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A model of a tennis ball impact on a tennis racket has been developed in this study. An
experimental investigation was conducted to determine the dynamic properties of several different
tennis balls. The balls were propelled at a piezoelectric force platform and the force acting on the
ball was sampled, along with the ball rebound velocity. A visco-elastic model of this impact was
developed and a set of model parameters were determined empirically for each ball type. The
values of these parameters were independent of the ball impact velocity.

The next stage of the study involved an experimental investigation of a ball impact on a head
clamped tennis racket. In this experiment, tennis balls were propelled at the geometric string centre
of a tennis racket. High speed cinematography was used to determine the ball and stringbed
deformation during impact, and speed gates were used to measure the ball rebound velocity. A
visco-elastic model of this impact was developed. The ball component of this model was identical
to that for a model of a ball impact on a rigid force platform. The model parameter for the
stringbed component was obtained from a simple quasi-static compression of the stringbed in
which the applied force and resulting deformation were measured.

The final stage of this study involved an investigation of the impact between a tennis ball and a
freely supported tennis racket (this support method has been shown to be equivalent to a player
gripping the tennis racket). In these experiments, the ball, stringbed and racket deformation were
measured during impact, along with the velocity of the ball and racket after impact. A model was

developed to simulate this impact in which it was assumed that the racket acted as a one-
dimensional flexible beam.

The models which have been developed in this study are advancements of those which have been
used in previously published literature. ~ Experimental data was used to assess the accuracy of the

results which were calculated by the models. An excellent correlation was found between the data
calculated by the model and that measured experimentally.

A model of the impact between a ball and a tennis racket has been developed, as mentioned above.
This model was incorporated into a PC software package (Racket Impact vI.1) that has been
written in this study. This software allows the user to predict the rebound velocity of the ball for an
impact between a tennis ball and racket. The user has the ability to control many parameters
related to the impact including, (1) impact location on the racket, (2) ball/racket type and (3) type

of shot. This software will be a useful tool for both the manufacturers of tennis equipment and the
governing body of tennis.

Keywords: tennis ball, tennis racket, high speed cinematography, visco-elastic modelling.
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Chapter 1 Introduction

1. Introduction

The following chapters describe a three year study examining the dynamic interaction between a
tennis ball and tennis racket.

(a) Motivation for the study

The game of tennis has changed drastically over the last 30 years. Arguably, the most significant
transformation in the game is in the speed of the serves and ground strokes, in both the men’s and
women’s game. It is generally agreed that some part of this change can be assigned to the
improved training, athleticism and physique of modem players, and also the higher rewards which
are bestowed upon the successful athletes. However, the International Tennis Federation (ITF)'
have still been criticised for not imposing some control on the equipment used by players. Many
commentators cite the allowance of new technologies/materials in the manufacturing of tennis
rackets as a major factor in the increased speed of the game. This criticism is not wholly justified
as the ITF constantly review the rules of tennis to ensure that the game is not detrimentally affected
by the introduction of certain new technologies. For example, a rule change was implemented in
response to the widespread use of graphite composites in the manufacturing of tennis rackets. It
was noted that the use of this material allowed manufacturers to produce rackets which were longer
and wider than was previously possible with other materials. The ITF acted by introducing a
maximum length and width dimension for all rackets which are approved for tournament play.

This decision itself was met with some criticism from certain parts of the industry. In commenting
on this decision in 1996, Jim Baugh, President of Wilson Sporting Goods, said “The actions the
ITF is taking for the professional game is too late. The pro’s that are playing today are playing
with rackets from ten years ago. The goals of the Wilson's, Prince’s and Dunlop’s are to bring up
new kids and have them start out with the latest technology frames. That would mean in five to ten
years we are going to have young pro players with very large, stiff, head heavy rackets. Then that

power level would reach the pro game in the years to come..... So my fear is that in five to ten
years the professional game may be too quick.” (Coe 2000).

The issue regarding the speed of the game of tennis is a complicated argument that requires careful,
rational analysis in order for it to be fully understood. It should be noted that most comments
which support the view that the game is ‘too fast’ refer to tournaments that are played on ‘fast’
surfaces, such as the grass court championships at Wimbledon. Furthermore, when stating that the
game is ‘too fast’, commentators and spectators are generally referring to the fact that the game is
dominated by the serve as the ball is travelling at such a speed that it cannot be returned by the
receiver. Commenting on the 1994 Wimbledon Final between Sampras and Ivanisevic, in which

only three points played lasted more than four shots, Fred Perry called it “...one of the most boring

finals in history....”. Intuitively, it would be expected that comments like these would be

! The International Tennis Federation are the governing body of tennis and are based at Roehampton,
London, UK.
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supported by evidence of a decreasing number of people visiting tournaments which are played on
‘fast’ surfaces, such as Wimbledon. However, this years championships at Wimbledon have, yet
again, attracted a record number of visitors. On this evidence, the current speed of the game of
tennis, even on ‘fast’ surfaces, does not appear to be affecting the popularity of the game.
However, if developments in technology and the physique of players continues at a similar rate that
has been evident in the last 20 years, then the nature of the game may be changed detrimentally in
the future. The International Tennis Federation’s role is to preserve the nature of the game, and
therefore this observation has motivated the governing body to embark on research projects which
are aimed at advancing their existing knowledge of the mechanics of the game. These extensive

projects involve studies of the court surfaces, ball types, racket construction and the physique of the
players.

The current study, described in this thesis, involves an investigation of the mechanism involved in

the impact between a tennis ball and tennis racket, and forms an integral part of the ITF’s overall
investigation.

(b) Aim and Objectives

The aim of this study is to develop an understanding of the dynamic interaction which occurs
during an impact between a tennis ball and a tennis racket. This will be achieved using both
experimental investigations and theoretical modelling techniques.

The objectives of the study are as follows,
1. To obtain the static physical properties of a tennis ball and stringbed.
2. To measure the dynamic response of a tennis ball for an impact with a rigid surface.

3. To develop a model of a tennis ball impact on a rigid surface and to use this model to define
the dynamic properties of the ball.

4, To measure the dynamic response of a tennis ball and racket stringbed for an impact between
a tennis ball and a head clamped racket.

5. To develop a model of a tennis ball impact on a head clamped tennis racket.

6. To measure the dynamic response of a tennis ball, stringbed and racket for an impact

between a tennis ball and a tennis racket; the racket being supported in a manner that is
equivalent to a player’s grip.

To develop a model that can be used to predict the dynamic response of a tennis ball impact

on a tennis racket, and use this model to gain a further understanding of the mechanics of the
impact.
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(c) Structure of the study

The main objective of this work is to develop a model of a tennis ball impacting on a tennis racket.
In this model, the racket is supported using a method which is equivalent to a player’s grip. This
mode]l must have the ability to predict the dynamic response of the tennis ball and racket, for the
impact. The impact between a tennis ball and racket is a complex non-linear system which
involves a large number of variables. To successfully achieve the main objective, the model is to
be constructed in a finite number of stages, as outlined in the list of objectives. These objectives
define a logical procedure in which a simple model of a tennis ball impact on a rigid surface is
developed into a model of a ball impact on a tennis racket.

This thesis is composed of a number of chapters which document the development of the model.

At each stage of the development, data from relevant experimental investigations will be used to
verify the accuracy of the model.




Chapter 2 Literature Review

2. Literature Review

2.1 Introduction

There is a vast amount of literature which documents studies into different aspects of the game of
tennis. Indeed, one of the very first papers in the field of sports engineering was on the irregular
flight of a tennis ball by the physician Lord Rayleigh back in 1877. Since then, material has been
published by researchers from a range of disciplines such as physics, engineering, sports science
and commercial design. The magnitude and diversity of this material has lead to much duplication
of work resulting in the reinforcement of certain, well-established conclusions. It has also lead to
some contradiction between authors where different findings have been determined for the same

investigation. This review attempts to explain and resolve these differences, as well as highlighting
the undisputed existing knowledge in the field.

It has been noted that the published material has originated from a variety of disciplines and for a

wide range of sports. This review aims to discuss the relevance of each study on the game of tennis
for which this project is concerned.

This project is aimed at developing an understanding and model for the impact between a tennis
ball and racket. The procedure adopted in this study was to first gain an understanding of how the
ball impacts on a rigid surface. This is to be followed by an understanding of the interaction of the
ball and stringbed. The research then culminates in an understanding of the entire ball, string and
racket frame system. The literature discussed in this section follows a similar order where possible.

The sponsors for this work are the International Tennis Federation who are the governing body of
tennis. The conclusions drawn from this work will be used by them as an aid when deciding upon
new rules and regulations. For example, in the definition of a test for the power of a tennis racket
the governing body must have a full understanding of the parameters which contribute to this
property. The sport of golf has strict rules already in place on the equipment used to ensure that the
nature of the game is not changed by courses becoming obsolete (Royal and Ancient & USGA
(2000)). For example, these rules define tests to regulate the speed of the ball as it leaves the club
and the maximum distance that a ball may travel for a specified standard shot.
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2.2 The Ball

2.2.1 ITF Rules and Regulations for a Tennis Ball

For a ball or racket to be labelled ‘ITF Approved’ it must conform to a stringent set of approval
tests described in the Rules of Tennis (ITF, 2000a) as defined by the International Tennis
Federation. In regard to the ball, these standard tests cover such properties as mass, diameter,

stiffness and bound height for an impact with a flat, rigid surface. The Rules of Tennis are revised
annually and cover all aspects of the game in great detail.

Relevant extracts from Rules of Tennis regarding the ball are given below. The first passage refers

to a Type 2 (medium) ball, which is the category that the majority of tennis balls are manufactured
and qualify for.

The ball shall be more than 1.975 ounces (56.0 grams) and less than 2.095 ounces (59.4
grams) in weight.

The ball shall have a bound of more than 53 inches (134.62 cm) and less than 58 inches
(147.32 cm) when dropped 100 inches (254.00 cm) upon a flat, rigid surface e.g. concrete.
The ball shall have a forward deformation of more than 0.220 of an inch (0.559 cm) and less
than 0.290 of an inch (0.737 cm) and return deformation of more than 0.315 of an inch
(0.800 cm) and less than 0.425 of an inch (1.080 cm) at 18 Ib. (8.165 kg) load. The two
deformation figures shall be the averages of three individual readings along three axes of

the ball and no two individual readings shall differ by more than 0.030 of an inch (0.076 cm)
in each case.

The ball shall be more than 2.575 inches (6.541 cm) and 2.700 inches (6.858 cm) in
diameter.

An additional section was added to the Rules of Tennis in 2000 describing two new types of balls;

the Type 1 ball being a “stiffer’ ball than Type 2, and the Type 3 ball being larger than the Type 2
ball.

From I* January 2000 until 31" December 2001 two further types of tennis ball may be used
on an experimental basis.

The first type is identical to those described in paragraphs a. to c. (in the Rules of Tennis
which are summarised above) except that the ball shall have a forward deformation of more
than 0.195 inches (0.495 cm) and less than 0.235 inches (0.597 cm) and return deformation
of more than 0.295 inches (0.749 cm) and less than 0.380 inches (0.965 cm). This type of

ball shall be described as Type 1 and may be used in either a pressurised or non-pressurised
form.

Another type is identical to those described in paragraphs a. to c. above except that the size
shall be more than 2.750 inches (6.985 cm) and less than 2.875 inches (7.302 cm) in
diameter as determined by ring gauges and detailed in Appendix I section (iv). This type of
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ball shall be described as Type 3 and may be used in either a pressurised or non-pressurised
Sform.

All other type of ball defined by Rule 3 shall be described as ball Type 2.
For the purpose of tournaments played under this experiment:

1. Ball Type 1 (fast) should only be used for play on court surface types which have been
classified as Category 1 (slow pace).

2. Ball Type 2 (medium) should only be used for play on court surface types which have
been classified as Category 2 (medium/medium-fast pace).

3. Ball Type 3 (slow) should only be used for play on court surface types which have been
classified as Category 3 (fast pace).

For non-professional play any ball type may be used on any surface type.

The method used to determine the diameter of a tennis ball is summarised below.

In all tests for diameter a ring gauge shall be used consisting of a metal plate, preferably
non-corrosive, of a uniform thickness of one-eighth of an inch (0.318cm). In the case of
Type 1 (fast) and Type 2 (medium) balls there shall be two circular openings in the plate
measuring 2.575 inches (6.541cm) and 2.700 inches (6.858cm) in diameter respectively. In
the case of Type 3 (slow) balls there shall be two circular openings in the plate measuring
2.750 inches (6.985cm) and 2.875inches (7.302cm) in diameter respectively. The inner
surface of the gauge shall have a convex profile with a radius of one-sixteenth of an inch
(0.159cm) The ball shall not drop through the smaller opening by its own weight and shall
drop through the larger opening by its own weight.

Tennis balls are known to exhibit a phenomenon often referred to as ‘set’. This refers to the
stiffness property of the rubber which appears to be highest for the initial couple of compressions
than for all subsequent compressions, if the ball has been left to stand for a significant amount of
time. The following extract describes the procedure used to minimise the effect of this ‘set’.

Before carrying out any of the tests, a ball should be pre-compressed by approximately one
inch (2.54 cm) on each of three mutually perpendicular axes. This should be carried out
three times on each axis, and the tests completed within two hours of pre-compression.

2.2.2 Construction of a Tennis Ball

The Approved Tennis Balls (ITF, 2000b) states that ‘a tennis ball consists of a hollow rubber
core...covered by Melton consisting of textile material composed of wool, nylon and cotton’. This
textile material must be white or yellow in colour. Penn (2002) describes the complete process of
making a tennis ball. In brief, two rubber hemispheres are bonded together and then covered with
adhesive. If the balls are to be internally pressurised then this process occurs in a pressure
chamber. Two dumbbell shaped pieces of felt cover the rubber sphere and then the further
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adhesive is used to create the familiar white seam that is characteristic of all tennis balls. There are
two main constructions of tennis balls which are generally defined in ITF (2000a) as,

1. Pressurised — a ball with a typical wall thickness of 3mm and internally pressurised with
air at approximately 1bar.

2. Pressureless — a ball with a typical wall thickness of 4mm and has an internal air pressure
equal to that of atmosphere.

A further ball construction method involves filling the rubber core with a micro-cellular material

that is designed to simulate the internal pressurisation of a Pressurised ball. This is often referred
to as a Foam-Filled ball.

The manufacturers of Pressureless and Foam-Filled balls claim that their products have a more
durable performance property because Pressurised balls suffer from pressure loss over time.  This
loss in internal air pressure is a well established phenomenon and has been studied by various
researchers and manufacturers who have investigated methods of minimising it. A patent by
Koziol & Reed (1978) claimed that the a ball which was internally pressurised using a mixture of
sulphur hexafluoride and air only suffered a 6% loss in stiffness over a period of 236 days. This
compared to a loss of 23% in the ball pressurised with air over a similar time period. Reed &
Thomas (1988) investigated the effectiveness of using low permeability gases in different
concentrations to pressurise a tennis ball. A compression test was performed on the balls to
monitor the change in stiffness over a period of 60 days. It was found that the stiffness of the ball
pressurised with air reduced by approximately 7% in this time. In the same time the stiffness of the
ball pressurised with the low permeability gas actually increased, due to the surrounding air
permeating into the ball as a consequence of the gradient in the partial pressure of the air on either
side of the rubber core. It was accepted that the use of low permeability gases to pressurise tennis
balls may not be economically viable which is why this method is not used commercially.

Wilson Sporting Goods (2001) have recently introduced utilised a coated inner core in their

pressurised balls which they claim reduces air permeation by 200%, thus preserving the life of the
ball.

The Rules of Tennis aim to ensure that a ball is a homogenous structure by ensuring that the
deformation in the three axis’s does not differ by a pre-defined amount. Thomson (2000) tested
the homogeneity of a range of tennis balls for compressions of approximately 30mm, which is
higher than those used in the standard ITF test. Thomson confirmed that all the balls tested could

be considered homogenous. At these high compressions it was found that a Pressurised ball was
significantly stiffer than a Pressureless ball.

Due to the nature of the ball construction it is likely that the properties will change with the
atmospheric temperature. Rose at a/ (2000) measured the variation in static and dynamic tennis
ball properties with temperature. The properties measured were the ball rebound from 100inches,
ball deformation for a load of 18lbs, and coefficient of restitution for normal impacts on a rigid
surface at velocities up to 45m/s. It was found that the Pressurised balls exhibited the largest

7



Chapter 2 Literature Review

variation with temperature for the 100inch drop, compared with the Pressureless balls. The
deformation test showed little variation of the forward or return deformation with temperature. The
coefficient of restitution increased with temperature for all impact velocities and ball types.

In summary, the literature highlights the considerations which should be noted when testing tennis
balls. The temperature at which the tests are conducted must be regulated and the errors caused by
pressure loss inside Pressurised tennis balls should be minimised by whatever suitable method.

2.2.3 Properties of a Tennis Ball

This section discusses the existing knowledge of the static and dynamic properties of a tennis ball,
such as the structural stiffness or coefficient of restitution, for an impact with a rigid surface. It is
also a suitable point to describe the experimental methods used to obtain this data.

(a) Quasi-static ball compression testing

Although a relevantly simple property, the quasi-static stiffness of the ball has been of interest to
many researchers as it is an obvious starting point of any modelling procedure. The simplest test is
that carried out in the Rules of Tennis which states that the deformation of the ball should be
between 0.559cm and 0.737cm for a load of 80N, when compressed between two plates. During
this test the ball sits in an indentation in the plate. However, the dimension of this concave shape is

not specified. This test implies that a ball should have a linear stiffness of between 14.3kN/m and
10.9kN/m for the applied load of 80N.

A simple calculation can be used to show that the forces acting on the ball during an impact with a
racket are considerably higher than 80N. This motivated researchers to investigate the stiffness of
the ball for typical loads found, for example, during a typical serve. This has been approached in
different ways using different apparatus. The simplest method involves deforming the ball between
two flat plates (Leigh & Lu 1992, Cross 1999b, Thomson 2000). Leigh & Lu determined a linear
stiffness of 9.2kN/m and 11.9kN/m for ball deformations of 5mm and 30mm respectively.
Thomson determined a linear stiffness of between 10.0kN/m and 17.2kN/m for a similar
deformation range. The linear stiffness referred to here are the ratio of the load and deformation.
The most likely reason for the differences is that Leigh and Thomson used old and new balls
respectively. In both these studies the stiffness values obtained for a compression test between two
flat plates was compared to the stiffness of the ball during a dynamic impact with a rigid surface.
Both authors claimed that the obtained deformation values should be halved because in a dynamic
impact only one side of the ball deforms. A similar claim was made by Kawazoe (1993) who made
the observation from still images of a ball hitting a racket. One consequence of this is that the

stiffness values which are quoted above should be doubled. However, none of these publications
give quantitative evidence that this is a valid assumption.

Brody (1979) performed a compression test where the ball was placed in a rigid hemispherical cup
so that only one side was deformed. A value of 12.5kN/m was quoted for the ball stiffness, for

8
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deformations of up to 12mm. Although this method gives a realistic deformation shape, the cup
provides a restoring force to the ball which is not present in an impact between a ball and surface.

A further alternative is to compress the ball into a stringbed, and measure both the deformation of
the ball and stringbed. This was performed by Casolo & Ruggieri (1991) who applied a load of up

to 1500N giving a ball stiffness of between 50 and 80kN/m. These are much higher values than
those quoted by any other author.

Leigh & Lu acknowledged that no quasi-static compression test method can possibly recreate what
happens to the ball in an impact with a rigid surface or stringbed.

(b} Dynamic impacts

In this section, methods are discussed for analysing the impact between a ball and surface (whether
it be rigid or deformable).

Ball Projection devices

A method of propelling a ball with controllable velocity, and often spin, is a general requirement of
many studies of ball sports. This has been attempted using three main methods as follows,

1. Dropping the ball from a range of heights
2. Propel the ball between two rotating wheels.

3. Launch the ball from an air cannon gun.

The first method simply uses gravity to accelerate the ball and it gives an accurate, repeatable
impact velocity. Many authors (Brody (1979), Grabiner et al. (1983), Leigh and Lu (1992),
Goodwill (1997), Cross (2002a)) have successfully used this method. The principle drawback of
this method is that the maximum impact speeds which can be obtained are in the order of 8m/s —
corresponding to a drop height of 3.5m. This may be suitable for many ball-surface impacts, but
the relative impact velocity is far lower than that occurring in a ball-racket impact. This general
comment was noted by Kotze (2000) in his overview of published tennis racket research. Also,
another weakness is that, in its standard form, the ball must impact perpendicular to the surface and
have no initial spin. However, Cross (2002a) illustrated how oblique impacts could be performed
by rotating the surface and clamping it at the desired angle. Also, Chadwick (2002) developed a

dropping mechanism that could apply a user defined magnitude of spin to the ball prior to it being
released.

Many authors (Haake (1989), Cross (1999b), Carré (2000)) have used a projection device based on
two counter-rotating inflated wheels which were in the same vertical plane. Haake (1989) used a
modified baseball pitching machine which was capable of propelling golf balls at up to 35m/s with
up to 700rad/s of top or back spin. These speeds are considerably higher than those which could be
obtained from drop tests, and much more representative of the speed that a ball hits the turf, Carré
(2000) used a modified bowling machine to apply spin to a cricket ball, in any chosen axis. Carré
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comments that one weakness of this propulsion method is the repeatability of the impact position is
low, possibly due to the compressibility of the wheels.

An alternative method of propelling the ball is to use an air cannon. This technique is used in the
ITF surface pace rating test (ITF 2001) and by many other authors (Gobush (1990), Ujihashi
(1994), Neville (2000)). The device works by storing air in a cylinder and then rapidly discharging
it behind the ball. The cannon tube is generally of a similar diameter to that of the ball. The main
advantage of an air cannon is the high repeatability in the impact position, compared with that of
the rotating wheel system. The disadvantage of using an air cannon is that initial spin can not be
easily applied to the ball. Mish & Hubbard (2001) successfully built and tested a pneumatic system
which was capable of applying spin in any axis to a baseball. The ball was then fired down a
cannon and the flight of the ball was recorded using a high speed video system which confirmed
that the device applied consistent spin magnitude and orientation.

Measuring Dynamic Parameters

In the study of a ball-surface impact, there are many parameters that could be measured before,
during and after the contact period. These measurements are measured in an effort to understand

the impact mechanism and the contribution of each parameter (e.g. ball stiffness) on the system.
These are listed below,

1. Linear and angular velocity of the ball (and surface, if applicable) before, during and after
impact.

2. Ball (and surface) deformation during impact

3. Force and Torque acting on the ball (and surface) during impact

4. Amplitude and frequency of the induced sound wave.

There are four main categories of apparatus which can be used to individually determine one or

more of the above parameters; stroboscopic photography, cinematic photography, load transducers
and photo sensors.

Carré (2000) used stroboscopic photography to obtain a single image showing a spinning cricket
ball impacting obliquely on natural turf. The image was later analysed using PC software to give
the velocity, angle and spin of the ball, before and after the impact. Haake (1989) and Lieberman
(1990) used a similar method for the study of golf balls impacting on natural turf and rigid surfaces
respectively.  Carré commented that an advantage of this method was that impacts could be
recorded and stored very quickly once the experimental arrangement had been set up. A
disadvantage of this system is that all background light must be blocked out in order to produce
clear images. Also, an automatic trigger mechanism is generally required due to the short amount
of time that the film is exposed for. The system is not suitable for any impact in which two or more

images cover each other, i.. in a normal impact or in an experiment aimed at determining the ball
compression during impact.
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A more commonly used photographic technique in recent studies has been the use of video cameras
to record the impact. The required speed of the camera is dependant on the actual parameter being
measured. Cross (2002a) used a camera with a recording rate of only 100fps as this was sufficient
to determine the velocity, angle and spin of the ball before and after an oblique impact on a range
of surfaces. Similarly, Plagenhoef (1970) used a camera with a frame rate of 64fps to determine
the motion of a tennis racket during a serve. This was sufficient to provide data for coaching but
was not fast enough to determine the speed of the racket at the point of impact.

Dignall, Haake & Chadwick (2000a) used a Kodak EktaPro 4540 camera operating at 9000 fps to
record an oblique impact between a ball and acrylic surface. This was used to determine the
velocity, angle and spin of the ball before and after impact, and also the deformation of the ball
during impact. Groppel et al. (1987a) recorded the impact between a ball and handle-clamped
tennis racket using a camera operating at 3500fps. The optical axis of the camera had an angle of
8.7° from the string plane which allowed the entire stringbed to be seen during impact. The images

were analysed using an out-of-plane adjustment algorithm to determine the stringbed and racket
displacement during impact.

UC Davis (2001) used a video camera operating at 250fps to determine the ball and racket velocity
in matches filmed at the US Open. This study highlights the main benefits of using cinematic
techniques. The method is non-intrusive which not only means that the technique can be used in
real field situations, but also the properties of, for example the racket, are not changed by the
introduction of markers. Also, the equipment is highly suited for lab work where the experimental
arrangement is often constantly being changed for different investigations. Another fundamental
advantage is that cinematic cameras are more versatile than stroboscopic cameras because
individual frames are obtained, as opposed to one combined image of the impact.

Mitchell et al. (2000) used both a high speed video and a three-dimensional active marker system
(CODA) in a study of tennis racket velocities in a serve. The main finding was that the CODA
could determine the motion of the racket much more accurately than the two dimensional high
speed video images, due to the considerable out-of-plane motion of the tennis racket. However, the
video system has the ability to measure the ball rebound velocity which the CODA was unable to
do. Elliott et al. (1986) performed a similar study to Mitchell ef al. using two phase-locked high
speed video cameras and the direct linear transformation (DLT) technique to build up a three
dimensional reconstruction of the motion of a tennis racket. This gave results which were similar

to those determined using a marker system but suffered from a lower resolution and longer
processing times.

Neville (2001) described the use of one-dimensional speed gates to determine the impact and
rebound velocity of a tennis ball impacting normal to a rigid surface. These speed gates used two
sets of fluorescent lights and photo detectors coupled to a simple sampling system which directly

displayed the ball impact and rebound velocity. If these are the only two parameters which are
required then this is easily the most suitable method.

11
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ITF (2001) describes the standard test for measuring the pace of a tennis surface which involves
propelling a non-spinning tennis ball onto the surface at an angle of 16°. The apparatus used is

called a Sesteé which contains four sets of infra-red photocell arrays that determine the trajectory of
 the ball. A PC is used to sample the data and calculate the ball velocity and angle, before and after

impact, and also the contact distance of the ball on the surface. This equipment is not capable of
determining the spin on the ball.

Many authors have used either a single component (Cross (1999a, 1999b, 2000a), Thomson (2000),
Neville (2001)) or a multi-component (Gobush (1990)) piezoelectric force platform to measure the
Force-Time plot for a range of sports ball impacts on a rigid surface. Piezoelectric transducers
have a very high stiffness relative to the ball which results in rapid response times of the load
sensor, in comparison to strain-gauge based load cells.

The majority of the work done on tennis ball impacts has been for normal impacts, at speeds of up
to 20m/s. The single component force platform is used in conjunction with a method of measuring
the ball velocity. Analysis of this data determines the following parameters,

1. Coefficient of restitution for the impact
Force-Time plot

Contact time for the impact

> » b

Velocity/Displacement of the ball COM during impact. (these are obtained by successive
integration of the Force-Time plots.)

An important point to note is that the ball COM displacement is not equal to the ball deformation,
and therefore it is difficult to compare these results with the quasi-static compression data
discussed above. To the authors knowledge, no work has been done which gives the force and ball
deformation during the impact between a tennis ball and force platform. However, this could

easily have been achieved using a high speed video system as done by Ujihashi (1994) for golf ball
impacts.
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Figm_'e. 2.1 Typical p!ots for a normal impact on force platform for two different impact
velocities. (a) Force-Time and (b) Force-Displacement (Reproduced from Neville 2001).
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Figure 2.1(2) & (b) show typical results obtained from a piezoelectric force platform (Neville
2001), at 6m/s (the ITF standard 100in. drop height) and 20m/s. The precise shape of the curves
differs slightly between ball types, but the general shape is similar to that in Figure 2.1 (a) & (b).
In the initial phase of impact the ball is subject to a relatively low load, as shown in Figure 2.1 (b),
which is assigned to the low stiffness of the cloth. The load then rises rapidly for approximately
0.2ms which is followed by a characteristic kink in the curve, particularly at higher speeds. Most
researchers (Cross (1999a), Dignall & Haake (2000b), Thomson (2000), Neville (2001)) agree that
this is due to the buckling of the ball wall.

Total foice
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| | | ]
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Figure 2.2 Oscilloscope traces for a normal impact on a two piece force platform. The central
section has a diameter of 13mm (Reproduced from Cross (1999a)).

Figure 2.2 illustrates the buckling of the ball wall by the transition of the majority of the load from

the centre of the impact area (t<0.2ms), to the outer regions during impact (Cross 1999a). The
impact shown was for a ball impact velocity of 7m/s.
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Figure 2.3 Relationship between ball impact velocity and (a) coefficient of restitution and (b)
contact time, for an impact between a ball and a rigid surface.

Thomson (2000) and Neville (2001) used a force platform and speed gates to compare the Force-
Time and Force-Displacement curves for a range of different ball types, including Pressurised and
Pressureless, at impact velocities from 2 to 20m/s. It was found that all ball types exhibited similar
responses for impact velocities of 6m/s and below, with similar Force-Time curves, coefficient of
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restitution and contact time values being obtained. However, at higher speeds the Pressureless ball
had a lower COR and longer contact time than the Pressurised ball as shown in Figure 2.3. It was
deduced that the Pressureless ball was therefore less stiff than the Pressurised ball.

Figure 2.3 also shows that the coefficient of restitution reduces with ball impact velocity ¥ which
implies that the energy losses increase with V3. The contact time also decreases with V. Neville,
amongst many authors, has concluded that this is because the effective stiffness of the ball
increases with ball impact velocity. This correlates with the quasi static compression data.

2.2.4 Summary

The Rules of Tennis define the size, mass, stiffness and coefficient of restitution of a tennis ball.
There are two main constructions of tennis ball; Pressurised and Pressureless. Pressurised balls

have an internal air pressure of lbar gauge (15psi) and a rubber wall thickness of 3mm.
Pressureless balls having a lower internal pressure (0 bar gauge) and a wall thickness of 4mm.

The Rules of Tennis specify the quasi-static stiffness of a tennis ball for a load of only 80N. The
literature shows that the stiffness increases considerably with deformation and at high
compressions a Pressurised ball is stiffer than a Pressureless ball. The correlates with impact test
results that have shown that the former ball has a shorter contact time, implying a higher stiffness.

2.3 The Strings

2.3.1 Introduction

Tennis strings are generally manufactured from either natural gut, Kevlar, polyester or nylon. They
are available in a range of diameters from 15 gauge (~1.4mm) to 18 gauge (~1.2 mm). Cross
(2000b) highlighted that there is no International Tennis Federation ruling on the properties of
tennis strings. Therefore the manufacturers are allowed to produce strings with any stiffness and

friction properties that they chose. Also, they can use any materials and construction techniques in
order to achieve the desired combination of these two properties.

It is well established that players prefer the ‘feel’ of natural gut and this is backed up by the fact
that 14 out of the top 20 male professionals use this type of string (Racket Tech (2001)). The string
tension generally ranges from 40lbs to 701bs. It is claimed that many professional players use very
high tensions, e.g. Pete Sampras is reported to use a tension of 751bs.

The main disadvantages of natural gut are its poor durability and high cost, making it unsuitable for
many ‘leisure’ standard players. Attempts have been made to replicate the playing properties of
this material in the form of a synthetic gut. ICI (1986) filed a patent for a new synthetic material
which was designed to replicate the performance of natural gut. ICI highlighted the features of
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natural gut which appear to make it attractive to players. They stated that the dynamic stiffness of
the material should not increase substantially as the mean tension is increased. Many synthetic
strings exhibit a rapid increase in stiffness with mean tension which leads to a ‘boardy’ response

when the racket is strung at a high tension. It is quoted that a high tension is favoured by many
players for the higher level of control that it offers.

2.3.2 Properties of Tennis Strings

The static stiffness of a tennis string can easily be obtained using a tensile testing machine, for
example an Instron test device (Cross, 2000c). However, the impact between a ball and racket is a
dynamic event which involves high strain rates. Tipton (1955) described an apparatus which could
be used to determine the dynamic Young’s Modulus of a range of textile filaments and yarns
including various nylons. This paper illustrates the concept of the relationship between the
Dynamic Young’s Modulus and the Loss Modulus which leads to a dwell, or loss, angle. The loss
angle gives a good indication of the relative damping in the material. Results are presented for
several nylon specifications, for a range of static and dynamic strain amplitudes. The data shows
that the dynamic Young’s Modulus increases with static strain, but remains approximately
unchanged with dynamic strain amplitude. The loss angle increases with dynamic strain amplitude,
but decreases with static strain. The applicability of this work is limited because production tennis

strings were not tested and the static and dynamic strain amplitudes were not related to those in
tennis,

Calder (1987) advanced the work of Tipton in his study of the dynamic properties of a tennis
strings. This paper focused on a comparison between synthetic and natural gut strings. A strain
gauge based transducer was placed in-line with a main string of a mid-sized tennis racket strung at
50lbs. When this head clamped tennis racket was subjected to a ball impact the string tension
increased to a maximum of 70lbs, during the contact time of 3.5ms. The ball velocity for this test
was not quoted. A single string was then tested in a purpose built rig which simulated both the
static and dynamic loading that was determined from the in-line transducer. At high preloads the
hysteresis losses in both natural and synthetic gut are very low. It shows that the stiffness of
natural gut is not dependent on the pre-load, whereas it is strongly dependent on the pre-load for
synthetic gut. The data also shows that the natural gut is significantly less stiff than synthetic gut,

for a specific string tension. Calder found that the hysteresis loss reduced when the static strain
was increased, which is in agreement with Tipton.

Cross (2000b) performed a dynamic impact on a single, pre-loaded string, using a 0.292kg
hammer. The tension was measured using an in-line strain gauge load transducer and the
transverse displacement of the string was measured using a Imm optical grid and laser beam. A
preload of 270N (60lbs) was used and it was shown that natural gut was significantly softer than
nylon. This was concluded from the fact that the stiffness of the natural gut did not increase as
much during impact in comparison to the nylon string. This supported the findings of Calder.
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Calder (1987) and Cross (2000c) have both commented that the most noticeable source of tension
loss is in the first five minutes after stringing. Cross (2000c) showed that the loss in tension for a

natural gut string was approximately 30N(6lbs) in 1 hour, compared to 70N(151bs) for a typical
synthetic string.  The rate of tension loss reduced with time.

The discussion above has focused on the characteristics of an individual string. To determine the
actual ‘playability’ of the string the properties of the interwoven stringbed must be investigated.
(Casolo & Ruggieri (1991), Leigh and Lu (1992), Kawazoe (1993) and Cross (2000b, 2000c,
2000d)). Leigh & Lu (1992) compressed a tennis ball onto a head clamped racket using a force of
up to 200N, giving a stringbed stiffness of up to 30kN/m. Kawazoe (1993) performed a similar
experiment and determined a stiffness of 30kN/m for very small loads, and over 100kN/m for a
load of 1200N. There is little data available regarding the dynamic stiffness of a stringbed.

The hysteresis loss in tennis strings has also been determined for normal impacts on an interwoven
stringbed. Leigh and Lu (1992) dropped a (rigid) Pool ball, with a mass of 164g, onto a head
clamped racket at velocities of up to ~7m/s. This gives approximately the same amount of kinetic
energy as a tennis ball being propelled at 12m/s (27mph). It was found that the pool ball
rebounded up to a point that was 95% of the original height. Leigh and Lu determined the impact
and rebound velocity by considering the drag force acting on the ball during its flight. They
calculated that the coefficient of restitution for the impact was ~1, implying that the strings did not
lose any energy during impact. Cross (2000b) performed a similar experiment with a 760g steel
ball, dropped from similar heights and found that it rebounded with approximately 95% of the
original velocity. Cross compared the kinetic energy of the balls to conclude that this was
equivalent to a tennis ball impacting at 24m/s (54mph). Hatze (1993) concluded that the strings

contributed to approximately only 3% of the total energy loss in an impact between a ball and
racket.

Cross (2000d) highlighted anecdotal evidence that players say that old strings are less responsive
than new ones. This is not consistent with laboratory tests for normal impacts on a racket which
have shown that the ball rebounded at the same velocity whatever the ages of the strings (Cross
(2000d)). However, most impacts between a racket and ball are oblique and therefore this
laboratory test is not necessarily sufficient to analyse the impact.

Cross (2000c) discussed the influence of string friction on the impact between a ball and racket.
An experiment was conducted to find the coefficient of friction (COF) between a tennis ball and
stringbed for normal reaction loads of up to 100N. This is much lower than the peak loads quoted
by Cross (2000b) of 1500N in an impact. It was shown that the COF varied between 0.27 and 0.42
for a range of string types. The relationship between COF and applied load is not presented. Cross
suggested that a possible reason why older strings ‘felt worse’ compared to new ones was that
strings will feel much less responsive if COF drops below about 0.3. It was shown that, in this
case, the ball rebound velocity does not drop significantly but the rebound angle does change. This
results in the ball dropping short of the intended target which the player perceives as a loss in
power. It is not, however, shown that the friction of a string does drop significantly with age.
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Isospeed Professional string has the highest COF tested, and is a very popular string which may be
because this high friction leads to a more ‘responsive’ string.

Knudson (1991 & 1993) concluded that string type and tension effected the rebound angle and
speed for an oblique impact test on a handle clamped racket. It was found that the rebound angle
increased significantly with string tension for natural gut, but only fractionally for synthetic gut. It
was found that the rebound velocity dropped significantly (8%) for a change in string tension of

201bs for the natural gut, but only changed by approximately 3% for the same tension change in
synthetic gut. The rebound spin was not measured in this test.

Knudson (1997) propelled tennis balls at a freely suspended racket which was strung at 50, 60 and
701bs with nylon string. The ball was propelled at an angle of 5° to simulate a topspin shot, at a
point approximately 20mm from the longitudinal axis. The data showed that an increase in string
tension reduced the angle of rebound. This was explained by the fact that a higher tension gives a
shorter contact time and therefore the racket rotation is minimized at the highest string tension.

2.3.3 Summary

The review of literature that covers the properties of tennis strings has revealed many issues which
should be considered in the study of the impact between a ball and tennis racket.

1. A range of materials are used in the manufacture of strings which all have different playing
properties. The diameter ranges from 1.2mm to 1.4mm.

2. The hysteresis losses in tennis strings are generally less than 5%.

3. Generally strings made from natural gut have a lower stiffness than those made from
synthetic gut.

4. The tension in the strings reduces immediately once the racket is strung. The rate of loss

decreases with time. This loss in tension should be accommodated for in any model which
is generated to simulate the impact.
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2.4 The Racket

2.4.1 Tennis racket development

Traditionally a tennis racket frame was constructed from wood (eg. Ash). One of the main
limitations of this material was that the frame had to be solid. The consequence of this was that the
head sizes were generally small and the frames were relatively flexible to maintain a sensible
weight of racket.  The introduction of metal rackets in the 1970’s brought with it new
manufacturing methods which allowed lighter, larger and stiffer rackets to be economically

manufactured. This innovation was closely followed by the advent of composite rackets with even
more versatile manufacturing methods.

A modern racket is typically made from a long, hollow tube of graphite, as described in Cross
(2001b). A typical composite racket weighs 332g and consists of a frame (286g), a grip (10g),

grommets (20g) and strings (16g). This breakdown gives an indication of the contribution of each
section to the mass of the racket.

Marketing of sports products is often heavily surrounded by hype and unfortified claims and tennis
racket advertising is no exception to this trend. However, some of the fundamental claims and
ideas are based on well-established scientific findings. For example, the main developments have
been to reduce the mass, increase the frame stiffness and head size, and shift the balance point
towards the tip. Brody (1979), amongst others, highlighted that an increase in frame stiffness will
increase the ball rebound velocity, as less energy will be lost due to racket deformation. Reducing
the mass of the racket allows the player to generate higher head speeds and thus be able to hit the
ball faster. The head size has been increased to provide a larger ‘sweet spot’ for the player,

effectively increasing the probability that the player will hit a good shot. All these points shall be
expanded upon in the following sections.

2.4.2 ITF Rules and Regulations

Prior to the 1970’s there were few rules to regulate the characteristics of a tennis racket, allowing it
to be of any shape, size or material. It was around this time when oversize rackets were introduced
that the governing body became concerned about racket designs and the /7F implemented rules to

limit the size of the racket head. Before then the racket was simply defined as an implement which
could be used to hit the ball.

The current regulations which apply to the racket describe the overall dimensions and

characteristics of the hitting surface. Relevant extracts from Rules of Tennis regarding the racket
are given below.

The hitting surface of the racket shall be flat and consist of a pattern of crossed strings
connected to a frame and alternatively interlaced or bonded where they cross, and the

stringing pattern shall be generally uniform, and in particular not less dense in the centre
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than in any other area. The racket shall be designed and strung such that the playing
characteristics are identical on both faces. The strings shall be free of attached objects and
protrusions other than those utilised solely and specifically to limit or prevent wear and tear
or vibration, and which are reasonable in size and placement for such purposes.

The frame of the racket shall not exceed 29 inches (73.66¢cm) in overall length, including the
handle. The frame of the racket shall not exceed 12'/, inches (31.75cm) in overall width.

The hitting surface shall not exceed 15'/,inches in overall length, and 11'/; inches (29.21cm)
in overall width.

2.4.3 Simulating a player’s grip on a racket during impact

In the experimental analysis of the interaction between a ball and racket during impact, the racket
would ideally be swung by a player and the testing would be conducted on a tennis court to recreate
actual playing conditions. However, the nature of the equipment used to analyse the impact makes
it more convenient to conduct the testing in a laboratory and using a player to swing the racket in
the test introduces an extra variable into the study. Also, the velocity of the racket, when swung by
a player, is difficult to measure accurately due to the high accelerations occurring at impact. It has
been achieved by some authors (Groppel (1975), Elliott et al. (1986), Mitchell et al. (2000),

Schleihauf ez al. (2000)). However, the necessity of conducting this complicated testing needs to
be established.

Ideally the testing should be conducted with full control of all the input variables (ball/racket
impact velocities, ball impact position, etc) and a realistic simulation used for the player’s grip.
Initially it would seem obvious to conduct the laboratory testing with a player holding the racket.
However, this is not consistent with the above requisite of the experiment in that it needs to be
simple and repeatable. If the hand gives no support during impact, then it would be much simpler
to just use a freely supported racket. Alternatively, if the hand does provide some support then

using a player to hold the racket does not lead to a repeatable experiment as it is difficult for a
player to control the level of grip firmness.

There has been extensive debate regarding the method used to support a racket during laboratory
tests to correctly simulate a player’s grip. A review of the relevant publications has shown that the
gripping methods used have ranged from rigidly clamping the handle to freely supporting the
racket. Some earlier published results initially seem to contradict each other. However, much of
this confusion can generally be resolved by re-interpreting the authors actual claims.

Early published research into the issue of grip firmness concluded that a high level of firmness
increased the ball rebound velocity (Broer (1973), Tilmanis (1975)) by reducing the recoil velocity
of the racket. Plagenhoef (1970) commented that the effective racket mass, and therefore the ball
rebound velocity, was dependent on the level of grip firmness. These publications are aimed at
coaches and players, and the comments made are based on experience on-court and were not
controlled laboratory experiments. These comments were not aimed at any specific shot so
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effectively it is being claimed that for any shot and impact position it is desirable to have a firm
grip and a ‘set wrist’. Also, it should be noted that these comments are aimed at recreational level

players who are likely to hit many shots from all points of the racket. Therefore these comments
are encompassing off-centre shots, near the throat and near the tip.

Hatze (1976) performed a theoretical analysis of the impact between a tennis ball and racket and
simplified the frame and stringbed as a non-uniform one dimensional beam. Therefore an inherent
assumption in this work was that the ball impacted along the longitudinal axis. The racket was
modelled in great detail by determining the magnitude of the cross-sectional area and area moment
of inertia as a function of the position along the racket. Strain gauges were placed on the frame of
the racket (wooden Dunlop MaxPly) to measure the impulse, and it was stated that the model was
in good agreement with this empirical data. The model was used to quantify the difference in
impulse acting on the ball which occurred for different grip firmnesses. It was found that the
impulse increased by 10-15% by gripping the racket tightly, as opposed to loosely, although the
ball rebound velocity was not actually measured to confirm this. Hatze concluded that an increased
grip firmness resulted in increased power in the stroke. However, it was also pointed out that it
was a fallacious belief that a very firm grip could be used to prevent the racket recoiling in the

hand, as the required force/torque would be 16 times the value that the human hand can exert (for a
relative ball-racket impact velocity of 35m/s).

Watanabe et al. (1979) performed an interesting series of experiments in which the coefficient of
restitution (COR) was measured for a range of gripping conditions (freely suspended, handle
clamped and hand held). The ball was propelled at a wooden racket at velocities between 5 and
25m/s, and it was shown that the COR values were independent of grip condition. Although it is
not explicitly said, it is assumed that the ball impacted at the geometric string centre (GSC).
Superficially this work seems to confirm beyond doubt that the level of grip firmness does not
effect the ball rebound velocity, and therefore conflicts with Tilmanis, Broer and Hatze. However,
it should be noted that this is only applicable for the impact position tested, not for off centre
impacts or impacts towards the throat. Also, the testing was conducted in 1979 using a wooden
tennis racket with a fundamental frequency of ~100Hz. Modem tennis rackets are much stiffer and
lighter and therefore have higher fundamental frequencies. Therefore the force wave travels much
faster in these rackets which may effect the conclusions. Also, impacts should be conducted at

various positions on the racket to deduce whether the obtained result was only applicable at the
chosen impact position.

Elliott (1982) conducted a detailed experiment into the effect of grip firmness on the ball rebound
velocity. A college player was asked to grip a racket fitted with four pressure transducers to
benchmark three different levels of grip firmness; light, moderate and firm. This was then
replicated in a grip mechanism of a pneumatic arm which was used to swing a racket at
approximately 7m/s (16mph). Balls were projected at a range of points on the racket all referenced
from the GSC; at the GSC, SOmm towards the butt end, S0mm towards the tip, and SOmm towards
the edge of the frame. It was found that there was a 7% increase ball rebound velocity for the firm
grip compared with the light grip, for central impacts. It was determined that this was not
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significant and therefore it was concluded that grip firmness does not effect ball rebound velocity.
For the off-centre impacts, significant increases were determined for the ball rebound velocity for
the increased grip firmness, up to 20% in magnitude. Therefore it was concluded that the level of
grip firmness affects the ball rebound velocity insignificantly for impacts at the GSC, but

significantly for off centre impacts. This goes some way to support the anecdotal coaching
evidence given by Broer and Tilmanis.

In Baker & Putnam (1979) tennis balls were propelled at the GSC of both freely supported and
handle clamped rackets. The motion of the racket during impact and the ball rebound velocity
were measured using high speed cinematographic analysis. A wide range of rackets and strings
were tested and it was concluded that the ball rebound velocity was independent of the method of
supporting the racket. A supplementary experiment determined that the motion of the racket was
very similar for both supporting methods during impact. This implies that effectively the ball does
not ‘know’ what the gripping condition is during impact because the racket acts very similarly. A
final comment was made that preliminary testing for off-centre impacts showed that the ball

rebound velocity was different for the two support methods due to the inherent twisting of the
freely suspended racket during impact.

To compare Baker & Putnam (1979) and Elliott (1982) it is noted that Elliott performed the
investigation for more impact points, but Baker tests the extremes of grip firmness more
appropriately by using a free condition instead of a light grip. Elliott assumed that different grip
levels could be simulated by adjusting the torque on the bolts which clamped the racket handle in
the rubber. However, it is difficult to apply Elliott’s results because no player’s grip is strong
enough to act like any handle gripped condition (Hatze 1976).

Missavage et al. (1984) conducted a theoretical analysis of the impact between a ball and racket to
investigate the effect of grip firmness on ball rebound velocity, using a one-dimensional beam to
represent the racket. The beam was clamped at the butt end and free at the other, and the model
showed that the moment acting on the clamped end was zero during impact, for a regular racket.
This inferred that the ball rebound velocity was independent of the grip condition, for the simulated
impact at the GSC, The model also predicted that the moment was non-zero for a drastically
stiffened or shortened racket because the impulse reaches the handle more quickly. The model
predicted that the stiffness of the conventional frame must be doubled, for a constant mass, for the
moment at the handle to be non-zero. Experiments using a conventional racket verified that the
ball rebound velocity was identical for freely suspended and handle clamped conditions. Tests
carried out using the stiffened racket revealed that the COR increased from 0.36 to 0.42 for the free
and grip clamped conditions respectively. It is noted that the racket used in this testing was
wooden and new carbon fibre composite rackets may be sufficiently stiff for the moment at the

handle to be non-zero. Also, the stiffness of the ‘stiffened’ racket used in the experiment was not
given.

Kawazoe (1997a) used a rigid body model to compare a freely suspended racket with a hand-held
racket. It was assumed that a hand held support could be modelled as a pin jointed structure. This
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contradicted Hatze (1976) who claimed that a human hand did not have the strength to act like a
pin jointed structure. However, Hatze’s claim was blurred in that it did not differentiate between
the linear and angular impulse which the hand must react against. For example, it may be possible
for the hand to react against the linear impulse but not against the angular impulse. Kawazoe’s
rigid body assumption regarding the racket frame puts this work into context. It was claimed that
the method of supporting a racket does effect the ball rebound velocity. In fact, the real conclusion

was that a rigid body which is pin jointed at one end and free at the other gives a different result to
a free-free rigid body.

Cross (1999¢) conducted a similar study of grip conditions but used a more realistic one
dimensional flexible beam model for the racket. Theoretical solutions were obtained for the impact
between a ball and a racket that was supported using a range of methods (grip clamped, grip
pivoted and freely suspended). It was shown that, for impacts along the longitudinal axis, all three
methods of supporting the racket give almost identical results, for the majority of the stringbed.
For impacts within approximately 100mm of the throat piece, the grip clamped method gives a
fractionally higher ball rebound velocity than the other two methods. It also showed that the free

and grip pivoted cases gave very similar ball rebound results for practically all the hitting arca
along the longitudinal axis of the racket.

An alternative method of investigating the importance of grip pressure is to consider the vibrations
of a tennis racket for all the different clamping conditions. A great deal of work has been done in

this area, including much duplication, so only a brief summary of the available literature is
presented here.

Mode 1 Mode 2 Mode 1
X € Node >
NOdE e
Handle clamped Freely suspended

Figure 2.4 Vibration modes of a handle clamped and freely suspended racket. (Reproduced from
Brody (1987)).

Brody (1981) combined his own data with that of Hedrick et al. (1979) to benchmark the modes of
vibration for the two extremes of grip condition; handle clamped and freely suspended. This
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comparison is shown in Figure 2.4.  When a racket is handle clamped and a ball impacts on the
stringbed it can oscillate in a number of modes. For a typical racket, the frequency of Mode 1 is
25-40Hz. The racket may also oscillate in Mode 2 (100-175Hz) providing the ball did not impact
at the node of vibration, which is close to the centre of the stringbed. A freely suspended racket

can not oscillate at a frequency comparable to Mode 1 of a handle clamped racket. Its lowest
frequency is in the order of 100-175Hz.

Brody (1987) extended this analysis to compare the vibration of a hand held racket with the two
extremes of grip condition. A modal analysis was conducted by attaching a thin piezoelectric film
on the handle. The racket was struck with the ball at various points along the longitudinal axis to
identify the node points and the induced vibration frequencies. It was determined that the head
clamped Mode 1 frequency was not present in the hand held racket. The frequency of oscillation in

the hand held racket was much closer to that of a freely suspended racket although no quantitative
comparison was given.

R sl Node —

———

Node

R

Freely suspended Hand Held

Figure 2.5 Comparison of fundamental mode of vibration for a freely suspended and hand held
racket (reproduced from Cross (1998)).

A recent study which comprehensively covered the modal analysis of a tennis rackets was
conducted by Cross (1998). A 1990 vintage Wilson graphite composite racket weighing 370g was
used throughout the testing. Several piezoelectric transducers were placed along the handle and
frame to identify the vibration frequency, mode shape and node location. Only the fundamental
frequency of vibration was considered to be important as the higher frequency modes are small in
amplitude and damp out very quickly (Brody (1979, 1981, 1995), (Cross (1997, 1999¢)). The
magnitude of the measured parameters for free and hand held conditions were 109Hz and 102Hz
respectively for the vibration frequency, and 15¢cm and Scm respectively for the node position (butt
end). This shift in node point is illustrated in Figure 2.5. It was deduced that the hand held
condition, which vibrated at 102Hz, was significantly closer to that of a free racket (109Hz)
compared to a handle clamped racket (25-40Hz). An illustration was given which showed that
adding a 40g mass to the handle of the freely suspended racket reduced the frequency from 109Hz
to 103Hz and to 100Hz when an 80g mass was added. This showed that the observed frequency
shift caused by the hand could be modelled by adding 40g to the handle, as noted by Brody (1995,
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1997). However, it was noted that the shift in node position required an additional 80g to be added
to the handle, which shows that further work would need to be done to define the precise mass
required to simulate a player’s grip.

Brody (1997) furthered this ‘additional mass’ theory by using a rigid body model to show that
adding a mass at this point has negligible effect on the ball rebound velocity. This ‘additional
mass’ theory is an interesting illustration and is only slightly flawed in that it does not truly account
for the moment applied by the hand on the racket. However, Hatze (1976) has shown that the

human hand can not apply a sufficiently high torque to affect the motion of the racket during
impact anyway.

Cross (1998) showed that the axis of rotation, the point at which the racket is effectively stationary
during impact, was the same for impacts between the GSC and the throat, for both methods of grip.
It was also claimed that the axis of rotation was different for hand held and free racket conditions
for other impact positions. This was based on velocity data for a range of points on the racket that
was sampled for an 80ms period. It is accepted that the data suggests that the axis of rotation is
shifted during this long time period. However, if only the data for the Sms of impact is studied, the
velocity of the racket appears identical for both grip conditions. Cross did not mention this. The
analysis was continued and incorporated the momentum of the arm system to explain the shift in
axis of rotation. It is commented that, after 10-20ms, the internal forces in the arm modify the
initial response of the forearm. This implies that the response on the racket changes in the 80ms
period which was initially used to conclude that the axis of rotation had shifted during impact. This

confusion prevents any conclusions being drawn on the position of the axis of rotation for a hand
held racket.

A similar analysis could be conducted, similar to that summarised by Hatze (1976), to determine
whether the hand is strong enough to change the axis of rotation during impact. This would

involve calculating the force that the hand would have to apply to the racket to make the axis of
rotation be centred within the hand.

Hatze (1993) developed a theoretical model based on the energy losses in the ball, strings and
frame. Experimental data was obtained for the ball rebound velocity for tests where the handle of
the racket was either rigidly clamped or held in a manusimulator. The manusimulator was
designed to realistically simulate the magnitude of force that a human hand can exert on the racket.
It was found that generally the manusimulator gave higher ball rebound velocities than the handle
clamped condition, by approximately 5-10%.. This lead Hatze to conclude that the level of grip
firmness does effect the ball rebound velocity. The criticism here is that Hatze did not address the
fact that the data suggests a firm grip (rigidly clamped) gives a lower ball rebound velocity than the
hand grip (manusimulator). This contradicts findings by Hatze (1976) and Elliot (1982). The
likely reason being that, yet again, an unrealistic rigidly clamped handle is used to represent a *firm

grip’; Brody (1987) having shown that the vibration mode excited in a handle clamped racket is
not present in a hand held racket.
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(@) ®)

Figure 2.6 Node positions for the fundamental mode of vibration on (a) a freely suspended racket

and (b) a hand held racket (Node lines represented by the boundary of the black and white regions)
(Reproduced from Kawazoe (1997a)).

Kawazoe (1997a) performed an experimental modal analysis on a freely suspended and hand held
racket. It was found that the fundamental frequencies for the freely suspended and hand held
rackets were 122Hz and 117Hz respectively. The node positions for the two rackets are shown in
Figure 2.6, which shows that the node near the handle is shifted by only 20mm (0.03L) when the
racket was hand held. Cross (1998) obtained a similar difference in fundamental frequency but a
larger shift in the node position (~100mm.) It was also claimed that the node near the centre of the
stringbed shifts by approximately 35mm (0.05L), although the graphical results presented in the
paper imply that it is shifted by a much smaller amount.

The work by Kawazoe (1997a) and Cross (1998) shows that the mode of vibration for hand held
and freely suspended rackets are very similar, but the frequency and node positions are shifted
slightly. Cross (2002b) extended the analysis to consider the modes of vibration of a pivoted
racket. It was shown that a racket pivoted at the handle has a fundamental frequency of vibration
of 85Hz, compared to 102Hz (hand-held) and 109Hz (freely suspended). The shift in the node for
the hand-held racket, from its freely suspended racket position and the corresponding decrease in
frequency, suggests that the vibration of a hand held racket lies somewhere between that of a freely
suspended and pivoted racket. This implies that either a free or pivoted boundary condition was

suitable to simulate a player’s swing, although the comparison does suggest a slight bias towards
the free condition.

An alternative approach to determine the ideal grip simulation is to discover why a handle clamped
and freely suspended racket give similar ball rebound velocities. Brody (1997) commented that the
transverse force wave that is induced from the ball impact must be reflected from the butt end and
arrive back at the impact point during contact for the ball to have any knowledge of the gripping
mechanism. The propagation time of the wave can be estimated from the frequency of the
oscillation and the distance between the node points. Assuming a fundamental frequency of 150Hz
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then the time taken is 8ms, which is longer than a typical contact time of Sms. This implies that the
ball has already left the stringbed before the impulse has returned. The ball rebound velocity is

therefore independent of the gripping condition, which is why the handle clamped and freely
suspended rackets give the same ball rebound velocity.

Cross (1998) analysed the wave propagation idea in more detail by performing both experimental
and theoretical analyses. The propagation delay was measured by sampling piezoelectric disks
which were placed at various points on the racket; one at the centre of the stringbed and one at each
50mm increment along the frame. It was found that the time taken for the pulse to travel from the
centre of the strings to a point 120mm from the butt was 1.5ms. The racket handle therefore began
to move well before the ball leaves the strings. This is much faster than that determined by Brody
(1997) who only considered the fundamental mode of transverse vibration. In reality, the impact
excites a broad spectrum of vibration frequencies which are superimposed to give the resultant
motion. The higher frequency components, although small in amplitude, travel at a much faster
speed and therefore result in the faster propagation time measured at 1.5ms.

The above discussion has shown that there is some conflict between the findings of the different

authors in regard to the method of simulating a player’s grip during impact. However, this can be
clarified by considering the different impact positions separately.

(a) For impacts taking place between the GSC and the tip almost all authors agree that the ball
rebound velocity is independent of grip firmness. The theoretical solutions predict that a free,
handle clamped and pivoted handle all give the same ball rebound velocity. Experimental
data shows that free, handle held and handle clamped conditions all give similar results.

However, it was noted that are some anomalies identified between certain published data
which requires clarification.

(b) For impacts taking place between the GSC and the throat, it is generally agreed that a grip
clamped racket gives a higher ball rebound velocity compared with a freely suspended

racket. However, it is shown that a grip clamped condition is not a realistic representation of
a firm grip.  Pivoted and free end conditions give similar results in this area.

(c) For impacts not on the longitudinal axis the published data implies that grip firmness does
effect the ball rebound velocity.

Supplementary points to note are,

1. The mode of vibration of a hand held racket is closest to that of a freely suspended racket.

2. The theoretical time taken for the force wave to travel from the impact point, to the handle,
and back is generally longer than the contact time, implying that the grip condition has no
effect. However, this analysis only considers the fundamental transverse mode of vibration.

The higher frequency modes will cause the gripping condition to effect the racket response.
The magnitude of this effect being dependent on the amplitude of the mode.

The main conclusion from this section is that, for impacts along the longitudinal axis, a players grip
can be replicated by a freely supported racket. Clearly this would initially imply that a racket must
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be propelled freely at a ball in the laboratory. However, a simple transformation of the Newtonian
reference frame, as discussed by Brody (1997), can be used to replicate the relative ball-racket

impact velocities. For example, a typical serve can be simulated by propelling a tennis ball at
35m/s, towards a stationary racket (Mitchell et al. (2000)).

2.4.4 Coefficient of restitution for an impact between a ball and racket

The coefficient of restitution (COR) is a parameter which is used to indicate the proportion of
recovered energy in a collision. In its reduced form it is defined as,

COR =M [2.1]
(VB - VR)

where v and v are the ball and racket velocities before impact, respectively, and v’z and v’; are
the respective velocities after impact. The velocities v and v’; are measured for the contact point
of the racket. Initial investigation of published data identified that a wide range of COR values
were being quoted by authors. This was primarily because the definition used by some authors
differed from that in {2.1], and also the method used to restrain the racket differed.

1. Coefficient of restitution for an impact on a head clamped racket

The simplest, most unambiguous definition for COR is when the racket head is clamped, and
therefore V' = v, =0. In this case, {2.1] reduces to,
v’
COR,,. =—%

” [2.2]

Brody (1979) measured the values of CORy for a range of rackets and found them to be in the
region of 0.85, for an impact velocity of 8.5m/s. Leigh & Lu (1992) used an impact velocity of

5.3m/s and obtained CORyc of 0.90 and 0.85 for rackets strung at 178N and 356N respectively.
This data showed that the CORyc reduced with increasing string tension.

Kawazoe (1993) obtained a value of CORyc equal to 0.83 for a ball impact velocity ranging
between 15 and 25m/s. The racket was strung using natural gut (45lbs tension). By contrast the
CORyyc for a synthetic gut (601bs) reduced from 0.83 to 0.80 in this same velocity range. The

natural gut was strung at a considerably lower tension than the synthetic gut and therefore it is
difficult to draw comparisons between the two.

Williams (2000) performed an impact test which involved propelling a tennis ball at a range of
points on a head clamped racket. The data was used to map the COR,c distribution across the face,
to give an indication of the magnitude of the area which could be considered to give a constant
value of CORyc. It was found that COR, - was constant over an area approximately 60mm in
diameter, centred at the GSC of the racket. The CORy then reduced towards the racket frame.
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Goodwill & Haake (2000) determined CORy, for standard and oversize tennis balls for a range of
impact velocities between 20 and S0nv/s, using a racket strung at 70lbs. It was shown that the value
generally dropped from 0.83 to 0.75 over this large velocity range.

2. Coefficient of restitution for an impact on a grip clamped racket

If it is initially assumed that the recoil velocity of the racket can be ignored then the coefficient of
restitution is defined as CORgc and is calculated using,

CORge =2

Vs

[2.3]

If a tennis racket was rigid then clearly CORgc = CORyc. The published results confirm that this is
not the case. Groppel et al. (1987b) propelled tennis balls at both midsize and oversize rackets
which were clamped at the grip, and strung at a range of string tensions from between 40 and 80lbs
using natural gut and nylon. The ball was propelled at 23mvs, at the geometric string centre of the
racket. It was found that COR typically ranged from 0.51 to 0.47 for a string tension range of 40

to 80lbs, for the oversize racket. For the same range of string tension the CORgc reduced from
0.40 to 0.34 for the midsize racket.

Oversize
racket

Conventionat
racket

Regions
A - CORy.>0.3
B-CORx>0.4
C-CORx>0.5
D-COR,.>0.6

Figure 2.7 CORg distribution on a grip clamped racket for an oversize and conventional racket
(reproduced from Head (1976)).

A comprehensive account of the coefficient of restitution for a grip clamped racket was given by
Head (1976). The testing was conducted to illustrate the benefits of an oversize racket compared
with a conventional racket. Figure 2.7 shows that the CORg( increases towards the throat end of
the racket and, due to its extended shape, is largest in the oversize racket. These values of
coefficient of restitution are all much lower than those found for the head clamped racket. The
increase in CORgc at the throat is due to two main reasons, which have been thoroughly covered by
many authors. Firstly, the racket is effectively stiffer at this point so less energy is ‘lost’ in the
deformation of the racket (Brody (1997)). Secondly, the throat is closer to the racket COM and
therefore the effective, or ‘reduced’, mass of the racket will be higher at this point (Kawazoe 1993).
The ball velocity used by Head was between 30-60mph (13-36m/s) and the CORgc data
corresponds well with Groppel et al. (1987b) and other published material. The CORgc is highest
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along the longitudinal axis because off-centre impacts cause the racket to rotate around this axis
due to the reduced ‘effective’ mass of the racket. The ‘effective’ mass was determined from the

polar moment of inertia, which was highest for the oversize racket. This explains why the CORgc
was higher for this racket.

Groppel et al. (1987a) determined the coefficient of restitution for a range of grip clamped rackets,
for impacts at the GSC. The obtained values of CORgc were between 0.84 to 0.75 which are
higher than those published by any other researcher. However, the anomaly was easily resolved in

that Groppel included the recoil velocity of the racket in the calculation of CORg¢. Therefore [2.3]
would need to be modified to incorporate this.

It should be noted that it was shown in section 2.4.3 that hand held and grip clamped rackets act
very differently during impact, and therefore the results of CORg¢ are mostly of academic interest.

3. Coefficient of restitution for an impact on a freely suspended racket

Many authors have conducted impact tests in which the ball is propelled at a freely supported
racket (Watanabe et al. (1979), Hatze (1993), Brody (1997)). Generally the racket is stationary
and either stands on its butt or is suspended from a small pin, and in this section it is assumed that
the initial racket velocity is zero. The precise definition of COR, as given by [2.1], is the ratio of

the separation and approach velocities of the ball and racket. As the racket will naturally recoil
after impact, the correct definition of CORgs is,

] ]
V=V

COR = [2.4]
Ve

An alternative definition of the COR is called the apparent coefficient of restitution, ACOR (Hatze

1993). Whilst this is not an exact term for the coefficient of restitution of the ball-racket

interaction, if the only concern is the ball rebound velocity (as is true in many cases) then this
ACOR term is adequate. It is defined as,

ACOR, =YL&

\¢

[2.5]

and therefore does not take into account the recoil velocity of the racket.

Brody (1997) measured the 4CORg; distribution along the longitudinal axis of a conventional
tennis racket. The racket had a mass of 0.287kg, a balance point at 372mm from the butt and a
swingweight of 0.0527kgm? (around the butt). The data for distinct points is shown in Figure 2.8.
This shows that the ACORsincreases from 0.17 at the tip to a maximum of 0.49 about 40mm from
the throat section. At the throat section there is a slight decrease in ACORrs. Kawazoe (1993)
using a different tennis racket but a similar ball impact velocity found different ACORys values
along the longitudinal axis. Unfortunately Kawazoe did not give the details of the racket used in
the testing, but clearly it is likely to be different to Brody’s. Both ACORg distribution, and the
likely reason for differences between Brody and Kawazoe, can easily be explained using a simple
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rigid body model of the impact (Brody 1997). This model shows that ACORpg is dependent on the

mass and swingweight of the racket, and the impact position of the ball relative to the centre of
mass. (The model is discussed in depth in section 2.5).

Figure 2.8 Apparent coefficient of restitution distribution for a stationary, freely suspended
racket (reproduced from Brody (1997)).

Haake et al. (2000) determined the ACORgs for impacts at the GSC of a racket with mass 343g,
balance point of 320mm and swingweight 0.0505kgm’ (referenced from the butt). The values
reduced from 0.35 to 0.3 over the ball impact velocity range of 25m/s to 60m/s. This illustrates
that ACORgs reduces with impact velocity, as did the coefficient of restitution measured for an
impact with a head clamped racket. The ACORyy value at the GSC in Haake ef al. is lower than
that in Brody (1997). This can easily be accounted for using a rigid body model accompanying the
fact that Brody’s racket was considerably more ‘head heavy’ than that used by Haake et al..

The above results show that ACORgs varies greatly across a tennis racket, and is different for
different rackets. This is clearly due to a combination of the mass/swingweight of the racket and
the location of the impact. Therefore all ACORgs data should be accompanied with this relevant
extra data. This data can easily be used to predict how the racket will perform ‘on-court’ by
changing the frame of reference so that the racket has an initially velocity (Brody (1997)).

4. Coefficient of restitution for an impact on a hand held racket

There is a limited amount of published material for the coefficient of restitution for an impact on a
hand held racket. This data can easily be categorised into two main sets; the racket is held

stationary and the racket is being swung by a player. The latter category is discussed in section 2.6,
and the former is discussed below.
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When a racket is held by a player it is very difficult to obtain the precise velocity of the racket
immediately after impact. Three-dimensional marker systems have been used but the high
accelerations involved around the time of impact make it difficult to measure an accurate velocity.

As for impacts on a freely suspended racket, a useful parameter is the coefficient of restitution

which disregards the recoil velocity of the racket. This parameter is termed ‘apparent’ and the
equation for ACORpy is,

ACORyy, =— [2.6]

Elliot et al. (1980) performed ACORyy measurements for a range of points along the longitudinal
and transverse axes of the stringbed for conventional and oversize rackets. The racket was held
stationary against a locating frame to ensure control of the impact positions and the ball was
propelled at 21m/s (45mph). The vibration amplitude of the frame and the ball rebound velocity
were measured using accelerometer and stroboscopic techniques respectively. Along the
longitudinal axis the ACORyy increased from almost zero at the tip to a maximum at 20mm from
the throat, and then a slight reduction at the throat. Across the transverse axis the measurement
was almost zero at the frame and a maximum at the longitudinal axis. The resulting ACORyy map
was similar to that found by Head (1976) for grip clamped rackets. The maximum values for the
oversize and conventional rackets were 0.50 and 0.44 respectively. Also, for impacts off the
longitudinal axis the difference is even greater. These maps confirmed Head’s theory that the
increase in polar moment of inertia for oversize rackets reduced the twisting of the racket during
impact, and thus increased the ball rebound velocity. However, it should be noted that Elliott

claimed that the determination of the polar moment of inertia of the rackets was beyond the scope
of his paper.

2.4.5 The ‘sweet spot’ of a racket

In the last decade it has generally been impossible to see an advert for a new tennis racket which
does not refer to the product as having a larger ‘sweet spot’. The incentive for manufacturers to
make these claims is that players are aware that a larger ‘sweet spot’ may improve their game due
to the increased probability that they are able to hit the ball in this area. In these articles the
implication is that the shot will ‘feel sweeter’ when the ball hits this position, although a precise
definition of the claim is very rarely given. In the following review of the ‘sweet spot’, an attempt
is made to highlight the definitions used by different authors to clarify what the manufacturers
claims may be based upon. A very complete description of the sweet spot of a tennis racket can be
found in Kotze (2000). This literature review is not intended to give a complete account of all

available literature but it will clarify the terms used to quantify the positions which have become
collectively known as the ‘sweet spot’.

