject of an IJNMF paper [78],a shorter form of which was presented at the 1998 ICFD conference in Oxford[76].In this chapter a solver implemented using the methods described in Chapters2 and 3 is validated using a standard benchmark problem: the surface-tension-driven Stokes-ow coalescence of two in�nitely long, parallel cylinders of unit radius.The rate of convergence of the spatial discretisation scheme is shown to be linear,and the mass-conservation properties of the scheme are investigated. Finally, thecomputational costs associated with the scheme are discussed.4.1 BackgroundThe need to validate the numerical techniques introduced in the previous chaptersprovides a strong motivation for the investigation of free-surface problems for whichan analytical solution is known. The work of R.W. Hopper is thus of particularinterest, since his papers [44, 45, 46] describe exact analytical solutions for a numberof surface-tension-driven Stokes-ow problems. These allow the evolution of the freesurface to be computed for the simply-connected two-dimensional shapes involved.Thus, while the normal component of the free-surface velocity may be deduced, thesolutions do not give the tangential component of the free-surface velocity or the110



Chapter 4 111 The coalescence of two cylindersvelocity and pressure �elds in the interior of the domain. Hopper's solution for the
y

1 1

xFigure 4.1: The coalescence of two in�nite cylinders: initial geometry.coalescence of two in�nite cylinders of unit radius is of particular importance sinceit provides a useful model for industrial processes involving the viscous sintering ofbundles of ceramic �bres [113]. Accurate knowledge of the free-surface dynamics insuch problems is useful, in that it allows the �nal density of materials produced bysuch processes to be predicted. See [69] for further background material relating tothe practical applications of viscous sintering.In his later papers Hopper extends the approach to include other two-dimensionalshapes, and in [47] and [48] he describes solutions for the coalescence of two cylindersof di�ering radii. Since the point(s) of contact of any two smooth two-dimensionalshapes may, locally at least, be approximated by two circular arcs of di�ering radii,Hopper's solutions in principle allow the initial, extremely sti�, part of such a prob-lem to be dealt with analytically provided, of course, that each such point of contactmay be assumed to evolve independently of the others in the earliest stages of suchinteractions.The problem considered in this chapter is that of the Stokes-ow coalescence oftwo parallel in�nite cylinders of unit radius under the inuence of surface tension,here referred to as the two-cylinders problem. Due to its translational symmetry it isreasonable to treat the problem as a two-dimensional one. While it may be arguedthat this is physically unrealistic, in that instabilities in the third dimension are thusimplicitly suppressed, in the viscous sintering of bundles of ceramic �bres [113] suchinstabilities do not appear to arise in practice and thus the model is a useful one.



Chapter 4 112 The coalescence of two cylindersThe model may also usefully be applied to �bres of �nite length, provided that the�bres are su�ciently long that end-e�ects may be neglected.The modelling of such ows apparently dates back to Frenkel's 1945 paper [28],in which a simple model of viscous sintering was proposed. Frenkel's model hashowever been shown by later numerical studies to be incorrect. Ross, Miller andWeatherly's 1981 paper [89] describes the application of the �nite element methodto the study of an in�nite array of cylinders of equal radius. In this they employ amesh of �xed connectivity that deforms continuously. Martinez-Herrera and Derby[67] apply the �nite element method in the modelling of two cylinders of equalradius, as well to other two-dimensional problems involving cylinders of unequalradii, and linear arrays of identical cylinders. They also employ structured meshesof �xed connectivity that deform continuously. Jagota and Dawson [52, 53] employthe �nite element method in the modelling of a number of related three-dimensionalaxisymmetric problems including the coalescence of two spheres of equal radii, thecoalescence of two spheres of di�ering radii, and the coalescence of linear arraysof identical spheres. In their work they employ unstructured meshes that deformcontinuously, with periodic \repair" of the mesh in the vicinity of the cusp, andperiodic remeshing of the entire domain.In recent years considerable interest has been focused upon the use of boundaryintegral equation (BIE) methods for the solution of time-dependent free-surfaceStokes-ow problems. Also known as boundary-element methods (BEM), theseallow the free-surface velocity to be obtained from the stress boundary conditions,without the use of the interior mesh required by the �nite element method. Thusat each time step a much smaller, though now dense, system of linear equationsmust be solved. Kuiken's 1990 paper [60] was one of the �rst to apply the BEM [51]to the solution of the two-cylinders problem. In this he employs a simple explicittime-integration scheme as a means of updating the free-surface location. WithMattheij and van de Vorst [115] this work was further extended to include shapessuch as cylinders of unequal radii, and squares with rounded corners. Mattheijand van de Vorst's 1992 paper [114] further generalises the method by allowingperiodic redistribution of collocation points to occur, while van de Vorst's 1994thesis [113] describes the use of an implicit time-integration scheme (LSODE), aswell as the modelling of a large number of related problems, such as the axisymmetriccoalescence of two spheres.Where the BEM is applicable, and where only the evolution of the free surface isrequired, boundary-element methods appear to have considerable advantages over



Chapter 4 113 The coalescence of two cylinders�nite element methods, since the resulting systems of linear equations are consid-erably smaller, and the problems of maintaining an adequate interior mesh do notarise. They do not, however, allow the interior velocity �eld to be computed withoutconsiderable additional expense, and thus secondary variables such as the stresses,vorticity, stream function and local rate of viscous dissipation of kinetic energy aresimilarly di�cult to obtain.4.2 Analytical solutionThe problem formulation employed here is based upon that employed by van deVorst and Mattheij [114, 113]. If two identical in�nitely long, parallel cylindersof uid, are brought into contact, at the line along which they �rst make contacta pair of cusps arise. Initially the curvature of the free surface at the cusps isunbounded. Figure 4.1 shows the geometry of a cross-section of the domain atthe time two cylinders of unit radius initially make contact, while Fig. 4.2 showspart of the evolution of the free surface thereafter. For convenience initial contactis assumed to occur at the dimensionless time t = 0:0. The connecting region of
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-2 -1.5 -1 -0.5 0 0.5 1 1.5 2Figure 4.2: The coalescence of two in�nite cylinders: free-surface evolution.uid that forms between the two cylinders is known as the neck. As time passesboth the neck width and the neck curvature increase monotonically, the initial neckcurvature being negative. Eventually, around the dimensionless time t = 2:0, the



Chapter 4 114 The coalescence of two cylindersneck disappears. Thereafter the evolution of the free surface continues, at an everdecreasing rate, until ultimately a new cylinder arises.Since the modelling of a highly-curved neck region is di�cult it was decidedthat modelling would begin a short time after the two cylinders initially come intocontact. The existence of a known analytical solution for the problem allows this tobe done correctly. If Hopper's solution were not known some form of approximationwould be required, such as the use of a circular arc to represent the free surface inthe neck region.Mattheij and van de Vorst [114] employ a non-dimensionalisation of the problemsimilar to that discussed in Section 1.3, which is based upon that of Martinez-Herreraand Derby [67]. Martinez-Herrera and Derby discuss a representative viscous-sintering problem for which the values of the relevant dimensional parameters areR = 10�7 � 10�4m, � = 103Kgm�3, � = 10�1Nm�1, � = 106 � 109Kgm�1s�1and g = 9:81ms�2; i.e. length scale, density, surface tension, viscosity and accel-eration due to gravity. Combined appropriately, these give a Suratman number of10�23|10�14 and a Bond number of 10�9|10�3. Thus, for this class of problems,the Stokes-ow approximation may be seen to be a particularly good one.Hopper's analytical method involves the discovery of a time-dependent conformalmapping from the domain onto the unit circle. Further details may be found in [44].Note that, in this thesis, Mattheij and van de Vorst's formulation for cylinders of unitradius [114, 113] is followed, rather than Hopper's original formulation for cylindersof radius p22 . In [113] van de Vorst gives the following expressions for the locationof the free surface, x(�; �) = (1� �2)(1 � �)p2 cos �(1� 2� cos 2� + �2)p1 + �2 (4.1)y(�; �) = (1� �2)(1 + �)p2 sin �(1� 2� cos 2� + �2)p1 + �2 (4.2)where � is the angle made by a point on the free surface at the origin with respectto the positive x axis, and � is an increasing function of time, with 0 � �(t) � 1 fort > 0. Using (4.2) the neck radius r may be expressed in the formr(�) = y(�2 ; �) = (1 � �)p2q(1 + �2) ; (4.3)



Chapter 4 115 The coalescence of two cylinderswhich may be inverted to give �(r) = 2 � rp4 � r22 � r2 : (4.4)Van de Vorst gives the following expression for the time t as a function of �t(�) = �p2 Z 1� dkkp1 + k2K(k) ; (4.5)where K(k) is the complete elliptic integral of the �rst kind [1, 101], i.e.K(k) = Z �20 d#p1� k2sin2#: (4.6)In the experiments described in this chapter (4.5) is integrated numerically using theNAG routine D01BBF [35], employing 64 quadrature points, K(k) being evaluatedusing the NAG routine S21BBF. Where necessary � is computed from t by applyingthe bisection method to (4.5). In practice this need only be done occasionally, forthe purposes of data logging etc.Here an initial con�guration at a dimensionless time of t = 0:2825 is employedcorresponding to a value of � = 0:7. The resulting simulation, while avoiding ex-tremes of curvature in the neck region, still represents a challenging problem. Thefollowing expression for the neck curvature may be obtained using (2.20), (4.1) and(4.2) kneck(�) = (1 � 6� + �2)p1 + �2(1� �)3p2 : (4.7)Thus it may be shown that a value of � = 0:7 corresponds to a neck curvatureof approximately �86:633, necessitating a variation in free-surface edge length ofnearly two orders of magnitude if curvature is to be equidistributed between edges.4.3 MethodFive initial meshes were employed in these investigations, three of which are shownin Fig. 4.3. Statistics for the initial meshes are given in Table 4.1. Figure 4.4 showsthe mesh in the upper neck region at t = 0:304, shortly after the commencement ofthe simulation, but after the mesh has been regenerated several times. As may beseen, particularly small elements are necessary to resolve the high curvature in theneck region, resulting in a sti� system of equations.
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(a)

(b)

(c)Figure 4.3: The coalescence of two in�nite cylinders, selected initial meshes: (a)ktol = 0:2000, hmax = 0:3218, (b) ktol = 0:1000, hmax = 0:2554, (c) ktol = 0:0500,hmax = 0:2027.



Chapter 4 117 The coalescence of two cylindersMesh ktol hmax Boundary vertices Elements Unknowns1 0.2000 0.3218 112 876 42282 0.1414 0.2867 148 1132 54703 0.1000 0.2554 200 1464 70944 0.0707 0.2276 272 1972 95605 0.0500 0.2027 380 2714 13169Table 4.1: The coalescence of two in�nite cylinders: initial mesh statistics.The values of hmax were chosen so that each time ktol is halved hmax is reduced bya factor of 21=3. Thus, as discussed in Section 2.4.4, the error in both the boundaryconditions and the velocity on the interior of the mesh should converge linearly.Note, however, that with the unstructured meshes produced by Triangle [96], theactual maximum edge-length need not decrease proportionately to hmax. Thus,when halving hmax, occasionally a better than average rate of convergence will beobserved, while on other occasions the rate will be worse than expected.Many of the authors who have tackled this problem have elected to make useof the symmetries of the problem, allowing them to model only a quarter of thedomain employed here. In the interests of generality here the entire domain ismodelled. Thus the current solver may, in principle, be employed to model anysimply connected two-dimensional shape. As the experiences recounted in Chapter6 show, symmetry of the domain may be lost over time where unstructured meshesare used, and thus solving the problem in the present form is a considerably moresevere test of the �nite element method than would be achieved if only a quarter ofthe domain were modelled and the symmetries imposed.Modelling the entire domain, with free-surface stress boundary conditions every-where, results in the problem being singular; the discrete Stokes operator in thiscase having a null space of dimension three. The three null vectors correspond tothe rigid-body motions of the domain, i.e. translations in the x and y directionsand rotation about the domain's centre of mass. Interestingly, if the problem isposed with purely essential boundary conditions, then it is also singular, the nullspace corresponding to a single, arbitrary, everywhere-constant pressure mode. Inthis case the problem is sometimes made non-singular by specifying the pressure ata single node. If this approach were to be adopted here, then it would be neces-sary to impose three constraints on the velocity. While specifying both componentsof the velocity at a node would provide two of the constraints, imposing the thirdconstraint, on the angular velocity, is more di�cult. The obvious approach of using
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Figure 4.4: The coalescence of two in�nite cylinders: mesh detail in the neck regionat t = 0:304.the symmetries of the domain in formulating such constraints is problematic, sincethere is no guarantee that the mesh will remain symmetric as the problem unfolds.An alternative approach, and the one employed here, is to impose global constraintson the velocity and angular velocity, i.e.Z
 ud
 = 0; (4.8)Z
 vd
 = 0; (4.9)Z
 u� rd
 = 0: (4.10)Thus (4.8) and (4.9) specify that the velocity of the centre of mass of the con�g-uration must be zero, while (4.10) speci�es that the con�guration must have zeroangular velocity about the origin, which is here chosen to be the centre of mass ofthe uid for reasons of stability. This approach has the major advantage that it isequally applicable when the domain lacks symmetry.



