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Abstract 

Carbon fibre reinforced polymer (CFRP) composites are high performance 

materials which are widely used in various applications, such as aircraft and aerospace 

structures, satellites, advanced marine vessels, fuel tanks, sports equipment, high-end 

automobile structures and many other strength/weight critical applications. It is well 

known that CFRP composites are stronger in tension (in the fibre direction) than in 

compression, typically 30-40% higher. This is due to the fact that the compressive 

strength depends on the properties of the matrix and quality of the laminate, such as 

alignment of the fibres embedded in the matrix and void content. In theory, stiffer, 

stronger and tougher matrices provide better support to the carbon fibres (better 

resistance to fibre instability or micro buckling), hence enhancing the compressive 

properties of the CFRP composites. The aim of this study is to improve the properties of 

the CFRP composite by carefully selecting and incorporating nanofi1lers in the epoxy 

resin. The nanomodified-epoxy is then combined with continuous carbon fibres, which 

results in better overall structural response. 

The thesis is made up of two main parts i.e., examination of the thermal and 

mechanical properties of nanomodified-epoxies and investigation of mechanical 

properties of the nanofilled-CFRP composite with an emphasis on compressive 

behaviour. 

In the first part, a systematic experimental investigation is conducted in order to 

identify the optimum content and dispersion of nanofillers in the resin systems to be 

used in the fabrication of CFRP composite laminates. The effect of silica nanospheres, 

carbon nanotubes and clay nanoplatelets on the compressive, tensile, flexural and 

fracture toughness properties of epoxy polymers were studied. Two types of epoxy resin 

were used: Epikote 828 and Cycom 977-20. In addition, the thermal properties of the 

nanomodified-epoxies compared to the neat systems were also investigated. The results 

showed that the addition of nanosilica into the epoxy significantly enhanced the 

compressive, tensile and flexural moduli. Additionally, strength and fracture toughness 

properties were also improved without any significant reduction in failure strain and 

thermal properties of the epoxy. It was found that the mechanical performance of 

nanosilica-modified Epikote· 828 system was comparable to that of the commercial 

high-performance Cycom 977-20 polymer. The Halpin-Tsai model was modified to 
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include the effect of particle volume fraction on the shape factor ~ that appears in the 

equation for predicting the Young's modulus of the nanoreinforced-resin. 

In the second part of the investigation, the effect of nanosilica on the compressive 

and in-plane shear properties of HTS40/828 CFRP composite was studied. A number of 

[O]s and [±45J2s laminates were fabricated using dry filament winding, wet resin 

impregnation and vacuum bagging techniques. The quality of the laminate such as fibre 

distribution, fibre misalignment, void content, fibre and nanosilica volume fraction was 

examined and measured. Static uniaxial compression and tensile tests on [0]8 and 

[±45hs laminates were performed. It was found that the compressive and in-plane shear 

properties of nanomodified CFRP were better than the neat system. For example, the 

addition of 7 vol% nanosilica improved the unidirectional (UD) compressive modulus 

and strength of the HTS40/828 composite by 40% and 54%, respectively. The 

compressive strength was also predicted using several analytical models based on fibre 

microbuckling and fibre kinking fracture mechanisms. One of the existing fibre 

microbuckling models was modified in this work to better account for the non-linear 

resin response. The predicted values showed that the un nanomodified-FRP laminate 

exhibited a better compressive strength compared to that of the neat composite system. 

In addition, the results demonstrated that the performance of the nanosilica-filled 

HTS40/828 composite was comparable to that of the commercially available 

HTS40/977-2 system, which is currently used by the aircraft industry. 
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Chapter 1 

Introduction 

1.1 Introduction 

Fibre reinforced polymers (FRP) are composite material systems made of polymer 

matrices reinforced with continuous or discontinuous fibres. High strength, high 

modulus continuous carbon fibres of 5-7 /lm filament diameter are the most versatile 

materials used in the development of modem FRP composite structures. Epoxies are 

well known thermosetting resins with excellent overall properties such as good adhesion 

characteristics with carbon fibres and good balance of physical, mechanical and thermal 

properties. The FRP composites, which are made of epoxy matrix reinforced with 

carbon fibre known as carbon fibre reinforced polymer (CFRP) composites, offer high 

strength and stiffness to weight ratios as well as good resistance to fatigue and 

corrosion. In addition, CFRP composites have extensively been used in the aircraft and 

high-end automobile constructions because of the ability to shape and tailor their 

structure to produce more aerodynamically efficient structural configurations [1,2]. 

However, the design of CFRP composite structures is often controlled by the 

compressive strength of the material. The compressive strength of currently used CFRP 

composites is usually 60% of the tensile strength, which minimises the potential of the 

CFRP composites. In addition, the compressive strength of the CFRP composite 

laminate can be reduced by more than 50% due to the presence of stress raisers, such as 

fastener holes, notches, fibre discontinuity caused by manufacturing defects or impact 

damage [1-6]. Furthermore, compressive loading and buckling can lead to instantaneous 

and catastrophic failure of the CFRP composite structure. In metals loaded in 

compression, yielding or plastic strain indicates fracture is about to occur while the 

CFRP composite system breaks in a more brittle manner. Therefore, compressive 
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response is one of the most important factors that should be taken into consideration 

when designing CFRP composite structures. 

The compressive strength of unidirectional CFRP composites is primarily 

influenced by the in-plane shear properties and the initial fibre misalignment angle 

[1,3,7]. Since fibre waviness is difficult to avoid during the manufacturing processes 

(mainly due to mismatch of constituent thermal properties), in recent advanced 

composite systems attention is devoted to the development of a stiffer and tougher resin 

using nanofillers. A stiffer and tougher resin increases the lateral support provided to the 

fibre and extends the plastic hardening behaviour after shear yielding. 

In theory, a stiffer and tougher resin provides a good load transfer and lateral 

support to the fibres, gives better resistance to fibre instability (micro buckling) and 

delays crack initiation and propagation. Therefore, by modifying the resin using 

nanofillers will improve the overall matrix-dominated properties such as in-plane shear, 

interlaminar shear and compressive strengths and fracture toughness. However, many 

factors affect the capability and performance of the nanomodified-resin. It primarily 

depends on the type and properties of the fillers along with their surface treatment, 

compatibility of the fillers to the epoxy and hardener, degree of dispersion of the fillers 

in the matrix and their interfacial adhesion, processing methods and curing conditions. 

Improper selection of resin, fillers and fabrication method leads to a significant 

reduction in the overall properties of the composite laminates; nanofillers may act as 

manufacturing defects. 

This brief introduction highlights the need for improved compressive properties 

that can be achieved by optimisation of nanofiller content and dispersion in the selected 

polymer resin. 

1.2 Aims of the thesis 

Based on the problem statement discussed in the previous section, this research is aimed 

to: 

i) develop a stiffer and tougher resin based on three types of nanofiller (silica 

nanospheres, multi-walled carbon nanotubes and clay nanoplatelets) and two 

types of epoxy (Epikote 828 and Cycom 977-20). 

ii) evaluate the thermal and mechanical properties of the nanomodified-resins and 

compare those properties with that of the pure resins. 
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iii) select the best perfonnance nanomodified-resin system for the fabrication of 

nanomodified-CFRP composites. 

iv) investigate the effect of the selected nanofiller on the compressive and in-plane 

shear properties of CFRP laminates. 

v) predict the compressive strength of the unidirectional laminate using existing 

models, compare to the measured values and modify if they differ. 

Therefore, this work is intended to study and evaluate how much nanofillers influence 

the thenno-mechanical properties of the epoxy and contribute to the enhancement of the 

properties of the CFRP composite, especially the compressive response (stiffness, 

strength and strain to failure). 
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Chapter 2 

Literature review 

2.1 Summary 

The aim of this chapter is to present a review of literature which is of relevance to the 

current study and justifies the need for this work. It focuses on the properties of epoxy­

based fibre reinforced polymer (FRP) composite systems. First, various techniques for 

improving matrix-dominated properties of FRP laminates for the past two decades are 

reviewed. This is followed by a review of advanced polymer composite systems using 

nanofillers as the modifier to the epoxy and FRP laminates. The effects of nanosilica, 

carbon nanotubes (CNT) and nanoclay on the mechanical and thermal properties of 

epoxy polymers and FRP laminates (based on carbon or glass fibres) are discussed. The 

degree of reinforcement provided by the nanofillers is examined, along with important 

influence factors, such as type of nanofillers and their surface treatment, type of matrix 

and reinforcing fibres, nanofiller volume fraction, degree of dispersion and the particle­

matrix interfacial properties. 

2.2 Conventional FRP composites 

The word "composite" describes a multi-phase material where its overall physical and 

mechanical properties are determined by the material interaction of the phases (or 

constituents) [8]. The reinforcing phase can take the form of fibres (either continuous or 

short, woven, aligned or randomly distributed), particle or flakes. Materials for this 

phase include glass, carbon, polymers, metals, or ceramics. Commonly used matrices 

include polymers, metals or ceramics. Continuous fibre reinforced polymer (FRP) 

composites are frequently regarded as advanced materials [1-10]. This is mainly due to 

high specific strength (strength/density) and specific modulus (elastic modulus/density) 
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that they possess. Nowadays, these materials are widely being used in various 

applications, such as aircraft and aerospace structures, satellites, advanced marine 

vessels, fuel tanks, sports equipment, high-end automobile structures, pipes and many 

other strength/weight critical applications [1-2,8-10]. 

The use of advanced composite materials in aircraft and aerospace structures 

required superior performance under extreme mechanical loadings and environmental 

conditions [1-2,8-10]. Carbon fibres of 5-7 J.Lm diameter have 220-350 GPa Young's 

modulus and 2.3-3.7 GPa tensile strength [9]. Epoxy resins have several attractive 

features for composite applications that include good adhesion characteristics with 

carbon fibres, good physical and mechanical properties, chemical resistance and 

dimensional stability. ease of processing and low material cost [10]. A composite made 

of a high strength carbon fibre combined with a high performance epoxy matrix offers 

outstanding structural characteristics. For instance IM7/977-2 system has a tensile 

longitudinal elastic modulus of 142 GPa and a tensile strength of 2537 MPa [4-6]. 

Therefore the composites industries, especially for aircraft and aerospace structures, are 

dominated by carbon fibre reinforced polymer (CFRP) composite materials. This work 

mainly focuses on the properties of these FRP composite materials. 

The first generation of composites introduced to aircraft construction in the 1960s 

employed brittle graphite/epoxy systems such as Thornel T300INarmco 5208 CFRP 

composite [1,4-6]. This leads to laminated-structures with poor matrix-dominated 

properties, such low compressive strength, interlaminar strength, fracture toughness and 

impact resistance, and limits their potential to be used as aircraft primary structure that 

requires high damage resistance and damage tolerance. Several efforts have been 

devoted to improve these matrix-dominated properties [4-6,9-44], such as: 

(i) developing high failure strain carbon fibres, 

(ii) using a thin ply prepreg of75 g/m2
, 

(iii) applying thermoplastic film to the prepreg, 

(iv) co-weaving and stitching the carbon fibre with thermoplastic fibre to 

produce hybrid woven fabrics, 

(v) incorporating soluble thermoplastic powder into the epoxy, 

(vi) adding thermoplastic veil onto the carbon fibre preform, and 

(vii) modifying epoxy resins with toughening agents (elastomer, rubber, core 

shell and alumina particles, glass beads and others). 

5 



Chapter 2 Literature review 

High strain carbon fibre has been developed to improve the mechanical 

performance of CFRP composite. However, attempts to improve failure strain and 

strength of the carbon fibre often lead to reduced stiffness and vice-versa. For instance, 

high strain carbon fibre has 230 GPa Young's modulus, 1.6% failure strain and 3.7 GPa 

tensile strength while high modulus carbon fibre has 340 GPa Young's modulus, 0.7% 

failure strain and 2.4 GPa tensile strength [9,10]. Yokozeki et al. [11] and Sihn et al. 

[12] introduced thin prepreg of 75 glm2 to produce laminates. The results showed a 

slight improvement (8-9%) of the open hole compression and compression after impact 

properties compared to that of standard laminates (using standard prepreg of 145 glm2
). 

In addition, the manufacturing cost is increased by spreading fibre tows into thin-ply 

prepreg and layup process. The other method to improve matrix-dominated properties is 

using stitched or weaved fabrics for the fabrication of CFRP composite laminate [1,13-

15]. A glass yarn is used for stitching or weaving. These operations maintain the 

alignment and orientation of the fibres during composite fabrication process. However, 

the compressive properties of the laminate were significantly reduced due to the 

presence of local fibre waviness, resin rich regions and fibre breakage created by the 

stitches [13-15]. Gary et al. [14] reported that the compressive strength of the 

composites was reduced by 50% compared to the unstitched composites. 

In contrast to those systems, which have been discussed above, Vlasveld et al. 

[16-17J proposed alternative way by replacing epoxy matrix with thermoplastic (TP) 

polymer such as polyamide 6 (P A6). Although TP material provides a high fracture 

toughness and damage tolerance, it has low stiffness, strength, thermal stability and 

chemical resistance. In addition, the processing TP polymer needs high temperatures 

and pressures, which leads to higher production costs. Based on extensive literature 

work, Parlevliet et al. [18] showed that the TP composite laminates suffer from thermal 

residual stresses, which occur due to mismatch in thermal shrinkage. This induced 

microcracking and fibre waviness in the laminates and hence reduced their mechanical 

properties. 

High performance TP materials, such as polyethersulphones (PES), 

polyetherketones (PEEK), polyimide and nylon, have been used as toughening agents 

for commercial CFRP composites [4-7,19-24,31-32] such as IM7/977-2, IM71F655 and 

IM6/1808I systems. These TP materials exhibit high glass transition temperature and 

fracture toughness [25]. However, many of these polymers have a low resistance to 

attacks by solvents or chemicals and do not provide adequate dimensional stability at 
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high application temperatures [29]. Inclusion of TP material into the epoxy matrix to 

form two-phase morphology polymer exhibited better mechanical properties compared 

to the pristine polymer [25-30]. However, the rate of increase in viscosity of the epoxy­

thermoplastic solution blend is much higher than the rate of increase in toughness of the 

resultant matrix [20,22,23,25,30]. The exponential increase in viscosity limits the 

process and handling characteristics of the matrix. For instance, the thermoplastic 

toughened epoxy Cycom 977-2 resin has a viscosity of more than 500 Pa.s at 65°C [22] 

while the Cycom 977-20, high molecular weight epoxy which has no thermoplastic, has 

a 0.5-1 Pa.s viscosity at the same temperature [23]. Therefore the optimum toughness is 

always sacrificed to maintain the processability of the resin. Due to the viscosity 

constrain, the TP powders, of 2-35 Jlm diameter, are mixed with epoxy resin and used 

for preparing prepreg [19]. During the curing process, the TP powder dissolves into the 

epoxy matrix. Nevertheless. dispersion is typically poor due to difficulty in controlling 

distribution of particles and non-uniform particle size. This influences the rate and 

degree of melting where large or agglomerated particles remain partially dissolved after 

curing and form thermoplastic rich regions [19]. 

One of the earliest techniques employed to improve fracture toughness of the 

CFRP composite system is to introduce undissolved thin thermoplastic film onto one 

side of the prepreg tape such as the IM6/1808I CFRP system [6,31]. When cured, the 

laminate has an interleaf approximately 12.7 Jlm thick between fibre plies. The film 

does not diffuse into the epoxy matrix hence reducing the capability of epoxy resin to 

support the carbon fibres. In compression, the specimens failed prematurely via 

longitudinal splitting due to poor interfacial bonding between resin and the fibres. The 

other way to add thermoplastic into a composite system is by stitching or weaving it 

directly to the carbon fibre [23,32]. Resin infusion technology (RIM) is used to cure the 

fibre preform. The stitching process using soluble polyester fibre yarn, causes damage 

to the carbon fibre and leads to reduced mechanical properties. Weaving the TP into the 

structural reinforcement fibres also increases the manufacturing cost. In addition, it 

disturbs the arrangement and straightness of the carbon fibres hence reduces the in­

plane compressive properties of the laminate. LoFaro et al. [24] manufactured resin­

soluble TP veil using PES fibres. The 8 mm chopped fibres are typically dispersed by 

hand on release film and pressed at 180°C for 1 hr to form a thin veil. Layers of carbon 

fabric were interleafed with non-woven fabrics to manufacture the composite using the 

resin transfer moulding method. The TP veil dissolved in 977-20 resin after curing. The 
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compressive strength and compression after impact strength were comparable to those 

prepared using 977-2 prepreg [22]. 

The other approach to improve matrix-dominated properties is by incorporating 

elastomeric particles into epoxy resin that form a compliant interleaf (approximately 20-

40 J.UIl thick) between fibre plies such as T8001F3900 and IM7/8551-7 system [4-6]. 

These particles are larger than the space between fibres therefore they are mostly 

confined to the interply region. Various types of elastomers or rubbers, which are 

commercially used in CFRP composites, are also reported in [33-35]. Rubbers or 

elastomers show ductility to some degree and are less rigid than the polymer matrix. 

These serve as excellent toughening agents in matrices. Rubbers tend to improve the 

toughness of the epoxy by preventing the propagation of cracks and boosting the strain 

capability. Rubber particles induce the formation of microvoids and activate the 

yielding processes of the matrix [36-38]. A substantial amount of energy is dissipated 

within the plastic zone near the crack tip. This contributes to the tougher matrix [36-38]. 

However, the increase in toughness of the epoxy-rubber matrix is accompanied by a 

reduction in elastic modulus, strength, creep resistance and the thermal stability of the 

composite [36-40]. Moreover, a low compressive strength of the CFRP system was 

observed in [4-6,40] due to the presence of a soft elastomer compliant interface, which 

minimised the capability of the epoxy to support the fibres against fibre microbuckling. 

In contrast, a stiffer matrix can be obtained by inclusion of rigid particulate fillers such 

as glass beads, glass flakes, mica flakes, alumina and titanium oxide [41-44]. These 

fillers enhance the elastic modulus of the polymer, however they often reduce the failure 

strain and strength. In other words, micron-sized fillers increase stiffness but damage 

the ductility of the polymer. 

2.3 Advanced nanofilled-FRP composites 

The overall performance of the FRP composites is mainly determined by the properties 

of the fibre, matrix and fibre-matrix interface [2,8-10]. In tension, the composite 

properties depend mainly on those of the continuous fibres and to lesser extend on fibre­

matrix interface. While, in compression the properties depend on the properties of the 

resin, the fibre waviness and fibre-matrix interface [7,45-55]. Scanning electron 

micrographs revealed that the failure of unidirectional (UD) CFRP composite laminates 

was initiated by fibre micro buckling and subsequent plastic kinking of the material 
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[7,50]. Therefore the development of stiffer and tougher matrices is aimed at delaying 

fibre microbuckling, extending plastic hardening behaviour of the matrix and giving 

better resistance to crack initiation and propagation. As a result, this will improve the 

overall matrix-dominated properties of the CFRP composites, such as in-plane shear and 

compressive strength, compression after impact and open hole compression, leading to a 

less notch sensitive composite system. However, the conventional toughening epoxy 

systems, as discussed in the previous section, showed that attempts to enhance fracture 

toughness are frequently coupled with lower elastic modulus and thermal properties, 

and vice-versa [33-44]. This leads to a low compressive strength and reduces the overall 

performance of the CFRP composite. 

The latest development in polymer composite technology is the enhancement of 

matrix-dominated properties and thennal stability of FRP composites by the inclusion 

of nanofillers in the epoxy matrix. In this thesis, this is called a nanofilled-FRP 

composite. The addition of nano-sized fillers into the epoxy (called nanomodified­

epoxy) can lead to a number of desirable effects. The most practical reasons [56-61] are 

to: 

(i) stiffen the matrix (increase elastic modulus) and make it more rigid, 

(ii) enhance strength and failure strain, 

(iii) improve resistance to crack initiation and propagation (fracture toughness), 

and 

(iv) reduce the coefficient of thermal expansion, thermal shrinkage and 

enhance thermal stability of the neat polymer that could reduce thermal 

stresses and hence fibre waviness. 