The earliest notable reference to the ‘sweet spot® of a racket was in the US Patent for Prince’s
oversized racket (Head (1976)). It was claimed that its wider, longer head had a sweet spot or
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power zone which was almost four times bigger than on a conventional racket. The size of this
power zone was determined by propelling tennis balls at a grip clamped racket and measuring the
CORgc at various locations. The size of the sweet spot was defined as the area in which the
CORgc was greater than a certain level, as illustrated in Figure 2.7. The larger sweet spot has been
achieved by effectively extending the stringbed closer to the racket COM. Also, the width of the
racket head was increased which increased the polar moment of inertia, and thus reduced the

magnitude of the twisting of the racket during impact. The combined effect of these two
developments increased the size of the sweet spot on the racket.

Oversize
racket

Conventional
AN

\ racket

Centre of
percussion

Figure 2.9 Comparison of the centre of percussion position for an oversize and conventional
racket (reproduced from Head (1976)).

Head also described an alternative definition of the ‘sweet spot” which was the point at which the
hand experiences no linear impulse, or ‘jar’, when the ball is struck. This point was defined as the
centre of percussion (COP) and is a function of the mass distribution along the longitudinal axis.
The COP is described in more depth later in this section. On a conventional racket the COP is
located near the throat but on the oversize racket it is located close to the GSC as illustrated in
Figure 2.9. Head claimed that most players aim to hit the ball at the GSC, which was later
supported by Hatze (1994), which highlighted the benefit of this oversize design.

Head’s reported results for the CORgc distribution clearly illustrate the benefits of the oversize
racket design but their relevance to the playing characteristics of the racket is brought into question
by the review of the literature regarding the simulation of player’s grip. It has been shown that the

grip clamped method is not representative of a player’s grip. However, Head does illustrate why
the maximum power region is close to the racket COM.

Head’s patent was issued in 1976, around the time of the ‘spaghetti’ strung racket and the
introduction of metal/composite rackets, and it was being acknowledged that the physics of a tennis
racket was not very well established. Brody (1979) attempted to resolve this and identified
information which could (a) explain the performance advantage of the Prince Oversize racket
(Head (1976)) and (b) optimise the size, shape and weight of a tennis racket. A key area of this
work was to further the understanding of the ‘sweet spot’. The first point to be considered was the

Centre of Percussion (COP) and a full derivation is given by Brody (1979). An illustration of the
concept of the centre of percussion is given in Figure 2.10.
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Figure 2.10 Illustration of the centre of percussion COP for a rigid body racket (Reproduced
from Kotze (2000)).

The equation of the position of the COP in a rigid body is given in Brody (1979) as

IR

b=—2—
o [2.7)

where I is the moment of inertia of the racket around its centre of mass, my is the mass of the
racket and a is defined in Figure 2.10.

When a tennis ball hits the racket at a distance b from the racket COM there is no hand reaction
force Fy, and therefore no overall ‘shock’ or ‘jar’ is felt during impact. This shows that the centre
of percussion is not a unique position on the racket because it depends where the racket is gripped.
Approximate values of 4 are Scm and 7cm for a serve and ground stroke respectively. In a typical
racket it can be shown that the COP lies between the throat and the GSC. Clearly a designer must
attempt to make the position of the COP as close to the GSC as possible. Head (1976) achieved

this by increasing the size of the head. An alternative method is to add weight to the tip of the
racket to adjust the position of the COM (and increase /).

Another topic raised by Brody (1979) was how to maximise the ball rebound velocity. This
questioned the argument that the COP was the best place to hit the ball. Head (1976) had
determined that the coefficient of restitution would be maximised for impacts close to the racket
COM, for an analysis on a grip clamped racket. If the analysis was extended to stationary, freely
suspended rackets then a similar result would be obtained. However, it is noted that in a serve the
actual point of maximum ball rebound velocity would be a function of the linear and angular
velocity of the racket; the racket is rotating and therefore the tip is moving faster the COM. A
simple rigid body analysis (Brody (1997)) can be used to predict the point on the racket which
results in maximum ball rebound velocity. This quantifies the mechanics of the impact and

illustrates how the ball rebound velocity is dependent on the effective mass of the racket at the
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impact point. The racket mass is maximised when the player hits the ball on the longitudinal axis.
However, this is not always achieved and therefore to increase the effective mass of the hitting
point the polar moment of inertia must be maximised. This can either be achieved by increasing
the width of the racket head, or by adding peripheral tungsten weights to the frame.

EARARRARAMMA
A

BAMBARRALRBARALASS
—i e
\

Figure 2.11 Measured vibration amplitudes along the longitudinal axis of a racket, illustrating a
nodal point (Reproduced from Brody (1995)).

In section 2.4.3 the modes of vibration for a tennis racket were discussed. This analysis identified
that a node point for the transverse mode was at a position approximately '/sL along a racket of
length L, from the tip (Kawazoe (1997a)). Hatze (1994) concluded that most players hit the ball at
this nodal point of transverse vibrations. Impacts at this point clearly do not excite the fundamental
frequency and therefore the player does not feel any unpleasant vibrations of the frame. This point
is a further definition of the ‘sweet spot’. Brody (1995) illustrated the vibration amplitudes for a
range of points along the longitudinal axis of the racket and this is shown in Figure 2.11. This

diagram illustrates that, for impacts at the node, there was very little vibration of the frame and
therefore the energy loss was minimised.

A final definition of a ‘sweet spot’ was defined by Cross (1997) and called, rather ironically, the

‘dead spot’. This is a point close to the tip, at which a ball impacts on a stationary freely suspended
racket and rebounds with almost zero velocity, hence the term ‘dead’. This is explained by
considering the law of conservation of momentum and a knowledge that the effective mass of the
impact point on the racket is similar to that of the ball. (Cross uses an analogy of a moving and a
stationary snooker ball colliding head-on, where the momentum is transferred wholly from one to
the other). It is assumed that in a serve the racket is rotating around a point close to the butt end
(Mitchell et al. (2000)), and the ball impacts at the ‘dead spot’. Given the correct linear and
angular velocity of the racket, the racket will be brought to rest and the maximum momentum will
be transferred to the ball. This impact point is close to the tip and, as Figure 2.11 suggests, this
excites considerable vibrations in the frame, dissipating the maximum possible amount of available

energy. Therefore this point may not ‘feel’ the best place to hit a ball as it leads to unpleasant
vibrations and possibly fatigue.
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Figure 2.12 Illustration of the four definitions of a sweet spot (Reproduced from Kotze (2000)).

In this section four definitions have been discussed for the point commonly known as the ‘sweet
spot’ and these are shown in Figure 2.12. They are,

1. Maximum coefficient of restitution — For a stationary racket this is located close to the
racket COM, and results in the maximum ball rebound velocity. For a moving racket, the

precise location of the maximum ball rebound velocity is dependent on the linear and
angular racket velocity.

2. The Centre of Percussion — This is located near the GSC and represents the impact point
which results in minimum ‘jar’ felt by the hand. This is dependent on the inertia of the
racket and the grip position.

3. Node — This is the impact point which results in minimum vibration of the transverse mode
of bending for a hand-held racket.

4. The ‘Dead spot’ — This point results in the maximum transfer of momentum from the
racket to the ball, during a typical serve, for a given racket velocity.
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2.5 Modelling of the Ball and Racket during Impact

Published research on the general modelling of sports ball impacts can be categorised into four
main areas,

1. Rigid body analysis based on classical Newtonian mechanics
2. Flexible body analysis based on classical Solid mechanics.

3. Visco-elastic models in which the displacements of the two impacting bodies are modelled
as a combination of springs and dampers.

4. Finite element analysis of the impact mechanism.

The published models vary in their applicability, accuracy and thoroughness, and these points are
discussed in the following literature review. A complete model would be able to predict the
compression and displacement of the colliding bodies during contact, and then predict the resulting
velocity of the two objects after impact. The input parameters to this model would typically be the

initial velocities and the physical properties of the bodies (eg. ball stiffness). Also, the boundary
conditions must be suitably modelled (eg. player's grip).

2.5.1 Rigid Body Analysis

(a) Modelling an oblique impact between a ball and surface

VlB(y)
A
’ - > Vi
‘me yl
X
m, - ball mass
-F r, - ball radius

Figure 2.13 The impact between a rigid hollow sphere and a rigid surface.

The most comprehensive studies of rigid body ball-surface impacts have been conducted by Daish
(1972) and Brody (1984). Both papers discuss the basic mechanism occurring during the impact
between a rigid sphere and surface, as illustrated in Figure 2.13. This figure shows a rigid hollow
ball travelling from left-to-right, impacting on a rigid surface — the positive x and y directions are
shown by the co-ordinate system and the angular velocity is shown as positive.  During impact a
frictional and reactive force, F and R respectively, act on the sphere. The sphere has a mass of mjy
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and radius rg, and if it is assumed that the wall thickness is thin then its moment of inertia

2
iSIB =—3—m,,r82.

Daish and Brody state that there are two possible cases, depending on the magnitude of the friction.

1 — Ball slides throughout impact

In this case sliding friction applies throughout and therefore

F=-puR [2.8]
where 4 is the sliding friction. Considering the impulses acting on the ball,
ms (Vs ~Vaeo )= [Fdt [2.9]
ms(V'sy Vo) = [Rat [2.10]
Ia(w'a‘w3)="rg IF.dt [2.11]
The coefficient of restitution is defined as
V!
e=-—- [2.12]
B(y)
[2.8] - [2.12] can be used to derive the following equations
V 5= Vaco = HsVan (1 +€) [2.13]
V') =—€Vs( [2.14]
3ugV
0'y=—"2(1+e)+ o, [2.15]
2r,

[2.13}-{2.15] can be used to determine the rebound parameters V’p;, V'py) and @’p if the
parameters us and e are known.

2 — Ball rolls off the surface

In this case [2.9]-[2.12] still apply, but it is no longer valid to assume that F = U R . Equating
[2.2] and [2.4] gives,

1 I 1
(V 8o~V Beo >"u = ‘;B‘(a’ 5—@p) [2.16]
B
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! 2 1
(Vb(x)’VBm):‘gri(a’s“ a) [2.17]

And for the ball to be rolling at the end of impact,
vV

!
[ B(x)

0,'= 20 [2.18)
Tp

Substituting [2.18] into [2.17] gives

W, +27 50,
OIEALE . 8 [2.19]

Vain==€Va0) (2.20]

. Wy +2r g0y
W'y =

2.21
Srg [2.21]

This second case will apply if the friction is sufficiently great. The minimum value of ys for
rolling to occur is defined by,

2(V3(x) - r,,wB)
> 2.2
Hs = 5V,(1+e) 2.22)

The above formula can be used to obtain a basic understanding of the mechanisms occurring in an
oblique impact between a ball and stringbed. However, the assumption that a ball (and stringbed)
is rigid is the main weakness of the model as they both deform considerably. Brody (2000)

develops these rigid body formulae to account for the fact that the ball COM deforms during
impact.

Although it is not explicitly stated in this paper, Brody’s analysis assumes that the ball slips
throughout impact therefore the following equations still apply,

F=-uR

[2.23]
mp (V' B(x)—VBm)= j F.dt [2.24]
My (V'B(y)‘VBu)): _‘ R.dt [2.25]

where g is the sliding friction.
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r=ry(1-ksin(*1;))

@ k k is the
-~ compression factor
r, A
R r Tisthe contact time
\ |
F

Figure 2.14 Definition of the parameter » which defines the deformation of the ball during an
oblique impact (deduced from Brody (2000)).

Figure 2.14 shows the assumed motion of the ball COM during impact and the resulting distance
between the COM and surface, r. Brody assumed this to be,

[
r= rg[l -k sm(?)) (2.26]

where £ is a constant, T is the contact time and ¢ the instant during contact.

k can be considered a compression factor and defines the maximum displacement of the COM as a
ratio of the original radius, r. From [2.26] it can be deduced the motion of the ball COM is
undamped simple harmonic motion, although this was not actually stated in Brody (2000). In this

paper it is assumed that the moment of inertia does not change throughout impact and is equal to
that of a hollow sphere which is,

I, = gmBr,,2 [2.27)

For simple harmonic motion the general equation for the force F is,

Lt
F —Qszn(7) [2.28]

where Q is a constant.

Considering the angular impulse acting on the ball gives,
[1,dw, = [(Fr)a [2.29]

Substituting [2.28] into [2.24] and integrating between =0 and =T gives,

myr (.,
0=~ 's) Vo) [230]

From [2.29]

Iy ( B " myr , . m . [ m
Z(ao b= )= — 0[[# (P )sm(—];j].[l —k sm(—fﬂdt [2.31]

Which gives,
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, 3 km\(,,
@'gy = Py T 2_(1 _Tj(V B(x)_VB(x)) [2.32]

Ty

[2.32] shows that the rebound spin can be determined from the compression of the ball, &, and the
change in the x-component of the ball velocity (V' 50~V a9 ) The main weaknesses of this model

are that it assumes that the ball slips throughout impact, and that the impact is perfectly elastic, i.e.
the COR is unity. However, the analysis could easily be repeated with modified assumptions.

(b) Modelling a normal impact between a tennis racket and ball

Ball mass, m,

Racket mass, m,

e

Figure 2.15 Rigid body model of an impact between a ball and freely suspended racket

A tennis racket is constructed using a material which clearly has a finite stiffness and is therefore
not rigid.  Whilst it is never claimed that a rigid body model of the racket can be used to fully
analysis an impact, it can be used as a first approximation to understand the fundamental dynamics
that occur during impact. Indeed, modelling a tennis racket as a rigid body is one of the most

common methods for this piece of equipment (Liu (1983), Casolo & Ruggieri (1991), Kawazoe
(1997a), Brody (1997), Cross (1999¢ , 2000¢)).

Brody (1997) gives the most succinct account of the application of a one-dimensional rigid body
model of a tennis racket. Figure 2.15 defines the parameters for an impact between a tennis ball

and freely supported racket. Brody used the conservation of both linear and angular momentum to
determine the velocity of the ball and racket after impact.

By conservation of linear momentum,

mpVy +mpVe =mpV' g +mp V', [2.33]
By conservation of angular momentum,

mgVopz+ 1,0 =mgV'yz+ 1,0, [2.34]
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Using the definition of the coefficient of restitution,

V=V

COR =-— 2.35]
I/B - VIP [

where V;p and V’jp are the velocity of the impact point before and after impact, respectively.

Solving [2.33]-[2.35] gives

VB[mBzz + Ik(ﬂ - CORD +V,1,(1+COR)
mg
V=

[2.36]
myz’ + IR(I + ﬂ}

mg

[2.36] gives the rebound velocity for an impact between a ball and racket, for specific initial
conditions. The value of V3 is a function of a group of known variables (mp, mg, z, Iz ) and an
unknown variable (COR). In Brody (1997) it was assumed that the value of COR was 0.85, which

was the coefficient of restitution determined for an impact between a ball and head-clamped racket.

In this paper the racket was initially at rest (i.e. ¥;;=0). Both theoretical and experimental data

was obtained for ball rebound velocity for impacts at various points along the longitudinal axis, at
an impact velocity of 20m/s. Comparison of these two sets of data showed that the model was in
good agreement with the experimental data for impacts close to the GSC, but less accurate for
impacts close to the throat or tip. This is most likely to be due to the fact that the GSC corresponds
very closely to the node of vibration. Therefore vibrational energy losses are minimised at this

point and the rackets acts very similar to a rigid body. At other points the rigid body model
overestimates the ball rebound velocity.

2.5.2 Flexible Body Analysis
(a) The Racket

In the previous section the racket was modelled as a freely suspended, rigid body. It was shown
that this model was accurate for impacts at the GSC, but less reliable for impacts away from this
point (Brody (1997), Goodwill & Haake (2001)). This has been accounted for by the fact the GSC
corresponded to a node of vibration for the transverse fundamental frequency of a tennis racket and
therefore the energy losses due to vibration were minimal at this point. Cross (1999¢) comments
that a rigid body model uses contradictory boundary conditions because (a) it is assumed that the
propagation time of the force pulse to be reflected back from the handle is greater than the contact

time, and (b) by assuming a rigid body, the propagation time for a pulse to travel this distance is
infinitely short.

To predict the vibration energy losses in a tennis racket, the frame can be modelled as a simplified
geometrical shape, which can be given finite material properties. Although a racket frame is a

relatively complex shape many authors (Brody (1987), Kawazoe (1997a), Cross (1998)) have
shown that the vibration modes and location of the nodes for a freely suspended racket are very
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similar to the well established result for a simple one-dimensional beam (as shown previously in
Figure 2.4). Van Zandt (1992) successfully studied the vibration of a baseball bat by assuming that
the geometry could be simplified to a one dimensional beam with a non-uniform mass distribution.

Figure 2.16 Segmented uniform beam.

Cross (1999c¢) performed a theoretical study to model the impact between a ball and a uniform
aluminium bar. The model results were compared with experimental data for a range of boundary
conditions and beam dimensions, and the findings were related to the impact between a ball and

tennis racket. The equation of motion for a one dimensional beam subjected to a distributed force,
F, per unit length, has the form (Goldsmith 1960),

aZy 62 aZy
A—=—=F, ——| El —
Pl =0 T g ( o’ [2:37]

where pis the density of the beam, A is its cross-sectional area, £ is the Young’s modulus, 7 is the

area moment of inertia and y is the transverse displacement of the beam at coordinate x along the
beam, as defined in Figure 2.16.

This equation neglects the shear force which is of negligible significance for the low frequencies of

vibration which are of most interest in this work (Van Zandt 1992). In this case the beam is

uniform and has a mass M and length L. A numerical solution of [2.37] can be obtained by

splitting the beam into N equal sized segments, where the mass of each element is my=M/N and the
length of each segment is s=L/N.

The equation of motion for the nth segment is obtained by multiplying all terms in [2.37] by s,
which gives,

aZyn 64
my =F0s—[E]sa—);"]

x [2.38]

Although the force exerted by the ball may act over a number of segments it was assumed only one

segment was subjected to a time-dependent force, F. The equation of motion for this segment is
given by,
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o’y o'y
L=F—| EIs—
mN atZ [ ax4 [2.39]
and for all other segments,
&y, 0y,
my 6{2 = —(EIS? [240]

In this case it was assumed that, as the beam was uniform, the values of £ and I were constant
along the beam. The possible types of boundary conditions are as follows,

2 3
1. At a freely suspended end — 6_)21 =01 and 6_}3) =0
ox Ox

2. Atarigidly clamped end - (y = 0) and (_61 = O)
X

62
3. Atapin-jointed end — (y = 0) and (5%’. = )
X

The ball was modelled as a simple spring, with an assumed spring constant kz, and this gives an
equation of motion,

62
m, aty;’ =—F =-k(y; - ,) [2.41]

The subsequent motion of the ball and beam was evaluated numerically using finite difference

equations of [2.39]-[2.41]. The exact details of this technique are thoroughly explained in Cross
(1999c).

The validity of the model was assessed by comparing the results with those for an experimental
impact between a superball COR on a rigid surface (e = 0.85) and aluminium rod, for various rod

dimensions and impact points. The vibration of the rod and the rebound ball velocity were
compared with theoretical results and a high accuracy was obtained.

The paper carries on to describe the application of this method to the modelling of a tennis racket-
ball impact. It is stated that the vibration modes and node locations of a racket can be accurately
modelled by assuming that the racket behaves like a uniform beam. The zero frequency response
of the racket will clearly only be modelled by the one dimensional beam for impacts along the
longitudinal axis. It was still assumed that the ball only impacts on one of the N segments.

The paper gave a very good model for an impact between an aluminium bar and a ball, with
experimental evidence to verify it. However, there was no experimental work done to validate the
use of a uniform beam to model a tennis racket which would clearly be the next stage for this work.

43



Chapter 2 Literature Review

Cross (2001b) advances the work of Cross (1999¢c) by assuming that the racket can be modelled as
a one dimensional beam with a non-uniform mass distribution. This work discusses the effect of
the mass distribution on the swingweight of the racket. It was assumed that the mass distribution of
the racket can be simulated using a beam which is split into two equal lengths. The mass of each of
these lengths was chosen to give the desired balance point for the racket. It was assumed that the
values of E and I were constant along the bar, as much of the racket was made from a constant
section beam. The accuracy of the model prediction for ball rebound velocity was tested for a ball
impact velocity of only 1.6m/s. It is appreciated that this is not representative of the velocities used
in tennis, but the aim of this paper was to investigate the effects of adding mass to certain sections

of the racket. However, yet again the main criticism was that the model was not tested for high
speed impacts.

Missavage et al. (1984) performed a theoretical analysis of the impact between a tennis ball and
racket and simplified the frame and stringbed as a non-uniform one dimensional elastic beam,
similar to Cross (1999¢, 2001b). The model was more complex than Cross as it accounts for the
shear force in the beam and assumed that the applied force acted uniformly over the entire head of
the racket. An attempt was made to model the racket very precisely by determining the magnitude
of the cross-sectional area and area moment of inertia as a function of the position along the racket.
This was achieved by cutting the racket into 22 pieces. The beam was clamped at the butt end and
free at the other, and the model was used to prove that the moment acting on the clamped end was
zero during impact, for a regular racket. As with Cross (1999¢, 2001b) no actual quantitative
comparison was made between the model and experiment for realistic ball-racket impact velocities.

Brannigan & Adali (1981) constructed a mathematical model of a ball hitting a tennis racket. The
individual components of the racket, for example the strings, were modelled discretely. The aim
was to develop a model which could be used to investigate the contribution of each constituent of
the racket on the ball rebound velocity and vibration of the racket. The standard equation [2.37] for
a one dimensional, elastic beam subjected to bending was used, but parameters were also added to
account for the material damping of the frame and the stiffness/damping of the hand. The ball was
modelled as an undamped spring with constant stiffness. It was assumed that the force travelling
through the stringbed arrived simultaneously at the racket rim. Incorporating damping into the
material and accounting for the soft tissue in the hand, meant that the vibrations died out as they are

found to do experimentally. However, it was not stated precisely how the level of damping effects
the ball rebound velocity.

The main conclusion regarding the flexible beam modelling literature is that models already exist
but they have not been experimentally verified for tennis ball-racket impacts, at high velocities.

(b) The Ball

Hubbard & Stronge (2001) used a table tennis ball to illustrate the mechanism of a hollow ball
bouncing on a flat surface. In this study analytical equations were developed for the individual
components which make up the stiffness of the ball, i.c. the shell stiffness and internal air pressure.
These equations were used to model the impact of the ball on a flat surface. The model was
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simplified so as not to include hysteresis losses in the materials, but did account for the
contribution made by the momentum flux component of the force which acts on the ball. During
the compression phase, an increasingly large proportion of the ball, that was initially moving
towards the surface, will be brought to rest. The force due to the momentum flux is equal to the
rate of change of momentum of the volume of material which is being brought to rest on the

surface. The momentum flux is tensile during the restitution phase and therefore does not
contribute to the force in this stage.

The analytical equations for the momentum flux force require an assumption to be made regarding
the shape of the deformed ball. Hubbard & Stronge assumed that the ball shape was a truncated
sphere throughout impact and that each point on this sphere was moving at an identical velocity. A
similar study had been previously conducted for footballs by Johnson et al. (1972) and Percival
(1976). Percival also assumed that the shell was inextensible and the undeformed section of the
shell remained spherical. High speed video images of a tennis ball impacting on a rigid surface
show that this assumption may be justified for low speed impacts but becomes less accurate at high

speeds. Also, Hubbard & Stronge, Johnson ef al. and Percival do not account for any material
hysteresis losses which occur during the impact.

To apply a model such as Hubbard & Stronge to a tennis ball, analytical equations for the stiffness

of the sphere need to be generated, and a method of introducing material damping would also be
required.

2.5.3 Visco-Elastic models

Many authors (Haake (1989), Leigh & Lu (1992), Lieberman & Johnson (1994), Dignall & Haake
(2000b), Pratt (2000), Carré (2000)) have attempted to use a visco-elastic model to simulate a
sports ball-surface impact. These models use a combination of springs and dashpot dampers to
represent the stiffness and damping respectively of the components in the impact.

(a) The Ball

Dignall & Haake (2000b) and Pratt (2000) used a simple 1 degree of freedom (1-DOF) model to
simulate the normal impact between a tennis ball and rigid surface, as shown in Figure 2.17. The
displacement xp represents the motion of the centre of mass (COM) of the ball mp. In this model
the values of k5 and c; represent the linear stiffness and damping of the ball. Both authors assumed

that the values of these parameters were constant throughout impact, although they may vary with
ball impact velocity. The governing equation for this system is,
MmpXip+CpXy+kyxy =0 [2.42]

Given the first initial condition of x3 = 0 at time ¢ = 0, the solution to [2.42] is,

Xg = ae™ sin(cot) [2.43]
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Figure 2.17 Kelvin-Voigt spring-dashpot model of a tennis ball impact on a rigid surface
Differentiating [2.43] gives

X, =ae™” [a) cos(wt)— bsin(a)t)] [2.44]
and

T -bt 2 2 Vs

X, =ae [(b ) )sm(a)t)— 2bw cos(cot)] [2.45]

It was assumed that the displacement of the ball COM would be zero at the end of impact, which is
supported by the experimental data in Cross (1999a). Therefore a second initial condition is xz = 0
at t = T where T¢ is the contact time. This gives,

0=—
I [2.46]

Two more initial conditions are obtained by substituting the incoming and outgoing ball velocities,
Vg and Vg, into [2.46] which gives,

X_=Vy=aw

[2.47)
g =V'y=awe™" [2.48]
Equating [2.46] and [2.47] gives
a=V, Tj [2.49]
Equating [2.47] and [2.48] gives
b= —lln(e) (2.50]
TC

where e is the coefficient of restitution.
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Dignall & Haake assumed that the contact time was very similar to that of an undamped model and
therefore the stiffness parameter kz was determined using,

2

ky=my— 2.51
B B Tg [ ]
And for the damping parameter cp
2m
Cp=""p In(e) [2.52]

C

Dignall & Haake illustrated how kz and cp could simply be obtained from the experimentally
measured values of T¢ and e, obtained using a force platform and light beam timers. It was shown
that the stiffness &z increased from 28kN/m to 41kN/m for a ball impact velocity ranging from 6m/s
to 20m/s. The damping coefficient cp increased from 6Ns/m to 15Ns/m in the same velocity range.
The stiffness values that were published suggested a linear relationship between kz and the ball
impact velocity V5. Also, a linear fit was found between the ¢z and V. Unfortunately only a very
small number of data points were used to support this claim. Also, this work involved the
modelling of surfaces and therefore the maximum ball impact velocity was 20m/s. This may not be

high enough to encompass the magnitude of ball deformations found in an impact between a ball
and racket.
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Figure 2.18 Force-Time and Displacement-Time curves for a one degree-of-freedom spring
damper model of a ball impact on a rigid surface (ball impact velocity = 20m/s)

Pratt (2000) illustrated another weakness of this model by way of the obtained Force-Time curve.
A similar plot is shown in Figure 2.18. In the last 0.5ms of the restitution phase the force Fj acting
on the ball is negative, implying a tensile force which is not physically possible. During this period

the ball centre-of-mass displacement x; is still positive. However, the magnitude of the damping
force exceeds that of the stiffness force resulting in a negative force.

(b) The Ball and Racket

Leigh & Lu (1992) determined a visco-elastic model for an impact between a ball and a handle
clamped racket. The model was constructed in three stages, the first being to model the impact
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between a ball and rigid surface. This model contained a spring and damper in parallel, as in

Dignall & Haake (2000b), but it was assumed that the stiffness parameter was a function of the ball
COM displacement, and defined using

ky=ko+ an82 [2.53]
where k, is 18.44kN/m and nj is 23860kN/m’.

Equation [2.53], and the coefficients k; and np, were determined from quasi-static compression
data. This data was modified to account for the different shapes of the deformed balls found in a
static compression test between two flat plates compared to a dynamic impact. This modification
was based on the assumption that the ball only deforms on one side during a dynamic impact, and

therefore the measured quasi-static deformation should be halved. No data is presented to validate
this assumption.

It was assumed that the damping was linear and also the force due to gravity was accounted for.
Many authors, for example Brody (1984), have shown that the gravitational force is negligible.
The governing equation for a vertically moving ball hitting a rigid surface is,

mBJr',,+c,,5cB+koxB+an33—mBg=0 [2.54]

There is no analytical solution for this equation and therefore a numerical method, utilizing the
Newton-Raphson iteration procedure, was required. This calculation method was used to
determine the value of the damping coefficient cp for an experimentally determined coefficient of
restitution for the impact between a ball and rigid surface. An impact velocity of 7m/s gave a value
of ¢z equal to 6.7Ns/m, comparable with Dignall & Haake.

The next stage of the investigation was to model the impact between a ball and head clamped
racket. The stringbed was modelled as a spring with no damping. Research by the authors showed
that the energy losses in the stringbed were negligible. The stiffness of the stringbed was found
from a quasi-static compression test of the stringbed in which the force was applied by the ball.
The details of the complete model of a ball impact with a stringbed are covered in detail in Leigh &
Lu. The model was solved by numerical methods as before. Good correlation was found between

the model and experimental ball rebound velocities, although the maximum ball impact velocity
was only 7nvs.

The final stage of the work was to model the impact between a ball and handle clamped racket, and
this is shown in Figure 2.19. The racket was modelled as an equivalent lumped mass supported by
a linear spring and linear damper in parallel. The values of kg and ¢z were taken from other
researcher’s work, and the mass mz was determined using the assumption that the racket was a
uniform beam. By equating the natural frequency of a uniform beam with that of a lumped mass

the reduced mass mg was determined. Typical values of mg, ki and c; were 0.225kg, 10kN/m and
0.94Ns/m respectively.

The full equations of motion for this model are covered in Leigh & Lu but are considered too
lengthy to present here. The equations were solved using numerically integration with acceptable
error of less than 0.01%. A major criticism of this work was that the final model of the complete
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ball-racket impact was not experimentally verified in terms of the ball rebound velocity. The
model does however illustrate some well documented findings such as reducing string tension

increases ball velocity. It also illustrated less-established findings such as an increase in ball
velocity can be obtained by increasing the damping in the racket.
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Figure 2.19 A visco-elastic model of an impact between a ball and grip clamped racket
(reproduced from Leigh and Lu (1992))

Pratt, Dignall & Haake and Leigh and Lu have all generated models for the impact of a ball on a
rigid surface. It has been shown that this model determines the acceleration, velocity and
displacement of the ball COM during impact. Recent data, published by Cross (1999a, 1999b,
2000a), has used a force platform to determine the experimental data for the acceleration, velocity

and displacement of the ball COM. This could be used to verify the 1-DOF models generated for
the impact between a ball and rigid surface.

2.5.4 Finite Element Analysis (FEA)

There is a limited number of papers published in the field of tennis racket modelling which have
used FEA. However, it is likely that this method is used heavily in the commercial development of
tennis rackets due to the latest developments in PC software. These have lead to the availability of
three dimensional CAD packages which act as the pre-processor for finite element solvers,
reducing the time and cost of using FEA in product development (Yoxall 2002).

Widing & Moeinzadeh (1990) used linear curved elements to model the frame and nonlinear cable
elements to model the strings. The strings were modelled discretely and therefore the pattern,
tension and characteristics could easily modified. The handle was clamped which has been proved
by other authors to be unrepresentative of a players grip (Brody (1987)). This assumption had to be
made because the complexity of the model meant that only a static analysis could be conducted. A

load is applied to the racket and the resulting stress and strain distribution was calculated. This
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data is useful to designers who are attempting to stiffen the racket frame, but does not necessarily
help increase the knowledge of the ball-racket interaction during impact. In this paper it is quoted
that increasing string tension also stiffens the racket frame and thus decreases racket deformation.

This contradicts the findings of Cross (2001c) who stated that increasing string tension reduces the
stiffness of the racket frame.

2.6 Field data

Field data for tennis has been published at many different levels, all very useful for their intended
purpose. Brody (1993) published a simple chart which gave the relationship between the ball
velocity and the time taken for a ball to travel from one player to the other. Although this method

was subject to simplification errors, it allowed coaches to determine the ball velocity simply from
VCR or camcorder footage.

A more comprehensive field study has been coordinated by UC Davis (2001) who have obtained
typical ball velocities and spins in a range of tournaments including the US Open. They used two
high speed digital video cameras which operated at 250fps, with a shutter speed of 1/2000s. A
summary of the data is given in Table 2.1.

Table 2.1 Data for a range of professional tennis player first serves from the US Open
(reproduced from UC Davis (2001)).

Player Avem‘?e service Ball spin range (rpm) Average ball spin (rpm)
velocity (mph)

1"serve 2™serve 1% serve 2" serve 1% serve 2" serve
Jim Courier 108 91 2500-4054 35714167 2842 3810
Todd Martin 98 89 1667-3947 3000-4284 2798 3370
Tomas Muster 105 71 1667-4284 3750-4998 2754 4374
Pete Sampras 120 85 2100-4260 3900-5357 2699 4623
Petr Korda 101 88 1579-3750 3750-4284 2688 4017
Andre Agassi 102 74 1200-4284 4054-4998 2449 4650
Mark Philippousis| 123 99 1765-2830 28304546 2198 4018
Michael Chang 112 77 1000-3750 3125-4284 1677 3928
Tim Henman 120 85 1429-1667 4284-4998 1548 4641

UC Davis (2001) measured the speed throughout the entire flight of the ball using the high speed
video system. The maximum velocity of the ball during flight, at the point it leaves the racket, was
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compared with the value given by a radar gun. Overall there was an average difference of 3.5% in

the results, implying that the radar gun method of obtaining ball service velocities, which is used in
many tournaments, is an accurate method.

This study was conducted for both serves and ground strokes. It was found that the fastest serve
and ground stroke were approximately 127mph and 82mph respectively. This compares with the
fastest recorded serve in the world which is currently 149mph (Rusedski) on the male tour and
127mph (Williams) on the female tour (Guinness (2000)). UC Davis determined that a serve of
approximately 127mph slowed down to approximately S8mph when it reached the receiver. Table
2.1 shows that players reduce the speed of their 2™ serve, but increase the amount of spin. The

data is quoted to an accuracy of lrpm yet no error analysis is given to justify this high level of
confidence.

Table 2.2 Summary of the data for male and female tennis players performing a serve
(reproduced from Elliott ef al. (1986)).

Parameter Mean value Standard Deviation
Ratio of vertical impact position and standing height  1.51 0.02

Maximum resultant velocity at tip of racket before 33.3m/s 4.1m/s

impact

Angular velocity of the racket at impact 38.2rad/s 9.9rad/s

Resultant ball velocity at impact (downwards) 2.16m/s 0.7m/s

Resultant ball rebound velocity 38.4m/s 5.2m/s

Direction of racket vector at impact, relative to 4.0° 2.0°

horizontal

Elliott et al. (1986) recorded tennis players of state or national level using two phase-locked high
speed video cameras operating at 200fps. The direct linear transformation method (King (2000))
was used to obtain a three dimensional reconstruction of the tennis serve. A mean square error of
6mm is quoted for the accuracy of the X, Y and Z values of the known points in space. Table 2.2
summarises the data which was obtained from the digitised points on the player and racket. It
shows that the ball was struck from a mean vertical position equal to 151% of a player’s standing

height, representing 2.7m for a player who is 1.8m (6ft) tall. The velocity of the racket prior to
impact was 33.3m/s and this resulted in a ball service velocity of 38.4my/s.

Groppel et al. (1983) described an experiment which used a 16mm Locam camera operating at
500fps to record the spin for two varsity tennis players hitting forehand drives (Groppel 1975).
The maximum top and back spin obtained in this experiment was 195 and 235rad/s respectively.

The quoted error range in the spin calculation was +24.1 rev/s (152rad/s), which highlights the
difficulty in obtaining spin from high speed video images.
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Mitchell e? al. (2000) used a three-dimensional active marker system which sampled at 400Hz to
measure the motion of a tennis racket during a serve for 6 county standard players. The maximum
velocity of the impact point on the racket was approximately 38m/s and the maximum angular
velocity of the racket was 65rad/s. It was found that these values generally dropped by ~10% for
an increase of ~12% in the racket moment of inertia. It was found that the instantaneous centre of
rotation at impact was approximately 330mm from the butt end of the racket. All this data
contributed to the conclusion that the velocity of the impact point was primarily due to the angular
velocity of the racket as the hand is moving relatively slowly at this point.

Schleihauf er al. (2000) used two cameras operating at 60fps to conduct a three dimensional
analysis of tennis serves, for 25 professional players. The mean ball rebound velocity was
measured as 46.8, 41.6 and 37.6nv/s for flat, slice and topspin serves respectively. The standard
deviations quoted for this data sample was ~Sm/s. This data shows that a flat serve gives the
highest ball rebound speed, followed by a slice and then a topspin. The racket head velocity was
measured as 35.8, 36.1 and 36.4m/s for the flat, slice and topspin serves respectively. This shows
that the racket head velocity is not strongly affected by the types of serve. This paper also shows

that all serves are never purely ‘flat’; ‘slice’ or ‘topspin’ but always contain a combination of
components.
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2.7 Summary

This review has highlighted the typical equipment used by players in the game of tennis. There are
two main constructions of tennis ball which are defined as Pressurised and Pressureless. It has
been shown that the Pressurised ball is structurally stiffer than the Pressureless ball, and has a
higher coefficient of restitution for an impact with a rigid surface. The review has highlighted that

many types and diameters of string are available to the player, and these are used at tensions of
between 40 and 701bs.

A review of existing ‘Field data’ has ensured that any experimental or theoretical analysis is
conducted using realistic velocities, angles and spins, for the ball and racket. For example, the
literature shows that the maximum recorded ball speed, in the men’s and women’s game, is
149mph and 127mph respectively.

The main aim of this current study is to model the impact between a tennis ball and a racket. It has
been shown that a player’s hand provides little support to the racket, for impacts located on the
longitudinal axis. Therefore it is generally excepted that the racket can be considered to be ‘freely

suspended’, for impacts at these locations. This assumption will be used throughout this current
study.

Numerous authors have modelled the impact between a ball and racket using rigid body dynamics.
This type of model can be used as a first approximation to understand the fundamental dynamics
which occur during impact. However, due to the nature of this model it is not capable of

simulating the deformation of the ball, stringbed or racket during impact. It therefore is of limited
use when attempting to realistically model the impact.

Several authors have superseded this simple rigid body model and simulated a tennis racket as a
one-dimensional flexible beam. The literature shows that the modes of vibration and node
locations for this simple flexible beam are very similar to those for a tennis racket. The main
weakness of this published material is that the accuracy of the derived model has not been
experimentally quantified. Also, the model properties of the ball and stringbed have generally been
assumed and, therefore, may not be physically representative of the actual objects.

This current study aims to advance the models which have been discussed in this review. The
current study aims to derive a model which is (1) verified using experimental data, and (2) contains
components which are physically representative. This type of model will enable the impact to be
accurately simulated and also can be used to increase the level of understanding of the impact.
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3. Tennis Ball Properties - Experiment Apparatus and
Methods

3.1 Introduction

The overall aim of this study is to develop a model and understanding of the impact between a
tennis ball and racket, as was expanded upon in the introduction in Chapter 1.
involves a complex interaction of four physical bodies, which are,

This impact

1. TheBall

2. The Stringbed

3. The Racket frame
4. The Human body

A detailed understanding of each of these parameters is required in order to construct the overall
model. For example, the model must be able to predict the effect of changing the mass, stiffness or
damping of the ball on the impact. This would be used to determine the differences between
different ball types. The completed model will therefore contain some component which
corresponds to the ball, and this element can be assigned the relevant mass, stiffness and damping
properties for the impact that is being simulated. This component may take the form of a single or

multi degree-of-freedom visco-elastic model, a 3D finite element model or an analytical solution
based on shell theory.

Clearly the mode! of the ball must be verified using experiment data. For example, high speed
video cinematography could be used to determine the deformation of the ball for an impact
between a ball and a swinging racket. The obvious problem with this type of experiment is the
potential lack of repeatability as the player is unlikely to swing the racket at a control speed. A
solution to this would be to build a robotic device which simulated the grip forces that a player
applies to a tennis racket. However, in section 2.4.3 it was shown that a racket can be considered
to be freely-suspended for impacts along the longitudinal axis. By changing the frame of reference,
a typical ball/racket impact can easily be simulated by propelling the ball at a stationery freely
suspended racket. The main difficulty in this experiment is that the ball properties must be isolated
from those of the string bed and racket frame which themselves combine to form a complex non-
linear system. For example, to develop a relationship between ball compression and impact
velocity, the properties of the stringbed must also be fully understand.

An alternative approach to the development of a model for the ball component in a ball/racket
impact involves the determination of a ball model for a much simpler impact. For example, it

would be much easier to develop a model for an impact between a ball and rigid surface, and then
attempt to modify this so that it is suitable for an impact on a deformable surface,

In this, and the subsequent two chapters, a model of a tennis ball impacting perpendicular to a rigid
surface is developed. An understanding of the physical properties of the ball can be gained by
performing a range of suitable experiments. The data obtained from these experiments can also be
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used to verify the accuracy of the model of an impact between a ball and rigid surface. These
experiments include both quasi-static compression tests and dynamic impact tests to determine
various physical properties such as the structural stiffness of the ball. This chapter discusses the
apparatus used in these experiments which include high speed video systems and force platforms,

as well as the standard equipment used for the International Tennis Federation approval tests (ITF
2001).

Ultimately, a model of the complete ball, stringbed and racket frame system will be developed. It
is not claimed that the model of a ball impact on a rigid surface can be used directly to define the
ball component for an impact with a racket. However, the understanding of ball’s physical
properties which is gained during the development of this simple ball model can be used to give a
first approximation of a model for the ball in an impact with a racket.

Chapters 3 to 5 form a trilogy which aims to develop a model of a ball impact on a rigid surface.
The aim of this chapter is only to introduce the relevant experimental apparatus. The data obtained
using this apparatus is presented in Chapter 4, and the model is developed in Chapter S.

3.2 Quasi-Static Ball Stiffness

3.2.1 Overview

It is widely accepted that the structural stiffness of the ball will affect the impact between a ball and
rigid surface; the magnitude of ball deformation being inversely proportional to the stiffness. In
section 2.2.3 it was shown that the quasi-static structural stiffness can be determined by
compressing the ball between two plates and sampling the force and resulting deflection. The
deflected form of the tennis ball in this compression test is different to that which occurs in a
dynamic impact with a surface. However, it still gives a measure of the difference in stiffness

between different ball types, and has been used by many authors (Leigh and Lu 1992, Kawazoe
1997a) to aid the development of an impact model.

3.2.2 Experimental Apparatus

A MecMesin uniaxial test machine was used to determine the quasi-static stiffness of the ball. This
is the same device as that used in the International Tennis Federation compression test, and is
shown in Figure 3.1. This test specifies the rate and magnitude of the ball compression and is
designed to ensure that all approved tennis balls have the same structural stiffness. The ball is
compressed at a rate of 2.5mm/sec (0.lin/sec) throughout the test. A schematic diagram of the
loading sequence is shown in Figure 3.2. Two different compression readings are taken for an
80N (18lbs) load; these are defined as the forward and return deformation. The measured values of
these two parameters must fall within the range specified in the Rules of Tennis. A full description
of this test is given in Section 2.2. In brief, the test involves loading the ball up to 80N (18Ibs) and
then maintaining the load for 5 seconds before reading the forward deformation. Then the load is
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then increased to 25.4 mm and then reduced back to 80 N. The load is held at this value for 10
seconds before the return deformation is recorded. Finally the load is returned to zero.

Figure 3.1 MecMesin machine used for ITF compression test.

Force

(N)

80. ..................

Forward ~~ ™ Return 2

Deformation Deformation Ball compression (mm)

Figure 3.2 Schematic of a force-deformation plot from MecMesin machine.

The forward deformation gives a true indication of the stiffness of the ball, neglecting any damping
effects. This is achieved by maintaining the 80 N load for 5 seconds to allow the deformation to
settle before the value is recorded. This is necessary because rubber is a visco-elastic material and

its stiffness is thus rate dependent. As the loading is not truly static the deformation must be
allowed to settle in order to determine the actual stiffness.

The return deformation is read in a similar manner but, due to the extra deformation, the load is
maintained for 10 seconds to allow the value to settle. The return deformation is always greater
than the forward deformation because the rubber exhibits hysteresis loss during compression. The

difference between the forward and return deformation is a measure of how much energy has been
recovered by the ball.
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Groppel et al. (1987a) and Williams (2000) have shown that a typical ball deformation for a ground
stroke was in the order of 20 mm. The ITF test simply determines if the ball passes or fails the
approval test based upon whether the measured values of forward and return compression lie within
predefined limits. Therefore this test only regulates the stiffness of the balls for a deformation of
approximately 8 mm. However, the MecMesin device exports the force-deformation data for the
complete load cycle shown in Figure 3.2. Therefore, in this current investigation the quasi-static
stiffness will be determined for ball deformations up to 25.4 mm (1 inch). The results of this
testing are discussed in section 4.2.

3.3 Analysing normal ball impacts on a rigid surface using a high speed
video system

3.3.1 Overview

In the introduction it was stated that the aim of Chapters 3 to 5 was to develop a model of an
impact between a ball and rigid surface. This requires experimental data for this impact which will
be used to both increase the understanding of the ball properties and to verify the model results. In
this section, a method is discussed which uses a high speed video system to record the impact
between a ball and rigid surface. The objectives of this work are listed as follows,

1. Determine the contact time for the impact
2. Determine the magnitude and form of the ball deformation during impact.
This testing will be performed for a range of ball impact velocities that are typical in the game of

tennis.

3.3.2 Experiment Apparatus

S

Figure 3.3 (a) Dropper used to release the ball vertically with no spin, and (b) Air cannon used to
propel the ball horizontally with no spin.
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In this study, balls were projected normal to a flat surface at a range of speeds. For low speed
impacts, the balls were dropped vertically onto the surface using a dropper device developed by
Goodwill (1997) and shown in Figure 3.3(a). This device was designed so that the ball is released

with no spin. This was achieved by using a trapdoor which rapidly accelerated away from the ball
once triggered.

Due to obvious height constraints, the highest velocity obtainable by dropping the ball is
approximately 7m/s. For speeds greater than this value the ball is propelled horizontally at the
rigid surface using the air cannon shown Figure 3.3(b). Compressed air is stored in an chamber
then rapidly exhausted through the cannon. High speed video analysis has shown that the ball
leaves the cannon with no spin. The minimum speed for the cannon to work reliably is

approximately 13m/s. There is therefore a range of velocities between 7 and 13m/s where no
results could be obtained as neither projection device is suitable.

High speed

Figure 3.4 Experiment layout showing ball projected at rigid surface using an air cannon (for ball
impact velocity > 13m/s)

The objectives of this study are to measure the ball deformation and contact time for an impact
between a ball and rigid surface. The equipment used to perform this task is illustrated in Figure
3.4. Speed gates were used to measure the ball impact and rebound velocity. These gates used two
beams of light, two photo-sensors and a sampling unit to calculate the ball velocity. Figure 3.4
shows the arrangement for ball impact velocities above 13m/s. For the drop tests (velocities <
7m/s) the rigid surface was rotated so that it was orientated horizontally, and the speed gates were
removed as they can not operate reliably at velocities less than approximately 10my/s.

A Phantom HIAAA high speed video system was used to record the impact. This camera is capable
of recording at up to 30,500 frames per second, and has a maximum resolution of 512 x 512 pixels.
It was important to ensure that the focal axis of the camera was perpendicular to the flight of the
ball and in the same plane as the surface to minimise perspective errors during image analysis. The

high speed video system was controlled using Phantom v4 software on a PC laptop and the images
were stored in the native Cine file format.
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Two different camera settings were used in this experiment depending on the ball impact velocity.

1. The camera was operated at 6,000 frames per second at a resolution of 256 x 128 pixels for
the drop tests. For these low speeds the speed gates could not operate reliably therefore the
impact and rebound velocities were determined using the high speed video images. This

required a relatively large field of view to ensure that sufficient images were captured for
the velocity and ball deformation to be calculated accurately.

2. The camera was operated at 11,000 frames per second at a resolution of 128 x 128 pixels
for the impact tests which used the cannon. For these tests the speed gates were used to
determine the velocity of the ball so a smaller field of view was allowable to capture the
necessary information to determine the ball deformation during impact.

3.3.4 Analysis of high speed video images

The Cine video images were converted into the Microsoft AVI file format to allow analysis to be
conducted in Vidimas vI. Vidimas vI is dedicated image analysis software which was written by
the Sports Engineering Research Group at the University of Sheffield. It is based on Richimas vi
software (Carré 2000) but has been modified by the author to allow the importing of Microsoft AVI
files. Vidimas v1 has a circular mouse cursor which is used to select the co-ordinates of the ball,
as shown in Figure 3.5. The co-ordinates are exported into MS Excel 2000 for analysis. These co-
ordinates are in screen pixel units, and therefore have no physical dimension. In this experiment,
the pixel-to-mm conversion factor was obtained by placing a grid with a line spacing of 40mm in
the same plane as the ball trajectory, perpendicular to the focal axis of the camera. An image of
this grid was recorded by the camera; the camera being located at the same position as shown in
Figure 3.4. The intersect points on the grid were sampled in Vidimas v1, and the relevant pixel-to-

mm conversion factor was calculated. To optimise the accuracy of the calibration, the intersect
points were obtained over the entire field-of-view.
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Figure 3.5 Illustration of the Vidimas vI user interface, showing a high speed video image of the
ball prior to impacting on a rigid surface, during a drop test.
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(a) Determining the ball impact and rebound velocity

100 T

£ 80 X = 0.014t2 - 6.4257t + 77.082
E
2 Pre-impact Post-impac
g 604
§ 40 |
% Xg =-0.004t2 + 5142t - 31.162
£ 204 4
A
0 5 10 15 20 25
Time, ¢ (ms)

Figure 3.6 Illustration of the vertical motion of the ball before and after impact, for a ball
dropped from 2.54m (100inchs)

For the tests that used the cannon to propel the tennis ball (ball impact velocity >13m/s), the
velocity of the ball was measured using the speed gates. However, for the drop tests (ball impact
velocity <7m/s) the impact and rebound velocity of the ball was determined from these high speed
video images. The ball velocity was determined by plotting the vertical position of the ball at a
number of discrete time intervals. The distance (and time) over which the ball position was
sampled was maximized as this minimized errors when determining the ball impact velocity
(Goodwill 1997). The camera was operated at a relatively high frame rate to ensure that a
sufficient number of images were captured to accurately determine the deformation of the ball
during impact. This meant that there were approximately 50 frames available to determine the ball
impact and rebound velocity. During this short time (approximately 8ms) the ball will accelerate
due to gravity and therefore if an average velocity for this period was used then the velocity would
be underestimated (Thomson 2000). An alternative method involves plotting a 2™ order

polynomial trendline through the position time data, determined using a least-squares regression in
MS Excel 2000.

Figure 3.6 shows an example of this method for a ball being dropped from 2.54m. The ball
position was only sampled prior and post impact.

The 2™ order polynomial of the form,
xg=at’ +bt+c [3.1]
[3.1] is differentiated to give the velocity of the ball at any time, ¢,

B
B _gar+b
o [3.2]

The parameters a, b and ¢ can casily be determined using the least-squares regression method.

. dx :
Therefore the velocity _dté- at time £ can be found using [3.2]. This analysis is conducted for both
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the impact and rebound phase, and the time ¢ at which the ball impacts and leaves the surface can

easily be determined from the high speed video images. A more detailed description of this
method can be found in Thomson (2000).

(b) Determining ball compression and contact area

Figure 3.7 (a) Image of ball resting on surface used to accurately define uncompressed ball
position, and (b) positions sampled on compressed ball during impact.

Before the impact tests were conducted, an image of the ball resting on the surface was captured, as
shown in Figure 3.7a. This was used to define the uncompressed ball position. The images of the
ball, during contact with the surface, were analysed in Vidimas vI to determine the magnitude of
the ball compression and contact area diameter, as illustrated in Figure 3.7b. The diameter of the
ball/surface contact area is defined as the length BC. The data obtained from this experiment was
also used to measure the contact time for the impact. In this experiment, the definition of measured

contact time was the time taken for the ball deformation to return to zero. The results for this
experiment are shown in section 4.4.3.

\

A simple repeatability study was conducted to determine the accuracy of the manual method for
obtaining the magnitude of ball compression and contact area diameter. In this study, an individual
image was imported into Vidimas vI and the points A, B and C were sampled. The image wés then
unloaded and the co-ordinates of the points were stored. This process was repeated 50 times to
generate sufficient data to conduct a valid statistical analysis. The standard deviations for the

obtained values of ball compression and contact area diameter were Imm and 2mm respectively.
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3.4 Normal ball impacts on a Force Platform

3.4.1 Overview

One of the aims of this chapter was to generate experimental data which could be used to verify a
model for an impact between a ball and rigid surface. The exact form of this required experimental
data will depend on the nature of the model. If the model simulates the structural shape of the ball
deforming on the surface, for example the finite element method, then the experimental data in
section 3.3 may be sufficient. However, if the model simulated the force acting between the ball

and surface, for example a visco-elastic model, then the experiments conducted in section 3.3
would be insufficient as no forces have been measured.

In this section an experimental method is discussed which uses a force platform to measure the
force acting between the ball and surface, during impact. Thomson (2000) showed that this data
can be analysed to give the motion of the ball centre of mass during impact. This data can also be

used to determine the contact time for the impact and thus an effective stiffness for the ball.

3.4.2 Experiment Apparatus

P
Force platform -

Speed gates

Air cannon

~{Charge
Amplifier

ADC

Figure 3.8 Experiment layout showing ball projected at force platform using an air cannon (for
ball impact velocity > 13m/s).

The equipment used in this experiment is shown in Figure 3.8, and is very similar to that described
in section 3.3. The balls were projected at the piezoelectric force platform using either the cannon
or the dropper, depending on the impact speed used. The speed gates were used to determine the
impact/rebound speed of the ball when it was propelled using the cannon, and a Phantom HIAAA

high speed video camera was used for this purpose during the drop tests. The platform was capable
of withstanding impacts of up to 30m/s, so this was the maximum speed that was tested. The force
platform is shown in Figure 3.8, and detailed construction details for this platform are given in both
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Cross (2000a) and Thomson (2000). A x10 probe was used to connect the piezoelectric platform
to a charge amplifier to increase the time constant of the circuit, as explained in more depth by

Thomson (2000). The voltage output from the charge amplifier was sampled by an analogue-to-
digital converter (ADC) and laptop PC, at a rate of approximately 67kHz.

3.4.3 Calibration of Force Platform

The force platform outputs a voltage ¥ and this was sampled by the ADC and PC to give a voltage-
time plot. Thomson (2000) used the same equipment and verified that the voltage was linearly
proportional to the force. However, there is known to be a degree of scatter in the actual

calibration value which has been assigned to the ball not impacting in a consistent position on the
platform. To account for this a separate calibration factor, k.., was determined for each impact.

The integral of the voltage-time signal fc Vdt is proportional to the impulse applied to the ball

m(V';=V;). The ADC samples at a sufficiently high frequency for the trapezium rule to be used

to integrate the voltage data with negligible error; the time step At between samples is only
0.0149ms. The calibration factor, &, is defined as,

(3.3)

The force F acting on the ball at any time ¢ can therefore be determined from the voltage ¥ using

FB = kcal'Vt [34]

The acceleration of the ball centre-of-mass X, can easily be determined from the Force-Time plot.

The velocity x, and displacement x; of the ball COM during impact can be determined from

successive numerical integration of the Acceleration-Time data. As the time step of the sampled
data is so short, it was assumed that in the time period from (z-Af) to ¢ the acceleration acting on the

ball was constant and equal to the average of (¥, ),_ n and (x B ),. The enforced boundary
constraints were (J'cB ),=0 =V, and (J'CB )r=Tc =V',, where V3 and V’p were the experimentally

measured impact and rebound velocities of the ball respectively. The velocity of the ball COM at
time ¢ can be calculated using,

(), = Ga). +((x“ )"“’; ), ]-At [3.5]

A similar method was used to determine the displacement of the ball COM, x;, during impact.
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3.5 Summary

In this chapter, two main experimental methods have been discussed which had the collective aim

of increasing the understanding of the physical properties of a tennis ball. The two experiments
described were,

1. Quasi-static compression between two rigid plates.

2. Normal impact between a ball and rigid surface.

The experimental methods can be used to obtain the following parameters from these two tests,

a) Quasi-static ball stiffness.

b) Ball impact and rebound velocity.

¢) Ball compression and contact area during impact.
d) Contact time for impact.

e) Force acting on ball during impact.

f) Ball centre-of-mass motion during impact.




Chapter 4 Ball Properties — Experimental Data

4. Tennis Ball Properties — Experimental Data

4.1 Introduction

The aim of this overall study is to obtain a model for an impact between a tennis ball and racket. In
Chapter 3 it was noted that this study must be split into a number of finite stages due to the high
number of variables involved in the ball-racket impact. The logical first stage is to develop an
understanding of a much simpler impact in which a tennis ball lands perpendicular to a rigid
surface. This smaller study requires a range of experimental parameters to be measured for this
impact, such as contact time, ball impact/rebound velocity and ball compression. The experimental
methods which are suitable for measuring these parameters are described in sections 3.3 and 3.4 In
this chapter, data is obtained using these experimental methods. The two main objectives of this
chapter are to generate experimental data which can be used as follows,

1. To increase the understanding of the mechanism involved in an impact between a ball and
rigid surface.

2. To generate experimental data to verify a model of this impact.

A supplementary objective of this work is to identify how the structural stiffness of the ball
influences the dynamic impact between a tennis ball and racket. This requires a further experiment
to be performed to determine the quasi-static stiffness of the ball for a compression between two
flat plates. This experiment is described in section 3.2.

In this chapter, experimental data is obtained for a range of ball types which encompass all those
typically used in a game of tennis.

4.2 Ball Types used

In this chapter, the experiments are conducted on the following three standard production tennis
balls which are defined as,

1. Pressurised — Dunlop Wimbledon Slazenger.
2. Pressureless — Tretorn TXT.
3. Oversize — Wilson Rally.

and one non-standard ball which is

4. Punctured —a Pressurised ball which has been punctured repeatedly around the seam using
a paperclip to release the pressure.

These balls were chosen to illustrate the influence of different constructions on the physical
properties of the ball. Table 4.1 summarises the nominal ball constructions. The Pressurised and
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Pressureless balls are representative of the range of ball properties exhibited by Type 2' balls. The
Pressurised ball is typical of a ball which is considered to have the best playing properties. This is
deduced from evidence of its popularity with players of professional and club standard. The
Pressureless ball has a thicker wall thickness to compensate for the internal air being at
atmospheric pressure. The Pressureless ball is typical of a ball which is popular, according to its
manufacturers, with recreational level players who appreciate its durability; this ball does not lose
its stiffness unlike Pressurised balls which suffer from air pressure leakage.

Table 4.1 Summary of nominal ball construction properties.

Ball definition Diameter Shell thickness Internal  pressure
(mm) (mm) (gauge) (bar)

Pressurised 67 3 0.827

Pressureless 67 4 0

Oversize 71.5 2.7 0.827

Punctured 67 3 0

The Oversize ball is typical of a Type 3 ball which has recently been approved by the ITF to be
used in competitions of any level. This ball is approximately 6% larger than a Type 2 ball and has

the same internal air pressure but a thinner wall thickness compared to the Pressurised ball.

Anecdotal evidence from players suggests that Pressureless balls, and to a lesser extent Oversize
balls, feel ‘heavier’ than Pressurised balls. The Punctured ball is a gauge of a tennis ball with
‘poor’ playing properties, and is also known to feel ‘heavy’ and ‘lifeless’ according to players. It is

intended that the results in this chapter can be used to explain these differences.

ITF roval Bounds
60 Aop
59 -
“ }
= w ‘
2 58 | ;
1]
g | 1
= |
57
[
|
|
|
55 | . L i |
Pressurised Pressureless Oversize Punctured

Figure 4.1 Mass of four balls of each type, showing the bounds of acceptance for ITF Approval.

The Punctured ball is a Pressurised ball with no internal air pressure. It is assumed that very little
air can escape out of the punctured holes during impact, due to its short duration. This ball would
not pass the ITF regulations due to its low stiffness, but was tested to help understand the

contribution that the internal pressurisation of a tennis ball has on its quasi-static stiffness and
impact behaviour.

" In December 2000 the ITF brought in a rule change which classified balls into three categories based on the
diameter and stiffness. The definitions of these categories are given in Chapter 2.
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In this study, four balls of each type are used (except for the Punctured ball), the mass of each ball
is shown in Figure 4.1. This figure also shows that all the balls lie within the upper and lower
bounds of acceptance for ITF Approval. There is some scatter in the values which can be assigned
to manufacturing tolerances. It should be noted that the majority of the balls have a mass of
57.0+0.5g, which corresponds to a variation in the order of only +1%.

4.3 Quasi-static compression testing

4.3.1 Force-Deformation results
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Figure 4.2 Quasi-static Force-Deformation plots for the three mutually perpendicular axes of the
balls. The data is presented for four ball types.

In section 3.2.2, a test was described which involved the ball being compressed between two rigid
plates in a MecMesin test device. This is the same test procedure as used in the ITF Approval test
(ITF 2002). Before each test, the balls are pre-compressed to remove the ‘set’ in the rubber. The
MecMesin test device compresses the balls by approximately 25.4mm (1 inch). Figure 4.2 (a)-(d)

show the results for the quasi-static compression tests for one ball of each type. The plots for the
other balls of each type are shown in Appendix B.2.

It was found that there was very little scatter in the results for the three mutually perpendicular axes
of all of the Pressurised, Oversize and Punctured balls. However, for the Pressureless ball, it was
found that the maximum force measured for the y-axis was consistently lower than for the other
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axis’s. (It should be noted that the y-axis simply corresponds to the second axis that was tested, and
not any specific orientation of the ball.) The variation of the ball stiffness in each axis should give
an indication of the homogeneity of the ball. The results therefore imply that the Pressurised,
Oversize and Punctured balls can be considered homogenous, whereas the Pressureless ball can
not. However, the fact that the ‘rogue’l orientation is always along the y-axis could be a

coincidence but it is more likely to be due to a systematic error in the experiment. More balls
would need to be tested to further investigate this phenomenon.
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Figure 4.3 (a) Mean Force-Deformation plot for each ball type, with error bars illustrating the

scatter in the data for the individual axes, and (b) forward stiffness calculated using the mean force-
deformation plots.

To enable comparisons to be made between the different ball types, the mean result for the three
axes of the four balls of each type was calculated (12 compressions in total); this is defined as the
mean axis data. A comparison of the mean axis data for each ball type is shown in Figure 4.3 (a).
Figure 4.3(a) shows a force-deformation plot of the mean axis data with error bars. Insufficient
data was obtained to conduct a full statistical analysis of the results so the error bars simply
represent the absolute scatter in the raw data for the individual axes. Figure 4.3(a) shows that the

differences between the ball types are of greater magnitude than the scatter represented by the error
bars.

Figure 4.3(b) shows the ball stiffness for the mean axis data of each ball type; the stiffness being
defined as the ratio of the force and deformation during the loading phase of the test. The ITF
Approval test (described in detail in section 2.2) ensures that all the balls deform within a specified
range for a load of 80.0N (18Ibf). This load corresponds to a ball deformation of ~7mm. The
approval test specifies that the MecMesin machine pauses at this load for five seconds before the
deformation is recorded. This explains the discontinuity in the plots in Figure 4.3(b) at a ball
deformation of ~7mm. This figure shows that all the standard production tennis balls have a
similar stiffness for ball deformations of this value. This can be explained by the fact that all these
‘balls passed the ITF Approval test for compression. The measured stiffness of the Punctured ball
is likely to be influenced by air leaking through the ‘puncture’ holes, and therefore may not be a

true value for this ball. However, the results do give an indication of the contribution of the
internal air pressure on the ball structural stiffness.
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Figure 4.3(b) shows that the Pressurised ball is consistently stiffer than all the other ball types. For
a ball compression of ~7mm, the Pressureless ball is stiffer than the Oversize ball. However, at
higher ball deformations the Pressureless ball is less stiff compared to the Pressurised and Oversize
balls. The Punctured ball is significantly less stiff than all the three standard production balls. It is
interesting to note that the stiffness of the two balls which are internally pressurised (Pressurised
and Oversize) increases appreciably with ball deformation, whereas the other two balls, which are
not internally pressurised, have a stiffness which is relatively independent of ball deformation.
Figure 4.3(a) and (b) also show that, at high ball deformations, the Pressureless ball acts more like
a Punctured ball than a Pressurised ball. If the holes in the Punctured ball could be sealed then this

would act to increase the stiffness of this ball. This confirms that the Pressureless and Punctured
balls have a similar stiffness at high ball deformations.

4.3.2 Hysteresis loss results
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Figure 4.4 Hysteresis losses obtained from the Force-Deformation plots for each ball type.

In section 4.3.1, data is presented for a compression of a tennis ball between two rigid plates. The
ball is loaded to a compression of 25.4mm, at a rate of approximately 2.5mm/sec, and then
unloaded. Figure 4.2(a)-(d) show that the ball exhibits a large hysteresis loss during this
compression cycle. The magnitude of this hysteresis loss can easily be calculated by integrating
the data using the trapezium rule. The mean loss for the three individual axes of each ball (of each

type) is presented in Figure 4.4.  This figure shows that the Punctured ball exhibits the largest
hysteresis loss, followed by the Pressureless, Pressurised, and then the Oversize balls.

A reason for the Oversize ball having the lowest hysteresis loss was suggested by Goodwill &
Haake (2000). The Oversize ball has a larger diameter and therefore the angle & through which the
wall is deformed during compression is smaller (see Figure 4.5). Also, the wall of the rubber core
is thinner for an Oversize ball compared to a Pressurised ball. Both these characteristics lead to
lower stresses in the rubber during compression, so the hysteresis losses are lower for a specific
deformation magnitude. An analogous argument can be used to illustrate why the Pressureless
ball has a higher hysteresis loss compared to the other two standard production tennis balls. The
Pressureless ball has a much thicker wall thickness and therefore the stresses in the rubber are

much higher, for a specific deformation, resulting in a higher hysteresis loss. The high value of
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hysteresis loss measured for the Punctured ball is likely to be a combination of air leaking through
the holes during compression and the lack of structural stiffness during the recovery phase.

v

Figure 4.5 Illustration of the angle through which the ball wall is deformed when compressed
between two plates.

4.3.3 Summary

In this section a collection of four types of tennis ball were tested in a MecMesin test device. This
machine compressed the ball at a rate of approximately 2.5mm/sec, to a distance of 25.4mm. It
was found that the stiffness of all the production tennis balls was very similar for deformations of
approximately 7mm. This was because all the balls were designed to pass the ITF approval test
which regulates the stiffness of a tennis ball for a deformation of ~7mm. At higher ball
deformations the Pressurised ball was stiffest, followed by the Oversize, Pressureless and then the
Punctured ball. The results highlighted that two types of tennis ball can have an identical stiffness
at a low deformation, but vastly different stiffness at higher deformations. For example, at high
deformations the Pressureless ball had a similar stiffness as a Punctured ball.

The hysteresis loss which the balls exhibited during the compression test was measured by
integrating the Force-Deformation data. It was found that the Oversize ball had the lowest
hysteresis loss, followed by the Pressurised, Pressureless and then the Punctured ball. It was

concluded that the Oversize ball exhibited the lowest losses due to its geometry and reduced wall
thickness which both acted to reduce the bending stresses in the rubber wall.

The results presented in this section give a good comparison of the physical properties of the
different types of tennis ball. They are only directly relevant to a quasi-static compression of the

ball, between two rigid plates. However, they may be used at a later stage to help explain results
obtained for a dynamic impact between a ball and surface.
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4.4 Normal ball impacts on a rigid surface
4.4.1 Introduction

In section 3.3 an experiment is described which involves a ball being projected towards a flat, rigid
surface; impacting perpendicular to the plane of the surface. The ball impact and rebound velocity
was measured using either a set of speed gates or a high speed video system. The video system

was also used to determine the magnitude of the ball deformation and ball/surface contact area
during impact.

The following section illustrates and discusses the results for this impact test. Four different ball
types are used, as in the previous section. The objectives of this experiment were,

1. To determine the energy loss in an impact between a ball and rigid surface by measuring
the ball impact and rebound velocities.

2. To determine the magnitude of the ball deformation and the contact time.

The acquired data can then be used to understand the differences in the physical properties of the
different ball types, and also to identify how these properties vary with the ball impact velocity.

4.4.2 Ball rebound velocity — Results and Discussion

Figure 4.6(a) illustrates the relationship between the ball impact and rebound velocity for four
different ball types. It shows that all the standard production balls (Pressurised, Punctured and
Oversize) exhibit a similar rebound velocity for an impact speed of ~6m/s. This is likely to be
because the ITF regulations ensure that all approved tennis balls must rebound to a specified

height, for a drop on a rigid flat surface. In this approval test, the ball is dropped from 100inch
which corresponds to a ball impact velocity of ~6m/s.
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Figure 4.6 (a) Ball rebound velocity, and (b) Coefficient of restitution, for an impact between a
ball and rigid surface, for four different ball types.

The Pressurised and Oversize balls rebounded faster than the other two balls for the full range of
ball impact velocities. At the highest ball impact velocities, the Oversize rebounded fractionally
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faster than the Pressurised ball. The Pressureless ball rebounded slower than the other two
production balls, by ~7%. The Punctured ball rebounded the slowest of all the production balls; it
is generally 20% slower than the Pressurised ball. This result illustrates that the internal

pressurisation of the Pressurised ball contributes to approximately 20% of the rebound speed, for
an impact on a rigid surface.

Figure 4.6(b) shows the coefficient of restitution plotted against the ball impact velocity; the
coefficient of restitution COR is defined as the ratio of ball impact and rebound velocity. This is an
alternative illustration of the same results that are shown in Figure 4.6(a). The ratio of the energy

lost during impact and the initial energy can be defined as (l —COR? ) Therefore the results in

Figure 4.6(b) show that a tennis ball loses an increasing fraction of its energy as the impact velocity
increases. A simple calculation can be performed to show that the Pressurised ball loses 36% and
75% of its initial energy for impacts at 6m/s and 30m/s respectively. By comparison, a Punctured

ball loses between 51% and 84% of its initial energy for impacts between 6m/s and 30m/s,
respectively.

The results in Figure 4.6(a) and (b) show that the Oversize and Pressurised balls dissipate a similar
amount of energy during impact. This energy is dissipated in the form of heat which is produced
by the deformation of the rubber core. The Pressureless ball dissipates more energy during impact
than the other two production balls. This ball has a thicker core and therefore the volume of rubber
which is deformed is larger compared to the other two balls. The Punctured ball loses the most
energy during impact which is probably due to its low stiffness resulting in higher deformations of
the rubber core. A tennis ball dissipates an increasingly large fraction of its initial energy as the
impact velocity is increased. This is likely to be due to a combination of both the increased
magnitude and rate of deformation for the higher speed impacts.