Chapter 4 119 The coalescence of two cylindersThe three constraints (4.8), (4.9) and (4.10) are assembled as additional rows ofthe �nite element problem, the transposes of the rows also being added so that theresulting matrix is symmetric. Thus one obtains the following modi�ed system ofequations 0BBBBBB@ K Q1T Q2T Q3TQ1 0 0 0Q2 0 0 0Q3 0 0 0 1CCCCCCA0BBBBBB@ x�1�2�3 1CCCCCCA = 0BBBBBB@ b000 1CCCCCCA : (4.11)Thus three new variables (Lagrange multipliers) �̂1, �̂2 and �̂3 are introduced. Thezero values speci�ed as the right-hand sides of the three new rows are arbitrary, andmay be modi�ed to impose any other choices of the linear and angular velocities.Since the additional constraints must be linearly independent of the rows of theoriginal matrix, and of one another, it is easy to show that if x satis�es the original(singular) system Kx = b and also satis�es the additional constraints Q1x = 0 etc.then (x; 0; 0; 0)T will be the unique solution of (4.11).Both diagonal and ILUT preconditioning were investigated as a means of reduc-ing the number of conjugate residual iterations required to solve the linear-algebraicsystems that arise in this problem. Diagonal preconditioning, as described in Sec-tion 3.12.1, has been found to be useful in this respect, and is the method employedhere. Entries in the diagonal preconditioning matrix corresponding to the threeadditional constraints must however be selected, since the entry corresponding tothe diagonal in each constraint row is zero. Setting the corresponding entries in thediagonal preconditioner to equal the area of the domain has been found be e�ective.Preconditioners based upon incomplete LU factorisations of the �nite elementsti�ness matrix, while e�ective in considerably reducing the number of iterationsrequired, have however proved unreliable. Thus, for example, while such precondi-tioners may prove successful for perhaps several hundred time steps, occasionallythe iterative solver will fail completely, stalling once the residual of the precondi-tioned system has been reduced by only a few orders of magnitude. These failuresappear to be due to the dropping of small entries (aij < 10�6) during the incompletefactorisation process, which may, on occasion, prevent convergence to the solutionof the correct linear system from occurring, particularly where a small convergencetolerance is required (e.g. 10�10). An in-depth analysis of this problem is not at-tempted here, since it is noted that many related issues should also be considered,such as that of choosing the values of lfil and droptol adaptively, so as to minimiseoverall run time. In the present work the emphasis has been on achieving reliable
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(a) t = 0.2825 (b) t = 0.7675
(c) t = 1.5027 (d) t = 5.0000Figure 4.5: The coalescence of two in�nite cylinders: evolution of mesh 3.results by the simplest approach possible, the values of lfil and droptol being chosenfor reliability rather than e�ciency. Unfortunately, this meant that for the largermeshes considered for the two-cylinders problem reliable preconditioners could notbe computed within the available storage (approximately 50Mb). ConsequentlyILUT preconditioners are not employed in this chapter, though it is noted that ahybrid preconditioning strategy, employing an ILUT preconditioner chosen for e�-ciency whenever possible, and reverting to a diagonal preconditioner when this failswould appear to be an attractive possibility. Note that where ILUT preconditioningis employed, the global constraints (4.8), (4.9) and (4.10) present additional di�-culties since, when discretized, they result in rows of the �nite element matrix that
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Dimensionless timeFigure 4.6: Neck radius as a function of time for mesh 3: |{ exact; 3 computed.have non-zero entries for the u and v unknowns at all the nodes in the mesh. Thisproblem may be circumvented by ordering the rows of the �nite element matrix sothat the three global constraints are the last rows to be eliminated during the ILUfactorisation. Even so, it appears necessary to employ a value of lfil su�cient tostore the entire row when eliminating them, though a smaller value of lfil could beemployed in factorising the main part of the matrix.For the problems considered in this chapter the backward-Euler form of the semi-implicit scheme described in Section 3.7 was employed and, unless otherwise stated,the time-step size was chosen adaptively using the stability method described inSection 3.15, taking lte = 10�6.4.4 ResultsFigure 4.5 shows the mesh at selected times, (a) corresponding to the initial mesh,while (d) corresponds to the mesh at a time when the free surface is close to circular,the maximum and minimum radii di�ering by less than 1%. Figure 4.6 shows boththe analytical and the computed dimensionless neck radii as functions of time, formesh 3. As may be seen, the agreement between the computed and analyticalsolutions is good, the maximum error of approximately 0:01 dimensionless units
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xFigure 4.7: Global free-surface error, mesh 3, at t = 1:000: - - - - computed freesurface; || analytical free surface; { { { initial free surface.occurring between t = 0:5 and t = 1:5. Figure 4.7 shows both the computedand the analytical free surfaces at t = 1:000, together with the initial free surface.As may be seen, the maximum discrepancy occurs close to the axis of symmetry.Figure 4.8 shows the dimensionless neck velocity as a function of time. Again theagreement between analytical and computed values is good. Figure 4.9 shows boththe velocity �eld at t = 0:304 and the detail in the upper neck region at that time.Note the di�erent scalings of the velocity �eld employed in the two �gures, thegreatest velocities occurring in the neck region. As may be seen from 4.9(b), despitethe considerable modi�cation of the mesh that has occurred in the neck region byt = 0:304, there is no sign of any saw-tooth instability on the free surface, whichappears perfectly smooth at this scale.Figure 4.10 shows two details of the pressure �eld at t = 0:304. The pressurecontours shown in all the pressure plots in this thesis were selected automatically, a�xed number of contours being drawn equispaced between the maximum and mini-mum pressures occurring at that time. Thus neither the contours levels themselvesnor their spacing have any absolute signi�cance and cannot be compared betweenplots.From Fig. 4.10(b) it may be seen that while the mesh appears adequate, in that
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Dimensionless timeFigure 4.8: Neck velocity as a function of time for mesh 3: |{ exact; 3 computed.it resolves the main features of the pressure �eld, kinks are visible in the pressure�eld approximately one neck radius to the right of the y axis. Reference to Fig.4.3 shows that these occur in a region of the mesh where the size of elements ischanging rapidly in response to reduction in the absolute curvature occurring asone moves away from the neck. Clearly, further re�nement of the mesh would be inorder here. Note that, as discussed in Section 2.2.3, in this work no attempt is madeto re�ne the free-surface discretisation with respect to the curvature gradient, onlyequidistribution of curvature being attempted. Thus, if the curvature is small butchanging rapidly, a situation in which one would expect large pressure gradients tooccur, the current meshing scheme will not take this into account and consequentlyboth the free surface and the interior mesh will be coarser than appropriate.Figures 4.11 and 4.12 show the velocity and pressure �elds, respectively, at t =1:000 and t = 2:000. By t = 2:000, the concave regions of the free surface havedisappeared, and since the pressure gradients driving the ow are now much reduced,the rate of deformation of the domain is now much smaller; the neck velocity in (b)being approximately half that in (a). Note that at t = 2:000, the domain stilldisplays a high degree of symmetry.Table 4.2 shows assorted run statistics for the �ve meshes considered here. Col-umn two gives the number of PCR iterations required for the �rst step of the prob-
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(a)

(b)Figure 4.9: The coalescence of two in�nite cylinders: (a) velocity �eld at t = 0:304;(b) velocity �eld in the neck region at t = 0:304.
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(a)

(b)Figure 4.10: The coalescence of two in�nite cylinders: (a) pressure �eld at t = 0:304;(b) pressure �eld in neck region at t = 0:304.
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(a)

(b) Figure 4.11: Velocity �elds at: (a) t = 1:00; (b) t = 2:00.
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(a)

(b) Figure 4.12: Pressure �elds at: (a) t = 1:00; (b) t = 2:00.



Chapter 4 128 The coalescence of two cylindersMesh Iterations Steps Remeshes Average time per step1 1619 1548 54 23s2 1879 1766 149 44s3 2253 2085 71 69s4 2686 2648 77 104s5 3681 3383 130 221sTable 4.2: The coalescence of two in�nite cylinders: run statistics.lem, column three the number of time steps required to integrate up to t = 4:0,column four the number of mesh regenerations required, and the last column theaverage CPU time per time step as measured on a 180 MHz SGI R5000 worksta-tion. The average CPU time per step, and thus the overall run time, increases by afactor of approximately 21:7 each time ktol is halved. The overall run time for mesh3 was approximately 40 hours, while that for mesh 5 was approximately 208 hoursi.e. more than eight days. If uniform re�nement were employed, then mesh 5 wouldhave approximately 16 times the number of unknowns as mesh 1, the average timestep would take three quarters of an hour and the entire run around four months!While the number of mesh regenerations required generally increases with thenumber of time steps as one would expect, the excessively large number requiredfor mesh 2 is hard to explain. It may simply be that for the given domain andchoices of hmax and ktol the meshes produced by Triangle were poorly suited to thecurrent application, containing triangles that rapidly degenerated as the mesh wasdeformed. One strategy for dealing with this problem would simply be to perturbhmax (or ktol) slightly, in the expectation that this would lead to more satisfactorybehaviour. Further investigation of this issue would appear appropriate, particularlywith regard to variants of the Jacobi-smoothing operator, which might be designedso as to give greater weight to the need to bound mesh angles away from both 0�and 180�. Since the mesh is regenerated at least every 40 time steps, it may bededuced that in all cases, except for mesh 2, only a minority (� 30%) of the meshregenerations are forced ones, the remainder being periodic regenerations.4.4.1 AccuracyFigure 4.13 shows the neck velocity in the early stages of the problem for threeof the meshes, as well as the exact velocity. As may be seen, the computed neck
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Dimensionless timeFigure 4.13: Initial stage velocities: |{ mesh 1; . . .mesh 3; - - - mesh 5; { { { exact.velocity contains a large component of `noise' and is far from monotonic at thisscale. This is particularly apparent for the coarsest mesh. As the mesh is re�nedthe amplitude of this noise decreases rapidly, and is in all cases a fraction of themean error in the velocity. Note the initial upward transient in all three cases, theinitial velocities being considerably closer to the exact solution, than those observedonce the simulations are underway.Table 4.3 gives the error in the neck velocity at an arbitrary time, t = 0:31, in theearly stages of the problem. This time was chosen in order to avoid large errors dueto the global error in the free surface's location. The values given were obtained by�tting a straight line to the data shown in Fig. 4.13 for the interval t 2 [0:30; 0:32],using a least-squares method [121]. The velocity at t = 0:31 was then found byinterpolation and the error in the velocity computed using (4.3) and (4.5). Thedata given in Table 4.3 is also shown in Fig. 4.14, from which it may be seen thatthe error in the neck velocity decreases linearly, i.e. proportionately to ktol.4.4.2 Tangential stressA convenient test of any �nite element solution obtained with natural boundaryconditions is to check that the boundary conditions recovered from the computed



Chapter 4 130 The coalescence of two cylindersMesh ktol Neck velocity error1 0.2000 0.02722 0.1414 0.01893 0.1000 0.01274 0.0707 0.00895 0.0500 0.0061Table 4.3: The coalescence of two in�nite cylinders: averaged neck velocities att = 0:31.
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Dimensionless arc lengthFigure 4.15: Normal and tangential stress in the neck region at t = 0:29: { { {normal stress; |{ tangential stress.sophisticated techniques for evaluating gradients at nodes contained in [34]. Figure4.15 shows both the normal and tangential stresses in the neck region for mesh 5, att = 0:29, when the maximum absolute neck curvature is still large. Note that at thisearly point in the computation the mesh has already been regenerated three times.As expected, the normal stress has a marked peak in the neck region, the maximumabsolute dimensionless stress being approximately 86. The oscillations visible in thenormal stress in the neck region, while unwelcome, are not entirely unexpected. Themaximum amplitude of the oscillations is around 25% of the imposed normal stress.Oscillations like these are often observed in �nite element solutions where the mesh istoo coarse to accurately represent the solution [34]. Note that, while the free-surfacemeshing algorithms employed here do a good job of resolving the regions of maximumfree-surface curvature, the adjacent sections of the free surface, being of relativelylow curvature, are far less well resolved. Thus it appear that mesh re�nement withrespect to free-surface curvature alone is insu�cient to guarantee a good mesh.Similar oscillations are also visible in the tangential stress with approximately thesame amplitude as those observed in the normal stress at a given point on the freesurface.Where the mesh is su�cient to adequately resolve the solution, the tangential-



Chapter 4 132 The coalescence of two cylindersstress errors observed appear to result from the presence of �nite discontinuities inthe tangent at free-surface vertices. As discussed in Section 2.2.1, in the currentformulation continuity of the tangent at free-surface vertices is by no means guar-anteed, and thus, in general, at a free-surface vertex the normal and tangent arenot uniquely de�ned. Regardless of how the imposed normal stress is computed, inpractice the speci�cation of a normal stress at a free-surface vertex will inevitablyresult in the imposition of non-zero tangential stresses on the two edges adjacent tothe vertex in question. Thus it is clear that, whenever discontinuities are present atvertices, a certain amount of `cross-talk' between the imposed normal and tangentialboundary conditions will occur.
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Chapter 4 133 The coalescence of two cylinders4.4.3 Conservation of massIn a time-dependent free-surface computation the possibility arises that the size ofthe domain may actually increase or decrease during a computation. Three causesof mass conservation error are immediately apparent in a numerical study of thisnature. Firstly, since the set of linear equations is only ever solved approximately,mass may be lost or gained due to failure to impose the incompressibility constraintexactly. In the current �nite element formulation, employing Taylor-Hood elements,mass conservation is not guaranteed for each element; incompressibility being im-posed only globally through the discretisation of the continuity equation. Thus,
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Dimensionless timeFigure 4.17: Conservation of mass: percentage change in domain area as a functionof time for mesh 3.while locally relatively large mass-conservation errors may occur, over the entiredomain one would expect, in the worst case, the rate of mass loss or gain due tothis source to be of the same order of magnitude as the tolerance to which the com-ponents of the velocity are computed multiplied by the length of the free-surfaceperimeter. Thus, here, the worst-case rate of mass loss would be expected to be ofthe order of 4� � 10�10 in the initial stages of the problem.In the current scheme,mass may also be gained or lost as a result of the occasionalsplitting, merging and adjustment of edges necessary to maintain an accurate free-surface discretisation. In practice, these modi�cations appear not to be a signi�cant



Chapter 4 134 The coalescence of two cylinderssource of global mass conservation error, since the individual errors tend to cancelwith one another over a su�ciently long period of time.Figure 4.17 shows the percentage variation of the domain area as a function oftime. Note the initial relatively rapid drop in the area that occurs as the curvaturein the neck region decreases rapidly. In the later stages of the problem the areaincreases until, as the �nal con�guration is approached, the rate of change nearszero. Thus it appears that the rate of change in area is greatest when the freesurface is moving most rapidly. Note, however, that the maximum deviation of thearea from its initial value is only 0:005% for this problem. From Figure 4.18 it may
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Dimensionless timeFigure 4.18: The e�ect of spatial re�nement on mass conservation; dimensionlessdomain area as a function of time, for a �xed time-step size k = 0:000125: -�-�-�-�-mesh 1; � � � � � mesh 2; - - - - - mesh 3; { { { { mesh 4; ||| mesh 5.be seen that as the boundary of the mesh is re�ned the rate of area change doesnot decrease signi�cantly. Note the di�erent initial areas for each of the meshes,the correct area of 2�, or 6:2831853 to 8 signi�cant �gures, being approached bythe �nest meshes. In all �ve cases, a �xed time-step size of k = 0:000125 wasemployed. For mesh 3 an average rate of area change of approximately 2:3� 10�3%per dimensionless unit of time was observed over the interval shown.Figure 4.19 shows the e�ect that altering the size of the time step has on theinitial rate of area change for a mesh of �xed resolution. From Fig. 4.19 it may be