In order to achieve these, the selected nanofillers usually have higher elastic modulus 

and lower coefficient of thermal expansion than the matrix. There are several types of 

nanofillers commercially available and commonly used for developing nanomodified­

epoxy, such as montmorillonite organoclay, nanosilica, carbon nanotubes (CNT) and 

carbon nanofibres (CNF). The incorporation of these nanofillers enhanced mechanical 

and thermal properties of the epoxy polymers that have been reported by numerous 

researchers [56-65,68-77,92-95,117-121]. 

Although the properties of nanomodified-epoxy polymers have widely been 

studied in various research fields [56-61], the research on nanofilled-FRP composites is 
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still in the early stages. This new generation of hybrid materials are very promising 

composites for use in commercial applications especially aircraft and aerospace 

structures. However, the use of nanomodified-epoxy resin systems for the fabrication of 

FRP composites has been a challenge. Several challenges that need to be overcome are: 

(i) the selection of a processing method to uniformly disperse the 

nanoparticles in the epoxy matrix and in the FRP composites, 

(ii) the viscosity increase with nanoparticle content, and 

(iii) the selection of a nanomaterial which is compatible with the polymer 

matrix to create strong interfacial interaction between them. This includes 

type of surface treatment required. 

Agglomerated nanoparticles in a matrix introduce local stress concentrations and a weak 

particle-matrix adhesion, reducing the capability ofload transfer [56-61]. This leads to a 

premature failure of the polymer and thus reduces its strength and strain to failure. In 

addition, resin viscosity increases exponentially as the nanofiller content is increased 

[56-61]. This leads to process difficulties and a low quality FRP composite. 

The following sections present and discuss some recent studies on nanomodified­

epoxy resins and nanofilled-FRP composites, which are thought to be relevant to the 

present work. 

2.3.1 Nanosilica-filled FRP composites 

Silica nanospheres are used as a reinforcing filler for polymers because of their high 

elastic modulus (70GPa), high specific surface areas (50-380 m2/g), high thermal 

stability (1200°C), low density (1.8 glcm\ low thermal expansion coefficient, good 

abrasion resistance and low material cost (USn $8.50/1b) [56,58,66-67,73]. The effect 

of nanosilica on mechanical and thermal properties of epoxy polymers has been 

investigated by several researchers [56,58,62-65,68-84]. Some of the results are listed in 

Tables 2.1 and 2.2. 
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Table 2.1: Thennal and mechanical properties ofnanosilica-filled epoxy polymers 

prepared using direct mixing method reported in selected references. 

Type of tiller Epoxy I Effect Refs. 

Hardener 

14 nm silica Aerosil R202 Cycom 977-3 DMTA: [56] 
(treated: • 2 wr'1o: Tg t 9%, E· t 100% 
polydimethysiloxane) • 5 wr'1o: Tg t 3%, E· t 45% 
(from: Degussa) 

12 nm silica Aerosil R805 Cycom 977-3 DMTA: [56] 
(treated: octylsilane) • 2 wr'1o: Tg t 3%, E· t 47% 
(from: Oegussa) • 5 wr'1o: Tg t 0.4%, E· t 44% 

15 nm silica pretreated with CYD-128/ DSC: [62] 
KH-560 coupling agent JHB-590 • 3 wt%: Tg t 40% 
(from: Ming-Ri nanometer • 5 wt%, Tg t 17% 
materials ltd.) Mechanical tests: 

• 3 wt%: TS t 115%, TM t 
13%, IS t 60% 

• 5 wt%: TS t 11%, IS t 10% 

12 nm silica MEK-ST Epon 862 Mechanical tests: [63] 
(from: Nissan chemical) diglycidyl ether of • 5 wt%: TS = 0%, TM t 15%, 

bisphenol-F K)c t 39%, GIC t 68% 
(DGEBF)/ • 10 wr'1o: TS = 0%, TM t 
Epicure-W 25%, Klc t 15%, G)C t 6% 

7 nm silica Aerosil 380 MGS Ll35i Mechanical tests: [64] 
(treated: 3- diglycidyl ether of • 0.5 vol%: TS t 3%, TM J. 
glycidyloxypropyltrimethoxy- bisphenol-A 4%, TFS t 9%, K)c t 54% 
silane) DGEBAI 
(from: Oegussa) H137i amine 

12 nm silica Aerosil 200 DGEBAI Mechanical tests: [65] 
(from: Degussa) Methyl • 6 vol%: TS t 8%, TM t 17%, 

hexahydrophthalic TFS = t 15%, K)c t 48%, 
anhydride G1C t 85% 
(MHHPA) 

.. -" Note: Tg = Glass transition temperature, E = Dynamic elastiC modulus, TS = Tensile strength, 

TM = Tensile modulus, IS = Impact strength, K)c = Critical stress intensity factor, Glc = 
Critical energy release rate, TFS = Tensile failure strain. 
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Table 2.2: Thermal and mechanical properties ofnanosilica-filled epoxy polymers 

prepared using sol-gel technique reported in selected references. 

Type of filler Epoxy / Effect Refs. 

Hardener 

12 nm silica ERL4221 Cyloaliphatic ]4 vol%: [58] 
(from: Hense Chemie) bisepoxide epoxy/ BS t 40%, BM t 37%, Klc t 58% 

MHHPA 

20 urn silica Nanopox DGEBAI 14 vol%: [65] 
E470 MHHPA TS t 20%, TM t 44%, TFS J,. 9%, 
(from: Nanoresins) Klc t 51%, GIC t 62% 

20 nm silica XP22/0314 Cyloaliphatic 14 vol%: [68] 
(from: Hense Chemie) epoxyUVA- Tg J,. 7%, BS t 4%, BM t 37%, 

CURE15001 BFS J,. 25%, Klc t 76%, 
Albidur HE 600 GIC t 148%, IS J,. 7% 

20 nm silica XP22/0516 Araldite- F 8wt%: [69] 
(from: Hense Chemie) DGEBAI Tg t 2%, TS t 2%, TM t 14%, 

A]bidur HE 600 BS t 11%, BM t 18%, Klc t 50% 

25 urn silica Nanopox DGEBFI 15 vol%: [70] 
F520 Albidur HE 600 Tg J,. 14%, TS t 5%, TM t 48%, 
(from: Nanoresins) TFS J,. 38%, Klc t 77%, OIC t 114% 

20 urn silica Nanopox DGEBAI 20.2wt%: [71] 
F400 Albidur HE 600 Klc t 73% 
(from: Nanoresins) 

Bakelite EPR 164 13.4 vol%: [72-
DGEBAI Tg J,. 4%, TM t 30%, Klc t 141%, 74] 
Albidur HE 600 OIC t 348% 

Araldite- F 5 vol%: [75-
DGEBAI Tg = 0%, eTE J,. 49%, TS = 0%, 76] 
Piperidine amine TM t 22%, TFS t 4%, Klc t 72%, 

OIC t 141% 

Araldite- F 20wt%: [77] 
DOEBAI TS t 4%, TM t 40%, K 1C t 130%, 
Jeffamine D230 OIC t 274% 

Araldite- F 20wt%: [77] 
DGEBAI TS t 22%, TM t 40%, Klc t 61%, 
diaminodihenyl Ole t 81% 
sulfone (DDS) 

Note: BS = Bending strength, BM = Bending modulus, BFS = Bendmg faIlure stram, TS = 
Tensile strength, TM = Tensile modulus, TFS = Tensile failure strain, Klc = Critical stress 

intensity factor, Glc = Critical energy release rate, IS = Impact strength, Tg = Glass transition 

temperature, CTE = Coefficient of thermal expansion. 
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Koo [56] studied the effect of two different types of nanosilica on glass transition 

temperature (Tg) and dynamic elastic modulus (E\ The nanofillers were directly 

blended with the resin to prepare a series of nanocomposites. The specimens were tested 

using a dynamic mechanical thermal analysis (DMT A). In general all nanomodified­

epoxy systems exhibited higher Tg and E* compared to the neat Cycom 977-3 polymer, 

as summarised in Table 2.1. The TEM micrographs showed a distribution of 

agglomerated nanoparticles of 1, 2 and 5 wt% nanosilica in the matrix. The DMTA 

results showed that the addition of2 wt% Aerosil R202 enhanced Tg and E* by 9% and 

100%, respectively. For Aerosil R805, the degree of reinforcement was slightly lower 

than those obtained using Aerosil R202. This is due to a strong interaction between the 

Aerosil R202 nanoparticles and the matrix. Koo [56] extended the study by fabricating 

prepregs using AS4-6K carbon fibre fabric and nanomodified-Cycom 977-3 resin of 2 

wt«'10 Aerosil R202 and 2 wt% Aerosil R805. The results of fracture toughness, tensile 

strength, interlaminar shear strength and flexural strength of nanomodified-AS4-

6K1977-3 CFRP composite compared to the unmodified system were presented. 

However, the results obtained were disappointing where no significant improvement in 

tensile strength was observed for the nanomodified systems, and even worst the 

presence of agglomerated nanosilica reduced the fracture toughness, interlaminar shear 

strength and flexural strength. For instance, the inclusion of 2 wt% Aerosil R202 

reduced the fracture toughness, interlaminar shear strength and flexural strength of the 

AS4-6K1977-3 CFRP composite by 39%, 7% and 6%, respectively. Therefore, the 

quality of the fabricated composite is one of the important factors along with the 

properties of the matrix, including the degree of nanofillers dispersion, void content, 

nanofillers volume fraction and interfacial bonding between the nanomodified-epoxy 

and the carbon fibre. 

Agglomeration of nanosilica particles was also observed in [62-65] for various 

types of epoxy systems. At low nanosilica content, enhanced mechanical properties 

especially fracture toughness were observed. However, at high nanosilica content the 

nanocomposites failed prematurely due to weak interfacial bonding of agglomerated 

nanoparticles to the resin. Zheng et al. [62] fabricated glass fibre reinforced polymer 

(GFRP) composites using 1, 5 and 7 wt% nanosilica and epoxy system as given in 

Table 2.1. It was found that the addition of 7 wt% nanosilica into the GFRP composite 

improved the tensile strength, tensile modulus, bending strength, shear strength and 

compressive strength by 24%, 22%, 54%, 14% and 13%, respectively. They claimed 
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that these improvements were attributed to the strong adhesion of nanosilica particles to 

the surface of the glass fibres. Therefore, this promotes the stress transfer between the 

fibres and the matrix. However, the slight improvement in compressive strength 

indicated that uneven distribution of nanosilica in the laminate limits the capability of 

the resin to support the fibre against microbuckling. 

In contrast to direct mixing methods applied in various nanomodified-epoxy 

systems as listed in Table 2.1, Hanse Chemie AG [66] and Nanoresins AG [67] 

produced a non-agglomerated and homogeneously dispersed nanosilica in epoxy using a 

sol-gel technique. These masterbatch nanosilica/epoxy products were used in various 

systems [58,65,68-84] to study the effect of nanosilica on thermal and mechanical 

properties of the epoxy polymers. Some results are listed in Table 2.2 based on the 

optimum formulation. It was found that the degree of reinforcement depends on the 

compatibility of the nanosilica with the resin systems. All results showed an agreement 

where the addition of homogeneously dispersed nanosilica enhances the fracture 

toughness of the polymer. A maximum of 141% and 348% increase in critical stress 

intensity factor K1c and critical energy release rate GIC, respectively, were reported by 

Johnsen et al. [73] for a 13 vol.% nanosilica-filled EPR164IHE600 epoxy polymer. 

Several types of toughening mechanisms such as crack pinning, crack deflection, 

immobilised polymer and plastic void growth were reviewed. The debonding of the 

nanopartic1es and subsequent plastic void growth were considered as the major 

toughening mechanism responsible for the increase in fracture toughness [73]. 

Kinloch et al. [78] used the nanomodified-epoxy developed in [72-74] to 

investigate the effect of nanosilica on interlaminar fracture toughness of a CFRP 

composite. Friedrich et al. [58] showed that the viscosity of unmodified epoxy resin at 

room temperature was 0.075 Pa.s. The viscosity increased with nanosilica content. The 

maximum of 14 vol. % nanosilica increased the viscosity of the resin to about 0.33 Pa.s. 

At working temperature of 60°C, the viscosity was reduced to 0.01 Pa.s for the pure 

resin and 0.07 for the nanomodified-epoxy. Therefore, the addition of nanosilica 

contributed to a small increase in viscosity and retained ease of processing. The non­

agglomerated and small particle size of 20 nm allows it pass through close meshed 

fabrics (no filtering effect). Therefore, a vacuum assisted resin transfer moulding 

(VARTM) manufacturing technique was employed by Kinloch et al. [78] in order to 

prepare a laminate using linen-weave 0/90 carbon fibre mat. The fibre volume fraction 

of the laminate was 26.5 vol. %. The result showed that the fracture toughness of the 
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unmodified CFRP was 439 J/m2
• However, the addition of 11.9 wt.% nanosilica showed 

no significant improvement on the fracture toughness of the CFRP (11 % increase). It 

was claimed in [78] that a 9 wt% carboxyl terminated butadiene-acrylonitrile (CTBN) 

rubber was added to the nanosiIica-fiIIed CFRP composite system and the fracture 

energy increase to 1320 J/m2 (201% increase). The authors concluded that further work 

is needed to study the effect of adding rubber particles to the compressive properties of 

the laminate. This is due to the fact that a softer matrix reduces its capability to support 

the reinforcing fibre and leads to a lower compressive strength. 

Kinloch and coworkers [79-83] extended the study to investigate the effect of 

nanosilica on fracture toughness and tensile fatigue behaviour of GFRP composites. 

Resin infusion technique was used to fabricate 10 wt% nanosilica-filled GFRP 

laminates based on UT-E500 glass fibres and LY556IHE600 epoxy resin. The results 

showed that the addition of nanosilica improves the fracture toughness by 208% [81-

83]. The fracture surface of the nanomodified-UD laminate showed the presence of 

fibre bridging mechanism. This contributes to increase in fracture energy. The fatigue 

life of nanomodified-GFRP composite was 3-4 times higher than that of the unmodified 

system [79-80]. The reduced crack growth rate due to particle debonding and plastic 

void growth mechanisms contributed to an increase in fatigue life of the nanomodified 

system. 

Uddin and Sun [84] took a further step to study the effect of nanosilica on tensile 

and compressive properties of GFRP composite laminates. A V ARTM method was 

used to fabricate the unidirectional and off-axis laminates using E-LR-0908-14 E-glass 

fibre cloth and DGEBAICycloaliphatic amine resin. In order to minimise voids in the 

laminate, the nanomodified resin was degassed for an hour before it was diffused into 

the V ARTM mould. Laminates with 42-50% fibre volume fraction (Vj) were fabricated. 

It was found that the addition of 15 wt% nanosilica into GFRP composite significantly 

improves the transverse tensile modulus and strength by 32% and 41 %, respectively. 

The longitudinal tensile strength was increased by 11 % while no improvement was 

recorded for the longitudinal tensile modulus. The longitudinal tensile properties depend 

on the properties of fibre while the transverse tensile properties depend on the properties 

of the matrix and fibre/matrix interface. Therefore, stiffer and tougher nanomodified 

matrix contributes to a significant improvement in the transverse tensile properties. The 

compression tests were conducted using ASTM D695 for rigid plastic materials rather 

than ASTM D3410 or D6641 compression test standards for composite materials. As a 
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result, the specimens failed due to brooming failure mode at the specimen's end near to 

the loading platens. Therefore, the longitudinal compressive strength was predicted 

using the off-axis compressive strength results. It was found that the compressive 

strength was improved by 81 % and 61 % for the nanomodified-Iaminate with Vj = 42% 

and 50%, respectively, but not physically measured. 

Based on the literature study, it was found that the matrix dominated properties 

such as fracture toughness, transverse tensile strength and compressive properties 

primarily depend on the properties of the matrix. A stiffer and tougher matrix such as 

nanosilica-modified epoxy significantly improved these properties. However, further 

studies are needed to better understand the toughening mechanisms in newly developed 

nanomodified hybrid systems, especially where the reinforced fibres are carbon. 

2.3.2 CNT -filled FRP composites 

The remarkable physical and mechanical properties of carbon-based nanofibres render 

themselves an ideal class of reinforcing filler for polymeric materials. There are three 

types of fibrous nanoparticles: 

(i) Single-walled carbon nanotubes (SWCNT) with diameter of about 1 nm 

[56], 

(ii) multi-walled carbon nanotubes (MWCNT) with inner diameter of 2-10 nm 

and outer diameter of 20-70 nm [56], and 

(iii) carbon nanofibres (CNF) such as cup-stacked carbon nanotubes (CSCNT) 

[88-89], vapour grown carbon nanofibres (VGNF) [56,90] and vertically­

aligned carbon nanofibres (VACNF) [91] 

SWCNT has low density (1.33-1.40 glcm3
), high elastic modulus (1200 GPa), high 

tensile strength (2 GPa), high surface area (250-300 m2/g), low coefficient of thermal 

expansion, high thermal stability (7500C) and high resilience in sustaining bending force 

[56,58-61,85-87]. MWCNT has tensile elastic modulus of270-950 GPa, tensile strength 

of 11-63 GPa, bending elastic modulus of 1260 GPa and bending strength of 14 GPa 

[85-87]. CNF such as CSCNT has an outer diameter of 80-100 nm, inner diameter of 

50-60 nm, length of 200 ).lm length, density of 2.1 glcm3
, elastic modulus of 1400 GPa 

and tensile strength of 7 GPa [88-89]. The properties of CNF are comparable to that of 
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SWCNT. Therefore, the aim of adding CNT and CNF into epoxy polymers is to 

improve their mechanical and thermal properties. 

The degree of reinforcement depends on the type of nanofiller and its surface 

treatment, processing method and type of resin system. Homogeneous dispersion of 

CNT in the resin and good interfacial adhesion between them are prerequisites for the 

improvement in mechanical properties [58-61,92-95]. In order to enhance the 

nanofibre/matrix interfacial adhesion, the surface of CNT or CNF is treated using 

several methods (similar methods used for the treatment of micron-sized carbon fibre 

[10]) as summarised in Figure 2.1. For instance, the influence of surface treatment of 

MWCNT on tensile properties of epoxy polymer (DGEBA YDl28/amine TH432) was 

studied by Kim et al. [92]. The MWCNTs were purified using a 3:1 mixture of 

H2S0JIIN03 and then treated using Ar plasma. The addition of 1 wt% plasma treated 

CNT in the polymer enhanced the tensile modulus by 33%, tensile strength by 123% 

and failure strain by 124%. The field emission scanning electron (FESEM) micrographs 

showed good dispersion of CNT in the matrix. The fracture surface of the tensile 

specimens showed evidence of fibre breakage mechanisms rather than fibre pulled out. 

This indicates a strong interfacial adhesion between the CNT and matrix. A similar 

surface treatment technique was employed by Tseng et al. [93]. The results showed that 

the addition of 1 wt% plasma treated MWCNT increased the tensile modulus, strength 

and failure strain of epoxy polymer by 102%,50% and 378%, respectively. In addition, 

the decomposition temperature of the nanomodified polymer was increased by 6% and 

the glass transition temperature was increased by 28%. 

Although good dispersion of CNT in the epoxy resin was achieved, the problem 

still exists with resin viscosity, which limits the CNT content up to a maximum of 1-2 

wt%. The viscosity of the resin was increased with an increase in CNT content. This 

reduced its processability at high CNT content especially for the fabrication of 

nanornodified-FRP composites. Therefore another challenge is to fabricate a good 

quality CNT-filled FRP composite, which has a low void content, good dispersion of 

CNT, optimum CNT content and high fibre volume fraction. Zhou [59] introduced pre­

bind CNF onto glass fibre mat using a spray technique instead of a conventional 

mechanical mixing technique of CNT in epoxy. The surface-treated Pyrograf-III CNF 

(PRI9-LHT-OX), with a diameter of 100-200 nm and length of 30-100 Ilm, was 

sprayed on UO QM6408 glass fibre mat. Vacuum assisted resin transfer moulding 

(V AR TM) was used to impregnate the preform with unsaturated polyester resin Aropol 
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Q6585. The cured laminates had a fibre volume fraction of 48-51 %. The results 

demonstrated that the addition of 3.5 wt% CNF improved the flexural modulus and 

strength of GFRP composite by 20% and 66%, respectively. However, SEM 

micrographs showed non-uniform distribution of CNF in the laminate. 

oxidative 

Gaseous oxidation Plasma oxidation 

Oxidation in air 

Oxidation in O2 

and O2 containing 
gases (03 and CO2) 

Catalytic oxidation 

Surface treatment 

Non-oxidative 

Liquid phase 
oxidation 

Chemical 
(HNO), H20 2, 

KMn04, NaCl, 
Chromic acid) 

Electrochemical 
(HN03, NaOH) 

whiskerization 

Plasma 
polymerization 

Pyrolytic 
carbon deposition 

Figure 2.1: Summary of surface modification techniques of CNT/CNF based on surface 

modification technique for micron-sized carbon fibres [10]. 