4.4.3 Ball Deformation during impact — Results and Discussion

The method used to determine the magnitude of the ball deformation during an impact with a rigid
surface is described in section 3.3. Figure 4.7(a)~(d) illustrates the ball deformation, as a function
of time. The results are presented for four nominal impact velocities which are 6m/s, 15m/s, 20m/s
and 30m/s. All the production tennis balls have similar deformation-time plots for an impact
velocity of 6m/s, as shown in Figure 4.7(a). At this impact velocity, the maximum ball

deformation is approximately 10mm. This is of a similar order of magnitude as the compression

that balls are subjected to in the ITF approval test.  Therefore, this may account for the similarity

in the results for all production tennis balls when the ball impact velocity is 6m/s. The Punctured

ball deforms more than the production balls, which is likely to be due to its lower structural
stiffness.
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Figure 4.7(a)-(d), and other similar plots for different impact velocities, can be used to determine

the maximum ball deformation during impact Jgsrima) and the contact time 7.

In this

experiment, 7¢ is defined as the time taken for the ball to regain its original, undeformed shape i.e.

the time at which the ball deformation returns to zero.
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Figure 4.8(a) illustrates the relationship between impact velocity and maximum ball deformation
for the four different ball types. It shows that the Pressurised and Oversize balls deform by similar
amounts for all ball impact velocities. The Pressureless ball consistently deforms more than these
two balls, for impact velocities above 15m/s. The Punctured ball generally deforms more than all

the other balls, except at high impact velocities when it deforms by a similar amount as the
Pressureless ball.

Figure 4.8(b) shows that the contact time for the all the standard production balls is similar at the
lowest impact velocity; the Pressureless ball having a fractionally lower T¢ than the other two balls
at this velocity. However, at all other impact velocities the Pressureless ball has a higher contact
time than the other two balls. The Punctured ball exhibits a considerably longer contact time than

all standard production balls, for all ball impact velocities. The Pressurised and Oversize balls
have very similar contact times over the full range of velocities.

The data in Figure 4.7 and 4.8 shows that the Pressurised and Oversize balls deform by comparable
amounts during impact, and exhibit similar contact times. Simple modelling of an impact between
a deformable object and rigid surface shows that the ball deformation and contact time are a
function of the structural stiffness of the ball. Therefore, this data suggests that the Pressurised and
Oversize balls have a similar stiffness and the Pressureless and Punctured balls are less stiff than
the other two balls; the Punctured ball being the least stiff.  Also, the results in Figure 4.8(b)
suggest that the balls act stiffer at higher ball impact velocities.

In section 3.3.4 a method of determining the diameter of the ball/surface contact area is discussed.
This diameter is defined as the length of the ball that is in contact with the surface. This length is
measured from the high speed video images. Figure 4.9(a)-(h) illustrate the relationship between
the contact area diameter and the ball deformation for the four ball types, for a range of impact
velocities. For clarity, this data is plotted separately for the compression and restitution phases of
impact, on the left and right hand side of Figure 4.9, respectively. This figure shows that, during
the compression phase, the relationship between contact area diameter and ball deformation is
relatively independent of the ball impact velocity. For each ball type, there is a single function to
describe the relationship between the contact area and the ball deformation. However, in the
restitution phase there is no single function to describe this relationship, and there are no apparent
trends evident between the four ball types. Interestingly, a comparison of Figure 4.9 (d) and (h)
shows that the Punctured ball is the only ball type that acts similarly in the restitution and
compression phases. However, the significance of this can not be obtained from this data alone.
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Figure 4.10 Relationship between diameter of ball/surface contact area and ball deformation

during the compression phase of impact. A single fourth order polynomial trendline is plotted
through the combined data set of all the ball types.

Figure 4.10 shows the data for the contact area diameter dcoyr plotted as a function of the ball
deformation &34, for all four different ball types. This data is only plotted for the compression

phase of impact. The equation for the 4" order polynomial trendline which is plotted in this figure
(converted into SI units) is,

dooyr =—1.66x10°8,,,, +1.27x10*5,,,, —4.13x10°8,,,, +7.68,,,, [4.1]

There appears to be no significant differences between the four ball types, and therefore [4.1] gives
an approximate relationship between deoyr and J,,,, for all ball types.

There is considerable scatter in the data which was quantified by conducting a simple statistical
analysis. The standard deviation of the raw data from the trend line was calculated as 4mm. In
Chapter 3 it was quoted that the standard deviation associated with the accuracy of the manual
sampling method was 2mm. This implies that the scatter in the data in Figure 4.10 is not solely due
to inaccuracies in the analysis method. A possible reason for the scatter is that the relationship
between contact area diameter and ball deformation is a subtle function of the ball type and impact
velocity. However, this subtle function can not be quantified using this data.

An equation similar to [4.1] cannot be determined for the restitution phase of impact because there
is too much scatter in the data for this phase, as is evident in Figure 4.9(¢)-(h). This implies that,

during the restitution phase, there is no simple function to describe the relationship between contact
area diameter and ball deformation.

4.4.4 Summary

In this section, data is presented for a normal impact between a tennis ball and rigid surface. Four
different types of ball were tested which covered the range of balls used in the game of tennis. For
the lowest impact velocity of 6m/s, it has been shown that all the standard production balls exhibit
the same maximum ball deformation, contact time and rebound speed. This is most likely to be
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due to the fact that the ITF approval tests regulate the bounciness and quasi-static stiffness of the
ball for an impact at a similar velocity/deformation. The Punctured ball has a lower rebound

velocity and deforms more than the other balls, but obviously this ball would not pass the ITF
approval test.

The Oversize and Pressurised balls rebound with a similar velocity, for the full range of impact
velocities. The measured values of contact time and ball deformation for the impact are also
similar for these two balls. The Pressureless ball rebounds approximately 7% slower than these
two balls, at higher velocities. This ball also deforms more during impact and has a longer contact
time at these velocities, which implies that it is less stiff in comparison to the other two production
balls. The Punctured ball deforms the most; approximately 15% more than the other balls. It also
exhibits a considerably longer contact time which confirms that it is less stiff.

These results correlate qualitatively with the quasi-static compression test results in the previous
section. In that section it was shown all the standard production balls have a similar quasi-static
stiffness for ball deformations of approximately 7mm. In this section it has been shown that all
these balls deform by a similar amount in a dynamic impact which involves a deformation of
~Tmm. At higher ball deformations the quasi-static stiffness of the Pressureless ball is lower than
that for the Pressurised ball. An analogous finding was made in this section where a Pressureless
ball exhibited a larger deformation and contact time compared to a Pressurised ball, for high
impact velocities. Any subtle differences that existed between the Pressurised and Oversize balls
could not be concluded in this section. The larger deformation exhibited by the Pressureless and
Punctured balls result in a greater volume of rubber being deformed during impact. Therefore the
energy losses will be higher and so the rebound velocity will be lower.

The diameter of the ball/surface contact area is an increasing function of the ball deformation.
However, it is not dependent on the ball impact velocity or the ball type for the compression phase
of the impact. A single function was obtained to describe the relationship between ball/surface

contact area and ball deformation for this phase of impact. No definite correlation could be found
between these parameters during the restitution phase of impact.

4.5 Ball impacts on a Force Platform

4.5.1 Overview

In section 4.4, a high speed video system was used to determine the ball deformation during
impact, contact time and ball rebound velocity for an impact between a ball and rigid surface.
These results can be used to define the required stiffness and damping properties of the ball which
give realistic values of contact time and energy loss. The main weakness of the method used in the

previous section is that the force which acts on the ball can not be calculated. Therefore the force
which is calculated in the model can not be verified experimentally.

In this section the rigid surface was replaced with a force platform and the ball was propelled
perpendicularly towards it. The details of this experiment are given in section 3.4. In brief, the

piezo-electric force platform outputs a voltage which is proportional to the force applied, and this
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voltage is sampled at approximately 67kHz. This signal is multiplied by a calibration factor to
determine the magnitude of the force at each time increment. The Force-Time data from the force

platform was used to determine the acceleration, velocity and displacement of the ball centre-of-
mass during impact.

The balls were propelled at a velocity of between 4 and 30m/s (10 and 70mph) which exceeds the
speeds used by other authors who have performed a similar experiment (Neville 2001, Thomson
2000). The impact velocities were chosen in an attempt to simulate the magnitude of ball
deformation which occurs in a professional serve. Mitchell ef al. (2000) showed that the relative
ball/racket impact speed for a college standard serve was up to 35m/s. Professional serves are
likely to involve a larger relative impact speed but this data has not yet been published to date. Ina

later chapter of this study, the magnitude of ball deformation which occurs in a ball/racket impact
during a professional serve is presented.

Neville (2001) and Thomson (2000) tested a range of tennis balls for impact velocities between 2
and 20m/s. Each researcher tested three balls of each type and it was universally found that there
was no significant differences between the results for all the balls of one type. Therefore, in this
study it was concluded that only one ball of each type needed to be used. The same four types of

ball are tested in this section as were used in section 4.4; Pressurised, Oversize, Pressureless and
Punctured balls.

4.5.2 Results

(a) Ball rebound velocity
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Figure 4.11 (a) Ball rebound velocity, and (b) coefficient of restitution plotted against impact
velocity for normal impacts on the force platform.

Figure 4.11(a) and (b) show the results for ball rebound velocity and coefficient of restitution
respectively, for impacts on a force platform. In section 4.4, these two parameters were obtained
for an impact on a rigid surface and the results are shown in Figure 4.6 (a) and (b). A simple visual

comparison of these two sets of figures shows that the results are very similar for both experiments.
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All production balls have a similar rebound velocity for low speed impacts. For higher impact
velocities, the Oversize ball rebounds fractionally faster than the Pressurised ball, and significantly
faster than the Pressureless ball. The Punctured ball rebounds considerably lower than the

production balls, for all ball impact velocities. These results confirm the data and conclusions
which were presented in section 4.4.

(b) Force platform data

Figures 4.12 (a)-(h) show the force platform results for impacts using the four balls types and a
range of impact velocities. Figures 4.12 (a)-(d) show the Force-Time data and Figures 4.12 (e)-(h)
show the Force-Displacement data (the Displacement parameter referred to here is the
displacement of the ball centre-of-mass). These results are very similar to those found by
Thomson (2000) and Cross (1999, 2000), although all these authors only used impact velocities of

approximately 20m/s or less. The figures show that the maximum force and ball COM
displacement increases with the impact velocity.

For impact velocities of 6m/s and below, Figures 4.12 (a)-(d) show that the Force-Time plot is an
approximate sine curve for all ball types. Figures 4.12 (e)-(h) show that the hysteresis loss in the
ball, defined by the area enclosed within the Force-Displacement curve, is relatively small for these

low speed impacts. The exception to this is the Punctured ball which exhibits a significant
hysteresis loss.

For impact velocities above 6mvs, all the Force-Time plots have an asymmetrical shape with a
variable number of oscillations that are super-imposed onto a smooth curve. The Force-
Displacement data in Figures 4.12 (e)-(h) show that the ball initials experiences a very low load
which is due to the compression of the cloth on the ball. As the cloth has a much lower stiffness
than the ball (Cross 1999b) the load in this section of the impact is very low. In general, the force
then rises sharply, followed by a sudden dip, then continues rising at a lower rate. The force rises
along an almost vertical path and the load magnitude at which the dip occurs is proportional to the
impact speed. During the restitution phase, Figures 4.12 (e)-(h) show that the force values lie on a
path which is relatively independent of impact velocity. This implies that the measured force value

is primarily a function of the ball centre-of-mass displacement and not the instantaneous speed of
the ball.

The data for the coefficient of restitution, described in section 4.4.2, showed that the fraction of
initial energy that is lost during impact increases with ball impact velocity. The Force-

Displacement plots in Figures 4.12 (€)-(h) illustrate this finding in an alternative manner; the
hysteresis loss being defined as the area enclosed by the Force-Displacement curve.
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Figures 4.12 (a)-(d) Force-Time plots and (¢)-(h) Force-Displacement plots for a normal impact

between a tennis ball and force platform. The data is presented for each ball type separately, for a
range of ball impact velocities.

Figures 4.12(e)-(h) show that the maximum force always occurs at the point of maximum ball
centre-of-mass displacement, for impact velocities below 20m/s. For impact velocities of 20m/s
and above there is a secondary peak in the force which occurs at approximately 50% of the
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maximum deformation. This secondary peak is generally most noticeable for the two
unpressurised balls (Pressureless and Punctured) and is of equal magnitude to, or greater than, the
force which occurs at maximum deformation for these two balls. This second peak is least
prominent in the data for the Oversize ball. The presence of a peak in the force which is not at the
point of maximum deformation implies that the force acting on the ball is not solely due to its
structural stiffness. If this had been the case then the force would consistently be at a maximum at

the point of maximum deformation. Therefore it can be concluded that there must be other
components which make up the load on the ball.

The Force-Displacement plots show that the ball centre-of-mass returns to zero displacement when

the force returns to zero. This may appear obvious, but it confirms that the ball COM returns to its
original, undeformed position at the end of impact.

Figures 4.13 (a)-(h) illustrate the same data as that presented in Figures 4.12(a)-(h) but is
categorised by the ball impact velocity so that comparisons can be made between the four different
ball types. For a low speed impact velocity of 6m/s, Figures 4.13(a) and (e) show that the three
production balls (Pressurised, Pressureless and Oversize) exhibit very similar Force-Time and
Force-Displacement responses for an impact on a rigid surface. The Oversize ball deforms slightly
more, and the Pressureless ball is subjected to a fractionally lower force, compared with the
Pressurised ball. When compared to the three production balls, the Punctured ball (i) deforms

significantly more, (ii) has a longer contact time, (iii) is subjected to a lower maximum load, and
(iv) has a higher hysteresis loss.

At the higher impact speeds (15m/s-24m/s) the two internally pressurised balls (Pressurised and
Oversize) act very similarly, with two exceptions. The Oversize ball generally deformed slightly
more and had a lower load throughout impact, especially during the compression phase. Also, the
peak load which occurs at approximately 0.2ms after initial impact is generally the lower for the
Oversize ball. The force always rises to a peak at the maximum deformation for these two

internally pressurised balls and the restitution phase is very similar for both balls, for all impact
velocities.

The two unpressurised balls (Pressureless and Punctured) act very similarly during the

compression phase, for impact velocities between 15 and 24m/s. For the initial 0.5ms of impact,

they have a Force-Time trace similar to the Pressurised ball. During the remainder of the

compression phase the force initially drops and then rises steadily until maximum COM
displacement. The maximum force is very similar for both balls, and the Punctured ball deforms
fractionally more than the Pressureless. They both deform by about the same amount as the
Oversize ball, but have a considerably lower force. In the restitution phase, the force acting on the
Pressureless ball is similar to that of the pressurised balls but slightly lower. The force in the
Punctured ball is considerably lower than all the others, which is likely to be due to the very low
stiffness of this ball. The force acting on the Punctured ball almost drops to zero when the ball
COM displacement returned to a value of approximately 10mm. Towards the end of impact it rose
significantly before dropping back to zero. This sudden rise is probably due to the ball ‘flipping

back’ to its original shape after compression. This occurs to a lesser extent in the Pressureless ball
trace, but generally not in the pressurised balls.
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Figures 4.13 (a)-(d) Force-Time plots and (e)-(h) Force-Displacement plots for a normal impact

between a tennis ball and force platform. The data is categorised for each impact velocity, for a
range of ball impact velocities.
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(c) Contact Time

The Force-Time plots, shown in Figures 4.12(a)-(d), were used to determine the contact time; the
contact time being defined here as the time at which the force returns to zero. This data is
presented in Figure 4.14(a) and shows that the contact time decreases with ball impact velocity.
For low speed impacts, all the production balls have a similar contact time. At higher speeds, the
Pressurised ball has the lowest contact time, only fractionally shorter than the Oversize ball. The
Pressureless ball has a contact time which is approximately 0.3ms longer than that of the
Pressurised ball, for impact velocities between 13 and 30m/s. The Punctured ball has a
significantly longer contact time compared with all the other balls; the contact time is
approximately 0.8ms longer than that for the Pressurised ball.
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Figure 4.14 (a) Contact time plotted against ball impact velocity determined from the force
platform, and (b) comparison of contact times determined using the force platform and the high
speed video system for impact velocities ranging between 6m/s and 30mvs.

The differences in the contact times for the four ball types which have been determined here are
similar to the findings in section 4.3. In that section, the contact time was measured using a high
speed video system; the contact time being defined as the time taken for the ball to return to its
undeformed shape. Comparison of the values of contact time determined using the two methods
reveals that the different methods give different values of contact time.

A comparison of the data
collected using the two methods is shown in Figure 4.14(b).

Each data point in this figure
represents the contact time at one of four discrete impact velocities; 6, 15, 20 and 30m/s. The value

of contact time at each discrete velocity was determined by plotting a 2™ order polynomial trend

line for each dataset in Figure 4.8(b) and Figure 4.14(a).  The diagonal line in Figure 4.14(b)

represents the 1:1 relationship between the two values of contact time. Figure 4.14(b) shows that
the contact time determined using the high speed video is higher, for large contact times (lower

speed impacts). For the shorter contact times (higher speed impacts) the force platform gives the
higher values of contact time.

The reason for the differences in the two sets of contact time data can easily be assigned to the fact
that different definitions are used in the two cases. Figure 4.15 shows a collection of high speed
images which illustrate the ball deformation throughout impact. This figure shows that a ball can
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have a negative deformation (-7mm in this case) yet still be in contact with the surface. Using the
high speed video method, the contact time would have been determined as 3.3ms. However,
clearly the ball is still in contact with the surface and therefore may be applying a force which is
registered by the force platform. This explains why the force platform may give different contact
times than the those obtained using the high speed video system.

Time =0 Time = 1.6ms Time = 3.3ms Time = 3.5ms

Ball deformation = Omm Ball deformation = 32mm

Ball deformation = Omm Ball deformation = -7mm

Figure 4.15 High speed video images showing an impact between a ball and rigid surface (ball
impact velocity = 25m/s)
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Figure 4.16 (a) Maximum ball COM displacement and maximum ball deformation, plotted
against ball impact velocity. The trendlines represent the best-fit line for the combined data for all
ball types. (b) Approximated relationship between maximum ball COM displacement and

maximum ball deformation. The error bars represent one standard deviation of each variable.

Figures 4.12 (e)-(h) show the magnitude of the ball centre-of-mass displacement during impact for
impact velocities between 4 and 30m/s. The maximum ball COM displacement for each of these
impacts is shown in Figure 4.16(a). For comparative purposes, the magnitude of the maximum ball
deformation is also shown in this figure. This is the same data that is shown in Figure 4.8(a) and
was determined using the high speed video system. Figure 4.16(a) shows that the Punctured and

Pressureless balls deform significantly more than the Pressurised and Oversize balls. However, it
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also shows that the Oversize ball exhibits the largest maximum centre-of-mass displacement, and
the Pressurised ball the least. This relationship is difficult to identify in Figure 4.16(a) but can be
seen more clearly in the Force-Displacement plots such as those in Figures 4.13(¢)-(h).

In Figure 4.16(a), trendlines are plotted which have been obtained by performing a least squares
regression of the combined data for all ball types. It is assumed that the uncertainty of each data
point is equal and therefore the standard deviation of the measured data can be calculated using the
method described in Appendix A. The standard deviations were calculated as 0.5mm for the
maximum ball COM displacement trend line, and 1.4mm for the maximum ball deformation data.

Figure 4.16(b) gives a quantification of the relationship between the maximum ball COM
displacement and maximum deformation. This relationship was determined using trendlines which
are plotted in Figure 4.16(a). The error bars on this figure represent one standard deviation of each
variable. The relationship between these two variables has been estimated by many authors (Leigh

& Lu 1992, Thomson 1999) as it is a useful tool to relate the quasi-static structural stiffness of a
ball with its behaviour during impact.

4.5.3 Discussion

In this section, four types of tennis ball were projected at a force platform for a range of ball impact
velocities. The ball rebound velocity was measured and the results were identical to those
presented in the previous section. In that section, the ball was propelled at a rigid surface and the
differences between the four ball types have been presented and explained.

At the lowest impact speed (6my/s), the Force-Time plots for the three production balls are very
similar and approximate a sine curve. Figure 4.16(a) shows that all of these balls deform by
approximately 12mm during this low speed impact. Figure 4.3 shows that all the ball types have a
similar quasi-static stiffness for ball deformations up to 12mm. The stiffness of the Punctured ball
is considerably lower than that of the three production balls and this would explain why this ball

deforms more and has a longer contact time; contact time being an inverse function of the stiffness
of the ball.

For impact velocities of between 15m/s and 25m/s, the Pressurised and Oversize balls act very
similarly. The data in Figure 4.8 shows that the balls deform by between 20 and 30mm at these
impact velocities. At these high deformations, the results in Figure 4.3 show that the Pressurised
ball has the highest quasi-static stiffness, closely followed by the Oversize ball. The Pressureless
and Punctured balls have a lower stiffness and both these balls exhibit a longer contact time and
lower peak forces during impact, compared to the other two balls. The Punctured and Pressureless
balls dynamically act very similarly to one another, with similar peak loads and centre-of-mass
displacements. This is probably explained by them having similar a quasi-static stiffness at high
deformations. At low deformations, the Pressureless ball is definitely stiffer and this may explain
why the Pressureless ball has a slightly shorter contact time than that for the Punctured ball for low

speed impacts. This may also explain why the Pressureless ball always exhibits a higher load than
the Punctured ball during the restitution phase.
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A very noticeable feature of the Force-Time and Force-Displacement plots is the sharp rise in the
force at the initial stage of impact. This is followed by a sudden dip before the force begins to rise
again. In Thomson (1999) and Cross (1999a) this dip has been accounted for by the instability of
the ball core during the initial stages of impact. Cross (1998) used a two-piece force platform to
prove that the dip coincides with the ball core buckling, and Dignall (1999) arrived at a similar
conclusion using a finite element mode! of the ball. These researchers have all assigned the sharp
rise before the dip to the high structural stiffness of the shell prior to the buckling. However, an
alternative explanation can be given by considering the work done by Hubbard & Stronge (2001).
This work has been discussed in detail in Chapter 2 and involved the modelling of table tennis ball
impacts on a rigid surface. In brief, it was assumed that the section of the ball in contact with the
surface was at rest, and the remainder of the ball was a truncated sphere in which all elements of
this sphere were moving with an identical group velocity. An analogous analysis can be conducted
for a tennis ball impacting on a force platform. If it is assumed that a section of the tennis ball is
being brought to rest (from the group velocity) in a specific time interval, then this will exert a
force on the platform, separate to any force due to the stiffness of the ball. Therefore the total force
applied to the platform is a combination of this momentum flux, the wall stiffness and the internal
air pressure, for the period during compression. At the initial stage of compression, the ball is
moving at its maximum velocity and therefore, in any specific time interval, the magnitude of the

section that is being brought to rest is largest at this initial stage. This would result in a large force
during this period contributed mainly by the momentum flux.

There are alternative explanations for the high initial force which is exerted on the ball. Neville
(2001) and Thomson (2000) assumed that the sudden initial rise in the force was due to the high
structural stiffness of the ball, before buckling occurs. Although it is appreciated that the stiffness
of the ball will be higher before buckling, compared to post-buckling, a simple one degree of
freedom spring model can be used to show that the stiffness must be very large to achieve this rapid
rise in force (Neville 2001). Also, a one degree-of-freedom spring-damper model, which is
summarised in section 2.5.3., shows that the high rise in initial force could be due to the damping
properties of rubber. If the damping in the core is modelled as a dashpot damper then the damping
force is proportional to the rate at which the ball rubber is being deformed, which is proportional to
the instantaneous velocity of the ball. This is obviously highest at the initial stage of compression

which may explain the high initial force.
To summarise, there are three possible reasons for the high initial force which are,

1. High structural stiffness - the ball will have a higher structural stiffness before buckling

occurs.

2. Momentum flux - the force due to a section of the moving ball being brought to rest on the
surface, which is largest at the initial stage of impact

3. Material damping - the rubber core exhibits high levels of damping which are proportional

to the rate of deformation, which is largest at the initial stage of impact.

The definitive explanation of the high initial force probably involves a combination of all three
factors. The work in Chapter 5 considers all the three factors individually in an attempt to derive a
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model for the impact. The aim of the model is to further the understanding of the impact

mechanism. The results presented in this section will be referred to in Chapter S in order to verify
the model and explain the differences between ball types further.

4.5.4 Conclusions

In this section it was found that all production tennis balls exhibit similar Force-Time plots for
normal impacts between a ball and force platform, for impact velocities of approximately 6m/s. It
was concluded that this was due to them all having a similar structural stiffness for deformations of

this magnitude. The Punctured ball deforms considerably more than these three production balls,
which is due to the lower quasi-static stiffness of this ball.

During the initial stage of the compression phase of impact, the measured force rises sharply,
followed by a sudden dip, then continues rising at a lower rate. It has previously been shown that
the dip is due to the buckling instability of the ball wall. The two main possible explanations for
this sudden rise in force (i) high structural stiffness of the ball prior to buckling, and (i) momentum
flux force due to finite sections of the ball being brought to rest on the surface during the
compression phase. During this first 0.5ms of impact, the force which acts on the ball is similar
for all of the standard sized balls (Pressurised, Pressureless and Punctured) but lower for the

Oversize ball. It is intended that the model which is to be developed in the following chapter can
verify the precise reason for the value of the force in this period.

It has been shown that the maximum force which is measured during impact does not always occur
when the ball has reached maximum deformation. This confirms that the force acting on the ball
during impact is not solely due to the structural stiffness because, if these were the case, then the
force would be an increasing function of the ball COM displacement.

During the restitution phase, the relationship between the measured force and ball centre-of-mass
displacement is independent of the ball impact velocity, but does vary between ball types. This
information will assist in the development of a model for this phase of impact.

The Oversize ball consistently exhibited a larger ball centre-of-mass displacement, compared to the
Pressurised ball; the Oversize ball generally displacing by an equivalent amount to the Punctured

and Pressureless balls. However, the Oversize and Pressurised balls exhibit similar contact times
for the impact.
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4.6 Summary

In this chapter, the physical properties of four different types of tennis balls have been obtained. It
has been shown that the Pressurised and Oversize balls have the highest quasi-static stiffness when
compressed between two flat plates. The Pressureless ball has a similar stiffness to these balls for

low deformations, but a much lower stiffness at high deformations. At these high deformations it
had a similar stiffness to the Punctured ball.

The ball was propelled at a rigid surface and various parameters were measured. It was found that
the Oversize and Pressurised balls rebound with approximately the same velocity. The
Pressureless ball rebounds slightly slower, and the Punctured ball rebounds significantly slower.
This indicates that the Oversize and Pressurised balls exhibit the lowest hysteresis loss during
impact. The contact time was generally shortest for the Pressurised ball and longest for the
Punctured ball. This correlates with the quasi-static stiffness results because the contact time is
inversely proportional to the structural stiffness.

In a separate experiment, the balls were propelled towards a force platform. The results for this
experiment correlated qualitatively with the quasi-static compression test results. For example, in
the quasi-static testing the Pressureless and Punctured balls had a similar stiffness for large ball
deformations. Using the force platform, it was found that the Force-Time plots for these two balls
were very similar for high impact velocities. It was also shown that the force which acts on the ball
is not solely due to the structural stiffness and alternative components have been proposed.

One of the main objectives of this section was to experimentally determine the force which acts on
the ball during impact. This objective was successfully achieved for a wide range of ball types and

impact velocities. This data will be used in the following chapter to quantify the accuracy of a
model of the impact.
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5. Modelling of a Tennis Ball Impact on a Rigid Surface

5.1 Introduction

Chapters 3 and 4 describe the methods and results of an experimental investigation of a ball
impacting on a rigid surface. In these experiments, a range of parameters were measured including
the ball rebound velocity, ball deformation and contact time for the impact. Results were obtained
for four different ball types, for a wide range of ball impact velocities. In the following chapter a
model is developed which simulates this impact and can be used to predict such parameters as the
force which acts on the ball during impact. The model will be used to help illustrate and explain
the differences between the four ball types which were identified in Chapter 4.

In a later chapter, this model will be developed so that it is applicable for an impact between a ball
and tennis racket. This model must not be over complex as it would then be unusable. However, it
should correlate with the experiment data within reasonable error bounds. The main requirement is
that each component of the model must have a physical significance so that, for example, the effect
of a change in ball stiffness can be assessed using the model. Therefore, a numerical model which
produces a perfect agreement with the experiment data is of no use.

5.2 General Modelling Procedure

There are many modelling techniques which could be used and the suitability of each of these is
discussed in Chapter 2. In this current chapter, a visco-elastic model is used to simulate the ball for
an impact with a surface. This technique was chosen as it is a relatively versatile method; the
stiffness and damping of the ball can be defined using any function of the ball deformation and
velocity. In Chapter 2, methods for modelling a tennis racket were discussed. It was shown that a
one-dimensional flexible beam gave a good approximation of the modal response of a tennis
racket. A review of previous researcher’s work revealed that a visco-elastic model of the ball is an
ideal method to simulate the ball, for an impact between a ball and flexible beam. The solution for
the flexible beam equation and for the governing equations of the visco-elastic model can both be
solved relatively easily using the finite difference method. A more complex method of modelling

the ball, such as the finite element method, would be more difficult to combine with the flexible
beam model of the racket.

The model that is developed in this chapter is a one degree-of-freedom, visco-elastic model similar
to that discussed in Dignall (2000b). The structural stiffness is represented by a spring, and the
energy loss in the rubber is simulated using a dashpot damper. Dignall (2000b) showed that the
stiffness and damping of the visco-elastic model define the contact time T and coefficient of
restitution COR respectively, for the model. In Chapter 4, the relationship between 7, COR, and
ball impact velocity was determined experimentally. Using this experimental data for 7 and COR,
the coefficients of the spring and damper can be determined using either analytical or numerical
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methods, i.e. the value of the spring stiffness was chosen so that the model exhibited the correct
value of Tc. The model output included the following,

1. Ball centre-of-mass displacement, velocity, and acceleration.
2. Force acting on ball.

The criteria used to quantify the accuracy of the model involved comparing the Force-Time and the
Force-Displacement plots for the experiment and model. Unless otherwise stated, this comparison

was performed using the experimental and model data for all four ball types which were described
in detail in section 4.2 and defined as,

1. Pressurised
2. Pressureless
3. Oversize

4. Punctured

In this chapter, the simple visco-elastic model which was proposed by Dignall (2000b) is
developed with the aim of improving its accuracy and applicability.

5.3 One Degree-of-Freedom Visco-Elastic Model — Constant
Parameters

5.3.1 Derivation of Model

Figure 5.1 Kelvin-Voigt visco-elastic model of a tennis ball impact on a rigid surface.

A suitable one degree-of-freedom (DOF) visco-elastic model for a tennis ball impact on a rigid
surface is shown in Figure 5.1 This Kelvin-Voigt model was used by Dignall (2000b) and this
work is described thoroughly in section 2.5.3 and, to avoid redundancy, is only briefly discussed
here. The model contains a spring in parallel with a dashpot damper. The point mass mjp represents
the centre-of-mass (COM) of the ball. In this model the values of kj and ¢, represent the linear
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stiffness and damping of the ball respectively and therefore the governing equation for this system
is,

MmyXp +CyXy+kgxy =0 (5.1]

where x; is the displacement of the mass x;.

In section 4.3 it is shown that the quasi-static stiffness of the ball increases as the ball deformation
is increased, as determined for a compression between two flat plates. This would imply that the
value of ks would not be constant throughout impact. However, any assumed relationship between
xp and kz would be arbitrary because there is no established link between these two parameters.
Dignall (2000b) assumed that the values of the stiffness and damping coefficients, kz and cp
respectively, remained constant throughout the impact. The values of the stiffness and damping
parameters, kg and cp respectively, were determined analytically using the following equations,

2

ky =myg }CT [5.2]
¢, == 2" 1n(COR) [5.3]
C

where Tc and COR were the experimentally measured value of contact time and coefficient of
restitution.

The analysis can easily be extended to define the equations required to calculate the displacement,
velocity and acceleration of the point mass mjp at any time ¢ during impact. These equations are
derived in section 2.5.3 and are therefore not presented here. Also, the force Fj acting on the point
mass can be directly calculated using the relationship,

Fy =my%, [5.4]

where %, is the acceleration of the point mass.

5.3.2 Results and Discussion

The spring and damper coefficients, kz and cj respectively, were calculated using equations [5.2]
and [5.3] along with the experimentally determined data for contact time and COR, shown in
Figures 4.11 and 4.14(a). The results for these coefficients are shown in Figure 5.2(a) and (b). It
can be seen that the stiffness and damping increase linearly with ball impact velocity, as was found
by Dignall (2000b). The figures show that the Pressurised and Oversize balls have the highest
stiffness, followed by the Pressureless and then the Punctured ball. The damping is highest in the

Punctured ball, then the Pressurised and Pressureless which are very similar, and lowest in the
Oversize ball.
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Figure 5.2 Comparison of the (a) ball stiffness and (b) ball damping, plotted against the ball
impact velocity.

The main observation from this data is that the parameters kp and cp are a function of the ball
impact velocity. Clearly the maximum ball deformation increases with the impact velocity and
therefore it is not surprising that the effective stiffness is an increasing function of the impact
velocity. The magnitude of the rubber which is deformed during impact will also increase as the
ball deformation is increased. This may explain why the value of ¢ also increases with ball impact
velocity. Alternatively, this may be due to the term ¢ X, in [5.1] being unsuitable to model the

damping in the ball.

The model was used to determine Force-Time and Force-Displacement plots for the impact, similar
to those determined experimentally using a force platform, as described in Chapter 4.  Figure
5.3(a)-(f) illustrate a comparison of the experimental and model data, for an impact between a
Pressurised ball and a rigid surface. A similar comparison of the two sets of data are given in
Appendix B.3 for the Pressureless ball. Both comparisons reveal a similar pattern between the
experimental and model data and therefore the results in Figure 5.3(a)-(f) can be considered typical.

In the model, the contact time is defined as the time at which the ball COM displacement returned
to zero. Figure 5.3(a)-(f) shows that the modelled force is negative at the end of the impact which
corresponds to a tensile force being applied during this period. This is clearly unrealistic as the ball
and surface are not physically attached together. It also highlights that the contact time of the
model is a meaningless parameter as the spring and dashpot are not representative of a realistic
impact mechanism. The reason for the tensile load at end of the impact can be explained by

considering equation [5.1]. The damping force ¢,x, has a high negative value in this region, and

the stiffness force k,x is relatively low. Therefore, the net load on the ball is negative.
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Figure 5.3 Comparison of experimental and constant parameter model data for a Pressurised
ball impacting normal to a rigid surface, for a range of impact velocities between 6 and 30m/s. The

force acting on the ball during impact is plotted against, (a)-(c) Time, and (d)-(f) Ball centre-of-
mass displacement.

Figure 5.3(a)-(f) give an indication of the correlation between the model and experimental data.
These figures shows that, for low speed impacts, the model and experiment values show a high
correlation. For these impacts the ball deformation will be low and therefore the assumption that
the ball stiffness remains constant is most valid for low speed impacts. At high speeds the model
and experiment data generally differs by as much as 20-30%. Figure 5.3(d)-(f) show that, during
the compression phase, the experiment force is negligible for ball COM displacements less than
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2mm. In section 4.5.2 it was explained that this was due to the compression of the cloth, which has
a low stiffness. Clearly the model can not simulate this because it is a constant parameter system.
This also explains why the model can not simulate the subtle fluctuations in the experiment Force-

Time plots such as the sudden drop in force after about 0.2ms, which has been assigned to the ball
buckling at this point.

Figure 5.3(a)-(c) show that the model and experiment force values rise sharply in the initial stage of
impact. In section 4.5.2 it was explained that the sharp rise in the force measured by the platform
was due to the high initial structural stiffness of the ball and the relatively large force due to the
momentum flux during this period. However, the reason for the sharp initial rise in the modelled

force is simply due to the cx, term in equation [5.1] being high because X, is at a maximum value

at this point. Therefore, the fact that the force initially rises rapidly both in the model and in the

experiment data is purely coincidental, and the model is not a true representation of the actual
impact.

5.3.3 Conclusions

The Kelvin-Voigt model returned values for spring stiffness and damping which were dependent
on the contact time and coefficient of restitution for the impact. It was found that the Pressurised
and Oversize balls were the stiffest, followed by the Pressureless and then the Punctured. The

damping was highest in the Punctured ball, very similar for both the Pressurised and Pressureless
balls, and lowest for the Oversize ball.

The experiment Force-Time and Force-Displacement plots determined by the force platform are
very complex shapes and a 1 DOF constant parameter visco-elastic model is neither capable or
suitable to simulate them. The model only correlates to within about 30% of the experiment results
at the highest impact velocity of 30m/s, although it was more accurate at lower impact velocities.
There were two main problems with this model. Firstly, both the model and experiment force
value rose rapidly in the initial stage of impact but this was for different reasons. Therefore the
solution is effectively no more use than a simple numerical solution which did not physically
represent the actual impact mechanism. The second failing of this model was that, towards the end

of impact, the force value was negative which represented a tensile force that was clearly not
realistic.

The main constraint of this model was the assumption that the parameters remained constant
throughout impact which was not realistic. It was shown that the constant value for stiffness
increased with maximum COM displacement which was logical because when a ball is compressed
between two flat plates the quasi-static stiffness increases with ball deformation. It was also shown
that the value of the damping coefficient increased with maximum COM displacement. This is
probably due to the fact that when a ball deforms, the amount of rubber being deformed increases
with ball deformation, and this is represented in the value of the damping coefficient.

The main conclusion regarding this model is that it is reasonably accurate for low impact velocities,
but very poor for higher impact velocities. This is because the assumption that the parameters

94



Chapter 5 Ball properties — Modelling

remained constant throughout impact was most valid for low impact velocities where there is little
difference between the properties of the ball at zero and maximum deflection. Clearly, at higher
impact velocities the ball properties vary considerably between zero and maximum deflection.
This implied that the ball stiffness and damping should increase with ball COM displacement. This
type of model is defined as a one degree-of-freedom variable parameter model as the values of

stiffness and damping are allowed to vary during impact. The development of this model is
presented in the following section.

5.4 One Degree-of-Freedom Visco-Elastic Model — Variable Parameters
5.4.1 Overview of the model

In section 5.3, a one degree-of-freedom visco-elastic model was developed in which the magnitude
of the stiffness and damping remained constant throughout impact. It was shown that this system
was a good first approximation of the model, especially at low impact velocities. However, the
model was effectively no more use than a numerical solution because the spring stiffness and
dashpot damping parameters in the model did not physically represent the structural stiffness and

hysteresis losses in the ball. Also, the constant parameter model resulted in a tensile load at the
end of impact which was not realistic.

In the following section, a one DOF variable parameter model is developed which allows the
stiffness and damping to vary throughout impact. The model consists of a spring and damper in

parallel, identical to that in Figure 5.1, and the governing equation for this system is defined by
[5.1].

5.4.2 Model derivation
(a) Spring stiffness

This model assumes that the ball can be simulated using a linear spring and dashpot, and in the
previous section it was assumed that the parameters were constant throughout impact. However, it
was shown that the values of k3 and ¢ increase as the magnitude of the maximum COM
displacement increased. Therefore the physical accuracy of the model would be improved by
assuming that ks was a function of x5 throughout impact. The exact form of this relationship is
unknown as it is impossible to determine it either mathematically or experimentally. The simplest

solution assumes that the relationship between kj and x; is linear and the equation to define this
function is,

kB = kB(O) + Agxp [5.5]

where kg is the initial stiffness at xz = 0, and A4y is the stiffness constant.
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Figure 5.4 Assumed linear relationship between the spring stiffness kz and the ball COM
displacement xz showing the initial stiffness at zero displacement kg,.

Figure 5.4 illustrates the assumed linear relationship between the spring stiffness and ball COM
displacement, which is defined by [5.5]. The initial value of stiffness k¢ was obtained by plotting
2™ order polynomial trend lines through the data in Figure 5.2a. These trend lines were
extrapolated to the y-axis, and it was assumed that the intersect point gave the spring stiffness for

an impact with zero ball deformation, which correlates with the definition of kgq. The values of
kg for each ball type are summarised in Table 5.1.

Table 5.1 Summary of initial stiffness values kzq for each ball type.

Ball type ks (KN/m)
Pressurised 21
Pressureless 23
Oversize 21
Punctured 16

(b) Dashpot damping

In the constant parameter model, the damping coefficient was constant which caused a steep rise in
the force in the initial stage of impact, and also meant that there was a tensile load in the model just
prior to the end of contact. This was due to the impact/rebound velocity being at a peak in these
phases and therefore the damping force c;x, was relatively high. It was shown that the damping

parameter increases with the impact velocity and this was attributed to the increase in the volume
of rubber being deformed as the ball COM displacement increased. Therefore, in this current
model it will be assumed the damping parameter is a function of the volume of rubber deformed.

This implied that the model should have a damping parameter which was a function of the ball
COM displacement.
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Figure 5.5 (a) Illustration of empirical relationship between contact length and ball deformation,

for the compression phase of impact, and (b) interpolated relationship between contact length and
ball centre-of-mass displacement.

In this model, a relationship between the damping parameter and the volume of rubber being
deformed needs to be determined. In section 4.4.2, the ball deformation &) and the contact length
dconr was measured experimentally for an impact between a ball and rigid surface; the definition of
the contact length is illustrated in Figure 5.5. During the restitution phase, the relationship between
oper and deonr was dependent on the ball type and impact velocity. Therefore, there was no single
function which could define this relationship. However, during the compression phase, this
relationship was independent of ball type and impact velocity, and was defined by a 4" order

polynomial trend line (equation [4.1]). A schematic illustration of this trend line is shown in Figure
5.5(a).

In chapter 4 experiments were conducted to measure the relationship between the maximum ball
deformation and maximum ball COM displacement, for a normal impact between a tennis ball and
rigid surface. Figure 4.16(b) illustrates this empirical relationship. This relationship is strictly only
valid for the point of maximum compression, but it is assumed that it can be applied to any stage of
the impact.  This relationship was used to translate the data in Figure 5.5(a) into Figure 5.5(b).
Figure 5.5(b) gives a schematic plot of the contact length di oy and the ball COM displacement x;.

This relationship could not be obtained directly because the two parameters could not be measured
simultaneously using the available apparatus.

The plot in Figure 5.5 (b) (converted into SI units) is defined by,
deony =-2.77%x10° x5+ 1.74x 10" x;, - 453x2 +7.66x, [5.6]

The contact length dconr is equal to the diameter of the contact area. As mentioned previously, in

this model the damping parameter c; will be a function of the volume of rubber being deformed. It
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is assumed that the volume of rubber is proportional to the contact area and therefore ¢z is defined
as,

Cp= B”-(dcom)2 [5.7]

where B is a constant. Let 4. = Bx , therefore,

¢y = Ac (deonr ) [5.8]

where A is defined as the damping constant.

Substituting [5.5] and {5.8] into the governing equation [5.1] gives,
mgXy + (Ac (deonr ) )iB + (kB(O) + Ay Xy )"B =0 (5.9]

In the previous model, experimentally determined values of contact time and coefficient of
restitution were used to calculate the two unknown variables kz and cg. In this model, Ax and A¢
need to be determined using the experimental values of T and COR. However, unlike in the
previous model there is no analytical solution for [5.9] and therefore 4x and A¢ can not be

calculated directly.  Therefore this model required a numerical method to solve these two
parameters.

5.4.3 Numerical solution for model

A numerical solution of [5.9] can easily be determined using the finite difference method, using a

time step of Ar=0.01ms. Assuming the velocity x, does not change considerably during this time
step, the finite difference form of [5.9] at time ¢ i,

ml{(xg o = 2((Axt3) Z, +(xp), a0 } s (( Adey ) {(x 5), + A(tx,g ) D

+(ka(0) + Ay (xB)l an), =0 [5.10]

which, rearranged, gives the displacement of x; at time 7+At as,

b ={ & [(k,,m+Ax(x,),xx,,),+(Ac(dcm>2((isli("—ﬂ)'-y-j]_z(x,,),+(x,,),_m] .11

B At

[5.11] can be used to determine xz for time steps of At using the following two boundary conditions
to initialise the solution,

(x5). =0 5.12]

and

(X5 ) =—V'5 A [5.13]

The following equation is used to calculate the force at time ¢,

98



Chapter 5 Ball properties — Modelling

[5.14]

(F,), = ,,,B[(x,, et — 2&3) ¥ (x,,),_N]

The solution of equations [5.11]-[5.14] was written in MS Excel 2000 spreadsheet. The value of
dcont Was calculated at each time step using [5.6], and substituted into [5.11]. The unknown
parameters Ax and A¢ were initially given values of 900kN/m? and 0.005Ns/m’ respectively. The
end of impact was defined as the point at which x5 equalled zero. At this instant, the contact time
T, and coefficient of restitution COR were recorded by the PC. A Visual Basic Script Macro was
programmed that utilised the Goal Seek function to facilitate the iterative process of finding the
appropriate values of Ax and 4¢ which converged to give the same T and COR as that found
experimentally. As in the previous model, the value of T¢ was defined as the time taken for the ball
COM displacement to return to zero. This iterative process was performed for all the impacts
which are discussed in section 4.5 to find the converged solution values of Ax and A¢ for each
impact and for each ball type. The converged solution was defined as the combination of 4 and
Ac which gave model values of T¢ and CORthat were within 0.5% of those found experimentally.

5.4.4 Results and Discussion
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Figure 5.6 (a) Stiffness constant Ax and (b) Damping constant A¢ plotted against the ball impact
velocity. The data is plotted for two different ball types.

In this section only the Pressurised and Pressureless balls are used to illustrate the features of the
model. Equations [5.5] and [5.8] define the stiffness and damping constants, 4x and Ac
respectively. Figure 5.6(a) shows that the stiffness constant is very similar for both balls at low

impact velocities, but at higher impact velocities the Pressureless ball has a lower stiffness. Figure
5.6(b) shows that the damping constant is similar for both balls.

All these observations are
consistent with the those from the previous model.

It was assumed that the relationship between the stiffness parameter k; and the ball COM
displacement x5 was linear, as illustrated in Figure 5.4. If this was a correct assumption then the
value of Ax would be constant for all impacts. However, Figure 5.6 shows that the value of Ax
increases as the ball impact velocity is increased. A similar conclusion can be drawn for the
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damping constant Ac. This suggests that the relationship between stiffness/damping and ball COM
displacement is non-linear.
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Figures 5.7 Comparison of experiment and model data for a Pressurised ball impacting on a
rigid surface, for a range of impact velocities.

The model solution, using the converged values of Ax and A, was used to determine the Force-
Time and Force-Displacement data. Typical plots of these relationships are shown in Figures
5.7(a)-(f) for a Pressurised ball and supplementary comparisons are shown in Figure B.S for a
Pressureless ball.  These figures show that the model force is lower than that in the experiment,
for the first and last 0.5ms period of the impact, which correspond to low COM displacements.
The model force is higher than that of the experiment, for the middle part of the impact. Also, the
maximum ball COM displacement is generally higher in the model than that in the experiment. [t
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is important to note that Figures 5.7(a)-(f) show that the model and experiment Force-Time data
(and Force-Displacement data) correlate reasonably well for the restitution phase of the impact.

The most noticeable differences between the model and experiment results are evident in Figures
5.7(d), (e) & (f). The figures show that the two traces generally vary by up to 40%. By
comparison, the constant parameter model was generally accurate to within about 20%. This
initially implies that the variable parameter model is less accurate than the model which it was
supposed to supersede. However, in the previous section it was shown that the constant parameter

model did not physically represent the ball impact. Therefore, the constant parameter model is
fundamentally flawed and should not be used.

The reasons for the differences between the constant parameter and variable parameter models are
most easily illustrated by comparing Figure 5.8(a) & (b). These figures show the individual
contribution of the stiffness and damping parameters, for an impact velocity of 20m/s, for the two
models. These figures also show the overall force value (the sum of the stiffness and damping
forces). It can be seen that, during the first 0.5ms of impact the overall force is smaller in the
variable parameter model than in the constant parameter model. After this time the force is
generally greater in the variable parameter model, especially in the last 0.5ms of impact.
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Figure 5.8 Illustration of the typical contribution of the stiffness and damping parameters to the

overall force for an impact velocity of 20m/s, (a) Constant parameter model and (b) Variable
parameter model.

In the constant parameter model it was assumed that the stiffness parameter was constant, whereas
in the variable parameter model the stiffness parameter increased with COM displacement. This
meant that the stiffness force in the variable parameter model was relatively low at the start and
end of impact, and high during the period of maximum compression. This is evident in Figure
5.8(a) & (b) where the peak stiffness force is higher in the variable parameter model. 1t is for this

reason that the overall peak force is higher in this model compared to the constant parameter
model.
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In the constant parameter model the damping parameter was constant which meant that the
modulus of the damping force, |cBJ'cB| , was high at the start and end of impact, as illustrated in

Figure 5.8a. This lead to the relatively high and low overall model force at the start and end of
impact respectively. In the variable parameter model the damping parameter increased with COM

displacement so the modulus of the damping force, |c 2 X BI , was lower at the start and end of impact

in the variable parameter model compared to the constant parameter model. A consequence of

this was that there was no tensile load during the final phase of impact, which is an improvement

on the constant parameter model. This occurs because the value of the term |c 8% B| was lower than

that of the stiffness force during this final phase of impact so the overall force that was plotted in
Figure 5.8b remained positive throughout.

The comparisons made between the models and the force platform data have shown that the
constant parameter model correlates better with the experiment data in the initial stage of impact;
the force value in the variable parameter model is too low. However, in the previous section it was
mentioned that the constant parameter model was not realistically modelling the impact in this
period. Therefore the variable parameter is actually a better model but it needs to be modified to
account for a higher load in this period. Implementing such a change will inherently reduce the
maximum load because the total impulse acting on the ball remains constant. It has been noted that
the variable parameter model Force-Time data correlates well with the experiment data in the
restitution phase so no major modifications need to be made in this period.

5.4.5 Conclusions

Modifications were made to the existing constant parameter model to allow the stiffness and
damping properties to vary during impact. The resulting system was termed a variable parameter
model. It was assumed that the stiffness and damping parameters varied linearly with the ball
COM displacement and ball-surface contact area respectively; the ball-surface contact area was
itself a function of the ball COM displacement. An iterative process was used to determine the
values of the stiffness and damping constants in the linear relationships for a range of impacts.
This method determined the appropriate values for these constants which gave the same contact
time and coefficient of restitution for the model as that found experimentally for a range of impact
velocities up to 30m/s. It was found that the value of the stiffness constant increased as the impact
velocity increased, and therefore there was no single value that could be used to model the entire
range of velocities. The implication of this was that the assumption of a linear relationship

between stiffness and ball COM displacement was incorrect. A similar conclusion was drawn for
the damping constant.

Comparisons made between the variable parameter model and the experimental data showed that
the model force value was too low in the initial stage of impact. Therefore this model needs to be
modified to account for a higher load in this period. The consequence of the low initial load was
that the maximum model load was higher than that in the experiment. This was because the total
impulse acting on the ball remained constant. During restitution, the model Force-Time data
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correlates well with the experiment data so no modifications need to be made in this period. This
correlation is much improved from that of the constant parameter model and is mainly due to the
assumption that the damping was a function of the ball COM displacement.

5.5 One Degree-of-Freedom Visco-Elastic — Variable Parameters and
Momentum Flux

5.5.1 Overview of the model

The main aim of this chapter is to develop a visco-elastic model of an impact between a tennis ball
and a rigid surface. The empirical model parameters are to be determined for a range of tennis
balls. It is intended that this model will be used to simulate the ball in a ball-racket impact, which
is discussed later in this study. In order to achieve this aim, the model must physically represent
the impact mechanism and not just resemble a numerical solution. A numerical solution can not be

used to advance the knowledge of a ball impact because the model would not physical simulate the
impact mechanism.

The variable parameter model was physically representative of the impact but did not give a
sufficiently good correlation between the model and experiment results. This model assumed that
the stiffness and damping increased with the ball COM displacement. In section 5.4 it was
explained that this was a more realistic model compared to the constant parameter model. The
main weakness of the variable parameter model was that the force was considerably lower than
that in the experiment during the initial phase of compression. Cross (1999a), Dignall (2000b) and
Thomson (2000) all arrived at the conclusion the experimentally determined force was relatively
high because of the initial high stiffness of the ball before it buckled. However, if this was the
reason for the high load then when the ball buckled the force would drop considerably, which does

not happen. This suggests that there is an extra feature in the impact mechanism that has not yet
been accounted for.

Hubbard & Stronge (2001) published a study on the analytical modelling of table tennis ball
impacts on a rigid surface which was discussed in Chapter 2. This paper ignored the hysteresis
losses in the material but showed that the force acting on the ball consisted of two components
during the compression phase of the impact; these were the ball stiffness and the momentum flux
force. This momentum flux force was not accounted for in either the constant parameter or
variable parameter models, but will be included in the model in this section. The momentum flux

force corresponds to the change in momentum for the section of the deformed ball which is being
flattened upon impact with the surface.

This new model is defined as a one degree-of-freedom momentum flux model. This is a modified
version of 1-DOF variable parameter model and partly accounts for the fact that the ball is a
complex three dimensional highly deformable body, and not a point mass suspended on a spring
and damper. A possible solution would have been to use a multi-DOF system to simulate the mass
and stiffness distribution, or alternatively use finite element methods (FEM) to model the ball.
However, the aim of this work was to develop a simple model which could be used to model a ball-
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racket impact. Neither an FEM model or multi-DOF visco-elastic system would be suitable for this
task.

5.5.2 The construction of the model

(a) Momentum flux simulation

Hubbard & Stronge (2001) used thin shell theory to define an analytical solution for the shape of
the ball during impact. In this paper, it is shown that the wall thickness of a tennis ball is too large
for this shell theory to be used to model a tennis ball impact on a rigid surface. Also, this impact
involves large, non-linear deformations which are very difficult to model analytically.

dCON T

dCON T(t+Al

Figure 5.9 Definition of the contact length, and ball COM displacement.

In this current study, an empirical approach is adopted in an attempt to model the resultant force
that is due to the momentum flux. During impact, the ball can be considered as two separate
sections; section 1 continuing to move towards the surface section and section 2 is at rest in contact
with the surface (as shown in Figure 5.9). For simplicity it is assumed that section 2 is flat and
stationary and therefore remains in contact with the surface during impact. It is also assumed the
section 1 is undeformed and therefore all points on this section move towards the surface with the

same velocity & 5 - When a segment of section 1 impacts on the surface its velocity changes from

Oy, to zero, and the size (and mass) of section 2 increases. The masses of sections 1 and 2 are

defined as M, and M, respectively, and the mass of the ball is defined as mz. The ‘flow’ of mass
into section 2 is defined as M, .

During the compression phase of impact, the momentum flux force is compressive and therefore
results in a force being exerted onto the surface, separate to that caused by the stiffness of the ball

shell and internal pressure. This momentum flux force at time ¢ (F)y, is equal to the change of
momentum and is defined using,

(Fy), = (M B ), [5.15]

It is assumed that the flattened section remains approximately flat throughout impact. This
assumption has to be made because it is very difficult to predict the exact form of this shape.
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Hubbard & Stronge determined the mass M, analytically. However, in this current study M, is
determined from the length of the contact-area diameter dcoyr and the mass per unit surface area
parea- The relationship between dcovr and xp is given by [5.6] and is the same as that used in
section 5.3 to determine the volume of rubber that is being deformed during impact. It is assumed
that the tennis ball shell is inextensible and therefore the value of g,,., remains constant throughout
impact. For a standard size tennis ball with an effective radius of 29.5mm and a mass of 57g, value
of Parea is 5.212kg/m’. For an oversize ball the value of p, is 4.552kg/m’.  [5.15] can be solved
to determine the momentum flux force for a unit time interval 4r,

(F,) = !_Parea” ((dcow(t) )2 - (d CONT(1-& ))2 )j( » )‘

= ) 5.16
! 4At [5.16]

The centre-of-mass velocity x, is different to the velocity of section 1 S, , as noted in Hubbard &

Stronge (2001).  For this simplified model the relationship between these two variables is defined

as,
581 | = ng 'BJ )
( ) (”I X ' [5.17]

Substituting [5.17] into [5.16] gives

( F, ){ _ M lparea” ((dCONT(t ))2 - (dCONT(t-At ))z )] (xa )'

44t(M.,), (5.18]
which is an equation of the form,
(F), =(exs), [5.19)
where,
(CM ): _ lpma” ((dcom-a ))z - (dcown-m) )2 )I [5.20]
441(M,),

It is important to reinforce that [5.17]-[5.18] only apply in the compression phase of impact.
During the restitution phase, the momentum flux force is tensile and therefore cy, is equal to zero
throughout this phase.

The equation for the momentum flux force [5.16] can be rearranged into the form of [5.17] which
is analogous to an equation of motion for a dashpot damper, with a damping coefficient defined as
cy.. The value of ¢) can be determined for any time ¢ by determining the values of dconr for the
relevant value of x; using [5.6]. As in the previous models, the structural stiffness and material

damping will be modelled using a linear spring and damper respectively. The momentum flux
visco-elastic model is illustrated Figure 5.10.
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Figure 5.10 Illustration of the 1-DOF momentum flux visco-elastic model.

(b) Ball structural stiffness

In section 4.5, a force platform was used to determine Force-Time data for an impact between a
ball and a rigid surface, for a range of ball types and impact velocities. It was noted that the force
increased rapidly for the first ~0.2ms then dropped suddenly. It was concluded that this was due to
the relatively high initial structural stiffness of the ball shell, which instantaneously reduced when
the shell buckled. In this model it is assumed that the ball stiffness k5 equals a constant value kg,
for t < 0.2ms. The value of kgyg., is chosen arbitrarily as there is no analytical solution.

For ¢t > 0.2ms it was assumed that the structural stiffness of the ball kz was proportional to the
displacement of the ball x;. In the variable parameter model it was assumed that this relationship
was linear but it was found that the stiffness constant A increased with ball impact velocity. This
implied that the true relationship was non-linear and therefore equation [5.5] was not of a suitable
form to describe the relationship between ball stiffness and displacement. Other researchers (Carré
2000, Ujihashi 1994) have successfully used a power law relationship between the ball stiffness

and displacement. Therefore, in this model [5.5] was modified so that kg is proportional to a power
of XB,

kg = kpgy + AgXp [5.21]

Ball stiffness, K,

kmo;

R B ,,>
Ball COM displacement, x,

Figure 5.11 Schematic illustration of the assumed relationship between the spring stiffness ks
and ball COM displacement x; showing the initial high stiffness kg, which is valid for ¢ < 0.2ms.
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Equation [5.21] is applicable for £ > 0.2ms. An illustration of the relationship between k3 and xz is
shown in Figure 5.11. As before, kg, is the effective stiffness of the ball when xz = 0, and the

values of this parameter are given in Table 5.1. Equation [5.20] is assumed to be valid for both the
compression and restitution phases of impact.

(c) Material damping
In the variable parameter model it is assumed that that the force in the linear dashpot damper F¢
was only proportional to the magnitude of the contact area, i.e.,
. 2 .
Fp=cpxy = AC'(dCONT) Xp [5.22]
where A¢ is defined as the damping constant.

In that model it was effectively assumed that the ball deformed at a rate of X;; X, being the
velocity of the ball centre-of-mass. In this current model, it has been shown that the ball deforms at

arate of & » - Therefore, the model needs to be modified with the assumption that the damping

force is proportional to this deformation rate ) o rather than the COM velocity x,. The

relationship between x; and ) 5 is defined in [5.17], and therefore [5.22] is modified to become,
Fo=cpiy = %{BT Ac{dconr )zxa [5.23]

and therefore,

m
Cg = ﬁﬂl Ac '(dCONT )2 [5.24]
(d) Summary

The momentum flux visco-elastic model is illustrated in Figure 5.10. The governing equation for
this model is,

myXy + (ca +Cy )”.CB +kyx, =0 [5.25]

The values of the parameters ks, cz and cy have been fully defined in this section, except for one
minor adaptation which will be explained here. The experimental Force-Displacement plots, such
as that in Figure 4.13 shows that the force is negligible for x3 < ~2mm (during the compression
phase). This characteristic is simplified in the model by assuming that the force is zero for x5 <
2mm (during the compression phase). This is achieved by enforcing the parameters kj, ¢z and cy to

equal zero during this period. After this period the parameters are defined using the equations
discussed in this section.
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5.5.3 Numerical solution of model

The values of the model parameters Kgyz,, Ax, @ and Ac were defined so that the contact time T¢
and coefficient of restitution COR determined by the model were close to those determined

experimentally in section 4.5. There is clearly no analytical solution to obtain the four parameters
so a similar numerical method is used as that which was adopted in the variable parameter model.
This method is discussed in the following passage.

Using [5.17]-[5.25], the general equation for the ball COM displacement x; at time ¢ is,

(52), = 2052), 0 =) (%’—([k( ),_N1+[<cn T jm [5.22]

This equation was solved in MS Excel using a time step of A=0.01ms and the relevant values of &j,
cgand ¢y

In the variable parameter model, the value of A¢ was adjusted so that the contact time for the
model matched that of the experiment. A similar iterative method was also used to determine the
damping parameter Ac which gave the same coefficient of restitution for the model as was found
experimentally. In this momentum flux model, the combination of the values kgyg., Ax and a
defined the model value of contact time. This meant that there was an infinite number of valid
solutions for these two parameters, which all gave the same value of T¢. Clearly, the optimum
solution would be a specific combination of kg, Ax and @ which gave the correct value of T for
all ball impact velocities. If this was achieved, then each ball type would have a single function
[5.21] that described the value of ks at any value of x;. A single value of the damping parameter A¢

was determined which minimised the difference between the model and experimentally determined
coefficient of restitutions, for all ball impact velocities.
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Ball impact veloctty (mvs)
Figure 5.12 Comparison of the experimental and model data for (a) contact time and (b)

coefficient of restitution. The results are shown for a Pressurised ball and the model parameters
used were Ax=16000 kN/m?, a=1 65, A-=3.5 kNs/m°.

In section 4.5, Force-Time data obtained for an impact between a ball and force platform was used
to conclude that the ball initially had a relatively high structural stiffness. The magnitude of this
stiffness instantaneously dropped when the shell buckled. This feature is simulated in the model by
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assuming that the stiffness of the ball was equal to a high constant value ksyg;;, for t < 0.2ms.
Then, after this time, the stiffness was defined using a function of the ball displacement. The value
of kgye. can not be directly measured by either analytical or experimental methods and therefore
has to be chosen arbitrarily. In this study, it was assumed that ksyz;; was equal to 80kN/m for all
ball types, for all ball impact velocities. This single value was chosen as it gave a model Force-

Time curve which was similar to that determined experimentally. This is confirmed in the figures
in the results section.

The iterative method used to determine the combination of Ak, a and A¢ for each ball type is most
easily explained by way of an example. The example uses the experimental data obtained for a
Pressurised ball, and this data is shown in Figure 5.12(a) and (b). The model was solved for six
discrete impact velocity increments between 5 and 30m/s. For each of these impact velocities the
same combination of Ax, @ and Ax were used, and the calculated values of contact time and COR
are plotted in Figure 5.12(a) and (b); the contact time being defined as the time in which the ball
COM displacement returns to zero. Different combinations of Ak, a and A¢ were input into the
model until the model values of contact time and COR matched those determined experimentally,
as shown in Figure 5.12(a) and (b). When determining the optimum value of A, the value was
chosen which gave the highest accuracy for ball impact velocities between 13 and 30m/s as these
velocities are more relevant for a ball/racket impact. This explains why the model solution in
Figure 5.12(b) correlates more closely to the experimental data for impacts in this velocity range.
Clearly the value of A¢ could have been allowed to vary with ball impact velocity and this would

have meant that the model and experiment values of COR would be identical. However, a neater
solution is obtained if a single value of 4 is used for all impact velocities.

5.5.4 Results and Discussion

(a) Model parameters Ak, a.and Ac

Table 5.2 Spring parameters kg, Ax and & and damping coefficient A¢ for the four ball types.

Ball type k() (KN/m) Ax (KN/m’) a Ac (kKNs/m’)
Pressurised 21 16000 1.65 35
Pressureless 23 12500 1.70 4.0
Oversize 21 3600 1.30 3.2
Punctured 16 60000 2.00 5.8

The iterative method described in section 5.5.3 was used to determine the combination of 4k and &
that gave the minimum difference between the model and experiment contact time, for each ball
type, and this data is shown in Table 5.2. The magnitude of this difference is illustrated in Figure
5.12 for the Pressurised ball and in Figure B.6(a)~(c) for the Pressureless, Oversize and Punctured
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balls. These figures show that the model and experimentally determined contact time exhibit a
high correlation.

Included in Table 5.2 is the constant kg, which corresponds to the stiffness of the spring for a zero
displacement. This was defined in the variable parameter model. The parameters in this table can
be used to determine the stiffness of the spring at any displacement x5 using,

kg = ky) + AxXp [5.21]
An illustration of the relative stiffness of each ball type is shown in Figure 5.13. This figure shows
that all the standard production balls have a similar stiffness for a COM displacement of ~10mm
and below. The Pressureless ball is the stiffest in this range because this ball has the highest value
of initial stiffness kzp). The Punctured ball has a considerably lower stiffness than all other balls,

for small displacements. At the highest displacements, the Pressurised ball is the stiffest, followed

by the Oversize ball and then the Pressureless ball. At these displacements, the Punctured and

Pressureless balls have a similar stiffness.
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Figure 5.13 Comparison of the model spring stiffness k; for each ball type.

In this model, the material damping is characterised by the parameter 4-. The value of this
parameter, for all ball types, is shown in Table 5.2. The accuracy of the model is assessed by
comparing the coefficient of restitution for the model and experiment. This comparison is shown
in Figure 5.12(b) for a Pressurised ball and in Figures B.7(a)-(c) for the Pressureless, Oversize and
Punctured balls. These figures show that the model and experimentally determined values of COR

exhibit a very high correlation for impact velocities above 13m/s. For velocities below this, the
model over predicts the coefficient of restitution.
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(b) Force-Time and Force-Displacement data
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Figures 5.14 (a)-(f) Comparison of 1-DOF momentum flux model and experiment results for an
impact between a Pressurised ball and a rigid surface for three different impact velocities.

Figures 5.14(a)(f) show a typical comparison between experimental and model results for an

impact between a Pressurised ball and rigid surface. All these figures show that the model exhibits
a good correlation with the experiment data.
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Figures 5.14(d)-(f) show that the force initially rises rapidly in both the model and experiment
Force-Displacement plots. This is followed by a sudden drop in force due to the instantaneous
drop in structural stiffness; it is at this point that the spring stiffness changes from the high shell

stiffness (ksygL) to a lower value which is proportional to ball COM displacement (ka(o) + Apxy )

In the remaining part of the compression phase, the model force is very close to that measured
experimentally. However, the maximum force is always higher in the experiment than in the
model. During the restitution phase, the model and experiment Force-Displacement plots exhibit a
very close correlation with the two sets of results never differing by more than approximately 10%.

Further comparisons are given in Figures B.8-B.10 for the Pressureless, Oversize and Punctured
balls. The results for the Oversize ball show a similar, high correlation between the model and
experimental results as was found for the Pressurised ball.
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Figure 5.15 Comparison of 1-DOF momentum flux model and experiment results for an impact
between a Punctured ball and a rigid surface for an impact velocity of 23m/s.

The correlation between the model and experiment was found to be generally lower for the
Punctured and Pressureless balls. Comparisons between the model and experiment Force-
Displacement plots for these two ball types are shown in Figure B.8(c)-(d) and B.10(c)-(d). An
example of this lower correlation is given in Figure 5.15 which shows an impact between a
Punctured ball and a rigid surface, for an impact velocity of 23m/s. During the compression stage,
the model predicts the experimental data with a reasonable accuracy of approximately 20%.
During the restitution phase, the experimental data shows that the Pressureless and Punctured balls
exhibit a local peak towards the end of impact which has been assigned to the ball suddenly
‘flipping’ back. The model is unable to account for this and therefore leads to differences between
the model and experimental results. This illustrates that there are supplementary components in the

impact mechanism, for these ball types, which are not simulated in this visco-elastic model. This
explains the lower accuracy of the model for these ball types.
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5.5.5 Discussion of Model
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Figure 5.16 Typical comparison of experiment and model Force-Time data, showing the

contribution of each component on the total model force for an impact velocity of 20m/s. (a)
Pressurised, and (b) Punctured ball.

The momentum flux visco-elastic model is composed of three components, (1) structural stiffness,
(2) material damping, and (3) momentum flux. Typical contributions for each of these parameters
in an impact between a ball and rigid surface at 20m/s are illustrated in Figure 5.16(a) and (b) for a
Pressurised and Punctured ball respectively. Also plotted on these figures is the experimentally

obtained force data. These figures can be compared with similar comparisons for the other models
in Figure 5.8(a) & (b).

This model is similar to the variable parameter model; the main difference being the contribution
made by the damper that represented the momentum flux force. In the model it was assumed that
this force was proportional to the rate of mass flow into the flattened section of the ball, and is only
applicable during the compression phase of impact. This explains the initial sharp rise in the
momentum flux force, followed by its steady drop off up until maximum COM displacement.
Also, it should be noted that a large fraction of the initial model force (1<0.5ms) is due to the
momentum flux component. The magnitude of this component is very similar for all ball types as
it is essentially a function of the deformation rate. Figure 5.16(a) and (b) compare the momentum

flux contributions for the most stiff and least stiff balls respectively and shows that the two
magnitudes are very similar.

Another difference between the model which has been discussed in this section and the variable
parameter model occurs in the initial stage of impact. In this current model it is assumed that no
force acts on the ball for COM displacements of below 2mm. This assumption was made to
simulate the compression of the cloth; the cloth having a very low stiffness. It could be argued that
this assumption should also be made for the final stage of impact, during the period where the ball
COM displacement was less than 2mm. However, it was found that such an assumption had
negligible effect on the overall model solution and therefore was not implemented.
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Figure 5.16(a) and (b) both show that the principal component of the total model force at maximum
COM displacement is the structural stiffness force. It can be seen that this is higher for the stiffer
Pressurised ball compared to the less stiff Punctured ball.
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Figure 5.17 Experimental data for (a) Force-Time and (b) Force-Displacement for a normal
impact between a tennis ball and rigid surface, for an impact velocity of 20m/s.
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Figure 5.18 Model data for (a) Force-Time and (b) Force-Displacement for a normal impact
between a tennis ball and rigid surface, for an impact velocity of 20m/s.

