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A model of a tennis ball impact on a tennis racket has been developed in this study. An 

experimental investigation was conducted to detennine the dynamic properties of several different 
tennis balls. The balls were propelled at a piezoelectric force platform and the force acting on the 
ball was sampled, along with the ball rebound velocity. A visco-elastic model of this impact was 
developed and a set of model parameters were determined empirically for each ball type. The 
values of these parameters were independent of the ball impact velocity. 

The next stage of the study involved an experimental investigation of a ball impact on a head 

clamped tennis racket. In this experiment, tennis balls were propelled at the geometric string centre 

of a tennis racket. High speed cinematography was used to determine the ball and stringbed 
deformation during impact, and speed gates were used to measure the ball rebound velocity. A 
visco-elastic model of this impact was developed. The ball component of this model was identical 

to that for a model of a ball impact on a rigid force platform. The model parameter for the 
stringbed component was obtained from a simple quasi-static compression of the stringbed in 
which the applied force and resulting deformation were measured. 

The final stage of this study involved an investigation of the impact between a tennis ball and a 
freely supported tennis racket (this support method has been shown to be equivalent to a player 

gripping the tennis racket). In these experiments, the ball, stringbed and racket deformation were 

measured during impact, along with the velocity of the ball and racket after impact. A model was 

developed to simulate this impact in which it was assumed that the racket acted as a one­

dimensional flexible beam. 

The models which have been developed in this study are advancements of those which have been 

used in previously published literature. Experimental data was used to assess the accuracy of the 
results which were calculated by the models. An excellent correlation was found between the data 
calculated by the model and that measured experimentally. 

A model of the impact between a ball and a tennis racket has been developed, as mentioned above. 

This model was incorporated into a PC software package (Racket Impact vI.I) that has been 
written in this study. This software allows the user to predict the rebound velocity of the ball for an 

impact between a tennis ball and racket. The user has the ability to control many parameters 
related to the impact including, (1) impact location on the racket, (2) ball/racket type and (3) type 

of shot. This software will be a useful tool for both the manufacturers of tennis equipment and the 
governing body of tennis. 

Keywords: tennis ball, tennis racket, high speed cinematography, visco-elastic modelling. 
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Chapter 1 Introduction 

1. Introduction 

The following chapters describe a three year study examining the dynamic interaction between a 

tennis ball and tennis racket. 

(a) Motivationfor the study 

The game of tennis has changed drastically over the last 30 years. Arguably, the most significant 

transformation in the game is in the speed of the serves and ground strokes, in both the men's and 

women's game. It is generally agreed that some part of this change can be assigned to the 

improved training, athleticism and physique of modern players, and also the higher rewards which 

are bestowed upon the successful athletes. However, the International Tennis Federation (ITF) I 

have still been criticised for not imposing some control on the equipment used by players. Many 

commentators cite the allowance of new technologies/materials in the manufacturing of tennis 

rackets as a major factor in the increased speed of the game. This criticism is not wholly justified 

as the ITF constantly review the rules of tennis to ensure that the game is not detrimentally affected 

by the introduction of certain new technologies. For example, a rule change was implemented in 

response to the widespread use of graphite composites in the manufacturing of tennis rackets. It 

was noted that the use of this material allowed manufacturers to produce rackets which were longer 

and wider than was previously possible with other materials. The ITF acted by introducing a 

maximum length and width dimension for all rackets which are approved for tournament play. 

This decision itself was met with some criticism from certain parts of the industry. In commenting 

on this decision in 1996, Jim Baugh, President of Wilson Sporting Goods, said "The actions the 

ITF is taking for the professional game is too late. The pro's that are playing today are playing 

with rackets from ten years ago. The goals of the Wilson's, Prince's and Dunlop 's are to hring up 

new kids and have them start out with the latest technology frames. That would mean infive to ten 

years we are going to have young pro players with very large. stiff, head heavy rackets. Then that 

power level would reach the pro game in the years to come..... So my fear is that in five to ten 

years the professional game may be too quick." (Coe 2000). 

The issue regarding the speed of the game of tennis is a complicated argument that requires careful, 

rational analysis in order for it to be fully understood. It should be noted that most comments 

which support the view that the game is 'too fast' refer to tournaments that are played on 'fast' 

surfaces, such as the grass court championships at Wimbledon. Furthermore, when stating that the 

game is 'too fast', commentators and spectators are generally referring to the fact that the game is 

dominated by the serve as the ball is travelling at such a speed that it cannot be returned by the 

receiver. Commenting on the 1994 Wimbledon Final between Sampras and Ivanisevic, in which 

only three points played lasted more than four shots, Fred Perry called it " .. . one of the most boring 

finals in history., ,,", Intuitively, it would be expected that comments like these would be 

J The International Tennis Federation are the governing body of tennis and are based at Roehampton, 
London, UK, 
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Chapter 1 Introduction 

supported by evidence of a decreasing number of people visiting tournaments which are played on 

'fast' surfaces, such as Wimbledon. However, this years championships at Wimbledon have, yet 

again, attracted a record number of visitors. On this evidence, the current speed of the game of 

tennis, even on 'fast' surfaces, does not appear to be affecting the popularity of the game. 

However, if developments in technology and the physique of players continues at a similar rate that 

has been evident in the last 20 years, then the nature of the game may be changed detrimentally in 

the future. The International Tennis Federation's role is to preserve the nature of the game, and 

therefore this observation has motivated the governing body to embark on research projects which 

are aimed at advancing their existing knowledge of the mechanics of the game. These extensive 

projects involve studies of the court surfaces, ball types, racket construction and the physique of the 

players. 

The current study, described in this thesis, involves an investigation of the mechanism involved in 

the impact between a tennis ball and tennis racket, and forms an integral part of the ITF's overall 

investigation. 

(b) Aim and Objectives 

The aim of this study is to develop an understanding of the dynamic interaction which occurs 

during an impact between a tennis ball and a tennis racket. This will be achieved using both 

experimental investigations and theoretical modelling techniques. 

The objectives of the study are as follows, 

1. To obtain the static physical properties of a tennis ball and stringbed. 

2. To measure the dynamic response of a tennis ball for an impact with a rigid surface. 

3. To develop a model of a tennis ball impact on a rigid surface and to use this model to define 

the dynamic properties of the ball. 

4. To measure the dynamic response of a tennis ball and racket stringbed for an impact between 

a tennis ball and a head clamped racket. 

5. To develop a model of a tennis ball impact on a head clamped tennis racket. 

6. To measure the dynamic response of a tennis ball, stringbed and racket for an impact 

between a tennis ball and a tennis racket; the racket being supported in a manner that is 

equivalent to a player's grip. 

7. To develop a model that can be used to predict the dynamic response of a tennis ball impact 

on a tennis racket, and use this model to gain a further understanding of the mechanics of the 
impact. 

2 



Chapter 1 Introduction 

(c) Structure of the study 

The main objective of this work is to develop a model of a tennis ball impacting on a tennis racket. 

In this model, the racket is supported using a method which is equivalent to a player's grip. This 

model must have the ability to predict the dynamic response of the tennis ball and racket, for the 

impact. The impact between a tennis ball and racket is a complex non-linear system which 

involves a large number of variables. To successfully achieve the main objective, the model is to 

be constructed in a finite number of stages, as outlined in the list of objectives. These objectives 

define a logical procedure in which a simple model of a tennis ball impact on a rigid surface is 

developed into a model of a ball impact on a tennis racket. 

This thesis is composed of a number of chapters which document the development of the model. 

At each stage of the development, data from relevant experimental investigations will be used to 

verify the accuracy of the model. 

3 



Chapter 2 Literature Review 

2. Literature Review 

2.1 Introduction 

There is a vast amount of literature which documents studies into different aspects of the game of 

tennis. Indeed, one of the very first papers in the field of sports engineering was on the irregular 

flight of a tennis ball by the physician Lord Rayleigh back in 1877. Since then, material has been 

published by researchers from a range of disciplines such as physics, engineering, sports science 

and commercial design. The magnitude and diversity of this material has lead to much duplication 

of work resulting in the reinforcement of certain, well-established conclusions. It has also lead to 

some contradiction between authors where different findings have been determined for the same 

investigation. This review attempts to explain and resolve these differences, as well as highlighting 

the undisputed existing knowledge in the field. 

It has been noted that the published material has originated from a variety of disciplines and for a 

wide range of sports. This review aims to discuss the relevance of each study on the game of tennis 

for which this project is concerned. 

This project is aimed at developing an understanding and model for the impact between a tennis 

ball and racket. The procedure adopted in this study was to first gain an understanding of how the 

ball impacts on a rigid surface. This is to be followed by an understanding of the interaction of the 

ball and stringbed. The research then culminates in an understanding of the entire ball, string and 

racket frame system. The literature discussed in this section follows a similar order where possible. 

The sponsors for this work are the International Tennis Federation who are the governing body of 

tennis. The conclusions drawn from this work will be used by them as an aid when deciding upon 

new rules and regulations. For example, in the definition of a test for the power of a tennis racket 

the governing body must have a full understanding of the parameters which contribute to this 

property. The sport of golf has strict rules already in place on the equipment used to ensure that the 

nature of the game is not changed by courses becoming obsolete (Royal and Ancient & USGA 

(2000». For example, these rules define tests to regulate the speed of the ball as it leaves the club 

and the maximum distance that a ball may travel for a specified standard shot. 
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Chapter 2 Literature Review 

2.2 The Ball 

2.2.1 ITF Rules and Regulations/or a Tennis Ball 

For a ball or racket to be labelled 'ITF Approved' it must conform to a stringent set of approval 

tests described in the Rules of Tennis (lTF, 2000a) as defined by the International Tennis 

Federation. In regard to the ball, these standard tests cover such properties as mass, diameter, 

stiffness and bound height for an impact with a flat, rigid surface. The Rules of Tennis are revised 

annually and cover all aspects of the game in great detail. 

Relevant extracts from Rules of Tennis regarding the ball are given below. The first passage refers 

to a Type 2 (medium) ball, which is the category that the majority of tennis balls are manufactured 

and qualify for. 

The ball shall be more than 1.975 ounces (56.0 grams) and less than 2.095 ounces (59.4 

grams) in weight. 

The ball shall have a bound of more than 53 inches (134.62 cm) and less than 58 inches 

(147.32 cm) when dropped 100 inches (254.00 cm) upon a flat, rigid surface e.g. concrete. 

The ball shall have aforward deformation of more than 0.220 of an inch (0.559 cm) and less 

than 0.290 of an inch (0.737 cm) and return deformation of more than 0.315 of an inch 

(0.800 cm) and less than 0.425 of an inch (1.080 cm) at 18 lb. (8.165 kg) load. The two 

deformation figures shall be the averages of three individual readings along three axes of 

the ball and no two individual readings shall differ by more than 0.030 of an inch (0.076 cm) 

in each case. 

The ball shall be more than 2.575 inches (6.541 cm) and 2.700 inches (6.858 cm) in 

diameter. 

An additional section was added to the Rules of Tennis in 2000 describing two new types of balls; 

the Type 1 ball being a 'stiffer' ball than Type 2, and the Type 3 ball being larger than the Type 2 

ball. 

From ]'1 January 2000 until 3]'1 December 2001 two further types of tennis ball may be used 

on an experimental basis. 

The first type is identical to those described in paragraphs a. to c. (in the Rules of Tennis 

which are summarised above) except that the ball shall have a forward deformation of more 

than 0.195 inches (0.495 cm) and less than 0.235 inches (0.597 cm) and return deformation 

of more than 0.295 inches (0.749 cm) and less than 0.380 inches (0.965 cm). This type of 

ball shall be described as Type 1 and may be used in either a pressurised or non-pressurised 
form. 

Another type is identical to those described in paragraphs a. to c. above except that the size 

shall be more than 2.750 inches (6.985 cm) and less than 2.875 inches (7.302 cm) in 

diameter as determined by ring gauges and detailed in Appendix I section (iv). This type of 
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ball shall be described as Type 3 and may be used in either a pressurised or non-pressurised 

form. 

Al/ other type of ball defined by Rule 3 shall be described as ball Type 2. 

For the purpose of tournaments played under this experiment: 

I. Ball Type I (fast) should only be used for play on court surface types which have been 

classified as Category 1 (slow pace). 

2. Ball Type 2 (medium) should only be used for play on court sUrface types which have 

been classified as Category 2 (mediumlmedium-fast pace). 

3. Ball Type 3 (slow) should only be used for play on court surface types which have been 

classified as Category 3 (fast pace). 

For non-professional play any ball type may be used on any surface type. 

The method used to determine the diameter ofa tennis ball is summarised below. 

In all tests for diameter a ring gauge shall be used consisting of a metal plate, preferably 

non-corrosive, of a uniform thickness of one-eighth of an inch (0. 318cm). In the case of 

Type 1 (fast) and Type 2 (medium) balls there shall be two circular openings in the plate 

measuring 2.575 inches (6.541cm) and 2.700 inches (6.858cm) in diameter respectively. In 

the case of Type 3 (slow) balls there shall be two circular openings in the plate measuring 

2.750 inches (6.985cm) and 2.875inches (7.302cm) in diameter respectively. The inner 

surface of the gauge shall have a convex profile with a radius of one-sixteenth of an inch 

(0.159cm) The ball shall not drop through the smaller opening by its own weight and shall 

drop through the larger opening by its own weight. 

Tennis balls are known to exhibit a phenomenon often referred to as 'set'. This refers to the 

stiffness property of the rubber which appears to be highest for the initial couple of compressions 

than for all subsequent compressions, if the ball has been left to stand for a significant amount of 

time. The following extract describes the procedure used to minimise the effect of this 'set'. 

Before carrying out any of the tests, a ball should be pre-compressed by approximately one 

inch (2.54 cm) on each of three mutually perpendicular axes. This should be carried out 

three times on each axis, and the tests completed within two hours of pre-compression. 

2.2.2 Construction of a Tennis Ball 

The Approved Tennis Balls (ITF, 2000b) states that 'a tennis ball consists of a hollow rubber 

core ... covered by Melton consisting of textile material composed of wool, nylon and cotton '. This 

textile material must be white or yellow in colour. Penn (2002) describes the complete process of 

making a tennis ball. In brief, two rubber hemispheres are bonded together and then covered with 

adhesive. If the balls are to be internally pressurised then this process occurs in a pressure 

chamber. Two dumbbell shaped pieces of felt cover the rubber sphere and then the further 
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adhesive is used to create the familiar white seam that is characteristic of all tennis balls. There are 

two main constructions of tennis balls which are generally defined in ITF (2000a) as, 

1. Pressurised - a ball with a typical wall thickness of 3mm and internally pressurised with 

air at approximately 1 bar. 

2. Pressureless - a ball with a typical wall thickness of 4mm and has an internal air pressure 

equal to that of atmosphere. 

A further ball construction method involves filling the rubber core with a micro-cellular material 

that is designed to simulate the internal pressurisation of a Pressurised ball. This is often referred 

to as a Foam-Filled ball. 

The manufacturers of Pressureless and Foam-Filled balls claim that their products have a more 

durable performance property because Pressurised balls suffer from pressure loss over time. This 

loss in internal air pressure is a well established phenomenon and has been studied by various 

researchers and manufacturers who have investigated methods of minimising it. A patent by 

Koziol & Reed (1978) claimed that the a ball which was internally pressurised using a mixture of 

sulphur hexafluoride and air only suffered a 6% loss in stiffness over a period of 236 days. This 

compared to a loss of 23% in the ball pressurised with air over a similar time period. Reed & 

Thomas (1988) investigated the effectiveness of using low permeability gases in different 

concentrations to pressurise a tennis ball. A compression test was performed on the balls to 

monitor the change in stiffness over a period of 60 days. It was found that the stiffuess of the ball 

pressurised with air reduced by approximately 7% in this time. In the same time the stiffuess of the 

ball pressurised with the low permeability gas actually increased, due to the surrounding air 

permeating into the ball as a consequence of the gradient in the partial pressure of the air on either 

side of the rubber core. It was accepted that the use of low permeability gases to pressurise tennis 

balls may not be economically viable which is why this method is not used commercially. 

Wilson Sporting Goods (2001) have recently introduced utilised a coated inner core in their 

pressurised balls which they claim reduces air permeation by 200%, thus preserving the life of the 

ball. 

The Rules of Tennis aim to ensure that a ball is a homogenous structure by ensuring that the 

deformation in the three axis's does not differ by a pre-defined amount. Thomson (2000) tested 

the homogeneity of a range of tennis balls for compressions of approximately 30mm, which is 

higher than those used in the standard ITF test. Thomson confirmed that all the balls tested could 

be considered homogenous. At these high compressions it was found that a Pressurised ball was 

significantly stiffer than a Pressureless ball. 

Due to the nature of the ball construction it is likely that the properties will change with the 

atmospheric temperature. Rose at al (2000) measured the variation in static and dynamic tennis 

ball properties with temperature. The properties measured were the ball rebound from 100inches, 

ball deformation for a load of 181bs, and coefficient of restitution for normal impacts on a rigid 

surface at velocities up to 45m1s. It was found that the Pressurised balls exhibited the largest 
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variation with temperature for the 100inch drop, compared with the Pressureless balls. The 

deformation test showed little variation of the forward or return deformation with temperature. The 

coefficient of restitution increased with temperature for all impact velocities and ball types. 

In summary, the literature highlights the considerations which should be noted when testing tennis 

balls. The temperature at which the tests are conducted must be regulated and the errors caused by 

pressure loss inside Pressurised tennis balls should be minimised by whatever suitable method. 

2.2.3 Properties of a Tennis Ball 

This section discusses the existing knowledge of the static and dynamic properties of a tennis ball, 

such as the structural stiffness or coefficient of restitution, for an impact with a rigid surface. It is 

also a suitable point to describe the experimental methods used to obtain this data. 

(aJ Quasi-static ball compression testing 

Although a relevantly simple property, the quasi-static stiffness of the ball has been of interest to 

many researchers as it is an obvious starting point of any modelling procedure. The simplest test is 

that carried out in the Rules of Tennis which states that the deformation of the ball should be 

between 0.559cm and 0.737cm for a load of SON, when compressed between two plates. During 

this test the ball sits in an indentation in the plate. However, the dimension of this concave shape is 

not specified. This test implies that a ball should have a linear stiffness of between 14.3kN/m and 

10.9kN/m for the applied load of SON. 

A simple calculation can be used to show that the forces acting on the ball during an impact with a 

racket are considerably higher than SON. This motivated researchers to investigate the stiffness of 

the ball for typical loads found, for example, during a typical serve. This has been approached in 

different ways using different apparatus. The simplest method involves deforming the ball between 

two flat plates (Leigh & Lu 1992, Cross 1999b, Thomson 2000). Leigh & Lu determined a linear 

stiffness of 9.2kN/m and 11.9kN/m for ball deformations of 5mm and 30mm respectively. 

Thomson determined a linear stiffness of between 10.0kN/m and 17.2kN/m for a similar 

deformation range. The linear stiffness referred to here are the ratio of the load and deformation. 

The most likely reason for the differences is that Leigh and Thornson used old and new balls 

respectively. In both these studies the stiffness values obtained for a compression test between two 

flat plates was compared to the stiffness of the ball during a dynamic impact with a rigid surface. 

Both authors claimed that the obtained deformation values should be halved because in a dynamic 

impact only one side of the ball deforms. A similar claim was made by Kawazoe (1993) who made 

the observation from still images of a ball hitting a racket. One consequence of this is that the 

stiffness values which are quoted above should be doubled. However, none of these publications 
give quantitative evidence that this is a valid assumption. 

Brody (1979) performed a compression test where the ball was placed in a rigid hemispherical cup 

so that only one side was deformed. A value of 12.5kN/m was quoted for the ball stiffness, for 
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deformations of up to 12mm. Although this method gives a realistic deformation shape, the cup 

provides a restoring force to the ball which is not present in an impact between a ball and surface. 

A further alternative is to compress the ball into a stringbed, and measure both the deformation of 

the ball and stringbed. This was performed by Casolo & Ruggieri (1991) who applied a load of up 

to 1500N giving a ball stiffness of between 50 and 80kN/m. These are much higher values than 

those quoted by any other author. 

Leigh & Lu acknowledged that no quasi-static compression test method can possibly recreate what 

happens to the ball in an impact with a rigid surface or stringbed. 

(b) Dynamic impacts 

In this section, methods are discussed for analysing the impact between a ball and surface (whether 

it be rigid or deformable). 

Ball Projection devices 

A method of propelling a ball with controllable velocity, and often spin, is a general requirement of 

many studies of ball sports. This has been attempted using three main methods as follows, 

1. Dropping the ball from a range of heights 

2. Propel the ball between two rotating wheels. 

3. Launch the ball from an air cannon gun. 

The first method simply uses gravity to accelerate the ball and it gives an accurate, repeatable 

impact velocity. Many authors (Brody (1979), Grabiner et al. (1983), Leigh and Lu (1992), 

Goodwill (1997), Cross (2002a» have successfully used this method. The principle drawback of 

this method is that the maximum impact speeds which can be obtained are in the order of 8m1s -

corresponding to a drop height of 3.5m. This may be suitable for many ball-surface impacts, but 

the relative impact velocity is far lower than that occurring in a ball-racket impact. This general 

comment was noted by Kotze (2000) in his overview of published tennis racket research. Also, 

another weakness is that, in its standard form, the ball must impact perpendicular to the surface and 

have no initial spin. However, Cross (2002a) illustrated how oblique impacts could be performed 

by rotating the surface and clamping it at the desired angle. Also, Chadwick (2002) developed a 

dropping mechanism that could apply a user defined magnitude of spin to the ball prior to it being 

released. 

Many authors (Haake (1989), Cross (1999b), Carre (2000» have used a projection device based on 

two counter-rotating inflated wheels which were in the same vertical plane. Haake (1989) used a 

modified baseball pitching machine which was capable of propelling golf balls at up to 35m1s with 

up to 700rad/s of top or back spin. These speeds are considerably higher than those which could be 

obtained from drop tests, and much more representative of the speed that a ball hits the turf. Carre 

(2000) used a modified bowling machine to apply spin to a cricket ball, in any chosen axis. Carre 
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comments that one weakness of this propulsion method is the repeatability of the impact position is 

low, possibly due to the compressibility of the wheels. 

An alternative method of propelling the ball is to use an air cannon. This technique is used in the 

ITF surface pace rating test (ITF 2001) and by many other authors (Gobush (1990), Ujihashi 

(1994), Neville (2000». The device works by storing air in a cylinder and then rapidly discharging 

it behind the ball. The cannon tube is generally of a similar diameter to that of the ball. The main 

advantage of an air cannon is the high repeatability in the impact position, compared with that of 

the rotating wheel system. The disadvantage of using an air cannon is that initial spin can not be 

easily applied to the ball. Mish & Hubbard (2001) successfully built and tested a pneumatic system 

which was capable of applying spin in any axis to a baseball. The ball was then fired down a 

cannon and the flight of the ball was recorded using a high speed video system which confirmed 

that the device applied consistent spin magnitude and orientation. 

Measuring Dynamic Parameters 

In the study of a ball-surface impact, there are many parameters that could be measured before, 

during and after the contact period. These measurements are measured in an effort to understand 

the impact mechanism and the contribution of each parameter (e.g. ball stiffuess) on the system. 

These are listed below, 

1. Linear and angular velocity of the ball (and surface, if applicable) before, during and after 

impact. 

2. Ball (and surface) deformation during impact 

3. Force and Torque acting on the ball ( and surface) during impact 

4. Amplitude and frequency of the induced sound wave. 

There are four main categories of apparatus which can be used to individually determine one or 

more of the above parameters; stroboscopic photography, cinematic photography, load transducers 

and photo sensors. 

Carre (2000) used stroboscopic photography to obtain a single image showing a spinning cricket 

ball impacting obliquely on natural turf. The image was later analysed using PC software to give 

the velocity, angle and spin of the ball, before and after the impact. Baake (1989) and Lieberman 

(1990) used a similar method for the study of golf balls impacting on natural turf and rigid surfaces 

respectively. Carre commented that an advantage of this method was that impacts could be 

recorded and stored very quickly once the experimental arrangement had been set up. A 

disadvantage of this system is that all background light must be blocked out in order to produce 

clear images. Also, an automatic trigger mechanism is generally required due to the short amount 

of time that the film is exposed for. The system is not suitable for any impact in which two or more 

images cover each other, i.e. in a normal impact or in an experiment aimed at determining the ball 

compression during impact. 
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A more commonly used photographic technique in recent studies has been the use of video cameras 

to record the impact. The required speed of the camera is dependant on the actual parameter being 

measured. Cross (2002a) used a camera with a recording rate of only 100fps as this was sufficient 

to determine the velocity, angle and spin of the ball before and after an oblique impact on a range 

of surfaces. Similarly, Plagenhoef (1970) used a camera with a frame rate of 64fps to determine 

the motion of a tennis racket during a serve. This was sufficient to provide data for coaching but 

was not fast enough to determine the speed of the racket at the point of impact. 

Dignall, Haake & Chadwick (2000a) used a Kodak EktaPro 4540 camera operating at 9000 fps to 

record an oblique impact between a ball and acrylic surface. This was used to determine the 

velocity, angle and spin of the ball before and after impact, and also the deformation of the ball 

during impact. Groppel et al. (1987a) recorded the impact between a ball and handle-clamped 

tennis racket using a camera operating at 3500fps. The optical axis of the camera had an angle of 

8.7° from the string plane which allowed the entire stringbed to be seen during impact. The images 

were analysed using an out-of-plane adjustment algorithm to determine the stringbed and racket 

displacement during impact. 

UC Davis (2001) used a video camera operating at 250fps to determine the ball and racket velocity 

in matches filmed at the US Open. This study highlights the main benefits of using cinematic 

techniques. The method is non-intrusive which not only means that the technique can be used in 

real field situations, but also the properties of, for example the racket, are not changed by the 

introduction of markers. Also, the equipment is highly suited for lab work where the experimental 

arrangement is often constantly being changed for different investigations. Another fundamental 

advantage is that cinematic cameras are more versatile than stroboscopic cameras because 

individual frames are obtained, as opposed to one combined image of the impact. 

Mitchell et al. (2000) used both a high speed video and a three-dimensional active marker system 

(CODA) in a study of tennis racket velocities in a serve. The main finding was that the CODA 

could determine the motion of the racket much more accurately than the two dimensional high 

speed video images, due to the considerable out-of-plane motion of the tennis racket. However, the 

video system has the ability to measure the ball rebound velocity which the CODA was unable to 

do. Elliott et al. (1986) performed a similar study to Mitchell et al. using two phase-locked high 

speed video cameras and the direct linear transformation (DL T) technique to build up a three 

dimensional reconstruction of the motion of a tennis racket. This gave results which were similar 

to those determined using a marker system but suffered from a lower resolution and longer 

processing times. 

Neville (2001) described the use of one-dimensional speed gates to determine the impact and 

rebound velocity of a tennis ball impacting normal to a rigid surface. These speed gates used two 

sets of fluorescent lights and photo detectors coupled to a simple sampling system which directly 

displayed the ball impact and rebound velocity. If these are the only two parameters which are 

required then this is easily the most suitable method. 
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ITF (2001) describes the standard test for measuring the pace of a tennis surface which involves 

propelling a non-spinning tennis ball onto the surface at an angle of 16°. The apparatus used is 

called a Sestee which contains four sets of infra-red photocell arrays that determine the trajectory of 

the ball. A PC is used to sample the data and calculate the ball velocity and angle, before and after 

impact, and also the contact distance of the ball on the surface. This equipment is not capable of 

determining the spin on the ball. 

Many authors have used either a single component (Cross (1999a, 1999b, 2000a), Thomson (2000), 

Neville (2001)) or a multi-component (Gobush (1990)) piezoelectric force platform to measure the 

Force-Time plot for a range of sports ball impacts on a rigid surface. Piezoelectric transducers 

have a very high stiffness relative to the ball which results in rapid response times of the load 

sensor, in comparison to strain-gauge based load cells. 

The majority of the work done on tennis ball impacts has been for normal impacts, at speeds of up 

to 20mls. The single component force platform is used in conjunction with a method of measuring 

the ball velocity. Analysis of this data determines the following parameters, 

1. Coefficient of restitution for the impact 

2. Force-Time plot 

3. Contact time for the impact 

4. VelocitylDisplacement of the ball COM during impact. (these are obtained by successive 

integration of the Force-Time plots.) 

An important point to note is that the ball COM displacement is not equal to the ball deformation, 

and therefore it is difficult to compare these results with the quasi-static compression data 

discussed above. To the authors knowledge, no work has been done which gives the force and ball 

deformation during the impact between a tennis ball and force platform. However, this could 

easily have been achieved using a high speed video system as done by Ujihashi (1994) for golf ball 

impacts. 
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Figure 2.1 Typical plots for a normal impact on force platform for two different impact 
velocities. (a) Force-Time and (b) Force-Displacement (Reproduced from Neville 2001). 
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Figure 2.1(a) & (b) show typical results obtained from a piezoelectric force platform (Neville 

2001), at 6m/s (the ITF standard 100in. drop height) and 20m/s. The precise shape of the curves 

differs slightly between ball types, but the general shape is similar to that in Figure 2.1 (a) & (b). 

In the initial phase of impact the ball is subject to a relatively low load, as shown in Figure 2.1 (b), 

which is assigned to the low stiffness of the cloth. The load then rises rapidly for approximately 

O.2ms which is followed by a characteristic kink in the curve, particularly at higher speeds. Most 

researchers (Cross (1999a), Dignall & Haake (2000b), Thomson (2000), Neville (2001» agree that 

this is due to the buckling of the ball wall. 

Total force 
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(c) off-centre 

o 2 4 6 8 
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Figure 2.2 Oscilloscope traces for a normal impact on a two piece force platform. The central 
section has a diameter of 13mm (Reproduced from Cross (1999a». 

Figure 2.2 illustrates the buckling of the ball wall by the transition of the majority of the load from 

the centre of the impact area (t<0.2ms), to the outer regions during impact (Cross 1999a). The 

impact shown was for a ball impact velocity of 7m1s. 
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Figure 2.3 Relationship between ball impact velocity and (a) coefficient of restitution and (b) 
contact time, for an impact between a ball and a rigid surface. 
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Thomson (2000) and Neville (2001) used a force platform and speed gates to compare the Force­

Time and Force-Displacement curves for a range of different ball types, including Pressurised and 

Pressureless, at impact velocities from 2 to 20mls. It was found that all ball types exhibited similar 

responses for impact velocities of 6m1s and below, with similar Force-Time curves, coefficient of 
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restitution and contact time values being obtained. However, at higher speeds the Pressureless ball 

had a lower COR and longer contact time than the Pressurised ball as shown in Figure 2.3. It was 

deduced that the Pressureless ball was therefore less stiff than the Pressurised ball. 

Figure 2.3 also shows that the coefficient of restitution reduces with ball impact velocity VB which 

implies that the energy losses increase with VB. The contact time also decreases with VB. Neville, 

amongst many authors, has concluded that this is because the effective stiffness of the ball 

increases with ball impact velocity. This correlates with the quasi static compression data. 

2.2.4 Summary 

The Rules of Tennis define the size, mass, stiffness and coefficient of restitution of a tennis ball. 

There are two main constructions of tennis ball; Pressurised and Pressureless. Pressurised balls 

have an internal air pressure of I bar gauge (15psi) and a rubber wall thickness of 3mm. 

Pressureless balls having a lower internal pressure (0 bar gauge) and a wall thickness of 4mm. 

The Rules of Tennis specify the quasi-static stiffness of a tennis ball for a load of only 80N. The 

literature shows that the stiffness increases considerably with deformation and at high 

compressions a Pressurised ball is stiffer than a Pressureless ball. The correlates with impact test 

results that have shown that the former ball has a shorter contact time, implying a higher stiffness. 

2.3 The Strings 

2.3.1 Introduction 

Tennis strings are generally manufactured from either natural gut, Kevlar, polyester or nylon. They 

are available in a range of diameters from 15 gauge (-I.4mm) to 18 gauge (-1.2 mm). Cross 

(2000b) highlighted that there is no International Tennis Federation ruling on the properties of 

tennis strings. Therefore the manufacturers are allowed to produce strings with any stiffness and 

friction properties that they chose. Also, they can use any materials and construction techniques in 

order to achieve the desired combination of these two properties. 

It is well established that players prefer the 'feel' of natural gut and this is backed up by the fact 

that 14 out of the top 20 male professionals use this type of string (Racket Tech (2001». The string 

tension generally ranges from 401bs to 701bs. It is claimed that many professional players use very 

high tensions, e.g. Pete Sampras is reported to use a tension of 751bs. 

The main disadvantages of natural gut are its poor durability and high cost, making it unsuitable for 

many 'leisure' standard players. Attempts have been made to replicate the playing properties of 

this material in the form of a synthetic gut. ICI (1986) filed a patent for a new synthetic material 

which was designed to replicate the performance of natural gut. ICI highlighted the features of 
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natural gut which appear to make it attractive to players. They stated that the dynamic stiffness of 

the material should not increase substantially as the mean tension is increased. Many synthetic 

strings exhibit a rapid increase in stiffness with mean tension which leads to a 'boardy' response 

when the racket is strung at a high tension. It is quoted that a high tension is favoured by many 

players for the higher level of control that it offers. 

2.3.2 Properties o/Tennis Strings 

The static stiffness of a tennis string can easily be obtained using a tensile testing machine, for 

example an Instron test device (Cross, 2000c). However, the impact between a ball and racket is a 

dynamic event which involves high strain rates. Tipton (1955) described an apparatus which could 

be used to determine the dynamic Young's Modulus of a range of textile filaments and yarns 

including various nylons. This paper illustrates the concept of the relationship between the 

Dynamic Young's Modulus and the Loss Modulus which leads to a dwell, or loss, angle. The loss 

angle gives a good indication of the relative damping in the material. Results are presented for 

several nylon specifications, for a range of static and dynamic strain amplitudes. The data shows 

that the dynamic Young's Modulus increases with static strain, but remains approximately 

unchanged with dynamic strain amplitude. The loss angle increases with dynamic strain amplitude, 

but decreases with static strain. The applicability of this work is limited because production tennis 

strings were not tested and the static and dynamic strain amplitudes were not related to those in 

tennis. 

Calder (1987) advanced the work of Tipton in his study of the dynamic properties of a tennis 

strings. This paper focused on a comparison between synthetic and natural gut strings. A strain 

gauge based transducer was placed in-line with a main string of a mid-sized tennis racket strung at 

50lbs. When this head clamped tennis racket was subjected to a ball impact the string tension 

increased to a maximum of 70lbs, during the contact time of 3.5ms. The ball velocity for this test 

was not quoted. A single string was then tested in a purpose built rig which simulated both the 

static and dynamic loading that was determined from the in-line transducer. At high preloads the 

hysteresis losses in both natural and synthetic gut are very low. It shows that the stiffness of 

natural gut is not dependent on the pre-Ioad, whereas it is strongly dependent on the pre-load for 

synthetic gut. The data also shows that the natural gut is significantly less stiff than synthetic gut, 

for a specific string tension. Calder found that the hysteresis loss reduced when the static strain 

was increased, which is in agreement with Tipton. 

Cross (2000b) performed a dynamic impact on a single, pre-Ioaded string, using a O.292kg 

hammer. The tension was measured using an in-line strain gauge load transducer and the 

transverse displacement of the string was measured using a I mm optical grid and laser beam. A 

preload of 270N (60lbs) was used and it was shown that natural gut was significantly softer than 

nylon. This was concluded from the fact that the stiffness of the natural gut did not increase as 

much during impact in comparison to the nylon string. This supported the findings of Calder. 
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Calder (1987) and Cross (2000c) have both commented that the most noticeable source of tension 

loss is in the first five minutes after stringing. Cross (2000c) showed that the loss in tension for a 

natural gut string was approximately 30N(61bs) in 1 hour, compared to 70N(151bs) for a typical 

synthetic string. The rate of tension loss reduced with time. 

The discussion above has focused on the characteristics of an individual string. To determine the 

actual 'playability' of the string the properties of the interwoven stringbed must be investigated. 

(Casolo & Ruggieri (1991), Leigh and Lu (1992), Kawazoe (1993) and Cross (2000b, 2000c, 

2000d)). Leigh & Lu (1992) compressed a tennis ball onto a head clamped racket using a force of 

up to 200N, giving a stringbed stiffness of up to 30kN/m. Kawazoe (1993) performed a similar 

experiment and determined a stiffness of 30kN/m for very small loads, and over 100kN/m for a 

load of 1200N. There is little data available regarding the dynamic stiffness of a stringbed. 

The hysteresis loss in tennis strings has also been determined for normal impacts on an interwoven 

stringbed. Leigh and Lu (1992) dropped a (rigid) Pool ball, with a mass of 164g, onto a head 

clamped racket at velocities of up to -7m1s. This gives approximately the same amount of kinetic 

energy as a tennis ball being propelled at 12m1s (27mph). It was found that the pool ball 

rebounded up to a point that was 95% of the original height. Leigh and Lu determined the impact 

and rebound velocity by considering the drag force acting on the ball during its flight. They 

calculated that the coefficient of restitution for the impact was -1, implying that the strings did not 

lose any energy during impact. Cross (2000b) performed a similar experiment with a 760g steel 

ball, dropped from similar heights and found that it rebounded with approximately 95% of the 

original velocity. Cross compared the kinetic energy of the balls to conclude that this was 

equivalent to a tennis ball impacting at 24m1s (54mph). Hatze (1993) concluded that the strings 

contributed to approximately only 3% of the total energy loss in an impact between a ball and 

racket. 

Cross (2000d) highlighted anecdotal evidence that players say that old strings are less responsive 

than new ones. This is not consistent with laboratory tests for normal impacts on a racket which 

have shown that the ball rebounded at the same velocity whatever the ages of the strings (Cross 

(2000d)). However, most impacts between a racket and ball are oblique and therefore this 

laboratory test is not necessarily sufficient to analyse the impact. 

Cross (2000c) discussed the influence of string friction on the impact between a ball and racket. 

An experiment was conducted to find the coefficient of friction (COF) between a tennis ball and 

stringbed for normal reaction loads of up to lOON. This is much lower than the peak loads quoted 

by Cross (2000b) of 1500N in an impact. It was shown that the COF varied between 0.27 and 0.42 

for a range of string types. The relationship between COF and applied load is not presented. Cross 

suggested that a possible reason why older strings 'felt worse' compared to new ones was that 

strings will feel much less responsive if COF drops below about 0.3. It was shown that, in this 

case, the ball rebound velocity does not drop significantly but the rebound angle does change. This 

results in the ball dropping short of the intended target which the player perceives as a loss in 

power. It is not, however, shown that the friction of a string does drop significantly with age. 
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Isospeed Professional string has the highest COF tested, and is a very popular string which may be 

because this high friction leads to a more 'responsive' string. 

Knudson (1991 & 1993) concluded that string type and tension effected the rebound angle and 

speed for an oblique impact test on a handle clamped racket. It was found that the rebound angle 

increased significantly with string tension for natural gut, but only fractionally for synthetic gut. It 

was found that the rebound velocity dropped significantly (8%) for a change in string tension of 

20lbs for the natural gut, but only changed by approximately 3% for the same tension change in 

synthetic gut. The rebound spin was not measured in this test. 

Knudson (1997) propelled tennis balls at a freely suspended racket which was strung at 50, 60 and 

70lbs with nylon string. The ball was propelled at an angle of 5° to simulate a topspin shot, at a 

point approximately 20mm from the longitudinal axis. The data showed that an increase in string 

tension reduced the angle of rebound. This was explained by the fact that a higher tension gives a 

shorter contact time and therefore the racket rotation is minimized at the highest string tension. 

2.3.3 Summary 

The review of literature that covers the properties of tennis strings has revealed many issues which 

should be considered in the study of the impact between a ball and tennis racket. 

1. A range of materials are used in the manufacture of strings which all have different playing 

properties. The diameter ranges from 1.2mm to l.4mm. 

2. The hysteresis losses in tennis strings are generally less than 5%. 

3. Generally strings made from natural gut have a lower stiffness than those made from 

synthetic gut. 

4. The tension in the strings reduces immediately once the racket is strung. The rate of loss 

decreases with time. This loss in tension should be accommodated for in any model which 

is generated to simulate the impact. 
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2.4 The Racket 

2.4.1 Tennis racket development 

Traditionally a tennis racket frame was constructed from wood (eg. Ash). One of the main 

limitations of this material was that the frame had to be solid. The consequence of this was that the 

head sizes were generally small and the frames were relatively flexible to maintain a sensible 

weight of racket. The introduction of metal rackets in the 1970's brought with it new 

manufacturing methods which allowed lighter, larger and stiffer rackets to be economically 

manufactured. This innovation was closely followed by the advent of composite rackets with even 

more versatile manufacturing methods. 

A modern racket is typically made from a long, hollow tube of graphite, as described in Cross 

(ZOOlb). A typical composite racket weighs 33Zg and consists of a frame (Z86g), a grip (lOg), 

grommets (ZOg) and strings (16g). This breakdown gives an indication of the contribution of each 

section to the mass of the racket. 

Marketing of sports products is often heavily surrounded by hype and unfortified claims and tennis 

racket advertising is no exception to this trend. However, some of the fundamental claims and 

ideas are based on well-established scientific findings. For example, the main developments have 

been to reduce the mass, increase the frame stiffness and head size, and shift the balance point 

towards the tip. Brody (1979), amongst others, highlighted that an increase in frame stiffness will 

increase the ball rebound velocity, as less energy will be lost due to racket deformation. Reducing 

the mass of the racket allows the player to generate higher head speeds and thus be able to hit the 

ball faster. The head size has been increased to provide a larger 'sweet spot' for the player, 

effectively increasing the probability that the player will hit a good shot. All these points shall be 

expanded upon in the following sections. 

2.4.2 ITF Rules and Regulations 

Prior to the 1970' s there were few rules to regulate the characteristics of a tennis racket, allowing it 

to be of any shape, size or material. It was around this time when oversize rackets were introduced 

that the governing body became concerned about racket designs and the ITF implemented rules to 

limit the size of the racket head. Before then the racket was simply defined as an implement which 

could be used to hit the ball. 

The current regulations which apply to the racket describe the overall dimensions and 

characteristics of the hitting surface. Relevant extracts from Rules of Tennis regarding the racket 
are given below. 

The hitting sUrface of the racket shall be flat and consist of a pattern of crossed strings 

connected to a frame and alternatively interlaced or bonded where they cross; and the 

stringing pattern shall be generally uniform. and in particular not less dense in the centre 
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than in any other area. The racket shall be designed and strung such that the playing 

characteristics are identical on both faces. The strings shall be free of attached objects and 

protrusions other than those utilised solely and specifically to limit or prevent wear and tear 

or vibration, and which are reasonable in size and placement for such purposes. 

Theframe of the racket shall not exceed 29 inches (73.66cm) in overall length, including the 

handle. The frame of the racket shall not exceed 121/2 inches (31. 75cm) in overall width. 

The hitting surface shall not exceed 151/2 inches in overall length, and 111/2 inches (29.21cm) 

in overall width. 

2.4.3 Simulating a player's grip on a racket during impact 

In the experimental analysis of the interaction between a ball and racket during impact, the racket 

would ideally be swung by a player and the testing would be conducted on a tennis court to recreate 

actual playing conditions. However, the nature of the equipment used to analyse the impact makes 

it more convenient to conduct the testing in a laboratory and using a player to swing the racket in 

the test introduces an extra variable into the study. Also, the velocity of the racket, when swung by 

a player, is difficult to measure accurately due to the high accelerations occurring at impact. It has 

been achieved by some authors (Groppel (1975), Elliott et al. (1986), Mitchell et al. (2000), 

Schleihauf et al. (2000)). However, the necessity of conducting this complicated testing needs to 

be established. 

Ideally the testing should be conducted with full control of all the input variables (ball/racket 

impact velocities, ball impact position, etc) and a realistic simulation used for the player's grip. 

Initially it would seem obvious to conduct the laboratory testing with a player holding the racket. 

However, this is not consistent with the above requisite of the experiment in that it needs to be 

simple and repeatable. If the hand gives no support during impact, then it would be much simpler 

to just use a freely supported racket. Alternatively, if the hand does provide some support then 

using a player to hold the racket does not lead to a repeatable experiment as it is difficult for a 

player to control the level of grip firmness. 

There has been extensive debate regarding the method used to support a racket during laboratory 

tests to correctly simulate a player's grip. A review of the relevant publications has shown that the 

gripping methods used have ranged from rigidly clamping the handle to freely supporting the 

racket. Some earlier published results initially seem to contradict each other. However, much of 

this confusion can generally be resolved by re-interpreting the authors actual claims. 

Early published research into the issue of grip firmness concluded that a high level of firmness 

increased the ball rebound velocity (Broer (1973), Tilmanis (1975)) by reducing the recoil velocity 

of the racket. Plagenhoef (1970) commented that the effective racket mass, and therefore the ball 

rebound velocity, was dependent on the level of grip firmness. These publications are aimed at 

coaches and players, and the comments made are based on experience on-court and were not 

controlled laboratory experiments. These comments were not aimed at any specific shot so 
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effectively it is being claimed that for any shot and impact position it is desirable to have a firm 

grip and a 'set wrist'. Also, it should be noted that these comments are aimed at recreational level 

players who are likely to hit many shots from all points of the racket. Therefore these comments 

are encompassing off-centre shots, near the throat and near the tip. 

Hatze (1976) performed a theoretical analysis of the impact between a tennis ball and racket and 

simplified the frame and stringbed as a non-uniform one dimensional beam. Therefore an inherent 

assumption in this work was that the ball impacted along the longitudinal axis. The racket was 

modelled in great detail by determining the magnitude of the cross-sectional area and area moment 

of inertia as a function of the position along the racket. Strain gauges were placed on the frame of 

the racket (wooden Dunlop MaxPly) to measure the impulse, and it was stated that the model was 

in good agreement with this empirical data. The model was used to quantify the difference in 

impulse acting on the ball which occurred for different grip firmnesses. It was found that the 

impulse increased by 10·15% by gripping the racket tightly, as opposed to loosely, although the 

ball rebound velocity was not actually measured to confirm this. Hatze concluded that an increased 

grip firmness resulted in increased power in the stroke. However, it was also pointed out that it 

was a fallacious belief that a very firm grip could be used to prevent the racket recoiling in the 

hand, as the required force/torque would be 16 times the value that the human hand can exert (for a 

relative ball-racket impact velocity of 35m1s). 

Watanabe et al. (1979) performed an interesting series of experiments in which the coefficient of 

restitution (COR) was measured for a range of gripping conditions (freely suspended, handle 

clamped and hand held). The ball was propelled at a wooden racket at velocities between 5 and 

25m1s, and it was shown that the COR values were independent of grip condition. Although it is 

not explicitly said, it is assumed that the ball impacted at the geometric string centre (GSC). 

Superficially this work seems to confirm beyond doubt that the level of grip firmness does not 

effect the ball rebound velocity, and therefore conflicts with Tilmanis, Broer and Hatze. However, 

it should be noted that this is only applicable for the impact position tested, not for off centre 

impacts or impacts towards the throat. Also, the testing was conducted in 1979 using a wooden 

tennis racket with a fundamental frequency of -100Hz. Modem tennis rackets are much stiffer and 

lighter and therefore have higher fundamental frequencies. Therefore the force wave travels much 

faster in these rackets which may effect the conclusions. Also, impacts should be conducted at 

various positions on the racket to deduce whether the obtained result was only applicable at the 

chosen impact position. 

Elliott (1982) conducted a detailed experiment into the effect of grip firmness on the ball rebound 

velocity. A college player was asked to grip a racket fitted with four pressure transducers to 

benchmark three different levels of grip firmness; light, moderate and firm. This was then 

replicated in a grip mechanism of a pneumatic arm which was used to swing a racket at 

approximately 7m1s (16mph). Balls were projected at a range of points on the racket all referenced 

from the GSC; at the GSC, 50mm towards the butt end, 50mm towards the tip, and 50mm towards 

the edge of the frame. It was found that there was a 7% increase ball rebound velocity for the firm 

grip compared with the light grip, for central impacts. It was determined that this was not 
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significant and therefore it was concluded that grip firmness does not effect ball rebound velocity. 

For the off-centre impacts, significant increases were determined for the ball rebound velocity for 

the increased grip firmness, up to 20% in magnitude. Therefore it was concluded that the level of 

grip firmness affects the ball rebound velocity insignificantly for impacts at the GSC, but 

significantly for off centre impacts. This goes some way to support the anecdotal coaching 

evidence given by Broer and Tilmanis. 

In Baker & Putnam (1979) tennis balls were propelled at the GSC of both freely supported and 

handle clamped rackets. The motion of the racket during impact and the ball rebound velocity 

were measured using high speed cinematographic analysis. A wide range of rackets and strings 

were tested and it was concluded that the ball rebound velocity was independent of the method of 

supporting the racket. A supplementary experiment determined that the motion of the racket was 

very similar for both supporting methods during impact. This implies that effectively the ball does 

not 'know' what the gripping condition is during impact because the racket acts very similarly. A 

final comment was made that preliminary testing for off-centre impacts showed that the ball 

rebound velocity was different for the two support methods due to the inherent twisting of the 

freely suspended racket during impact. 

To compare Baker & Putnam (1979) and Elliott (1982) it is noted that Elliott performed the 

investigation for more impact points, but Baker tests the extremes of grip firmness more 

appropriately by using a free condition instead of a light grip. Elliott assumed that different grip 

levels could be simulated by adjusting the torque on the bolts which clamped the racket handle in 

the rubber. However, it is difficult to apply Elliott's results because no player's grip is strong 

enough to act like any handle gripped condition (Hatze 1976). 

Missavage et al. (1984) conducted a theoretical analysis of the impact between a ball and racket to 

investigate the effect of grip firmness on ball rebound velocity, using a one-dimensional beam to 

represent the racket. The beam was clamped at the butt end and free at the other, and the model 

showed that the moment acting on the clamped end was zero during impact, for a regular racket. 

This inferred that the ball rebound velocity was independent of the grip condition, for the simulated 

impact at the GSC. The model also predicted that the moment was non-zero for a drastically 

stiffened or shortened racket because the impulse reaches the handle more quickly. The model 

predicted that the stiffuess of the conventional frame must be doubled, for a constant mass, for the 

moment at the handle to be non-zero. Experiments using a conventional racket verified that the 

ball rebound velocity was identical for freely suspended and handle clamped conditions. Tests 

carried out using the stiffened racket revealed that the COR increased from 0.36 to 0.42 for the free 

and grip clamped conditions respectively. It is noted that the racket used in this testing was 

wooden and new carbon fibre composite rackets may be sufficiently stiff for the moment at the 

handle to be non-zero. Also, the stiffuess of the 'stiffened' racket used in the experiment was not 

given. 

Kawazoe (1997a) used a rigid body model to compare a freely suspended racket with a hand-held 

racket. It was assumed that a hand held support could be modelled as a pin jointed structure. This 
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contradicted Hatze (1976) who claimed that a human hand did not have the strength to act like a 

pin jointed structure. However, Hatze's claim was blurred in that it did not differentiate between 

the linear and angular impulse which the hand must react against. For example, it may be possible 

for the hand to react against the linear impulse but not against the angular impulse. Kawazoe's 

rigid body assumption regarding the racket frame puts this work into context. It was claimed that 

the method of supporting a racket does effect the ball rebound velocity. In fact, the real conclusion 

was that a rigid body which is pin jointed at one end and free at the other gives a different result to 

a free-free rigid body. 

Cross (1999c) conducted a similar study of grip conditions but used a more realistic one 

dimensional flexible beam model for thc racket. Theoretical solutions were obtained for the impact 

between a ball and a racket that was supported using a range of methods (grip clamped, grip 

pivoted and freely suspended). It was shown that, for impacts along the longitudinal axis, all three 

methods of supporting the racket give almost identical results, for the majority of the stringbed. 

For impacts within approximately IOOmm of the throat piece, the grip clamped method gives a 

fractionally higher ball rebound velocity than the other two methods. It also showed that the free 

and grip pivoted cases gave very similar ball rebound results for practica1\y all the hitting area 

along the longitudinal ax.is of the racket. 

An alternative method of inve tigating the importance of grip pressure is to consider the vibrations 

of a tennis racket for all the different clamping conditions. A great deal of work has been done in 

this area, including much duplication, 0 only a brief summary of the available literature is 

presented here. 

Mode 1 Mode 2 Mode 1 

Node 

Node 

Handle c lamped Freely suspended 

Figure 2.4 Vibration modes of a handle clamped and freely uspendcd racket. (Reproduced from 
Brody (1987)) . 

Brody (1981) combined his own data with that of Hedriek et al. (1979) to benchmark the modes of 

vibration for the two extremes of grip condition; handle clamped and freely suspended. This 
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comparison is shown in Figure 2.4. When a racket is handle clamped and a ball impacts on the 

stringbed it can oscillate in a number of modes. For a typical racket, the frequency of Mode 1 is 

25-40Hz. The racket may also oscillate in Mode 2 (lOO-175Hz) providing the ball did not impact 

at the node of vibration, which is close to the centre of the stringbed. A freely suspended racket 

can not oscillate at a frequency comparable to Mode 1 of a handle clamped racket. Its lowest 

frequency is in the order of lOO-175Hz. 

Brody (1987) extended this analysis to compare the vibration of a hand held racket with the two 

extremes of grip condition. A modal analysis was conducted by attaching a thin piezoelectric film 

on the handle. The racket was struck with the ball at various points along the longitudinal axis to 

identify the node points and the induced vibration frequencies. It was determined that the head 

clamped Mode 1 frequency was not present in the hand held racket. The frequency of oscillation in 

the hand held racket was much closer to that of a freely suspended racket although no quantitative 

comparison was given. 

Freely suspended Hand Held 

Figure 2.5 Comparison of fundamental mode of vibration for a freely suspended and hand held 
racket (reproduced from Cross (1998)). 

A recent study which comprehensively covered the modal analysis of a tennis rackets was 

conducted by Cross (1998). A 1990 vintage Wilson graphite composite racket weighing 370g was 

used throughout the testing. Several piezoelectric transducers were placed along the handle and 

frame to identify the vibration frequency, mode shape and node location. Only the fundamental 

frequency of vibration was considered to be important as the higher frequency modes are small in 

amplitude and damp out very quickly (Brody (1979, 1981, 1995), (Cross (1997, 1999c)). The 

magnitude of the measured parameters for free and hand held conditions were 1 09Hz and 102Hz 

respectively for the vibration frequency, and 15cm and 5cm respectively for the node position (butt 

end). This shift in node point is illustrated in Figure 2.5. It was deduced that the hand held 

condition, which vibrated at 102Hz, was significantly closer to that of a free racket (109Hz) 

compared to a handle clamped racket (25-40Hz). An illustration was given which showed that 

adding a 40g mass to the handle of the freely suspended racket reduced the frequency from 109Hz 

to 103Hz and to 100Hz when an 80g mass was added. This showed that the observed frequency 

shift caused by the hand could be modelled by adding 40g to the handle, as noted by Brody (1995, 
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1997). However, it was noted that the shift in node position required an additional 80g to be added 

to the handle, which shows that further work would need to be done to define the precise mass 

required to simulate a player's grip. 

Brody (1997) furthered this 'additional mass' theory by using a rigid body model to show that 

adding a mass at this point has negligible effect on the ball rebound velocity. This 'additional 

mass' theory is an interesting illustration and is only slightly flawed in that it does not truly account 

for the moment applied by the hand on the racket. However, Hatze (1976) has shown that the 

human hand can not apply a sufficiently high torque to affect the motion of the racket during 

impact anyway. 

Cross (1998) showed that the axis of rotation, the point at which the racket is effectively stationary 

during impact, was the same for impacts between the GSC and the throat, for both methods of grip. 

It was also claimed that the axis of rotation was different for hand held and free racket conditions 

for other impact positions. This was based on velocity data for a range of points on the racket that 

was sampled for an 80ms period. It is accepted that the data suggests that the axis of rotation is 

shifted during this long time period. However, if only the data for the 5ms of impact is studied, the 

velocity of the racket appears identical for both grip conditions. Cross did not mention this. The 

analysis was continued and incorporated the momentum of the arm system to explain the shift in 

axis of rotation. It is commented that, after IO-20ms, the internal forces in the arm modify the 

initial response of the forearm. This implies that the response on the racket changes in the 80ms 

period which was initially used to conclude that the axis of rotation had shifted during impact. This 

confusion prevents any conclusions being drawn on the position of the axis of rotation for a hand 

held racket. 

A similar analysis could be conducted, similar to that summarised by Hatze (1976), to determine 

whether the hand is strong enough to change the axis of rotation during impact. This would 

involve calculating the force that the hand would have to apply to the racket to make the axis of 

rotation be centred within the hand. 

Hatze (1993) developed a theoretical model based on the energy losses in the ball, strings and 

frame. Experimental data was obtained for the ball rebound velocity for tests where the handle of 

the racket was either rigidly clamped or held in a manusimulator. The manusimulator was 

designed to realistically simulate the magnitude of force that a human hand can exert on the racket. 

It was found that generally the manusimulator gave higher ball rebound velocities than the handle 

clamped condition, by approximately 5-10%.. This lead Hatze to conclude that the level of grip 

firmness does effect the ball rebound velocity. The criticism here is that Hatze did not address the 

fact that the data suggests a firm grip (rigidly clamped) gives a lower ball rebound velocity than the 

hand grip (manusimulator). This contradicts findings by Hatze (1976) and Elliot (1982). The 

likely reason being that, yet again, an unrealistic rigidly clamped handle is used to represent a 'firm 

grip'; Brody (1987) having shown that the vibration mode excited in a handle clamped racket is 

not present in a hand held racket. 
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(a) (b) 

Figure 2.6 Node positions for the fundamental mode of vibration on (a) a freely suspended racket 
and (b) a hand held racket (Node lines represented by the boundary of the black and white regions) 
(Reproduced from Kawazoe (1997a)). 

Kawazoe (1997a) performed an experimental modal analysis on a freely suspended and hand held 

racket. It was found that the fundamental frequencies for the freely suspended and hand held 

rackets were 122Hz and 117Hz respectively. The node positions for the two rackets are shown in 

Figure 2.6, which shows that the node near the handle is shifted by only 20mm (O.03L) when the 

racket was hand held. Cross (1998) obtained a similar difference in fundamental frequency but a 

larger shift in the node position (-1 OOmm.) It was also claimed that the node near the centre of the 

stringbed shifts by approximately 35mm (O.05L), although the graphical results presented in the 

paper imply that it is shifted by a much smaller amount. 

The work by Kawazoe (1997a) and Cross (1998) shows that the mode of vibration for hand held 

and freely suspended rackets are very similar, but the frequency and node positions are shifted 

slightly. Cross (2002b) extended the analysis to consider the modes of vibration of a pivoted 

racket. It was shown that a racket pivoted at the handle has a fundamental frequency of vibration 

of 85Hz, compared to 102Hz (hand-held) and 109Hz (freely suspended). The shift in the node for 

the hand-held racket, from its freely suspended racket position and the corresponding decrease in 

frequency, suggests that the vibration of a hand held racket lies somewhere between that of a freely 

suspended and pivoted racket. This implies that either a free or pivoted boundary condition was 

suitable to simulate a player's swing, although the comparison does suggest a slight bias towards 

the free condition. 

An alternative approach to determine the ideal grip simulation is to discover why a handle clamped 

and freely suspended racket give similar ball rebound velocities. Brody (1997) commented that the 

transverse force wave that is induced from the ball impact must be reflected from the butt end and 

arrive back at the impact point during contact for the ball to have any knowledge of the gripping 

mechanism. The propagation time of the wave can be estimated from the frequency of the 

oscillation and the distance between the node points. Assuming a fundamental frequency of 150Hz 
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then the time taken is 8ms, which is longer than a typical contact time of Sms. This implies that the 

ball has already left the stringbed before the impulse has returned. The ball rebound velocity is 

therefore independent of the gripping condition, which is why the handle clamped and freely 

suspended rackets give the same ball rebound velocity. 

Cross (1998) analysed the wave propagation idea in more detail by performing both experimental 

and theoretical analyses. The propagation delay was measured by sampling piezoelectric disks 

which were placed at various points on the racket; one at the centre of the stringbed and one at each 

50mm increment along the frame. It was found that the time taken for the pulse to travel from the 

centre of the strings to a point 120mm from the butt was I.Sms. The racket handle therefore began 

to move well before the ball leaves the strings. This is much faster than that determined by Brody 

(1997) who only considered the fundamental mode of transverse vibration. In reality, the impact 

excites a broad spectrum of vibration frequencies which are superimposed to give the resultant 

motion. The higher frequency components, although small in amplitude, travel at a much faster 

speed and therefore result in the faster propagation time measured at I.Sms. 

The above discussion has shown that there is some conflict between the findings of the different 

authors in regard to the method of simulating a player's grip during impact. However, this can be 

clarified by considering the different impact positions separately. 

(a) For impacts taking place between the GSC and the tip almost all authors agree that the ball 

rebound velocity is independent of grip firmness. The theoretical solutions predict that a free, 

handle clamped and pivoted handle all give the same ball rebound velocity. Experimental 

data shows that free, handle held and handle clamped conditions all give similar results. 

However, it was noted that are some anomalies identified between certain published data 

which requires clarification. 

(b) For impacts taking place between the GSC and the throat, it is generally agreed that a grip 

clamped racket gives a higher ball rebound velocity compared with a freely suspended 

racket. However, it is shown that a grip clamped condition is not a realistic representation of 

a firm grip. Pivoted and free end conditions give similar results in this area. 

(c) For impacts not on the longitudinal axis the published data implies that grip finnness does 

effect the ball rebound velocity. 

Supplementary points to note are, 

1. The mode of vibration of a hand held racket is closest to that of a freely suspended racket. 

2. The theoretical time taken for the force wave to travel from the impact point, to the handle, 

and back is generally longer than the contact time, implying that the grip condition has no 

effect. However, this analysis only considers the fundamental transverse mode of vibration. 

The higher frequency modes will cause the gripping condition to effect the racket response. 

The magnitude of this effect being dependent on the amplitude of the mode. 

The main conclusion from this section is that, for impacts along the longitudinal axis, a players grip 

can be replicated by a freely supported racket. Clearly this would initially imply that a racket must 
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be propelled freely at a ball in the laboratory. However, a simple transformation of the Newtonian 

reference frame, as discussed by Brody (1997), can be used to replicate the relative ball-racket 

impact velocities. For example, a typical serve can be simulated by propelling a tennis ball at 

35m1s, towards a stationary racket (Mitchell et al. (2000)). 

2.4.4 Coefficient of restitution for an impact between a ball and racket 

The coefficient of restitution (COR) is a parameter which is used to indicate the proportion of 

recovered energy in a collision. In its reduced form it is defined as, 

[2.1] 

where VB and VR are the ball and racket velocities before impact, respectively, and V'B and V'R are 

the respective velocities after impact. The velocities VR and V'R are measured for the contact point 

of the racket. Initial investigation of published data identified that a wide range of COR values 

were being quoted by authors. This was primarily because the definition used by some authors 

differed from that in [2.1], and also the method used to restrain the racket differed. 

1. Coefficient of restitution for an impact on a head clamped racket 

The simplest, most unambiguous definition for COR is when the racket head is clamped, and 

therefore V'R = vR = O. In this case, [2.1] reduces to, 

[2.2] 

Brody (1979) measured the values of CORHc for a range of rackets and found them to be in the 

region of 0.85, for an impact velocity of 8.5m1s. Leigh & Lu (1992) used an impact velocity of 

5.3m1s and obtained CORHC of 0.90 and 0.85 for rackets strung at 178N and 356N respectively. 

This data showed that the CORHC reduced with increasing string tension. 

Kawazoe (1993) obtained a value of CORHC equal to 0.83 for a ball impact velocity ranging 

between 15 and 25m1s. The racket was strung using natural gut (451bs tension). By contrast the 

CORHC for a synthetic gut (601bs) reduced from 0.83 to 0.80 in this same velocity range. The 

natural gut was strung at a considerably lower tension than the synthetic gut and therefore it is 

difficult to draw comparisons between the two. 

Williams (2000) performed an impact test which involved propelling a tennis ball at a range of 

points on a head clamped racket. The data was used to map the CORHC distribution across the face, 

to give an indication of the magnitude of the area which could be considered to give a constant 

value of CORHC• It was found that CORHC was constant over an area approximately 60mm in 

diameter, centred at the GSC of the racket. The CORHC then reduced towards the racket frame. 
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Goodwill & Haake (2000) determined CORHc for standard and oversize tennis balls for a range of 

impact velocities between 20 and 50rnls, using a racket strung at 70lbs. It was shown that the value 

generally dropped from 0.83 to 0.75 over this large velocity range. 

2. Coefficient of restitution for an impact on a grip clamped racket 

If it is initially assumed that the recoil velocity of the racket can be ignored then the coefficient of 

restitution is defined as CORGC and is calculated using, 

[2.3] 

If a tennis racket was rigid then clearly CORGC = CORHc. The published results confirm that this is 

not the case. Groppel et al. (1987b) propelled tennis balls at both midsize and oversize rackets 

which were clamped at the grip, and strung at a range of string tensions from between 40 and 80lbs 

using natural gut and nylon. The ball was propelled at 23rn1s, at the geometric string centre of the 

racket. It was found that COR GC typically ranged from 0.51 to 0.47 for a string tension range of 40 

to 80lbs, for the oversize racket. For the same range of string tension the COR GC reduced from 

0.40 to 0.34 for the midsize racket. 

Oversize 
racket 

Regions 
A - CORoc>O.3 
B - CORoc>O.4 
C - CORoc>O.5 
D - CORoc>O.6 

Conventional 
racket 

Figure 2.7 CORGe distribution on a grip clamped racket for an oversize and conventional racket 
(reproduced from Head (1976)). 

A comprehensive account of the coefficient of restitution for a grip clamped racket was given by 

Head (1976). The testing was conducted to illustrate the benefits of an oversize racket compared 

with a conventional racket. Figure 2.7 shows that the CORGC increases towards the throat end of 

the racket and, due to its extended shape, is largest in the oversize racket. These values of 

coefficient of restitution are all much lower than those found for the head clamped racket. The 

increase in CORGC at the throat is due to two main reasons, which have been thoroughly covered by 

many authors. Firstly, the racket is effectively stiffer at this point so less energy is 'lost' in the 

deformation of the racket (Brody (1997)). Secondly, the throat is closer to the racket COM and 

therefore the effective, or 'reduced', mass of the racket will be higher at this point (Kawazoe 1993). 

The ball velocity used by Head was between 30-60mph (13-36m1s) and the COR GC data 

corresponds well with Groppel et al. (1987b) and other published material. The CORGC is highest 
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along the longitudinal axis because off-centre impacts cause the racket to rotate around this axis 

due to the reduced 'effective' mass of the racket. The 'effective' mass was determined from the 

polar moment of inertia, which was highest for the oversize racket. This explains why the COR GC 

was higher for this racket. 

Groppel et al. (1987a) determined the coefficient of restitution for a range of grip clamped rackets, 

for impacts at the GSc. The obtained values of CORGC were between 0.84 to 0.75 which are 

higher than those published by any other researcher. However, the anomaly was easily resolved in 

that Groppel included the recoil velocity of the racket in the calculation of CORGc. Therefore [2.3] 

would need to be modified to incorporate this. 

It should be noted that it was shown in section 2.4.3 that hand held and grip clamped rackets act 

very differently during impact, and therefore the results of CORGC are mostly of academic interest. 

3. Coefficient of restitution for an impact on a freely suspended racket 

Many authors have conducted impact tests in which the ball is propelled at a freely supported 

racket (Watanabe et al. (1979), Hatze (1993), Brody (1997». Generally the racket is stationary 

and either stands on its butt or is suspended from a small pin, and in this section it is assumed that 

the initial racket velocity is zero. The precise definition of COR, as given by [2.1], is the ratio of 

the separation and approach velocities of the ball and racket. As the racket will naturally recoil 

after impact, the correct definition of CORFS is, 

, , 
CORFS = V B-

V 
R 

VB 
[2.4] 

An alternative definition of the COR is called the apparent coefficient of restitution, A COR (Hatze 

1993). Whilst this is not an exact term for the coefficient of restitution of the ball-racket 

interaction, if the only concern is the ball rebound velocity (as is true in many cases) then this 

ACOR term is adequate. It is defined as, 

[2.5] 

and therefore does not take into account the recoil velocity of the racket. 

Brody (1997) measured the ACORFS distribution along the longitudinal axis of a conventional 

tennis racket. The racket had a mass of 0.287kg, a balance point at 372mm from the butt and a 

swingweight of O.0527kgm
2 

(around the butt). The data for distinct points is shown in Figure 2.8. 

This shows that the ACORFS increases from 0.17 at the tip to a maximum of 0.49 about 40mm from 

the throat section. At the throat section there is a slight decrease in ACORFS. Kawazoe (1993) 

using a different tennis racket but a similar ball impact velocity found different ACORFS values 

along the longitudinal axis. Unfortunately Kawazoe did not give the details of the racket used in 

the testing, but clearly it is likely to be different to Brody's. Both ACORFS distribution, and the 

likely reason for differences between Brody and Kawazoe, can easily be explained using a simple 
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rigid body model of the impact (Brody 1997). This model shows that ACORFS is dependent on the 

mass and swingweight of the racket, and the impact position of the ball relative to the centre of 

mass. (The model is discussed in depth in section 2.5). 

00.339 

00.443 

00.480 

Figure 2.8 Apparent coefficient of restitution distribution for a stationary, freely suspended 
racket (reproduced from Brody (1997)). 

Haake et al. (2000) determined the ACORFS for impacts at the GSC of a racket with mass 343g, 

balance point of 320mm and swingweight 0.0505kgm2 (referenced from the butt). The values 

reduced from 0.35 to 0.3 over the ball impact velocity range of 25m1s to 60rnls. This illustrates 

that ACORFS reduces with impact velocity, as did the coefficient of restitution measured for an 

impact with a head clamped racket. The ACORHH value at the GSC in Haake et al. is lower than 

that in Brody (1997). This can easily be accounted for using a rigid body model accompanying the 

fact that Brody's racket was considerably more 'head heavy' than that used by Haake et al.. 

The above results show that ACORFS varies greatly across a tennis racket, and is different for 

different rackets. This is clearly due to a combination of the mass/swingweight of the racket and 

the location of the impact. Therefore all ACORFS data should be accompanied with this relevant 

extra data. This data can easily be used to predict how the racket will perform 'on-court' by 

changing the frame of reference so that the racket has an initially velocity (Brody (1997»). 

4. Coefficient of restitution for an impact on a hand held racket 

There is a limited amount of published material for the coefficient of restitution for an impact on a 

hand held racket. This data can easily be categorised into two main sets; the racket is held 

stationary and the racket is being swung by a player. The latter category is discussed in section 2.6, 

and the former is discussed below. 
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When a racket is held by a player it is very difficult to obtain the precise velocity of the racket 

immediately after impact. Three-dimensional marker systems have been used but the high 

accelerations involved around the time of impact make it difficult to measure an accurate velocity. 

As for impacts on a freely suspended racket, a useful parameter is the coefficient of restitution 

which disregards the recoil velocity of the racket. This parameter is termed 'apparent' and the 

equation for ACORHH is, 

[2.6] 

Elliot et al. (1980) performed ACORHH measurements for a range of points along the longitudinal 

and transverse axes of the stringbed for conventional and oversize rackets. The racket was held 

stationary against a locating frame to ensure control of the impact positions and the ball was 

propelled at 2lmls (45mph). The vibration amplitude of the frame and the ball rebound velocity 

were measured using accelerometer and stroboscopic techniques respectively. Along the 

longitudinal axis the ACORHH increased from almost zero at the tip to a maximum at 20mm from 

the throat, and then a slight reduction at the throat. Across the transverse axis the measurement 

was almost zero at the frame and a maximum at the longitudinal axis. The resulting ACORHH map 

was similar to that found by Head (1976) for grip clamped rackets. The maximum values for the 

oversize and conventional rackets were 0.50 and 0.44 respectively. Also, for impacts off the 

longitudinal axis the difference is even greater. These maps confirmed Head's theory that the 

increase in polar moment of inertia for oversize rackets reduced the twisting of the racket during 

impact, and thus increased the ball rebound velocity. However, it should be noted that Elliott 

claimed that the determination of the polar moment of inertia of the rackets was beyond the scope 

of his paper. 

2.4.5 The 'sweet spot' ola racket 

In the last decade it has generally been impossible to see an advert for a new tennis racket which 

does not refer to the product as having a larger 'sweet spot'. The incentive for manufacturers to 

make these claims is that players are aware that a larger 'sweet spot' may improve their game due 

to the increased probability that they are able to hit the ball in this area. In these articles the 

implication is that the shot will 'feel sweeter' when the ball hits this position, although a precise 

definition of the claim is very rarely given. In the following review of the 'sweet spot', an attempt 

is made to highlight the definitions used by different authors to clarify what the manufacturers 

claims may be based upon. A very complete description of the sweet spot of a tennis racket can be 

found in Kotze (2000). This literature review is not intended to give a complete account of all 

available literature but it will clarify the terms used to quantify the positions which have become 

collectively known as the 'sweet spot'. 

The earliest notable reference to the 'sweet spot' of a racket was in the US Patent for Prince's 

oversized racket (Head (1976)). It was claimed that its wider, longer head had a sweet spot or 
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power zone which was almost four times bigger than on a conventional racket. The size of this 

power zone was determined by propelling tennis balls at a grip clamped racket and measuring the 

CORGC at various locations. The size of the sweet spot was defined as the area in which the 

CORGC was greater than a certain level, as illustrated in Figure 2.7. The larger sweet spot has been 

achieved by effectively extending the stringbed closer to the racket COM. Also, the width of the 

racket head was increased which increased the polar moment of inertia, and thus reduced the 

magnitude of the twisting of the racket during impact. The combined effect of these two 

developments increased the size of the sweet spot on the racket. 