A similar type of CNF was used by Rice et al. [90] to fabricate a nanomodified­

[M7/862 CFRP composite using a wet-lay up technique. The impregnated carbon fibre 

was cured in the autoclave. The addition of 8 wtOlo Pyrograf HI CNF into IM7/862 

composite improved the interlaminar shear strength by 6%, in-plane shear modulus by 

17%, in-plane shear strength by 15%, compressive modulus by 11 %, compressive 

strength by 7%, which is similar to the coefficient of variation observed in compression 

tests. The optical micrographs showed that the CNF created ply interleaf in between the 

plies. A poor dispersion of CNF in the matrix minimised the capability of the matrix to 

support the fibre. Thus, the presence of CNF slightly improved the matrix-dominated 

properties of the composite. A similar type of CNF was also used by Koo [56] to 

fabricate a nanomodified-AS4-6K1Cycom 977-3 CFRP composite. The results showed 

that the inclusion of 2 wt% CNF in the CFRP laminate reduced the fracture toughness 

G) C by 55% and flexural strength by 5% with slight improvement in interlaminar shear 
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strength (9%). This is perhaps due to a similar reason (poor dispersion of CNF in the 

matrix) observed in [90]. 

Quaresimin and Varley [96] used a ball milling technique with solvent to disperse 

Pyrograf III CNF into DER3311DEN4311XD5200 epoxy resin. The solution was then 

applied onto the DD carbon fibres Tenax-G30-700 12K HTA-7C using a paint brush. 

The impregnated carbon fibres were partially cured at room temperature to form 

prepregs. The manual lay-up prepreg was then cured using a hot press. They claimed 

that the fibre volume fraction was 65%. It was found that the addition of 7.5 wt% CNF 

enhanced the interlaminar shear strength by 19% where all specimens failed via 

delamination. The CNF-modified resin formed a ply interleaf of about 40 J.Ull-150 J.Ull 

between carbon fibre plies [90,96]. As received CNT are in the form of agglomerated 

particles (maximum about 50 IJlll diameter), as observed by SEM micrographs in [97]. 

Therefore, this shows evidence of agglomerated or entangled CNFs in the composite 

laminate where these particles are larger than the space between fibres and they are 

mostly confined to the interply region. Although a thick resin-rich layer in between the 

plies may enhance the interlaminar shear strength, it degraded the longitudinal 

compressive strength [96]. A similar result was observed in a conventional CFRP 

system as discussed previously in Section 2.2 (improving toughness using thermoplastic 

ply interleaf) where premature failure via longitudinal splitting in compression occurred 

because of poor interfacial bonding between the fibres and the matrix. Similar results 

were obtained for the other systems studied in [98-102] using CNF. 

The other type of CNF, that is commercially available (from GSI Creos 

corporation) and currently used for developing nanomodified-epoxies, is cup-stacked 

carbon nanotubes (CSCNT) [88-89,103-104]. Yokozeki and co-workers [88-89,103] 

used a ball milling technique to disperse CSCNT in DGEBA EP827/dicyandiamide 

epoxy resin system. The prepreg was then prepared with T700SC-12K carbon fibre and 

the nanomodified resin. It was cured using an autoclave. TEM micrograph showed a 

good dispersion of CSCNT in the matrix. The mechanical tests showed that the 

incorporation of 5 wt% CSCNT into CFRP composite enhanced the matrix-dominated 

properties. The transverse tensile modulus and strength were improved by 6% and 13%, 

respectively. The fracture energy was also increased from 86 J/m2 to 170 J/m2
• They 

claimed that fibre-bridging mechanism was visually observed during crack growth of 

the nanomodified CFRP composite. The SEM images illustrated a rough crack surface 

of the nanomodified system. The tension, compression, bending and compression-after-
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impact tests were also conducted on quasi-isotropic [O/90/45/-45]3s laminates. The 

results demonstrated that the inclusion of 10 wt% CSCNT into the composite 

moderately increased the compressive stiffness and strength, bending stiffness and 

strength and compression after impact strength by 5%, 10%, 5%, 2% and 7%, 

respectively, while no improvements in tensile modulus and strength were recorded. 

A moderate reinforcing effect was observed so far for the CNF -filled FRP system. 

For the CNT -filled FRP system, improvements in mechanical and thennal properties 

have been reported by several researchers [105-113]. Some selected results are 

summarised in Table 2.3. Qiu et al. [105] demonstrated significant enhancement of 

mechanical and thennal properties by incorporating I wt% functionalised MWCNT into 

GFRP composite laminate. The MWCNT was dispersed in the epoxy resin using 

ultrasonic technique. The nanomodfied-resin was then infused through the AIOIO uni­

warp knitting glass fibre fabric in the thickness direction using a vacuum assisted 

infusion method to produce a prepreg. The prepreg was then laid up and cured using 

V ARTM. Thennal and mechanical properties of the nanomodified system compared to 

the unmodified system are summarised in Table 2.3. The results showed that the 

addition of I wt% into the GFRP composite significantly increased the tensile properties 

and reduced the CTE. A good dispersion of MWCNT in both inter-tow and intra-tow 

areas contributed to improved mechanical properties. 

A modified-V AR TM method, called injection and double vacuum assisted resin 

transfer moulding (IDVARTM), was designed by Fan et al. (106J to produce 2 wt% 

functionalised MWCNT in GFRP composite. This method successfully infused the 

MWCNT between fibres. A good dispersion of CNT in the matrix was revealed by the 

TEM. It was found that the interlaminar shear strength, which was measured using 

compression shear test device, of the 2 wt% MWCNT-filled GFRP composite was 33% 

higher than that of the unmodified GFRP system. The MWCNT content was limited to 

2 wt% because of high viscosity of the nanomodified-resin. 
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Table 2.3: Thennal and mechanical properties ofCNT-filled FRP composites reported 

in selected references. 

Type of filler FRP composite Effect Refs. 

system 

MWCNT functionalised AI0I0GF/ 1 wt'llc!: [105] 
with acid oxidation EPON8621 LTM i 27%, LTS i 16%, TTM i 
(from: Sigma Aldrich) EPI-W 35%, TIS i 18%, SM i 11%, SS t 

8%, CTE .J, 2S%, Tg.J, 10% 

MWCNT functionalised WovenGF/ 2 wt'llc!: [106] 
with acid oxidation SCIS ILSS i 33% 
(from: ILJIN nanotech 
company) 

DWCNT-NH2 amino GF non-crimp 0.3 wt%: [108] 
functionalised fabric/ ILSS i 20% 
(from: Nanocyl) DGEBA Ll35i1 

Amine H137i 

MWCNT Woven fabric AS4 0.5 wt%: [110] 
(from: Helix material CFI Tg t 19%, ILSS t 1 S%, CS t 39%, 
solutions, Inc) DGEBA GY6010/ 

DDS 

MWCNT CFI 0.5 wt'llc!: [113] 
(from: ARKEMA) Araldite L Y5641 CAlM t 15%, CAIS t 12-15% 

Aradur HY2954 

. 
Note: GF = Glass fibre, CF = Carbon fibre, LTM = Longltudmal tensIle modulus, L TS -

Longitudinal tensile strength, TTM = Transverse tensile modulus, ITS = Transverse tensile 

strength, SM = Shear modulus, SS = Shear strength, CTE = Coefficient of thermal expansion, 

Tg = Glass transition temperature, ILSS = Interlaminar shear strength, CS = compressive 

strength, CAlM = Compression after impact modulus, CAIS = Compression after impact 

strength. 

Gojny and co-workers [107-109J used a three-roll mill machine to disperse CNTs 

by shear forces. The amino functionalised double-walled carbon nanotubes (DWCNT­

NH2) were milled with the epoxy resin and impregnated into the glass-fibre non-crimp 

fabric using a resin transfer moulding (RIM) technique. The addition of 0.3 wt% 

DWCNT into the GFRP composite increased the interlaminar shear strength by 33% 

(measured using short beam three-point bending test). The SEM observation of the 

fracture surface of the nanomodified system showed entangled CNTs in the matrix. No 
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filtering effect of agglomerated particles by the glass-fibre bundles was mentioned in 

the paper. 

Cho et al. [110-111] claimed that a better dispersion of MWCNT was achieved 

using a solvent-dispersing technique. A solution of epoxy resin, solvent (Disperbyk-

2150 dispersant) and MWCNT was prepared using rotary mixing and ultrasonication 

techniques. The 5-harness satin woven fabric with AS4 carbon fibre (AGP370-5H) was 

impregnated with the nanomodified-epoxy. The prepreg was then cured in an autoclave. 

The glass transition temperature of the nanomodified-CFRP composite was 19% higher 

than that of the unmodified system as measured using DMT A. The interlaminar shear 

strength was also increased by 15% by adding 0.5 wt% MWCNT into a CFRP 

composite. In addition, the compressive strength was significantly enhanced by 39%; no 

improvement in compressive modulus was recorded. It is interesting to note that the 

interlaminar shear and compressive strengths were increased simultaneously. They 

suggested that interfibre bridging and local microcracks, due to the presence of CNT, 

delayed the global failure of the composite. Other types of solvent that can be used to 

disperse CNT in epoxy are N,N-dimethylformamide (DMF), tetrahydrofuran (THF) and 

alcohols [112]. 

The effect of MWCNT on the compression after impact properties was studied by 

Kostopoulos et al. [113]. A good dispersion of 0.5 wt% MWCNT in the epoxy resin 

was achieved using a Torus mill where the high-speed rotating disc with zirconium 

dioxide beads generates high shear forces and reduces particle agglomeration. The resin 

was then impregnated to the carbon fibres. The prepregs were cured in the autoclave to 

produce quasi isotropic [01+45/90/-45hs laminates with approximately a 58% fibre 

volume fraction. It was found that the inclusion of MWCNT into the CFRP composite 

system, as given in Table 2.3, enhanced the compression after impact (CAl) modulus by 

15% and CAl strength by 12-15%. They suggested that a tougher resin, due to the 

presence ofCNT, contributes to higher energy absorption during compression. 

The other method to prepare CNT-filled CFRP composites is by growing or 

grafting CNT onto the reinforcing carbon fibres [114-115J as illustrated in Figure 2.2c. 

Single-fibre fragmentation test results presented by Thostenson et al. [116J showed that 

the carbon fibre with nanotubes grown on the surface has a higher fibre/matrix 

interfacial strength compared to the conventional carbon fibre system. The presence of 

local grown CNT on the fibre surface improved interfacial load transfer due to local 
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stiffening of the polymer matrix near the fibre/matrix interface. Therefore, the purpose 

of fabricating CNT-modified CFRP using this CNT grown CF is to improve the 

interlarllinar shear or matrix-dominated properties. A significant enhancement of 

interlaminar shear modulus and strength was reported in [114-115]. In tenns of 

commercialisation purposes, this kind of fabrication method needs to be further 

investigated. 

Carbon 
fibre 

matrix 

Conventional CFRP 
composite 

(a) CNT dispersed in the 
matrix 

(b) grafting CNT onto 
carbon fibre 

Figure 2.2: Schematic illustration ofCNT-filled CFRP composites using two different 

routes: (a) dispersing CNT throughout the composite matrix and (b) attaching CNT 

directly onto the carbon fibre; based on [114J. (CNT dimensions are not to scale) 

2.3.3 Naooclay-filled FRP composites 

Clay nanoplatelet is one of the most widely investigated nanofillers in a variety of 

different polymer matrices for a wide range of applications [57] . The origin of the 

natural clay (such as montmorillonite (MMT)) is commonly formed from the alteration 
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of volcanic ash or rocks [56). The dominant constituent of the MMT clays, which are 

used in current work, is silica and alumina [57]. The chemical structure of the MMT 

clay consists of tetrahedral silicate and octahedral alumina layers where the two 

tetrahedral layers sandwich the octahedral layer to form one clay sheet (which has 

thickness of 1 nm) [57]. Layered silicates are hydrophilic materials while most 

polymers are hydrophobic materials. Therefore, organic treatment on the MMT clays is 

carried out to ensure compatibility with the polymers. 

Nanoclays are selected as reinforcing filler for polymers because of their high 

elastic modulus (170GPa), low material cost (USD $3.50Ilb; compared to SWCNT = 
usn $227000/lb and MWCNT = usn $3000Ilb), low density (1.71 g/cmJ

), high 

thermal stability, low thennal expansion coefficient and high specific surface areas (750 

m2/g) [56,57,61]. A large surface area of dispersed nanoclay plays an important role in 

the confinement of the polymer chain mobility under stress [59,61,117-118). These give 

significant improvements in stiffness, strength, fracture toughness, dimensional stability 

and thermo-mechanical behaviour of polymer, usually for an addition of a small amount 

of nanosize clay particles (less than 5 wt. %) [117-121]. 

It is desirable to have dispersed and exfoliated organoclay in the nanocomposites 

in order to improve the mechanical and thennal properties of the polymer. The degree 

of dispersion or microstructure (tactoids, intercalated and exfoliated) of the clay 

nanoplatelets in epoxy is usually identified by wide- or small-angle X-ray diffraction 

(XRD) or transmission electron microscopy (TEM). These techniques are used to 

measure the gallery spacing or the gap between two adjacent platelets (d-spacing). For 

instance, the d-spacing of nanomer 1.30 powder determined using XRD is about 2.3-

2.37 nm [118-120]. 

Schematic illustrations of the microstructures (a) tactoids, (b) intercalated, (c) 

exfoliated with ordered structure and (d) fully exfoliated with random orientation 

polymer-clay nanocomposites are shown in Figure 2.3. An intercalated type 

nanocomposite has gallery spacing of 2.37-8 run [119]. Polymer chains diffuse into the 

galleries between the clay platelets and increase the d-spacing as shown in Figure 2.3b. 

For an exfoliated structure nanocomposite (Figure 2.3c-d), more polymer molecules 

enter the galleries of the platelets and push the platelets further apart. The d-spacing for 

exfoliated structure is more than 8 nm [119]. Whereas for tactoids, the clay platelets are 

still aggregated together, and no polymer molecule moves into the galleries of the 
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adjacent platelets (Figure 2.3a). The degree of exfoliation depends on the type of clay 

and its surface treatment, type of epoxy and hardener (including viscosity of the resins), 

resin-clay interaction, clay content and processing method. To date, a processing 

technique that produces complete dispersion and exfoliation of silicate layers in the 

polymer matrix is still a technical challenge. 

Epoxy 

f t 

(a) (b) 
Tactoids Intercalated 

+ 

Clay nanoplatelet 
It 

- +- d-spacing 
+ (2.3-2.37nm) - --

Clumps of 
nanomer 1.30E nanoclay 

(dry particle size: 8-10 )lm) 

t 
t t 

(d-spacing:2.3-2.37nm) (d-spacing:2.3 7 -8nm) 

(c) 
Exfoliated 

(ordered structure) 
(d-spacing: > 8nm) 

(d) 
Exfoliated 

(randomly oriented) 

Figure 2.3 : A schematic diagram of morphologies that can be observed in epoxy-clay 

nanocomposites (Based on [56]). In the current work, MMT clay nanomer I.30E was 

used. The nanoparticle size and d-spacing between platelets are also shown. 

The most widely used manufacturing methods for polymer nanocomposites are 

direct mechanical stirring, in-situ polymerisation, high shear mixing, melt blending, 

high-pressure mixing, sonication and combination of these (for example studied in 

25 



Chapter 2 Literature review 

[56,57,59,117-121]). Yasmin et al. [117] reported that high shear mixing using a three­

roll mill machine was the best method to exfoliate the stacked layers of silicate clay in 

the epoxy matrix. This method applies external shear forces generated between the 

adjacent rollers to increase the d-spacing of the silicate platelets. 

Although good dispersion and exfoliated state of nanoclay in the epoxy resin was 

achieved, the problem still exists with selecting an appropriate fabrication method for 

FRP composites that can deal with the high viscosity of nanomodified-resin. Fabrication 

of good quality nanomodified-FRP composite laminates (that have a low void content, 

good dispersion/exfoliation through out the laminate, optimum clay content and high 

fibre volume fraction) stills presents a great challenge. The viscosity of the 

nanomodified-resin limits the nanoclay content up to a maximum of 5 wt%. Some 

selected results and achievements that have been documented by several researchers for 

various FRP systems are summarised in Table 2.4. 

One of the earliest works studying the effect of nanoclay on the mechanical and 

thermal properties ofGFRP was conducted by Haque et al. [122]. The SC-15 epoxy was 

blended with MMT I.28E nanoclay using an ultrasonic liquid processor. The 

nanomodified-resin was infused into a plain weave glass fabric using the vacuum 

assisted resin infusion molding (V ARIM) manufacturing technique. The TEM 

micrographs showed that the nanomodified-resin has an intercalated microstructure with 

occasional presence of tactoids; this suggests an incomplete dispersion. The 

thennogravimetry analysis (TGA) results showed that nanomodified-GFRP composite 

has a better thennal stability compared to the unmodified system where higher Tg and 

decomposition temperatures were obtained. The addition of 1 wt% nanoclay 

significantly improved the interlaminar shear strength, flexural strength and fracture 

toughness of the GFRP composite (see Table 2.4). This is due to the enhanced 

fibre/matrix interfacial bonding where the SEM micrographs revealed a rough surface 

of glass fibre due to a strong bonding to the nanomodified-matrix compared to a smooth 

glass fibre surface for the unmodified system. The addition of more than 1 wt% 

nanoclay, severely degraded the properties of the laminate due to the increased amount 

of agglomerated nanoparticles. Lin et al. [123] employed a similar technique to disperse 

the Cloisite 15A in the epoxy resin (YD-128/JeffamineD-230). The nanomodified­

GFRP composite based on UD OF T800 was prepared using a vacuum assisted resin 

transfer moulding (V ARTM) technique. Intercalated nanocomposite structures were 

also observed. No significant improvement in flexural properties was documented. 
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Moreover, the filtering effect of the cured laminate can be clearly observed by the 

density of the nanoclay at the resin inlet region that was higher than that of the resin 

outlet region. Non-uniform distribution of nanoclay in the laminate contributes to a 

large variation in mechanical properties. 

In order to avoid the problem of nanoclay being filtered by the fibres, Arun and 

Sun [124] impregnated the resin to the fibre manually using a wet-lay up technique. The 

wetted fibre was then cured using the V AR TM mould without the resin inlet tube. This 

technique produced a laminate with fibre volume fraction of 35-37%. In order to study 

the effect of nanoclay on the UD compressive strength of GFRP composite, the 

laminates were cut at off-axis angles 5°, 10° and 15°. The prismatic blocks were tested 

in compression. The UD compressive strength was calculated based on the off-axis 

compressive strength. The addition of 5 wt% nanoclay enhanced the UD compressive 

strength by 36%. Although the measurements did not follow the standard testing 

method for composite laminates (ASTM D3410 or D6641), the result gave a good 

indication of the enhanced compressive properties by adding nanoclay into the matrix. 

Arun and Sun [125] extended the study to determine the effect of nanoclay on the 

fracture toughness. The results showed that the addition of 5 wt% nanoclay reduced the 

critical strain energy release rate G1C by 40%. This contradicts that observed in [122]. A 

similar fabrication technique as in [124-125] was employed by Tsai and Wu [119,126]. 