Chapter 4 135 The coalescence of two cylindersseen that the area lost by time t = 0:35 varies approximately linearly with time-stepsize. This is precisely what one would expect to observe for a �rst-order explicitadvection scheme such as that employed here. In such a scheme the velocity of each
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Dimensionless timeFigure 4.19: The e�ect of time-step size on mass conservation; dimensionless domainarea as a function of time using mesh 3: ||| k = 0:0002500; { { { { k = 0:0001780;- - - - - k = 0:0001250; � � � � � k = 0:0000884; -�-�-�-�- k = 0:0000625.free-surface node is held �xed throughout a time step and the position of each nodevaries linearly with time within the time step. Consequently, the local truncationerror for each free-surface node's location at the end of a time step, and thus thearea, will be O(k2). As a result, in the worst case, the global truncation error will beO(k), since the number of steps required is O(k�1). Thus it appears that the largestpart of the mass-conservation error observed results from the temporal truncationerror of the explicit free-surface advection scheme employed here.A number of discontinuities in the curves are apparent in Figs. 4.18 and 4.19.These are due to errors introduced when the mesh is regenerated and free-surfaceedges are merged and split. Note that the discontinuities visible in Fig. 4.19 appearworse than those in Fig. 4.18 due to the di�erent scales employed for the y axis in thetwo �gures. The largest discontinuity visible in Fig. 4.18 occurs for mesh 3 aroundt = 0:31 and corresponds to a jump in the area of approximately 10�6 dimensionlessunits. Since mesh 3 requires 77 mesh regenerations for this problem i.e. on average



Chapter 4 136 The coalescence of two cylindersone every 0:05 time units, if one assumes that the size of the discontinuity at t = 0:31is representative of the others, then, in the worst case, the average rate of change inarea via this mechanism will be of the order of 3 � 10�4 %, and the overall changein area around 2 � 10�3%. In practice, it appears that these discontinuities tendto cancel one another out over relatively short periods of time. Furthermore, theyappear to be largest in the initial stages of this problem, and, as the maximumabsolute neck curvature decreases, similarly decrease in magnitude.4.4.4 E�ciencyFigure 4.20 illustrates how the number of unknowns varies with time when initialmesh 3 is employed. By the later stages of the problem the number of unknowns, N,has more than halved. Since the linear solver employed here has an O(N2) run time,this results in a four-fold reduction in the CPU time required per time step. As Fig.4.21 shows, the reduction in the number of unknowns is matched by a reductionin the number of conjugate residual iterations required per time step. Note thepeaks that occur whenever the mesh is regenerated. These are due in part to thefact that immediately after a mesh regeneration no useful predictor is available.On the second step after a mesh regeneration only a �rst-order accurate predicatoris available and thereafter second-order accurate predictors become available. Asmay be seen, in the later stages of the problem the availability of second-orderpredictors roughly halves the number of conjugate residual iterations required pertime step. Attempts to compute predictors for the time step immediately after amesh regeneration, by performing interpolation of solutions from previous steps,were however unsuccessful, those computed proving no better than a �xed vector ofall ones.Although the largest part of the reduction in the iteration count occurs overthe �rst three steps after a mesh regeneration, as may be seen from Fig. 4.21, thenumber of iterations required continues to fall. This is due to the fact that a newmesh generated by Triangle will, in general, undergo a number of Jacobi-smoothingoperations before it approaches a stable con�guration. Thus, initially, the linear-algebraic problem will be changing rapidly, and, as a consequence, the predictorswill be relatively poor. As the mesh nears its optimal con�guration however, thealgebraic system changes much more slowly, now mainly in response to the evolutionof the free surface, and as a result the predictors become increasingly accurate. Note
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(a) t = 0.0000 (b) t = 0.1069

(c) t = 0.5041 (d) t = 1.1021Figure 4.23: Stokes-ow evolution of a cross with rounded corners, mesh at selectedtimes.using the stability method. For the reasons discussed in Section 2.2.4, the cornersof the initial mesh, at which the curvature would otherwise be unbounded, havebeen replaced with short circular arcs of radius 0:025. In principle these may bemade arbitrarily small in radius. In the modelling of such a problem, the rounding ofcorners appears to be a reasonable modi�cation since it is observed that, in practice,such corners rapidly evolve into smooth arcs, due to the large pressures occurring atthe discontinuities. The initial shape was chosen because it contains both concaveand convex corners. Initially, the greatest activity occurs near to the corners, wherethe pressure gradients are largest. After only a short time, i.e. by t = 0:1069, theends of the arms of the cross have been replaced by near-circular arcs. Note that



Chapter 4 140 The coalescence of two cylindersthe interior of the initial mesh, shown in Fig. 4.23(a) is considerably �ner than thatat, say, t = 0:1069. This is due to the use of a smaller value of hmax when generatingthe initial mesh than that employed during the remainder of the computation.The conservative nature of the mesh dere�nement algorithm employed here isapparent in the mesh shown for t = 0:5041, in which the sections of the free surfacecorresponding to the original concave corners still exhibit an apparently higher thannecessary degree of re�nement. By t = 1:1021 this has disappeared, and the meshis close to being rotationally symmetric with regard to element size.The success of the mesh regeneration algorithms employed in dealing with thiscompletely di�erent geometry is all the more impressive given that no alterationswere necessary to the codes implemented and demonstrates the robustness of themethods employed. While re�nement studies were not conducted for this problem,the accuracy of the computations may be gauged by considering the total change inthe domain's area during the simulation. This was found to be a gain in area of ap-proximately 0:012%, more than half of which occurred in the �rst 0:1 dimensionlesstime units of the simulation. Thus the overall change in the domain area for thisproblem is approximately equal to that observed for the two-cylinders problem onmesh 3.4.5 ConclusionsIn this chapter a benchmark problem has been solved and the solutions computedshown to be in good agreement with the analytical solution. Furthermore, the ini-tial neck velocity has been demonstrated to converge at the predicted rate towardsthe exact solution. As far as the author is aware, this is the �rst time such con-vergence has been demonstrated conclusively for a time-dependent surface-tension-driven free-surface problem such as this.The automatic mesh-re�nement algorithm described in Chapter 2 has beendemonstrated for non-trivial problems, and shown to be robust in practice. That thediagonally-preconditioned conjugate residual method may be used to reliably solvetime-dependent problems over many time steps has also been shown, as has thevalue of simple explicit predictors in considerably reducing the number of iterationsrequired.The mass conservation properties of the scheme have been investigated. Whilethe rate of mass loss/gain is su�ciently small to allow many useful computations tobe carried out, the dependency of the rate of mass loss on the time-step size suggests



Chapter 4 141 The coalescence of two cylindersthat higher-order free-surface advection schemes might well prove useful in reducingthe rate of mass loss, without the need to employ excessively small time steps. Thenature of the observed tangential-stress errors has also been investigated, and theyhave been shown to decrease rapidly as the free surface is re�ned.Finally, the successful application of the stability method for selecting the timestep has been demonstrated, and the approach has been shown to be reliable for arange of mesh resolutions.



Chapter 5The supported-load problem
The material contained in this chapter is the subject of a paper [77], submittedto Proceedings of the Royal Society of London Series A, in September 1999.In this chapter the behaviour of a �lm of viscous uid adhering to a rotatingcylinder in a gravitational �eld is investigated. The time-dependent form of thisproblem has, to the author's knowledge, never before been modelled. The maxi-mum supportable cross-sectional area of uid is shown to be in excellent agreementwith that predicted by Hansen and Kelmanson [38], and the existence of steadyfree-surface pro�les is con�rmed for certain parameter values. At other parameter-values stable but oscillatory patterns of ow were observed, contrary to expectation.Finally the instabilities that arise when the rate of rotation of the cylinder is toosmall to support the �lm are investigated.5.1 BackgroundAcheson [2] discusses the problem of �nding the maximum cross-sectional area ofa viscous uid that may be supported against gravity by the steady rotation ofan in�nite cylinder, hereafter referred to as the supported-load problem. The prob-lem's geometry is illustrated in Fig. 5.1. Mo�att [70] obtained an expression forthe maximum supportable load of uid at a given rate of rotation by making twoassumptions; that ow parallel to the axis of the cylinder is negligible, and that142
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Figure 5.1: Domain for supported-load problems.the standard approximations of lubrication theory [2] may be employed. To sup-port the �rst assumption Mo�att presents experimental evidence suggesting thatfor su�ciently thin �lms no signi�cant variation in the �lm thickness occurs in theaxial direction; see for example his Fig. 5 [70]. The second assumption appearsless satisfactory, since intuitively one would expect any thin-�lm ow to approxi-mate a rigid-body motion, and for a rigid-body motion the e�ects of viscosity arenon-existent. The solutions computed as part of the investigations described heresupport the hypothesis that for thin �lms the pattern of ow is close to that of arigid-body, signi�cant di�erences being apparent only for large supported loads.A rigid-body ow is one in which the velocity �eld takes the formu = �!r� ẑ = (�!y; !x); (5.1)where r is the position vector of a uid particle, ! is the angular velocity of thecylinder and ẑ is a unit normal orthogonal to the x and y axes and projectingout of the page. Note that in the absence of gravity, and provided the pressure iseverywhere constant, any rigid-body motion of a uid, i.e. translations and rotations,satis�es the Stokes equations. Where surface tension is present the free surface will



Chapter 5 144 The supported-load problemhave minimal surface energy only when it is circular in pro�le. In the absence ofgravity any con�guration with a circular cross-section, containing the cylinder, androtating at the same speed about the same axis, will be an exact solution of theStokes equations. In these circumstances the everywhere constant pressure will bethat required to satisfy the condition of continuity of stress at the free surface.Where gravity is present, for a steady rigid-body motion of the uid the governingequations reduce to rp = �g; (5.2)the solution of which is simply p = p0 + �gy, where � is the density and g is theacceleration due to gravity. If �g is non-zero, then p cannot be constant withinthe uid, and consequently the conclusion must be drawn that the pattern of owmust deviate, if only slightly, from a rigid-body one whenever a gravitational �eldis present.Interestingly, in the Navier-Stokes case, where gravity is absent a steady rigid-body solution also exists, though now the circular free surface must be coaxial withthe cylinder; and since the uid is assumed to have momentum, the pressure �eldmust be such as to provide the necessary centripetal force. It is easy to verify thatp = p0 + �!2  x2 + y22 ! (5.3)together with (5.1) gives such a solution, where the constant p0 is again selected togive continuity of stress at the free surface. Indeed, where the e�ects of surface ten-sion may be neglected, Pukhnachev [81] points out that, by an extension of a resultdue to Solonnikov [99], such a solution must be unique. Mo�att [70] suggests thatthe complex three-dimensional free-surface instabilities observed in the laboratoryare primarily due to the interaction of the centrifugal and surface tension forces,and Preziosi and Joseph [79] further address this matter.Figure 5.2 shows the maximumsupportable non-dimensional cross-sectional areapredicted by three di�erent models as a function of , the dimensionless accelera-tion due to gravity de�ned by (5.6). Hansen and Kelmanson's results obtainedwith a Stokes-ow model [38] are shown using diamonds. In addition to the curvesgiven by the thin-�lm analyses of Mo�att [70] and Kelmanson [57], a third curve,obtained by �tting a Laurent series expansion of degree three to Hansen and Kel-manson's Stokes-ow data, is also shown. As may be seen, for  � 6, the `thin-�lm'region, Hansen and Kelmanson's Stokes-ow results are in good agreement with Kel-manson's thin-�lm analysis, the agreement with Mo�att being good only at large
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Dimensionless acceleration due to gravity (   )Figure 5.2: Maximum supportable cross-sectional area (�) as a function of : �Stokes-ow, Hansen and Kelmanson 1994 (data); { { { { Stokes-ow, Hansen andKelmanson 1994 (LS �tted curve); � � � � � � Thin-�lm, Kelmanson 1994; - - - - - -Thin-�lm, Mo�att 1977.( � 15) values of . For  < 5 Kelmanson's thin-�lm analysis overestimates themaximum supportable load, while Mo�att's underestimates it.Where the cross-sectional area of the uid is large in comparison with that ofthe cylinder, as in Hansen and Kelmanson's Figure 6(a) [38], it is clear that even anear-rigid-body ow requires the radial component of the velocity to be of consid-erable magnitude. For the con�guration they show, the maximum �lm thickness isapproximately twice the minimum�lm thickness and, since the kinematic boundarycondition states that a material point on the free surface must always remain on thefree surface, the only way that the radial velocity on the free surface can be negli-gible is if the tangential component of the free-surface velocity is also everywheresmall. Observations conducted as part of investigations presented here appear torule out such ow patterns, and indeed have shown that the radial velocity neednot be negligible, particularly when the supported load is large and gravity forcesthe free-surface pro�le to deviate considerably from a coaxial one. This may in partexplain the divergence between the predictions of Mo�att's thin-�lm analysis andHansen and Kelmanson's Stokes-ow results for large supported loads, since when



Chapter 5 146 The supported-load problemthe radial component of the velocity is large lubrication theory does not provide anadequate model.Hansen and Kelmanson [38] attempted to �nd the maximumsteady supportable-load at a given value of  by employing a search procedure, increasing the load ofuid until their solver failed to converge to a steady-state solution within a prescribedtime limit. The results they obtained suggest that the maximum supportable loadis a monotonic decreasing function of . Caution should however be exercised wheninterpreting Hansen and Kelmanson results since one cannot rule out the possibil-ity that larger supportable loads might be possible when unsteady con�gurationsare permitted. One intuitively plausible interpretation of Hansen and Kelmanson'sresults is that for loads lying above the maximum-supportable-load curve no sta-ble steady-state con�guration exists, and conversely, that below the curve a stablesteady-state con�guration always exists. It should be noted, however, that theirsteady-state iterative boundary integral method gives no means of distinguishingbetween asymptotically stable and asymptotically unstable steady-state solutions.Applying the non-dimensionalisation procedure employed by Hansen and Kel-manson (see Section 5.2) to the governing equations one obtains�a2!� "@u�@t� + (u� � r)u�# = r2u� �rp� � j; (5.4)where the superscripts (�) denote dimensionless variables, j is a unit vector in thepositive y direction, Re = �a2!� (5.5)is the Reynolds number and  = �ga!� (5.6)is the Stokes number | the dimensionless acceleration due to gravity. Hansen andKelmanson [38] calculate a Reynolds number of order 10�1 for an apparatus similarto that described by Mo�att [70] and, one infers, a value for  of order 1. Sincefor most practical purposes g is �xed, the only way Re may be made large, andthus the approximation a good one, is if a and ! are made small. Nevertheless theStokes-ow model is still of considerable fundamental interest and an important �rststep in the modelling of the full three-dimensional Navier-Stokes problem.