In Chapter 4, a force platform was used to obtain Force-Time and Force-Displacement plots for
four different ball types: an example of these plots being given in Figure 5.17(a) and (b)
respectively. The data in these figures represents impacts for a ball impact velocity of 20m/s. This

impact was modelled using the 1-DOF momentum flux model and the results are shown in Figure
5.18(a) and (b).

Figure 5.17(a) and (b) shows that all the standard sized balls exhibit a similar experimentally
measured force during the first 0.5ms of impact. It has been shown previously that all these balls
have a different structural stiffness and wall thickness which implies that the load measured in this
phase is not dependent on either of these characteristics. The experimentally measured load for the
Oversize ball is lower than that for the standard sized balls, during this phase. The model results in
Figure 5.18(a) and (b) exhibit a similar trend. The smaller load that is calculated by the model for
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the Oversize ball is due to the relatively smaller component of momentum flux force for this ball.
It has a thinner shell and therefore the density per unit area is lower. Immediately after buckling,
the force measured experimentally remains lower than for all the other balls. Therefore this
suggests that the lower experimental load is due to the smaller momentum flux force.

In Figure 5.17(a), it can be seen that that the maximum force during impact was lower in the
Punctured and Pressureless balls, compared to the Pressurised and Oversize balls. A similar trend
is evident in the model results shown in Figure 5.18(a) and (b). It was shown previously that the
main component of the force at this point is the structural stiffness. Since the two internally
pressurised balls have a higher stiffness, these balls exhibit the highest force.

In Figure 5.17(b), and the force platform data in Chapter 4, it can be seen that the Oversize ball
generally deforms by a similar amount to the Punctured ball, even though it is considered stiffer
than it. This is due to the Oversize ball generally exhibiting a lower force during the initial phase
of compression which results in a lower deceleration of the ball centre-of-mass. Interestingly, both
balls reach maximum COM displacement at a similar time, to within 0.1ms. The Oversize ball,
with its higher stiffness and lower damping does, however, exhibit a higher force during the

restitution phase which results in a much shorter contact time for this ball. The difference in
contact time for these two balls is up to 0.5ms.

The inherent weakness of the model is that the impact between a rigid surface and a tennis ball is
very complex and difficult to simulate using a single DOF model. The impact involves structural
instabilities, large deformations and high energy losses which would require a more detailed
analysis for a more accurate model to be developed. However, an advancement of this current
model is beyond the scope of this work. Each of the elements of this visco-elastic model physically
represents a component of the impact mechanism. Therefore this model can be used to illustrate
the differences noted between the different ball types that have been tested. Also, this model can
be adapted for impacts in which the rigid surface is replaced by a deformable surface.

5.5.6 Summary

In this section, a visco-clastic model has been developed which simulates the (1) the structural

stiffness, (2) the material damping, and (3) the momentum flux due to the large deformation of the
ball. The governing equation of this model is,

mgiy +(cp +Cp Vg +hpxy =0
The four main features of the model are individually summarised as follows,

1. High ball stiffness until buckling (for t<0.2ms). For the first 0.2ms of impact, it was
assumed that the ball stiffness was high. This was simulated in the model by assigning a
relatively high value to the spring stiffness; this value being constant and defined as ksygLL.

It was assumed that keyz;, was equal to 80kN/m for all ball types and ball impact
velocities.
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2. Ball stiffness is a non-linear function of the ball deformation (for t>0.2ms). After the first
0.2ms of impact, the spring stiffness kz was assumed to be a non-linear function of the ball

COM displacement, (k,, = ko) + Ax X3 ) In this equation, kpq), Ax and o were constants

that were dependent on the ball type, but independent of ball impact velocity.

3. Material damping was a linear function of the volume of rubber being deformed. The

material damping was simulated wusing a dashpot with parameter c;,

[c 5= VB Ac .(d . )2) An empirical equation was derived which estimated the shape of
1

the deformed ball, for a specific ball deformation. This was used to determine the mass of
the ball that was not in contact with the surface M, and the diameter of the ball/surface

contact area dconr- The damping parameter Ac was dependent on the ball type, but
independent of the ball impact velocity.

4. Momentum flux force. The momentum flux force is equal to the change of momentum and
results from a mass segment, which was initially moving towards the surface, being
brought to rest. No analytical solution can be obtained for this internally pressurised, thick
walled shell so empirical data was used to define the form of the deformation.

For each ball type, a single function (k,, =Ky + AKxg) was determined that defined the

structural stiffness of the ball which gave the same model contact time as that found
experimentally. It was found that the Pressurised ball was the stiffest, followed by the Oversize
and then the Pressureless balls. The Punctured ball was considerably less stiff, for small
deformations. However, at higher deformations it had a similar stiffness to the Pressureless ball.

For each ball type, a single value for the damping parameter 4 was obtained. This gave a high
correlation between the model and experiment values of coefficient of restitution, for impact
velocities between 13 and 30m/s. These are representative of the impact speeds for an impact

between a ball and racket. For other speeds, the model and experiment values of COR could be
forced to correlate by determining the relevant value of Ac.

The experimental and model Force-Time plots (and Force-Displacements plots) exhibit a very
strong correlation, especially for the internally pressurised balls. For the other ball types, there are
supplementary features of the impact mechanism which are not being simulated by the model and
therefore a weaker correlation is obtained. However, it should be noted that, for the majority of the

impacts, the model and experiment correlate to within 10%. Therefore this model is a significant
improvement on the previous models.

The model has been used to clucidate the differences between the experimentally determined
Force-Time and Force-Displacements plots, for the different ball types. Analysis of the individual
contribution of each element of the model has shown that the main component of the force during
the first 0.5ms of impact is the momentum flux force. In the model, this is relatively independent

of the ball stiffness and wall thickness, and therefore the magnitude of the force is similar all the

standard size balls. In the experiment, a similar finding is reached with the Pressurised,

Pressureless and Punctured all exhibiting a similar force. Experimentally it was found that this
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force is lower in the Oversize ball and this ball exhibits a lower momentum flux force in the model
as the density per unit area is lower for this ball.

At maximum COM displacement, the magnitude of the model force is primarily a function of the
structural stiffness. In the model, the Pressurised ball is the stiffest and therefore exhibits the
largest force in this phase. The experimental data reveals a similar finding, with the Pressurised

ball giving the largest force and the Punctured and Pressureless balls giving the lowest force; these
latter two balls being the least stiff.

5.6 Summary

In this chapter, a one degree-of-freedom visco-elastic model of a normal impact between a tennis
ball and rigid surface has been developed. This model is used to predict the coefficient of
restitution and the Force-Time plot for the impact. The accuracy of the model has been quantified
by comparing these model results with those determined experimentally. Three models have been
discussed in this chapter. Each of these models uses a spring to represent the stiffness of the ball
and a dashpot damper to simulate the material damping. These two components act in parallel.

In the first model, it was assumed that the stiffness and damping parameters were constant
throughout impact, but varied with ball impact speed. These assumptions are clearly not realistic
and lead to a model which predicts a tensile force between the ball and surface towards the end of
impact. This results in a low correlation between the model and experiment Force-Time plots, for

significant proportions of the impact. This model is not physically representative of the impact
mechanism and is therefore not a suitable solution.

In the second model, it was assumed that the stiffness and damping parameters were functions of
the ball COM displacement. The stiffness of the spring was assumed to be linearly proportional to
the ball COM displacement; the gradient of this relationship was defined Ax. However, it was
found that the value of Ak increased with impact velocity which implied that the relationship
between stiffness and ball COM displacement should be non-linear. The damping parameter was
assumed to be proportional to the volume of rubber which is being deformed. The relationship
between the magnitude of rubber being deformed and the ball COM displacement was obtained
using empirical data. This assumption ensured that no tensile loads could be present in the model
solution. A comparison of the Force-Time plots for the model and experiment revealed a poor
correlation for the compression phase. The model greatly underestimated the force for low
displacements, and vice versa for high displacements. Also, the model exhibits a larger COM
displacement compared to the experiment. During the restitution phase, the correlation between
model and experiment was considerably higher. However, due to the larger ball COM

displacement in the model, the model force was significantly lower than that measured
experimentally.

Clearly, the second model required a component which acted to increase the model force during the
earlier part of the compression phase. The third model includes a second dashpot damper which
acts in parallel with the first damper and the spring. This second damper represents the force which
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acts on the ball due to the momentum flux. The momentum flux force corresponds to the change in
momentum for the section of the deformed ball which is being flattened upon impact with the
surface. This force is separate to the stiffness force and only acts during the compression phase.
The stiffness of the spring was assumed to be a non-linear function of the ball COM displacement.
This function was identical for all ball impact velocities, but varied between ball types. The
damping parameter was assumed to be a function of the amount of rubber being deformed and the

rate of deformation. It was found that this model could accurately predict the contact time and
coefficient of restitution for most impact velocities.

The experimental and model Force-Time and Force-Displacement plots exhibit a very high
correlation, for this momentum flux visco-elastic model. However, there are some features of the

actual impact mechanism that this model can not account for which leads to some small differences
between the two sets of data.

The momentum flux model has been used to explain the experimental Force-Time plots for the four
ball types. The differences and similarities between the balls have been qualitatively accounted for
using the model. For example, the model illustrates that the main component of the model force at
maximum deformation is due to the structural stiffness; a stiffer ball producing a larger force. This

correlates with the experimentally obtained Force-Time plots that show the stiffer balls exhibiting a
larger force during this phase, compared with the less stiff ball types.

In this chapter, an impact between a ball and rigid surface has been modelled. The model will be
referred to in a later chapter when the impact between a ball and racket is investigated.
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6. The Racket Stringbed — Quasi-static Compression
testing

6.1 Introduction

The aim of this overall study is to determine a mode! for the impact between a ball and a racket, for
a typical tennis stroke. This model involves four distinct, interacting components; the human body,
racket frame, stringbed and ball. The technique which has been adopted in this study involves the
construction of the overall model in discrete stages. In Chapter 5, a model has been developed for
an impact between a ball and rigid surface. This model was verified using experimental data
obtained for an impact between a ball and force platform. The logical next stage of this study
involves the development of a model of a ball impacting on a stringbed. The stringbed is a discrete
component of the impact mechanism and shall be modelled as such. In Chapters 6, 7 and 8, a
visco-elastic model of an impact between a ball and head clamped racket will be developed; a
visco-elastic model being chosen for its versatility. In this type of impact, the racket frame is

rigidly clamped and therefore does not contribute to the impact mechanism. This minimises the
number of variables which need to be considered in this model.

It is well established that different string tensions and types result in differences in the impact
between a ball and racket. There is both analytical and anecdotal evidence of this in academic
journals (Cross 2000f) and commercial publications (Racket Tech 1998). The main finding has
been that a lower string tension results in a higher coefficient of restitution. It has also been shown
that an increase in string tension results in a decrease in the measured contact time for the impact
(Taylor 2002). The explanation for these findings is most easily understood by considering the
work by Cross (2000f). In this work, the ball and stringbed are modelled as two springs in series,
and the racket as a one dimensional flexible beam. A reduction in string tension was represented in
the model as a reduction in the stiffness of the spring which represented the stringbed. This
increased the contact time for the system and meant that the maximum force was lower, and so the
ball deformed by a smaller amount. The consequence of this was that hysteresis losses in the ball
were lower and so it rebounded with a higher velocity. In the work by Cross, the values of the
stringbed stiffness were assumed and not experimentally obtained. In this current chapter,
estimates of the quasi-static stringbed stiffness are obtained for a range of string tensions.
Experiments will be conducted on these head clamped rackets in Chapter 7 to measure the ball

rebound velocity, contact time and ball/stringbed deformation. Finally, a model of this impact will
be developed in Chapter 8.

The quasi-static stiffness of the stringbed can easily be measured by applying a load, perpendicular
to the string plane, and measuring the resulting displacement. Leigh and Lu (1992) experimentally
determined a value of approximately 30kN/m which was found by compressing a tennis ball
against the stringbed for loads of up to 200N. Kawazoe (1993) also used a tennis ball to apply a
load and determined a stiffness of 30kN/m for very small loads, and over 100kN/m at deflections
of 20mm (about 1200N load). Brody (1979) applied a distributed force of 480N over a 40mm
diameter disc and obtained a deflection of 14.5mm, giving a stiffness of approximately 35kN/m.
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In the first part of this chapter, the quasi-static stringbed stiffness is obtained for a selection of
rackets which are considered to cover the range that is typical in a game of tennis. In this first
section, the displacement is only measured at the load point, as this is all that is required to
determine the stringbed stiffness. However, the displacement of the other points on the stringbed
are of equal importance in the understanding of the deformation mechanism. Therefore, in the
second part of this chapter, the shape of the deformed stringbed will also be measured.

6.2 Measuring the quasi-static stiffness of a stringbed
6.2.1 Introduction

In this section, the quasi-static stiffness of the stringbed is measured. In this test, the head of the
racket frame is clamped so that the measured deformation is solely due to that of the stringbed. The
load will be applied at the geometric string centre of the racket, in a direction which is
perpendicular to the plane of the stringbed. The load could have been applied by compressing a
tennis ball into the stringbed. However, one weakness of this method is that the force is applied
over a continually varying area which is difficult to measure. It is common practise to minimise
the number of variables in an experiment and therefore it would be more appropriate to apply the
load over a fixed area. A standard device which can be used to perform such an experiment is
called the Babolat RDC (Babolat 2002). The racket is placed onto a circular support and a load is
applied to the stringbed using a rigid disc with a diameter of SImm. The Babolat RDC machine
applies a specific force and measures the resulting displacement. This displacement is converted to
a number between 0 and 100, which is then shown on the LCD display. This number is only meant
to give a guide to the relative stiffness of the stringbed, and therefore is not measured in physically
significant units. This feature makes this apparatus unsuitable for the current study as the measured
stringbed stiffness could not be compared with that used in a visco-elastic model of the stringbed.

In this section, a machine is discussed that is based upon the Babolat RDC machine but which
measures the actual load that is applied to the stringbed.
displacement of the load point on the stringbed.

The device also measures the

6.2.2 Experiment Apparatus

Figure 6.1 shows the rig which was used to determine the quasi-static stiffness of the deformed
stringbed. The rig supports the racket below a rigid lower plate (labelled A). A threaded rod,
attached to an S-type strain gauge load cell, was attached to a rotating handle (labelled B) which
was supported on a bearing on the upper plate (labelled C). At the other end, the rod passes
through the geometric string centre of the racket and a rigid circular disc, of diameter @psc, was
attached to the end. Rotating the handle clockwise causes the rod, and disc, to traverse upwards
which results in a distributed load being applied to the stringbed across the area of the disc. The
displacement of the stringbed at the load point was determined from the number of revolutions of
the handle Ny; each revolution of the handle corresponding to a displacement of 1.75mm. The
displacement of the load point on the stringbed is referred to as SLo4p and is equal to 1.75Ny.
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Figure 6.1 Rig used to determine the stiffness of the stringbed.

The load cell has been calibrated for compressive loads of up to 2500N. A pre-load of 10N was
applied to the stringbed to ensure that the racket head was positioned properly in the rig before the
measured loading commenced. The handle was rotated at a steady rate of one rotation per second,
up to a maximum of 12 rotations (Ny = 12) or a load of 1200N, whichever was reached first. The
load was then removed, at the same rate as for the loading phase. The output of the load cell was
sampled using a strain indicator unit, for each increment Ny, for both the loading and unloading
phase. At each increment of Ny there was a delay of five seconds before the load value was
recorded. During the loading cycle the reading on the load cell would reduce during this five
second period. This occurred due to stress relaxation taking place in the string. A delay was
employed in an attempt to obtain a true, settled value for the actual stiffness of the stringbed which
was not dependent on the rate of loading. In practise, the load value actually continued to decrease
after the five second delay although the rate of this decrease was relatively small.  This highlights
the difficulty in measuring a value for the quasi-static stiffness of the stringbed because the
recorded value is time dependent. Indeed, holding the load for five seconds may not be giving a
true reading of the static stiffness of the stringbed because the load may be ‘damaging’ the strings.

However, it does give a repeatable method which can be used to test the range of rackets used in
this section.

Four identical racket frames were used in this section, each having a head size of 630cm’ (98in%).
The four rackets were all strung at different tensions using the same 15 gauge (1.4mm diameter)

nylon string. The string tensions 7 used in the rackets were 40lbs, 50lbs, 60lbs and 70lbs. These
cover the range of tensions typically used in the game of tennis.

Four different sized discs were used to apply the load to the stringbed. These discs had diameters
of 35mm, 45mm, 55mm and 65mm. The Babolat machine applies the load onto the stringbed
using a circular disc with a diameter of SImm.  For interest, high speed video footage, such as that
discussed by Goodwill & Haake (2001), shows that the diameter of a typical contact area of the ball
on the racket was in the region of 30-50mm, depending on the magnitude of ball deformation.
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Before the main testing commenced, a short investigation was conducted to identify whether the
properties of the stringbed change during testing. This simple repeatability study involved
cyclically loading and unloading the stringbed 8 times; the load and displacement being measured

throughout each cycle. The results for this repeatability study are discussed in the following
section.

Before any testing was conducted, the stringbed was compressed to full deflection and then

unloaded. This was conducted to ensure that the racket was correctly sat beneath the main plate,
and the loading disc was correctly located on the stringbed.

6.2.3 Results and Discussion

(a) Repeatability study
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Figure 6.2 (a) Single quasi-static loading and unloading of the stringbed and (b) Eight quasi-
static cyclic loadings of the stringbed.

In this section of the experiment, a racket with a string tension of 60lbs was placed in the rig. The
stringbed was loaded and unloaded eight times, using a disc diameter of 35mm. Figure 6.2(a)
shows the data for a single quasi-static compression of the stringbed, and Figure 6.2(b) shows the
data for eight cyclic compressions of the stringbed. In these figures the load is plotted separately,
as two data sets, for the loading and unloading phases. In Figure 6.2(b), two separate fourth order
polynomial trend lines are plotted through these two sets of data. The difference in the two data

sets is largest for stringbed displacements of between 10 and 20mm; the magnitude of this
difference being 4%.

The repeatability of the experiment can be quantified by measuring the uncertainty in the data, for
the eight cyclic compressions, with respect to the trendline. It is assumed that the level of
uncertainty is equal for all data points and therefore the standard deviation of the data can be found
using the method described in Appendix A. It was found that the standard deviation of the loading

and unloading phases was 3.7N and 2.8N respectively. This relatively small deviation implies a
high level of confidence can be assigned to the test results.
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The data has shown that the stringbed exhibits a small level of hysteresis, even for this quasi-static
deformation. However, in the following section only the data that was measured for the
compression phase of the impact is presented. Whilst it is accepted that the magnitude of
hysteresis loss is of some interest, it has been omitted here for the sake of clarity.

(b) Stringbed displacement
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Figure 6.3 Measured load plotted against the displacement of the load point on the stringbed.
The data is plotted for rackets strung with a range of tensions.

Figure 6.3 shows the measured load plotted against the displacement of the stringbed, at the point
at which the load is applied. The data is presented for all the string tensions that were tested, and
for the four different disc sizes that were used to apply the load. The data shows that the force
increases, as the displacement is increased. For each string tension, the stringbed is loaded to the
same maximum displacement for each disc diameter. The figures show that the measured force is
largest for the tests conducted with the largest disc size; the measured force obtained using a 65mm
diameter disc being approximately 35% larger than that obtained using the 35mm disc.

A qualitative comparison of Figure 6.3 (a)-(d) shows that the force in the stringbed, for a specific
displacement and disc size, is smallest for the racket strung at a tension of 401bs and largest for the
racket strung at 70lbs. A more accurate comparison of the different string tensions can be

performed by plotting the stiffness of the stringbeds directly. In this case, the stiffness is defined as
the ratio of the force applied and the resulting displacement.
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Figure 6.4 Stringbed stiffness plotted against the displacement of the load point on the stringbed.
The load was applied via a rigid disc which had a diameter that ranged from 65mm to 35mm.

In Figure 6.4 (a)-(d), the calculated stiffness of the stringbed is shown. In cach figure, the data is
plotted for the four rackets (strung at different tensions). The diameter of the disc used to apply the
load is different in each figure, and ranges from 65mm (Figure 6.4(a)) to 35mm (Figure 6.4(d)).

Figure 6.4 (a) shows that the stringbed of the racket strung at 70Ibs is approximately 70% stiffer
than for the racket strung at 40lbs. This figure also shows that the stringbed stiffnesses of the
rackets strung at 50Ibs and 60lbs are 25% and 45%, respectively, stiffer than that strung at 40lbs.
In this figure, the load was applied using a circular disc with a diameter of 65mm. In Figure 6.4
(d), the load was applied using a disc with a diameter of 35mm and the data in this figure shows
that rackets strung at 501bs, 60Ibs and 701bs have a stringbed stiffness which is approximately 15%,

40% and 60% stiffer, respectively, than that for a racket strung at 401bs. Figure 6.4 (b)-(¢) exhibit a
similar trend as that found in the other two figures.

The data in Figure 6.4 (a)-(d) indicates the relative quasi-static stiffness for the different string
tensions. However, in a model it would be useful to have a generic relationship between the
stringbed stiffness and the diameter of the disc used to apply the load. Clearly, it is not possible to
have a single function that can describe this relationship as the magnitude of the stiffness is a
function of the string tension, stringbed displacement and the disc diameter. For example, in this

current study, 16 equations are required to define the stiffness of the stringbed at a specific

displacement, for the four disc diameters and four string tensions. By selecting a suitable

normalising technique, it may be possible to reduce the number of required equations, as shall be
discussed below.

124



Chapter 6 Stringbed — quasi-static compression testing

80 — : , .
% , 965 1
B 455 pisc
] o |
— 60 [ ] i -
g . - s o o : o ¢45 Diameter
Z ] D °
< s ® o _oe 0 435
S | ] (=] PY [ J o [o] o
4|8 g0ee g0 ;
o
o e9800°
€ o0
]
20
0 ,l\_..,- TUTTTTTT T T T Ty A R S S "{
0 5 10 15 20 25 30

Stringbed displacement (mm)
Figure 6.5 Illustration of the variation of stringbed stiffness with displacement and disc diameter
(that is used to apply the load). The data is presented for a string tension of 501bs.

In Figure 6.5, the measured stringbed stiffness data is plotted for a range of different disc diameters
that have been used to apply the load. This data has been obtained for four different string
tensions, but is only presented here for a string tension of 50lbs. Figure 6.5 confirms that the
stringbed stiffness is a function of the disc diameter. However, it also shows that the shape of the
curves which define this stiffness are very similar for all disc diameters. It is therefore
hypothesised that the stiffness data can be normalised to a specific reference value. In this case,
this reference data has been arbitrarily chosen as the stiffness data which was obtained by using a

disc with a diameter of 55mm (¢s5). Therefore, the normalised stiffness l?s , for a specific stringbed

displacement and a disc diameter of ¢p, is defined using [6.1],
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Figure 6.6 (a) Illustration of variation of normalised stringbed stiffness ES with displacement

and disc diameter (that is used to apply the load). (b) Normalised stringbed stiffness IFS plotted

against disc diameter, using data for all stringbed displacements. The data is presented for a string
tension of 50ibs.

Figure 6.6 (a) illustrates the variation of the calculated normalised stringbed stiffness for the four
different disc diameters. This is the same data as is shown in Figure 6.5 but the data has been
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normalised to the stringbed stiffness which was obtained for a disc diameter of 55mm and therefore

all the normalised data for ¢ssis equal to unity. This figure shows that the normalised stiffness is

approximately independent of the stringbed displacement, and is solely a function of the disc
diameter.

Figure 6.6 (b) shows the same normalised stringbed stiffness data that is presented in Figure 6.6(a).
However, in this figure the data is plotted as a function of the disc diameter ¢gp. For each disc
diameter, the data is presented for all the stringbed displacement increments. A second order
polynomial is plotted through this data and the equation of this trendline can be used to estimate the

relationship between the normalised stringbed stiffness and the disc diameter. The general form of
this equation is,

ky=ag}+bd, +c [6.2]

where a, b and ¢ are constants.

Equation [6.2] can be used to estimate the normalised stiffness l?s for a specific value of @p; this

stiffness being normalised to the stringbed stiffness obtained using a disc diameter of 55mm. A
second order trend line can be plotted through the data in Figure 6.5 and be used to define an

equation for the stringbed stiffness that was obtained using a disc of this diameter of SSmm. The
general form of this equation is,

ks(¢ss)= dds +edg + f [6.3]
where d, e and f are constants.

To complete the solution, [6.1] is rearranged into the form,

ks( D ) = Es x kg (¢55) [6.4]

Using [6.4], the stringbed stiffness at any displacement and for any disc diameter can be calculated
by knowing the normalised stiffness for the relevant disc diameter ([6.2]) and the stiffness
measured using a 55Smm diameter disc, for the specific displacement s ([6.3]).

The above analysis has revealed a possible method of minimising the number of equations that are

needed to represent the stringbed stiffness of a racket. The method was illustrated using a tennis

racket that was strung at SOlbs tensions. In brief, the method involved the normalisation of the

stringbed stiffness data with respect to the data that was obtained using a disc diameter of 55mm.

This data was shown in Figure 6.6(b), for a racket strung at 50lbs. The normalised stiffness /;S

data for all the rackets that have been used in this section (40lbs, 50Ibs, 60lbs and 70ibs), is given
in Figure 6.7.

Figure 6.7 shows the normalised stringbed stiffness plotted against the diameter of the disc that is

used to apply the load. This figure contains the normalised stringbed stiffness data for all string
tensions and for all values of stringbed displacement.
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Figure 6.7 Normalised stringbed stiffness I?S plotted against disc diameter that was used to apply
the load. The data is presented for all string tensions and all the stringbed displacements.

A second order polynomial trendline is plotted through the data in Figure 6.7; the coefficients of

this equation being obtained using the least squares regression method. The equation for the
trendline shown in this figure (converted to SI units) is,

kg =78.4242 +2.336¢,, +0.6392 [6.5]

Using this equation, along with [6.3] (for the relevant racket) and [6.4], the stringbed stiffness at
any displacement and for any disc diameter can be estimated . In Figure 6.7, the scatter in the
results, with respect to this trend line, illustrates the uncertainty in the use of the trendline to
estimate the relationship. It is assumed that this level of uncertainty is equal for all data points and
therefore the deviations form a normal distribution. A statistical analysis of the data, as described
in Appendix A, can be used to calculate the standard deviation of the data as 0.03. A visual
analysis of the scatter in the data in Figure 6.7 would lead to a conclusion that this value is
unrealistically small. However, it should be noted that this graph contains approximately 160 data

points. A large proportion of these data points exhibit a very low uncertainty, which leads to the
low value of the standard deviation being obtained.

To summarise, [6.3]-[6.5] are very useful equations for estimating the measured values of the
stringbed stiffness. The only requirement of the solution is that the stringbed stiffness for a disc

diameter of 55mm is known. If this is satisfied, then the actual value of stiffness can be estimated
for any value of disc size between 35mm and 65mm.

6.2.4 Summary

In this section it was shown that the quasi-static stiffness of the stringbed can be found by applying
a distributed load to the stringbed using a rigid disc. It has been shown that the repeatability of this
experiment is very high, with standard deviations of the measured load being only 3N. The cyclic
compression tests showed that the stringbed exhibited small, but measurable hysteresis losses.

The experiments were conducted using a range of disc sizes, and four identical rackets that were

strung using a tension ranging from 40lbs to 70lbs. It was found that the 70lbs racket was

approximately 65% stiffer than the 40lbs racket. It was also found that the measured force was
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approximately 35% larger when the 65 mm diameter disc was used, compared with when the
35mm diameter disc was used.

An equation was derived which could be used to calculate the normalised stringbed stiffness, for a
specific disc diameter. If the stringbed stiffness was measured for a disc diameter of 55 mm, then

the stringbed stiffness for any disc diameter could be estimated using the empirical equation.

6.3 Measuring the shape of a quasi-statically deformed stringbed
6.3.1 Introduction

In section 6.2, the quasi-static stiffness of the stringbed was measured for displacements which are
perpendicular to the plane of the stringbed. In that section, the load was applied using a rigid

circular disc. The stiffness was measured for four different string tensions and four different
diameters of disc.

In this current section, the shape of the quasi-statically deformed stringbed is obtained. More
precisely, the displacement of a number of points along the longitudinal axis of the stringbed is to
be measured. In the previous section, it was shown that the quasi-static stiffness of the stringbed
was dependent on the string tension and size of the disc. In this current section, the effect that
these parameters has on the shape of the deformed stringbed is to be determined.

6.3.2 Experiment Apparatus

Stringbed
deformation
O

S

Vv VAvAS =
¥ A A vl 9
77 7 2.7 7 7¢

Z 7 LA 5 55 S5
A 7 et

A B C D

Figure 6.8 Schematic illustration of the four points (A-D) at which the displacement of the
stringbed is measured using a dial gauge. The dial gauge is also shown (inset).

In the previous section, the tests were performed on four identical rackets that had been strung at
40, 50, 60 and 701bs. In this current section, only the rackets strung at 40 and 70lbs are to be tested
as this will provide sufficient information as to how the string tension affects the shape of the
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deformed stringbed. This testing was conducted approximately three weeks after the testing that

was described in section 6.2 was completed. The same two rackets were used in both sections, and
were not restrung before this current testing took place.

The load was applied to the stringbed using the same apparatus as that described in section 6.2. A
displacement was applied at the geometric string centre using a rigid circular disc. This disc can be
seen in Figure 6.8 (inset). This displacement is defined as &,o4p and is applied in increments of

1.75mm. Two different disc diameters (35mm and 55mm) are used in this study, to assess the
effect that the disc size has on the shape of the deformed stringbed.

Figure 6.8 illustrates the four discrete points (4, B, C and D) along the longitudinal axis at which
the vertical displacement of the stringbed was measured using a dial gauge. These points were
located at the intersections between the four cross strings and the longitudinal axis, as illustrated in
Figure 6.8. The dial gauge was mounted on the lower plate using a strong magnet. The gauge was
used to measure the displacement at point A, for each increment of & p4p, up to a load point
displacement J,04p of 17.5mm. The dial gauge was then moved to point B and the experiment was

repeated. The gauge was then moved to point C, and finally point D, resulting in a total of four
repeats of this experiment.

6.3.3 Results and Discussion
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Figure 6.9 The measured displacement of the stringbed at a range of positions from the load
point. The data is presented for different combinations of string tension Ts and load disc diameter

¢p. The data is categorised by the stringbed displacement 8,045 at the point at which the load is
applied.
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Figure 6.9 (a)-(d) show the measured displacement of the stringbed as a function of the distance
from the load point; the data is categorised by the displacement of the load point &,04p. Figure 6.9
(a)-(b) illustrate the displacement of the stringbed for the racket strung at 401bs tension. Figure 6.9
(c)-(d) illustrate the data for a racket strung at 70lbs tension. The load was applied using a circular
disc with a diameter ¢p of either 35mm and 55mm; the value of ¢, being specified in each figure.
Each data point represents the average of the two values which were sampled; one value being
recorded during the loading phase and one for the unloading phase. Lines are plotted through
several data sets in Figure 6.9 (a) to give an illustration of the shape of the deformed stringbed. It
can be seen that the stringbed displacement is constant over the section of the stringbed that the

load is being applied, i.e. for a distance of ¢% from the applied load. The displacement then

decreases with distance from the applied load point.

It is difficult to extract any further conclusions from the data in Figure 6.9. An alternative method
of plotting this data is given in Figure 6.10. In this figure, the stringbed displacement at each

position along the stringbed has been normalised with respect to the displacement .04 at the
applied load.
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Figure 6.10 The normalised displacement of the stringbed, at a range of distances from the load

point. The data is presented for different combinations of string tension T and disc diameter ¢p.

The data is categorised by the displacement of the stringbed & oap at the point at which the load is
applied.

Figure 6.10 illustrates that, for a specific combination of string tension and disc diameter, the
normalised data is not greatly influenced by the magnitude of the stringbed deformation. The
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implication of this is that the shape of the stringbed is effectively constant for all applied forces, for
a specific combination of string tension and load area. It could therefore be assumed that a single
best-fit line could be plotted through all the data sets in each figure, to represent the shape of the

deformed stringbed for the specific tension/diameter combination. These lines are plotted in Figure
6.11.
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Figure 6.11 The normalised displacement of the stringbed as a function of the distance from the

applied load. The data is categorised by the combination of string tension T and disc diameter ¢p.

Figure 6.11 shows the normalised stringbed displacement data for all of the combinations of the
two string tensions and disc diameters, Ts and @ respectively. This data shows that the shape of
the stringbed deformation is a function of the diameter of the disc used to apply the load, especially
for the higher string tension. When using a disc diameter of 35mm to apply the load, the shape of
the deformed stringbed does not appear to be a function of the string tension. However, when the
larger disc was used, the string tension magnitude did affect the shape. The importance of this

finding is difficult to quantify because more data would need to be collected to verify this
relationship.

6.3.4 Summary

In this section, the deformed shape of the stringbed was measured for a quasi-static loading. In this
experiment, the load was applied using a rigid circular disc and the displacement at various points
along the longitudinal axis of the racket was measured using a dial gauge. These tests were

conducted on two identical rackets that had been strung with two different string tensions, and two
different disc diameters were used to apply the load.

It was found that the normalised shape of the deformed stringbed was not a function of the
magnitude of the force/displacement which was applied. It was not clear whether this shape was a

function of the string tension. However, for a specific string tension, it was found that the shape
was dependent on the diameter of the disc.
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6.4 General comment about quasi-static stringbed stiffness

6.4.1 Introduction

This section contains a general discussion regarding the measurement of the quasi-static stringbed
stiffness of a racket. In sections 6.2 and 6.3, the same rackets were used for the two separate
experiments. The differences between the two experiments are clarified as,

1. Experiment . In this experiment the stringbed stiffness was measured and this testing is
discussed in section 6.2.

2. Experiment 2. In this experiment the shape of the deformed stringbed was measured, and
this testing is discussed in section 6.3.

In both experiments, two identical rackets were used; one racket was strung at 40lbs and the other
at 70lbs. The two rackets were first used in Experiment | and then, approximately three weeks
later, they were used in Ixperiment 2. The rackets were not restrung during this period. In both
experiments, the applied force and displacement of the load point was measured. Initially, it would
be expected that the results for the stringbed stiffness would be identical for both experiments.
However, during the three week period between the two experiments, the two rackets were
subjected to a number of ball impacts, in a separate experiment. This may have affected the
properties of the stringbed, and lead to differences in the values of the stringbed stiffness measured

in sections 6.2 and 6.3. In this short section, a comparison is made between the measured quasi-
static stringbed stiffness for Lxperiment I and Experiment 2.

6.4.2 Results 7~
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Figure 6.12 The measured force is plotted against the stringbed displacement at the load point

droap for the two experiments. The data is categorised by the combination of string tension and
disc diameter 7 and ¢, respectively.

Figure 6.12 shows the relationship between the applied force and the displacement of the stringbed
at the load point d04p. The data is presented for combinations of two different string tensions and
two disc diameters. Figure 6.12(a) shows the results for Lxperiment 1 (discussed in section 6.2)
and Figure 6.12(b) shows the results for Experiment 2 (discussed in section 6.3). It can be seen
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that the measured force values are consistently higher in Figure 6.12(a) compared with Figure

6.12(b). For the racket strung at 70lbs tension, this difference is approximately 15%. For the
racket strung at 401bs the difference is approximately 10%.

6.4.3 Discussion

This brief comparison has illustrated that the stringbed stiffness has reduced during the three week
period between Experiment I and Experiment 2. It is not clear whether this reduction is due to the
racket being used in the impact tests or if it is simply due to the length of time between tests. It is
likely to be a combination of both. For both scenarios, this reduction in stringbed stiffness can be
assigned to a reduction in the tension in the strings. The tension loss with time, or stress
relaxation, has been measured and discussed thoroughly by Cross (2000b) and therefore shall not
be discussed in any depth here. In brief, the loss in tension occurs due to steady breaking of the
bonds which connect the polymer molecules together. Cross (2000b) also measured the tension of
a single string, before and after an impact with a hammer. During impact, clearly the tension will
rise and it was then found that the tension measured after the impact was lower than that measured

immediately prior to the impact. This mechanism would also contribute to the tension loss that is
found between Experiment 1 and Experiment 2.

This data illustrates that the stringbed stiffness can not be considered to be constant as it is a
function of both time and the number of impacts that the racket is subjected to. Ideally, the rackets
should be accurately restrung before each experiment. However, this is not always practical and
therefore the stringbed stiffness must be measured as frequently as is possible. This allows the

properties of the stringbed to be monitored, and highlights another use of a quasi-static
compression test.
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6.5 Summary

In this chapter, a load was applied at the geometric string centre of a head clamped racket using a
rigid circular disc. This load was applied in a direction that was perpendicular to the string plane.

In the first section of this chapter, the magnitude of the applied force was measured along with the
displacement of the load point. This experiment was performed using a range of disc sizes, and
four identical rackets that were strung using a tension ranging from 40lbs to 70lbs. It was found
that the stringbed on the racket that was strung at 70lbs was approximately 65% stiffer than the
401bs racket. It was also found that the measured force was approximately 35% larger when the 65

mm diameter disc was used to apply the load, compared with when the 35mm diameter disc was
used.

In the second section of this chapter, the shape of the deformed stringbed was obtained by
measuring the displacement of a number of points along the longitudinal axis of the racket. In this
experiment, the load was applied using a circular disc, as done in the first experiment. It was found
that the normalised shape of the deformed stringbed was not a function of the magnitude of the
force which was applied. It was not clear whether this shape was a function of the string tension.

However, for a specific string tension, it was found that the shape of the deformed stringbed was
dependent on the diameter of the disc.

This chapter has provided information regarding the stiffness of the stringbed, and the shape in
which it deforms. This data will be a valuable resource in a later chapter, when a model of the
stringbed is developed for an impact between a ball and racket.
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7. Impact between a Ball and Head Clamped Racket

7.1 Introduction

This chapter is the second part of a trilogy which aims to develop a model for an impact between a
ball and head clamped racket. In Chapter 6, the quasi-static stiffness of a stringbed was obtained.
It was shown that this stiffness increases by approximately 65% for an increase in string tension
from 40lbs to 70lbs. Analytical models (Cross 2000f) have illustrated the effect that the magnitude
of the stiffness has on the contact time and ball rebound velocity. However, these studies have
never been supported by experimental data that has confirmed that the parameters which are used
in the models are realistic. In this chapter, experimental data is obtained for an impact between a

ball and head clamped racket. In Chapter 8, a model for this impact will be developed and the data
in this current chapter will be used to verify this model.

In this chapter, five parameters will be measured for an impact between a ball and head clamped

racket. In this impact, the ball lands perpendicular to the plane of the stringbed. The parameters to
be measured are as follows,

Ball rebound velocity.
Contact time.

Magnitude of stringbed deformation.

1

2

3. Magnitude of ball deformation.
4

5. Shape of deformed stringbed.

These parameters will be measured using a selection of ball types and string tensions which cover
the typical range that is commonly used in the game of tennis.

7.2 Determining the magnitude of stringbed deformation for an impact
between a ball and head clamped racket

7.2.1 Introduction

In the introduction to this chépter it was stated that both the magnitude and shape of the deformed

stringbed need to be measured. There are two main methods which could be used to determine
these parameters during impact which are,

1. Position transducer — attach a transducer to the strings and sample the output signal.
2. High speed cinematography - sample the string motion from still images of the impact.

One of the main problems with the first method is associated with the very short contact time for an
impact between a ball and head clamped racket; a typical contact time is between 3 and Sms
(Groppel et al. 1987a). During this short time the stringbed will typically deform by approximately
20mm, which inherently results in large accelerations that need to be sampled. For this task to be
achieved with a satisfactory accuracy, a low-inertia transducer which is sampled at a very high rate
must be used which in many cases is impractical. This is certainly the case if several transducers
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needed to be used to sample the shape of the deformed stringbed, as is one of the aims of this

chapter. Therefore, it was concluded that a position transducer was not a suitable device to
measure the stringbed displacement.

The main difficulty associated with using high speed cinematography is that the strings are not in
the field of view when the camera is placed perpendicular to the plane of transverse string motion.
However, Groppel et al. (1987a) used high speed cinematography to measure the stringbed
displacement. The aim of that work was to determine the difference in magnitude of the stringbed
displacement motion, for a variety of string tensions, for an impact between a ball and handle
clamped racket. The impacts were recorded using a high speed video operating at 3500 frames
per second. The optical axis of the camera was positioned at an angle of 8.7°, with respect to the
stringbed plane, enabling the entire region of the string face to be viewed during impact. The
stringbed deflection at the geometrical string centre was obtained using this method. The main

weakness of this solution is associated with the potentially large error associated with this out-of-
plane sampling technique.

An alternative high speed cinematography method involves attaching a light, rigid object to the
stringbed which is supported in such a way that the motion of the object matches that of the
stringbed. This object must be visible in the camera field-of-view. This idea was employed by
Johnston (2001) who used hollow tubes of a carbon fibre composite which were defined as
trackers. One end of these trackers was fixed to the stringbed and the other end was visible to the
high speed camera. The tracker was suitably supported so that the motion of the stringbed was
identical to that of the motion of the tip. Johnston used 15 trackers to sample the motion of the
stringbed which added approximately 12g to the weight of the stringbed; a typical stringbed
weighing approximately 20g. These trackers were attached at increments along the longitudinal
axis of the racket. It was concluded that this method could be used to measure the shape and
magnitude of the stringbed deformation. However, it was also found that the large additional mass
(due to the trackers) acted to reduce the coefficient of restitution for the impact. Therefore, the

measured stringbed deformation may not truly represent the motion of a stringbed which does not
have 15 ‘trackers’ attached to it.

It was concluded that the high speed cinematography method was the most suitable technique to
use to measure the stringbed deformation during impact. It was also concluded that the use of
trackers resulted in a more accurate experiment, as it did not involve an out-of-plane sampling
method. In this current section, only one tracker was used as the shape of the deformed stringbed
was not required at this stage. This experiment enabled the coefficient of restitution, contact time
and ball/stringbed deformation to be measured. This tracker has a mass of 0.7g and was therefore
assumed to have negligible effect on the impact mechanism.
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7.2.2 Experiment Apparatus
Arrcannon [t

Speed gates

Head clamped
racket

High speed
video system

Tracker '

Figure 7.1 Illustration of experimental arrangement showing the tracker attached to the stringbed
of a head clamped racket.

Figure 7.1 shows the experiment used to measure the magnitude of the stringbed deformation. The
ball was propelled normal to the stringbed plane using an air cannon, identical to that described in
Chapter 3. The inbound and rebound velocity of the ball were measured using speed gates. The
head of the racket frame was clamped in a rigid structure, with its longitudinal axis vertical. The

Phantom v4 high speed video system was used to record the impact at a rate of 7100 frames per

second, and a resolution of 256 x 128 pixels. The focal axis of the camera was aligned

perpendicular to the motion of the ball, and therefore the stringbed was not visible.

Figure 7.2 Photograph of the hollow carbon fibre ‘tracker’ which was firmly attached to the
stringbed using a thin metal wire.

The tracker, as shown in Figure 7.2, was attached to the stringbed using a light thin wire which was
secured at the other end using a metal crimp. The trackers were supported horizontally using a
frame (not shown) to ensure that they only moved in a direction perpendicular to the stringbed.

The total length of the tracker and crimp was ~70mm. The tip of the tracker was coated in a bright
white paint to clearly identify this point.

Two different types of tennis ball were tested in this study; these were a standard Pressurised and
Pressureless ball. These two balls are described in Chapter 4 and are representative of the majority

of balls that are used in the game of tennis. The balls were propelled at the racket at a range of

impact velocities between 20m/s and 40m/s. The racket used in this section was an /TF
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mcthod. It has been found that th

the accuracy is higher for the sampling of the & co-ordinatc of poiit
Pr, compared with the point Pg. This is due to the tracker tip having a more defined edge,

lllé ll a

e 41 41

w...parw with th

with point Pp.

(¢
[ ]
(29
ac

[¢]
(o)
=5
=
=
@]

(<
§

- S T, | N—
¢ comsisteit sai ipiiiig of puuu { / COilipaica

® N A Dseaillo saxd dicines
Jolvt INCOULLS UL LISCUSSILUTE

In this experiment. a set of speed gates were used to measure the impact and rebound velocity of
the ball. The ratio of these two terms is defmed as the coefﬁclent of restitution COR. Figure 7.5

1 tad + 1 "
shows the C \ pAOnSu & "‘ASA uan lmpact




racket. ln goncral, COR decicascs from approximately 0.85 to 0.75 over the ball impact velocity
range of 20 to 40m/s. This data correlates qualitatively with that obtained by Johnston (2001) who
porformcd a similar cxperiimcnt using a racket stiung at 601bs.  The cocticicat of restitution data
presented in Figure 7.5 is considerably higher than that obtained for an impact between a ball and
rigid suifacc.  The cociicicit of restitution for such ai impact rangcs fioim 0.65 o 0.40, as
discussed in section 4.4.2, for a similar velocity range as shown in Figure 7.5.
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difference is only evident for the higher speed impacts, whereas at low speeds the two ball types
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For a specific ball type, the figure shows that the racket strung at 40lbs tension exhibits the higher
values of coefficient of restitution. This correlates with anecdotal evidence that a reduction in

string tension, increases the ‘power’ of the racket. Figure 7.5 shows that, for the Pressurised ball,

the value of the coefficient of restitution is consistently 0.04 higher for the racket strung at 40lbs
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the impacts involving the Pressureless ball. These differences are of a similar order of magnitude
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In this experiment, the high speed video images were analysed and the data was processed to give
the ball and stringbed deformation throughout impact; the definition of these two terms being
illustrated in Figure 7.4, Figure 7.6 shows the ball and stringbed deformation for an impact

between a ball and racket at 25m/s, for two different string tensions and ball types.
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with Figure 7.6, it can be seen that the shape of the ball and stringbed Deformation-Time curves are

consistent for all the impacts.
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Figure 7.6 Ball and stringbed deformation for an impact between a ball and head-clamped racket,

for four different combinations of string tension and ball type, at a nominal impact velocity of
25m/s.

Figure 7.6 shows that the ball compression initially increases rapidly, followed by a temporary
reduction in the rate, before continuing to increase at an approximately constant rate. The
stringbed does not begin to deform until approximately 0.2ms after initial contact. This is likely to
be due the inertia of the tracker and stringbed. It will also be due to the low stiffness of the cloth
which will result in a relatively low force acting during the initial stage of impact, as discussed in
section 4.4 for an impact on a rigid surface. Figure 7.6 (and Figures C.1-C.2) shows that the
maximum deformation of the ball occurs after the point of maximum stringbed deformation. These

figures also show that the ball is still compressed even when the stringbed deformation returns to
zero.
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Figure 7.7 Definitions of the measured terms obtained from the force-deformation plots.
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curves shown in Figure 7.6 have a similar shape, the main features can all be defined by the
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defined for both the stringbcd and ball deformations in Figure 7.7. The maximum ball and
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the contact time for an impact between a ball and rigid surface was defined as the time, after initial
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s defined as 7 as illustrated in Figure 7.7. A further definition of the contact time can be

dcﬁncd as the timc taken for the stringbed deformation to rctuim to zero, and this paramcicr is
defined as 7). At this time, the ball is still deformed and the magnitude of this deformation has
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Figure 7.8 (a) Maximum ball deformation and (b) maximum stringbed deformation, plotted
against ball impact velocity, for an impact between a ball and head clamped racket.

Figurc (d) shows the maximum ball dcformation UB(MAM u;huné i vt plaﬁcd aga ainst the ball

impact velocity. Although the tests were conducted for impact velocmes ranging between 20 and
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ma, it was not mwa_ya puoau)u.« to determine the ball deformation at the ‘luéh\.at vel

was because the left edge of the ball disappeared from

=0

ocitics. This
view during impact so could not be sampled.

Thc valucs of Sy typically vary between 20 and 35mm for the velocity range of 20 to 35m/s. 1a
section 4.4.2, it was shown that the ball deformation increased from 25 to 40mm for a similar
velocity range, for an impact on a rigid surfacc. The maximum b o Spaay) i
generally larger for impacts involving the Pressureless ball compared with the Pressurised ball.
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shown that a Pressurised ball is stiffer than a Pressureless ball, for deformations of the same order
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more for an impact on a racket strung at 701bs, than a racket strung at 401bs.

that the valuc of Sy for the racket

strung at 40lbs tension is approximately 25% hlg,hcr than that of the racket strung at 70lbs. This
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stringbed stiffness. Comparing Figure 7.8(a) and (b) reveals that, in general, the stringbed does not
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Figure 7.9 The relationship between contact time and ball impact velocity. for two different

definitions of contact time. (a) 7, which is the time taken for the stringbed to return to its
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velocity for the four combinations of ball type and string tension.  Figure 7.9(a) shows that the

contact time 7oy is 'Uh5“‘ foi ““'Pa\vtb o the racket stiuig at 40Clbs, \/Uﬂl})mvd to that stiung at

701bs; this difference being approximately 0.7ms. There is no significant difference in the value of
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An alternative description of the contact time is defined as the time taken for the ball deformation

to return to zero. This contact time is defined as 74 and the results for this parameter are

illustrated in Figure 7.9 (b). For impacts on the racket strung at 40lbs tension, there is no

signiﬁcant difference in the value of 7, for the two ball types. However, for the impacts on the
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compared to the Pressureless ball. This correlates with the data obtained for impacts on a rigid
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ncter 7 ((b/ This ii lp‘liCS that the valuc ©
Tew is a function of both the ball type and string tension.
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(b) shows that the valuc of Ty, reduces from 5.3ms to 4.lms over the velocity range
used in this experiment, for a string tension of 40lbs. This compares to a value of the other

143

40



Chaptcr 7 Ball impact on a head clamped racket
% T Terd s TT T TS ’T’ ~. £ Vme 4~ 2 0.“- L. 4l T P T T T A
dcﬁl ltIU 1 Ul vuliuavt i iC 40 (b/ i Uuublllé ll Oill 0.11118 tU .01 101 uic Saiiic v L«lUUll_y lallb’\c. i

similar comparison for the racket strung at 70lbs tension shows that the value of 7¢ r

2 O.-- - 1 +1 |

A o A L~ N - S
LA W J.Ulllb, \.Auaa uic v

~£ T ~ .. - A ganm b Y Agns T e
iU Ot l ces) TCUUCCS 11011 . 00113 WO J.7iis. 111030 \/Ullll}

that the value of 7 is generally between 0.2ms and 0.4ms larger than the value of 7. This
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It has been shown above that the time taken for the ball to return to its original shape (7)) is

longer than that for the stringbed to return to its original position (7¢). One consequence of this
is that the ball is still deformed when the stringbed deformation is zero. The magnitude of this hall

deformation, when the stringbed returns to centre, is defined as Jpzyp) and is illustrated in Figure
7.7. Figuic 7.10 shows the rclation between the ball impact velocity and the cond ball

'CJ

deformation 5B(FND) for all the ball type and string tension combinations. This figure shows that the
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o the Pressurised ball, especially at higher ball lmpact velocities. This is probably due

to the
Pressureless ball being less stiff and will take longer to reform, compared to the Pressurised ball.
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In the previous section the deformation of the ball. during impact. was measured experimentally

and presented for a range of ball impact velocities. In a later chapter, a visco-elastic model of the
impact will be developed. This type of model is used to cal 1e motion of the ball centre-
mass and therefore it would be useful to compare those model results with experimental dat
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Chapter 7 Ball impact on a head clamped racket

directly. However, the motion of the ball COM can not be obtained directly for an impact with a
head-clamped racket.
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Figure 7.11 Empirical relationship between maximum ball deformation and ball centre-of-mass
displacement, for a normal impact between a ball and rigid surface.

In Chapter 4 an empirical relationship was found between the maximum ball deformation and
maximum ball COM displacement, for an impact on a flat surface, and this is shown in Figure 7.11.
It is appreciated that the form of a deformed ball may be different for an impact on a head clamped
racket, compared with that for a rigid surface. However, it is assumed that this relationship shown

in Figure 7.11 is a valid first order approximation for an impact on a stringbed. The function which
describes the curve in Figure 7.11 (converted to SI units) is,

Xsanay = -8-184(Sspax)’ + 095427035010 [7.1]

where Xy is the calculated maximum ball COM displacement, and Jppgay is the measured
maximum ball deformation.

The relationship defined by [7.1] is only strictly valid for the point of maximum ball deformation.
However, it is assumed that it is valid for all stages of the impact and therefore it can be used to
convert the ball deformation &3 values (from the previous section) into ball centre-of-mass

displacement xj values. Therefore, equation [7.1] can be modified to describe the general
relationship,

xp—xg = -8.184(8)° + 0.9542705; [7.2]

where (x5 — xs) is the ball COM displacement with respect to the stringbed displacement xs.

Equation [7.2] can be used to translate the Ball Deformation-Time plots, such as those in Figure 7.6
into Ball COM Displacement-Time plots. Typical plots are given in Figure 7.12, which also shows
the magnitude of the stringbed displacement. It should be noted that the stringbed displacement is
identical to the stringbed deformation which was discussed in the previous section. Figure 7.12
shows that the ball centre-of-mass displacement is generally higher than the stringbed displacement
for a string tension of 70Ibs, but lower for a string tension of 40lbs. This figure illustrates the

findings for an impact velocity of 25m/s. Further data is given in Appendix C.3, for other impact
velocities.
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impact vclocity is 25m/s.
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The data collected in this scction can be used to detenmine the maximum ball COM displaccinent,
for the full range of ball impact velocities, and this data is given in Figure 7.13. In Figure 7.8, it
was shiown that the maximuin stringbed displaccincnt was a function of the stiing tcusion (and ball

impact velocity). This stringbed data, for the two string tensions, is superimposed on the plot in
Figurc 7.13 for comparative purposcs.
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Figure 7.13 Calculated maximum ball centre-of-mass displacement plotted against the ball impact
velocity. Values of the measured maximum stringbed displacement are superimposed on this plot.
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A comparison of the data in Figure 7.13 reveals that the ball centre-of-mass displaces by
approximately the same amount as the stringbed which is strung at 401bs, for low impact velocities.
At higher impact speeds, the ball COM displaces by approximately the same amount as the
stringbed with a tension of 70lbs. This implies that the ball has a similar stiffness to the stringbed
which is strung at 40lbs, for low speed impacts which result in maximum ball COM displacements

of approximately 18mm. The stiffness seemingly then increases to that which is comparable to the
stringbed that is strung at 70lbs, for the higher speed impacts.

7.2.6 Conclusions

In this section, a ball was propelled towards a head clamped racket with the ball impacting
perpendicular to the string plane. Two different ball types were tested, and the racket was strung at
two different string tensions. It was shown that the coefficient of restitution for the impact was
highest for the racket strung at 40lbs, compared with that strung at 70Ibs. This difference was
larger for the Pressureless ball compared with the Pressurised ball. The Pressurised ball generally
rebounded faster than the Pressureless ball. However, at low impact speeds the difference between
the two balls is considerably smaller than at the higher speeds.

It has been shown that the maximum ball deformation is greater for the Pressureless ball, compared
to the Pressurised ball, for the higher string tension. At the lower tension, there is no significant

differences between the two ball types. It was also shown that the maximum deformation of the
stringbed during impact is a function of the string tension, but not the ball type.

It was consistently found that the contact time reduces with impact velocity, and is longer for the
racket strung at 40lbs. The magnitude of the contact time for the impact is dependent on the
definition used for this parameter. If it is assumed to be the time taken for the stringbed
deformation to return to zero, then the contact time is a function of the string tension and not the
ball type. An alternative definition of the contact time corresponds to the time taken for the ball

deformation to return to zero. The results show that this parameter is a function of both string
tension and ball type.

For interest, the data presented here for an impact on a head clamped racket was compared with
that for an impact on a rigid surface. It has been shown that the coefficient of restitution is
typically between 0.85 and 0.75 for an impact on a head clamped racket. For an impact on a rigid
surface the coefficient of restitution is much lower and typically equals a value between 0.65 and
0.40. For the impacts studied here, the maximum deformation of the ball was between 20 and
35mm, for an impact on a racket. In section 4.4 it was shown that the ball deformation, for an
impact on a rigid surface, increased from 25 to 40mm, for a similar impact velocity range. In this
current section it was shown that the time taken for the ball to reform to its original shape T was
between 5.5 and 4.0ms, for impacts on a head clamped racket. By comparison, the contact time for

an impact on a rigid surface has been measured as between 3.9 and 3.0ms, for a similar range of
impact velocities.
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Chapter 7 Ball impact on a head clamped racket

7.3 Determining the shape of a deformed stringbed for an impact
between a ball and racket

7.3.1 Introduction

In section 6.2, the stringbed stiffness was measured for a quasi-static compression test in which the
load was applied perpendicular to the string plane. In section 6.3, the shape of the deformed
stringbed was also measured, for a similar quasi-static loading. It was found that the stringbed
stiffness and the shape of the deformed stringbed were both dependent on the diameter of the
circular disc which was used to apply the load. This data could effectively be used to find the

relationship between these two measured variables; the shape of the deformed stringbed and the
stiffness.

When a ball impacts on a tennis racket, it deforms considerably and the area over which the force is
applied to the stringbed varies throughout impact. Therefore it can be concluded that the
stringbed stiffness will also vary during this period. It has been stated that a visco-elastic model of
the ball impacting on the stringbed will be developed in a later chapter. This model must be able to
predict the magnitude of the stringbed stiffness throughout impact. It would be very difficult to
measure the effective contact area of the ball on the stringbed because the stringbed surface is not
visible during impact. However, it would be possible to measure the shape of the deformed
stringbed using a similar method as that described in section 7.2. In this current section, the shape

of the deformed stringbed will be measured for an impact between a ball and racket. The data will
then be compared with the shape obtained for a quasi-static deformation.

7.3.2 Experiment Apparatus

Air cannon

Speed gates

Head clamped
racket

Trackers High speed
video system

Figure 7.14 lllustration of experiment arrangement showing the eight trackers attached to the
stringbed of the head clamped racket.

Figure 7.14 shows the experimental apparatus which was used to measure the shape of the
stringbed deformation. This is a similar arrangement as that described in section 7.2.2 except that
eight trackers are attached to the longitudinal axis of the racket; four either side of the geometric
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A typical high speed image is shown in Figure 7.15. The position of the left edge of the ball (Pr)

and the right edge of each of the eight trackers (7, to Pz5) were sampled. The trackers were rigid
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Figure 7.16 (a)-(f) illustrate the deformed shape of the stringbed during impact, for a range of time

intervals. The data shown here was obtained for impacts on the racket that was strung using a

curves; each data point corresponding to the displacement of one of the trackers. For clarity, the
data is plotted scparatcly for the compicssion and icstitution phascs. Data was collected for scveral
impact velocities but is only plotted here for three impact velocities; these results being typical of
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Chapter 7

Ball impact on a head clamped racket

Figure 7.16 shows that the stringbed displacement increases for the first 2.0ms-2.5ms of the
impact; the maximum displacement increasing with impact velocity. This maximum displacement
consistently occurs at the impact point. During restitution, the curves have a similar shape to those
determined for the compression phase. At the mid-point of the impact, the displacement of the
stringbed at the impact point is approximately 25% larger than that at a point only 40mm away,
along the longitudinal axis. However, there is considerable scatter in this magnitude. Impact tests
were also conducted on a head clamped racket that was strung at 40lbs tension. The results for this
experiment exhibit similar trends as those shown in Figure 7.16. Therefore this data is not
presented here and can be found in Appendix C.4.

Data is plotted in time
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(rm) ] Compression
15 Phase
B
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b o Restitution
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Figure 7.16 Stringbed displacement plotted as a function of the position along the longitudinal
axis of a racket (70lbs tension). The data is shown for three different impact velocities and
presented individually for the, (a)-(c) compression phase and (d)-(f) restitution phase.
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However, it can be used as a valid method of comparing the data in this section with the normalised
data obtaincd for a quasi-static compression.

stringbed displacement is

Stringbed
displacement,
5. (mm) .

Ld 3 {3 L) L] 1

Distance from impact point (mm)

Figure 7.17 Definition of &s4p, which is the displacement of the tracker that is closest to the
impact point.
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has been catcgorised by the valuc of the stringbed displaccimcit S p) bocausc it is assumcd that the
shape of the deformed stringbed will be a function of the magnitude of &gp,. In Figure 7.18 the
nonmaliscd data is prcscuted scparatcly for the tw
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Figure 7.18 (a) & (d) show the normalised results for the 70lbs and 40lbs string tension,

respectively, for stringbed displacements &p, of less than Smm. These figures show that, for these
small strinebed displa

~ + v
ingbed displacements, there 15 a considerable amount of scatter in the normalised data.

However, it was assumed that the data could be approximated using a 2™ order polynomial trend
line which was plottcd thiough the data using the least squares regression mothod. It was assuimicd
that the uncertainty in the data was equal for all positions along the longitudinal axis of the string
bed.  Thercfore the lovel of scatter in the data can be quantificd by calculating the standard
deviation of the data, from the trend line, using the method described in Appendix A. The standard
deviations of the data shown in Figure 7.18 (a) & (d) aic 0.35 and 0.40 ¢
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Chapter 7

Ball impact on a head clamped racket

(b) & (e) show the normalised results for the 70lbs and 40lbs string tension respectively, for
stringbed displacements of between Smm and 10mm. In these figures the magnitude of scatter in
the results is lower than in Figure 7.18 (a) & (d) which is confirmed by the calculated standard
deviation values of 0.12 and 0.13, for Figure 7.18 (b) & (e) respectively. Figure 7.18 (c) & (f)
show the normalised results for the 70lbs and 40lbs string tension for stringbed displacements of
more than 10mm. These figures show that the magnitude of the scatter in the results is

considerably lower than for the other values of d&p), with standard deviations of 0.07 and 0.06 for
Figure 7.18 (c) & (f) respectively.
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Figure 7.18 Relationship between normalised stringbed displacement and position along the
longitudinal axis of the racket for an impact between a ball and head clamped racket. The data is
presented for two rackets with different string tensions. The results have been categorised into

three datasets, depending on the value of the stringbed displacement at the impact point Ssgp).
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Chapter 7 Ball impact on a head clamped racket

The trend lines plotted in Figure 7.18 give an indication of the shape of the deformed stringbed.
The calculated value of the standard deviation, for this trend line, quantifies the level of confidence
in using the trend line to estimate the measured data. In this study it has been found that the
magnitude of the standard deviation is relatively high, especially for dsr < Smm, and therefore it
is difficult to make any definite conclusions regarding the shape of the stringbed. Any conclusions

which are made about this shape are subject to an error with a magnitude similar to that of the
calculated value of the standard deviation.

For stringbed displacement values J&szp) of between Smm and 10mm (Figure 7.18 (b) & (e)) the
trend lines show that the normalised displacement of the stringbed which is 40mm from the impact
point is approximately 60% of dssp). For values of dsp) which are greater than 10mm (Figure 7.18
(¢) & (f)), the trend lines show that the normalised displacement at this same point is approximately
70% of Osgimpacy- This is implying that an increase in the value of Jgup) results in the normalised

shape of the deformed stringbed becoming relatively ‘flatter’. However, it should be remembered
that there is considerable scatter in the data.

The calculated values of standard deviation give a good indication of the level of confidence in the
data. However, in calculating these values of standard deviation it has been assumed that the level
of uncertainty is equal for all of the normalised data. A consideration of the source of this
uncertainty can be used to assess the validity of this assumption. The scatter in the measured data
is probably due to inaccuracies in the manual sampling method. This would lead to an absolute
error which has a length dimension, for example 1 mm. When the measured data is normalised,
the magnitude of this error will no longer be equal for all stringbed displacements. Therefore the

standard deviations that have been calculated can only be considered to be mean estimates of the
confidence level in the data.

7.3.5 Comment on errors caused by adding weight to the stringbed

The eight trackers which are attached to the stringbed have a total mass of 5.6g, compared to a
string mass of approximately 20g. This is clearly a relatively significant addition of mass to the
stringbed and therefore its influence should not be neglected. Johnston (2001) used a similar
method to determine the deformation of a stringbed and found that the trackers caused a significant
decrease in the coefficient of restitution for the impact. Johnson used fifteen trackers, which had a
total mass of over 10g, and found that the coefficient of restitution for an impact between a ball and
head clamped racket was reduced by 5% when these markers were attached. Johnson compared the

maximum stringbed displacement when measured with only one marker attached, and compared it

with that obtained when 15 markers were attached. It was concluded that the stringbed

displacement was 2% larger when the 15 markers were attached, compared to the value measured

using the single marker. This data suggests that the use of trackers does effect the impact, but this
effect is likely to be small for the eight trackers used in this experiment.

A method of deducing the effect of the adding weight to the stringbed involves a comparison of the
measured results for the two different experiments in which a different number of markers have
been used in each. In Experiment I (discussed in section 7.2) only one tracker was attached to the
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comparison is made for the coefficient of restitution and maximum stringbed displacement during

Figure 7.19 (a) gives a comparison of the measured coefficient of restitution COR for two different
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Chapter 7 Ball impact on a head clamped racket

after Experiment | was completed. The drop in tension may explain the higher stringbed
deformations which were found for the tests which used eight trackers.

To verify this hypothesis, the stiffness of the stringbed was measured after Experiment 2; the
stiffness being measured using the method described in Chapter 6. This data showed that the
stiffness had reduced by 15% and 10% for the rackets strung at 701bs and 401bs, respectively. This
change in stiffness can not be quantitatively compared with the results obtained for dynamic
stringbed deformation but does highlight that the racket would have had to be restrung for a ‘true’
comparison to be made between Experiment I and Experiment 2.

To summarise, it is not possible to conclude whether the mass of the trackers affects the
deformation of the stringbed. The data implies that the coefficient of restitution is not altered, but
the maximum deformation increased by approximately 15% when 8 trackers are attached to the
stringbed. However, some of this increase in deformation will be due to the stringbed being less
stiff in Experiment 2 compared to Experiment 1. Also, the change in the stiffness of the stringbed
may affect the coefficient of restitution for the impact. Therefore it can not be concluded whether
the addition of the eight trackers affects this parameter.

7.3.6 Summary

In this section, the shape of a deformed stringbed has been measured for an impact between a ball
and head clamped racket. The shape was measured for a length of approximately 80mm along the
longitudinal axis of the racket. Experiments were conducted for two different string tensions and a
range of ball impact velocities. The measured values of the stringbed displacement were
normalised to the displacement of the stringbed at the impact point. This allowed conclusions to be
drawn regarding the shape of the stringbed. It was found that this normalised shape was not a
function of the string tension, but was dependent on the magnitude of the stringbed displacement at
the impact point. It was assumed that the shape of the deformed stringbed could be simplified by a
2" order polynomial trend line that was plotted through the experiment data. The maximum
stringbed displacement occurred at the impact point and this displacement was defined as Jsgp,.
The displacement of the stringbed which is 40mm from this point, along the longitudinal axis, is
approximately 60-70% of the displacement dszp). It was also found that the normalised shape of

the deformed stringbed became relatively ‘flatter’ as the magnitude of the displacement Jyp)
increased.

7.4 Comparison between quasi-static and dynamic stringbed
deformation shape

7.4.1 Introduction

In section 7.3, the shape of a deformed stringbed was measured for an impact between a ball and
head clamped racket. It was found that that the normalised shape of a deformed stringbed is a
function of magnitude of the stringbed deformation. In section 6.3, the stringbed was deformed
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In this section, the shape of the quasi-statically and dynamically loaded stringbed will be compared
in an attempt to further the understanding of the impact mechanism. This understanding will be

nsed in Chapter 8 when the impact will he modelled.

As mentioned above, it has been found that the shape of the deformed stringbed is not a function of
the string tension, for an impact between a ball and head clamped racket. Therefore, in this section
only the data for the racket which was strung at 70lbs tension is discussed.
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Chapter 7 Ball impact on a head clamped racket

In section 7.3 it was shown that the shape of the deformed stringbed is dependent on the magnitude
of deformation. Figure 7.20 shows the normalised data for two different ranges of stringbed
displacement Jgp), for an impact between a Pressurised ball and head clamped racket; dsup)
representing the displacement of the stringbed at the impact point. The normalised shape of the
deformed stringbed which was measured for a quasi-static compression is also plotted in these
figures. This data was obtained in section 6.3 for two different circular areas over which the
distributed load was applied; the diameters of these circular areas being 35mm and 55mm.

Figure 7.20 (a) shows that, for values of Js;s) between § and 10mm, the dynamic data correlates
most closely with the quasi-static data obtained using a circular disc with a diameter of 35mm.
Figure 7.20 (b) shows that, for values of Jsp greater than 10mm, the dynamic data is distributed
between the curves obtained using the discs with diameters of 35mm and S5mm.

Due to the large scatter in the data obtained for an impact between a ball and racket, it is difficult to
precisely relate the quasi-static and dynamic results. Indeed, it is not even clear whether it is valid
to directly compare the two sets of normalised data. The main weakness of the work is that the
stringbed has been loaded using two different methods, for the quasi-static and dynamic cases.
However, these results illustrate that the ‘effective’ contact area diameter increases from
approximately 35mm at low stringbed displacements to almost 55mm at the highest displacements.

This finding will be useful when the impact is modelled in Chapter 8, providing the limitations of
this work are considered.

7.5 Summary

In this chapter, the impact between a ball and head clamped racket is investigated. In the first part

of this chapter, the coefficient of restitution was measured for combinations of two different ball

types and two different string tensions. It was found that, for a specific string tension, the

coefficient of restitution is higher for the Pressurised ball, compared with the Pressureless ball.
This difference is generally in the order of 0.05 for the racket strung at 70lbs and 0.02 for the racket

strung at 40lbs. For a specific ball type, it was found that the coefficient of restitution is higher for
the racket strung at 40lbs, compared with the racket strung at 701bs.

The magnitude of the maximum ball and stringbed deformation, during impact, has been measured
using a high speed video system. It was found that the ball deformation increased as the impact
velocity was increased, but it did not appear to be a function of the ball type or string tension. The
maximum stringbed deformation, during impact, was consistently 25% larger for the racket strung

at 40lbs, compared to that strung at 70lbs. The magnitude of this stringbed deformation was very
similar for both ball types.

In this experiment, the contact time for the impact was measured; the contact time being defined
using two different methods. The first definition of the contact time is equal to the time taken for
the stringbed deformation to return to zero and this is defined as T¢s). The second definition is
equal to the time taken for the ball deformation to return to zero and is defined as Tcp). It was
consistently found that the second definition yielded a longer contact time, for all combinations of
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ball type and string tension.  This implies that the stringbed deformation returns to zero, before the
ball deformation does so.

The value of the contact time T¢( decreased as the ball impact velocity increased. It was found
that T¢s) was consistently 0.6ms longer for impacts on the racket strung at 40lbs, compared with

impacts on the racket strung at 70lbs. It was concluded that the parameter T was not dependent
on the ball type.