Table 2.4 shows that the fracture toughness of nanomodified-GFRP was 35% less than 

the unmodified system. This is consistent with the result obtained in [125]. In addition, 

increased in-plane shear strength contributed to an increase in compressive strength as 

observed in [124]. The SEM observation on the fracture surface showed evidence of 

agglomerated nanoclay in the laminate. Although the addition of nanoclay increases the 

matrix stiffness, poor bonding between the clay platelets (because of the agglomeration) 

has a detrimental effect on its fracture toughness due to cracks that can easily penetrate 

into the agglomerated nanoparticles and propagate between the clay platelets. This 

reduces the fracture energy. 
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Table 2.4: Thermal and mechanical properties of nanoclay-filled GFRP and CFRP 

composites reported in selected references. 

Type of filler FRP composite system Effect Refs. 

MMTI.28E Plain weave S2-glass fabricl I wt%: [122] 
(from: Nanocor) SC-15 (DGEBAIDGEBF Tg t 3%, ILSS t 44%, BS t 

blend)1 24%, BM t 14%, K lc t 23% 
Cyclo aliphatic amine 

MMT 1.30E E-LR 0908-14 stitched UD E- 5 wt%: [124, 
(from: Nanocor) glass fibre cloth! LCS t 36%, GIC {.. 40% 125] 

Epoxy vinyl ester resin 
MMTI.30E E-LR 0908-14 stitched UD E- 5 wtOlo: [119, 
(from: Nanocor) glass fibre cloth! LTM t 6%, LTS {..12%, TTM 126] 

DGEBA EPON8281 t 54%, ITS t 46%, SS t 16%, 
JeffamineD-230 LBS t 2%, TBS t 50%, G IC ,!.. 

35%, TCS t 24% 

Somasif ME-I 00 Satin GF mat EC9-2041 IOwt%: (127] 
treated with Araldite CY2251 BS t 27%, BM t 6%, BFS t 
octadecylamine Araldite HY925 24%, E" t 10%, Tg {.. 12% 
lCO-OP Ltd.) 
MMT Cloisite Satin weave carbon fabricl 2wt%: [134] 
30B EPON 815CI BS t 24%, BM t 32%, ILSS ,!.. 
(from: Southern Epicure W II% 
clay} 
MMTI.28E Plain weave CFI 2 wfOlo (V ARIM): [135] 
(from: Nanocor) SC-15 (DGEBAlDGEBF Vt= 56%, V. = 6% 

blend)1 BS t 25%, BM t 14%, E" t 
Cyclo aliphatic amine 49%, Tg t 13%, ILSS t 30% 

2 wt% (Hand-layup and vacuum (138] 
bagging): 
Vt=55%, Vv =3% 
BS t 25%, BM t 22%, E" t 
24%, Tgt 1% 

K-I0MMT Plain weave CFI 2wt%: [139] 
(from: Sigma SC-15 (DGEBAIDGEBF BS t 14%, BFS t 8%, E" t 8%, 
Aldrich) blend)1 Tgt5% 

Cyclo aliphatic amine 
MMTI.30E Plain woven CF 111011 3wt%: [140] 
(from: Nanocor) DGEBA EPON8281 BS ,!.. 11 %, BM t 5% 

Phenylenediamine (mPDA) 
Methylenedianaline (MDA) 

.. 
Note: Tg = Glass tranSItion temperature, ILSS = Interlammar shear strength, BS = Bendmg 

strength, BM = Bending modulus, BFS = Bending failure strain, K1c = Critical stress intensity 

factor, GIC = Critical energy release rate, Les = Longitudinal compressive strength, TCS = 
Transverse compressive strength, L TM = Longitudinal tensile modulus, L TS = Longitudinal 

tensile strength, TTM = Transverse tensile modulus, ITS = Transverse tensile strength, SS = In­

plane shear strength, LBS = Longitudinal bending strength, TBS = Transverse bending strength, 

E" = Dynamic elastic modulus, Vt= Fibre volume fraction, Vv = Void volume fraction. 
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A GFRP composite laminate with higher nanoclay content was fabricated by 

Kornmann et al. [127]. At first, the nanoclay was treated with octadecylamine and 

dispersed in the epoxy resin using mechanical stirring technique. The prepregs were 

then fabricated and cured in a vacuum bag using a hot-press. The laminates have a 54-

55% fibre volume fraction. The TEM showed a predominantly intercalated structure of 

nanoclay in the polymer with an average spacing between silicate layers of 9 nm. As 

shown in Table 2.4, the addition of 10 wt% nanoclay into the GFRP composite 

moderately improved the flexural strength and modulus without reducing its failure 

strain. SEM micrographs showed the evident of agglomerated nanoparticles. Thus this 

perhaps limits the degree of reinforcement offered by the nanoclay. 

Based on a study conducted by Hamidi et al. [128] the viscosity of the resin 

increased exponentially with the nanoclay content. The viscosity of neat 

EPON815ClEPICURE3282 epoxy resin increases from 0.65 Pa.s to 1.12 Pa.s by adding 

5 wt% Closite 25A nanoclay. For 10 wt% nanoclay, the density of the resin reaches 

3.69 Pa.s. As a result, the void content in the laminate increases with nanoclay content 

due to difficulties in removing the entrapped air. For instance, Bozkurt et al. [129] 

found that the addition of 10 wt% MMT clay increased the void content in the laminate 

by 78%. This degraded the overall perfonnance of the GFRP laminate. 

As discussed earlier, the effect of nanoclay on the properties of GFRP composites 

primarily depends on the type of nanoclay and its surface treatment, resin system, 

mixing method, degree of exfoliation and intercalation, fabrication method of the 

laminate, volume content of fibre, nanoclay and voids in the laminate. For CFRP 

composite systems, these factors obviously contribute to inconsistent results achieved 

by several researchers. The presence of nanoclay significantly degraded the properties 

of CFRP composite have been reported in [56,96,130J. For instance, the addition of 2 

wt% cloisite lOA MMT nanoclay into the AS4-6K1Cycom 977-3 CFRP composite 

reduced the fracture toughness Ole by 61 %, tensile strength by 8% and interlaminar 

shear strength by 19% with slight improvement in flexural strength (6%) [56]. 

Quaresimin and Varley [96] reported that the agglomerated Cloisite 30B MMT clay act 

as a defect that induced local stress concentration in the laminate. This provides points 

of weakness rather than reinforcement, which leads to premature failure. SEM 

micrographs showed that the agglomerated particles were filtered out by the fibres and 

fonned a thin strip of a resin rich layer in between the carbon fibre tows. Although this 

layer often contributes to higher interlaminar shear strength for the case of CNT-filled 
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CFRP composites, in nanoclay-filled CFRP composites it contributes to a low 

interlaminar shear strength. This is due to a weak interfacial bonding between silicate 

platelets in the agglomerated nanoclay, which leads to no resistance to either crack 

initiation or crack propagation. This is consistent with the results obtained in [96] where 

the addition of 5 wt% nanoclay reduced the interlaminar fracture toughness (fracture 

energy GIc) by 55% at crack initiation and 70% at crack propagation. 

A better dispersion or exfoliation of nanoclay in the epoxy resin and throughout 

the laminate was achieved as reported in [131-143] particularly at low clay content (2-3 

wt%). Exfoliated structures provide strong interfacial bonding between clay platelets 

and the epoxy resin, thus contributing to better mechanical properties of nanomodified­

FRP composites compared to those of the unmodified system. Some of the results are 

presented in Table 2.4. Dean et al. [134] studied the silicate interlayer distance (d­

spacing) using an XRD. At small clay content (2 wt% Cloisite 30B), a good dispersion 

and exfoliation (d-spacing more than 9 nm) was achieved. The density of the 

nanomodified resin was measured using a Rheometer. It was found that as the clay 

content increases the viscosity increases significantly. The viscosity of the pure resin (1 

Pa.s) increases to 7 Pa.s with the addition of 4 wt% nanoclay. They suggested that, for a 

viscosity less than 10 Pa.s, V ARIM still could be used for the fabrication of FRP 

laminates. Therefore, the nanomodified CFRP laminate with 2 wt% nanoclay was 

manufactured using V ARIM. The results showed that the flexural modulus and strength 

were significantly increased however 11 % reduction in interlaminar shear strength was 

recorded. Chowdhury et al. [135] employed a similar fabrication technique to produce 2 

wt% MMT 1.28E nanoclay-filled CFRP composites. It was found that although a high 

fibre volume fraction (56%) was achieved, the void content in the laminate was high 

(6%). Low quality laminates and weak interfacial bonding of Cloisite 30B with epoxy 

resin perhaps contribute to reduced interlaminar shear strength as observed by Dean et 

al. [134]. Chowdhury and co-workers [135,1381 extended the study to fabricate a better 

quality of laminate using a hand lay-up and vacuum bagging technique. A laminate with 

a lower void content (3%) was produced. The results showed that the addition of2 wt% 

1.28 MMT improved the flexural, thermal and impact properties [135-138], see Table 

2.4. The nanomodified-CFRP prepared using VARTM [1391 was also showed a similar 

degree of reinforcement as those obtained using a hand lay-up technique. 

A hand-layup technique was also used by Siddiqui et al. [1401, Khan et al. [141-

142] and Iqbal et a/. [143]. The prepreg was cured using a vacuum hot press. It was 
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found that, the incorporation of 3 wt% 1.30 MMT nanoclay into the CFRP laminate 

enhanced the flexural, interlaminar fracture toughness G Ie, impact properties, fatigue 

life and tensile properties. 

Based on a review of literature on the properties of nanoclay-modified FRP 

composites conducted in the past 10 years, it can be concluded that effectiveness of 

using nanoclay-modified epoxy in current fabrication methods needs to be further 

investigated. Low quality of laminates due to inadequate dispersion (agglomerated 

nanoclay) and high void content indicate that the processing and fabrication methods 

still need to be improved and, at the moment, the usage of nanoclay-filled epoxy still 

remains uncertain for commercial applications. 

2.4 Concluding remarks 

FRP composites are versatile materials that are being used widely in advanced 

applications due to their high stiffness/weight and high strength/weight properties. 

However, their brittleness (primarily caused by the low stiffness and fracture toughness 

of epoxy) contributes to low matrix-dominated properties such as fracture toughness, 

interlaminar shear strength, impact strength, compressive strength and in-plane shear 

strength. Much effort has been devoted to improve the matrix-dominated properties of 

the FRP composites. However, attempts to increase the interlaminar shear strength and 

fracture toughness frequently accompany a reduction in compressive strength due to 

low stiffness of the matrix. Recently, the concept of forming hybrids using nanofillers 

has received significant attention. This is because nanomodified-epoxy has high 

stiffness and high fracture toughness properties that can improve the matrix-dominated 

properties of the FRP composites. It has been shown that the use of nanomodified­

epoxy resin systems for the fabrication of FRP composites has been a challenge. Several 

difficulties that need to be overcome are: 

(i) the selection of nanofiller which is compatible to the resin system 

(includes type of nanofilers and their surface treatment) that can create a 

strong interfacial bonding between nanofiller and the matrix, 

(ii) the selection of a suitable mixing method that can homogeneously disperse 

the nanofiller in the epoxy resin, especially with a high nanofiller content, 
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(iii) the selection of a suitable fabrication method of FRP laminates that can 

deal with high viscosity nanomodified-resins and produce a laminate with 

low void content (less than 1%), high fibre volume fraction (55-65%), 

high nanofiller content (to fully utilise its properties) and good fibre 

alignment in the matrix (low fibre waviness). 

This thesis will focus first on the development of homogeneously dispersed 

nanomodified-resins. The thermal and mechanical properties of the nanomodified-resins 

will be evaluated to study the reinforcement effect provided by the nanofillers to the 

epoxy polymers. The optimum formulation will be selected to prepare the nanofilled­

CFRP laminates. Based on the literature review that has been conducted, the 

investigation on compressive properties is very limited. In practice, reliable and 

repeatable compressive strength data of composite laminates are very difficult to 

achieve due to several factors, such as Euler buckling, specimen misalignment, 

improper tabbing and 3-D stress fields introduced on the specimens by the test machine 

or fixtures. Therefore, the aim of this thesis is to study the compressive response of 

nanomodified-CFRP composite laminate. The benefit offered by the nanofillers will be 

used to improve compressive and in-plane shear properties of FRP composites. In 

addition, several analytical models will be presented where fracture mechanisms are 

carefully studied and parameters that influence compressive strength are identified. 
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Experimental details 

3.1 Summary 

This chapter reports on materials and fabrication methods of (i) nanoparticle-filled 

epoxy nanocomposites and (ii) nanoparticle-filled CFRP composites. The experimental 

procedures for the evaluation of physical, thermal and mechanical properties of the pure 

and nanomodified epoxies and CFRP composites are explained. The characterization of 

epoxy polymers involved several techniques including transmission electron 

microscopy (TEM), density measurement, thermogravimetry analysis (TGA), 

thermomechanical analysis (TMA), differential scanning calorimetry (DSC), 

compression, tensile, flexural and fracture toughness tests. The performance of CFRP 

polymer composites was evaluated using unidirectional compression and in-plane shear 

tests. In addition, the quality of the laminates was evaluated using an image analyser. 

The experimental procedures for the measurement of constituents content and fibre 

misalignment in the composite laminate are also described. In order to correlate the 

mechanical properties with the mode of failure, the fractured specimens were examined 

using optical and scanning electron microscopy. The details of the materials used, 

fabrication processes, testing and subsequent damage evaluation techniques are 

described in the following sections. 

3.2 Materials 

Two types of resin systems were used: (i) Epikote 828 epoxy, a diglycidyl ether of 

bisphenol-A (DGEBA), cured with an alicyclic anhydride hardener and (ii) Cycom 977-

20 epoxy with aromatic amine curing system. Even though DGEBA is widely used in 

various applications, most aerospace and other high performance applications require 
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epoxies of higher functionality such as Cycom 977-20. Cycom 977-20 has higher 

mechanical and thermal properties compared to the conventional DGEBA resin system. 

In this study, these thermosetting resins were modified with nanofillers to produce 

polymer nanocomposites. Three types of nanofillers were used: (i) clay nanoplatelets 

(nanoc1ay), (ii) silica nanospheres (nanosilica) and (iii) carbon nanotubes (CNT) as 

shown in Figure 1. The general properties of the materials used in this study, which 

were available in manufacturer's datasheet, are summarised in Table 3.l. 

Epoxy matrix --"iI~ 

nanotubes 

(a) nanosilicalepoxy (b) MWCNT/epoxy 

(c) nanoclay/epoxy 

Figure 3.1: TEM images showing nanopartic1e-modified epoxy nanocomposites 

prepared using (a) nanosilica, (b) multiwall-carbon nanotubes (CNT) and (c) nanoclay. 
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Table 3.1: Summary of general properties of the resins and nanomaterials obtained from 

manufacturer's datasheet. 

Material Epikote NMA CJ'~om F400 NCRll8-01 
properties 828 977-20 977-2 (nanosilica) (CNT) 

Appearance Clear Light Yellow Solid, Opaque Black paste 
and colour liquid yellow liquid brown liquid liquid 

liquid 
Density 1.16 glml 1.232 -n.a- -n.a- 1.4 glml 1.15 -1.2 

simI glml 
Viscosity 13 Pa.s 0.18-0.2 -n.a- 1000- 60 Pa.s 300-500 
(at 25°C) Pa.s 5000 Pa.s Pa.s 
Viscosity ~0.18 -n.a- 0.4 - 1 500- -n.a- -n.a-
(at 65°C) Pa.s Pa.s 1000 Pa.s 
Epoxy 184 - 192 178 gleq -n.a.- -n.a.- 295 gleq 190-198 
equivalent gleq gleq 
weight 
Manufactu- Robnor Resins, UK Cytec Engineered Nanoresins, Nanocyl, 
rer/Supplier (www.robnor.co.uk) Materials Ltd.,UK Gennany Belgium 

(www.cytec.comlengi (www.nano (www.nano 
neered-materials resins.aglin cyl.com) 
/index.htm) dex.php) 

3.2.1 Epoxy resins 

Epikote 828 is a low viscosity liquid epoxy resin produced from bisphenol A and 

epichiorohydrin. The average viscosity of Epikote 828 at room temperature (25°C) and 

elevated temperature (60°C) is 13 Pa.s and 0.24 Pa.s, respectively. Because of the low 

viscosity, various fabrication techniques can be employed to process this resin. Epikote 

828 can be cured or hardened or cross-linked with a variety of curing agents depending 

on properties desired in the finished product and the processing conditions employed. 

Cured Epikote 828 has very good mechanical, adhesive, dielectric and chemical 

resistance properties. This resin becomes a standard conventional resin for various 

applications. 

Cycom 977-20 is designed and supplied by Cytec Engineered Materials Ltd. 

This new type of resin is formulated from a commercial Cycom 977-2 thermoplastic­

toughened prepreg resin. It has already been mixed with aromatic amine hardener. 

Cycom 977-2 has been used widely in many aerospace applications including primary 

and secondary aircraft structures, space and ballistic structures, or any application 

requiring excellent impact resistance. It is in a solid form at room temperature because 

of the presence of thermoplastic filler. Incorporation of polyaromatic thermoplastic 
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polymer into thermosetting resin offers significantly increased fracture toughness, 

without reduction in elastic modulus, compared to unmodified epoxy [29,144-145,146-

147]. However, the viscosity of the resin increases exponentially with increasing 

thermoplastic content, hence causes processing difficulties. Cycom 977-2 is not suitable 

for wet layup or resin transfer moulding (RTM) processing techniques. Therefore in this 

project the nanomodified resin was developed using Cycom 977-20. 

3.2.2 Nanosilica 

The spherical silica nanoparticles (Nanopox F400) were supplied as a colloidal sol 

(40 wt%) in epoxy by nanoresins AG, Geesthacht, Germany. Nanopox F400 is 

nanosilica reinforced bisphenol A based epoxy resin for the use in fibre composites. The 

nanosilica particles had a mean particle size of about 20 nm. The silica phase consists of 

surface-modified synthetic Si02 nanospheres of very small size (average diameter of 

20 nm and the maximum diameter of 50 nm) as shown in Figure 3.1a. Ma et al [77] 

reported that the curing agents gave a significant influence on the mechanical properties 

of the nanosilica filled epoxy polymers. In this study anhydride curing agent was used 

as the hardener. The general properties of Nanopox F400 resin, provided by the 

manufacturer, are summarised in Table 3.1. 

Thermogravimentry analysis (TGA) was conducted to confirm the weight fraction 

of the spherical silica nanoparticles in the Nanopox F400 resin using a Perkin Elmer 

TGA equipment. A sample mass of 10 to 15 mg of Nanopox F400 resin was heated 

from room temperature to 900°C at 10°C/min heating rate in Nitrogen gas at 50 mllmin. 

Data was collected using TGA PYRIS software. The TGA curve plot, as shown in 

Figure 3.2, shows the percentage of weight loss and rate of weight loss as a function of 

sample temperature. TGA results identified the rapid decomposition temperatures of the 

DGEBA matrix constituent occurred at temperature range of 200 to SOOoC. The TGA 

profile illustrates three decomposition mechanisms. Stage (A), as the material is heated 

from room temperature up to 200°C, shows that the initial weight loss of about 1.5 wt% 

occurred due to solvent or water vaporization. When the sample temperature is 

increased up to 550°C, Stage (B) illustrates the decomposition of epoxy resin of about 

57.5 wt%. The temperature of 550°C is selected as the optimum temperature to burn off 

the low molecular weight epoxy resin as suggested in ASTM standard EI131 [148]. In 
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stage (C), the remaining residue of about 41 wt% at temperature of 550°C confirmed the 

average weight fraction of the silica nanoparticles in the epoxy resin is about 40 wt%. 
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Figure 3.2: Percentage of weight loss and rate of weight loss as a function of sample 

temperature. 