Chapter 5 147 The supported-load problem5.2 The Stokes ow modelFor a Stokes-ow problem the only initial condition required is the speci�cation ofthe initial free-surface pro�le. Intuitively it was expected that any initial free-surfacepro�le that was su�ciently close to a steady-state pro�le would rapidly convergetowards it, resulting, asymptotically, in a steady solution. As will be describedshortly, this does not always happen.The �rst di�culty that has to be overcome in the study of the time-dependentform of the supported-load problem is that of selecting suitable initial conditions.The simplest initial condition, and the one adopted here, takes the form of a circularfree-surface coaxial with the rotating cylinder. Thus the initial condition is speci�edby a single parameter, the mean �lm thickness �h. Alternatively, the cross-sectionalarea or load �, given by � = �((a+ �h)2 � a2) (5.7)may be speci�ed, where a is the radius of the cylinder. One reason for preferring aninitially circular free-surface pro�le lies in the fact that such an experiment could inprinciple be carried out in the laboratory by establishing a steady ow on a cylinderat a large angular velocity, giving an approximately circular free-surface pro�le, andthen suddenly reducing the angular velocity of the cylinder.In their analysis Hansen and Kelmanson [38] start by assuming the existence ofa steady solution. They also assume that the Reynolds number is su�ciently smallthat momentum may be neglected. Thus, non-dimensionalising using the velocity,time and stress scales U0 = !a, T0 = !�1 and S0 = �! they obtainr2u� �rp� � j = 0: (5.8)where  is the dimensionless acceleration due to gravity, de�ned by (5.6).Note that in the dimensionless model, the cylinder has unit radius and unitangular velocity, taking 2� time units to complete a rotation. The ow is assumedto satisfy a no-slip boundary condition on the cylinder, i.e.u� = (� sin �; cos �): (5.9)The free-surface stress boundary condition, �, is given by surface tension and hasthe form � = ��kn (5.10)



Chapter 5 148 The supported-load problemwhere k is the curvature of the cylinder, n is the outward free-surface normal, and� is the coe�cient of surface tension. On non-dimensionalisation (5.10) becomes�� = �a�! 1Rc� = � 1Rc� ; (5.11)where Rc is the radius of curvature and � is the dimensionless surface tension,de�ned by � = �!�: (5.12)Hansen and Kelmanson [38] report that the free-surface pro�les they obtain are,to a large extent, independent of the surface tension, i.e. that the di�erence betweenthe free-surface pro�les obtained with � = 0 and � = 100 is small. Furthermore,they report that near symmetry of the free surface about the x axis is apparent, evenwhen the surface tension is unrealistically large, e.g. with � = 100. The inclusionof some surface tension has however proved helpful in the current time-dependentscheme, since it appears necessary to prevent instabilities of the free surface fromarising. Bearing these observations in mind it was decided to employ a �xed valueof � = 1 throughout the current investigations.Once � has been �xed the problem as formulated here is completely speci�edby the two-dimensional parameter space f� � g. Hansen and Kelmanson employan alternative parametrisation, specifying the dimensionless tangential ux  0� thattheir steady-state solution must satisfy. The dimensionless ux, at an angle �, isde�ned as  �(�) = � Z r=1+h�(�)r=1 u� � (� sin �; cos �) dr; (5.13)where the integral is evaluated along a radius of the cylinder. Note that for anysteady ow the ux will be independent of �. In the time-dependent case however,the ux will vary with both time and �. Furthermore, even if a steady-state solu-tion is located, the ux will in general be di�erent from that found for the initialfree-surface con�guration. This makes it di�cult to obtain solutions that closelymatch those of Hansen and Kelmanson without a costly iterative search. In practicehowever, where a steady-state solution is found, the asymptotic ux appears notto di�er too greatly from the initial ux, allowing at least qualitative comparisonsto be made. Given an initially coaxial free-surface pro�le, and in the absence ofgravity, the dimensionless initial ux may be computed using 0� = (�h�2 + 2�h�); (5.14)



Chapter 5 149 The supported-load problemand, conversely, the dimensionless initial mean �lm-thickness �h� may be computedusing �h� = q1 +  �0 � 1: (5.15)Note that, in the remainder of this chapter, the superscripts will be dropped, and thesymbols �, h, �h,  0 and t will refer to the corresponding dimensionless quantities.

Figure 5.3: Initial mesh (I) for preliminary investigations, 32 � 5 vertices, � = 1:3.5.3 MethodFor the preliminary investigations a mesh of �xed connectivity was employed, asshown in Fig. 5.3. The initial cross-sectional area of the �lm, � = 1:3, correspondsto an initial �lm thickness of approximately �h = 0:189. Statistics for the meshesemployed here are given in Table 5.1. Elements that are considerably longer inthe circumferential than in the radial direction are employed so as to reduce thenumber of unknowns. Note that Hansen and Kelmanson employ 32 collocationpoints on the free surface in their boundary-element scheme, and thus one mightreasonably expect that the present scheme will be of similar accuracy. For this,and the other preliminary experiments, a �xed time step of length k = 0:005 was



Chapter 5 150 The supported-load problememployed. That such a relatively large time step could be employed appears to reectthe fact that here the normal component of the free-surface velocity is typically small.The interior of the mesh was updated at each time step using Lynch's elastic-meshmethod. Jacobi-smoothing was not employed for this problem, since it was foundthat its use resulted in motion of the interior vertices towards the cylinder, causingthe elements nearest to the cylinder to become compressed. Thus, eventually, theisoparametric discretisation breaks down near the cylinder. The backward-Eulerform of the semi-implicit scheme described in Section 3.7 was employed. An ILUTpreconditioner (Section 3.12.2) was recomputed every ten time steps, taking lfil =200 and droptol = 10�6. All linear systems were solved to an absolute tolerance of10�10. Mesh N� Nr Elements UnknownsI 32 5 256 1184II 64 5 512 2368III 128 5 1024 4736IV 64 3 256 1216V 64 9 1024 4672VI 64 7 768 3520Table 5.1: Initial mesh statistics.5.4 ResultsFigure 5.4 shows the evolution of the �lm thicknesses at � = 0�, 90�, 180� and270� for a computation carried out using mesh I, with a cross-sectional area of uid� = 1:3, a non-dimensional acceleration due to gravity  = 12:5 and a time stepof k = 0:005. While at this value of  Kelmanson's analytic predication for themaximum supportable load is in good agreement with Hansen and Kelmanson'sStokes-ow computations, Mo�att's prediction is considerably lower. As may beseen, the oscillations in the four �lm thicknesses decay rapidly and suggest that theow is converging towards an asymptotically steady con�guration. Figure 5.5, whichshows the L1 norm of the residual at the start of each time step, appears to con�rmthat such a con�guration will indeed be a steady one. The spikes visible in Fig.5.5 occur occasionally when the preconditioner is recomputed, and are apparentlydue to inaccuracies in the incomplete LU factorisation. As the steady solution is
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Figure 5.7: Pressure �eld near steady-state on Mesh I at t = 333:0, � = 1:3, = 12:5.Figure 5.10 shows the results of experiments carried out at a number of pointsin the parameter space. Points at which convergence to a stable steady-state free-surface con�guration was observed are shown using crosses. Squares correspond topoints for which no stable con�guration was found, the simulations being haltedonly when it was clear that uid would be lost from the cylinder. Finally, diamondscorrespond to points at which no clear, unequivocal evidence of either instabilityor convergence was seen. At these points oscillatory behaviours were observed withdamping being either absent or negative. Where negative damping was observedthe rate of growth of the amplitude of the oscillations was typically small, beingof the order of a few percent per rotation of the cylinder. Furthermore, in suchcases the growth was often observed to be transient, the amplitude stabilising at aslightly higher value than the original. Such solutions are referred to here as stableoscillatory solutions.From Fig. 5.10 three regions of the parameter space are apparent. These arelabelled A, B and C as shown in Fig. 5.11, the upper curve representing Hansen andKelmanson's maximum-supportable-load data. For problems in region B, i.e. closeto Hansen and Kelmanson's maximum-supportable-load curve, convergence towards
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Dimensionless timeFigure 5.14: The e�ect of re�ning the mesh in the radial direction: on the �lmthickness at 0�, � = 0:75,  = 12:5: || mesh IV; { { { mesh II; - - - - mesh V.appearance of the curves shown here is a result of the fact that the �lm thicknesseswere recorded only every ten time steps. The increase in the �lm thickness seenwhen doubling the number of elements in the radial direction, i.e. moving frommesh II to mesh V, is of the order of 0:016%.Finally the e�ect of employing shorter time steps was investigated. The exper-iment was repeated, using mesh I, with time steps k = 0:0025, k = 0:00125 andk = 0:000625. Figure 5.15 shows the evolution of the �lm thickness at � = 0� overthe �rst eleven rotations of the cylinder, Fig. 5.16 a detail. Clearly, reducing thetime step has a considerable impact on the solution obtained. Indeed from Fig.5.15 it appears that even at k = 0:00125 growth in the amplitude of the oscillationis almost negligible. For the solution obtained with a time step of k = 0:000625the maximum �lm thickness occurring during the �rst rotation of the cylinder is0:128181, while that occurring after ten rotations of the cylinder is slightly greaterat 0:128215; an increase of approximately 0:027%. It thus appears that for problemsin region C of the parameter space, the solutions obtained are particularly sensitiveto the accuracy of the time integration scheme employed. A higher-order scheme,such as the explicit Adams-Bashforth two-step method [16], would thus appear at-tractive in that it might well allow considerable improvements in accuracy to beobtained without the use of excessively small time steps.
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Chapter 5 162 The supported-load problemsurface energy (SE) were next considered. The dimensionless kinetic, potential andsurface energies per unit length of the cylinder were computed usingKE = Z
 12v2d
; (5.16)PE = � Z
 y d
; (5.17)SE = � Z@
 �ds; (5.18)where the initial gravitational potential energy is de�ned, arbitrarily, to be zero.Note that in this system the total energy, TE = KE + PE + SE, is not in generalconstant. While kinetic energy may be dissipated due to viscosity it may also betransferred to the uid from the cylinder through the mechanism of viscosity. Onlywhen a steady-state solution arises will the total energy remain constant. Linearand angular momentum are also, in general, not conserved.Figures 5.17 and 5.19 show the evolution of the components of the energy for twoof the above problems. In both cases the greatest variations occur in the potentialenergy. In Fig. 5.17, which corresponds to a point in region B of the parameterspace, periodic damped oscillations in both the kinetic and potential energy may beseen. In Fig. 5.19, which corresponds to a point in region C of the parameter space,no oscillation is apparent in the kinetic energy, while that in the potential energyappears to be close to sinusoidal, and of �xed amplitude. In both cases the surfaceenergy remains very nearly constant.Figures 5.18 and 5.20 show the variation of mass with time for the two problems.For the asymptotically steady problem, the change in the mass over the periodshown is approximately 1:8� 10�3%, the rate of mass gain being greatest when theamplitude of the oscillations is largest. For the oscillatory problem the rate of massgain is approximately constant, the overall change over the �rst eleven rotations ofthe cylinder being approximately 8� 10�4%.5.4.3 Large supported loadsLarge supported loads were next considered, the intention being to observe the ve-locity �eld directly and thus gain insight into the mechanisms involved in supportingthe uid. A new mesh (VI) with 32 vertices in the circumferential direction and 7vertices in the radial direction was employed for this problem. Parameter values of� = 5:7 and  = 1:3 were chosen, corresponding to a point in region B. Figure 5.21
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Dimensionless timeFigure 5.21: Large load free-surface evolution, � = 5:7,  = 1:3: �lm thicknesses:||{ 0�, { { { 90�, - - - - 180�, � � � � � � 270�.shows the evolution of the �lm thicknesses, while Figs. 5.22 and 5.23 show respec-tively the velocity and pressure �elds at t = 300. As may be seen from Fig. 5.21 the�lm thicknesses at � = 90� and � = 270� again converge, suggesting a near symmet-ric free-surface pro�le, the di�erence in the thicknesses being approximately 0:056%at t = 300. In Fig. 5.22 the tangential velocity at � = 180� is approximately 1:85, i.e.nearly twice that of the cylinder's surface; while at � = 0� it is approximately 1:12,only slightly greater than that of cylinder's surface. Thus, qualitatively at least,the velocity distribution is in agreement with Hansen and Kelmanson's numericalresults [38]; see for example their Fig. 7(a).5.4.4 Load sheddingFinally, the evolution of loads that could not be supported was considered. Forproblems corresponding to points lying in region A of the parameter space, meshesof �xed connectivity like those employed above are unsuitable. Typically, in suchproblems, a bulge develops on the free surface during the �rst rotation of the cylinder.This then grows and, as it does so, the free-surface curvature increases considerablyuntil, at some point, the isoparametric discretisation fails. Note that if the method
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Figure 5.22: Large load problem, � = 5:7,  = 1:3: velocity at t = 300.

Figure 5.23: Large load problem, � = 5:7,  = 1:3: pressure at t = 300 | range-0.065 to 1.192 dimensionless units.of spines were to be employed, then it will fail if the free surface ever becomestangent to one of the spines. As Figure 5.24 shows, this will inevitably happen inthis problem unless multiple origins are employed for the system of spines.An initial unstructured mesh with 64 equally-spaced vertices on both the freesurface and the cylinder was employed, involving 256 elements and 1216 unknowns.
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Figure 5.25: Load-shedding problem 1, � = 1:6,  = 12:5: pressure at t = 7:00.ployed. The interior of the mesh was updated at each step using Jacobi-smoothing.The free-surface node lying initially on the positive x axis was used as the initialnode for the Cuthill-McKee ordering algorithm throughout the computation. Timeintegration was performed using time steps chosen by the stability method describedin Section 3.15, taking lte = 10�6. An ILUT preconditioner was computed every tentime steps and whenever remeshing required it, employing values of lfil = 300 anddroptol = 10�6. Between �ve and twenty conjugate residual iterations were typicallyrequired at each time step, though very occasionally a much larger number were nec-essary. The number of iterations required was observed to increase gradually as themesh became larger, from an average of �ve per time step initially to approximatelyten per time step in the later stages of the problem. On a shorter time-scale thenumber of iterations per time step was observed to grow approximately linearly asthe preconditioner aged, the number required approximately doubling before thepreconditioner was recomputed.Figure 5.24 shows the evolution of the free surface. A bulge is clearly apparentat t = 2:94, and by t = 5:84 has assumed a characteristic lobe shape. Such lobes arereminiscent of those observed by Mo�att in his experimental work; see for examplehis Figure 7 [70]. Note, however, that the lobes observed by Mo�att are three-
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Figure 5.26: Load-shedding problem 1, � = 1:6,  = 12:5: pressure at t = 7:00.

Figure 5.27: Load-shedding problem 1, � = 1:6,  = 12:5: velocity at t = 7:00.