Centre of 
percusslon 

Figure 2.9 Comparison of the centre of percussion position for an oversize and conventional 
racket (reproduced from Head (1976)). 

Head also described an alternative definition of the 'sweet spot' which was the point at which the 

hand experiences no linear impulse, or 'jar', when the ball is struck. This point was defined as the 

centre of percussion (COP) and is a function of the mass distribution along the longitudinal axis. 

The COP is described in more depth later in this section. On a conventional racket the COP is 

located near the throat but on the oversize racket it is located close to the GSC as illustrated in 

Figure 2.9. Head claimed that most players aim to hit the ball at the GSC, which was later 

supported by Hatze (1994), which highlighted the benefit of this oversize design. 

Head's reported results for the CORac distribution clearly illustrate the benefits of the oversize 

racket design but their relevance to the playing characteristics of the racket is brought into question 

by the review of the literature regarding the simulation of player's grip. It has been shown that the 

grip clamped method is not representative of a player's grip. However, Head does illustrate why 

the maximum power region is close to the racket COM. 

Head's patent was issued in 1976, around the time of the 'spaghetti' strung racket and the 

introduction of metal/composite rackets, and it was being acknowledged that the physics of a tennis 

racket was not very well established. Brody (1979) attempted to resolve this and identified 

information which could (a) explain the performance advantage of the Prince Oversize racket 

(Head (1976)) and (b) optimise the size, shape and weight of a tennis racket. A key area of this 

work was to further the understanding of the 'sweet spot'. The first point to be considered was the 

Centre of Percussion (COP) and a full derivation is given by Brody (1979). An illustration of the 

concept of the centre of percussion is given in Figure 2.10. 
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Figure 2.10 Illustration of the centre of percussion COP for a rigid body racket (Reproduced 
from Kotze (2000)). 

The equation of the position of the COP in a rigid body is given in Brody (1979) as 

b=~ 
a.mR 

[2 .7] 

where IR is the moment of inertia of the racket around its centre of mass, mR is the mass of the 

racket and a is defined in Figure 2.10. 

When a tennis ball hits the racket at a distance b from the racket COM therc is no hand reaction 

force FH, and therefore no overall 'shock' or 'jar' is felt during impact. This shows that the centre 

of percussion is not a unique position on the racket because it depends where the racket is gripped. 

Approximate values of hare 5cm and 7cm for a serve and ground stroke respectively. In a typical 

racket it can be shown that the COP lies between the throat and the GSC. Clearly a designer must 

attempt to make the position of the COP as close to the GSC as possible. Head (1976) achieved 

this by increasing the size of the head. An alternative method is to add weight to the tip of the 

racket to adjust the position of the COM (and increase IR)' 

Another topic raised by Brody (1979) was how to maximise the ball rebound velocity. This 

questioned the argument that the COP was the best place to hit the ball. Head (1976) had 

determined that the coefficient of restitution would be maximised for impacts close to the racket 

COM, for an analysis on a grip clamped racket. If the analysis was extended to stationary, freely 

suspended rackets then a similar result would be obtained. However, it is noted that in a serve the 

actual point of maximum ball rebound velocity would be a function of the linear and angular 

velocity of the racket; the racket is rotating and therefore the tip is moving faster the COM. A 

simple rigid body analysis (Brody (1997)) can be used to predict the point on the racket which 

results in maximum ball rebound velocity. This quantifies the mechanics of the impact and 

illustrates how the ball rebound velocity is dependent on the effective mass of the racket at the 
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impact point. The racket mass is maximised when the player hits the ball on the longitudinal axis. 

However, this is not always achieved and therefore to increase the effective mass of the hitting 

point the polar moment of inertia must be maximised. This can either be achieved by increasing 

the width of the racket head, or by adding peripheral tungsten weights to the frame. 

Figure 2.11 Measured vibration amplitudes along the longitudinal axis of a racket, illustrating a 
nodal point (Reproduced from Brody (1995». 

In section 2.4.3 the modes of vibration for a tennis racket were discussed. This analysis identified 

that a node point for the transverse mode was at a position approximately 1/ sL along a racket of 

length L, from the tip (Kawazoe (1997a». Hatze (1994) concluded that most players hit the ball at 

this nodal point of transverse vibrations. Impacts at this point clearly do not excite the fundamental 

frequency and therefore the player does not feel any unpleasant vibrations of the frame. This point 

is a further definition of the 'sweet spot'. Brody (1995) illustrated the vibration amplitudes for a 

range of points along the longitudinal axis of the racket and this is shown in Figure 2.11. This 

diagram illustrates that, for impacts at the node, there was very little vibration of the frame and 

therefore the energy loss was minimised. 

A final definition of a 'sweet spot' was defined by Cross (1997) and called, rather ironically, the 

'dead spot'. This is a point close to the tip, at which a ball impacts on a stationary freely suspended 

racket and rebounds with almost zero velocity, hence the term 'dead'. This is explained by 

considering the law of conservation of momentum and a knowledge that the effective mass of the 

impact point on the racket is similar to that of the ball. (Cross uses an analogy of a moving and a 

stationary snooker ball colliding head-on, where the momentum is transferred wholly from one to 

the other). It is assumed that in a serve the racket is rotating around a point close to the butt end 

(Mitchell et al. (2000», and the ball impacts at the 'dead spot'. Given the correct linear and 

angular velocity of the racket, the racket will be brought to rest and the maximum momentum will 

be transferred to the ball. This impact point is close to the tip and, as Figure 2.11 suggests, this 

excites considerable vibrations in the frame, dissipating the maximum possible amount of available 

energy. Therefore this point may not 'feel' the best place to hit a ball as it leads to unpleasant 

vibrations and possibly fatigue. 
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Figure 2.12 Illustration of the four definitions of a sweet spot (Reproduced from Kotze (2000)). 

In this section four definitions have been discussed for the point commonly known as the 'sweet 

spot' and these are shown in Figure 2.12. They are, 

1. Maximum coefficient of restitution - For a stationary racket this is located close to the 

racket COM, and results in the maximum ball rebound velocity. For a moving racket, the 

precise location of the maximum ball rebound velocity is dependent on the linear and 

angular racket velocity. 

2. The Centre of Percussion - This is located near the GSC and represents the impact point 

which results in minimum 'jar' felt by the hand. This is dependent on the inertia of the 

racket and the grip position. 

3. Node - This is the impact point which results in minimum vibration of the transverse mode 

of bending for a hand-held racket. 

4. The 'Dead spot' - This point results in the maximum transfer of momentum from the 

racket to the ball, during a typical serve, for a given racket velocity. 
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2.5 Modelling of the Ball and Racket during Impact 

Published research on the general modelling of sports ball impacts can be categorised into four 

main areas, 

1. Rigid body analysis based on classical Newtonian mechanics 

2. Flexible body analysis based on classical Solid mechanics. 

3. Visco-elastic models in which the displacements of the two impacting bodies are modelled 

as a combination of springs and dampers. 

4. Finite element analysis ofthe impact mechanism. 

The published models vary in their applicability, accuracy and thoroughness, and these points are 

discussed in the following literature review. A complete model would be able to predict the 

compression and displacement of the colliding bodies during contact, and then predict the resulting 

velocity of the two objects after impact. The input parameters to this model would typically be the 

initial velocities and the physical properties of the bodies (eg. ball stiffness). Also, the boundary 

conditions must be suitably modelled (eg. player's grip). 

2.5.1 Rigid Body Analysis 

(aJ Modelling an oblique impact between a ball and surface 

---+l-"V~x) 

-V~y) 

Figure 2.13 The impact between a rigid hollow sphere and a rigid surface. 

YL 
X 

mB - ball mass 
rB - ball radius 

The most comprehensive studies of rigid body ball-surface impacts have been conducted by Daish 

(1972) and Brody (1984). Both papers discuss the basic mechanism occurring during the impact 

between a rigid sphere and surface, as illustrated in Figure 2.13. This figure shows a rigid hollow 

ball travelling from left-to-right, impacting on a rigid surface - the positive x and y directions are 

shown by the co-ordinate system and the angular velocity is shown as positive. During impact a 

frictional and reactive force, F and R respectively, act on the sphere. The sphere has a mass of mB 
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and radius rB, and if it is assumed that the wall thickness is thin then its moment of inertia 

.22 
IS/B = -mBrB . 

3 

Daish and Brody state that there are two possible cases, depending on the magnitude of the friction. 

1 - Ban slides throughout impact 

In this case sliding friction applies throughout and therefore 

where Ps is the sliding friction. Considering the impulses acting on the ball, 

The coefficient of restitution is defined as 

V'B(Y) 
e=---

VB(y) 

[2.8] - [2.12] can be used to derive the following equations 

V'B(x) = VB(x) - ,us VB(y) (1 + e) 

V'B(y) = -eVB(y) 

[2.8] 

[2.9] 

[2.10] 

[2.11] 

[2.12] 

[2.13] 

[2.14] 

[2.15] 

[2.13]-[2.15] can be used to determine the rebound parameters V'B(yj, V'B(x) and ro'B if the 

parameters Ps and e are known. 

2 - Ball rolls off the surface 

In this case [2.9]-[2.12] still apply, but it is no longer valid to assume that F = ,usR. Equating 

[2.2] and [2.4] gives, 

(V'B(X)-VB(X)}nB = -~(m'B-mB) 
rB 
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And for the ball to be rolling at the end of impact, 

Substituting [2.18] into [2.17] gives 

V' O(y) = -e VO(Y) 

3Vo(x) + 2r BOJB 
OJ' - --"--'----0-

SrB 

Literature Review 

[2.17J 

[2.18] 

[2.19] 

[2.20] 

[2.21] 

This second case will apply if the friction is sufficiently great. The minimum value of J1.s for 

rolling to occur is defined by, 

2(Vo(x) - ro wo) 
)is ~ sVo(I +e) 

[2.22] 

The above formula can be used to obtain a basic understanding of the mechanisms occurring in an 

oblique impact between a ball and stringbed. However, the assumption that a ball (and stringbed) 

is rigid is the main weakness of the model as they both deform considerably. Brody (2000) 

develops these rigid body formulae to account for the fact that the ball COM deforms during 

impact. 

Although it is not explicitly stated in this paper, Brody's analysis assumes that the ball slips 

throughout impact therefore the following equations still apply, 

mB(V'O(X)-VB(X»)= IF.dt 

mB(V'O(y)-VB(y»)= JR.dt 

where )is is the sliding friction. 
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k is the 
compression factor 

r T is the contact time 

Figure 2.14 Definition of the parameter r which defines the deformation of the ball during an 
oblique impact (deduced from Brody (2000)) . 

Figure 2.14 shows the assumed motion of the ball COM during impact and the resulting distance 

between the COM and surface, r. Brody assumed this to be, 

[2.26] 

where k is a constant, T is the contact time and t the instant during contact. 

k can be considered a compression factor and defines the maximum displacement of the COM as a 

ratio of the original radius, rn· From [2.26] it can be deduced the motion of the ball COM is 

un damped simple harmonic motion, although this was not actually stated in Brody (2000). In this 

paper it is assumed that the moment of inertia does not change throughout impact and is equal to 

that of a hollow sphere which is, 

[2.27] 

For simple harmonic motion the general equation for the force F is, 

F = QSin(;) [2.28] 

where Q is a constant. 

Considering the angular impulse acting on the ball gives, 

[2.29] 

Substituting [2.28] into [2 .24] and integrating between 1=0 and I=T gives, 

[2.30] 

From [2.29] 

Which gives, 
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[2 .32] 

[2.32] shows that the rebound spin can be determined from the compression of the ball, k, and the 

change in the x-component of the ball velocity (VI B(x) -VB(X) )' The main weaknesses of this model 

are that it assumes that the ball slips throughout impact, and that the impact is perfectly elastic, i.e . 

the COR is unity. However, the analysis could easily be repeated with modified assumptions. 

(b) Modelling a normal impact between a tennis racket and ball 

Ball mass, me 

.......... z 1 
)( -"-

~ 

Y 

/ 
/ 

/ 

Racket mass, mll 

VIP 

/ 

,/ / 

V'JP 

/ 

/ 
/ 

V' R 

Figure 2.15 Rigid body model of an impact between a ball and freely suspended racket 

A tennis racket is constructed using a material which clearly has a finite stiffness and is therefore 

not rigid. Whilst it is never claimed that a rigid body model of the racket can be used to fully 

analysis an impact, it can be used as a first approximation to understand the fundamental dynamics 

that occur during impact. Indeed, modelling a tennis racket as a rigid body is one of the most 

common methods for this piece of equipment (Liu (1983), Casolo & Ruggieri (1991), Kawazoe 

(1997a), Brody (1997), Cross (1999c ,2000e)). 

Brody (1997) gives the most succinct account of the application of a one-dimensional rigid body 

model of a tennis racket. Figure 2.15 defines the parameters for an impact between a tennis ball 

and freely supported racket. Brody used the conservation of both linear and angular momentum to 

determine the velocity of the ball and racket after impact. 

By conservation of linear momentum, 

[2.33] 

By conservation of angular momentum, 

[2.34] 
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Using the definition of the coefficient of restitution, 

COR = _ V'B-V'IP 
VB - VIP 

Literature Review 

[2.35] 

where VIP and V'IP are the velocity ofthe impact point before and after impact, respectively. 

Solving [2.33]-[2.35] gives 

V.

B

= vs( mBz' +IR(~-COR )) + V1p1R(1 + COR) 

mBz'+ 1.(1 + ::) 

[2.36] 

[2.36] gives the rebound velocity for an impact between a ball and racket, for specific initial 

conditions. The value of VB is a function of a group of known variables (mB' mR, z, IR ) and an 

unknown variable (COR). In Brody (1997) it was assumed that the value of COR was 0.85, which 

was the coefficient of restitution determined for an impact between a ball and head-clamped racket. 

In this paper the racket was initially at rest (i.e. V/p=O). Both theoretical and experimental data 

was obtained for ball rebound velocity for impacts at various points along the longitudinal axis, at 

an impact velocity of 20mls. Comparison of these two sets of data showed that the model was in 

good agreement with the experimental data for impacts close to the GSC, but less accurate for 

impacts close to the throat or tip. This is most likely to be due to the fact that the GSC corresponds 

very closely to the node of vibration. Therefore vibrational energy losses are minimised at this 

point and the rackets acts very similar to a rigid body. At other points the rigid body model 

overestimates the ball rebound velocity. 

2.5.2 Flexible Body Analysis 

(a) The Racket 

In the previous section the racket was modelled as a freely suspended, rigid body. It was shown 

that this model was accurate for impacts at the GSC, but less reliable for impacts away from this 

point (Brody (1997), Goodwill & Haake (2001». This has been accounted for by the fact the GSC 

corresponded to a node of vibration for the transverse fundamental frequency of a tennis racket and 

therefore the energy losses due to vibration were minimal at this point. Cross (1999c) comments 

that a rigid body model uses contradictory boundary conditions because (a) it is assumed that the 

propagation time of the force pulse to be reflected back from the handle is greater than the contact 

time, and (b) by assuming a rigid body, the propagation time for a pulse to travel this distance is 

infinitely short. 

To predict the vibration energy losses in a tennis racket, the frame can be modelled as a simplified 

geometrical shape, which can be given finite material properties. Although a racket frame is a 

relatively complex shape many authors (Brody (1987), Kawazoe (1997a), Cross (1998) have 

shown that the vibration modes and location of the nodes for a freely suspended racket are very 
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similar to the well established result for a simple one-dimensional beam (as shown previously in 

Figure 2.4) . Van Zandt (1992) successfully studied the vibration of a baseball bat by assuming that 

the geometry could be simplified to a one dimensional beam with a non-uniform mass distribution. 

Figure 2.16 Segmented uniform beam. 

Cross (1999c) performed a theoretical study to model the impact between a ball and a uniform 

aluminium bar. The model results were compared with experimental data for a range of boundary 

conditions and beam dimensions, and the findings were related to the impact between a ball and 

tennis racket. The equation of motion for a one dimensional beam subjected to a distributed force, 

Fa per unit length, has the form (Goldsmith 1960), 

[2 .37] 

where pis the density of the beam, A is its cross-sectional area, E is the Young's modulus, I is the 

area moment of inertia and y is the transverse displacement of the beam at coordinate x along the 

beam, as defined in Figure 2.16. 

This equation neglects the shear force which is of negligible significance for the low frequencies of 

vibration which are of most interest in this work (Van Zandt 1992). In this case the beam is 

uniform and has a mass M and length L. A numerical solution of [2.37] can be obtained by 

splitting the beam into N equal sized segments, where the mass of each element is mN=MIN and the 

length of each segment is s=L/N. 

The equation of motion for the nth segment is obtained by multiplying all terms in [2 .37] by s, 

which gives, 

[2.38] 

Although the force exerted by the ball may act over a number of segments it was assumed only one 

segment was subjected to a time-dependent force, F. The equation of motion for this segment is 

given by, 
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mN 02~n = F -(EIS 04~n) 
ot ox 

[2.39] 

and for all other segments, 

[2.40] 

In this case it was assumed that, as the beam was unifonn, the values of E and I were constant 

along the beam. The possible types of boundary conditions are as follows, 

(
02y ) (03 y ) 1. At a freely suspended end - ox2 = 0 and ox3 = 0 

2. At a rigidly clamped end - (y = 0) and (: = 0 ) 

3. At a pin-jointed end- (y = 0) and (~ = 0) 

The ball was modelled as a simple spring, with an assumed spring constant kB' and this gives an 

equation of motion, 

[2.41] 

The subsequent motion of the ball and beam was evaluated numerically using finite difference 

equations of [2.39]-[2.41]. The exact details of this technique are thoroughly explained in Cross 

(1999c). 

The validity of the model was assessed by comparing the results with those for an experimental 

impact between a superball COR on a rigid surface (e = 0.85) and aluminium rod, for various rod 

dimensions and impact points. The vibration of the rod and the rebound ball velocity were 

compared with theoretical results and a high accuracy was obtained. 

The paper carries on to describe the application of this method to the modelling of a tennis racket­

ball impact. It is stated that the vibration modes and node locations of a racket can be accurately 

modelled by assuming that the racket behaves like a unifonn beam. The zero frequency response 

of the racket will clearly only be modelled by the one dimensional beam for impacts along the 

longitudinal axis. It was still assumed that the ball only impacts on one of the N segments. 

The paper gave a very good model for an impact between an aluminium bar and a ball, with 

experimental evidence to verify it. However, there was no experimental work done to validate the 

use of a unifonn beam to model a tennis racket which would clearly be the next stage for this work. 
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Cross (2001 b) advances the work of Cross (1999c) by assuming that the racket can be modelled as 

a one dimensional beam with a non-uniform mass distribution. This work discusses the effect of 

the mass distribution on the swingweight of the racket. It was assumed that the mass distribution of 

the racket can be simulated using a beam which is split into two equal lengths. The mass of each of 

these lengths was chosen to give the desired balance point for the racket. It was assumed that the 

values of E and I were constant along the bar, as much of the racket was made from a constant 

section beam. The accuracy of the model prediction for ball rebound velocity was tested for a ball 

impact velocity of only 1.6rn1s. It is appreciated that this is not representative of the velocities used 

in tennis, but the aim of this paper was to investigate the effects of adding mass to certain sections 

of the racket. However, yet again the main criticism was that the model was not tested for high 

speed impacts. 

Missavage et al. (1984) performed a theoretical analysis of the impact between a tennis ball and 

racket and simplified the frame and stringbed as a non-uniform one dimensional elastic beam, 

similar to Cross (1999c, 2001b). The model was more complex than Cross as it accounts for the 

shear force in the beam and assumed that the applied force acted uniformly over the entire head of 

the racket. An attempt was made to model the racket very precisely by determining the magnitude 

of the cross-sectional area and area moment of inertia as a function of the position along the racket. 

This was achieved by cutting the racket into 22 pieces. The beam was clamped at the butt end and 

free at the other, and the model was used to prove that the moment acting on the clamped end was 

zero during impact, for a regular racket. As with Cross (1999c, 2001 b) no actual quantitative 

comparison was made between the model and experiment for realistic ball-racket impact velocities. 

Brannigan & Adali (1981) constructed a mathematical model of a ball hitting a tennis racket. The 

individual components of the racket, for example the strings, were modelled discretely. The aim 

was to develop a model which could be used to investigate the contribution of each constituent of 

the racket on the ball rebound velocity and vibration of the racket. The standard equation [2.37] for 

a one dimensional, elastic beam subjected to bending was used, but parameters were also added to 

account for the material damping of the frame and the stiffness/damping of the hand. The ball was 

modelled as an undamped spring with constant stiffness. It was assumed that the force travelling 

through the stringbed arrived simultaneously at the racket rim. Incorporating damping into the 

material and accounting for the soft tissue in the hand, meant that the vibrations died out as they are 

found to do experimentally. However, it was not stated precisely how the level of damping effects 

the ball rebound velocity. 

The main conclusion regarding the flexible beam modelling literature is that models already exist 

but they have not been experimentally verified for tennis ball-racket impacts, at high velocities. 

(b) The Ball 

Hubbard & Stronge (2001) used a table tennis ball to illustrate the mechanism of a hollow ball 

bouncing on a flat surface. In this study analytical equations were developed for the individual 

components which make up the stiffness of the ball, i.e. the shell stiffness and internal air pressure. 

These equations were used to model the impact of the ball on a flat surface. The model was 
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simplified so as not to include hysteresis losses in the materials, but did account for the 

contribution made by the momentum flux component of the force which acts on the ball. During 

the compression phase, an increasingly large proportion of the ball, that was initially moving 

towards the surface, will be brought to rest. The force due to the momentum flux is equal to the 

rate of change of momentum of the volume of material which is being brought to rest on the 

surface. The momentum flux is tensile during the restitution phase and therefore does not 

contribute to the force in this stage. 

The analytical equations for the momentum flux force require an assumption to be made regarding 

the shape of the deformed ball. Hubbard & Stronge assumed that the ball shape was a truncated 

sphere throughout impact and that each point on this sphere was moving at an identical velocity. A 

similar study had been previously conducted for footballs by 10hnson et al. (1972) and Percival 

(1976). Percival also assumed that the shell was inextensible and the undeformed section of the 

shell remained spherical. High speed video images of a tennis ball impacting on a rigid surface 

show that this assumption may be justified for low speed impacts but becomes less accurate at high 

speeds. Also, Hubbard & Stronge, Johnson et al. and Percival do not account for any material 

hysteresis losses which occur during the impact. 

To apply a model such as Hubbard & Stronge to a tennis ball, analytical equations for the stiffness 

of the sphere need to be generated, and a method of introducing material damping would also be 

required. 

2.5.3 Visco-Elastic models 

Many authors (Haake (1989), Leigh & Lu (1992), Lieberman & Johnson (1994), Dignall & Haake 

(2000b), Pratt (2000), Carrc~ (2000)) have attempted to use a visco-elastic model to simulate a 

sports ball-surface impact. These models use a combination of springs and dashpot dampers to 

represent the stiffness and damping respectively of the components in the impact. 

(a) The Ball 

Dignall & Haake (2000b) and Pratt (2000) used a simple 1 degree of freedom (l-DOF) model to 

simulate the normal impact between a tennis ball and rigid surface, as shown in Figure 2.17. The 

displacement XB represents the motion of the centre of mass (COM) of the ball mB. In this model 

the values of kB and CB represent the linear stiffness and damping of the ball. Both authors assumed 

that the values of these parameters were constant throughout impact, although they may vary with 

ball impact velocity. The governing equation for this system is, 

Given the first initial condition of XB = 0 at time t = 0, the solution to [2.42] is, 

xB = ae-bl sin{mt} 

4S 

[2.42] 

[2.43] 
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-'x B 

Figure 2.17 Kelvin-Voigt spring-dashpot model of a tennis ball impact on a rigid surface 

Differentiating [2.43] gives 

XB = ae-bt [wcos(cvt)-bsin(cvt)] [2.44] 

and 

[2.45] 

It was assumed that the displacement of the ball COM would be zero at the end of impact, which is 

supported by the experimental data in Cross (1999a). Therefore a second initial condition is XB = 0 

at t = Te where Te is the contact time. This gives, 

[2.46] 

Two more initial conditions are obtained by substituting the incoming and outgoing ball velocities, 

VB and V'B, into [2.46] which gives, 

. VI - bTc 
Xt=Tc = B = aOJe 

Equating [2.46] and [2.47] gives 

-V Tc a- 8-
1C 

Equating [2.47] and [2.48] gives 

1 
b = --In(e) 

Te 

where e is the coefficient of restitution. 

[2.47] 

[2.48] 

[2.49] 

[2.50] 
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Dignall & Haake assumed that the contact time was very similar to that of an undamped model and 

therefore the stiffness parameter kB was determined using, 

And for the damping parameter CB 

CB =- 2mB. 1n(e) 
re 

[2.51] 

[2.52] 

Dignall & Haake illustrated how kB and CB could simply be obtained from the experimentally 

measured values of Te and e, obtained using a force platform and light beam timers. It was shown 

that the stiffness kB increased from 28kN/m to 41 kN/m for a ball impact velocity ranging from 6m1s 

to 20mls. The damping coefficient CB increased from 6Ns/m to 15Ns/m in the same velocity range. 

The stiffness values that were published suggested a linear relationship between kB and the ball 

impact velocity VB. Also, a linear fit was found between the CB and VB. Unfortunately only a very 

small number of data points were used to support this claim. Also, this work involved the 

modelling of surfaces and therefore the maximum ball impact velocity was 20mls. This may not be 

high enough to encompass the magnitude of ball deformations found in an impact between a ball 

and racket. 
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Figure 2.18 Force-Time and Displacement-Time curves for a one degree-of-freedom spring 
damper model of a ball impact on a rigid surface (ball impact velocity = 20mls) 

Pratt (2000) illustrated another weakness of this model by way of the obtained Force-Time curve. 

A similar plot is shown in Figure 2.18. In the last 0.5ms of the restitution phase the force FB acting 

on the ball is negative, implying a tensile force which is not physically possible. During this period 

the ball centre-of-mass displacement XB is still positive. However, the magnitude of the damping 

force exceeds that of the stiffness force resulting in a negative force. 

(b) The Ball and Racket 

Leigh & Lu (1992) determined a visco-elastic model for an impact between a ball and a handle 

clamped racket. The model was constructed in three stages, the first being to model the impact 
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between a ball and rigid surface. This model contained a spring and damper in parallel, as in 

Dignall & Haake (2000b), but it was assumed that the stiffness parameter was a function of the ball 

COM displacement, and defined using 

kB = ko +nBxB 
2 [2.53] 

where ko is 18.44kN/m and nB is 23860kN/mJ
• 

Equation [2.53], and the coefficients ko and nB, were determined from quasi-static compression 

data. This data was modified to account for the different shapes of the deformed balls found in a 

static compression test between two flat plates compared to a dynamic impact. This modification 

was based on the assumption that the ball only deforms on one side during a dynamic impact, and 

therefore the measured quasi-static deformation should be halved. No data is presented to validate 

this assumption. 

It was assumed that the damping was linear and also the force due to gravity was accounted for. 

Many authors, for example Brody (1984), have shown that the gravitational force is negligible. 

The governing equation for a vertically moving ball hitting a rigid surface is, 

[2.54] 

There is no analytical solution for this equation and therefore a numerical method, utilizing the 

Newton-Raphson iteration procedure, was required. This calculation method was used to 

determine the value of the damping coefficient CB for an experimentally determined coefficient of 

restitution for the impact between a ball and rigid surface. An impact velocity of 7rn1s gave a value 

of CB equal to 6.7Ns/m, comparable with Dignall & Haake. 

The next stage of the investigation was to model the impact between a ball and head clamped 

racket. The stringbed was modelled as a spring with no damping. Research by the authors showed 

that the energy losses in the stringbed were negligible. The stiffness of the stringbed was found 

from a quasi-static compression test of the stringbed in which the force was applied by the ball. 

The details of the complete model of a ball impact with a stringbed are covered in detail in Leigh & 

Lu. The model was solved by numerical methods as before. Good correlation was found between 

the model and experimental ball rebound velocities, although the maximum ball impact velocity 

was only 7rn1s. 

The final stage of the work was to model the impact between a ball and handle clamped racket, and 

this is shown in Figure 2.19. The racket was modelled as an equivalent lumped mass supported by 

a linear spring and linear damper in parallel. The values of kR and CR were taken from other 

researcher's work, and the mass mR was determined using the assumption that the racket was a 

uniform beam. By equating the natural frequency of a uniform beam with that of a lumped mass 

the reduced mass mR was determined. Typical values of mR, kR and CR were 0.225kg, lOkN/m and 

O.94Ns/m respectively. 

The full equations of motion for this model are covered in Leigh & Lu but are considered too 

lengthy to present here. The equations were solved using numerically integration with acceptable 

error of less than 0.01%. A major criticism of this work was that the final model of the complete 
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ball-racket impact was not experimentally verified in terms of the ball rebound velocity. The 

model does however illustrate some well documented findings such as reducing string tension 

increases ball velocity. It also illustrated less-established findings such as an increase in ball 

velocity can be obtained by increasing the damping in the racket. 

undeformed 
system 

deformed 
system 

/ mB 
• 0 

/ 

Xs 

CB CR 

~ 
mR 

ks 
k8 kR 

Xs Xf? 

-------------- .~---
ball strings racket 

Figure 2.19 A visco-elastic model of an impact between a ball and grip clamped racket 
(reproduced from Leigh and Lu (1992)) 

Pratt, Dignall & Haake and Leigh and Lu have all generated models for the impact of a ball on a 

rigid surface. It has been shown that this model determines the acceleration, velocity and 

displacement of the ball COM during impact. Recent data, published by Cross (1999a, 1999b, 

2000a), has used a force platform to determine the experimental data for the acceleration, velocity 

and displacement of the ball COM. This could be used to verify the I-DOF models generated for 

the impact between a ball and rigid surface. 

2.5.4 Finite Element Analysis (FEA) 

There is a limited number of papers published in the field of tennis racket modelling which have 

used FEA. However, it is likely that this method is used heavily in the commercial development of 

tennis rackets due to the latest developments in PC software. These have lead to the availability of 

three dimensional CAD packages which act as the pre-processor for finite element solvers, 

reducing the time and cost of using FEA in product development (Yoxall 2002). 

Widing & Moeinzadeh (1990) used linear curved elements to model the frame and nonlinear cable 

elements to model the strings. The strings were modelled discretely and therefore the pattern, 

tension and characteristics could easily modified. The handle was clamped which has been proved 

by other authors to be unrepresentative of a players grip (Brody (1987)). This assumption had to be 

made because the complexity of the model meant that only a static analysis could be conducted. A 

load is applied to the racket and the resulting stress and strain distribution was calculated. This 
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data is useful to designers who are attempting to stiffen the racket frame, but does not necessarily 

help increase the knowledge of the ball-racket interaction during impact. In this paper it is quoted 

that increasing string tension also stiffens the racket frame and thus decreases racket deformation. 

This contradicts the findings of Cross (2001 c) who stated that increasing string tension reduces the 

stiffness of the racket frame. 

2.6 Field data 

Field data for tennis has been published at many different levels, all very useful for their intended 

purpose. Brody (1993) published a simple chart which gave the relationship between the ball 

velocity and the time taken for a ball to travel from one player to the other. Although this method 

was subject to simplification errors, it allowed coaches to determine the ball velocity simply from 

VCR or camcorder footage. 

A more comprehensive field study has been coordinated by VC Davis (2001) who have obtained 

typical ball velocities and spins in a range of tournaments including the VS Open. They used two 

high speed digital video cameras which operated at 250fps, with a shutter speed of 1I2000s. A 

summary of the data is given in Table 2.1. 

Table 2.1 Data for a range of professional tennis player first 
(reproduced from VC Davis (2001)). 

Player 

JimCourier 

ToddMartin 

Tomas Muster 

Pete Sampras 

PetrKorda 

Andre Agassi 

Mark Philippousis 

Michael Chang 

TimHenman 

Average service 

velocity (mph) 

1 st serve till serve 

108 91 

98 89 

105 71 

120 85 

101 88 

102 74 

123 99 

112 77 

120 85 

Ball spin range (rpm) 

1st serve 2nd serve 

2500-4054 3571-4167 

1667-3947 3000-4284 

1667-4284 3750-4998 

2100-4260 3900-5357 

1579-3750 3750-4284 

1200-4284 4054-4998 

1765-2830 2830-4546 

1000-3750 3125-4284 

1429-1667 4284-4998 

serves from the VS Open 

Average ball spin (rpm) 

1st serve 2nd serve 

2842 3810 

2798 3370 

2754 4374 

2699 4623 

2688 4017 

2449 4650 

2198 4018 

1677 3928 

1548 4641 

VC Davis (2001) measured the speed throughout the entire flight of the ball using the high speed 

video system. The maximum velocity of the ball during flight, at the point it leaves the racket, was 
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compared with the value given by a radar gun. Overall there was an average difference of 3.5% in 

the results, implying that the radar gun method of obtaining ball service velocities, which is used in 

many tournaments, is an accurate method. 

This study was conducted for both serves and ground strokes. It was found that the fastest serve 

and ground stroke were approximately 127mph and 82mph respectively. This compares with the 

fastest recorded serve in the world which is currently 149mph (Rusedski) on the male tour and 

127mph (Williams) on the female tour (Guinness (2000». UC Davis determined that a serve of 

approximately 127mph slowed down to approximately 58mph when it reached the receiver. Table 

2.1 shows that players reduce the speed of their 2nd serve, but increase the amount of spin. The 

data is quoted to an accuracy of 1 rpm yet no error analysis is given to justify this high level of 

confidence. 

Table 2.2 Summary of the data for male and female tennis players performing a serve 
(reproduced from Elliott et al. (1986». 
Parameter Mean value Standard Deviation 

Ratio of vertical impact position and standing height 1.51 0.02 

Maximum resultant velocity at tip of racket before 33.3m1s 4.1m1s 

impact 

Angular velocity ofthe racket at impact 38.2radls 9.9radls 

Resultant ball velocity at impact (downwards) 2.16m1s 0.7m1s 

Resultant ball rebound velocity 38.4m1s 5.2m1s 

Direction of racket vector at impact, relative to 4.00 

horizontal 

Elliott et al. (1986) recorded tennis players of state or national level using two phase-locked high 

speed video cameras operating at 200fps. The direct linear transformation method (King (2000» 

was used to obtain a three dimensional reconstruction of the tennis serve. A mean square error of 

6rnm is quoted for the accuracy of the X, Y and Z values of the known points in space. Table 2.2 

summarises the data which was obtained from the digitised points on the player and racket. It 

shows that the ball was struck from a mean vertical position equal to 151% of a player's standing 

height, representing 2.7m for a player who is 1.8m (6ft) tall. The velocity of the racket prior to 

impact was 33.3m1s and this resulted in a ball service velocity of 38.4m1s. 

Groppel et al. (1983) described an experiment which used a 16mm Locam camera operating at 

500fps to record the spin for two varsity tennis players hitting forehand drives (Groppel 1975). 

The maximum top and back spin obtained in this experiment was 195 and 235radls respectively. 

The quoted error range in the spin calculation was ±24.l rev/s (l52radls), which highlights the 

difficulty in obtaining spin from high speed video images. 
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Mitchell et al. (2000) used a three-dimensional active marker system which sampled at 400Hz to 

measure the motion of a tennis racket during a serve for 6 county standard players. The maximum 

velocity of the impact point on the racket was approximately 38m1s and the maximum angular 

velocity of the racket was 6Sradls. It was found that these values generally dropped by -10% for 

an increase of -12% in the racket moment of inertia. It was found that the instantaneous centre of 

rotation at impact was approximately 330mm from the butt end of the racket. All this data 

contributed to the conclusion that the velocity of the impact point was primarily due to the angular 

velocity of the racket as the hand is moving relatively slowly at this point. 

Schleihauf et al. (2000) used two cameras operating at 60fps to conduct a three dimensional 

analysis of tennis serves, for 25 professional players. The mean ball rebound velocity was 

measured as 46.8, 41.6 and 37.6m1s for flat, slice and topspin serves respectively. The standard 

deviations quoted for this data sample was -5rn/s. This data shows that a flat serve gives the 

highest ball rebound speed, followed by a slice and then a topspin. The racket head velocity was 

measured as 35.8, 36.1 and 36.4rn1s for the flat, slice and topspin serves respectively. This shows 

that the racket head velocity is not strongly affected by the types of serve. This paper also shows 

that all serves are never purely 'flat', 'slice' or 'topspin' but always contain a combination of 

components. 
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2.7 Summary 

This review has highlighted the typical equipment used by players in the game of tennis. There are 

two main constructions of tennis ball which are defined as Pressurised and Pressureless. It has 

been shown that the Pressurised ball is structurally stiffer than the Pressureless ball, and has a 

higher coefficient of restitution for an impact with a rigid surface. The review has highlighted that 

many types and diameters of string are available to the player, and these are used at tensions of 

between 40 and 70lbs. 

A review of existing 'Field data' has ensured that any experimental or theoretical analysis is 

conducted using realistic velocities, angles and spins, for the ball and racket. For example, the 

literature shows that the maximum recorded ball speed, in the men's and women's game, is 

149mph and 127mph respectively. 

The main aim of this current study is to model the impact between a tennis ball and a racket. It has 

been shown that a player's hand provides little support to the racket, for impacts located on the 

longitudinal axis. Therefore it is generally excepted that the racket can be considered to be 'freely 

suspended', for impacts at these locations. This assumption will be used throughout this current 

study. 

Numerous authors have modelled the impact between a ball and racket using rigid body dynamics. 

This type of model can be used as a first approximation to understand the fundamental dynamics 

which occur during impact. However, due to the nature of this model it is not capable of 

simulating the deformation of the ball, stringbed or racket during impact. It therefore is of limited 

use when attempting to realistically model the impact. 

Several authors have superseded this simple rigid body model and simulated a tennis racket as a 

one-dimensional flexible beam. The literature shows that the modes of vibration and node 

locations for this simple flexible beam are very similar to those for a tennis racket. The main 

weakness of this published material is that the accuracy of the derived model has not been 

experimentally quantified. Also, the model properties of the ball and stringbed have generally been 

assumed and, therefore, may not be physically representative of the actual objects. 

This current study aims to advance the models which have been discussed in this review. The 

current study aims to derive a model which is (1) verified using experimental data, and (2) contains 

components which are physically representative. This type of model will enable the impact to be 

accurately simulated and also can be used to increase the level of understanding of the impact. 
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3. Tennis Ball Properties • Experiment Apparatus and 

Methods 

3.1 Introduction 

The overall aim of this study is to develop a model and understanding of the impact between a 

tennis ball and racket, as was expanded upon in the introduction in Chapter 1. This impact 

involves a complex interaction of four physical bodies, which are, 

1. The Ball 

2. The Stringbed 

3. The Racket frame 

4. The Human body 

A detailed understanding of each of these parameters is required in order to construct the overall 

model. For example, the model must be able to predict the effect of changing the mass, stiffness or 

damping of the ball on the impact. This would be used to determine the differences between 

different ball types. The completed model will therefore contain some component which 

corresponds to the ball, and this element can be assigned the relevant mass, stiffness and damping 

properties for the impact that is being simulated. This component may take the form of a single or 

multi degree-of-freedom visco-elastic model, a 3D finite element model or an analytical solution 

based on shell theory. 

Clearly the model of the ball must be verified using experiment data. For example, high speed 

video cinematography could be used to determine the deformation of the ball for an impact 

between a ball and a swinging racket. The obvious problem with this type of experiment is the 

potential lack of repeatability as the player is unlikely to swing the racket at a control speed. A 

solution to this would be to build a robotic device which simulated the grip forces that a player 

applies to a tennis racket. However, in section 2.4.3 it was shown that a racket can be considered 

to be freely-suspended for impacts along the longitudinal axis. By changing the frame of reference, 

a typical balVracket impact can easily be simulated by propelling the ball at a stationery freely 

suspended racket. The main difficulty in this experiment is that the ball properties must be isolated 

from those of the string bed and racket frame which themselves combine to form a complex non­

linear system. For example, to develop a relationship between ball compression and impact 

velocity, the properties of the string bed must also be fully understand. 

An alternative approach to the development of a model for the ball component in a balVracket 

impact involves the determination of a ball model for a much simpler impact. For example, it 

would be much easier to develop a model for an impact between a ball and rigid surface, and then 

attempt to modify this so that it is suitable for an impact on a deformable surface. 

In this, and the subsequent two chapters, a model of a tennis ball impacting perpendicular to a rigid 

surface is developed. An understanding of the physical properties of the ball can be gained by 

performing a range of suitable experiments. The data obtained from these experiments can also be 
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used to verify the accuracy of the model of an impact between a ball and rigid surface. These 

experiments include both quasi-static compression tests and dynamic impact tests to determine 

various physical properties such as the structural stiffness of the ball. This chapter discusses the 

apparatus used in these experiments which include high speed video systems and force platforms, 

as well as the standard equipment used for the International Tennis Federation approval tests (ITF 

2001). 

Ultimately, a model of the complete ball, stringbed and racket frame system will be developed. It 

is not claimed that the model of a ball impact on a rigid surface can be used directly to define the 

ball component for an impact with a racket. However, the understanding of ball's physical 

properties which is gained during the development of this simple ball model can be used to give a 

first approximation of a model for the ball in an impact with a racket. 

Chapters 3 to 5 form a trilogy which aims to develop a model of a ball impact on a rigid surface. 

The aim of this chapter is only to introduce the relevant experimental apparatus. The data obtained 

using this apparatus is presented in Chapter 4, and the model is developed in Chapter 5. 

3.2 Quasi-Static Ball Stiffness 

3.2.1 Overview 

It is widely accepted that the structural stiffness of the ball will affect the impact between a ball and 

rigid surface; the magnitude of ball deformation being inversely proportional to the stiffness. In 

section 2.2.3 it was shown that the quasi-static structural stiffness can be determined by 

compressing the ball between two plates and sampling the force and reSUlting deflection. The 

deflected form of the tennis ball in this compression test is different to that which occurs in a 

dynamic impact with a surface. However, it still gives a measure of the difference in stiffness 

between different ball types, and has been used by many authors (Leigh and Lu 1992, Kawazoe 

I 997a) to aid the development of an impact model. 

3.2.2 Experimental Apparatus 

A MecMesin uniaxial test machine was used to determine the quasi-static stiffness of the ball. This 

is the same device as that used in the International Tennis Federation compression test, and is 

shown in Figure 3.1. This test specifies the rate and magnitude of the ball compression and is 

designed to ensure that all approved tennis balls have the same structural stiffness. The ball is 

compressed at a rate of 2.5mmlsec (O.linlsec) throughout the test. A schematic diagram of the 

loading sequence is shown in Figure 3.2. Two different compression readings are taken for an 

80N (18Ibs) load; these are defined as the forward and return deformation. The measured values of 

these two parameters must fall within the range specified in the Rules of Tennis. A full description 

of this test is given in Section 2.2. In brief, the test involves loading the ball up to 80N (18Ibs) and 

then maintaining the load for 5 seconds before reading the forward deformation. Then the load is 
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then increased to 25.4 mm and then reduced back to 80 N . The load is held at this value for 10 

seconds before the return deformation is recorded. Finally the load is returned to zero. 

Figure 3.1 MecMesin machine used for ITF compression test. 

Force 
(N) 

80 

Forward / """'- Return 
Deformation Deformation 25.4 

Ball compression (mm) 

Figure 3.2 Schematic of a force-deformation plot from MecMesin machine. 

The forward deformation gives a true indication of the stiffness of the ball, neglecting any damping 

effects. This is achieved by maintaining the 80 N load for 5 seconds to allow the deformation to 

settle before the value is recorded. This is necessary because rubber is a visco-elastic material and 

its stiffness is thus rate dependent. As the loading is not truly static the deformation must be 

allowed to settle in order to determine the actual stiffness. 

The return deformation is read in a similar manner but, due to the extra deformation, the load is 

maintained for 10 seconds to allow the value to settle. The return deformation is always greater 

than the forward deformation because the rubber exhibits hysteresis loss during compression. The 

difference between the forward and return deformation is a measure of how much energy has been 

recovered by the ball. 
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Groppel et al. (1987a) and Williams (2000) have shown that a typical ball deformation for a ground 

stroke was in the order of 20 mm. The ITF test simply determines if the ball passes or fails the 

approval test based upon whether the measured values of forward and return compression lie within 

predefined limits. Therefore this test only regulates the stiffness of the balls for a deformation of 

approximately 8 mm. However, the MecMesin device exports the force-deformation data for the 

complete load cycle shown in Figure 3.2. Therefore, in this current investigation the quasi-static 

stiffness will be determined for ball deformations up to 25.4 mm (1 inch). The results of this 

testing are discussed in section 4.2. 

3.3 Analysing normal ball impacts on a rigid surface using a high speed 

video system 

3.3.1 Overview 

In the introduction it was stated that the aim of Chapters 3 to 5 was to develop a model of an 

impact between a ball and rigid surface. This requires experimental data for this impact which will 

be used to both increase the understanding of the ball properties and to verify the model results. In 

this section, a method is discussed which uses a high speed video system to record the impact 

between a ball and rigid surface. The objectives of this work are listed as follows, 

1. Determine the contact time for the impact 

2. Determine the magnitude and form of the ball deformation during impact. 

This testing will be performed for a range of ball impact velocities that are typical in the game of 

tennis. 

3.3.2 Experiment Apparatus 

(a) (b) 

Figure 3.3 (a) Dropper used to release the ball vertically with no spin, and (b) Air cannon used to 

propel the ball horizontally with no spin. 
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In this study, balls were projected normal to a flat surface at a range of speeds. For low speed 

impacts, the balls were dropped vertically onto the surface using a dropper device developed by 

Goodwill (1997) and shown in Figure 3.3(a). This device was designed so that the ball is released 

with no spin. This was achieved by using a trapdoor which rapidly accelerated away from the ball 

once triggered. 

Due to obvious height constraints, the highest velocity obtainable by dropping the ball is 

approximately 7m/s. For speeds greater than this value the ball is propelled horizontally at the 

rigid surface using the air cannon shown Figure 3.3(b). Compressed air is stored in an chamber 

then rapidly exhausted through the cannon. High speed video analysis has shown that the ball 

leaves the cannon with no spin . The minimum speed for the cannon to work reliably is 

approximately 13m1s. There is therefore a range of velocities between 7 and 13m1s where no 

results could be obtained as neither projection device is suitable. 

Speed gates 
High speed 

..... video ..... 
..... Air cannon 

....... 
.. t" .... 

I 
/ 

Figure 3.4 Experiment layout showing ball projected at rigid surface using an air cannon (for ball 

impact velocity > 13m/s) 

The objectives of this study are to measure the ball deformation and contact time for an impact 

between a ball and rigid surface. The equipment used to perform this task is illustrated in Figure 

3.4. Speed gates were used to measure the ball impact and rebound velocity. These gates used two 

beams of light, two photo-sensors and a sampling unit to calculate the ball velocity. Figure 3.4 

shows the arrangement for ball impact velocities above 13m/s. For the drop tests (velocities < 

7m1s) the rigid surface was rotated so that it was orientated horizontally, and the speed gates were 

removed as they can not operate reliably at velocities less than approximately 10m/s. 

A Phantom HJAAA high speed video system was used to record the impact. This camera is capable 

of recording at up to 30,500 frames per second, and has a maximum resolution of 512 x 512 pixels. 

It was important to ensure that the focal axis of the camera was perpendicular to the flight of the 

ball and in the same plane as the surface to minimise perspective errors during image analysi s. The 

high speed video system was controlled using Phantom v4 software on a PC laptop and thc images 

were stored in the native Cine file format. 
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Two different camera settings were used in this experiment depending on the ball impact velocity. 

1. The camera was operated at 6,000 frames per second at a resolution of256 x 128 pixels for 

the drop tests. For these low speeds the speed gates could not operate reliably therefore the 

impact and rebound velocities were determined using the high speed video images. This 

required a relatively large field of view to ensure that sufficient images were captured for 

the velocity and ball deformation to be calculated accurately. 

2. The camera was operated at 11 ,000 frames per second at a resolution of 128 x 128 pixels 

for the impact tests which used the cannon. For these tests the speed gates were used to 

determine the velocity of the ball so a smaller field of view was allowable to capture the 

necessary information to determine the ball deformation during impact. 

3.3.4 Analysis ofhigh speed video images 

The One video images were converted into the Microsoft A VI file format to allow analysis to be 

conducted in Vidimas vI. Vidimas vIis dedicated image analysis software which was written by 

the Sports Engineering Research Group at the University of Sheffield. It is based on Richimas vI 

software (Carre 2000) but has been modified by the author to allow the importing of Microsoft A VI 

files. Vidimas v I has a circular mouse cursor which is used to select the co-ordinates of the ball, 

as shown in Figure 3.5. The co-ordinates are exported into MS Excel 2000 for analysis. These co­

ordinates are in screen pixel units, and therefore have no physical dimension. In this experiment, 

the pixel-to-mm conversion factor was obtained by placing a grid with a line spacing of 40mm in 

the same plane as the ball trajectory, perpendicular to the focal axis of the camera. An image of 

this grid was recorded by the camera; the camera being located at the same position as shown in 

Figure 3.4. The intersect points on the grid were sampled in Vidimas vI , and the relevant pixel-to­

mm conversion factor was calculated. To optimise the accuracy of the calibration, the intersect 

points were obtained over the entire field-of-view. 
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Figure 3.5 Illustration of the Vidimas vI user interface, showing a high speed video image of the 

ball prior to impacting on a rigid surface, during a drop test. 
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(aJ Determining the ball impact and rebound velocity 
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Figure 3.6 Illustration of the vertical motion of the ball before and after impact, for a ball 

dropped from 2.54m (IOOinchs) 

For the tests that used the cannon to propel the tennis ball (ball impact velocity> l3m/s), the 

velocity of the ball was measured using the speed gates. However, for the drop tests (ball impact 

velocity <7rn1s) the impact and rebound velocity of the ball was determined from these high speed 

video images. The ball velocity was determined by plotting the vertical position of the ball at a 

number of discrete time intervals. The distance (and time) over which the ball position was 

sampled was maximized as this minimized errors when determining the ball impact velocity 

(Goodwill 1997). The camera was operated at a relatively high frame rate to ensure that a 

sufficient number of images were captured to accurately determine the deformation of the ball 

during impact. This meant that there were approximately 50 frames available to determine the ball 

impact and rebound velocity. During this short time (approximately 8ms) the ball will accelerate 

due to gravity and therefore if an average velocity for this period was used then the velocity would 

be underestimated (Thomson 2000). An alternative method involves plotting a 2nd order 

polynomial trendline through the position time data, determined using a least-squares regression in 

MS Excel 2000. 

Figure 3.6 shows an example of this method for a ball being dropped from 2.54m. The ball 

position was only sampled prior and post impact. 

The 2nd order polynomial of the form, 

xB = at2 + bt + c [3.1 ] 

[3.1] is differentiated to give the velocity ofthe ball at any time, t, 

dx 
_B =2at+b 
dt 

[3.2] 

The parameters a, b and c can easily be determined using the least-squares regression method. 

Therefore the velocity dxB at time t can be found using [3.2]. This analysis is conducted for both 
dt 
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the impact and rebound phase, and the time t at which the ball impacts and leaves the surface can 

easily be determined from the high speed video images. A more detailed description of this 

method can be found in Thomson (2000). 

(b) Determining ball compression and contact area 

Figure 3.7 (a) Image of ball resting on surface used to accurately define uncompressed ball 

position, and (b) positions sampled on compressed ball during impact. 

Before the impact tests were conducted, an image of the ball resting on the surface was captured, as 

shown in Figure 3.7a. This was used to defme the uncompressed ball position. The images of the 

ball, during contact with the surface, were analysed in Vidimas vI to determine the magnitude of 

the ball compression and contact area diameter, as illustrated in Figure 3.7b. The diameter of the 

ball/surface contact area is defined as the length BC. The data obtained from this experiment was 

also used to measure the contact time for the impact. In this experiment, the definition of measured 

contact time was the time taken for the ball deformation to return to zero. The results for this 

experiment are shown in section 4.4.3 . 
\ 

A simple repeatability study was conducted to determine the accuracy of the manual method for 

obtaining the magnitude of ball compression and contact area diameter. In this study, an individual 

- image was imported into Vidimas v J and the points A, B and C were sampled. The image was then 

unloaded and the co-ordinates-of the points were stored. Thi.s-.process was repeated 50 times to 

generate sufficient data to conduct a valid statisti€al analysis. The standard deviations for the 

obtained values of ball compression and contact area diameter were 1mm and 2mm respectively. 
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3.4 Normal ball impacts on a Force Platform 

3.4.1 Overview 

One of the aims of this chapter was to generate experimental data which could be used to verify a 

model for an impact between a ball and rigid surface. The exact form of this required experimental 

data will depend on the nature of the model. If the model simulates the structural shape of the ball 

deforming on the surface, for example the finite element method, then the experimental data in 

section 3.3 may be sufficient. However, if the model simulated the force acting between the ball 

and surface, for example a visco-elastic model, then the experiments conducted in section 3.3 

would be insufficient as no forces have been measured. 

In this section an experimental method is discussed which uses a force platform to measure the 

force acting between the ball and surface, during impact. Thomson (2000) showed that this data 

can be analysed to give the motion of the ball centre of mass during impact. This data can also be 

used to determine the contact time for the impact and thus an effective stiffness for the ball. 

3.4.2 Experiment Apparatus 

... . .. . ....... . . .... . .... . ... .. ... .. . ... 

Force platform 

Speed gates ~~ 
Air cannon 

. ·f 
.., .... 

~ .. .... . ....... .. ..... ... .. ...... ... .... ' 

Figure 3.8 Experiment layout showing ball projected at force platform using an air cannon (for 

ball impact velocity > l3m/s). 

The equipment used in this experiment is shown in Figure 3.8, and is very similar to that described 

in section 3.3. The balls were projected at the piezoelectric force platform using either the cannon 

or the dropper, depending on the impact speed used. The speed gates were used to determine the 

impact/rebound speed of the ball when it was propelled using the cannon, and a Phantom HI AAA 

high speed video camera was used for this purpose during the drop tests. The platform was capable 

of withstanding impacts of up to 30mls, so this was the maximum speed that was tested. The force 

platform is shown in Figure 3.8, and detailed construction details for this platform are given in both 
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Cross (2000a) and Thomson (2000). A x 10 probe was used to connect the piezoelectric platform 

to a charge amplifier to increase the time constant of the circuit, as explained in more depth by 

Thomson (2000). The voltage output from the charge amplifier was sampled by an analogue-to­

digital converter (ADC) and laptop PC, at a rate of approximately 67kHz. 

3.4.3 Calibration of Force Platform 

The force platform outputs a voltage V and this was sampled by the ADC and PC to give a voltage­

time plot. Thomson (2000) used the same equipment and verified that the voltage was linearly 

proportional to the force. However, there is known to be a degree of scatter in the actual 

calibration value which has been assigned to the ball not impacting in a consistent position on the 

platform. To account for this a separate calibration factor, kcaJ. was determined for each impact. 

The integral of the voltage-time signal re v dt is proportional to the impulse applied to the ball 

m(V' B -VB). The ADC samples at a sufficiently high frequency for the trapezium rule to be used 

to integrate the voltage data with negligible error; the time step At between samples is only 

0.0149ms. The calibration factor, kca/ is defined as, 

[3.3] 

The force FB acting on the ball at any time t can therefore be determined from the voltage Vt using 

[3.4] 

The acceleration of the ball centre-of-mass xB can easily be determined from the Force-Time plot. 

The velocity xB and displacement xB of the ball COM during impact can be determined from 

successive numerical integration of the Acceleration-Time data. As the time step of the sampled 

data is so short, it was assumed that in the time period from (t-At) to t the acceleration acting on the 

ball was constant and equal to the average of (x B Lru and (x B )/. The enforced boundary 

constraints were (XB ),,,0 = VB and (XB Lrc = V'B' where VB and V'B were the experimentally 

measured impact and rebound velocities of the ball respectively. The velocity of the ball COM at 

time t can be calculated using, 

[3.5] 

A similar method was used to determine the displacement of the ball COM, XB, during impact. 
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3.5 Summary 

In this chapter, two main experimental methods have been discussed which had the collective aim 

of increasing the understanding of the physical properties of a tennis ball. The two experiments 

described were, 

1. Quasi-static compression between two rigid plates. 

2. Normal impact between a ball and rigid surface. 

The experimental methods can be used to obtain the following parameters from these two tests, 

a) Quasi-static ball stiffness. 

b) Ball impact and rebound velocity. 

c) Ball compression and contact area during impact. 

d) Contact time for impact. 

e) Force acting on ball during impact. 

f) Ball centre-of-mass motion during impact. 
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4. Tennis Ball Properties - Experimental Data 

4.1 Introduction 

The aim of this overall study is to obtain a model for an impact between a tennis ball and racket. In 
Chapter 3 it was noted that this study must be split into a number of finite stages due to the high 

number of variables involved in the ball-racket impact. The logical first stage is to develop an 

understanding of a much simpler impact in which a tennis ball lands perpendicular to a rigid 

surface. This smaller study requires a range of experimental parameters to be measured for this 

impact, such as contact time, ball impact/rebound velocity and ball compression. The experimental 

methods which are suitable for measuring these parameters are described in sections 3.3 and 3.4 In 
this chapter, data is obtained using these experimental methods. The two main objectives of this 

chapter are to generate experimental data which can be used as follows, 

1. To increase the understanding of the mechanism involved in an impact between a ball and 

rigid surface. 

2. To generate experimental data to verify a model of this impact. 

A supplementary objective of this work is to identify how the structural stiffness of the ball 

influences the dynamic impact between a tennis ball and racket. This requires a further experiment 

to be performed to determine the quasi-static stiffness of the ball for a compression between two 

flat plates. This experiment is described in section 3.2. 

In this chapter, experimental data is obtained for a range of ball types which encompass all those 

typically used in a game of tennis. 

4.2 Ball Types used 

In this chapter, the experiments are conducted on the following three standard production tennis 

balls which are defined as, 

1. Pressurised - Dunlop Wimbledon Slazenger. 

2. Pressureless - Tretom TXT. 

3. Oversize - Wilson Rally. 

and one non-standard ball which is 

4. Punctured - a Pressurised ball which has been punctured repeatedly around the seam using 

a paperclip to release the pressure. 

These balls were chosen to illustrate the influence of different constructions on the physical 

properties of the ball. Table 4.1 summarises the nominal ball constructions. The Pressurised and 
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Pressureless balls are representative of the range of ball properties exhibited by Type 21 balls. The 

Pressurised ball is typical of a ball which is considered to have the best playing properties. This is 

deduced from evidence of its popularity with players of professional and club standard. The 

Pressureless ball has a thicker wall thickness to compensate for the internal air being at 

atmospheric pressure. The Pressureless ball is typical of a ball which is popular, according to its 

manufacturers, with recreational level players who appreciate its durability; this ball does not lose 

its stiffness unlike Pressurised balls which suffer from air pressure leakage. 

Table 4.1 Summary of nominal ball construction properties. 

Ball definition Diameter Shell thickness Internal 

Pressurised 67 3 
Pressureless 67 4 
Oversize 71.5 2.7 
Punctured 67 3 

The Oversize ball is typical of a Type 3 ball which has recently been approved by the ITF to be 

used in competitions of any level. This ball is approximately 6% larger than a Type 2 ball and has 

the same internal air pressure but a thinner wall thickness compared to the Pressurised ball. 

Anecdotal evidence from players suggests that Pressureless balls, and to a lesser extent Oversize 

balls, feel 'heavier' than Pressurised balls. The Punctured ball is a gauge of a tennis ball with 

'poor' playing properties, and is also known to feel 'heavy' and 'lifeless' according to players. It is 

intended that the results in this chapter can be used to explain these differences. 

60 
ITF Approval Bounds 

........... 1 Upper 

59 

56 Lower 

55 

Pressurised Pressureless Oversize Punctured 

Figure 4.1 Mass of four balls of each type, showing the bounds of acceptance for ITF Approval. 

The Punctured ball is a Pressurised ball with no internal air pressure. It is assumed that very little 

air can escape out of the punctured holes during impact, due to its short duration. This ball would 

not pass the ITF regulations due to its low stiffness, but was tested to help understand the 

contribution that the internal pressurisation of a tennis ball has on its quasi-static stiffness and 
impact behaviour. 

I In December 2000 the ITF brought in a rule change which classified balls into three categories based on the 
diameter and stiffness. The definitions of these categories are given in Chapter 2. 
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In this study, four balls of each type are used (except for the Punctured ball); the mass of each ball 

is shown in Figure 4.1. This figure also shows that all the balls lie within the upper and lower 

bounds of acceptance for ITF Approval. There is some scatter in the values which can be assigned 

to manufacturing tolerances. It should be noted that the majority of the balls have a mass of 

S7.0±O.Sg, which corresponds to a variation in the order of only ±1 %. 

4.3 Quasi-static compression testing 

4.3.1 Force-Deformation results 
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Figure 4.2 Quasi-static Force-Deformation plots for the three mutually perpendicular axes of the 

balls. The data is presented for four ball types. 

In section 3.2.2, a test was described which involved the ball being compressed between two rigid 

plates in a MecMesin test device. This is the same test procedure as used in the ITF Approval test 

(ITF 2002). Before each test, the balls are pre-compressed to remove the 'set' in the rubber. The 

MecMesin test device compresses the balls by approximately 2SAmm (l inch). Figure 4.2 (a)-(d) 

show the results for the quasi-static compression tests for one ball of each type. The plots for the 

other balls of each type are shown in Appendix B.2. 

It was found that there was very little scatter in the results for the three mutually perpendicular axes 

of all of the Pressurised, Oversize and Punctured balls. However, for the Pressureless ball, it was 

found that the maximum force measured for the y-axis was consistently lower than for the other 
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axis's. (It should be noted that the y-axis simply corresponds to the second axis that was tested, and 

not any specific orientation of the ball.) The variation of the ball stiffness in each axis should give 

an indication of the homogeneity of the ball. The results therefore imply that the p,:essurised, 

Oversize and Punctured balls can be con~idered homogenous, whereas the Pressureless ball can 

not. However, the fact that the 'rogue' orientation is always along the y-axis cQuld be a 

coincidence but it is more likely to be due to a systematic error in the experiment. More balls 

would need to be tested to further investigate this phenomenon. 

500 20 

(a) I Pressurised . 
I Oversize (b) Pressurised 

400 Oversize 

'E 15 

Z Z Pressureless 

~300 ::!. 
<Il Punctured 

~ <Il \,- ... 0 ~ 10 u.. 
200 ~ 

5 
100 

0 

10 20 30 40 0 10 20 30 40 
Ball Deformation (rrrn) Ball Deformation (rrrn) 

Figure 4.3 (a) Mean Force-Deformation plot for each ball type, with error bars illustrating the 

scatter in the data for the individual axes, and (b) forward stiffness calculated using the mean force­

deformation plots. 

To enable comparisons to be made between the different ball types, the mean result for the three 

axes of the four balls of each type was calculated (12 compressions in total); this is defined as the 

mean axis data. A comparison ofthe mean axis data for each ball type is shown in Figure 4.3 (a). 

Figure 4.3(a) shows a force-deformation plot of the mean axis data with error bars. Insufficient 

data was obtained to conduct a full statistical analysis of the results so the error bars simply 

represent the absolute scatter in the raw data for the individual axes. Figure 4.3(a) shows that the 

differences between the ball types are of greater magnitude than the scatter represented by the error 

bars. 

Figure 4.3(b) shows the ball stiffness for the mean axis data of each ball type; the stiffness being 

defined as the ratio of the force and deformation during the loading phase of the test. The ITF 

Approval test (described in detail in section 2.2) ensures that all the balls deform within a specified 

pmge for a load of 80.0N (18Ibf). This load corresponds to a ball deformation of - 7mm. The 

~pproval test specifies that the MecMesin machine pauses at this load for five seconds before the 

:deformation is recorded. This explains the discontinuity in the plots in Figure 4.3(b) at a ball 

~eformation of - 7mm. This figure shows that all the standard production tennis balls have a 

~imilar stiffness for ball deformations of this value. This can be explained by the fact that all these 

:balls passed the ITF Approval test for compression. The measured stiffness of the Punctured ball 

;i~ likely to be influenced by air leaking through the 'puncture' holes, and therefore may not be a 

true value for this ball. However, the results do give an indication of the contribution of the 

internal air pressure on the ball structural stiffness. 
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Figure 4.3(b) shows that the Pressurised ball is consistently stiffer than all the other ball types. For 

a ball compression of - 7mm, the Pressureless ball is stiffer than the Oversize ball. However, at 

higher ball deformations the Pressureless ball is less stiff compared to the Pressurised and Oversize 

balls. The Punctured ball is significantly less stiff than all the three standard production balls . It is 

interesting to note that the stiffness of the two balls which are internally pressurised (Pressurised 

and Oversize) increases appreciably with ball deformation, whereas the other two balls, which are 

not internally pressurised, have a stiffness which is relatively independent of ball deformation. 

Figure 4.3(a) and (b) also show that, at high ball deformations, the Pressureless ball acts more like 

a Punctured ball than a Pressurised ball. If the holes in the Punctured ball could be sealed then this 

wou ld act to increase the stiffness of this ball. This confirms that the Pressureless and Punctured 

ball s have a similar stiffness at high ball deformations . 

4.3.2 Hysteresis loss results 

1.6 
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.1111. 
Pressureless Oversize Punctured 

Figure 4.4 Hysteresis losses obtained from the Force-Deformation plots for each ball type. 

In section 4.3.1, data is presented for a compression of a tennis ball between two rigid plates. The 

ball is loaded to a compression of 25.4mm, at a rate of approximately 2.5 mm/sec, and then 

un loaded. Figure 4.2(a)-(d) show that the ball exhibits a large hysteresis loss during this 

compression cycle. The magnitude of this hysteresis loss can easily be calculated by integrating 

the data using the trapezium rule. The mean loss for the three individual axes of each ball (of each 

type) is presented in Figure 4.4. This figure shows that the Punctured ball exhibits the largest 

hysteresis loss, followed by the Pressureless, Pressurised, and then the Oversize balls. 

A reason for the Oversize ball having the lowest hysteresis loss was suggested by Goodwill & 

Haake (2000). The Oversize ball has a larger diameter and therefore the angle Bthrough which the 

wall is deformed during compression is smaller (see Figure 4.5). Also, the wall of the rubber core 

is thinner for an Oversize ball compared to a Pressurised ball. Both these characteristics lead to 

lower stresses in the rubber during compression, so the hysteresis losses are lower for a specific 

deformation magnitude. An analogous argument can be used to illustrate why the Pressureless 

ball has a higher hysteresis loss compared to the other two standard production tennis balls. The 

Pressureless ball has a much thicker wall thickness and therefore the stresses in the rubber are 

much higher, for a specific deformation, resulting in a higher hysteresis loss. The high value of 
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hysteresis loss measured for the Punctured ball is likely to be a combination of air leaking through 

the holes during compression and the lack of structural stiffness during the recovery phase. 

t 
Figure 4.5 Illustration of the angle through which the ball wall is deformed when compressed 

between two plates. 

4.3.3 Summary 

In this section a collection of four types of tennis ball were tested in a MecMesin test device. This 

machine compressed the ball at a rate of approximately 2.Smmlsec, to a distance of 2S.4mm. It 

was found that the stiffness of all the production tennis balls was very similar for deformations of 

approximately 7mm. This was because all the balls were designed to pass the ITF approval test 

which regulates the stiffness of a tennis ball for a deformation of -7mm. At higher ball 

deformations the Pressurised ball was stiffest, followed by the Oversize, Pressureless and then the 

Punctured ball. The results highlighted that two types of tcnnis ball can have an identical stiffness 

at a low deformation, but vastly different stiffness at higher deformations. For example, at high 

deformations the Pressureless ball had a similar stiffness as a Punctured ball. 

The hysteresis loss which the balls exhibited during the compression test was measured by 

integrating the Force-Deformation data. It was found that the Oversize ball had the lowest 

hysteresis loss, followed by the Pressurised, Pressureless and then the Punctured ball. It was 

concluded that the Oversize ball exhibited the lowest losses due to its geometry and reduced wall 

thickness which both acted to reduce the bending stresses in the rubber wall. 

The results presented in this section give a good comparison of the physical properties of the 

different types of tennis ball. They are only directly relevant to a quasi-static compression of the 

ball, between two rigid plates. However, they may be used at a later stage to help explain results 

obtained for a dynamic impact betwcen a ball and surface. 
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4.4 Normal ball impacts on a rigid surface 

4.4.1 Introduction 

In section 3.3 an experiment is described which involves a ball being projected towards a flat, rigid 

surface; impacting perpendicular to the plane of the surface. The ball impact and rebound velocity 

was measured using either a set of speed gates or a high speed video system. The video system 

was also used to determine the magnitude of the ball deformation and ball/surface contact area 

during impact. 

The following section illustrates and discusses the results for this impact test. Four different ball 

types are used, as in the previous section. The objectives of this experiment were, 

1. To determine the energy loss in an impact between a ball and rigid surface by measuring 

the ball impact and rebound velocities. 

2. To determine the magnitude of the ball defonnation and the contact time. 

The acquired data can then be used to understand the differences in the physical properties of the 

~ifferent ball types, and also to identify how these properties vary with the ball impact velocity. 

4.4.2 Ball rebound velocity - Results and Discussion 

Figure 4.6(a) illustrates the relationship between the ball impact and rebound velocity for four 

different ball types. It shows that all the standard production balls (Pressurised, Punctured and 

Oversize) exhibit a similar rebound velocity for an impact speed of --6m1s. This is likely to be 

because the ITF regulations ensure that all approved tennis balls must rebound to a specified 

hei~t, for a drop on a rigid flat surface. In this approval test, the ball is dropped from 1 00 inch 

which corresponds to a ball impact velocity of - 6m1s. 
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Figure 4.6 (a) Ball rebound velocity, and (b) Coefficient of restitution, for an impact between a 

ball and rigid surface, for four different ball types. 

40 

The Pressurised and Oversize balls rebounded faster than the other two balls for the full range of 

ball impact velocities. At the highest ball impact velocities, the Oversize rebounded fractionally 
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faster than the Pressurised ball. The Pressureless ball rebounded slower than the other two 

production balls, by -7%. The Punctured ball rebounded the slowest of all the production balls; it 

is generally 20% slower than the Pressurised ball. This result illustrates that the internal 

pressurisation of the Pressurised ball contributes to approximately 20% of the rebound speed, for 

an impact on a rigid surface. 

Figure 4.6(b) shows the coefficient of restitution plotted against the ball impact velocity; the 

coefficient of restitution COR is defined as the ratio of ball impact and rebound velocity. This is an 

alternative illustration of the same results that are shown in Figure 4.6(a). The ratio of the energy 

lost during impact and the initial energy can be defined as (1- COR 2 
). Therefore the results in 

Figure 4.6(b) show that a tennis ball loses an increasing fraction of its energy as the impact velocity 

increases. A simple calculation can be performed to show that the Pressurised ball loses 36% and 

75% of its initial energy for impacts at 6m1s and 30mls respectively. By comparison, a Punctured 

ball loses between 51% and 84% of its initial energy for impacts between 6m1s and 30mls, 

respectively. 

The results in Figure 4.6(a) and (b) show that the Oversize and Pressurised balls dissipate a similar 

amount of energy during impact. This energy is dissipated in the form of heat which is produced 

by the deformation of the rubber core. The Pressureless ball dissipates more energy during impact 

than the other two production balls. This ball has a thicker core and therefore the volume of rubber 

which is deformed is larger compared to the other two balls. The Punctured ball loses the most 

energy during impact which is probably due to its low stiffness resulting in higher deformations of 

the rubber core. A tennis ball dissipates an increasingly large fraction of its initial energy as the 

impact velocity is increased. This is likely to be due to a combination of both the increased 

magnitude and rate of deformation for the higher speed impacts. 

4.4.3 Ball Deformation during impact - Results and Discussion 

The method used to determine the magnitude of the ball deformation during an impact with a rigid 

surface is described in section 3.3. Figure 4.7(a)-(d) illustrates the ball deformation, as a function 

of time. The results are presented for four nominal impact velocities which are 6m1s, 15m1s, 20mls 

and 30mls. All the production tennis balls have similar deformation-time plots for an impact 

velocity of 6m1s, as shown in Figure 4.7(a). At this impact velocity, the maximum ball 

deformation is approximately 10mm. This is of a similar order of magnitude as the compression 

that balls are subjected to in the ITF approval test. Therefore, this may account for the similarity 

in the results for all production tennis balls when the ball impact velocity is 6m1s. The Punctured 

ball deforms more than the production balls, which is likely to be due to its lower structural 

stiffness. 
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Figure 4.7 Ball deformation during an impact between a ball and rigid surface, for a range of 

nominal impact velocities, Ca) 6m1s, Cb) ISmls, Cc) 20mls and Cd) 30mls. 
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Figure 4.7Ca)-Cd), and other similar plots for different impact velocities, can be used to determine 

the maximum ball deformation during impact OBALL(max.) and the contact time Te. In this 

experiment, Te is defmed as the time taken for the ball to regain its original, undeformed shape i.e. 

the time at which the ball deformation returns to zero. 
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Figure 4.8 Ca) Maximum ball deformation OBALL(max) during impact, and Cb) Contact time Te for an 

impact between a ball and rigid surface. 
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Figure 4.8(a) illustrates the relationship between impact velocity and maximum ball deformation 

for the four different ball types. It shows that the Pressurised and Oversize balls deform by similar 

amounts for all ball impact velocities. The Pressureless ball consistently deforms more than these 

two balls, for impact velocities above iSm/s. The Punctured ball generally deforms more than all 

the other balls, except at high impact velocities when it deforms by a similar amount as the 

Pressureless ball. 