3.2.3 Carbon nanotube (CNT) 

The Epocyl NCR128, which is supplied by nanocyl .A Belgium, is a rna terbatch 

based on liquid Bisphenol-A epoxy resin containing a high concentration of multiwall 

carbon nanotubes (CNT). The Epocyl NCRI28 has an average of 3 wt% of multiwall 

C Ts in the DGEBA epoxy. The material is pecifically developed to enhance th 

mechanical properties of fibre reinforced polymer composite material . The multiwall 

C Ts are produced via the catalytic carbon vapor depo ition (C VD) proce . Th 

multiwall CNTs are treated and pre-dispersed in the epoxy matrix. The masterbatch of 

Epocyl NCR128 was diluted into the epoxy matrix and hardener to produce 0.5 and I 

wt% CNT/epoxy nanocompo ite. The multi wall NT, a hown in Figur 3.1 b, has an 

average diameter of 9.5 nm, average length of 1.5 J..lm and large urface area of 250-

300 m2/g. The general properties of Epocyl CR128 resin, available in manufacturer 

datasheet, are summarised in Table 3.1. 
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3.2.4 Nanoclay 

Clay nanoplatelets are the most widely investigated nanoparticles in a variety of 

different polymer matrices for a wide range of applications [57] where the origin of the 

natural clay is most commonly fonned from the alteration of volcanic ash or rocks. The 

dominant constituent of the montmorillonite (MMT) clays, which is used in this study, 

is silica and alumina. The chemical structure of the MMT clay consists of tetrahedral 

silicate and octahedral alumina layers [57]. The two tetrahedral layers sandwich the 

octahedral layer to form one clay sheet which has thickness of 1 run as shown in Figure 

3.1 c. Layered silicates are hydrophilic materials while most polymers are hydrophobic 

materials. Therefore, organic treatment on the MMT clays is carried out to ensure 

compatibility with the polymers used. In this study, MMT clays type nanomer 1.30 and 

nanomer 1.28 (supplied by Nanocor Inc. USA) were used as fillers in the Cycom 977-20 

and Epikote 828 epoxy resins, respectively. The surface of the MMT clay is modified 

with 25-30 wt% of Octadecylamine to produce the Nanomer 1.30 while the MMT clay 

surface is modified with 25-30 wt% of trimethyl stearyl ammonium to produce 

nanomer 1.28. The onium ion surface modified MMT mineral Nanomer 1.30 and 

Nanomer 1.28 nanoclays are designed to be dispersed into amine-cured epoxy resins and 

anhydride-cured epoxy resins, respectively, to form nanocomposites. Nanomers 1.30 

and 1.28 are supplied as a white powder that has a mean dry particle size of 8 - 10 !lm 

and density of 1.71 and 1.9 g/cm3
, respectively. 

3.2.5 HTS40 Carbon fibres 

The carbon fibres type Tenax E HTS40 F13 I 12K 800 tex (supplied by Toho Tenax 

Europe GmbH Gennany), as shown in Figure 3.3, were used to fabricate CFRP 

composite laminates. HTS40 is a high tensile strength and standard modulus carbon 

fibres, which is used as reinforcement in high perfonnance composite structures. These 

fibres are produced from poly-acrylonitrile (PAN) precursor and are surface treated to 

promote adhesion to organic matrix polymers. Sizing materials for this type of carbon 

fibre is based on polyurethane. The characteristics of HTS40 carbon fibre, which are 

given in the manufacturer's datasheet, are summarised in Table 3.2. 
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Figure 3.3: HT 40 F13 carbon fibre. 

3.2.6 Commercial prep reg HTS40/977-2 

The HTS40/977-2 laminates were fabricated from carbon fibre/epoxy pre-impregnated 

tapes of 0.27 mm thick and 300 mm tow width. The prepreg was made of unidirectional 

continuous high tensile strength carbon fibres (Toho Tenax HT 40 12K 800tex) pre­

impregnated with Cycom®977-2 thermoplastic toughened epoxy re in. The properties of 

these materials are presented in Table 3.2. The HTS40/977-2 prepreg tapes are 

commercially available and supplied by Cytec Engineered Materials Ltd, UK. 

Table 3.2: Characteristics of carbon fibre and cured Cycom 977-2 epoxy resin. 

Property Tenax E HTS40 F13 12K Cycom®977-2 toughened 
800 tex epoxy resin 

Tensile modulus (GPa) 240 3.52 
Tensile strength (MPa) 4300 81.40 
Failure strain (%) 1.80 - n.a. -
Density (glcc) 1.77 1.31 
Filament diameter Cum) 7 -
Specific heat capacity 710 -
(J/kgK) 
Thermal conductivity 17 -
(W/mK) 
Coefficient of therma I -0.1 -
expansion (I 0·6/K) 
Flexural Modulus (GPa) - 3.45 
Flexural Strength (MPa) - 197 
G 1c (J/mL) - 478 

K1c(MPa.[,; ) - 1.34 

Tg (0C) - 212 
Supplier Toho Tenax Europe Cyte Engineered Material 

GmbH (www.tohotenax- Ltd., K 
eu.com/cn/home.html) (www.cytec.c rn/engine red-

materials/ index .htm) 
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3.3 Development of polymer nanocomposites 

Four nanomodified epoxy systems were developed based on Epikote 828 and Cycom 

977-20 epoxies, i.e., nanosilical828, CNT/828, nanoclay/828 and nanoclay/977-20. 

3.3.1 Pure Epikote 828 polymer 

The polymer matrix used was an epoxy resin consisting of Epikote 828, a diglycidyl 

ether of bisphenol A (DGEBA), cured with 90 parts per hundred of resin (phr) Aradur 

HY906, a hardener consisting of I-methyl-5-norbomene-2,3-dicarboxylic anhydride 

(NMA), and I phr DY062, an accelerator consisting of benzyldimethylamine (BDMA). 

Before mixing, the Epikote 828 and NMA hardener were heated to 80°C to reduce the 

viscosity of the resins. 100 parts of Epikote 828 was mixed with 90 parts of anhydride 

curing agent NMA and 1 part of BDMA accelerator. The mixtures were stirred for 30 

min in a heated oil bath of 80°C. 

At the same time, the silicon moulds were preheated in the vacuum oven to 80°C. 

The silicon rubber moulds of various shapes (dogbone, cylindrical, cubic, trapezium, 

rectangular block and plate) were prepared to produce near net shape samples for 

various types of testing. In order to prepare the silicon rubber moulds, a high 

performance silicon rubber RTV 3450A was mixed with the curing agent RTV 3450B 

(supplied by Bentley chemicals) with the proportion of 100: 11 in a glass beaker. The 

mixtures were stirred completely and poured into a ceramic mould. It was degassed in a 

vacuum oven at room temperature for 10 min. It was then cured at room temperature for 

48 hr. 

After mixing, the Epikote 828INMAlBDMA fonnulations were degassed in the 

vacuum oven at 80°C for 20 min. After degassing, the resin was poured into the 

preheated release agent-coated rubber moulds. The resin was returned to the vacuum 

oven for further degassing at 80°C for 20 min. Before curing in the conventional oven, 

PTFE bleed out fabric and glass plate (wrapped with PTFE release film) were placed on 

the mould to produce flat and near-net shape specimens. The curing schedule consists of 

pre-cure at 80°C for 2 h, cure 120°C for 3 h, post-cure at 150°C for 4 h, with ramp rates 

of 1°C/min as illustrated in Figure 3.4. After curing, the specimens were carefully 

machined on a lathe, ground and polished to achieve the required dimensions with 

accuracy of 0.01 mm for several types of testing as discussed in Section 3.6. 
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Figure 3.4: Curing cycle for Epikote 828 resin system. 

3.3.2 Pure Cycom®977-20 polymer 

The resin was preheated to 80°C to reduce the viscosity. The resin was degassed in a 

glass beaker for 1 hr at 85°C. The resin was then poured into the preheated release 

agent-coated rubber moulds with various cavity dimensions. The re in was returned to 

the vacuum oven for further degassing at 85°C for 1 hr. Before curing in the 

conventional oven, PTFE bleed out fabric and glass plate (wrapped with PTFE relea e 

film) were placed on the mould to produce flat and near-net shape specimens. After that, 

the resin was subjected to a curing schedule of 3 h at 177°C, ramping at l °C/min. It wa 

then brought down to room temperature at a rate of 2°C 1m in as illustrated in Figure 3.5. 

After curing, the specimens were carefully machined to have the required dimensions 

with accuracy of 0.0 1 nun for mechanical testing, see ection 3.6. 
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Figure 3.5: Curing cycle for Cycom 977-20 resin system. 

41 



Chapter 3 Experimental details 

3.3.3 Nanoparticle-filled Epikote 828 

In order to prepare a series of nanocomposites with 5-25 wt% nanosilica content, the 

Epikote 828 resin was mechanically mixed with a specific amount of Nanopox F400 

nanosiIicaIDGEBA masterbatch in a heated oil bath of 80°C for 1 h at 400 rpm. The 

mixture was completely degassed in a vacuum oven at 80°C to remove the entrapped 

air. 

CNT/828 nanocomposite was prepared using the Epikote 828 resin and the master 

batch of epoxy/CNTs (Epocyl NCR128). The Epikote 828 was mechanically mixed 

with a specific amount of the Epocyl NCR128 at 400 rpm in a heated oil bath of 80°C 

for 2 h to produce a nanocomposite with 0.5 and 1 wt% CNT. The mixture was 

completely degassed in a vacuum oven at 80°C to remove the entrapped air. 

A series of nanocomposites with 1, 3 and 5 wt% nanoclay was prepared using a 

mechanical stirrer. The nanomer 1.28 nanoclay was dried at 60°C for 24 h under vacuum 

before sample preparation. The Epikote 828 was preheated to 80°C in a vacuum oven to 

reduce the viscosity of the resin. A specific amount of nanoclay was added into the 

Epikote 828 and mechanically stirrer at 400 rpm in a heated oil bath of 80°C for 2 h. 

The mixture was completely degassed in a vacuum oven at 80°C to remove the 

entrapped air. 

After degassing, the mixture was blended with the appropriate stoichiometric 

amounts of NMA hardener and BDMA accelerator (based on the proportion of 

DGEBA:NMA:BDMA=100:90:1) in a heated oil bath of 80°C for 20 min. The resin 

was then poured into the preheated release-coated silicon moulds and degassed for 

another I hr. After the degassing process was completed, the PTFE bleed out fabric and 

glass plate (wrapped with PTFE release film) were placed on the mould to produce flat 

and near-net shape specimens. The resins were cured using a similar schedule explained 

in Section 3.3.1. 

3.3.4 Nanoclay-filled Cycom 977-20 

The nanomer 1.30 nanoclay was dried at 60°C for 24 h under vacuum before sample 

preparation. The nanocomposite samples, with different clay contents, were prepared 

using two different methods; (i) mechanical stirring and (ii) 3-roll mill. 
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3.3.4.1 Mechanical stirring 

A specific amount of nanoclay was mixed with the epoxy resin using a mechanical 

stirrer at 400 rpm in a heated oil bath of 80°C for 1 hr. This was followed by degassing 

in a vacuum oven for 1 hr at 85°C to remove any entrapped air in the mixture. The 

mixture was then poured into a preheated silicon mould (pre-treated with mould-release 

agent) with various shape cavities. It was returned into the vacuum oven for another 1 

hr. After degassing, it was covered with a PTFE bleed out fabric and a glass plate 

(wrapped with PTFE release film) to produce a flat and near net shape specimens. 

Finally, the resin system was cured at 177°C for 3 h with a heating rate of 1 DC/min 

followed by cooling down to room temperature at 2°C/min. 

3.3.4.2 Three roll mill 

The desired weight fraction of clay particles was pre-dispersed into the resin using a 

mechanical stirrer in a heated oil bath at 80°C for 15 min. The epoxy resin became 

viscous and opaque due to the presence of the clay particles. The mixture was then 

milled using an Exakt three roll mill machine, as shown in Figure 3.6a, to produce 

nanocomposites. In Figure 3.6b a schematic of the machine is presented that illustrates 

the three rollers and the flow direction of the material during processing. The dispersion 

was achieved by the shear forces generated between the adjacent rollers. At the 

beginning of the milling process, the machine was programmed into a gap mode where 

the feed and apron rollers were set close to the centre roller with approximate feeder­

centre roller and apron-centre roller spacing of 15J.L and 5J.L, respectively. The milling 

process was carried out at 60°C temperature by pouring the clay-epoxy mixtures in 

between the feed and the centre rollers. The mixture, which was stuck to the bottom of 

the centre roller, was then transported into the second gap, see Figure 3.6b. Since the 

three roll mill mixing was not a continuous process, the material from the apron was 

collected and fed back into the feed and centre rollers after each complete pass of the 

material. It is assumed that, using the gap mode setting, the external shear forces 

generated between the adjacent rollers dispersed the particles into smaller tactoids. The 

machine was then set into a force mode programme where the feeder gap was about 5J.L 

and the apron gap was approximately 0-1 J.L. In this step, the combined shear and 

diffusion processes facilitated the separation and penetration of the polymer between the 

clay platelets to form an intercalated and/or exfoliated structure. After this process, a 

clear or transparent solution was produced indicating that the dispersion was completed. 
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The processing time was limited to 1 hr due to the pre ence of th hard ner. The 

mixture was then poured into a preheated silicon mould and degassed in a acuum 0 en 

before a similar curing process (as discussed earlier) took place. 
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Figure 3.6: (a) The EXAKT 120E Three roll mill mach in with dimen ion 820 mm 

width x 650 mm depth x 740 mm height and (b) chematic of the three-roll mill 

machine showing the mat rial flow direction with roller p ed ratio n I :n2:n3 of9:3: 1. 

(Source: EXAKT technical brochure, www.xakt.de) 

3.4 Fabrication of CFRP composite laminate 

3.4.1 HT 40/828 CFRP compo ite 

3.4.1.1 Winding of fibres 

A [02/90]5 CFRP laminate was prepared u ing a HT 40/977-2 prepr g. The cured pan I 

was cut into 250 x 10 mm2 trip. These strip were glu d t pr pare quar fram . h 

HTS40 carbon fibre wer wound onto the 250 mm x 250 mm FRP frame u ing a dry 

filament winding technique a hown in Figure 3.7. The frame rotate at 12 rpm while 

the carriage moves horizontally acro s the frame at 34.43 mm/min laying down fibre 
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onto the frame. The fibres were wound into two diffi rent configuration : (i) [Ohs and 

(ii) [0/90b for the fabrication of compression and in-plan hear te t pecimen. The 

unidirectional CUD) and cross-ply carbon fibre panels were then dried in a vacuum oven 

at 100°C for 15 min before resin impregnation proce took place. 

3.4.1.2 Resin impregnation 

In order to prepare UO and cross-ply HT 40/828 laminate , th pure resin, which was 

developed in ection 3.3 . I , was used. The mixture of Epikote 828 M BOM was 

poured into a ceramic tray (wrapped with PTFE release film) and dega sed for 20 min . 

After that, the frame of wound fibres was immer d in th re in and returned to the 

vacuum oven for further degassing. Overall the mixed resin sp nt I hr 30 min under 

vacuum at 80°C, by which time the viscosity started to iner a e. 

3.4.1.3 Curing process 

The frame of wound fibres was removed from the re in bath and placed in between flat 

glass plates. Consumables were added to form a vacuum bag as in Figur 3.8. All films, 

fabrics and other consumables were upplied by Tygavac, UK. The re in-impregnat d 

fibres were cured in an oven. The cure schedule compri ed a 2 hr, 80° gel p riod, a 3 

hr, 120°C cure period and a 4 hr, 150°C po t cure p riod , followed by a ramp ection 

down to room temperature. Each dwell period wa eparated by a 1 ° Imin ramp ri , 

the final ramp to room temp rature was also 1° Imin, s e Figure 3.4. Aft r curing the 

frames were cut away to leave the compo it panel . 

Figure 3.7: Filament winding exp rimental t-up. 
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Vacuum bagging film « 
Absorption fabric « -

Breather fabric «- -
Absorption fabric « 

Bleed out fabric « 
Steel weight stick onto glass plate 1 
(wrapped with PTFE release film) i __ 

Frame wound with fibres « 
Bleed out fabric « 

Glass plate «_ 
(wrapped with PTFE release film) 

Base aluminium plate « 
(wrapped with PTFE release film) 

Vacuum 

Figure 3.8: A schematic diagram of the vacuum bagging arrangement. 

3.4.2 Nanosilica-filled HTS40/828 CFRP composite 

A series of nanomodified CFRP composite was fabricated using 5 - 25 wt% nanosilica­

modified Epikote 828 epoxy resin. The laminates were prepared using similar steps 

discussed in Section 3.4.1. The frame of wound fibres was immersed in the 

nanomodified resin which was prepared in Section 3.3.3. The processing time and 

curing cycle used were similar to those used in Section 3.4.1. 

3.4.3 Commercial CFRP composite HTS40/977-2 

The HTS40/977-2 prepreg was cut into 300mm length and laid up by hand into [0]45 and 

[0/90hs designs. The laminates were cured in an autoclave, as shown in Figure 3.9, 

using the curing cycle illustrated in Figure 3.5. 
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Figure 3.9: An autoclave used to cure HT 40/977-2 laminates. 

3.5 Physical and thermal tests 

3.5.1 Transmission electron microscopy (TEM) 

The degree of dispersion of the nanosilica, nanoc lay and T in the epoxy matrice 

was investigated using Transmission Electron Micro copy (TEM). Th nanomodified 

resins were cured into trapezium shape pecimen, ee Figure 3.1 Oa. The cured resins 

were then cut using a Leica UC2 Ultra-microtome machine, ee Figure 3.1 ~b, at room 

temperature. After cutting, sections were collected on 200-m sh copper grid . The TEM 

samples with a thickness of 85 nm, see Figure 3.1 Oc, w re xamined u ing a F J Tecnai 

Transmission Electron Micro cope, see Figure 3.1 Od, at an accelerating vo ltage of 

80 kY. The images were captured using a Gatan M 600CW high re olution digital 

camera and collected using Gatan digital micrograph oftware at several magnification 

such as 22500x, 34000x, l15000x, 170000x and 225000x. 
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(a) 

(b) 

(c) (d) 

Figure 3.10: Preparation ofTEM samples to be examined under th FEI Tecnai TEM. 

3.5.2 Den ity measurement 

Density of the cured epoxy and CFRP composit was measur d using a density balanc 

based on the Archimedes principle in distilled water. Th mea urement and calculation 

were conducted in according to A TM D792 [149]. Thre pecimen w re m asured for 

each system. The calculation of the density i obtained by: 

(3.1 ) 

where m, = mass of dry ample, m2 == mass of sample in water, m) - m2 = mass of water 

d· . . m) - m1 I f d' I d Isplaced = up-thrust or apparent 10 10 weight, - = vo urn 0 water ISP ac 
P waler 

= volume of the sample, p watcr = den ity of water at room temperature (200 
) = 0.9982 

g/cm3 and Pc = density of the compo it 
volume of the sarnpl 
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3.5.3 Thermogravimetry analysi (TGA) 

TGA is a technique to measure the weight change of a olid or liquid as it i heated at a 

controlled rate and in a controlled environment. The test is conducted according to 

ASTM Standard El131 [148]. Th tests were performed using a Perkin Imer TGA, as 

shown in Figure 3.11a, to measure the con titu nt volume fraction of the 

nanocomposites and CFRP composites. TGA was al 0 u ed to identify the rapid 

decomposition temperature of the constituent and to monitor the rate of degradation at a 

specified temperature. 

(a) 

---0 
0> 
Q) 

2-
~ 
:::J 

~ 
Q) 
a. 
E 
~ 

1000 

800 

600 

400 

200 

0 

0 

in Air 

50 ml/min 

50 100 150 200 250 300 

Time (min) 

(b) 

Figure 3.11: Perkin Elmer TGA. 