The value of the contact time T¢ decreased as the ball impact velocity increased. It was found
that T¢s) was approximately 0.4ms longer for impacts on the racket strung at 40lbs, compared with
impacts on the racket strung at 70lbs. For impacts on the racket strung at 40lbs, it was found that

Te was not a function of the ball type. However, for impacts on the 70lbs racket, the value of
Tz was larger for the Pressureless ball compared with the Pressurised ball.

The measured values of the ball deformation, during impact, was used to estimate the motion of the

ball centre-of-mass. This data will be used in the following chapter to help verify a visco-elastic
model of the impact.

In the second part of this chapter, an experiment was conducted to measure the shape of the
deformed stringbed, during impact. The experiments were conducted using two different string
tensions and a range of ball impact velocities. It was found that the normalised shape of the
deformed stringbed was not a function of the string tension, but was dependent on the magnitude of
the stringbed displacement at the impact point. It was found that the normalised shape of the
stringbed became relatively ‘flatter’ as the magnitude of the stringbed displacement increased.
This is logical because, as the stringbed displacement increases, the magnitude of ball deformation

will also increase, resulting in a larger contact area between the ball and stringbed. This will lead
to a relatively ‘flatter’ stringbed.

A comparison was made between the shape of the stringbed for a dynamic and quasi-static loading.
The dynamic loading refers to an impact between the ball and head clamped racket, and the quasi-
static loading is applied via a rigid circular disc. It was found that, for stringbed displacements
between Smm and 10mm, the dynamically deformed stringbed has a similar shape to a stringbed
that has been loaded quasi-statically using a rigid disc with a diameter of 35mm. For stringbed
displacements greater than 10mm, the dynamically deformed stringbed has a similar shape to a
quasi-statically loaded stringbed using a disc with a diameter of between 45Smm and 55mm. This

comparison will be referred to in the following chapter as it will aid in the development of the
visco-elastic model of the impact.
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Chapter 8 Model of a ball-racket impact

8. Modelling an Impact between a Ball and Head
Clamped Racket

8.1 Introduction

In Chapter 7, results are presented for an experimental investigation of an impact which involved a
tennis ball being propelled perpendicularly towards a head clamped tennis racket. In that
experiment, a number of parameters were measured, which included the following,

1. Ball rebound velocity.

2. Contact time.

3. Magnitude of ball deformation.

4. Magnitude of stringbed deformation.

These parameters were measured for impacts that involved two rackets which had been strung with
different string tensions, and two different ball types. It was noted in Chapter 7 that this covered a
wide range of typical ball types and tensions used in the game of tennis.

In this chapter, a visco-elastic model of the impact between a ball and head-clamped racket is to be
developed. Whilst it is accepted that a head clamped racket is not representative of a player’s grip,
this type of impact does involve the interaction between the ball and stringbed. The head is

clamped and therefore it can be considered rigid. This simplifies the required model as the racket
frame does not need to be modelled.

A visco-elastic model has been chosen as a suitable simulation method for this type of impact for
two main reasons. Firstly, a visco-elastic model of a ball impact on a rigid surface was
successfully developed in Chapter 5. Therefore, it would be logical to utilise the understanding
gained in that work to help develop a model of the ball for an impact with a stringbed. Secondly, a
visco-elastic model has been chosen for its versatility. In this type of model the stiffness and

damping can be defined as functions of any number of parameters (e.g. the stringbed
displacement).

The developed model will be used to calculate the four parameters which are listed above. The

accuracy of the model will be assessed by comparing the model results, for these four parameters,
with the experimental data obtained in Chapter 7.

8.2 Generic model for an impact between a ball and head clamped
racket

8.2.1 Introduction

In section 5.5, a visco-elastic model of a tennis ball impacting perpendicular to a rigid surface was
developed. This model accounted for the forces that acted on the ball due to the structural stiffness,
material damping and momentum flux. Each ball type had a unique set of parameters that defined
the model components (e.g. spring stiffness), and these parameters were valid for any impact
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velocity. The model results were compared with experimental data that had been obtained for an
impact between a ball and force platform. It was shown that the Force-Time and Force-
Displacement plots for the two sets of data correlated very closely. In this section, the model
which was developed in section 5.5, is to be developed to enable it to be used to simulate the
impact between a ball and head clamped racket.

8.2.2 The model

~Bal . Stringbed
X, . X 1)
i
& | |
m, ms
A | AMAA
K K,

Figure 8.1 Illustration of a visco-elastic model of a ball impact on a head-clamped racket.

In this section, the ball and stringbed are to be modelled as a series of springs and dashpot dampers.
The ball will be simulated using the same one degree-of-freedom model as that developed in
section 5.5. The stringbed will be simulated as a simple one DOF model, as it has initially been
assumed that only the displacement of the impact point is required. The visco-elastic model of an
impact between a ball and head-clamped racket is shown in Figure 8.1. The stringbed is
represented by a spring and dashpot in parallel. The spring is used to represent the stiffness of the
stringbed, in a direction perpendicular to the plane of the stringbed. The dashpot is used to simulate
the energy loss for an impact in this same direction. Many authors (Cross 2000b, Leigh and Lu

1993) have shown that the energy losses in a stringbed are approximately 5% and therefore the
value of ¢y is likely to be small.

The displacements xg and x represent the motion of the stringbed at the ball impact position and
the ball centre-of-mass respectively. The mass mjp is equal to the mass of the ball, and can easily be
measured using an electronic balance. The mass mg represents the effective mass of the stringbed
that is displaced by a distance xg during the impact. This can not be measured directly and
therefore must be chosen arbitrarily. The total mass and surface area of a stringbed is typically
20g and 0.063m’ (98in’), respectively. In section 7.3, the shape of the deformed stringbed was
measured. Using this data, it is estimated that the effective mass of the stringbed can be
represented by a circular section of the stringbed, with a diameter of 130mm. This disc has an area
of 0.014m’ and therefore the assumed value of mg was 5g. This value has clearly been chosen

arbitrarily and the actual value could actually lie anywhere between the two bounds of 0 and 20g.
In Appendix C.7, the sensitivity of the model solution to the magnitude of this value is quantified
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to assess the validity of this assumption. The findings of that analysis shall be referred to later in
this chapter.

The equation that is used to define the force Fg which acts on the ball mass m; is,
=My = e, + ey Wity — %)+ K,y (x, —x )] [8.1]
The force acting on the stringbed mass m; is,
Fy—Fy =mgis = —fes%s +ksxs]-Fy (8.2]

The motion of the points x; and xs was evaluated numerically using the finite difference method.

The time step At used in this solution is Sus. The finite difference equation which defines the
displacement of x at a time f+4¢ is,

(xB )1+At = Atz (xB )t + 2(xB )I - (xB )I—At [83]
A similar finite difference equation can be used to determine the value of x; at time #+4¢,
(%5 ) = A7 (¥5), +2(xg), - (s - (8.4]

Assuming that the values of xz and x5 (and x, and x;) are known at time ¢, then (x 5), and (%)

can be calculated using [8.1] and [8.2]. The values of (xB ),+ , and (xS ),+  C€an then be calculated
using [8.3] and [8.4].  As the time step used in this solution is very small, it was assumed that the

velocity change during this period was negligible. Therefore the velocities (J'cB ):+ A and (J'cS )‘+ o

can be calculated using,

(xB)l+At (xB)l+At (xB)r

At [8.3]

( i )HN (xS )t+Al (xS )

< (8.6]

The accelerations (5c'B ),+ A and (5c's )¢+ 4 Were then calculated using {8.1] and [8.2], and the solution

was then repeated for this new time step.

Table 8.1 The displacement, velocity and acceleration of the ball and stringbed at time when =0
and ¢t = -At.

Attime, t = -At Attime,t=0
Xg=-Vpdt,andx;=0 Xg=xs=0
X5 = Vg, and x;=0 X5 =Vpg, and x;=0
Xg=Xs=0 Xp=Xs=0

To commence this type of solution the displacement, velocity and acceleration of the ball and
stringbed need to be defined for the time when # = 0 and ¢ = -Ar. For an impact with initial ball
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velocity Vp, these values are given in Table 8.1. These values have been obtained using the
assumptions that the stringbed is initially stationary and the ball is not accelerating prior to impact.

A more powerful numerical solving technique, such as the Runge-Kutta method, could have been
used to solve a numerical solution of the model. However, it was found that the simple finite
difference method only gave an maximum error in the order of ~0.2%, due to the relatively small
time step being used. The solution was written in MS Excel 2000 and could be solved for each time
step of the impact, provided that the values of the parameters k3, ks, ¢, cu and cs are all known.

In this section, a generic visco-elastic model of a ball impact on a head clamped racket has been

developed. In the next section, the methods used to define the parameters ks, ks, cs, i and cy is
described.

8.3 Modelling Technique — 1st Attempt
8.3.1 Determining the visco-elastic model parameters

In the model in section 8.2, an equation has been derived which can be used to define a visco-
elastic model of an impact between a ball and head clamped racket. In this model, the value of a
number of parameters are required in order to solve the equation. As stated previously, this model

considers the two components separately, and therefore the methods used to obtain the values of
the parameters shall also be described individually.

(a) The ball

The ball has been modelled as a spring in parallel with two dashpot dampers, as illustrated in
Figure 8.1. The spring is used to simulate the structural stiffness of the ball and this parameter is
defined as kp. A dashpot damper is used to simulate the hysteresis loss in the material, and this
parameter is defined as cz. A second dashpot damper is used to simulate the force which acts on
the ball due to the momentum flux, and this parameter is defined as c). A detailed explanation of

this model can be found in section 5.5. However, a brief résumé is given here to illustrate the
method which is used to define the parameters &z, cz and c,.

In section 5.5, the ball model was used to simulate an impact with a rigid surface. In this type of
model, the ball deformation is analogous to the displacement x5. It was found that the ball stiffness
ks was a function of x5, as defined in [5.21]. In the model of a ball impact on a stringbed, it is
assumed that the parameter (x, — x, ) is analogous to the ball deformation. Therefore in [5.21}, the

term x; is replaced by (x, — x, ) and this equation becomes,
kg =kye + A (xa “xs)a [8.7]

In the model of a ball impact on a rigid surface, the parameters kg, Ax and a were found to be
constants for a specific ball type. In this current model, it is assumed that these parameters are
valid for an impact between a ball and head clamped racket. A minor addition to this model is that
it was found that the ball has a very high structural stiffness during the first 0.2ms of impact. In the
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model this is simulated by assuming that kz=80kN/m for this period. For the remainder of the
impact, the stiffness of the spring is defined by [8.7].

For the model of an impact on a rigid surface, it was assumed that the magnitude of the material
damping was proportional to the volume of rubber being deformed, and also the ball deformation

rate. In that model, the dashpot parameter cp which represented the material damping is defined
using,

m
Cp = _]\/I_B Ac '(dCONT )2 [8.8]
I

where m; is the mass of the ball, and the other parameters are defined below.

To derive this equation, a number of assumptions were made regarding the shape of the deformed
ball. The parameter dcovr refers to the diameter of the circular area of the ball that is in contact
with the surface. The empirical relationship between dcoyr and the ball COM displacement xp, for
an impact between a ball and rigid surface, was given in [5.6]. In this current model, the analogous

parameter to X is (x 5 — Xg ) . It is not possible to empirically obtain the relationship between dconr

and (x 5 —Xs ), for an impact on a stringbed. Therefore, it is assumed that the relationship derived

in [5.6] for an impact on a rigid surface is valid for an impact on a stringbed. The modification of
[5.6] is therefore,

deoyr =-2.77x10° (x5 —x5)' +1.74x 10° (x5 — xg )’ - 453(x; ~ %, ¥ +7.66(x, —x)  [8.9]

The term M, in [8.8] refers to the mass of the section of ball that is not in contact with the surface.
This value clearly varies throughout impact, and is a function of the ball deformation. It is
assumed that M, is equal to the difference between mj and the mass of the ball that is in contact
with the surface M,. The value of M, is estimated using,

d 2
M2 = parea”(-c_;NL) [8.10]

where pgre is the mass per unit surface area density of the ball and is equal to 5.212kg/m’ for a
standard size ball.

The parameter Ac was defined as a constant for each ball type, for an impact between a ball and
rigid surface. This constant value was arbitrarily chosen with the aim of defining a value that gave
a model ball rebound velocity that was similar to that measured experimentally.

The values of the parameters kg, Ak, @ and Ac, for a typical Pressurised and Pressureless ball, are
given in Table 8.2. These parameters will be used in the current model.
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Table 8.2 Spring parameters kg, Ax and a and damping coefficient A¢ for the four ball types.

Ball type kg (KN/m) Ax (KN/m”) a Ac (kKNs/m’)
Pressurised 21 16000 1.65 35
Pressureless 23 12500 1.7 4.0

For an impact between a ball and rigid surface, the work in section 5.5 showed that the force due to
the momentum flux can be simulated using a dashpot damper with coefficient cy, as defined by
[5.19]. In that model, the force due to the momentum flux is effectively proportional to the mass

(and velocity) of the ball being brought to rest in a unit time interval 4¢z. The cquation used to
define ¢y at time ¢ is,

) - mo|Poes(deonre) F ~eorria F )

44t(M,), 8.1}

In [8.11], it is assumed that the mass of the ball being brought to rest can be calculated from the

empirically measured ball/surface contact area diameter at time ¢ and #-Ar which are defined as
dCONT(t) and dCONT(l+A¢) respectively.

In the model of an impact between a tennis ball and stringbed, the section of the ball that comes
into contact with the surface in a unit time interval is not brought to rest. Instead the velocity of
this section instantaneously changes to that of the stringbed. This is simulated in the model by
assuming that the force acting on the ball due to the momentum flux Fj, is equal to,

Fyny =Cu (xa ’xs) [8.12]

The equations which have been discussed in this section can be used to define all the ball
parameters that are required to solve the model which was given in section 8.2.

A minor modification is made to this model to simulate the contribution of the cloth on the ball,
during impact. In Chapter 4, it was shown that the cloth has a relatively low stiffness, compared
with the rubber core. In Chapter 5 it was shown that this characteristic could be modelled by
assuming that the force which acted on the ball was equal to zero during the initial stage of impact,
when only the cloth was being compressed. This same assumption shall be used in this current
model, and therefore it is assumed that the force which acts on the ball is equal to zero, for ball

COM displacements of less than 2mm (during the compression phase only), regardless of the
values of the ball model parameters

(b) The stringbed

The stringbed of a head clamped racket is to be modelled as a spring and damper in parallel. The
stiffness of the spring is clearly analogous to the stiffness of the stringbed for a compression that is
perpendicular to the plane of the stringbed. In section 6.2, a force was applied to a stringbed and
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the resulting displacement was measured. This data was converted to a linear quasi-static stiffness
which is defined as the ratio of the applied force and stringbed displacement. In that section, the
quasi-static stiffness was measured for rackets which have been strung at different tensions. The

load was applied using a rigid circular disc, and data was obtained for a range of different disc
sizes.

It is to be assumed that the quasi-statically measured stiffness can be used to define a 1% order
approximation of the spring stiffness in the model, for the specific string tension of the racket that
is being modelled. The stringbed stiffness increased with the magnitude of stringbed displacement
which could easily be accounted for in the model. However, the stiffness of the stringbed was also
dependent on the size of the circular disc that is used to apply the load. The effective contact area
over which the ball applies the load onto the stringbed is not known. Therefore it is not possible to

directly define the stiffness of the stringbed for an impact with a ball, from the quasi-static stiffness
data.

Initially, let it be assumed that the effective contact area diameter of the ball on the surface be
known; this diameter being defined as ¢p. In section 6.2, a technique was discussed which could
be used to minimise the number of equations that were required to define the stiffness of the
stringbed. This technique involved the concept of a normalised stringbed displacement. This

normalised stringbed stiffness l;s is defined using,

]’; — ks(¢D)

s= 8.13
% (6) (8.13]

The parameter ks( ) is equal to the stiffness of the stringbed at a specific displacement xs,
measured using a disc diameter of @,. The parameter k(g,) is equal to the stiffness of the
stringbed at the same displacement xs, measured using a disc diameter of SSmm.

In section 6.2, it was shown that an empirical approximation can be used to define the relationship
between the normalised stringbed stiffness and the size of the disc diameter. This equation is,

ks = 78.4282 +2.3364, +0.6392 8.14]

To complete the solution, the stiffness of the stringbed must be known, for a quasi-static loading
applied using a rigid disc with a diameter of 55Smm. This quasi-static stiffness is a constant
function of xs and is defined as k(g,, ) using an equation of the form,

ks(@ss )= axg +bxg +c [8.15]

In Chapter 6, the quasi-static stiffness of the rackets strung at 40 and 70lbs tension was measured

for a compression using a 55mm circular disc, and the parameters of equation [8.15] are shown in
Table 8.3.
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Table 8.3 The coefficients of the second order trendline which defines the stiffness of the
stringbed, for two different string tensions.

String tension a (kN/m’) b (KN/m°) ¢ (kN/m)
40lbs 4785 1147 29.02
70lbs -30140 2519 43.07

To summarise, the parameter which will be input into the model is defined as kg(g,). This

parameter describes the stiffness of the stringbed at a specific displacement, for a specific disc
diameter. Therefore,

ks(¢o) = fn(xS’¢D) (8.16]

The equations which are required to determine k() have been discussed above. However, they
require a value of @,, to be defined. In the quasi-static test, ¢, was simply equal to the diameter

of the disc used to apply the load. However, in the model, the value of @, needs to describe the

effective contact area of the ball and stringbed. An initial discussion of this was given in section

7.5, in which the shape of a quasi-statically deformed stringbed, was compared with that of a
dynamically deformed one. This discussion is continued below.

In an impact between a tennis ball and stringbed, the ball does not apply a load on the stringbed in
the same way that the load is applied by a rigid disc; a tennis ball being a highly deformable body.
The shape of the deformed stringbed for a quasi-static and dynamic loading was compared in
section 7.4. The quasi-static loading was applied by a rigid disc and the dynamic loading referring
to an impact between a ball and head clamped racket. In that section, a qualitative relationship
between the magnitude of stringbed displacement and the effective contact area of the ball was

obtained. In this current section, a quantitative relationship is required which can be used in the
model to estimate the value of the stiffness parameter kg,

The relationship that needs to be obtained is that which relates the stringbed displacement x5 with
the effective contact area diameter that the ball is applying the load over. This is obtained using the
data in section 7.4. It is shown that, for stringbed displacements of between 5 and 10mm, the
dynamically deformed stringbed has a similar shape to that of a stringbed which was deformed
quasi-statically using a disc diameter of 35mm. For all stringbed displacements of more than
10mm, the shape of the dynamically deformed stringbed is similar to that of a quasi-statically
deformed stringbed that used a disc diameter of between 45mm and 55mm to apply the load.
Using this information as a guide, the assumed relationship between the stringbed displacement and
the effective area over which the ball imparts a load on the stringbed can be obtained. This
assumed relationship is shown in Figure 8.2. The two points that are used to define this arbitrary
relationship are the stringbed displacements for contact area diameters of 35mm and 55mm. It has
been assumed that the stringbed displacement for a contact area diameter of 35mm is 7.5mm. This
has been arbitrarily chosen by the fact that the shape of the quasi-statically deformed stringbed,
using a contact area diameter of 35mm, is similar to that for a dynamically deformed stringbed for
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displacements of between 5 and 10mm. The stringbed displacement for a contact area of SSmm
was chosen to be 20mm. This was deduced from the fact that, for stringbed displacements between

10mm and 25mm, the effective contact area diameter lies somewhere between 35mm and 55mm.
A displacement of 20mm was arbitrarily chosen as the limit.

!

55

35 +

Disc diameter ¢, (mm)

; >
75 20

Stringbed displacement xg (mm)

Figure 8.2 Assumed relationship between the disc diameter and the stringbed displacement.

The relationship shown in Figure 8.2 has been chosen arbitrarily. In Appendix C.7, the sensitivity
of the model solution to the form of this relationship is discussed. This relationship shows that, for
displacements of up to 20mm, the contact area diameter is a continuingly varying function of the

stringbed displacement xs. For stringbed displacements xs of less than 20mm, the equation that
defines the curve in Figure 8.2 (converted into SI units) is,

¢, =1.6x5 +0.023 [8.17]

and for x5 > 0.020m the value of ¢ is equal to 0.055m.

This information defines the value of ¢, for any stringbed displacement x5. Previously it was

shown that equations have been derived which define stringbed stiffness for a specific combination

of the values of x5 and ¢p. However, it has been described that the solution required the

relationship between the two variables, xs and ¢p, to be known. This has been defined in [8.17]
and therefore the solution can be completed.

The parameter ¢p can be substituted in [8.14], so that the equation to define the normalised
stiffness becomes,

ks = 78.42(1.6x + 0.023) +2.336(1.6x +0.023) + 0.6392 [8.18]

(8.18] is valid for stringbed displacements x5 of less than 20mm. For xs> 20mm, the value of ¢p is

equal to 55mm, and therefore the normalised stiffness l?s is equal to unity,

Using the example of a racket strung at 70lbs, the equation to define the quasi-static stringbed
stiffness for a loading with a disc diameter of 55mm is,

ks (455 )= —30140000x + 2519000, + 43070 [8.19]
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Chapter 8 Model of a ball-racket impact

Rearranging [8.13] gives

ks (¢D) = Es ks (¢ss) [8.20]

Using equations [8.18]-[8.20], the stringbed stiffness ks( D) can be calculated for any value of x;.

This stringbed stiffness ks( D) is substituted for the spring stiffness ks that is shown in Figure 8.1,

and therefore this parameter has now been defined in the model. Clearly, the values of the
coefficients in [8.19] are dependent on the string tension. These parameters are determined from a

least squares regression analysis on data collected for a quasi-static compression of a stringbed,
using a disc diameter of 55mm.

In Figure 8.1, it can be seen that there is also dashpot damper, with value cs, that is used to
represent the damping of the stringbed. Cross (2000b) showed that the damping, or material
energy losses, in the stringbed are both small and not dependent on the age of the strings or on
string tension. In this study, the energy loss which occurs in an impact between a head clamped
racket and a 760g rigid sphere was measured. Cross (2000b) found that ball rebounded at 95+2%
of the incident speed, regardless of the drop height, string type or string tension.

Clearly, an empirical solution for cs could be obtained via a simulation of the experimental impact
that was conducted by Cross (2000b). This simulation uses the same generic model of a ball
impacting on a stringbed as that described in section 8.2. A rigid ball is assumed to exhibit no
energy losses and therefore the value of the dashpot damper parameters cp and cs are both equal to
zero. The ball will clearly be very rigid and to simulate this the spring stiffness kp was assigned a
relatively high, constant value of 400kN/m. The mass of the ball mp and the stringbed mg were

equal to 760g and 5g respectively. The stringbed stiffness ks was defined using the equations
described above.

The model was then solved using the equations derived in section 8.2. The value of the stringbed
damping cs was initially equal to zero. This value was then increased until the model calculated a
ball rebound velocity that was equal to approximately 95% of the incident speed, using an iterative
process. It was found this result was achieved using a stringbed damping value cs that varied
between 1.5 and 2.5Ns/m for the range of impact velocities that were used (3mv/s to 7m/s). It was

therefore concluded that, for simplicity, the value of ¢s will be assumed to be equal to 2Ns/m for all
impacts in this section, unless otherwise stated.

(c) Summary of model parameters

In this section, the methods that are used to determine the values of the model parameters kj, ks, cs,
ey and cg are described. In this section, it was assumed that a ball can be modelled using the same
technique as was used in Chapter 5 to simulate a ball in an impact with a rigid surface. Therefore,
the ball parameters ks, cs, and cy are the same as those used that chapter. A number of
assumptions had to be made to allow this to be possible. For example, it was assumed that the

relationship between the shape of the deformed ball and the ball centre-of-mass displacement, is
the same for both an impact on a rigid surface and on a stringbed.
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Chapter 8 Model of a ball-racket impact

The model stringbed stiffness ks was assumed to be equal to the quasi-static stiffness that has been
measured in Chapter 6. It was shown that the quasi-static stringbed stiffness is dependent on the
size of the circular disc that is used to apply the load. Therefore, assumptions have been made
which specify the effective size of the ball-surface contact area for a specific stringbed

displacement, for a dynamic impact. The damping parameter cs is assumed to be equal to 2Ns/m to
account for the small hysteresis losses in the stringbed for a dynamic impact.

8.3.2 Results and Discussion
(a) Force-Time plot

In section 8.2, a generic visco-elastic model was derived for an impact between a tennis ball and
head clamped racket. In that section, the techniques that are required to solve the model are given.
In section 8.3.2, the assumptions are discussed which are needed to determine the values of the
model parameters kg, ks, cs, ¢y and cs. As mentioned previously, a numerical solution for the
model was calculated in MS Excel 2000. This solution calculated the displacement, velocity and
acceleration of the ball and stringbed masses, at time intervals A of 2us, for the entire impact. The

forces which act on the two masses were also calculated at each time interval, and this data can be
used to determine a Force-Time curve for the force which acts on the ball.
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Figure 8.3 Typical Force-Time data, showing the contribution of each component of the total

model force which acts a Pressurised ball during an impact with a racket stringbed that is strung at
701bs.

Figure 8.3 shows the individual components of the force which acts on the mass mp, for a simulated
impact between a Pressurised ball and a head clamped racket that has been strung at 70lbs. These
forces were calculated for a ball impact velocity of 20m/s. The major component of the total model

force which acts on the ball is that which is due to the spring stiffness (structural stiffness). This

accounts for approximately 80% of the total force. Both the momentum flux force and the

structural stiffness force are relatively high during the initial stage of impact, which leads to a high
value of the total force. The momentum flux force is high during this period because the ball
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centre-of-mass is moving relatively quickly at this point and the stringbed is almost stationary. The
structural stiffness force is relatively high because the spring stiffness has been assigned a high
value of 80kN/m, during the first 0.2ms of impact. The material damping force is a function of the

ball velocity, and therefore has a positive value during the compression phase, and a negative value
during the restitution phase.

The model solution can also be used to determine the following parameters,

1. Ball rebound velocity.

2. Contact time for the impact.

3. Ball centre-of-mass displacement during impact.
4. Stringbed displacement during impact.

In Chapter 7, these parameters have been experimentally determined for an impact between a head
clamped racket and ball. These results have been obtained for rackets strung with two different
string tensions (40lbs and 701bs) and two different ball types (Pressurised and Pressureless). The
required model parameters for the two stringbeds (ks, ¢s) and for the two ball types (A4k, k), o, Ac)

are given in section 8.3.1. In the following section, a comparison is made between the model and
experiment values of the four parameters shown above.

(b) Comparison of Model and Experiment Results

Ball rebound velocity (m/s)

30 : ‘ o 30— ~ =
(a) Pressurised A e ‘ (b) Pressureless
. o
25 | 325 ‘
\ . 70Ibs - Experiment '3
‘ ©  40Ibs - Experiment -,8,
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. S 40Ibs - Model £ |
15 | § 15 |
| @
10 - ; : | 10 - - S |
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Ball impact velocity (m/'s) Ball impact velocity (nvs)

Figure 8.4 Comparison of the ball rebound velocity measured for the experiment and model. The
data is presented separately for two different ball types.

Figure 8.4 shows a comparison of the ball rebound velocity data that was obtained using the model

and that obtained experimentally. This data is presented separately for the Pressurised and

Pressureless balls. It can be seen that the model consistently calculates a ball rebound velocity

which is lower than that which has been measured experimentally. This difference is generally
between 5 and 10%.
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Figure 8.5 Ball centre-of-mass displacement and stringbed displacement for an impact between a
ball and head-clamped racket, for four different combinations of string tension and ball type. The
ball impact velocity is 20m/s, and both the model and experiment data are presented.
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Figure 8.6 Ball centre-of-mass displacement and stringbed displacement for an impact between a
ball and head-clamped racket, for four different combinations of string tension and ball type. The
ball impact velocity is 35m/s, and both the model and experiment data are presented.
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In Chapter 7, high speed video analysis was used to estimate the displacement of the ball centre-of-
mass during impact, for a range of ball impact velocities. In these experiments, the magnitude of
the stringbed displacement was also measured. These experimental values of ball COM and
stringbed displacement are plotted in Figure 8.5 and Figure 8.6, along with the model results that
have been discussed earlier in this section. These figures contain data for an impact between a ball
and head clamped racket at nominal impact velocities of 20m/s and 35m/s respectively. Data is
presented in these figures for the two different ball types and two different tensions. It is noted that
some data is ‘missing’ for the ball COM displacement in Figure 8.6. This data was collected for a
relatively high speed impact velocity (35m/s), and the ball could not be viewed during maximum
compression for such high speed impacts. Data for other impact velocities is given in Appendix C.

Figure 8.5 and Figure 8.6 show that the model and experiment plots both exhibit a characteristic
kink in the curve which represents the ball COM displacement data. This occurs at a time of
between 0.5-1.0 ms. Also, both the experiment and model plots show that the stringbed does not
start to displace at the instant that contact occurs. There is generally a delay of approximately
0.3ms before the stringbed starts to move. In the model, this is due to the fact that the ball does not
exert a force on to the stringbed until a ball COM displacement of 2mm is achieved. This feature

of the model is employed to simulate the relatively low stiffness of the cloth. The delay in motion
will also be due to the finite mass of the stringbed ms which must be accelerated .

The kink in the ball COM displacement curve may also be due to this delay in the motion of the
stringbed because, initially, the ball will deform rapidly due to the inertia of the stringbed. Then
the stringbed will start to move due to the high force which acts on it. This may result in instability

in the solution, and the stringbed may overshoot its equilibrium position, causing the ball
deformation to momentarily reduce and create a kink in the curve.

The model and experimental results for the magnitude of the ball COM and stringbed displacement
correlate for most of the compression phase of impact. However, it is generally found that the
model ball COM displacement is greater than that which is measured experimentally, especially
during the restitution phase. The figures above show that the maximum value of the model
stringbed displacement (during impact) is generally smaller than that measured experimentally.
However, during the restitution phase the value of the model stringbed displacement is generally
higher than that measured experimentally. Even more evident is the fact that both the model
stringbed and ball COM displacement both take longer to return to zero compared to their

experimentally determined values. This is implies that the contact time in the model is longer than
that obtained experimentally.

A significant feature of the experimentally obtained data that is shown in Figure 8.5 and Figure 8.6
is that the stringbed displacement often returns to zero before the ball COM displacement returns to
zero. This characteristic has been discussed in section 7.2.4 and leads to the requirement that there

are two different definitions for the contact time of the impact. These two separate definitions are
termed T and Tcs) and the definitions of these two terms are illustrated in Figure 8.7.
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Figure 8.7 Definitions of the measured terms obtained from the Displacement-Time plots.

The parameter T refers to the time taken for the stringbed displacement to return to zero. Figure
8.5 and Figure 8.6 show that the model consistently calculates a shorter value of T¢) than that
which was measured experimentally. This difference between the values obtained by the model
and experiment is in the order of between 0.5ms and 1.0ms. These figures also showed that the

model consistently calculated a shorter value of 7,3, than that which was measured experimentally;
Tc(s) being the time taken for the ball displacement to return to zero.

It has been commented that the magnitude of the ball COM displacement (and stringbed
displacement) which is calculated by the model during impact, is different to that measured
experimentally. Also, the contact times which were calculated by the model were different to those
obtained experimentally. This comparison has so far only been made for the two impact velocities
shown in Figure 8.5 and Figure 8.6. However, data was collected for many other impact velocities.
A method of summarising this data so that it can be neatly presented involves a consideration of
only the important measurements of the Displacement-Time curves. The four important
measurements are defined in Figure 8.7. Since all the curves shown in Figure 8.5 and Figure 8.6
have a similar shape, they can all be defined by the maximum displacement and the contact time;
these parameters being defined for both the stringbed and ball COM displacements.
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Figure 8.8 The maximum ball centre-of-mass displacement x4y, which occurs during an

impact between a ball and head clamped racket. The model and experiment data is plotted for two
ball types.
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Figure 8.8 (a) and (b) show the maximum ball centre-of-mass displacement x4y plotted against
the ball impact velocity, for the Pressurised and Pressureless balls respectively. These figures

show that the maximum ball COM displacement, which is calculated by the model, is generally
larger than that which is measured experimentally.
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Figure 8.9 The maximum stringbed displacement x4y, Which occurs during an impact between
a ball and head clamped racket. The model and experiment data is plotted for two different ball
types.

Figure 8.9 (a) and (b) show the maximum stringbed displacement x5,y plotted against the ball
impact velocity, for the Pressurised and Pressureless balls respectively. These figures show that
the stringbed displacement which is calculated by the model is consistently lower than that

measured experimentally. The magnitude of this difference ranges from 1mm to approximately
4mm.
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Figure 8.10 The contact time 7¢ for an impact between a ball and head clamped racket; T

being defined as the time taken for the stringbed displacement to return to zero. The model and
experiment data is plotted for two different ball types.

Figure 8.10(a) and (b) illustrate the data for the contact time Tc(s), for Pressurised and Pressureless
balls respectively. In these figures, both the model and experiment data is presented. The term
Tces) is defined in Figure 8.7, and corresponds to the period of time from initial contact until the
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stringbed displacement returns to zero. It can be seen the values of contact time which are
calculated by the model are consistently larger than those which have been measured

experimentally. The difference between the model and experiment data is generally between 0.4
and 0.8ms, for both ball types and string tensions.
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Figure 8.11 The contact time 7¢ for an impact between a ball and head clamped racket; T,

being defined as the time taken for the ball COM displacement to return to zero. The model and
experiment data is plotted for two different ball types.

Figure 8.11 (a) and (b) illustrate the data for the contact time T¢sp), for both the model and
experiment data. The term 7 corresponds to the length of time from initial contact until the ball
COM displacement returns to zero. It can be seen that the values of contact time which are
calculated by the model are consistently larger than those which have been measured

experimentally. The difference between the model and experiment data is generally between 0.2
and 0.6ms, for both ball types.

(c) Discussion

It can be seen that there are two definitions for contact time (7 and Tcp) and these have
different magnitudes. It has been found that the model consistently exhibits a longer contact time
than that measured experimentally, for both definitions. It is well established that a longer contact
time corresponds to a relatively lower stiffness for the system. This implies that the model stiffness
of the ball and/or stringbed is lower than that of the actual ball and stringbed. In the model, the ball
and stringbed form a complex interacting system and therefore the properties of one component

influences the properties of the other. However, to further the understanding of the impact, the two
components will be briefly investigated separately.

Let it be initially proposed that the model stringbed kg is not as stiff as the actual stringbed. This
assumption would explain the longer contact times which have been calculated by the model.
However, the calculated value of the stringbed displacement (in the model) is smaller than that
which is measured experimentally. This observation implies that the model stringbed is stiffer than

the actual stringbed, and thus contradicts the previous assumption. Therefore, it can not be
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unanimously concluded whether the model stiffness of the stringbed is higher or lower than the
actual stiffness.

The ball stiffness k5 shall now be considered. Again, it is initially assumed that the model stiffness
of the ball is lower than that of the actual ball, because of the longer model contact times. The data
in Figure 8.8 supports this because it shows that the ball centre-of-mass displacement which is

calculated by the model is larger than that which is measured experimentally. This implies that the
model ball stiffness is lower than that of the actual ball.

This brief analysis of the stiffness of the ball and stringbed has revealed that the accuracy of the
model would be improved by increasing the stiffness of the ball. This would act to decrease both
the contact time and the ball COM displacement which are calculated by the model, improving the
correlation between the model and experimental data for these parameters. The current values of
the ball stiffness parameter are defined using the data obtained for a ball impact on a rigid surface
(as described in section 8.3.1). Therefore, it can be concluded that the results in this section imply
that the structural stiffness of a tennis ball may be dependent on the nature of the surface that it is

impacting on. More specifically, it is suggesting that a ball is effectively ‘stiffer’ for an impact on
a stringbed, compared with an impact on a rigid surface.

The magnitude of the increase in ball stiffness that is required to improve the accuracy of the model

is not known. However, a possible reason for this effective increase in the ball stiffness can be
illustrated by considering the high speed video image in Figure 8.12.

Figure 8.12 shows a sequence of images that were captured using a high speed video system, in a
separate experiment to that which has been described previously. The ball was propelled
perpendicularly towards a head clamped racket (strung at 65lbs), and the impact was viewed
obliquely, from the rear, using the camera. The displayed images were captured at intervals of 1.0
ms. This sequence shows that the entire surface of the ball stays in contact with the stringbed
throughout impact. By contrast, for an impact between a ball and rigid surface, many authors
(Cross 1999b, Dignall 2000b) have shown that the ball wall buckles during impact, and the central
section of the ball losses contact with the surface. This buckling results in a rapid reduction in the

stiffness of the ball, which is confirmed by Force-Time data obtained for an impact between a ball
and force platform. This has been expanded upon in Chapter 4.

Time = 0 ms ime =1 ms Time = 2 ms

Time = 3 ms

Figure 8.12 A sequence of high speed video images of a Pressurised ball impacting

perpendicularly on a head clamped racket (viewed obliquely, from rear). The ball impact velocity
was 25my/s.
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Using the images in Figure 8.12 alone, it is not possible to define the mechanism which may be
preventing the ball wall from buckling. However, it can be hypothesised that it is linked to the
surface of the deformed stringbed, which is significantly different to that of a flat, smooth rigid
surface. Firstly, the shape of the stringbed may act to ‘cradle’ the ball, supporting it around its
perimeter thus making it more stable and less prone to buckling. Alternatively, the buckling may
be inhibited by the high frictional force which acts due to the imbedding of the strings into the
surface of the ball. It is very difficult to quantify the effect that friction will have on the ball
stiffness. A theoretical study by Hubbard & Stronge (2001) confirmed that friction will increase
the stiffness of a table tennis ball impacting on a rigid surface. Hubbard found that the stiffness
increased by approximately 10% when the coulomb friction was increased from z= 0 to 4= 0.47.

However, clearly it is difficult to quantifiably relate those results to the model being discussed in
this section.

Let it be assumed that the ball does not buckle during an impact with a head clamped racket. If this
assumption is valid, then it would be reasonable to assume that the stiffness of the ball would be

larger for an impact with a head clamped racket, compared with its stiffness during an impact with
a rigid surface.

In this section, it has been assumed that the ball stiffness kz was equal to that obtained empirically
for an impact on a rigid surface. However, it was then shown that this stiffness appeared to be too
low. This conclusion was based on the observation that the values of the contact time and ball
centre-of-mass displacement which were calculated by the model were greater than those measured
experimentally. This discussion has hypothesised that the ball stiffness kg should be increased to
improve the accuracy of the model. A possible reason to justify an increase in stiffness has been

given. However, this analysis has not generated a method of quantifying the magnitude of the
increase in stiffness.

8.3.3 Summary

In this section, a visco-elastic model of an impact between a ball and head clamped racket has been
discussed. This model can be used to calculate a number of variables for the impact, including the
ball rebound velocity and the contact time. The model of the ball component was the same as that
used to simulate a ball impact on a rigid surface. The stringbed stiffness was effectively equal to
that which had been experimentally obtained for a quasi-static compression of the stringbed. The

stringbed was assigned a damping parameter which was based upon data collected by other
researchers.

In this section, the output from the model was compared with the experimental data for an impact
between a ball and head clamped racket. The observations are summarised as follows,

1. The ball rebound velocity that was calculated by the model was lower than that measured
experimentally.

2. The stringbed displacement that was calculated by the model was lower than that measured
experimentally.
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3. The ball centre-of-mass displacement of the ball which was calculated by the model was
larger than that which was measured experimentally.

4. The contact time which was calculated by the model was longer than that which was
measured experimentally.

It was concluded that the model ball stiffness k5 was lower than the stiffness of the actual ball. In
this section, the model ball stiffness kp was defined using the data collected for an impact on a rigid

surface. However, it was then proposed that the same ball will be effectively stiffer during an
impact with a head clamped racket because the ball wall does not buckle.

In the following section, the model solution is modified to assess the effect of increasing the ball
stiffness k.

8.4 Modelling Technique — 2nd Attempt
8.4.1 Introduction

In section 8.2, a visco-elastic model of an impact between a ball and head clamped racket was
derived. This model contains a collection of springs and dampers which represent the structural
stiffness and material damping of the ball and stringbed. The ball was represented by a spring in

parallel with two dashpot dampers. The spring stiffness was defined as k5 and the two dampers

were defined using the parameters cz and cy. The stringbed was represented using a spring in
parallel with a damper that were defined as ksand cs respectively. A numerical analysis is used to

solve the model and therefore the magnitude of each parameter can vary throughout impact.

The model can be used to calculate a number of variables for the impact, including the ball rebound
velocity and the contact time. However, to obtain this solution, the magnitude of the parameters k3,
cs Cu, ksand cs need to be defined using realistic values. In section 8.3, a possible method was
discussed in which the ball parameters (kg, cs c)) were the same as those which were derived for
an impact between a ball and rigid surface. The stringbed stiffness was equal to that which had
been experimentally obtained for a quasi-static compression of the stringbed. The stringbed was
assigned a damping parameter which was based upon data collected by other researchers. In
section 8.3, the output from the model was compared with the experimental data that is presented in
section 7.2. In brief, it was concluded that the model ball stiffness kz was effectively smaller than
that of the actual ball. Therefore, in this current section, the model solution shall be repeated using
higher values of the ball stiffness parameter k5 to assess whether such a modification will improve
the accuracy of the model. The same combination of springs and dampers are used to model the
impact between a ball and head clamped racket, as was described in section 8.2. Also, the same
assumptions are to be used to define the stiffness and damping of the stringbed as were discussed in
section 8.3. The only difference between the model in this current section, and that in section 8.3,
is that a modified assumption is to be made in regard to the ball stiffness ks.
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8.4.2 Determining the visco-elastic model parameters

In this current section, the generic model which was discussed in section 8.2 is to be used to model
the impact between a ball and head clamped racket. The stringbed stiffness and damping
parameters (ks and c) are to be defined in the same way as they were in section 8.3, and therefore
the details are not repeated here. The definitions described in section 8.3 for the material damping
and momentum flux forces which act on a deformed ball during impact (cp and ¢,s) are also to be

used in this section. The only difference between the work in this section and that in section 8.3, is
in regard to the ball stiffness, defined as kz.

In the section 8.3, it was assumed that the ball stiffness k; was very high during a short period at
the start of the impact. The parameter ks was assigned a value of kgyg;, for the first 0.2ms of

impact; ksyz. being arbitrarily chosen as 80kN/m. After the first 0.2ms of impact, the parameter kp
is defined using,

ky =Ky + Ay =% f [8.21]

These assumptions had been made in the derivation of the model for a ball impacting on a rigid
surface, which is discussed in Chapter 5. In that work, experimental data obtained using a force
platform was used to illustrate that the ball buckles at an instance of ~0.2ms after initial contact.
This was simulated in the model by assuming a high initial stiffness, followed by a sudden
transition to a lower stiffness. In section 8.3, it has since been shown that the ball may not buckle
in the same way for an impact on a head clamped racket, as it does for a similar impact on a rigid
surface. Therefore, the assumption of a transition in the stiffness is not necessarily valid, and may
simply be adding an unnecessary complication to the model. Thus, in the model in this current
section, the stiffness of the ball is to be defined using 8.21, for the entire impact. For interest, it
should be noted that the this modification has negligible effect on the overall model solution, as the
high stiffness only acts for a relatively short length of time.
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Figure 8.13 Illustration of a possible new function to describe the ball stiffness in the model.

Table 8.2 shows the value of the spring parameters (ksw), Ax and a) which were used in section 8.3
to define the stiffness of the spring ks, using [8.21]. An informative way of illustrating the physical
significance of these parameters involves the use of graph of the ball stiffness k3 plotted as a
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function of the ball COM displacement xz. In Figure 8.13, such a plot is presented for a
Pressurised ball. In this figure, the ball stiffness is plotted for two different assumptions; these
being defined as (1) ‘original assumption’ and (2) ‘new assumption’. The ‘original assumption’
plot was calculated using [8.21] and the same values of ks, Ax and a that had been originally
assumed in section 8.3. Also shown in Figure 8.13 is an arbitrary plot of a proposed ‘new’ ball

stiffness k. This is shown merely to illustrate a possible alternative function to define the value of
kg, and the method used to obtain this curve is described below.

The ‘new’ function which describes the ball stiffness kz that will be used in the model in this
section is assumed to take the form of [8.21]. Also, for simplicity, it is assumed that the ‘new’
stiffness will be equal to a constant factor Kop multiplied by the original stiffness, for all values of
xz. The ball stiffness for the ‘original’ and ‘new’ assumption are defined as ksprigingy and kgpew)
respectively. Therefore, the assumed relationship between the two can be defined as,

kB(new) = KMOD x kB(originaI) [822]

It was arbitrarily assumed that the value of Kyop was equal to 1.3; this implying that the ball is

effectively 30% stiffer for an impact on a head clamped racket compared with such an impact on a
rigid surface.

The value of kzpew» at any value of (xp-xs), could simply be obtained by determining the relevant
value of kpgriginay, Using [8.21] and the value of k), A4x and o from section 8.3, and then multiply
this value by Kyop. However, a neater solution would be obtained by determining a new set of
values of kgg), Ax and a which give a stiffness that is 30% larger than that obtained previously.
The value of kppewy could then be obtained directly from [8.21], using the new parameters. The
value of the new parameters can easily be obtained by multiplying kg and 4x each by 1.3 («

remaining unchanged). These parameters give an increased ball stiffness equal to 30% compared
to the original set of values of k), A and a.

Table 8.4 The new assumptions for the spring parameters kzg), Ax and « for the two ball types.
The damping coefficient A¢ is also shown.

Ball type ks() (KN/m) Ay (KN/m?) a Ac (KNs/m’)
Pressurised 27.3 20800 1.65 35
Pressureless 29.9 16250 1.70 4.0

The spring parameters shown in Table 8.4 can be used in conjunction with [8.21] to define the ball
stiffness kp throughout impact. The other features of the model are identical to those described in
section 8.3, and therefore the solution is complete. As before, it is assumed that the force which
acts on the ball is zero for ball COM displacements of less than 2mm, during the compression

phase. This accounts for the low stiffness of the cloth and is the same assumption as that used in
section 8.3.
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As in section 8.3, the model was solved for Pressurised and Pressureless balls, for impacts on head

clamped rackets with two different string tensions (40lbs and 70lbs). The values calculated by the
model are compared with experimental data.

8.4.3 Results - Comparison of Model and Experiment results
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Figure 8.14 Comparison of the ball rebound velocity measured for the experiment and model.

Figure 8.14 shows a comparison of the ball rebound velocity calculated by the model and that
measured experimentally. This data is presented separately for the Pressurised and Pressureless
balls. It can be seen that the model predicts the experimentally obtained ball rebound velocity to

within approximately 0.5m/s for all combinations of ball type and string tension.  This difference
is of the same order of magnitude as the scatter in the experimental data.
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Figure 8.15 Ball centre-of-mass displacement and stringbed displacement for an impact between
a ball and head-clamped racket, for four different combinations of string tension and ball type. The
ball impact velocity is 20m/s, and both the model and experiment data are presented.
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Figure 8.16 Ball centre-of-mass displacement and stringbed displacement for an impact between
a ball and head-clamped racket, for four different combinations of string tension and ball type. The
ball impact velocity is 35m/s, and both the model and experiment data are presented.

In Chapter 7, experiments were conducted to measure the stringbed and ball centre-of-mass
displacement during impact. The experimental values of ball COM and stringbed displacement are
plotted in Figure 8.15 and Figure 8.16, along with the results calculated by the model. These
figures contain data for an impact between a ball and head clamped racket, at nominal impact
velocities of 20m/s and 35m/s respectively. Data is presented in these figures for the two different

ball types and two different tensions. The data for other impact velocities is given in the Appendix
C.6.

The main characteristics of the plots have been discussed in section 8.3, and therefore the details
are not repeated here. In general, the displacement data calculated by the model correlates with
that measured experimentally, to within approximately 3mm, for most of the impact. The main

point at which a poor correlation is found between the two sets of data occurs towards the end of

the impact, for the values of stringbed displacement. It can be seen that the experimentally

measured stringbed displacement consistently reaches zero before that calculated by the model.

A method of summarising the above data so that it can neatly be presented is performed by only
considering the important measurements of the Displacement-Time curves. As discussed in section
8.3, all the plots in Figure 8.15 and Figure 8.16 have a similar shape, and can therefore all be
defined by the maximum displacement and contact time. These parameters are defined for both the
stringbed and ball COM displacements; the respective contact time being defined as the time at

which the displacement returns to zero. Therefore the data can be summarised by just four
parameters.
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Figure 8.17 The maximum ball centre-of-mass displacement, which occurs during an impact
between a ball and head clamped racket. The data is plotted for two different ball types.

Figure 8.17 (a) and (b) show the maximum ball centre-of-mass displacement Jpn.x) plotted against
the ball impact velocity, for the Pressurised and Pressureless balls respectively. These figures
show that the model ball COM displacement is generally smaller than that which is measured
experimentally. However, it is noted that the maximum difference is only in the order of
approximately 1 mm for the Pressurised ball and between 2 and 3 mm for the Pressureless ball.

This data is implies that the model calculates a fractionally lower value of ball deformation
compared with that which actually occurs.
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Figure 8.18 The maximum stringbed displacement, which occurs during an impact between a

ball and head clamped racket. The model and experiment data is plotted for two different ball
types.

Figure 8.18 (a) and (b) show the maximum stringbed displacement &4y plotted against the ball
impact velocity, for the Pressurised and Pressureless balls respectively. These figures show that,
for both string tensions, the model stringbed displacement is consistently lower than that measured
experimentally. The magnitude of this difference is generally between 1 and 2mm, which is clearly
small, and is less than that which was found in the previous modelling attempt in section 8.3.
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Figure 8.19 The contact time T for an impact between a ball and head clamped racket; T

being defined as the time taken for the stringbed displacement to return to zero. The model and
experiment data is plotted for two different ball types.

Figure 8.19 (a) and (b) illustrate the data for the contact time T¢s), for Pressurised and Pressureless
balls respectively. In these figures, both the model and experiment data is presented. The term
Tcs) corresponds to the length of time from initial contact until the stringbed displacement returns
to zero. It can be seen the values of contact time which are calculated by the model are between
0.2 and 0.6ms longer than those which have been measured experimentally; the difference being
largest for the higher speed impacts. This compares with a difference of between 0.4 and 0.8ms

which was found in section 8.3 (for the first modelling attempt) and therefore this data implies a
small improvement in the accuracy of the model.
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Figure 8.20 The contact time 7 for an impact between a ball and head clamped racket; 7z,
being defined as the time taken for the ball COM displacement to return to zero. The model and
experiment data is plotted for two different ball types.

Figure 8.20 (a) and (b) illustrate the data for the contact time T¢, for both the model and

experiment data. The term 7 corresponds to the length of time from initial contact until the ball

COM displacement returns to zero. It can be seen that the values of contact time which are

calculated by the model exhibit a good correlation with the values that were measured

experimentally, to within 0.2ms. It should be noted that this difference between the two sets of

data is of the same order of magnitude as the scatter for the experimental values. In the previous
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modelling attempt, discussed in section 8.3, a difference of between 0.4 and 0.8ms was found

between the model and experiment data. This signifies a clear improvement in the modelling
method.

8.4.4 Discussion

In this section, a visco-elastic model of a ball impact on a head clamped racket has been discussed.
This model is identical to that which was described in section 8.3, except the model ball stiffness

has been increased by approximately 30%. This value had to be arbitrarily chosen as there is no
analytical solution to define the correct value.

It has been found that this modification significantly improves the correlation between the model
results and those which were measured experimentally. For example, the ball rebound velocity
which was calculated by the model correlates to within approximately 2.5% of the values obtained

experimentally. This compared with a difference between the two sets of data of 5-10% which was
found in section 8.3 for the previous modelling attempt.

Similarly, the model predicted the contact time Tcp to within approximately 0.2ms of the
experimental data; the variable T being defined as the time for the ball centre-of-mass

displacement to return to zero. This is a significant improvement compared with the data shown in
section 8.3.

The comparison between the model and experimental data for the other calculated/measured
parameters exhibited a slightly poorer correlation than that for the ball rebound velocity and T,
It has been shown that the model consistently underestimates the maximum displacement of both
the ball centre-of-mass and the stringbed, during impact. This initially implies a weakness in the
model but a consideration of the validity of this comparison can be used to illustrate an alternative
reason for this difference. The experimentally measured ball COM displacement is generally
between 1 and 2mm larger than that calculated by the model. It should be noted that this
displacement is not measured directly in the experiment, and is actually calculated from the
measured values of ball deformation, using an empirical formula. It is likely that this empirical
formula is subject to errors and therefore, the difference between the model and experiment data
may simply be due to an error in the calculation of the experimental values of ball COM
displacement. An alternative reason for the difference in the two sets of data can be proposed from
a consideration of the limitations of the model. A tennis ball is a complex, multi degree-of-
freedom (DOF) object which deforms considerably during impact. It is being modelled as a one
DOF system which is capable of simulating a first order approximation of the structural stiffness of

the object, but may not be able to model the higher order modes of vibration which will clearly
have some influence on the results.

Another consistent difference between the model and the experimental data is that the value of T
which is calculated by the model is consistently smaller than that determined experimentally; the
variable T¢s) being defined as the time for the stringbed displacement to return to zero. Again, this
can most likely be assigned to the simplification of the multi-DOF ball and stringbed structures as

two 1-DOF visco-elastic models. These types of models can not simulate the complex modes of
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vibration of these two structures, and therefore differences between the model and experimental
data must be excepted.

Figure 8.21 Schematic definition of the stringbed displacement xg which is (a) measured
experimentally and (b) calculated by the model.

The value of the experimentally measured stringbed displacement is between 1 and 2mm larger
than that calculated by the model. However, an evaluation of this comparison reveals that the two
methods are measuring subtly different parameters, as illustrated in Figure 8.21. A schematic
illustration of the actual and modelled impacts are given in Figure 8.21 (a) and (b) respectively.
The definition of the stringbed displacement x;g is given in each figure. In section 7.3, the shape of
a deformed stringbed was measured experimentally, and this approximated shape is shown in
Figure 8.21 (a). The key observation being that the displacement of the stringbed is not uniform
across the contact area. However, the model has only one degree of freedom to describe this shape,
and therefore the stringbed displacement for this case is effectively constant along the contact area.
Therefore, the displacement calculated by the model effectively represents the ‘average’
displacement of the stringbed across its contact area. Thus it is not surprising that the stringbed

displacement calculated by the model is less than that measured experimentally.

To conclude, the modification which has been implemented in the model in this section has
resulted in an improvement in the accuracy of the model. Any small differences between the

model and experimental can be assigned to the inherent weakness of using a simple two degree-of-
freedom visco-elastic model to simulate the complex impact mechanism.
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8.5 Applications of the model
8.5.1 Introduction

In section 7.2, a comparison between model and experiment data was made for the ball rebound
velocity, contact time, stringbed displacement and ball deformation, for the different ball types and
string tensions. As mentioned previously, the force which acts on the ball for an impact on a head

clamped racket can not be measured experimentally. However, it can be calculated using the
model which has been developed in section 8.4.

In this section the model will be used to calculate the forces which act on a range of ball types and

string tensions to assess the effect that these two parameters have on the force which acts on the
ball.

8.5.2 Calculated Force-Time curve

Figure 8.22 (a)-(d) show the force which is calculated by the model, for two different ball types and
string tensions, for an impact velocity of 26m/s. The total force which acts on the ball is presented,
along with the magnitude of the individual components of this force. It can be seen that the total
force is very similar in all figures, for the first 0.1ms of impact. The only difference, during this
period, is that the ‘material damping’ and ‘momentum flux’ forces are higher for the impacts on a
racket strung at 70lbs. This can be explained by the fact that the racket strung at 701bs has a higher
stringbed stiffness, and therefore the ball is brought to rest faster, during this period. This means
that the ball deforms faster, thus leading to higher values of these components. Also, the maximum

‘material damping’ force is higher for impacts on a racket strung at 70lbs, compared with a racket
strung at 401bs.

It can be seen that, for an impact on a racket with a specific string tension, the calculated maximum
force is approximately SON higher for the Pressurised ball compared with the Pressureless ball.
This increased force is effectively due to the higher ‘structural stiffness’ component of the
Pressurised ball. For a specific ball type, the maximum force which acts on the ball is
approximately 100N higher for the racket strung at 70lbs, compared with that strung at 40lbs. The
data also shows that the contact time is approximately 0.5ms shorter for the racket strung at 70lbs.
These two differences can both be assigned to the higher stiffness of the racket strung at 70lbs.

The data in Figure 8.22 can not be experimentally verified. However, it should be noted that this
model is (1) based upon the experimentally verified model of a ball impact on a rigid surface, and
(2) gives approximately the same ball rebound velocity, contact time, stringbed displacement and
ball centre-of-mass displacement as that which has been measured experimentally. Therefore, the
magnitude of the impulse which acts on the ball and the duration of the force must be
approximately equal to that which actually occurs in the real impact.
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Figure 8.22 Force that acts on the ball for an impact with a head clamped racket. This force is

calculated using the model, and the individual components of the model are presented separately.
The impact velocity is 26m/s.

In section 7.2.6, a comparison was made between the experimentally measured ball deformation,
contact time and ball rebound velocity for impacts on a rigid surface and on a head clamped racket.
This comparison showed that the ball deformed more, rebounded slower and exhibited a shorter
contact time for impacts on a rigid surface. A similar comparison can be made for the force values
which are calculated by the models of the two different types of impacts. Figure 8.23 (a) shows the
calculated forces for a model of a Pressurised ball impacting on a head clamped racket that has

been strung at 40lbs. Figure 8.23 (b) shows the calculated forces for a model of a Pressurised ball
impacting on rigid surface. The impact velocity is 26m/s for both impacts.
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Figure 8.23 Force that acts on the ball for (a) an impact with a head clamped racket, and (b) an
impact with a rigid surface. This force is calculated using the model, and the individual

components of the model are presented separately. The impact velocity is 26m/s for both impacts.

The figures show that, during the initial 0.7ms of the impact, the force which acts on the ball during
an impact with a rigid surface is considerably higher than that for the impact on a head clamped
racket. During this period, the main component of the force is that due to the momentum flux and

this component is considerably larger for the impact with a rigid surface, due to the higher ball

deformation rate occurring in this type of impact. The ‘material damping’ component is also

considerably higher during this period, for this type of impact. It is noticeable that the total model
force exhibits a distinct drop in both models, at a time of approximately 0.2ms. However, it is
interesting to note that this feature occurs for different reasons. In the rigid surface impact, it
occurs due to the simulated ‘buckling’ of the ball wall and in the head clamped impact it is due to
the momentum flux force rapidly reducing after initial contact. The maximum structural stiffness
component of the force is similar for both types of impact, but the point at which this peak occurs
is considerably later for the impact on a head clamped racket. The figures show that the contact

time is considerably longer for an impact on a stringbed. This is due to the lower ‘effective’
stiffness of the system for an impact of this type.

8.5.3 Summary

It has been shown that the model can be used to calculate the force which acts on the ball during
impact. The results showed that the maximum force which acts on a Pressurised ball, during
impact, is approximately 5% higher than that which acts on a Pressureless ball. It was also shown

that the force which acts on a tennis ball during an impact with a racket strung at 70Ibs tension is
10% larger than for an impact with a 40lbs racket.
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This model can be used to determine the force which acts on the stringbed, for an impact between a
ball and head clamped racket. This model will developed in the later chapters of this study to
simulate a ball impacting on a tennis racket which is not head clamped. In this type of impact,
clearly the racket frame will deform during impact and this will need to be modelled by some
suitable method. The magnitude and form of this frame deformation will be a function of the force
applied to the frame by the stringbed. In this current chapter, a method of obtaining the force
acting on a ball/stringbed during an impact between a ball and head clamped racket has been
obtained. The next stage of the modelling procedure would clearly involve a development of this
model to allow the simulation of an impact between a tennis ball and a racket that was supported
using a method which was representative of a player’s grip.

8.6 Discussion of model

8.6.1 Introduction

In this chapter, a model of a tennis ball impact on a head clamped tennis racket has been developed.
In this model, the stringbed was simulated by a spring and damper in parallel, which were attached
to a mass ms. The stringbed was assigned a finite mass so that the model was physically
representative of the actual impact mechanism. In this chapter, it has been assumed that the mass

mg is equal to an arbitrarily chosen value of 5g. In this section, this assumption will be
investigated.

8.6.2 Assumption of the stringbed mass magnitude

Table 8.5 Comparison of the parameters calculated by the model for three different values of the
stringbed mass ms.

Ball impact velocity = 15m/s Ball impact velocity = 30m/s Ball impact velocity = 40m/s
mg=5g |mg=02g| ms=20g | mg=5g |mg=02g| mg=20g | mg=5g | mg=02g| msg=20g
Ball rebound
13.0 13.2 12.4 24.1 . .
L elocity (m/s) 24.1 233 31.0 309 30.3
aximum

tringbed 10.3 10.3 11.5 18.2 18.1 19.2 23.2 23.0 24.1
displacement (mm)
Maximum ball
centre-of-mass 12.8 13.0 12.6 20.6 209 20.0 243 24.5 23.4
displacement (mm)
Contact time T | 4.98 4.96 5.15 4.28 421 4.52 4.01 3.92 427
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The total mass of the strings in a tennis racket is typically 20g but only a fraction of the stringbed
actually displaces during impact. The correct mass mg could actually be equal to any value
between Og and 20g. Therefore, in this section the model solution is calculated using these two
extreme values (ms = 0.2g and mg = 20g), as well as the value mg = 5g. It should be noted that a
stringbed mass ms = Og does not provide a valid solution of the model). The solution was
calculated and the effect of the different magnitudes of the masses was quantified by comparing the
model output for several parameters (e.g. ball rebound velocity). The parameters were obtained for
a model of an impact between a Pressurised ball and a racket strung at 70lbs. Three different ball
impact velocities were tested which were 15, 30 and 40m/s, and the model results for a range of
parameters are given in Table 8.5. Table 8.5 gives the model output for four of the main
parameters, as listed in the first column. It can be seen that the ball rebound velocity is very similar
for impacts where a stringbed mass mg of either 0.2g or 5g is assumed. Furthermore, both these
stringbed masses give very similar values of values of the other three parameters given in the table.
However, if a value of mg = 20g is assumed then the ball rebound velocity is reduced by
approximately 0.7m/s (2-6%). This is clearly due to the extra energy stored in the stringbed which
is not recovered by the ball. Also, the maximum stringbed displacement is larger, and the

maximum ball COM displacement is smaller, for the assumed mass ms=20g. The contact time for
the impact is also increased due to this larger mass.
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Figure 8.24 (a) Ball centre-of-mass displacement and (b) stringbed displacement for an impact
between a ball and head-clamped racket, for three different values of stringbed mass ms. The ball
impact velocity is 30m/s. The data points in these figures represent typical experimental data.

Figure 8.24(a) shows the magnitude of the ball centre-of-mass displacement during impact, for
three different values of the model stringbed mass mg. It can be seen that the experimental data
corresponds most closely with the model that assumes a stringbed mass mg of 5g.  The model
solution which assumes a stringbed mass mg of 0.2g is very similar to that with ms = 5g, except that
the characteristic kink at the start of the impact is not evident for the lower stringbed mass. The

model solution which assumes my = 20g is vastly different to that of the experimental data.

Figure 8.24(b) shows the magnitude of the stringbed displacement during impact, for three
different values of the model stringbed mass ms. Similar trends were found in this figure, as were
found in Figure 8.24(a); the most accurate model being that which uses a stringbed mass of Sg.
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8.6.3 Discussion

In this section it has been shown that the model solution, for a visco-elastic model of a ball
impacting on head clamped racket, is very similar for stringbed masses of 0.5g and 5g. If a
stringbed mass of 20g is assumed, then the model solution typically differs by approximately 5-
10%, compared with that which assumes a mass of Sg. In the previous work in this chapter
(sections 8.3-8.5) it has been assumed that the stringbed mass m; is equal to 5g. In this section, it
has been shown that the assumed magnitude of this mass only effects the model solution by a

maximum of 5-10%. This suggests that it was reasonable to assume the arbitrary value of 5g for
the stringbed mass.

8.6.4 Application of the results

In the following chapter, a model of an impact between a tennis ball and freely suspended racket is
to be developed. This model will be a development of the work which has been discussed in
Chapters 6, 7 and 8, for an impact between a ball and head clamped racket. In these chapters, the
model has included a component which simulates a finite stringbed mass. However, in this section
it has been shown that the model solution is very similar for stringbed masses of 0.2g and 5g.
Therefore, it can be concluded that the inclusion of a stringbed mass in the model adds an
unnecessary complexity. The modelling work which has been discussed in this chapter could
easily be repeated, using a model which does not include a stringbed mass. However, similar
conclusions would be found as have been discussed in this chapter and therefore it is concluded
that this work was not necessary. However, in the model of a ball impacting on a freely suspended
tennis racket, which is discussed in the following chapter, it is to be assumed that the stringbed
mass is zero. This assumption is made to simplify the required model.
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8.7 Summary

In this chapter, a two degree-of-freedom visco-elastic model has been developed which can
calculate the force that acts on the ball during an impact with a head clamped racket. The ball
component of the model was identical to that derived for a model of a ball impact on a rigid
surface. The stringbed component was assumed to have the same stiffness as that which was
measured experimentally for a quasi-statically applied load. A small damping factor was

incorporated into the stringbed model to account for the low level of hysteresis loss which has been
empirically determined by other researchers.

The values calculated by the model were compared with data measured experimentally. It was
found that the model underestimated the ball rebound velocity and the magnitude of the stringbed
displacement during impact. It was also found that the magnitude of the ball centre-of-mass
displacement and the contact time for the impact were consistently larger for the model compared
with the experimental data. Using the comparisons made in this section it was concluded that the
accuracy of the model would be improved by increasing the model ball stiffness kz. The
justification for such an increase was proposed based on observations of the shape of the ball
surface that was in contact with the stringbed. It was concluded that the stringbed acted to ‘cradle’
the ball wall, inhibiting the onset of buckling which is known to reduce the structural stiffness
during an impact with a rigid surface. Therefore the stiffness of the ball will be higher for an
impact with a stringbed, compared to a similar impact with a rigid surface.

It was assumed that the ball stiffness should be increased by 30% and the model solution was
repeated using this assumption. It was found that this modification resulted in the ball rebound
velocity data that was calculated by the model correlating to with in 2.5% of the experimentally
measured values. Similarly the model calculated values of contact time that were with in 5% of
those measured experimentally. The values of the stringbed and ball COM displacement which
were calculated by the model correlated to within approximately 2mm of those values measured
experimentally. This small difference was accounted for by the inherent weakness of a simple two

degree-of-freedom model being used to simulate a complex system that involves the interaction of
two highly deformable objects.

It is not claimed that this visco-elastic model of a ball impacting a head clamped racket perfectly
represents the real impact mechanism. Indeed, the assumption made regarding the magnitude of
the increase in the ball stiffness was merely implemented to improve the correlation between the
model and experiment results. However, it has been shown that the contact time, ball centre-of-
mass displacement, stringbed displacement, and ball rebound velocity which are calculated by the
model correlate very closely with the experimentally measured data. Therefore the calculated force
which is exerted on the ball during impact, which can not be measured experimentally, should be of
a similar magnitude to that which actually occurs in the real impact. This model can also be used
to accurately quantify the differences between different ball types and string tensions.
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9. Impact between a Ball and Freely Suspended Racket
- Modelling Techniques

9.1 Introduction

In the previous chapter, a model of a ball impacting on a head clamped racket was derived. The
racket was restrained in this way to simplify the required model as the deformations of the frame
did not need to be simulated. However, in the game of tennis a racket is held at the handle by a
player and is therefore not rigidly clamped along its length. A thorough discussion of the
simulation of a player’s grip is presented in section 2.4.3, and is therefore not repeated here. To
summarise, many researchers have concluded that a freely suspended racket is the most suitable
method of replicating a player’s grip for both experimental and modelling work. It should be noted
that this assumption is only valid for the duration of the impact, which is acceptable since the
motion of the racket after impact is not of immediate importance.

In this chapter, a model of a tennis ball impacting on a freely suspended racket is to be derived. In
this model it is to be assumed that all the balls impact perpendicular to the stringbed, and the
impact is located at a discrete point along the longitudinal (main) axis of the tennis racket.

The aims of this work are similar to those of the other chapters in this study in which a model of an
impact has been derived. This work is sponsored by the International Tennis Federation and their
main requirement for this model is that it can be used to simulate a typical impact between a ball
and racket, in a game of tennis. Clearly this study could diversify into many fields of research (e.g.
biomechanical science), however, this study is focused on the impact mechanism which occurs
between the ball and racket. Therefore, the main aim of this work is to derive a model which can
quantify the effect of, for example, ball mass or racket frame stiffness, on the displacement of the

ball and racket during impact.  For example, the model should have the ability to calculate the
following parameters,

1. Ball rebound velocity.

2. Contact time.

3. Vibrations of the racket frame which are induced by the impact.

The derived model will be verified in a later chapter using experimental data, similar to the

comparisons which have been conducted in previous chapters. This is not discussed further at this
stage as it shall be presented in full in Chapter 10.

The model of an impact between a ball and freely suspended tennis racket involves three discrete
components; these being the ball, stringbed and racket frame. The ball and stringbed are to be
simulated using a visco-elastic model similar to that discussed in Chapter 8. This will be solved, as
before, using a numerical analysis which can be used to calculate the time-dependent force that acts
on the racket. In this chapter, the racket is to be modelled using two different techniques which
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have been utilised by other authors and offer different degrees of complexity. The two different
techniques are described separately, as follows.

(a) Rigid beam model of a tennis racket frame

The frame of the racket will be modelled as a rigid beam that has the same inertial properties as the
racket. The inertial properties referred to here are the mass, balance point and mass moment of
inertia. In this model, the time-dependent force is applied to the rigid beam as a point loading. The
rigid beam/racket does not deform and therefore simple Newtonian mechanics can be used to
determine the displacement of the beam, at any time interval, for the relevant time-dependent force.
This modelling technique does not allow the vibrations of the racket frame to be calculated, but
does offer a simple 1" order approximation of the impact mechanism.

(b) One dimensional, flexible beam model of a tennis racket frame

The second modelling technique discussed in this chapter attempts to calculate the deformation of
the racket frame during, and immediately after, impact. This is to be performed by modelling the
racket frame as a one dimensional flexible beam. The reasons for choosing this method have been
discussed thoroughly in section 2.5.2 and therefore will only be summarised here. Many authors
(Brody (1987), Kawazoe (1997a), Cross (1998)) have shown that the transverse vibration modes
and location of the respective nodes for a freely suspended racket are very similar to those of a
simple one-dimensional beam. It should be noted that this is only valid for impacts along the

longitudinal axis because off-centre impacts induce torsional vibrations which are not simulated by
a one dimensional beam.