Chapter 5 170 The supported-load problemdimensional in nature and rotate about the cylinder with an angular velocity slightlylower than that of the cylinder. By t = 7:30 a droplet (or more correctly a curtainof uid) has started to form. As the simulation continues, the droplet now startsto accelerate rapidly downwards. Shortly after t = 8:01 the solver failed. Thisappears to have been due to the now-large bandwidth of the �nite element sti�nessmatrix, which could not be accurately factorised with the values of lfil and droptolemployed. The �nal free-surface pro�le, at t = 8:01, corresponds to a mesh with671 elements, nearly three times the number in the initial mesh. The cross-sectionalarea of the uid was found to have increased by approximately +0:14% by the endof the computation.Figure 5.25 shows the pressure �eld at t = 7:00, while Fig. 5.26 shows the detailin the lobe and Fig. 5.27 shows the corresponding velocity �eld. As may be seen,large variations in free-surface curvature occur near to where the upstream side ofthe droplet is attached to the remaining rotating �lm. The large velocity gradientsand discontinuities in the pressure gradient apparent in this region suggest thatadditional re�nement of the mesh would here be appropriate. Over much of thedroplet the pressure contours are approximately horizontal, suggesting that therethe ow is dominated by gravity.5.4.5 A second load-shedding problemFurther investigations have shown that provided the initial load does not greatlyexceed the maximum supportable load, then the mechanism by which uid is shedis essentially independent of the initial con�guration. As a �nal test the aboveexperiment was repeated with � = 5:7 and  = 1:7 i.e. with a considerably greaterload, though again one that only slightly exceeds the maximum supportable load.The initial mesh is shown in Fig. 5.28 and again has 64 equispaced vertices on boththe free surface and the cylinder. This time values of ktol = 0:3 and hmax = 0:2were employed, resulting in a somewhat larger initial mesh, with 520 elements and2404 unknowns. Values of lfil = 400 and droptol = 10�6 were employed for thepreconditioner.The evolution of the free-surface evolution is shown in Fig. 5.29. In this problemthe mass of uid shed is much larger, and it is clear that it considerably exceeds theminimum required to result in a supportable load. Indeed, it would appear that asmuch as half of the initial load will be shed. The change in the cross-sectional areais approximately +0:59% by time t = 14:85, most of which occurs in the �nal stages
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Figure 5.28: Load-shedding problem 2: initial mesh.of the problem as the droplet beings to fall rapidly, the gain in mass by t = 14:46being only 0:11%. Two phases of the development of the ow appear of particularinterest. The �rst is the initial development of the lobe. Figure 5.30 shows thevelocity and pressure �elds at t = 3:00. As Fig. 5.31 shows, by t = 6:95 the owregime has completely changed; the droplet is rapidly growing and a stagnationpoint is now present. The pressure �eld is also markedly di�erent, a new saddlepoint being present where the lobe is attached to the up stream side of the rotating�lm.The next potentially interesting phase of the problem occurs around the timethat the down-stream side of the lobe changes from being convex to being concave| the point at which the lobe becomes a genuine `droplet'. As may be seen fromFigs. 5.32 and 5.33, no great change in the ow regime occurs around this time;that apparent being due to the di�erent scalings employed in the two �gures.From t = 12:80 onwards the droplet evolves primarily under the inuence ofgravity and, as it begins to fall downwards, an elongated neck develops. As thishappens, uid continues to be drawn o� from the rotating cylinder. Figure 5.34shows the velocity �eld at time t = 14:85, shortly before the solver failed, while Fig.5.35 shows the mesh at this time, which contains 839 elements, nearly twice the
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Figure 5.30: Load-shedding problem 2, break down of rigid-body ow (a) � = 5:7, = 1:7: velocity and pressure at t = 3:00.
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Figure 5.31: Load-shedding problem 2, break down of rigid-body ow (b) � = 5:7, = 1:7: velocity and pressure at t = 6:95.
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Figure 5.32: Load-shedding problem 2, droplet formation (a) � = 5:7,  = 1:7:velocity and pressure at t = 11:00.
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Figure 5.33: Load-shedding problem 2, droplet formation (b) � = 5:7,  = 1:7:velocity and pressure at t = 12:80.
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Figure 5.34: Load-shedding problem 2, � = 5:7,  = 1:7: velocity at t = 14:85.number in the initial mesh.5.5 ConclusionsThe time-dependent behaviour of �lms of viscous uid supported on a rotatingcylinder has been investigated using a Stokes-ow model. While broadly con�rmingthe predictions of the maximum supportable load made by Mo�at [70], and byHansen and Kelmanson [38], the computations reported here suggest that for muchof the parameter space, convergence from an arbitrary initial con�guration towardsa stable steady-state solution does not occur.Where asymptotically steady solutions were found, the free-surface pro�les wereclose to symmetric about the horizontal plane drawn through the axis of the cylinder,con�rming the observations of Hansen and Kelmanson [38]. The �lm thicknessescomputed have been shown to be in reasonable agreement with those predicted bythin-�lm theory.Stable oscillatory solutions have also been demonstrated, and have been shownto be independent of mesh resolution. The apparent tendency of such oscillatorysolutions to grow in amplitude has been shown to be linked to the accuracy of the
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Figure 5.35: Load-shedding problem 2, � = 5:7,  = 1:7: mesh at t = 14:85.time-integration scheme employed.The phenomenon of load shedding has been investigated, and illustrations of thisprocess are presented here for the �rst time. Such simulations have been continuedfar beyond the point at which conventional spine-based methods would have failed.Finally it has been shown that the adaptive mesh regeneration techniques orig-



Chapter 5 179 The supported-load probleminally developed for the problem described in Chapter 4 may be applied withoutmodi�cation to a very di�erent problem, involving large changes in domain geome-try, and in which both considerable increases and decreases in free-surface curvatureoccur.



Chapter 6Navier-Stokes problems
In this chapter the application of the automatic mesh generation algorithm to free-surface Navier-Stokes problems is considered. First, the axisymmetric form of theNavier-Stokes equations is described. Next, small-amplitude axisymmetric oscilla-tions of droplets are modelled, as a means of validating the implementation of theNavier-Stokes solver. Finally, the unstructured moving-mesh method is briey ex-plored as a means of solving free-surface Navier-Stokes problems of moderate tolarge amplitude, by considering �rst oscillations of ellipsoidal droplets and then os-cillations of droplets perturbed by a second-spherical-harmonic component of largeamplitude.6.1 Axisymmetric oscillations of dropletsIt appears that, apart from in arti�cial or trivial cases, analytic solutions of free-surface Navier-Stokes ow problems are unknown. One route to the validation ofa free-surface scheme lies through the simulation of small-amplitude oscillations ofthree-dimensional droplets driven by surface tension [7, 68]. When the amplitudeof such an oscillation is small and the Reynolds number is large the period may beestimated using Prosperetti's analytical model for inviscid droplets [80].Foote pioneered the computational modelling of viscous droplets as early as1973 [26], employing a �nite-di�erence method which incorporated a marker-and-cell (MAC) scheme for tracking the free surface. More recently problems involving180



Chapter 6 181 Navier-Stokes problemsdroplets have been studied by Basaran [7], using the �nite element method, and byMashayek and Ashgriz [68], using a volume-of-uid (VOF) �nite element method.The work of Basaran [7] is of particular interest here, in that it contains numerouscomputational results that may be used for comparison when modelling oscillationsof moderate to large amplitude. In addition, many papers have been published [84,111, 9, 8, 102, 75, 118] containing experimental and analytical results for moderate-to large-amplitude nonlinear oscillations of droplets in both the viscid and inviscidcases, allowing insight to be gained into the physics of such problems. Thus, inaddition to being of fundamental scienti�c importance, the study of the oscillation ofaxisymmetric droplets is a convenient source of test problems for numericalmethods.
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Figure 6.1: Domain for axisymmetric problems.In the study of the oscillation of viscous droplets two types of initial free-surfacecon�guration are commonly encountered. The �rst is a volume of revolution ob-tained by rotating an ellipse around one of its axes of symmetry. The second is avolume of revolution formed by rotating a circular domain perturbed by a spherical-harmonic, about an axis of symmetry. It was Rayleigh, in an appendix to his 1879study of the capillary phenomena of jets of inviscid uids [84] who �rst identi�edthe modes of inviscid droplets with the spherical-harmonics. Basaran [7] gives thefollowing expression for the cross-section of a sphere perturbed by a single spherical-harmonic component f(�) = n [1 + fnPn(cos �)] ; (6.1)where f(�) is the radial distance from the origin to the free surface at an angle0 � � � � to the positive x-axis, fn is the amplitude of the initial perturbation,



Chapter 6 182 Navier-Stokes problemsn is a constant chosen to normalise the volume of the droplet, and Pn is the nthLegendre polynomial written in terms of � [101]. Thus, for exampleP0 = 1; (6.2)P1 = cos �; (6.3)P2 = 14 (1 + 3 cos 2�) ; (6.4)P3 = 18(3 cos � + 5 cos 3�); (6.5)P4 = 164(9 + 20 cos 2� + 35 cos 4�); (6.6)etc. The curve de�ned by (6.1) is rotated about the x axis to give a three-dimensionalshape. The �rst spherical-harmonic, P0, is not considered here since it correspondsto a change in droplet volume. The odd-numbered spherical-harmonics result infree-surface pro�les that are not symmetric in the plane x = 0.The constant n is chosen so that the initial volume of the droplet is 43�R3, whereR is the radius of the unperturbed droplet which is normally chosen to equal one inthe dimensionless model. Thus, in the n = 2 case, Mashayek and Ashgriz [68] givethe expression 2 =  3535 + 21f22 + 2f23! 13 : (6.7)Figure 6.1 illustrates in schematic form the geometry of the domain for axisymmetricproblems. The axis of rotational symmetry lies along the x axis. The boundary maybe divided into two parts. The �rst, �1, corresponds to the surface of the volume ofrevolution, on which surface tension provides the boundary condition. The second,�2, corresponds to the domain's axis of rotational symmetry, on which an arti�cialsymmetry boundary condition must be imposed. The points A and B lie at thejunctions of �1 and �2. Note that in many problems of fundamental interest afurther bilateral symmetry is present in the plane x = 0.6.2 Axisymmetric problem formulationThe axisymmetric formulation of the Navier-Stokes equations may be derived bywriting the three-dimensional Navier-Stokes equations in cylindrical coordinate formand then simplifying, using rotational symmetry, and by assuming that the dropletdoes not rotate about the x axis, to give a two-dimensional system of equations [34].Further details of this derivation are given in Appendix B. Thus, if the e�ects of



Chapter 6 183 Navier-Stokes problemsgravity are ignored, (3.1) and (3.2) become@u@t +  u@u@x + v@u@y! = �@p@x + 1Re  @2u@x2 + 1y @@y  y@u@y!!+ 1Re @@x  @u@x + 1y @@y (yv)! ; (6.8)@v@t +  u@v@x + v@v@y! = �@p@y + 1Re  @2v@x2 + 1y @@y  y@v@y!� vy2!+ 1Re @@y  @u@x + 1y @@y (yv)! ; (6.9)@u@x + 1y @@y (yv) = 0: (6.10)Equations (6.8), (6.9) and (6.10) may now be written in Galerkin weighted-residualform, by multiplying by the appropriate test functions and integrating over thedomain using the axisymmetric volume element 2� y dx dy. The factor 2�, beingpresent in each term, may safely be ignored when forming the �nite element sti�-ness matrix. If (6.8) and (6.9) are rewritten (see Appendix A) so as to give theappropriate natural boundary conditions then the majority of the integrals that re-sult are identical to their Cartesian counterparts, except for the addition of a factory in the integrand. There are however a number of terms that are not present inthe original Cartesian formulation. The term� 1Re vy2 (6.11)in (6.9), which arises when the Laplacian of the velocity �eld is written in cylindricalcoordinates, appears to be a particular source of di�culty since at y = 0 it isunde�ned. In Galerkin weighted-residual form this term gives rise to integrals of theform1 � Z
 qivyd
: (6.12)The corresponding entries in the �nite element sti�ness matrix are thus of the form� Z
 qiqjy d
; (6.13)1Note that in this chapter the notation d
 is employed to denote dx dy rather than, as is moreconventional in axisymmetric formulations, y dx dy. Similarly the notation d� is used to denote aCartesian rather than an axisymmetric line element i.e. ds rather than y ds.



Chapter 6 184 Navier-Stokes problemsand clearly make a symmetric contribution. Analytically, if one assumes that v(x; y)is C2 continuous on 
 [ �1 [ �2 then, since by symmetry v must be zero on the xaxis and v must be an odd function of y, one may write any admissible velocity �eldv(x; y) in the form v(x; y) = v1(x)y +O(y3): (6.14)Thus, by L'Hôpital's rule limy!0 v(x; y)y = v1(x) (6.15)for any admissible v(x; y), and consequently integrals of the form (6.12) are wellde�ned.From a practical point of view, if open sets of Gauss-Legendre quadrature pointsare employed, i.e. sets containing no points on the master element's boundary, thenthere is no need to evaluate the integrand in (6.13) on y = 0, thus avoiding thesingularity, or indeed particularly near to it, avoiding numerical rounding problems.The second new term in the axisymmetric formulation results from the integra-tion by parts of the pressure-gradient operator in the momentum equation for v.This takes the formZ
 qiy@p@y d
 = Z@
 qiypny d� � Z
 p @@y (qiy) d
 (6.16)= Z@
 qiypny d� � Z
 py@qi@y d
� Z
 pqi d
: (6.17)When discretized the last term of (6.17), which has no counterpart in its Cartesianform (2.27), becomes � Z
 ljqi d
: (6.18)This term, on its own, would lead to the �nite element sti�ness matrix being non-symmetric if it were not for a matching contribution deriving from the axisymmetricform of the continuity equation (6.10), i.e.� Z
 liy  @u@x + 1y @@y (yv)! d
 =� Z
 liy  @u@x + @v@y! d
 + Z
 liv d
 = 0; (6.19)where again the continuity equation has been multiplied by �1 in order to givea symmetric sti�ness matrix. The �rst two terms in (6.19) are identical to theirCartesian counterparts, except for the additional factor y. The last term is present