A sample rna of 15 to 30 mg was h at d from 25° to 900° at 10°C/min 

heating rate. The TGA programme i shown in Figure 3.11 b. The ampl is burnt in two 

stages. At first, it wa heated from 25°C to 550° at 10°C min-I hating rate in nitrogen 

at 50 ml/min. The temperature was then kept at 550° for 1 hour to de ompo th 

epoxy resin. In stag two, the 2 ga supply wa th n switch d to air and the 

temperature was incr ased to 1000° to d compos the carb n re idu and! r graphit 

fibre. Data were coil cted using TGA PYRI of'1.war. The T A curv plot h w d 

the percentage weight change against the material' dccompo ition t mperature. Th 

isothermal temperatur of 550°C i elected a the optimum temperature to burn off th 

epoxy resin. For S ~ M valuation, orne of th r idue (char) after i oth rmal 

temperature 550°C wa coli cted. 
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3.5.4 Determination of constituent volume fraction 

3.5.4.1 TGA 

The weight fraction of the constituents in the composite obtained from TOA was used to 

determine the fibre, resin, nanoparticles and void volume fractions. The basic equations 

were given in ASTM Standard D3171-99 [150J were used to calculate the constituent 

content of nano-filled composite materials as the following: 

(i) The fibre volume fraction: 

VI =( :~ H:; )Xloo 
where mj = mass of the fibre, me = mass of the composite or initial mass of the 

specimen, Pi = density of the fibre and pc = density of the composite 

(ii) The resin volume fraction: 

V. =( :: H:: )x 100 

where mm = mass of the epoxy and Pm = density of the epoxy resin 

(iii) The nanopartic/es volume fraction: 

(3.2) 

(3.3) 

V, =(:}(;}Ioo (3.4) 

where mn = mass of the nanopartic1es or the final mass of the specimen after 

combustion and Pn = density of the nanopartic1es 

(iv) The void volume fraction: 

V. = 100 -(Vf + Vm + VII) (3.5) 

or volume fraction of voids can be determine using the following equation: 

V = P, -Pc 
v 

P, 
(3.6) 

where PI is the theoretical composite density obtained from the rule of mixture 

P, = VjPj + VmPm + VIIPII (3.7) 

The weight fraction of the constituents to the composites, (m f J (mm J (mil J was 
me ' me ' me ' 

obtained from TOA results. 
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3.5.4.2 Image analyser technique 

The volume fraction of the fibre can also be measured using an image analyser 

technique. This technique requires the use of metallographic pecimen preparation 

equipment, a reflected light microscope with a magnification of at least 400 times, 

which has the capability of porting the image to a digital camera, a computer with image 

acquisition card and image analysis software. Figure 3.12a shows a Polyvar B-Met 

optical microscope with the image analyzer apparatus. 

(a) 

(c) 

Figure 3.12: (a) Image Analyzer Apparatu and typical (b) gr yscale and (c) binary fibre 

images ofUD HTS40/977-2 laminate at magnification of 1000x; fibre dian1eter is 

approximately 7 11m. 

A small section of laminate was prepared u ing a tandard metallographic 

technique. The composite panels were ectioned perp ndicular to the fibre axis. t least 

five different location were taken and then ca t in epoxy resin. The pecimen w re 

carefully ground and polished using a PHO IX 4000 Automatic Grinding and 

Polishing machine. The procedure followed during the grinding and poli hing proces s 

are shown in Table 3.3 . The surface of the polished pecimen should display a clear 

delineation between the fibres and the matrix as shown in Figure 3.12b. In order to 

achieve a focu ed view, the coupon has to be level with the micro cope I ns. The 

computer package KSRUN version 3.0 ZEI allows the camera view to be di played 
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and analysed. The greyscale image, in Figure 3.l2b, was converted into binary image 

where the pixels with values greater than the threshold value were presented as black, 

while the pixels with values less than the threshold value were presented as white as 

shown in Figure 3.12c. The KSRUN version 3.0 ZEISS software automatically 

calculates the fibre volume percentage based on the proportion of total field area to the 

total frame area. 

Table 3.3: Regime followed for grinding and polishing of optical microscopy 

specimens. 

grain size Time (s) Pressure (N) Speed (rpm) 

Grinding 600 150 18 200 

(using SiC cloth) 800 ISO 18 200 

1200 150 18 200 

Polishing 6J.1. 180 18 ISO 

(media: diamond) IJ.l. 180 18 ISO 

3.5.5 Thermomechanical Analysis (TMA) 

A Perkin Elmer Diamond TMA instrument, as shown in Figure 3.13a, was used to study 

the thermal stability of the cured resins such as thermal strain, coefficient of thermal 

expansion (CTE) and glass transition temperature (Tg) of the materials. The test and 

measurements of CTE and Tg were performed according to British standard BS ISO 

11359-2:1999 [151]. The cured resins were cut into rectangular specimens of about 5 

mm length, 5 nun in width and 1-2 mm in height, as shown in Figure 3.13b. All 

specimens were tested in an Argon atmosphere, which was supplied at 50 mllmin. A 

static load of 100 mN was applied via the TMA expansion probe. Therefore the probe 

rests on the surface of the test specimen under low loading conditions and the thermal 

response of the material was monitored by the sensitive displacement devices of the 

TMA instrument as illustrated in Figure 3.l3c. All data were recorded and analysed 

using Diamond TMA PYRIS software. 

In this study, the specimens were heated in two cycles as shown in Figure 3.14a 

for Epikote 828 resin systems and Figure 3.14b for Cycom 977-20 resin systems. The 

first heating cycle eliminates any thermal-memory effects in the specimen. The thermal 
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properties, such as thermal strain, CTE and Tg, wer calculated based on the econd 

heating where the specimens were heated from 25°C to 180°C for pikote 828 r in 

systems and to 350°C for Cycom 977-20 resin systems at 5°C/min heating rate. At least 

three specimens for each resin y tern were tested. The CTE a i obtain d from the 

TMA curve using the following equation: 

dL 1 
a=-x -

dT La (3.8) 

where Lo is the length of the specimen at room temperature, L is the length of the 

specimen at temperature T. 

Force motor ~ 

Drive shaft --~ 

Probe~ 

ample~ 

/ 

(a) 
(b) 

r Temperature I ensor 

(c) 

Figure 3.13: (a) Perkin Elmer Diamond TMA in trum nt, (b) p clm n dimen ions 

and (c) illustration ofload, di plac ment and temp ratur monit ring d vice. 
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Figure 3.14: TMA program for (a) Epikole 828 and (b) Cycom 977-20 resin systems. 

3.5.6 Differential Scanning Calorimetry (DSC) 

DSC was used in conjunction with TMA to determine the glas transition temperature 

of the materials. The test and measurement of Tg were performed according to British 

standard BS ISO 11357-2:1999 [152] using a Perkin Elmer D C7 instrument as shown 

in Figure 3.15a. DSC measures the difference between the heat flow rate into the 

specimen and that into the reference as a function of temperature and/or time while the 

specimen and the reference are subjected to the same controlled temperature program 

under a specified atmosphere [152]. The basic principle of heat-flux 0 C technique is 

that when the physical transformation happens in the specimen more or les heat will be 

necessary to maintain both sample and reference at the ame temperatur . The amount 

of the heat flowing to the specimens depends on whether the process is exothermic 

(releases heat) or endothermic (absorbs heat). The glass transition can be defined as the 

change in the heat capacity as the polymer goe from the glas tate to the rubb r state. 

It can be determine using the DSC curve of heat flow ver es temperature. 

The cured resins were cut into small piece of 10-20 mg weight. The specimen i 

placed in an aluminium pan. The sample and the reference (empty pan) were put into 

the holders, as shown in Figure 3.15b, and heated in two cycle a hown in Figure 3.16. 

The first heating cycle eliminates any thermal-memory effect in the pecimen. The Tg 

was determine based on the heat flow rate ver us temperature curve from the econd 

heating cycle where the specimens were heated from 25°C to 180°C for Epikote 828 
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resin systems and 350°C for Cycom 977-20 resin sy tems at lOoC/min heating rate. All 

specimens were tested in an Argon atmosphere, which was upplied at 20mtlmin. All 

data were recorded and analysed using DSC7 PYRl software. At least three specimens 

for each resin system were tested. 

(a) (b) 

Figure 3.15: (a) Perkin Elmer DSC7 instrument with a cooling system using nitrogen 

gas and (b) holders for specimen in an alwlliniwn pan and empty pan. 
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Figure 3.16: DSC program for (a) Epikote 828 and (b) ycorn 977-20 re in system . 
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3.5.7 Determination of fibre misalignment 

The in-plane fibre waviness of long-fibre composites was characterised and quantified 

using a method proposed by Yugartis [153]. This method assumes that (1) the fibres are 

straight over short distances (at least twenty fibre diameters) and (2) all fibres have the 

same circular diameter. The detennination of fibre misalignment involves several 

procedures: 

(i) The composite panels were sectioned at an angle of approximately 5° to the 

nominal fibre direction 0° in agreement with Yugartis's work. At least five 

different locations were taken and then cast in epoxy resin. The specimens 

were ground and polished followed the procedure discussed in Section 

3.5.4.2. Figure 3.17 illustrates a typical micrograph taken from a specimen 

(HTS40/977-2 [0128) sectioned at an angle of approximately 5° from the 0° 

direction. 

(ii) The major axial dimension of the cut fibre's elliptical surface and fibre 

diameter were directly measured using the KSRUN version 3.0 ZEISS 

programme. 400 data per specimen were collected. At least 5 specimens 

were analysed for each CFRP systems. 

(iii) The precise angle of cut for each fibre, 6}, is calculated using the following 

equation: 

(3.9) 

where aj is the major axial dimensions of the cut fibre's elliptical surface, as 

shown in Figure 3.18b, and dj is the fibre diameter. The subscript i refers to 

the i th fibre. The HTS40 carbon fibre has 7 JJ.m diameter. 

(iv) The angle of cut was sorted into the class interval width at the angle of half a 

degree. 

(v) The fibre volume fraction of the total fibre at angle 6} is calculated using the 

following equation: 
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f.(8.)J~J 
v 1 t~ 

1 tan(}j 

(3.1 0) 

where 8; is the class interval mean, N; is the number of values within a class 

interval and n is the total number of class interval. 

(vi) The average angle that represents the mean of distribution, B, is calculated 

using the following equation: 

n 

(j = Lfv(OJlj (3.11) 
1=1 

(vii) The angle of intersection of each individual fibre, (J; (see Figure 3.18) is 

calculated using the following transformation: 

(3.12) 

where the plane-cut angle 4c is the mean of distribution angle O. 

(viii) Finally, in order to characterise the form of distribution, standard deviation, 

0', is calculated based on the following equation: 

1 

0' = (Ifv(O;XB; _BY)! 
1=1 

A large standard deviation indicates poor overall alignment whereas a 

smaller one would characterise a more narrow angle distribution. 
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z 

Figure 3.17: A typical optical micrograph taken from a [Oh HTS40/977-2 specimen 

sectioned at an angle of approximately 5° to the fibre axis. 
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Figure 3.18: (a) Definition offibre angle 91 in a sectioned composit sample and (b) 

cross-section of th fibre ectioned at angle B,. 
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3.6 Mechanical tests 

3.6.1 Compressive response of epoxy polymers 

3.6.1.1 Test specimens and test procedures 

The cured resins with dimension of 1:1 length to diameter (LID) ratio (10 mmllO mm), 

as recommended in [154], were fabricated for the uniaxial compression test. This helped 

to avoid buckling, reduce friction due to small cross-section area, avoid premature 

failure due to sharp comers (found in prismatic shape specimens) and prevent self­

reaction of the epoxy resin during curing. Cured resin had a darker appearance for thick 

specimens (> 10 mm), see Figure 3.19a, due to exothermic reaction. In order to have 

smooth parallel ends perpendicular to the cylindrical axis, the cast specimens were 

machined on a lathe and polished to an accuracy of 0.01 mm (measured with a 

micrometer). All specimens were prepared carefully with no bubbles, visible flaws, 

scratches or any imperfections, which may result in premature failures. Examples of 

these specimens are shown in Figure 3.19a. All specimens were dried in a vacuum oven 

before being kept in vacuum at room temperature. Compression tests were also 

conducted on the 12.5xI2.5x25.4 mm3 cube specimens (according to ASTM standard 

D695-96 [155]) to study the effect of specimen geometry and dimensions on the 

compressive stress-strain response and their failure mechanisms. At least five specimens 

were tested for each system. 

Static uniaxial compression tests were carried out on the cubic and cylindrical 

specimens using a Hounsfield universal testing instrument, as shown in Figure 3.19b, 

with a crosshead speed of 1 mmlmin. In order to minimize the frictional forces between 

test machine platen and specimen loaded surfaces especially at circumference edges 

where barrelling may be triggered, the specimen ends were smeared with petroleum 

jelly. The compliance of the testing machine for compression, based on a technique 

proposed in [156], was performed to calculate the actual displacement of the specimen. 

In the 'direct technique' demonstrated by Kalidindi et 01 [156], the load-displacement 

relationship for the machine was measured without any specimen between the 

compression bars. The actual deformation of the sample can then be calculated by 

subtracting the non-sample displacement of the testing fixture from the total 

displacement recorded by the actuator. This load-displacement relationship for the 

machine can be used to correct the recorded load-displacement data for any specimen 

tested under uniaxial compression by the testing machine at the same crosshead speed. 
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(a) (b) 

Figure 3.19: (a) Examples of the uniaxial compression test specimens of cylindrical and 

cubic shapes with their dimension and (b) Hounsfield univer al testing machine with 

the compression bars and fan-as i ted oven mounted apparatus. 

3.6.1.2 Data analysis 

The compression tests were conducted based on British tandard B EN] 0 604:2003 

[157] and ASTM standard D695-96 [155]. The compre ive properties obtain from the 

test are as follows: 

(i) Engineering compressive stre s, O'e , i defined as compres ive load, F, p r 

unit area, A, of the original cross- ection of the t t pecimen. 

F 
O'e (MPa) =A 

(ii) Engineering compre sive strain, 6e, 

original length, La, of the te t pecimen 

M-
e = ­

e L 
o 

(3.14) 

d cr ase in length, tiL , per unit 

(3.15) 

(iii) The change in eros -sectional ar a i ignificant wh n alcuJating tress of a 

polymer loaded in compres ion. The al ulated u ing the CUlT nt 

cross-sectional area (true tr ) in tead of the initial eros - eetional area 
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(engineering stress). The true compressive stress can be determined using 

the following equation: 

(3.16) 

(iv) The true compressive strain can be determined using the following equation: 

(3.17) 

(v) True compressive stress-strain (O'-e) response. 

(vi) Compressive stress at yield, 0;., is the first stress at which an increase in 

strain occurs without an increase in stress. 

(vii) Compressive yield strain, t?>, is the strain corresponding to the compressive 

stress at yield. 

(viii) Compressive strength, O'u, is a maximum compressive stress sustained by the 

test specimen during a compressive test. 

(ix) Compressive stress at break (rupture), OJ; is the compressive stress at break 

of the test specimen 

(x) Compressive strain at break, &j, is the strain at break of the test specimen. 

(xi) Compressive modulus, E, is the ratio of the stress difference (0';+1 minus 0';) 

to the corresponding strain difference values (&;+1=0.025 minus eFO.OlO) on 

the true stress-strain curve. With computer aided equipment, the 

compressive modulus was determined using a linear regression procedure on 

the part of the compressive stress-strain curve between these mentioned 

points. 

(3.18) 

(xii) Statistical analysis was performed to obtain the standard deviation and 

standard error of the mean of a particular data set. The following equations 

were used: 

X=X±a 

SD 
a= ...rn 
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where X is the mean value of a et of mea urements, X i the individual 

measurement, SD is the standard deviation, a i the tandard rror of the 

mean and n is the number of measurem nts. 

3.6.2 Tensile response of epoxy polymer 

3.6.2.1 Test specimens and test procedures 

The dogbone shape speCimens with a gauge lengthlwidthlthickne of 

33mm/lOmm/2nun were adhered with 1.5 mm thick glass fibre reinforced polymer 

(GFRP) composite end-tabs. This is to prevent a premature failure at grips. The 

dimensions of the specimen and examples of the specimens are illu trated in Figure 

3.20. At least five specimens were tested for each system. Prior to testing, the actual 

width and thickness of the coupon at the gauge length wa measured at 3 different 

points using a digital electronic Vernier calliper. The cro sectional area of the 

specimens was calculated by multiplying the mean width by the mean thickness. A 

Hounsfield Universal Testing machine with wedge type grip, a shown in Figure 3.21, 

was used for the tensile testing at a cros head speed of 1 mmlmin. A 10 kN load cell 

and a 25 nun gauge length clip-on extensometer were used to record the appli d load 

and elongation data. These data were logged to a computer for analysis. 

Figure 3.20: Dimensions and exampl ofth dogbone hape p lmen . 
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Figure 3.21: A Hounsfield universal testing machine with wedge typ grips for ten ile 

te 1. 

3.6.2.2 Data analysis 

The tensile tests were conducted based on Briti h standard B I 0 527-1 and -2 

: 1996 [158]. The tensile properties obtain from the te t are a the following: 

(i) Tensile stress, (7, is defined as tensile force, F, p r unit area, A, of the 

original cross-section within the gauge length. 

F 
(7 (MPa) = -

A (3.21) 

(ii) Tensile strain, £, is an increase in length, M o, per unit original I ngth, Lo, of 

the gauge 

M 
£ (%) = _0 x 100 

La 

(iii) Tensile stres -strain ((7-£) respon e. 

(iv) Tensile trength, (7/J, i a maximum 

specimen during a tensil te t 

(v) Tensile strain at break, Ij; i th 

(3.22) 

train at br ak of the t t pe 1m n 

(vi) Modulu of ela ticity in ten ion (Young's m dulu ), E, i th ratio of the 

stress difference (7,+ / minu (Y, to the c rre p nding train differen valu 

£,+/=0.0025 minus £,=0.0010. With comput raid d quipm nt, the Young' 
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modulus was detem1ined using a linear regre ion procedure on th part of 

the tensile stress-strain curve between these mentioned point . 

E (MPa) = 0",+1 - 0", 

&,+1 - &, (3 .23) 

3.6.3 Flexural response of epoxy polymers 

3.6.3.1 Test specimens and test procedures 

The tests were conducted based on the British Standard BS E ISO 178:2003 [159]. 

The cured resins of 80 mm length x 10 mm width x 4 mm thicknes were bent under 

three-point bend configuration. The dimensions and examples of the flexural test 

specimens are illustrated in Figure 3.22. At least five specimen were tested for each 

system. Prior to testing, the actual width and thickness of the specim ns were mea ured 

at 3 different points using a digital electronic Vemjer calliper. The average width and 

thickness data were calculated and recorded. The test specimen was placed 

symmetrically on the two supports of span=60 mm. A Hounsfield Univ rsal Testing 

machine with the three-point bending fixtures , a shown in Figure 3.23, wa u ed to 

apply force at midspan at a crosshead speed of 2 mmlmin. A 10 kN load cell wa used 

to record the applied load and the corresponding deflection of the pecim n during the 

test was recorded using the cro shead displacement of the machine. These data were 

logged to a computer for analysis. 

Figure 3.22: Dimensions and exampl s of the te t 

te ts. 
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Figure 3.23: A Hounsfield universal testing machin with thr e point bending test 

fixtures and the t t t-up. 

3.6.3.2 Data analysis 

The properties of the materials obtained from the flexural te t wer as follows: 

(i) Flexural stress, CJ 

CJ(MPa) = 3FL 
2bh2 (3.24) 

where F is the applied force (in ), Lithe pan=60 mm, b i the width (in 

mm) of the specimen and h i the thickne (in mm) of the pecim n. 

(ii) Flexural train, & 

6sh 
&=­

L2 (3.25) 

where s is the detlection (in mm), h i the thickn s (in mm) and Lith 

span (in mm). 

(iii) Flexural stre - train (CJ-&) re p 

(iv) Flexural trength, CJu, i a maximum t1 xural tre s u tained by the t sl 

specimen during a bending test 

(v) Flexural train at break, &j, is th fl xural train at br ak of thc te t 

(vi) Modulus of ela ticity in tl xure (Fl xural m dulu ), E, i th ratio f th 

stress difference CTt+1 minu CTt to the corr p nding train differcnc alu 

&1+1=0.0025 minu &FO.OOIO. With om put raided equipm nt, the Flexur 
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modulus was determined using a linear regression procedure on the part of 

the flexural stress-strain curve between these mentioned points. 