Figure 4.8(b) shows that the contact time for the all the standard production balls is similar at the 

lowest impact velocity; the Pressureless ball having a fractionally lower Te than the other two balls 

at this velocity. However, at all other impact velocities the Pressureless ball has a higher contact 

time than the other two balls. The Punctured ball exhibits a considerably longer contact time than 

all standard production balls, for all ball impact velocities. The Pressurised and Oversize balls 

have very similar contact times over the full range of velocities. 

The data in Figure 4.7 and 4.8 shows that the Pressurised and Oversize balls deform by comparable 

amounts during impact, and exhibit similar contact times. Simple modelling of an impact between 

a deformable object and rigid surface shows that the ball deformation and contact time are a 

function of the structural stiffness of the ball. Therefore, this data suggests that the Pressurised and 

Oversize balls have a similar stiffness and the Pressureless and Punctured balls are less stiff than 

the other two balls; the Punctured ball being the least stiff. Also, the results in Figure 4.8(b) 

suggest that the balls act stiffer at higher ball impact velocities. 

In section 3.3.4 a method of determining the diameter of the ball/surface contact area is discussed. 

This diameter is defined as the length of the ball that is in contact with the surface. This length is 

measured from the high speed video images. Figure 4.9(a)-(h) illustrate the relationship between 

the contact area diameter and the ball deformation for the four ball types, for a range of impact 

velocities. For clarity, this data is plotted separately for the compression and restitution phases of 

impact, on the left and right hand side of Figure 4.9, respectively. This figure shows that, during 

the compression phase, the relationship between contact area diameter and ball deformation is 

relatively independent of the ball impact velocity. For each ball type, there is a single function to 

describe the relationship between the contact area and the ball deformation. However, in the 

restitution phase there is no single function to describe this relationship, and there are no apparent 

trends evident between the four ball types. Interestingly, a comparison of Figure 4.9 (d) and (h) 

shows that the Punctured ball is the only ball type that acts similarly in the restitution and 

compression phases. However, the significance of this can not be obtained from this data alone. 
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Figure 4.9 Diameter of the ball/surface contact area during an impact between a ball and rigid 
surface. The data is plotted for four different ball types and four different ball impact speeds. (a)­
(d) illustrate data for the compression phase of impact, and (e )-(h) illustrate data for the restitution 
phase. 
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Figure 4.10 Relationship between diameter ofballlsurface contact area and ball deformation 

during the compression phase of impact. A single fourth order polynomial trendline is plotted 

through the combined data set of all the ball types. 

Figure 4.10 shows the data for the contact area diameter dCONT plotted as a function of the ball 

deformation 8BALL , for all four different ball types. This data is only plotted for the compression 

phase of impact. The equation for the 4th order polynomial trendline which is plotted in this figure 

(converted into SI units) is, 

[4.1 ] 

There appears to be no significant differences between the four ball types, and therefore [4.1] gives 

an approximate relationship between dCONT and 88ALL for all ball types. 

There is considerable scatter in the data which was quantified by conducting a simple statistical 

analysis. The standard deviation of the raw data from the trend line was calculated as 4mm. In 

Chapter 3 it was quoted that the standard deviation associated with the accuracy of the manual 

sampling method was 2mm. This implies that the scatter in the data in Figure 4.10 is not solely due 

to inaccuracies in the analysis method. A possible reason for the scatter is that the relationship 

between contact area diameter and ball deformation is a subtle function of the ball type and impact 

velocity. However, this subtle function can not be quantified using this data. 

An equation similar to [4.1] cannot be determined for the restitution phase of impact because there 

is too much scatter in the data for this phase, as is evident in Figure 4.9(e)-(h). This implies that, 

during the restitution phase, there is no simple function to describe the relationship between contact 

area diameter and ball deformation. 

4.4.4 Summary 

In this section, data is presented for a normal impact between a tennis ball and rigid surface. Four 

different types of ball were tested which covered the range of balls used in the game oftennis. For 

the lowest impact velocity of 6mJs, it has been shown that all the standard production balls exhibit 

the same maximum ball deformation, contact time and rebound speed. This is most likely to be 
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due to the fact that the ITF approval tests regulate the bounciness and quasi-static stiffness of the 

ball for an impact at a similar velocity/deformation. The Punctured ball has a lower rebound 

velocity and deforms more than the other balls, but obviously this ball would not pass the ITF 

approval test. 

The Oversize and Pressurised balls rebound with a similar velocity, for the full range of impact 

velocities. The measured values of contact time and ball deformation for the impact are also 

similar for these two balls. The Pressureless ball rebounds approximately 7% slower than these 

two balls, at higher velocities. This ball also deforms more during impact and has a longer contact 

time at these velocities, which implies that it is less stiff in comparison to the other two production 

balls. The Punctured ball deforms the most; approximately 15% more than the other balls. It also 

exhibits a considerably longer contact time which confirms that it is less stiff. 

These results correlate qualitatively with the quasi-static compression test results in the previous 

section. In that section it was shown all the standard production balls have a similar quasi-static 

stiffness for ball deformations of approximately 7mm. In this section it has been shown that all 

these balls deform by a similar amount in a dynamic impact which involves a deformation of 

-7mm. At higher ball deformations the quasi-static stiffness of the Pressureless ball is lower than 

that for the Pressurised ball. An analogous finding was made in this section where a Pressureless 

ball exhibited a larger deformation and contact time compared to a Pressurised ball, for high 

impact velocities. Any subtle differences that existed between the Pressurised and Oversize balls 

could not be concluded in this section. The larger deformation exhibited by the Pressureless and 

Punctured balls result in a greater volume of rubber being deformed during impact. Therefore the 

energy losses will be higher and so the rebound velocity will be lower. 

The diameter of the ball/surface contact area is an increasing function of the ball deformation. 

However, it is not dependent on the ball impact velocity or the ball type for the compression phase 

of the impact. A single function was obtained to describe the relationship between ball/surface 

contact area and ball deformation for this phase of impact. No definite correlation could be found 

between these parameters during the restitution phase of impact. 

4.5 Ball impacts on a Force Platform 

4.5.1 Overview 

In section 4.4, a high speed video system was used to determine the ball deformation during 

impact, contact time and ball rebound velocity for an impact between a ball and rigid surface. 

These results can be used to define the required stiffness and damping properties of the ball which 

give realistic values of contact time and energy loss. The main weakness of the method used in the 

previous section is that the force which acts on the ball can not be calculated. Therefore the force 

which is calculated in the model can not be verified experimentally. 

In this section the rigid surface was replaced with a force platform and the ball was propelled 

perpendicularly towards it. The details of this experiment are given in section 3.4. In brief, the 

piezo-electric force platform outputs a voltage which is proportional to the force applied, and this 
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voltage is sampled at approximately 67kHz. This signal is multiplied by a calibration factor to 

determine the magnitude of the force at each time increment. The Force-Time data from the force 

platform was used to determine the acceleration, velocity and displacement of the ball centre-of­

mass during impact. 

The balls were propelled at a velocity of between 4 and 30m/s (10 and 70mph) which exceeds the 

speeds used by other authors who have performed a similar experiment (Neville 2001, Thomson 

2000). The impact velocities were chosen in an attempt to simulate the magnitude of ball 

deformation which occurs in a professional serve. Mitchell et al. (2000) showed that the relative 

ball/racket impact speed for a college standard serve was up to 35m/s. Professional serves are 

likely to involve a larger relative impact speed but this data has not yet been published to date. In a 

later chapter of this study, the magnitude of ball deformation which occurs in a ball/racket impact 

during a professional serve is presented. 

Neville (2001) and Thomson (2000) tested a range of tennis balls for impact velocities between 2 

and 20m/s. Each researcher tested three balls of each type and it was universally found that there 

was no significant differences between the results for all the balls of one type. Therefore, in this 

study it was concluded that only one ball of each type needed to be used. The same four types of 

ball are tested in this section as were used in section 4.4; Pressurised, Oversize, Pressureless and 

Punctured balls. 

4.5.2 Results 
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Figure 4.11 (a) Ball rebound velocity, and (b) coefficient of restitution plotted against impact 

velocity for normal impacts on the force platform. 

40 

Figure 4.11(a) and (b) show the results for ball rebound velocity and coefficient of restitution 

respectively, for impacts on a force platform. In section 4.4, these two parameters were obtained 

for an impact on a rigid surface and the results are shown in Figure 4.6 (a) and (b). A simple visual 

comparison of these two sets of figures shows that the results are very similar for both experiments. 
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All production balls have a similar rebound velocity for low speed impacts. For higher impact 

velocities, the Oversize ball rebounds fractionally faster than the Pressurised ball, and significantly 

faster than the Pressureless ball. The Punctured ball rebounds considerably lower than the 

production balls, for all ball impact velocities. These results confirm the data and conclusions 

which were presented in section 4.4. 

(b) Force platform data 

Figures 4.12 (a)-(h) show the force platform results for impacts using the four balls types and a 

range of impact velocities. Figures 4.12 (a)-(d) show the Force-Time data and Figures 4.12 (e)-(h) 

show the Force-Displacement data (the Displacement parameter referred to here is the 

displacement of the ball centre-of-mass). These results are very similar to those found by 

Thomson (2000) and Cross (1999, 2000), although all these authors only used impact velocities of 

approximately 20mls or less. The figures show that the maximum force and ball COM 

displacement increases with the impact velocity. 

For impact velocities of 6m1s and below, Figures 4.12 (a)-(d) show that the Force-Time plot is an 

approximate sine curve for all ball types. Figures 4.12 (e)-(h) show that the hysteresis loss in the 

ball, defined by the area enclosed within the Force-Displacement curve, is relatively small for these 

low speed impacts. The exception to this is the Punctured ball which exhibits a significant 

hysteresis loss. 

For impact velocities above 6m1s, all the Force-Time plots have an asymmetrical shape with a 

variable number of oscillations that are super-imposed onto a smooth curve. The Force­

Displacement data in Figures 4.12 (e)-(h) show that the ball initials experiences a very low load 

which is due to the compression of the cloth on the ball. As the cloth has a much lower stiffness 

than the ball (Cross 1999b) the load in this section of the impact is very low. In general, the force 

then rises sharply, followed by a sudden dip, then continues rising at a lower rate. The force rises 

along an almost vertical path and the load magnitude at which the dip occurs is proportional to the 

impact speed. During the restitution phase, Figures 4.l2 (e)-(h) show that the force values lie on a 

path which is relatively independent of impact velocity. This implies that the measured force value 

is primarily a function of the ball centre-of-mass displacement and not the instantaneous speed of 

the ball. 

The data for the coefficient of restitution, described in section 4.4.2, showed that the fraction of 

initial energy that is lost during impact increases with ball impact velocity. The Force­

Displacement plots in Figures 4.l2 (e)-(h) illustrate this finding in an alternative manner; the 

hysteresis loss being defined as the area enclosed by the Force-Displacement curve. 
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Figures 4.12 (a)-(d) Force-Time plots and (e)-(h) Force-Displacement plots for a normal impact 
between a tennis ball and force platform. The data is presented for each ball type separately, for a 
range of ball impact velocities. 

Figures 4.l2(e)-(h) show that the maximum force always occurs at the point of maximum ball 

centre-of-mass displacement, for impact velocities below 20mJs. For impact velocities of 20mJs 

and above there is a secondary peak in the force which occurs at approximately 50% of the 
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maximum deformation. This secondary peak is generally most noticeable for the two 

unpressurised balls (Pressureless and Punctured) and is of equal magnitude to, or greater than, the 

force which occurs at maximum deformation for these two balls. This second peak is least 

prominent in the data for the Oversize ball. The presence of a peak in the force which is not at the 

point of maximum deformation implies that the force acting on the ball is not solely due to its 

structural stiffness. If this had been the case then the force would consistently be at a maximum at 

the point of maximum deformation. Therefore it can be concluded that there must be other 

components which make up the load on the ball. 

The Force-Displacement plots show that the ball centre-of-mass returns to zero displacement when 

the force returns to zero. This may appear obvious, but it confirms that the ball COM returns to its 

original, undeformed position at the end of impact. 

Figures 4.13 (a)-(h) illustrate the same data as that presented in Figures 4.12(a)-(h) but is 

categorised by the ball impact velocity so that comparisons can be made between the four different 

ball types. For a low speed impact velocity of 6m1s, Figures 4.13(a) and (e) show that the three 

production balls (Pressurised, Pressureless and Oversize) exhibit very similar Force-Time and 

Force-Displacement responses for an impact on a rigid surface. The Oversize ball deforms slightly 

more, and the Pressureless ball is subjected to a fractionally lower force, compared with the 

Pressurised ball. When compared to the three production balls, the Punctured ball (i) deforms 

significantly more, (ii) has a longer contact time, (iii) is subjected to a lower maximum load, and 

(iv) has a higher hysteresis loss. 

At the higher impact speeds (15m1s-24m1s) the two internally pressurised balls (Pressurised and 

Oversize) act very similarly, with two exceptions. The Oversize ball generally deformed slightly 

more and had a lower load throughout impact, especially during the compression phase. Also, the 

peak load which occurs at approximately O.2ms after initial impact is generally the lower for the 

Oversize ball. The force always rises to a peak at the maximum deformation for these two 

internally pressurised balls and the restitution phase is very similar for both balls, for all impact 

velocities. 

The two unpressurised balls (Pressureless and Punctured) act very similarly during the 

compression phase, for impact velocities between 15 and 24m1s. For the initial O.Sms of impact, 

they have a Force-Time trace similar to the Pressurised ball. During the remainder of the 

compression phase the force initially drops and then rises steadily until maximum COM 

displacement. The maximum force is very similar for both balls, and the Punctured ball deforms 

fractionally more than the Pressureless. They both deform by about the same amount as the 

Oversize ball, but have a considerably lower force. In the restitution phase, the force acting on the 

Pressureless ball is similar to that of the pressurised balls but slightly lower. The force in the 

Punctured ball is considerably lower than all the others, which is likely to be due to the very low 

stiffness of this ball. The force acting on the Punctured ball almost drops to zero when the ball 

COM displacement returned to a value of approximately 10rmn. Towards the end of impact it rose 

significantly before dropping back to zero. This sudden rise is probably due to the ball 'flipping 

back' to its original shape after compression. This occurs to a lesser extent in the Pressureless ball 

trace, but generally not in the pressurised balls. 
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Figures 4.13 (a)-(d) Force-Time plots and (e)-(h) Force-Displacement plots for a normal impact 
between a tennis ball and force platform. The data is categorised for each impact velocity, for a 
range of ball impact velocities. 
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(c) Contact Time 

The Force-Time plots, shown in Figures 4.12(a)-(d), were used to determine the contact time; the 

contact time being defined here as the time at which the force returns to zero. This data is 

presented in Figure 4.14(a) and shows that the contact time decreases with ball impact velocity. 

For low speed impacts, all the production balls have a similar contact time. At higher speeds, the 

Pressurised ball has the lowest contact time, only fractionally shorter than the Oversize ball. The 

Pressureless ball has a contact time which is approximately 0.3ms longer than that of the 

Pressurised ball, for impact velocities between 13 and 30mls. The Punctured ball has a 

significantly longer contact time compared with all the other balls; the contact time is 

approximately 0.8ms longer than that for the Pressurised ball. 
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Figure 4.14 (a) Contact time plotted against ball impact velocity determined from the force 

platform, and (b) comparison of contact times determined using the force platform and the high 

speed video system for impact velocities ranging between 6m/s and 30mls. 
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The differences in the contact times for the four ball types which have been determined here are 

similar to the findings in section 4.3. In that section, the contact time was measured using a high 

speed video system; the contact time being defined as the time taken for the ball to return to its 

undeformed shape. Comparison of the values of contact time determined using the two methods 

reveals that the different methods give different values of contact time. A comparison of the data 

collected using the two methods is shown in Figure 4.14(b). Each data point in this figure 

represents the contact time at one of four discrete impact velocities; 6, 15, 20 and 30mls. The value 

of contact time at each discrete velocity was determined by plotting a 2nd order polynomial trend 

line for each dataset in Figure 4.8(b) and Figure 4.14(a). The diagonal line in Figure 4.14(b) 

represents the 1: 1 relationship between the two values of contact time. Figure 4.14(b) shows that 

the contact time determined using the high speed video is higher, for large contact times (lower 

speed impacts). For the shorter contact times (higher speed impacts) the force platform gives the 

higher values of contact time. 

The reason for the differences in the two sets of contact time data can easily be assigned to the fact 

that different definitions are used in the two cases. Figure 4.15 shows a collection of high speed 

images which illustrate the ball deformation throughout impact. This figure shows that a ball can 
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have a negative deformation (-7mm in this case) yet still be in contact with the surface. Using the 

high speed video method, the contact time would have been determined as 3.3ms. However, 

clearly the ball is still in contact with the surface and therefore may be applying a force which is 

registered by the force platform. This explains why the force platform may give different contact 

times than the those obtained using the high speed video system. 

TI/Tle = 1 6ms TlIlle = 33ms 

Ball (/eformatlon = 32111111 Ball deformation = Omm 

Figure 4.15 High speed video images showing an impact between a ball and rigid surface (ball 

impact velocity = 25m/s) 
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Figure 4.16 (a) Maximum ball COM displacement and maximum ball deformation, plotted 

against ball impact velocity. The trendlines represent the best-fit line for the combined data for all 

ball types. (b) Approximated relationship between maximum ball COM displacement and 

maximum ball deformation. The error bars represent one standard deviation of each variable. 

Figures 4.12 (e )-(h) show the magnitude of the ball centre-of-mass displacement during impact for 

impact velocities between 4 and 30mls. The maximum ball COM displacement for each of these 

impacts is shown in Figure 4.16(a). For comparative purposes, the magnitude ofthe maximum ball 

deformation is also shown in this figure. This is the same data that is shown in Figure 4.8(a) and 

was determined using the high speed video system. Figure 4.16(a) shows that the Punctured and 

Pressureless balls deform significantly more than the Pressurised and Oversize balls. However, it 
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also shows that the Oversize ball exhibits the largest maximum centre-of-mass displacement, and 

the Pressurised ball the least. This relationship is difficult to identify in Figure 4. 16(a) but can be 

seen more clearly in the Force-Displacement plots such as those in Figures 4. 13 (e)-(h). 

In Figure 4.16(a), trendlines are plotted which have been obtained by performing a least squares 

regression of the combined data for all ball types. It is assumed that the uncertainty of each data 

point is equal and therefore the standard deviation of the measured data can be calculated using the 

method described in Appendix A. The standard deviations were calculated as 0.5mm for the 

maximum ball COM displacement trend line, and l.4mm for the maximum ball deformation data. 

Figure 4.16(b) gives a quantification of the relationship between the maximum ball COM 

displacement and maximum deformation. This relationship was determined using trendlines which 

are plotted in Figure 4.l6( a). The error bars on this figure represent one standard deviation of each 

variable. The relationship between these two variables has been estimated by many authors (Leigh 

& Lu 1992, Thomson 1999) as it is a useful tool to relate the quasi-static structural stiffness of a 

ball with its behaviour during impact. 

4.5.3 Discussion 

In this section, four types of tennis ball were projected at a force platform for a range of ball impact 

velocities. The ball rebound velocity was measured and the results were identical to those 

presented in the previous section. In that section, the ball was propelled at a rigid surface and the 

differences between the four ball types have been presented and explained. 

At the lowest impact speed (6m/s), the Force-Time plots for the three production balls are very 

similar and approximate a sine curve. Figure 4.16(a) shows that all of these balls deform by 

approximately 12mm during this low speed impact. Figure 4.3 shows that all the ball types have a 

similar quasi-static stiffness for ball deformations up to 12mm. The stiffness of the Punctured ball 

is considerably lower than that of the three production balls and this would explain why this ball 

deforms more and has a longer contact time; contact time being an inverse function of the stiffness 

of the ball. 

For impact velocities of between 15m/s and 25m1s, the Pressurised and Oversize balls act very 

similarly. The data in Figure 4.8 shows that the balls deform by between 20 and 30mm at these 

impact velocities. At these high deformations, the results in Figure 4.3 show that the Pressurised 

ball has the highest quasi-static stiffness, closely followed by the Oversize ball. The Pressureless 

and Punctured balls have a lower stiffness and both these balls exhibit a longer contact time and 

lower peak forces during impact, compared to the other two balls. The Punctured and Pressureless 

balls dynamically act very similarly to one another, with similar peak loads and centre-of-mass 

displacements. This is probably explained by them having similar a quasi-static stiffness at high 

deformations. At low deformations, the Pressureless ball is definitely stiffer and this may explain 

why the Pressureless ball has a slightly shorter contact time than that for the Punctured ball for low 

speed impacts. This may also explain why the Pressureless ball always exhibits a higher load than 

the Punctured ball during the restitution phase. 
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A very noticeable feature of the Force-Time and Force-Displacement plots is the sharp rise in the 

force at the initial stage of impact. This is followed by a sudden dip before the force begins to rise 

again. In Thomson (1999) and Cross (1999a) this dip has been accounted for by the instability of 

the ball core during the initial stages of impact. Cross (1998) used a two-piece force platform to 

prove that the dip coincides with the ball core buckling, and Dignall (1999) arrived at a similar 

conclusion using a finite element model of the ball. These researchers have all assigned the sharp 

rise before the dip to the high structural stiffness of the shell prior to the buckling. However, an 

alternative explanation can be given by considering the work done by Hubbard & Stronge (2001). 

This work has been discussed in detail in Chapter 2 and involved the modelling of table tennis ball 

impacts on a rigid surface. In brief, it was assumed that the section of the ball in contact with the 

surface was at rest, and the remainder of the ball was a truncated sphere in which all elements of 

this sphere were moving with an identical group velocity. An analogous analysis can be conducted 

for a tennis ball impacting on a force platform. If it is assumed that a section of the tennis ball is 

being brought to rest (from the group velocity) in a specific time interval, then this will exert a 

force on the platform, separate to any force due to the stiffness of the ball. Therefore the total force 

applied to the platform is a combination of this momentum flux, the wall stiffness and the internal 

air pressure, for the period during compression. At the initial stage of compression, the ball is 

moving at its maximum velocity and therefore, in any specific time interval, the magnitude of the 

section that is being brought to rest is largest at this initial stage. This would result in a large force 

during this period contributed mainly by the momentum flux. 

There are alternative explanations for the high initial force which is exerted on the ball. Neville 

(2001) and Thomson (2000) assumed that the sudden initial rise in the force was due to the high 

structural stiffness of the ball, before buckling occurs. Although it is appreciated that the stiffness 

of the ball will be higher before buckling, compared to post-buckling, a simple one degree of 

freedom spring model can be used to show that the stiffness must be very large to achieve this rapid 

rise in force (Neville 2001). Also, a one degree-of-freedom spring-damper model, which is 

summarised in section 2.5.3., shows that the high rise in initial force could be due to the damping 

properties of rubber. If the damping in the core is modelled as a dashpot damper then the damping 

force is proportional to the rate at which the ball rubber is being deformed, which is proportional to 

the instantaneous velocity of the ball. This is obviously highest at the initial stage of compression 

which may explain the high initial force. 

To summarise, there are three possible reasons for the high initial force which are, 

1. High structural stiffness - the ball will have a higher structural stiffness before buckling 

occurs. 

2. Momentum flux - the force due to a section of the moving ball being brought to rest on the 

surface, which is largest at the initial stage of impact 

3. Material damping - the rubber core exhibits high levels of damping which are proportional 

to the rate of deformation, which is largest at the initial stage of impact. 

The definitive explanation of the high initial force probably involves a combination of all three 

factors. The work in Chapter 5 considers all the three factors individually in an attempt to derive a 
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model for the impact. The aim of the model is to further the understanding of the impact 

mechanism. The results presented in this section will be referred to in Chapter 5 in order to verify 

the model and explain the differences between ball types further. 

4.5.4 Conclusions 

In this section it was found that all production tennis balls exhibit similar Force-Time plots for 

normal impacts between a ball and force platform, for impact velocities of approximately 6m1s. It 

was concluded that this was due to them all having a similar structural stiffness for deformations of 

this magnitude. The Punctured ball deforms considerably more than these three production balls, 

which is due to the lower quasi-static stiffness of this ball. 

During the initial stage of the compression phase of impact, the measured force rises sharply, 

followed by a sudden dip, then continues rising at a lower rate. It has previously been shown that 

the dip is due to the buckling instability of the ball wall. The two main possible explanations for 

this sudden rise in force (i) high structural stiffness of the ball prior to buckling, and (ii) momentum 

flux force due to finite sections of the ball being brought to rest on the surface during the 

compression phase. During this first O.5ms of impact, the force which acts on the ball is similar 

for all of the standard sized balls (Pressurised, Pressureless and Punctured) but lower for the 

Oversize ball. It is intended that the model which is to be developed in the following chapter can 

verify the precise reason for the value of the force in this period. 

It has been shown that the maximum force which is measured during impact does not always occur 

when the ball has reached maximum deformation. This confirms that the force acting on the ball 

during impact is not solely due to the structural stiffness because, if these were the case, then the 

force would be an increasing function of the ball COM displacement. 

During the restitution phase, the relationship between the measured force and ball centre-of-mass 

displacement is independent of the ball impact velocity, but does vary between ball types. This 

information will assist in the development of a model for this phase of impact. 

The Oversize ball consistently exhibited a larger ball centre-of-mass displacement, compared to the 

Pressurised ball; the Oversize ball generally displacing by an equivalent amount to the Punctured 

and Pressureless balls. However, the Oversize and Pressurised balls exhibit similar contact times 

for the impact. 
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4.6 Summary 

In this chapter, the physical properties of four different types of tennis balls have been obtained. It 

has been shown that the Pressurised and Oversize balls have the highest quasi-static stiffness when 

compressed between two flat plates. The Pressureless ball has a similar stiffness to these balls for 

low deformations, but a much lower stiffness at high deformations. At these high deformations it 

had a similar stiffness to the Punctured ball. 

The ball was propelled at a rigid surface and various parameters were measured. It was found that 

the Oversize and Pressurised balls rebound with approximately the same velocity. The 

Pressureless ball rebounds slightly slower, and the Punctured ball rebounds significantly slower. 

This indicates that the Oversize and Pressurised balls exhibit the lowest hysteresis loss during 

impact. The contact time was generally shortest for the Pressurised ball and longest for the 

Punctured ball. This correlates with the quasi-static stiffness results because the contact time is 

inversely proportional to the structural stiffness. 

In a separate experiment, the balls were propelled towards a force platform. The results for this 

experiment correlated qualitatively with the quasi-static compression test results. For example, in 

the quasi-static testing the Pressureless and Punctured balls had a similar stiffness for large ball 

deformations. Using the force platform, it was found that the Force-Time plots for these two balls 

were very similar for high impact velocities. It was also shown that the force which acts on the ball 

is not solely due to the structural stiffness and alternative components have been proposed. 

One of the main objectives of this section was to experimentally determine the force which acts on 

the ball during impact. This objective was successfully achieved for a wide range of ball types and 

impact velocities. This data will be used in the following chapter to quantify the accuracy of a 

model of the impact. 
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5. Modelling of a Tennis Ball Impact on a Rigid Surface 

5.1 Introduction 

Chapters 3 and 4 describe the methods and results of an experimental investigation of a ball 

impacting on a rigid surface. In these experiments, a range of parameters were measured including 

the ball rebound velocity, ball deformation and contact time for the impact. Results were obtained 

for four different ball types, for a wide range of ball impact velocities. In the following chapter a 

model is developed which simulates this impact and can be used to predict such parameters as the 

force which acts on the ball during impact. The model will be used to help illustrate and explain 

the differences between the four ball types which were identified in Chapter 4. 

In a later chapter, this model will be developed so that it is applicable for an impact between a ball 

and tennis racket. This model must not be over complex as it would then be unusable. However, it 

should correlate with the experiment data within reasonable error bounds. The main requirement is 

that each component of the model must have a physical significance so that, for example, the effect 

of a change in ball stiffness can be assessed using the model. Therefore, a numerical model which 

produces a perfect agreement with the experiment data is of no use. 

5.2 General Modelling Procedure 

There are many modelling techniques which could be used and the suitability of each of these is 

discussed in Chapter 2. In this current chapter, a visco-elastic model is used to simulate the ball for 

an impact with a surface. This technique was chosen as it is a relatively versatile method; the 

stiffness and damping of the ball can be defined using any function of the ball deformation and 

velocity. In Chapter 2, methods for modelling a tennis racket were discussed. It was shown that a 

one-dimensional flexible beam gave a good approximation of the modal response of a tennis 

racket. A review of previous researcher's work revealed that a visco-elastic model of the ball is an 

ideal method to simulate the ball, for an impact between a ball and flexible beam. The solution for 

the flexible beam equation and for the governing equations of the visco-elastic model can both be 

solved relatively easily using the finite difference method. A more complex method of modelling 

the ball, such as the finite element method, would be more difficult to combine with the flexible 

beam model of the racket. 

The model that is developed in this chapter is a one degree-of-freedom, visco-elastic model similar 

to that discussed in Dignall (2000b). The structural stiffness is represented by a spring, and the 

energy loss in the rubber is simulated using a dashpot damper. Dignall (2000b) showed that the 

stiffness and damping of the visco-elastic model define the contact time T e and coefficient of 

restitution COR respectively, for the model. In Chapter 4, the relationship between Te, COR, and 

ball impact velocity was determined experimentally. Using this experimental data for Te and COR, 

the coefficients of the spring and damper can be determined using either analytical or numerical 
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methods, i.e. the value of the spring stiffness was chosen so that the model exhibited the correct 

value of Tc.. The model output included the following, 

1. Ball centre-of-mass displacement, velocity, and acceleration. 

2. Force acting on ball. 

The criteria used to quantify the accuracy of the model involved comparing the Force-Time and the 

Force-Displacement plots for the experiment and model. Unless otherwise stated, this comparison 

was performed using the experimental and model data for all four ball types which were described 

in detail in section 4.2 and defined as, 

I. Pressurised 

2. Pressureless 

3. Oversize 

4. Punctured 

In this chapter, the simple visco-elastic model which was proposed by Dignall (2000b) IS 

developed with the aim of improving its accuracy and applicability. 

5.3 One Degree-or-Freedom Visco-Elastic Model- Constant 

Parameters 

5.3.1 Derivation of Model 

-'x B 

Figure 5.1 Kelvin-Voigt visco-elastic model of a tennis ball impact on a rigid surface. 

A suitable one degree-of-freedom (DOF) visco-elastic model for a tennis ball impact on a rigid 

surface is shown in Figure 5.1 This Kelvin-Voigt model was used by Dignall (2000b) and this 

work is described thoroughly in section 2.5.3 and, to avoid redundancy, is only briefly discussed 

here. The model contains a spring in parallel with a dashpot damper. The point mass mB represents 

the centre-of-mass (COM) of the ball. In this model the values of kB and CB represent the linear 
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stiffness and damping of the ball respectively and therefore the governing equation for this system 

is, 

[S.1] 

where XB is the displacement of the mass XB. 

In section 4.3 it is shown that the quasi-static stiffness of the ball increases as the ball deformation 

is increased, as determined for a compression between two flat plates. This would imply that the 

value of kB would not be constant throughout impact. However, any assumed relationship between 

XB and kB would be arbitrary because there is no established link between these two parameters. 

Dignall (2000b) assumed that the values of the stiffness and damping coefficients, kB and CB 

respectively, remained constant throughout the impact. The values of the stiffness and damping 

parameters, kB and CB respectively, were determined analytically using the following equations, 

[S.2] 

[5.3] 

where Tc and COR were the experimentally measured value of contact time and coefficient of 

restitution. 

The analysis can easily be extended to define the equations required to calculate the displacement, 

velocity and acceleration of the point mass mB at any time t during impact. These equations are 

derived in section 2.S.3 and are therefore not presented here. Also, the force FB acting on the point 

mass can be directly calculated using the relationship, 

[S.4] 

where x B is the acceleration of the point mass. 

5.3.2 Results and Discussion 

The spring and damper coefficients, kB and CB respectively, were calculated using equations [S.2] 

and [S.3] along with the experimentally determined data for contact time and COR, shown in 

Figures 4.11 and 4.14(a). The results for these coefficients are shown in Figure S.2(a) and (b). It 

can be seen that the stiffness and damping increase linearly with ball impact velocity, as was found 

by Dignall (2000b). The figures show that the Pressurised and Oversize balls have the highest 

stiffness, followed by the Pressureless and then the Punctured ball. The damping is highest in the 

Punctured ball, then the Pressurised and Pressureless which are very similar, and lowest in the 

Oversize ball. 
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Figure 5.2 Comparison of the (a) ball stiffness and (b) ball damping, plotted against the ball 

impact velocity. 

40 

The main observation from this data is that the parameters k B and CB are a function of the ball 

impact velocity. Clearly the maximum ball deformation increases with the impact velocity and 

therefore it is not surprising that the effective stiffuess is an increasing function of the impact 

velocity. The magnitude of the rubber which is deformed during impact will also increase as the 

ball deformation is increased. This may explain why the value of CB also increases with ball impact 

velocity. Alternatively, this may be due to the term C B X B in [5 .1] being unsuitable to model the 

damping in the ball. 

The model was used to determine Force-Time and Force-Displacement plots for the impact, similar 

to those determined experimentally using a force platform, as described in Chapter 4. Figure 

5.3(a)-(f) illustrate a comparison of the experimental and model data, for an impact between a 

Pressurised ball and a rigid surface. A similar comparison of the two sets of data are given in 

Appendix B.3 for the Pressureless ball. Both comparisons reveal a similar pattern between the 

experimental and model data and therefore the results in Figure 5.3(a)-(f) can be considered typical. 

In the model, the contact time is defined as the time at which the ball COM displacement returned 

to zero. Figure 5.3(a)-(f) shows that the modelled force is negative at the end ofthe impact which 

corresponds to a tensile force being applied during this period. This is clearly unrealistic as the ball 

and surface are not physically attached together. It also highlights that the contact time of the 

model is a meaningless parameter as the spring and dashpot are not representative of a realistic 

impact mechanism. The reason for the tensile load at end of the impact can be explained by 

considering equation [5.1]. The damping force C B X B has a high negative value in this region, and 

the stiffness force k BX B is relatively low. Therefore, the net load on the ball is negative. 
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Figure 5.3 Comparison of experimental and constant parameter model data for a Pressurised 

ball impacting normal to a rigid surface, for a range of impact velocities between 6 and 30mls. The 

force acting on the ball during impact is plotted against, (a)-(c) Time, and (d)-(f) Ball centre-of­

mass disp lacement. 

Figure S.3(a)-(f) give an indication of the correlation between the model and experimental data. 

These figures shows that, for low speed impacts, the model and experiment values show a high 

correlation. For these impacts the ball deformation will be low and therefore the assumption that 

the ball stiffness remains constant is most valid for low speed impacts. At high speeds the model 

and experiment data generally differs by as much as 20-30%. Figure S.3(d)-(f) show that, during 

the compression phase, the experiment force is negligible for ball COM displacements less than 
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2mm. In section 4.5.2 it was explained that this was due to the compression of the cloth, which has 

a low stiffness. Clearly the model can not simulate this because it is a constant parameter system. 

This also explains why the model can not simulate the subtle fluctuations in the experiment Force­

Time plots such as the sudden drop in force after about O.2ms, which has been assigned to the ball 

buckling at this point. 

Figure 5.3(a)-(c) show that the model and experiment force values rise sharply in the initial stage of 

impact. In section 4.5.2 it was explained that the sharp rise in the force measured by the platform 

was due to the high initial structural stiffness of the ball and the relatively large force due to the 

momentum flux during this period. However, the reason for the sharp initial rise in the modelled 

force is simply due to the eX B term in equation [5.1] being high because x B is at a maximum value 

at this point. Therefore, the fact that the force initially rises rapidly both in the model and in the 

experiment data is purely coincidental, and the model is not a true representation of the actual 

impact. 

5.3.3 Conclusions 

The Kelvin-Voigt model returned values for spring stiffness and damping which were dependent 

on the contact time and coefficient of restitution for the impact. It was found that the Pressurised 

and Oversize balls were the stiffest, followed by the Pressureless and then the Punctured. The 

damping was highest in the Punctured ball, very similar for both the Pressurised and Pressureless 

balls, and lowest for the Oversize ball. 

The experiment Force-Time and Force-Displacement plots determined by the force platform are 

very complex shapes and alOOF constant parameter visco-elastic model is neither capable or 

suitable to simulate them. The model only correlates to within about 30% of the experiment results 

at the highest impact velocity of 30mls, although it was more accurate at lower impact velocities. 

There were two main problems with this model. Firstly, both the model and experiment force 

value rose rapidly in the initial stage of impact but this was for different reasons. Therefore the 

solution is effectively no more use than a simple numerical solution which did not physically 

represent the actual impact mechanism. The second failing of this model was that, towards the end 

of impact, the force value was negative which represented a tensile force that was clearly not 

realistic. 

The main constraint of this model was the assumption that the parameters remained constant 

throughout impact which was not realistic. It was shown that the constant value for stiffness 

increased with maximum COM displacement which was logical because when a ball is compressed 

between two flat plates the quasi-static stiffness increases with ball deformation. It was also shown 

that the value of the damping coefficient increased with maximum COM displacement. This is 

probably due to the fact that when a ball deforms, the amount of rubber being deformed increases 

with ball deformation, and this is represented in the value of the damping coefficient. 

The main conclusion regarding this model is that it is reasonably accurate for low impact velocities, 

but very poor for higher impact velocities. This is because the assumption that the parameters 
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remained constant throughout impact was most valid for low impact velocities where there is little 

difference between the properties of the ball at zero and maximum deflection. Clearly, at higher 

impact velocities the ball properties vary considerably between zero and maximum deflection. 

This implied that the ball stiffness and damping should increase with ball COM displacement. This 

type of model is defined as a one degree-of-freedom variable parameter model as the values of 

stiffness and damping are allowed to vary during impact. The development of this model is 

presented in the following section. 

5.4 One Degree-or-Freedom Visco-Elastic Model- Variable Parameters 

5.4.1 Overview of the model 

In section 5.3, a one degree-of-freedom visco-elastic model was developed in which the magnitude 

of the stiffness and damping remained constant throughout impact. It was shown that this system 

was a good first approximation of the model, especially at low impact velocities. However, the 

model was effectively no more use than a numerical solution because the spring stiffness and 

dashpot damping parameters in the model did not physically represent the structural stiffness and 

hysteresis losses in the ball. Also, the constant parameter model resulted in a tensile load at the 

end of impact which was not realistic. 

In the following section, a one DOF variable parameter model is developed which allows the 

stiffness and damping to vary throughout impact. The model consists of a spring and damper in 

parallel, identical to that in Figure 5.1, and the governing equation for this system is defined by 

[5.1]. 

5.4.2 Model derivation 

(a) Spring stiffness 

This model assumes that the ball can be simulated using a linear spring and dashpot, and in the 

previous section it was assumed that the parameters were constant throughout impact. However, it 

was shown that the values of kB and CB increase as the magnitude of the maximum COM 

displacement increased. Therefore the physical accuracy of the model would be improved by 

assuming that kB was a function of XB throughout impact. The exact form of this relationship is 

unknown as it is impossible to determine it either mathematically or experimentally. The simplest 

solution assumes that the relationship between kB and XB is linear and the equation to define this 

function is, 

[5.5] 

where kB(o) is the initial stiffness at XB = 0, and AK is the stiffness constant. 
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kB(O) 

o Ball COM displacement, Xa 

Figure 5.4 Assumed linear relationship between the spring stiffness kB and the ball COM 

displacement XB showing the initial stiffness at zero displacement kB(o). 

Figure 5.4 illustrates the assumed linear relationship between the spring stiffness and ball COM 

displacement, which is defined by [5.5]. The initial value of stiffness kB(o) was obtained by plotting 

2nd order polynomial trend lines through the data in Figure 5.2a. These trend lines were 

extrapolated to the y-axis, and it was assumed that the intersect point gave the spring stiffness for 

an impact with zero ball deformation, which correlates with the definition of kB(o). The values of 

kB(o) for each ball type are summarised in Table 5.1. 

Table 5.1 Summary of initial stiffness values kB(o) for each ball type. 

(b) Dashpot damping 

Ball type kB(o) (kN/m) 

Pressurised 

Pressureless 

Oversize 

Punctured 

21 

23 

21 

16 

In the constant parameter model, the damping coefficient was constant which caused a steep rise in 

the force in the initial stage of impact, and also meant that there was a tensile load in the model just 

prior to the end of contact. This was due to the impact/rebound velocity being at a peak in these 

phases and therefore the damping force C BX B was relatively high. It was shown that the damping 

parameter increases with the impact velocity and this was attributed to the increase in the volume 

of rubber being deformed as the ball COM displacement increased. Therefore, in this current 

model it will be assumed the damping parameter is a function of the volume of rubber deformed. 

This implied that the model should have a damping parameter which was a function of the ball 

COM displacement. 
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Figure 5.5 (a) Illustration of empirical relationship between contact length and ball deformation, 

for the compression phase of impact, and (b) interpolated relationship between contact length and 

ball centre-of-mass displacement. 

In this model , a relationship between the damping parameter and the volume of rubber being 

deformed needs to be determined. In section 4.4.2, the ball deformation 6DHF and the contact length 

deaNT was measured experimentally for an impact between a ball and rigid surface; the definition of 

the contact length is illustrated in Figure 5.5. During the restitution phase, the relationship between 

6DEF and dCONT was dependent on the ball type and impact velocity. Therefore, there was no single 

function which could define this relationship. However, during the compression phase, this 

relationship was independent of ball type and impact velocity, and was defined by a 41h order 

polynomial trend line (equation [4.1 D. A schematic illustration ofthis trend line is shown in Figure 

5.5(a). 

In chapter 4 experiments were conducted to measure the relationship between the maximum ball 

deformation and maximum ball COM displacement, for a normal impact between a tennis ball and 

rigid surface. Figure 4.16(b) illustrates this empirical relationship. This relationship is strictly only 

valid for the point of maximum compression, but it is assumed that it can be applied to any stage of 

the impact. This relationship was used to translate the data in Figure S.5(a) into Figure S.S(b). 

Figure 5 .5(b) gives a schematic plot of the contact length deaNT and the ball COM displacement XB. 

This relationship could not be obtained directly because the two parameters could not be measured 

simultaneously using the available apparatus. 

The plot in Figure 5,5 (b) (converted into SI units) is defined by, 

deaNT = -2. 77 x 105 x~ + 1. 74 x 1 0-1 x~ - 453x~ + 7. 66x
B [5 .6] 

The contact length dCONT is equal to the diameter ofthe contact area, As mentioned previously, in 

this model the damping parameter CB will be a function of the volume of rubber being deformed. 1t 
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is assumed that the volume of rubber is proportional to the contact area and therefore CB is defined 

as, 

where B is a constant. Let Ac = B K , therefore, 

CB = Ac·(dcoNT Y 
where Ac is defined as the damping constant. 

Substituting [5.5] and [5.8] into the governing equation [5.1] gives, 

mBxB + (Ac(dcoNT Y ~B + (kB(o) + AKxB}xB = 0 

[5.7] 

[5.8] 

[5.9] 

In the previous model, experimentally determined values of contact time and coefficient of 

restitution were used to calculate the two unknown variables kB and CB. In this model, AK and Ac 

need to be determined using the experimental values of Tc and COR. However, unlike in the 

previous model there is no analytical solution for [5.9] and therefore AK and Ac can not be 

calculated directly. Therefore this model required a numerical method to solve these two 

parameters. 

5.4.3 Numerical solution/or model 

A numerical solution of [5.9] can easily be determined using the finite difference method, using a 

time step of L1/=O.Olms. Assuming the velocity xB does not change considerably during this time 

step, the finite difference form of[5.9] at time t is, 

which, rearranged, gives the displacement of XB at time t+L\t as, 

[5.11] can be used to determine XB for time steps of L\t using the following two boundary conditions 

to initialise the solution, 

[5.12] 

and 

[5.13] 

The following equation is used to calculate the force at time t, 
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(F) =m ((xBLru- 2
(XB)t+(xBLAt) 

B t B (MY 
[5.14] 

The solution of equations [5.11]-[5.14] was written in MS Excel 2000 spreadsheet The value of 

dcoNT was calculated at each time step using [5.6], and substituted into [5.11]. The unknown 

parameters AK and Ac were initially given values of 900kN/m2 and 0.005Ns/m3 respectively. The 

end of impact was defined as the point at which XB equalled zero. At this instant, the contact time 

Tc and coefficient of restitution COR were recorded by the PC. A Visual Basic Script Macro was 

programmed that utilised the Goal Seek function to facilitate the iterative process of finding the 

appropriate values of AK and Ac which converged to give the same Tc and COR as that found 

experimentally. As in the previous model, the value of Tc was defined as the time taken for the ball 

COM displacement to return to zero. This iterative process was performed for all the impacts 

which are discussed in section 4.5 to find the converged solution values of AK and Ac for each 

impact and for each ball type. The converged solution was defined as the combination of AK and 

Ac which gave model values of Tc and COR that were within 0.5% of those found experimentally. 

5.4.4 Results and Discussion 
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Figure 5.6 (a) Stiffness constant AK and (b) Damping constant Ac plotted against the ball impact 

velocity. The data is plotted for two different ball types. 

In this section only the Pressurised and Pressureless balls are used to illustrate the features of the 

model. Equations [5.5] and [5.8] define the stiffness and damping constants, AK and Ac 

respectively. Figure 5.6(a) shows that the stiffness constant is very similar for both balls at low 

impact velocities, but at higher impact velocities the Pressureless ball has a lower stiffness. Figure 

5.6(b) shows that the damping constant is similar for both balls. All these observations are 

consistent with the those from the previous model. 

It was assumed that the relationship between the stiffness parameter kB and the ball COM 

displacement XB was linear, as illustrated in Figure 5.4. If this was a correct assumption then the 

value of AK would be constant for all impacts. However, Figure 5.6 shows that the value of AK 

increases as the ball impact velocity is increased. A similar conclusion can be drawn for the 
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damping constant Ac. This suggests that the relationship between stiffness/damping and ball COM 

displacement is non-linear. 
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Figures 5.7 Comparison of experiment and model data for a Pressurised ball impacting on a 

rigid surface, for a range of impact velocities. 

The model solution, using the converged values of AK and Ac, was used to determine the Force­

Time and Force-Displacement data. Typical plots of these relationships are shown in Figures 

5.7(a)-(t) for a Pressurised ball and supplementary comparisons are shown in Figure B.5 for a 

Pressureless ball. These figures show that the model force is lower than that in the experiment, 

for the first and last O.5ms period of the impact, which correspond to low COM displacements. 

The model force is higher than that of the experiment, for the middle part of the impact. Also, the 

maximum ball COM displacement is generally higher in the model than that in the experiment. It 
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is important to note that Figures 5.7(a)-(f) show that the model and experiment Force-Time data 

(and Force-Displacement data) correlate reasonably well for the restitution phase of the impact. 

The most noticeable differences between the model and experiment results are evident in Figures 

5.7(d), (e) & (f). The figures show that the two traces generally vary by up to 40%. By 

comparison, the constant parameter model was generally accurate to within about 20%. This 

initially implies that the variable parameter model is less accurate than the model which it was 

supposed to supersede. However, in the previous section it was shown that the constant parameter 

model did not physically represent the ball impact. Therefore, the constant parameter model is 

fundamentally flawed and should not be used. 

The reasons for the differences between the constant parameter and variable parameter models are 

most easily illustrated by comparing Figure 5.8(a) & (b). These figures show the individual 

contribution of the stiffness and damping parameters, for an impact velocity of 20m/s, for the two 

models. These figures also show the overall force value (the sum of the stiffness and damping 

forces). It can be seen that, during the first O.Sms of impact the overall force is smaller in the 

variable parameter model than in the constant parameter model. After this time the force is 

generally greater in the variable parameter model, especially in the last O.Sms of impact. 
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Figure 5.8 Illustration ofthe typical contribution of the stiffness and damping parameters to the 

overall force for an impact velocity of 20m/s, (a) Constant parameter model and (b) Variable 

parameter model. 

In the constant parameter model it was assumed that the stiffness parameter was constant, whereas 

in the variable parameter model the stiffness parameter increased with COM displacement. This 

meant that the stiffness force in the variable parameter model was relatively low at the start and 

end of impact, and high during the period of maximum compression. This is evident in Figure 

5.8(a) & (b) where the peak stiffness force is higher in the variable parameter model. It is for this 

reason that the overall peak force is higher in this model compared to the constant parameter 

model. 
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In the constant parameter model the damping parameter was constant which meant that the 

modulus of the damping force, le oX B I ' was high at the start and end of impact, as illustrated in 

Figure 5.8a. This lead to the relatively high and low overall model force at the start and end of 

impact respectively. In the variable parameter model the damping parameter increased with COM 

displacement so the modulus of the damping force, le BX B I ' was lower at the start and end of impact 

in the variable parameter model compared to the constant parameter model. A consequence of 

this was that there was no tensile load during the final phase of impact, which is an improvement 

on the constant parameter model. This occurs because the value of the term le oX B I was lower than 

that of the stiffness force during this final phase of impact so the overall force that was plotted in 

Figure 5.8b remained positive throughout. 

The comparisons made between the models and the force platform data have shown that the 

constant parameter model correlates better with the experiment data in the initial stage of impact; 

the force value in the variable parameter model is too low. However, in the previous section it was 

mentioned that the constant parameter model was not realistically modelling the impact in this 

period. Therefore the variable parameter is actually a better model but it needs to be modified to 

account for a higher load in this period. Implementing such a change will inherently reduce the 

maximum load because the total impulse acting on the ball remains constant. It has been noted that 

the variable parameter model Force-Time data correlates well with the experiment data in the 

restitution phase so no major modifications need to be made in this period. 

5.4.5 Conclusions 

Modifications were made to the existing constant parameter model to allow the stiffness and 

damping properties to vary during impact. The resulting system was termed a variable parameter 

model. It was assumed that the stiffness and damping parameters varied linearly with the ball 

COM displacement and ball-surface contact area respectively; the ball-surface contact area was 

itself a function of the ball COM displacement. An iterative process was used to determine the 

values of the stiffness and damping constants in the linear relationships for a range of impacts. 

This method determined the appropriate values for these constants which gave the same contact 

time and coefficient of restitution for the model as that found experimentally for a range of impact 

velocities up to 30mls. It was found that the value of the stiffness constant increased as the impact 

velocity increased, and therefore there was no single value that could be used to model the entire 

range of velocities. The implication of this was that the assumption of a linear relationship 

between stiffness and ball COM displacement was incorrect. A similar conclusion was drawn for 

the damping constant. 

Comparisons made between the variable parameter model and the experimental data showed that 

the model force value was too low in the initial stage of impact. Therefore this model needs to be 

modified to account for a higher load in this period. The consequence of the low initial load was 

that the maximum model load was higher than that in the experiment. This was because the total 

impulse acting on the ball remained constant. During restitution, the model Force-Time data 
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correlates well with the experiment data so no modifications need to be made in this period. This 

correlation is much improved from that of the constant parameter model and is mainly due to the 

assumption that the damping was a function of the ball COM displacement. 

5.5 One Degree-of-Freedom Visco-Elastic - Variable Parameters and 

Momentum Flux 

5.5.1 Overview of the model 

The main aim of this chapter is to develop a visco-elastic model of an impact between a tennis ball 

and a rigid surface. The empirical model parameters are to be determined for a range of tennis 

balls. It is intended that this model will be used to simulate the ball in a ball-racket impact, which 

is discussed later in this study. In order to achieve this aim, the model must physically represent 

the impact mechanism and not just resemble a numerical solution. A numerical solution can not be 

used to advance the knowledge of a ball impact because the model would not physical simulate the 

impact mechanism. 

The variable parameter model was physically representative of the impact but did not give a 

sufficiently good correlation between the model and experiment results. This model assumed that 

the stiffness and damping increased with the ball COM displacement. In section 5.4 it was 

explained that this was a more realistic model compared to the constant parameter model. The 

main weakness of the variable parameter model was that the force was considerably lower than 

that in the experiment during the initial phase of compression. Cross (1999a), Dignall (2000b) and 

Thomson (2000) all arrived at the conclusion the experimentally determined force was relatively 

high because of the initial high stiffness of the ball before it buckled. However, if this was the 

reason for the high load then when the ball buckled the force would drop considerably, which does 

not happen. This suggests that there is an extra feature in the impact mechanism that has not yet 

been accounted for. 

Hubbard & Stronge (2001) published a study on the analytical modelling of table tennis ball 

impacts on a rigid surface which was discussed in Chapter 2. This paper ignored the hysteresis 

losses in the material but showed that the force acting on the ball consisted of two components 

during the compression phase of the impact; these were the ball stiffness and the momentum flux 

force. This momentum flux force was not accounted for in either the constant parameter or 

variable parameter models, but will be included in the model in this section. The momentum flux 

force corresponds to the change in momentum for the section of the deformed ball which is being 

flattened upon impact with the surface. 

This new model is defined as a one degree-of-freedom momentum flux model. This is a modified 

version of I-DOF variable parameter model and partly accounts for the fact that the ball is a 

complex three dimensional highly deformable body, and not a point mass suspended on a spring 

and damper. A possible solution would have been to use a multi-DOF system to simulate the mass 

and stiffness distribution, or alternatively use finite element methods (FEM) to model the ball. 

However, the aim of this work was to develop a simple model which could be used to model a ball-
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racket impact. Neither an FEM model or multi-DOF visco-elastic system would be suitable for this 

task. 

5.5.2 The construction o/the model 

(a) Momentumjlux simulation 

Hubbard & Stronge (2001) used thin shell theory to define an analytical solution for the shape of 

the ball during impact. In this paper, it is shown that the wall thickness of a tennis ball is too large 

for this shell theory to be used to model a tennis ball impact on a rigid surface. Also, this impact 

involves large, non-linear deformations which are very difficult to model analytically. 
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Figure 5.9 Definition of the contact length, and ball COM displacement. 
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In this current study, an empirical approach is adopted in an attempt to model the resultant force 

that is due to the momentum flux. During impact, the ball can be considered as two separate 

sections; section 1 continuing to move towards the surface section and section 2 is at rest in contact 

with the surface (as shown in Figure 5.9). For simplicity it is assumed that section 2 is flat and 

stationary and therefore remains in contact with the surface during impact. It is also assumed the 

section 1 is undeformed and therefore all points on this section move towards the surface with the 

same velocity 8 BI' When a segment of section 1 impacts on the surface its velocity changes from 

8B1 to zero, and the size (and mass) of section 2 increases. The masses of sections 1 and 2 are 

defined as MJ and M2 respectively, and the mass of the ball is defined as mo. The 'flow' of mass 

into section 2 is defined as M 2 • 

During the compression phase of impact, the momentum flux force is compressive and therefore 

results in a force being exerted onto the surface, separate to that caused by the stiffness of the ball 

shell and internal pressure. This momentum flux force at time t (F MJt is equal to the change of 

momentum and is defined using, 

[5.15] 

It is assumed that the flattened section remains approximately flat throughout impact. This 

assumption has to be made because it is very difficult to predict the exact form of this shape. 
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Hubbard & Stronge determined the mass M2 analytically. However, in this current study M2 is 

determined from the length of the contact-area diameter dCONT and the mass per unit surface area 

PAREA. The relationship between dCONT and XB is given by [5.6] and is the same as that used in 

section S.3 to determine the volume of rubber that is being deformed during impact. It is assumed 

that the tennis ball shell is inextensible and therefore the value of Parea remains constant throughout 

impact. For a standard size tennis ball with an effective radius of 29.5mm and a mass of S7g, value 

of Parea is 5.212kglm2
• For an oversize ball the value of Parea is 4.552kglm2

• [S.1S] can be solved 

to determine the momentum flux force for a unit time interval L1t, 

[S.16] 

The centre-of-mass velocity x B is different to the velocity of section 1 J B1 , as noted in Hubbard & 

Stronge (2001). For this simplified model the relationship between these two variables is defined 

as, 

[S.17] 

Substituting [S.17] into [S.16] gives 

(F ) = mB lParea1r((dcONT(I) Y - (dCONT(I-.1t) Y )J(x ) 
M 1 4L1/(M(), B 1 

[S.18] 

which is an equation of the form, 

[5.19] 

where, 

[5.20] 

It is important to reinforce that [5.17]-[5.18] only apply in the compression phase of impact. 

During the restitution phase, the momentum flux force is tensile and therefore CM is equal to zero 

throughout this phase. 

The equation for the momentum flux force [5.16] can be rearranged into the form of [5.17] which 

is analogous to an equation of motion for a dashpot damper, with a damping coefficient defined as 

CM.· The value of CM can be determined for any time t by determining the values of dCONT for the 

relevant value of XB using [S.6]. As in the previous models, the structural stiffness and material 

damping will be modelled using a linear spring and damper respectively. The momentum flux 

visco-elastic model is illustrated Figure 5.10. 
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Figure 5.10 Illustration of the I-DOF momentum flux visco-elastic model. 

(b) Ball structural stiffness 

In section 4.5, a force platform was used to determine Force-Time data for an impact between a 

ball and a rigid surface, for a range of ball types and impact velocities. It was noted that the force 

increased rapidly for the first - 0.2ms then dropped suddenly. It was concluded that this was due to 

the relatively high initial structural stiffness of the ball shell, which instantaneously reduced when 

the shell buckled. In this model it is assumed that the ball stiffness kB equals a constant value kSHELL 

for t < O.2ms. The value of kSHELL is chosen arbitrarily as there is no analytical solution. 

For t > O.2ms it was assumed that the structural stiffness of the ball kB was proportional to the 

displacement of the ball XB. In the variable parameter model it was assumed that this relationship 

was linear but it was found that the stiffness constant AK increased with ball impact velocity. This 

implied that the true relationship was non-linear and therefore equation [5 .5] was not of a suitable 

form to describe the relationship between ball stiffness and displacement. Other researchers (Carn~ 

2000, Ujihashi 1994) have successfully used a power law relationship between the ball stiffness 

and displacement. Therefore, in this model [5 .5] was modified so that kB is proportional to a power 

ofxB, 

[5.21 ] 

kSHEU 

Ball COM displacement, XB 

Figure 5.11 Schematic illustration of the assumed relationship between the spring stiffness kB 

and ball COM displacement XB showing the initial high stiffness k SHELL which is valid for t < O.2ms. 
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Equation [S.21] is applicable for t > O.2ms. An illustration of the relationship between kB and XB is 

shown in Figure S.l1. As before, kB(o) is the effective stiffness of the ball when XB = 0, and the 

values of this parameter are given in Table S.1. Equation [S.20] is assumed to be valid for both the 

compression and restitution phases of impact. 

(c) Material damping 

In the variable parameter model it is assumed that that the force in the linear dashpot damper Fe 

was only proportional to the magnitude of the contact area, i.e., 

[S.22] 

where Ac is defined as the damping constant. 

In that model it was effectively assumed that the ball deformed at a rate of xB ; xB being the 

velocity of the ball centre-of-mass. In this current model, it has been shown that the ball deforms at 

a rate of 8 B1' Therefore, the model needs to be modified with the assumption that the damping 

force is proportional to this deformation rate J B1 rather than the COM velocity x B • The 

relationship between x Band J B1 is defined in [5.17], and therefore [5.22] is modified to become, 

[S.23] 

and therefore, 

[S.24] 

(d) Summary 

The momentum flux visco-elastic model is illustrated in Figure S.10. The governing equation for 

this model is, 

[S.2S] 

The values of the parameters kB' CB and CM have been fully defined in this section, except for one 

minor adaptation which will be explained here. The experimental Force-Displacement plots, such 

as that in Figure 4.13 shows that the force is negligible for XB < -2mm (during the compression 

phase). This characteristic is simplified in the model by assuming that the force is zero for XB < 

2mm (during the compression phase). This is achieved by enforcing the parameters kB' CB and CM to 

equal zero during this period. After this period the parameters are defined using the equations 

discussed in this section. 
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5.5.3 Numerical solution of model 

The values of the model parameters kSHELL' AK• a and Ac were defined so that the contact time Tc 

and coefficient of restitution COR determined by the model were close to those determined 

experimentally in section 4.5. There is clearly no analytical solution to obtain the four parameters 

so a similar numerical method is used as that which was adopted in the variable parameter model. 

This method is discussed in the following passage. 

Using [5.17]-[5.25], the general equation for the ball COM displacement XB at time t is, 

() () () ( ~tY ([k ( ) ] [( {(xBL~, +(xBLuJ)])) 
X B 1 = 2 xB 1-61 - X B 1-261 - -;;;; B X B 1-61 + CB +CM \ ~, 

[5.22] 

This equation was solved in MS Excel using a time step of L1t=O.Olms and the relevant values of kB' 

CB and CM. 

In the variable parameter model, the value of AK was adjusted so that the contact time for the 

model matched that of the experiment. A similar iterative method was also used to determine the 

damping parameter Ac which gave the same coefficient of restitution for the model as was found 

experimentally. In this momentum flux model, the combination of the values kSHELL' AK and a 

defined the model value of contact time. This meant that there was an infinite number of valid 

solutions for these two parameters, which all gave the same value of Tc. Clearly, the optimum 

solution would be a specific combination of kSHELL' AK and a which gave the correct value of Tc for 

all ball impact velocities. If this was achieved, then each ball type would have a single function 

[5.21] that described the value of kB at any value ofxB' A single value of the damping parameter Ac 

was determined which minimised the difference between the model and experimentally determined 

coefficient of restitutions, for all ball impact velocities. 
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Figure 5.12 Comparison of the experimental and model data for (a) contact time and (b) 

coefficient of restitution. The results are shown for a Pressurised ball and the model parameters 

used were Ax=16000 kN/m2
, u=1.65, Ac = 3.5 kNs/m3• 
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In section 4.5, Force-Time data obtained for an impact between a ball and force platform was used 

to conclude that the ball initially had a relatively high structural stiffness. The magnitude of this 

stiffness instantaneously dropped when the shell buckled. This feature is simulated in the model by 
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assuming that the stiffness of the ball was equal to a high constant value kSHELL' for t < O.2ms. 

Then, after this time, the stiffness was defined using a function of the ball displacement. The value 

of kSHELL can not be directly measured by either analytical or experimental methods and therefore 

has to be chosen arbitrarily. In this study, it was assumed that kSHELL was equal to 80kN/m for all 

ball types, for all ball impact velocities. This single value was chosen as it gave a model Force­

Time curve which was similar to that determined experimentally. This is confirmed in the figures 

in the results section. 

The iterative method used to determine the combination of AK, a and Ac for each ball type is most 

easily explained by way of an example. The example uses the experimental data obtained for a 

Pressurised ball, and this data is shown in Figure 5.12(a) and (b). The model was solved for six 

discrete impact velocity increments between 5 and 30m/s. For each of these impact velocities the 

same combination of AK, a and AK were used, and the calculated values of contact time and COR 

are plotted in Figure 5.12(a) and (b); the contact time being defined as the time in which the ball 

COM displacement returns to zero. Different combinations of AK, a and Ac were input into the 

model until the model values of contact time and COR matched those determined experimentally, 

as shown in Figure 5.12(a) and (b). When determining the optimum value of Ac, the value was 

chosen which gave the highest accuracy for ball impact velocities between 13 and 30m/s as these 

velocities are more relevant for a ball/racket impact. This explains why the model solution in 

Figure 5 . 12(b) correlates more closely to the experimental data for impacts in this velocity range. 

Clearly the value of Ac could have been allowed to vary with ball impact velocity and this would 

have meant that the model and experiment values of COR would be identical. However, a neater 

solution is obtained if a single value of Ac is used for all impact velocities. 

5.5.4 Results and Discussion 

(a) Model parameters AK, a and Ac 

Table 5.2 Spring parameters kB(o). AK and a and damping coefficient Ac for the four ball types. 

Ball type kB(o) (kN/m) AK (kN/mZ) a Ac (kNs/m3
) 

Pressurised 21 16000 1.65 3.5 

Pressureless 23 12500 1.70 4.0 

Oversize 21 3600 1.30 3.2 

Punctured 16 60000 2.00 5.8 

The iterative method described in section 5.5.3 was used to determine the combination of AK and a 
that gave the minimum difference between the model and experiment contact time, for each ball 

type, and this data is shown in Table 5.2. The magnitude of this difference is illustrated in Figure 

5.12 for the Pressurised ball and in Figure B.6(a)-(c) for the Pressureless, Oversize and Punctured 
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balls. These figures show that the model and experimentally determined contact time exhibit a 

high correlation. 

Included in Table 5.2 is the constant k B(o) which corresponds to the stiffness of the spring for a zero 

displacement. This was defined in the variable parameter model. The parameters in this table can 

be used to determine the stiffness of the spring at any displacement XB using, 

[5.21] 

An illustration of the relative stiffness of each ball type is shown in Figure 5.13. This figure shows 

that all the standard production balls have a similar stiffness for a COM displacement of - 1 Omm 

and below. The Pressureless ball is the stiffest in this range because this ball has the highest value 

of initial stiffness k B(o) . The Punctured ball has a considerably lower stiffness than all other balls, 

for small displacements. At the highest displacements, the Pressurised ball is the stiffest, followed 

by the Oversize ball and then the Pressureless ball. At these displacements, the Punctured and 

Pressureless balls have a similar stiffness. 
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Figure 5.13 Comparison of the model spring stiffness k B for each ball type. 
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In this model, the material damping is characterised by the parameter Ac. The value of this 

parameter, for all ball types, is shown in Table 5.2. The accuracy of the model is assessed by 

comparing the coefficient of restitution for the model and experiment. This comparison is shown 

in Figure 5.12(b) for a Pressurised ball and in Figures B.7(a)-(c) for the Pressureless, Oversize and 

Punctured balls. These figures show that the model and experimentally determined values of COR 

exhibit a very high correlation for impact velocities above 13m1s. For velocities below this, the 

model over predicts the coefficient of restitution. 
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(b) Force-Time and Force-Displacement data 
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Figures 5.14 (a)-(f) Comparison of I-DOF momentum flux model and experiment results for an 

impact between a Pressurised ball and a rigid surface for three different impact velocities. 

Figures S.14(a)-(f) show a typical comparison between experimental and model results for an 

impact between a Pressurised ball and rigid surface. All these figures show that the model exhibits 

a good correlation with the experiment data. 
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Figures 5.14(d)-(t) show that the force initially rises rapidly in both the model and experiment 

Force-Displacement plots. This is followed by a sudden drop in force due to the instantaneous 

drop in structural stiffness; it is at this point that the spring stiffness changes from the high shell 

stiffness (kSHEU) to a lower value which is proportional to ball COM displacement (kB(O) + AKX~). 

In the remaining part of the compression phase, the model force is very close to that measured 

experimentally. However, the maximum force is always higher in the experiment than in the 

model. During the restitution phase, the model and experiment Force-Displacement plots exhibit a 

very close correlation with the two sets of results never differing by more than approximately 10%. 

Further comparisons are given in Figures B.8-B.10 for the Pressureless, Oversize and Punctured 

balls. The results for the Oversize ball show a similar, high correlation between the model and 

experimental results as was found for the Pressurised ball. 
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Figure 5.15 Comparison of I-DOF momentum flux model and experiment results for an impact 

between a Punctured ball and a rigid surface for an impact velocity of 23m1s. 

The correlation between the model and experiment was found to be generally lower for the 

Punctured and Pressureless balls. Comparisons between the model and experiment Force­

Displacement plots for these two ball types are shown in Figure B.8(c)-(d) and B.IO(c)-(d). An 

example of this lower correlation is given in Figure 5.15 which shows an impact between a 

Punctured ball and a rigid surface, for an impact velocity of 23m1s. During the compression stage, 

the model predicts the experimental data with a reasonable accuracy of approximately 20%. 

During the restitution phase, the experimental data shows that the Pressureless and Punctured balls 

exhibit a local peak towards the end of impact which has been assigned to the ball suddenly 

'flipping' back. The model is unable to account for this and therefore leads to differences between 

the model and experimental results. This illustrates that there are supplementary components in the 

impact mechanism, for these balJ types, which are not simulated in this visco-elastic model. This 

explains the lower accuracy of the model for these ball types. 
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5.5.5 Discussion of Model 
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Figure 5.16 Typical comparison of experiment and model Force-Time data, showing the 

contribution of each component on the total model force for an impact velocity of 20m/s. ( a) 

Pressurised, and (b) Punctured ball. 

The momentum flux visco-elastic model is composed of three components, (1) structural stiffness, 

(2) material damping, and (3) momentum flux. Typical contributions for each of these parameters 

in an impact between a ball and rigid surface at 20mls are illustrated in Figure 5.16(a) and (b) for a 

Pressurised and Punctured ball respectively. Also plotted on these figures is the experimentally 

obtained force data. These figures can be compared with similar comparisons for the other models 

in Figure 5.8(a) & (b). 

This model is similar to the variable parameter model; the main difference being the contribution 

made by the damper that represented the momentum flux force. In the model it was assumed that 

this force was proportional to the rate of mass flow into the flattened section of the ball, and is only 

applicable during the compression phase of impact. This explains the initial sharp rise in the 

momentum flux force, followed by its steady drop off up until maximum COM displacement. 

Also, it should be noted that a large fraction of the initial model force (t<O.5ms) is due to the 

momentum flux component. The magnitude of this component is very similar for all ball types as 

it is essentially a function of the deformation rate. Figure 5.16(a) and (b) compare the momentum 

flux contributions for the most stiff and least stiff balls respectively and shows that the two 

magnitudes are very similar. 

Another difference between the model which has been discussed in this section and the variable 

parameter model occurs in the initial stage of impact. In this current model it is assumed that no 

force acts on the ball for COM displacements of below 2mm. This assumption was made to 

simulate the compression of the cloth; the cloth having a very low stiffness. It could be argued that 

this assumption should also be made for the final stage of impact, during the period where the ball 

COM displacement was less than 2mm. However, it was found that such an assumption had 

negligible effect on the overall model solution and therefore was not implemented. 
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Figure 5.16Ca) and Cb) both show that the principal component of the total model force at maximum 

COM displacement is the structural stiffness force. It can be seen that this is higher for the stiffer 

Pressurised ball compared to the less stiff Punctured ball. 
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Figure 5.17 Experimental data for Ca) Force-Time and Cb) Force-Displacement for a normal 

impact between a tennis ball and rigid surface, for an impact velocity of 20mls. 
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Figure 5.18 Model data for Ca) Force-Time and Cb) Force-Displacement for a normal impact 

between a tennis ball and rigid surface, for an impact velocity of 20m/s. 
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In Chapter 4, a force platform was used to obtain Force-Time and Force-Displacement plots for 

four different ball types; an example of these plots being given in Figure 5.17Ca) and Cb) 

respectively. The data in these figures represents impacts for a ball impact velocity of 20m/s. This 

impact was modelled using the I-DOF momentum flux model and the results are shown in Figure 

5.18(a) and Cb). 

Figure 5.17(a) and (b) shows that all the standard sized balls exhibit a similar experimentally 

measured force during the first O.5ms of impact. It has been shown previously that all these balls 

have a different structural stiffness and wall thickness which implies that the load measured in this 

phase is not dependent on either of these characteristics. The experimentally measured load for the 

Oversize ball is lower than that for the standard sized balls, during this phase. The model results in 

Figure 5.18(a) and Cb) exhibit a similar trend. The smaller load that is calculated by the model for 
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the Oversize ball is due to the relatively smaller component of momentum flux force for this ball. 

It has a thinner shell and therefore the density per unit area is lower. Immediately after buckling, 

the force measured experimentally remains lower than for all the other balls. Therefore this 

suggests that the lower experimental load is due to the smaller momentum flux force. 

In Figure 5.17(a), it can be seen that that the maximum force during impact was lower in the 

Punctured and Pressureless balls, compared to the Pressurised and Oversize balls. A similar trend 

is evident in the model results shown in Figure 5.l8(a) and (b). It was shown previously that the 

main component of the force at this point is the structural stiffness. Since the two internally 

pressurised balls have a higher stiffuess, these balls exhibit the highest force. 

In Figure 5.17(b), and the force platform data in Chapter 4, it can be seen that the Oversize ball 

generally deforms by a similar amount to the Punctured ball, even though it is considered stiffer 

than it. This is due to the Oversize ball generally exhibiting a lower force during the initial phase 

of compression which results in a lower deceleration of the ball centre-of-mass. Interestingly, both 

balls reach maximum COM displacement at a similar time, to within O.lms. The Oversize ball, 

with its higher stiffuess and lower damping does, however, exhibit a higher force during the 

restitution phase which results in a much shorter contact time for this ball. The difference in 

contact time for these two balls is up to O.5ms. 

The inherent weakness of the model is that the impact between a rigid surface and a tennis ball is 

very complex and difficult to simulate using a single DOF model. The impact involves structural 

instabilities, large deformations and high energy losses which would require a more detailed 

analysis for a more accurate model to be developed. However, an advancement of this current 

model is beyond the scope of this work. Each of the elements of this visco-elastic model physically 

represents a component of the impact mechanism. Therefore this model can be used to illustrate 

the differences noted between the different ball types that have been tested. Also, this model can 

be adapted for impacts in which the rigid surface is replaced by a deformable surface. 