Chapter 6 185 Navier-Stokes problemsonly in the axisymmetric formulation, and takes the discrete form� Z
 liqj d
; (6.20)i.e. the transpose of (6.18). Thus these two new terms together make a symmetriccontribution to the �nite element sti�ness matrix.The �nal new term arises only when the stress-divergence form of the viscousterm is employed, and is absent in the more conventional formulation. It arises whenthe r (r � u) term in the v momentum equation is integrated by parts to obtain thenatural stress boundary condition, i.e.Z
 qiy @@y  1y @@y (yv)! d
 = Z
 qiy @@y  vy + @v@y! d
 (6.21)= Z@
 qiyny @v@y d� � Z
 y@qi@y @v@y d
� Z
 qivy d
: (6.22)The �rst two terms on the right-hand side of (6.22) are again identical to theirCartesian counterparts, except for the additional factor y. The last term is newand is identical to (6.12). Thus it may be seen that the switch to the axisymmetricformulation introduces no new asymmetry into the �nite element sti�ness matrix.In full, the weak form of the axisymmetric Navier-Stokes equations employed hereis thus Z
 qiy@u@t d
 + Z
 qiy  u@u@x + v@u@y! d
+2Re Z
 y@qi@x @u@xd
 + 1Re Z
 y@qi@y  @u@y + @v@x!d
� Z
 yp@qi@x d
= Z@
 qiy  �pnx + 2Re @u@xnx + 1Re  @u@y + @v@x!ny! d� (6.23)
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 qiy@v@t d
 + Z
 qiy u@v@x + v@v@y! d
 +2Re Z
 y@qi@y @v@yd
 + 1Re Z
 y@qi@x  @u@y + @v@x!d
� Z
 yp@qi@y d
+ 2Re Z
 qivyd
 � Z
 qipd
= Z@
 qiy  �pny + 2Re @v@yny + 1Re  @u@y + @v@x! nx! d� (6.24)� Z
 liy  @u@x + @v@y! d
 � Z
 livd
 = 0; (6.25)where n = (nx; ny) is the outward free-surface normal on @
 = �1 [ �2.6.3 Boundary conditionsThe bracketed expressions in the boundary integrals in (6.23) and (6.24), i.e.�pnx + 2Re @u@xnx + 1Re  @u@y + @v@x!ny (6.26)and �pny + 2Re @v@yny + 1Re  @u@y + @v@x!nx; (6.27)are simply the x and y components of the stress at a point in a Newtonian uid,the additional factor y in the boundary integrals in (6.23) and (6.24) being dueto the form of the axisymmetric volume element. Thus, arbitrary stress boundaryconditions � = (�x; �y) may be imposed by assemblingZ@
 qiy�xd�; (6.28)
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 qiy�yd�; (6.29)in place of the right-hand sides of (6.23) and (6.24). Here, on �1, the relevantboundary integral takes the form1We Z@
 qiy(k1(s) + k2(s))n d�; (6.30)where We is the Weber number introduced in Section 1.2, and k1 and k2 are theprinciple curvatures of the volume of revolution, which may be computed [113] usingk1(s) = xsyss � ysxss(xs2 + ys2)32 ; k2(s) = xsy(xs2 + ys2) 12 ; (6.31)where s is the arc length. Considering �rst the integral involving k1 i.e. the com-ponent of the curvature in the x{y plane, and ignoring the constant 1We integrationby parts givesZ BA qiyk1n d� = Z BA qiy@t@s d� (6.32)= [qiyt]BA � Z BA yt@qi@s d� � Z BA qit@y@s d�; (6.33)where A and B are the appropriate limits of integration for a given edge. Note thepresence of an additional boundary integral on the right-hand side of (6.33) thathas no corresponding equivalent in the Cartesian formulation. Evaluation of bothintegrals is considerably simpli�ed if carried out using local element coordinates(�; �).The expression for k2 may be rewritten, using local element coordinates, in theequivalent form x�y(x�2 + y�2) 12 (6.34)and thus, by a change in the variable of integration, the corresponding contributionsto the boundary conditions may be evaluated usingZ@
 qiyk2nd� = Z@
 qi@x@� n d�: (6.35)On �2, two new boundary conditions are required, one for each of the momentumequations. By symmetry v = 0 on �2, which provides a convenient essential bound-



Chapter 6 188 Navier-Stokes problemsary condition. Furthermore, by symmetry, u and p must be even functions of y,while v must be an odd function of y. Thus on �2@u@y = 0; (6.36)and @p@y = 0; (6.37)but in general, @v@y 6= 0: (6.38)Furthermore, since v = 0 on x = 0, @v@x = 0 (6.39)on �2. The tangential stress �:t on �2 may be shown, using (6.26) and (6.27), to be� 1Re  @u@y + @v@x! ; (6.40)which by (6.36) and (6.39) is equal to zero. Thus the second new boundary condi-tion required on �2 is simply the imposition of zero tangential stress, a convenienthomogeneous natural boundary condition.6.4 Mesh update proceduresThe locations of free-surface nodes are updated using the kinematic boundary con-dition (1.4), the discrete axisymmetric form of which,Z@
 yqi(_s� u) � n d� = 0; (6.41)is satis�ed if one takes _si � ni = ui � ni for each free-surface node i. Thus nomodi�cation is required to the existing explicit implementation of the kinematicboundary condition.Anticipating that the update of the two free-surface nodes on the axis of sym-metry might prove problematic, the direct imposition of the free-surface symmetry
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Figure 6.2: Updating of the axial free-nodes: local numbering of nodes for axialnode update.boundary condition was investigated. In this approach, instead of updating the twoaxial free-surface nodes using the kinematic boundary condition, their new locationsare selected at the end of each time step so thatdxds = 0 (6.42)at A and B, i.e. that the free surface at A and B is vertical. In discrete form theseconstraints become dxds (A) = �3x1 � x2 + 4x4 = 0; (6.43)dxds (B) = x1 + 3x2 � 4x4 = 0; (6.44)where the xi are the x coordinates of the nodes comprising the free-surface edgesadjacent to A and B, numbered locally as shown in Fig. 6.2. Thus at A one updatesthe node's position usingx(n+1)A = x(n+1)1 = 4x(n+1)4 � x(n+1)23 ; (6.45)while at B one uses x(n+1)B = x(n+1)2 = 4x(n+1)4 � x(n+1)13 : (6.46)Once this has been done the locations of the interior nodes lying on �2 are updated



Chapter 6 190 Navier-Stokes problemsusing x(n+1)i = x(n)i + u(n+1)A xi(n)xA(n)k; (6.47)for x(n)i � 0, and x(n+1)i = x(n)i + u(n+1)B xi(n)xB(n)k; (6.48)for x(n)i � 0, where k is the length of the current time step, and whereu(n+1)A = u(n+1)A � u(n)Ak ; (6.49)u(n+1)B = u(n+1)B � u(n)Bk : (6.50)Thus nodes on the axis move proportionately to their distance from the origin andso maintain their original positions relative to one another. Once this has beendone, the interior mesh is updated using the techniques described in Section 2.5.Note that when generating meshes a pair of interior nodes are speci�ed, one nearA and one near B, their positions being selected according to the spacing of theadjacent free-surface nodes, so as to prevent the automatic mesh generator creatingelements with two boundary edges. Thus for example if the free-surface vertex atA has coordinates (x1; 0) and the next free-surface vertex has coordinates (x2; y2),then the corresponding interior node is placed at (x1 � y22 ; y22 ).In the semi-implicit framework employed here, the symmetry boundary conditionwas generally found to give superior results for large-amplitude problems, whilethe kinematic boundary condition was found to be superior for small-amplitudeproblems.6.5 ResultsFor all the problems described in this chapter time integration was performed usingthe backward-Euler form of the semi-implicit scheme discussed in Section 3.5. Theconvective term was treated explicitly, i.e. it was evaluated at the start of eachtime step, using the solution computed at the end of the previous time step. Thusonly a single linear algebraic problem needed to be solved at each time step. Thismodi�cation was found to place no additional stability constraint on time step size,while giving results that were very similar to those obtained when the convectiveterm was treated implicitly. The moving-mesh corrections described in Section 3.2



Chapter 6 191 Navier-Stokes problemsMesh ktol hmax Nodes Bndry. nodes Elements Unknowns Time step1 0.20 0.4 59 28 88 469 0.001002 0.10 0.3 133 52 212 1087 0.000503 0.05 0.2 301 96 504 2511 0.00025Table 6.1: Small-amplitude axisymmetric droplet oscillations: initial mesh data.were not included for the runs shown, since they were found to have no great e�ecton accuracy of the solutions computed 2.ILUT preconditioning as described in Section 3.12.2, was employed for all prob-lems. Unless otherwise stated the preconditioner was recomputed every ten timesteps, employing values of droptol = 5 � 10�7 and lfil = 200. This typically re-sulted in a preconditioner with around twice the number of entries as the original�nite element sti�ness matrix. Pro�ling of the code showed that the run time wasdominated by the costs of re-assembling the sti�ness matrix at each time step. Eachtime step typically required fewer than �ve conjugate residual iterations to achieveconvergence to an absolute tolerance of 10�10 in all components of the solution.6.5.1 Small-amplitude oscillationsIn order to verify the accuracy of the Navier-Stokes solver, spherical droplets of unitradius, perturbed by a second-spherical-harmonic of amplitude f2 = 0:01, were �rstconsidered. The initial meshes employed, shown in Fig. 6.3, were generated usingthe parameter values given in Table 6.1. The values of hmax were chosen so that themaximum edge length in the mesh decreased by a factor of at least 2� 13 each timektol was halved. The initial locations of the nodes lying on the axis of symmetry wereselected automatically using a grading algorithm similar to that employed for themesh itself. In contrast to the meshes employed by Basaran [7], and Mashayek andAshgriz [68], here the initial meshes are unstructured and while the initial boundary2It should be noted, however, that for free-surface nodes the tangential mesh velocity _st is zeroand the normal mesh velocity _sn is equal to un. Thus the moving-mesh term �(_s � r)u simpli�esto ��un @ut@n ; �un@un@n �T (6.51)and consequently, provided j@u@n j is small near to the free surface, the errors introduced by neglectingthese terms will also be small. As the distance from the free surface increases the mesh velocity _stypically reduces rapidly and thus the errors introduced at nodes in the interior of the mesh arealso small.
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(1)

(2)

(3)

Figure 6.3: Initial meshes for a second-spherical-harmonic problem with amplitudef2 = 0:01, as given in Table 6.1: (1) ktol = 0:2, hmax = 0:4; (2) ktol = 0:1, hmax = 0:3;(3) ktol = 0:05, hmax = 0:2.discretisations are symmetric in the plane x = 0, the initial meshes are not. Notethat an amplitude of f2 = 0:01 corresponds to a perturbation of the order of 1:5%of the unperturbed sphere's radius.Time integration was performed using time steps of �xed length, the valuesemployed being shown in Table 6.1. These were selected so as to prevent free-surfaceinstabilities of the form described in Section 3.15 from occurring.
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Figure 6.4: Velocity �eld for mesh 1 at t = 0:1, Re = 10.
Figure 6.5: Pressure �eld for mesh 1 at t = 0:1, Re = 10.Note that for all the problems in this chapter, unless otherwise stated, boundarymesh re�nement and interior mesh regeneration were not performed; the only meshupdate operations performed being Laplacian mesh-smoothing, as discussed in Sec-tion 2.5, and edge adjustment, as discussed in Section 2.4.3. At the two free-surfacenodes lying on the axis of symmetry it was found preferable here to employ thekinematic boundary condition rather than free-surface symmetry boundary condi-tion, since the latter was observed to give rise to small disturbances of the pressure�eld in elements close to the axial free-surface nodes. While these disturbances weresmall in magnitude, here the range of pressures involved is also small, and thusthe disturbances when plotted are conspicuous. For larger-amplitude problems, inwhich typically the range of pressures is much larger, the distortions are much less
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Dimensionless timeFigure 6.6: Percentage change in droplet mass as a function of dimensionless timeusing mesh 1: || Re = 10; - - - - Re = 100.apparent, and consequently the symmetry boundary condition is preferred for sta-bility reasons. Regardless of the boundary condition employed, the solver producedalmost identical results for the periods of oscillation computed.Two problems were considered at Reynolds numbers of 10 and 100, a Webernumber of 1 being employed in both cases. The droplet was released from a state ofrest at the initial dimensionless time t = 0. Figures 6.4 and 6.5 show the velocity andpressure �elds computed on mesh 1 at a dimensionless time t = 0:1, at a Reynoldsnumber of 10. The pressure contours shown in Fig. 6.5, as with all the pressureplots in this work, were selected by requiring that a �xed number of contours beequispaced throughout the pressure range. Note that the pressures displayed in Fig6.5 all lie in the narrow range 1:98 to 2:04. The velocity �eld shown in Fig. 6.4appears smooth over the entire domain, while the pressure �eld appears smoothexcept in the region were the mesh is coarsest. This failure to accurately modelthe pressure appears however to have little impact on the accuracy of the solution,occurring as it does where the pressure gradients are smallest. On �ner meshesthe computed pressure �elds are invariably far smoother. Thus it appears thatfor this problem, even a mesh as coarse as mesh 1 is adequate, in that it resolvesthe main features of the velocity and pressure �elds. Consequently, convergence ofthe solution should be observed if the mesh is further re�ned. The correspondingvelocity and pressure �elds at a Reynolds number of 100 are very similar at this
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Dimensionless timeFigure 6.7: Variation of e with dimensionless time for small-amplitude oscillationsof a droplet perturbed by a second-spherical-harmonic of amplitude f2 = 0:01, onmesh 1: || Re = 10; - - - - Re = 100.early stage of the ow, and so are not shown. Figure 6.6 shows the variation in themass of the droplet with time, at both Re = 10 and Re = 100. In both cases thedroplet's mass increases by less than 0:001% over the �rst four periods of oscillation,the greater rate of mass gain being observed at the higher Reynolds number as onewould expect. The quantity e = ab , where a and b are the distances from the centreof the droplet to the free surface along the x and y axes respectively, was employedin determining the period of oscillation of a droplet. Figure 6.7 shows how e varieswith time for mesh 1 at the two Reynolds numbers. The period of oscillation of thedroplet was estimated by observing the time interval between maxima in e. Thelength of the �rst period, t1, together with the amplitude e1 at the end of the �rstperiod, are listed in Table 6.2, for each of the three meshes. Column �ve gives theaverage processor time per time step, as measured over a considerable number oftime steps (> 1000), on a Silicon Graphics R5000 workstation running at 180 MHz.The run time, shown in the last column, is a notional one found by multiplyingthe average processor time per time step by the number of time steps required tointegrate up to a time t = 2:3, i.e. the approximate length of a period of oscillation.From Table 6.2 it may be seen that convergence is evident in both t1 and e1 as themesh is re�ned, at both Reynolds numbers. Further decreasing the length of thetime step was not found to result in an appreciable increase in accuracy. At thehigher Reynolds number, t1 appears to converge to a value close to 2:2245, which