(3.26) 

3.6.4 Fracture toughness of epoxy polymers 

3.6.4.1 Test specimens and test procedures 

The tests were conducted based on the British Standard BS ISO 13586:2000 [160]. The 

cured rectangular blocks (of size 33 x 26 x 14 mm3 and 80 x 10 x 4 mm3
) were 

machined according to the dimensions as shown in Figure 3.24. Examples of the 

specimens are illustrated in Figure 3.25. The notch was sharpened by sliding a razor 

blade across the notch. A new razor blade was used for each test specimen. There are 

two types of specimens. The compact tension (CT) test specimens, with 9 mm initial 

crack length, were used to determine the fracture toughness properties of Epikote 828 

epoxy systems while single-edge-notch bending (SENB) samples, with 4.5 mm initial 

crack length, were used to determine the fracture properties of Cycom 977 epoxy 

systems. Cycom 977 systems could not be cast into a thick block due to exothermic 

reaction during curing. The resins were overheated and darkened when moulded and 

cured into thick specimens. 

At least five specimens were tested for each system. Prior to testing, the actual 

width, thickness and crack length for each specimen were measured at 3 positions using 

a digital electronic Vernier calliper. The average values were calculated and recorded. 

The fracture toughness test on the CT specimens was conducted using a Hounsfield 

Universal Testing machine mounted with fracture toughness test fixtures as shown in 

Figure 3.26a. The specimens were loaded at 10 mm/min test speed (in accordance to 

British standard 13586). A 5 kN load cell was used to record the applied load. The 

specimen was loaded by means of two pins in holes in the specimen. The displacement 

of the load points during the test was recorded using the movement of the crosshead of 

the machine. These force and displacement data were logged to a computer for analysis. 

The compliance of the testing machine was performed to calculate the actual 

displacement of the specimen. A hardened steel block was machined to have 

dimensions similar to that of the actual CT specimen but unnotched. The steel block 

was tested using a similar configuration and test speed for CT specimens. The 
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displacement £5verses force F (up to 500N) graphs were plotted and the &F relationship 

obtained from the graphs were the displacement of the test fixtures. In this study, 

£5 = 0.0005F + 0.015 was used. The actual deformation of the sample can then be 

calculated by subtracting the displacement of the test fixtures from the total 

displacement recorded by the actuator. This load-displacement relationship for the 

machine can be used to correct the recorded load-displacement data for any CT 

specimen tested by the machine at the same crosshead speed. 

The SENB samples were tested using the three point bending test fixtures as 

shown in Figure 3.26b. The test specimen was placed symmetrically on the two 

supports of span=40 mm. A force is applied at midspan with a crosshead speed of 

1 mmlmin. This test speed was chosen because the SENB specimens usually fail at a 

very small load «lOON) due to small dimensions and brittle behaviour of the materials. 

A 5 kN load cell was used to record the applied load and the corresponding deflection of 

the specimen during the test was recorded using the crosshead displacement of the 

machine. These data were logged to a computer for analysis. 
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Figure 3.24: Dimensions of (a) compact tension test specimen for fracture toughness 

test of Epikote 828 resin systems and (b) single-edge-notch bending specimen (three­

point-bending) for fracture toughness test of Cycom 977-20 resin systems. 
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(a) 
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~' 

~. ~ ~ '. ... -' .. -'Io._-,,-~ , ...... "-..."".",.~ 

(b) 

Figure 3.25: Examples of the test pecimens for the fracture toughn te t (a) compact 

tension test specimens and (b) single-edge-notch bending specim n . 

(a) 

(b) 

Figure 3.26: A Hounsfield univer al te ting rna hin ith (a) ompact t n ion t t-

up and (b) three-point b nding test et-up for m a uring [ra lure toughne f pikot 

828 and y om 977-20 re in y t m , re p lively. 
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3.6.4.2 Data analysis 

The force (F) vs displacement (s) curve was plotted. The F-s curve for most polymers is 

linear due to brittle behaviour as shown in Figure 3.27. The area under graph represents 

energy to break: WB. The properties of the materials obtained from the fracture 

toughness test were as follows: 

(i) Energy release rate G can be defined as the change in the external work 

8Uext and strain energy OUs of a deformed body due to the enlargement of 

the cracked area &4 

(3.27) 

Critical energy release rate GIC is the value of the energy release rate G in a 

pre-cracked specimen under plane-strain loading conditions when the crack 

starts to grow. G IC can be calculate from the energy W8 up to the instant of 

crack growth initiation, where the load is F Q (the applied load at the 

initiation of crack growth) and the original crack length is a: 

(3.28) 

where WB is the energy to break: (the input energy when crack growth 

initiates), h is the test specimen thickness, w is the test specimen width and 

¢t...a/w) is the energy calibration factor depending on the initial crack length 

a. The calibration factor ¢t...a/w) can be obtained from Table A.I and Table 

A.2 in BS ISO 13586:2000 for SENB and CT specimens, respectively. For 

example, the ¢t...a/w)=¢t...0.4S)=0.27S and ¢(a/w)=¢(0,35)=O.213 for SENB 

and CT specimens, respectively. 

(ii) Stress intensity factor is the limiting value of the product of the stress o(r) 

perpendicular to the crack area at a distance r from the crack tip and the 

square root of 21tr. For small value ofr 

K(Pa.Jffi) = lima(r) x .J2nr (3.29) 

r-+O 
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Critical stress intensity factor K.rc is the value of the stress intensity factor 

when the crack under load actually starts to enlarge under a plane strain 

loading condition around the crack tip. K!c can be calculated from the load 

F Q at crack growth initiation and the original crack length a: 

(3.30) 

where F Q is the load at crack growth initiation, h is the test specimen 

thickness, w is the test specimen width andj(a/w) is the geometry calibration 

factor depending on the initial crack length a. The calibration factor j{a/w) 

can be obtained from Table A.] and Table A.2 in BS ISO 13586:2000 for 

SENB and compact tension specimens, respectively. For example, the 

j(alw)=j(0.45)=9.l4 andj(a1w)=j{0.35)=6.39 for SENB and CT specimens, 

respectively. 

,F 

FQ is the load to break 

WB is the energy to break 

Displacement, s 

Figure 3.27: A load displacement (F-s) curve for a notched test specimen. 

3.6.5 Compressive response of CFRP laminates 

Compression tests were conducted on unidirectional (UD) laminates to determine 

ultimate compressive strength, strain-at-failure, compressive modulus and Poisson's 

ratio. Several test methods have been used by previous researchers to study how the 

composite materials respond to compressive loading. In practice, reliable and repeatable 

compressive strength data of composite laminates are very difficult to achieve because 

these data rely on various parameters. The most significant contributors to the variations 

in compressive properties include selection of test method, fabrication practices and 

Euler buckling, control of fibre alignment, inaccurate specimen machining improper 
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tabbing procedures, poor quality of the test fixture. improper placement of the specimen 

in the test fixture, improper placement of the fixture in the testing machine, and 

improper test procedure [161-163]. 

The compression test methods can be classified into three groups; (l) the load is 

introduced into the specimen through direct compression called direct end loading such 

as in ASTM D695 [155], (2) the load is introduced into the specimen through shear such 

as in ASTM D3410 [164] and (3) the combined loads are introduced into the specimens 

through both end loading and shear such as Imperial College London (ICL) test fixture 

used in [163. 165]. The effect of compression loading methods has been investigated by 

Xie and Adams [162]. The results showed that the shear loading method yielded to 

more severe stress concentrations at the tab tip of the tabbed specimen, which caused a 

sudden change in specimen geometry and the presence of through thickness shear stress. 

Therefore the specimen has a very high tendency to fail near the geometry change 

caused by the end tabs. Meanwhile the end loading method yielded high stress 

concentrations at the specimen ends which lead to premature failure at the specimen 

ends due to local crushing. The combined loadings method reduced the stress 

concentration at the tab tip compared to the shear loading and reduced also the stress 

concentration at the specimen ends compared to the end loading method. Therefore Xie 

and Adams [162] concluded that the combined loading method yielded higher 

compressive strengths if similar specimen configurations were used in all test methods. 

In this study, the combined loading (mixed shear end loading) test method was 

employed using the ICL compression testing rig. The test materials, specimen design 

and fabrication processes, test programme and testing equipment are described in the 

following subsections. 

3.6.5.1 Preparation of compression test specimens 

The composite panels, prepared in Section 3.4, were cut into 112 mm long x 10 mm 

width strips. The specimen geometry was recommended by the CRAG test method 

[166] and the ASTM Standard D3410 [164]. A short gauge-length specimen of 10 mm 

to 12 mm was used. The specimen dimensions are illustrated in Figure 3.28. The 

specimen was bonded with 50 mm long woven glass fibre reinforced polymer (GFRP) 

composite end-tabs. Glass fibre laminate tabs were sand blasted and bonded onto the 

sand blasted CFRP coupon surfaces using Araldite adhesive. A jig was used to align the 

end tabs and apply mechanical pressure while the adhesive cured at room temperature 
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overnight. The adhesive was then post cured at 60° for 2 hour. After tabbing, 

individual specimens were machined to final tol rance by grinding th sp cimen end 

and tab surfaces parallel within 0.025 mm. 

y 

4 x 
_ .. __ -----:.....b ---.-I-ll-I-.. ----....;.b----.. 

L 

z t 
4x ~1 ______ ~~------~I + t 

Figure 3.28: Compression test specimen drawing. peclm n dimen ion : L = Total 

specimen length = 112 mm, Lg = Gauge length = 12 mm, b = Tab length = 50 mm, w = 

Specimen width = 10 mm, t = pecimen thicknes ~ 2.16 mm, GFRP tab dimensions = 

50 mrn length x 10 mrn width x 1.5 mm thickne s. 

120D strain gauges were attached on both face of fiv p cim ns to be te ted in 

order to monitor the degree of Euler b nding and m a ure axial strain and, hence, axial 

modulus. The test was con id red invalid if there wa a big diff! renc in signal from 

the gauges on both faces of the pecimen, which indicat d that th had 

undergone bending. In addition, anoth r thre pecimen w r pr par d to m a ur the 

Poisson 's ratio where a pai r of longitudinal and tran ver train gaug wa b nd d on 

the gauge length. Example ofth sp cim n ar illu trated in Figur 3.29. 

Figure 3.29: Examples of the UD compre ion te t coupon atta h d with train gaug 
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3.6.5.2 Test mac/line and programme 

The compression test was conducted in accordance to th RA te t method [166J and 

the ASTM Standard D3410 [164J. A 250 kN servo-hydraulic machin with the r L te t 

fixture design [163,165J, as shown in Figure 3.30, wa 1I ed to d termine the 

compressive behaviour of the UO laminate. The compr ion on th UO pe imen was 

performed at a constant compression rate of I mmlmin. The TeL testing fixture con i ts 

of upper and lower blocks, which grip the test specimen and prevent debonding of the 

tabs from the specimen end. All data were recorded by the computer via data acqui ition 

system such as applied load, plunger displacement, back-to-back longitudinal train 

and transverse strain. Several tests were topped before the final failure occurr d in 

order to examine the initial failur mode. The fractured specim n wa prepared u ing 

the standard meta1lographic technique and ob erved under th optical micro cop at SOx 

to 1000x magnification. The post-failure surfaces of th compre sion p cimens were 

also observed using Scanning Electron Micro copy ( M) to id ntify the failure 

mechanisms involved during compression. 

Figure 3.30: 250 kN compre ion er o-hydrauli machine with I L t t fixtur for 

compr ion te t f 0 laminat . 

3.6.6 In-plane shear of CFRP compo itc 

The objective of conducting in-plane harte t w r to d t rmin th in plan h ar 

strength, failure shear strain, h ar chord modulu of la ti ity and offset h ar 

properties. On top of that, the hear stre were plotted in 
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order to understand the behaviour of [±4S0] CFRP laminate under tensile loading and 

the failure mechanisms involved during the test. The determination of in-plane shear 

properties is one of the most difficult areas of mechanical property testing. The most 

challenging is the determination of shear strength because the capability of the test 

method to produce a perfectly pure shear stress condition to failure for every material 

system is still questionable. The under- or over- estimate shear strength results depend 

on several identified parameters such as the presence of edge effects, material coupling 

effects, nonlinear behaviour of the matrix or the fibre/matrix interface, imperfect stress 

distributions, and the presence of normal stresses. 

3.6.6.1 Preparation of in-plane shear test specimens 

The cross ply laminates ([O/90hs) prepared in Section 3.4, were cut at 45° angle to 

produce a [±45°] CFRP composite panels. Due to the constrain imposed by the size of 

the CFRP panels which could be cured using wet-lay up method, it was not possible to 

produce specimens with dimensions recommended in the CRAG test method [166] or 

the ASTM Standard D3518 [167]. In order to study the effect of specimen size, in-plane 

shear specimens with a standard size were prepared using the commercial CFRP 

composite HTS40/977-2. The results were compared to the non-standard design used 

throughout this project. Table 3.4 and Figure 3.31 show the differences in geometry 

between standard and non-standard specimens. 

The specimen was bonded with woven glass fibre reinforced polymer (GFRP) 

composite end-tabs or Aluminium end-tabs. The tabs were sand blasted and bonded 

onto the sand blasted CFRP coupon surfaces using Araldite adhesive. A jig was used to 

align the end tabs and apply mechanical pressure while the adhesive cured at room 

temperature overnight. The adhesive was then post cured at 60°C for 2 hours. After 

tabbing, individual specimens were machined to final tolerance by grinding the 

specimen ends and tab surfaces parallel within 0.025 nun. In order to determine the 

shear modulus, the strains parallel and perpendicular to the specimen axis were 

measured. The direction parallel to the specimen longitudinal axis is the x-direction and 

the direction perpendicular to it is the y-direction. The fibres are oriented at ± 45° to 

these directions as shown in Figure 3.31. A pair of longitudinal and transverse strain 

gauges was bonded onto the face of five specimens to measure the longitudinal and 

transverse normal strain. An example of the specimen is illustrated in Figure 3.32. 
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y 

I I {~~~ . I I ~ w l.x _~5° 
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I t z I • t l.x 
Figure 3.31: In-plane shear te t pecimen drawing. 

Table 3.4: Differences between A TM 03518 and pecimen g om try u ed in this 

project. 

Dimension in mm ASTM D3518 Non- tandard 

Total pecimen length, L 200 110 

Gauge length, Lg 100 60 

Tab length b 50 25 

Specimen width, w 25 20 

Thickness, t 2 2 

Tab dimension (length x width x thickne ) 50 ,25 1.5 25 20 x 1.5 

Figure 3.32: Th example of th in-plan up n all h d ith train gaug 
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3.6.6.2 Test machine and programme 

The in-plane shear test is a ten ile t t of a ±4So laminate. Th te t wa p r~ rm d in 

accordance with the CRAG test method [166] and the A TM tandard 0'" 51 lI67] . 

The ASTM Standard 03039 [168] was al 0 r fI rred for the ten ile te t proc dur and 

apparatus needed. Figure 3.33 how the Maye lOOk dynamic fatigue load fram and 

test fixtures which was u ed to d termine the ten ile prop rtie f ±45° laminat . The 

test fixture wa designed to grip the p cim n and tra11 fer the ten il 1 ad to th 

specimen. Specimens wer carefully aligned in the te t machine gripp r to avo id 

induced specimen bending. Th tensile load wa incr a ed uniformly, at 5 mmlmin 

crosshead speed, to cause failure within 30-60 econd. The ten ile machin wa 

connected to the data acquisition system. Therefor, all data uch a load, plunger 

displacement, longitudinal strain and tran er e train, were dire tly r cord d by th 

computer. The in-plane h ar stre s in the mat rial 

calculated from the applied axial load m anwhil the r lat d wa 

determined from longitudinal and tran verse normal train data colle t d by the train 

gauges. 

Figure 3.33: Mayes 100 k dynamic fatigu 1 ad fram gri p 

fixture for in-plan RP mp it laminate. 
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3.7 Damage evaluation techniques 

3.7.1 Optical microscopy 

The optical microscopy technique was used to charact ri e the failure modes of 

composite materials. Primary information such a th origin of fracture, crack 

propagation direction or a general view of fracture urface can be gained. Figure 3.34 

illustrates the process of the sample preparation for optical micro copy. The area of 

interest was cut from the specimen using a diamond aw and mounted into plastic clip 

for holding, as shown in Figure 3.34b. This sampl wa then pIa ed in a pot and covered 

with a mixture of epoxy resin and hardener and left to cure overnight, a shown in 

Figure 3.34c. When cured, the sample was removed from the pot and wa then ground 

and polished using PHOENIX 4000 grinding and polishing machine. Th regime 

followed during the grinding and polishing proce s were di cuss d in ection 3.5.4.2. 

Examples of cured and polished samples are shown in Figure 3.34d. Th poli hed 

coupons must be handled with care at all time so that th poli h d urface does not 

become scratched. The specimens were examin d u ing a Polyvar B-Met optical 

microscope and all images were captured and analys d u ing a K RUN version 3.0 

ZEISS software. 

Observe fracture 
through width 

or : .... 
through ....--; . ) 

thickness 

(a) CFRP pecimen after com pres ion 

Fracture urface PIa ti lip 
to be e 'amin d 

(b) PIa tic container 

(d) 

with tran parent 
pyre in 

( ) 

Figure 3.34: pecimen preparation for opticalmi ro copy. 
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3.7.2 Scanning electron microscopy (SEM) 

SEM is one of the advanced techniques in damage monit ring programme u d to 

provide insight into the type and extent of damag the polymer compo it e perience 

at extreme loads. In this study, this technique wa u ed t xamine the fra ture urfac 

of epoxy polymer and CFRP composite material after mechanical t ting. xamination 

of fracture surfaces is important to characteri e th typ f failure mode involved 

during the test. The fracture surfaces perpendicular to the loading direction or th 

longitudinal splits were observed by sectioning the area of intere t and mounted onto 

suitable holders. Sections were mounted onto aluminium tubs using a arbon adhe ive 

patch. The unwanted and non-conductive areas wer paint d with a ilv r die. The 

specimens were then coated with a thin layer of gold u ing a putt r oater Unit 

EMSCOPE SC500 A, as shown in F igure 3.35a, at 20 rnA current and 0.05 torr pr sure 

for 3 min. A coating of gold was applied to provide conducting film and enhance the 

electron emission from the sample surface. Figure 3.35b hows the exampl of the 

SEM samples. The specimen was then placed into the a uum chamb r of the canning 

electron microscope at accelerating voltage 10 kV and r olution 5 to allow ffl ctive 

examination. A variety of magnification were u ed. Thr type of scanning I ctron 

microscopes, as shown in Figure 3.36, were u d throughout the project, i.e. (i) 

CAMSCAN SEM, (ii) Joel J M6400 EM and (iii) In pect F Philip FEG- M. The 

selection on the microscope depend on th type of ample, hold r and m gni fication 

used for imaging process and also the availabi lity ofth machin . 

(a) 

Figure 3.35: (a) putter Coater Unit EM 

sampl 

7 

(b) 

500 A and (b) ampl f M 
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(a) 

(c) 

Figure 3.36: Scanning Electron Microscopy; (a) C M 

Inspect F. 

3.8 Concluding remarks 

(b) 

, (b) Joel J M6400 and (c) 

This chapter describes the experimental procedur that were u cd to II ct th data . 

The nanomodified-resins were d veloped ba ed on nano ilica, T and nano lay. The 

performance of these systems was evaluated through ph i ai, thermal and m chani aJ 

testing. The best resins were selected, ba ed on their p r[ormance, for th fabricati n f 

nanomodified-CFRP composite using a wet lay-up t chnique. The laminat wer te t d 

in compression and in-plane hear to tudy their pI' pertie mpar d to the neat y tem. 

The quality of the laminates wa e aluated ba ed on fibr v lum fraction and fibre 

misalignment. Finally the po t failur analy i wa condu t d u ing opti al mi ro py 

and EM technique to tudy the fra tur m chani m in Ivcd during m chani al 

testing. The data produced from the phy ical, thermal and mechani al l ting and p 

failure analysis of neat and nanomodi fi d pox polym I' a1' PI' ent d in hapt r 4 

and 5. The effect of nanofiller on the m chanical pr p rti of rRP comp it 

reported in Chapter 6. 
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Chapter 4 

Characterisation of neat epoxy polymers 

4.1 Summary 

Neat Epikote 828 and Cycom 977-20 epoxy polymers were characterised using several 

types of testing for reference. The thermal properties of these pure systems were 

investigated using TGA, TMA and DSC. The results of mean and differential 

coefficient of linear thermal expansions (CTE), thermal strain, glass transition 

temperature (Tg) and thermal stability of the materials are presented. The mechanical 

performance of the neat resins was determined using compression, tensile, flexural and 

fracture toughness tests. Mechanical properties, such as elastic modulus, strength, 

failure strain, yield strength and toughness, are reported. All results are discussed in the 

following sections. 