5.5.6 Summary 

In this section, a visco-elastic model has been developed which simulates the (1) the structural 

stiffness, (2) the material damping, and (3) the momentum flux due to the large deformation of the 

ball. The governing equation of this model is, 

m/iB + (CB + CM).iB + kBXB = 0 

The four main features of the model are individually summarised as follows, 

1. High ball stiffness until buckling (for t<O.2ms). For the first O.2ms of impact, it was 

assumed that the ball stiffness was high. This was simulated in the model by assigning a 

relatively high value to the spring stiffness; this value being constant and defined as ksHEu. 

It was assumed that ksHEu was equal to 80kN/m for all ball types and ball impact 
velocities. 
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2. Ball stiffness is a non-linear function of the ball deformation (for t>O.2ms). After the first 

O.2ms of impact, the spring stiffness kB was assumed to be a non-linear function of the ball 

COM displacement, (k8 = kB(o) + AKX:), In this equation, kB(o). AK and a were constants 

that were dependent on the ball type, but independent of ball impact velocity. 

3. Material damping was a linear function of the volume of rubber being deformed. The 

material damping was simulated usmg a dashpot with parameter CB, 

( CB = ;:;, Ac-( d CONT )') An empirical equation was derived which estimated the shape of 

the deformed ball, for a specific ball deformation. This was used to determine the mass of 

the ball that was not in contact with the surface M/, and the diameter of the ball/surface 

contact area dcoNT. The damping parameter Ac was dependent on the ball type, but 

independent of the ball impact velocity. 

4. Momentum flux force. The momentum flux force is equal to the change of momentum and 

results from a mass segment, which was initially moving towards the surface, being 

brought to rest. No analytical solution can be obtained for this internally pressurised, thick 

walled shell so empirical data was used to define the form of the deformation. 

For each ball type, a single function (kB = kB(o) + AKx:) was determined that defined the 

structural stiffness of the ball which gave the same model contact time as that found 

experimentally. It was found that the Pressurised ball was the stiffest, followed by the Oversize 

and then the Pressureless balls. The Punctured ball was considerably less stiff, for small 

deformations. However, at higher deformations it had a similar stiffness to the Pressureless ball. 

For each ball type, a single value for the damping parameter Ac was obtained. This gave a high 

correlation between the model and experiment values of coefficient of restitution, for impact 

velocities between 13 and 30mls. These are representative of the impact speeds for an impact 

between a ball and racket. For other speeds, the model and experiment values of COR could be 

forced to correlate by determining the relevant value of Ac. 

The experimental and model Force-Time plots (and Force-Displacements plots) exhibit a very 

strong correlation, especially for the internally pressurised balls. For the other ball types, there are 

supplementary features of the impact mechanism which are not being simulated by the model and 

therefore a weaker correlation is obtained. However, it should be noted that, for the majority of the 

impacts, the model and experiment correlate to within 10%. Therefore this model is a significant 

improvement on the previous models. 

The model has been used to elucidate the differences between the experimentally determined 

Force-Time and Force-Displacements plots, for the different ball types. Analysis of the individual 

contribution of each element of the model has shown that the main component of the force during 

the first O.5ms of impact is the momentum flux force. In the model, this is relatively independent 

of the ball stiffness and wall thickness, and therefore the magnitude of the force is similar all the 

standard size balls. In the experiment, a similar finding is reached with the Pressurised, 

Pressureless and Punctured all exhibiting a similar force. Experimentally it was found that this 
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force is lower in the Oversize ball and this ball exhibits a lower momentum flux force in the model 

as the density per unit area is lower for this ball. 

At maximum COM displacement, the magnitude of the model force is primarily a function of the 

structural stiffness. In the model, the Pressurised ball is the stiffest and therefore exhibits the 

largest force in this phase. The experimental data reveals a similar finding, with the Pressurised 

ball giving the largest force and the Punctured and Pressureless balls giving the lowest force; these 

latter two balls being the least stiff. 

5.6 Summary 

In this chapter, a one degree-of-freedom visco-elastic model of a normal impact between a tennis 

ball and rigid surface has been developed. This model is used to predict the coefficient of 

restitution and the Force-Time plot for the impact. The accuracy of the model has been quantified 

by comparing these model results with those determined experimentally. Three models have been 

discussed in this chapter. Each of these models uses a spring to represent the stiffness of the ball 

and a dashpot damper to simulate the material damping. These two components act in parallel. 

In the first model, it was assumed that the stiffness and damping parameters were constant 

throughout impact, but varied with ball impact speed. These assumptions are clearly not realistic 

and lead to a model which predicts a tensile force between the ball and surface towards the end of 

impact. This results in a low correlation between the model and experiment Force-Time plots, for 

significant proportions of the impact. This model is not physically representative of the impact 

mechanism and is therefore not a suitable solution. 

In the second model, it was assumed that the stiffness and damping parameters were functions of 

the ball COM displacement. The stiffness of the spring was assumed to be linearly proportional to 

the ball COM displacement; the gradient of this relationship was defined AK• However, it was 

found that the value of AK increased with impact velocity which implied that the relationship 

between stiffness and ball COM displacement should be non-linear. The damping parameter was 

assumed to be proportional to the volume of rubber which is being deformed. The relationship 

between the magnitude of rubber being deformed and the ball COM displacement was obtained 

using empirical data. This assumption ensured that no tensile loads could be present in the model 

solution. A comparison of the Force-Time plots for the model and experiment revealed a poor 

correlation for the compression phase. The model greatly underestimated the force for low 

displacements, and vice versa for high displacements. Also, the model exhibits a larger COM 

displacement compared to the experiment. During the restitution phase, the correlation between 

model and experiment was considerably higher. However, due to the larger ball COM 

displacement in the model, the model force was significantly lower than that measured 

experimentally. 

Clearly, the second model required a component which acted to increase the model force during the 

earlier part of the compression phase. The third model includes a second dashpot damper which 

acts in parallel with the first damper and the spring. This second damper represents the force which 
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acts on the ball due to the momentum flux. The momentum flux force corresponds to the change in 

momentum for the section of the deformed ball which is being flattened upon impact with the 

surface. This force is separate to the stiffness force and only acts during the compression phase. 

The stiffness of the spring was assumed to be a non-linear function of the ball COM displacement. 

This function was identical for all ball impact velocities, but varied between ball types. The 

damping parameter was assumed to be a function of the amount of rubber being deformed and the 

rate of deformation. It was found that this model could accurately predict the contact time and 

coefficient of restitution for most impact velocities. 

The experimental and model Force-Time and Force-Displacement plots exhibit a very high 

correlation, for this momentum flux visco-elastic model. However, there are some features of the 

actual impact mechanism that this model can not account for which leads to some small differences 

between the two sets of data. 

The momentumflux model has been used to explain the experimental Force-Time plots for the four 

ball types. The differences and similarities between the balls have been qualitatively accounted for 

using the model. For example, the model illustrates that the main component of the model force at 

maximum deformation is due to the structural stiffness; a stiffer ball producing a larger force. This 

correlates with the experimentally obtained Force-Time plots that show the stiffer balls exhibiting a 

larger force during this phase, compared with the less stiff ball types. 

In this chapter, an impact between a ball and rigid surface has been modelled. The model will be 

referred to in a later chapter when the impact between a ball and racket is investigated. 
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6. The Racket Stringbed - Quasi-static Compression 

testing 

6.1 Introduction 

The aim of this overall study is to determine a model for the impact between a ball and a racket, for 

a typical tennis stroke. This model involves four distinct, interacting components; the human body, 

racket frame, stringbed and ball. The technique which has been adopted in this study involves the 

construction of the overall model in discrete stages. In Chapter 5, a model has been developed for 

an impact between a ball and rigid surface. This model was verified using experimental data 

obtained for an impact between a ball and force platform. The logical next stage of this study 

involves the development of a model of a ball impacting on a stringbed. The stringbed is a discrete 

component of the impact mechanism and shall be modelled as such. In Chapters 6, 7 and 8, a 

visco-elastic model of an impact between a ball and head clamped racket will be developed; a 

visco-elastic model being chosen for its versatility. In this type of impact, the racket frame is 

rigidly clamped and therefore does not contribute to the impact mechanism. This minimises the 

number of variables which need to be considered in this model. 

It is well established that different string tensions and types result in differences in the impact 

between a ball and racket. There is both analytical and anecdotal evidence of this in academic 

journals (Cross 2000!) and commercial publications (Racket Tech 1998). The main finding has 

been that a lower string tension results in a higher coefficient of restitution. It has also been shown 

that an increase in string tension results in a decrease in the measured contact time for the impact 

(Taylor 2002). The explanation for these findings is most easily understood by considering the 

work by Cross (20000. In this work, the ball and stringbed are modelled as two springs in series, 

and the racket as a one dimensional flexible beam. A reduction in string tension was represented in 

the model as a reduction in the stiffness of the spring which represented the stringbed. This 

increased the contact time for the system and meant that the maximum force was lower, and so the 

ball deformed by a smaller amount. The consequence of this was that hysteresis losses in the ball 

were lower and so it rebounded with a higher velocity. In the work by Cross, the values of the 

stringbed stiffness were assumed and not experimentally obtained. In this current chapter, 

estimates of the quasi-static stringbed stiffness are obtained for a range of string tensions. 

Experiments will be conducted on these head clamped rackets in Chapter 7 to measure the ball 

rebound velocity, contact time and ball/stringbed deformation. Finally, a model of this impact will 

be developed in Chapter 8. 

The quasi-static stiffness of the stringbed can easily be measured by applying a load, perpendicular 

to the string plane, and measuring the resulting displacement. Leigh and Lu (1992) experimentally 

determined a value of approximately 30kN/m which was found by compressing a tennis ball 

against the stringbed for loads of up to 200N. Kawazoe (1993) also used a tennis ball to apply a 

load and determined a stiffness of 30kN/m for very small loads, and over lOOkN/m at deflections 

of 20mm (about 1200N load). Brody (1979) applied a distributed force of 480N over a 40mm 

diameter disc and obtained a deflection of 14.Smm, giving a stiffness of approximately 35kN/m. 
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In the first part of this chapter, the quasi-static stringbed stiffness is obtained for a selection of 

rackets which are considered to cover the range that is typical in a game of tennis. In this first 

section, the displacement is only measured at the load point, as this is all that is required to 

determine the stringbed stiffness. However, the displacement of the other points on the stringbed 

are of equal importance in the understanding of the deformation mechanism. Therefore, in the 

second part of this chapter, the shape of the deformed stringbed will also be measured. 

6.2 Measuring the quasi-static stiffness of a stringbed 

6.2.1 Introduction 

In this section, the quasi-static stiffness of the stringbed is measured. In this test, the head of the 

racket frame is clamped so that the measured deformation is solely due to that of the stringbed. The 

load will be applied at the geometric string centre of the racket, in a direction which is 

perpendicular to the plane of the stringbed. The load could have been applied by compressing a 

tennis ball into the stringbed. However, one weakness of this method is that the force is applied 

over a continually varying area which is difficult to measure. It is common practise to minimise 

the number of variables in an experiment and therefore it would be more appropriate to apply the 

load over a fixed area. A standard device which can be used to perform such an experiment is 

called the Babolat RDC (Babolat 2002). The racket is placed onto a circular support and a load is 

applied to the stringbed using a rigid disc with a diameter of 51mm. The Babolat RDC machine 

applies a specific force and measures the resulting displacement. This displacement is converted to 

a number between 0 and 100, which is then shown on the LeD display. This number is only meant 

to give a guide to the relative stiffness of the stringbed, and therefore is not measured in physically 

significant units. This feature makes this apparatus unsuitable for the current study as the measured 

stringbed stiffness could not be compared with that used in a visco-elastic model of the stringbed. 

In this section, a machine is discussed that is based upon the Babolat RDe machine but which 

measures the actual load that is applied to the stringbed. The device also measures the 

displacement of the load point on the stringbed. 

6.2.2 Experiment Apparatus 

Figure 6.1 shows the rig which was used to determine the quasi-static stiffness of the deformed 

stringbed. The rig supports the racket below a rigid lower plate (labelled A). A threaded rod, 

attached to an S-type strain gauge load cell, was attached to a rotating handle (labelled B) which 

was supported on a bearing on the upper plate (labelled e). At the other end, the rod passes 

through the geometric string centre of the racket and a rigid circular disc, of diameter tPDlSC, was 

attached to the end. Rotating the handle clockwise causes the rod, and disc, to traverse upwards 

which results in a distributed load being applied to the stringbed across the area of the disc. The 

displacement of the stringbed at the load point was determined from the number of revolutions of 

the handle NH; each revolution of the handle corresponding to a displacement of 1.75mm. The 

displacement of the load point on the stringbed is referred to as c5wAD and is equal to 1. 75NH• 
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A 

. ..... 

Figure 6.1 Rig used to determine the stiffness of the stringbed. 

The load cell has been calibrated for compressive loads of up to 2S00N. A pre-load of ION was 

applied to the stringbed to ensure that the racket head was positioned properly in the rig before the 

measured loading commenced. The handle was rotated at a steady rate of one rotation per second, 

up to a maximum of 12 rotations (NfI = 12) or a load of l200N, whichever was reached first. The 

load was then removed, at the same rate as for the loading phase. The output of the load cell was 

sampled using a strain indicator unit, for each increment NH, for both the loading and unloading 

phase. At each increment of NfI there was a delay of five seconds before the load value was 

recorded . During the loading cycle the reading on the load cell would reduce during this five 

second period. This occurred due to stress relaxation taking place in the string. A delay was 

employed in an attempt to obtain a true, settled value for the actual stiffness of the stringbed which 

was not dependent on the rate ofloading. 1n practise, the load value actually continued to decrease 

after the five second delay although the rate of this decrease was relatively small. This highlights 

the difficulty in measuring a value for the quasi-static stiffness of the stringbed because the 

recorded value is time dependent. Indeed, holding the load for five seconds may not be giving a 

true reading of the static stiffness of the stringbed because the load may be 'damaging' the strings. 

However, it does give a repeatable method which can be used to test the range of rackets used in 

this section. 

Four identical racket frames were used in this section, each having a head size of 630cm2 (98in\ 

The four rackets were all strung at different tensions using the same IS gauge (l.4mm diameter) 

nylon string. The string tensions Ts used in the rackets were 40lbs, SOlbs, 60lbs and 70lbs. These 

cover the range of tensions typically used in the game of tennis. 

Four different sized discs were used to apply the load to the stringbed. These discs had diameters 

of 3Smm, 4Smm, SSmm and 6Smm. The Babolat machine applies the load onto the stringbed 

using a circular disc with a diameter of SI mm. For interest, high speed video footage, such as that 

discussed by Goodwill & Haake (2001), shows that the diameter of a typical contact area of the ball 

on the racket was in the region of 30-S0mm, depending on the magnitude of ball deformation. 
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Before the main testing commenced, a short investigation was conducted to identify whether the 

properties of the stringbed change during testing. This simple repeatability study involved 

cyclically loading and unloading the stringbed 8 times; the load and displacement being measured 

throughout each cycle. The results for this repeatability study are discussed in the following 

section. 

Before any testing was conducted, the stringbed was compressed to full deflection and then 

unloaded. This was conducted to ensure that the racket was correctly sat beneath the main plate, 

and the loading disc was correctly located on the stringbed. 

6.2.3 Results and Discussion 
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Figure 6.2 (a) Single quasi-static loading and unloading of the stringbed and (b) Eight quasi­

static cyclic loadings of the stringbed. 
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In this section of the experiment, a racket with a string tension of 60lbs was placed in the rig. The 

stringbed was loaded and unloaded eight times, using a disc diameter of 3Smm. Figure 6.2(a) 

shows the data for a single quasi-static compression of the stringbed, and Figure 6.2(b) shows the 

data for eight cyclic compressions of the stringbed. In these figures the load is plotted separately, 

as two data sets, for the loading and unloading phases. In Figure 6.2(b), two separate fourth order 

polynomial trend lines are plotted through these two sets of data. The difference in the two data 

sets is largest for stringbed displacements of between 10 and 20mm; the magnitude of this 

difference being 4%. 

The repeatability of the experiment can be quantified by measuring the uncertainty in the data, for 

the eight cyclic compressions, with respect to the trendline. It is assumed that the level of 

uncertainty is equal for all data points and therefore the standard deviation of the data can be found 

using the method described in Appendix A. It was found that the standard deviation of the loading 

and unloading phases was 3.7N and 2.8N respectively. This relatively small deviation implies a 

high level of confidence can be assigned to the test results. 
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The data has shown that the stringbed exhibits a small level of hysteresis, even for this quasi-static 

defonnation. However, in the following section only the data that was measured for the 

compression phase of the impact is presented. Whilst it is accepted that the magnitude of 

hysteresis loss is of some interest, it has been omitted here for the sake of clarity. 
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Figure 6.3 Measured load plotted against the displacement of the load point on the stringbed. 

The data is plotted for rackets strung with a range of tensions. 

Figure 6.3 shows the measured load plotted against the displacement of the stringbecl, at the point 

at which the load is applied. The data is presented for all the string tensions that were tested, and 

for the four different disc sizes that were used to apply the load. The data shows that the force 

increases, as the displacement is increased. For each string tension, the stringbed is loaded to the 

same maximum displacement for each disc diameter. The figures show that the measured force is 

largest for the tests conducted with the largest disc size; the measured force obtained using a 65mm 

diameter disc being approximately 35% larger than that obtained using the 35mm disc. 

A qualitative comparison of Figure 6.3 (a)-(d) shows that the force in the stringbed, for a specific 

displacement and disc size, is smallest for the racket strung at a tension of 40lbs and largest for the 

racket strung at 701bs. A more accurate comparison of the different string tensions can be 

perfonned by plotting the stiffness of the stringbeds directly . In this case, the stiffness is defmed as 

the ratio of the force applied and the resulting displacement. 
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Figure 6.4 Stringbed stiffness plotted against the displacement of the load point on the stringbed. 

The load was applied via a rigid disc which had a diameter that ranged from 6Smm to 3Smm. 

In Figw'c 6.4 (a)-(d), the calculated stiffness of the stringbed is shown. In each figure, the data is 

plotted for the four rackets (strung at different tensions). The diameter ofthc disc used to apply the 

load is different in each figure, and ranges from 6Smm (Figure 6.4(a) to 3Smm (Figure 6.4(d» . 

Figure 6.4 (a) shows that the stringbed of the racket strung at 70lbs is approximately 70% stiffer 

than for the racket strung at 40lbs. This figure also shows that the stringbed stiffnesses of the 

rackets strung at SOlbs and 601bs are 25% and 45%, respectively, stiffer than that strung at 401bs. 

In this figure, the load was applied using a circular disc with a diameter of 6Smm. In Figure 6.4 

(d), the load was applied using a disc with a diameter of 3Smm and the data in this figure shows 

that rackets strung at SOlbs, 60lbs and 701bs have a stringbed stiffness which is approximately 15%, 

40% and 60% stiffer, respectively, than that for a racket strung at 401bs. Figure 6.4 (b)-(c) exhibit a 

similar trend as that found in the other two figures. 

TIle data in Figure 6.4 (a)-(d) indicates the relative quasi-static stiffness for the different string 

tensions. However, in a model it would be useful to have a generic relationship between the 

stringbed stiffness and the diameter of the disc used to apply the load. Clearly, it is not possible to 

have a single function that can describe this relationship as the magnitude of the stiffness is a 

function of the string tension, stringbed displacement and the disc diameter. For example, in this 

current study, 16 equations are required to define the stiffness of the stringbed at a specific 

displacement, for the four disc diameters and four string tensions. By selecting a suitable 

normalising technique, it may be possible to reduce the nwnber of required equations, as shall be 

discussed below. 
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Figure 6.5 Illustration of the variation of stringbed stiffness with displacement and disc diameter 

(that is used to apply the load). The data is presented for a string tension of 501bs. 

In Figure 6.5, the measured stringbed stiffness data is plotted for a range of different disc diameters 

that have been used to apply the load. This data has been obtained for four different string 

tensions, but is only presented here for a string tension of 50lbs. Figure 6.5 confirms that the 

stringbed stiffness is a function of the disc diameter. However, it also shows that the shape of the 

curves which define this stiffness are very similar for all disc diameters. It is therefore 

hypothesised that the stiffness data can be normalised to a specific reference value. In this case, 

this reference data has been arbitrarily chosen as the stiffness data which was obtained by using a 

disc with a diameter of 55mm «J55). Therefore, the normalised stiffness ks' for a specific stringbed 

displacement and a disc diameter of <PD, is defined using [6.1], 

[6.1] 
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Figure 6.6 (a) Illustration of variation of normalised stringbed stiffness ks with displacement 

and disc diameter (that is used to apply the load). (b) Normalised stringbed stiffness ks plotted 

against disc diameter, using data for all stringbed displacements. The data is presented for a string 
tension of 501bs. 

Figure 6.6 (a) illustrates the variation of the calculated normalised stringbed stiffness for the four 

different disc diameters. This is the same data as is shown in Figure 6.5 but the data has been 
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normalised to the stringbed stiffness which was obtained for a disc diameter of 55mm and therefore 

all the normalised data for tP55 is equal to unity. This figure shows that the normalised stiffness is 

approximately independent of the stringbed displacement, and is solely a function of the disc 

diameter. 

Figure 6.6 (b) shows the same normalised stringbed stiffness data that is presented in Figure 6.6(a). 

However, in this figure the data is plotted as a function of the disc diameter tPD. For each disc 

diameter, the data is presented for all the stringbed displacement increments. A second order 

polynomial is plotted through this data and the equation of this trendline can be used to estimate the 

relationship between the normalised stringbed stiffness and the disc diameter. The general form of 

this equation is, 

[6.2] 

where a, b and c are constants. 

Equation [6.2] can be used to estimate the normalised stiffness ks for a specific value of tPD; this 

stiffness being normalised to the stringbed stiffness obtained using a disc diameter of 55mm. A 

second order trend line can be plotted through the data in Figure 6.5 and be used to define an 

equation for the stringbed stiffness that was obtained using a disc of this diameter of 55mm. The 

general form of this equation is, 

[6.3] 

where d, e and/are constants. 

To complete the solution, [6.1] is rearranged into the form, 

[6.4] 

Using [6.4], the stringbed stiffness at any displacement and for any disc diameter can be calculated 

by knowing the normalised stiffuess for the relevant disc diameter ([6.2]) and the stiffness 

measured using a 55mm diameter disc, for the specific displacement Os ([6.3]). 

The above analysis has revealed a possible method of minimising the number of equations that are 

needed to represent the stringbed stiffness of a racket. The method was illustrated using a tennis 

racket that was strung at 50lbs tensions. In brief, the method involved the normalisation of the 

stringbed stiffness data with respect to the data that was obtained using a disc diameter of 55mm. 

This data was shown in Figure 6.6(b), for a racket strung at 50lbs. The normalised stiffness ks 
data for all the rackets that have been used in this section (40lbs, 50lbs, 60lbs and 70lbs), is given 

in Figure 6.7. 

Figure 6.7 shows the normalised stringbed stiffness plotted against the diameter of the disc that is 

used to apply the load. This figure contains the normalised stringbed stiffness data for all string 

tensions and for all values of stringbed displacement. 
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Figure 6.7 Normalised stringbed stiffness ks plotted against disc diameter that was used to apply 

the load. The data is presented for all string tensions and all the stringbed displacements. 

A second order polynomial trendline is plotted through the data in Figure 6.7; the coefficients of 

this equation being obtained using the least squares regression method. The equation for the 

trendline shown in this figure (converted to SI units) is, 

~ 2 
ks = 78.42~D + 2.336~f) + 0.6392 [6.5] 

Using this equation, along with [6.3] (for the relevant racket) and [6.4], the stringbed stiffness at 

any displacement and for any disc diameter can be estimated. In Figure 6.7, the scatter in the 

results, with respect to this trend line, illustrates the uncertainty in the use of the trend line to 

estimate the relationship. It is assumed that this level of uncertainty is equal for all data points and 

therefore the deviations form a normal distribution. A statistical analysis of the data, as described 

in Appendix A, can be used to calculate the standard deviation of the data as 0.03. A visual 

analysis of the scatter in the data in Figure 6.7 would lead to a conclusion that this value is 

unrealistically small. However, it should be noted that this graph contains approximately 160 data 

points. A large proportion of these data points exhibit a very low uncertainty, which leads to the 

low value of the standard deviation being obtained. 

To summarise, [6.3]-[6.5] are very useful equations for estimating the measured values of the 

stringbed stiffness. The only requirement of the solution is that the stringbed stiffness for a disc 

diameter of 55mm is known. If this is satisfied, then the actual value of stiffness can be estimated 

for any value of disc size between 35mm and 65mm. 

6. 2.4 Summary 

In this section it was shown that the quasi-static stiffness of the stringbed can be found by applying 

a distributed load to the stringbed using a rigid disc. It has been shown that the repeatability of this 

experiment is very high, with standard deviations of the measured load being only 3N. The cyclic 

compression tests showed that the stringbed exhibited small, but measurable hysteresis losses. 

The experiments were conducted using a range of disc sizes, and four identical rackets that were 

strung using a tension ranging from 40lbs to 70lbs. It was found that the 70lbs racket was 

approximately 65% stiffer than the 40lbs racket. It was also found that the measured force was 
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approximately 35% larger when the 65 nun diameter disc was used, compared with when the 

35mm diameter disc was used. 

An equation was derived which could be used to calculate the normalised stringbed stiffness, for a 

specific disc diameter. If the stringbed stiffness was measured for a disc diameter of 55 mm, then 

the stringbed stiffness for any disc diameter could be estimated using the empirical equation. 

6.3 Measuring the shape of a quasi-static ally deformed stringbed 

6.3.1 Introduction 

In section 6.2, the quasi-static stiffness of the stringbed was measured for displacements which are 

perpendicular to the plane of the stringbed. In that section, the load was applied using a rigid 

circular disc. The stiffness was measured for four different string tensions and four different 

diameters of disc. 

In this current section, the shape of the quasi-statically deformed stringbed is obtained. More 

precisely, the displacement of a number of points along the longitudinal axis of the stringbed is to 

be measured. In the previous section, it was shown that the quasi-static stiffness of the stringbed 

was dependent on the string tension and size of the disc . In this current section, the effect that 

these parameters has on the shape of the deformed stringbed is to be detemuned. 

6.3.2 Experiment Apparatus 

Stringbed 
deformation 

Os 

: Distance from a pplied load 

Ft 
.. 

'. 

A BeD 

Figure 6.8 Schematic illustration of the four points (A-D) at which the displacement of the 

stringbed is measured using a dial gauge. The dial gauge is also shown (inset) . 

In the previous section, the tests were performed on four identical rackets that had been strung at 

40, 50, 60 and 701bs. In this current section, only the rackets strung at 40 and 70lbs are to be tested 

as this will provide sufficient information as to how the string tension affects the shape of the 
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deformed stringbed. This testing was conducted approximately three weeks after the testing that 

was described in section 6.2 was completed. The same two rackets were used in both sections, and 

were not restrung before this current testing took place. 

The load was applied to the stringbed using the same apparatus as that described in section 6.2. A 

displacement was applied at the geometric string centre using a rigid circular disc. This disc can be 

seen in Figure 6.8 (inset). This displacement is defined as OWAD and is applied in increments of 

1.75mm. Two different disc diameters (35mm and 55mm) are used in this study, to assess the 

effect that the disc size has on the shape of the deformed stringbed. 

Figure 6.8 illustrates the four discrete points (A, B, C and D) along the longitudinal axis at which 

the vertical displacement of the stringbed was measured using a dial gauge. These points were 

located at the intersections between the four cross strings and the longitudinal axis, as illustrated in 

Figure 6.8. The dial gauge was mounted on the lower plate using a strong magnet. The gauge was 

used to measure the displacement at point A, for each increment of OWAD, up to a load point 

displacement OWAD of 17.Smm. The dial gauge was then moved to point B and the experiment was 

repeated. The gauge was then moved to point C, and finally point D, resulting in a total of four 

repeats of this experiment. 

6.3.3 Results and Discussion 
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Figure 6.9 The measured displacement ofthe stringbed at a range of positions from the load 

point. The data is presented for different combinations of string tension Ts and load disc diameter 

t/lv. The data is categorised by the stringbed displacement OLOAD at the point at which the load is 

applied. 
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Figure 6.9 (a)-(d) show the measured displacement of the stringbed as a function of the distance 

from the load point; the data is categorised by the displacement of the load point OWAD. Figure 6.9 

(a)-(b) illustrate the displacement of the stringbed for the racket strung at 40lbs tension. Figure 6.9 

(c )-( d) illustrate the data for a racket strung at 70lbs tension. The load was applied using a circular 

disc with a diameter tPD of either 35mm and 55mm; the value of rh) being specified in each figure. 

Each data point represents the average of the two values which were sampled; one value being 

recorded during the loading phase and one for the unloading phase. Lines are plotted through 

several data sets in Figure 6.9 (a) to give an illustration of the shape of the deformed stringbed. It 

can be seen that the stringbed displacement is constant over the section of the stringbed that the 

load is being applied, i.e. for a distance of rP/'i from the applied load. The displacement then 

decreases with distance from the applied load point. 

It is difficult to extract any further conclusions from the data in Figure 6.9. An alternative method 

of plotting this data is given in Figure 6.10. In this figure, the stringbed displacement at each 

position along the stringbed has been normalised with respect to the displacement OWAD at the 

applied load. 
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Figure 6.10 The normalised displacement of the stringbed, at a range of distances from the load 

point. The data is presented for different combinations of string tension Ts and disc diameter t/Jo. 
The data is categorised by the displacement of the stringbed OLOAD at the point at which the load is 

applied. 

Figure 6.10 illustrates that, for a specific combination of string tension and disc diameter, the 

normalised data is not greatly influenced by the magnitude of the stringbed deformation. The 
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implication of this is that the shape of the stringbed is effectively constant for all applied forces, for 

a specific combination of string tension and load area. It could therefore be assumed that a single 

best-fit line could be plotted through all the data sets in each figure, to represent the shape of the 

deformed stringbed for the specific tension/diameter combination. These lines are plotted in Figure 

6.11. 
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Figure 6.11 The normalised displacement of the stringbed as a function of the distance from the 

applied load. The data is categorised by the combination of string tension Ts and disc diameter <PD. 

Figure 6.11 shows the normalised stringbed displacement data for all of the combinations of the 

two string tensions and disc diameters, Ts and <PD respectively. This data shows that the shape of 

the stringbed deformation is a function of the diameter of the disc used to apply the load, especially 

for the higher string tension. When using a disc diameter of 35mm to apply the load, the shape of 

the deformed stringbed does not appear to be a function of the string tension. However, when the 

larger disc was used, the string tension magnitude did affect the shape. The importance of this 

finding is difficult to quantify because more data would need to be collected to verify this 

relationship. 

6.3.4 Summary 

In this section, the deformed shape of the stringbed was measured for a quasi-static loading. In this 

experiment, the load was applied using a rigid circular disc and the displacement at various points 

along the longitudinal axis of the racket was measured using a dial gauge. These tests were 

conducted on two identical rackets that had been strung with two different string tensions, and two 

different disc diameters were used to apply the load. 

It was found that the normalised shape of the deformed stringbed was not a function of the 

magnitude of the force/displacement which was applied. It was not clear whether this shape was a 

function of the string tension. However, for a specific string tension, it was found that the shape 

was dependent on the diameter of the disc. 
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6.4 General comment about quasi-static stringbed stiffness 

6.4.1 Introduction 

This section contains a general discussion regarding the measurement of the quasi-static stringbed 

stiffness of a racket. In sections 6.2 and 6.3, the same rackets were used for the two separate 

experiments. The differences between the two experiments are clarified as, 

1. Experiment 1. In this experiment the stringbed stiffness was measured and this testing is 

discussed in section 6.2. 

2. Experiment 2. In this experiment the shape of the deformed stringbed was measured, and 

this testing is discussed in section 6.3. 

In both experiments, two identical rackets were used; onc racket was strung at 40lbs and the other 

at 70lbs. The two rackets were first used in Experiment 1 and then, approximately three weeks 

later, they were used in Experiment 2. The rackets were not restrung during this period. In both 

experiments, the applied force and displacement of the load point was measured. Initially, it would 

be expected that the results for the stringbed stiffness would be identical for both experiments. 

However, during the three week period between the two experiments, the two rackets were 

subjected to a number of ball impacts, in a separate experiment. This may have affected the 

properties of the stringbed, and lead to differences in the values of the stringbed stiffness measured 

in sections 6.2 and 6.3. In this short section, a comparison is made betwccn the measured quasi­

static stringbed stiffness for f-xperiment 1 and Experiment 2. 

6.4.2 Results / 
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Figure 6.12 The measured force is plotted against the stringbed displacement at the load point 

~AJAD for the two experiments. The data is categorised by the combination of string tension and 

disc diameter Ts and 4>1) respectively. 

25 

Figure 6.12 shows the relationship between the applied force and the displacement of the stringbed 

at the load point ~AJAD. The data is presented for combinations of two different string tensions and 

two disc diameters. Figure 6. 12(a) shows the results for Experiment J (discussed in section 6.2) 

and Figure 6. 12(b) shows the results for Experiment 2 (discussed in section 6.3). It can be seen 
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that the measured force values are consistently higher in Figure 6.12(a) compared with Figure 

6.12(b). For the racket strung at 70lbs tension, this difference is approximately 15%. For the 

racket strung at 40lbs the difference is approximately 10%. 

6.4.3 Discussion 

This brief comparison has illustrated that the stringbed stiffness has reduced during the three week 

period between Experiment 1 and Experiment 2. It is not clear whether this reduction is due to the 

racket being used in the impact tests or if it is simply due to the length of time between tests. It is 

likely to be a combination of both. For both scenarios, this reduction in stringbed stiffness can be 

assigned to a reduction in the tension in the strings. The tension loss with time, or stress 

relaxation, has been measured and discussed thoroughly by Cross (2000b) and therefore shall not 

be discussed in any depth here. In brief, the loss in tension occurs due to steady breaking of the 

bonds which connect the polymer molecules together. Cross (2000b) also measured the tension of 

a single string, before and after an impact with a hammer. During impact, clearly the tension will 

rise and it was then found that the tension measured after the impact was lower than that measured 

immediately prior to the impact. This mechanism would also contribute to the tension loss that is 

found between Experiment 1 and Experiment 2. 

This data illustrates that the stringbed stiffness can not be considered to be constant as it is a 

function of both time and the number of impacts that the racket is subjected to. Ideally, the rackets 

should be accurately restrung before each experiment. However, this is not always practical and 

therefore the stringbed stiffness must be measured as frequently as is possible. This allows the 

properties of the stringbed to be monitored, and highlights another use of a quasi-static 

compression test. 
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6.5 Summary 

In this chapter, a load was applied at the geometric string centre of a head clamped racket using a 

rigid circular disc. This load was applied in a direction that was perpendicular to the string plane. 

In the first section of this chapter, the magnitude of the applied force was measured along with the 

displacement of the load point. This experiment was performed using a range of disc sizes, and 

four identical rackets that were strung using a tension ranging from 40lbs to 70lbs. It was found 

that the stringbed on the racket that was strung at 70lbs was approximately 65% stiffer than the 

40lbs racket. It was also found that the measured force was approximately 35% larger when the 65 

mm diameter disc was used to apply the load, compared with when the 35mm diameter disc was 

used. 

In the second section of this chapter, the shape of the deformed stringbed was obtained by 

measuring the displacement of a number of points along the longitudinal axis of the racket. In this 

experiment, the load was applied using a circular disc, as done in the first experiment. It was found 

that the normalised shape of the deformed stringbed was not a function of the magnitude of the 

force which was applied. It was not clear whether this shape was a function of the string tension. 

However, for a specific string tension, it was found that the shape of the deformed stringbed was 

dependent on the diameter of the disc. 

This chapter has provided information regarding the stiffness of the stringbed, and the shape in 

which it deforms. This data will be a valuable resource in a later chapter, when a model of the 

stringbed is developed for an impact between a ball and racket. 
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7. Impact between a Ball and Head Clamped Racket 

7.1 Introduction 

This chapter is the second part of a trilogy which aims to develop a model for an impact between a 

ball and head clamped racket. In Chapter 6, the quasi-static stiffness of a stringbed was obtained. 

It was shown that this stiffness increases by approximately 65% for an increase in string tension 

from 40lbs to 70lbs. Analytical models (Cross 2000f) have illustrated the effect that the magnitude 

of the stiffness has on the contact time and ball rebound velocity. However, these studies have 

never been supported by experimental data that has confirmed that the parameters which are used 

in the models are realistic. In this chapter, experimental data is obtained for an impact between a 

ball and head clamped racket. In Chapter 8, a model for this impact will be developed and the data 

in this current chapter will be used to verify this model. 

In this chapter, five parameters will be measured for an impact between a ball and head clamped 

racket. In this impact, the ball lands perpendicular to the plane of the stringbed. The parameters to 

be measured are as follows, 

1. Ball rebound velocity. 

2. Contact time. 

3. Magnitude of ball deformation. 

4. Magnitude of stringbed deformation. 

5. Shape of deformed stringbed. 

These parameters will be measured using a selection of ball types and string tensions which cover 

the typical range that is commonly used in the game of tennis. 

7.2 Determining the magnitude of stringbed deformation for an impact 

between a ball and head clamped racket 

7.2.1 Introduction 

In the introduction to this chapter it was stated that both the magnitude and shape of the deformed 

stringbed need to be measured. There are two main methods which could be used to determine 

these parameters during impact which are, 

1. Position transducer - attach a transducer to the strings and sample the output signal. 

2. High speed cinematography - sample the string motion from still images of the impact. 

One of the main problems with the first method is associated with the very short contact time for an 

impact between a ball and head clamped racket; a typical contact time is between 3 and 5ms 

(Groppel et al. 1987a). During this short time the stringbed will typically defonn by approximately 

20mm, which inherently results in large accelerations that need to be sampled. For this task to be 

achieved with a satisfactory accuracy, a low-inertia transducer which is sampled at a very high rate 

must be used which in many cases is impractical. This is certainly the case if several transducers 
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needed to be used to sample the shape of the defonned stringbed, as is one of the aims of this 

chapter. Therefore, it was concluded that a position transducer was not a suitable device to 

measure the stringbed displacement. 

The main difficulty associated with using high speed cinematography is that the strings are not in 

the field of view when the camera is placed perpendicular to the plane of transverse string motion. 

However, Groppel et al. (1987a) used high speed cinematography to measure the stringbed 

displacement. The aim of that work was to determine the difference in magnitude of the stringbed 

displacement motion, for a variety of string tensions, for an impact between a ball and handle 

clamped racket. The impacts were recorded using a high speed video operating at 3500 frames 

per second. The optical axis of the camera was positioned at an angle of 8.7°, with respect to the 

stringbed plane, enabling the entire region of the string face to be viewed during impact. The 

stringbed deflection at the geometrical string centre was obtained using this method. The main 

weakness of this solution is associated with the potentially large error associated with this out-of­

plane sampling technique. 

An alternative high speed cinematography method involves attaching a light, rigid object to the 

stringbed which is supported in such a way that the motion of the object matches that of the 

stringbed. This object must be visible in the camera field-of-view. This idea was employed by 

Johnston (2001) who used hollow tubes of a carbon fibre composite which were defined as 

trackers. One end of these trackers was fixed to the stringbed and the other end was visible to the 

high speed camera. The tracker was suitably supported so that the motion of the stringbed was 

identical to that of the motion of the tip. 10hnston used 15 trackers to sample the motion of the 

stringbed which added approximately 12g to the weight of the stringbed; a typical stringbed 

weighing approximately 20g. These trackers were attached at increments along the longitudinal 

axis of the racket. It was concluded that this method could be used to measure the shape and 

magnitude of the stringbed defonnation. However, it was also found that the large additional mass 

(due to the trackers) acted to reduce the coefficient of restitution for the impact. Therefore, the 

measured stringbed defonnation may not truly represent the motion of a stringbed which does not 

have 15 'trackers' attached to it. 

It was concluded that the high speed cinematography method was the most suitable technique to 

use to measure the stringbed deformation during impact. It was also concluded that the use of 

trackers resulted in a more accurate experiment, as it did not involve an out-of-plane sampling 

method. In this current section, only one tracker was used as the shape of the defonned stringbed 

was not required at this stage. This experiment enabled the coefficient of restitution, contact time 

and ball/stringbed defonnation to be measured. This tracker has a mass of O.7g and was therefore 

assumed to have negligible effect on the impact mechanism. 
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7.2.2 Experiment Apparatus 

Tracker 

Head clamped 
racket 

.. [J 
/ 1 .... 