Chapter 6 196 Navier-Stokes problemsRe Mesh t1 e1 time/step Run time10 1 2.2750 1.00588 1.79s 1.1h10 2 2.2785 1.00597 4.47s 5.7h10 3 2.2788 1.00602 9.50s 24.3h100 1 2.2200 1.01330 1.85s 1.2h100 2 2.2240 1.01345 3.90s 5.0h100 3 2.2245 1.01353 9.63s 24.6hTable 6.2: Small-amplitude axisymmetric droplet oscillations: results.is in good agreement with the value of 2:2287 computed by Basaran [7], and di�ersfrom the analytical value of 2:2218 he quotes by only 0:12%. The amplitude of theoscillation at the end of the �rst period, e1, varies little between the meshes, thoughit again shows signs of convergence. The value computed on mesh 3 of 1:01353 isin excellent agreement with that found by Basaran of 1:0136 and is, up to roundingerror, identical with the analytical value of 1:0135 given by Basaran.At the lower Reynolds number agreement is again good, with the period com-puted on mesh 3 of 2:2788 being within 0:5% of that found by Basaran. The valueof e1 computed is also in good agreement with Basaran's value of 1:0061.It was observed that the scheme did not conserve momentum. Using mesh 1 anaverage acceleration of 5 � 10�4 non-dimensional units was observed over the �rstperiod, while for mesh 2 the average acceleration was approximately half that. Thisbehaviour was observed irrespective of Reynolds number. Such accelerations appearto be due to asymmetries in the imposed free-surface boundary conditions.6.5.2 Large-amplitude oscillations of ellipsoidal dropletsTwo large-amplitude problems were next considered in order to investigate the widerapplicability of the method. The �rst problem relates to the behaviour of droplets,the initial shape of which is obtained by rotating an ellipse centred at the originaround its major axis, which is assumed collinear with the x axis. The intersectionof the initial droplet's surface with the x-y plane takes the formx = â cos �; (6.52)y = b̂ sin �; (6.53)where â and b̂ are the minimum and the maximum radii of the ellipse. If onlydroplets with unit volume are considered then each problem is characterised by the
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 t = 0.05 

 t = 0.35 

 t = 0.70 

 t = 1.05 Figure 6.8: Large-amplitude ellipsoidal oscillations, Re = 10: mesh at selecteddimensionless times.
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 t = 0.05 

 t = 0.35 

 t = 0.70 

 t = 1.05 Figure 6.9: Large-amplitude ellipsoidal oscillations, Re = 10: velocity �eld at se-lected dimensionless times (a).
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 t = 1.40 

 t = 1.75 

 t = 2.10 

 t = 2.40 Figure 6.10: Large-amplitude ellipsoidal oscillations Re = 10: velocity �eld at se-lected dimensionless times (b).
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 t = 0.05 

 t = 0.35 

 t = 0.70 

 t = 1.05 Figure 6.11: Large-amplitude ellipsoidal oscillations, Re = 10: pressure �eld atselected dimensionless times (a).
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 t = 1.40 

 t = 1.75 

 t = 2.10 

 t = 2.40 Figure 6.12: Large-amplitude ellipsoidal oscillations, Re = 10: pressure �eld atselected dimensionless times (b).
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Dimensionless timeFigure 6.13: Large-amplitude ellipsoidal oscillations, Re = 10, ŝ = 2: s as a functionof dimensionless time.three parameters Re, We and ŝ, wherês = â̂b : (6.54)Conversely, given ŝ, â and b̂ may be computed usingâ = ŝ 23 ; (6.55)b̂ = ŝ� 13 : (6.56)Here the values ŝ = 2, Re = 10 and We = 1 were employed. To facilitate measure-ments the quantity s = ab ; (6.57)was de�ned, where a and b are the distances, along the x and y axes respectively,from the centre of the droplet to the free surface. An initial mesh was generated bytaking ktol = 0:2 and hmax = 0:25, resulting in a mesh with 170 elements and 841unknowns. A �xed time step of length 0:0005 was employed for this problem. Fig.6.8 shows the mesh at selected times during the �rst half-period of the oscillation.Over the second half-period the motion of the nodes is essentially reversed andby the end of the �rst period the mesh has returned approximately to its initialcon�guration. Figures 6.9, 6.10, 6.11, and 6.12 show the velocity and pressure �elds
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Dimensionless timeFigure 6.14: Large-amplitude ellipsoidal droplet oscillations, ŝ = 2: percentagechange in mass as a function of dimensionless time.at selected times after the droplet has been released from an initial state of rest.Figure 6.13 shows the variation of s with time. The computed length of the �rstperiod, 2:39, is in reasonable agreement with that given by Mashayek and Ashgriz[68] of 2:41, a di�erence of approximately 0:8%. Agreement between the value of scomputed at the end of the �rst period and that given by Mashayek and Ashgriz isalso reasonable, i.e. 1:32 against their value of 1:28, a di�erence of approximately3%. This perhaps reects the neglect here of the moving-mesh correction termswhich e�ectively adds momentum.Figure 6.14 shows the variation of the droplet's mass with time as a percentageof its initial mass, the maximum change in the mass being approximately 0:03%.The rate of change of mass is clearly greatest when the free surface is moving mostrapidly and, as the asymptotic con�guration is approached, the rate of mass lossbecomes negligible.Figure 6.15 shows the velocity �eld at a time t = 2:40, shortly after the end ofthe �rst period of oscillation, and is obtained by scaling-up the velocity �eld shownin Fig. 6.10 by a factor of sixteen, a line through the centre of mass of the domainhaving also been added. A pair of counter-rotating vortices can clearly be seen anda certain degree of asymmetry of the ow is also apparent. This is presumably dueto the accumulation of e�ects due to the asymmetries of the meshes employed upto this point.
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Figure 6.15: Large-amplitude ellipsoidal oscillations, Re = 10: velocity �eld att = 2:4.6.5.3 A large-amplitude second-spherical-harmonic problemThe next problem considered involves the evolution, at Re = 100, of a sphericaldroplet that has been perturbed by a second-spherical-harmonic of amplitude f2 =0:9. Two initial meshes, shown in Fig. 6.16, were considered. Mesh A was generatedby taking ktol = 0:2 and hmax = 0:4, and has 132 vertices and 692 unknowns. MeshB was generated by taking ktol = 0:1 and hmax = 0:3, and has 185 vertices and 1511unknowns. A �xed time step of k = 0:00025 was employed for mesh A, while oneof k = 0:000125 was employed for mesh B. Note the poor quality of mesh B in theneck region, due to the failure of the free-surface meshing algorithm to detect thechanges in the sign of the curvature, as discussed in Section 4.4.2.Figure 6.17 shows the evolution of e with time for the two meshes. As may beseen, the two curves are surprisingly similar given the coarseness of the two meshes.For mesh A a period of 2:750 was measured, which di�ers from Basaran's [7] value of2:906 by approximately 5:4%. A better agreement was observed for the amplitude,e1; at the end of the �rst period the value computed was 2:329 as against Basaran'svalue of 2:331, a di�erence of only 0:09%. For mesh B values of t1 = 2:772 ande1 = 2:327 were computed. Thus, while the period computed was marginally closerto Basaran's value, the discrepancy in the amplitudes was approximately twice aslarge. Figure 6.18 shows the computed free surface at selected times. A visualcomparison with Mashayek and Ashgriz's Figure 9 [68], however, shows that con-siderable di�erences in free-surface shape occur after t = 0:4. Since Mashayek andAshgriz's free-surface pro�les appear to be in good agreement with those computed



Chapter 6 205 Navier-Stokes problems
(A)

(B)

Figure 6.16: Initial meshes A and B for a second-spherical-harmonic problem withf2 = 0:9.by Basaran, one is forced to conclude that it is the current computation that isin error. A closer study of the free surface's evolution shows that oscillations ofconsiderable amplitude occur in the locations of the axial free-surface nodes aroundtime t = 1:2. The behaviour observed suggests that modes of oscillation are beingexcited in the current model that are not observed in those employed by the otherauthors. Thus it is apparent that agreement between two di�erent models as to theoverall period of oscillation, does not allow one to conclude that the details of thetwo solutions are in similar agreement. A lack of mesh resolution in the initial neckregion appears likely to be the main cause of the discrepancies observed, thoughanother may lie in the large deformations of elements that occur. Figure 6.19 showsmesh B at time t = 1:3, and illustrates the severe deformations of elements thatarise.The use of interior remeshing was next investigated, with the aim of avoiding the
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Figure 6.19: Oscillations of a spherical droplet perturbed by a second-spherical-harmonic of amplitude f2 = 0:9, at Re = 100: (a) free surface at t = 1:3; (b)detail.Navier-Stokes problems considerable internal structure may develop in the velocity�eld, as illustrated by Fig. 6.15. It appears reasonable to assume that features suchas the vortices shown in Fig. 6.15 can have a considerable inuence on the evolutionof the free surface, and thus that errors in the ow computed for the interior ofthe droplet can a�ect the free surface far from the source of the initial error. Inthese situations re�nement of the free surface, merely allows the solver to moreaccurately model features that have arisen due to errors earlier in the computation;the re�nement is both too late and in the wrong place. One solution to this problemlies in the implementation of adaptive interior mesh generation, employing errorindicators based on local solution gradients. A simpler, though perhaps less e�cientsolution, would be to employ a �ner mesh for the entire domain.6.5.4 Interior-mesh regenerationAs a �nal experiment the above problem was repeated at Re = 10, employinginterior-mesh regeneration but no automatic re�nement of the boundary. A newinitial mesh C, shown as Fig. 6.21(a), was generated by taking ktol = 0:2 andhmax = 0:2. In addition the algorithm used to generate the initial free-surface nodedistribution was modi�ed so that no edge of length greater than 0:05 was gener-
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(a)

(b)

Figure 6.21: Large-amplitude, f2 = 0:9, second-spherical-harmonic problem at Re =10, mesh C with initially equispaced free-surface nodes: (a) initial mesh; (b) meshat t = 1:43.increased amount of �ll-in was allowed in the incomplete factorisation of the precon-ditioner by taking lfil = 300. Adaptive time-stepping as described in Section 3.15was employed, with a prescribed tolerance of 5� 10�5. This reduced the estimated65 hour run time, that a �xed time step size would have entailed, down to a morereasonable 10 hours for a single period.Figure 6.21(b) shows the mesh at time t = 1:43, from which it may be seenthat the maximum element aspect-ratio is approximately equal to two. The unevendistribution of free-surface nodes, that does not truly reect the curvature of theboundary, is however unwelcome. Free-surface remeshing would thus be appropriatehere, provided that the di�culties mentioned above, with regard to the accuracy ofthe velocity in the interior of the mesh, can be resolved. Figure 6.22 shows the
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t = 2.4671Figure 6.22: Oscillations of a spherical droplet perturbed by a second-spherical-harmonic of amplitude f2 = 0:9 at Re = 10: free-surface evolution, for initial meshC with interior mesh regeneration, at selected dimensionless times.evolution of the free surface over most of the �rst period. While a certain degree ofasymmetry is still apparent in these free-surface pro�les, it is less pronounced thanthat visible in Fig 6.20 at the higher Reynolds number and on a coarser mesh.A period of 2:57 was computed, which is in reasonable agreement with Basaran'svalue of 2:66 [7], a di�erence of 3:4%. For the amplitude at the end of the �rst



Chapter 6 212 Navier-Stokes problemsperiod a value of 1:54 was computed, as against Basaran's value of 1:43, a di�erenceof 7:7%. These results suggest that additional re�nement of the interior of the meshwould further reduce the tendency for asymmetry to arise, and thus allow resultscomparable in accuracy to Basaran's to be obtained.6.6 ConclusionsThis chapter has demonstrated that unstructured meshes of triangular elements maybe used successfully to solve axisymmetric Navier-Stokes problems involving small-amplitude perturbations of spherical droplets. Good agreement has been demon-strated with both Prosperetti's theoretical model and Basaran's numerical resultsfor small-amplitude oscillations.The accurate modelling of larger-amplitude problems appears however to beconsiderably more di�cult; this being particularly apparent when the droplet is ex-pected to remain symmetric. For Navier-Stokes problems, in contrast to Stokes-owproblems, it appears necessary to give additional consideration to the need to ensurethe accuracy of the solution on the interior of the mesh; employing a good boundaryrepresentation is no longer su�cient to guarantee a stable and accurate solution.While the moving-mesh approach has been employed with some success, both withand without automatic regeneration of the interior mesh, automatic regeneration ofthe free-surface discretisation has proved more problematic. Further investigationof the additional di�culties faced when regeneration of the free surface is attemptedis thus appropriate. The preliminary results obtained however suggest that whenthe problems mentioned above are resolved the approach will be a useful one.The use of ILU preconditioning has been demonstrated for this class of problem,and the technique has proved to be robust and easy to use in practice. Finally,the considerable reductions in run time made possible by adaptive time-step sizeselection have been demonstrated.



Chapter 7Conclusions
As conclusions have already been presented at the ends of the preceding chapters,here only the main points will be reiterated. First, the prospects for the meth-ods described in this thesis are reviewed. Comparison is then made with the mainalternative approaches currently available for free-surface incompressible-ow prob-lems. Finally, a number of suggestions are made for the further development of theunstructured mesh approach.7.1 The unstructured mesh approachWith regard to its main objective the current work appears to have been broadly suc-cessful in that a methodology has been developed that allows a wide range of time-dependent surface-tension-driven free-surface problems, involving domains with ar-bitrary initial free-surface pro�les, to be simulated accurately over extended periodsof time. The use of automatically generated unstructured �nite element meshes ina time-dependent free-surface incompressible-ow solver has been demonstrated forthe �rst time. The approach has been shown to be practical, to be applicable to arange of problems, and to allow solutions of demonstrable accuracy to be obtained.The primary advantage of an unstructured �nite element method is that no apriori decisions need be made about the structure of the interior mesh and thus,once the initial free-surface pro�le and the boundary and initial conditions have beenspeci�ed, the codes developed may be employed to automatically compute time-213



Chapter 7 214 Conclusionsdependent ows in domains that change considerably in shape. While here onlysurface-tension-driven incompressible-ow problems are considered, the use of the�nite element methodology allows the methods outlined to be directly generalised toother types of problem such as non-Newtonian ows, elasticity problems with freesurfaces, and phase change problems.Experience has shown that surface-tension-driven free-surface ow problems areconsiderably more di�cult to solve than incompressible-ow problems for whichessential boundary conditions are known a priori. The additional di�culties areprimarily a result of the fact that the shape of the free surface, and thus the bound-ary conditions, depends on the solution at previous time steps. In addition mass-conservation considerations mean that the systems of equations must be solved tohigh accuracy.The investigations undertaken have led to the conclusion that for many transientproblems, relatively simple semi-implicit schemes may well be competitive with fullyimplicit ones; in part due to the possibility of the reuse of preconditioners when thetime step is small in size, as is typically the case with semi-implicit schemes, but alsodue to the considerably greater costs associated with solving a fully implicit systemof equations on a moving mesh. Experience has shown that, for the semi-implicitschemes described here, the additional costs associated with managing a movingmesh are typically small in comparison with the solution costs associated with theow problem itself.The work has highlighted the issue of the accuracy of boundary conditions com-puted using piecewise-continuous boundary representations. In particular the po-tential for the rate of convergence of the boundary conditions to compromise theoverall rate of convergence of the solution has been highlighted, a problem that hasapparently hitherto been overlooked.An important feature of the approach described here is that no arti�cial smooth-ing of the free surface is performed. Furthermore, the stability-based adaptive time-step size selection procedures described in Section 3.15 allow maximal time steps tobe taken while ensuring stability of the free surface.The use of iterativemethods for the solution of the systems of linear equations hasbeen explored and the results obtained suggest that they are highly advantageous,particularly when the problem allows preconditioners to be reused many times.The need to restrict time-step size when semi-implicit schemes are employed maybe turned to an advantage in that it allows powerful ILUT preconditioners to bereused over many time steps, o�setting the considerable cost of computing them.