The one dimensional beam will clearly be assigned the inertial properties of the racket that is being
modelled. The beam will also be assigned a stiffness, or flexural rigidity, for a transverse loading
which is equivalent to that of the racket frame. In this chapter, a method will be presented which
enables the displacement of the beam to be calculated, for a time-dependent force. Initially it shall
be assumed that the force exerted on the beam by the ball/stringbed system acts as a point loading,
The model will then be developed to simulate a more realistic distributed loading of the beam.

The numerical solutions of the two racket modelling techniques (rigid and flexible beams) are
presented in this following chapter.
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9.2 Rigid body model of a tennis racket
9.2.1 General model

Figure 9.1 Illustration of a visco-elastic model of a ball impact on a freely suspended racket.

The ball and stringbed are to be modelled using a similar technique as that discussed in Chapter 8
for a model of an impact between a ball and head clamped racket, except for a couple of minor
simplifications. The ball has been modelled as a spring in parallel with two dashpot dampers, as
illustrated in Figure 9.1. The spring is used to simulate the structural stiffness of the ball and this
parameter is defined as k3. A dashpot damper ¢z is used to simulate the hysteresis loss in the
material. A second dashpot damper is used to simulate the force which acts on the ball due to the
momentum flux, and this parameter is defined as c,. The stringbed is represented by a spring and
dashpot in parallel. The spring is used to represent the stiffness of the stringbed, in a direction
perpendicular to the plane of the stringbed, and this parameter is defined as ks. The dashpot damper
cs is used to account for the energy loss for an impact in this same direction.

In this section, the frame of the racket will be modelled as a rigid body that has the same inertial
properties (mass, balance point and mass moment of inertia) as the racket. The ball impacts at a
distance d from the centre-of-mass (COM) of the racket. It is assumed that the stringbed applies a
point load on the rigid body, located at the impact point. The location of the racket centre-of-mass

is defined as the balance point and is at a distance By from the butt end. The mass moment of
inertia, around the racket COM, is defined as /;.

The displacement x represents the motion of the centre-of-mass of the ball. The displacements x;
and x;p represent the motion of the stringbed and frame at the ball impact position, respectively.
The parameters xz and 6 represent the linear and angular displacements of the racket COM

respectively. The parameters my and my are equal to the mass of the ball and racket respectively.
It shall be assumed that the mass of the stringbed is negligible, as done in section 8.4.
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The equation that for the force F which acts in the ball/stringbed system in the model is,

F = _[(CB +Cy Xxs - x.\')+ kB(xB - xs)] = *[cs(xs - xD)+ ks (xs - xD)] (9.1]
The acceleration of the point xz which corresponds to the ball COM displacement, is defined using,
. _F
Xy =— [9.2]
mpg

The acceleration of the point xz which corresponds to the racket COM linear displacement, is
defined using,

iy =— (93]
Mg

and the angular acceleration of the racket COM is defined using,

¢=fz [9.4]
Iy

The acceleration of the racket frame at the impact point x;» can be defined using,

$p =i +0d [9.5]

As explained in previous chapters, the motion of the points xz, x5, xz, x;p and &; will be evaluated
numerically using the finite difference method. It is noted that the finite difference technique relies

on the values of all parameters being known at time ¢. The finite difference equation which defines
the displacement x5 at a time 1+A4t¢ is,

(5 )y = 487 (), +2(xy), = (x4)-s [9.6]

Similar equations can be used to calculate the values of the racket displacements at time 7+4¢
which are defined as (x, ):+ P (x,p ),+ , and (6, ),+ 4 - The time step At used in this numerical
solution is Sus. As the time step used in this solution is very small, it is assumed that the velocity

change during this period was negligible for all five parameters. Therefore the velocity of the
centre-of-mass of the ball at time ¢, (x 8 ), can be calculated using,

(5‘3 )‘ - (xB): —A(th ):-A«

[9.7]

The three components of the racket velocity (x 5 ), , (%, ), and (9R ), can be defined using equations

of a similar form. Also, the velocity of the stringbed at time 1, (%, ), can be calculated using,

("Cs), - (xs), "(xs )1-41

Al [9.8]

Equation [9.8] can be substituted into {9.1]. Equation [9.1] can then be rearranged to define the
stringbed displacement at time ¢, (x ),
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ko) b)) e e B2 v, )

9.9
o +(cs+cB+cM) B3]
SoF At

(xs ), =

The equations ([9.7])-[9.9]) can be used to define all the five parameters, at time . To commence
the finite difference solving technique, the displacement and acceleration of the ball and racket
need to be known at the times ¢ = 0 and ¢ = -A¢. It is assumed that, prior to impact, the ball velocity
is V5 and the racket velocity can be defined by the linear and angular components Vz and wg

respectively. The velocity of the racket frame at the ball impact position Vjp, prior to impact, can
be calculated using,

V,=V, +a,d [9.10]

Let it also be assumed that neither the ball or racket are accelerating immediately prior to impact,
i.e. at times when ¢ = 0 and ¢ = -At. The displacements of the parameters xp, x5, X;p, Xz and 6 at

time ¢ = 0 are assumed to be all equal to zero. The displacements of these parameters at time ¢ = -
Atare xg= -VB.At, Xs=Xpp= -le.At, Xp = -VR.At and HR = -G)R.At.

The solution was written in MS Excel 2000 and could be solved for each time step of the impact,

provided that the values of the parameters k3, ks, cs, cu, cs, Br, mg and I are all known, along with
the impact position and the velocity of the ball and racket prior to impact.

In this section, a generic visco-elastic model of a ball impact on a freely suspended racket has been

developed. The racket has been modelled as a rigid body. In the next section, the methods used to
define the parameters (k3, ks etc) are described.

9.2.2 Defining the model parameters
(a) The ball

The ball has been modelled as a spring in parallel with two dashpot dampers, as illustrated in
Figure 9.1. It is assumed that the method used to define the parameters kg, ¢ and ¢y, is the same as
that discussed in Chapter 8 for an impact between a ball and head clamped racket, with a minor
modification. A detailed explanation of the general method which is used to define these
parameters is given in Chapter 8 and therefore is not repeated here. However, a brief résumé is
given here, along with an explanation of the minor modification that is made to the model.

In this model, the deformation of the ball is analogous to the model parameter (x 5 — Xs ) Using the

findings from Chapters 5 and 8, it is assumed that the model ball stiffness ks is defined as a
function of (x, — x,) using,

ky =k +AK(xB ‘xs)a [9.11)
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The parameters k), Ax and a are constants for a specific ball type and the values were derived in
Chapter 8. The values of these two parameters are given in Table 9.1 for four different ball types.

Table 9.1 Spring parameters k), Ax and @ and damping constant A¢ for the four ball types.

Ball type kg (KN/m) Ax (kKN/m%) a Ac (kNs/m’)
Pressurised 273 20800 1.65 3.5
Pressureless 29.9 16250 1.70 4.0
Oversize 273 4680 1.30 32
Punctured 20.8 78000 2.00 58

It is assumed that the magnitude of the material damping was proportional to the volume of rubber
being deformed, and also the ball deformation rate. Therefore, the dashpot parameter ¢z which
represents the material damping is defined using,

m
Cp = HB' Ac '(dCONT )2 [9.12]
!

where mj is the mass of the ball. The parameter 4 is defined as the damping constant and its value
is shown in Table 9.1.

The parameter dconr refers to the diameter of the circular area of the ball that is in contact with the

surface. It is assumed that the empirical relationship between dconr and the relative ball COM
displacement (xB - xs) is,

deoyr =-2.77x10°(xy = x5 )' +1.74x10°(x, - x,) - 453(x, - x, F +7.66(x, —x5) [9.13]

The term M, in [9.12] refers to the mass of the section of ball that is not in contact with the surface.
This value clearly varies throughout impact, and is a function of the ball deformation. It is

assumed that M, is equal to the difference between mjp and the mass of the ball that is in contact
with the surface M;. The value of M; is estimated using,

d 2
M2 = parea”[__cgq‘) [914]

where p,., is the mass per unit surface area of the ball and is equal to 5.212kg/m2 for a standard
size ball.

The force which acts on the ball due to the momentum flux is simulated using the dashpot damper
cu. This force only acts during the compression phase of impact and the value of ¢y, is a function

of the mass (and velocity) of the section of ball being brought to rest in a unit time interval 4. The
equation used to define cy, at time ¢, is,
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€)= |Pueat(conrie) F ~eonrira, P

441(M,), -13]

Equation [9.15] completes the set of equations which are used to define the parameters kg, ¢ and
cy, throughout the impact. The methods used to define these parameters are identical to those used
in the model of a ball impacting on a head clamped racket, as discussed in Chapter 8. However, in
that chapter a further assumption was made in regard to the ball component of the model to
simulate the contribution of the cloth on the ball, during the compression phase. It was assumed
that the force which acted on the ball (and stringbed) was equal to zero, for ball COM
displacements of less than 2mm, regardless of the values of the ball model parameters. However,
it can be shown that this has negligible effect on the values which are calculated by the model (e.g.
ball rebound velocity) and only adds an unnecessary complexity to the model solution. Therefore,
in this current model of a ball impacting on a freely suspended racket, it is not assumed that the
force is equal to zero for ball COM displacements of less than 2mm. Therefore the equations
discussed above are used to define the model parameters throughout the impact.

(b) The stringbed

The stringbed of the freely suspended racket is to be modelled as a spring and damper in parallel.
The magnitude of the parameters ks and cy is to be determined using the same methods as were
described in Chapter 8. It is to be assumed that the stringbed stiffness parameter kg for the racket is
equal to that which is measured experimentally for a quasi-static loading. This assumption is
complicated by the fact that the measured quasi-static stiffness is dependent on the diameter of the
rigid circular disc that is used to apply the load. Also, the relationship between the diameter of the
rigid disc and the equivalent area over which the ball applies the load onto the stringbed, during
impact, is difficult to determine. A detailed explanation of the assumptions which were made to

define the model stringbed stiffness parameter kg is given in section 8.3.1. A summary of this work
is given here.

The solution is based upon a concept of a normalised stiffness parameter ES. In brief, this

parameter defines the diameter of the ball/surface contact area that is equivalent to the diameter of
the rigid disc that is used to apply the quasi-static loading. This diameter is then normalised to the

arbitrarily chosen maximum diameter of 55mm. Using empirical data, it was found that I?s was

dependent on the stringbed displacement xs. The general equation to estimate the value of kg, for

any combination of ball type and string tension, has been defined as,
ks = 78.42(1.6x5 +0.023)" +2.336(1.6x, +0.023)+0.6392 [9.16]

Equation [9.16] is valid for stringbed displacements xs of less than 20mm. For x5 > 20mm, the
value of the normalised stiffness I:S is equal to unity.
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The next stage of the solution required the definition of the quasi-static stringbed stiffness obtained

when the load was applied using a rigid disc with a diameter of 55mm. The general form of this
equation is,

ks(¢55)= as.x§ +bg.xg +c [9.17]

where as, bs and cs are empirically determined coefficients of a second order polynomial trendline
that was plotted through the experimentally obtained quasi-static stiffness data. The values of ag,
bs and c; are given in Table 9.2 for four different string tensions. This data was experimentally
obtained using an ITF Carbon Fibre tennis racket with a head size of 632cm® (98in?)

Table 9.2 Second order polynomial trendline coefficients ag, bs and cs for four string tensions.

String tension | as (kKN/m”) bs (KN/m") cs (kKN/m)
40ibs 4785 1147 29.02
50Ibs 20790 1044 34.50
60lbs -17810 1873 39.05
70lbs -30140 2519 43.07

To complete the solution, the value of the stringbed stiffness kg, is determined using,
ks = kg ks (@ss) [9.18]

To summarise, the stringbed stiffness kg for a specific stringbed displacement x5 can be obtained by
determining the relevant values of k, and kg (¢55) using [9.16] and [9.17] respectively. These two

parameters are then input into [9.18] to determine the required value of k;.

In Figure 9.1 , it can be seen that there is a dashpot damper, with value cg, that is used to represent
the damping of the stringbed. In Chapter 8 a brief analysis was conducted and it was concluded

that the value of cg will be assumed to be equal to 2Ns/m for all impacts. This same assumption
will be used for the model presented in this section.

(c) The Racket Frame

In this section, the racket frame is to be modelled as a rigid body with the same inertial properties
as the racket. As the model is only to be used to simulate impacts along the longitudinal axis, the
only mass moment of inertia (MMI) which is of interest in this case is the transverse MMI, which
is defined as Iz in Figure 9.1. This is a measured experimentally using the same technique as that
described by Brody (1985). This method is presented in Appendix D.1 along with the measured
values of mass moment of inertia for a selection of rackets. The only other parameters which are

required for this component of the model are the mass of the racket mp and the distance d between
the racket centre-of-mass and the impact position.
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(d) Summary of model parameters

In this section, the methods that are used to determine the values of the model parameters kg, ks, cg,
cy and cg are described. It was assumed that ball and stringbed can be modelled using the same
technique as was used in Chapter 8 to simulate a ball impacting on a head clamped racket.

Therefore, the ball parameters £z, cp, and c) and the stringbed parameters ks and cg are the same as
those used in that chapter.

9.2.3 Summary

In this section, a model of an impact between a ball and a freely suspended racket has been derived.
The ball and stringbed have been modelled using the same method as was used in Chapter 8, for a
simulation of an impact between a ball and head clamped racket. Therefore the methods used to
determine the values of the model parameters have already been defined.

The racket frame is modelled as a rigid body with the same inertial properties as the racket. These
properties can easily be obtained using standard techniques.

9.3 One dimensional, flexible beam model — point loading

9.3.1 Introduction

In this section, a model of a ball impacting on a freely suspended tennis racket will be developed
which is similar to that described in section 9.2. The major difference in this model however, is
that the racket is to be modelled as a flexible beam, instead of a rigid beam. The ball and stringbed
will be modelled using the same visco-elastic model as that described in section 9.2. This model
defines the force which acts on the flexible beam, as a function of time.

In the first part of this section, a numerical solution is derived which can be used to calculate the
displacement of a one dimensional beam for a time-dependent loading. This technique was
introduced in section 2.5.2, but is presented more thoroughly in this current section. In the next
part of this section, the actual process of determining the one dimensional beam which is equivalent
to a tennis racket is discussed. This process involves the simplification of the complex three-

dimensional geometry of a tennis racket into a simple one dimensional beam. The errors associated
with this simplification process are also discussed in this section.
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9.3.2 One dimensional flexible beam subjected to a time-dependent force

Figure 9.2 A one-dimensional flexible beam, split into N equal length segments.

The equation of motion for a one dimensional beam subjected to an external distributed force, F

per unit length, which acts perpendicular to the longitudinal axis of beam, has the form (Goldsmith
(1960)),

0’ x 0’ &°x
pA——:Fo——,[El } (9.19]

o o

where pis the density of the beam, A4 is its cross-sectional area, E is the Young’s modulus, 7 is the

area moment of inertia and x is the transverse displacement of the beam at coordinate y along beam,
as defined in Figure 9.2.

Equation [9.19] neglects the shear force which is of negligible significance for the low frequencies

of vibration which are of most interest in this work (Van Zandt 1992). The beam has a mass Mj
and a length L.

In this study, it is to be initially assumed that the flexural rigidity was constant along the length of
the one-dimensional beam, as was done by Cross (2001b). The suitability of this assumption will
be discussed in a later section of this chapter. It is assumed that the beam may have a non-uniform
mass distribution. A numerical solution of [9.19] can be obtained by splitting the beam into N
equal sized segments. The length of each segment is constant and defined as s=Lg/N but the
segment mass m, may vary along the beam. This segmented beam is illustrated in Figure 9.2. The

equation of motion for the nth segment is obtained by multiplying all terms in [9.19] by s, which
gives,

0’x

0%x
m —==Fs—-| Els—*
n a2 Lo [ ayzj [9.20]

The force exerted by the ball may act over a number of segments, each segment n being subjected
to a time-dependent force F),. The equation of motion for each of these segments is given by,
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o

5’ o
m, a;" -F —(Els—avxj] (9.21]

and for all other segments,

2 a4
m, aa;" = —(E]s ?)ﬁ} 9.22]

In this current section it is to be assumed that the stringbed applies a point load on the beam and so
the force only acts on one segment of the beam. Consequently, the value of F, is simply equal to
the force acting in the ball/stringbed visco-elastic model. It is assumed that the racket is freely

- . : . d’x
suspended during impact, and the relevant boundary conditions for this assumption are, [—2 =0

and (gys—x;= )

The subsequent motion of the beam was evaluated numerically using finite difference forms of
[9.21] and [9.22]. The procedure used to solve these equations is based on that presented in
Cross(1999¢). The method used to obtain the magnitude of the time-dependent force F, which is
applied to the beam, is a relatively trivial feature of the model and will therefore not be discussed in

this section. The following analysis gives an overview of the numerical solution that is used to
determine the motion of the beam which is subjected to a time-dependent force.

(a) Numerical solution for the displacement of the beam

XA

7 ) ,. :,. ; ..v ‘] .; ......"_% .,_. .“—, Time _ t+At
(xn)tmvl—I-.-v--;:v.-._.“......;»‘l;.....l..;L.',.7 “ . i |

Time = ¢

()

y

Figure 9.3 Illustration of the definition of the beam displacement at times 7 and 1+ At.
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2

Substituting for the finite difference form of 66 )2" into {9.21], at time ¢, gives,
t

mn((xn e = 2;)6;2), +(6,) ) _F ( E,S( % n (9.23]

Rearranging this equation to determine the displacement of the nth segment, at time #+4¢ gives

2 2 4
() = 205), ~ ) + 21 -(EM (2] } 024

m, m, \ o
The magnitude of the force F which acts on each segment will be discussed later in this section.
The magnitude of the product EJ, which is termed the flexural rigidity, will also be discussed later.

: . o
Equation [9.24] requires the term ( 0;“”) to be evaluated. The finite difference form of this term
{

i,

4 -4 6 -
(aa)';n ) = (xn+2 )t (‘xn+1 )t + (:: )l 4()6"_1 )‘ + (x"_z )' [925]

To calculate the fourth derivative of x, with respect to y, using [9.25] requires the displacement of
the two segments either side of the nth segment to be known, as illustrated in Figure 9.3. Therefore
[9.25] is valid for all segments except the two segments at either end of the beam. For these four

. L 0'x
segments, alternative finite difference forms of ( + | are required, as described by Cross
{

(1999¢). These equations are determined using the boundary conditions for a freely supported
beam.

The fourth derivative of x,, the left-hand end segment of the beam in Figure 9.3, is defined as,

and the fourth derivative of x,, which is adjacent to the end segment, is defined as,

((é__n _ =2+ 5(x,), ~40s), + (x,),

3" J [9.27]

Analogous equations can be determined for ([ 8;;”) ] and ((a;;"} } , which completes the
'/ n=N !/ n=N-1

necessary parameters for [9.24]. For convenience, [9.24] is written in a matrix form to define the
motion of the entire beam,
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ElAr’
[xoa =20x) ~[x) + 22 M][F] - =5 (0] [Dx 4] i) [9.28]
where [xL o [xl and [xl_ 4 are all column matrices with N rows and have the general form,

e

" N rows
\l= | = l

.

L .

The force matrix [F l is also a column matrix, with N rows, and contains all zeros, except for the

row number which corresponds to the segment on which the force acts. The number of the

segment on which the force is applied is defined as IP. For example, if IP is equal to two then the
force matrix will be of the form,

- "

coymo

[F]-

OcOi

f

The mass matrix [M ] isan N x N matrix with the general form,
I/my 0 0 0
0 Um 0 0
0 0 Um 0
0 0 0 1/my
0

oo o oo
oo oo CO0
oo o oo

N rows

l/myy 0 0 0 0
0 Umy; O 0 0
0 0 Umy, O 0
0 0 0 I/MN_I 0
0 0 0 0 IUmy

N columns —»

where m, is the mass of the nth segment.
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For a freely suspended beam, [DX 4] isan N x N matrix of the general form,

i 2 1 0 0 0 0 0 0 ! o 0 0 0 0 0 0 0 0 |
2 s 4 1 0 0 0 0 0 ! ©0 0 0 0O 0 0 0 0 0
1 4 6 -4 1 0 0 0 O i+ O 0 0O 0 0 0 0 0 O
o0 1 4 6 -4 1 0 o0 o0 | o 0 0 O O 0 0 o0 0
o 0 1 -4 6 4 1 0 0 ! 0 0 0 O 0O 0 0 0 0
0 0 0 1 -4 6 -4 1 0 o0 0 0 0 0 0 0 0 0
o0 0 0 o0 1 -4 6 -4 1 | 0 0 0 O 0 0 0 0 O
1
|
[pxal=\ L
i
i
o 0 0 0 O 0 0 0 0 | 1 -4 6 -4 1 0 0 0 0
o 0 0 0 0 0 0 o0 0 ' o0 1 -4 6 -4 1 0 0 0
o 0 0 0 0 0 0 0 O ' 0 0 1 -4 6 -4 1 0 0
o 0 0 0O O O o0 ©0O O 4+ O 0 0 1 -4 6 -4 1 0
o 0 0 0o 0o O o 0O O 'Y o o0 0 0 1 -4 6 -4 1
o 0 0 0 0 0 0 0 O ! 0 0 0 0 0 1 -4 5 =2
o 0 0 0O O O O O O i+ O 0 0 0 o0 o0 1 2 1
L -

Equation [9.28], and the matrices which are defined above, form the numerical solution which can
be used to solve the displacement of each of the N segments at sequential time intervals of Ar.

Equation [9.28] is firstly used to determine the displacement of each of the N beam segments at 1=

At, which forms the column matrix [x]m . This is done using the relevant displacements for the two

preceding time steps which are [xL0 and [x]_A, . It is assumed that the displacement of the beam
at t=0 is equal to zero, as shown in Figure 9.3 The displacement of the beam segments at 1= -Ar

can be calculated from the initial velocity of the beam/racket, as was discussed in section 9.2.

The process is repeated for the remaining time steps for the required time period 7} the number of
time steps required being NStep = T/At The ball/stringbed system will apply a force F on the /Pth
segment for a period of approximately S5ms, as explained in more detail later in this section. When
impact ceases, the value of F will be equal to zero, but the induced vibrations of the beam can be

calculated using the same technique as described above. The only exception being that the force
matrix contains all zero values.

In this study, it has been assumed that the beam is freely suspended at either end and this
assumption was used to define the terms in the [DX 4] matrix; this matrix corresponding to a

numerical approximation of the fourth derivative of x with respect to y. For interest, this matrix is

the only part of the model which would need to be adjusted if different end conditions were to be
modelled.

The completed solution generated a column matrix [x] for each time interval A, in the range =0
to r=7. It was assumed that the velocity of each segment X, did not change significantly during
the time period A and therefore the velocity, at time ¢, ()'cn ), can be determined using,

( )‘ (x) (x)”

[9.29]
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(b) Numerical computation of Fourier Series coefficients

Velocity of
the nth
segment (%) .
X, (m/s) (%.); (ol
: ).(n)is
» R |
At
T
~5ms < : » t
1= N_At

Figure 9.4 Illustration of the velocity of the nth beam segment as a function of time.

Figure 9.4 gives a schematic illustration of the typical velocity of the nth segment of the beam. The
duration of the time-dependent force F is approximately Sms and after this period the beam
oscillates freely. Cross (1999¢) noted that, due to this impact duration, the only modes of vibration
that are significantly excited are those with a frequency of up to approximately 300Hz. This
generally means that only the fundamental frequency of the beam/racket is excited as the next

highest mode has a frequency which is greater than 300Hz. In this work it is assumed that the
fundamental frequency fr of the beam is known.

In this section, a numerical harmonic analysis is conducted to obtain the mean velocity of each
segment. This analysis can also be used to calculate the amplitude of the fundamental mode of
vibration. This is useful as the calculated amplitude illustrates the amount of energy that is stored
in the racket due to this mode of vibration, and it can also be used to determine the node points on
the beam. This harmonic analysis of the time-dependent velocity data, such as that shown in
Figure 9.3, involves the numerical computation of the Fourier series coefficients which are

assumed to describe the calculated data. This is a standard method which is described in detail in
Rao (1995), and therefore only summarised here.

The time period 7 for one cycle of the fundamental mode of vibration is,

1

= 9.30
7 [9.30]

This time period corresponds to N, time intervals, each of length Az. In this solution the value of f;

must be defined such that N, is an integer. The mean velocity X, of the nth beam segment, over
this period 7, is calculated using,
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N
%, = 7\,1—2()%.,),. 9.31]

r i=l

The amplitude of vibration X, for the fundamental frequency, for the nth beam segment is defined

as,

(‘in )amplitude = \J ai + bf [93 2]

where a, and b, are Fourier coefficients defined as,

N
a,= —]\2/—2()("), cosz—f—’ [9.33}
r =t
b =-2—§:(x ) sinz—mL [9.34]
" NG T

Using the above equations, the mean and amplitude of the velocity for each of the N segments can
be calculated.

It is evident from Figure 9.4 that the numerical solution for the free oscillations of the beam must
continue for a significant period after impact has ceased, to ensure that this numerical harmonic
analysis can be conducted. The fundamental frequency of a tennis racket, for transverse vibration,
is known to range from approximately 70Hz and 200Hz. This gives a time period 7 for one cycle
which ranges from 14ms to Sms. It was therefore concluded that the solution should be obtained

for 25ms after the commencement of the impact, to ensure that the harmonic analysis can be
conducted.

(c) Numerical computation of the beam fundamental frequency

In the above analysis, it was assumed that the fundamental frequency f» of the beam was known for
a beam with a specific mass distribution and flexural rigidity. There is no analytical solution for
this fundamental frequency fr for a beam with a non-uniform mass distribution. However, a

numerical solution can be obtained using a similar technique as that used to determine the
displacement of the beam for a known time-dependent force.

Earlier in this section, it was mentioned that the flexural rigidity EI is assumed to be uniform along
the length of the one-dimensional beam. The motion of a vibrating one-dimensional beam
subjected to no external forces can be determined by substituting,

azxn _ 2
Py =-0x, [9.35])
into,
&’x o'x
2= Fls—2
m, ot ( 6y4) [9.36]
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to give,
Els( 0
w'x, =22 [ aZ ) [9.37)
m, \ 0y
Equation [9.37] can be written in matrix form to describe the motion of the entire beam,
Ellk, Ix[x]= Axx] [9.38]

where [x] is a column matrix with N columns. For a freely suspended beam, [k,,] isan NxN

matrix of the form,
1
[x.]= ;;[M [px4] [9.39]

where [M ] and [DX 4] are matrices that define the mass distribution and the fourth derivative of x

with respect to y for the entire beam respectively. The definitions of these matrices has already
been presented.

The parameter A corresponds to the set of eigenvalues for the matrix defined by EI [k,,] . However,

to generate a more general solution, the eigenvalues are only initially calculated for the [k,,]

matrix, and these eigenvalues were defined by the parameter A,v. For completeness,

A=ELA, [9.40]

The values of Ay were determined using the eig function in MATLAB v5.2. The fundamental

frequency fr of the beam corresponded to the first real, non-zero eigenvalue and was determined
using,

JEI
fr =—5-\/Tm— [9.41]

The analysis which is described above can be used to determine the fundamental frequency of a

freely suspended model beam, for specified values of the mass matrix [M ] , the flexural rigidity E7

and the segment length 5. It can be seen that, for a beam with a specific length and mass

distribution, the fundamental frequency is proportional to the square-root of the flexural rigidity EI.

(d) Summary

In this current section, a numerical solution for the displacement of this flexible beam, for a time-
dependent point loading, has been presented. In this solution, the beam is split into a finite number
of segments and the displacement of each of these segments is calculated, at discrete time intervals.

It has been assumed that this beam has a uniform value of flexural rigidity along its entire length,
but the mass of each segment is not constant.

The velocity of each segment can be calculated for the free vibration of the beam, after impact has
ceased. A method has been presented which allows the mean and amplitude of the beam segment
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velocity to be calculated, using a numerical harmonic analysis. This harmonic analysis requires the

fundamental frequency of the beam to be known, and a method for calculating this parameter has
been given.

9.3.3 Using a one dimensional flexible beam to model a tennis racket
(a) Introduction

It has been proposed that a one dimensional beam should be used to model a tennis racket frame,
for an impact with a tennis ball. In section 9.3.2, an algebraic solution was presented to illustrate
the numerical technique which can be used to solve for the displacement of a flexible beam that is
subjected to a time-dependent force F; this force being applied as a point loading. In this current
section, the method which is used to incorporate this one dimensional beam into a model of a ball
impact on a freely suspended racket is discussed. It should be noted that this model is only

applicable for impacts along the longitudinal (main) axis of the racket.

(b) The model

Xg Cm Xs -
l > 1) —> G
;j .......... xIP
i —/ B>
myg 5 L—~NVM;——‘ pm
A & = |d
8, »
R—(' sV
>
X
> 4
X

Figure 9.5 Illustration of a visco-elastic model of a ball impact on a one dimensional flexible
beam (tennis racket).

The model which is to be discussed in this section is very similar to that which is presented in
section 9.2. In that section, the ball/stringbed system was simulated as a visco-elastic model and
the racket was assumed to be a rigid beam with the same inertial properties as the racket that was
being modelled. In this current section, the rigid body beam is replaced by a one dimensional beam
with a finite bending stiffness or flexural rigidity, and the overall model is shown in Figure 9.5.
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This figure illustrates that the ball impact position must coincide with the centre of one of the beam
segments, as mentioned in the previous section. The segment number that the impact point
corresponds to is defined as IP, and the displacement of this point on the beam is defined as x;p.

The visco-elastic model of the ball/stringbed system is identical to that described in section 9.2.

Therefore, to avoid repetition, the method used to determine the force F which acts in the
ball/stringbed system is not repeated here. To summarise,

F = "[(ca +Cy )(5‘3 - xs)+ ky (xB - X )]= ‘[cs ("‘s - Jif”,)+ kg (xs —Xp )] (9.42]

The magnitude of F, at time #, can be calculated using [9.42] provided the value of all the
parameters are known at this instant. The displacement of the beam at the impact point x;p can be

obtained from the relevant row of the displacement matrix [xl . The displacement of the ball

centre-of-mass xz and the stringbed x5 can be obtained using the same methods as described in
section 9.2.

The spring and damper values ks, kg, cs, cg and ¢y are all assumed to be functions of the ball centre-

of-mass displacement xp, the stringbed displacement x5 and the racket impact point displacement
x;p. For example, the ball stiffness kp is determined using,

kg =k5(0) +AK(xB —xs)" [9.43]

The parameters kg, Ax and o are constants for a specific ball type and the values were derived in
Chapter 8. The values of these three parameters are given in Table 9.1 for a range of ball types.
The other functions, which define kg, cg, cg and ¢y, are all defined in section 9.2.2 and are therefore
not repeated here. These functions, and equation [9.42] above, are used to determine the force F at
a discrete time interval 2. This force value is applied to the beam on a single segment, as described
in section 9.3.2. The new displacement of the beam, ball, and stringbed, at the following time
interval ¢+At, can then be evaluated. The new value of the force which acts on the beam can then
be evaluated, and the process is repeated until the end of impact. The end of impact is defined as
the instance when the ball deformation, or in this case (xp-xs), returns to zero. After this point, the
beam continues to vibrate and translate freely until the solution is terminated.

In this numerical solution, the beam is split into a finite number of segments and is solved for finite
time intervals. In theory, both the segment length and time steps should be infinitesimally small for
the beam to simulate the infinite number of modes of vibration of the racket. However, as
mentioned previously, Cross (1999¢) noted that the only modes of vibration that are excited with a
significant amplitude are those with a frequency of up to approximately 300Hz. It was also stated
that the division of the beam into discrete segments eliminated modes which had a wavelength that
was shorter than the segment length s. Therefore, an infinitely small time step was not required.

In this study, the beam was split into 51 segments (N=51) and the time step At used was Sus.
Using this value of N, the first three real, non-zero eigenvalues for a uniform beam were calculated
numerically using the procedure in section 9.3.2(c). These eigenvalues, for the uniform beam,
were also determined analytically using equations defined in Goldsmith (1960). In practise it was
found that this value of N gave a good correlation between the eigenvalues which were determined

212



Chapter 9 Model of a ball-racket impact

numerically and those determined analytically. The difference between the two sets of data was
generally less than 0.2%, for all combinations of beam mass and beam flexural rigidity that are
typical of a tennis racket. Furthermore, it was found that the two sets of eigenvalues correlate to

within 0.3% for values of flexural rigidity which are considerably higher than those typical of a
tennis racket model.

This analysis confirmed that the chosen value of N was sufficient to model tennis rackets which
had fundamental frequencies that covered the full range of typical values. An increase in the value

of N would only act to increase the number of calculations which need to be performed to solve the
model.

A further investigation was conducted to verify that the time step A¢ used in this solution was

satisfactorily small to model the magnitude of beam deformation and the modes of vibration which
were excited in this type of impact.

(c) Deriving a beam model of a tennis racket

In the previous section, it has been stated that a one dimensional beam can be used to model a
tennis racket frame. In this current section, the method which is used to determine the equivalent
one dimensional beam model of a tennis racket is discussed.

Clearly, the modelling of a tennis racket as a one-dimensional beam is a significant simplification.
However, it should be remembered that in this model, the main aim is to replicate the inertial and
vibrational properties of the racket. To be geometrically consistent, the beam and racket must also

have the same length. Therefore, in an ideal model, the following properties should be identical for
the beam and racket,

Length
Mass

Balance Point
Mass Moment of Inertia

Fundamental Frequency

o A W N

Node points of fundamental frequency

In this section, three different techniques are to be discussed which can be used to generate a model
beam that is equivalent to the relevant tennis racket. The list above shows the properties that the
model beam must match with those of the tennis racket. More specifically, the technique is used to

determine the values of the mass segments which form the mass matrix [M ] , and the value of the

uniform flexural rigidity EI. If these two properties can be obtained for the beam, then the

displacement of the beam can be calculated using the numerical analysis in section 9.3.2, for
specified ball/stringbed properties.

In the first part of this section, the investigation is focused upon matching the inertial properties of

the racket and beam. In the latter part, the method used to determine the flexural rigidity ET is
presented.
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1. Uniform beam
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Figure 9.6 Tennis racket and equivalent uniform beam model.

The simplest, one-dimensional beam has a uniform mass distribution and this is illustrated in
Figure 9.6. This beam can be assigned the same mass and length properties as the tennis racket.
For example the beam parameter Mj can be assigned the value of M. A minor, yet very important,
point should be raised at this stage. It can be inferred from Figure 9.5 that the stringbed and racket
frame are modelled discretely, and indeed this section concentrates solely on developing a beam
model which is equivalent to the frame. However, it should be remembered that the stringbed is

being modelled as having a zero mass. To compensate for this, the parameter mass My is actually

equal to the combined mass of the frame and strings.

The balance point B and the mass moment of inertia around the butt end /; for a one section

uniform beam are functions of the beam length and the beam mass, and are defined using,

B, =0.5L, [9.44]
and
M,Ly"
Iy=—3 [9.45]

It can be seen that the balance point B; of a uniform beam is always located at the geometric centre,
whereas many tennis rackets are generally either ‘head-heavy’ or ‘head-light’; these terms being
used to define whether the racket centre-of-mass is positioned closer to the head or butt
respectively. The mass moment of inertia of the beam I; is a ‘fixed’ function of the beam mass
and length. Therefore, both By and /; cannot be assigned the same values as By and Ipyrr
respectively. This highlights the inherent weakness in using a uniform beam as a model to simulate

the inertial properties of a tennis racket. This type of beam is referred to as the uniform section
beam in the remainder of this chapter.
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2. Two uniform sections
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Figure 9.7 Tennis racket and equivalent two section beam model.

Cross (2001b) used a beam consisting of two uniform sections to improve the correlation between
the inertial properties of the beam and racket. In that work, it was assumed that the two sections
had an equal length, but had different masses. In this current work, it is assumed that one section is
equal to the length of the handle, and the other section equal to the remainder of the racket, as

illustrated in Figure 9.7. The three inertial properties of the beam for a two section uniform beam
are defined using,

My=M,+M, [9.46]
M, (—LH ) + MF(L,, + (—L" ))
B, = 2 2 9.47
. M, [247]
M.L> (M.L> L.\
5 3 15 F( ( : D ) [9.48]

In this solution, the beam could be assigned the same length and mass as the racket, as was possible
for the uniform beam. However, it was also possible to define the balance point of the beam to be
equal to that of the racket. The value of By is substituted for By in [9.47], and M is substituted for
Mj in [9.46], and the combination of M}, and M can be determined which satisfies both equations.
It is not possible to directly define the mass moment of inertia of the beam I; to be equal to that of
the racket Jpurr, because I is a function of My, Ly, My and Ly, which have already been defined to
give the correct balance point for the beam. However, Cross showed that the mass moment of
inertia is primarily determined by the mass and location of the balance point. Therefore, the

calculated value of Iy for the beam should be approximately equal to that of the racket mass
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moment of inertia Izy7rr. This type of beam is referred to as the two section beam in the remainder
of this chapter.

3. Five uniform sections

Actual racket 2D approximation 1D approximation
s A ey,
L | gy KL"
[7] Frame LFJ
B Handle
L
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Figure 9.8 A two dimensional approximation of a tennis racket, along with the one dimensional
beam which is equivalent to the 2D approximation.

A tennis racket is clearly a three dimensional object and, therefore, has a complex mass distribution
which is a function of the geometry and material density. In the derivation of the uniform section
beam, no consideration of this geometry was made. In the discussion of the two section beam
model, it was assumed that the handle had a uniform mass distribution, and the rest of the racket
had a different uniform mass distribution. In the development of this current beam model, defined
as the five section model, a more detailed evaluation of the geometry is presented, in an attempt to
derive a more accurate one dimensional approximation of the three dimensional mass distribution.
Firstly, due to the nature of the assumption that a racket can be approximated as a one dimensional
beam, the mass distribution in the z-axis does not influence the one dimensional beam model.
Therefore, this mass distribution is not considered here. One of the simplest two dimensional
approximations of a tennis racket mass distribution is shown in Figure 9.8. This two dimensional
approximation is essentially constructed from two different uniform sections; these being defined
as the handle and the frame. The handle section is a single, straight section which has the same
length as that of the racket handle. The throat of the racket is modelled in the 2-D approximation
as two straight, vertical sections which extend from the handle to the head, as illustrated in Figure
9.8. The head of the racket is modelled as a rectangle with a width of Wj. This rectangle is simply
meant to replicate the mass distribution of the head. Most racket heads have a shape that is more
comparable to an ellipse than a rectangle but, for simplicity, a rectangular shape is assumed. This
assumption is made because it is easier to obtain a one dimensional equivalent of a rectangle than it
is to obtain for an ellipse. However, it is not assumed that the width of the racket head Wy is equal
to that of the model rectangle Wj. It has been assumed that the relationship between these two
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parameters is Wz = 0.75W;. This relationship was determined by assuming that the perimeter of

the rectangle was equal in length to that of the racket head, assuming that the racket head was
elliptical.

The translation of the two dimensional approximation to the one dimensional beam is relatively
trivial; the one dimensional beam simply giving the equivalent mass distribution as the two

dimensional shape. The resulting one dimensional beam has five discrete sections as shown in
Figure 9.8.

In this model, all the lengths L, to L, can easily be defined by simply measuring the appropriate
sections on the racket. However, the masses of each section are not known. Clearly, it would be
valid to assume that the mass density of the handle is constant along its section. It is also to be
assumed that the density of the frame is constant along its section, in the two dimensional
approximation. Therefore, the density of each of the two straight sections of the throat and head
are numerically equal to that of the horizontal sections of the rectangular head. The mass densities
of the handle and frame are to be defined as puanvpLe and  prrame respectively; the density being

defined here with units of kgm™'. Using the two dimensional approximation in Figure 9.8 it can be
shown that,

My = puwpre-Ly [9.49]
Mgy =2.0ppume-Liy [9.50]
My = Prrame Ws [9.51]
My =2.Pppare -Ls [9.52]
My = Prrae Wi [9.53]

The three inertial properties of the one dimensional beam can be defined using,

My=M, +M +M,+M.,+M_,

[9.54]
MH(LT”’)+MF|(LH +(L—£‘—D+M”(LH +L,, +(%D
B, =
MB
IYT) Ly, L,
F3| “n +LFI +LF2 + ’2_ +MF4 LH +Ln +LF2 +LF3 + T
+ [9.55]

M,
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M, L2 (M, L2 L.\ (M.L.2 L. Y
I, = ”3” +[ F112F| +MF,[LH+(-—£‘) J+[————’122” +Mp,| L, + L, + —;2
M..L.2 L.\ M, L2 L. Y
+[ 2 +M”(L”+LF'+L”+( SSJJ ]+ 2 +M“(L”+LF'+L”+L”+( ?JJ} -

The two equations that are used to solve for pnvp.e and Prrare are [9.54] and [9.55]. Substituting
[9.49]-[9.53] into these two equations gives,

By, - Mskn
pFRAME ) LFI LFZ LF3
2L, LH+—2— +W,l L, + L+ 5 +2L,, LH+LH+LF2+—2—~
BBMB _ MBLH
+ 5 % 9.57)
L+ L+ Loy Ly 22 Ly (L 4, 1)
M,-2p L, +Wy+L,
pHANDLE - B FRAME[(J Il B I 3) [9.58]
H

The two parameters pyvpLeand Prrame can be solved using [9.56] and [9.57], and then the relevant
value of the mass moment of inertia /; for the beam can be calculated using [9.56).

(d) Comparison of the three types of beam model

In the above section, three different types of one dimensional beam models have been derived;
these being defined as uniform section, two section and five section. In this section, the three
models will be generated for a specific tennis racket, to illustrate the procedure. The details of an

ITF Carbon Fibre racket are given in Table 9.3. The details of six other rackets are given in
Appendix D.3.

Table 9.3 Measured properties of an ITF Carbon Fibre tennis racket.

Length | Mass | Balance | Mass Handle | Racket Frame Length (m)
Ly (m) | My Point Moment of length | width
(kg) Br(m) | Inertia lpyrr | Ly(m) | Wy L Lr, Lg; Lry
(kgm?) (m) m | m | m | m
0.683 | 0.348 | 0323 0.05337 0.228 | 0.265 | 0.094 | 0.027 | 0.308 | 0.027
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Table 9.4 Properties for a beam model of an ITF Carbon Fibre tennis racket.

Total Segment | Number of segments in each Number of segments in each of the
number of | lengths | of the sections of the two sections of the five section beam
segments N | (m) section beam

NH NF NH NFI NFZ NF3 NF4
51 0.0134 |17 34 17 7 2 23 2

The uniform section beam model for the ITF Carbon Fibre tennis racket will have the same length
and mass as that quoted in Table 9.3. It will be split into 51 segments each having a length s equal
to 0.0134m. This number of segments is used for the reasons given earlier in this section.

The mass of each segment m, will be equal to M/51 which gives m,= 0.00683kg, for the uniform

section beam. The beam balance point By is equal to L% for this beam, which gives By =

0.342m. The actual balance point on the racket By is equal to 0.325m and therefore the two points
do not coincide.

The other two beam models require the lengths of one or more features of the racket to be
measured. These measurements are relatively trivial to execute but it should be remembered that
the beam models will be split into 51 segments. Therefore, the measurements must be in discrete

length units that allow the beam to be segmented. Therefore, for example, the length of the handle
Ly is equal to,

LH = NH.S

where Ny is the number of segments which are used to model the handle, and s is the segment

length as defined in Figure 9.2. (N, must be an integer). The lengths of the various sections of the

ITF Carbon Fibre tennis racket are quoted in Table 9.3. For completeness, the number of

segments for each of the sections in the beam models is given in Table 9.4.

In the derivation of the two section and five section beam models, equations were derived to
calculate the total mass of each of the sections. The mass of each segment in the relevant section
can easily be calculated using the value of the total mass, and the number of segments in that
section. For example, the segment mass m, of each of the Ny segments in the handle of the rwo
section beam is equal to M;/Ny. The segment masses for each of the seven rackets are given in
tabulated form in Appendix D.3, for each of the three types of model. A sample of these results is

illustrated in Figure 9.9, for the ITF Carbon Fibre racket. Figure 9.9 illustrates typical mass

distributions for a two section and a five section beam model respectively. Figure 9.9 (b) highlights
the relatively large segment mass which is associated with extremities of the racket head.

Interestingly, the mass distribution given in this figure is similar to that determined by Brannigan
and Adali (1981). In that work, the mass distribution was measured experimentally.
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Figure 9.9 Illustration of the mass of each segment for a beam model of an ITF Carbon Fibre
tennis racket.

To summarise the work discussed above, an example has been given to illustrate the method used
to determine the details of the three different models, for an ITF Carbon Fibre tennis racket. The

details of the models, for several other rackets, are given in Appendix D.3. Equations are

presented in the derivations of three model beams which can be used to determine the beam mass
moment of inertia /5., This mass moment of inertia was calculated for the three different types of

model beam, for each of the seven rackets which are being studied in this chapter, and this data is

presented in Figure 9.10. In Appendix D.l, the mass moment of inertia Iz ;7 was measured

experimentally for these racket types, and this data is also shown in Figure 9.10.

This figure shows that the mass moment of inertia I of the uniform beam does not correlate very

closely with that which was measured experimentally, for all racket types. An improved

correlation is found for the mass moment of inertia for the two section beam, but the five section
beam exhibits the best correlation. It can be seen that the value of Iz77 and Iy (calculated using the

five section beam) generally correlate to within 2%. It should be noted that generally this

difference is less than 1%. For completeness, the data in Figure 9.10 is shown in tabulated form in
Appendix D.3.

It can therefore be concluded that the five section beam model gives the closest correlation between
the inertial properties of the beam and those of the tennis racket. The mass and balance point of the

five section beams are identical to those of the racket, and the mass moment of inertia values
correlate to within 2%.
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Figure 9.10 Mass moment of inertia for seven different tennis rackets. The data is presented for
the value measured experimentally (/3y77) , and the three model beams (/) for each racket.

(e) Determining the flexural rigidity of the one dimensional beam

The stiffness of the beam for a perpendicular loading is defined as the flexural rigidity ~/. The
flexural rigidity £/ is the product of the Young’s modulus of the material £ and the second moment
of area for the cross-section /. Clearly, the value of £ could be estimated from a knowledge of the
material used to construct the frame. The second moment of area could be measured by cutting the
racket into segments, as done by Missavage et al. (1984). However, there are many disadvantages
of this type of solution. Firstly, it is a time-consuming, destructive method and therefore is not
suitable if a large number of rackets are to be modelled. Also, due to the high level of uncertainty

in the definition of £ and /, it is likely that the resulting model beam will have a different stiffness
compared with the actual racket.

A more suitable method of obtaining the value of the flexural rigidity £/ can be derived from a
consideration of what the aim of the actual model is. It is remembered that the aim of the model is
to replicate the inertial and vibrational properties of the racket. The former requirement has already
been discussed in the previous section where it was shown that a five section model could be
assigned very similar inertial properties as that of the racket. The vibrational properties refer to the
fundamental frequency and the node points of this mode of vibration. Therefore, the discrete

measurement of the terms £ and /, although valid for certain circumstances, may not actually be the
most suitable method in this case.

The ideal solution for this problem would be to derive a method of obtaining the value of £I which
gives the beam the same fundamental frequency as that which was experimentally measured for the
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tennis racket. In this work, it is assumed that the flexural rigidity E7 is constant along the length of
the one-dimensional beam. This assumption is required as it is difficult to define the magnitude of
the parameter EI as a function of the distance along the longitudinal axis (y-axis). Also, a racket is
generally constructed using a beam which has a uniform cross-section with minor additions to

construct the handle and to shape the head. Therefore, to a first order approximation, it is assumed
to be valid to consider that the flexural rigidity is constant.

In the previous section, it was shown that the fundamental frequency of the beam can be calculated
using,

EI
fr =%JZE [9.59]

The eigenvalue parameter /1, is a function of the mass distribution, beam length and the method

used to support the beam. Therefore, this parameter is constant for each beam, regardless of the

value of EI, and can be evaluated using the methods described in the previous section. Equation
[9.59] can be rearranged to give,

2
El = ————(zzf :) [9.60]
kN

The fundamental frequency of the actual tennis racket, for transverse vibrations, can easily be
measured using the method described in full in Appendix D.2. In brief, the vibrations of a tennis
racket are sampled for an impact along the longitudinal axis using a soft hammer. The fundamental

frequency was determined for a range of tennis rackets, and these experimentally determined
values are given in Table 9.5.

Table 9.5 Experimentally measured fundamental frequency of the racket and the beam flexural
rigidity for the three beam models.

Racket Type Fundamental Flexural rigidity of beam EI (units)
frequency of : : : : :
racket (Hz) Uniform section | Two section Five section

Yonex (1) 161 186 183 218

ITF Aluminium (2) 103 70 73 81
Head (3) 138 169 167 197
Spalding (4) 127 138 137 186
Miller (5) 143 155 155 184

ITF Carbon Fibre (6) 134 156 156 185
Wilson (7) 142 184 180 212

Clearly, it is intended that the beam model will have the same fundamental frequency f as that
measured experimentally for the racket. Therefore the experimentally measured values of ff are
input into [9.60] to enable the flexural rigidity EJ of the beam to be calculated.
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The calculated values of E7 which are presented in Table 9.5 can be seen to represent the average
properties of the tennis racket frame. When this is coupled with the assumption that the inertial

properties of the beam are very similar to those of the racket, then it can be concluded that the
beam will act very similarly to the racket, in vibration.

It is interesting to note that the calculated values of the flexural rigidity are considerably larger for
the five section beam compared with the other two beam models. This is likely to be due to the fact
that the five section beam has a large mass concentration at the tip of the beam. This may require a
larger stiffness for a given fundamental frequency, compared with the uniform beam.

The evidence that the flexural rigidity can vary by up to 20%, depending on the assumed mass
distribution, highlights a weakness of this modelling technique. The relevance of this weakness
will be commented on further, later in this study. However, it should be remembered that all the
beam models have the same fundamental frequency as that of the racket, which was the initial aim

of this study. The finding that different flexural rigidity values are needed to achieve this aim must
simply be excepted at this stage.

(f) Comparison of node positions on the model beam and the racket

In this section, a comparison is to be made between the node points for the racket and beam model,
to quantify the correlation between the two. When a racket is excited by some external impulse,
the resulting vibration of each point on the beam is a collection of an infinite number of modes of
vibration. The amplitude of each of these modes is dependent on the duration of the impulse. It
has been shown that, for a typical impact between a ball and racket, the duration is sufficiently long
that only the fundamental mode of vibration is excited with any significant amplitude. For a given
impulse, the amplitude of this mode will vary along the length of the beam/racket. The node point
of vibration corresponds to the point on the racket/beam at which this amplitude is zero.

Node line

Frame
O node

Stringbed
node

(YNODE )mea

Tennis Racket One dimensional beam

Figure 9.11 Definition of the nodes points for the fundamental mode of vibration for the
racket/beam.
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The correlation between the beam model and a tennis racket is to be assessed by comparing the
node positions for the fundamental mode of transverse vibrations. For this mode, there is a node
towards the tip of the racket, and one node towards the butt end. The latter node is defined as the

handle node in Figure 9.11 and is not investigated in this study as all impacts occur on the head of
the tennis racket.

Work by previous researchers (Cross 2001b and Kawazoe 1997a) has shown that the node position
along the longitudinal axis (stringbed node) was in a different location to that of the node on the
frame (frame node). A schematic illustration of these two node positions is shown in Figure 9.11.
The single node point for a one dimensional beam is also shown in this figure. A comparison of
the racket and beam node points highlights an inherent weakness of a one dimensional beam

model; there is a unique node point on the beam compared with a two-dimensional node line on the
tennis racket.

Cross (2001b) showed that the beam node for a uniform beam generally coincides with the
stringbed node. However, this comparison was only made for one racket type. In this study, the

frame node and stringbed node on the racket will be compared with the beam node for the three
different beam models, for all seven racket types.

In the previous section, a numerical harmonic analysis was presented that could be used to
calculate the amplitude of vibration for the fundamental mode of vibration, for each point along the
beam. This analysis can be used to determine the position of the beam segment which has a
negligible amplitude of the fundamental mode. This point is defined as the beam node point and is
located a distance (ynope)sesn from the butt end.

The details of the beam, such as the mass matrix [M ] and the flexural rigidity EJ, were input into

the model using the data which has been presented in the previous sections. To excite typical
vibrations in the beam, the model of a ball impacting on the beam, as described in section 9.3.3(b)
is used. In this case, the ball impacted close to the centre-of-mass of the beam as this was known to
be near to an anti-node of vibration for the fundamental mode, and thus will excite a significant
amplitude of vibration. The impact velocity of the ball was 20m/s and the racket was initially
stationary. The ball type was a Pressurised ball and a stringbed stiffness equivalent to that

measured for a racket strung at 70lbs was used, although it should be noted that these parameters
do not effect the beam node position.

The model solution was calculated and the amplitude of vibration for the fundamental mode was
evaluated for each of the N segments, using the harmonic analysis method that was described in a

previous section. This information was then analysed to determine the node point for this mode,
for each of the beam models.

Figure 9.12 shows the calculated velocity amplitude of the fundamental mode for the a range of
positions along the beam. Data is presented for the three different model beams. The point at
which the velocity amplitude for this mode equals zero corresponds to the node point for the beam.

The position of the stringbed and frame nodes, for the ITF Carbon Fibre (6) tennis racket which is
being modelled, are also shown in this figure.
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Figure 9.12 Modelled amplitude of vibration for the fundamental frequency for an impact on
three different beam models that are simulating an /7F Carbon Fibre (6) tennis racket. The

positions of the throat, tip, stringbed node and frame node for the tennis racket are also shown. The

ball impact velocity was 20m/s. The impact position was at a distance of 328mm from the butt
end.

These racket node points were determined using a standard experimental technique which is
described fully in Appendix D.2. A brief summary of this method is given here. Impacts at the
node point of the racket do not excite vibrations of the relevant mode in any part of the racket.
Therefore, the node point of a tennis racket can be experimentally obtained by sampling the
vibrations which result from an impact between a soft hammer and the racket, at a variety of
locations. The location of the impact is moved until minimum vibrations of the fundamental mode

are measured. A schematic illustration of the approximate node locations, for a tennis racket, are
given in Figure 9.11.

The node point for uniform section beam is located at a distance 529mm from the butt end, as
shown in Figure 9.12. The analytical solution for the node point of a uniform beam of length Lz is
0.776Ly (Cross 2001b). This gives an analytical node position equal to 530mm which clearly

corresponds very closely to the numerically obtained value of 529mm. This confirms that the
numerical and analytical solutions correlate very closely.

It can be seen that the location of the beam node point, for the uniform section and two section
beams correspond closely with the stringbed node. This means that impacts at this point on the
beam will not excite the fundamental mode of vibration. Correspondingly, impacts at this point on
the longitudinal axis of the racket will not excite this mode of vibration either. This would initially
suggest that these two beam models suitably simulate the transverse vibrational properties of a
tennis racket. However, this is purely coincidental because the actual frame node is located at a
different position. The frame node corresponds very closely to the node for the five section beam,
and is located at a distance of approximately 550mm from the butt end. This implies that this type
of beam model is a more suitable technique for modelling the vibrational properties of the racket
frame. However, if this five section beam was used to model an impact on the longitudinal axis at a

225



Chapter 9 Model of a ball-racket impact

point ~530mm from the butt, a vibration of the fundamental mode would be established. By
contrast, an identical impact on the longitudinal axis of the racket tennis racket would not have
excited any vibrations of this mode. This discrepancy is discussed later in this chapter.

Table 9.6 Stringbed and frame nodes for the tennis rackets. Beam nodes for the three model
beams.

Racket Type Stringbed Frame Beam node (yvope)geam (M)
Node Node
(YNODE)stringbed | (VNODE)Frame Uniform Two section | Five section
(mm) (mm) section
Yonex (1) 547 579 552 549 575
ITF Aluminium (2) 524 551 528 529 549
Head (3) 523 557 529 529 551
Spalding (4) 534 554 531 529 556
Miller (5) 538 561 531 534 559
ITF Carbon Fibre (6) | 528 549 529 529 551
Wilson (7) 523 558 531 525 549

The comparison between the model beam and racket node points has thus far only being made for
an ITF Carbon Fibre (6) racket. In Table 9.6 this comparison is extended to cover the other six
racket types. It can be seen that the all the rackets exhibit the similar trend that was found for the
ITF Carbon Fibre (6) racket. As before, the stringbed node generally corresponds most closely

with beam node for the uniform section and two section beams; the frame node being closer to the
beam node for the five section beam model.

In Appendix D.2 it was quoted that the accuracy of the measurements of (Ynope)swinghes and
(YnopE)Frame Was only in the order of £5mm. Therefore, the location of the experimentally obtained

node point on the racket corresponds with the respective beam node, within the bounds of the
experimental error.

(g) Summary

In this section, it has been shown that the inertial properties (mass, balance point and moment of
inertia) of a tennis racket can most closely be simulated by using a one-dimensional beam which is
composed of five uniform sections. It was then shown that the node point on this five section model
beam correlates very closely with the frame node of the corresponding tennis racket, implying that
this is the most suitable model of the three which have been developed in this section.

However, the weakness of this model can be identified from a consideration of the positions of the
node points on the racket. The node point on the frame is at a different position to the stringbed
node on the longitudinal axis of the racket. As this study is only concerned with impacts along the
longitudinal axis, it can be deduced that impacts at the stringbed node of the racket will excite no
vibrations, whereas impacts at this same point on the five section beam will excite vibrations
because this is not the node point. This weakness in the model is due to the simplification of a
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complex three dimensional object as a one dimensional beam. This discrepancy will be discussed
later in this chapter.

9.4 One dimensional, flexible beam model — distributed loading

9.4.1 Introduction

In section 9.3, a numerical method was discussed which can be used to solve for the displacement
of a one dimensional flexible beam that is subjected to a time-dependent loading. This numerical
method involves the division of the beam into N segments. In that section, it was assumed that the

force was applied over a single segment to simplify the solution. However, it was noted that the
same solving method is valid for distributed load cases.

Clearly, in an impact between a ball and racket, the ball/stringbed does not impart a point load on
the racket frame. Instead, the force will be distributed, in some way, across the head of the racket.
Therefore, in a model of a ball impacting on a one-dimensional beam, the force should be
distributed over the beam segments that are representative of the racket head. The exact form of
the distributed load is not easily defined but can be approximated using a suitable function. Also,
the definition of a continuous distributed load case over a finite number of discrete load points is

not a trivial problem and therefore the derivation of this load case is given a thorough explanation
in this section.

9.4.2 The beam model

In this section, the resultant force (F), acts on the beam at the ball impact position; this position
being located at a distance y;» from the butt end of the beam. It is assumed that this force is applied

as a distributed load across the beam segments that represent the head of the racket. Clearly, this
distributed load must be equivalent to the force (F),.

The form of this distributed loading must be representative of the mechanism that acts to apply the
load to the racket frame, via the stringbed. To understand this mechanism fully would require a
two dimensional analysis of the frame/stringbed system, which is beyond the scope of this work.
Various authors have commented upon this mechanism (Brannigan & Adali (1981) and Cross
(1999¢)). Cross (1999¢) assumed that the loading could be simulated using a point load, similar to
the method discussed in section 9.3. Furthermore, Cross (1999c¢) stated that the propagation of the
force through the stringbed was of a comparable speed to that through the beam (due to bending)
and therefore a point loading was a satisfactory 1* order approximation. Brannigan & Adali (1981)
conducted a two dimensional analysis of the frame/stringbed system. In this analysis, the impact
was located at the geometric string centre, to simplify the solution procedure. This publication

does not a present a generic solution for impacts located at other positions along the longitudinal
axis.

In this current study, the general form of the distributed loading will be determined by considering
several simplifications of the stringbed/frame interaction. Furthermore, a number of assumptions
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are defined. These assumptions are required because a two dimensional analysis of the
frame/stringbed system is not conducted in this study. In this analysis, it should be noted that the

distributed loading is only to be defined in one dimension; this being parallel to the longitudinal
axis.
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Figure 9.13 Simplified distributed loading if the load is taken solely by either the main or cross

strings, (a) for an impact at the geometric string centre of the head of the racket, and (b) for an
impact towards the tip of the racket.

The simplest impact to consider is that which is located at the geometric string centre of the racket.
If it is assumed that the racket head is approximately symmetrical in both the longitudinal and
transverse axes, then the distributed loading will also be symmetrical along its one dimension. If
all the load was supported by the cross strings, and the main strings were subjected to zero loading,
then the distributed loading would have a form similar to that shown in Figure 9.13(a). Also
plotted in this figure is the form of the distributed loading for the case where all the load is
supported by the main strings. These two simple load forms are not representative of the actual
loading mechanism. Furthermore, a simple superposition of the two forms would not be realistic as
the two sets of strings interact, thus distributing the load to all parts of the frame, not just those
implied by the plots in Figure 9.13(a). However, using the two simple curves illustrated in this
figure, and the knowledge that the load will be distributed to all parts of the frame, it is assumed
that the load will be uniformly distributed along the longitudinal axis of the frame, for impacts at

the geometric centre of the head. This uniform loading will only act on the beam segments which
represent the head of the racket.

A similar analysis can be conducted for impacts located at other positions along the longitudinal
axis. Figure 9.13(b) illustrates an impact which is located towards the tip of the tennis racket. In
this figure, the two simplified loadings are plotted which represent the assumptions that all the load
is either supported by the main or cross strings. If the load is supported by the main strings, it is
assumed that the force which acts at the tip is larger than the force acting at the throat to ensure that
the resultant loading is equivalent to the point load (), As before, the two load cases in Figure
9.13(b) can not simply be superimposed to find the form of the resultant distributed loading
because the two sets of strings are do not move independently and they physically interact during
impact. Clearly, there are many possible forms of the distributed loading but in this study only two
main examples are investigated. These two general shapes are illustrated in Figure 9.14.
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Figure 9.14 Two general examples of distributed loadings which are equivalent to a point load of

(F).. (a) A function which is maximised at the edge of the racket head, and (b) a function which is
maximised at the impact location.

The distributed loadings shown in Figure 9.14 are not associated with specific functions that
describe their shape but are merely meant to represent two different general forms of the distributed
loading. Both of these general shapes are deduced using the two discrete load forms shown in

Figure 9.13(b), along with the knowledge that the load will be distributed to all points on the racket
frame.

Figure 9.14(a) shows a distributed loading which is maximised at the edge of the racket head,
whereas Figure 9.14(b) illustrates the distributed loading which is maximised at the impact
location. The form shown in Figure 9.14(a) is based on the assumption that the load which is
supported by the main strings dominates the mechanism. For example, in this case the peak load
acts at the tip of the racket. The form shown in Figure 9.14(b) assumes that the load which is
supported by the cross strings dominates the mechanism, and therefore the load is maximised at the
impact location.

Intuitively, the actual distributed loading is likely to be an amalgamation of the two forms shown in
Figure 9.14. A two dimensional analysis of the stringbed system is required to obtain the details of
this amalgamated distributed loading. However, as mentioned previously, this is beyond the scope
of this current study. Therefore, it is assumed that a first order approximation of the distributed
loading could be achieved by using one of the two forms in Figure 9.14. It is also assumed that

both these shapes exhibit an equal correlation with the actual distributed loading. This assumption
was made because it is not possible for the validity of either form to be quantified.

Initially, it would appear that both shapes are equally suitable to be used to model the load which
acts on the beam. However, it is considerably simpler to define a function which is of a similar
form to that of the continuous curve in Figure 9.14(a), compared with that required to define the

curve in Figure 9.14(b). Therefore, it is concluded that the distributed load, with the form that is
shown in Figure 9.14(a), should be used in the model.

There are many functions which could define a curve similar to that in Figure 9.14(a), e.g. a second
order polynomial. However, some of these functions are more suitable than others. For example, it
must be possible to uniquely calculate the coefficients of the distributed loading function which
gives the required magnitude and location of the resultant force (F), . Generally, this requires the
equation to have two non-zero coefficients for a unique solution to be obtainable. Furthermore, an
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important feature of the function is that it must produce a valid distributed loading, for all impact

locations. For example, a second order polynomial is not suitable as it may define a loading which
has a negative value at some points along the beam.

An alternative function, which is of a similar form to that shown in Figure 9.14(a), is defined as a
general spandrel (Efunda 2002). This is a suitable function as the coefficients can be uniquely
determined by the magnitude and location of the resultant force. Also, the solution remains valid
(positive) at all locations along the beam, for any impact position. Furthermore, for impacts at the
geometric string centre, the general spandrel curve represents a uniform loading, which is the

assumed shape for these impacts. Therefore, it was concluded that a general spandrel was a suitable
first order approximation of the distributed loading.
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Figure 9.15 Illustration of a distributed loading which acts over the beam segments that represent
the racket head.

Figure 9.15 illustrates the distributed loading that is defined using the general spandrel function. In
this figure, it can be seen that the loading only acts on the beam segments which represent the head
of the tennis racket. The magnitude and location of the resultant of this distributed loading is
equivalent to that of the force (F), being located at a distance y;» from the butt end of the beam.

The form of a general spandrel, for this co-ordinate system is,

h
fy =371l + L)) [9.61]
for [LH +Lm]<y<L,5r

The parameter b is equal to the length of the base of the general spandrel curve which is equal to,

b=LB _[LH +LRI]

[9.62]
The parameter A is a function of the position at which the force is applied y;» and the base b,
2¢,~b
s [9.63]

y
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where,
€y = (ylF - [LH + LRID [9.64]

The parameter h, which is equal to the height of the general spandrel curve, can be calculated
using,

h=2e(p+1)

[9.65]
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Figure 9.16 Illustration of the distributed loading f; and the discrete loading Fn which acts on
each segment.

The parameter f, is equal to the magnitude of the distributed load, as a function of the distance
along the beam y. Therefore, the area enclosed by the general spandrel curve is numerically equal
to the total force applied to the beam. To generate a normalised solution, the force F is assumed to

be unity, and thus the area A5 under the general spandrel curve is also equal to unity. For this
normalised solution, [9.65] becomes,

h= %(ﬂ +1) [9.66]

The above analysis has generated equations to define the continuous function that gives a
normalised distributed loading which is equivalent to the load F, applied at a distance y;» from the
butt end. The magnitude of each of the parameters b, S, ¢, and 4 can therefore be defined for the
relevant beam model and impact position. However, for the beam model, the load must be applied
at a finite number of discrete points, at the centre of the segments; each discrete load being defined

as F, as illustrated in Figure 9.16. The total sum of the discrete loads F, will be equal to unity.

The continuous loading f, acts over a finite number of segments of the beam which are analogous
to the head of the racket. The discrete load I?" which acts on the nth segment must be equivalent

to the continuous loading which acts over the length of this segment. The area 4, enclosed by this
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continuous loading over the nth segment is shown in Figure 9.16. The position along the beam y,
is defined using,

where n is the segment number.
The area 4, can be approximated using,

s fn— . + fn n + n+L.
4, = —2-(——%——) + %(i—zfﬂ) [9.67]

The area 4, is equivalent to the force which acts on this segment 17:, and therefore,
~ S
Fy = Unos 2,4 fras) [9.68)

This equation, along with those discussed above, can be used to determine the force F,, which acts
on each of the segments, for an overall equivalent loading F;, the force F being equal to unity in this
case. The values of the normalised force F‘n for each of the N segments can be collated to form a

column matrix with N rows [ﬁn ]

l

P4
{
~

;'Jl

Fy
- -

where the value of F, is non-zero for the segments which represent the head of the tennis racket,
and zero for all other segments.

The force matrix [F 1., which is used in the numerical solution for determining the displacement of
the beam (equation [9.28]), can be calculated using,

[Fl = (#)[F]
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The magnitude of the scalar force (F), which acts during the impact is determined using the visco-
elastic model of the ball and stringbed, shall be discussed in the following section.

9.4.3 Modification to the spring-damper model for a distributed loading.

XB CM XS XD
D | 1) 35
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Figure 9.17 Visco-elastic model of the ball/stringbed system, for a ball impact on a tennis racket.

As discussed previously, the ball is simulated as a point mass mp and the stringbed was assumed to
have zero mass. The ball and stringbed were both individually modelled as springs and dampers in
parallel as illustrated in Figure 9.17 The parameters m 'y and xp represent the ‘effective’ mass and

displacement of the impact point on the racket frame, respectively. The force acting in the spring
damper system at any time ¢ is defined as (F), .

The displacement xp is not simply equal to the displacement of the beam segment at that point x;p.
This assumption would disobey the law of energy conservation, for a distributed loading of the
beam. The displacement x, is equal to the ‘weighted’ average displacement of all the beam
segments which are subjected to an excitation force (those segments which represent the racket

head). The data is ‘weighted’ by multiplying the displacement of each segment by the force which
acts on that segment. The equation used to define the value of xp, at time ¢ is,

(o), =((F)%]( ¥ (F,xx,), [9.69]

N e NHD=Nyean
where Nyz4p is the number of segments over which the force (F), is distributed over.

Apart from this minor modification, the solution of the visco-elastic model is identical to that

described in section 9.2. The force (F), which acts on the beam can be calculated using [9.42],
where x;p is replaced with x;.

9.4.4 Comparison of a point load and a distributed loading of a beam.

(a) Introduction

In section 9.3, a numerical solution was given that can be used to determine the displacement of a
one-dimensional beam which is subjected to a time dependent point load. It was shown that the

model required certain parameters to be defined which were dependent on the ball type, stringbed
stiffness and racket type. To complete the required model inputs, the velocity of the ball and racket
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were specified for the instance immediately prior to impact. The output of the model included the
ball rebound velocity and the motion of the freely oscillating beam.

In section 9.4.2, it was shown that it was possible to modify the model so that the force is applied
as a distributed loading. The model was otherwise identical to that described in section 9.4. The
distributed load case is more physically representative of the actual mechanism which loads a
tennis racket during an impact with a ball; the load being applied to the racket frame via the
stringbed. However, the distributed load case leads to a more complicated force matrix [F ] and it

may be introducing an unnecessary complication into the model. In this section, this is to be
evaluated by comparing the model solutions for the point load case with those of the distributed
load case. Clearly, if there is no significant difference in the results for the two loading conditions,
then the simpler point load case should be used in the model.

The two main outputs of the model are (1) ball rebound velocity and (2) the amplitude of beam
vibrations after impact. Therefore, these are the two parameters which are to be compared for the
two models which use (a) a point load case and (b) a distributed load case. The comparison is to be
conducted using the model parameters for a Pressurised ball and stringbed strung at 70lbs, as
shown in Tables 9.1 and 9.2. The ball velocity for all the tests in this section is 20m/s and the
impact is located at a range of points which stretch across the longitudinal axis of the head of the
racket/beam. These locations are in increments of the segment length s as the impact must be
located at the centre of one of the N segments of the one dimensional beam. The model solution is
to be calculated using the five section beam for the ITF Carbon Fibre (6) tennis racket. The
parameters for this racket have been described in Tables 9.3 to 9.5, and in Table D.7.