Ball impact on a head clamped racket 

Air cannon 

Speed gates 
~~~ 

High speed 
video system 

Figure 7.1 Illustration of experimental arrangement showing the tracker attached to the stringbcd 

of a head clamped racket. 

Figure 7.1 shows the experiment used to measure the magnitude of the stringbed deformation. The 

ball was propelled normal to the stringbed plane using an air cannon, identical to that described in 

Chapter 3. The inbound and rebound velocity of the ball were measured using speed gates. The 

head of the racket frame was clamped in a rigid structure, with its longitudinal axis vertical. The 

Phantom v4 high speed video system was used to record the impact at a rate of 7100 frames per 

second, and a resolution of 256 x 128 pixels. The focal axis of the camera was aligned 

perpendicular to the motion of the ball, and therefore the stringbed was not visible. 

Figure 7.2 Photograph of the hollow carbon fibre 'tracker' which was firmly attached to the 

stringbed using a thin metal wire. 

The tracker, as shown in Figure 7.2, was attached to the stringbed using a light thin wire which was 

secured at the other end using a metal crimp. The trackers were supported horizontally using a 

frame (not shown) to ensure that they only moved in a direction perpendicular to the stringbed. 

The total length of the tracker and crimp was -70mm. The tip of the tracker was coated in a bright 

white paint to clearly identify this point. 

Two different types of tennis ball were tested in this study; these were a standard Pressurised and 

Pressureless ball. These two balls are described in Chapter 4 and are representative of the majority 

of balls that are used in the game of tennis. The balls were propelled at the racket at a range of 

impact velocities between 20mls and 40m/s. The racket used in this section was an ITF 
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1 ..... 1 • 1 • , , ". ,... .-- .. .... ., , "' .... . ., ....,-... ., ... • 

Development carDon nDre composne raCKet WItn a neaa size 01 Ojucm- ~ ':lIS m-). 1 illS neaa size IS 

typical of that used by many leisure and professional standard players (Racket Tech 2001). Two 

rackets were used 'Vv'hich were strung at tensions of 40 arid 701bs, using a standard 15 gaugc nylon 

string. 

(a) Procedure 

The operation of the camera IS described in detail in section 3.3. In brief, the images were 

dOVvl11oadcd from the camera in its native Ciil,; file fomlat, aild converted into thc A.fi.:.:rvsvfi A VI 

format to allow the images to be imported into the Vidimas v 1 image analysis software. Typical 

paint which was applied to the tips of the trackers is clearly visible in these images. The point at 

which impact commences is difficult to define because the surface of the 5uingbed is not visible. 

This was overcome by recording a high speed video image of the ball resting on the surface of the 

which the ball can be considered to be in contact with the stringbed. 

the ball PB and the right edge of the tracker Pr were sampled. The sampled data was exported from 

ViJiiii':;S v / and stored in a A.fS LX":.;! worksheet. Thesc coordinates were converted into physical 

units using a calibration grid, as described in Chapter 3. The tracker was rigid and therefore it was 

assumed that the motion of thc tracker was identical to the motion of thc scction of the stringbed 

which it was attached to. The coordinates were then processed to determine the magnitude of the 

ball and suingbed deformation. The magnitude of the ball dcfoilnation was obtained by 

subtracting the motion of the left edge of the ball with that of the tracker. 

Thc ball impact velocity rangcs from approximately 20m/s to 40m/5. The ball alld stringbed 

deformations can easily be determined for the racket which was strung at 70lbs. However, when 
.. ~- .. :-, • • t. ~ __ ~ l ·~ t ••. 11":~11 ···as _ .. ..,'''g a" Af\'h_ ~~ 1 •. "h ~ ,· .... :-g'D- -' -' ~ l'~ ____ ~~ .. ~~,. 1-' t. ~ -' ~ .. ~~ .. :-~-' ~. 
L"';)LUIO UI'" la","'", "" "'" "" ;:)U .... 1l L "tVlu;:) VIII} l I'" ;:)UIU vu U"'lVlluaUVII VVlUU u'-' U'-'L'-'JIUlllVU aL 

the higher velocities. This was due to the left edge of the ball disappearing from view, during 

impact, a.,.d therefore could not be sampled. 

F!gure 7.3 Ca) Ball held on surface of tl,.e stringbed of a head-da.rnped racket (labelled A), 

showing the position of the tip of the tracker (labelled B) and (b) image of the ball impacting on the 

racket showing the tvv-o points that were sampled. 
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'f' 

I 
"'. 

Figure 7.4 11lustration of the defmition of the ball and stringbed defonnation, DB and Os 

The Vidimas v J image analysis software has been specifically designed to provide an accurate 

method of sampling co-ordinates; the resolution of the sampled point is equal to one screen pixel. 

For the image size used in this experiment, thjs cOlTesponds to a physical resolution of 

approximately 0.2mm. Therefore a first order approximation of the accuracy of this sampling 

rncthod is O.2nli11. ll1is is clearly' an optinlistic c5tinlation of the real accuracy· of the i11casurcd 

coordinates as it does not consider the error introduced by the manual point-selection method. 

possible accuracy of the analysis. A simple repeat ability study was conducted to quantify the 

accuracy of the sampling method. In this study the points PH and Pr, for t.1C image shoVvn in Figurc 

7.3(b), were each sampled 60 times. This data was used to calculate the mean values of the x co-
~ 1· .1:I· a.-- "'0" l~ otl- po~ : .. .. ~ -~ ... _ 11 "''' .. l ._ UI·~- rt-: .... · I' .. . 1.:_ -~ 01·;1 : .. _ .. - C'~ •• __ ~ l _ _ C' .. I._ ro S -·~ __ l - S v UJ J ~"';) ~ J U I UU;), (1;) """'11 "" UI'" ."'''' lQ.lUl'y 11 UlI;) ",v· UUlat'" ~Vl ",a"'l1 v~ Ul'" v c1IH!!.",. 

This analysis was repeated for a further four images which were randomly chosen, resulting in a 

data set of uncertainties that comprised of 300 samples. It was assumed that these uncertainties 

were nonnally distributed about the calculated mean x co-ordinate, for the relevant image. 

0.6mm respectively. This gives a good estimate of the realistic accuracy of the manual sampling 

met.10d. It has been found that the accuracy is higher for thc sampling ofthc.x co-ordinate ofpvint 

Pr, compared with the point PB. This is due to the tracker tip having a more defmed edge, 

compared with tl1e edge of the ball, resulting in a morc consistent sampling of point PJ compared 

with point Pa, 

In this experiment. a set of speed gates were used to measure the impact and rebound velocity of 

the ball. The ratio of these two terms is defined as the coefficient of restitution COR. Figure 7.S 

1 ':In 
J . ..J ./ 
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range of 20 to 40m/s. This data correlates qualitatively with that obtained by lohnston (2001) who 

pcrfori11cd a siinilar cxpcrin1cnt using a racket st:rwag at 601bs. The coefficient of restitution data 

presented in Figure 7.5 is considerably higher than that obtained for an impact between a ball and 

rigid sUlfacc. The coefficient of restitution for such an impact ranges from 0.65 to 0.40, as 

discussed in section 4.4.2, for a similar velocity range as shown in Figure 7.5. 

~ 0: j 
~ 1 
Q) 

~ 0.8 ~ 

C 1 ~ 0.7 

• 0'"" 0 <P- ... 

o· Ill. "08 • o 06' . , 

lj, 
• 70lbs - Pressurised 
• 40lbs - Pressurised 

8 0.6.1 0 70lbs - Pressureless ] 
o 40Ibs - Pressureless 1 

0.5 t-~-T ~--,- .~.----r. ~-. ~ 
o 10 20 30 40 

Ball irlllact velocity , VB (m's) 

combinations of string tension and ball type, for the impact between a ball and head-clamped 

ball, compared with the Pressureless ball. More specifically, it can be seen that this difference is 

most apparent for the impacts on a racket stung at 701bs. For the racket stung at 4010s, this 

difference is only evident for the higher speed impacts, whereas at low speeds the two ball types 

have identical values of COR. 

For a specific ball type, the figure shows that the racket strung at 401bs tension exhibits the higher 

values of coefficient of restitution. This correlates with anecdotal evidence that a reduction in 

string tension, increases the 'power' of the !"acket. Figure 7.5 shov\"s that, for the Pr(!ssurised ball , 

the value of the coefficient of restitution is consistently 0.04 higher for the racket strung at 401bs 
-~ n-p-,·- -J · .. :t

'
1 +1._ -Ja+a ~or +11- "7()11 __ ~a-k ~" 'T'J., :_ ~ :~~'·cn -~ : .. ' 1·----- t - ap-r ·"- l· ll-~+~ I.- f) ".., ~-~ 

",VI J c1l'-'U \I\' I J lU", U l' l '" I v'v~ J '" "'l. J IU~ UIU",1 I "'''' Ill'" ",a~",~ V P VA. la.""y v.v I IVI 

the impacts involving the Pressureless ball. These differences are of a similar order of magnitude 
,~~ __ ... __ rll ... "'~._1 __ (~"O"l \ ... 1. __ 1 __ -~ ..c- '111 -d : .. ---.+-"-:'1·' - 1.-- -1 _ I _ .... _~ rl '·a . l -~ .. 
I""'~W"'U vy J ay 'VI ~v ~" \I\'!lV <lJ.;:>V P"'iJ.VI '" UlJp<1"'L~ u~u 0 a "",au "'1<lJ.IlP"'U I "'''-''' • • 

In this experiment, the high speed video images were analysed and the data was processed to give 

the ball and stringbed defonnation throughout impact; the definition of these two terms being 

illustrated in Figure 7.4. Figure 7.6 sho,,,-,s the baJ.! and stringbed deformation for !!..t1. Lmpact 

between a ball and racket at 25m1s, for two different string tensions and ball types. Further 

comparisons arc given in Figures C.l-C.2 for other impact velocities. Using thcse figure;;, along 

with Figure 7.6, it can be seen that the shape of the ball and stringbed Deformation-Time curves are 

consistent for all the impacts. 
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Figure 7.6 Ball and stringbed deformation for an impact between a ball and head-clamped racket, 

for four different combinations of string tension and ball type, at a nominal impact velocity of 

2Sm/s. 

5 

Figure 7.6 shows that the ball compressIOn initially increases rapidly, followed by a temporary 

reduction in the rate, before continuing to increase at an approximately constant rate. The 

stringbed does not begin to deform until approximately O.2ms after initial contact. This is likely to 

be due the inertia of the tracker and stringbed. It will also be due to the low stiffness of the cloth 

which will result in a relatively low force acting during the initial stage of impact, as discussed in 

section 4.4 for an impact on a rigid surface. Figure 7.6 (and Figures C.I-C.2) shows that the 

maximum deformation of the ball occurs after the point of maximum stringbed deformation. These 

figures also show that the ball is still compressed even when the stringbed deformation returns to 

zero. 
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Figure 7.7 Definitions ofthe measured terms obtained from the force-deformation plots. 
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Figurc 7,7 5hGvv's a schematic illustration of the data that is Showl1 in Figure 7,G, Sincc all the 

curves shown in Figure 7,6 have a similar shape, the main features can all be defined by the 

Hlaxin1un1 dcfvnl1ativil aild the tij11C at \~ihicl1 the dcfoil"nation returns to zcru. Thc~c paranictcrs arc 

defrned for both the stringbed and ball defonnations in Figure 7,7, The maximum ball and 

stlingbed defonnations during impact arc defined a5 SB(MAX) and 0;(MA.¥) respectively, rn Chapter 4, 

the contact time for an impact between a ball and rigid surface was defined as the time, after initial 

is defined as T ('(R) as illustrated in Figure 7,7, A further definition of the contact time can be 

defmcd a5 thc timc taken for the stringbed defonnatiol1 to rerum to zero, and this parameter is 

defmed as Tc(S), At this time, the ball is still defonned and the magnitude of this defonnation has 

becn defined a5 S8(JoNV) , 
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Figure 7.8 (a) Maximum ball defonnation and (b) maximum stringbed defonnation, plotted 

against ball impact velocity, for an impact between a ball and head clamped racket. 

impact velocity, Although the tests were conducted for impact velocities ranging between 20 and 
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was because the left edge of the ball disappeared from view during impact so could not be sampled. 

Thc valucs of SJJ(MAX) ty'pically vary bct~ccn 20 and 35mm for the vcloeity' ra."1ge of20 to 35n1l's. In 

section 4.4.2, it was shown that the ball defonnation increased from 2S to 40mm for a similar 

velocity range, for an impact on a igid surface. 11,- ·1' '' ...... ;'''' .... 1, ..,11 d ~c- nl~- .. l· - ,, " : ~ '''' 1 1U"'-U.lIUI.U Uatl \'<lcVI 1(11 VII V8(MA)() 1;:) 

general1y larger for impacts involving the Pressureless ball compared with the Pressurised ball. 

shown that a Pressurised ball is stiffer than a Pressureless ball, for defonnations of the same order 

ofmagnitudc a5 mCa5urcd hcrc. Figurc 7.8 (a) sl1ovv's that, for a specific ball ty'pe, the ball dcfonlls 

more for an impact on a racket strung at 70lbs, than a racket strung at 40lbs. 

figure 7.8 (b) shows the maximum 5tringbed deformation Ss(MAA) plotted against thc baB impact 

velocity. This figure shows a c1ear difference between the results for the two string tensions, but 

no significant diffcrenec bctVv'ccn the tVv'O b<>ll "',;1J!'.:;' l .. t ;:ll'IV~=:;' "u11a- + t1- ~ .,,,1., - - j:' " £ - 1' t1~ ~ ,, __ 1 __ .. 
.... 1:' ... _v . v "V 1 1\.< VUJU\.< V1 v:i(II1A.\ ) iV 1'" 1a\.<"'\'<1 

strung at 40lbs tension is approximately 25% higher than that of the racket strung at 70lbs. This 
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con-elates with thc data in Chapter 6 which confimlc.:i that a lo'",'c[ string tcnsion resultcd in a lowcr 

stringbed stiffness. Comparing Figure 7.8(a) and (b) reveals that, in general, the stringbed does not 

physically defon-n as much as the ball during impact. 
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Figure 7.9 The relationship hetween contact time and hall impact velocity. for two different 

definitions of contact time. (a) TC(s), which is the time taken for the stringbed to return to its 
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being Tc(S) (time taken for stringbed to return to centre) and TerB) (time taken for ball defonnation to 

return to zero). Figure 7.9 illustrates the relationship between thesc two parameters and L'1e impact 

velocity for the four combinations of ball type and string tension. Figure 7.9(a) shows that the 
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70lbs; this difference being approximately O.7ms. There is no significant difference in the value of 

over a velocity range from 20 to 40mls, for the 701bs string tension. The contact time parameter 

40 

An alternative description of the contact time is defined as the time taken for the ball defonnation 

to return to zero. This contact time is defined as TC(B) and the results for this parameter are 

illustrated in Figure 7.Q (b). For impacts on t."'e racket strung at 40!bs tension, there is no 

significant difference in the value of Te(m for the two ball types. However, for the impacts on the 
•. __ 1." .. .. ·1.: ~1' "'a~ , .... ~ ... .. a" ""(\lb~ "~"~ : -n +1'- •. - 1 ... ~~ .,.. :. - 1._ .... -- ~~ •. tt·" n ........... ; ... I b", l1 
1(1\.<"'\.<l ... 1I1\.< J vv ~ ~u UlIlS ~ I VI ~ l\.<II~IV 1 1 I\.< V(11U\'< VJ, ~ C(H) I~ ~IIVl L~l 1V1 1~ I , ~,),)u, ,,)t;u U.J.J, 

compared to the Pressureless ball. This correlates with the data obtained for impacts on a rigid 

surface, and is likely to be due to the lower stiffness of the rr.; :>s .. r.;!.;ss ball compru'cd with that of 

the Pressurised ball. 

tension. However, the distinction between the values of T C(B) for the two string tensions is not as 
""ar "~ ""a'" u"}' :C'l :~ ~-un,.l : .. t::"1' " U-" "" (\1-\ ~- •. "h - :"\ 'l,.~ ... - ," - 'T' \.<J~ ~ UJ l n 11 I J~ J,V JU HillS I\.< , • ./\<1) ~U1 ll~ " ..... a.tll\.<l\.<r I C(S). 

Tc(m is a function of both the ball type and string tension. 

Y;O:"''''c ..., (\(1,\ ~l·-···S tl1 - t t'·~ .. - 1 .. - ,, ~ 'T' d c. c: 'l A 1 I I ' 
J JlS"" I./\U) ~IIVVV (1 II~ V<1.IU~ U1 J (;(H) rc UCCS .Lrom -,.-,iIlS to """to ms over LIe VC10Citj range 

used in this experiment, for a string tension of 401bs. This compares to a value of the other 
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definition of contact time Tc(s) rcducing from 5.11115 to 3.8ms, fvr the same vc1vcitj' ranc:,c. 

similar comparison for the racket strung at 70lbs tension shows that the value of T C(B) ranges from 

that the value of T C(B) is generally between O.2ms and O.4ms larger than the value of T crs). This 

data compares with contact timcs of betwecn 3.8ms and :;.Oms fvr an impact betVv'cen a ball and 

rigid surface, for a similar velocity range, as discussed in section 4.4 .3. In that section, it was 

impact on a rigid surface). This difference was approximately O.2ms, which is the same order as 

the scattcr ofthc data in Figurc 7.9(a). 

It has been shown above that the time taken for the ball to return to its original shape (Trm)) is 

longer than that for the stringbed to return to its original position (Tc(S)). One consequence of this 

is that the ball is still defO!1T!ed when the stringbed defonnation is zero . The magnitude of this baH 

defonnation, when the stringbed returns to centre, is defmed as 8B(END) and is illustrated in Figure 
..,.., 
1.1 . Figurc 7.10 shows thc relationship bctVv'ccn thc ball impact velocity and the cnd ball 

deformation bB(END) for all the ball type and string tension combinations. This figure shows that the 

value of the ball defoDllation is cvnsistcntly larger, when thc stringbed rcturns to centre, fvr the 

racket strung at 70lbs tension compared with that strung at 40lbs tension, for all ball impact 

velocitics. It also shows that thc r ressurd.:ss bal1 gencrally has a highcr valuc of SH(end) compared 

to the Pressurised ball, especially at higher ball impact velocities. This is probably due to the 
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D 70lbs - Pressureless 
o 40lbs - Pressureless 

~;- ....... .., 04n C "" , _ t": l ' , rtl · 1 11 :i1t' " 1 , , ; , - I ., . 1, 11 1 r . " ' t' '1' • 
I I~UI 0' I. IV Vlllpa.t::.V I VI. IC va.u lpalwl VCIVlwllY ""IU UtC Vc111 uClvi111c1l10d ch hlJ~ J C(S) Lt; . 

when the stringbed deformation to centre. 
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In the previous section the defonnation of the ball. during. impact. was measured experimentally 

and presented for a range of ball impact velocities. In a later chapter, a visco-elastic model of the 
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mass and therefore it would be useful to compare those model results with experimental data for 
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Chapter 7 Ball impact on a head clamped racket 

directly. However, the motion of the ball COM can not be obtained directly for an impact with a 

head-clamped racket. 
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Figure 7.11 Empirical relationship between maximum ball deformation and ball centre-of-mass 

displacement, for a normal impact between a ball and rigid surface. 

In Chapter 4 an empirical relationship was found between the maximum ball deformation and 

maximum ball COM displacement, for an impact on a flat surface, and this is shown in Figure 7.11 . 

It is appreciated that the form of a deformed ball may be different for an impact on a head clamped 

racket, compared with that for a rigid surface. However, it is assumed that this relationship shown 

in Figure 7.11 is a valid first order approximation for an impact on a stringbed. The function which 

describes the curve in Figure 7.11 (converted to SI units) is, 

XB(MAX) = -8.184(5B(MAxi + 0.9542700B(MAA? [7.1 ] 

where X8(MAA) is the calculated maximum ball COM displacement, and OB(MAX) is the measured 

maximum ball deformation. 

The relationship defined by [7.1] is only strictly valid for the point of maximum ball deformation. 

However, it is assumed that it is valid for all stages of the impact and therefore it can be used to 

convert the ball deformation 5B values (from the previous section) into ball centre-of-mass 

displacement XB values. Therefore, equation [7.1] can be modified to describe the general 

relationship, 

XB - Xs = -8.1 84(58i + 0.95427058 [7.2] 

where (X8 - xs) is the ball COM displacement with respect to the stringbed displacement Xs. 

40 

Equation [7.2] can be used to translate the Ball Deformation-Time plots, such as those in Figure 7.6 

into Ball COM Displacement-Time plots. Typical plots are given in Figure 7.12, which also shows 

the magnitude of the stringbed displacement. It should be noted that the stringbed displacement is 

identical to the stringbed deformation which was discussed in the previous section. Figure 7.12 

shows that the ball centre-of-mass displacement is generally higher than the stringbed displacement 

for a string tension of 701bs, but lower for a string tension of 401bs. This figure illustrates the 

findings for an impact velocity of 25m/s. Further data is given in Appendix C.3, for other impact 

velocities. 
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a ball and head-clamped racket, for four different combinations of string tension and ball type. The 

The data collected in tllis section can be used to detcnrtlnc tIle maxi.a.~um ball CO~1 di5placcnlcnt, 

for the full range of ball impact velocities, and this data is given in Figure 7.13 . In Figure 7.8, it 
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impact velocity). This stringbed data, for the two string tensions, is superimposed on the plot in 

Figure 7.13 for comparative purposes. 
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Figure 7.13 Calculated maximum ball centre-of-mass displacement plotted against the ball impact 

velocity. Values of the measured maximum stringbed displacement are superimposed on this plot. 
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Chapter 7 Ball impact on a head clamped racket 

A comparison of the data in Figure 7.13 reveals that the ball centre-of-mass displaces by 

approximately the same amount as the stringbed which is strung at 40lbs, for low impact velocities. 

At higher impact speeds, the ball COM displaces by approximately the same amount as the 

stringbed with a tension of 70lbs. This implies that the ball has a similar stiffness to the stringbed 

which is strung at 40lbs, for low speed impacts which result in maximum ball COM displacements 

of approximately 18mm. The stiffness seemingly then increases to that which is comparable to the 

stringbed that is strung at 701bs, for the higher speed impacts. 

7.2.6 Conclusions 

In this section, a ball was propelled towards a head clamped racket with the ball impacting 

perpendicular to the string plane. Two different ball types were tested, and the racket was strung at 

two different string tensions. It was shown that the coefficient of restitution for the impact was 

highest for the racket strung at 40lbs, compared with that strung at 70lbs. This difference was 

larger for the Pressureless ball compared with the Pressurised ball. The Pressurised ball generally 

rebounded faster than the Pressureless ball. However, at low impact speeds the difference between 

the two balls is considerably smaller than at the higher speeds. 

It has been shown that the maximum ball deformation is greater for the Pressureless ball, compared 

to the Pressurised ball, for the higher string tension. At the lower tension, there is no significant 

differences between the two ball types. It was also shown that the maximum deformation of the 

stringbed during impact is a function of the string tension, but not the ball type. 

It was consistently found that the contact time reduces with impact velocity, and is longer for the 

racket strung at 40lbs. The magnitude of the contact time for the impact is dependent on the 

definition used for this parameter. If it is assumed to be the time taken for the stringbed 

deformation to return to zero, then the contact time is a function of the string tension and not the 

ball type. An alternative definition of the contact time corresponds to the time taken for the ball 

deformation to return to zero. The results show that this parameter is a function of both string 

tension and ball type. 

For interest, the data presented here for an impact on a head clamped racket was compared with 

that for an impact on a rigid surface. It has been shown that the coefficient of restitution is 

typically between 0.85 and 0.75 for an impact on a head clamped racket. For an impact on a rigid 

surface the coefficient of restitution is much lower and typically equals a value between 0.65 and 

0.40. For the impacts studied here, the maximum deformation of the ball was between 20 and 

35mm, for an impact on a racket. In section 4.4 it was shown that the ball deformation, for an 

impact on a rigid surface, increased from 25 to 40mm, for a similar impact velocity range. In this 

current section it was shown that the time taken for the ball to reform to its original shape Te(B) was 

between 5.5 and 4.0ms, for impacts on a head clamped racket. By comparison, the contact time for 

an impact on a rigid surface has been measured as between 3.9 and 3.0ms, for a similar range of 

impact velocities. 
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Chapter 7 Ball impact on a hcad clampcd racket 

7.3 Determining the shape of a deformed stringbed for an impact 

between a ball and racket 

7.3.1 Introduction 

In section 6.2, the stringbed stiffness was measured for a quasi-static compression test in which the 

load was applied perpendicular to the '3tring plane. In section 6.3, the shape of the deformed 

stringbed was also measured, for a similar quasi-static loading. It was found that the stringbed 

stiffness and the shape of the deformed stringbed were both dependent on the diameter of the 

circular disc which was used to apply the load. This data could effectively be used to find the 

relationship bctween these two measured variables; the shape of the deformed stringbed and the 

stiffness. 

When a ball impacts on a tennis racket, it deforms considerably and the area over which the force is 

applied to the stringbed varies throughout impact. Therefore it can be concluded that the 

stringbed stiffness will also vary during this period. It has been stated that a visco-elastic model of 

the ball impacting on the stringbed will be developed in a later chapter. This model must be able to 

predict the magnitude of the stringbed stiffness throughout impact. It would be very difficult to 

measure the effective contact area of the ball on the stringbed because the stringbed surface is not 

visible during impact. However, it would be possible to measure the shape of the defom1ed 

stringbed using a simi lar method as that described in section 7.2. In this current section, the shape 

of the deformed stringbed will be measured for an impact between a ball and racket. The data will 

then be compared with the shape obtained for a quasi-static deformation. 

7.3.2 Experiment Apparatus 

Trackers 

Head clamped 
racket 

Speed gates 

Air cannon 

1i'='S~ 

• 
High speed 
video system 

Figure 7.14 Illustration of experiment arrangement showing the eight trackers attached to the 

stringbed of the head clamped racket. 

Figure 7.14 shows the experimental apparatus which was used to measure the shape of the 

stringbed deformation. This is a similar arrangement as that described in section 7.2.2 except that 

eight trackers are attached to the longitudinal axis of the racket; four either side of the geometric 
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stringbed deformation was being measured over a length of -77mm, along the longitudinal axis. 

TIle total mass oft.'1e trackers was 5.6g, 'w'hich cvmparcs wit.'! a total string mass of approximately 

20g. The same rackets are used in this section as were used in section 7.2. A Pressurised ball was 

propelled at these rackets at impact velocities ranging bctween 15m/s at.d 30m/s. 

7.3,3 Anu/ysi.s u/ high .)f't:;~J viJt:;u imugt:..} 

A typical high speed image is shown in Figure 7.15. The position of the left edge of the ball (PR) 

and the right edge of each of the eight trackers (PT! to PT8) were sampled. The trackers were rigid 

and therefore it \-vas assumed that ti.e mction of the tracl~ers '.vas identical to the ~notion of t.~e 

section of the stringbed which they were attached to. The coordinates were then processed to 

determine the shape of the stringbed deformation. 

Figure 7.15 High speed video image of the ball impacting on the head-clamped racket, showing 

the positions of thrce of the nine points on thc image which were sampled during impact. 

'7" , 
1 • .)."1 

The impact was recorded using the high speed video system which operated at a rate of 4000 

frames per second giving a time step Lit between images equal to O.25ms. This recording rate 

resulted in approximately 20 frames being recordcd that showed the ball in contact with thc 

stringbed. During impact, the displacement of each tracker was measured. The ball was nominally 

aimed at the geomctric string centre of the iackct, i.e. at a point mid-way betvvccn trackers 4 and 5. 

However, the actual impact position was generally up to 20mm either side of the intended position. 

To accommodate for this, all stnngbed positions are refercnced to the impact point. 

Figure 7.16 (a)-(f) illustrate the defonned shape of the stringbed during impact, for a range of time 

intervals. The data shown here was obtained for impacts on the racket that was strung using a 

tension of 70lbs. Figure 7.16(a) ShO'NS the measured data points ," .'hich were used to generate the 

curves; each data point corresponding to the displacement of one of the trackers. For clarity, the 

data is plotted separately for the compression aIld restitution phases. Data was collected for scveral 

impact velocities but is only plotted here for three impact velocities; these results being typical of 

the data collected. 

1 A 1"1 
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Chapter 7 Ball impact on a head clamped racket 

Figure 7.16 shows that the stringbed displacement increases for the first 2.0ms-2.5ms of the 

impact; the maximum displacement increasing with impact velocity. This maximum displacement 

consistently occurs at the impact point. During restitution, the curves have a similar shape to those 

determined for the compression phase. At the mid-point of the impact, the displacement of the 

stringbed at the impact point is approximately 25% larger than that at a point only 40mm away, 

along the longitudinal axis. However, there is considerable scatter in this magnitude. Impact tests 

were also conducted on a head clamped racket that was strung at 40lbs tension. The results for this 

experiment exhibit similar trends as those shown in Figure 7.16. Therefore this data is not 

presented here and can be found in Appendix C.4. 
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Figure 7.16 Stringbed displacement plotted as a function of the position along the longitudinal 

axis of a racket (70lbs tension). The data is shown for three different impact velocities and 

presented individually for the, (a)-(c) compression phase and (d)-(t) restitution phase. 
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during impact but does not give a clear indication of the shape of the stringbed, which was the main 

aim of this section. 

defonnation involved nonnalising the results, with respect to the stringbed displacement at the load 

point. A similar, nonnalising analysis was conducted in this section which involved normalising 

the results with respect to the stringbed displacement at the impact point. This stringbed 

stringbed displacement is defined as the ratio of the actual stringbed displacement and the value of 

~(JJ» at that time increment. N0i111alising thc data does not give a perfect physical representation of 

the shape of the defonned stringbed. This is because the actual shape is dependent on the absolute 

magnitude of the defoi111ation at each point on t'1e st.lngbed, and not just the relative magnitude. 

However, it can be used as a valid method of comparing the data in this section with the normalised 

data obtained for a quasi-static compression. 

Stringbed 
displacement, 

b .. (mm) 

Distance from impact point (mm) 

Figure 7.17 Definition of bs(lp) which is the displacement of the tracker that is closest to the 

impact point. 

presented in Figure 7. 1 8, for ball impact velocities between 15 and 30m/s. This normalised data 

has bcen catcgorised by the valuc of the stringbed displacement ~(JP) because it is assumed that t..'1e 

shape of the defonned stringbed will be a function of the magnitude of bs(Jp}. In Figure 7.18 the 

normalised data is presented separately for the two different sb'ing tensions. 

Figure 7.18 (a) & (d) show the nonnalised results for the 70lbs and 40lbs string tension, 

respectively, for stringbed displacements bs(Jp) of less than 5mm. These figures show that, for these 

However, it was assumed that the data could be approximated using a 2nd order polynomial trend 

line whieh was "lotted throu>.<l1 the data usin>.< the least squa}' , ..... "_ ..... , .• ,, .. ", ~ .I, ~ ;J r .. " '_M _"_. ,,,,_ .1 r Cl Cl c;" rc;5rC;""'VH IJI"'UIUU. Il \'\'a;:o, a;:o,;:o,wll"'u 

that the uncertainty in the data was equal for all positions along the longitudinal axis of the string 

bed. Th ~_ ~ C:O'- M "'1- 1 ~· ,~ 1 of ~~-tt M'- :1' tl-- d .. 1 . ~ ..I 1 1 l ' 1 •• 
."'1"''' .. '" U '" "''''''I ;:o,,,,al "'1 I. .'" a..a can vC quantJ.ICu vy eatcu.atmg t..le stanuaru 

deviation of the data, from the trend line, using the method described in Appendix A. The standard 
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Chapter 7 Ball impact on a head clamped racket 

(b) & (e) show the normalised results for the 70lbs and 40lbs string tension respectively, for 

stringbed displacements of between 5mm and 10mm. In these figures the magnitude of scatter in 

the results is lower than in Figure 7.18 (a) & (d) which is confirmed by the calculated standard 

deviation values of 0.12 and 0.13, for Figure 7.18 (b) & (e) respectively. Figure 7.18 (c) & (t) 

show the normalised results for the 70lbs and 40lbs string tension for stringbed displacements of 

more than 10mm. These figures show that the magnitude of the scatter in the results is 

considerably lower than for the other values of Os(lP), with standard deviations of 0.07 and 0.06 for 

Figure 7.18 (c) & (t) respectively. 
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Figure 7.18 Relationship between normalised stringbed displacement and position along the 

longitudinal axis of the racket for an impact between a ball and head clamped racket. The data is 

presented for two rackets with different string tensions. The results have been categorised into 

three datasets, depending on the value of the stringbed displacement at the impact point Os(IP). 
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Chapter 7 Ball impact on a head clamped racket 

The trend lines plotted in Figure 7.18 give an indication of the shape of the deformed stringbed. 

The calculated value of the standard deviation, for this trend line, quantifies the level of confidence 

in using the trend line to estimate the measured data. In this study it has been found that the 

magnitude of the standard deviation is relatively high, especially for OS(JP) < 5mm, and therefore it 

is difficult to make any definite conclusions regarding the shape of the stringbed. Any conclusions 

which are made about this shape are subject to an error with a magnitude similar to that of the 

calculated value of the standard deviation. 

For stringbed displacement values OS(JP) of between 5mm and 10mm (Figure 7.18 (b) & (e)) the 

trend lines show that the normalised displacement of the stringbed which is 40mm from the impact 

point is approximately 60% of 8s(Jp). For values of OS(IP) which are greater than 10mm (Figure 7.18 

(c) & (f)), the trend lines show that the normalised displacement at this same point is approximately 

70% of 8S(impact). This is implying that an increase in the value of OS(1P) results in the normalised 

shape of the deformed stringbed becoming relatively 'flatter'. However, it should be remembered 

that there is considerable scatter in the data. 

The calculated values of standard deviation give a good indication of the level of confidence in the 

data. However, in calculating these values of standard deviation it has been assumed that the level 

of uncertainty is equal for all of the normalised data. A consideration of the source of this 

uncertainty can be used to assess the validity of this assumption. The scatter in the measured data 

is probably due to inaccuracies in the manual sampling method. This would lead to an absolute 

error which has a length dimension, for example 1 mm. When the measured data is normalised, 

the magnitude of this error will no longer be equal for all stringbed displacements. Therefore the 

standard deviations that have been calculated can only be considered to be mean estimates of the 

confidence level in the data. 

7.3.5 Comment on errors caused by adding weight to the stringbed 

The eight trackers which are attached to the stringbed have a total mass of 5.6g, compared to a 

string mass of approximately 20g. This is clearly a relatively significant addition of mass to the 

stringbed and therefore its influence should not be neglected. Johnston (2001) used a similar 

method to determine the deformation of a stringbed and found that the trackers caused a significant 

decrease in the coefficient of restitution for the impact. Johnson used fifteen trackers, which had a 

total mass of over 109, and found that the coefficient of restitution for an impact between a ball and 

head clamped racket was reduced by 5% when these markers were attached. Johnson compared the 

maximum stringbed displacement when measured with only one marker attached, and compared it 

with that obtained when 15 markers were attached. It was concluded that the stringbed 

displacement was 2% larger when the 15 markers were attached, compared to the value measured 

using the single marker. This data suggests that the use of trackers does effect the impact, but this 

effect is likely to be small for the eight trackers used in this experiment. 

A method of deducing the effect of the adding weight to the stringbed involves a comparison of the 

measured results for the two different experiments in which a different number of markers have 

been used in each. In Experiment 1 (discussed in section 7.2) only one tracker was attached to the 
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stringbed, and in Experim.:mt 2 cight trackcrs were used (discussed in This 

comparison is made for the coefficient of restitution and maximum stringbed displacement during 

inlpact, 5inlilar to that illude by' Jollnston (2001). 

Figure 7.19 (a) gives a comparison of the measured coefficient of restitution COR for two different 

experiments in which either 1 or 8 trackers are attached to the stringbed. The data is presented for 

i..rnpacts on rackets which have been strung using h'lo nifferent Str1.11g tensions. It can be seen that 

the measured COR does not appear to be a function of the number of trackers which are attached to 

thc racket. More precisely, any differences in the results of the riv'O expcriments are of the samc 

order of magnitude as the uncertainty in the data. Unfortunately the data was collected using a 

. conclusively confirm this finding. 
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between a ball and head clamped racket. The data is presented for two different string tensions and 

racket which has eight trackers attached to it, compared to the data for the racket with only one 
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impact velocities. This may be due to a systematic experimental error or it may be a true difference 

bcrVv'cen thc two cxperiments. A possible systcmatie cn-or would be duc to an inaccuratc 

calibration of the fIeld-of-view; the calibration performed to detennine the relationship between a 

displacemcnt mcasured on the rc screen and a physical displaccment measured in SI units 

(explained further in section 3.3.4). However, the calibration was always performed twice; 

immediately bcforc and after the tcsting. The difference bcrVv'ccn thc tVv'0 calibrations was always 

negligible and therefore this is unlikely to be causing a systematic error. 
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were used for the tests with 8 trackers attached (Experiment J). The rackets were not restrung 
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after Experiment 1 was completed. The drop in tension may explain the higher stringbed 

deformations which were found for the tests which used eight trackers. 

To verify this hypothesis, the stiffness of the stringbed was measured after Experiment 2; the 

stiffness being measured using the method described in Chapter 6. This data showed that the 

stiffness had reduced by 15% and 10% for the rackets strung at 70lbs and 40lbs, respectively. This 

change in stiffness can not be quantitatively compared with the results obtained for dynamic 

stringbed deformation but does highlight that the racket would have had to be restrung for a 'true' 

comparison to be made between Experiment 1 and Experiment 2. 

To summarise, it is not possible to conclude whether the mass of the trackers affects the 

deformation of the stringbed. The data implies that the coefficient of restitution is not altered, but 

the maximum deformation increased by approximately 15% when 8 trackers are attached to the 

stringbed. However, some of this increase in deformation will be due to the stringbed being less 

stiff in Experiment 2 compared to Experiment 1. Also, the change in the stiffness of the stringbed 

may affect the coefficient of restitution for the impact. Therefore it can not be concluded whether 

the addition of the eight trackers affects this parameter. 

7.3.6 Summary 

In this section, the shape of a deformed stringbed has been measured for an impact between a ball 

and head clamped racket. The shape was measured for a length of approximately 80mm along the 

longitudinal axis of the racket. Experiments were conducted for two different string tensions and a 

range of ball impact velocities. The measured values of the stringbed displacement were 

normalised to the displacement of the stringbed at the impact point. This allowed conclusions to be 

drawn regarding the shape of the stringbed. It was found that this normalised shape was not a 

function of the string tension, but was dependent on the magnitude of the stringbed displacement at 

the impact point. It was assumed that the shape of the deformed stringbed could be simplified by a 

2nd order polynomial trend line that was plotted through the experiment data. The maximum 

stringbed displacement occurred at the impact point and this displacement was defined as OS(IP)' 

The displacement of the stringbed which is 40mm from this point, along the longitudinal axis, is 

approximately 60-70% of the displacement §S(lP). It was also found that the normalised shape of 

the deformed stringbed became relatively 'flatter' as the magnitude of the displacement Os(IP) 

increased. 

7.4 Comparison between quasi-static and dynamic stringbed 

deformation shape 

7.4.1 Introduction 

In section 7.3, the shape of a deformed stringbed was measured for an impact between a ball and 

head clamped racket. It was found that that the normalised shape of a deformed stringbed is a 

function of magnitude of the stringbed deformation. In section 6.3, the stringbed was deformed 
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quasi-statica1ly USITlg a force that was distributed over a circular area. In that cxpciimcnt, it was 

shown that the normalised shape of the stringbed was not dependent on the magnitude of the 

size of this area. T .... ro. ..... : .. .. ........ ... ..... + 
111 c1.l1 UUpa,\.;l 

between a ball and head clamped racket it was found that the shape of the deformed stringbed 

became 'flatter ' as the st-in!5bed defoi111ation incrcascd. Comparing this with the quasi-static data, 

this fmding corresponds with an increase in the area over which the force is applied. Therefore, it 

can be deduccd that, in a ball/racket impact, thc area over which the force is applied to the 

stringbed increases with increasing stringbed deformation. This is logical because the magnitude 

of ball defoi1nation will be increasing cu"1d L'1ercfore so will the contact arca. 

In this section, the shape of the quasi-statically and dynamically loaded stringbed will be compared 

in an attempt to further the understanding of the impact mechanism. This understanding wiH be 

used in Chapter 8 when the impact wil! be modelled. 

As mentioned above, it has been found that the shape of the deformed stringbed is not a function of 

the string tension, for an impact between a ball and head clamped racket. Therefore, in this section 

only the data for the racket which was strung at 70lbs tension is discussed. 
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In section 7.3 it was shown that the shape of the deformed stringbed is dependent on the magnitude 

of deformation. Figure 7.20 shows the normalised data for two different ranges of stringbed 

displacement OS(IP), for an impact between a Pressurised ball and head clamped racket; OS(IP) 

representing the displacement of the stringbed at the impact point. The normalised shape of the 

deformed stringbed which was measured for a quasi-static compression is also plotted in these 

figures. This data was obtained in section 6.3 for two different circular areas over which the 

distributed load was applied; the diameters of these circular areas being 35mm and 55mm. 

Figure 7.20 (a) shows that, for values of Os(IP) between 5 and 10rnm, the dynamic data correlates 

most closely with the quasi-static data obtained using a circular disc with a diameter of 35rnm. 

Figure 7 .20 (b) shows that, for values of 8s(IP) greater than 10mm, the dynamic data is distributed 

between the curves obtained using the discs with diameters of 35mm and 55mm. 

Due to the large scatter in the data obtained for an impact between a ball and racket, it is difficult to 

precisely relate the quasi-static and dynamic results. Indeed, it is not even clear whether it is valid 

to directly compare the two sets of normalised data. The main weakness of the work is that the 

stringbed has been loaded using two different methods, for the quasi-static and dynamic cases. 

However, these results illustrate that the 'effective' contact area diameter increases from 

approximately 35rnm at low stringbed displacements to almost 55mm at the highest displacements. 

This finding will be useful when the impact is modelled in Chapter 8, providing the limitations of 

this work are considered. 

7.5 Summary 

In this chapter, the impact between a ball and head clamped racket is investigated. In the first part 

of this chapter, the coefficient of restitution was measured for combinations of two different ball 

types and two different string tensions. It was found that, for a specific string tension, the 

coefficient of restitution is higher for the Pressurised ball, compared with the Pressureless ball. 

This difference is generally in the order of 0.05 for the racket strung at 70lbs and 0.02 for the racket 

strung at 40lbs. For a specific ball type, it was found that the coefficient of restitution is higher for 

the racket strung at 40lbs, compared with the racket strung at 70lbs. 

The magnitude of the maximum ball and stringbed deformation, during impact, has been measured 

using a high speed video system. It was found that the ball deformation increased as the impact 

velocity was increased, but it did not appear to be a function of the ball type or string tension. The 

maximum stringbed deformation, during impact, was consistently 25% larger for the racket strung 

at 40lbs, compared to that strung at 70lbs. The magnitude of this stringbed deformation was very 

similar for both ball types. 

In this experiment, the contact time for the impact was measured; the contact time being defined 

using two different methods. The first definition of the contact time is equal to the time taken for 

the stringbed deformation to return to zero and this is defined as T C(S). The second definition is 

equal to the time taken for the ball deformation to return to zero and is defined as TC(B)' It was 

consistently found that the second definition yielded a longer contact time, for all combinations of 
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ball type and string tension. This implies that the stringbed deformation returns to zero, before the 

ball deformation does so. 

The value of the contact time T C(S) decreased as the ball impact velocity increased. It was found 

that Tc(s) was consistently O.6ms longer for impacts on the racket strung at 40lbs, compared with 

impacts on the racket strung at 70lbs. It was concluded that the parameter T C(S) was not dependent 

on the ball type. 

The value of the contact time T C(B) decreased as the ball impact velocity increased. It was found 

that Tc(s) was approximately O.4ms longer for impacts on the racket strung at 40lbs, compared with 

impacts on the racket strung at 70lbs. For impacts on the racket strung at 40lbs, it was found that 

TC(B) was not a function of the ball type. However, for impacts on the 70lbs racket, the value of 

TC(B) was larger for the Pressureless ball compared with the Pressurised ball. 

The measured values of the ball deformation, during impact, was used to estimate the motion of the 

ball centre-of-mass. This data will be used in the following chapter to help verify a visco-elastic 

model of the impact. 

In the second part of this chapter, an experiment was conducted to measure the shape of the 

deformed stringbed, during impact. The experiments were conducted using two different string 

tensions and a range of ball impact velocities. It was found that the normalised shape of the 

deformed stringbed was not a function of the string tension, but was dependent on the magnitude of 

the stringbed displacement at the impact point. It was found that the normalised shape of the 

stringbed became relatively 'flatter' as the magnitude of the stringbed displacement increased. 

This is logical because, as the stringbed displacement increases, the magnitude of ball deformation 

will also increase, resulting in a larger contact area between the ball and stringbed. This will lead 

to a relatively 'flatter' stringbed. 

A comparison was made between the shape of the stringbed for a dynamic and quasi-static loading. 

The dynamic loading refers to an impact between the ball and head clamped racket, and the quasi­

static loading is applied via a rigid circular disc. It was found that, for stringbed displacements 

between 5mm and 10mm, the dynamically deformed stringbed has a similar shape to a stringbed 

that has been loaded quasi-statically using a rigid disc with a diameter of 3Smm. For stringbed 

displacements greater than 10mm, the dynamically deformed stringbed has a similar shape to a 

quasi-statically loaded stringbed using a disc with a diameter of between 45mm and 55mm. This 

comparison will be referred to in the following chapter as it will aid in the development of the 

visco-elastic model of the impact. 
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8. Modelling an Impact between a Ball and Head 

Clamped Racket 

8.1 Introduction 

In Chapter 7, results are presented for an experimental investigation of an impact which involved a 

tennis ball being propelled perpendicularly towards a head clamped tennis racket. In that 

experiment, a number of parameters were measured, which included the following, 

1. Ball rebound velocity. 

2. Contact time. 

3. Magnitude of ball deformation. 

4. Magnitude of stringbed deformation. 

These parameters were measured for impacts that involved two rackets which had been strung with 

different string tensions, and two different ball types. It was noted in Chapter 7 that this covered a 

wide range of typical ball types and tensions used in the game of tennis. 

In this chapter, a visco-elastic model of the impact between a ball and head-clamped racket is to be 

developed. Whilst it is accepted that a head clamped racket is not representative of a player's grip, 

this type of impact does involve the interaction between the ball and stringbed. The head is 

clamped and therefore it can be considered rigid. This simplifies the required model as the racket 

frame does not need to be modelled. 

A visco-elastic model has been chosen as a suitable simulation method for this type of impact for 

two main reasons. Firstly, a visco-elastic model of a ball impact on a rigid surface was 

successfully developed in Chapter 5. Therefore, it would be logical to utilise the understanding 

gained in that work to help develop a model of the ball for an impact with a stringbed. Secondly, a 

visco-elastic model has been chosen for its versatility. In this type of model the stiffuess and 

damping can be defined as functions of any number of parameters (e.g. the stringbed 

displacement). 

The developed model will be used to calculate the four parameters which are listed above. The 

accuracy of the model will be assessed by comparing the model results, for these four parameters, 

with the experimental data obtained in Chapter 7. 

8.2 Generic model for an impact between a ball and head clamped 

racket 

8.2.1 Introduction 

In section 5.5, a visco-elastic model of a tennis ball impacting perpendicular to a rigid surface was 

developed. This model accounted for the forces that acted on the ball due to the structural stiffness, 

material damping and momentum flux. Each ball type had a unique set of parameters that defined 

the model components (e.g. spring stiffness), and these parameters were valid for any impact 
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velocity. The model results were compared with experimental data that had been obtained for an 

impact between a ball and force platform. It was shown that the Force-Time and Force­

Displacement plots for the two sets of data correlated very closely. In this section, the model 

which was developed in section 5.5, is to be developed to enable it to be used to simulate the 

impact between a ball and head clamped racket. 

8.2.2 The model 

Ball ...... .. ......... ?~.r.i.r.'. 9. .~~.c:i ............. . 

Figure 8.1 Illustration of a visco-elastic model of a ball impact on a head-clamped racket. 

In this section, the ball and stringbed are to be modelled as a series of springs and dash pot dampers. 

The ball will be simulated using the same one degree-of-freedom model as that developed in 

section 5.5 . The stringbed will be simulated as a simple one DOF model, as it has initially been 

assumed that only the displacement of the impact point is required. The visco-elastic model of an 

impact between a ball and head-clamped racket is shown in Figure 8.1. The stringbed is 

represented by a spring and dashpot in parallel. The spring is used to represent the stiffness of the 

stringbed, in a direction perpendicular to the plane of the stringbed. The dashpot is used to simulate 

the energy loss for an impact in this same direction. Many authors (Cross 2000b, Leigh and Lu 

1993) have shown that the energy losses in a stringbed are approximately 5% and therefore the 

value of Cs is likely to be small. 

The displacements Xs and XB represent the motion of the stringbed at the ball impact position and 

the ball centre-of-mass respectively. The mass mB is equal to the mass of the ball, and can easily be 

measured using an electronic balance. The mass ms represents the effective mass of the stringbed 

that is displaced by a distance Xs during the impact. This can not be measured directly and 

therefore must be chosen arbitrarily. The total mass and surface area of a stringbed is typically 

20g and O.063m2 (98in
2
), respectively. In section 7.3, the shape of the deformed stringbed was 

measured. Using this data, it is estimated that the effective mass of the stringbed can be 

represented by a circular section of the stringbed, with a diameter of 130mm. This disc has an area 

of O.014m2 and therefore the assumed value of ms was 5g. This value has clearly been chosen 

arbitrarily and the actual value could actually lie anywhere between the two bounds of 0 and 20g. 

In Appendix C.7, the sensitivity of the model solution to the magnitude of this value is quantified 
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to assess the validity of this assumption. The findings of that analysis shall be referred to later in 

this chapter. 

The equation that is used to define the force FB which acts on the ball mass mB is, 

[8.1] 

The force acting on the stringbed mass ms is, 

Fs - FB = msxs = -[csxs + ksxs]- FB [8.2] 

The motion of the points XB and Xs was evaluated numerically using the finite difference method. 

The time step .11 used in this solution is 5J.1S. The finite difference equation which defines the 

displacement of XB at a time 1+.11 is, 

[8.3] 

A similar finite difference equation can be used to determine the value of Xs at time t+ Lit, 

[8.4] 

Assuming that the values of XB and Xs (and x B and x s) are known at time I , then (x B), and (x s ), 

can be calculated using [8.1] and [8.2]. The values of (XB t~ and (xs t61 can then be calculated 

using [8.3] and [8.4]. As the time step used in this solution is very small, it was assumed that the 

velocity change during this period was negligible. Therefore the velocities (XB ),+61 and (Xs )'+61 

can be calculated using, 

(X) = (XB)'+~ -(XB)t 
B I+ru At [8.5] 

[8.6] 

The accelerations (XB L61 and (xs L6t were then calculated using [8.1] and [8.2], and the solution 

was then repeated for this new time step. 

Table 8.1 The displacement, velocity and acceleration of the ball and stringbed at time when t=O 
and I = -.1/. 

At time, t = -.1t 

X B = - VB.1t, andxs = 0 

x B = VB, and xs=O 

x =x =0 B S 

At time, t = 0 

x =x =0 B S 

XB =VB, and xs=O 

x =x =0 B S 

To commence this type of solution the displacement, velocity and acceleration of the ball and 

stringbed need to be defined for the time when I = 0 and I = -.11. For an impact with initial ball 
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velocity VB, these values are given in Table 8.1. These values have been obtained using the 

assumptions that the stringbed is initially stationary and the ball is not accelerating prior to impact. 

A more powerful numerical solving technique, such as the Runge-Kutta method, could have been 

used to solve a numerical solution of the model. However, it was found that the simple finite 

difference method only gave an maximum error in the order of -0.2%, due to the relatively small 

time step being used. The solution was written in MS Excel 2000 and could be solved for each time 

step ofthe impact, provided that the values of the parameters kB' ks, CB, CM and Cs are all known. 

In this section, a generic visco-elastic model of a ball impact on a head clamped racket has been 

developed. In the next section, the methods used to define the parameters ko, ks, CB, CM and Cs is 

described. 

8.3 Modelling Technique -1st Attempt 

8.3.1 Determining the visco-elastic model parameters 

In the model in section 8.2, an equation has been derived which can be used to define a visco­

elastic model of an impact between a ball and head clamped racket. In this model, the value of a 

number of parameters are required in order to solve the equation. As stated previously, this model 

considers the two components separately, and therefore the methods used to obtain the values of 

the parameters shall also be described individually. 

(a) The ball 

The ball has been modelled as a spring in parallel with two dashpot dampers, as illustrated in 

Figure 8.1. The spring is used to simulate the structural stiffness of the ball and this parameter is 

defined as kB• A dashpot damper is used to simulate the hysteresis loss in the material, and this 

parameter is defined as CB. A second dashpot damper is used to simulate the force which acts on 

the ball due to the momentum flux, and this parameter is defined as CM. A detailed explanation of 

this model can be found in section 5.5. However, a brief resume is given here to illustrate the 

method which is used to define the parameters kB' CB and CM. 

In section 5.5, the ball model was used to simulate an impact with a rigid surface. In this type of 

model, the ball deformation is analogous to the displacement XB. It was found that the ball stiffness 

kB was a function of XB, as defined in [5.21]. In the model of a ball impact on a stringbed, it is 

assumed that the parameter (XB - xs) is analogous to the ball deformation. Therefore in [5.21], the 

termxB is replaced by (XB - xs) and this equation becomes, 

[8.7] 

In the model of a ball impact on a rigid surface, the parameters kB(o), AK and a were found to be 

constants for a specific ball type. In this current model, it is assumed that these parameters are 

valid for an impact between a ball and head clamped racket. A minor addition to this model is that 

it was found that the ball has a very high structural stiffness during the first 0.2ms of impact. In the 
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model this is simulated by assuming that kB=80kN/m for this period. For the remainder of the 

impact, the stiffness of the spring is defined by [8.7]. 

For the model of an impact on a rigid surface, it was assumed that the magnitude of the material 

damping was proportional to the volume of rubber being deformed, and also the ball deformation 

rate. In that model, the dashpot parameter CB which represented the material damping is defined 

using, 

[8.8] 

where mB is the mass of the ball, and the other parameters are defined below. 

To derive this equation, a number of assumptions were made regarding the shape of the deformed 

ball. The parameter dC07lfT refers to the diameter of the circular area of the ball that is in contact 

with the surface. The empirical relationship between dCONT and the ball COM displacement XB, for 

an impact between a ball and rigid surface, was given in [5.6]. In this current model, the analogous 

parameter to XB is (x B - X S ). It is not possible to empirically obtain the relationship between dCONT 

and (x B - X S ), for an impact on a stringbed. Therefore, it is assumed that the relationship derived 

in [5.6] for an impact on a rigid surface is valid for an impact on a stringbed. The modification of 

[5.6] is therefore, 

dCONT = -2. 77 x 105 (XB - Xs t + 1. 74 X 104(XB - Xs Y -453(XB - Xs Y + 7. 66(XB - xs) [8.9] 

The term M, in [8.8] refers to the mass of the section of ball that is not in contact with the surface. 

This value clearly varies throughout impact, and is a function of the ball deformation. It is 

assumed that M} is equal to the difference between mB and the mass of the ball that is in contact 

with the surface M2. The value of M2 is estimated using, 

dCONT 

( )

2 

M2 = Parea1i 2 [8.l0] 

where Parea is the mass per unit surface area density of the ball and is equal to 5.212kglm2 for a 

standard size ball. 

The parameter Ac was defined as a constant for each ball type, for an impact between a ball and 

rigid surface. This constant value was arbitrarily chosen with the aim of defining a value that gave 

a model ball rebound velocity that was similar to that measured experimentally. 

The values of the parameters kB(o), AK , a and Ac, for a typical Pressurised and Pressureless ball, are 

given in Table 8.2. These parameters will be used in the current model. 

163 



Chapter 8 Model of a ball-racket impact 

Table 8.2 Spring parameters kB(o), AK and a and damping coefficient Ac for the four ball types. 

Ball type kB(o) (kN/m) AK (kN/mL
) a Ac (kNs/m3) 

Pressurised 21 16000 1.65 3.5 

Pressureless 23 12500 1.7 4.0 

For an impact between a ball and rigid surface, the work in section 5.5 showed that the force due to 

the momentum flux can be simulated using a dashpot damper with coefficient CM, as defined by 

[5.19]. In that model, the force due to the momentum flux is effectively proportional to the mass 

(and velocity) of the ball being brought to rest in a unit time interval Lit. The equation used to 

define CM at time t is, 

[8.11 ] 

In [8.11], it is assumed that the mass of the ball being brought to rest can be calculated from the 

empirically measured ball/surface contact area diameter at time t and t-At which are defined as 

dCONT(t) and d CONT(I+,1/) respectively. 

In the model of an impact between a tennis ball and stringbed, the section of the ball that comes 

into contact with the surface in a unit time interval is not brought to rest. Instead the velocity of 

this section instantaneously changes to that of the stringbed. This is simulated in the model by 

assuming that the force acting on the ball due to the momentum flux FB(M) is equal to, 

[8.12] 

The equations which have been discussed in this section can be used to define all the ball 

parameters that are required to solve the model which was given in section 8.2. 

A minor modification is made to this model to simulate the contribution of the cloth on the ball, 

during impact. In Chapter 4, it was shown that the cloth has a relatively low stiffness, compared 

with the rubber core. In Chapter 5 it was shown that this characteristic could be modelled by 

assuming that the force which acted on the ball was equal to zero during the initial stage of impact, 

when only the cloth was being compressed. This same assumption shall be used in this current 

model, and therefore it is assumed that the force which acts on the ball is equal to zero, for ball 

COM displacements of less than 2mm (during the compression phase only), regardless of the 

values of the ball model parameters 

(b) The stringbed 

The stringbed of a head clamped racket is to be modelled as a spring and damper in parallel. The 

stiffness of the spring is clearly analogous to the stiffness of the stringbed for a compression that is 

perpendicular to the plane of the stringbed. In section 6.2, a force was applied to a stringbed and 
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the resulting displacement was measured. This data was converted to a linear quasi-static stiffness 

which is defined as the ratio of the applied force and stringbed displacement. In that section. the 

quasi-static stiffness was measured for rackets which have been strung at different tensions. The 

load was applied using a rigid circular disc, and data was obtained for a range of different disc 

sizes. 

It is to be assumed that the quasi-statically measured stiffness can be used to define a 1 sI order 

approximation of the spring stiffness in the model. for the specific string tension of the racket that 

is being modelled. The stringbed stiffness increased with the magnitude of stringbed displacement 

which could easily be accounted for in the model. However. the stiffness of the stringbed was also 

dependent on the size of the circular disc that is used to apply the load. The effective contact area 

over which the ball applies the load onto the stringbed is not known. Therefore it is not possible to 

directly define the stiffness of the stringbed for an impact with a ball, from the quasi-static stiffness 

data. 

Initially. let it be assumed that the effective contact area diameter of the ball on the surface be 

known; this diameter being defined as ~D' In section 6.2, a technique was discussed which could 

be used to minimise the number of equations that were required to define the stiffness of the 

stringbed. This technique involved the concept of a normalised stringbed displacement. This 

normalised stringbed stiffness k s is defined using. 

[8.13] 

The parameter kS(~D) is equal to the stiffness of the stringbed at a specific displacement Xs. 

measured using a disc diameter of ~D' The parameter k s (~ss) is equal to the stiffness of the 

stringbed at the same displacement Xs. measured using a disc diameter of 55mm. 

In section 6.2, it was shown that an empirical approximation can be used to define the relationship 

between the normalised stringbed stiffhess and the size of the disc diameter. This equation is, 

- 2 
ks = 78.42~D + 2.336~D + 0.6392 [8.14] 

To complete the solution, the stiffness of the stringbed must be known, for a quasi-static loading 

applied using a rigid disc with a diameter of 55mm. This quasi-static stiffhess is a constant 

function of Xs and is defined as ks (~ss) using an equation of the form. 

ks (~55 )= a.x~ + b.x s + C [8.15] 

In Chapter 6, the quasi-static stiffness of the rackets strung at 40 and 70lbs tension was measured 

for a compression using a 55mm circular disc. and the parameters of equation [8.15] are shown in 

Table 8.3. 
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Table 8.3 The coefficients ofthe second order trendline which defines the stiffness of the 

stringbed, for two different string tensions. 

String tension a (kN/mJ
) b (kN/ml) c (kN/m) 

40lbs 4785 1147 29.02 

70lbs -30140 2519 43.07 

To summarise, the parameter which will be input into the model is defined as ks (~f))' This 

parameter describes the stiffness of the stringbed at a specific displacement, for a specific disc 

diameter. Therefore, 

[8.16] 

The equations which are required to determine kS(~D) have been discussed above. However, they 

require a value of r/lD to be defined. In the quasi-static test, r/lD was simply equal to the diameter 

of the disc used to apply the load. However, in the model, the value of r/lD needs to describe the 

effective contact area of the ball and stringbed. An initial discussion of this was given in section 

7.5, in which the shape of a quasi-statically defonned stringbed, was compared with that of a 

dynamically defonned one. This discussion is continued below. 

In an impact between a tennis ball and stringbed, the ball does not apply a load on the stringbed in 

the same way that the load is applied by a rigid disc; a tennis ball being a highly defonnable body. 

The shape of the defonned stringbed for a quasi-static and dynamic loading was compared in 

section 7.4. The quasi-static loading was applied by a rigid disc and the dynamic loading referring 

to an impact between a ball and head clamped racket. In that section, a qualitative relationship 

between the magnitude of stringbed displacement and the effective contact area of the ball was 

obtained. In this current section, a quantitative relationship is required which can be used in the 

model to estimate the value of the stiffness parameter ks. 

The relationship that needs to be obtained is that which relates the stringbed displacement xs with 

the effective contact area diameter that the ball is applying the load over. This is obtained using the 

data in section 7.4. It is shown that, for stringbed displacements of between 5 and lOmm, the 

dynamically defonned stringbed has a similar shape to that of a stringbed which was defonned 

quasi-statically using a disc diameter of 35mm. For all stringbed displacements of more than 

lOmm, the shape of the dynamically defonned stringbed is similar to that of a quasi-statically 

defonned stringbed that used a disc diameter of between 45mm and 55mm to apply the load. 

Using this infonnation as a guide, the assumed relationship between the stringbed displacement and 

the effective area over which the ball imparts a load on the stringbed can be obtained. This 

assumed relationship is shown in Figure 8.2. The two points that are used to define this arbitrary 

relationship are the stringbed displacements for contact area diameters of 35mm and 55mm. It has 

been assumed that the stringbed displacement for a contact area diameter of 35mm is 7.5mm. This 

has been arbitrarily chosen by the fact that the shape of the quasi-statically defonned stringbed, 

using a contact area diameter of 35mm, is similar to that for a dynamically defonned stringbed for 
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displacements of between 5 and lOmm. The stringbed displacement for a contact area of 55mm 

was chosen to be 20mm. This was deduced from the fact that, for stringbed displacements between 

lOmm and 25mm, the effective contact area diameter lies somewhere between 35mm and 55mm. 

A displacement of 20mm was arbitrarily chosen as the limit. 

7.5 20 

Stringbed displacement Xs (mm) 

Figure 8.2 Assumed relationship between the disc diameter and the stringbed displacement. 

The relationship shown in Figure 8.2 has been chosen arbitrarily. In Appendix C.7, the sensitivity 

of the model solution to the form of this relationship is discussed. This relationship shows that, for 

displacements of up to 20mm, the contact area diameter is a continuingly varying function of the 

stringbed displacement Xs. For stringbed displacements Xs of less than 20mm, the equation that 

defines the curve in Figure 8.2 (converted into SI units) is, 

r/JD = 1.6xs + 0.023 [8.17] 

and for Xs > 0.020m the value of iPD is equal to 0.055m. 

This information defines the value of iPD for any stringbed displacement Xs. Previously it was 

shown that equations have been derived which define stringbed stiffness for a specific combination 

of the values of Xs and iPD' However, it has been described that the solution required the 

relationship between the two variables, Xs and iPD, to be known. This has been defined in [8.17] 

and therefore the solution can be completed. 

The parameter iPD can be substituted in [8.14], so that the equation to define the normalised 

stiffness becomes, 

ks = 78.42{1.6xs + 0.023Y + 2. 336{1.6xs + 0.023)+ 0.6392 [8.18] 

(8.18] is valid for stringbed displacements Xs of less than 20mm. For Xs > 20mm, the value of ~ is 

equal to 55mm, and therefore the normalised stiffness ks is equal to unity. 

Using the example of a racket strung at 701bs, the equation to define the quasi-static stringbed 

stiffness for a loading with a disc diameter of 55mm is, 

ks (r/Jss)=-30140000x; + 2519000xs +43070 [8.19] 
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Rearranging [8.13] gives 

kS('D) = ks .ks('ss) 

Model of a ball-racket impact 

[8.20] 

Using equations [8.18]-[8.20], the stringbed stiffness ks ('D) can be calculated for any value of xs. 

This stringbed stiffness ks ((JD) is substituted for the spring stiffness ks that is shown in Figure 8.1, 

and therefore this parameter has now been defined in the model. Clearly, the values of the 

coefficients in [8.19] are dependent on the string tension. These parameters are determined from a 

least squares regression analysis on data collected for a quasi-static compression of a stringbed, 

using a disc diameter of 55mm. 

In Figure 8.1, it can be seen that there is also dashpot damper, with value Cs, that is used to 

represent the damping of the stringbed. Cross (2000b) showed that the damping, or material 

energy losses, in the stringbed are both small and not dependent on the age of the strings or on 

string tension. In this study, the energy loss which occurs in an impact between a head clamped 

racket and a 760g rigid sphere was measured. Cross (2000b) found that ball rebounded at 95±2% 

of the incident speed, regardless of the drop height, string type or string tension. 

Clearly, an empirical solution for Cs could be obtained via a simulation of the experimental impact 

that was conducted by Cross (2000b). This simulation uses the same generic model of a ball 

impacting on a stringbed as that described in section 8.2. A rigid ball is assumed to exhibit no 

energy losses and therefore the value of the dashpot damper parameters CB and Cs are both equal to 

zero. The ball will clearly be very rigid and to simulate this the spring stiffness kB was assigned a 

relatively high, constant value of 400kN/m. The mass of the ball mB and the stringbed ms were 

equal to 760g and 5g respectively. The stringbed stiffness ks was defined using the equations 

described above. 

The model was then solved using the equations derived in section 8.2. The value of the stringbed 

damping Cs was initially equal to zero. This value was then increased until the model calculated a 

ball rebound velocity that was equal to approximately 95% of the incident speed, using an iterative 

process. It was found this result was achieved using a stringbed damping value Cs that varied 

between 1.5 and 2.5Ns/m for the range of impact velocities that were used (3m1s to 7m1s). It was 

therefore concluded that, for simplicity, the value of Cs will be assumed to be equal to 2Ns/m for all 

impacts in this section, unless otherwise stated. 

(C) Summary a/model parameters 

In this section, the methods that are used to determine the values of the model parameters kB' ks, CB, 

CM and Cs are described. In this section, it was assumed that a ball can be modelled using the same 

technique as was used in Chapter 5 to simulate a ball in an impact with a rigid surface. Therefore, 

the ball parameters kB' CB, and CM are the same as those used that chapter. A number of 

assumptions had to be made to allow this to be possible. For example, it was assumed that the 

relationship between the shape of the deformed ball and the ball centre-of-mass displacement, is 

the same for both an impact on a rigid surface and on a stringbed. 
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The model stringbed stiffness ks was assumed to be equal to the quasi-static stiffness that has been 

measured in Chapter 6. It was shown that the quasi-static stringbed stiffness is dependent on the 

size of the circular disc that is used to apply the load. Therefore, assumptions have been made 

which specify the effective size of the ball-surface contact area for a specific stringbed 

displacement, for a dynamic impact. The damping parameter Cs is assumed to be equal to 2Ns/m to 

account for the small hysteresis losses in the stringbed for a dynamic impact. 

8.3.2 Results and Discussion 

(a) Force-Time plot 

In section 8.2, a generic visco-elastic model was derived for an impact between a tennis ball and 

head clamped racket. In that section, the techniques that are required to solve the model are given. 

In section 8.3.2, the assumptions are discussed which are needed to determine the values of the 

model parameters kB' ks, CB, CM and Cs. As mentioned previously, a numerical solution for the 

model was calculated in MS Excel 2000. This solution calculated the displacement, velocity and 

acceleration of the ball and stringbed masses, at time intervals Lit of2lls, for the entire impact. The 

forces which act on the two masses were also calculated at each time interval, and this data can be 

used to determine a Force-Time curve for the force which acts on the ball. 
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Figure 8.3 Typical Force-Time data, showing the contribution of each component of the total 

model force which acts a Pressurised ball during an impact with a racket stringbed that is strung at 

70lbs. 

Figure 8.3 shows the individual components of the force which acts on the mass mB, for a simulated 

impact between a Pressurised ball and a head clamped racket that has been strung at 701bs. These 

forces were calculated for a ball impact velocity of 20m/s. The major component of the total model 

force which acts on the ball is that which is due to the spring stiffness (structural stiffness). This 

accounts for approximately 80% of the total force. Both the momentum flux force and the 

structural stiffness force are relatively high during the initial stage of impact, which leads to a high 

value of the total force . The momentum flux force is high during this period because the ball 
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centre-of-mass is moving relatively quickly at this point and the stringbed is almost stationary. The 

structural stiffness force is relatively high because the spring stiffness has been assigned a high 

value of 80kN/m, during the flrst 0.2ms of impact. The material damping force is a function of the 

ball velocity, and therefore has a positive value during the compression phase, and a negative value 

during the restitution phase. 

The model solution can also be used to determine the following parameters, 

1. Ball rebound velocity. 

2. Contact time for the impact. 

3. Ball centre-of-mass displacement during impact. 

4. Stringbed displacement during impact. 

In Chapter 7, these parameters have been experimentally determined for an impact between a head 

clamped racket and ball. These results have been obtained for rackets strung with two different 

string tensions (40lbs and 70lbs) and two different ball types (Pressurised and Pressureless). The 

required model parameters for the two stringbeds (ks, cs) and for the two ball types (AK, kB(o)' a , Ac) 

are given in section 8.3.1. In the following section, a comparison is made between the model and 

experiment values of the four parameters shown above. 

(b) Comparison of Model and Experiment Results 

Ca) Pressurised 
00 ' .. . ,-

• 70lbs - Experiment 
o 40/bs - Experiment 

I 70lbs - Model 
\ ....... 40lbs - Model 

30 
Cb) Pressureless 

10 r 

00 •• 
' . ... 

10 20 30 40 10 20 30 40 
Ball illl'act velocity (m's) Ball illl'act velocity (m's) 

Figure 8.4 Comparison ofthe ball rebound velocity measured for the experiment and model. The 

data is presented separately for two different ball types. 

Figure 8.4 shows a comparison of the ball rebound velocity data that was obtained using the model 

and that obtained experimentally. This data is presented separately for the Pressurised and 

Pressureless balls. It can be seen that the model consistently calculates a ball rebound velocity 

which is lower than that which has been measured experimentally, This difference is generally 

between 5 and 10%. 
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Figure 8.5 Ball centre-of-mass displacement and stringbed displacement for an impact between a 

ball and head-clamped racket, for four different combinations of string tension and ball type. The 

ball impact velocity is 20m/s, and both the model and experiment data are presented. 
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Figure 8.6 Ball centre-of-mass displacement and stringbed displacement for an impact between a 

ball and head-clamped racket, for four different combinations of string tension and ball type. The 

ball impact velocity is 35m/s, and both the model and experiment data are presented. 
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In Chapter 7, high speed video analysis was used to estimate the displacement of the ball centre-of­

mass during impact, for a range of ball impact velocities. In these experiments, the magnitude of 

the stringbed displacement was also measured. These experimental values of ball COM and 

stringbed displacement are plotted in Figure 8.5 and Figure 8.6, along with the model results that 

have been discussed earlier in this section. These figures contain data for an impact between a ball 

and head clamped racket at nominal impact velocities of 20mls and 35m1s respectively. Data is 

presented in these figures for the two different ball types and two different tensions. It is noted that 

some data is 'missing' for the ball COM displacement in Figure 8.6. This data was collected for a 

relatively high speed impact velocity (35m1s), and the ball could not be viewed during maximum 

compression for such high speed impacts. Data for other impact velocities is given in Appendix C. 

Figure 8.5 and Figure 8.6 show that the model and experiment plots both exhibit a characteristic 

kink in the curve which represents the ball COM displacement data. This occurs at a time of 

between 0.5-1.0 ms. Also, both the experiment and model plots show that the stringbed does not 

start to displace at the instant that contact occurs. There is generally a delay of approximately 

0.3ms before the stringbed starts to move. In the model, this is due to the fact that the ball does not 

exert a force on to the stringbed until a ball COM displacement of 2mm is achieved. This feature 

of the model is employed to simulate the relatively low stiffness of the cloth. The delay in motion 

will also be due to the finite mass of the stringbed ms which must be accelerated . 

The kink in the ball COM displacement curve may also be due to this delay in the motion of the 

stringbed because, initially, the ball will deform rapidly due to the inertia of the stringbed. Then 

the stringbed will start to move due to the high force which acts on it. This may result in instability 

in the solution, and the stringbed may overshoot its equilibrium position, causing the ball 

deformation to momentarily reduce and create a kink in the curve. 

The model and experimental results for the magnitude of the ball COM and stringbed displacement 

correlate for most of the compression phase of impact. However, it is generally found that the 

model ball COM displacement is greater than that which is measured experimentally, especially 

during the restitution phase. The figures above show that the maximum value of the model 

stringbed displacement (during impact) is generally smaller than that measured experimentally. 

However, during the restitution phase the value of the model stringbed displacement is generally 

higher than that measured experimentally. Even more evident is the fact that both the model 

stringbed and ball COM displacement both take longer to return to zero compared to their 

experimentally determined values. This is implies that the contact time in the model is longer than 

that obtained experimentally. 

A significant feature of the experimentally obtained data that is shown in Figure 8.5 and Figure 8.6 

is that the stringbed displacement often returns to zero before the ball COM displacement returns to 

zero. This characteristic has been discussed in section 7.2.4 and leads to the requirement that there 

are two different definitions for the contact time of the impact. These two separate definitions are 

termed Tc(s) and TC(B) and the definitions of these two terms are illustrated in Figure 8.7. 

172 



Chapter 8 Model of a ball-racket impact 
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Figure 8.7 Defmitions of the measured terms obtained from the Displacement-Time plots. 

The parameter T C(s) refers to the time taken for the stringbed displacement to return to zero. Figure 

8.5 and Figure 8.6 show that the model consistently calculates a shorter value of Tc(s) than that 

which was measured experimentally. This difference between the values obtained by the model 

and experiment is in the order of between O.5ms and I.Oms. These figures also showed that the 

model consistently calculated a shorter value of T C(B) than that which was measured experimentally; 

T C(B) being the time taken for the ball displacement to return to zero. 

It has been commented that the magnitude of the ball COM displacement (and stringbed 

displacement) which is calculated by the model during impact, is different to that measured 

experimentally. Also, the contact times which were calculated by the model were different to those 

obtained experimentally. This comparison has so far only been made for the two impact velocities 

shown in Figure 8.5 and Figure 8.6. However, data was collected for many other impact velocities. 

A method of summarising this data so that it can be neatly presented involves a consideration of 

only the important measurements of the Displacement-Time curves. The four important 

measurements are defmed in Figure 8.7. Since all the curves shown in Figure 8.5 and Figure 8.6 

have a similar shape, they can all be defmed by the maximum displacement and the contact time; 

these parameters being defined for both the stringbed and ball COM displacements. 
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Figure 8.8 The maximum ball centre-of-mass displacement X B(MAX), which occurs during an 

impact between a ball and head clamped racket. The model and experiment data is plotted for two 

ball types. 
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Figure 8.8 (a) and (b) show the maximum ball centre-of-mass displacement X B(MAX) plotted against 

the ball impact velocity, for the Pressurised and Pressureless balls respectively. These figures 

show that the maximum ball COM displacement, which is calculated by the model, is generally 

larger than that which is measured experimentally. 
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Figure 8.9 The maximum stringbed displacement XS(MAX), which occurs during an impact between 

a ball and head clamped racket. The model and experiment data is plotted for two different ball 

types. 

Figure 8.9 (a) and (b) show the maximum stringbed displacement XS(MAX) plotted against the ball 

impact velocity, for the Pressurised and Pressureless balls respectively. These figures show that 

the stringbed displacement which is calculated by the model is consistently lower than that 

measured experimentally. The magnitude of this difference ranges from Imm to approximately 

4mm. 
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Figure 8.10 The contact time TC(s) for an impact between a ball and head clamped racket; Tc(S) 

being defined as the time taken for the stringbed displacement to return to zero. The model and 

experiment data is plotted for two different ball types. 

Figure 8.10(a) and (b) illustrate the data for the contact time Tc(S» for Pressurised and Pressureless 

balls respectively. In these figures, both the model and experiment data is presented. The term 

Tc(s) is defined in Figure 8.7, and corresponds to the period of time from initial contact until the 
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Chapter 8 Model of a ball-racket impact 

stringbed displacement returns to zero. It can be seen the values of contact time which are 

calculated by the model are consistently larger than those which have been measured 

experimentally. The difference between the model and experiment data is generally between 0.4 

and 0.8ms, for both ball types and string tensions. 
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Figure 8.11 The contact time T C(8) for an impact between a ball and head clamped racket; T C(8) 

being defmed as the time taken for the ball COM displacement to return to zero. The model and 

experiment data is plotted for two different ball types. 

40 

Figure 8.11 (a) and (b) illustrate the data for the contact time T C(8J, for both the model and 

experiment data. The term TC(8) corresponds to the length of time from initial contact until the ball 

COM displacement returns to zero. It can be seen that the values of contact time which are 

calculated by the model are consistently larger than those which have been measured 

experimentally. The difference between the model and experiment data is generally between 0.2 

and O.6ms, for both ball types. 

(e) Discussion 

It can be seen that there are two definitions for contact time (TC(s) and T C(B)) and these have 

different magnitudes. It has been found that the model consistently exhibits a longer contact time 

than that measured experimentally, for both definitions. It is well established that a longer contact 

time corresponds to a relatively lower stiffness for the system. This implies that the model stiffness 

of the ball and/or stringbed is lower than that of the actual ball and stringbed. In the model, the ball 

and stringbed form a complex interacting system and therefore the properties of one component 

influences the properties of the other. However, to further the understanding of the impact, the two 

components will be briefly investigated separately. 

Let it be initially proposed that the model stringbed ks is not as stiff as the actual stringbed. This 

assumption would explain the longer contact times which have been calculated by the model. 

However, the calculated value of the stringbed displacement (in the model) is smaller than that 

which is measured experimentally. This observation implies that the model stringbed is stiffer than 

the actual stringbed, and thus contradicts the previous assumption. Therefore, it can not be 
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unanimously concluded whether the model stiffness of the stringbed is higher or lower than the 

actual stiffness. 

The ball stiffness kB shall now be considered. Again, it is initially assumed that the model stiffness 

of the ball is lower than that of the actual ball, because of the longer model contact times. The data 

in Figure 8.8 supports this because it shows that the ball centre-of-mass displacement which is 

calculated by the model is larger than that which is measured experimentally. This implies that the 

model ball stiffness is lower than that of the actual ball. 

This brief analysis of the stiffness of the ball and stringbed has revealed that the accuracy of thc 

model would be improved by increasing the stiffness of the ball. This would act to decrease both 

the contact time and the ball COM displacement which are calculated by the model , improving the 

correlation between the model and experimental data for these parameters. The current values of 

the ball stiffness parameter are defined using the data obtained for a ball impact on a rigid surface 

(as described in section 8.3.1). Therefore, it can be concluded that the results in this section imply 

that the structural stiffness of a tennis ball may be dependent on the nature of the surface that it is 

impacting on. More specifically, it is suggesting that a ball is effectively 'stiffer' for an impact on 

a stringbed, compared with an impact on a rigid surface. 

The magnitude of the increase in ball stiffness that is required to improve the accuracy of the model 

is not known. However, a possible reason for this effective increase in the ball stiffness can be 

illustrated by considering the high speed video image in Figure 8.12. 

Figure 8.12 shows a sequence of images that were captured using a high speed video system, in a 

separate experiment to that which has been described previously. The ball was propelled 

perpendicularly towards a head clamped racket (strung at 651bs), and the impact was viewed 

obliquely, from the rear, using the camera. The displayed images were captured at intervals of 1.0 

ms. This sequence shows that the entire surface of the ball stays in contact with the stringbed 

throughout impact. By contrast, for an impact between a ball and rigid surface, many authors 

(Cross 1999b, Dignall 2000b) have shown that the ball wall buckles during impact, and the central 

section of the ball losses contact with the surface. This buckling results in a rapid reduction in the 

stiffness of the ball, which is confirmed by Force- Time data obtained for an impact between a ball 

and force platform. This has been expanded upon in Chapter 4. 

Time = Oms Time = 1 ms Time = 2 ms Time = 3 ms 

Figure 8.12 A sequence of high speed video images of a Pressurised ball impacting 

perpendicularly on a head clamped racket (viewed obliquely, from rear). The ball impact velocity 

was 25m1s. 
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Using the images in Figure 8.12 alone, it is not possible to define the mechanism which may be 

preventing the ball wall from buckling. However, it can be hypothesised that it is linked to the 

surface of the deformed stringbed, which is significantly different to that of a flat, smooth rigid 

surface. Firstly, the shape of the stringbed may act to 'cradle' the ball, supporting it around its 

perimeter thus making it more stable and less prone to buckling. Alternatively, the buckling may 

be inhibited by the high frictional force which acts due to the imbedding of the strings into the 

surface of the ball. It is very difficult to quantify the effect that friction will have on the ball 

stiffness. A theoretical study by Hubbard & Stronge (2001) confirmed that friction will increase 

the stiffuess of a table tennis ball impacting on a rigid surface. Hubbard found that the stiffness 

increased by approximately 10% when the coulomb friction was increased from f.l = 0 to f.l = 0.47. 

However, clearly it is difficult to quantifiably relate those results to the model being discussed in 

this section. 

Let it be assumed that the ball does not buckle during an impact with a head clamped racket. If this 

assumption is valid, then it would be reasonable to assume that the stiffness of the ball would be 

larger for an impact with a head clamped racket, compared with its stiffness during an impact with 

a rigid surface. 

In this section, it has been assumed that the ball stiffness kB was equal to that obtained empirically 

for an impact on a rigid surface. However, it was then shown that this stiffness appeared to be too 

low. This conclusion was based on the observation that the values of the contact time and ball 

centre-of-mass displacement which were calculated by the model were greater than those measured 

experimentally. This discussion has hypothesised that the ball stiffness kB should be increased to 

improve the accuracy of the model. A possible reason to justify an increase in stiffness has been 

given. However, this analysis has not generated a method of quantifying the magnitude of the 

increase in stiffness. 

8.3.3 Summary 

In this section, a visco-elastic model of an impact between a ball and head clamped racket has been 

discussed. This model can be used to calculate a number of variables for the impact, including the 

ball rebound velocity and the contact time. The model of the ball component was the same as that 

used to simulate a ball impact on a rigid surface. The stringbed stiffness was effectively equal to 

that which had been experimentally obtained for a quasi-static compression of the stringbed. The 

stringbed was assigned a damping parameter which was based upon data collected by other 

researchers. 

In this section, the output from the model was compared with the experimental data for an impact 

between a ball and head clamped racket. The observations are summarised as follows, 

1. The ball rebound velocity that was calculated by the model was lower than that measured 

experimentally. 

2. The stringbed displacement that was calculated by the model was lower than that measured 

experimentally. 
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3. The ball centre-of-mass displacement of the ball which was calculated by the model was 

larger than that which was measured experimentally. 

4. The contact time which was calculated by the model was longer than that which was 

measured experimentally. 

It was concluded that the model ball stiffness kB was lower than the stiffness of the actual ball. In 

this section, the model ball stiffness kB was defined using the data collected for an impact on a rigid 

surface. However, it was then proposed that the same ball will be effectively stiffer during an 

impact with a head clamped racket because the ball wall does not buckle. 

In the following section, the model solution is modified to assess the effect of increasing the ball 

stiffness kB• 

8.4 Modelling Technique - 2nd Attempt 

8.4.1 Introduction 

In section 8.2, a visco-elastic model of an impact between a ball and head clamped racket was 

derived. This model contains a collection of springs and dampers which represent the structural 

stiffness and material damping of the ball and stringbed. The ball was represented by a spring in 

parallel with two dashpot dampers. The spring stiffuess was defined as kB and the two dampers 

were defined using the parameters CB and CM. The stringbed was represented using a spring in 

parallel with a damper that were defined as ks and Cs respectively. A numerical analysis is used to 

solve the model and therefore the magnitude of each parameter can vary throughout impact. 

The model can be used to calculate a number of variables for the impact, including the ball rebound 

velocity and the contact time. However, to obtain this solution, the magnitude of the parameters kB' 

CB. CM, ks and Cs need to be defined using realistic values. In section 8.3, a possible method was 

discussed in which the ball parameters (kB' CB. CM) were the same as those which were derived for 

an impact between a ball and rigid surface. The stringbed stiffness was equal to that which had 

been experimentally obtained for a quasi-static compression of the stringbed. The stringbed was 

assigned a damping parameter which was based upon data collected by other researchers. In 

section 8.3, the output from the model was compared with the experimental data that is presented in 

section 7.2. In brief, it was concluded that the model ball stiffness kB was effectively smaller than 