Chapter 7 215 ConclusionsIndeed, where a steady-state solution is being approached the preconditioner maynot need to be recomputed at all.7.2 Comparison with alternative approachesIn the approach proposed by Mashayek and Ashgriz [68] penalty methods are em-ployed for the solution of the incompressible-ow problem, and a volume-of-uid(VOF) scheme is employed to update the free surface. Although the VOF approachappears attractive in that it conserves mass exactly, the fact that it does not imposethe kinematic boundary condition directly makes it less attractive from a theoreticalpoint of view. While the use of unstructured meshes would complicate the imple-mentation of a VOF scheme, there appears to be no reason why, in principle, suchan approach could not be integrated with the unstructured mesh approach describedhere. Similarly there is no reason why penalty methods could not also employed asthe basis of the incompressible-ow solver.For problems in which the mesh need not change in connectivity during a simula-tion the implicitmethods proposed by Basaran [7] would appear to have considerableadvantages, particularly where accuracy considerations allow large time steps to betaken. Basaran's scheme for updating the positions of interior nodes is representa-tive of those adopted by many other authors. In it an interior vertex moves alongthe �xed spine on which it lies, at a velocity that is a continuous function of thevelocity of the free surface where it intercepts the spine. Interior edge nodes areconstrained to move so as to keep interior edges straight. One important advan-tage arising from this approach is that the motion of an interior node, and thuseach basis function associated with the node, depends on the motion of only threefree-surface nodes. Consequently the Jacobian of the system of nonlinear algebraicequations that results when Newton's method is applied is sparse. Furthermore theJacobian may be computed analytically and thus accurately and e�ciently. Wherean unstructured mesh is employed, and Laplacian or elastic-mesh smoothing used toupdate the positions of interior nodes, the computation of the Jacobian will be con-siderably more complicated since now each basis function depends on the locationsof all free-surface nodes. As a result the Jacobian will contain a dense block andwill be much more expensive to compute. Since the main justi�cation for employingimplicit methods is that large time steps may be taken, and since in such circum-stances one would expect that the mesh would change considerably over a time stepand thus that the Jacobian and any preconditioner would need to be recomputed



Chapter 7 216 Conclusionsfrequently, the question must be addressed as to whether this is preferable to takinga relatively large number of much cheaper semi-implicit steps.The large additional costs associated with the solution of a time-dependentnonlinear moving-mesh problem lead the author to suspect that more e�cient ap-proaches might exist in which the mesh remains �xed throughout a computation.Thus it may be the case that, when combined with e�cient solvers, the phase-�eldmethods mentioned in Chapter 1 will prove to be more e�cient than moving-meshmethods. Such methods are, however, at an early stage of development and itremains to be seen if they live up to their promise.7.3 Suggestions for further workThe potential further gains in e�ciency made possible by the use of optimal ILUTpreconditioners have already been remarked upon in Section 4.3. If the approachoutlined were adopted, then a two- to four-fold decrease in run times might wellbe obtainable. The use of an explicit second-order accurate free-surface advectionscheme should also be considered as a priority.Further theoretical work is also appropriate. The stability method for choosingthe time-step length would appear to invite further investigation. In particular itwould be valuable to con�rm experimentally that the e�ective time-step-size con-straint is indeed �rst order. Analysis linking the global error to the local spatialand temporal truncation errors would also now appear to be appropriate. An im-proved understanding of the error analysis is necessary if the various tolerances forthe solution of the systems of linear equations are to be selected optimally; i.e. soas to minimise run time while, at the same time, delivering a solution of guaranteedaccuracy.There is considerable scope for the further development of the Laplacian mesh-smoothing algorithm currently employed. In particular, the algorithm might bemodi�ed so as to prevent large and small angles from developing. Alternatively, thefully Lagrangian approach might be adopted for Navier-Stokes problems. Since ex-perience has shown that mesh generation costs are small when compared to the costsof solving the ow equations the only additional di�culty that would arise is thatinterpolation of the velocity �eld would be required more often due to more rapiddegeneration of mesh quality. Since the Lagrangian approach may conveniently beimplemented within the framework employed here, with minimal additional work,there appears little reason why it should not be further investigated. The devel-



Chapter 7 217 Conclusionsopment of accurate methods for transferring solutions between meshes should nowalso be considered a priority.While the current implementation allows a large family of interesting problems tobe tackled, the range would be further extended by the inclusion of models for inowand outow boundaries at which free surfaces are present. The inclusion of simplemodels for static and dynamic contact lines would also considerably extend the rangeof problems that might be investigated, and would allow solutions to be obtainedfor many industrially important problems, such as those described in Chapter 1,for which to date only steady-state solutions have been obtained. For coating-ow problems such as those mentioned in Chapter 1, the domain geometries allownarrow bandwidths to be obtained by appropriate node orderings, and thus allowgood preconditioners to be computed e�ciently. Furthermore, for many coating-ow problems one would not expect to observe rapid motions of the free surface,and thus any deformation of the interior mesh would also be expected to occur slowly,allowing preconditioners to be reused over many time steps. For such problems therate of mass loss due to inaccuracy in the explicit update of the free surface wouldbe very small, depending as it does primarily on the normal free-surface velocity.Thus, while such problems are simple enough that fully implicit methods might beexpected to be successful, the very features that make implicit schemes simple tocode make the semi-implicit schemes described here particularly e�cient, and thuspotentially still competitive.In the present work adaptive re�nement has been employed only when neces-sary for the resolution of the free surface's shape, any grading of the mesh beingperformed for purely geometrical reasons. As the problems mentioned in Chapter 4with regard to tangential stress errors highlight, the use of more sophisticated errorindicators to control free-surface resolution may often be appropriate. Moreover,there is considerable scope for the inclusion of error indicators based on solutiongradients, which might be used to control the resolution of both the free surface andthe interior of the mesh. Within the framework described here such modi�cationswould be straightforward given Triangle's capabilities.Finally, the extension of the current methods to three-dimensional problemsshould be considered, opening up the possibility of the study of genuine physicalproblems without the need for mathematical idealisation. The experience gained inthe course of the research described here suggests that only the simplest of trulythree-dimensional problems are at present feasible using even the computational re-sources of, say, ten workstations, and that such computations would require days



Chapter 7 218 Conclusionsor even weeks of run time. While the development of e�cient solvers and pre-conditioning strategies are necessary prerequisites for such work, the �nite elementmethodology employed in this work should allow the techniques described to begeneralised in a straightforward manner to the three-dimensional case.



Appendix ASome useful identitiesThe identities (A.4) and (A.5) are convenient when manipulating the integrals inthe �nite element formulation in order to obtain weak forms. They may be derivedusing the divergence theoremZ
r �Ad
 = Z@
A � n d�; (A.1)by substituting respectively A = (��1; 0) (A.2)and A = (0; ��2) (A.3)into A.1, where �, �1 and �2 are C1 scalar functions de�ned on a simply-connectedregion 
 bounded by the curve @
 and with outward normal n. Thus one obtainsZ
 �@�1@x d
 = � Z
 �1@�@xd
 + Z@
 �nx�1 d�; (A.4)Z
 �@�2@y d
 = � Z
 �2@�@yd
 + Z@
 �ny�2 d�: (A.5)
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Appendix BOperators in axisymmetric formIn this appendix the axisymmetric forms of the terms in the Navier-Stokes equationsare derived using standard methods that may be found in many textbooks [101].In cylindrical coordinates the position of a point r may be speci�ed in the form
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θFigure B.1: Geometry of the cylindrical coordinate system(l; r; �), as illustrated in Fig. B.1. Alternatively, r may be written in the formr = x i + y j + z k, where i, j and k are unit vectors parallel to, and with the samesense as, the Cartesian coordinate axes. Thusx = l; (B.1)y = rsin �; (B.2)z = rcos �: (B.3)Since r = l i+ rsin� j+ rcos� k; (B.4)220



Appendix B 221 Operators in axisymmetric formthe scale factors h1, h2 and h3 are given byh1 = �����@r@l ����� = 1; h2 = �����@r@r ����� = 1; h3 = �����@r@� ����� = r: (B.5)Furthermore, one may de�ne three mutually perpendicular unit vectors e1, e2 ande3 in the following manner@r@l = h1e1 = i; (B.6)@r@r = h2e2 = sin� j+ cos� k; (B.7)@r@� = h3e3 = rcos� j� rsin�k: (B.8)Thus, the velocity at any point in space may be written in the formu = ule1 + ure2 + u�e3; (B.9)where ul, ur and u� are the components parallel to e1, e2 and e3 respectively.Since for an axisymmetric model one need consider only a half-plane with edgelying along the x-axis, here we choose the upper half of the x{y plane. Thus, setting� = 90� gives e1 = i; e2 = j; e3 = �k; (B.10)and ul = u; ur = v; u� = �w; (B.11)u, v and w being the Cartesian velocity components. By de�nition, in any axisym-metric problem, the derivatives of all physical quantities with respect to � mustbe zero i.e. @@� = 0. While u� need not be zero in an axisymmetric ow, here forsimplicity it will be assumed that u� = 0. If u� is not zero then only the form of theconvective terms given here will require modi�cation.Using standard results given in [101], in cylindrical coordinates the gradient ofa scalar function � may be written asr� = @�@l e1 + @�@r e2 + 1r @�@� e3; (B.12)



Appendix B 222 Operators in axisymmetric formthe divergence of a vector function A = Ale1 +Are2 +A�e3 asr �A = 1r  @ (rAl)@l + @ (rAr)@r + @A�@� ! (B.13)and the curl of A asr�A = 1r "@(rA�)@r � @Ar@� # e1 + 1r "@Al@� � @(rA�)@l # e2 + "@Ar@l � @Al@r # e3:(B.14)B.1 The continuity equationApplying (B.13) to the velocity �eld u = ule1+ure2+u�e3 one obtains the followingexpression for divergence of the velocity �eldr � u = 1r  @ (rul)@l + @ (rur)@r + @u�@� ! : (B.15)Since @@� = 0, this simpli�es tor � u = @ul@l + 1r @ (rur)@r = @ul@l + @ur@r + urr ; (B.16)or, in the notation employed in Chapter 6,r � u = @u@x + @v@y + vy : (B.17)B.2 The pressure gradientExpression (B.12) may be used to write the pressure gradient in the cylindricalcoordinate form rp = @p@l e1 + @p@re2 + 1r @p@�e3: (B.18)Since @@� = 0, this simpli�es to rp = @p@l e1 + @p@re2; (B.19)or alternatively rp = @p@xi+ @p@y j; (B.20)



Appendix B 223 Operators in axisymmetric formwhere the vectors i and j are employed to indicate the contributions to the x and ymomentum equations respectively.B.3 The convective termsThe convective term in the Navier-Stokes equations is normally written using thenotation (u:r)u. When written out in full, using (B.12), it takes the form ul @@l + ur @@r + u�r @@�! (ule1 + ure2 + u�e3) : (B.21)Expanding this, and simplifying using the assumption that u� = 0, one obtains ul@ul@l + ur @ul@r ! e1 +  ul@ur@l + ur@ur@r ! e2 + 0e3; (B.22)and thus  u@u@x + v@u@y! i+  u@v@x + v@v@y! j: (B.23)B.4 The viscous termsIn a Cartesian coordinate system the viscous term is frequently written using thenotation r2u; (B.24)the understanding being that this expression may be evaluated by applying theLaplacian operator independently to each rectangular component of the velocity�eld. In the present work the alternative stress-divergence form of the viscous termis employed, i.e. r(r � u) +r2u; (B.25)so as to give physically meaningful free-surface stress boundary conditions. For acontinuous divergence-free velocity �eld (B.24) and (B.25) have identical values. Theindependent application of the Laplacian to each spatial component of the velocityis, however, legitimate only in a Cartesian coordinate system. When a coordinatesystem other than a Cartesian one is employed the viscous term (B.24) must bewritten in the alternative div-curl form [34]r(r � u)�r� (r� u); (B.26)



Appendix B 224 Operators in axisymmetric formwhich is valid in a general coordinate system. Note that, despite its appearance,(B.26) does not include the r(r � u) term required to give stress natural boundaryconditions shown in (B.25). Using (B.14), the fact that @@� = 0, and the assumptionthat u� = 0, one may obtain the following expressionr� u = "@ur@l � @ul@r # e3: (B.27)Applying (B.14) a second time, and simplifying, givesr� (r� u) = "1r @ur@l � 1r @ul@r + @2ur@r@l � @2ul@r2 # e1 + "�@2ur@l2 + @2ul@l@r# e2 + 0e3:(B.28)Considering next the r(r�u) term in (B.26) and employing (B.12) and (B.16) oneobtainsr(r � u) = "@2ur@l@r + @2ul@l2 + 1r @ur@l # e1 + "@2ur@r2 + 1r @ur@r + @2ul@r@l � urr2 # e2 + 0e3:(B.29)Finally, subtracting (B.28) from (B.29) one obtains @2ul@r2 + @2ul@l2 + 1r @ul@r ! e1 +  @2ur@l2 + @2ur@r2 + 1r @ur@r � urr2! e2 + 0e3; (B.30)or, in the notation employed in Chapter 6, @2u@x2 + @2u@y2 + 1y @u@y! i+  @2v@x2 + @2v@y2 + 1y @v@y � vy2! j: (B.31)The additional r(r�u) term required to give stress natural boundary conditionsmay be found using (B.29), which in the notation employed in Chapter 6 takes theform r(r � u) = "@2u@x2 + 1y @v@x + @2v@x@y# i+ "@2v@y2 + 1y @v@y + @2u@y@x � vy2# j: (B.32)
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