(b) Results
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Figure 9.18 Calculated ball rebound velocity for a range of ball impact positions on a freely
suspended beam. Data is presented for both a point loading and distributed loading on a flexible
beam, and also for a point loading on a rigid beam. The beam mode! represents an ITF Carbon

Fibre (6) tennis racket. The positions of the throat and tip on the head of the racket, and the string
and frame nodes are also given.
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Figure 9.18 shows the ball rebound velocity which has been calculated by the model of a freely
suspended racket, for a range of ball impact positions. The two sets of data points which represent
impacts on a flexible beam are presented for the two different assumptions regarding the method of
loading; these two methods being a point and a distributed loading. Also, plotted in each figure is a
data line which represents the rigid beam solution which was calculated using the same method as

that described in section 9.2. The data is presented in Figure 9.18 for the ITF Carbon Fibre (6)
tennis racket.

Figure 9.18 shows that the two different loading mechanisms yield different values of ball rebound
velocity for impacts towards the throat end of the head. Also, both sets of data for a flexible beam
model yield considerably lower ball rebound velocities than those exhibited for impacts on a rigid
beam, for impacts towards the throat end of the head. At an impact point y;» of approximately
540mm, the rigid and flexible beam models exhibit very similar ball rebound velocities. This
position corresponds closely with both the string and frame node points of the racket; the
definitions of these two points being given in Figure 9.11. At impact positions which are close to
the tip of the racket, the two flexible beam models (point loading and distributed loading) both give
similar results, which are considerably lower than those exhibited by the rigid beam model.
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Figure 9.19 Calculated amplitude of vibration of the fundamental frequency for a range of ball
impact positions on the beam, for the vibration of the 1* beam segment (closest to the butt end).
Data is presented for both a point loading and distributed loading on a flexible beam, and also for a
point loading on a rigid beam. The data is presented for the ITF Carbon Fibre (6) tennis racket.

The positions of the throat and tip on the head of the racket, and the string and frame nodes are also
given.

The beam model which has been discussed in sections 9.3 and 9.4 calculates, amongst other
parameters, the displacement of the beam after impact. During the period after impact, the model
beam vibrates freely and the displacement of each beam segment is calculated for a period of
approximately 25ms. The numerical harmonic analysis which was described in section 9.3.2, was
used to determine the amplitude of the fundamental mode of vibration, for each of these segments.
Figure 9.19 shows the amplitude of this mode for the segment at the butt end of the beam, for a
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range of different ball impact positions. The string and frame nodes are also plotted on these
figures.

An impact on the flexible beam with a point load which is located at approximately 550mm from
the butt produced minimum vibrations of the fundamental frequency. This point corresponds with
the node point for this beam which has been determined previously and is shown in Figure 9.12 and
Table 9.6. Also, as mentioned earlier, this point corresponds very closely with the frame node for

the racket. This data confirms that the beam and racket frame exhibit very similar node locations,
which was one of the aims of this work.

An impact on the beam with a distributed load at approximately 530mm from the butt produced
minimum vibrations of the fundamental frequency, for this load case. However, it should be noted
that this does not mean that the beam node has moved because this is not physically possible
without the beam being modified in some way. Instead, it is illustrating that the point of minimum
vibrations does not coincide with the beam node point, for impacts involving a distributed load.
This impact position corresponds very closely to the racket string node.

A supplementary comparison of the beam and racket nodes is presented for a Yonex (1) racket in

Appendix D.4. This comparison exhibits a similar correlation as was found for the ITF Carbon
Fibre (6) racket.

(c) Discussion

It has been shown that the frame node and string node, on a tennis racket, do not coincide. Typical
locations of these two nodes are shown in Figure 9.19. The string node is the point on the
longitudinal axis of the stringbed which excites minimal vibrations in the frame. An impact of this
nature will involve some kind of complex distributed loading being applied to the racket frame,
although the precise form of this loading is not known. The frame node corresponds to the point on
the frame which excites minimum vibrations. By contrast, this kind of impact involves a point

loading of the frame. Clearly, these two different kinds of loading yield different locations at
which minimal vibrations are excited.

Intuitively, it would have been expected that any impact which is located at the node point would
not excite vibrations of the fundamental mode. However, it was found that a distributed loading of
the beam, which has a resultant that acts at this node, excites vibrations of this mode. It is beyond
the scope of this study to fully explain this mechanism but the differences in the induced vibrations
of a beam, for different loading methods, can be illustrated using a simple example. If a one
dimensional, uniform beam is subject to a point load which acts at its mid-point, for a short
duration, significant vibrations of the fundamental mode will be excited. However, if this same
beam is subjected to a uniform loading along its full length, equivalent to the point loading, then no

vibrations of this mode are excited. This example confirms that a point load and distributed load
do not necessarily excite the same vibrations in a beam.

In this current section, the beam model has been used to show that a point loading and a distributed
loading yield different locations at which minimal vibrations are excited, for an impact on a simple
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one dimensional beam. The distributed load case induces minimal vibrations at a location which is
close to the experimentally measured string node. Clearly, both the model and experimental cases
involve a distributed loading and therefore it is consistent that these two locations coincide.  This

is supported by the observation that the locations of the beam node (minimal vibrations for a point
loading) and the frame node also coincide.

(d) Conclusions

E
_Beam
@ ‘// node
l
.~ No vibration
| | T~of the
. fundamental
Ll mode

Figure 9.20 Illustration of an impact involving a distributed loading of the beam. The resultant

of the distributed loading, force F, does not act on the beam node. A qualitative comparison of the
frame, stringbed and beam nodes is also presented.

The important findings from this short study are illustrated in Figure 9.20, which shows a tennis
racket and a five section beam model. It can be seen that the racket frame node correlates very
closely to the beam node. The beam is subjected to a distributed loading, with a resultant force F
located at a distance y; from the butt end. This loading results in minimal excitation of the
fundamental mode of vibration, even though the resultant does not coincide with the beam node.

Figure 9.20 illustrates that this impact location corresponds with the experimentally measured
stringbed node on the racket.

For the beam model, the location y;» does not represent a node point, but instead can be considered
to be an impact point which excites minimum vibrations of the fundamental mode. Extending this
concept to a tennis racket, the stringbed node can simply be considered as an impact point which

excites minimal vibrations. This can not be proven and therefore the analysis of this finding is not
continued further.

9.4.5 Summary

In section 9.3, a model was developed for a ball impact on a freely suspended tennis racket. In that
section, the racket was modelled as a one dimensional beam which was subjected to a point
loading. In this current section, the model was modified so that the force was applied as a
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distributed loading. It has been shown that the visco-elastic model, which is used to simulate the
ball/stringbed system, has to be modified to account for the load being distributed over the beam.
This visco-elastic model is used to calculate the overall resultant force F which acts on the beam.
It is assumed that this overall force acts over the beam segments that represent the head of the
racket. A method has been presented which can be used to determine the time-dependent forces
which act on each of the segments of the beam, that give the equivalent loading as that of the

overall resultant load F. The displacement of the beam, for this distributed loading, can be
determined using the same methods described in section 9.3.

A comparison was made between the model solutions obtained for (a) a point loading, and (b) a
distributed loading. It was shown that, for impacts close to the throat end of the head, the ball
rebound velocity was larger for the distributed loading, compared with the point loading.

However, for all other impact points, the ball rebound velocity was very similar for both loading
methods.

The main finding from this model is that the impact location which excites minimal vibrations of
the beam does not coincide with the node point, for a distributed loading. Furthermore, this impact
location correlates very closely with the measured stringbed node for a tennis racket. It can
therefore be concluded that a distributed loading, as opposed to a point loading, is a more suitable

method of applying the load. This is because the nodal properties of the beam are most closely
simulated using this loading method.

9.5 Computer software used to solve the model

9.5.1 Introduction

In section 9.3, algebraic equations have been defined which can be used to calculate the
displacement of a beam for a time-dependent force. In section 9.4, it was shown that this beam
could be used to represent a freely suspended tennis racket in an impact with a tennis ball. In that
section, the model parameters are defined for a range of ball types, stringbed stiffnesses and racket
types which allow the model to be solved for any input combination of initial ball and/or racket
velocities, and any impact location along the longitudinal axis. In sections 9.3 and 9.4 it has been
shown that the load can be applied onto the beam as either a point load or a distributed load. Both
these loading methods involve the same numerical solving method, which was given in section 9.3.

However, it was concluded that a distributed loading was the most suitable method of applying the
load.

The equations and parameters which were defined in sections 9.3-9.4 are sufficient to allow the
reader to repeat the model calculations which were performed in those sections. Although all the
necessary equations are given, it is estimated that a typical impact requires more than six million

calculations to be performed (based on N = 51 and At = 5ps). Therefore, the method used to
perform the calculations is not trivial and shall be discussed in this section.

There are many PC software packages available which are capable of efficiently performing the
required calculations. Cross(1999¢) used an MS-DOS BASIC routine to solve the equations. This
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was sufficient for the scope of the work covered in that publication. However, in this current work,
a model with a user-friendly graphical interface was required to allow a trained user to simulate
different types of impact, without the required knowledge that is needed to apply the equations
given in sections 9.3-9.4. A suitable software development package for such a task is MS Visual
Basic v6. This software development tool allows the production of an executable MS Windows
program with a suitable graphical interface. It also possesses an efficient numerical processing
ability which is necessary due to the large number of calculations involved. The desired program
would have a function which allowed different ball types, stringbed stiffnesses and racket types to
be entered into the model, along with the initial velocity of the ball and racket. The program must
then be capable of solving the model equations which were given in the previous section, and
giving a suitable output, such as ball rebound velocity. The features of the developed program,
which will be referred to as Racket Impact vi.1, will be discussed in this section.

0.5.2 Definition of Ball and Stringbed type

w, Ball and Stringbed Physical Properties

Ball properties

Balltype [Dunlop Standard Pressurised
Dunlop Standard Punctured
Tretorn TXT Pressureless

Ball mass (kg) |0v057

Stringbed properties
Stingbed type

B0lbs 98”2 Pince Synthebe Gut (Nylon) 15g
50bs 98in"2 Prince Synthetc Gut (Nylon) 15g
40bs "2 Prince Synthetic Gut (Nylon) 150

Figure 9.21 Illustration of the Racket Impact v1.1 form which is used to select the ball/stringbed
type.

Before the model solution can be calculated, the values of the ball, stringbed and racket parameters
must be entered into the Racket Impact v1.1 software. This is commenced by selecting the ‘Input
Parameters’ option in the menu of the Racker Impact v1.1 software. Figure 9.21 shows the Visual
Basic form which allows the user to select the ball and stringbed type which is to be used in the
model. This figure shows that the user can choose one of a selection of four different ball types;
the picture of the chosen ball being shown on the form. The ball parameters kg, Ax, @ and A,
which are shown in Table 9.1, are stored in an MS Access 2000 database and the relevant values for
the selected ball type are retrieved by the Racket Impact vi.1 program and stored as appropriate

variables. New ball types can easily be modelled by entered into the relevant values of the ball
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parameters into the MS Access 2000 database; these parameters being obtained using the
procedures already discussed in earlier chapters.

The method used to define the stiffness of the stringbed is similar to that described above for the
ball type selection. Figure 9.21 shows a selection of four different options which refer to four
identical rackets with a head size of 98in®, strung using a 15gauge nylon string at four different
string tensions. The stringbed stiffness of these rackets was discussed in Chapter 6. Each of these
selections has a unique combination of the stringbed parameters as, bs and cs, as shown in Table
9.2, which are stored in the MS Access 2000 database. These parameters apply to the equation,

kg (P55 )= ag.x5 +bg.xg + g [9.70]

The parameter k¢ (g, ) refers to the quasi-static stiffness of the stringbed for a load applied

perpendicular to the string plane, using a rigid disc of diameter of S55mm. The experimentally

obtained values of k() are plotted against the stringbed displacement x5, and a second order

trendline is plotted through this data. The coefficients of this trendline are then input into the

database. This procedure can be conducted for any new stringbed, and the relevant values entered
into the database.

9.5.3 Definition of Racket type

w Hacket Physical Properties

Racket properties
 Racket Name 'nrmmm =]
Head Prestige Classic (3) =)
Rauket oot o)

Racket mass (kg)
Racket mass Ml (kogn2)
Racket balance (m)

Number of segments

impact distance from COM {mm)

GALLL

L I3

Racket From Cipboard |

Figure 9.22 Illustration of the Racket Impact v1. 1 form which is used to select the racket type.

Figure 9.22 shows the Visual Basic form which allows the user to select the desired racket type.
This figure shows that the user can choose one of a selection of seven different rackets from a
scroll-down menu; the picture of the chosen racket being shown on the form. In section 9.3 it was
shown that the five section beam model was the most accurate method of simulating a tennis racket.
Therefore, this is the type of beam model that is used in the Racket Impact v1.1 program. The
racket parameters which are required for the model, such as those given in Figure 9.9 and Table
9.3-9.5 for the ITF Carbon Fibre (6) racket, are stored in the MS Access 2000 database and the
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relevant values for the selected racket type are retrieved by Racket Impact v1.1 program. The
parameters are stored as variables in the program, and some of these are displayed on the form in
Figure 9.22. A slider-bar is used to allow the user to easily select the impact position, relative the
centre-of-mass of the racket/beam. New racket types can easily be modelled by entered into the
relevant values of the racket parameters into the MS Access 2000 database; these parameters being
obtained using the procedures already discussed in this chapter.

It has been stated that the ball, stringbed and racket parameters are all stored in an MS Access 2000
database. The three sets of parameters are stored in three separate tables. The field names for each
of the tables, and an accompanying description of these fields, is given in Appendix D.5.

9.5.4 Definition of Ball and Racket speed before impac

w_ Ball and Racket Yelocity

2.3
V.,
i
BJMMM).WIZQ
Facket COM mpact velocky (s, Vi I‘,L’,
Racket CP impact velocty (el Vd 77—
cBack | New> | Cancel |

Figure 9.23 Illustration of the Racket Impact v1.1 form which is used to select the velocity of the
ball and racket immediately prior to impact.

The velocity of the ball and racket immediately prior to impact must be specified. Figure 9.23
shows the form used to input the velocities of these two objects. The velocity of two points on the
racket is required to account for the rotation of the racket around its centre-of-mass. The velocity is

specified for (1) the racket centre-of-mass and (2) the impact position on the racket, as illustrated in
Figure 9.23.

After the velocity of the ball and racket has been entered, the Racket Impact vi.I software can
perform the calculations which are required for the numerical solution. This numerical method is
described in detail in sections 9.3-9.4 and therefore is only summarised here. The displacement of
the N beam segments is calculated at time #, along with the displacement of the other parameters in
the visco-elastic model of the ball/stringbed system. The force which acts in this system is then
calculated by the Racket Impact v1.1 software. The displacement of all the relevant parameters can
then be determined at the time 1+ A1 The process is then repeated for the required time period.
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The Racket Impact vi.] software also performs the calculations for a modelled impact between a
ball and rigid beam. The equations for this model are given in section 9.2. The only difference
between this model and the flexible beam model is that the racket does not deform. Therefore all
the required parameters have already been entered from the MS Access 2000 database.

The automated calculating procedure is commenced by selecting the ‘Run Rigid/Flexible Beam
Solver’ option in the menu.

9.5.5 Quiput from the model.

Rigidb&ymodel Fienblobeamn;odd

Ball Bail
impact velocty (ovs) [75 impact voiocy (sl (2
Rebound velocty fm/sl [26 17955 Fiabound velocty (mvs) [0 &37an
Racket Racket
COM impact velocty im/s) 110 COM mpact velocty (ov's) [300
CP impact velocly feve] [12 P impact vebocty (we) [72
COM rebound velocly in/s) 0132615 COM rebound velochy (nvs) (7 082657
CP 1ebound velocily im/s) '053m CP wbound velocky (mve) ‘o‘m
Masmium vixation enengy (%) |5_5

Corteck tame (s} 0003778 Contact tine ) [0 003528

Figure 9.24 Illustration of the Racket Impact vI.1 form which gives a summary of the results.

The Racket Impact v1.1 software outputs a summary of the results, as shown in Figure 9.24. The
summary includes the results for both the rigid beam model and the flexible beam model to
illustrate the effect that the racket deformation has on the model output (e.g. ball rebound velocity).
An animation of the ball and racket before, during and after impact is also given in this results
summary, as shown in Figure 9.24. This is merely intended to give the user a illustration of the
motion and vibration of the ball and racket. If the user requires the actual displacement of each
segment of the beam, then a separate set of functions is required. These functions are built-in to the
Racket Impact v1.1 program and the relevant form is shown in Figure 9.25.

The ‘Data Transfer’ form that is shown in Figure 9.25 allows the user to export the data for a wide
range of parameters into a software package such as MS Fxcel 2000 for post-analysis. For
example, the ‘Fourier Analysis’ function performs a numerical harmonic analysis on the data to
determine the amplitude of the fundamental mode of vibration, for each beam segment. This
analysis also determines the zero frequency response of each of the beam segments. As with all the
‘Data Transfer’ functions, the relevant data is temporarily stored on the MS Windows Clipboard
until the user chooses the location that the data should be exported to.
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Figure 9.25 Illustration of the Racket Impact v1.1 form which allows the user to export the
relevant data.

9.5.6 Summary

In this section, the Racket Impact vI.1 software has been described. This software was written by
the author specifically for solving the models that have been derived in this chapter. The software
simplifies the method of inputting the required ball, stringbed and racket parameters which are
needed to solve the model. The calculations are performed without any user input. This gives a

trained user the ability to use the software, with out requiring a thorough knowledge of the
numerical solution that is needed to determine the required model output.

The software produces a graphical results summary which shows the main output of the model.

Furthermore, a function is provided which allows the user to export the required data into a
different software package for analysis.
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9.6 Summary

In this chapter, two different models of a ball impact on a freely suspended tennis racket have been
developed. In both models, the ball and stringbed are simulated using a visco-elastic model. In
the first model, the racket was simulated using a rigid beam. This beam was assigned the same
inertial properties (mass, balance point and moment of inertia) as the racket that it was modelling.

The inherent weakness of this model is the inability of the beam to model the vibrations of a tennis
racket.

In the second model, the rackct was modelled as a one dimensional flexible beam. A numerical
solution was derived for the displacement of a beam which was subjected to a time-dependent
loading. In this solution, it was assumed that the beam had a uniform flexural rigidity but a non-
uniform mass distribution. It was found that a beam which was comprised of five uniform sections
could be assigned inertial and vibrational properties which were very similar to those of the racket.
The vibrational properties referred to here are (1) the fundamental frequency of the beam and (2)
the node locations for this mode. More specifically, the beam was assigned the relevant flexural
rigidity which gave the same fundamental frequency as that measured experimentally for the
racket. Also, the beam node correlated very closely with the frame node of the racket; the frame
node referring to the node point for hammer impacts directly on the frame. It was found that, for

impacts on the longitudinal axis of the stringbed, the stringbed node was located in a different
position compared with the frame node.

The force was applied to the one dimensional beam by the visco-elastic model of the ball/stringbed
system. It was initially assumed that this force should be applied as a point loading. This lead to
the predictable result that an impact at the beam node point excited no vibrations of the
fundamental mode. However, it was subsequently assumed that the force should be applied as a

distributed loading. Using this assumption, it was found that the impact point which excited
minimum vibrations did not correlate with the beam node.

Furthermore, this impact point
correlated very closely with the stringbed node.

It was concluded that a distributed loading, on a five section beam model, is the most suitable
method of simulating the inertial and vibrational properties of a tennis racket, for an impact with a
ball. The position of the node on the beam correlates very closely with that of the frame node.
Also, the impact location which excites minimal vibrations of the beam coincides with the
measured stringbed node for the tennis racket when a distributed loading is used.
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10. Impact between a Ball and Freely Suspended Racket
— Experiment Data

10.1 Introduction

In Chapter 9, two different models were developed which simulated an impact between a freely
suspended tennis racket and a tennis ball. In that chapter, the methods that were used to determine
the model parameters were presented. In the first model, the racket frame was assumed to be a
rigid beam and therefore did not deform during impact, whereas in the second model, the racket
was simulated as a one dimensional, flexible beam. In this current section, the validity of both of

these models will be assessed by comparing the model results with relevant data that has been
obtained experimentally.

In Chapter 7, results are presented for an experimental investigation of an impact which involved a
tennis ball being propelled perpendicularly towards a head clamped tennis racket. In that
experiment, a number of parameters were measured, which included the following,

1. Ball rebound velocity.

2. Contact time.

3. Magnitude of ball deformation.

4. Magnitude of stringbed deformation.

These four parameters will be measured in this chapter, for a range of impacts along the
longitudinal (main) axis of the freely suspended racket. In these experiments, the racket is freely

suspended and therefore it will recoil and vibrate during, and afier, impact. In this chapter, the
racket’s motion will be determined experimentally.

In this section, five separate experimental arrangements are used to measure the parameters which
are discussed above. Each of these experiments involves a different experimental arrangement

which has been optimised for the aim of the specific experiment. These five separate experiments
are,

Measurement of the ball rebound velocity.

Measurement of the motion of the ball, stringbed and racket during impact.
Measurement of the ball and racket velocity after impact.
Modal analysis of a tennis racket.

woRh W

Measurement of racket vibrations.

These experiments shall be discussed individually in the following sections of this chapter.
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10.2 Experiment 1 — Ball rebound velocity

10.2.1 Introduction

One of the most important features of the model is its ability to predict the ball rebound velocity for
an impact between a ball and freely suspended tennis racket. In Chapter 9, it is shown that the
model is capable of calculating this velocity, but the accuracy of the results has not yet been
verified. In this current section, this issue will be addressed. The comparison between the model
and experiment results will be made using five rackets with vastly different properties (racket mass,
stiffness, etc.) which are assumed to cover the typical range used in the game of tennis. The

experiments will be performed for a range of impact locations along the longitudinal axis of the
tennis racket.

In this chapter, all impact locations will be generally referenced to the geometric string centre
(GSC) of the racket, this point corresponding to the centre of the racket head. This is used as a
reference position as it is the most tangible method of visualising the impact location.

10.2.2 Experimental Procedure

Pin support
+ for racket

<—~1.T|p

_ Speed gates
Air cannon

Figure 10.1 Tllustration of the experimental layout used to measure the ball rebound velocity for
an impact on freely suspended racket. Three nominal impact locations are illustrated.

(a) Introduction

In this experiment, the tennis racket was supported at the tip on a smooth pin with its longitudinal
axis orientated vertically, as shown in Figure 10.1. Pressurised tennis balls were projected at the
longitudinal axis of the racket, perpendicular to the stringbed, at velocities between 15 and 45 m/s

(33 and 100mph). Three discrete impact points on the racket were tested and these points are
defined as,

1. Tip.
2. GSC (Geometric String Centre).
3. Throat.
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The inbound velocity of the ball was determined using speed gates. These were positioned
approximately 1.0m away from the tennis racket. The ball rebound velocity was also measured
using the speed gates, for impacts located at positions 2 and 3. However, for impacts located at
position / the ball rebounded with a velocity which was generally too low to be sampled by the
speed gates. For these impacts, the rebound velocity was determined using a Kodak Motioncorder
high speed video system. This camera was positioned perpendicular to the flight of the ball and

operated at a frame rate of 240 frames per second. The general operation of this camera is given in
Williams (2000).

The location of the three impact positions, for each of the tennis rackets, is given in Figure 10.2. It
should be noted that all the distances and racket sizes are drawn using a scale of 13:1. (Only two
impact locations are given for the Head racket as the strings broke during testing). All the impact
locations are referenced to the geometrical stringbed centre (GSC). For completeness, the position
of the experimentally measured stringbed nodes are also given in this figure; this point

corresponding to the experimentally measured node of the fundamental mode of transverse
vibrations for the racket.

ITF Aluminium (2)

+ Stingbed node

Figure 10.2 Definition of the three impact positions which were tested for each of the five tennis
rackets used. The stringbed node location is also illustrated.

The five rackets shown in Figure 10.2 have been chosen to represent the wide range of typical

rackets used in the game of tennis. The rackets have been assigned an ID number and this is given

next to the name in this figure. The properties of these rackets are given in Chapter 9 and

Appendix D. The Yonex tennis racket is an example of a very light racket which has a large head
and is head heavy (the centre-of-mass is located towards the head). The ITF Aluminium racket has
a very low stiffness, it is head light and has a relatively low mass moment of inertia. The Head
and Miller rackets are very similar and can be considered to have ‘average’ racket parameters. The
main difference between these two rackets is that the Head racket is head-light and the Miller

racket is head-heavy. The Wilson racket is the heaviest racket that is tested in this study, and is
also relatively head-light.
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(b) Repeatability of impact location

The nominal impact locations for each racket are defined in Figure 10.2, and the air cannon is
aimed at the required position. However, due to the nature of the equipment, there will be some
level of uncertainty in the actual impact location. It is clearly important that the impact position for
each experiment is known, as the ball rebound velocity is a function of this position (Goodwill and
Haake (2000)). This could be obtained by recording each impact using a high speed video camera,
but this is not practical for the volume of testing being carried out in this section.

In these experiments the ball was propelled towards the racket using an air cannon. It is well-
established that this method gives a highly repeatable impact location, compared with that obtained
using other propulsion methods. However, it must be accepted that there will be a finite level of
uncertainty in the impact location. Several procedures were adopted to minimise this uncertainty.
For example, the cannon was positioned at the closest practical distance away from the tennis
racket. Also, a supplementary frame was manufactured to provide further support to the end of the
cannon and thus minimise the potential for the cannon to move during use.

The impact location was identified by placing a sheet of carbon-copy paper, attached to a blank
piece of paper, onto the stringbed. The ball was projected at this arrangement resulting in an

imprint on the paper corresponding to the impact location. The cannon was adjusted accordingly to
obtain the desired impact point.

A similar arrangement was used to quantify the repeatability of the impact position. The cannon
was aimed at a nominal location on the stringbed; a piece of carbon paper (and white paper) being
attached at this position. The ball was projected at the racket at nominal speeds of 15, 20, 30 and
45m/s, each speed being repeated 10 times with the white paper frequently replaced. It was found
that, for each velocity increment, none of the impacts were located more than 10mm away from the
mean position, in any direction. Furthermore, it was found that most impacts were not more than
Smm away from this mean. However, it was also noted that the mean impact location for the ball
propelled at 15m/s was approximately 10-15mm below the mean impact position for the impact
velocities of 20, 30 and 45m/s; the impact location for these velocities being almost identical.

Clearly this was due to the gravitational force which acts on the ball during flight which affects the
ball’s trajectory for the lower inbound velocities.

In this experiment, the ball is propelled towards the racket at velocities of between 15 and 45m/s.
It was concluded that the cannon should initially be positioned for impact velocities between 15
and 20m/s, using the carbon paper to identify the impact location. The cannon was then

repositioned for impact velocities above 20m/s. This method ensured that the majority of impacts
landed within 10mm of the intended position.
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(c) Error associated with the repeatability of the impact location

In this section, the ball rebound velocity will be measured for a range of nominal impact locations.
It has been shown that the desired impact location may differ from the actual location by up to
10mm. The actual location will not be measured in each experiment, so the effect in the results
must be identified to give an estimation of the potential errors in the experimental data. This
involves establishing the relationship between the uncertainty of the impact location and the change

in ball rebound velocity that this causes. A short theoretical study is discussed below to estimate
this relationship.

The ball rebound velocity for an impact on the longitudinal axis of a freely suspended tennis racket
can simply be calculated using the Racket Impact software, as described previously. However, this
software is not capable of modelling impacts that are eccentric to the longitudinal axis. Williams
(2000) presented a model of an impact between a freely suspended racket and a tennis ball, in
which the racket was assumed to be a rigid body. The model was derived using simple Newtonian
mechanics and the coefficient of restitution (COR) parameter was used to represent the energy
‘loss’ in the system. The model was derived for impacts at any location on the racket, not just
along the longitudinal axis. Therefore, this model could be used to assess the reduction in the ball
rebound velocity that results from an eccentric impact.

A preliminary study revealed that the relationship between the shift in impact location and the
resulting change in ball rebound velocity was not uniform for all impact locations on the
longitudinal axis. It was also found that the change in ball rebound velocity was dependent on the
inertial properties of the tennis racket. Consequently, in the example below, two different racket
types and two different impact locations are used to illustrate the effect that the uncertainty of the
impact location has on the ball rebound velocity.

Figure 10.3 gives an illustration of the effect on the ball rebound velocity which results from a shift
of 10mm in the impact location. For example, for impacts close to the tip of the Miller racket, a
shift of 10mm towards the butt end acts to increase the ball rebound velocity by 8%. The data is
presented for two different rackets which have vastly different inertial characteristics; the Miller
racket being head-heavy and the ITF Aluminium being head-light. Two nominal impact locations

are presented which approximately correspond to the positions labelled / and 3 (tip and throat) in
Figure 10.1.

The data in Figure 10.3 confirms that a shift of 10mm in the impact location does not effect the ball
rebound velocity in a consistent manner. It can be seen that the ball rebound velocity is highly
sensitive to the impact position, for impacts located near the tip of the ITF Aluminium racket.

Conversely, impacts located towards the throat of the Miller racket are not sensitive to the ball
impact position.

The results of this theoretical error analysis study will be referred to later in this section.
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Key
10mm
10mm
Nominal Impact Position
10mm
Miller racket ITF aluminium racket

Figure 10.3 Schematic illustration of the difference in the ball rebound velocity that is caused by
a shift of 10mm in the impact location. The difference is given as a percentage of the ball rebound
velocity which is calculated at the nominal impact position. The examples are given for two
different racket types and two impact locations.

(d) Error associated with the determination of the ball velocity

Two different experiment techniques are used in this study to determine the inbound and rebound
velocity of the ball; these being the speed gates and the high speed video system. The speed gates
are the preferred method of determining the ball velocity as this apparatus gives a direct value of
the speed, and does not require any additional analysis procedures to be conducted.

A potential error of this experiment is a function of the position of the speed gates, with respect to
the tennis racket. The speed gates are positioned approximately 1.0m away from the tennis racket,
in order for them to operate reliably. Using a simple trajectory plot (Haake et al. 2000) it can be
shown that a ball travelling at 20m/s through the speed gates, towards the racket. will have
decelerated by 0.4m/s when it reaches the racket. This represents a 2% variation in the inbound
speed of the ball and a similar calculation can be performed for the rebound velocity. Although
this difference is small, it highlights the considerations which must be made when using this type
of apparatus.

A high speed video system is used to determine the ball rebound velocity for the impacts in which
the ball speed was too low for the speed gates to function correctly. The high speed video images
are sampled using Vidimas vI software using a similar technique to that described in section 7.2.3.
The motion of the ball was sampled for a distance of approximately 350mm. A simple
repeatability study, similar to that described in section 7.2.3, was used to estimate the accuracy of

the manual sampling method which was conducted in Vidimas vi. It was found that the standard
deviation of the sampled co-ordinate was 2.6mm. This infers a standard deviation of 1.5% in the
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calculated value of the ball velocity. This low value is achievable because the motion of the ball is
sampled for a relatively long distance/period.

10.2.3 Determining the parameters required by the model

In this section, the model will be used to calculate the ball rebound velocity for an impact between
a ball and freely suspended racket. The Racket Impact software will be used to determine the
model solution. This software already contains the parameters required for the Pressurised ball

and the beam models of the five tennis rackets. However, it does contain the parameters which
define the stringbed stiffness of the rackets.

The rackets were not restrung before this testing commenced and therefore the tension of the
strings was not known. However, this is assumed to be unimportant in this testing as the model

does not require the tension to be defined; the important parameter being the stringbed stiffness
rather than the string tension.

The method used to determine the parameters which define the stringbed stiffness in the model has
been given in Chapter 8. To summarise, the quasi-static stiffness of the stringbed is determining by
applying a force using a rigid disc (diameter of 55mm) and measuring the resulting displacement.

ks(¢55)= as.x5 +bs.xg + ¢ [10.1]

where ag, bs and cg are empirically determined coefficients of a second order polynomial trendline
that was plotted through the experimentally obtained quasi-static stiffness data. The values of ag,
bs and c; are used to define the stiffness of the stringbed in the model.

In this section, three different impact locations are investigated. Williams (2000) confirmed that
the stringbed stiffness was not uniform across the stringbed. Therefore, the stringbed stiffness
needs to be obtained for each impact location, giving a set of model parameters (as, bs and cs) for
each location. The visco-elastic model of the stringbed was derived using data obtained only for
stringbed compressions at the geometric string centre of the racket. However, in this section, it is
assumed that this model is valid for impacts at all locations on the stringbed.

Figure 10.4 illustrates the stringbed stiffness for the five rackets. The data is presented for two
different locations on the tennis rackets. Figure 10.4(a) and Figure 10.4(b) illustrate the stringbed

stiffness measured at the tip and GSC respectively. The data for the third location (the throat) is
given in Appendix E.1.

The data in Figure 10.4 shows that the stringbed stiffness which is measured at the geometric string
centre is significantly lower than that measured at the tip. This confirms that the stringbed stiffness
can not be considered to be uniform across the face of the racket. The data in these figures was

used to determine the model parameters (a5, bg and ¢s) for each location, and these values are given
in Appendix E.1.
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Figure 10.4 Experimentally measured stringbed stiffness at two different locations on the racket.

It is difficult to obtain a generic relationship which could be used to define the relationship between
the stringbed stiffnesses which were measured at the GSC, at the throat and at the tip. However, it
was generally found that the stringbed stiffness was approximately 10-15% higher at the throat
position with respect to the stiffness that was measured at the geometric string centre. Also, it was

found that the stringbed stiffness measured at the tip location was 15-20% higher than that at the
GSC.

The model parameters (as, bs and cg) were added to the MS Access 2000 database to complete the
set of parameters required by the model. The Racker Impact software was used to calculate the ball
rebound velocity for the impact between a ball and freely suspended racket. Two separate model
solutions were obtained. Firstly, the model solution was obtained using the assumption that the
racket was a rigid beam. Secondly, it was assumed that the racket could be modelled as a one-
dimensional flexible beam using the five section beam model that was described in Chapter 9. The
Racket Impact software assumes that the force is applied to the beam as a distributed load.

The impact locations, for each of the five rackets, are given in Figure 10.2. It has been stated
earlier that the Racket Impact software can only model impacts which are located at discrete points
along the longitudinal racket. This is because the beam/racket is split into 51 segments and the
impact must be located at the centre of one of these segments; the distance between these segment
centres being approximately 13mm. Generally, the impact locations shown in Figure 10.2 did not

coincide with one of these segment centres. A simple linear interpolation method was used to

estimate the ball rebound velocity, for impacts at the desired position. This involved the

calculation of the ball rebound velocity for impacts on the two segment centres which are located
either side of the desired impact position. The ball rebound velocity at the desired impact position
can then be interpolated from these two results. This general interpolation method is used

throughout this chapter to model impacts which are located at a point which does not coincide with
a segment centre.
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10.2.4 Results and Discussion
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Figure 10.5 Comparison of model and experimental values of ball rebound velocity, for three

nominal impact positions on five different racket types. The data points refer to the experimental
data, and the curves represent the data for the two different model beams.

The results for this study are given in Figure 10.5, for all five tennis rackets. In each graph, data is
presented for the three impact locations (tip, GSC and throat). The data points represent the
experimental data, and the curves illustrate the data obtained using the Racket Impact vi.1
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software. The model uses the nominal impact locations to determine the solution, even though the
actual impacts do not necessarily land at these points due to the finite accuracy of the ball cannon.

Figure 10.5 shows that the rigid and flexible beam model solutions are almost identical for impacts
at the GSC. This is because this point coincides very closely with the stringbed node point for each
of the rackets, as illustrated in Figure 10.2. Therefore, the flexible beam model acts very similarly
to the rigid beam model at this point. Furthermore, it can be seen that there is a very good
correlation between the model and experiment data for impacts at the GSC, for all five tennis

rackets. The results generally correlate to within approximately 5%, with maximum differences in
the order of 10%.

For impacts at the tip of the racket, there is a considerable magnitude of scatter in the ball rebound
velocity. The two models give different results due to the flexible beam deforming during impact
which results in a lower ball rebound velocity. It can be seen that the flexible beam model

generally correlates more closely with the experimental data; the difference between the two sets of
results being less than 1my/s.

For impacts at the throat position, it can be seen that the rigid beam model calculates a ball rebound
velocity which is considerably larger than that which is calculated using a flexible beam model.
This is because this impact position is located at the furthest distance from the stringbed node, as
illustrated in Figure 10.2. The experimental data generally correlates very closely with the flexible

beam model data, for most of the rackets. This illustrates that a rigid beam model is not capable of
modelling an impact between a ball and tennis racket.

It is interesting to note that the ball rebound velocity which was measured for impacts at the GSC
are very similar to those determined for impacts at the throat. Impacts at the throat are closer to the
centre-of-mass of the racket and would intuitively result in higher ball rebound velocities, due to
the higher ‘effective’ mass of the racket at this point. However, the data in Figure 10.5 illustrates
that this is not the case, experimentally or theoretically. This finding agrees well with the
theoretical results in Kawazoe (1997b) and the experimental data in Brody (1997).

In section 10.2.2, it was stated that the ball impact position may vary by up to 10mm, and this leads
to a variation in the ball rebound velocity. It was shown that the magnitude of the this variation
was a function of both the racket and the impact position. For example, it was found that this
variation may be up to 20% for the ITF Aluminium racket, but only 9% for the Miller racket. It was
also shown that the variation was largest for impacts which are close to the tip of the racket,
compared with those towards the throat end. A qualitative analysis of the scatter in the plots in
Figure 10.5 correlates with the errors predicted using the error analysis. For example, the largest
scatter in the experimental data in this figure is that for the ITF Aluminium racket, and also for

impacts located at the tip of the racket. By comparison, the scatter in the experimental data is
minimal for impacts at the throat.

In section 10.2.2, it was also stated that the use of speed gates to determine the ball inbound and
rebound velocities introduces an error in the data. For example, it was shown that the speed gates
calculate a ball inbound velocity which is approximately 2% larger than the actual speed of the ball
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which it impacts on the racket. This error should be taken into account when assessing the
correlation between the experimental and model data.

10.2.5 Summary

In this section, it has been shown that the Racket Impact software can be used to calculate the ball
rebound velocity, for impacts where the ball lands on a range of positions on the longitudinal axis
of the tennis racket. This software calculated two different model solutions. In the first model, the
racket was assumed to be a rigid body and this model generally over predicted the ball rebound
velocity. In the second model, the racket was modelled as a one-dimensional flexible beam. It was
found that the ball rebound velocity calculated by this model exhibited a very high correlation with

the experimental data. This comparison was made for five different rackets, each with vastly
different characteristics.

10.3 Experiment 2 — Measuring the motion of the ball, stringbed and
racket during impact

10.3.1 Introduction

In the previous section, the experimentally measured ball rebound velocity is compared with that
which is calculated by the model, for the impact between a ball and freely suspended racket. A
good correlation was found between the two sets of data and therefore it could be concluded that
the model represents a good simulation of the impact, in regard to the ball rebound velocity.
However, the ball rebound velocity is only one of several components that the model calculates. In
this section, the motion of the ball, stringbed and racket will be measured experimentally, and this
data will be compared with the appropriate results calculated by the model.

The work conducted in this section is analogous to that presented in section 7.2. In that section,
high speed cinematography was used to measure the magnitude of the deformation of the ball and
the stringbed, for an impact between a ball and head-clamped racket. The data was then used to
verify a model of this impact. In this current section, a similar experiment shall be conducted for

an impact between a ball and a frecly suspended tennis racket. In this section, the following
parameters will be measured throughout the duration of the impact,

1. Ball deformation.
2. Stringbed deformation at the impact point.

3. Racket frame displacement at the impact point.

10.3.2 Experimental Apparatus

Figure 10.6 shows the experimental arrangement used to measure the magnitude of the ball and

stringbed deformation, and the displacement of the racket, during impact. The ball was propelled

normal to the stringbed plane using an air cannon.  The ball was aimed at the geometrical string

centre of the racket head. The inbound and rebound velocity of the ball were measured using speed
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gates which were positioned approximately 1.0m from the tennis racket. The racket was supported
on a small, smooth pin at the tip so that the longitudinal axis was orientated vertically.

Air cannon

ake Speed gates o
diameter rod 'n

I ,,./"3
Tracker o E
- N Sy High speed
video system
2mm
B e osmm Freely suspended
25mm

racket

Figure 10.6 Illustration of experimental arrangement showing the tracker attached to the
stringbed of a freely suspended racket.

The Phantom v4 high speed video system was used to record the impact at a rate of 4100 frames

per second, and a resolution of 512 x 128 pixels. = The focal axis of the camera was aligned

perpendicular to the motion of the ball, and therefore the stringbed was not visible.

The motion of the stringbed was sampled using the same technique as described in section 7.2. A
rigid, hollow carbon fibre rod, defined as a tracker, was attached to the geometric string centre of
the stringbed using a light thin wire and metal crimp. The wire was attached very tightly so that
there was sufficient friction acting between the two surfaces to ensure that the axis of the rod

remained horizontal throughout impact. The total length of the carbon fibre rod and crimp was
approximately 40mm.

A short, light carbon fibre rod, with a diameter of 2mm, was attached rigidly to the tip of the
racket. Similarly, a S0mm long carbon fibre rod was inserted through a drilled hole at the top of
the handle of the racket. The tips of each of the rods were coated in a bright white paint to clearly

identify the ends. The location of the two rods and the tracker is shown schematically in Figure
10.6.

In these experiments, two different types of tennis ball were tested; these being a standard
Pressurised and Pressureless ball. These two ball types are described in Chapter 4 and are
representative of the majority of balls that are used in the game of tennis. The balls were propelled
at the racket at a range of velocities between 20m/s and 40m/s. The racket used in this section was

the ITF Carbon Fibre tennis racket. Two rackets were used and these were strung at tensions of 40
and 701bs, using a standard 15 gauge nylon string.
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10.3.3 Analysis of high speed video images

(a) Procedure

Time = Oms Time = 2ms Time = 4ms

Time = 6ms

Figure 10.7 High speed video images showing an impact between a ball and freely suspended

racket (ball impact velocity = 18m/s). The five points which are sampled are illustrated in the third
image.

The operation of the camera is described in detail in section 3.3. Typical high speed video images,
which were obtained in this study, are shown in Figure 10.7. The second image in the sequence is
enhanced to show the white paint on the markers. The third image defines the points which are
sampled using the Vidimas vI software. The position of the left edge of the ball P, the right edge
of the tracker Pr, the racket tip P, and the two points P¢; and P, were sampled. The sampled data

was exported from Vidimas vl and stored in an MS Excel worksheet. These coordinates were

converted into physical units using a calibration grid, as described in Chapter 3. The tracker was

rigid and therefore it was assumed that the motion of the tracker was identical to the motion of the
section of the stringbed which it was attached to.

One of the objectives of this section involves the determination of the displacement of the racket
frame at the ball impact position, during impact. This data will then be compared with the model
solution which is calculated by the Racket Impact software. The displacement of the impact point
on the racket (x;») could have been sampled directly from the high speed video images in Figure
10.7 because the side of the racket frame is clearly visible to the camera. However. this would only
constitute a valid procedure if the ball impacted directly on the longitudinal axis. Impacts at any

location which is eccentric to the longitudinal axis will cause the racket to rotate around this axis.
This rotation is discussed in the analysis below.
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(a)
Impact on
longitudinal axis

(b)

Impact eccentric to
longitudinal axis

Figure 10.8 Definition of the rebound velocity at the edge of the racket frame for two different
impact locations which are, (a) on the longitudinal axis and (b) eccentric to the longitudinal axis.

Figure 10.8 defines the velocity of two points on the racket immediately after the impact with a
tennis ball has finished. In this analysis it is assumed that the racket (and stringbed) act as a rigid
body, as done by Williams (2000). For the impact in Figure 10.8(a) it can easily be shown that the
velocity at the centre of the racket V'jp is equal to that at the edge of the racket V'gpge. However,
for the eccentric impact in Figure 10.8(b), this is not the case. For example, if the eccentricity
distance z is equal to 10mm, the velocity V’gpge is 20% higher than the velocity V’p. (This
example uses the equations defined in Williams (2000), the inertial properties of an ITF Carbon
Fibre tennis racket and a coefficient of restitution of 0.8.) Furthermore, the model was used to
show that, for a specific ball impact velocity, the velocity ¥’ (and all other points along the
longitudinal axis) was identical for both the impact in Figure 10.8(a) and that in Figure 10.8(b).

In section 10.3 it was found that the ball impact position varied by up to 10mm from the desired
position. Although this appears to be a very small eccentricity of impact, it has been shown above
that it has a large effect on the rebound velocity of the edge of the racket, using a simple rigid body
model of the impact. Therefore, when the high speed video images, such as those in Figure 10.7,
are analysed, it is not valid to sample the edge of the racket and assume that the motion of this
point is equal to that for an impact in which the ball impacted on the longitudinal axis. Therefore,
initially it would appear that it was not possible to accurately determine the displacement of the
racket, at the impact point, during impact. However, the utilisation of one of the findings obtained
using the rigid body model allows an alternative method to be used. It was found that the velocity
of the racket, at all points along the longitudinal axis, is identical for eccentricities of z=0 and
z=10mm. Therefore, it can be concluded that the displacement of the racket at any position on the
longitudinal axis is not influenced by a small eccentricity in the impact location. This means that
this displacement can be measured for eccentric impacts (of up to 10mm) and it can be assumed

that this is equal to the displacement measured for an ideal on-axis impact. The application of this
finding is described below.
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Figure 10.9 Definitions of the ball, stringbed and racket displacements. Two different views of
the impact are given.

The definitions of the ball, stringbed and racket displacements are shown in Figure 10.9. A side
view of the impact is given to illustrate the displacements of three points on the racket. The point
C is equivalent to the point located equidistant from C/ and C2; these two points being defined in
Figure 10.7. The displacements of the points A and C, which are defined as x, and x¢ respectively,
are determined directly from the high speed video images. However, the displacement which is
required in this study is that of the impact point on the racket, defined as x;p. In this analysis, it is
assumed that the racket is rigid and also that the angle of rotation 6z is negligible for the duration
of the impact. Therefore the displacement x;» can be calculated from the displacements x, and x.
using the simple geometrical relationship which relates the points 4 and C, and the impact point.

A plan view of the impact is given in Figure 10.9. The stringbed displacement xg is simply equal to
that of the tracker. The deformation of the stringbed J can be calculated using,

Os = X5 = Xpp [10.2]

Similarly, the deformation of the ball can be determined using,
58 = xB(Surface) - xs [103]

The displacement of the ball centre-of-mass x; is of more interest than the magnitude of the ball
deformation Js, as discussed in section 7.2.5. The displacement x; can not be determined directly

from the high speed video images. However, in section 7.2.5 it was shown that the empirically
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derived equation [7.2] could be used to determine this displacement. It is to be assumed that this
equation is valid for impacts on a freely suspended racket and a modified form of [7.2] is,

xp— x5 =-8.184(Jp)° + 0.9542705; [10.4]

where the term (x; — xg) is the relative displacement of the ball centre-of-mass with respect to the
stringbed displacement xs.

(b) Error associated with assumption that the racket frame is rigid

Figure 10.9 illustrates the two points 4 and C which are sampled in order to determine the
displacement of the impact point of the racket frame x;,. The method used to determine x;p
involves the interpolation of the displacements of 4 and C and the assumption that the frame is

rigid. Clearly, a racket frame is not rigid and the error induced by this assumption can easily be
evaluated using the Racket Impact software.
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Figure 10.10 Comparison of the displacement of the racket at the impact point calculated using

the Racket Impact software. The results are presented for two different assumptions regarding the
beam used to simulate the racket.

The Racket Impact software uses two different assumptions to simulate the racket; these being a
rigid beam and a one-dimensional flexible beam. This software was used to determine the
displacement of the impact point of the racket, for an impact at the geometric string centre, and

these results are given in Figure 10.10. The ball inbound velocity was 25m/s and the racket was an
ITF Carbon Fibre racket.

Figure 10.10 illustrates the difference between the model solutions for the two different

assumptions regarding the beam. It can be seen that the maximum difference between the two
curves is less than Imm and therefore can be considered to be negligible for this study.

The findings of this analysis confirm that it is valid to assume that the racket is rigid, when
determining the displacement x;,. However, it should be remembered that this error analysis was
only conducted for impacts at the geometric string centre which is close to the node of vibration for

the fundamental mode. For other impact locations, it may not be valid to assume that the racket is
rigid.
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(c) Comment on the accuracy of the measured coordinates

In this section, high speed cinematography is used to determine the motion of the ball, stringbed
and racket during the impact between a ball and freely suspended racket. Clearly, there are errors
associated with this technique. Many of these potential errors can be minimised simply by
following established guidelines for cinematography analysis. For example, it must be ensured that
the camera is positioned such that all the sampled points are in the same vertical plane. This can
easily be verified by placing a grid with an uniform line spacing into the relevant vertical plane,
and subsequently record an image of this grid using the camera. The image can then be analysed
using Vidimas v1 to ensure that the grid spacing on the image is uniform. This procedure was also
used to verify that the curvature of the lens was not distorting the image.

The points on the images were sampled using the Vidimas v1 image analysis software. Each point
that was sampled does not always have a well defined edge and this reduced the possible accuracy
of the analysis. A simple repeatability study was conducted to quantify the accuracy of the
sampling method. In this study the points P4 and Py on the image shown in Figure 10.7, were each
sampled 60 times. This data was used to calculate the mean values of the x co-ordinates for both
points, as well as the uncertainty in this co-ordinate for each of the 60 samples. This analysis was
repeated for a further two images which were randomly chosen, resulting in a data set of
uncertainties that comprised of 180 samples. It was assumed that these uncertainties were normally
distributed about the calculated mean x co-ordinate, for the relevant image. It was found that the
standard deviations for the x co-ordinate of points P and Pz were 0.9mm and 1.2mm respectively.
This gives a good estimate of the realistic accuracy of the sampled data in this experiment.

(d) Supplementary measurements
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Figure 10.11 Definition of the displacement of the racket, and example data for the racket
centre-of-mass displacement x¢,, and racket orientation Or.
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Although the main objective of this section involved the determination of the displacement of the
ball, stringbed and racket, during impact, other parameters were also measured. The speed gates
were used to measure the ball inbound and rebound velocity. Also, the motion of the racket (points

A4 and C) was sampled during the period immediately after the impact had finished so that the
racket rebound velocity could be calculated.

When a ball impacts on the longitudinal axis of a freely suspended tennis racket, the racket will
both translate and rotate around its centre-of-mass (COM). The displacement of the racket COM
Xcum can be determined using the sampled displacements x4 and x¢, as defined in Figure 10.11. The
angle of rotation 6 can also be determined from these two displacements. The displacement xcy,
and the angle 6; can be plotted as a function of time, as shown in Figure 10.11. Linear trend lines
are plotted through the data in these figures; the gradient of these lines being equal to the respective
velocity. For example, the rebound velocity of the racket COM is defined as V') and is equal to

the gradient of the curve labelled xcy, in Figure 10.11. The rebound velocity of the impact point on
the racket V’;p was determined using,

V'ip=V'+d 0, [10.5]

where d is the distance between the impact point and the racket centre-of-mass.

In this analysis, the displacement of the racket COM is typically measured over a distance of only
25mm. Earlier in this section it was stated that the sampled points are subject to a standard
deviation uncertainty of Imm. Potentially, this uncertainty in the displacement could result in a
standard deviation in the calculated value of the racket COM velocity which is equal to 8%.
However, this uncertainty in the calculated velocity will be reduced because the calculation uses
the displacement of the racket COM at a number of time intervals, as illustrated in the graph in
Figure 10.11. This procedure acts to minimise the errors by the use of a trend line which is plotted
through the data. Whilst this analysis does not determine a definite value for the standard deviation

of the racket COM velocity, it highlights the potential uncertainties in the data, for this type of
experiment.

10.3.4 Determining the parameters required by the model

In this section, the model will be used to calculate the displacement of the ball centre-of-mass,
stringbed and racket frame. The Racket Impact software will be used to determine the model
solution. This software already contains the parameters required for the Pressurised and
Pressureless balls and the beam models of the ITF Carbon Fibre tennis racket. However, it does

not have the parameters which define the stringbed stiffness for these rackets strung at 40lbs and
701bs.

The method used to determine the parameters (as, bs and cs) which define the stringbed stiffness in

the model has been given in section 10.2. These parameters are empirically determined

coefficients of a second order polynomial trendline that was plotted through the experimentally
obtained quasi-static stiffness data. This stiffness data is determined by applying a force using a
rigid disc (diameter of 55mm) and measuring the resulting displacement.
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In this section, the values of as, bs and cs were determined for each of the two string tensions, 70lbs

and 401bs. These parameters were obtained for compressions at the geometric string centre, as this
corresponded with the location of the ball impact position.
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Figure 10.12 Experimentally measured stringbed stiffness for the ITF Carbon Fibre which is
strung using two different string tensions.

Figure 10.12 illustrates the stringbed stiffness for the ITF Carbon Fibre racket which is strung
using two different string tensions. The data is presented for a compression at the geometric string

centre of the racket. The data in this figure was used to determine the model parameters (as, bs and
cs) for each string tension, and these values are given in Appendix E.2.

The model parameters (as, bs and cg) were added to the MS Access 2000 database, and therefore all
the required model parameters are now known. The Racket Impact software was used to calculate
the displacement of the ball centre-of-mass, stringbed and racket for the impact between a ball and

freely suspended racket. In the following section, this model data is compared with the
experimentally measured data.

10.3.5 Results and discussion — Model and Experiment Data

In this section, the experimental results obtained using the methods described in the previous
section, are compared with the results calculated by the model.

Figure 10.13 and Figure 10.14 show the displacement of the ball centre-of-mass, stringbed and
racket (at the impact point) for impacts in which the ball inbound speed is 20m/s and 30m/s
respectively. The data is presented for both the model and the experiment. Further data is
presented in Appendix E.2, for other ball inbound speeds. The model data which is presented here
is that which was calculated using the flexible beam model. For interest, it should be noted that the

data calculated using the rigid beam model is very similar to obtained using the flexible beam
model.
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displacement for an impact between a ball and freely suspended racket, for four different
combinations of string tension and ball type. The nominal ball impact velocity is 20m/s.
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These figures show that the model and experiment data generally correlate to within approximately
4mm; the majority of the data exhibiting a higher correlation than this. The main differences which
are evident between the two sets of data are analogous to those which were found in Chapter 8. In
that chapter, a similar comparison was made as that in Figure 10.13, except the data was
determined for an impact on a head clamped racket. Both the maximum ball COM displacement
and stringbed displacement are higher for the experiment, compared with the model. This is
assigned to the fact that the two sets of data represent subtly different parameters. It can also be
seen that, towards the end of impact, the experimentally determined stringbed displacement returns
to zero before that which is calculated by the model. Both these differences were essentially
assigned to the fact that the ball and stringbed are complex three-dimensional objects and they are
being simulated using one degree-of-freedom models. This is expanded upon further in Chapter 8.

Figure 10.13 and Figure 10.14 show the displacement of the racket at the impact point, for both the
model and experimental values. It can be seen that the two sets of values generally correlate to
within approximately 2mm. It has been shown that the points sampled from the high speed video
images have standard deviations of 1mm. Furthermore, the assumption that the racket is rigid
results in a maximum error which is also in the order of 1mm.

A supplementary reason for the difference between the model and experiment data lies in the

definition of the instant at which the impact commences. The defined time at which impact

commences determines the time at which the displacements are plotted in the figures. For
example, if the time at which impact commenced was shifted by 0.5ms, then all the data in Figure
10.13 and Figure 10.14 would be shifted by this amount. It is difficult to calculate an estimate of

the uncertainty in the definition of the time at which impact commences. However, if one

considers that, for example, a ball travelling at 20m/s, takes 0.2ms to travel just 4mm, then it
becomes apparent that the definition of the instant at which impact commences is difficult to define
with an accuracy of more than approximately 0.2ms. A shift in the data in Figure 10.13 and Figure
10.14 of the order of 0.2ms would significantly change the relative position of the experimental

data with respect to the model data, highlighting the dependency of the plot on the definition of the
time at which impact commences.

To summarise, the cxperimental and model data exhibit a high correlation. Any differences
between the two can be assigned to the estimated uncertainty in the experimental data and the fact

that the complex intcraction between the ball, stringbed and racket frame is being simulated using a
much simpler model.

Figure 10.15 shows a comparison of the ball rebound velocity calculated by the model and that
measured experimentally, for impacts at the geometric string centre of the freely suspended racket,
This data is presented scparately for the Pressurised and Pressureless balls. The model data which
is presented is that calculated using the flexible beam model.
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Figure 10.15 Comparison of the ball rebound velocity measured for the experiment and

calculated using the flexible beam model. The data is presented for two different string tensions
and two ball types.

Figure 10.15 shows that the model correlates with the experimentally obtained ball rebound
velocity to within approximately 0.5m/s, for all combinations of ball type and string tension. ~ This
difference is of the same order of magnitude as the scatter in the experimental data. For a specific
ball type, the model calculates a higher ball rebound velocity for the racket strung at 40lbs,
compared with that strung at 70lbs; this difference generally being 5-10%. This difference is not
clearly detected in the experimental results due to the low volume of data collected.

In Figure 10.16, the experimentally measured racket rebound velocity is compared with that
calculated by the flexible beam model. It can be seen that the two sets of results correlate to within

approximately 10%. Itis interesting to note that the two model solutions for the rackets strung with
the different string tensions are almost identical.
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Figure 10.16 Comparison of the racket rebound velocity measured for the experiment and

calculated using the flexible beam model. The data is presented for two different string tensions
and two ball types.

There is a considerable amount of scatter in the data and therefore it is difficult to determine any

further conclusions. In section 10.3.3, the standard deviation in the racket rebound velocity was
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calculated as being 8%. This relatively high value was calculated because the velocity was

calculated over a very short distance/time, and therefore it was very sensitive to the accuracy of the
measured displacements.

10.3.6 Summary

In this section, it has been shown that the displacement of the ball, stringbed and racket calculated
by the model, correlate very closely with that measured experimentally. This comparison was
made for two different ball types and two different string tensions. Any differences between the
mode! and experimental data can be assigned to the estimated uncertainty in the experimental data

and the fact that the complex interaction between the ball, stringbed and racket frame is being
simulated using a much simpler model.

10.4 Experiment 3 — Measuring Ball and Racket velocity after impact
10.4.1 Introduction

In the previous section, the displacement of the ball, stringbed and racket were experimentally
measured for an impact between a ball and freely suspended racket. This experimental data was

obtained for a range of impact velocities, string tensions and ball types. It was shown that the

experimental data correlates very closely with that calculated by the model. In that section, the ball
and racket rebound velocitics were also measured, although this was not the main objective of the
experiment.  The ball rebound velocity was measured using speed gates and the racket rebound
velocity was determined from the high speed video images. The measurement of these two

parameters was not the main objective of the previous section and, therefore, the experimental

technique was not optimised for this purpose. In this current section, a more appropriate

experiment is conducted to determine the racket rebound velocity, for an impact between a ball and
freely suspended racket. The ball rebound velocity is also determined in this section. This
experimental data will be compared with the data calculated by the model. This comparison will
be conducted for several impact positions along the longitudinal axis of the racket.

In the previous scction (section 10.3), the motion of the racket was only sampled for a relatively
short period. This meant that the racket rebound velocity was calculated over a short distance and
was very sensitive to the accuracy of the measured displacements. This resulted in a large
magnitude of scatter in the calculated values of the racket rebound velocity. The experiment
described in this current section is different to that discussed in section 10.3 because the motion of
the racket is sampled for a significantly longer period. This improves the accuracy of the
calculation that is performed to determine the velocity of the racket after impact.
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10.4.2 Experimental Apparatus

(a) Procedure

Position tracker

High speed video
system

Position tracker

Figure 10.17 Freely suspended racket showing the four nominal impact positions.

The aim of this experiment is to measure the rebound velocity of the ball and racket, for an impact

between a ball and freely suspended racket. The experimental layout is very similar to that

described in section 10.3, and is shown in Figure 10.17. The impact is recorded using a Kodak
Motioncorder high speed video system which operated at a frame rate of 240 frames per second
(fps). The Phantom v4 camera is capable of 1000 fps, at the same screen resolution. However, a
frame rate of 240 fps is adequate for this current study. Furthermore, the Motioncorder is more

suitable as it is capable of storing up to 11 impacts in its memory, whereas the Phantom v4 is only
capable of storing one impact.

Pressurised tennis balls were projected at the longitudinal axis of the racket, perpendicular to the
stringbed, at velocities between 14 and 35 m/s (30 and 80mph). Two tennis different rackets were
used in this study; these being a Head Prestige Classic 600 and a Spalding Heat 90. The full
details of these two rackets is given in Chapter 9. To summarise, the Head racket is heavier, has a
smaller head size and higher mass moment of inertia, compared with the Spalding racket.

Four discrete impact points on the racket were tested, as defined pictorially in Figure 10.18. The
positions of these impact locations are defined in Appendix E.3, with respect to the geometric
string centre of the racket; the position of the GSC corresponding to the intersection of the dashed

lines in Figure 10.18. For completeness, the distance between the butt end of the racket and the
GSC is 518mm and 508mm for the Head and Spalding rackets respectively.
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Figure 10.18 Illustration of the four impact positions which were tested for each tennis racket.

The stringbed node location and geometrical string centre are also illustrated.
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Figure 10.19 Illustration of the motion of the racket after impact.

The Motioncorder was used to record the motion of the racket for the period after impact had
ceased. A typical high speed video image of the recoiling racket is shown in Figure 10.19. This
image is a compiled image which shows the initial position of the racket, along with three images
of the recoiling racket. The time interval between these three images is 4.17ms. This figure
illustrates the two points on the racket, P, and P, which are sampled to determine the motion of
the racket. The top point corresponds to a carbon fibre rod which has been inserted into the racket.

The bottom point refers to a white mark which has been painted on the racket, at the top of the
handle.

The sampled points were used to determine the linear displacement of the racket centre-of-mass
using simple geometrical relationships between the points P,, P~ and the location of the racket
COM, as described in section 10.3. The points P, and P were also used to determine the angular
displacement of the racket. In this study, it is assumed that the racket is rigid and the racket

rebound velocity is constant for the sampling period: this period lasting approximately 12ms. It
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can easily be shown that the aerodynamic drag force which acts on the racket during this period is
negligible which validates the assumption that the velocity is constant. The displacement of the
racket COM was used to determine the velocity of this point which is defined as V’cy in Figure
10.20. This velocity was simply calculated as the ratio of the distance travelled between frames and
the time step for each frame (4.17ms). This velocity was calculated for each pair of frames, and

then an average value of V¢, was determined. A similar procedure was used to determine the

angular velocity of the racket 9R , as defined in Figure 10.20. The rebound velocity of the impact

point on the racket V’;» was calculated using V’cuy, the rotational velocity of the racket éR and the

distance d.

v, «<— B Vi,

Figure 10.20 Definition of the velocity of the ball and racket after impact.

(b) Error associated with the repeatability of the impact location

In section 10.2.2, it was shown that the ball impact position varied by up to 10mm from the desired
position, for balls propelled using the air cannon. The Racket Impact software was used to estimate
that this uncertainty may cause a variation of up to 9-18% in the ball rebound velocity; the exact
value being dependent on the racket and impact location. The full details of the relationship

between the ball rebound velocity and impact location can be found in section 10.2.2 and are
therefore not repeated here.

A similar analysis can be conducted to estimate the relationship between the uncertainty in the ball
impact location and the effect that this has on the racket rebound velocity. For simplicity, this
investigation is only conducted for the rebound velocity of the racket at the impact point (V7).
The Racket Impact software was used to calculate that a shift in the impact location of 10mm
towards the tip, with respect to an arbitrary impact location on the longitudinal axis, acts to increase

the racket velocity V' by approximately 3%. This result applies for both rackets and all four
impact locations used in this section.

The results of this theoretical error analysis study will be referred to later in this section.
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10.4.3 Determining the parameters required by the model

In this section, the model will be used to calculate the ball and racket rebound velocity, for an
impact between a ball and freely suspended racket. The Racket Solver software will be used to
determine this model solution. This software already contains the parameters required for the
Pressurised ball and the beam models of the two tennis rackets. However, it does not have the
parameters which define the stringbed stiffness of the rackets.

The Head tennis racket is identical to that which was used in section 10.2. However, this racket
was restrung before this testing, at a tension of 65lbs using a standard 15g nylon string. The
Spalding racket was also restrung before this testing, at a tension of 551bs using the same string.

The method used to determine the parameters (as, bs and ¢s) which define the stringbed stiffness in
the model has been given in section 10.2. In this section, the values of as, bs and cg were
determined for each of the two rackets. For simplicity, these parameters were only obtained for the
geometric string centre position. In section 10.3, it was found that the stringbed stiffness was
approximately 15% higher for locations towards the throat and approximately 20% higher for
locations towards the tip (with respect to the stiffness at the geometric string centre). In this current
section, it was assumed that these relationships could be used to define the stringbed stiffnesses at
the four different impact locations. For example, the stringbed stiffness at the impact point nearest

the tip was assumed to be 20% larger than that measured experimentally at the geometric string
centre.

Figure 10.21 illustrates both the measured and calculated stringbed stiffness for the two rackets.
The stringbed stiffness at the geometric string centre (GSC) was assumed to be valid for impact
locations labelled 2 and 3 in Figure 10.18. The stringbed stiffness was calculated for the tip
position and this was assumed to be valid for the impact location labelled / in Figure 10.18. The
stringbed stiffness at the throat was also calculated and was assumed to be valid for impact location
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Figure 10.21 Stringbed stiffness of the two tennis rackets at the tip, GSC and throat of the racket.

These parameters were added to the MS Access 2000 database, and therefore all the required model
parameters are now known. The Racket Impact software was used to calculate the ball and racket
rebound velocity for the impact between a ball and freely suspended racket. In this section, the
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software was only used to determine the solution for the model which used the flexible beam. The

rebound velocity of the racket was calculated at the centre-of-mass and at the impact point, and
these were defined as V'), and V'jp respectively.

10.4.4 Results
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Figure 10.22 The calculated and measured ball rebound velocity for two different tennis rackets.

The data points represent experimental data and the curves represent the data calculated by the
model.

Figure 10.22 shows the experimental and model values of the ball rebound velocity, for the impact

between a ball and freely suspended racket. In this figure the data is presented for two different
tennis rackets, and four nominal impact locations.

It can be seen that the model and experimental data correlate to within approximately 5-10%, for
all impact locations. There is a considerable amount of scatter in the experimental data, especially
for impacts located at position / which corresponds to impacts close to the tip of the racket. A
similar finding was reported in section 10.2, and in that section it was concluded that the source of
this scatter was the variability of the impact location. To summarise, it was found that a shift in the

impact location of only 10mm leads to a difference in the ball rebound velocity of approximately
10% for impacts at position /. This difference is much smaller for other impact locations.

Figure 10.23 shows the experimental and model values of the racket rebound velocity for the
impact between a ball and freely suspended racket. In this figure the data is presented for the
velocity of two points on the racket (V> and V’cy,) and four different impact locations. In Figure
10.23, the data is presented for the Spalding racket; the data for the Head racket being given in the

Appendix E.3. The scatter in the experimental data can be accounted for by the variability of the
impact location, as was concluded for the data in Figure 10.22.
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Figure 10.23 The racket rebound velocity for the Spalding racket. The data points represent
experimental data and the curves represent the data calculated by the model.

Figure 10.23 (and Figure E.4) show that the model and experimental data correlate very closely.
The model generally calculates a racket rebound velocity which is larger than that measured
experimentally. However, it should be noted that the difference between the two sets of data is in
the order of only 5%. This small difference may either be due to a systematic experimental error or
a weakness in the model. The experimental errors have been discussed in a previous section and
therefore will not be repeated here. A possible weakness of the model, which has not yet been
commented upon, is related to the assumption that the stringbed has no mass. This assumption was
required to simplify the required solution of the visco-elastic model which represents the ball and
stringbed in the Racket Solver software. The physical stringbed has a total mass of approximately
20g, but only a fraction of this stringbed deforms significantly during impact. Taylor (2002)
showed that a stringbed exhibited large amplitude oscillations which were excited by the impact.
Although the energy stored in these oscillations is small compared with that stored in the ball and
racket, it will have a finite magnitude which is not accounted for in the model. This weakness of

the model may account for a proportion of the difference which has been found between the model
and experiment data.

Although differences have been found between the model and experiment values of the racket

rebound velocity, this does not render the model worthless. The magnitude of the difference,
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which is approximately 5%, can be considered as a guide to the accuracy of the model when it is
used to calculate this parameter.

10.4.5 Summary

In this section, experiments were performed to determine the rebound velocities of a ball and
racket, for an impact between a ball and freely suspended racket. This data was comparcd with the
model solutions calculated by the Racket Solver software. A rangc of ball impact vclocitics were
tested and the ball was propelled at four different locations on the longitudinal axis of the racket.

It was found that the model and experiment data exhibited a high correlation, especially for the data
collected for the ball rebound velocity. However, the model generally calculated a racket rebound
velocity which was 5% higher than that which was measured experimentally.

10.5 Vibration Analysis of a tennis racket
10.5.1 Introduction

In sections 10.2-10.4, experiments were conducted in which a tennis ball was propelled at a freely
suspended tennis racket. In these experiments, the motion of the ball and racket, during and after
impact, was sampled and compared with data that was calculated using a model. The experimental
data presented in these sections relates only to the zero frequency response of the racket frame and

ball. Therefore, the higher order response (e.g. fundamental mode of vibration) of these two
objects has not yet been verified.

The higher order response of the beam, after impact, is calculated by the model (Racket Impact
software) and will be measured experimentally using two different techniques in section 10.5 and
10.6. This experimental data is compared with the relevant values calculated by the model to
verify the accuracy of the model in relation to the higher order response of the beam.

In this current section, the position of the node point for the fundamental mode will be determined,
for an impact between a tennis ball and racket. This point corresponds to the ball impact location
which does not excite the fundamental mode of vibration of the racket frame. A similar experiment

has already been described in section 9.3.3 and section D.2. In these sections, an experiment is

presented which was used to measure this node point for the fundamental mode for impacts with a
soft hammer. The racket was excited using a soft hammer at various points on the stringbed, along
the longitudinal axis, and the resulting vibrations were measured using a piczoelectric transducer
that was sampled using suitable PC hardware and software. The amplitude and frequency of the
induced vibrations was analysed to determine the location of the node point.