that of the actual ball. Therefore, in this current section, the model solution shall be repeated using 

higher values of the ball stiffness parameter kB to assess whether such a modification will improve 

the accuracy of the model. The same combination of springs and dampers are used to model the 

impact between a ball and head clamped racket, as was described in section 8.2. Also, the same 

assumptions are to be used to define the stiffness and damping of the stringbed as were discussed in 

section 8.3. The only difference between the model in this current section, and that in section 8.3, 

is that a modified assumption is to be made in regard to the ball stiffness kB• 
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8.4.2 Determining the visco-elastic model parameters 

In this current section, the generic model which was discussed in section 8.2 is to be used to model 

the impact between a ball and head clamped racket. The stringbed stiffness and damping 

parameters (ks and cs) are to be defined in the same way as they were in section 8.3, and therefore 

the details are not repeated here. The definitions described in section 8.3 for the material damping 

and momentum flux forces which act on a deformed ball during impact (CB and CM) are also to be 

used in this section. The only difference between the work in this section and that in section 8.3, is 

in regard to the ball stiffness, defined as kB• 

In the section 8.3, it was assumed that the ball stiffness kB was very high during a short period at 

the start of the impact. The parameter kB was assigned a value of kSHELL for the first O.2ms of 

impact; kSHELL being arbitrarily chosen as 80kN/m. After the first O.2ms of impact, the parameter kB 

is defined using, 

[8.21] 

These assumptions had been made in the derivation of the model for a ball impacting on a rigid 

surface, which is discussed in Chapter 5. In that work, experimental data obtained using a force 

platform was used to illustrate that the ball buckles at an instance of -O.2ms after initial contact. 

This was simulated in the model by assuming a high initial stiffness, followed by a sudden 

transition to a lower stiffness. In section 8.3, it has since been shown that the ball may not buckle 

in the same way for an impact on a head clamped racket, as it does for a similar impact on a rigid 

surface. Therefore, the assumption of a transition in the stiffness is not necessarily valid, and may 

simply be adding an unnecessary complication to the model. Thus, in the model in this current 

section, the stiffness of the ban is to be defined using 8.21, for the entire impact. For interest, it 

should be noted that the this modification has negligible effect on the overall model solution, as the 

high stiffness only acts for a relatively short length of time. 
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Figure 8.13 Illustration ofa possible new function to describe the ball stiffness in the model. 

Table 8.2 shows the value of the spring parameters (kB(o), AK and a) which were used in section 8.3 

to define the stiffness of the spring kB' using [8.21]. An infonnative way of illustrating the physical 

significance of these parameters involves the use of graph of the ball stiffness kB plotted as a 
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function of the ball COM displacement XB. In Figure 8.13, such a plot is presented for a 

Pressurised ball. In this figure, the ball stiffness is plotted for two different assumptions; these 

being defined as (1) 'original assumption' and (2) 'new assumption'. The 'original assumption' 

plot was calculated using [8.21] and the same values of kB(o» AK and a that had been originally 

assumed in section 8.3. Also shown in Figure 8.13 is an arbitrary plot of a proposed 'new' ball 

stiffness kB• This is shown merely to illustrate a possible alternative function to define the value of 

kB, and the method used to obtain this curve is described below. 

The 'new' function which describes the ball stiffness kB that will be used in the model in this 

section is assumed to take the form of [8.21]. Also, for simplicity, it is assumed that the 'new' 

stiffness will be equal to a constant factor KMOD multiplied by the original stiffness, for all values of 

XB. The ball stiffness for the 'original' and 'new' assumption are defined as kB(or;g;nal) and kB(new) 

respectively. Therefore, the assumed relationship between the two can be defined as, 

kB(new) = K MOD X kB(or;g;nal) [8.22] 

It was arbitrarily assumed that the value of KMOD was equal to 1.3; this implying that the ball is 

effectively 30% stiffer for an impact on a head clamped racket compared with such an impact on a 

rigid surface. 

The value of kB(new» at any value of (XB-XS), could simply be obtained by determining the relevant 

value of kB(or;g;nal), using [8.21] and the value of kB(o), AK and a from section 8.3, and then multiply 

this value by KMOD' However, a neater solution would be obtained by determining a new set of 

values of kB(o), AK and a which give a stiffness that is 30% larger than that obtained previously. 

The value of kB(new) could then be obtained directly from [8.21], using the new parameters. The 

value of the new parameters can easily be obtained by multiplying kB(o) and AK each by 1.3 (a 

remaining unchanged). These parameters give an increased ball stiffuess equal to 30% compared 

to the original set of values of kB(o» AK and a. 

Table 8.4 The new assumptions for the spring parameters kB(o» AK and a for the two ball types. 

The damping coefficient Ac is also shown. 

Ball type kB(o) (kN/m) AK (kN/m2
) a Ac(kNs/mJ

) 

Pressurised 27.3 20800 1.65 3.5 

Pressureless 29.9 16250 1.70 4.0 

The spring parameters shown in Table 8.4 can be used in conjunction with [8.21] to define the ball 

stiffness kB throughout impact. The other features of the model are identical to those described in 

section 8.3, and therefore the solution is complete. As before, it is assumed that the force which 

acts on the ball is zero for ball COM displacements of less than 2mm, during the compression 

phase. This accounts for the low stiffness of the cloth and is the same assumption as that used in 

section 8.3. 
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As in section 8.3 , the model was solved for Pressurised and Pressureless balls, for impacts on head 

clamped rackets with two different string tensions (401bs and 70Ibs). The values calculated by the 

model are compared with experimental data. 

8.4.3 Results - Comparison of Model and Experiment results 
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Figure 8.14 Comparison of the ball rebound velocity measured for the experiment and model. 

40 

Figure 8.14 shows a comparison of the ball rebound velocity calculated by the model and that 

measured experimentally. This data is presented separately for the Pressurised and Pressureless 

balls. It can be seen that the model predicts the experimentally obtained ball rebound velocity to 

within approximately O.5m/s for all combinations of ball type and string tension. This difference 

is ofthe same order of magnitude as the scatter in the experimental data. 
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Figure 8.15 Ball centre-of-mass displacement and stringbed displacement for an impact between 

a ball and head-clamped racket, for four different combinations of string tension and ball type. The 

ball impact velocity is 20m/s, and both the model and experiment data are presented. 
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Figure 8.16 Ball centre-of-mass displacement and stringbed displacement for an impact between 

a ball and head-clamped racket, for four different combinations of string tension and ball type. The 

ball impact velocity is 35m1s, and both the model and experiment data are presented. 

In Chapter 7, experiments were conducted to measure the stringbed and ball centre-of-mass 

displacement during impact. The experimental values of ball COM and stringbed displacement are 

plotted in Figure 8.15 and Figure 8.16, along with the results calculated by the model. These 

figures contain data for an impact between a ball and head clamped racket, at nominal impact 

velocities of 20mls and 35m1s respectively. Data is presented in these figures for the two different 

ball types and two different tensions. The data for other impact velocities is given in the Appendix 

C.6. 

The main characteristics of the plots have been discussed in section 8.3, and therefore the details 

are not repeated here. In general, the displacement data calculated by the model correlates with 

that measured experimentally, to within approximately 3mm, for most of the impact. The main 

point at which a poor correlation is found between the two sets of data occurs towards the end of 

the impact, for the values of stringbed displacement. It can be seen that the experimentally 

measured stringbed displacement consistently reaches zero before that calculated by the model. 

6 

A method of summarising the above data so that it can neatly be presented is performed by only 

considering the important measurements of the Displacement-Time curves. As discussed in section 

8.3, all the plots in Figure 8.15 and Figure 8.16 have a similar shape, and can therefore all be 

defined by the maximum displacement and contact time. These parameters are defmed for both the 

stringbed and ball COM displacements; the respective contact time being defmed as the time at 

which the displacement returns to zero. Therefore the data can be summarised by just four 

parameters. 
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Figure 8.17 The maximum ball centre-of-mass displacement, which occurs during an impact 

between a ball and head clamped racket. The data is plotted for two different ball types. 

Figure 8.17 (a) and (b) show the maximum ball centre-of-mass displacement liB(MAXJ plotted against 

the ball impact velocity, for the Pressurised and Pressureless balls respectively. These figures 

show that the model ball COM displacement is generally smaller than that which is measured 

experimentally. However, it is noted that the maximum difference is only in the order of 

approximately 1 mm for the Pressurised ball and between 2 and 3 mm for the Pressureless ball. 

This data is implies that the model calculates a fractionally lower value of ball deformation 

compared with that which actually occurs. 
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Figure 8.18 The maximum stringbed displacement, which occurs during an impact between a 

ball and head clamped racket. The model and experiment data is plotted for two different ball 

types. 

Figure 8.18 (a) and (b) show the maximum stringbed displacement Os(MAXJ plotted against the ball 

impact velocity, for the Pressurised and Pressureless balls respectively. These figures show that, 

for both string tensions, the model stringbed displacement is consistently lower than that measured 

experimentally. The magnitude of this difference is generally between 1 and 2mm, which is clearly 

small, and is less than that which was found in the previous modelling attempt in section 8.3. 
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Figure 8.19 The contact time Tc(S) for an impact between a ball and head clamped racket; Tc(S) 

being defined as the time taken for the stringbed displacement to return to zero. The model and 

experiment data is plotted for two different ball types. 

Figure 8.19 (a) and (b) illustrate the data for the contact time Ters), for Pressurised and Pressureless 

balls respectively. In these figures, both the model and experiment data is presented. The term 

Tc(S) corresponds to the length of time from initial contact until the stringbed displacement returns 

to zero. It can be seen the values of contact time which are calculated by the model are between 

0.2 and 0.6ms longer than those which have been measured experimentally; the difference being 

largest for the higher speed impacts. This compares with a difference of between 0.4 and 0.8ms 

which was found in section 8.3 (for the first modelling attempt) and therefore this data implies a 

small improvement in the accuracy of the model. 
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Figure 8.20 The contact time TerB) for an impact between a ball and head clamped racket; TerB) 

being defmed as the time taken for the ball COM displacement to return to zero. The model and 

experiment data is plotted for two different ball types. 
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Figure 8.20 (a) and (b) illustrate the data for the contact time TerB), for both the model and 

experiment data. The term T C(B) corresponds to the length of time from initial contact until the ball 

COM displacement returns to zero. It can be seen that the values of contact time which are 

calculated by the model exhibit a good correlation with the values that were measured 

experimentally, to within 0.2ms. It should be noted that this difference between the two sets of 

data is of the same order of magnitude as the scatter for the experimental values. In the previous 
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modelling attempt, discussed in section 8.3, a difference of between 0.4 and 0.8ms was found 

between the model and experiment data. This signifies a clear improvement in the modelling 

method. 

8.4.4 Discussion 

In this section, a visco-elastic model of a ball impact on a head clamped racket has been discussed. 

This model is identical to that which was described in section 8.3, except the model ball stiffness 

has been increased by approximately 30%. This value had to be arbitrarily chosen as there is no 

analytical solution to define the correct value. 

It has been found that this modification significantly improves the correlation between the model 

results and those which were measured experimentally. For example, the ball rebound velocity 

which was calculated by the model correlates to within approximately 2.5% of the values obtained 

experimentally. This compared with a difference between the two sets of data of 5-10% which was 

found in section 8.3 for the previous modelling attempt. 

Similarly, the model predicted the contact time TC(B) to within approximately 0.2ms of the 

experimental data; the variable T C(B) being defined as the time for the ball centre-of-mass 

displacement to return to zero. This is a significant improvement compared with the data shown in 

section 8.3. 

The comparison between the model and experimental data for the other calculated/measured 

parameters exhibited a slightly poorer correlation than that for the ball rebound velocity and TC(B)' 

It has been shown that the model consistently underestimates the maximum displacement of both 

the ball centre-of-mass and the stringbed, during impact. This initially implies a weakness in the 

model but a consideration of the validity of this comparison can be used to illustrate an alternative 

reason for this difference. The experimentally measured ball COM displacement is generally 

between 1 and 2mm larger than that calculated by the model. It should be noted that this 

displacement is not measured directly in the experiment, and is actually calculated from the 

measured values of ball deformation, using an empirical formula. It is likely that this empirical 

formula is subject to errors and therefore, the difference between the model and experiment data 

may simply be due to an error in the calculation of the experimental values of ball COM 

displacement. An alternative reason for the difference in the two sets of data can be proposed from 

a consideration of the limitations of the model. A tennis ball is a complex, multi degree-of­

freedom (DOF) object which deforms considerably during impact. It is being modelled as a one 

DOF system which is capable of simulating a first order approximation of the structural stiffness of 

the object, but may not be able to model the higher order modes of vibration which will clearly 

have some influence on the results. 

Another consistent difference between the model and the experimental data is that the value of Tc(s) 

which is calculated by the model is consistently smaller than that determined experimentally; the 

variable Tc(s) being defined as the time for the stringbed displacement to return to zero. Again, this 

can most likely be assigned to the simplification of the multi-DOF ball and stringbed structures as 

two I-DOF visco-elastic models. These types of models can not simulate the complex modes of 
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vibration of these two structures, and therefore differences between the model and experimental 

data must be excepted. 

(a) (b) ke 

........... '---~-~ 

Figure 8.21 Schematic definition of the stringbed displacement Xs which is (a) measured 

experimentally and (b) calculated by the model. 

The value of the experimentally measured stringbed displacement is between 1 and 2mm larger 

than that calculated by the model. However, an evaluation of this comparison reveals that the two 

methods are measuring subtly different parameters, as illustrated in Figure 8.21 . A schematic 

illustration of the actual and modelled impacts are given in Figure 8.21 (a) and Cb) respectively. 

The definition of the stringbed displacement Xs is given in each figure. In section 7.3, the shape of 

a deformed stringbed was measured experimentally, and this approximated shape is shown in 

Figure 8.21 Ca). The key observation being that the displacement of the stringbed is not uniform 

across the contact area. However, the model has only one degree of freedom to describe this shape, 

and therefore the stringbed displacement for this case is effectively constant along the contact area. 

Therefore, the displacement calculated by the model effectively represents the 'average' 

displacement of the stringbed across its contact area. Thus it is not surprising that the stringbed 

displacement calculated by the model is less than that measured experimentally. 

To conclude, the modification which has been implemented in the model in this section has 

resulted in an improvement in the accuracy of the model. Any small differences between the 

model and experimental can be assigned to the inherent weakness of using a simple two degree-of­

freedom visco-elastic model to simulate the complex impact mechanism. 
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8.5 Applications of the model 

8.5.1 Introduction 

In section 7.2, a comparison between model and experiment data was made for the ball rebound 

velocity, contact time, stringbed displacement and ball deformation, for the different ball types and 

string tensions. As mentioned previously, the force which acts on the ball for an impact on a head 

clamped racket can not be measured experimentally. However, it can be calculated using the 

model which has been developed in section 8.4. 

In this section the model will be used to calculate the forces which act on a range of ball types and 

string tensions to assess the effect that these two parameters have on the force which acts on the 

ball. 

8.5.2 Calculated Force-Time curve 

Figure 8.22 (a)-(d) show the force which is calculated by the model, for two different ball types and 

string tensions, for an impact velocity of 26m1s. The total force which acts on the ball is presented, 

along with the magnitude of the individual components of this force. It can be seen that the total 

force is very similar in all figures, for the first O.lms of impact. The only difference, during this 

period, is that the 'material damping' and 'momentum flux' forces are higher for the impacts on a 

racket strung at 70lbs. This can be explained by the fact that the racket strung at 70lbs has a higher 

stringbed stiffness, and therefore the ball is brought to rest faster, during this period. This means 

that the ball deforms faster, thus leading to higher values of these components. Also, the maximum 

'material damping' force is higher for impacts on a racket strung at 70lbs, compared with a racket 

strung at 40lbs. 

It can be seen that, for an impact on a racket with a specific string tension, the calculated maximum 

force is approximately SON higher for the Pressurised ball compared with the Pressureless ball. 

This increased force is effectively due to the higher 'structural stiffness' component of the 

Pressurised ball. For a specific ball type, the maximum force which acts on the ball is 

approximately lOON higher for the racket strung at 70lbs, compared with that strung at 40lbs. The 

data also shows that the contact time is approximately O.5ms shorter for the racket strung at 70lbs. 

These two differences can both be assigned to the higher stiffness of the racket strung at 70lbs. 

The data in Figure 8.22 can not be experimentally verified. However, it should be noted that this 

model is (1) based upon the experimentally verified model of a ball impact on a rigid surface, and 

(2) gives approximately the same ball rebound velocity, contact time, stringbed displacement and 

ball centre-of-mass displacement as that which has been measured experimentally. Therefore, the 

magnitude of the impulse which acts on the ball and the duration of the force must be 

approximately equal to that which actually occurs in the real impact. 
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Figure 8.22 Force that acts on the ball for an impact with a head clamped racket. This force is 

calculated using the model, and the individual components of the model are presented separately. 

The impact velocity is 26m1s. 

In section 7.2.6, a comparison was made between the experimentally measured ball deformation, 

contact time and ball rebound velocity for impacts on a rigid surface and on a head clamped racket. 

This comparison showed that the ball defonned more, rebounded slower and exhibited a shorter 

contact time for impacts on a rigid surface. A similar comparison can be made for the force values 

which are calculated by the models of the two different types of impacts. Figure 8.23 (a) shows the 

calculated forces for a model of a Pressurised ball impacting on a head clamped racket that has 

been strung at 401bs. Figure 8.23 (b) shows the calculated forces for a model of a Pressurised ball 

impacting on rigid surface. The impact velocity is 26m1s for both impacts. 
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Figure 8.23 Force that acts on the ball for (a) an impact with a head clamped racket, and (b) an 

impact with a rigid surface. This force is calculated using the model, and the individual 

components of the model are presented separately. The impact velocity is 26m1s for both impacts. 

The figures show that, during the initial 0.7ms of the impact, the force which acts on the ball during 

an impact with a rigid surface is considerably higher than that for the impact on a head clamped 

racket. During this period, the main component of the force is that due to the momentum flux and 

this component is considerably larger for the impact with a rigid surface, due to the higher ball 

deformation rate occurring in this type of impact. The 'material damping' component is also 

considerably higher during this period, for this type of impact. It is noticeable that the total model 

force exhibits a distinct drop in both models, at a time of approximately 0.2ms. However, it is 

interesting to note that this feature occurs for different reasons. In the rigid surface impact, it 

occurs due to the simulated 'buckling' of the ball wall and in the head clamped impact it is due to 

the momentum flux force rapidly reducing after initial contact. The maximum structural stiffness 

component ofthe force is similar for both types of impact, but the point at which this peak occurs 

is considerably later for the impact on a head clamped racket. The figures show that the contact 

time is considerably longer for an impact on a stringbed. This is due to the lower ' effective' 

stiffness of the system for an impact of this type. 

8.5.3 Summary 

It has been shown that the model can be used to calculate the force which acts on the ball during 

impact. The results showed that the maximum force which acts on a Pressurised ball, during 

impact, is approximately 5% higher than that which acts on a Pressureless ball. It was also shown 

that the force which acts on a tennis ball during an impact with a racket strung at 70lbs tension is 

10% larger than for an impact with a 40lbs racket. 
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This model can be used to determine the force which acts on the stringbed, for an impact between a 

ball and head clamped racket. This model will developed in the later chapters of this study to 

simulate a ball impacting on a tennis racket which is not head clamped. In this type of impact, 

clearly the racket frame will deform during impact and this will need to be modelled by some 

suitable method. The magnitude and form of this frame deformation will be a function of the force 

applied to the frame by the stringbed. In this current chapter, a method of obtaining the force 

acting on a ball/stringbed during an impact between a ball and head clamped racket has been 

obtained. The next stage of the modelling procedure would clearly involve a development of this 

model to allow the simulation of an impact between a tennis ball and a racket that was supported 

using a method which was representative of a player's grip. 

8.6 Discussion of model 

8.6.1 Introduction 

In this chapter, a model of a tennis ball impact on a head clamped tennis racket has been developed. 

In this model, the stringbed was simulated by a spring and damper in parallel, which were attached 

to a mass ms. The stringbed was assigned a finite mass so that the model was physically 

representative of the actual impact mechanism. In this chapter, it has been assumed that the mass 

ms is equal to an arbitrarily chosen value of 5g. In this section, this assumption will be 

investigated. 

8.6.2 Assumption of the stringbed mass magnitude 

Table 8.5 Comparison of the parameters calculated by the model for three different values of the 

stringbed mass ms. 

Ball impact velocity = 15mls Ball impact velocity = 30mls Ball impact velocity = 40mls 

ms= Sg ms= 0.2g ms= 20g ms= Sg ms= 0.2g ms= 20g ms=Sg ms=0.2g ms=20g 

\Ball rebound 
13.0 13.2 12.4 24.1 24.1 23.3 31.0 30.9 30.3 

IVelocity (mls) 

lMaximum 

~tringbed 10.3 10.3 11.5 18.2 18.1 19.2 23.2 23.0 24.1 

~isplacement (mm) 

lMaximum ball 

!centre-of-mass 12.8 13.0 12.6 20.6 20.9 20.0 24.3 24.5 23.4 

~isplacement (mm) 

k:ontact time TC(B) 4.98 4.96 5.IS 4.28 4.21 4.52 4.01 3.92 4.27 
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The total mass of the strings in a tennis racket is typically 20g but only a fraction of the stringbed 

actually displaces during impact. The correct mass ms could actually be equal to any value 

between Og and 20g. Therefore, in this section the model solution is calculated using these two 

extreme values (ms = 0.2g and ms = 20g), as well as the value ms = 5g. It should be noted that a 

stringbed mass ms = Og does not provide a valid solution of the model). The solution was 

calculated and the effect of the different magnitudes of the masses was quantified by comparing the 

model output for several parameters (e.g. ball rebound velocity). The parameters were obtained for 

a model of an impact between a Pressurised ball and a racket strung at 701bs. Three different ball 

impact velocities were tested which were 15, 30 and 40mls, and the model results for a range of 

parameters are given in Table 8.5. Table 8.5 gives the model output for four of the main 

parameters, as listed in the first column. It can be seen that the ball rebound velocity is very similar 

for impacts where a stringbed mass ms of either O.2g or 5g is assumed. Furthermore, both these 

stringbed masses give very similar values of values of the other three parameters given in the table. 

However, if a value of ms = 20g is assumed then the ball rebound velocity is reduced by 

approximately 0.7m1s (2-6%). This is clearly due to the extra energy stored in the stringbed which 

is not recovered by the ball. Also, the maximum stringbed displacement is larger, and the 

maximum ball COM displacement is smaller, for the assumed mass ms= 20g. The contact time for 

the impact is also increased due to this larger mass. 
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Figure 8.24 (a) Ball centre-of-mass displacement and (b) stringbed displacement for an impact 

between a ball and head-clamped racket, for three different values of stringbed mass ms. The ball 

impact velocity is 30ml . The data points in these figures represent typical experimental data. 

, 

1 

5 

Figure 8.24(a) hows the magnitude of the ball centre-of-mass displacement during impact, for 

three different values of the model stringbed mass ms. It can be seen that the experimental data 

corresponds most clo ely with the model that assumes a stringbed mass ms of 5g. The model 

solution which assumes a stringbed mass ms ofO.2g is very similar to that with ms = 5g, except that 

the characteristic kink at the start of the impact is not evident for the lower stringbed mass. The 

model solution which assumes ms = 20g is vastly different to that of the experimental data. 

Figure 8.24(b) shows the magnitude of the stringbed displacement during impact, for three 

different values of the model stringbed mass ms. Similar trends were found in this figure, as were 

found in Figure 8.24(a); the most accurate model being that which uses a stringbed mass of 5g. 
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8.6.3 Discussion 

In this section it has been shown that the model solution, for a visco-elastic model of a ball 

impacting on head clamped racket, is very similar for stringbed masses of 0.5g and 5g. If a 

stringbed mass of 20g is assumed, then the model solution typically differs by approximately 5-

10%, compared with that which assumes a mass of 5g. In the previous work in this chapter 

(sections 8.3-8.5) it has been assumed that the stringbed mass ms is equal to 5g. In this section, it 

has been shown that the assumed magnitude of this mass only effects the model solution by a 

maximum of 5-10%. This suggests that it was reasonable to assume the arbitrary value of 5g for 

the stringbed mass. 

8.6.4 Application of the results 

In the following chapter, a model of an impact between a tennis ball and freely suspended racket is 

to be developed. This model will be a development of the work which has been discussed in 

Chapters 6, 7 and 8, for an impact between a ball and head clamped racket. In these chapters, the 

model has included a component which simulates a finite stringbed mass. However, in this section 

it has been shown that the model solution is very similar for stringbed masses of 0.2g and 5g. 

Therefore, it can be concluded that the inclusion of a stringbed mass in the model adds an 

unnecessary complexity. The modelling work which has been discussed in this chapter could 

easily be repeated, using a model which does not include a stringbed mass. However, similar 

conclusions would be found as have been discussed in this chapter and therefore it is concluded 

that this work was not necessary. However, in the model of a ball impacting on a freely suspended 

tennis racket, which is discussed in the following chapter, it is to be assumed that the stringbed 

mass is zero. This assumption is made to simplify the required model. 
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8.7 Summary 

In this chapter, a two degree-of-freedom visco-elastic model has been developed which can 

calculate the force that acts on the ball during an impact with a head clamped racket. The ball 

component of the model was identical to that derived for a model of a ball impact on a rigid 

surface. The stringbed component was assumed to have the same stiffness as that which was 

measured experimentally for a quasi-statically applied load. A small damping factor was 

incorporated into the stringbed model to account for the low level of hysteresis loss which has been 

empirically determined by other researchers. 

The values calculated by the model were compared with data measured experimentally. It was 

found that the model underestimated the ball rebound velocity and the magnitude of the stringbed 

displacement during impact. It was also found that the magnitude of the ball centre-of-mass 

displacement and the contact time for the impact were consistently larger for the model compared 

with the experimental data. Using the comparisons made in this section it was concluded that the 

accuracy of the model would be improved by increasing the model ball stiffness kB• The 

justification for such an increase was proposed based on observations of the shape of the ball 

surface that was in contact with the stringbed. It was concluded that the stringbed acted to 'cradle' 

the ball wall, inhibiting the onset of buckling which is known to reduce the structural stiffness 

during an impact with a rigid surface. Therefore the stiffness of the ball will be higher for an 

impact with a stringbed, compared to a similar impact with a rigid surface. 

It was assumed that the ball stiffness should be increased by 30% and the model solution was 

repeated using this assumption. It was found that this modification resulted in the ball rebound 

velocity data that was calculated by the model correlating to with in 2.5% of the experimentally 

measured values. Similarly the model calculated values of contact time that were with in 5% of 

those measured experimentally. The values of the stringbed and ball COM displacement which 

were calculated by the model correlated to within approximately 2mm of those values measured 

experimentally. This small difference was accounted for by the inherent weakness of a simple two 

degree-of-freedom model being used to simulate a complex system that involves the interaction of 

two highly deformable objects. 

It is not claimed that this visco-elastic model of a ball impacting a head clamped racket perfectly 

represents the real impact mechanism. Indeed, the assumption made regarding the magnitude of 

the increase in the ball stiffness was merely implemented to improve the correlation between the 

model and experiment results. However, it has been shown that the contact time, ball centre-of­

mass displacement, stringbed displacement, and ball rebound velocity which are calculated by the 

model correlate very closely with the experimentally measured data. Therefore the calculated force 

which is exerted on the ball during impact, which can not be measured experimentally, should be of 

a similar magnitude to that which actually occurs in the real impact. This model can also be used 

to accurately quantify the differences between different ball types and string tensions. 
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9. Impact between a Ball and Freely Suspended Racket 

- Modelling Techniques 

9.1 Introduction 

In the previous chapter, a model of a ball impacting on a head clamped racket was derived. The 

racket was restrained in this way to simplify the required model as the deformations of the frame 

did not need to be simulated. However, in the game of tennis a racket is held at the handle by a 

player and is therefore not rigidly clamped along its length. A thorough discussion of the 

simulation of a player's grip is presented in section 2.4.3, and is therefore not repeated here. To 

summarise, many researchers have concluded that a freely suspended racket is the most suitable 

method of replicating a player's grip for both experimental and modelling work. It should be noted 

that this assumption is only valid for the duration of the impact, which is acceptable since the 

motion of the racket after impact is not of immediate importance. 

In this chapter, a model of a tennis ball impacting on a freely suspended racket is to be derived. In 

this model it is to be assumed that all the balls impact perpendicular to the stringbed, and the 

impact is located at a discrete point along the longitudinal (main) axis of the tennis racket. 

The aims of this work are similar to those of the other chapters in this study in which a model of an 

impact has been derived. This work is sponsored by the International Tennis Federation and their 

main requirement for this model is that it can be used to simulate a typical impact between a ball 

and racket, in a game of tennis. Clearly this study could diversify into many fields ofresearch (e.g. 

biomechanical science), however, this study is focused on the impact mechanism which occurs 

between the ball and racket. Therefore, the main aim of this work is to derive a model which can 

quantify the effect of, for example, ball mass or racket frame stiffness, on the displacement of the 

ball and racket during impact. For example, the model should have the ability to calculate the 

following parameters, 

1. Ball rebound velocity. 

2. Contact time. 

3. Vibrations of the racket frame which are induced by the impact. 

The derived model will be verified in a later chapter using experimental data, similar to the 

comparisons which have been conducted in previous chapters. This is not discussed further at this 

stage as it shall be presented in full in Chapter 10. 

The model of an impact between a ball and freely suspended tennis racket involves three discrete 

components; these being the ball, stringbed and racket frame. The ball and stringbed are to be 

simulated using a visco-elastic model similar to that discussed in Chapter 8. This will be solved, as 

before, using a numerical analysis which can be used to calculate the time-dependent force that acts 

on the racket. In this chapter, the racket is to be modelled using two different techniques which 
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have been utilised by other authors and offer different degrees of complexity. The two different 

techniques are described separately, as follows. 

(a) Rigid beam model of a tennis racket frame 

The frame of the racket will be modelled as a rigid beam that has the same inertial properties as the 

racket. The inertial properties referred to here are the mass, balance point and mass moment of 

inertia. In this model, the time-dependent force is applied to the rigid beam as a point loading. The 

rigid beam/racket does not deform and therefore simple Newtonian mechanics can be used to 

determine the displacement of the beam, at any time interval, for the relevant time-dependent force. 

This modelling technique does not allow the vibrations of the racket frame to be calculated, but 

does offer a simple 1 si order approximation of the impact mechanism. 

(b) One dimensional. flexible beam model of a tennis racket frame 

The second modelling technique discussed in this chapter attempts to calculate the deformation of 

the racket frame during, and immediately after, impact. This is to be performed by modelling the 

racket frame as a one dimensional flexible beam. The reasons for choosing this method have been 

discussed thoroughly in section 2.5.2 and therefore will only be summarised here. Many authors 

(Brody (1987), Kawazoe (1997a), Cross (1998)) have shown that the transverse vibration modes 

and location of the respective nodes for a freely suspended racket are very similar to those of a 

simple one-dimensional beam. It should be noted that this is only valid for impacts along the 

longitudinal axis because off-centre impacts induce torsional vibrations which are not simulated by 

a one dimensional beam. 

The one dimensional beam will clearly be assigned the inertial properties of the racket that is being 

modelled. The beam will also be assigned a stiffness, or flexural rigidity, for a transverse loading 

which is equivalent to that of the racket frame. In this chapter, a method will be presented which 

enables the displacement of the beam to be calculated, for a time-dependent force. Initially it shall 

be assumed that the force exerted on the beam by the balVstringbed system acts as a point loading. 

The model will then be developed to simulate a more realistic distributed loading of the beam. 

The numerical solutions of the two racket modelling techniques (rigid and flexible beams) are 

presented in this following chapter. 

195 



Chapter 9 Model of a ball-racket impact 

9.2 Rigid body model of a tennis racket 

9.2.1 General model 

Xa CM t r Cs 

ms 
Ca 

ka 
ks 

1+ 

Figure 9.1 Illustration of a visco-elastic model of a ball impact on a freely suspended racket. 

The ball and stringbed are to be modelled using a similar technique as that discussed in Chapter 8 

for a model of an impact between a ball and head clamped racket, except for a couple of minor 

simplifications. The ball has been modelled as a spring in parallel with two dashpot dampers, as 

illustrated in Figure 9.1. The spring is used to simulate the structural stiffness of the ball and this 

parameter is defined as kn. A dashpot damper Cn is used to simulate the hysteresis loss in the 

material. A second dashpot damper is used to simulate the force which acts on the ball due to the 

momentum flux, and this parameter is defined as CM. The stringbed is represented by a spring and 

dashpot in parallel. The spring is used to represent the stiffuess of the stringbed, in a direction 

perpendicular to the plane of the stringbed, and this parameter is defined as ks. The dashpot damper 

Cs is used to account for the energy loss for an impact in this same direction . 

In this section, the frame of the racket will be modelled as a rigid body that has the same inertial 

properties (mass, balance point and mass moment of inertia) as the racket. The ball impacts at a 

distance d from the centre-of-mass (COM) of the racket. It is assumed that the stringbed applies a 

point load on the rigid body, located at the impact point. The location of the racket centre-of-mass 

is defined as the balance point and is at a distance BR from the butt end. The mass moment of 

inertia, around the racket COM, is defined as h 

The displacement Xn represents the motion of the centre-of-mass of the ball. The displacements Xs 

and XIP represent the motion of the stringbed and frame at the ball impact position, respectively. 

The parameters XR and BR represent the linear and angular displacements of the racket COM 

respectively. The parameters mB and mR are equal to the mass of the ball and racket respectively. 

It shall be assumed that the mass of the stringbed is negligible, as done in section 8.4. 
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The equation that for the force F which acts in the ball/stringbed system in the model is, 

The acceleration of the point XB which corresponds to the ball COM displacement, is defined using, 

[9.2] 

The acceleration of the point XR which corresponds to the racket COM linear displacement, is 

defined using, 

and the angular acceleration of the racket COM is defined using, 

.. Fd o =­
R I 

R 

The acceleration of the racket frame at the impact point X/P can be defined using, 

[9.3] 

[9.4] 

[9.5] 

As explained in previous chapters, the motion of the points XB, xs, XR, X/P and BR will be evaluated 

numerically using the finite difference method. It is noted that the finite difference technique relies 

on the values of all parameters being known at time t. The finite difference equation which defines 

the displacement XB at a time t+ Lit is, 

[9.6] 

Similar equations can be used to calculate the values of the racket displacements at time t+ At 

which are defined as (XR L.dI (xIP LLII and (OR tLII . The time step At used in this numerical 

solution is 5J1S. As the time step used in this solution is very small, it is assumed that the velocity 

change during this period was negligible for all five parameters. Therefore the velocity of the 

centre-of-mass of the ball at time t. (x B)/ can be calculated using, 

[9.7] 

The three components of the racket velocity (x D)/' (x R)' and (OR)' can be defined using equations 

of a similar form. Also, the velocity of the stringbed at time t. (x B)/ can be calculated using, 

[9.8] 

Equation [9.8] can be substituted into [9.1]. Equation [9.1] can then be rearranged to define the 

stringbed displacement at time t, (xs t, 
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The equations ([9.7)-(9.9)) can be used to define all the five parameters, at time t. To commence 

the finite difference solving technique, the displacement and acceleration of the ball and racket 

need to be known at the times t = 0 and t = -L1t. It is assumed that, prior to impact, the ball velocity 

is VB and the racket velocity can be defined by the linear and angular components VR and {tJR 

respectively. The velocity of the racket frame at the ball impact position VIP, prior to impact, can 

be calculated using, 

[9.10] 

Let it also be assumed that neither the ball or racket are accelerating immediately prior to impact, 

i.e. at times when t = 0 and t = -L1t. The displacements of the parameters XB, Xs, XIP, XR and OR at 

time t = 0 are assumed to be all equal to zero. The displacements of these parameters at time t = -
L1t are XB = -VB.L1t, Xs = XIP = -V/p.L1t, XR = -VR.L1t and OR = -WR.L1t. 

The solution was written in MS Excel 2000 and could be solved for each time step of the impact, 

provided that the values of the parameters kB' ks, CB, CM, Cs, BR, mR and IR are all known, along with 

the impact position and the velocity of the ball and racket prior to impact. 

In this section, a generic visco-elastic model of a ball impact on a freely suspended racket has been 

developed. The racket has been modelled as a rigid body. In the next section, the methods used to 

define the parameters (ko, ks etc) are described. 

9.2.2 Defining the model parameters 

(aj The ball 

The ball has been modelled as a spring in parallel with two dashpot dampers, as illustrated in 

Figure 9.1. It is assumed that the method used to define the parameters kB, CB and CM is the same as 

that discussed in Chapter 8 for an impact between a ball and head clamped racket, with a minor 

modification. A detailed explanation of the general method which is used to define these 

parameters is given in Chapter 8 and therefore is not repeated here. However, a brief resume is 

given here, along with an explanation of the minor modification that is made to the model. 

In this model, the deformation of the ball is analogous to the model parameter (XB - xs). Using the 

findings from Chapters 5 and 8, it is assumed that the model ball stiffness kB is defined as a 

function of (XB - xs ) using, 

[9.11) 
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The parameters kB(o), AK and a are constants for a specific ball type and the values were derived in 

Chapter 8. The values of these two parameters are given in Table 9.1 for four different ball types. 

Table 9.1 Spring parameters kB(o), AK and a and damping constant Ac for the four ball types. 

Ball type kB(o) (kN/m) AK(kN/m:l) a Ac(kNs/m~) 

Pressurised 27.3 20800 1.65 3.5 

Pressureless 29.9 16250 1.70 4.0 

Oversize 27.3 4680 1.30 3.2 

Punctured 20.8 78000 2.00 5.8 

It is assumed that the magnitude of the material damping was proportional to the volume of rubber 

being deformed, and also the ball deformation rate. Therefore, the dashpot parameter CB which 

represents the material damping is defined using, 

[9.12) 

where mB is the mass of the ball. The parameter Ac is defined as the damping constant and its value 

is shown in Table 9.1. 

The parameter dCONT refers to the diameter of the circular area of the ball that is in contact with the 

surface. It is assumed that the empirical relationship between dCONT and the relative ball COM 

displacement (x B - X s) is, 

The term MJ in [9.12) refers to the mass of the section of ball that is not in contact with the surface. 

This value clearly varies throughout impact, and is a function of the ball deformation. It is 

assumed that M/ is equal to the difference between mB and the mass of the ball that is in contact 

with the surface Mz. The value of Mz is estimated using, 

M = P ;r(dCONT 
)2 

2 area 2 [9.14] 

where Parea is the mass per unit surface area of the ball and is equal to 5.212kglm2 for a standard 

size ball. 

The force which acts on the ball due to the momentum flux is simulated using the dashpot damper 

CM· This force only acts during the compression phase of impact and the value of CM is a function 

of the mass (and velocity) of the section of ball being brought to rest in a unit time interval.11. The 

equation used to define CM, at time t, is, 
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[9.15] 

Equation [9.15] completes the set of equations which are used to define the parameters kB' CB and 

CM, throughout the impact. The methods used to define these parameters are identical to those used 

in the model of a ball impacting on a head clamped racket, as discussed in Chapter 8. However, in 

that chapter a further assumption was made in regard to the ball component of the model to 

simulate the contribution of the cloth on the ball, during the compression phase. It was assumed 

that the force which acted on the ball (and stringbed) was equal to zero, for ball COM 

displacements of less than 2mm, regardless of the values of the ball model parameters. However, 

it can be shown that this has negligible effect on the values which are calculated by the model (e.g. 

ball rebound velocity) and only adds an unnecessary complexity to the model solution. Therefore, 

in this current model of a ball impacting on a freely suspended racket, it is not assumed that the 

force is equal to zero for ball COM displacements of less than 2mm. Therefore the equations 

discussed above are used to define the model parameters throughout the impact. 

(b) The stringbed 

The stringbed of the freely suspended racket is to be modelled as a spring and damper in parallel. 

The magnitude of the parameters ks and Cs is to be determined using the same methods as were 

described in Chapter 8. It is to be assumed that the stringbed stiffness parameter ks for the racket is 

equal to that which is measured experimentally for a quasi-static loading. This assumption is 

complicated by the fact that the measured quasi-static stiffness is dependent on the diameter of the 

rigid circular disc that is used to apply the load. Also, the relationship between the diameter of the 

rigid disc and the equivalent area over which the ball applies the load onto the stringbed, during 

impact, is difficult to determine. A detailed explanation of the assumptions which were made to 

define the model stringbed stiffness parameter ks is given in section 8.3.1. A summary of this work 

is given here. 

The solution is based upon a concept of a normalised stiffness parameter ks ' In brief, this 

parameter defines the diameter of the ball/surface contact area that is equivalent to the diameter of 

the rigid disc that is used to apply the quasi-static loading. This diameter is then normalised to the 

arbitrarily chosen maximum diameter of 55mm. Using empirical data, it was found that ks was 

dependent on the stringbed displacement Xs. The general equation to estimate the value of ks' for 

any combination of ball type and string tension, has been defined as, 

ks = 78.42(1.6xs + 0.023Y + 2. 336(1.6xs + 0.023)+ 0.6392 [9.16] 

Equation [9.16] is valid for stringbed displacements Xs of less than 20mm. For Xs > 20mm, the 

value of the normalised stiffness ks is equal to unity. 
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The next stage of the solution required the definition of the quasi-static stringbed stiffness obtained 

when the load was applied using a rigid disc with a diameter of 55mm. The general form of this 

equation is, 

[9.17] 

where as, bs and Cs are empirically determined coefficients of a second order polynomial trendline 

that was plotted through the experimentally obtained quasi-static stiffness data. The values of as. 

bs and Cs are given in Table 9.2 for four different string tensions. This data was experimentally 

obtained using an ITF Carbon Fibre tennis racket with a head size of 632cm2 (98in2
) 

Table 9.2 Second order polynomial trendline coefficients as, bs and Cs for four string tensions. 

String tension as (kN/mJ) bs(kN/mL
) Cs (kN/m) 

40lbs 4785 1147 29.02 

50lbs 20790 1044 34.50 

60lbs -17810 1873 39.05 

70lbs -30140 2519 43.07 

To complete the solution, the value of the stringbed stiffness ks, is determined using, 

[9.18] 

To summarise, the stringbed stiffness ks for a specific stringbed displacement Xs can be obtained by 

determining the relevant values of ks and ks (f/Jss) using [9.16] and [9.17] respectively. These two 

parameters are then input into [9.18] to determine the required value of ks. 

In Figure 9.1 , it can be seen that there is a dashpot damper, with value Cs. that is used to represent 

the damping of the stringbed. In Chapter 8 a brief analysis was conducted and it was concluded 

that the value of Cs will be assumed to be equal to 2Ns/m for all impacts. This same assumption 

will be used for the model presented in this section. 

(c) The Racket Frame 

In this section, the racket frame is to be modelled as a rigid body with the same inertial properties 

as the racket. As the model is only to be used to simulate impacts along the longitudinal axis, the 

only mass moment of inertia (MM I) which is of interest in this case is the transverse MMI, which 

is defined as IR in Figure 9.1. This is a measured experimentally using the same technique as that 

described by Brody (1985). This method is presented in Appendix D.1 along with the measured 

values of mass moment of inertia for a selection of rackets. The only other parameters which are 

required for this component of the model are the mass of the racket mR and the distance d between 

the racket centre-of-mass and the impact position. 
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(d) Summary o/model parameters 

In this section, the methods that are used to determine the values of the model parameters kB' ks, CB, 

CM and Cs are described. It was assumed that ball and stringbed can be modelled using the same 

technique as was used in Chapter 8 to simulate a ball impacting on a head clamped racket. 

Therefore, the ball parameters kB' CB, and CM and the stringbed parameters ks and Cs are the same as 

those used in that chapter. 

9.2.3 Summary 

In this section, a model of an impact between a ball and a freely suspended racket has been derived. 

The ball and stringbed have been modelled using the same method as was used in Chapter 8, for a 

simulation of an impact between a ball and head clamped racket. Therefore the methods used to 

determine the values of the model parameters have already been defined. 

The racket frame is modelled as a rigid body with the same inertial properties as the racket. These 

properties can easily be obtained using standard techniques. 

9.3 One dimensional, flexible beam model- point loading 

9.3.1 Introduction 

In this section, a model of a ball impacting on a freely suspended tennis racket will be developed 

which is similar to that described in section 9.2. The major difference in this model however, is 

that the racket is to be modelled as a flexible beam, instead of a rigid beam. The ball and stringbed 

will be modelled using the same visco-elastic model as that described in section 9.2. This model 

defines the force which acts on the flexible beam, as a function of time. 

In the first part of this section, a numerical solution is derived which can be used to calculate the 

displacement of a one dimensional beam for a time-dependent loading. This technique was 

introduced in section 2.5.2, but is presented more thoroughly in this current section. In the next 

part of this section, the actual process of determining the one dimensional beam which is equivalent 

to a tennis racket is discussed. This process involves the simplification of the complex three­

dimensional geometry of a tennis racket into a simple one dimensional beam. The errors associated 

with this simplification process are also discussed in this section. 
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9.3.2 One dimensionaljlexible beam subjected to a time-dependent force 

Figure 9.2 A one-dimensional flexible beam, split into N equal length segments. 

The equation of motion for a one dimensional beam subjected to an external distributed force, Fa 

per unit length, which acts perpendicular to the longitudinal axis of beam, has the form (Goldsmith 

(1960)), 

[9.19] 

where p is the density of the beam, A is its cross-sectional area, E is the Young's modulus, I is the 

area moment of inertia and x is the transverse displacement of the beam at coordinate y along beam, 

as defined in Figure 9.2. 

Equation [9.19] neglects the shear force which is of negligible significance for the low frequencies 

of vibration which are of most interest in this work (Van Zandt 1992). The beam has a mass MB 

and a length LB. 

In this study, it is to be initially assumed that the flexural rigidity was constant along the length of 

the one-dimensional beam, as was done by Cross (2001b). The suitability of this assumption wi1\ 

be discussed in a later section of this chapter. It is assumed that the beam may have a non-uniform 

mass distribution. A numerical solution of [9.19] can be obtained by splitting the beam into N 

equal sized segments. The length of each segment is eonstant and defined as s=LslN but the 

segment mass mn may vary along the beam. This segmented beam is illustrated in Figure 9.2. The 

equation of motion for the nth segment is obtained by multiplying all terms in [9.19] by s, whieh 

gIves, 

[9.20] 

The force exerted by the ball may aet over a number of segments, each segment n being subjected 

to a time-dependent force FII • The equation of motion for eaeh of these segments is given by, 
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m fixn = F -(EIS 04Xn] 
n ot2 n cy4 [9.21 ] 

and for all other segments, 

[9.22] 

In this current section it is to be assumed that the stringbed applies a point load on the beam and so 

the force only acts on one segment of the beam. Consequently, the value of Fn is simply equal to 

the force acting in the ball/stringbed visco-elastic model. It is assumed that the racket is freely 

suspended during impact, and the relevant boundary conditions for this assumption are, ( ~~ ~ 0] 

The subsequent motion of the beam was evaluated numerically using finite difference forms of 

[9.21] and [9.22]. The procedure used to solve these equations is based on that presented in 

Cross(1999c). The method used to obtain the magnitude of the time-dependent force F, which is 

applied to the beam, is a relatively trivial feature of the model and will therefore not be discussed in 

this section. The following analysis gives an overview of the numerical solution that is used to 

determine the motion of the beam which is subjected to a time-dependent force. 

(aJ Numerical solution for the displacement of the beam 

x 
Time = t +ilt 

(Xn)l+ut .-' .-:' .. . ,' ... ~ . ... : ... ;r ...... ... i, •• • 

\ • \ L... ~ 

L.· \ . " 

-r . , "'f • I • , . . , Time = t 

F 

n=1 n=N 
nme=O 

y 

Figure 9.3 Illustration of the definition of the beam displacement at times t and t+L1t. 
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Substituting for the finite difference form of El x; into [9.21], at time t, gives, at 

(9.23] 

Rearranging this equation to determine the displacement of the nth segment, at time t+ Lit gives 

[9.24] 

The magnitude of the force F which acts on each segment will be discussed later in this section. 

The magnitude of the product El, which is termed the flexural rigidity, will also be discussed later. 

Equation [9.24] requires the term ( a~: ), to be evaluated. The finite difference form of this term 

is, 

(9.25] 

To calculate the fourth derivative of Xn with respect to y, using [9.25] requires the displacement of 

the two segments either side of the nth segment to be known, as illustrated in Figure 9.3. Therefore 

[9.25] is valid for all segments except the two segments at either end of the beam. For these four 

segments, alternative finite difference forms of (a~: ), are required, as described by Cross 

(l999c). These equations are determined using the boundary conditions for a freely supported 

beam. 

The fourth derivative of XI, the left-hand end segment of the beam in Figure 9.3, is defined as, 

[9.26] 

and the fourth derivative of Xl> which is adjacent to the end segment, is defined as, 

(( ~. n., = - 2(x,), + S(X':,-4(X,), + (x,), [9.27] 

Analogous equations can be determined for ( ( a~. ),) .-N and (( a;: ),) .. N.' ' which completes the 

necessary parameters for [9.24]. For convenience, [9.24] is written in a matrix form to define the 

motion of the entire beam, 
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[9.28] 

where [x t .1l ,[xl and [x L.1I are all column matrices with N rows and have the general form, 

XI 

Xz 

XJ 

Nrows 

[x] = ~ X N-Z 

X N_ I 

X N 

The force matrix [F 1 is also a column matrix, with N rows, and contains all zeros, except for the 

row number which corresponds to the segment on which the force acts. The number of the 

segment on which the force is applied is defined as JP. For example, if JP is equal to two then the 

force matrix will be of the form, 

[F]= 

a 
F 
a 
a 

a 
o 
o 

The mass matrix [M] is an N x N matrix with the general form, 

I lm, 0 0 0 0 0 I 0 0 I 

0 11m2 0 0 0 0 
I 

0 0 I 
I 

0 0 11m3 0 0 0 I 0 0 
I 

0 0 0 I1m4 0 0 I 0 0 I 

0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 

0 0 0 0 I lms 0 I 0 0 0 0 0 0 Nrows I 

[M] = 
I 
I 

~ 
I 

-----------------------------------~----------------------------------. 
I 
I 

0 0 0 0 0 0 I 0 lImN_4 0 0 0 0 I 

0 0 0 0 0 0 
I 

0 0 IlmN_3 0 0 0 I 
I 

0 0 0 0 0 0 I 0 0 0 IlmN_2 0 0 I 

0 0 0 0 0 0 I 0 0 0 0 I lmN_' 0 I 

0 0 0 a a 0 I 0 0 0 0 0 IlmN I 
I 

Ncolumns -. 
where mn is the mass of the nth segment. 
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For a freely suspended beam, [DX 4] is an N x N matrix ofthe general form, 

1 -2 1 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 I 
-2 5 -4 1 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 
1 -4 6 -4 1 0 0 0 0 

I 
0 0 0 0 0 0 0 0 0 I 

0 1 -4 6 -4 1 0 0 0 I 0 0 0 0 0 0 0 0 0 I 

0 0 1 -4 6 -4 1 0 0 I 0 0 0 0 0 0 0 0 0 
I 

0 0 0 1 -4 6 -4 1 0 I 0 0 0 0 0 0 0 0 0 
0 0 0 0 1 -4 6 -4 1 I 0 0 0 0 0 0 0 0 0 I 

I 

[DX4] = 
I 
I 
I -----------------------------------r----------------------------
I 
I 
I 

0 0 0 0 0 0 0 0 0 
I 

1 -4 6 -4 1 0 0 0 0 I 

0 0 0 0 0 0 0 0 0 I 0 1 -4 6 -4 1 0 0 0 I 
0 0 0 0 0 0 0 0 0 I 0 0 1 -4 6 -4 1 0 0 
0 0 0 0 0 0 0 0 0 

I 
0 0 0 1 -4 6 -4 1 0 I 

0 0 0 0 0 0 0 0 0 I 0 0 0 0 1 -4 6 -4 1 I 

0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 1 -4 5 -2 
0 0 0 0 0 0 0 0 0 

I 
0 0 0 0 0 0 1 -2 1 I 

Equation [9.28], and the matrices which are defined above, form the numerical solution which can 

be used to solve the displacement of each of the N segments at sequential time intervals of ..1t. 

Equation [9.28] is firstly used to determ ine the displacement of each of the N beam segments at / = 

..1t, which forms the column matrix [x Lit. This is done using the relevant displacements for the two 

preceding time steps which are [x to and [x Lit. It is assumed that the displacement of the beam 

at 1=0 is equal to zero, as shown in Figure 9.3 The displacement of the beam segments at t= -Lit 

can be calculated from the initial velocity of the beam/racket, as was discussed in section 9.2. 

The process is repeated for the remaining time steps for the required time period T; the number of 

time steps required being NStep = TI Lit The ball/stringbed system will apply a force F on the IPth 

segment for a period of approximately 5ms, as explained in more detail later in this section. When 

impact ceases, the value of F will be equal to zero, but the induced vibrations of the beam can be 

calculated using the same technique as described above. The only exception being that the force 

matrix contains all zero values. 

In this study, it has been assumed that the beam is freely suspended at either end and this 

assumption was used to define the terms in the [DX 4] matrix; this matrix corresponding to a 

numerical approximation of the fourth derivative of x with respect to y. For interest, this matrix is 

the only part of the model which would need to be adjusted if different end conditions were to be 

modelled. 

The completed solution generated a column matrix [x] for each time interval ..1t, in the range t=O 

to t=T. It was assumed that the velocity of each segment xn did not change significantly during 

the time period Lit and therefore the velocity, at time t, (xn)/ can be determined using, 

[9.29] 
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(b) Numerical computation of Fourier Series coefficients 

Velocity of 
the nth 
segment 
xn (m/s) 

-5ms ~ 

Lit 

t = Nt.~t 
Figure 9.4 Illustration of the velocity of the nth beam segment as a function of time. 

t 

Figure 9.4 gives a schematic illustration of the typical velocity of the nth segment of the beam. The 

duration of the time-dependent force F is approximately 5ms and after this period the beam 

oscillates freely. Cross (1999c) noted that, due to this impact duration, the only modes of vibration 

that are significantly excited are those with a frequency of up to approximately 300Hz. This 

generally means that only the fundamental frequency of the beam/racket is excited as the next 

highest mode has a frequency which is greater than 300Hz. In this work it is assumed that the 

fundamental frequency JF of the beam is known. 

In this section, a numerical harmonic analysis is conducted to obtain the mean velocity of each 

segment. This analysis can also be used to calculate the amplitude of the fundamental mode of 

vibration. This is useful as the calculated amplitude illustrates the amount of energy that is stored 

in the racket due to this mode of vibration, and it can also be used to determine the node points on 

the beam. This harmonic analysis of the time-dependent velocity data, such as that shown in 

Figure 9.3, involves the numerical computation of the Fourier series coefficients which are 

assumed to describe the calculated data. This is a standard method which is described in detail in 

Rao (1995), and therefore only summarised here. 

The time period T for one cycle of the fundamental mode of vibration is, 

[9.30] 

This time period corresponds to Nr time intervals, each of length Lit. In this solution the value offF 

must be defined such that Nr is an integer. The mean velocity in of the nth beam segment, over 

this period T, is calculated using, 
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-;- 1 ~(. ) xn=-Lxn; 
N, ;=1 

[9.31] 

The amplitude of vibration xn for the fundamental frequency, for the nth beam segment is defined 

as, 

(x) =~a2+b2 
n amplitude n n 

[9.32] 

where an and bn are Fourier coefficients defined as, 

[9.33] 

b 2 ~(.) . 21d; n = -L. xn i SIn--
N, ;=1 T 

[9.34] 

Using the above equations, the mean and amplitude of the velocity for each of the N segments can 

be calculated. 

It is evident from Figure 9.4 that the numerical solution for the free oscillations of the beam must 

continue for a significant period after impact has ceased, to ensure that this numerical harmonic 

analysis can be conducted. The fundamental frequency of a tennis racket, for transverse vibration, 

is known to range from approximately 70Hz and 200Hz. This gives a time period T for one cycle 

which ranges from 14ms to 5ms. It was therefore concluded that the solution should be obtained 

for 25ms after the commencement of the impact, to ensure that the harmonic analysis can be 

conducted. 

(c) Numerical computation of the beam fundamental frequency 

In the above analysis, it was assumed that the fundamental frequency fF of the beam was known for 

a beam with a specific mass distribution and flexural rigidity. There is no analytical solution for 

this fundamental frequency fF for a beam with a non-uniform mass distribution. However, a 

numerical solution can be obtained using a similar technique as that used to determine the 

displacement of the beam for a known time-dependent force. 

Earlier in this section, it was mentioned that the flexural rigidity El is assumed to be uniform along 

the length of the one-dimensional beam. The motion of a vibrating one-dimensional beam 

subjected to no external forces can be determined by SUbstituting, 

[9.35] 

into, 

[9.36] 
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to give, 

[9.37] 

Equation [9.37] can be written in matrix form to describe the motion of the entire beam, 

EI[kJx [x] = A x [x] [9.38] 

where [x] is a column matrix with N columns. For a freely suspended beam, [kn ] is an N x N 

matrix of the form, 

[9.39] 

where [M] and [DX 4] are matrices that define the mass distribution and the fourth derivative of x 

with respect to y for the entire beam respectively. The definitions of these matrices has already 

been presented. 

The parameter .A. corresponds to the set of eigenvalues for the matrix defined by EI[kn ]. However, 

to generate a more general solution, the eigenvalues are only initially calculated for the [kn ] 

matrix, and these eigenvalues were defined by the parameter Aw. For completeness, 

[9.40] 

The values of .A.w were determined using the eig function in MATLAB v5.2. The fundamental 

frequency iF of the beam corresponded to the first real, non-zero eigenvalue and was determined 

usmg, 

[9.41] 

The analysis which is described above can be used to determine the fundamental frequency of a 

freely suspended model beam, for specified values of the mass matrix [M], the flexural rigidity El 

and the segment length s. It can be seen that, for a beam with a specific length and mass 

distribution, the fundamental frequency is proportional to the square-root of the flexural rigidity El. 

(d) Summary 

In this current section, a numerical solution for the displacement of this flexible beam, for a time­

dependent point loading, has been presented. In this solution, the beam is split into a finite number 

of segments and the displacement of each of these segments is calculated, at discrete time intervals. 

It has been assumed that this beam has a uniform value of flexural rigidity along its entire length, 

but the mass of each segment is not constant. 

The velocity of each segment can be calculated for the free vibration of the beam, after impact has 

ceased. A method has been presented which allows the mean and amplitude of the beam segment 
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velocity to be calculated, using a numerical harmonic analysis. This harmonic analysis requires the 

fundamental frequency of the beam to be known, and a method for calculating this parameter has 

been given. 

9.3.3 Using a one dimensional flexible beam to model a tennis racket 

(a) Introduction 

It has been proposed that a one dimensional beam should be used to model a tennis racket frame, 

for an impact with a tennis ball. In section 9.3.2, an algebraic solution was presented to illustrate 

the numerical technique which can be used to solve for the displacement of a flexible beam that is 

subjected to a time-dependent force F; this force being applied as a point loading. In this current 

section, the method which is used to incorporate this one dimensional beam into a model of a ball 

impact on a freely suspended racket is discussed. It should be noted that this model is only 

applicable for impacts along the longitudinal (main) axis of the racket. 

(b) The model 

Xs CM Xs 
.~ 

r Cs --......; 

_l 
X/P 

~ 

mB 
Ca 

W 
ks 

ks d 

Y A 

Figure 9.5 Illustration of a visco-elastic model of a ball impact on a one dimensional flexible 

beam (tennis racket). 

The model which is to be discussed in this section is very similar to that which is presented in 

section 9.2. In that section, the ball/stringbed system was simulated as a visco-elastic model and 

the racket was assumed to be a rigid beam with the same inertial properties as the racket that was 

being modelled. In this current section, the rigid body beam is replaced by a one dimensional beam 

with a finite bending stiffness or flexural rigidity, and the overall model is shown in Figure 9.5. 
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This figure illustrates that the ball impact position must coincide with the centre of one of the beam 

segments, as mentioned in the previous section. The segment number that the impact point 

corresponds to is defined as lP, and the displacement of this point on the beam is defined as X/Po 

The visco-elastic model of the ball/stringbed system is identical to that described in section 9.2. 

Therefore, to avoid repetition, the method used to determine the force F which acts in the 

balllstringbed system is not repeated here. To summarise, 

[9.42] 

The magnitude of F, at time t, can be calculated using [9.42] provided the value of all the 

parameters are known at this instant. The displacement of the beam at the impact point X/P can be 

obtained from the relevant row of the displacement matrix [x 1. The displacement of the ball 

centre-of-mass XB and the stringbed Xs can be obtained using the same methods as described in 

section 9.2. 

The spring and damper values ks, kB, Cs, CB and CM are all assumed to be functions of the ball centre­

of-mass displacement XB, the stringbed displacement Xs and the racket impact point displacement 

X/po For example, the ball stiffness kB is determined using, 

[9.43] 

The parameters kB(o), AK and a are constants for a specific ball type and the values were derived in 

Chapter 8. The values of these three parameters are given in Table 9.1 for a range of ball types. 

The other functions, which define ks, Cs, CB and CM, are all defined in section 9.2.2 and are therefore 

not repeated here. These functions, and equation [9.42] above, are used to determine the force Fat 

a discrete time interval t. This force value is applied to the beam on a single segment, as described 

in section 9.3.2. The new displacement of the beam, ball, and stringbed, at the following time 

interval t+.LIt, can then be evaluated. The new value of the force which acts on the beam can then 

be evaluated, and the process is repeated until the end of impact. The end of impact is defined as 

the instance when the ball deformation, or in this case (XB-XS), returns to zero. After this point, the 

beam continues to vibrate and translate freely until the solution is terminated. 

In this numerical solution, the beam is split into a finite number of segments and is solved for finite 

time intervals. In theory, both the segment length and time steps should be infinitesimally small for 

the beam to simulate the infinite number of modes of vibration of the racket. However, as 

mentioned previously, Cross (1999c) noted that the only modes of vibration that are excited with a 

significant amplitude are those with a frequency of up to approximately 300Hz. It was also stated 

that the division of the beam into discrete segments eliminated modes which had a wavelength that 

was shorter than the segment length S. Therefore, an infinitely small time step was not required. 

In this study, the beam was split into 51 segments (N=51) and the time step L1t used was 5~. 

Using this value of N, the first three real, non-zero eigenvalues for a uniform beam were calculated 

numerically using the procedure in section 9.3.2(c). These eigenvalues, for the uniform beam, 

were also determined analytically using equations defined in Goldsmith (1960). In practise it was 

found that this value of N gave a good correlation between the eigenvalues which were determined 
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numerically and those determined analytically. The difference between the two sets of data was 

generally less than 0.2%, for all combinations of beam mass and beam flexural rigidity that are 

typical of a tennis racket. Furthermore, it was found that the two sets of eigenvalues correlate to 

within 0.3% for values of flexural rigidity which are considerably higher than those typical of a 

tennis racket model. 

This analysis confirmed that the chosen value of N was sufficient to model tennis rackets which 

had fundamental frequencies that covered the full range of typical values. An increase in the value 

of N would only act to increase the number of calculations which need to be perfonned to solve the 

model. 

A further investigation was conducted to verify that the time step Lit used in this solution was 

satisfactorily small to model the magnitude of beam deformation and the modes of vibration which 

were excited in this type of impact. 

(e) Deriving a beam model of a tennis racket 

In the previous section, it has been stated that a one dimensional beam can be used to model a 

tennis racket frame. In this current section, the method which is used to determine the equivalent 

one dimensional beam model of a tennis racket is discussed. 

Clearly, the modelling of a tennis racket as a one-dimensional beam is a significant simplification. 

However, it should be remembered that in this model, the main aim is to replicate the inertial and 

vibrational properties of the racket. To be geometrically consistent, the beam and racket must also 

have the same length. Therefore, in an ideal model, the following properties should be identical for 

the beam and racket, 

1. Length 

2. Mass 

3. Balance Point 

4. Mass Moment of Inertia 

5. Fundamental Frequency 

6. Node points of fundamental frequency 

In this section, three different techniques are to be discussed which can be used to generate a model 

beam that is equivalent to the relevant tennis racket. The list above shows the properties that the 

model beam must match with those of the tennis racket. More specifically, the technique is used to 

determine the values of the mass segments which form the mass matrix [M], and the value of the 

uniform flexural rigidity El. If these two properties can be obtained for the beam, then the 

displacement of the beam can be calculated using the numerical analysis in section 9.3.2, for 

specified balllstringbed properties. 

In the first part of this section, the investigation is focused upon matching the inertial properties of 

the racket and beam. In the latter part, the method used to determine the flexural rigidity El is 

presented. 
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1. Uniform beam 
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Figure 9.6 Tennis racket and equivalent uniform beam model. 

The simplest, one-dimensional beam has a uniform mass distribution and this is illustrated in 

Figure 9.6. This beam can be assigned the same mass and length properties as the tennis racket. 

For example the beam parameter MB can be assigned the value of MR. A minor, yet very important, 

point should be raised at this stage. It can be inferred from Figure 9,5 that the stringbed and racket 

frame are modelled discretely, and indeed this section concentrates solely on developing a beam 

model which is equivalent to the frame. However, it should be remembered that the stringbed is 

being modelled as having a zero mass. To compensate for this, the parameter mass MR is actually 

equal to the combined mass of the frame and strings. 

The balance point BB and the mass moment of inertia around the butt end IB for a one section 

uniform beam are functions of the beam length and the beam mass, and are defined using, 

[9.44] 

and 

[9.45] 

It can be seen that the balance point BB of a uniform beam is always located at the geometric centre, 

whereas many tennis rackets are generally either 'head-heavy' or 'head-light'; these terms being 

used to define whether the racket centre-of-mass is positioned closer to the head or butt 

respectively. The mass moment of inertia of the beam IB is a 'fixed' function of the beam mass 

and length. Therefore, both BB and IB cannot be assigned the same values as BR and I BUIT 

respectively, This highlights the inherent weakness in using a uniform beam as a model to simulate 

the inertial properties of a tennis racket. This type of beam is referred to as the uniform section 

beam in the remainder of this chapter. 
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2. Two uniform sections 

+. 
'Burr 

Figure 9.7 Tennis racket and equivalent two section beam model. 

Cross (2001 b) used a beam consisting of two uniform sections to improve the correlation between 

the inertial properties of the beam and racket. In that work, it was assumed that the two sections 

had an equal length, but had different masses. In this current work, it is assumed that one section is 

equal to the length of the handle, and the other section equal to the remainder of the racket, as 

illustrated in Figure 9.7. The three inertial properties of the beam for a two section uniform beam 

are defined using, 

[9.46] 

[9.47] 

[9.48] 

In this solution, the beam could be assigned the same length and mass as the racket, as was possible 

for the uniform beam. However, it was also possible to define the balance point of the beam to be 

equal to that ofthe racket. The value of BR is substituted for BB in [9.47], and MR is substituted for 

MB in [9.46], and the combination of MH and MF can be determined which satisfies both equations. 

It is not possible to directly define the mass moment of inertia of the beam 1B to be equal to that of 

the racket 1BUIT. because IB is a function of MH , LH, MF and LF, which have already been defined to 

give the correct balance point for the beam. However, Cross showed that the mass moment of 

inertia is primarily determined by the mass and location of the balance point. Therefore, the 

calculated value of 1B for the beam should be approximately equal to that of the racket mass 
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moment of inertia IBurr. This type of beam is referred to as the two section beam in the remainder 

of this chapter. 

3. Five uniform sections 

Actual racket 
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o Frame 
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Figure 9.8 A two dimensional approximation of a tennis racket, along with the one dimensional 

beam which is equivalent to the 2D approximation. 

A tennis racket is clearly a three dimensional object and, therefore, has a complex mass distribution 

which is a function of the geometry and material density. In the derivation of the uniform section 

beam, no consideration of this geometry was made. In the discussion of the two section beam 

model, it was assumed that the handle had a uniform mass distribution, and the rest of the racket 

had a different uniform mass distribution. In the development of this current beam model, defined 

as the five section model, a more detailed evaluation of the geometry is presented, in an attempt to 

derive a more accurate one dimensional approximation of the three dimensional mass distribution. 

Firstly, due to the nature of the assumption that a racket can be approximated as a one dimensional 

beam, the mass distribution in the z-axis does not influence the one dimensional beam model. 

Therefore, this mass distribution is not considered here. One of the simplest two dimensional 

approximations of a tennis racket mass distribution is shown in Figure 9.8. This two dimensional 

approximation is essentially constructed from two different uniform sections; these being defined 

as the handle and the frame. The handle section is a single, straight section which has the same 

length as that of the racket handle. The throat of the racket is modelled in the 2-D approximation 

as two straight, vertical sections which extend from the handle to the head, as illustrated in Figure 

9.8. The head of the racket is modelled as a rectangle with a width of Wo. This rectangle is simply 

meant to replicate the mass distribution of the head. Most racket heads have a shape that is more 

comparable to an ellipse than a rectangle but, for simplicity, a rectangular shape is assumed. This 

assumption is made because it is easier to obtain a one dimensional equivalent of a rectangle than it 

is to obtain for an ellipse. However, it is not assumed that the width of the racket head WR is equal 

to that of the model rectangle Wo. It has been assumed that the relationship between these two 
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parameters is WB = 0.75 WR• This relationship was determined by assuming that the perimeter of 

the rectangle was equal in length to that of the racket head, assuming that the racket head was 

elliptical. 

The translation of the two dimensional approximation to the one dimensional beam is relatively 

trivial; the one dimensional beam simply giving the equivalent mass distribution as the two 

dimensional shape. The resulting one dimensional beam has five discrete sections as shown in 

Figure 9.8. 

In this model, all the lengths LH to LF4 can easily be defined by simply measuring the appropriate 

sections on the racket. However, the masses of each section are not known. Clearly, it would be 

valid to assume that the mass density of the handle is constant along its section. It is also to be 

assumed that the density of the frame is constant along its section, in the two dimensional 

approximation. Therefore, the density of each of the two straight sections of the throat and head 

are numerically equal to that of the horizontal sections of the rectangular head. The mass densities 

of the handle and frame are to be defined as PHANDLE and PFRAME respectively; the density being 

defined here with units of kgm". Using the two dimensional approximation in Figure 9.8 it can be 

shown that, 

M H = PHANDLE·LH 

M Ft = 2,PFRAME .LFt 

M F2 = PFRAME,WB 

M F3 = 2,PFRAME .LF3 

M F4 = PFRAME ,WB 

The three inertial properties of the one dimensional beam can be defined using, 

MB =MH +MFt +MF2 +MF3 +MF4 

B. = MH( ~}M",( LH +( ~ ))+M,,(LH +L" +( ~ )) 
M8 

+ M" ( LH +L" +L" +( ~ ))+MF.(LH +LFI +L" +L" +( ~ )) 
M8 
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[9.56] 

The two equations that are used to solve for PHANDLE and PFRAME are [9.54] and [9.55]. Substituting 

[9.49]-[9.53] into these two equations gives, 

BM _MBLH 
B B 2 

[9.57] 

[9.58] 

The two parameters PHANDLEand PFRAME can be solved using [9.56] and [9.57], and then the relevant 

value ofthe mass moment of inertia lE for the beam can be calculated using [9.56]. 

(d) Comparison of the three types of beam model 

In the above section, three different types of one dimensional beam models have been derived; 

these being defined as uniform section, two section and five section. In this section, the three 

models will be generated for a specific tennis racket, to illustrate the procedure. The details of an 

ITF Carbon Fibre racket are given in Table 9.3. The details of six other rackets are given in 

Appendix D.3. 

Table 9.3 Measured properties of an ITF Carbon Fibre tennis racket. 

Length Mass Balance Mass Handle Racket Frame Length (m) 

LR(m) MR Point Moment of length width 

(kg) BR (m) Inertia IBUIT LH(m) WR LF! Ln LF3 Ln 

(kgm2
) (m) (m) (m) (m) (m) 

0.683 0.348 0.325 0.05337 0.228 0.265 0.094 0.027 0.308 0.027 
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T bl 94 P a e . ropertles or a earn mo e 0 an ar on I re tennls rac e . £ b d 1 f ITF C b F'b k t 

Total Segment Number of segments in each Number of segments in each of the 

number of lengths of the sections of the two sections of the five section beam 

segmentsN (m) section beam 

NH NF NH NF/ Nn NF3 NF4 

51 0.0134 17 34 17 7 2 23 2 

The uniform section beam model for the ITF Carbon Fibre tennis racket will have the same length 

and mass as that quoted in Table 9.3. It will be split into 51 segments each having a length s equal 

to 0.0134m. This number of segments is used for the reasons given earlier in this section. 

The mass of each segment mn will be equal to MR/51 which gives mn = 0.00683kg, for the uniform 

section beam. The beam balance point BB is equal to Ly{ for this beam, which gives BB = 

0.342m. The actual balance point on the racket BR is equal to 0.325m and therefore the two points 

do not coincide. 

The other two beam models require the lengths of one or more features of the racket to be 

measured. These measurements are relatively trivial to execute but it should be remembered that 

the beam models will be split into 51 segments. Therefore, the measurements must be in discrete 

length units that allow the beam to be segmented. Therefore, for example, the length of the handle 

LH is equal to, 

where NH is the number of segments which are used to model the handle, and s is the segment 

length as defined in Figure 9.2. (NH must be an integer). The lengths of the various sections of the 

ITF Carbon Fibre tennis racket are quoted in Table 9.3. For completeness, the number of 

segments for each of the sections in the beam models is given in Table 9.4. 

In the derivation of the two section and five section beam models, equations were derived to 

calculate the total mass of each of the sections. The mass of each segment in the relevant section 

can easily be calculated using the value of the total mass, and the number of segments in that 

section. For example, the segment mass mn of each of the NH segments in the handle of the two 

section beam is equal to MHINH. The segment masses for each of the seven rackets are given in 

tabulated form in Appendix D.3, for each of the three types of model. A sample of these results is 

illustrated in Figure 9.9, for the ITF Carbon Fibre racket. Figure 9.9 illustrates typical mass 

distributions for a two section and afive section beam model respectively. Figure 9.9 (b) highlights 

the relatively large segment mass which is associated with extremities of the racket head. 

Interestingly, the mass distribution given in this figure is similar to that determined by Brannigan 

and Adali (1981). In that work, the mass distribution was measured experimentally. 
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Figure 9.9 Illustration of the mass of each segment for a beam model of an ITF Carbon Fibre 

tennis racket. 

0.020 

To summarise the work discussed above, an example has been given to illustrate the method used 

to determine the details of the three different models, for an ITF Carbon Fibre tennis racket. The 

details of the models, for several other rackets, are given in Appendix D.3. Equations are 

presented in the derivations of three model beams which can be used to determine the beam mass 

moment of inertia lB" This mass moment of inertia was calculated for the three different types of 

model beam, for each of the seven rackets which are being studied in this chapter, and this data is 

presented in Figure 9.10. In Append ix D.l , the mass moment of inertia IBurr was measured 

experimentally for these racket types, and this data is also shown in Figure 9.10. 

This figure shows that the mass moment of inertia IB of the uniform beam does not correlate very 

closely with that which was measured experimentally, for all racket types. An improved 

correlation is found for the mass moment of inertia for the two section beam, but the five section 

beam exhibits the best correlation. It can be seen that the value of IBurr and IB (calculated using the 

five section beam) generally correlate to within 2%. It should be noted that generally this 

difference is less than 1 %. For completeness, the data in Figure 9.10 is shown in tabulated form in 

Appendix D.3. 

It can therefore be concluded that the five section beam model gives the closest correlation between 

the inertial properties of the beam and those of the tennis racket. The mass and balance point of the 

five section beams are identical to those of the racket, and the mass moment of inertia values 

correlate to within 2%. 
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Figure 9.10 Mass moment ofinertia for seven different tennis rackets. The data is presented for 

the value measured experimentally (lBurr) , and the three model beams (lB) for each racket. 

(e) Determining the jlexural rigidity of the one dimensional beam 

The stiffness of the beam for a perpendicular loading is defmed as the flexural rigidity El. The 

flexural rigidity El is the product of the Young' s modulus of the material E and the second moment 

of area for the cross-section I. Clearly, the value of E could be estimated from a knowledge of the 

material used to construct the frame. The second moment of area could be measured by cutting the 

racket into segments, as done by Missavage et al. (1984). However, there are many disadvantages 

of this type of solution. Firstly, it is a time-consuming, destructive method and therefore is not 

suitable if a large number of rackets are to be modelled. Also, due to the high level of uncertainty 

in the defmition of E and 1, it is likely that the resulting model beam will have a different stiffness 

cOJ;npared with the actual racket. 

A more suitable method of obtaining the value of the flexural rigidity El can be derived from a 

consideration of what the aim of the actual model is. It is remembered that the aim of the model is 

to replicate the inertial and vibrational properties of the racket. The former requirement has already 

been discussed in the previous section where it was shown that a jive section model could be 

assigned very similar inertial properties as that of the racket. The vibrational properties refer to the 

fundamental frequency and the node points of this mode of vibration. Therefore, the discrete 

measurement of the terms E and 1, although valid for certain circumstances, may not actually be the 

most suitable method in this case. 

The ideal solution for this problem would be to derive a method of obtaining the value of El which 

gives the beam the same fundamental frequency as that which was experimentally measured for the 
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tennis racket. In this work, it is assumed that the flexural rigidity El is constant along the length of 

the one-dimensional beam. This assumption is required as it is difficult to define the magnitude of 

the parameter El as a function of the distance along the longitudinal axis (y-axis). Also, a racket is 

generally constructed using a beam which has a uniform cross-section with minor additions to 

construct the handle and to shape the head. Therefore, to a first order approximation, it is assumed 

to be valid to consider that the flexural rigidity is constant. 

In the previous section, it was shown that the fundamental frequency of the beam can be calculated 

using, 

[9.59] 

The eigenvalue parameter ~ AkN is a function of the mass distribution, beam length and the method 

used to support the beam. Therefore, this parameter is constant for each beam, regardless of the 

value of El, and can be evaluated using the methods described in the previous section. Equation 

[9.59] can be rearranged to give, 

[9.60] 

The fundamental frequency of the actual tennis racket, for transverse vibrations, can easily be 

measured using the method described in full in Appendix D.2. In brief, the vibrations of a tennis 

racket are sampled for an impact along the longitudinal axis using a soft hammer. The fundamental 

frequency was determined for a range of tennis rackets, and these experimentally determined 

values are given in Table 9.5. 

Table 9.5 Experimentally measured fundamental frequency of the racket and the beam flexural 

rigidity for the three beam models. 

Racket Type Fundamental Flexural rigidity of beam El (units) 

frequency of 

racket (Hz) 
Uniform section Two section Five section 

Yonex (1) 161 186 183 218 
ITF Aluminium (2) 103 70 73 81 

Head (3) 138 169 167 197 
Spalding (4) 127 138 137 186 

Miller (5) 143 155 155 184 
ITF Carbon Fibre (6) 134 156 156 185 

Wilson (7) 142 184 180 212 

Clearly, it is intended that the beam model will have the same fundamental frequency IF as that 

measured experimentally for the racket. Therefore the experimentally measured values of IF are 

input into [9.60] to enable the flexural rigidity El of the beam to be calculated. 
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The calculated values of El which are presented in Table 9.5 can be seen to represent the average 

properties of the tennis racket frame. When this is coupled with the assumption that the inertial 

properties of the beam are very similar to those of the racket, then it can be concluded that the 

beam will act very similarly to the racket, in vibration. 

It is interesting to note that the calculated values of the flexural rigidity are considerably larger for 

the five section beam compared with the other two beam models. This is likely to be due to the fact 

that the five section beam has a large mass concentration at the tip of the beam. This may require a 

larger stiffness for a given fundamental frequency, compared with the uniform beam. 

The evidence that the flexural rigidity can valY by up to 20%, depending on the assumed mass 

distribution, highlights a weakness of this modelling technique. The relevance of this weakness 

will be commented on further, later in this study. However, it should be remembered that all the 

beam models have the same fundamental frequency as that of the racket, which was the initial aim 

of this study. The finding that different flexural rigidity values are needed to achieve this aim must 

simply be excepted at this stage. 

(f) Comparison of node positions on the model beam and the racket 

In this section, a comparison is to be made between the node points for the racket and beam model, 

to quantify the correlation between the two. When a racket is excited by some external impulse, 

the resulting vibration of each point on the beam is a collection of an infinite number of modes of 

vibration. The amplitude of each of these modes is dependent on the duration of the impulse. It 

has been shown that, for a typical impact between a ball and racket, the duration is sufficiently long 

that only the fundamental mode of vibration is excited with any significant amplitude. For a given 

impulse, the amplitude of this mode will vary along the length of the beam/racket. The node point 

of vibration corresponds to the point on the racketlbeam at which this amplitude is zero. 

Node line 

(Y NODE)SIrI,,,,bed 

J 
Tennis Racket 

Stringbed 
node 

Handle 
node 

One dimensional beam 

Figure 9.11 Definition of the nodes points for the fundamental mode of vibration for the 

racketlbeam. 
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The correlation between the beam model and a tennis racket is to be assessed by comparing the 

node positions for the fundamental mode of transverse vibrations. For this mode, there is a node 

towards the tip of the racket, and one node towards the butt end. The latter node is defined as the 

handle node in Figure 9.11 and is not investigated in this study as all impacts occur on the head of 

the tennis racket. 

Work by previous researchers (Cross 2001b and Kawazoe 1997a) has shown that the node position 

along the longitudinal axis (stringbed node) was in a different location to that of the node on the 

frame (frame node). A schematic illustration of these two node positions is shown in Figure 9.11. 

The single node point for a one dimensional beam is also shown in this figure. A comparison of 

the racket and beam node points highlights an inherent weakness of a one dimensional beam 

model; there is a unique node point on the beam compared with a two-dimensional node line on the 

tennis racket. 

Cross (200 I b) showed that the beam node for a uniform beam generally coincides with the 

stringbed node. However, this comparison was only made for one racket type. In this study, the 

frame node and stringbed node on the racket will be compared with the beam node for the three 

different beam models, for all seven racket types. 

In the previous section, a numerical harmonic analysis was presented that could be used to 

calculate the amplitude of vibration for the fundamental mode of vibration, for each point along the 

beam. This analysis can be used to determine the position of the beam segment which has a 

negligible amplitude of the fundamental mode. This point is defined as the beam node point and is 

located a distance (YNODE)Beam from the butt end. 

The details of the beam, such as the mass matrix [M] and the flexural rigidity El, were input into 

the model using the data which has been presented in the previous sections. To excite typical 

vibrations in the beam, the model of a ball impacting on the beam, as described in section 9.3.3(b) 

is used. In this case, the bal1 impacted close to the centre-of-mass of the beam as this was known to 