In Chapter 9, the one-dimensional beam model was used to show that the location of the impact
point which gave minimal vibrations was different for a point loading and a distributed loading.
This effectively showed that this location was a function of the method used to apply the load. Ifit
is assumed that a soft hammer will apply a load to the racket in a different manner to that in which

a tennis ball applies the load, then it may be possible that the measured node location is different
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for the two experiments. In section 6.2.3, it has been shown that the stiffness of a stringbed
increases with deformation and, therefore, the effective stiffness of the stringbed for the hammer
strike will be considerably lower than for an impact between the racket and the ball. If it is
hypothesised that the stiffness of the stringbed may influence the method in which the load is
applied to the frame, then it is conceivable that the stringbed node measured using the soft hammer
may be located in a different position to the node for an impact between a ball and tennis racket.
This is the motivation for performing the experiments which are conducted in this section.

10.5.2 Experimental Apparatus

In this section, a method is presented which is used to determine the node point for the fundamental
mode of vibration of the racket. This node point will be determined for excitations which are
induced when a tennis ball impacts on a freely suspended racket. To be consistent with the work in
section 9.3.3, the amplitude of vibration will be measured for a point near the butt end. This point
is suitable as it is a significant distance from the location of the node of vibration.

e High speed video
[ o 2l
2/ ast rier 2
B . Transform - | =]
Piezoelectric < Time g2 R
Transducer reaueneY

ADC Oscilloscope Frequency Spectrum

Figure 10.24 Schematic diagram of experiment arrangement used to determine the magnitude of
the frame vibrations induced by an impact with a tennis ball.

The ball was propelled at the longitudinal axis of a freely suspended ITF Carbon Fibre tennis
racket. The Kodak Motioncorder high speed video, operating at 240 frames per second, was used
to record the impact. These high speed video images were used to determine the impact location of
the ball, on the racket. The racket was supported on a small, smooth pin with its longitudinal axis

orientated vertically. The ball was propelled at several locations on the longitudinal axis of the
racket.

The experimental layout is given in Figure 10.24. In this experiment, the grip on the racket was
removed and a small piezoelectric transducer was attached to the rigid surface of the handle, using
strong adhesive tape. The strap was then replaced. The ball was propelled at the racket, and the
racket was subsequently allowed to recoil freely. The piezoelectric transducer produced a charge
(voltage) which was proportional to the acceleration of the racket at that point. However, it should
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be noted that this proportionality is non-linear due to the nature of the construction of the
piezoelectric transducer.

The signal from the piezoelectric transducer was sampled using an Analogue-to-Digital converter
and Picoscope v5.7.4 software on a PC laptop. A Fast Fourier Transform of this data was

performed using the FFT function in MATLAB v5.3 software, to identify the frequency spectrum of
the racket vibrations.

The objective of this section is to measure the amplitude of the fundamental frequency for a range
of ball impact locations. The fundamental frequency of the /TF Carbon Fibre tennis racket has
previously been measured in Chapter 9, and is equal to 134Hz. This frequency was determined for
small oscillations of the racket. In this current section, the frequency will be determined and

compared with the previously obtained value. The amplitude of this mode is easily determined
from the calculated frequency spectrum.

10.5.3 Determining the parameters required by the model

In this section, an ITF Carbon Fibre tennis racket was strung at 601lbs using a standard 15g nylon
string. The quasi-static stringbed stiffness of this racket was tested, using the method described
previously, to determine the parameters as, bs and ¢s which define the stringbed stiffness in the
model. This was only obtained for the point at the geometrical string centre of the racket. For
simplicity, in this section it is to be assumed that the stringbed stiffness is uniform along the
longitudinal axis. From section 10.2, it can be concluded that this will result in a maximum error
of approximately 15%-20% in the value of stringbed stiffness which is being used. This error
appears relatively large, however, in practise it was found that a change in stringbed stiffness of
20% had little effect on the resulting vibrations of the racket frame or the ball rebound velocity.

All the parameters required by the Racket Impact software have already been defined. The
software is used to simulate the experiment described above, for each of the experimentally
measured impact locations. The calculated acceleration of the beam segment at the butt end can
easily be obtained from the Racket Impact software. A Fourier analysis, similar to that described in

section 9.3.2, was conducted on this data to determine the amplitude of the acceleration of this
segment of the beam.

10.5.4 Results

Figure 10.25 compares the experimentally measured amplitude of the fundamental frequency
which was calculated using the sampled signal from the piezoelectric transducer, with that
calculated by the model. The units of the experimentally measured vibration are m¥ because the
calibration factor which defines the relationship between the acceleration of the piezoelectric
transducer and the resulting voltage is not known. The experiment could be repeated using a
calibrated accelerometer, but this is beyond the scope of this study. In Figure 10.25, the location of

the stringbed node which was measured using a soft hammer, is also presented; the method used to
define this location being given in section 9.3.2.
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Figure 10.25 Amplitude of vibration measured experimentally using a piezoelectric transducer
compared with that calculated by the model, for an impact between a ball and racket. The
stringbed node measured for an impact with a soft hammer is also shown.

The main finding from Figure 10.25 is that the amplitude of the fundamental frequency, which is
measured by the piezoelectric transducer, is at a local minimum at a distance of 535mm from the
butt end. This point corresponds very closely with the stringbed node of the racket that was
measured using a soft hammer; these two points corresponding to within 7mm. The accuracy of all

location measurements is approximately Smm and therefore the difference in the location of the
two points may be simply accounted for by a measurement error.

These results imply that the location of impact point on the stringbed node which excites minimum
vibrations (of the fundamental mode) is very similar for the two methods used in this study to
induce the vibrations. The two methods involve a different magnitude of deformation of the
stringbed, which results in a different effective stiffness of this component. This implies that
differences in stiffness of this order of magnitude do not influence the node location.

The model data, which is presented in Figure 10.25, confirms that the model simulates the
vibrational properties of the tennis racket. This can be concluded because the impact point which
corresponds to a minimal amplitude of the fundamental mode, for the model, coincides with that

measured experimentally using the piezoelectric transducer. This has already been discussed in
Chapter 9.

10.5.5 Summary

In this section, an experiment was conducted to measure the racket vibrations induced by a ball
impacting on the longitudinal axis of the racket. The impact point which corresponded to the
minimum amplitude of these vibrations has been determined. This point coincided very closely
with that measured for impacts using a soft hammer. This testing has showed that the node point of
vibration is not dependent on the method used to excite the tennis racket, in this study.
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10.6 Comparison of racket vibrations in the model and experiment
10.6.1 Introduction

In section 10.2, an experiment was performed to measure the ball rebound velocity for an impact
between a ball and tennis racket. In that section, two model solutions were obtained which
calculated the ball rebound velocity for this impact. In the first solution, the racket was assumed to
be a rigid beam and in the second solution it was assumed to be a flexible beam. It was found the
results calculated using the flexible beam model correlated very closely with those measured
experimentally. This is assigned to the well-documented finding that the racket deforms during
impact and this deformation is only simulated by the flexible beam model.

In the previous section, the vibration of a tennis racket was sampled for the period directly after an
impact between a tennis ball and the racket. The impact location which corresponded to the
minimum vibrations of the racket was measured experimentally, and calculated using the model. It
was found that the two points correlated very closely. Although the work in the previous section
studied the vibrations of the racket after impact, and compared them with the model, it did not

compare the magnitude of the vibrations for the two cases. In this current section, this issue will be
addressed.

The aim of this section is to compare the motion of the racket during and immediately after impact,

for the experiment and model. A similar study was done by Cross (1999¢) who studied the impact

between a ball and an aluminium beam. In that paper the beam was freely suspended using light

strings, and a superball impacted on the side of the beam. The motion of the beam was determined

experimentally, and also calculated using an equivalent flexible beam model. In that work, a very
good qualitative correlation was found between the two traces.

10.6.2 Experimental Technique
Air cannon

Speed gates

High speed video
system

Freely suspended racket

Figure 10.26 Ball impacting on a freely suspended tennis racket, showing the point 4 which was
sampled from the high speed video images.
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The experimental apparatus used in this section is illustrated in Figure 10.26. The Phantom v4 high
speed video system is used in this experiment and operated at 1908 frames per second with an
image resolution of 512 x 256 pixels. Pressurised tennis balls were propelled using an air cannon
at a nominal velocity of 20m/s. The inbound and rebound velocities of the ball were determined
using a set of speed gates; these speed gates being located approximately 0.5m from the racket.
The ball impacted normal to the string plane of a freely suspended I/TF Carbon Fibre tennis racket,
at a range of positions along the longitudinal axis, as illustrated by the shaded ‘impact zone’ in
Figure 10.26.. This racket was strung at a tension of 601bs.

In this section, the amplitude of the transverse vibrations which were induced by the ball impacting
on the racket, were measured experimentally and compared with those of the one dimensional
beam model as calculated by the Racket Impact software. Clearly, it is neither practical nor
possible to sample the motion of each point along the racket, for a finite time period and therefore
it was concluded that only one point on the racket would be sampled. The point chosen was that at
the tip of the racket for two main reasons, which were,

1. This point coincided with an anti-node of vibration of the fundamental mode and therefore
vibrated with the largest amplitude for a given excitation force.

2. This point lay on the longitudinal axis and therefore was not subject to errors if the ball

landed eccentric to the longitudinal axis, as discussed in section 10.4.

Figure 10.26 defines the point 4 which corresponds to the tip of the racket. This point was sampled
from the high speed video images using the method described in the following section.

10.6.3 Analysis of high speed video images

(X Hab y l*.\l)

Figure 10.27 Definition of the ball impact location y;» and the displacement (&), of the sampled
point A at the tip of the racket.

Figure 10.27 shows a picture of three combined high speed video images. The point 4 corresponds
to the base of the white rod which protrudes from the tip of the tennis racket. This point was
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sampled using the Vidimas v1.1 software using the procedure which has been explained in section
10.3.3.

The motion of the ball was sampled to determine both the impact position on the racket and the
instance at which impact commenced. The details of the method used to define the start of impact
is explained in section 7.2.3. The high speed images were also used to verify the value of the ball
rebound velocity which was measured by the speed gates. This procedure was performed because
impacts towards the tip of the racket result in relatively small ball rebound velocities. In section
10.2 it was explained that the speed gates sometimes fail to operate at these low speeds.

The objective of this experiment is to determine the displacement of the point A. The time step At
between each frame is 0.52ms. During this time interval, the point 4 typically displaces by only 4-
gmm. Therefore, it is assumed that, during the time interval At, the motion of the point 4 can be

considered to be linear. The displacement of 4 during this time interval A6, is defined using,

AJA = \R))Hm -V )2 +(x1+Al _xr)z [10.6]

The displacement of 4 can be determined for each time interval, to obtain the motion of this point.

10.6.4 Determining the parameters required by the model

In this section, an ITF Carbon Fibre tennis racket strung at 60lbs was used. This is the same racket
as that used in section 10.5, and therefore the Racket Impact software already contains the
parameters required to determine the model solution. For simplicity, in this section it is to be

assumed that the stringbed stiffness is uniform along the longitudinal axis, as was done in section
10.5.

The Racket Impact software was used to determine the displacement of the point on the beam
which is analogous to the tip of the racket. The model beam displacement at this point can not be
determined directly because the point 4 does not coincide with the centre of one of the beam
segments. However, a linear extrapolation method can be used to estimate the beam displacement

8;. The Racket Impact software splits the beam into 51 segments, and it is assumed that the
displacement of x, can be calculated using,

6, =Xy +(_x_5,_—2_x&) [10.7]

where x;5; and xs, are the displacements of the two segments at the tip end of the beam; both these
parameters being calculated by the model.

In the following section, the experimentally determined values of x, are compared with those
calculated by the model.
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10.6.5 Results and Discussion

(a) Racket displacement
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Figure 10.28 The displacement of the tip (point 4) of the racket/beam for a range of impact

locations; the locations are referenced to the geometric string centre. Data is presented for both the
experiment and model. In each figure, the nominal ball impact velocity was 20m/s.

Figure 10.28 shows the displacement &, of the tip of the racket/beam (point 4 in Figure 10.27), for
a range of impact locations. The impact location is given in each figure and is referenced to the
geometric string centre (GSC) of the ITF Carbon Fibre tennis racket. In each figure, the

experimentally measured displacement is compared with that determined by the model. Further
comparisons are given in Appendix E.4.

Figure 10.28 and Figure E.5 show that the model and experimental results exhibit a very high
correlation, for impacts located close to, or below, the GSC. The magnitude, phase and frequency
of the oscillations are very similar for both sets of data, for the short time period sampled here.

It is generally found that, for impacts towards the tip (Figure 10.28(a) and Figure E.6(a)), the model
calculates a larger displacement than that which was measured experimentally. However, it should
be noted that the maximum difference in the two sets of data is less than 5%. Differentiating this
data, with respect to time, reveals that the racket rebound velocity measured experimentally is
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higher than that calculated by the model. It is interesting to note that this corresponds with the data
presented in section 10.4. In that section, the racket rebound velocity that was measured

experimentally was consistently larger than that which was determined using the Racket Impact
software.

The experimental data in Figure 10.28(a) and Figure E.6(a) implies that a significant oscillation is
excited in the beam, whereas the model calculates a much smaller oscillation. The difference in the
two sets of data may be due to the simplification of the method in which the stringbed loads the
frame. In a tennis racket, this mechanism involves a complex interaction between the individual
strings which will act to disperse the load to each point on the frame, in a time-dependent system.
In the model, this mechanism has been simplified and the form of the load distribution has been
defined using an arbitrary function. The method in which the load is applied to the model beam

could be modified in an attempt to improve the correlation between the model and experimental
data. However, this is beyond the scope of this current project.

(b) Ball rebound velocity

/ Rigid beam 12 1 Ball rebound
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Figure 10.29 Comparison of ball rebound velocity calculated by the experiment and model (rigid
and flexible beam), for different impact locations. The data points refer to the experimental data,
and the curves represent the data for the two different model beams.

The main objective of this section involves the comparison of the experimentally measured
displacement of the racket with that which is calculated by the model, as has been discussed above.
However, the ball rebound velocity was also measured in this experiment. The Racket Impact
software was used to determine the ball rebound velocity for the modelled impacts. Two different
model solutions were obtained which assumed either a rigid beam or a flexible beam to simulate
the tennis racket. The results for the experiment and the two model solutions are shown in Figure
10.29. this figure shows the model which uses a flexible beam exhibits a very high correlation with
the experimental data. The rigid beam model exhibits a very good correlation with the
experimental data for impacts which are located between 10 and 30mm from the geometrical string
centre, towards the tip. This location coincides with the node point for the fundamental mode and
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therefore the model solutions for the rigid beam and flexible beam are very similar, as discussed in
section 10.2.

The data in Figure 10.29 offers further evidence to support the high correlation between the flexible
beam model and the experimental data. It also illustrates that the inherent weakness of using a
rigid beam model to simulate an impact between a tennis ball and racket. Clearly, a rigid beam is
not capable of simulating the free vibrations which are plotted in Figure 10.28. The energy stored

in these oscillations leads to a reduction in the ball rebound velocity, which is not seen in the model
that uses a rigid beam to simulate the racket.

10.6.6 Summary

In this short section, the motion of the tip of the racket has been sampled experimentally, for the
period during and after an impact between a ball and racket. The Racket Impact software was used
to calculate the displacement of the tip, using the assumption that the racket was a flexible beam.
A very high correlation was found between the experimental data and the model data, for the

majority of impact locations. This comparison supports the assumption that the model predicts the
vibration of the tennis racket for an impact between the ball and racket.

The ball rebound velocity was also measured/calculated in this section and a high correlation was

found between the experimental data and the model data calculated using the flexible beam, for all
impact locations.

10.7 Summary

In this section, a range of different experiments were performed to measure several parameters
before, during and after an impact between a ball and freely suspended tennis racket. This
measured data was compared with equivalent model data that was calculated using the Racket
Impact software. This software calculates two different model solutions obtained using two

different assumptions regarding the simulation of the tennis racket. The tennis racket is either
assumed to be a rigid beam or a flexible beam.

In the first experiment, tennis balls were projected at three different locations on the longitudinal
axis of five different tennis rackets. The inbound and rebound velocity of the ball was measured
and compared with the two model solutions calculated by the Racket Impact software. It was
found that the flexible beam model data exhibited a very high correlation with the experimentally

obtained ball rebound velocity. However, the rigid beam model generally calculated a ball rebound
velocity which was higher than the experimentally obtained data.

In the second experiment, a high speed video system was used to measure the displacement of the
ball, stringbed and racket frame during an impact between the ball and racket. In this section, only
the model solution for the flexible beam was calculated using the Racket Impact software. It was
shown that the two sets of data correlate very closely, for all impact velocities. This comparison
was made for two different ball types and two different string tensions. Any differences between
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the model and experimental data were assigned to the estimated uncertainty in the experimental
data and the fact that the complex interaction between the ball, stringbed and racket frame is being
simulated using a much simpler model.

In the third experiment, the rebound velocity of the ball and racket was measured, for an impact
between a ball and freely suspended racket. This data was compared with the model solution
calculated by the Racket Impact software (using the flexible beam). A range of ball impact
velocities were tested and the ball was propelled at four different locations on the longitudinal axis
of the racket. Two different tennis rackets were used which were strung at different tensions. It
was found that the model and experiment data exhibited a very high correlation for both the ball
and racket rebound velocity. The maximum difference between the two sets of data was
approximately 5%.

In the fourth experiment, the transverse frame vibrations were measured which were induced when
the ball impacting on the racket. The collected data was used to determine the impact location
which corresponded with the minimum amplitude of vibrations for the fundamental mode. This
point coincided very closely with that measured for impacts using a soft hammer. It also

corresponded very closely with the impact location which induced minimum vibrations of the
model beam, as calculated by the Racket Impact software.

In the fifth experiment, the motion of the racket tip was sampled for the period during, and after, an
impact between a ball and racket. The Racket Impact software was used to calculate the
displacement of the tip, using the assumption that the racket was a flexible beam. A very high
- correlation was found between the experimental and model data, for the majority of impact
locations. The ball rebound velocity was also measured/calculated in this experiment and a high

correlation was found between the experimental and model data calculated using the flexible beam,
 for all impact locations.

The data collected in this chapter has shown that the Racket Impact software is a useful tool for the
simulation of an impact between a ball and freely suspended tennis racket. It can be used to
calculate the motion of the ball, stringbed and racket during, and after, the impact. The Racket
Impact software calculates two different model solutions based on two different assumptions
regarding the modelling of the tennis racket; these being either a rigid or flexible beam. The data
collected in this chapter has highlighted the inherent weakness involved when using a rigid beam
~ model to simulate an impact between a tennis ball and racket. Furthermore, it has been shown that

the flexible beam solution correlates very closely with the experimental data.
jllustration of this correlation is given in Figures 10.28 and 10.29.

A succinct
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411. Conclusions

11.1 Introduction

In the first part of this chapter, a summary of the important findings which have been obtained in
this study is given. This is intended to give the reader an overview of the investigation which
culminated in an experimentally verified model of a ball impacting on a tennis racket being
derived. This investigation was initially focussed on the static and dynamic properties a tennis ball.
This was followed by an investigation of the physical properties of a stringbed, and the dynamic
interaction between the ball and stringbed. Finally, a model of a tennis racket frame was developed
which was used in a model of a ball impacting on the racket.

This chapter also contains a short section which highlights the conclusions which have been
obtained from this work. Finally, suggestions of possible future directions of this study are
presented.

11.2 Summary of study

11.2.1 Ball structural stiffness

The structural stiffness of four different tennis balls, which covered the range of balls used in the
game of tennis, has been experimentally obtained. It was found that the Pressurised and Oversize
balls have the highest structural stiffness, when compressed quasi-statically between two flat plates.
The Pressureless ball has a similar stiffness to these two balls for small deformations, but a much
lower stiffness at high deformations. Furthermore, at these high deformations it had a similar
gtiffness to a Punctured ball. In this part of the study it was found that the relative structural
stiffness of the ball types are not constant for all magnitudes of ball deformation.

11.2.2 Ball impact on a rigid surface

(a) Experimental investigation

Tennis balls were propelled at a rigid force platform and several parameters were measured. It was
found that the Oversize and Pressurised balls rebounded with approximately the same velocity.
The Pressureless ball rebounded slightly slower, and the Punctured ball rebounded significantly
slower. This showed that the Oversize and Pressurised balls exhibit the lowest hysteresis loss
during impact.

The force platform was used to determine the dynamic response of the balls for an impact with a
rigid surface. It was found that the Pressurised and Oversize balls exhibited similar dynamic

responses for all impact velocities which were tested. The Pressureless and Punctured balls
exhibited similar dynamic responses for high impact velocities.

285



Chapter 11

Com lugnma

(h) Theoretical modelling

A simple onc degrec-of-frecdom visco-clastic madel of a normal impact between a tenni ball and
rigid surface was developed in this study. The model contains three components that correspond
1o the force contributions made by, (1) the structural stiffncss, (2) the matenal dampng and (1) the

momentum flux. A sct of parameters were determuned empinically for cach ball tvpe. and these

parametcrs were independent of the ball impact veloaity

This visco-clastic model supersedes previously published models because 1t includes a component
which simulates the force which acts on the ball due to the momentum flux. The momentum fluy
force corresponds to the change in momentum for the section of the deformed ball which i beng
flattencd upon impact with the surface. This force 1s distinet to that which 1€ associated with the
structural stiffness of the ball. and only acts dunng the compression phase

The model can be used to increase the understanding of the dynanuc behaviour of tenms balls and

interpret the cxperimental Force-Time plots for the four ball types  The differences (and

similaritics) between the four ball types was qualitatively accounted for using the model

11.2.3 Ball impact on a head clamped tennis racket

(a) Experimental investigation

Experiments were performed in which a tennis ball was propelied at a head clamped tenmis racket

In these tests, the coefTicient of restitution was measurcd for combinations of two different ball
types and two different string tensions. For a specific ball type, it was found that the cocfficient of
restitution was higher for the racket strung at 40ibs, comparcd with the racket strung at 701bs.

The magnitude of the maximum ball and stringbed deformation. dunng impact, was mcasurcd
using high speed cincmatography. The maximum stringbed deformation, dunng impact, was a

function of the string tension, as expected. However, the magnitude of this stnngbed deformation
was very similar for both the Pressurised and Pressureless ball types.

It was found that the contact time of the impact was a function of the stning tension; the contact
time being defined as the time taken for the ball to regain its original shape. The contact times for
the impacts on the racket strung at 40lbs were approximately 0.4ms longer than those measured for
the racket strung at 70ibs. It is well-documented that there is a qualitative relationship between

contact time and string tension. However, this study is an advancement of the published work
becausc it quantifies the relationship.

(b) Theoretical modelling

The impact between a ball and head clamped tennis racket was modelled using a two degree-of-
freedom visco-clastic model. The ball component of the model was identical to that denived for a
model of a ball impact on a rigid surface. The stringbed component was assumed 1o have the same
stiffness as that which was mcasured cxperimentally for a quasi-statically applied load. A small
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damping factor was incorporated into the stringbed model to account for the low level of hysteresis
loss in the system.

The model was used to determine the ball rebound velocity, and the magnitude of both the ball
centre-of-mass and stringbed displacement during impact. This data was compared with that which
had been obtained experimentally. Using these comparisons it was found that the accuracy of the
model would be improved by increasing the model ball stiffness k3. The justification for such an
increase was based on observations of the shape of the ball surface that was in contact with the
stringbed. It was concluded that the stringbed acted to ‘cradle’ the ball wall, inhibiting the onsct of
buckling which is known to reduce the structural stiffness during an impact with a rigid surface.

Therefore the stiffness of the ball will be higher for an impact with a stringbed, comparcd to a
similar impact with a rigid surface.

It was concluded that the ball stiffness should be increased and it was found that this modification
resulted in a very high correlation being achieved between the model and experiment data. For
example, the values of the stringbed and ball COM displacement which were calculated by the
model correlated to within approximately 2mm of those values measured experimentally. This
small difference was accounted for by the inherent weakness of a simple two degree-of-freedom

model being used to simulate a complex system that involves the interaction of two highly
deformable objects.

It is not claimed that this visco-elastic model of a ball impacting on a head clamped racket perfectly

represents the physical impact mechanism.  However, the contact time, ball centre-of-mass

displacement, stringbed displacement, and ball rebound velocity which are calculated by the model

correlate very closely with the experimentally measured data. Therefore, the calculated force

which is exerted on the ball during impact should be of a similar magnitude as that which actually

occurs in the impact. This model can also be used to predict the differences in the dynamic
response of different ball types and string tensions.

11.2.4 Ball impact on a freely suspended tennis racket

The final stage of this study involved the experimental investigation and theoretical modelling of
an impact between a tennis ball and freely suspended tennis racket. This study was only conducted
for balls which impact on the longitudinal axis of the racket and previous research has verified that
a freely supported racket is equivalent to a player’s grip, for these kind of impacts.

(a) Theoretical modelling

Two different models of a ball impact on a freely suspended tennis racket have been developed in
this study. In both models, the ball and stringbed are simulated using the same visco-elastic model
which was developed to simulate a ball impacting on a head clamped tennis racket. In the first
model, the racket was simulated using a rigid beam. This beam was assigned the same inertial
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properties (mass, balance point and moment of inertia) as the racket. In this model, a point loading
was applied to the beam by the visco-elastic model of the ball/stringbed system.

In the second model, the racket was modelled as a one dimensional flexible beam. A numerical
solution was derived for the displacement of a beam which was subjected to a time-dependent
loading. In this solution, it was assumed that the beam had a uniform flexural rigidity but a non-

uniform mass distribution. This beam was assigned the same inertial properties and fundamental

frequency as the racket which was being modelled.  In this model, a distributed loading was

applied to the beam by the visco-elastic model of the ball/stringbed system. This type of loading
was used to simulate the mechanism in which the stringbed applies the load to the racket frame.
Using this loading method, it was found that the impact point which excited minimum vibrations of

the model beam correlated very closely with the stringbed node on a tennis racket. This
comparison was conducted for several different rackets.

The advantage of the first, simpler model, in which the racket is simulated as a rigid beam, is that it
requires a minimal number of calculations to be performed to obtain the model solution. The
inherent weakness of this model is the inability of the beam to model the deformation which a
tennis racket is subjected to during, and after, impact. The second, more advanced model, in which

the racket is simulated as a flexible beam, involves more than six million calculations being
performed to obtain the model solution.

These calculations require a significant amount of
numerical processing time to be solved.

There are many commercially available PC software packages that are capable of efficiently
performing the required calculations in order to obtain the two model solutions. A supplementary
requirement of this software is that the graphical interface must be user-friendly so that a trained
operator can calculate the two model solutions without possessing the knowledge required to derive
the models.  The desired software would have a facility for the different ball types, stringbed
stiffnesses and racket types to be entered into the two models, along with the initial velocity of the
ball and racket. The program must then be capable of solving the numerous model equations and

deliver the model solution in a suitable format. It was concluded that the required software needed

to be written specifically for this application. This software was written in MS Visual Basic v6

and is called Racket Impact. This software can be used on any MS Windows operating system.

(b) Experimental investigation

An experimental investigation was performed to measure several parameters during, and after, an
impact between a ball and freely suspended tennis racket.

Tennis balls were projected at several locations on the longitudinal axis of five different tennis
rackets. The inbound and rebound velocities of the ball were measured and compared with the two
model solutions calculated by the Racket Impact software. It was found that the more advanced,
flexible beam model data exhibited a very high correlation with the experimentally obtained ball

rebound velocity. However, the simpler, rigid beam model generally calculated a ball rebound
velocity which was higher than that measured experimentalty.
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High speed cinematography was uscd to measure the displacement of the hall, stringbed and racket
frame during impact. Equivalcent data was calculated using the model and it was found that the two
scts of data corrclated very closely. This comparison was made for two different ball types and two
different string tensions, which cover the range typically uscd in the game of tenmis.

High speed cinematography was uscd to measurc the rebound velocity of the racket, for an impact
between a ball and a freely suspended racket. A range of ball impact velocities were tested and the
ball was propelled at four different locations on the longitudinal axis of two different rackets. This
data was compared with the flexible bcam model solution calculated by the Racket Impact
software. It was found that the model and experiment data exhibited a very high correlation for the

racket rebound velocity, with maximum differences between the two scts of data of approximately
5%.

High speed cinematography was used to sample the motion of the racket tip for the period during,
and after, an impact between a ball and freely suspended racket. The Racker Impact softwarc was
used to calculate the displacement of the tip, using the assumption that the racket was a flexible

beam. A very high correlation was found between the experimental and model data, for the
majority of impact locations.

(c) Application of software

The data calculated by the Racket Impact softwarc has been verified by experimental investigation,
as explained above. The software is a useful tool for simulating an impact between a ball and

freely suspended tennis racket. The software can be used to calculate the motion of the ball,

stringbed and racket during, and after. the impact. The user has the ability to adjust many

parameters related to the impact including, (1) impact location on the racket, (2) racket stiffness

and (3) initial velocity of the racket.  This data can be used to assess the influence that these

parameters have on the ball rebound velocity. This software will be a useful tool for manufacturers
of tennis equipment because it allows them to predict the effect of a change in design, without
requiring to build a prototype. It is of even more use to the governing body of tennis becausc they
do not have the facilities to build a prototype, but can use the software to simulate the impact.
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11.3 Conclusions

Pressurised and Oversize balls have similar physical properties for both quasi-static
compressions and dynamic impacts.

A visco-elastic model is capable of accurately simulating the impact between a tennis ball

and rigid surface. The differences (and similarities) between the four ball types tested in
this study was qualitatively accounted for using the model.

A stringbed which is strung at 401bs deforms approximately 25% more than that which was

strung at 70lbs, during an impact with a tennis ball. However, the magnitude of stringbed
deformation was not a function of the ball type.

A rigid beam is not capable of simulating the experimentally measured oscillations which a
tennis racket is subjected to during, and after, the impact. Consequently, the model which

uses a rigid beam to simulate the racket calculates a ball rebound velocity which is
significantly higher than that measured experimentally.

The model solution which uses a flexible beam to simulate a tennis racket accurately
simulates the experimentally measured oscillations of a tennis racket. Furthermore, the

model can be used accurately the predict the velocity of the ball and racket, during and
after the impact.
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11.4 Future research

This study has culminated in a model of a ball impacting on a freely suspcended tennis racket being
developed. The solution to this model is calculated using the Racket Impact software. In this
study, experimental investigations have been performed in conjunction with this theorctical
modelling to ensure that the final model is valid for the impacts which it is used to simulatc.
However, the Racket Impact software has only been developed to model specific types of impact
and therefore can not be used to simulate all shots that are typical in the game of tennis. It would

be interesting to extend this work so that the Racket Solver software is valid for other types of
impact.

(a) Development of the Racket Solver software for other impact locations

The Racket Solver software has only been developed to model impacts which land on the
longitudinal (main) axis of the tennis racket. In this model, the racket is freely supported because
other researchers have verified that this is equivalent to a player gripping the racket, for the

duration of impact. However, this assumption is only valid for impacts on the longitudinal axis,
and has not been verified for impacts which are eccentric to this axis.

In a game of tennis, the ball can impact on any position on the racket stringbed. The logical
development of the model would be to enable impacts which are eccentric to the longitudinal axis
to be simulated. Firstly, this would require an experimental investigation of the grip forces that a
player exerts onto the racket, during an eccentric impact. The findings of this study will initially be
used to determine whether these forces are significant or not. Furthermore, the data will be used to
establish a suitable method for simulating a player’s grip in the model. This study could be
expanded to investigate possible techniques for simulating a player’s grip in a laboratory

experiment. This would be a useful investigation as it would allow experimental investigations of
the player/racket interaction to be conducted in controlled conditions.

(b) Development of the Racket Solver software for impacts in which the ball has initial spin

In this study, the ball was propelled at the racket using an air cannon which delivered the ball
consistently at the desired location. However, the main limitation with this type of equipment is

that it can not apply spin to the ball and therefore all the experiments conducted in this study
involved impacts with zero initial spin.

In the game of tennis, the ball is generally spinning prior to the impact with a tennis racket.
Clearly, an important advancement of this study would involve developing the Racketr Solver

software so that it is capable of modelling an impact in which the ball is initially spinning. In order
for this software to be validated, an experimental investigation of the equivalent impact must be
conducted. This would require a method of propelling the ball, with initial spin, consistently at the
desired impact location on the tennis racket. There are currently a number of ball propulsion
devices which are capable of applying spin to the ball but initial testing has shown that they do not
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propel the ball with sufficient accuracy to be used in this type of experiment. However, it may be
possible to develop this apparatus so that it is suitable for the required experiment.

(c) Player testing

One of the uses of the final model which has been developed in this study is to determine the ball

rebound velocity for a specified ground stroke or serve. In this simulation, the velocity of the ball

and racket must be entered into the Racket Impact software. If the example of a serve is

considered then, it can be assumed that the ball is stationary, prior to impact, and that the racket is
swung with a velocity of 36 m/s (80 mph). The Racket Impact software can be used to predict the
ball service velocity for any racket in the database. This is a useful exercise as it could be used to
give an indication of the ‘power’ of a tennis racket. However, this analysis is based on a player
being able to swing all tennis rackets at the same velocity, which is unlikely to be a realistic
assumption. An interesting advancement of this work would involve an investigation of the
relationship between racket head speed and racket inertia, for a sample group of tennis players.
This study would involve the measurement of the racket head speed, immediately prior to impact,
for a range of rackets with different inertias (mass and swingweight). This investigation would
need to be performed separately for serves and ground strokes as these two shots involve different
techniques. The results of this player testing would become an integral part of the Racket [mpact

software. A study of this nature would further enhance the value of this software as a tool for
predicting the dynamic performance of a tennis racket.
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Appendix A Mathematical Methods

A. Statistical analysis methods — least squares
regression

A.1 Obtaining the coefficients for a least-square regression

yt

y, = Ax’+Bx+C

y x{n)™
y (n) a

.
L gl

Xm X
Figure A.1 Second order polynomial plotted through the measured data. The measured and
calculated values of the y-parameter are shown as y(, and yx respectively.

There are many examples in this study where a measured quantity is plotted against another
variable. It is often useful to be able to plot a best-fit line, or trend line, through this data to define
a quantitative relationship between the two variables. This trendline can take one of a variety of
forms, for example, linear, polynomial, exponential or logarithmic. An example of a 2™ order
polynomial trend line is given in Figure A.1. The analytical method used to find the coefficients 4,
B and C is called least-squares regression. This method is not shown here as it can be found in
many text books (Taylor (1982) and Stroud (1990)). The coefficients can be used to define a

relationship between the two variables x and y, but do not quantify the quality of the correlation

between the measured data and thc trend line. The following section concentrates on the

calculation of a physically significant parameter that defines the uncertainty of the measured data.

A.1.2 Uncertainty in the measurement of y

This method is an adaptation of that published in Taylor (1982). This method requires a number of
assumptions to be made in order to simplify the solution. It is assumed that the uncertainty in the
measurement of x is negligible and therefore the only uncertainty that needs to be calculated is that
which occurs for y. It is also assumed that the uncertainties in y all have the same magnitude.

More specifically, it is assumed that the measurement of y, is governed by a normal distribution,

with the same width parameter for all measurements. This will be valid for most of the

experiments in this study, but where it is not valid this error must be noted.
Using the example given in Figure A.1, the value of y,p is calculated using,

2
Yotw) = AX(n) + Bx( +C (A.1]
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The uncertainty of each y-value can be calculated using,

Ey = Va(n) ™ Vn [A.2]

It has been assumed that the measurement of y, is normally distributed about its calculated value of
Vuln) with a common width parameter for the distribution. Therefore, the deviations £, are
normally distributed, all with the same mean value of zero and the same width parameter. The
standard deviation of this normal distribution can be calculated using the standard function STDEV
in MS Excel 2000.
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Appendix B Ball properties

B. Ball properties — Experiment and Model Data

B.1 Introduction

The appendix contains supplementary results which have been referred to in Chapters 4 and 5. The
details of the experimental procedures used to obtain this data is given in Chapter 3. There results

of the various experiments are generally presented for four ball types; Pressurised, Pressureless,
Oversize and Punctured.

B.2 Quasi-static tests in which the ball was compressed between two
rigid plates.

The balls were compressed in a MecMesin test device. The details of this testing are given in
section 3.2. Four different ball types were tested and generally four balls of each type were used

(only one Punctured ball was tested). The results for one ball of each type is given in section 4.3,
and the results for the other three balls are given in this section.
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Figure B.1 (a)-(c) Force-Deformation results for the individual axes of three Pressurised tennis
balls.
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Figure B.2 Force-Deformation results for the individual axes of three Pressureless tennis balls.
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Figure B.3 Force-Deformation results for the individual axes of three Oversize tennis balls.
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B.3 One Degree-of-Freedom Visco-Elastic Model — Constant Parameters

In Chapter 4, a force platform was used to obtain Force-Time and Force-Displacement plots for a
normal impact between a tennis ball and rigid surface. In section 5.3.2 a model was derived to
simulate this impact and the accuracy of this model was tested by comparing the model and
experiment data. In this visco-elastic model, it was assumed that the stiffness and damping
parameters remain constant throughout impact. Figure B.4 shows a comparison of the model and
experiment data for a Pressureless ball. The data is plotted for two extremes of impact velocity
and illustrates the weakness of the model at high impact velocities.
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Figure B.4 Comparison of experimental and constant parameter model data for a Pressureless
ball impacting normal to a rigid surface with an impact velocity of (a)-(b) 6m/s and (c)-(d) 30n/s.
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B.4 One Degree-of-Freedom Visco-Elastic Model — Variable Parameters.

In section 5.4.2 a model was derived to simulate this impact and the accuracy of this model was
tested by comparing the model and experiment data. In this visco-elastic model it was assumed
that the stiffness and damping parameters were functions of the ball COM displacement. A
comparison between the model and experiment data for a Pressureless ball is shown in Figure B.5.
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Figure B.5 Comparison of experiment and model data for a Pressureless ball impacting on a

rigid surface, for a range of impact velocities.
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B.5 One Degree-of-Freedom Visco-Elastic — Variable Parameters and
Momentum Flux.

In section 5.5.2 a model was derived to simulate this impact and the accuracy of this model was
tested by comparing the model and experiment data. In this visco-elastic model, single functions
describe the stiffness, damping and momentum flux components. This section contains

supplementary comparisons for that study, and illustrate the accuracy of the model for
Pressureless, Punctured and Oversize balls.
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Figure B.6 Comparison between model and experimental contact time for (a) Pressureless, (b)
Oversize, and (c) Punctured balls.

In section 5.5.4, the model parameters 4 and a were obtained for all four ball types. The value o
these two parameters were chosen so that the model impact had the same contact time as tha

determined experimentally. This is confirmed in Figure B.6 for the Pressureless, Oversize an
Punctured balls.
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(b) Coefficient of restitution
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Figures B.7 Comparison between model and experimental coefficient of restitution for (a)
Pressureless, (b) Oversize and (c) Punctured balls.

In section 5.5.4, the model parameters Ac was obtained for all four ball types. This value was
constant for all ball impact velocities, and the magnitude was adjusted so as to minimise the
difference between the model and experiment data. Figures B.7(a)-(c) illustrate the accuracy of the
model for the Pressureless, Oversize and Punctured balls. It shows that the model is most accurate
for impact velocities above 13m/s.
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(c) Force-Time and Force-Displacement data

In section 5.5.4(b), the model Force-Time and Force-Displacement data is compared with that
obtained experimentally for a Pressurised ball. In this section, similar comparisons are made for
the Pressureless, Oversize and Punctured balls in Figure B.8, Figure B.9 and Figure B.10
respectively.
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Figure B.8 Comparison of 1-DOF momentum flux model and experiment results for an impact
between a Pressureless ball and a rigid surface for two different impact velocities.
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Figure B.9 Comparison of 1-DOF momentum flux model and experiment results for an impact
between a Oversize ball and a rigid surface for two different impact velocities.
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C. Impact between a Ball and Head-Clamped Racket

C.1 Introduction

The appendix contains supplementary results which have been referred to in Chapters 7 and 8. The
details of the experimental procedures used to obtain this data is given in these chapters. The

results of the various experiments are presented for two ball types which are Pressurised and
Pressureless balls.

C2. Stringbed and ball deformation

In section 7.2.2 a method was discussed for determining the ball and stringbed deformation during
an impact between a tennis ball and head clamped racket. These tests were performed using
Pressurised and Pressureless tennis balls, and two rackets which had been strung at different
tensions (40lbs and 70lbs). The stringbed deformation is defined as the displacement of the
stringbed at the impact location. Supplementary data for this experiment is given in this section.
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Figure C.1 Ball and stringbed deformation for an impact between a ball and head clamped racket,

for four different combinations of string tension and ball type, at a nominal impact velocity of
30m/s.
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Figure C.2 Ball and stringbed deformation for an impact between a ball and head clamped racket,
for four different combinations of string tension and ball type, at a nominal impact velocity of

36m/s.
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C3. Stringbed and ball centre-of-mass displacement
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Figure C.3 Ball centre-of-mass displacement and stringbed displacement for an impact between a
ball and head-clamped racket. The ball impact velocity is 30m/s.
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Figure C.4 Ball centre-of-mass displacement and stringbed displacement for an impact between a
ball and head-clamped racket. The ball impact velocity is 36m/s.
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C.4 The shape of a stringbed for an impact between a ball and racket

In section 7.3.2 a method was discussed for determining the shape of a deformed stringbed during
an impact between a tennis ball and head clamped racket. These tests were performed using a
Pressurised tennis balls, and two rackets which had been strung at different tensions (40lbs and
701bs). In Figure C.5, data is presented for impacts on the racket which was strung at a tension of
40lbs. The camera operated at a recording rate of 6700 frames per second.
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Figure C.5 Stringbed deformation plotted as a function of the position along the longitudinal axis
of a racket (401bs tension), for an impact using a Pressurised ball. The data is shown for three

different impact velocities and presented individually for the, (a)-(c) compression phase and (d)-(f)
restitution phase.
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C.5 Comparison of model and experiment data — 1st Attempt

In Chapter 8, a visco-elastic model of a ball impacting on a head clamped racket is developed. A
detailed description of the derivation of the generic model is given in section 8.2. This model
requires assumptions to be made to enable the definition of the values of the parameters which are
input into the model. In section 8.3, a set of assumptions are given which define a first
approximation for this model. The main results for this model are given in section 8.3 and
supplementary data is given in this current section.

In Chapter 7, high speed video analysis was used to estimate the displacement of the ball centre-of-
mass during impact, for a range of ball impact velocities. In these experiments, the magnitude of
the stringbed displacement was also measured. These experimental values of ball COM and

stringbed displacement are plotted in Figure C.6 and Figure C.7, along with the model results for
these parameters.
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Figure C.6 Ball centre-of-mass displacement and stringbed displacement for an impact between a
ball and head-clamped racket, for four different combinations of string tension and ball type. The
ball impact velocity is 25m/s, and both the model and experiment data are presented.
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Figure C.7 Ball centre-of-mass displacement and stringbed displacement for an impact between a
ball and head-clamped racket, for four different combinations of string tension and ball type. The
ball impact velocity is 30m/s, and both the model and experiment data are presented.
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C.6 Comparison of model and experiment data — 2nd Attempt

In Chapter 8, a visco-elastic model of a ball impacting on a head clamped racket is developed. A
detailed description of the derivation of the generic model is given in section 8.2. This model
requires assumptions to be made to enable the definition of the values of the parameters which are
input into the model. In section 8.4, a modified set of assumptions are given which define the
values of the parameters. The main modification of this model was that the ball stiffness k5 was

increased by approximately 30%. Typical results for this model are given in section 8.4 and
supplementary data is given in this current section.

As in section C.5, the model results are compared with experimental data. This comparison is
conducted for here for both the ball centre-of-mass and stringbed displacement.
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Figure C.8 Ball centre-of-mass displacement and stringbed displacement for an impact between a
ball and head-clamped racket, for four different combinations of string tension and ball type. The
ball impact velocity is 25m/s, and both the model and experiment data are presented.
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Figure C.9 Ball centre-of-mass displacement and stringbed displacement for an impact between a
ball and head-clamped racket, for four different combinations of string tension and ball type. The
ball impact velocity is 30m/s, and both the model and experiment data are presented.
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C.7 Sensitivity of model solution to the arbitrary assumptions

C.7.1 Results and Discussion

In Chapter 8, a visco-elastic model of a impact between a ball and head clamped racket has been
derived and discussed. In this model, the ball and stringbed were treated as two distinct
components and numerous assumptions were made to enable the model to be solved. The method
used to model the ball component was based upon the findings of a simulation of a ball impact on a
rigid surface. It was assumed that the features of this ball model could be applied directly to the
simulation of a ball impact on a head clamped racket. It was then assumed that the ball stiffness
should be increased by 30% to improve the accuracy of the model. This was a reasonable

assumption as the development of the model has always involved the used of empirically
determined parameters.

One of the assumptions that was made in regard to the model of the stringbed shall now be
considered. The stiffness of the stringbed was assumed to be equal to that which was measured
experimentally for a quasi-static loading. However, this assumption is difficult to apply because
the quasi-static loading was applied using a rigid circular disc. Clearly, the ball applies a loading to
the racket over a continually varying area during impact. An assumption needed to be made to
define the diameter of the rigid circular disc which gives an equivalent loading as that applied the
ball during the impact. It was assumed that this area will increase as a function of the stringbed
displacement, and this function is shown in Figure C.10.
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Figure C.10 Assumed relationship between the disc diameter and the stringbed displacement.

The relationship shown in Figure C.10 was obtained by comparing the shape of a deformed
stringbed during an impact with a ball with that of a stringbed deformed quasi-statically. This is a

subjective analysis because the two shapes are subtly different, and therefore there is a moderate
level of uncertainty in the assumed relationship in Figure C.10.

To assess the sensitivity of the model solution to the assumed relationship shown in Figure C.10
two other functions will be used to solve the model. These functions represent the two extreme
possibilities for the assumed relationship and are shown in Figure C.11 as ‘assumption (a)’ and
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‘assumption (b)’. The definition of these extremes was aided by considering the comparison of
shapes of the quasi-statically deformed stringbed and the dynamically deformed stringbed.
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Figure C.11 Assumed relationship between the disc diameter and the stringbed displacement.
The ‘original assumption’ is shown, along with two other arbitrary assumptions.

The solution was calculated and the effect of the different assumptions was quantified by
comparing the model output for several parameters as shown in Table C.1. The parameters were
obtained for a model of an impact between a Pressurised ball and racket strung at 70lbs. The ball
impact velocity was 30m/s.

Table C.1 Comparison of the parameters calculated by the model for three different assumptions
regarding the stringbed stiffness.

Original Assumption (a) | Assumption (b)
assumption

Ball rebound velocity (m/s) 24.1 24.0 24.2

Maximum stringbed displacement 18.2 17.7 19.2

(mm)

Maximum ball centre-of-mass 20.6 20.6 20.5
displacement (mm)

Contact time T 4.28 425 432

It can be seen from the results in Table C.1 that the choice of function to describe the relationship
between the disc diameter and the stringbed displacement does not greatly effect the magnitude of
the ball rebound velocity, maximum ball COM displacement or the contact time for the impact.
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Assumption (b), which acts to reduce the stiffness of the stringbed, increases the maximum
stringbed displacement by 1mm.

C.7.2 Summary

In this section, it has been shown that the arbitrary assumptions made regarding the model of a
stringbed do not greatly effect the model output. An assumed relationship between the stringbed
displacement and the effective contact area needs to be made to solve the model. Two extreme
assumptions were used in this section and it was shown that both assumptions resulted in similar

values of the ball rebound velocity, maximum ball COM displacement and the contact time being
calculated for the impact.
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D. Modelling a tennis racket

D.1 Determination of the Transverse Mass Moment of Inertia

Figure D.1 Illustration of the method used to simply support the racket.

In Chapters 8 and 9, ball impacts on a freely suspended racket are studied, in which the ball
impacts on the longitudinal axis of the racket. In these types of impacts, the only mass moment of
inertia that is of concern is the transverse moment of inertia. The experimental method which is
used to measure this parameter is based on that described in Brody (1985).

A light, thin circular bar was attached to the racket at the butt end as illustrated schematically in
Figure D.1. The bar rested on two knife edges and this arrangement acted as a pivot so that the
racket could oscillate as a pendulum. The time period of N oscillations was determined using a
digital stop clock. The total time which was measured by the stop clock, for N oscillations, is
defined as Ty. The time period for one oscillation of the racket is defined using,

Ty

T, =N [D.1]

The mass moment of inertia of the racket /77, around the butt end, can be determined from the
time period of oscillations using,
T,’¢M B
I = X1 ROR
BUTT 4 [D.2]
for small amplitude oscillations.
For this study, the mass moment of inertia /5y7r was initially only measured for three different

racket types. The experiments were repeated for values of N between 10 and 80, and the results are
presented in Figure D.2.
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0.060

Mass moment of inertia /g, (kgn¥)

0.030

0 20 40 60 80 100 120
Number of oscillations N

Figure D.2 The experimental mass moment of inertia Ip;rr plotted against the number of

oscillations N used to obtain this value, for three different rackets.

Figure D.2 compares the mass moment of inertia /gy with the number of oscillations N that were
used to determine this value of Ig;7r; second order polynomial trend lines being plotted through this
data. The value of Ipyrr should be independent of the number of oscillations yet the trend lines in
Figure D.2 show that the value of Ipy7ris a function of N. This systematic error, and the scatter in
the data, proves that there are inaccuracies in the method which should be investigated. There was
insufficient data in this experiment to perform a full statistical error analysis, but the likely source

of this error can be discussed by considering the accuracy of the parameters T;, My and Bz which
are used in [D.2] to calculate Igyrr.

The mass of the racket was determined independently using two different electronic scales. The
mass measured using both scales correlated to within +0.1 grams. A simple rig was manufactured
to aid the accurate measurement of the balance point Bg. This rig was equipped with a set of knife
edges to balance the racket and a measurement grid to reference the position of the knife edges
with respect to the racket butt. An arbitrary uncertainty of +1mm was concluded for the accuracy

of the measurement of B, as the balance point is not a discrete point when measured using this
method.

The errors in both my and By are relatively small and are also independent of the parameter N.

Therefore these are not the source of the systematic error for Jgyrr which is illustrated in Figure
D.2.

The time period Ty for N oscillations is measured using a manual stop watch and is therefore
susceptible to human error.  If it is assumed that the error in the measured value of Ty is 0.3
seconds then it can be shown that the relative error ¢ in the value of 7; varies between £2.1% and
+0.26% for values of N equal to 10 and 80 respectively. From [D.2], this causes an error in the
order of £%in the value of Ipy7r which are between +4.3% and +0.52%. This clearly highlights the
effect of errors in T, on the value of Iy, and confirms the importance of maximising N when
performing such experiments. This initially implies that all tests should be run with N equal to, or
greater than, 80. However, due to the damping effects in the oscillating system it would be

impractical to run a test for more than 80 oscillations. Also, the relationship between N and & is
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non-linear. For example, £? is equal to only +0.89% for N equal to 50 oscillations. This illustrates
that the accuracy of the experiment does not greatly improve as N is increased beyond, for
example, 50 oscillations.

It was arbitrarily chosen that the value of Jpyrr was determined by calculating a mean of the values
of Izurr that were calculated for N between 50 and 80 oscillations. These results are summarised
in Table D.1, along with the values of Ipyrr for four other rackets.

Table D.1 The mass moment of inertia Iz, 77 for a selection of rackets.

Racket Type Ipurr calculated for N oscillations (kgm®) Mean Ipyrr
N=50 N=60 N=170 N=80 (kgm?)
YONEX Super RQ Ti 900 long | 0.05014 0.05003 0.05008 0.04990 0.05004
ITF Dev Court 1 Lite Mid-size | 0.03839 0.03827 0.03817 0.03839 0.03830
HEAD Prestige Classic 600 0.05177 0.05227 0.05237 0.05241 0.05220

SPALDING Heat 90 0.05061 0.05066 0.05046 0.05058 0.05058
Miller Twinset 0.05302 0.05297 0.05290 0.05278 0.05292
ITF Dev Carbon Fibre 98 0.05337 0.05340 0.05326 0.05347 0.05337

Wilson ProStaff 6.0 Mid-Size 0.05175 0.05144 0.05164 0.05160 0.05161

Table D.1 shows the mass moment of inertia Iy values which were obtained using a different
number of oscillations N of the racket. The mean value of Ipyr;, calculated from the four
individually measured values for N = 50 to N = 80, is also shown. The level of confidence which
can be assigned to this mean value of Izyrr can be quantified by calculating the standard deviation
of the difference o between the mean and the raw data; o being defined as,

g =(Iau7'r)u ~Iyyrr

where (I BUTT )N is the value of Izyrr calculated using N oscillations, and I, is mean value of the
mass moment of inertia for the racket.

The standard deviation of the data set of 28 values of o was calculated to be 0.00013kgm?, or

approximately 0.3%. This implies that a high level of confidence can be assigned to the value of
Isyrr measured using this method.
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D.2 Experimental Determination of the Fundamental Frequency and
Node Position on the racket

D.2.1 Introduction

(a) (b)
light
m . . Oscilloscope Software
Head Node Anciocue 81
- Digital B3
Converter 13

Fast Fouret Transfom
Plezoelectic
Transducer &
: “
Handle Node LE L
| . i")];>¥> Y
Frequency Spectum

Figure D.3 (a) Definition of Head Node and Handle Node for the fundamental mode of

transverse vibrations and (b) The experimental arrangement for determining the fundamental
frequency and node positions of transverse vibrations.

In this section, the fundamental frequency of transverse vibrations and the corresponding node
points, will be experimentally determined for a freely supported racket. An illustration of this
mode of vibration is shown in Figure D.3, along with the definitions of the two nodes for this
mode.

In this experiment, the grip on the racket was removed and a small piezoelectric transducer was
attached to the rigid surface of the handle, using strong adhesive tape. The strap was then replaced.
The racket was supported by a long light string attached to the base of the racket as illustrated in
Figure D.3(b). The signal from the piezoelectric transducer was sampled using an Analogue-to-
Digital converter and Picoscope v3.7.4 software on a PC laptop. A Fast Fourier Transform of this
data was performed using the FFT function in MATLAB v5.3 software on a PC, to identify the
frequency spectrum of the racket vibrations.

D.2.2 Fundamental frequency of transverse vibrations

The apparatus was set-up as shown in Figure D.3(b). A very soft hammer was used to strike the
stringbed near the tip, on the longitudinal axis, to excite the fundamental mode of vibrations. The
experiment was repeated several times and the fundamental frequency was determined directly
from the frequency spectrum, for each repetition. The resolution of this frequency spectrum was
approximately 1Hz, and the calculated value for each repetition exhibited very little scatter.
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Table D.2 The experimentally determined values of fundamental frequency.

Racket Type Fundamental Frequency (Hz) ¥
YONEX Super RQ Ti 900 long 161
ITF Dev Court 1 Lite Mid-size s
HEAD Prestige Classic 600 138 =
SPALDING Heat 90 127
Miller Twinset 143
ITF Dev Carbon Fibre 98 134
Wilson ProStaff 6.0 Mid-Size 142

D.2.3 Node location for fundamental mode of transverse vibrations

The fundamental mode of vibration for a tennis racket has two node points along the longitudinal
axis of the racket as illustrated in Figure D.3(a); these being defined as the head node and the
handle node. As the ball generally only impacts near the head node, this was the only node that
was identified in this study. Other rescarchers have shown that the head node is not actually a
unique distance from the tip of the racket, for impacts that are not on the longitudinal axis. This
finding is illustrated in Figure D.4, which shows a continuous node line that corresponds to the

Jocus of impact points which result in the minimum excitation of the fundamental mode of
vibration.

Node line
Frame
node
Stringbed
node
(Ynooe)ereme
(¥ ro0e) smges

Figure D.4 Definition of the node positions on a tennis racket.

In this study, the stringbed node and frame node were determined for a range of different rackets.
The rackets were exited at various points on the stringbed, along the longitudinal axis, and the
resulting oscillations were recorded as before. A Fast Fourier Transform was performed on the
data to identify the point on the stringbed when the fundamental frequency was not excited. A
similar experiment was conducted to find the node position on the frame. The results for the two

326



Appendix D

Modelling a tennis racket

node position are shown in Table D.3. Due to the uncertainty in the position that the racket
stringbed was excited by the hammer, an accuracy of +5mm is quoted.

Table D.3 Experimentally measured node locations on a tennis racket.

Racket Type Stringbed Node Position | Frame Node Position
(YNODE)stringbed (YNODE) Frame
(mm) (mm)

YONEX Super RQ Ti 900 long 54715 579+5

ITF Dev Court 1 Lite Mid-size 52415 5515

HEAD Prestige Classic 600 52315 55745

SPALDING Heat 90 53415 554+5

Miller Twinset 53815 561+5

ITF Dev Carbon Fibre 98 52845 54915

Wilson ProStaff 6.0 Mid-Size 52315 5585

D.3 Beam models of a tennis racket frame

D.3.1 Introduction

In Chapter 9, the methods were discussed for determining three different types of one dimensional
beam model for a tennis racket frame. In that chapter, an I7F Carbon Fibre (6) tennis racket was

used to illustrate these methods. In this section, the details of the six other tennis rackets are given,
along with the parameters for the three model beams.

Table D.4 Measured properties for range of tennis rackets.

Length | Mass | Balance | Mass Handle | Racket Frame Length (m)
Racket Type Lp(m) | My Point B Mom'ent of | length width W,
(kg) | (m) Inertia Ipyrr | Lp(m) | (m) Ler | Lez | Les | Ly
(kgm®)

Yonex(l) | 0707 | 0.258 | 0.388 0.05004 0.236 0290 | 0.097 | 0.028 | 0.319 | 0.028
ITF (2) 0.683 | 0.262 | 0.321 0.03830 0.187 0.260 0.161 | 0.027 | 0.281 | 0.027
Head (3) 0.686 | 0.349 | 0.323 0.05220 0.215 0.260 0.135 | 0.027 | 0.282 | 0.027
Spalding (4) | 0.686 | 0335 | 0324 0.05058 0.215 0270 | 0.121 | 0.027 | 0.296 | 0.027
Miller (5) 0.686 | 0.298 | 0.363 0.05292 0.215 0270 | 0.121 | 0.027 | 0.296 | 0.027
ITF (6) 0.683 | 0.348 | 0.325 0.05337 0.228 0.265 0.094 | 0.027 | 0.308 | 0.027
Wilson (7) | 0686 | 0359 | 0314 0.05161 0.215 0.255 0.148 | 0.027 | 0.269 | 0.027
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Table D.5 Properties of a uniform section beam model for a selection of tennis rackets.

Racket Type | Total Segment | Mass Segment | Flexural
number of | lengths | Moment mass m, | rigidity
segments (m) of Inertia kg) EI
N Iy (kgm’)

Yonex (1) 51 0.0139 0.04295 0.00505 186

ITF (2) 51 0.0134 0.04074 0.00513 70

Head (3) 51 0.0135 0.05475 0.00684 169

Spalding (4) | 51 0.0135 0.05255 0.00657 138

Miller (5) 51 0.0135 0.04675 0.00584 155

ITF (6) 51 0.0134 0.05417 0.00683 156

Wilson (7) 51 0.0135 0.05631 0.00703 184

Table D.6 Properties of a two section beam model for a selection of tennis rackets.

Racket Type | Total Segment | Mass Flexural | Number of segments Segment mass m,
number of | lengths | Momentof | rigidity in each section (kg) for each section
segments (m) Inertia I EI Ni Nr (") (m)r
N (kgm’)
Yonex (1) 51 0.0139 | 0.04854 183 17 34 0.00357 | 0.00579
ITF (2) 51 0.0134 | 0.03762 70 14 37 0.00626 | 0.00471
Head (3) 51 0.0135 | 0.05055 167 16 35 0.00812 | 0.00626
Spalding (4) | 51 0.0135 | 0.04872 136 16 3s 0.00773 | 0.00604
Miller (5) 51 0.0135 | 0.05032 155 16 35 0.00476 | 0.00634
ITF (6) 51 0.0134 | 0.05068 156 17 34 0.00782 | 0.00634
Wilson (7) 51 0.0135 | 0.05005 180 16 35 0.00894 | 0.00617
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Table D.7 Properties of a five section beam model for a selection of tennis rackets.

Racket Type | Mass Flexural | Number of segments in each Segment mass m, (kg) for each section

Momen.t rigidity section

;:I(t::;) El  \Ny [Net |Ne: [N [Nee |[om [ [(mndez [(mndes | (o
Yonex (1) 0.04996 218 17 7 2 23 2 [0.004010.00420.0163|0.0042(0.0163
ITF (2) 0.03884 82 14 | 12 2 21 2 [0.006810.003410.0126 |0.0034 [0.0126
Head (3) 0.05202 196 16 10 2 21 2 [0.0087{0.0046 10.0167]0.0046 [ 0.0167
Spalding (4) 0.05014 160 16 9 2 22 2 10.0083{0.004410.01640.0044 (0.0164
Miller (5)  |0.05182 185 16 9 2 22 2 10.005310.00460.01730.0046 | 0.017
ITF (6) 0.05206 184 17 7 2 23 2 ]0.0082}0.0047|0.01730.0047| 0.017
Wilson (7) |0.05158 211 16 | 11 2 20 2 10.009610.0045]|0.01670.0045 | 0.017
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D.4 Comparison of a point load and a distributed loading of a beam

In section 9.4, a comparison was made between the model results for an impact which involves a
point loading, and an impact involving a distributed loading of the beam. A supplementary
comparison, for a Yonex (6) tennis racket is given in the figures below.

12 ; , ——

String | | Frame

Node Node
Rigid beam

-
o

8 - : Flexible beam 82999
& Point Load
1 o Distributed Load

Ball rebound velocity (m/s)
»

)
[
P
b
o
oo
: by
24 o .
: Throat Lo
: b
0 . ; . S - - : i
300 400 500 600 700 800

impact Point y , (distance from butt end) (mm)

Figure D.5 Calculated ball rebound velocity for a range of ball impact positions on the beam.
Data is presented for both a point loading and distributed loading on a flexible beam, and also for a
point loading on a rigid beam. The beam model represents an Yonex (1) tennis racket. The

positions of the throat and tip on the head of the racket, and the string and frame nodes are also
given.

8 . 2 1 . -
o ® Sting | IFrame .
- o ® Node : :Nodo
g ;E— 6 o ® | | L
= 6 o
g o ® 1o §
i : ]
2 g om0\ | g ; ® Roint Load
8 g 4. o . : : o 1 o Distributed Load
k- g I . :
v o * i1 0O
- | s
g 2 4 ol o .
.§ ' te | '
3 ‘Throat ff dll "Tip
0 . ; . 1lo® . f'. .
300 400 500 600 700 800

Impact Point y , (distance from butt end) (mm)

Figure D.6 Calculated amplitude of vibration of the fundamental frequency for a range of ball
impact positions on the beam, for the vibration of the 1% beam segment (closest to the butt end).
Data is presented for both a point loading and distributed loading on a flexible beam, and also for a
point loading on a rigid beam. The data is presented for the Yonex (1) tennis racket. The positions
of the throat and tip on the head of the racket, and the string and frame nodes are also given,
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The comparisons, such as those above, were performed for all the tennis rackets which have been
investigated in this study. In Figure D.6, a comparison is made between the impact position and
the magnitude of vibration which is excited. An important feature of this comparison is the
identification of the impact location which corresponds to minimal vibrations. This position is a
function of the loading method, and the collated data for all seven rackets is shown in Table D.8.
The positions of the string and frame nodes are also given in this table.

Table D.8 Comparison of the frame and stringbed nodes on the racket, and the impact locations
corresponding to minimum vibrations of the beam.

Racket Type Frame Node | Stringbed Impact location corresponding to minimal
(YvopE)Frame | Node vibrations of the beam (mm)
(mm) (¥woDE)stringbed Point load (mm) Distributed load

(mm)

Yonex (1) 579 547 575 555

ITF Aluminium (2) 551 524 549 532

Head (3) 557 523 551 532

Spalding (4) 554 534 556 532

Miller (35) 561 538 559 540

ITF Carbon Fibre (6) | 549 528 551 530

Wilson (7) 558 523 549 533
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D.5 Method of storing the ball, stringbed and racket parameters in a
database.

In section 9.5, a program called Racket Impact was discussed. This program performed the
calculations that were required to solve for the displacements of the segments of the one
dimensional beam segments and the components of the visco-elastic model. The ball, stringbed
and racket parameters which were required by Racket Impact to model the impact are stored in an
MS Access 2000 database which contains three tables. These tables are defined as (1) Ball, (2)
Stringbed and (3) Racket. The fields which compose each table are given in the following figures.

Table D.9 The field names contained with in the Ball table. All these parameters are determined
using the methods described in sections 5.5 and 8.4.

Field name Description

ID

Ball type

Mass Mass of the ball in SI units

kBo Value of the parameter kg

Ak " " " Ak

Alpha " " " a

Ac " " " Ac

ro " " " P

Picture Filename of picture of ball (excludes the file extension)

Table D.10 The field names contained with in the Stringbed table. All these parameters are
determined using the methods described in section 6.2.

Field name Description

1D

Stringbed type

aks Value of the parameter as
bks " " " bs
cks " " " Cs
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Table D.11 The field names contained with in the Racket table. All these parameters are
determined using the methods described in sections 9.3.3 and D.2.1.

Field name Description

ID

Racket name

Length Total length of the beam

Mass Total mass of the beam

Mass MI Mass moment of inertia of the beam, around the butt end
Balance Balance point measured from the butt end

Nseg Number of segments N (equal to 51 in this study)

L1

L2 The individual lengths of each of the five sections which
L3 compose the five section model beam.

L4

LS

N1

N2 The number of segments in each of the five sections
N3 which compose the five section model beam.

N4

NS

Ml

M2 The individual masses of each of the five sections which
M3 compose the five section model beam.

M4

M5

EIl

EI2 The individual values of the flexural rigidity of each of
EI3 the five sections which compose the five section model
El4 beam. (this value is constant for each section in this study,
EI5 but is assigned individually)

1% Frequency | The fundamental frequency of the beam

Picture Filename of picture of ball (excludes the file extension)
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E. Impact between a Ball and Freely Suspended Racket

E.1 Comparison of ball rebound velocity

100 T L [
N o Head (3)
S %0 0 Lo Miller(5)
K4 0o = g
N D
g 60, . 9 o ) . X X  Wilson (7)
j% 8 . X X Lo . e Yonex(l)
| 8 X o *
%40 : >.< e ® Ca . | o ITF Aluminum (2)
E | Lo
D 9] a®
0 |

0 0.005 0.01 0.015 0.02
Stringbed displacement (m)

Figure E.1 The stringbed stiffness which was measured at the throat location (labelled 3 in
Figure 10.1).

In section 10.2, experiments are conducted to measure the ball rebound velocity, for an impact
between a ball and freely suspended racket. In this section, the Racket Solver software is also used

to determine the ball rebound velocity for these impacts. This software requires the stringbed
stiffness of the racket to be entered. This stiffness is given in Figure E.1 and Table E.1.

Table E.1 Second order polynomial trendline coefficients as, bs and ¢, for the five different
rackets.

Racket Type Tip Geometric String Centre Butt
as (kN/m") | bs (kN/m”) | cg (KN/m) ag bs Cs as bs cs
Yonex (1) 33573 528 35.8 0 1053 | 2743 | 4150 | 1151 30.6
ITF Aluminium (2)| 30875 1211 246 -9356 | 1160 | 1859 | 8993 | 3067 19.0
Head (3) 0 3958 427 0 2690 | 41.71 0 2640 41.0
Miller (5) 0 2279 477 0 1550 | 43.605 0 1993 403
Wilson (7) -22847 2599 28.9 27493 | 1040 | 38.35 | -10291 | 2956 357
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E.2 Ball, stringbed and racket deformation

In section 10.3, experiments were conducted to measure the ball, stringbed and racket

displacement, during the impact between a ball and freely suspended tennis racket. Supplementary
data for this study is presented in this appendix.

Table E.2 Second order polynomial trendline coefficients as, bs and cs for two ITF Carbon Fibre
tennis rackets strung at different tensions.

String Tension | as (kN/m’) | bs (KN/m®) | s (KN/m)
401bs 10534 820.1 29.39
701bs 40466 407 49.61
40 - 40 -

(a) 701bs tension (¢) 40lbs tension

— ’é‘ 4
A EX e
% € Pressurised ball > § ,”
§ 20 § 20 0c%00 §° [ ]
B a
8" 81 p ’u
| . . _‘1
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Time (ms) o  Stringbed — Experiment Time (ms)
---- Stringbed - Model
=  Racket — Experiment
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§10 g 10
. _- e, :: ~
o0& = ugu™" : 0 s aui’® ____OWa |
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Time (ms)
Figure E.2 Ball centre-of-mass displacement, stringbed displacement and racket impact point

displacement for an impact between a ball and freely suspended racket, for four different

combinations of string tension and ball type. The nominal ball impact velocity is 25m/s, and both
the model and experimental data are presented.
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Figure E.3 Ball centre-of-mass displacement, stringbed displacement and racket impact point
displacement for an impact between a ball and freely suspended racket, for four different

combinations of string tension and ball type. The nominal ball impact velocity is 35m/s, and both
the model and experiment data are presented.
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E.3 Measuring Ball and Racket rebound velocity
E.3.1 Introduction

In section 10.4, the ball and racket rebound velocity were experimentally measured, for an impact

between a ball and freely suspended tennis racket. The main details of this experiment are given in
that section, and supplementary data is presented in this section.

Table E.3 Location of the four impact points which were tested on the racket.

Distance between impact point and geometrical string centre (mm)
Head Spalding
1 72 70
2 42 31
3 7 -9
4 -43 -53
20 = 20 l
Q % Q
é Q"? \E/ O ‘o
2" o 218
3 3
E E
% 10 g 10
Zg 5 § 5
0- ; 0
0 10 20 30 40 0 10 20 30 40
Ball impact welocity (m/s) Ball impact welocity (m/s)
20 20
q q
E E
- 18 15
z &
8 %S
10 B 10 L
-
g 5 % 5
0 0

0 10 20 30 40 50

0 10 20 30 40
Ball impact velocity (m/s)

Ball impact wvelocity (m/s)

Figure E.4 The racket rebound velocity for the Head racket. The data points represent
experimental data and the curves represent the data calculated by the model.
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E.4 Comparison of beam/racket motion in the model and experiment

E.4.1 Introduction

In section 10.5, the displacement of the tip of the beam was experimentally measured using high
speed video equipment. This experimental data was compared with the beam displacement data
calculated by the Racket Solver vi.1 software. This software uses the model of a ball impacting on
a one-dimensional beam which has been developed in Chapter 9, and is used in the previous

sections.

The experiments (and model) were conducted for a range of ball impact positions along the

longitudinal axis of the tennis racket. In this current section, supplementary data is given for these
different impact positions, as shown in Figure E.5.
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Figure E.5 The displacement of the tip of the racket/beam for a range of impact locations; the
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locations are referenced to the geometric string centre. Data is presented for both the experiment

and model.
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