be near to an anti-node of vibration for the fundamental mode, and thus will excite a significant 

amplitude of vibration. The impact velocity of the ball was 20mls and the racket was initially 

stationary. The ball type was a Pressurised ball and a stringbed stiffness equivalent to that 

measured for a racket strung at 70lbs was used, although it should be noted that these parameters 

do not effect the beam node position. 

The model solution was calculated and the amplitude of vibration for the fundamental mode was 

evaluated for each of the N segments, using the harmonic analysis method that was described in a 

previous section. This information was then analysed to determine the node point for this mode, 

for each of the beam models. 

Figure 9.12 shows the calculated velocity amplitude of the fundamental mode for the a range of 

positions along the beam. Data is presented for the three different model beams. The point at 

which the velocity amplitude for this mode equals zero corresponds to the node point for the beam. 

The position of the stringbed and frame nodes, for the ITF Carbon Fibre (6) tennis racket which is 

being modelled, are also shown in this figure. 
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Figure 9.12 Modelled amplitude of vibration for the fundamental frequency for an impact on 

three different beam models that are simulating an ITF Carbon Fibre (6) tennis racket. The 

positions of the throat, tip, stringbed node and frame node for the tennis racket are also shown. The 

ball impact velocity was 20m/s. The impact position was at a distance of 328mm from the butt 

end. 

These racket node points were determined using a standard experimental technique which is 

described fully in Appendix 0 .2. A brief summary of this method is given here. lmpacts at the 

node point of the racket do not excite vibrations of the relevant mode in any part of the racket. 

Therefore, the node point of a tennis racket can be experimentally obtained by sampling the 

vibrations which result from an impact between a soft hammer and the racket, at a variety of 

locations. The location of the impact is moved until minimum vibrations of the fWldamental mode 

are measured. A schematic illustration of the approximate node locations, for a tennis racket, are 

given in Figure 9.11. 

The node point for uniform section beam is located at a distance 529mm from the butt end, as 

shown in Figure 9.12. The analytical solution for the node point of a uniform beam of length LB is 

O.776L8 (Cross 200tb). This gives an analytical node position equal to 530mm which clearly 

corresponds very closely to the numetically obtained value of 529mm. This confmns that the 

nwnerical and analytical solutions correlate very closely. 

1t can be seen that the location of the beam node point, for the uniform section and two section 

beams correspond closely with the stringbed node. This means that impacts at this point on the 

beam will not excite the fundamental mode of vibration. Correspondingly, impacts at this point on 

the longitudinal axis of the racket will not excite this mode of vibration either. This would initially 

suggest that these two beam models suitably simulate the transverse vibrational properties of a 

tennis racket. However, this is purely coincidental because the actual frame node is located at a 

different position. The frame node corresponds very closely to the node for the jive section beam, 

and is located at a distance of approximately 550mm from the butt end. This implies that this type 

of beam model is a more suitable technique for modelling the vibrational properties of the racket 

frame. However, ifthisjive section beam was used to model an impact on the longitudinal axis at a 
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point ~530mm from the butt, a vibration of the fundamental mode would be established. By 

contrast, an identical impact on the longitudinal axis of the racket tennis racket would not have 

excited any vibrations of this mode. This discrepancy is discussed later in this chapter. 

Table 9.6 Stringbed and frame nodes for the tennis rackets. Beam nodes for the three model 
beams 

Racket Type Stringbed Frame Beam node (YNODE)Beam (mm) 
Node Node 
(y NODEhtringbcd (y NODE) Frame Uniform Two section Five section 
(mm) (mm) section 

Yonex (1) 547 579 552 549 575 
ITF Aluminium (2) 524 551 528 529 549 

Head (3) 523 557 529 529 551 

Spalding (4) 534 554 531 529 556 

Miller (5) 538 561 531 534 559 

ITF Carbon Fibre (6) 528 549 529 529 551 

Wilson (7) 523 558 531 525 549 

The comparison between the model beam and racket node points has thus far only being made for 

an ITF Carbon Fibre (6) racket. In Table 9.6 this comparison is extended to cover the other six 

racket types. It can be seen that the all the rackets exhibit the similar trend that was found for the 

ITF Carbon Fibre (6) racket. As before, the stringbed node generally corresponds most closely 

with beam node for the uniform section and two section beams; the frame node being closer to the 

beam node for thefive section beam model. 

In Appendix D.2 it was quoted that the accuracy of the measurements of (YNODEhtringbed and 

(YNODE)Frame was only in the order of ±5mm. Therefore, the location of the experimentally obtained 

node point on the racket corresponds with the respective beam node, within the bounds of the 

experimental error. 

(g) Summary 

In this section, it has been shown that the inertial properties (mass, balance point and moment of 

inertia) of a tennis racket can most closely be simulated by using a one-dimensional beam which is 

composed of five unifonn sections. It was then shown that the node point on this five section model 

beam correlates very closely with the frame node of the corresponding tennis racket, implying that 

this is the most suitable model of the three which have been developed in this section. 

However, the weakness of this model can be identified from a consideration of the positions of the 

node points on the racket. The node point on the frame is at a different position to the stringbed 

node on the longitudinal axis of the racket. As this study is only concerned with impacts along the 

longitudinal axis, it can be deduced that impacts at the stringbed node of the racket will excite no 

vibrations, whereas impacts at this same point on the five section beam will excite vibrations 

because this is not the node point. This weakness in the model is due to the simplification of a 
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complex three dimensional object as a one dimensional beam. This discrepancy will be discussed 

later in this chapter. 

9.4 One dimensional, flexible beam model- distributed loading 

9.4.1 Introduction 

In section 9.3, a numerical method was discussed which can be used to solve for the displacement 

of a one dimensional flexible beam that is subjected to a time-dependent loading. This numerical 

method involves the division of the beam into N segments. In that section, it was assumed that the 

force was applied over a single segment to simplify the solution. However, it was noted that the 

same solving method is valid for distributed load cases. 

Clearly, in an impact between a ball and racket, the ball/stringbed does not impart a point load on 

the racket frame. Instead, the force will be distributed, in some way, across the head of the racket. 

Therefore, in a model of a ball impacting on a one-dimensional beam, the force should be 

distributed over the beam segments that are representative of the racket head. The exact form of 

the distributed load is not easily defined but can be approximated using a suitable function. Also, 

the definition of a continuous distributed load case over a finite number of discrete load points is 

not a trivial problem and therefore the derivation of this load case is given a thorough explanation 

in this section. 

9.4.2 The beam model 

In this section, the resultant force (F)t acts on the beam at the ball impact position; this position 

being located at a distance YIP from the butt end of the beam. It is assumed that this force is applied 

as a distributed load across the beam segments that represent the head of the racket. Clearly, this 

distributed load must be equivalent to the force (F)/. 

The form of this distributed loading must be representative of the mechanism that acts to apply the 

load to the racket frame, via the stringbed. To understand this mechanism fully would require a 

two dimensional analysis of the frame/stringbed system, which is beyond the scope of this work. 

Various authors have commented upon this mechanism (Brannigan & Adali (1981) and Cross 

(1999c)). Cross (1999c) assumed that the loading could be simulated using a point load, similar to 

the method discussed in section 9.3. Furthermore, Cross (1999c) stated that the propagation of the 

force through the stringbed was of a comparable speed to that through the beam (due to bending) 

and therefore a point loading was a satisfactory I st order approximation. Brannigan & Adali (1981) 

conducted a two dimensional analysis of the frame/stringbed system. In this analysis, the impact 

was located at the geometric string centre, to simplify the solution procedure. This publication 

does not a present a generic solution for impacts located at other positions along the longitudinal 

aXlS. 

In this current study, the general form of the distributed loading will be determined by considering 

several simplifications of the stringbedJframe interaction. Furthermore, a number of assumptions 
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are defined. These assumptions are required because a two dimensional analysis of the 

frame/stringbed system is not conducted in this study. In this analysis, it should be noted that the 

distributed loading is only to be defined in one dimension; this being parallel to the longitudinal 

axIS. 

(a) 

All load supported by 
main strings 

(F),. 

l ' 
I 
; 

I : 
1 . 

All load supported by 
cross strings 

(b) 

All load supported by 
maIn strings 

(F),. r 
!; 
i : 
; 
j 

: 

All load supported by 
cross strings 

Figure 9.13 Simplified distributed loading if the load is taken solely by either the main or cross 

strings, (a) for an impact at the geometric string centre of the head of the racket, and (b) for an 

impact towards the tip of the racket. 

The simplest impact to consider is that which is located at the geometric string centre of the racket. 

If it is assumed that the racket head is approximately symmetrical in both the longitudinal and 

transverse axes, then the distributed loading will also be symmetrical along its one dimension. If 

all the load was supported by the cross strings, and the main strings were subjected to zero loading, 

then the distributed loading would have a form similar to that shown in Figure 9. 13 (a). Also 

plotted in this figure is the form of the distributed loading for the case where all the load is 

supported by the main strings. These two simple load forms are not representative of the actual 

loading mechanism. Furthennore, a simple superposition of the two forms would not be realistic as 

the two sets of strings interact, thus distributing the load to all parts of the frame, not just those 

implied by the plots in Figure 9.13(a). However, using the two simple curves illustrated in this 

figure, and the knowledge that the load will be distributed to all parts of the frame, it is assumed 

that the load will be uniformly distributed along the longitudinal axis of the frame, for impacts at 

the geometric centre of the head. This wliform loading will only act on the beam segments which 

represent the head of the racket. 

A similar analysis can be conducted for impacts located at other positions along the longitudinal 

axis. Figure 9. 13 (b) illustrates an impact which is located towards the tip of the tennis racket. In 

this figure, the two simplified loadings are plotted which represent the assumptions that all the load 

is either supported by the main or cross strings. If the load is supported by the main strings, it is 

assumed that the force which acts at the tip is larger than the force acting at the throat to ensure that 

the resultant loading is equivalent to the point load (F) /. As before, the two load cases in Figure 

9.13(b) can not simply be superimposed to find the form of the resultant distributed loading 

because the two sets of strings are do not move independently and they physically interact during 

impact. Clearly, there are many possible forms of the distributed loading but in this study only two 

main examples are investigated. These two general shapes are illustrated in Figure 9.14. 
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Figure 9.14 Two general examples of distributed loadings which are equivalent to a point load of 

(F)I' (a) A function which is maximised at the edge of the racket head, and (b) a function which is 

maximised at the impact location. 

The distributed loadings shown in Figure 9.14 are not associated with specific functions that 

describe their shape but are merely meant to represent two different general forms of the distributed 

loading. Both of these general shapes are deduced using the two discrete load forms shown in 

Figure 9.13(b), along with the knowledge that the load will be distributed to all points on the racket 

frame. 

Figure 9.14(a) shows a distributed loading which is maximised at the edge of the racket head, 

whereas Figure 9.14(b) illustrates the distributed loading which is maximised at the impact 

location. The form shown in Figure 9.14(a) is based on the assumption that the load which is 

supported by the main strings dominates the mechanism. For example, in this case the peak load 

acts at the tip of the racket. The form shown in Figure 9.14(b) assumes that the load which is 

supported by the cross strings dominates the mechanism, and therefore the load is maximised at the 

impact location. 

Intuitively, the actual distributed loading is likely to be an amalgamation of the two forms shown in 

Figure 9.14. A two dimensional analysis of the stringbed system is required to obtain the details of 

this amalgamated distributed loading. However, as mentioned previously, this is beyond the scope 

of this current study. Therefore, it is assumed that a first order approximation of the distributed 

loading could be achieved by using one of the two forms in Figure 9.14. It is also assumed that 

both these shapes exhibit an equal correlation with the actual distributed loading. This assumption 

was made because it is not possible for the validity of either form to be quantified. 

Initially, it would appear that both shapes are equally suitable to be used to model the load which 

acts on the beam. However, it is considerably simpler to define a function which is of a similar 

form to that of the continuous curve in Figure 9.l4(a), compared with that required to define the 

curve in Figure 9.14(b). Therefore, it is concluded that the distributed load, with the form that is 

shown in Figure 9.14(a), should be used in the model. 

There are many functions which could define a curve similar to that in Figure 9.14(a), e.g. a second 

order polynomial. However, some of these functions are more suitable than others. For example, it 

must be possible to uniquely calculate the coefficients of the distributed loading function which 

gives the required magnitude and location of the resultant force (F)I' Generally, this requires the 

equation to have two nOll-zero coefficients for a unique solution to be obtainable. Furthermore, an 
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important feature of the function is that it must produce a valid distributed loading, for all impact 

locations. For example, a second ordcr polynomial is not suitable as it may define a loading which 

has a negative value at some points along the beam. 

An alternative function, which is of a similar form to that shown in Figure 9.14(a), is defined as a 

general spandrel (Efunda 2002). This is a suitable function as the coefficients can be uniquely 

determined by the magnitude and location of the resultant force . Also, the solution remains valid 

(positive) at all locations along the beam, for any impact position. Furthermore, for impacts at the 

geometric string centre, the general spandrel curve represents a uniform loading, which is the 

assumed shape for these impacts. Therefore, it was concluded that a general spandrel was a suitable 

first order approximation of the distributed loading. 

(F), --. __ 

General/ 
Spandrel 

.... _1. _____________ _ 

Figure 9.15 Illustration of a distributed loading which acts over the beam segments that represent 

the racket head. 

Figure 9.15 illustrates the distributed loading that is defined using the general spandrel function. In 

this figure, it can be seen that the loading only acts on the beam segments which represent the head 

of the tennis racket. The magnitude and location of the resultant of this distributed loading is 

equivalent to that of the force (F), being located at a distance YIP from the butt end of the beam. 

The fonn of a general spandrel, for this co-ordinate system is, 

[9.61] 

The parameter b is equal to the length of the base of the general spandrel curve which is equal to, 

The parameter f3 is a function of the position at which the force is applied YIP and the base b, 

2e -b fJ =--,Y_-

b-e 
Y 
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where, 

[9.64) 

The parameter h, which is equal to the height of the general spandrel curve, can be calculated 

using, 

fn .............. . ............. _._. __ 

Yn 

Fn 
: ~ s Il IIIIIIIIIIIII~ 11111 1~a 61U 

nth segment 

[9.65) 

y 

Yn-O.5 Yn Yn+O.5 y 

Figure 9.16 Illustration of the distributed loading/y and the discrete loading Fn which acts on 

each segment. 

The parameter J;, is equal to the magnitude of the distributed load, as a function of the distance 

along the beam y. Therefore, the area enclosed by the general spandrel curve is numerically equal 

to the total force applied to the beam. To generate a normalised solution, the force F is assumed to 

be unity, and thus the area Acs under the general spandrel curve is also equal to unity. For this 

normalised solution, [9.65] becomes, 

I h=-(f3+1) 
b 

[9.66) 

The above analysis has generated equations to define the continuous function that gives a 

normalised distributed loading which is equivalent to the load F, applied at a distance YIP from the 

butt end. The magnitude of each of the parameters b, p, cy and h can therefore be defined for the 

relevant beam model and impact position. However, for the beam model, the load must be applied 

at a finite number of discrete points, at the centre of the segments; each discrete load being defined 

as Fn as illustrated in Figure 9.16. The total sum of the discrete loads Fn will be equal to unity. 

The continuous loading/y acts over a finite number of segments of the beam which are analogous 

to the head of the racket. The discrete load F" which acts on the nth segment must be equivalent 

to the continuous loading which acts over the length of this segment. The area An enclosed by this 
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continuous loading over the nth segment is shown in Figure 9.16. The position along the beam Yn 

is defined using, 

Yn =ns-~ 

where n is the segment number. 

The area An can be approximated using, 

A = ~(fn-0.5 + fn) + ~(fn + fn+05) 
n 2 2 2 2 

[9.67] 

The area An is equivalent to the force which acts on this segment Fn and therefore, 

[9.68) 

This equation, along with those discussed above, can be used to determine the force Fn which acts 

on each of the segments, for an overall equivalent loading F; the force F being equal to unity in this 

case. The values of the normalised force Fn for each of the N segments can be collated to form a 

column matrix with N rows [Fn]. 

o 

o 

o 

-
where the value of Fn is non-zero for the segments which represent the head of the tennis racket, 

and zero for all other segments. 

The force matrix [F 1, which is used in the numerical solution for determining the displacement of 

the beam (equation [9.28]), can be calculated using, 
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The magnitude of the scalar force (F), which acts during the impact is determined using the visco­

elastic model of the ball and stringbed, shall be discussed in the following section. 

9.4.3 Modification to the spring-damper model for a distributed loading. 

Xa CM 

t 
XD r Cs ~ 

mlR 

ms 
Ca 

ka 
ks 

Figure 9.17 Visco-elastic model of the ball/stringbed system, for a ball impact on a tennis racket. 

As discussed previously, the ball is simulated as a point mass mB and the stringbed was assumed to 

have zero mass. The ball and stringbcd were both individually modelled as springs and dampers in 

parallel as illustrated in Figurc 9.17 The parameters m'R and XD represent the 'effective' mass and 

displacement of the impact point on the racket frame, respectively. The force acting in the spring 

damper system at any time t is defined as (F), . 

The displacement XD is not simply equal to the displacement of the beam segment at that point X/Po 

This assumption would disobey the law of energy conservation, for a distributed loading of the 

beam. The displacement XD is equal to the 'weighted' average displacement of all the beam 

segments which are subjected to an excitation force (those segments which represent the racket 

head). The data is 'weighted' by multiplying the displacement of each segment by the force whieh 

acts on that segment. The equation used to define the value of XD at time t is, 

[9.69] 

where NHEAD is the number of segments over which the force (F), is distributed over. 

Apart from this minor modification, the solution of the visco-elastic model is identical to that 

described in section 9.2. The force (FJ, which acts on the beam can be calculated using [9.42], 

where X/P is replaced with XD. 

9.4.4 Comparison of a point load and a distributed loading of a beam. 

(aJ Introduction 

In section 9.3, a numerical solution was given that can be used to determine the displacement of a 

one-dimensional beam which is subjected to a time dependent point load. It was shown that the 

model required certain parameters to be defined which were dependent on the ball type, stringbed 

stiffness and racket type. To complete the required model inputs, the velocity of the ball and racket 
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were specified for the instance immediately prior to impact. The output of the model included the 

ball rebound velocity and the motion of the freely oscillating beam. 

In section 9.4.2, it was shown that it was possible to modify the model so that the force is applied 

as a distributed loading. The model was otherwise identical to that described in section 9.4. The 

distributed load case is more physically representative of the actual mechanism which loads a 

tennis racket during an impact with a ball; the load being applied to the racket frame via the 

stringbed. However, the distributed load case leads to a more complicated force matrix [F] and it 

may be introducing an unnecessary complication into the model. In this section, this is to be 

evaluated by comparing the model solutions for the point load case with those of the distributed 

load case. Clearly, if there is no significant difference in the results for the two loading conditions, 

then the simpler point load case should be used in the model. 

The two main outputs of the model are (I) ball rebound velocity and (2) the amplitude of beam 

vibrations after impact. Therefore, these are the two parameters which are to be compared for the 

two models which use (a) a point load case and (b) a distributed load case. The comparison is to be 

conducted using the model parameters for a Pressurised ball and stringbed strung at 70lbs, as 

shown in Tables 9.1 and 9.2. The ball velocity for all the tests in this section is 20mls and the 

impact is located at a range of points which stretch across the longitudinal axis of the head of the 

racketlbeam. These locations are in increments of the segment length s as the impact must be 

located at the centre of one of the N segments of the one dimensional beam. The model solution is 

to be calculated using the five section beam for the ITF Carbon Fibre (6) tennis racket. The 

parameters for this racket have been described in Tables 9.3 to 9.5, and in Table D.7. 

(b) Results 
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Figure 9.18 Calculated ball rebound velocity for a range of ball impact positions on a freely 

suspended beam. Data is presented for both a point loading and distributed loading on a flexible 

beam, and also for a point loading on a rigid beam. The beam model represents an ITF Carbon 

Fibre (6) tennis racket. The positions of the throat and tip on the head of the racket, and the string 

and frame nodes are also given. 
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Figure 9.18 shows the ball rebound velocity which has been calculated by the model of a freely 

suspended racket, for a range of ball impact positions. The two sets of data points which represent 

impacts on a flexible beam are presented for the two different assumptions regarding the method of 

loading; these two methods being a point and a distributed loading. Also, plotted in each figure is a 

data line which represents the rigid beam solution which was calculated using the same method as 

that described in section 9.2. The data is presented in Figure 9.18 for the ITF Carbon Fibre (6) 

tennis racket. 

Figure 9.18 shows that the two different loading mechanisms yield different values of ball rebound 

velocity for impacts towards the throat end of the head. Also, both sets of data for a flexible beam 

model yield considerably lower ball rebound velocities than those exhibited for impacts on a rigid 

beam, for impacts towards the throat end of the head. At an impact point YlP of approximately 

540mm, the rigid and flexible beam models exhibit very similar ball rebound velocities. This 

position corresponds closely with both the string and frame node points of the racket; the 

definitions of these two points being given in Figure 9.11. At impact positions which are close to 

the tip of the racket, the two flexible beam models (point loading and distributed loading) both give 

similar results, which are considerably lower than those exhibited by the rigid beam model. 
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Figure 9.19 Calculated amplitude of vibration of the fundamental frequency for a range of ball 

impact positions on the beam, for the vibration of the I SI beam segment (closest to the butt end). 

Data is presented for both a point loading and distributed loading on a flexible beam, and also for a 

point loading on a rigid beam. The data is presented for the ITF Carbon Fibre (6) tennis racket. 

The positions of the throat and tip on the head of the racket, and the string and frame nodes are also 

glven. 

The beam model which has been discussed in sections 9.3 and 9.4 calculates, amongst other 

parameters, the displacement of the beam after impact. During the period after impact, the model 

beam vibrates freely and the displacement of each beam segment is calculated for a period of 

approximately 25ms. The numerical harmonic analysis which was described in section 9.3.2, was 

used to determine the amplitude of the fundamental mode of vibration, for each of these segments. 

Figure 9.19 shows the amplitude of this mode for the segment at the butt end of the beam, for a 
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range of different ball impact positions. The string and frame nodes are also plotted on these 

figures. 

An impact on the flexible beam with a point load which is located at approximately 550mm from 

the butt produced minimum vibrations of the fundamental frequency. This point corresponds with 

the node point for this beam which has been determined previously and is shown in Figure 9.12 and 

Table 9.6. Also, as mentioned earlier, this point corresponds very closely with the frame node for 

the racket. This data confirms that the beam and racket frame exhibit very similar node locations, 

which was one of the aims of this work. 

An impact on the beam with a distributed load at approximately 530mm from the butt produced 

minimum vibrations of the fundamental frequency, for this load case. However, it should be noted 

that this does not mean that the beam node has moved because this is not physically possible 

without the beam being modified in some way. Instead, it is illustrating that the point of minimum 

vibrations does not coincide with the beam node point, for impacts involving a distributed load. 

This impact position corresponds very closely to the racket string node. 

A supplementary comparison of the beam and racket nodes is presented for a Yonex (1) racket in 

Appendix 0.4. This comparison exhibits a similar correlation as was found for the ITF Carbon 

Fibre (6) racket. 

(c) Discussion 

It has been shown that the frame node and string node, on a tennis racket, do not coincide. Typical 

locations of these two nodes are shown in Figure 9.19. The string node is the point on the 

longitudinal axis of the stringbed which excites minimal vibrations in the frame. An impact of this 

nature will involve some kind of complex distributed loading being applied to the racket frame, 

although the precise form of this loading is not known. The frame node corresponds to the point on 

the frame which excites minimum vibrations. By contrast, this kind of impact involves a point 

loading of the frame. Clearly, these two different kinds of loading yield different locations at 

which minimal vibrations are excited. 

Intuitively, it would have been expected that any impact which is located at the node point would 

not excite vibrations of the fundamental mode. However, it was found that a distributed loading of 

the beam, which has a resultant that acts at this node, excites vibrations of this mode. It is beyond 

the scope of this study to fully explain this mechanism but the differences in the induced vibrations 

of a beam, for different loading methods, can be illustrated using a simple example. If a one 

dimensional, uniform beam is subject to a point load which acts at its mid-point, for a short 

duration, significant vibrations of the fundamental mode will be excited. However, if this same 

beam is subjected to a uniform loading along its full length, equivalent to the point loading, then no 

vibrations of this mode are excited. This example confirms that a point load and distributed load 

do not necessarily excite the same vibrations in a beam. 

In this current section, the beam model has been used to show that a point loading and a distributed 

loading yield different locations at which minimal vibrations are excited, for an impact on a simple 
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one dimensional beam. The distributed load case induces minimal vibrations at a location which is 

close to the experimentally measured string node. Clearly, both the model and experimental cases 

involve a distributed loading and therefore it is consistent that these two locations coincide. This 

is supported by the observation that the locations of the beam node (minimal vibrations for a point 

loading) and the frame node also coincide. 

(d) Conclusions 
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Figure 9.20 Illustration of an impact involving a distributed loading of the beam. The resultant 

of the distributed loading, force F, does not act on the beam node. A qualitative comparison of the 

frame, stringbed and beam nodes is also presented. 

The important findings from this short study are illustrated in Figure 9.20, which shows a tennis 

racket and a five section beam model. It can be seen that the racket frame node correlates very 

closely to the beam node. The beam is subjected to a distributed loading, with a resultant force F 

located at a distance YIP from the butt end. This loading results in minimal excitation of the 

fundamental mode of vibration, even though the resultant does not coincide with the beam node. 

Figure 9.20 illustrates that this impact location corresponds with the experimentally measured 

stringbed node on the racket. 

For the beam model, the location YIP does not represent a node point, but instead can be considered 

to be an impact point which excites minimum vibrations of the fundamental mode. Extending this 

concept to a tennis racket, the stringbed node can simply be considered as an impact point which 

excites minimal vibrations. This can not be proven and therefore the analysis of this finding is not 

continued further. 

9.4.5 Summary 

In section 9.3, a model was developed for a ball impact on a freely suspended tennis racket. In that 

section, the racket was modelled as a one dimensional beam which was subjected to a point 

loading. In this current section, the model was modified so that the force was applied as a 
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distributed loading. It has been shown that the visco-elastic model, which is used to simulate the 

balllstringbed system, has to be modified to account for the load being distributed over the beam. 

This visco-elastic model is used to calculate the overall resultant force F which acts on the beam. 

It is assumed that this overall force acts over the beam segments that represent the head of the 

racket. A method has been presented which can be used to determine the time-dependent forces 

which act on each of the segments of the beam, that give the equivalent loading as that of the 

overall resultant load F. The displacement of the beam, for this distributed loading, can be 

determined using the same methods described in section 9.3. 

A comparison was made between the model solutions obtained for (a) a point loading, and (b) a 

distributed loading. It was shown that, for impacts close to the throat end of the head, the ball 

rebound velocity was larger for the distributed loading, compared with the point loading. 

However, for all other impact points, the ball rebound velocity was very similar for both loading 

methods. 

The main finding from this model is that the impact location which excites minimal vibrations of 

the beam does not coincide with the node point, for a distributed loading. Furthermore, this impact 

location correlates very closely with the measured stringbed node for a tennis racket. It can 

therefore be concluded that a distributed loading, as opposed to a point loading, is a more suitable 

method of applying the load. This is because the nodal properties of the beam are most closely 

simulated using this loading method. 

9.5 Computer software used to solve the model 

9.5.1 Introduction 

In section 9.3, algebraic equations have been defined which can be used to calculate the 

displacement of a beam for a time-dependent force. In section 9.4, it was shown that this beam 

could be used to represent a freely suspended tennis racket in an impact with a tennis ball. In that 

section, the model parameters are defined for a range of ball types, stringbed stiffnesses and racket 

types which allow the model to be solved for any input combination of initial ball and/or racket 

velocities, and any impact location along the longitudinal axis. In sections 9.3 and 9.4 it has been 

shown that the load can be applied onto the beam as either a point load or a distributed load. Both 

these loading methods involve the same numerical solving method, which was given in section 9.3. 

However, it was concluded that a distributed loading was the most suitable method of applying the 

load. 

The equations and parameters which were defined in sections 9.3-9.4 are sufficient to allow the 

reader to repeat the model calculations which were performed in those sections. Although all the 

necessary equations are given, it is estimated that a typical impact requires more than six million 

calculations to be performed (based on N = 51 and At = 5Ils). Therefore, the method used to 

perform the calculations is not trivial and shall be discussed in this section. 

There are many PC software packages available which are capable of efficiently performing the 

required calculations. Cross(1999c) used an MS-DOS BASIC routine to solve the equations. This 
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was sufficient for the scope of the work covered in that publication. However, in this current work, 

a model with a user-friendly graphical interface was required to allow a trained user to simulate 

different types of impact, without the required knowledge that is needed to apply the equations 

given in sections 9.3-9.4. A suitable software development package for such a task is MS Visual 

Basic \16. This software development tool allows the production of an executable MS Windows 

program with a suitable graphical interface. It also possesses an efficient numerical processing 

ability which is necessary due to the large number of calculations involved. The desired program 

would have a function which allowed different ball types, stringbed stiffnesses and racket types to 

be entered into the model, along with the initial velocity of the ball and racket. The program must 

then be capable of solving the model equations which were given in the previous section, and 

giving a suitable output, such as ball rebound velocity. The features of the developed program, 

which will be referred to as Racket Impact vI. I, will be discussed in this section. 

, Ball properties 
8~~ ~~~~~~------

B4!I matt (kg) IO.C1S7 

Stringbed properties 
- I 

\ 

Sttr.gbedtwe •• II!I~~""" ••• 

Figure 9.21 Illustration of the Racket Impact vI.l fonn which is used to select the ball/stringbed 

type. 

Before the model solution can be calculated, the values of the ball, stringbed and racket parameters 

must be entered into the Rackellmpact vi . 1 software. This is commenced by selecting the 'Input 

Parameters' option in the menu of the Racket Impact \11.1 software. Figure 9.21 shows the Visual 

Basic form which allows the user to select the ball and stringbed type which is to be used in the 

model. This figure shows that the user can choose one of a selection of four different ball types; 

the picture of the chosen ball being shown on the fonn . The ball parameters kB(o)' AK• a and Ac. 

which are shown in Table 9. J. are stored in an MS Access 2000 database and the relevant values for 

the selected ball type are retrieved by the Racket Impact v1.1 program and stored as appropriate 

variables. New ball types can easi1y be modelled by entered into the relevant values of the ball 
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parameters into the MS Access 2000 database; these parameters being obtained usmg the 

procedures already discussed in earlier chapters. 

The method used to define the stiffness of the stringbed is similar to that described above for the 

ball type selection. Figure 9.21 shows a selection of four different options which refer to four 

identical rackets with a head size of 98in2
, strung using a lSgauge nylon string at four different 

string tensions. The stringbed stiffness of these rackets was discussed in Chapter 6. Each of these 

selections has a unique combination of the stringbed parameters as, bs and cs, as shown in Table 

9.2, which are stored in the MS Access 2000 database. These parameters apply to the equation, 

[9.70] 

The parameter kS (~55 ) refers to the quasi-static stiffness of the stringbed for a load applied 

perpendicular to the string plane, using a rigid disc of diameter of 5Smm. The experimental1y 

obtained values of kS (~55 ) are plotted against the stringbed displacement xs, and a second order 

trendline is plotted through this data. The coefficients of this trendline are then input into the 

database. This procedure can be conducted for any new stringbed, and the relevant values entered 

into the database. 

9.5.3 f)efinition of Racket type 

Racket properties 

Aacl:.et N_ ITF AUnrium [2) 
Head Prnllge C1aulC (3) .::.J 
RM'" 1..""lhi",J lu t U( 

Racket II\Mt \\(.g) 10258 
Racket _ MI (kgn2) 10 049!E41 

Roc::kd beIonce (m) 10388 
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IMpOCt CIItUInee frDIII COM (mmJ 1.l4LII 

( Back Next > J 

Figure 9.22 Illustration of the I?ackellmpact vI. 1 fonn which is uscd to select the racket type. 

Figure 9.22 shows the Visual Basic fonn which allows the user to select the desired racket type. 

This figure shows that the user can choose one of a selection of seven different rackets from a 

scroll-down menu; the picture of the chosen racket being shown on the fonn . In section 9.3 it was 

shown that the five section beam model was the most accurate method of simulating a tennis racket. 

Therefore, this is the type of beam model that is used in the Racket Impact v 1.1 program. The 

racket parameters which are required for the model, such as those given in Figure 9.9 and Table 

9.3-9.5 for the ITF Carbon Fibre (6) racket, are stored in the MS Access 2000 database and the 
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relevant values for the selected racket type are retrieved by Racket Impact v 1. 1 program. The 

parameters are stored as variables in the program, and some of these are displayed on the form in 

Figure 9.22 . A slider-bar is used to allow the user to easily select the impact position, relative the 

centre-of-mass of the racketfbeam. New racket types can easily be modelled by entered into the 

relevant values of the racket parameters into the MS Access 2000 database; these parameters being 

obtained using the procedures already discussed in this chapter. 

It has been stated that the ball, stringbed and racket parameters are all stored in an MS Access 2000 

database. The three sets of parameters are stored in three separate tables. The field names for each 

of the tables, and an accompanying description of these fields, is given in Appendix 0 .5. 

f • 

Vt> ... 

< Back I H8l!t > 

v 

IAneeI I 

Figure 9.23 I1lustration of the Racket Impact vI . J form which is used to select the velocity of the 

ball and racket immediately prior to impact. 

The velocity of the ball and racket immediately prior to impact must be specified. Figure 9.23 

shows the form used to input the velocities of these two objects. The velocity of two points on the 

racket is required to account for the rotation of the racket around its centre-of-mass. The velocity is 

specified for (1) the racket centre-of-mass and (2) the impact position on the racket, as illustrated in 

Figure 9.23 . 

After the velocity of the ball and racket has been entered, the Racket Impact v J. l software can 

perform the calculations which are required for the numerical solution. TIlis numerical method is 

described in detail in sections 9.3-9.4 and therefore is only summarised here. The displacement of 

the N beam segments is calculated at time t, along with the displacement of the other parameters in 

the visco-elastic model of the balVstringbed system. The force which acts in this system is then 

calculated by the Racket Impact vI . J software. The displacement of all the relevant parameters can 

then be determined at the time t • Lit. The process is then repeated for the required time period. 
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The Racket impact v 1. I software also performs the calculations for a modelled impact between a 

ball and rigid beam. The equations for this model are given in section 9.2 . The only difference 

between this model and the flexible beam model is that the racket does not deform. Therefore all 

the required parameters have already been entered from the MS Access 2000 database. 

The automated calculating procedure is commenced by selecting the 'Run RigidIFlexible Beam 

Solver' option in the menu. 

Rigid body model 

Ball 

I~~("".)w­

RebcooII'eIocolIo knI,l 1·2'5 O~5 

Rad<et 

tlIN ...... I no­
a' .. ~"""" m---
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Figure 9 .24 1l1ustration of the Rackellmpact vi . I form which gives a summary of the results. 

The Racket impact v 1.1 software outputs a summary of the results, as shown in Figure 9.24. The 

summary includes the results for both the rigid beam model and the flexible beam model to 

11lustrate the effect that the racket deformation has on the model output (e.g. ball rebound velocity). 

An animation of the ball and racket before, during and after impact is also given in this results 

summary, as shown in Figure 9.24. This is merely intended to give the user a illustration of the 

motion and vibration of the ball and racket. If the user requires the actual displacement of each 

segment of the beam, then a separate sel of functions is required. These functions are built-in to the 

Racket Impact vi. I program and the relevant form is shown in Figure 9.25 . 

The 'Data Transfer' form that is shown in Figure 9.25 allows the user to export the data for a wide 

range of parameters into a software package such as MS hxcel 2000 for post-analysis. For 

example, the 'Fourier Analysis' function performs a numerical hannonic analysis on the data to 

detennine the amplitude of the fundamental mode of vibration, for each beam segment. This 

analysis also detennines the zero frequency response of each of the beam segments. As with all the 

'Data Transfer' functions, the relevant data is temporarily stored on the MS Windows Clipboard 

until the user chooses the location that the data should be exported loo 
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Figure 9 .25 111ustration of the Racket Impact vI . I form which allows the user to export the 

relevant data. 

9.5.6 Summary 

In this section, the Racket Impact v J. J software has been described. This software was written by 

the author specifically for solving the models that have been derived in this chapter. The software 

simplifies the method of inputting the required ball, stringbed and racket parameters which are 

needed to solve the model. The calculations are perfonned without any user input. This gives a 

trained user the ability to use the software, with out requiring a thorough knowledge of the 

numerical solution that is needed to determine the required model output. 

The software produces a graphical results surmnary which shows the main output of the model. 

Furthermore, a function is provided which allows the user to export the required data into a 

different software package for analysis. 
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9.6 Summary 

In this chapter, two different models of a ball impact on a freely suspended tennis racket have been 

developed. In both models, the ball and stringbed are simulated using a visco-elastic model. In 

the first model, the racket was simulated using a rigid beam. This beam was assigned the same 

inertial properties (mass, balance point and moment of inertia) as the racket that it was modelling. 

The inherent weakness of this model is the inability of the beam to model the vibrations of a tennis 

racket. 

In the second model, the racket was modelled as a one dimensional flexible beam. A numerical 

solution was derived for the displacement of a beam which was subjected to a time-dependent 

loading. In this solution, it was assumed that the beam had a uniform flexural rigidity but a non­

uniform mass distribution. It was found that a beam which was comprised of five uniform sections 

could be assigned inertial and vibrational properties which were very similar to those of the racket. 

The vibrational properties referred to here are (1) the fundamental frequency of the beam and (2) 

the node locations for this mode. More specifically, the beam was assigned the relevant flexural 

rigidity which gave the same fundamental frequency as that measured experimentally for the 

racket. Also, the beam node correlated very closely with the frame node of the racket; the frame 

node referring to the node point for hammer impacts directly on the frame. It was found that, for 

impacts on the longitudinal axis of the stringbed, the stringbed node was located in a different 

position compared with the frame node. 

The force was applied to the one dimensional beam by the visco-elastic model of the ballfstringbed 

system. It was initially assumed that this force should be applied as a point loading. This lead to 

the predictable result that an impact at the beam node point excited no vibrations of the 

fundamental mode. However, it was subsequently assumed that the force should be applied as a 

distributed loading. Using this assumption, it was found that the impact point which excited 

minimum vibrations did not correlate with the beam node. Furthermore, this impact point 

correlated very closely with the stringbed node. 

It was concluded that a distributed loading, on a five section beam model, is the most suitable 

method of simulating the inertial and vibrational properties of a tennis racket, for an impact with a 

ball. The position of the node on the beam correlates very closely with that of the frame node. 

Also, the impact location which excites minimal vibrations of the beam coincides with the 

measured stringbed node for the tennis racket when a distributed loading is used. 
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10. Impact between a Ball and Freely Suspended Racket 

- Experiment Data 

10.1 Introduction 

In Chapter 9, two different models were developed which simulated an impact between a freely 

suspended tennis racket and a tennis ball. In that chapter, the methods that were used to determine 

the model parameters were presented. In the first model, the racket frame was assumed to be a 

rigid beam and therefore did not deform during impact, whereas in the second model, the racket 

was simulated as a one dimensional, flexible beam. In this current section, the validity of both of 

these models will be assessed by comparing the model results with relevant data that has been 

obtained experimentally. 

In Chapter 7, results are presented for an experimental investigation of an impact which involved a 

tennis ball being propelled perpendicularly towards a head clamped tennis racket. In that 

experiment, a number of parameters were measured, which included the following, 

1. Ball rebound velocity. 

2. Contact time. 

3. Magnitude of ball deformation. 

4. Magnitude of stringbed deformation. 

These four parameters will be measured in this chapter, for a range of impacts along the 

longitudinal (main) axis of the freely suspended racket. In these experiments, the racket is freely 

suspended and therefore it will recoil and vibrate during, and after, impact. In this chapter, the 

racket's motion will be determined experimentally. 

In this section, five separate experimental arrangements are used to measure the parameters which 

are discussed above. Each of these experiments involves a different experimental arrangement 

which has been optimised for the aim of the specific experiment. These five separate experiments 

are, 

1. Measurement of the ball rebound velocity. 

2. Measurement of the motion ofthe ball, stringbed and racket during impact. 

3. Measurement of the ball and racket velocity after impact. 

4. Modal analysis of a tennis racket. 

5. Measurement of racket vibrations. 

These experiments shall be discussed individually in the following sections of this chapter. 

245 



Chapter 10 Ball and freely suspended racket impact 

10.2 Experiment 1 - Ball rebound velocity 

10.2.1 Introduction 

One of the most important features of the model is its ability to predict the ball rebound velocity for 

an impact between a ball and freely suspended tennis racket. In Chapter 9, it is shown that the 

model is capable of calculating this velocity, but the accuracy of the results has not yet been 

verified. In this current section, this issue will be addressed. The comparison between the model 

and experiment results will be made using five rackets with vastly different properties (racket mass, 

stiffness, etc.) which are assumed to cover the typical range used in the game of tennis. The 

experiments will be perfomled for a range of impact locations along the longitudinal axis of the 

tennis racket. 

In this chapter, all impact locations will be generally referenced to the geometric string centre 

(GSC) of the racket, this point corresponding to the centre of the racket head. This is used as a 

reference position as it is the most tangible method of visualising the impact location. 

10.2.2 Experimental Procedure 

Speed gates 

Pin support 
____ for racket 

-- 1. Tip 
+- 2. GSC 

-- 3. Throat 

Figure 10.1 Illustration of the experimental layout used to measure the ball rebound velocity for 

an impact on freely suspended racket. Three nominal impact locations are illustrated. 

(aJ Introduction 

In this experiment, the tennis racket was supported at the tip on a smooth pin with its longitudinal 

axis orientated vertically, as shown in Figure 10.1. Pressurised tennis balls were projected at the 

longitudinal axis of the racket, perpendicular to the stringbed, at velocities between 15 and 45 m1s 

(33 and 100mph). Three discrete impact points on the racket were tested and these points are 
defined as, 

1. Tip. 

2. GSC (Geometric String Centre). 

3. Throat. 
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The inbound velocity of the ball was detennined using speed gates. These were positioned 

approximately 1.0m away from the tennis racket. The ball rebound velocity was also measured 

using the speed gates, for impacts located at positions 2 and 3. However, for impacts located at 

position 1 the ball rebounded with a velocity which was generally too low to be sampled by the 

speed gates. For these impacts, the rebound velocity was detennined using a Kodak Motioncorder 

high speed video system. This camera was positioned perpendicular to the flight of the ball and 

operated at a frame rate of 240 frames per second. The general operation of this camera is given in 

Williams (2000). 

The location of the three impact positions, for each of the tennis rackets, is given in Figure 10.2. It 

should be noted that all the distances and racket sizes are drawn using a scale of 13:1. (Only two 

impact locations are given for the Head racket as the strings broke during testing). All the impact 

locations are referenced to the geometrical stringbed centre (GSC). For completeness, the position 

of the experimentally measured stringbed nodes are also given in this figure; this point 

corresponding to the experimentally measured node of the fundamental mode of transverse 

vibrations for the racket. 

Yonex (1) ITF Aluminium (2) Head (3) MHIer(5) IMtson (7) 

+ Strlngbed node 

Figure 10.2 Definition of the three impact positions which were tested for each of the five tennis 

rackets used. The stringbed node location is also illustrated. 

The five rackets shown in Figure 10.2 have been chosen to represent the wide range of typical 

rackets used in the game of tennis. The rackets have been assigned an ID number and this is given 

next to the name in this figure. The properties of these rackets are given in Chapter 9 and 

Appendix D. The Yonex tennis racket is an example of a very light racket which has a large head 

and is head heavy (the centre-of-mass is located towards the head). The ITF Aluminium racket has 

a very low stiffness, it is head light and has a relatively low mass moment of inertia. The Head 

and Miller rackets are very similar and can be considered to have 'average' racket parameters. The 

main difference between these two rackets is that the Head racket is head-light and the Miller 

racket is head-heavy. The Wilson racket is the heaviest racket that is tested in this study, and is 

also relatively head-light. 
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(b) Repeatability a/impact location 

The nominal impact locations for each racket are defined in Figure 10.2, and the air cannon is 

aimed at the required position. However, due to the nature of the equipment, there will be some 

level of uncertainty in the actual impact location. It is clearly important that the impact position for 

each experiment is known, as the ball rebound velocity is a function of this position (Goodwill and 

Haake (2000)). This could be obtained by recording each impact using a high speed video camera, 

but this is not practical for the volume of testing being carried out in this section. 

In these experiments the ball was propelled towards the racket using an air cannon. It is well­

established that this method gives a highly repeatable impact location, compared with that obtained 

using other propulsion methods. However, it must be accepted that there will be a finite level of 

uncertainty in the impact location. Several procedures were adopted to minimise this uncertainty. 

For example, the cannon was positioned at the closest practical distance away from the tennis 

racket. Also, a supplementary frame was manufactured to provide further support to the end of the 

cannon and thus minimise the potential for the cannon to move during use. 

The impact location was identified by placing a sheet of carbon-copy paper, attached to a blank 

piece of paper, onto the stringbed. The ball was projected at this arrangement resulting in an 

imprint on the paper corresponding to the impact location. The cannon was adjusted accordingly to 

obtain the desired impact point. 

A similar arrangement was used to quantify the repeatability of the impact position. The cannon 

was aimed at a nominal location on the stringbed; a piece of carbon paper (and white paper) being 

attached at this position. The ball was projected at the racket at nominal speeds of 15, 20, 30 and 

45m1s, each speed being repeated 10 times with the white paper frequently replaced. It was found 

that, for each velocity increment, none of the impacts were located more than 10mrn away from the 

mean position, in any direction. Furthermore, it was found that most impacts were not more than 

5mrn away from this mean. However, it was also noted that the mean impact location for the ball 

propelled at 15m1s was approximately 1O-15mm below the mean impact position for the impact 

velocities of 20, 30 and 45m1s; the impact location for these velocities being almost identical. 

Clearly this was due to the gravitational force which acts on the ball during flight which affects the 

ball's trajectory for the lower inbound velocities. 

In this experiment, the ball is propelled towards the racket at velocities of between 15 and 45m1s. 

It was concluded that the cannon should initially be positioned for impact velocities between 15 

and 20mls, using the carbon paper to identify the impact location. The cannon was then 

repositioned for impact velocities above 20mls. This method ensured that the majority of impacts 

landed within 10mrn of the intended position. 
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(c) Error associated with the repeatability of the impact location 

In this section, the ball rebound velocity will be measured for a range of nominal impact locations. 

It has been shown that the desired impact location may differ from the actual location by up to 

10mm. The actual location will not be measured in each experiment, so the effect in the results 

must be identified to give an estimation of the potential errors in the experimental data. This 

involves establishing the relationship between the uncertainty of the impact location and the change 

in ball rebound velocity that this causes. A short theoretical study is discussed below to estimate 

this relationship. 

The ball rebound velocity for an impact on the longitudinal axis of a freely suspended tennis racket 

can simply be calculated using the Racket Impact software, as described previously. However, this 

software is not capable of modelling impacts that are eccentric to the longitudinal axis. Williams 

(2000) presented a model of an impact between a freely suspended racket and a tennis ball, in 

which the racket was assumed to be a rigid body. The model was derived using simple Newtonian 

mechanics and the coefficient of restitution (COR) parameter was used to represent the energy 

'loss' in the system. The model was derived for impacts at any location on the racket, not just 

along the longitudinal axis. Therefore, this model could be used to assess the reduction in the ball 

rebound velocity that results from an eccentric impact. 

A preliminary study revealed that the relationship between the shift in impact location and the 

resulting change in ball rebound velocity was not uniform for all impact locations on the 

longitudinal axis. It was also found that the change in ball rebound velocity was dependent on the 

inertial properties of the tennis racket. Consequently, in the example below, two different racket 

types and two different impact locations are used to illustrate the effect that the uncertainty of the 

impact location has on the ball rebound velocity. 

Figure 10.3 gives an illustration of the effect on the ball rebound velocity which results from a shift 

of lOmm in the impact location. For example, for impacts close to the tip of the Miller racket, a 

shift of 10mm towards the butt end acts to increase the ball rebound velocity by 8%. The data is 

presented for two different rackets which have vastly different inertial characteristics; the Miller 

racket being head-heavy and the ITF Aluminium being head-light. Two nominal impact locations 

are presented which approximately correspond to the positions labelled 1 and 3 (tip and throat) in 
Figure 10.1. 

The data in Figure 10.3 confirms that a shift of 10mm in the impact location does not effect the ball 

rebound velocity in a consistent manner. It can be seen that the ball rebound velocity is highly 

sensitive to the impact position, for impacts located near the tip of the ITF Aluminium racket. 

Conversely, impacts located towards the throat of the Miller racket are not sensitive to the ball 
impact position. 

The results of this theoretical error analysis study will be referred to later in this section. 
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Key 

10mm 

10rrrn "'1---" Nominal Impact Position 

10rrrn 

Miller racket ITF aluminium racket 

Figure 10.3 Schematic illustration of the difference in the ball rebound velocity that is caused by 

a shift of 10mm in the impact location. The difference is given as a percentage of the ball rebound 

velocity which is calculated at the nominal impact position. The examples are given for two 

different racket types and two impact locations. 

(d) Error associated with the determination of the ball velocity 

Two different experiment techniques are used in this study to determine the inbound and rebound 

velocity of the ball ; these being the speed gates and the high speed video system. The speed gates 

are the preferred method of determining the ball velocity as this apparatus gives a direct value of 

the speed, and does not require any additional analysis procedures to be conducted. 

A potential error of this experiment is a function of the position of the speed gates, with respect to 

the tennis racket. The speed gates are positioned approximately 1.0m away from the tennis racket, 

in order for them to operate reliably. Using a simple trajectory plot (Haake et af. 2000) it can be 

shown that a ball travelling at 20mls through the speed gates, towards the racket, will have 

decelerated by O.4m1s when it reaches the racket. This represents a 2% variation in the inbound 

speed of the ball and a similar calculation can be performed for the rebound velocity. Although 

this difference is small, it highlights the considerations which must be made when using this type 

of apparatus. 

A high speed video system is used to determine the ball rebound velocity for the impacts in which 

the ball speed was too Iow for the speed gates to function correctly. The high speed video images 

are sampled using Vidimas vi software using a similar technique to that described in section 7.2.3. 

The motion of the ball was sampled for a distance of approximately 350mm. A simple 

repeatability study, similar to that de cri bed in section 7.2.3, was used to estimate the accuracy of 

the manual sampl ing method which was conducted in Vidimas vi. It was found that the standard 
deviation of the amp\ed co-ordinate ~as 2.6mm. This infer a standard deviation of 1.5% in the 
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calculated value of the ball velocity. This low value is achievable because the motion of the ball is 

sampled for a relatively long distance/period. 

10.2.3 Determining the parameters required by the model 

In this section, the model will be used to calculate the ball rebound velocity for an impact between 

a ball and freely suspended racket. The Racket Impact software will be used to determine the 

model solution. This software already contains the parameters required for the Pressurised ball 

and the beam models of the five tennis rackets. However, it does contain the parameters which 

define the stringbed stiffness of the rackets. 

The rackets were not restrung before this testing commenced and therefore the tension of the 

strings was not known. However, this is assumed to be unimportant in this testing as the model 

does not require the tension to be defined; the important parameter being the stringbed stiffness 

rather than the string tension. 

The method used to determine the parameters which define the stringbed stiffness in the model has 

been given in Chapter 8. To summarise, the quasi-static stiffness of the stringbed is determining by 

applying a force using a rigid disc (diameter of 55mm) and measuring the resulting displacement. 

[10.1] 

where as, bs and Cs are empirically determined coefficients of a second order polynomial trendline 

that was plotted through the experimentally obtained quasi-static stiffness data. The values of as, 

bs and Cs are used to define the stiffness of the stringbed in the model. 

In this section, three different impact locations are investigated. Williams (2000) confirmed that 

the stringbed stiffness was not uniform across the stringbed. Therefore, the stringbed stiffness 

needs to be obtained for each impact location, giving a set of model parameters (as, bs and cs) for 

each location. The visco-elastic model of the stringbed was derived using data obtained only for 

stringbed compressions at the geometric string centre of the racket. However, in this section, it is 

assumed that this model is valid for impacts at all locations on the stringbed. 

Figure 10.4 illustrates the stringbed stiffness for the five rackets. The data is presented for two 

different locations on the tennis rackets. Figure lO.4(a) and Figure lO.4(b) illustrate the stringbed 

stiffness measured at the tip and GSC respectively. The data for the third location (the throat) is 

given in Appendix E.I. 

The data in Figure 10.4 shows that the stringbed stiffness which is measured at the geometric string 

centre is significantly lower than that measured at the tip. This confirms that the stringbed stiffness 

can not be considered to be uniform across the face of the racket. The data in these figures was 

used to determine the model parameters (as, bs and cs) for each location, and these values are given 
in Appendix E.1. 
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Figure 10.4 Experimentally measured stringbed stiffness at two different locations on the racket. 

It is difficult to obtain a generic relationship which could be used to define the relationship between 

the stringbed stiffnesses which were measured at the GSC, at the throat and at the tip . However, it 

was generally found that the stringbed stiffness was approximately 10-15% higher at the throat 

position with respect to the stiffness that was measured at the geometric string centre. Also, it was 

found that the stringbed stiffness measured at the tip location was 15-20% higher than that at the 

GSc. 

The model parameters (as, bs and cs) were added to the MS Access 2000 database to complete the 

set of parameters required by the model. The Racket Impact software was used to calculate the ball 

rebound velocity for the impact between a ball and freely suspended racket. Two separate model 

solutions were obtained. Firstly, the model solution was obtained using the assumption that the 

racket was a rigid beam. Secondly, it was assumed that the racket could be modelled as a one­

dimensional flexible beam using the five section beam model that was described in Chapter 9. The 

Racket Impact software assumes that the force is applied to the beam as a distributed load. 

The impact locations, for each of the five rackets, are given in Figure 10.2. It has been stated 

earlier that the Racket Impact software can only model impacts which are located at discrete points 

along the longitudinal racket. This is because the beam/racket is split into 51 segments and the 

impact must be located at the centre of one of these segments; the distance between these segment 

centres being approximately l3rom. Generally, the impact locations shown in Figure 10.2 did not 

coincide with one of these segment centres. A simple linear interpolation method was used to 

estimate the ball rebound velocity, for impacts at the desired position. This involved the 

calculation of the ball rebound velocity for impacts on the two segment centres which are located 

either side of the desired impact position. The ball rebound velocity at the desired impact position 

can then be interpolated from these two results. This general interpolation method is used 

throughout this chapter to model impacts which are located at a point which does not coincide with 

a segment centre. 

252 



Chapter 10 

10.2.4 Results and Discussion 
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Figure 10.5 Comparison of model and experimental values of ball rebound velocity, for three 

nominal impact positions on five different racket types. The data points refer to the experimental 

data, and the curves represent the data for the two different model beams. 

The results for this study are given in Figure 10.5, for all five tennis rackets. In each graph, data is 

presented for the three impact locations (tip, GSC and throat). The data points represent the 

experimental data, and the curves illustrate the data obtained using the Racket Impact v 1.1 
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software. The model uses the nominal impact locations to determine the solution, even though the 

actual impacts do not necessarily land at these points due to the finite accuracy of the ball cannon. 

Figure 10.5 shows that the rigid and flexible beam model solutions are almost identical for impacts 

at the GSc. This is because this point coincides very closely with the stringbed node point for each 

of the rackets, as illustrated in Figure 10.2. Therefore, the flexible beam model acts very similarly 

to the rigid beam model at this point. Furthermore, it can be seen that there is a very good 

correlation between the model and experiment data for impacts at the GSC, for all five tennis 

rackets. The results generally correlate to within approximately 5%, with maximum differences in 

the order of 10%. 

For impacts at the tip of the racket, there is a considerable magnitude of scatter in the ball rebound 

velocity. The two models give different results due to the flexible beam deforming during impact 

which results in a lower ball rebound velocity. It can be seen that the flexible beam model 

generally correlates more closely with the experimental data; the difference between the two sets of 

results being less than Imls. 

For impacts at the throat position, it can be seen that the rigid beam model calculates a ball rebound 

velocity which is considerably larger than that which is calculated using a flexible beam model. 

This is because this impact position is located at the furthest distance from the stringbed node, as 

illustrated in Figure 10.2. The experimental data generally correlates very closely with the flexible 

beam model data, for most of the rackets. This illustrates that a rigid beam model is not capable of 

modelling an impact between a ball and tennis racket. 

It is interesting to note that the ball rebound velocity which was measured for impacts at the GSC 

are very similar to those determined for impacts at the throat. Impacts at the throat are closer to the 

centre-of-mass of the racket and would intuitively result in higher ball rebound velocities, due to 

the higher 'effective' mass of the racket at this point. However, the data in Figure 10.5 illustrates 

that this is not the case, experimentally or theoretically. This finding agrees well with the 

theoretical results in Kawazoe (1997b) and the experimental data in Brody (1997). 

In section 10.2.2, it was stated that the ball impact position may vary by up to 10mm, and this leads 

to a variation in the ball rebound velocity. It was shown that the magnitude of the this variation 

was a function of both the racket and the impact position. For example, it was found that this 

variation may be up to 20% for the ITF Aluminium racket, but only 9% for the Miller racket. It was 

also shown that the variation was largest for impacts which are close to the tip of the racket, 

compared with those towards the throat end. A qualitative analysis of the scatter in the plots in 

Figure 10.5 correlates with the errors predicted using the error analysis. For example, the largest 

scatter in the experimental data in this figure is that for the ITF Aluminium racket, and also for 

impacts located at the tip of the racket. By comparison, the scatter in the experimental data is 

minimal for impacts at the throat. 

In section 10.2.2, it was also stated that the use of speed gates to determine the ball inbound and 

rebound velocities introduces an error in the data. For example, it was shown that the speed gates 

calculate a ball inbound velocity which is approximately 2% larger than the actual speed of the ball 
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which it impacts on the racket. This error should be taken into account when assessing the 

correlation between the experimental and model data. 

10.2.5 Summary 

In this section, it has been shown that the Racket Impact software can be used to calculate the ball 

rebound velocity, for impacts where the ball lands on a range of positions on the longitudinal axis 

of the tennis racket. This software calculated two different model solutions. In the first model, the 

racket was assumed to be a rigid body and this model generally over predicted the ball rebound 

velocity. In the second model, the racket was modelled as a one-dimensional flexible beam. It was 

found that the ball rebound velocity calculated by this model exhibited a very high correlation with 

the experimental data. This comparison was made for five different rackets, each with vastly 

different characteristics. 

10.3 Experiment 2 - Measuring the motion of the ball, stringbed and 

racket during impact 

10.3.1 Introduction 

In the previous section, the experimentally measured ball rebound velocity is compared with that 

which is calculated by the model, for the impact between a ball and freely suspended racket. A 

good correlation was found between the two sets of data and therefore it could be concluded that 

the model represents a good simulation of the impact, in regard to the ball rebound velocity. 

However, the ball rebound velocity is only one of several components that the model calculates. In 

this section, the motion of the ball, stringbed and racket will be measured experimentally, and this 

data will be compared with the appropriate results calculated by the model. 

The work conducted in this section is analogous to that presented in section 7.2. In that section, 

high speed cinematography was used to measure the magnitude of the deformation of the ball and 

the stringbed, for an impact between a ball and head-clamped racket. The data was then used to 

verify a model of this impact. In this current section, a similar experiment shall be conducted for 

an impact between a ball and a freely suspended tennis racket. In this section, the following 

parameters will be measured throughout the duration of the impact, 

1. Ball deformation. 

2. Stringbed deformation at the impact point. 

3. Racket frame displacement at the impact point. 

10.3.2 Experimental Apparatus 

Figure 10.6 shows the experimental arrangement used to measure the magnitude of the ball and 

stringbed deformation, and the displacement of the racket, during impact. The ball was propelled 

normal to the stringbed plane using an air cannon. The ball was aimed at the geometrical string 

centre of the racket head. The inbound and rebound velocity of the ball were measured using speed 
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gates which were positioned approximately 1.Om from the tennis racket. The racket was supported 

on a small, smooth pin at the tip so that the longitudinal axis was orientated vertically. 

Tracker 

·······:::::.·:;>·25mm 
25mm 

Air cannon 

Speed gates 
~~ 

..... y 

Freely suspended 
racket 

""" 

High speed 
video system 

Figure 10.6 Illustration of experimental arrangement showing the tracker attached to the 

stringbed of a freely suspended racket. 

The Phantom v4 high speed video system was used to record the impact at a rate of 4100 frames 

per second, and a resolution of 512 x 128 pixels. The focal axis of the camera was aligned 

perpendicular to the motion of the ball, and therefore the stringbed was not visible. 

The motion of the stringbed was sampled using the same technique as described in section 7.2. A 

rigid, hollow carbon fibre rod, defined as a tracker, was attached to the geometric string centre of 

the stringbed using a light thin wire and metal crimp. The wire was attached very tightly so that 

there was sufficient friction acting between the two surfaces to ensure that the axis of the rod 

remained horizontal throughout impact. The total length of the carbon fibre rod and crimp was 

approximately 40mm. 

A short, light carbon fibre rod, with a diameter of 2mm, was attached rigidly to the tip of the 

racket. Similarly, a 50mm long carbon fibre rod was inserted through a drilled hole at the top of 

the handle of the racket. The tips of each of the rods were coated in a bright white paint to clearly 

identify the ends. The location of the two rods and the tracker is shown schematically in Figure 

10.6. 

In these experiments, two different types of tennis ball were tested; these being a standard 

Pressurised and Pressureless ball. These two ball types are described in Chapter 4 and are 

representative of the majority of balls that are used in the game of tennis. The balls were propelled 

at the racket at a range of velocities between 20mls and 40mls. The racket used in this section was 

the ITF Carbon Fibre tennis racket. Two rackets were used and these were strung at tensions of 40 

and 70lbs, using a standard 15 gauge nylon string. 
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10.3.3 Analysis o/high speed video images 

(a) Procedure 

Time = Oms Time = 2ms 

Ball and freely suspended racket impact 

Time = 4ms Time = 6ms 

Figure 10.7 High speed video images showing an impact between a ball and freely suspended 

racket (ball impact velocity = 18mJs). The five points which are sampled are illustrated in the third 

image. 

The operation of the camera is described in detail in section 3.3. Typical high speed video images, 

which were obtained in this study, are shown in Figure 10.7. The second image in the sequence is 

enhanced to show the white paint on the markers. The third image defmes the points which are 

sampled using the Vidimas vi software. The position of the left edge of the ball Pe, the right edge 

of the tracker Pr, the racket tip PA and the two points PC! and PCl were sampled. The sampled data 

was exported from Vidimas vIand stored in an MS Excel worksheet. These coordinates were 

converted into physical units using a calibration grid, as described in Chapter 3. The tracker was 

rigid and therefore it was assumed that the motion of the tracker was identical to the motion of the 

section of the stringbed which it was attached to. 

One of the objectives of this section involves the determination of the displacement of the racket 

frame at the ball impact position, during impact. This data will then be compared with the model 

solution which is calculated by the Racket Impact software. The displacement of the impact point 

on the racket (x/p) could have been sampled directly from the high speed video images in Figure 

10.7 because the side of the racket frame is clearly visible to the camera. However, this would only 

constitute a valid procedure if the ball impacted directly on the longitudinal axis. Impacts at any 

location which is eccentric to the longitudinal axis will cause the racket to rotate around this axis. 

This rotation is discussed in the analysis below. 
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(b) 
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Figure 10.8 Definition of the rebound velocity at the edge of the racket frame for two different 

impact locations which are, (a) on the longitudinal axis and (b) eccentric to the longitudinal axis. 

Figure 10.8 defines the velocity of two points on the racket immediately after the impact with a 

tennis ball has finished . In this analysis it is assumed that the racket (and stringbed) act as a rigid 

body, as done by Williams (2000). For the impact in Figure 10.8(a) it can easily be shown that the 

velocity at the eentre of the racket V'IP is equal to that at the edge of the racket V 'EDGE. However, 

for the eccentric impact in Figure 10.8(b), this is not the case. For example, if the eccentricity 

distance z is equal to 10mm, the velocity V'EDGE is 20% higher than the velocity V 'IP' (This 

example uses the equations defined in Williams (2000), the inertial properties of an ITF Carbon 

Fibre tennis racket and a coefficient of restitution of 0.8.) Furthennore, the model was used to 

show that, for a specific ball impact velocity, the velocity V'JP (and all other points along the 

longitudinal axis) was identical for both the impact in Figure 10.8(a) and that in Figure 10.8(b). 

In section 10.3 it was found that the ball impact position varied by up to 10mm from the desired 

position. Although this appears to be a very small eccentricity of impact, it has been shown above 

that it has a large effect on the rebound velocity of the edge of the racket, using a simple rigid body 

model of the impact. Therefore, when the high speed video images, such as those in Figure 10.7, 

are analysed, it is not valid to sample the edge of the racket and assume that the motion of this 

point is equal to that for an impact in which the ball impacted on the longitudinal axis. Therefore, 

initially it would appear that it was not possible to accurately determine the displacement of the 

racket, at the impact point, during impact. However, the utilisation of one of the findings obtained 

using the rigid body model allows an alternative method to be used. It was found that the velocity 

of the racket, at all points along the longitudinal axis, is identical for eccentricities of z=0 and 

z= IOmm. Therefore, it can be concluded that the displacement of the racket at any position on the 

longitudinal axis is not influenced by a small eccentricity in the impact location. This means that 

this displacement can be measured for eccentric impacts (of up to 10mm) and it can be assumed 

that this is equal to the displacement measured for an ideal on-axis impact. The application of this 

finding is described below. 

258 



Chapter 10 Ball and freely suspended racket impact 
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Figure 10.9 Definitions of the ball, stringbed and racket displacements. Two different views of 

the impact are given. 

The definitions of the ball , stringbed and racket displacements are shown in Figure 10.9. A side 

view of the impact is given to illustrate the displacements of three points on the racket. The point 

C is equivalent to the point located equidistant from Cl and C2; these two points being defined in 

Figure 10.7. The displacements of the points A and C, which are defined as XA and Xc respectively, 

are determined directly from the high speed video images. However, the displacement which is 

required in this study is that of the impact point on the racket, defined as XIP. In this analysis, it is 

assumed that the racket is rigid and also that the angle of rotation BR is negligible for the duration 

of the impact. Therefore the displacement X/P can be calculated from the displacements XA and Xc 

using the simple geometrical relationship which relates the points A and C, and the impact point. 

A plan view of the impact is given in Figure 10.9. The stringbed displacement Xs is simply equal to 

that of the tracker. The deformation of the stringbed Os can be calculated using, 

[10.2] 

Similarly, the deformation of the ball can be determined using, 

[10.3] 

The displacement of the ball centre-of-mass XB is of more interest than the magnitude of the ball 

deformation 8B, as discussed in section 7.2.5. The displacement XB can not be determined directly 

from the high speed video images. However, in section 7.2.5 it was shown that the empirically 
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derived equation [7.2] could be used to determine this displacement. It is to be assumed that this 

equation is valid for impacts on a freely suspended racket and a modified form of [7.2] is, 

[10.4] 

where the term (XB - xs) is the relative displacement of the ball centre-of-mass with respect to the 

stringbed displacement Xs· 

(b) Error associated with assumption that the racket frame is rigid 

Figure 10.9 illustrates the two points A and C which are sampled in order to determine the 

displacement of the impact point of the racket frame XlP. The method used to determine XlP 

involves the interpolation of the displacements of A and C and the assumption that the frame is 

rigid. Clearly, a racket frame is not rigid and the error induced by this assumption can easily be 

evaluated using the Racket Impact software. 
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Figure 10.10 Comparison of the displacement ofthe racket at the impact point calculated using 

the Racket Impact software. The results are presented for two different assumptions regarding the 

beam used to simulate the racket. 

The Racket Impact software uses two different assumptions to simulate the racket; these being a 

rigid beam and a one-dimensional flexible beam. This software was used to determine the 

displacement of the impact point of the racket, for an impact at the geometric string centre, and 

these results are given in Figure 10.10. The ball inbound velocity was 25m1s and the racket was an 

ITF Carbon Fibre racket. 

Figure 10.10 illustrates the difference between the model solutions for the two different 

assumptions regarding the beam. It can be seen that the maximum difference between the two 

curves is less than 1mm and therefore can be considered to be negligible for this study. 

The findings of this analysis confirm that it is valid to assume that the racket is rigid, when 

determining the displacement X/po However, it should be remembered that this error analysis was 

only conducted for impacts at the geometric string centre which is close to the node of vibration for 

the fundamental mode. For other impact locations, it may not be valid to assume that the racket is 

rigid. 
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(c) Comment on the accuracy o/the measured coordinates 

In this section, high speed cinematography is used to determine the motion of the ball, stringbed 

and racket during the impact between a ball and freely suspended racket. Clearly, there are errors 

associated with this technique. Many of these potential errors can be minimised simply by 

following established guidelines for cinematography analysis. For example, it must be ensured that 

the camera is positioned such that all the sampled points are in the same vertical plane. This can 

easily be verified by placing a grid with an uniform line spacing into the relevant vertical plane, 

and subsequently record an image of this grid using the camera. The image can then be analysed 

using Vidimas vl to ensure that the grid spacing on the image is uniform. This procedure was also 

used to verify that the curvature of the lens was not distorting the image. 

The points on the images were sampled using the Vidimas vl image analysis software. Each point 

that was sampled does not always have a well defined edge and this reduced the possible accuracy 

of the analysis. A simple repeatability study was conducted to quantify the accuracy of the 

sampling method. In this study the points PA and PH on the image shown in Figure 10.7, were each 

sampled 60 times. This data was used to calculate the mean values of the x co-ordinates for both 

points, as well as the uncertainty in this co-ordinate for each of the 60 samples. This analysis was 

repeated for a further two images which were randomly chosen, resulting in a data set of 

uncertainties that comprised of 180 samples. It was assumed that these uncertainties were normally 

distributed about the calculated mean x co-ordinate, for the relevant image. It was found that the 

standard deviations for the x co-ordinate of points PA and PH were 0.9mm and 1.2mm respectively. 

This gives a good estimate of the realistic accuracy of the sampled data in this experiment. 

(d) Supplementary measurements 
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Figure 10.11 Definition of the displacement of the racket, and example data for the racket 

centre-of-mass displacement XCM and racket orientation BR. 

261 



Chapter 10 Ball and freely suspended racket impact 

Although the main objective of this section involved the determination of the displacement of the 

ball, stringbed and racket, during impact, other parameters were also measured. The speed gates 

were used to measure the ball inbound and rebound velocity. Also, the motion of the racket (points 

A and C) was sampled during the period immediately after the impact had finished so that the 

racket rebound velocity could be calculated. 

When a ball impacts on the longitudinal axis of a freely suspended tennis racket, the racket will 

both translate and rotate around its centre-of-mass (COM). The displacement of the racket COM 

XCM can be determined using the sampled displacements XA and Xc, as defined in Figure 10.11. The 

angle of rotation BR can also be determined from these two displacements. The displacement XCM 

and the angle BR can be plotted as a function of time, as shown in Figure 10.11. Linear trend lines 

are plotted through the data in these figures; the gradient of these lines being equal to the respective 

velocity. For example, the rebound velocity of the racket COM is defined as V'CM and is equal to 

the gradient of the curve labelled XCM in Figure 10.11. The rebound velocity of the impact point on 

the racket V'/P was determined using, 

[10.5] 

where d is the distance between the impact point and the racket centre-of-mass. 

In this analysis, the displacement of the racket COM is typically measured over a distance of only 

25mm. Earlier in this section it was stated that the sampled points are subject to a standard 

deviation uncertainty of 1mm. Potentially, this uncertainty in the displacement could result in a 

standard deviation in the calculated value of the racket COM velocity which is equal to 8%. 

However, this uncertainty in the calculated velocity will be reduced because the calculation uses 

the displacement of the racket COM at a number of time intervals, as illustrated in the graph in 

Figure 10.11. This procedure acts to minimise the errors by the use of a trend line which is plotted 

through the data. Whilst this analysis does not determine a definite value for the standard deviation 

of the racket COM velocity, it highlights the potential uncertainties in the data, for this type of 

experiment. 

10.3.4 Determining the parameters required by the model 

In this section, the model will be used to calculate the displacement of the ball centre-of-mass, 

stringbed and racket frame. The Racket Impact software will be used to determine the model 

solution. This software already contains the parameters required for the Pressurised and 

Pressureless balls and the beam models of the fTF Carbon Fibre tennis racket. However, it does 

not have the parameters which define the stringbed stiffness for these rackets strung at 40lbs and 

70lbs. 

The method used to determine the parameters (as, bs and cs) which define the stringbed stiffness in 

the model has been given in section 10.2. These parameters are empirically determined 

coefficients of a second order polynomial trendline that was plotted through the experimentally 

obtained quasi-static stiffness data. This stiffness data is determined by applying a force using a 

rigid disc (diameter of 55mm) and measuring the resulting displacement. 
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In this section, the values of as, bs and Cs were determined for each of the two string tensions, 70lbs 

and 401bs. These parameters were obtained for compressions at the geometric string centre, as this 

corresponded with the location of the ball impact position. 
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Figure 10.12 Experimentally measured stringbed stiffness for the ITF Carbon Fibre which is 

strung using two different string tensions. 

Figure 10.12 illustrates the stringbed stiffness for the ITF Carbon Fibre racket which is strung 

using two different string tensions. The data is presented for a compression at the geometric string 

centre ofthe racket. The data in this figure was used to determine the model parameters (as, bs and 

cs) for each string tension, and these values are given in Appendix E.2. 

The model parameters (as, bs and cs) were added to the MS Access 2000 database, and therefore all 

the required model parameters are now known. The Racket Impact software was used to calculate 

the displacement of the ball centre-of-mass, stringbed and racket for the impact between a ball and 

freely suspended racket. In the following section, this model data is compared with the 

experimentally measured data. 

10.3.5 Results and discussion - Model and Experiment Data 

In this section, the experimental results obtained using the methods described in the previous 

section, are compared with the results calculated by the model. 

Figure 10.13 and Figure 10.14 show the displacement of the ball centre-of-mass, stringbed and 

racket (at the impact point) for impacts in which the ball inbound speed is 20mls and 30m/s 

respectively. The data is presented for both the model and the experiment. Further data is 

presented in Appendix E.2, for other ball inbound speeds. The model data which is presented here 

is that which was calculated using the flexible beam model. For interest, it should be noted that the 

data calculated using the rigid beam model is very similar to obtained using the flexible beam 

model. 
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These figures show that the model and experiment data generally correlate to within approximately 

4mm; the majority of the data exhibiting a higher correlation than this. The main differences which 

are evident between the two sets of data are analogous to those which were found in Chapter 8. In 

that chapter, a similar comparison was made as that in Figure 10.13, except the data was 

determined for an impact on a head clamped racket. Both the maximum ball COM displacement 

and stringbed displacement are higher for the experiment, compared with the model. This is 

assigned to the fact that the two sets of data represent subtly different parameters. It can also be 

seen that, towards the end of impact, the experimentally determined stringbed displacement returns 

to zero before that which is calculated by the model. Both these differences were essentially 

assigned to the fact that the ball and stringbed are complex three-dimensional objects and they are 

being simulated using one degree-of-freedom models. This is expanded upon further in Chapter 8. 

Figure 10.13 and Figure 10.14 show the displacement of the racket at the impact point, for both the 

model and experimental values. It can be seen that the two sets of values generally correlate to 

within approximately 2mm. It has been shown that the points sampled from the high speed video 

images have standard deviations of 1 mm. Furthermore, the assumption that the racket is rigid 

results in a maximum error which is also in the order of I mm. 

A supplementary reason for the difference between the model and experiment data lies in the 

definition of the instant at which the impact commences. The defined time at which impact 

commences determines the time at which the displacements are plotted in the figures. For 

example, if the time at which impact commenced was shifted by O.Sms, then all the data in Figure 

10.13 and Figure 10.14 would be shifted by this amount. It is difficult to calculate an estimate of 

the uncertainty in the definition of the time at which impact commences. However, if one 

considers that, for example, a ball travelling at 20mls, takes 0.2ms to travel just 4mm, then it 

becomes apparent that the definition of the instant at which impact commences is difficult to define 

with an accuracy of more than approximately 0.2ms. A shift in the data in Figure 10.13 and Figure 

10.14 of the order of 0.2ms would significantly change the relative position of the experimental 

data with respect to the model data, highlighting the dependency of the plot on the definition of the 

time at which impact commences. 

To summarise, the experimental and model data exhibit a high correlation. Any differences 

between the two can be assigned to the estimated uncertainty in the experimental data and the fact 

that the complex interaction between the ball, stringbed and racket frame is being simulated using a 

much simpler model. 

Figure 10.15 shows a comparison of the ball rebound velocity calculated by the model and that 

measured experimentally, for impacts at the geometric string centre of the freely suspended racket. 

This data is presented separately for the Pressurised and Pressureless balls. The model data which 

is presented is that calculated using the flexible beam model. 
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Figure 10.15 Comparison of the ball rebound velocity measured for the experiment and 

calculated using the flexible beam model. The data is presented for two different string tensions 

and two ball types . 

Figure 10.15 how that the model correlates with the experimentally obtained ball rebound 

velocity to within approximately O.Srn/s, for all combinations of ball type and string tension. This 

difference is of the same order of magnitude as the scatter in the experimental data. For a specific 

ball type. the model calculate a higher ball rebound velocity for the racket strung at 40lbs, 

compared with that ·trung at 701bs; this difference generally being 5-10%. This difference is not 

clearly detected in the experimental results due to the low volume of data collected. 

In Figure 10.16. the experimentally measured racket rebound velocity is compared with that 

calculated by the flexible beam model. It can be seen that the two sets of results correlate to within 

approximately 10%. It is mlere (ing to note that the two model solutions for the rackets strung with 

the different string tensions are almost identical. 
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calculated using the fleXIble be m m del. The data i presented for two different string tensions 
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There is a considerable amount of catter in the data and therefore it is difficult to determine any 

further conclusions. In ecti n 10.3.3, the tandard deviation in the racket rebound velocity was 
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calculated as being 8%. This relatively high value was calculated because the velocity was 

calculated over a very short distance/time, and therefore it was very sensitive to the accuracy of the 

measured displacements. 

10.3.6 Summary 

In this section, it has been shown that the displacement of the ball, stringbed and racket calculated 

by the model, correlate very closely with that measured experimentally. This comparison was 

made for two different ball types and two different string tensions. Any differences between the 

model and experimental data can be assigned to the estimated uncertainty in the experimental data 

and the fact that the complex interaction between the ball, stringbed and racket frame is being 

simulated using a much simpler model. 

10.4 Experiment 3 - Measuring Ball and Racket velocity after impact 

10.4. I Introduction 

In the previous section, the displacement of the ball, stringbed and racket were experimentally 

measured for an impact between a ball and freely suspended racket. This experimental data was 

obtained for a range of impact velocities, string tensions and ball types. It was shown that the 

experimental data correlates very closely with that calculated by the model. In that section, the ball 

and racket rebound velocities were also measured, although this was not the main objective of the 

experiment. The ball rebound velocity was measured using speed gates and the racket rebound 

velocity was determined from the high speed video images. The measurement of these two 

parameters was not the main objective of the previous section and, therefore, the experimental 

technique was not optimised for this purpose. In this current section, a more appropriate 

experiment is conducted to determine the racket rebound velocity, for an impact between a ball and 

freely suspended racket. The ball rebound velocity is also determined in this section. This 

experimental data will be compared with the data calculated by the model. This comparison will 

be conducted for several impact positions along the longitudinal axis of the racket. 

In the previous section (section 10.3). the motion of the racket was only sampled for a relatively 

short period. This meant that the racket rebound velocity was calculated over a short distance and 

was very sensitive to the accuracy of the measured displacements. This resulted in a large 

magnitude of scatter in the calculated values of the racket rebound velocity. The experiment 

described in this current section is different to that discussed in section lO.3 because the motion of 

the racket is sampled for a significantly longer period. This improves the accuracy of the 

calculation that is performed to determine the velocity of the racket after impact. 
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10.4.2 Experimental Apparatus 

(aJ Procedure 

Position tracker 

1. 
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Ball and freely suspended racket impact 
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High speed video 
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Figure 10.17 Freely suspended racket showing the four nominal impact positions. 

The aim of this experiment is to measure the rebound velocity of the ball and racket, for an impact 

between a ball and freely suspended racket. The experimental layout is very similar to that 

described in section 10.3, and is shown in Figure 10.17. The impact is recorded using a Kodak 

Motioncorder high speed video system which operated at a frame rate of 240 frames per second 

(fps). The Phantom v4 camera is capable of 1000 fps, at the same screen resolution. However, a 

frame rate of 240 fps is adequate for this current study. Furthermore, the Motioncorder is more 

suitable as it is capable of storing up to 11 impacts in its memory, whereas the Phantom v4 is only 

capable of storing one impact. 

Pressurised tennis balls were projected at the longitudinal axis of the racket, perpendicular to the 

stringbed, at velocities between 14 and 35 m1s (30 and 80mph). Two tennis different rackets were 

used in this study; these being a Head Prestige Classic 600 and a Spalding Heat 90. The full 

details of these two rackets is given in Chapter 9. To summarise, the Head racket is heavier, has a 

smaller head size and higher mass moment of inertia, compared with the Spalding racket. 

Four discrete impact points on the racket were tested, as defined pictorially in Figure 10.18. The 

positions of these impact locations are defined in Appendix E.3, with respect to the geometric 

string centre of the racket; the position of the GSC corresponding to the intersection of the dashed 

lines in Figure 10.18. For completeness, the distance between the butt end of the racket and the 

GSC is 518mm and 508mm for the Head and Spalding rackets respectively. 
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Figure 10.18 Illustration of the four impact positions which were tested for each tennis racket. 

The stringbed node location and geometrical string centre are also illustrated. 
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Figure 10.19 Illustration of the motion of the racket after impact. 

The Motioncorder w u d to record the motion of the racket for the period after impact had 

ceased. A typi al high speed vid image of the rec iling racket is shown in Figure 10.19. This 

image i a compiled imag whi h how the inilial po ition of the racket, along with three images 

of the rec iling racket. 1 he time interval between these three images is 4.17ms. This figure 

illu trate ' the tw p in n th racket, PA and Pc, which are sampled to determine the motion of 

the racket. The t p point c rrc 'p nd to a carbon fibre rod which has been inserted into the racket. 

The b ttom p int rc~ r t a white mark which has been painted on the racket, at the top of the 

handl . 

The amplcd pints were u d t det rrnine the linear displacement of the racket centre-of-mass 

u ing imple ge metrical relati n hip between the points PA, Pc and the location of the racket 

M, as de crib d in cti n 10.3. The points PA and Pc were also used to determine the angular 

di placem nt the ra k l. In thi tudy, it is assumed that the racket is rigid and the racket 

rebound vel city i c nstant ~ r the ampling period; this period lasting approximately l2ms. It 
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can easily be shown that the aerodynamic drag force which acts on the racket during this period is 

negligible which validates the assumption that the velocity is constant. The displacement of the 

racket COM was used to determine the velocity of this point which is defined as V'CM in Figure 

10.20. This velocity was simply calculated as the ratio of the distance travelled between frames and 

the time step for each frame (4.17ms). This velocity was calculated for each pair of frames, and 

then an average value of V'CM was determined. A similar procedure was used to determine the 

angular velocity of the racket eR , as defined in Figure 10.20. The rebound velocity of the impact 

point on the racket V'JP was calculated using V'CM' the rotational velocity of the racket eR and the 

distance d. 

V' +-B 

d 

Figure 10.20 Definition of the velocity of the ball and racket after impact. 

(b) Error associated with the repeatability of the impact location 

In section 10.2.2, it was shown that the ball impact position varied by up to lOmm from the desired 

position, for balls propelled using the air cannon. The Racket Impact software was used to estimate 

that this uncertainty may cause a variation of up to 9-18% in the ball rebound velocity; the exact 

value being dependent on the racket and impact location. The full details of the relationship 

between the ball rebound veloeity and impact location can be found in section 10.2.2 and are 

therefore not repeated here. 

A similar analysis can be conducted to estimate the relationship between the uncertainty in the ball 

impact location and the effect that this has on the racket rebound velocity. For simplicity, this 

investigation is only conducted for the rebound velocjty of the racket at the impact point (V',p). 

The Racket Impact software was used to calculate that a shift in the impact location of 10mm 

towards the tip, with respect to an arbitrary impact location on the longitudinal axis, acts to increase 

the racket velocity V'/p by approximately 3%. This result applies for both rackets and all four 

impact locations u ed in this section. 

The results of this theoretical error analysis study will be referred to later in this section. 
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10.4.3 Determining the parameters required by the model 

In this section, the model will be used to calculate the ball and racket rebound velocity, for an 

impact between a ball and freely suspended racket. The Racket Solver software will be used to 

determine this model solution. This software already contains the parameters required for the 

Pressurised ball and the beam models of the two tennis rackets. However, it does not have the 

parameters which defme the stringbed stiffness of the rackets. 

The Head tennis racket is identical to that which was used in section 10.2. However, this racket 

was restrung before this testing, at a tension of 651bs using a standard 15g nylon string. The 

Spalding racket was also restrung before this testing, at a tension of 551bs using the same string. 

The method used to determine the parameters (as, bs and cs) which define the stringbed stiffness in 

the model has been given in section 10.2. In this section, the values of as, bs and Cs were 

determined for each of the two rackets. For simplicity, these parameters were only obtained for the 

geometric string centre position. In section 10.3, it was found that the stringbed stiffness was 

approximately 15% higher for locations towards the throat and approximately 20% higher for 

locations towards the tip (with respect to the stiffness at the geometric string centre). In this current 

section, it was assumed that these relationships could be used to defme the stringbed stiffnesses at 

the four different impact locations. For example, the stringbed stiffness at the impact point nearest 

the tip was assumed to be 20% larger than that measured experimentally at the geometric string 

centre. 

Figure 10.21 illu trates both the measured and calculated stringbed stiffness for the two rackets. 

The stringbed tifTne s at the geometric string centre (GSC) was assumed to be valid for impact 

locations labelled 2 and 3 in Figure 10.18. The stringbed stiffness was calculated for the tip 

position and thi was as umed to be valid for the impact location labelled 1 in Figure 10.18. The 

stringbcd stiffnes at the throat was also calculated and was assumed to be valid for impact location 

4. 
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Figure 10.21 tringbed stiffness of the two tennis rackets at the tip, GSC and throat of the racket. 

These parameters were added to the MS Access 2000 database, and therefore all the required model 

parameter are now known. The Racket Impact software was used to calculate the ball and racket 

rebound velocity for the impact between a ball and freely suspended racket. In this section, the 
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software was only used to determine the solution for the model which used the flexible beam. The 

rebound velocity of the racket was calculated at the centre-of-mass and at the impact point, and 

these were defined as V'CM and V'/p respectively. 

10.4.4 Results 
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Figure 10.22 The calculated and measured ball rebound velocity for two different tennis rackets. 

The data points represent experimental data and the curves represent the data calculated by the 

model. 

50 

Figure 10.22 shows the experimental and model values of the ball rebound velocity, for the impact 

between a ball and freely suspended racket. In this figure the data is presented for two different 

tennis rackets, and four nominal impact locations. 

It can be seen that the model and experimental data correlate to within approximately 5-10%, for 

all impact locations. There is a considerable amount of scatter in the experimental data, especially 

for impacts located at position 1 which corresponds to impacts close to the tip of the racket. A 

similar fmding was reported in section 10.2, and in that section it was concluded that the source of 

this scatter was the variability ofthe impact location. To summarise, it was found that a shift in the 

impact location of only 10mm leads to a difference in the ball rebound velocity of approximately 

10% for impacts at position 1. This difference is much smaller for other impact locations. 

Figure 10.23 shows the experimental and model values of the racket rebound velocity for the 

impact between a ball and freely suspended racket. In this figure the data is presented for the 

velocity of two points on the racket (V 'IP and V'CM) and four different impact locations. In Fi&-ure 

10.23, the data is presented for the Spalding racket; the data for the Head racket being given in the 

Appendix E.3 . The scatter in the experimental data can be accounted for by the variability of the 

impact location, as was concluded for the data in Figure 10.22. 
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Figure 10.23 The racket rebound velocity for the Spalding racket. The data points represent 

experimental data and the curves represent the data calculated by the model. 

Figure 10.23 (and Figure EA) show that the model and experimental data correlate very closely. 

The model generally calculates a racket rebound velocity which is larger than that measured 

experimentally. However, it should be noted that the difference between the two sets of data is in 

the order of only 5%. This small difference may either be due to a systematic experimental error or 

a weakness in the model. The experimental errors have been discussed in a previous section and 

therefore will not be repeated here. A possible weakness of the model, which has not yet been 

commented upon, is related to the assumption that the stringbed has no mass. This assumption was 

required to simplify the required solution of the visco-elastic model which represents the ball and 

stringbed in the Racket Solver software. The physical stringbed has a total mass of approximately 

20g, but only a fraction of this stringbed deforms significantly during impact. Taylor (2002) 

showed that a stringbed exhibited large amplitude oscillations which were excited by the impact. 

Although the energy stored in these oscillations is small compared with that stored in the ball and 

racket, it will have a finite magnitude which is not accounted for in the model. This weakness of 

the model may account for a proportion of the difference which has been found between the model 

and experiment data. 

Although differences have been found between the model and experiment values of the racket 

rebound velocity, this does not render the model worthless. The magnitude of the difference, 
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which is approximately 5%, can be considered as a guide to the accuracy of the model when it is 

used to calculate this parameter. 

10.4.5 SummQlY 

In this section, experiments were performed to determine the rebound velocities of a ball and 

racket, for an impact between a ball and freely suspended racket. This data was compared with the 

model solutions calculated by the Racket Solver software. A range of ball impact velocities were 

tested and the ball was propelled at four different locations on the longitudinal axis of the racket. 

It was found that the model and experiment data exhibited a high correlation, especially for the data 

collected for the ball rebound velocity. However, the model generally calculated a racket rebound 

velocity which was 5% higher than that which was measured experimentally. 

10.5 Vibration Analysis of a tennis racket 

10.5.1 Introduction 

In sections 10.2-10.4, experiments were conducted in which a tennis ball was propelled at a freely 

suspended tennis racket. In these experiments, the motion of the ball and racket, during and after 

impact, was sampled and compared with data that was calculated using a model. The experimental 

data presented in these sections relates only to the zero frequency response of the racket frame and 

ball. Therefore, the higher order response (e.g. fundamental mode of vibration) of these two 

objects has not yet been verified. 

The higher order response of the beam, after impact, is calculated by the model (Racket Impact 

software) and will be measured experimentally using two different techniques in section 10.5 and 

10.6. This experimental data is compared with the relevant values calculated by the model to 

verify the accuracy of the model in relation to the higher order response of the beam. 

In this current section, the position of the node point for the fundamental mode will be determined, 

for an impact between a tennis ball and racket. This point corresponds to the ball impact location 

which does not excite the fundamental mode of vibration of the racket frame. A similar experiment 

has already been described in section 9.3.3 and section 0.2. In these sections, an experiment is 

presented which was used to measure this node point for the fundamental mode for impacts with a 

soft hammer. The racket was excited using a soft hammer at various points on the stringbed, along 

the longitudinal axis, and the resulting vibrations were measured using a piezoelectric transducer 

that was sampled using suitable PC hardware and software. The amplitude and frequency of the 

induced vibrations was analysed to determine the location of the node point. 

In Chapter 9, the one-dimensional beam model was used to show that the location of the impact 

point which gave minimal vibrations was different for a point loading and a distributed loading. 

This effectively showed that this location was a function of the method used to apply the load. Ifit 

is assumed that a soft hammer will apply a load to the racket in a different manner to that in which 

a tennis ball applies the load, then it may be possible that the measured node location is different 
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for the two experiments. In section 6.2.3, it has been shown that the stiffness of a stringbed 

increases with deformation and, therefore, the effective stiffness of the stringbed for the hammer 

strike will be considerably lower than for an impact between the racket and the ball. If it is 

hypothesised that the stiffness of the stringbed may influence the method in which the load is 

applied to the frame, then it is conceivable that the stringbed node measured using the soft hammer 

may be located in a different position to the node for an impact between a ball and tennis racket. 

This is the motivation for performing the experiments which are conducted in this section. 

10.5.2 Experimental Apparatus 

In this section, a method is presented which is used to determine the node point for the fundamental 

mode of vibration of the racket. This node point will be determined for excitations which are 

induced when a tennis ball impacts on a freely suspended racket. To be consistent with the work in 

section 9.3.3, the amplitude of vibration will be measured for a point near the butt end. This point 

is suitable as it is a significant distance from the location ofthe node of vibration . 
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Figure 10.24 Schematic diagram of experiment arrangement used to determine the magnitude of 

the frame vibrations induced by an impact with a tennis ball. 

The ball was propelled at the longitudinal axis of a freely suspended ITF Carbon Fibre tennis 

racket. The Kodak Motioncorder high speed video, operating at 240 frames per second, was used 

to record the impact. These high speed video images were used to determine the impact location of 

the ball, on the racket. The racket was supported on a small, smooth pin with its longitudinal axis 

orientated vertically. The ball was propelled at several locations on the longitudinal axis of the 

racket. 

The experimental layout is given in Figure 10,24. In this experiment, the grip on the racket was 

removed and a small piezoelectric transducer was attached to the rigid surface of the handle, using 

strong adhesive tape, The strap was then replaced. The ball was propelled at the racket, and the 

racket was subsequently allowed to recoil freely. The piezoelectric transducer produced a charge 

(voltage) which was proportional to the acceleration of the racket at that point. However, it should 
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be noted that this proportionality is non-linear due to the nature of the construction of the 

piezoelectric transducer. 

The signal from the piezoelectric transducer was sampled using an Analogue-to-Digital converter 

and Picoscope vS.7.4 software on a PC laptop. A Fast Fourier Transform of this data was 

performed using the FFT function in MATLAB vS. 3 software, to identify the frequency spectrum of 

the racket vibrations. 

The objective of this section is to measure the amplitude of the fundamental frequency for a range 

of ball impact locations. The fundamental frequency of the ITF Carbon Fibre tennis racket has 

previously been measured in Chapter 9, and is equal to 134Hz. This frequency was determined for 

small oscillations of the racket. In this current section, the frequency will be determined and 

compared with the previously obtained value. The amplitude of this mode is easily determined 

from the calculated frequency spectrum. 

10.5.3 Determining the parameters required by the model 

In this section, an ITF Carbon Fibre tennis racket was strung at 60lbs using a standard l5g nylon 

string. The quasi-static stringbed stiffness of this racket was tested, using the method described 

previously, to determine the parameters as, bs and Cs which define the stringbed stiffness in the 

model. This was only obtained for the point at the geometrical string centre of the racket. For 

simplicity, in this section it is to be assumed that the stringbed stiffness is uniform along the 

longitudinal axis. From section 10.2, it can be concluded that this will result in a maximum error 

of approximately 15%-20% in the value of stringbed stiffness which is being used. This error 

appears relatively large, however, in practise it was found that a change in stringbed stiffness of 

20% had little effect on the resulting vibrations of the racket frame or the ball rebound velocity. 

All the parameters required by the Racket Impact software have already been defined. The 

software is used to simulate the experiment described above, for each of the experimentally 

measured impact locations. The calculated acceleration of the beam segment at the butt end can 

easily be obtained from the Racket Impact software. A Fourier analysis, similar to that described in 

section 9.3.2, was conducted on this data to determine the amplitude of the acceleration of this 

segment of the beam. 

10.5.4 Results 

Figure 10.25 compares the experimentally measured amplitude of the fundamental frequency 

which was calculated using the sampled signal from the piezoelectric transducer, with that 

calculated by the model. The units of the experimentally measured vibration are m V because the 

calibration factor which defines the relationship between the acceleration of the piezoelectric 

transducer and the resulting voltage is not known. The experiment could be repeated using a 

calibrated accelerometer, but this is beyond the scope of this study. In Figure 10.25, the location of 

the stringbed node which was measured using a soft hammer, is also presented; the method used to 

define this location being given in section 9.3.2. 
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Figure 10.25 Amplitude of vibration measured experimentally using a piezoelectric transducer 

compared with that calculated by the model, for an impact between a ball and racket. The 

stringbed node measured for an impact with a soft hammer is also shown. 

The main fmding from Figure 10.25 is that the amplitude of the fundamental frequency, which is 

measured by the piezoelectric transducer, is at a local minimum at a distance of 535mm from the 

butt end. This point corresponds very closely with the stringbed node of the racket that was 

measured using a soft hammer; these two points corresponding to within 7mm. The accuracy of all 

location measurements is approximately 5mm and therefore the difference in the location of the 

two points may be simply accounted for by a measurement error. 

These results imply that the location of impact point on the stringbed node which excites minimum 

vibrations (of the fundamental mode) is very similar for the two methods used in this study to 

induce the vibrations. The two methods involve a different magnitude of deformation of the 

stringbed, which results in a different effective stiffness of this component. This implies that 

differences in stiffness of this order of magnitude do not influence the node location. 

The model data, which is presented in Figure 10.25, confirms that the model simulates the 

vibrational properties of the termis racket. This can be concluded because the impact point which 

corresponds to a minimal amplitude of the fundamental mode, for the model, coincides with that 

measured experimentally using the piezoelectric transducer. This has already been discussed in 

Chapter 9. 

10.5.5 Summary 

In this section, an experiment was conducted to measure the racket vibrations induced by a ball 

impacting on the longitudinal axis of the racket. The impact point which corresponded to the 

minimum amplitude of these vibrations has been determined. This point coincided very closely 

with that measured for impacts using a soft hammer. This testing has showed that the node point of 

vibration is not dependent on the method used to excite the tennis racket, in this study. 
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10.6 Compari on of racket vibrations in the model and experiment 

10.6.1 Introduction 

In section 10.2, an experiment was performed to measure the ball rebound velocity for an impact 

between a ball and tenni racket. In that section, two model solutions were obtained which 

calculated the ball rebound elocity for this impact. In the first solution, the racket was assumed to 

be a rigid beam and in the econd olution it was assumed to be a flexible beam. It was found the 

results calculated using the flexible beam model correlated very closely with those measured 

experimentally. This i assigned to the well-documented fmding that the racket deforms during 

impact and this deformation is only simulated by the flexible beam model. 

In the previous section, the vibration of a tennis racket was sampled for the period directly after an 

impact between a tenni ball and the racket. The impact location which corresponded to the 

minimum vibration of the racket was measured experimentally, and calculated using the model. It 

wa found that the two points correlated very closely. Although the work in the previous section 

studied the vibration of the racket after impact, and compared them with the model, it did not 

compare the magnitude of the vibrations for the two cases. In this current section, this issue will be 

addressed. 

The aim of this ecti nit compare the motion of the racket during and immediately after impact, 

for the experiment and m del. A imilar tudy was done by Cross (1999c) who studied the impact 

between a ball and an aluminium beam. In that paper the beam was freely suspended using light 

string , and a upcrball impacted n the ide of the beam. The motion of the beam was determined 

experimentally, and al c Iculated u ing an equivalent flexible beam model. In that work, a very 

go d qualitative correlati n wa found between the two traces. 

J O. 6. 2 E 'P rim ~ntal '[, hniqu 

Speed 9 les 

A 

Fr Iy su pended rack t 

Air cannon 

High speed video 
system 

Figure 10.26 11 imp cting on a freely upended tennis racket, showing the point A which was 

samplcd fr m th hi h p d video images. 

278 



Chapter 10 Ball and freely suspended racket impact 

The experimental apparatus used in this section is illustrated in Figure 10.26. The Phantom v4 high 

speed video system is used in this experiment and operated at 1908 frames per second with an 

image resolution of 512 x 256 pixels. Pressurised tennis balls were propelled using an air cannon 

at a nominal velocity of 20mls. The inbound and rebound velocities of the ball were determined 

using a set of speed gates; these speed gates being located approximately 0.5m from the racket. 

The ball impacted normal to the string plane of a freely suspended ITF Carbon Fibre tennis racket, 

at a range of positions along the longitudinal axis, as illustrated by the shaded 'impact zone' in 

Figure 10.26 .. This racket was strung at a tension of 60lbs. 

In this section, the amplitude of the transverse vibrations which were induced by the ball impacting 

on the racket, were measured experimentally and compared with those of the one dimensional 

beam model as calculated by the Racket Impact software. Clearly, it is neither practical nor 

possible to sample the motion of each point along the racket, for a finite time period and therefore 

it was concluded that only one point on the racket would be sampled. The point chosen was that at 

the tip of the racket for two main reasons, which were, 

1. This point coincided with an anti-node of vibration of the fundamental mode and therefore 

vibrated with the largest amplitude for a given excitation force. 

2. This point lay on the longitudinal axis and therefore was not subject to errors if the ball 

landed eccentric to the longitudinal axis, as discussed in section 10.4. 

Figure 10.26 define the point A which corresponds to the tip of the racket. This point was sampled 

from the high peed video images using the method described in the following section. 

10.6.3 Ana/ysi ' oJ high speed video images 

t 
\ 
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. .. . " .' . , " . 
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I 

Figure 10.27 Definition of the ball impact 10cationYIP and the displacement (O,JI of the sampled 

point A at the tip of the racket. 

Figure 10.27 how a picture of three combined high speed video images. The point A corresponds 

to the base of the white rod which protrudes from the tip of the tennis racket. This point was 
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sampled using the Vidimas v 1.1 software using the procedure which has been explained in section 

10.3.3. 

The motion of the ball was sampled to determine both the impact position on the racket and the 

instance at which impact commenced. The details of the method used to define the start of impact 

is explained in section 7.2.3. The high speed images were also used to verify the value of the ball 

rebound velocity which was measured by the speed gates. This procedure was performed because 

impacts towards the tip of the racket result in relatively small ball rebound velocities. In section 

10.2 it was explained that the speed gates sometimes fail to operate at these low speeds. 

The objective of this experiment is to determine the displacement of the point A. The time step Llt 

between each frame is 0.52ms. During this time interval, the point A typically displaces by only 4-

8mrn. Therefore, it is assumed that, during the time interval L1t, the motion of the point A can be 

considered to be linear. The displacement of A during this time interval Ll8A is defined using, 

[10.6] 

The displacement of A can be determined for each time interval, to obtain the motion of this point. 

10.6.4 Determining the parameters required by the model 

In this section, an ITF Carbon Fibre tennis racket strung at 60lbs was used. This is the same racket 

as that used in section 10.5, and therefore the Racket Impact software already contains the 

parameters required to determine the model solution. For simplicity, in this section it is to be 

assumed that the stringbed stiffness is uniform along the longitudinal axis, as was done in section 

10.5. 

The Racket Impact software was used to determine the displacement of the point on the beam 

which is analogous to the tip of the racket. The model beam displacement at this point can not be 

determined directly because the point A does not coincide with the centre of one of the beam 

segments. However, a linear extrapolation method can be used to estimate the beam displacement 

OA' The Racket Impact software splits the beam into 51 segments, and it is assumed that the 

displacement of XA can be calculated using, 

(
X -x ) 0,4 = XSI + SI 2 so [10.7] 

where XjJ and X.so are the displacements of the two segments at the tip end of the beam; both these 

parameters being calculated by the model. 

In the following section, the experimentally determined values of XA are compared with those 

calculated by the model. 
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10.6.5 Result and Di cu ion 

(a) Racket displacement 
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Figure 10.28 1 he di plae m nt of the tip (p int A) of the racketlbeam for a range of impact 

locati n ; th I ati n re r ~ renc d to the geometric string centre. Data is presented for both the 

experim n1 and m d I. In ch figure, the nominal ball impact velocity was 20mls. 

igurc 1 .2 

igurc I .2 

c rrcl 1i n, 

ofth 

di plac ment bA of the tip of the racketlbeam (point A in Figure 10.27), for 

h impact location is given in each figure and is referenced to the 

f the ITF arbon Fibre tennis racket. In each figure, the 

compared with that determined by the model. Further 

.5 h w that the model and experimental results exhibit a very high 

at d cl e to, or below, the GSC. The magnitude, phase and frequency 

ry imil r ~ r b th et of data, for the short time period sampled here. 

It i g n r lIy und th t ~ r impact toward the tip (Figure 1 0.28(a) and Figure E.6(a)), the model 

calculat I rg r di pI m nt than that which was measured experimentally. However, it should 

be not d that 1h ma ' imum di erence in the two sets of data is less than 5%. Differentiating this 

data, with r pe t 1 tim , re eal that the racket rebound velocity measured experimentally is 
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higher than that calculated by the model. It is interesting to note that this corresponds with the data 

presented in section 10.4. In that section, the racket rebound velocity that was measured 

experimentally was consistently larger than that which was determined using the Racket Impact 

software. 

The experimental data in Figure 1O.28(a) and Figure E.6(a) implies that a significant oscillation is 

excited in the beam, whereas the model calculates a much smaller oscillation. The difference in the 

two sets of data may be due to the simplification of the method in which the stringbed loads the 

frame. In a tennis racket, this mechanism involves a complex interaction between the individual 

strings which will act to disperse the load to each point on the frame, in a time-dependent system. 

In the model, this mechanism has been simplified and the form of the load distribution has been 

defined using an arbitrary function. The method in which the load is applied to the model beam 

could be modified in an attempt to improve the correlation between the model and experimental 

data. However, this is beyond the scope of this current project. 

(b) Ball rebound velocity 
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Figure 10.29 Comparison of ball rebound velocity calculated by the experiment and model (rigid 

and flexible beam), for different impact locations. The data points refer to the experimental data, 

and the curves represent the data for the two different model beams. 

The main objective of this section involves the comparison of the experimentally measured 

displacement of the racket with that which is calculated by the model, as has been discussed above. 

However, the ball rebound velocity was also measured in this experiment. The Racket Impact 
software was used to determine the ball rebound velocity for the modelled impacts. Two different 

model solutions were obtained which assumed either a rigid beam or a flexible beam to simulate 

the tennis racket. The results for the experiment and the two model solutions are shown in Figure 

10.29. this figure shows the model which uses a flexible beam exhibits a very high correlation with 

the experimental data. The rigid beam model exhibits a very good correlation with the 

experimental data for impacts which are located between 10 and 30mm from the geometrical string 

centre, towards the tip. This location coincides with the node point for the fundamental mode and 
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therefore the model solutions for the rigid beam and flexible beam are very similar, as discussed in 

section 10.2. 

The data in Figure 10.29 offers further evidence to support the high correlation between the flexible 

beam model and the experimental data. It also illustrates that the inherent weakness of using a 

rigid beam model to simulate an impact between a tennis ball and racket. Clearly, a rigid beam is 

not capable of simulating the free vibrations which are plotted in Figure 10.28. The energy stored 

in these oscillations leads to a reduction in the ball rebound velocity, which is not seen in the model 

that uses a rigid beam to simulate the racket. 

10.6.6 Summary 

In this short section, the motion of the tip of the racket has been sampled experimentally, for the 

period during and after an impact between a ball and racket. The Racket Impact software was used 

to calculate the displacement of the tip, using the assumption that the racket was a flexible beam. 

A very high correlation was found between the experimental data and the model data, for the 

majority of impact locations. This comparison supports the assumption that the model predicts the 

vibration of the tennis racket for an impact between the ball and racket. 

The ball rebound velocity was also measured/calculated in this section and a high correlation was 

found between the experimental data and the model data calculated using the flexible beam, for all 

impact locations. 

10.7 Summary 

In this section, a range of different experiments were performed to measure several parameters 

before, during and after an impact between a ball and freely suspended tennis racket. This 

measured data was compared with equivalent model data that was calculated using the Racket 

Impact software. This software calculates two different model solutions obtained using two 

different assumptions regarding the simulation of the tennis racket. The tennis racket is either 

assumed to be a rigid beam or a flexible beam. 

In the first experiment, tennis balls were projected at three different locations on the longitudinal 

axis of five different tennis rackets. The inbound and rebound velocity of the ball was measured 

and compared with the two model solutions calculated by the Racket Impact software. It was 

found that the flexible beam model data exhibited a very high correlation with the experimentally 

obtained ball rebound velocity. However, the rigid beam model generally calculated a ball rebound 

velocity which was higher than the experimentally obtained data. 

In the second experiment, a high speed video system was used to measure the displacement of the 

ball, stringbed and racket frame during an impact between the ball and racket. In this section, only 

the model solution for the flexible beam was calculated using the Racket Impact software. It was 

shown that the two sets of data correlate very closely, for all impact velocities. This comparison 

was made for two different ball types and two different string tensions. Any differences between 
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the model and experimental data were assigned to the estimated uncertainty in the experimental 

data and the fact that the complex interaction between the ball, stringbed and racket frame is being 

simulated using a much simpler model. 

In the third experiment, the rebound velocity of the ball and racket was measured, for an impact 

between a ball and freely suspended racket. This data was compared with the model solution 

calculated by the Racket Impact software (using the flexible beam). A range of ball impact 

velocities were tested and the ball was propelled at four different locations on the longitudinal axis 

of the racket. Two different tennis rackets were used which were strung at different tensions. It 

was found that the model and experiment data exhibited a very high correlation for both the ball 

and racket rebound velocity. The maximum difference between the two sets of data was 

approximately 5%. 

In the fourth experiment, the transverse frame vibrations were measured which were induced when 

the ball impacting on the racket. The collected data was used to determine the impact location 

which corresponded with the minimum amplitude of vibrations for the fundamental mode. This 

point coincided very closely with that measured for impacts using a soft hammer. It also 

corresponded very closely with the impact location which induced minimum vibrations of the 

model beam, as calculated by the Racket Impact software. 

In the fifth experiment, the motion of the racket tip was sampled for the period during, and after, an 

impact between a ball and racket. The Racket Impact software was used to calculate the 

displacement of the tip, using the assumption that the racket was a flexible beam. A very high 

correlation was found between the experimental and model data, for the majority of impact 

locations. The ball rebound velocity was also measured/calculated in this experiment and a high 

correlation was found between the experimental and model data calculated using the flexible beam, 

for all impact locations. 

The data collected in this chapter has shown that the Racket Impact software is a useful tool for the 

simulation of an impact between a ball and freely suspended tennis racket. It can be used to 

calculate the motion of the ball, stringbed and racket during, and after, the impact. The Racket 

Impact software calculates two different model solutions based on two different assumptions 

regarding the modelling of the tennis racket; these being either a rigid or flexible beam. The data 

collected in this chapter has highlighted the inherent weakness involved when using a rigid beam 

model to simulate an impact between a tennis ball and racket. Furthermore, it has been shown that 

the flexible beam solution correlates very closely with the experimental data. A succinct 

illustration of this correlation is given in Figures 10.28 and 10.29. 
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11. Conclusions 

11.1 Introduction 

In the first part of this chapter, a summary of the important findings which have been obtained in 

this study is given. This is intended to give the reader an overview of the investigation which 

culminated in an experimentally verified model of a ball impacting on a tennis racket being 

derived. This investigation was initially focussed on the static and dynamic properties a tennis ball. 

This was followed by an investigation of the physical properties of a stringbed, and the dynamic 

interaction between the ball and stringbed. Finally, a model of a tennis racket frame was developed 

which was used in a model of a ball impacting on the racket. 

This chapter also contains a short section which highlights the conclusions which have been 

obtained from this work. Finally, suggestions of possible future directions of this study are 

presented. 

11.1 Summary of study 

11.2.1 Ball structural stiffness 

The structural stiffness of four different tennis balls, which covered the range of balls used in the 
game of tennis, has been experimentally obtained. It was found that the Pressurised and Oversize 

balls have the highest structural stiffness, when compressed quasi-statically between two flat plates. 

The Pressureless ball has a similar stiffness to these two balls for small deformations, but a much 

lower stiffness at high deformations. Furthermore, at these high deformations it had a similar 

stiffness to a Punctured ball. In this part of the study it was found that the relative structuraJ 

stiffness of the ball types are not constant for all magnitudes of ball deformation. 

11.2.2 Ball impact on a rigid surface 

(a) Experimental investigation 

Tennis balls were propelled at a rigid force platform and several parameters were measured. It was 

found that the Oversize and Pressurised balls rebounded with approximately the same velocity. 
The Pressureless ball rebounded slightly slower, and the Punctured ball rebounded significantly 

slower. This showed that the Oversize and Pressurised balls exhibit the lowest hysteresis loss 

during impact. 

The force platform was used to determine the dynamic response of the balls for an impact with a 

rigid surface. It was found that the Pressurised and Oversize balls exhibited similar dynamic 

rapooses for all impact velocities which were tested. The Pressureless and Punctured balls 

exhibited similar dynamic responses for high impact velocities. 
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(a) £.tperimenlal im'Cs(iga(ion 

Experiments were performed in which a tennis ball was propelled at a head damped tcn",~ rackct 

In these tests, the coefficient of restitution was OlCasurcd for combmatlOns of two dlfTcrcnt ball 

types and two different string tensions. For a specific ball type. It wa.'\ found that the coeffiCient of 

restitution was higher for the racket strung at 401bs. compared with the rackel strung al 701~. 

The magnitude of the l1l8."(imum ball and stringbcd deformation. during Impact. was me4.<liumt 

using high speed cinematography. The maximum stringbcd defomw\1on. dunng Impact. was a 

function of the string tension. as expected. However. the magnitude of thiS stnngbcd defomlahon 

was very similar for both the Pressurised and Pre.'\.Jllrl'ic'''J ball t)'PCs. 

It was found that the contact time of the impact was a function of the stnng tcns'on~ the contact 

time being defined as the time taken for the ball to regain its original shape. The contact h~ for 

the impacts on the racket strung at 40Jbs WCfC approximately O.4ms longer than those measurtd for 

the racket strung at 70lbs. It is wcU-documentcd that there is a quahtatwe rdal1ol\Sh,p he1WC'Ctl 

contact time and string tension. However. this study is an advancement of the puhllshed work 

because it quantifies the relationship. 

(b) Theoretical modelling 

The impact between a ball and head clamped tennis racket was modelled us'"8 a two degrcc-of. 

freedom visco-clastic model. The ball component of the model was identkal to that dcri,'ed for • 

model of a ball impact on a rigid surface. The stringbed component was assumed to have the 5AI1'tC 

stiffness as that which was measurtd experimentally for a quasi-statically applied load A small 
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damping factor was incorporated into the stringbed model to account for the low level of hysteresis 

loss in the system. 

The model was used to determine the ball rebound velocity, and the magnitude of both the ball 

centre-of-mass and stringbed displacement during impact. This data was compared with that which 

had been obtained experimentally. Using these comparisons it was found that the accuracy of the 

model would be improved by increasing the model ball stiffness kB• The justification for such an 

increase was based on observations of the shape of the ball surface that was in contact with the 

stringbed. It was concluded that the stringbed acted to 'cradle' the ball wall, inhibiting the onset of 

buckling which is known to reduce the structural stiffness during an impact with a rigid surface. 

Therefore the stiffness of the ball will be higher for an impact with a stringbed. compared to a 

similar impact with a rigid surface. 

It was concluded that the ball stiffness should be increased and it was found that this modification 

resulted in a very high correlation being achieved between the model and experiment data. For 

example, the values of the stringbed and ball COM displacement which were calculated by the 

model correlated to within approximately 2mm of those values measured experimentally. This 

small difference was accounted for by the inherent weakness of a simple two degree-of-freedom 

model being used to simulate a complex system that involves the interaction of two highly 

deformable objects. 

It is not claimed that this visco-elastic model of a ball impacting on a head clamped racket perfectly 

represents the physical impact mechanism. However, the contact time, ball centre-of-mass 

displacement, stringbed displacement, and ball rebound velocity which are calculated by the model 

correlate very closely with the experimentally measured data. Therefore, the calculated force 

which is exerted on the ball during impact should be of a similar magnitude as that which actually 

occurs in the impact. This model can also be used to predict the differences in the dynamic 

response of different ball types and string tensions. 

11.2.4 Ball impact on afreely suspended tennis racket 

The final stage of this study involved the experimental investigation and theoretical modelling of 

an impact between a tennis ball and freely suspended tennis racket. This study was only conducted 

for balls which impact on the longitudinal axis of the racket and previous research has verified that 

a freely supported racket is equivalent to a player's grip, for these kind of impacts. 

(aJ Theoretical modelling 

Two different models of a ball impact on a freely suspended tennis racket have been developed in 

this study. In both models, the ball and stringbed are simulated using the same visco-elastic model 

which was developed to simulate a ball impacting on a head clamped tennis racket. In the first 

model, the racket was simulated using a rigid beam. This beam was assigned the same inertial 
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properties (mass, balance point and moment of inertia) as the racket. In this model, a point loading 

was applied to the beam by the visco-elastic model of the ball/stringbed system. 

In the second model, the racket was modelled as a one dimensional flexible beam. A numerical 

solution was derived for the displacement of a beam which was subjected to a time-dependent 

loading. In this solution, it was assumed that the beam had a uniform flexural rigidity but a non­

uniform mass distribution. This beam was assigned the same inertial properties and fundamental 

frequency as the racket which was being modelled. In this model, a distributed loading was 

applied to the beam by the visco-elastic model of the balllstringbed system. This type of loading 

was used to simulate the mechanism in which the stringbed applies the load to the racket frame. 

Using this loading method, it was found that the impact point which excited minimum vibrations of 

the model beam correlated very closely with the stringbed node on a tennis racket. This 

comparison was conducted for several different rackets. 

The advantage of the first, simpler model, in which the racket is simulated as a rigid beam, is that it 

requires a minimal number of calculations to be performed to obtain the model solution. The 

inherent weakness of this model is the inability of the beam to model the deformation which a 

tennis racket is subjected to during, and after, impact. The second, more advanced model, in which 

the racket is simulated as a flexible beam, involves more than six million calculations being 

performed to obtain the model solution. These calculations require a significant amount of 

numerical processing time to be solved. 

There are many commercially available PC software packages that are capable of efficiently 

performing the required calculations in order to obtain the two model solutions. A supplementary 

requirement of this software is that the graphical interface must be user-friendly so that a trained 

operator can calculate the two model solutions without possessing the knowledge required to derive 

the models. The desired software would have a facility for the different ball types, stringbed 

stiffnesses and racket types to be entered into the two models, along with the initial velocity of the 

ball and racket. The program must then be capable of solving the numerous model equations and 

deliver the model solution in a suitable format. It was concluded that the required software needed 

to be written specifically for this application. This software was written in MS Visual Basic v6 

and is called Racket Impact. This software can be used on any MS Windows operating system. 

(b) Experimental investigation 

An experimental investigation was performed to measure several parameters during, and after, an 

impact between a ball and freely suspended tennis racket. 

Tennis balls were projected at several locations on the longitudinal axis of five different tennis 

rackets. The inbound and rebound velocities of the ball were measured and compared with the two 

model solutions calculated by the Racket Impact software. It was found that the more advanced, 

flexible beam model data exhibited a very high correlation with the experimentally obtained ball 

rebound velocity. However, the simpler, rigid beam model generally calculated a ball rebound 

velocity which was higher than that measured experimentally. 
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High speed cinematography was used to measure the displacement of the hall. stnnghcd an(1 racket 

frame during impact. Equivalent data was calculated using the model and It was found that the twu 

sets of data correlated very closely. TIlis comparison was made for two dlflcrent hall types an(1 \\Vu 

different string tensions. which cover the range typically used in the game of tennis. 

High speed cinematography was used to measure the rebound velocity of the racket, for an unpact 

between a ball and a freely suspended racket. A range of ball impact velOCIties were tested and the 

ball was propelled at four different locations on the longitudinal axis of two different rackets. ThiS 

data was compared with the flexible beam model solution calculated hy the Racket t",!'<lct 

software. It was found that the model and experiment data exhibited a very high correlation fur the 

racket rebound velocity, with maximum differences between the two sets of data of approxlfnately 

5%. 

High speed cinematography was used to sample the motion of the racket tip for the period during. 

and after. an impact between a ball and freely suspended racket. The Racket Impact software was 

used to calculate the displacement of the tip. using the assumption that the racket was a flexible 

beam. A very high correlation was found between the experimental and model data. for the 

majority of impact locations. 

(c) Application of software 

The data calculated by the Racket Impact software has been verified by experimental investigation. 

as explained above. The software is a useful tool for simulating an impact between a ball and 

freely suspended tennis racket. The software can be used to calculate the motion of the ball. 

stringbed and racket during. and after. the impact. The user has the ability to adjust many 

parameters related to the impact including, (l) impact location on the racket, (2) racket stiffness 

and (3) initial velocity of the racket. This data can be used to assess the influence that these 

parameters have on the ball rebound velocity. This software will be a useful tool for manufacturers 

of tennis equipment because it allows them to predict the effect of a change in design. without 

requiring to build a prototype. It is of even more use to the governing body of tennis because they 

do not have the facilities to build a prototype. but can use the software to simulate the impact. 
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11.3 Conclusions 

• Pressurised and Oversize balls have similar physical properties for both quasi-static 

compressions and dynamic impacts. 

• A visco-elastic model is capable of accurately simulating the impact between a tennis ball 

and rigid surface. The differences (and similarities) between the four ball types tested in 

this study was qualitatively accounted for using the model. 

• A stringbed which is strung at 40lbs deforms approximately 25% more than that which was 

strung at 70lbs, during an impact with a tennis ball. However, the magnitude of stringbed 

deformation was not a function of the ball type. 

A rigid beam is not capable of simulating the experimentally measured oscillations which a 

tennis racket is subjected to during, and after, the impact. Consequently, the model which 

uses a rigid beam to simulate the racket calculates a ball rebound velocity which is 

significantly higher than that measured experimentally. 

The model solution which uses a flexible beam to simulate a tennis racket accurately 

simulates the experimentally measured oscillations of a tennis racket. Furthermore, the 

model can be used accurately the predict the velocity of the ball and racket, during and 

after the impact. 
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11.4 Future research 

This study has culminated in a model of a ball impacting on a freely suspended tennis racket being 

developed. The solution to this model is calculated using the Racket Impact software. In this 

study, experimental investigations have been performed in conjunction with this theoretical 

modelling to ensure that the final model is valid for the impacts which it is used to simulate. 

However, the Racket Impact software has only been developed to model specific types of impact 

and therefore can not be used to simulate all shots that are typical in the game of tennis. It would 

be interesting to extend this work so that the Racket Solver software is valid for other types of 

impact. 

(a) Development of the Racket Solver software for other impact locations 

The Racket Solver software has only been developed to model impacts which land on the 

longitudinal (main) axis of the tennis racket. In this model, the racket is freely supported because 

other researchers have verified that this is equivalent to a player gripping the racket, for the 

duration of impact. However, this assumption is only valid for impacts on the longitudinal axis, 

and has not been verified for impacts which are eccentric to this axis. 

In a game of tennis, the ball can impact on any position on the racket stringbed. The logical 

development of the model would be to enable impacts which are eccentric to the longitudinal axis 

to be simulated. Firstly, this would require an experimental investigation of the grip forces that a 

player exerts onto the racket, during an eccentric impact. The findings of this study will initially be 

used to determine whether these forces are significant or not. Furthermore, the data will be used to 

establish a suitable method for simulating a player's grip in the model. This study could be 

expanded to investigate possible techniques for simulating a player's grip in a laboratory 

experiment. This would be a useful investigation as it would allow experimental investigations of 

the player/racket interaction to be conducted in controlled conditions. 

(b) Development of the Racket Solver software for impacts in which the ball has initial spin 

In this study, the ball was propelled at the racket using an air cannon which delivered the ball 

consistently at the desired location. However, the main limitation with this type of equipment is 

that it can not apply spin to the ball and therefore all the experiments conducted in this study 

involved impacts with zero initial spin. 

In the game of tennis, the ball is generally spinning prior to the impact with a tennis racket. 

Clearly, an important advancement of this study would involve developing the Racket Solver 

software so that it is capable of modelling an impact in which the ball is initially spinning. In order 

for this software to be validated, an experimental investigation of the equivalent impact must be 

conducted. This would require a method of propelling the ball, with initial spin, consistently at the 

desired impact location on the tennis racket. There are currently a number of ball propulsion 

devices which are capable of applying spin to the ball but initial testing has shown that they do not 
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propel the ball with sufficient accuracy to be used in this type of experiment. However, it may be 

possible to develop this apparatus so that it is suitable for the required experiment. 

(c) Player testing 

One of the uses of the final model which has been developed in this study is to determine the ball 

rebound velocity for a specified ground stroke or serve. In this simulation, the velocity of the ball 

and racket must be entered into the Racket Impact software. If the example of a serve is 

considered then, it can be assumed that the ball is stationary, prior to impact, and that the racket is 

swung with a velocity of 36 mls (80 mph). The Racket Impact software can be used to predict the 

ball service velocity for any racket in the database. This is a useful exercise as it could be used to 

give an indication of the 'power' of a tennis racket. However, this analysis is based on a player 

being able to swing all tennis rackets at the same velocity, which is unlikely to be a realistic 

assumption. An interesting advancement of this work would involve an investigation of the 

relationship between racket head speed and racket inertia, for a sample group of tennis players. 

This study would involve the measurement of the racket head speed, immediately prior to impact, 

for a range of rackets with different inertias (mass and swingweight). This investigation would 

need to be performed separately for serves and ground strokes as these two shots involve different 

techniques. The results of this player testing would become an integral part of the Racket Impact 

software. A study of this nature would further enhance the value of this software as a tool for 

predicting the dynamic performance of a tennis racket. 
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AppendixA Mathematical Methods 

A. Statistical analysis methods - least squares 

regression 

A.I Obtaining the coefficients for a least-square regression 

y 

YI/(n) 

Yen) 

X(nj X 
Figure A.1 Second order polynomial plotted through the measured data. The measured and 

calculated values ofthe y-parameter arc shown as Yen) and Yx(n) respectively. 

There are many examples in this study where a measured quantity is plotted against another 

variable. It is often useful to be able to plot a best-fit line, or trend line, through this data to define 

a quantitative relationship between the two variables. This trendline can take one of a variety of 

forms, for example, linear, polynomial, exponential or logarithmic. An example of a 2nd order 

polynomial trend line is given in Figure A.I. The analytical method used to find the coefficients A, 

Band C is called least-squares regression. This method is not shown here as it can be found in 

many text books (Taylor (1982) and S troud (1990}). The coefficients can be used to define a 

relationship between the two variables x and y, but do not quantify the quality of the correlation 

between the measured data and the trend line. The following section concentrates on the 

calculation of a physically significant parameter that defines the uncertainty of the measured data. 

A.l.2 Uncertainty in the measurement of y 

This method is an adaptation of that published in Taylor (1982). This method requires a number of 

assumptions to be made in order to simplify the solution. It is assumed that the uncertainty in the 

measurement of x is negligible and therefore the only uncertainty that needs to be calculated is that 

which occurs for y. It is also assumed that the uncertainties in y all have the same magnitude. 

More specifically, it is assumed that the measurement of Yn is governed by a normal distribution, 

with the same width parameter for all measurements. This will be valid for most of the 

experiments in this study, but where it is not valid this error must be noted. 

Using the example given in Figure A.I, the value of Yx(n) is calculated using, 

[A.1] 
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The uncertainty of each y-value can be calculated using, 

[A.2] 

It has been assumed that the measurement of y" is normally distributed about its calculated value of 

Yx(n) with a common width parameter for the distribution. Therefore, the deviations Gy are 

normally distributed, all with the same mean value of zero and the same width parameter. The 

standard deviation of this normal distribution can be calculated using the standard function STDEV 

in MS Excel 2000. 
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AppendixB 
Ball properties 

B. Ball properties - Experiment and Model Data 

B.1 Introduction 

The appendix contains supplementary results which have been referred to in Chapters 4 and 5. The 

details of the experimental procedures used to obtain this data is given in Chapter 3. There results 

of the various experiments are generally presented for four ball types; Pressurised, Pressureless, 

Oversize and Punctured. 

B.2 Quasi-static tests in which the ball was compressed between two 

rigid plates. 

The balls were compressed in a MecMesin test device. The details of this testing are given in 

section 3.2. Four different ball types were tested and generally four balls of each type were used 

(only one Punctured ball was tested). The results for one ball of each type is given in section 4.3, 

and the results for the other three balls are given in this section. 
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Figure B.1 (a)-(c) Force-Deformation results for the individual axes of three Pressurised tennis 

balls. 
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Figure 8.2 Force-Deformation results for the individual axes of three Pressureless tennis balls. 
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Figure 8.3 Force-Deformation results for the individual axes of three Oversize tennis balls. 
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B.3 One Degree-of-Freedom Vis co-Elastic Model- Constant Parameters 

In Chapter 4, a force platform was used to obtain Force-Time and Force-Displacement plots for a 

nonnal impact between a tennis ball and rigid surface. In section 5.3.2 a model was derived to 

simulate this impact and the accuracy of this model was tested by comparing the model and 

experiment data. In this visco-elastic model, it was assumed that the stiffness and damping 

parameters remain constant throughout impact. Figure B.4 shows a comparison of the model and 

experiment data for a Pressureless ball. The data is plotted for two extremes of impact velocity 

and illustrates the weakness of the model at high impact velocities. 
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Figure 8.4 Comparison of experimental and constant parameter model data for a Pressureless 

ball impacting nonnal to a rigid surface with an impact velocity of (a)-(b) 6m1s and (c)-(d) 30mls. 
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B.4 One Degree-or-Freedom Visco-Elastic Model- Variable Parameters. 

In section 5.4.2 a model was derived to simulate this impact and the accuracy of this model was 

tested by comparing the model and experiment data. In this visco-elastic model it was assumed 

that the stiffness and damping parameters were functions of the ball COM displacement. A 

comparison between the model and experiment data for a Pressureless ball is shown in Figure B.S. 
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Figure B.5 Comparison of experiment and model data for a Pressureless ball impacting on a 

rigid surface, for a range of impact velocities. 
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D.S One Degree-of-Freedom Vis co-Elastic - Variable Parameters and 

Momentum Flux. 

In section 5.5.2 a model was derived to simulate this impact and the accuracy of this model was 

tested by comparing the model and experiment data. In this visco-elastic model, single functions 

describe the stiffness, damping and momentum flux components. This section contains 

supplementary comparisons for that study, and illustrate the accuracy of the model for 

Pressureless, Punctured and Oversize balls. 
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Figure 8.6 Comparison between model and experimental contact time for (a) Pressureless, (b) 

Oversize, and (c) Punctured balls. 

In section 5.5.4, the model parameters AK and a were obtained for all four ball types. The value 0 

these two parameters were chosen so that the model impact had the same contact time as tha 

determined experimentally. This is confirmed in Figure B.6 for the Pressureless, Oversize aD! 

Punctured balls. 
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(b) Coefficient of restitution 
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Figures B.7 Comparison between model and experimental coefficient of restitution for (a) 

Pressureless, (b) Oversize and (c) Punctured balls. 

40 

In section 5.5.4, the model parameters Ac was obtained for all four ball types. This value was 

constant for all ball impact velocities, and the magnitude was adjusted so as to minimise the 

difference between the model and experiment data. Figures B.7(a)-(c) illustrate the accuracy of the 

model for the Pressureless, Oversize and Punctured balls. It shows that the model is most accurate 

for impact velocities above 13m1s. 
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(c) Force-Time and Force-Displacement data 

In section 5.5.4(b), the model Force-Time and Force-Displacement data is compared with that 

obtained experimentally for a Pressurised ball. In this section, similar comparisons are made for 

the Pressureless, Oversize and Punctured balls in Figure B.8, Figure B.9 and Figure B.I0 

respectively. 
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Figure B.8 Comparison of l-00F momentum flux model and experiment results for an impact 

between a Pressureless ball and a rigid surface for two different impact velocities. 
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Figure B.9 Comparison of l·DOF momentum flux model and experiment results for an impact 

between a Oversize ball and a rigid surface for two different impact velocities. 
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Figure B.10 Comparison of I-DOF momentum flux model and experiment results for an impact 

between a Punctured ball and a rigid surface for two different impact velocities. 
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c. Impact between a Ball and Head-Clamped Racket 

C.I Introduction 

The appendix contains supplementary results which have been referred to in Chapters 7 and 8. The 

details of the experimental procedures used to obtain this data is given in these chapters. The 

results of the various experiments are presented for two ball types which are Pressurised and 

Pressureless balls. 

C2. Stringbed and ball deformation 

In section 7.2.2 a method was discussed for determining the ball and stringbed deformation during 

an impact between a tennis ball and head clamped racket. These tests were performed using 

Pressurised and Pressureless tennis balls, and two rackets which had been strung at different 

tensions (40lbs and 70lbs). The stringbed deformation is defined as the displacement of the 

stringbed at the impact location. Supplementary data for this experiment is given in this section. 
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Figure C.1 Ball and stringbed deformation for an impact between a ball and head clamped racket, 

for four different combinations of string tension and ball type, at a nominal impact velocity of 

30m1s. 
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Figure C.2 Ball and stringbed defonnation for an impact between a ball and head clamped racket, 

for four different combinations of string tension and ball type, at a nominal impact velocity of 

36m1s. 
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Cl. Stringbed and ball centre-of-mass displacement 
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Figure C.3 Ball centre-of-mass displacement and stringbed displacement for an impact between a 
ball and head-clamped racket. The ball impact velocity is 30mls. 
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Figure C.4 Ball centre-of-mass displacement and stringbed displacement for an impact between a 
ball and head-clamped racket. The ball impact velocity is 36m1s. 
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C.4 The shape of a stringbed for an impact between a ball and racket 

In section 7.3.2 a method was discussed for determining the shape of a deformed stringbed during 

an impact between a tennis ball and head clamped racket. These tests were performed using a 

Pressurised tennis balls, and two rackets which had been strung at different tensions (40lbs and 

701bs). In Figure C.s, data is presented for impacts on the racket which was strung at a tension of 

401bs. The camera operated at a recording rate of 6700 frames per second. 
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Figure C.S Stringbed deformation plotted as a function of the position along the longitudinal axis 

of a racket (40lbs tension), for an impact using a Pressurised ball. The data is shown for three 

different impact velocities and presented individually for the, (a)-(c) compression phase and (d)-(f) 

restitution phase. 
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C.s Comparison of model and experiment data - 1st Attempt 

In Chapter 8, a visco-elastic model of a ball impacting on a head clamped racket is developed. A 

detailed description of the derivation of the generic model is given in section 8.2. This model 

requires assumptions to be made to enable the definition of the values of the parameters which are 

input into the model. In section 8.3, a set of assumptions are given which define a first 

approximation for this model. The main results for this model are given in section 8.3 and 

supplementary data is given in this current section. 

In Chapter 7, high speed video analysis was used to estimate the displacement of the ball centre-of­

mass during impact, for a range of ball impact velocities. In these experiments, the magnitude of 

the stringbed displacement was also measured. These experimental values of ball COM and 

stringbed displacement are plotted in Figure C.6 and Figure C.7, along with the model results for 

these parameters. 
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Figure C.6 Ball centre-of-mass displacement and stringbed displacement for an impact between a 

ball and bead-clamped racket, for four different combinations of string tension and ball type. The 

ball impact velocity is 25m1s, and both the model and experiment data are presented. 
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Figure C.7 Ball centre-of-mass displacement and stringbed displacement for an impact between a 

ball and head-clamped racket, for four different combinations of string tension and ball type. The 

ball impact velocity is 30mls, and both the model and experiment data are presented. 
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C.6 Comparison of model and experiment data - 2nd Attempt 

In Chapter 8, a visco-elastic model of a ball impacting on a head clamped racket is developed. A 

detailed description of the derivation of the generic model is given in section 8.2. This model 

requires assumptions to be made to enable the definition of the values of the parameters which are 

input into the model. In section 8.4, a modified set of assumptions are given which define the 

values of the parameters. The main modification of this model was that the ball stiffness k8 was 

increased by approximately 30%. Typical results for this model are given in section 8.4 and 

supplementary data is given in this current section. 

As in section C.5, the model results are compared with experimental data. This comparison is 

conducted for here for both the ball centre-of-mass and stringbed displacement. 
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Figure C.B Ball centre-of-mass displacement and stringbed displacement for an impact between a 

ball and bead-clamped racket, for four different combinations of string tension and ball type. The 

ball impact velocity is 2Smls, and both the model and experiment data are presented. 
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Figure C.9 Ball centre-of-mass displacement and stringbed displacement for an impact between a 

ball and head-clamped racket, for four different combinations of string tension and ball type. The 

ball impact velocity is 30rnls, and both the model and experiment data are presented. 

318 

6 

6 



AppendixC Ball impact on a head clamped racket 

C.7 Sensitivity of model solution to the arbitrary assumptions 

C. 7.1 Results and Discussion 

In Chapter 8, a visco-elastic model of a impact between a ball and head clamped racket has been 

derived and discussed. In this model, the ball and stringbed were treated as two distinct 

components and numerous assumptions were made to enable the model to be solved. The method 

used to model the ball component was based upon the findings of a simulation of a ball impact on a 

rigid surface. It was assumed that the features of this ball model could be applied directly to the 

simulation of a ball impact on a head clamped racket. It was then assumed that the ball stiffness 

should be increased by 30% to improve the accuracy of the model. This was a reasonable 

assumption as the development of the model has always involved the used of empirically 

determined parameters. 

One of the assumptions that was made in regard to the model of the stringbed shall now be 

considered. The stiffness of the stringbed was assumed to be equal to that which was measured 

experimentally for a quasi-static loading. However, this assumption is difficult to apply because 

the quasi-static loading was applied using a rigid circular disc. Clearly, the ball applies a loading to 

the racket over a continually varying area during impact. An assumption needed to be made to 

define the diameter of the rigid circular disc which gives an equivalent loading as that applied the 

ball during the impact. It was assumed that this area will increase as a function of the stringbed 

displacement, and this function is shown in Figure C.I0. 

7.5 20 
Stringbed displacement XI (mm) 

Figure C.10 Assumed relationship between the disc diameter and the stringbed displacement. 

The relationship shown in Figure C.IO was obtained by comparing the shape of a deformed 

stringbed during an impact with a ball with that of a stringbed deformed quasi-statically. This is a 

subjective analysis because the two shapes are subtly different, and therefore there is a moderate 

level of uncertainty in the assumed relationship in Figure C.IO. 

To assess the sensitivity of the model solution to the assumed relationship shown in Figure C.IO, 

two other functions will be used to solve the model. These functions represent the two extreme 

possibilities for the assumed relationship and are shown in Figure C.ll as 'assumption (a)' and 
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'assumption (b)'. The definition of these extremes was aided by considering the comparison of 

shapes of the quasi-statically deformed stringbed and the dynamically deformed stringbed. 
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Figure C.11 Assumed relationship between the disc diameter and the stringbed displacement. 

The 'original assumption' is shown, along with two other arbitrary assumptions. 

The solution was calculated and the effect of the different assumptions was quantified by 

comparing the model output for several parameters as shown in Table C.I. The parameters were 

obtained for a model of an impact between a Pressurised ball and racket strung at 70lbs. The ball 

impact velocity was 30m/s. 

Table C.1 Comparison of the parameters calculated by the model for three different assumptions 

regarding the stringbed stiffness. 

Original Assumption (a) Assumption (b) 

assumption 

Ball rebound velocity (m/s) 24.1 24.0 24.2 

Maximum stringbed displacement 18.2 17.7 19.2 

(mm) 

Maximum ball centre-of-mass 20.6 20.6 20.5 

displacement (mm) 

Contact time T e(B) 4.28 4.25 4.32 

It can be seen from the results in Table C.l that the choice of function to describe the relationship 

between the disc diameter and the stringbed displacement does not greatly effect the magnitude of 

the ball rebound velocity, maximum ball COM displacement or the contact time for the impact. 
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Assumption (b), which acts to reduce the stiffness of the stringbed, increases the maximum 

stringbed displacement by lmm. 

C. 7.2 Summary 

In this section, it has been shown that the arbitrary assumptions made regarding the model of a 

stringbed do not greatly effect the model output. An assumed relationship between the stringbed 

displacement and the effective contact area needs to be made to solve the model. Two extreme 

assumptions were used in this section and it was shown that both assumptions resulted in similar 

values of the ball rebound velocity, maximum ball COM displacement and the contact time being 

calculated for the impact. 
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D. Modelling a tennis racket 

D.I Determination of the Transverse Mass Moment of Inertia 

:" .... ..... : .. 
.... .. .......... ~ . ' ? 

'" . ... : ' BUTT 

Figure 0.1 Illustration of the method used to simply support the racket. 

In Chapters 8 and 9, ball impacts on a freely suspended racket are studied, in which the ball 

impacts on the longitudinal axis of the racket. In these types of impacts, the only mass moment of 

inertia that is of concern is the transverse moment of inertia. The experimental method which is 

used to measure this parameter is based on that described in Brody (1985). 

A light, thin circular bar was attached to the racket at the butt end as illustrated schematically in 

Figure D.l. The bar rested on two knife edges and this arrangement acted as a pivot so that the 

racket could oscillate as a pendulum. The time period of N oscillations was determined using a 

digital stop clock. The total time which was measured by the stop clock, for N oscillations, is 

defined as TN. The time period for one oscillation of the racket is defmed using, 

T. = TN 
1 N [D.1] 

The mass moment of inertia of the racket [BUrr, around the butt end, can be determined from the 

time period of oscillations using, 
2 1; gMRBR 

I BUTT = 47r 2 [D.2] 

for small amplitude oscillations. 

For this study, the mass moment of inertia [BUTT was initially only measured for three different 

racket types . The experiments were repeated for values of Nbetween 10 and 80, and the results are 

presented in Figure D.2. 
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Figure 0.2 The experimental mass moment of inertia [BU1T plotted against the number of 

oscillations N used to obtain this value, for three different rackets. 

Figure 0.2 compares the mass moment of inertia [BU1T with the number of oscillations N that were 

used to determine this value of [BU1T; second order polynomial trend lines being plotted through this 

data. The value of IBU'lT should be independent of the number of oscillations yet the trend lines in 

Figure 0.2 show that the value of [BU1T is a function of N. This systematic error, and the scatter in 

the data, proves that there are inaccuracies in the method which should be investigated. There was 

insufficient data in this experiment to perform a full statistical error analysis, but the likely source 

of this error can be discussed by considering the accuracy of the parameters T/. MR and BR which 

are used in [0.2] to calculate [BU1T. 

The mass of the racket was determined independently using two different electronic scales. The 

mass measured using both scales correlated to within ±O.l grams. A simple rig was manufactured 

to aid the accurate measurement of the balance point BR. This rig was equipped with a set of knife 

edges to balance the racket and a measurement grid to reference the position of the knife edges 

with respect to the racket butt. An arbitrary uncertainty of ± 1 mm was concluded for the accuracy 

of the measurement of BR, as the balance point is not a discrete point when measured using this 

method. 
The errors in both mR and BR are relatively small and are also independent of the parameter N. 

Therefore these are not the source of the systematic error for [BUTT which is illustrated in Figure 

0.2. 
The time period TH for N oscillations is measured using a manual stop watch and is therefore 

susceptible to human error. If it is assumed that the error in the measured value of TH is ±0.3 

seconds then it can be shown that the relative error & in the value of Ii varies between ±2.1 % and 

±O.26% for values of N equal to 10 and 80 respectively. From [0.2], this causes an error in the 

order of &2 in the value of IBU1T which are between ±4.3% and ±0.S2%. This clearly highlights the 

effect of errors in T/ on the value of [H, and confirms the importance of maximising N when 

performing such experiments. This initially implies that all tests should be run with N equal to, or 

greater than, 80. However, due to the damping effects in the oscillating system it would be 

impractical to run a test for more than 80 oscillations. Also, the relationship between N and &2 is 
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non-linear. For example, &2 is equal to only ±0.89% for N equal to 50 oscillations. This illustrates 

that the accuracy of the experiment does not greatly improve as N is increased beyond, for 

example, 50 oscillations. 

It was arbitrarily chosen that the value of [Burr was determined by calculating a mean of the values 

of [Burr that were calculated for N between 50 and 80 oscillations. These results are summarised 

in Table D.l, along with the values of [Burr for four other rackets. 

Table 0.1 The mass moment of inertia [Burr for a selection of rackets. 

Racket Type IBurr calculated for N oscillations (kgm2
) MeanlBUTT 

N=50 N=60 N=70 N=80 (kgm2) 

YONEX Super RQ Ti 900 long 0.05014 0.05003 0.05008 0.04990 0.05004 

ITF Dev Court 1 Lite Mid-size 0.03839 0.03827 0.03817 0.03839 0.03830 

HEAD Prestige Classic 600 0.05177 0.05227 0.05237 0.05241 0.05220 

SPALDING Heat 90 0.05061 0.05066 0.05046 0.05058 0.05058 

Miller Twinset 0.05302 0.05297 0.05290 0.05278 0.05292 

ITF Dev Carbon Fibre 98 0.05337 0.05340 0.05326 0.05347 0.05337 

Wilson ProStaff 6.0 Mid-Size 0.05175 0.05144 0.05164 0.05160 0.05161 

Table D.l shows the mass moment of inertia [Burr values which were obtained using a different 

number of oscillations N of the racket. The mean value of [Burr, calculated from the four 

individually measured values for N = 50 to N = 80, is also shown. The level of confidence which 

can be assigned to this mean value of [Burr can be quantified by calculating the standard deviation 

of the difference (j between the mean and the raw data; (j being defined as, 

CT = {I BU1T)N -lBU1T 

where {I BU1T)N is the value of [Burr calculated using N oscillations, and lBurr is mean value of the 

mass moment of inertia for the racket. 

The standard deviation of the data set of 28 values of (j was calculated to be 0.OOOI3kgm2, or 

approximately 0.3%. This implies that a high level of confidence can be assigned to the value of 

[Burr measured using this method. 
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node position are shown in Table D.3. Due to the uncertainty in the position that the racket 

stringbed was excited by the hammer, an accuracy of ±5mm is quoted. 

Table 0.3 Experimentally measured node locations on a tennis racket. 

Racket Type Stringbed Node Position Frame Node Position 

(YNoDE)Slrlllgbed (YNODE)Frame 

(mm) (mm) 

YONEX Super RQ Ti 900 long 547±5 579±5 

ITF Dev Court 1 Lite Mid-size 524±5 551±5 

HEAD Prestige Classic 600 523±5 557±5 

SPALDING Heat 90 534±5 554±5 

Miller Twinset 538±5 561±5 

JTF Dev Carbon Fibre 98 528±5 549±5 

Wilson ProStaff 6.0 Mid-Size 523±5 558±5 

D.3 Beam models of a tennis racket frame 

D.3.} Introduction 

In Chapter 9, the methods were discussed for determining three different types of one dimensional 

beam model for a tennis racket frame. In that chapter, an ITF Carbon Fibre (6) tennis racket was 

used to illustrate these methods. In this section, the details of the six other tennis rackets are given, 

along with the parameters for the three model beams. 

Table D.4 Measured properties for range of tennis rackets. 

Length Mass Balance Mass Handle Racket Frame Length (m) 

LR(m) MR Point BR Moment of length width WR 
Racket Type (kg) (m) Inertia 1,U7T LH(m) (m) LFJ Lp2 Ln Lp4 

(kgm1) 

Yonex (J) 0.707 0.258 0.388 0.05004 0.236 0.290 0.097 0.028 0.319 0.028 

JTF' (2) 0.683 0.262 0.321 0.03830 0.187 0.260 0.161 0.027 0.281 0.027 

Head (3) 0.686 0.349 0.323 0.05220 0.215 0.260 0.135 0.027 0.282 0.027 

Spa/ding (4) 0.686 0.335 0.324 0.05058 0.215 0.270 0.121 0.027 0.296 0.027 

Miller (5) 0.686 0.298 0.363 0.05292 0.215 0.270 0.121 0.027 0.296 0.027 

1TF(6) 0.683 0.348 0.325 0.05337 0.228 0.265 0.094 0.027 0.308 0.027 

Wilson (7) 0.686 0.359 0.314 0.05161 0.215 0.255 0.148 0.027 0.269 0.027 
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Table 0.5 Properties of a uniform section beam model for a selection of tennis rackets. 

Racket Type Total Segment Mass Segment Flexural 

number of length s Moment massmll rigidity 

segments (m) ofInertia (kg) El 

N 
IB (kgrn2) 

Yonex (J) 51 0.0139 0.04295 0.00505 186 

ITF(2) 51 0.0134 0.04074 0.00513 70 

Head (3) 51 0.0135 0.05475 0.00684 169 

Spalding (4) 51 0.0135 0.05255 0.00657 138 

Miller (5) 51 0.0135 0.04675 0.00584 155 

JTF(6) 51 0.0134 0.05417 0.00683 156 

Wilson (7) 51 0.0135 0.05631 0.00703 184 

Table 0.6 Properties of a two section beam model for a selection of tennis rackets. 

Racket Type Total Segment Mass Flexural Number of segments Segment mass mll 

number of lengths Moment of rigidity in each section (kg) for each section 

segments (m) InertialB El NH NF (mll)H (mll)F 
N (kgm2) 

Yonex (1) 51 0.0139 0.04854 183 17 34 0.00357 0.00579 

ITF(2) 51 0.0134 0.03762 70 14 37 0.00626 0.00471 

Head (3) 51 0.0135 0.05055 167 16 35 0.00812 0.00626 

Spalding (4) 51 0.0135 0.04872 136 16 35 0.00773 0.00604 

Miller (5) 51 0.0135 0.05032 155 16 35 0.00476 0.00634 

ITF(6) 51 0.0134 0.05068 156 17 34 0.00782 0.00634 

Wilson (7) 51 0.0135 0.05005 180 16 35 0.00894 0.00617 
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Table 0.7 Properties of afive section beam model for a selection of tennis rackets. 

Racket Type Mass Flexural Number of segments in each Segment mass m" (kg) for each section 
Moment rigidity section 
oflnertia El NH NFJ NF2 NFJ Nn (m")H (m")Fl (m ll )F2 (m")FJ (m ll )F4 
Is (kgm2) 

Yonex (1) 0.04996 218 17 7 2 23 2 0.0040 0.0042 0.0163 0.0042 0.0163 

lTF(2) 0.03884 82 14 12 2 21 2 0.0068 0.0034 0.0126 0.0034 0.0126 

Head (3) 0.05202 196 16 10 2 21 2 0.0087 0.0046 0.0167 0.0046 0.0167 

Spalding (4) 0.05014 160 16 9 2 22 2 0.0083 0.0044 0.0164 0.0044 0.0164 

Miller (5) 0.05182 185 16 9 2 22 2 0.0053 0.0046 0.0173 0.0046 0.017 

ITF(6) 0.05206 184 17 7 2 23 2 0.0082 0.0047 0.0173 0.0047 0.017 

Wilson (7) 0.05158 211 16 11 2 20 2 0.0096 0.0045 0.0167 0.0045 0.017 
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D.4 Comparison of a point load and a distributed loading of a beam 

In section 9.4, a comparison was made between the model results for an impact which involves a 

point loading, and an impact involving a distributed loading of the beam. A supplementary 

comparison, for a Yonex (6) tennis racket is given in the figures below. 
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Figure 0.6 Calculated ball rebound velocity for a range of ball impact positions on the beam. 

Data is presented for both a point loading and distributed loading on a flexible beam, and also for a 

point loading on a rigid beam. The beam model represents an Yonex (1) tennis racket. The 

positions of the throat and tip on the head of the racket, and the string and frame nodes are also 

given. 
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Figure 0.6 Calculated amplitude of vibration of the fundamental frequency for a range of ball 

impact positions on the beam, for the vibration of the 1 It beam segment (closest to the butt end). 

Data is presented for both a point loading and distributed loading on a flexible beam, and also for a 

point loading on a rigid beam. The data is presented for the Yonex (1) tennis racket. The positions 

of the throat and tip on the head of the racket, and the string and frame nodes are also given. 
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The comparisons, such as those above, were perfonned for all the tennis rackets which have been 

investigated in this study. In Figure D.6, a comparison is made between the impact position and 

the magnitude of vibration which is excited. An important feature of this comparison is the 

identification of the impact location which corresponds to minimal vibrations. This position is a 

function of the loading method, and the collated data for all seven rackets is shown in Table D.8. 

The positions of the string and frame nodes are also given in this table. 

Table 0.8 Comparison of the frame and string bed nodes on the racket, and the impact locations 

corresponding to minimum vibrations of the beam. 

Racket Type Frame Node Stringbed Impact location corresponding to minimal 
(YNODE)Frame Node vibrations of the beam (mm) 
(mm) (YNODE)StriIIgbed Point load (mm) Distributed load 

(mm) 

Yonex (1) 579 547 575 555 

ITF Aluminium (2) 551 524 549 532 

Head (3) 557 523 551 532 

SpaJding (4) 554 534 556 532 

Miller (5) 561 538 559 540 

ITF Carbon Fibre (6) 549 528 551 530 

Wilson (7) 558 523 549 533 
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D.S Method of storing the ball, stringbed and racket parameters in a 

database. 

In section 9.5, a program called Racket Impact was discussed. This program performed the 

calculations that were required to solve for the displacements of the segments of the one 

dimensional beam segments and the components of the visco-elastic model. The ball, stringbed 

and racket parameters which were required by Racket Impact to model the impact are stored in an 

MS Access 2000 database which contains three tables. These tables are defined as (1) Ball, (2) 

Stringbed and (3) Racket. The fields which compose each table are given in the following figures. 

Table 0.9 The field names contained with in the Ball table. All these parameters are determined 

using the methods described in sections 5.5 and 8.4. 

Field name Description 

ID 

Ball type 

Mass Mass of the ball in SI units 

kBo Value of the parameter kB(o) 

Ak " " " AK 
Alpha " " " a 

Ac " " " Ac 
ro " " " p 

Picture Filename of picture of ball (excludes the file extension) 

Table 0.10 The field names contained with in the Stringbed table. All these parameters are 

determined using the methods described in section 6.2. 

Field name Description 

ID 

Stringbed type 

aks Value of the parameter as 

bks " " " bs 

cks " " " Cs 
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Table 0.11 The field names contained with in the Racket table. All these parameters are 

determined using the methods described in sections 9.3.3 and D.2.1. 

Field name Description 

ID 

Racket name 

Length Total length of the beam 

Mass Total mass of the beam 

MassMI Mass moment of inertia of the beam, around the butt end 

Balance Balance point measured from the butt end 

Nseg Number of segments N (equal to 51 in this study) 

LI 

L2 The individual lengths of each of the five sections which 

L3 compose the five section model beam. 

L4 

L5 

NI 

N2 The number of segments in each of the five sections 

N3 which compose the five section model beam. 

N4 

N5 

MI 

M2 The individual masses of each of the five sections which 

M3 compose the five section model beam. 

M4 

MS 

Ell 

EI2 The individual values of the flexural rigidity of each of 

EI3 the five sections which compose the five section model 

EI4 beam. (this value is constant for each section in this study, 

EIS but is assigned individually) 

I at Frequency The fundamental frequency of the beam 

Picture Filename of picture of ball (excludes the file extension) 
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E. Impact between a Ball and Freely Suspended Racket 

E.l Comparison of baD rebound velocity 
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Figure E.1 The stringbed stiffness which was measured at the throat location (labelled 3 in 

Figure 10.1). 

In section 10.2, experiments are conducted to measure the ball rebound velocity, for an impact 

between a ball and freely suspended racket. I~ this section, the Racket Solver software is also used 

to determine the ball rebound velocity for these impacts. This software requires the stringbed 

stiffness of the racket to be entered. This stiffness is given in Figure E.l and Table E.1. 

Table E.1 Second order polynomial trendline coefficients as, bs and Cs for the five different 

rackets. 
Racket Type Tip Geometric String Centre Butt 

as (kN/mJ) bs (kN/mt) Cs (kN/m) as bs Cs as bs 

Yonex (1) 33573 528 35 . ~ 0 1053 27.43 4150 1151 

ITF Aluminium (2) 30875 1211 24.6 -935.6 1160 18.59 8993 3067 

Head (3) 0 3958 42.7 0 2690 41.71 0 2640 
~ 

Miller (5) 0 2279 47.7 0 1550 43.605 0 1993 

Wilson (7) -22847 2599 28.9 27493 1040 38.35 -10291 2956 
~ 
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E.2 Ball, stringbed and racket deformation 

In section 10.3, experiments were conducted to measure the ball, stringbed and racket 

displacement, during the impact between a ball and freely suspended tennis racket. Supplementary 

data for this study is presented in this appendix. 

Table E.2 Second order polynomial trendline coefficients as, bs and Cs for two ITF Carbon Fibre 

tennis rackets strung at different tensions. 
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Figure E.2 Ball centre-of-mass displacement, stringbed displacement and racket impact point 

displacement for an impact between a ball and freely suspended racket, for four different 

combinations of string tension and ball type. The nominal ball impact velocity is 25mJs, and both 

the model and experimental data are presented. 
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Figure E.3 Ball centre-of-mass displacement, stringbed displacement and racket impact point 

displacement for an impact between a ball and freely suspended racket, for four different 

combinations of string tension and ball type. The nominal ball impact velocity is 35m1s, and both 

the model and experiment data are presented, 
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E.3 Measuring Ball and Racket rebound velocity 

E. 3. 1 Introduction 

In section 10.4, the ball and racket rebound velocity were experimentally measured, for an impact 

between a ball and freely suspended tennis racket. The main details of this experiment are given in 

that section, and supplementary data is presented in this section. 

Table E.3 Location of the four impact points which were tested on the racket. 
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Figure E.4 The racket rebound velocity for the Head racket. The data points represent 

experimental data and the curves repre ent the data calculated by the model. 
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E.4 Comparison of beam/racket motion in the model and experiment 

E. 4.1 Introduction 

In section 10.5, the displacement of the tip of the beam was experimentally measured using high 

speed video equipment. This experimental data was compared with the beam displacement data 

calculated by the Racket Solver v 1.1 software. This software uses the model of a ball impacting on 

a one-dimensional beam which has been developed in Chapter 9, and is used in the previous 

sections. 

The experiments (and model) were conducted for a range of ball impact positions along the 

longitudinal axis of the tennis racket. In this current section, supplementary data is given for these 

different impact positions, as shown in Figure E.S. 
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Figure E.S The displacement of the tip of the racketlbeam for a range of impact locations; the 

locations are referenced to the geometric string centre. Data is presented for both the experiment 

and model. 
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