4.2 Pure Epikote 828 polymer 

4.2.1 Density and constituent volume fraction 

The measured density of neat Epikote 828 epoxy polymer using a density balance 

equipment was 1.2210 ± 0.0001 g/cm3
• 

The thermal stability of pure Epikote 828 was studied using TGA technique 

outlined in Section 3.5.3. This information is important for the evaluation ofnanofiller 

and carbon fibre contents in the following chapters. Figure 4.1 shows that the Epikote 

828 starts to degrade at about 250°C and ends at about 680°C. This TGA profile can be 

divided into four different stages. These four decomposition mechanisms were marked 

A, B, C and D in Figure 4.1. Stage A shows that the initial weight loss of 0.1 wt% 

occurred due to moisture content or water vaporization. Stage B represents 
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decomposition of the resin in nitrogen. The weight 10 graduall incr a ed fr rn 0° 

to 550°C with a total mass loss of 81.4 wt%. After holding at 550° for 1 hr, the purge 

gas flowing over the sample was automatically switched to oxyg n. The r in re idue 

was burnt off starting from 565°C and fini hed at 680° with a rna loss of I .5 wt%, 

see Stage C. The maximum degradation temperature of 440° and 6 J 5° f the epo y 

resin and its residues, respectively, was identified by the peak of the rate of wight los 

versus sample temperature curve (see Figure 4.1 (i) and (ii)). tag Dhows that there is 

no material remaining behind after exposing the r in re idu to oxygen. Thi ugge t 

no contamination of the resin. 

A B 0 
4 • • 

100 20 

90 18 

80 16 C 
~ :€ ~ 70 14 !;!..... ~ 
CIl 60 

!;!..... 
CIl 12 CIl 
.Q CIl 

:E 50 10 .Q 
OJ :E 

'Q) 40 8 OJ 

~ 'Q) 

30 6 ~ -0 
20 4 Q) 

iii 
10 2 0:: 

0 0 
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Temperature (deg C) 

- Percentage of weight loss - Rate of weight loss 

Figure 4.1: A typical TGA profile showing thermal degradation f pur . pik te 2 

polymer. The heating program consi ts of hating from 25° 

kept at 550°C for 1 hr, follow d by heating to 800° in air. n i othermal t rnp rature 

of 550°C is applied to achieve a con tant r idual wight f th po 

The thermal degradation beha iour of th re in wa al tudi d by burning in air 

(see Figure 4.2a) and nitrogen (see Figure 4.2b). By , po ing t air, the rna irnurn 

degradation temperature for epoxy r in oc ulTed at 421 0 
, which wa ab ut 200 

lower than that of burning in nitrogen a hown in Figur 4.], with a t tal rna f 

73.3 wt% and for the resin residue occurred at 610° ith a t tal ma 10 of26. wt%. 

It can be seen that the mixture of epoxy and it r idu c urred at a t mp ratur of 

530-550oC. This contributes to a high r amount f r in r iduc wh n burning th poxy 

8] 
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in air (see Figure 4.1) compared to that of burning in itrog n ( ee Figur 4.2a). This i 

the reason why the isothermal temp rature of 550°C wa mploy d in thi tudy. A 

constant residual weight of the epoxy was achieved by burning it in nitrogen from 25°C 

to 550°C and keeping the temperature at 550°C for 1 hr. Th refor the actual amount of 

epoxy and resin residue can be calculated. 

The amount of resin residue obtained in Figure 4.1 wa confirmed by heating the 

resin in N2 from 25°C to 800°e. The TGA result show almo t constant residual weight 

of about 18 wt% between 600-7000C, see Figure 4.2b. This is similar to that obtained in 

Figure 4.1. Three samples have been tested for each condition. Table 4.1 shows the 

summary of the TGA results. 
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Figure 4.2: Typical TGA profiles showing thermal decomposition of pure Epikote 828 

polymer in two different conditions: (a) burn in air from 25° to 800° and (b) burn in 

nitrogen from 25° to 800° . 

Table 4.1: Constituent content and degradation temperature of Epikot 828 re in ba ed 

on TGA re ult . 

Heating program Weight fraction maximum degradation 
(wt%) tcmp ra tur"c 

(0C) 

Epoxy resin Rcsin residue Epoxy resin Resin residue 
Heating from 25°C to 81.33 ± 0.) 7 ) 8.29 ± 0. ) 5 43 8.6 ) ± 2.20 609.67 ± 4.02 
550°C in N2 and then 
kept at 550°C for) hr, 
followed by heating 
to 800°C in air 
Burn in air from 25°C 73.02 ± 0.59 26.83 ± 0.64 424.34 ± ).8) 605 .69 ± 2.09 
to 800°C 
Burn in nitrogen from 8) .60 ± 0.25 ) 8.32 ± 0.23 430.) 7 ± 3.90 -
25°C to 800°C 

82 



Chapter 4 Characterisation of neal epoxy polymer 

4.2.2 Dimensional stability and glass transition temperature 

The thermal response of cured resins is mea ur d 1I ing the TMA expan ion prob . A 

the sample expands during heating or contract during cooling, the probe i moved up or 

down and the resulting expansion or contraction of the ampl is mea ured . Figure 4.3 

displays a typical TMA result of a cured pure Epikote 828 sample, which wa te ted 

using a two heating cycle program (as shown in Figure 3.14a, ction 3.S.S). The 

coefficient of thermal expansion (CTE) and gla tran ition temperatur (Tg) were 

determjned based the 2nd heating cycle curve. 
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0.000 

lope = CTE above Tg 
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'\ 

o 20 40 60 80 100 120 140 160 180 200 

Sample temperature (deg C) 

Figure 4.3: A typical TMA result of pure pikot 82 polymer, which wa heated from 

2SoC to 180°C at SOC/min in Argon. 

eTE is defined a the fractional incr a e in length per unit ri in t mp rature 

[lSI]. There are two different coefficient of thermal e pan i n that can be det rmin d 

from the TMA thermal respon e [151] ; (a) the mean co nicicnt of linear th rmal 

expansion and (b) th differential coefficient f linear th rmal xpan ion . The mean 

CTE is calculated using the following ex pre Ion: 

_ L I 
a= - x -

T Lo (4.1 ) 
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where & is the change in length of the test specimen betwccn two temperature T, and 

T2, Lo is the reference length of the test specimen at room temperature, and Tithe 

change in temperature equal to T,- T2. The differential T can be defined a : 

(dL)p 1 (dL I dt)p I 
a = (dT)p x Lo = (dT I d/)p x Lo (4.2) 

where Lo is the reference length at room temperature L is the length at temperature T, 

dL is the change in length over the time interval dl at a con tant pre ure p , and dT i the 

change in temperature over the time interval dt at constant pressure p. In thi tudy, 

Pyris-series Diamond TMA software was u ed to analy e al l TMA re ults. Thi 

software was used to determine both mean and differential TE. Figure 4.4 how an 

example of thermal analysis of Pure Epikote 828 polymer ample. 
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Figure 4.4: A typical TMA re ult of pure pikot 82 p Iymcr, which wa anal ed 

using Pyri - eries Diamond TMA oftwar. 

The differential eTE curve in Figure 4.4 how an incr a ing T alu from 25° 

8 
u 

i 
w 

138°e with a mean erE value of 80.46 ~Ef . At th gla tran iti n event, fr m 13 to 

145°e , the expansion of the mat rial i no long r pr portional to thc heating 

temperature. Therefore, the epoxy matrix exhibit a ignifi ant change in sl pe due to 

an increase in its rate of expansion. The temperatu re of thi chang 
. . 
In e pan Ion 
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behavior is the Tg of the resin which occurs at 141.5 ° , Figur 4.4. Above Tg, the 

materials expand at more than twice the rate of expan ion before Tg, du to a lowering 

of the elastic modulus of the material. The CTE increa e from 145 to 180 ° with a 

mean CTE value of 189.07 ll£ f C. Three samples were tested for th pure pikote 828 

polymer. The mean CTE below Tg was measured from the initial lin ar lope of th 

TMA curve at temperature between 70 to 110°C while the CTE above Tg was measured 

from the second linear slope of the curve between 150-1 80°C. The average CT below 

Tg was 79.78 ± 0.47 jlf; f C and CTE above Tg wa 187.76 ± 3.59 IlE fC while the 

average Tg was 139.52 ± 1.02 °c. 
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Figure 4.5: DSC results of pure Epikote 828 polym r, which wer anal d u ing Pyri -

s ries D 7 oftwar . 

Glass transition temperature i one of the mo t important chara teri tic for 

polymeric materials. Tg is often us d to d t rmin th upp rue t mp rature of the 

polymer or composite since the matri ' stiffness deer a es above Tg and th matri no 

longer functions effectively to transfer load. In addition t TMA, D 

conducted to determine the Tg of the pure pikot 82 p lymer. D 

wa alo 

d b cause 

the heat capacity of a composite material change at th gJas tran iti n. It i mark d a 
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a shift in the heat flow versus temperature curve as shown in Figure 4.5. From the 

analysis using Pyris-series DSC 7 software on three samples as shown in Figure 4.5, the 

average Tg for pure Epikote 828 polymer is 141.91 ± 0.77 °c. This value is close to that 

obtained using TMA. 

4.2.3 Compressive properties 

The change in cross-sectional area is significant when calculating stress of polymer 

material loaded in compression. The stress was calculated using the current cross­

sectional area (true stress) instead of the initial cross-sectional area (engineering stress). 

The true and engineering compressive stress-strain curves were compared in Figure 4.6. 

The cross sectional area of the specimen increases with the compressive strain and 

therefore the true stress-strain curve plot shows lower values than the engineering curve 

as shown in Figure 4.6. 
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Figure 4.6: Typical engineering and true stress- train curves of a cylindrical specimen 

of pure Epikote 828 loaded in static uniaxial compression. A, B, C, D, ,F, G and H are 

the elastic region, plastic region, elastic limit yield point plastic strain softening region, 

plateau region, plastic strain hardening region and ultimate stress, respectively. 

86 



Chapter 4 Characterisation of neat epoxypolvmers 

The true stress-strain curve, as illustrated in Figure 4.6, shows that epoxy 

undergoes elastic (region A) and plastic (region B) behaviour before rupture. The stress 

initially increases proportionally to the strain, obeying Hooke's law, until it reaches an 

elastic limit (point C). The compressive modulus of the epoxy was calculated at 1 % to 

3% compressive strain. With an increase in load beyond the proportional limit, the 

strain begins to increase more rapidly for each increment in stress until it reaches yield 

stress (point D) where the material deforms without an increase in the applied force. 

After yielding, the shortening increases with decrease in the applied load, known as the 

plastic softening mechanism (region E), until the graph plateaus (strain increases with 

no noticeable increase in the compressive stress; see region F). As the material 

undergoes large softening strains, the cross-sectional area is continues to increase, 

resulting in increased resistance of the material to further deformation. Thus after region 

F, additional deformation requires an increase in the compressive load, known as plastic 

hardening mechanism (region G), until it reaches maximum load where the material 

rupture occurs (known as ultimate stress, point H). 

In order to study the effect of specimen shape, static uniaxial compression tests 

were also conducted on cubic shape specimen (as recommended in ASTM D695). The 

true compressive stress-strain curves of cylindrical and cubic specimens are illustrated 

in Figures 4.7 and 4.8, respectively. At least five specimens were tested for each type of 

specimens. These figures also show the deformation of typical cylindrical and cubic 

specimens at different compressive strains over the corresponding true stress-strain 

curve. It can be seen that the barrelling effect of the cylindrical specimen during 

compression (after the yield strain or even at higher strains before the fracture) was 

effectively minimised due to reduced friction, see Figure 4.7. 

The true stress-strain response especially in the plastic region of the cubic 

specimens could not be determined accurately. This was due to the non-uniform 

deformation of the prismatic specimen during compression, which results in a complex 

stress state and the materials failed due to buckling andlor shear defonnation. Shear type 

failure mode occurred due to the ineffective height to width ratio of 2: 1 for epoxy 

polymer. In theory, the specimen subjected to compression would get shorter and 

expand uniformly along its length (see Figure 4.9a). However, this could be achieved if 

there was zero friction between the flat ends of the specimen and the compression 

platens. In practice, it is difficult to completely eliminate friction. This results in 

barrelling formation where the ends of the specimen do not expand as much as its 
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central region (see Figure 4.9b). Compression te t on cylindrical pecimen, Figure 4.7, 

developed less barrelling deformation in addition to lower tr con ntration n ar the 

loading ends when compared to pri matic one, Figure 4.8 . The e two effect r ult d in 

higher failure loads for the cylindrical specimen Figure 4.7. Th pri matic p cim n 

failed prematurely due to buckling, which wa trigg r d by longitudinal cracking that 

formed at specimen's edges (sharp corners) near the loaded ends, e Figur 4.8. 

The compressive properties uch as ela tic modulu , str ngth, failur train, yield 

strength and strain at yield point, were determined ba ed on A TM standard D695. 

Table 4.2 shows the comparison between the com pre i e properties of cylindrical and 

cubic specimens. It was found that both have a imilar Young' modulu, however, the 

measured compressive strength and failure strain of the cub type specimen wer 

significantly lower than those of the cylindrical pecimen, Table 4.2. Thi i due to the 

high localised stresses developed in the pecimen during compre sion which lead to 

premature failure. 
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Figure 4.8: Typical true stress-strain curves of cubic sp cimen loaded in static uniaxial 

compression. (i), (ii), (iii), (iv) and (v) show the deformation of a typical p cimen at 

different compre ive strain. 
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Table 4.2: A summary of compressive properties of pure Epikote 828 polymer showing 

the effect of specimen shape; Cylindrical specimen of 10 mm diameter x 10 mm length 

and cubic specimen of 12.5 mm width x 12.5 mm thickness x 25.4 mm length. 

Compressive property Specimen type 

Cylindrical Cubic 

Compressive modulus, E (GPa) 3.02 ± 0.06 3.12 ± 0.02 

Compressive stress at yield, O"y(MPa) 132.99 ± 0.20 126.59 ± 0.39 

Compressive strain at yield point, 6),(%) 6.50 ± 0.05 5.53 ± 0.03 

Compressive strength, O"u (MPa) 211.47 ± 3.17 126.59 ± 0.39 

Compressive strain at break, &j (%) 42.66± 0.65 16.49 ± 1.56 

4.2.4 Tensile properties 

Figure 4.10 shows the stress-strain diagram of pure Epikote 828 polymer loaded in 

tension. All tested specimens were adhered with GFRP composite end-tabs to prevent 

failure at the grips as shown in Figure 4.1 O(ii). Epoxy polymers are classified as brittle 

material because these materials usually fail in tension at relatively low values of strain. 

Figure 4.10 shows that the Epikote 828 polymer fails with small elongation (of about 

3% average failure strain) after the proportional limit (point A) is exceeded and the 

fracture stress (point B) is the same as the ultimate stress. The diagram begins with a 

straight line where in this elastic region, the stress and strain are directly proportional. 

The tensile modulus of the material was measured from the slope of 0.1 to 0.25% tensile 

strain. Beyond point A, the deformation of the materials becomes permanent and the 

strain begins to increase more rapidly for each increment in stress. The stress-strain 

curve then has a smaller and smaller slope until it reaches point B then the material 

ruptures. The tensile properties were determined based on Figure 4.10 using equations 

given in British standard 527-1. The elastic modulus, tensile strength and failure strain 

of pure Epikote 828 polymer were 2.75 ± 0.02 GPa, 70.84 ± 1.08 MPa and 3.28 ± 

0.08%, respectively. 
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Figure 4.10: Stress-strain curves of five dogbone shape specimens loaded in tension. All 

tested samples were adhered with GFRP composite end-tabs to prevent failure at grips. 

(i) and (ii) show examples of broken specimens; with tab the specimen fails at gauge 

length and without tab the specim n fails at grip. 

4.2.5 Flexural properties 

Figure 4.11 shows the flexural stress-strain curve of pure Epikot 828 polymer. The e 

curves provide useful information on flexural modulu , ultimate trength and strain at 

failure. These propertie were detem1ined u ing th techniqu de crib d in Briti h 

standard 178:2003. Five specimens were tested and the averag flexural modulus, 

flexural strength and failure strain of pure Epikote 828 polymer were 2.88 ± 0.03 Pa, 

117.73 ± 8.70 MPa and 4.84 ± 0.61 %, re pectively. Figure 4.1 L how that the 

initially increases proportionally to the strain, ob ying Ho ke ' law, until it reache th 

proportional limit at about 3.5% flexural strain ( ee point A). Thc bending tiffne of 

the epoxy was calculated based on the slope at 0.1 to 0.25% train . Beyond proportional 

limit, the train begins to increase more rapidly for each incr ment in tre until failure 

at point B. 
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Figure 4. II: Flexural stress-strain response of five samples tested using a thre -point 

bending test fixture. (i), (ii), (iii) and (iv) show the deflection of a typical pecimen at 

different flexural train . 

4.2.6 Fracture toughness properties 

Figure 4.12a shows typical force-crack opening displacem nt curve of compact t nsion 

(CT) specimens tested at 10 mm/min cros h ad p d. The curv ar e nti ally 

straight lines with failure occurring before any yi Iding r pIa tic d formation take 

place. In other words, the material fai l in a brittle mann r. Th av rage f load at crack 

growth initiation was 217.35 ± 7.43 N. The fra ture toughne t wa al 0 conducted 

on the single-edge-notch bending specim n ( B) for c mparis n purpose . The load 

was applied at I mmlmin crosshead speed du to a small crack area and the 

corresponding typical force-crack op ning di pIa em nt curve w r illu trat d in 

Figure 4.13a. The average load at crack growth initiation wa 32.39 ± 4.48 . Figur 

4.12b and 4.13b show the examples of fractur d peclm n after fraclur toughnc 

tests. 
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Table 4.3 shows the summary of the critical energy release rate G}C and critical 

stress intensity factor KlC of CT and SENB specimens. which were calculated based on 

British standard 13586. Table 4.3 shows that the SENB samples. test at 1 mmlmin. have 

higher G1C and KIC compared to those of the CT specimens test at 10 mmlmin. For CT 

specimens, an instantaneous and catastrophic failure occurred at a very high strain rate 

therefore the number of data collected were less compared to those collected using 

SENB specimens where 1 mmlmin strain rate allowed an extra time for the failure to 

occur. 

Table 4.3: A summary of critical energy release rate G Ie and critical stress intensity 

factor K1C of pure Epikote 828 polymer for CT and SENB specimens. 

Fracture Specimen type 

toughness CT SEND 

Critical stress 0.67 ± 0.02 0.84 ± 0.17 

intensity factor, Calculation: Calculation: 

KIC 
K1C = f(alw) J; KIC = f(alw} ht 

(MPa.Jffi) h w 

-(639) 217.35 
- . 0.0 129.J0.0255 

- (9 64) 32.39 
- . 0.0038.J0.0096 

= 0.67 MPa . ..;m = 0.84 MPa.rm 

Critical energy 152.73 ± 10.84 244.50 ± 41.90 

release rate. Calculation: Calculation: 

OIC (J/m2) 
0IC = WB( 

G _ WB 

hxwx; alw) Ie - hxwx;(alw} 

(ix 217.35x 0.098xl 0-3
) (~X32.39X0.146X 10-

3
) 

0.0129 x 0.0255 x 0.213 0.0038 X 0.0096 x 0.265 

= 152 11m2 = 244.5 J/m2 
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4.3 Pure Cyeom 977-20 polymer 

4.3.1 Density and constituent volume fraction 

The measured density of neat Cycom 977-20 epoxy polymer using a density balance 

was 1.2970 ± 0.0002 glcm3
• 

The thermal stability of Cyeom 977-20 was studied using the TOA heating 

program provided in Section 3.5.3. The heating program consists of heating the 

specimen from 25°C to 550°C in N2 and then kept at 550°C for 1 hr, followed by 

heating to 800°C in air. The isothermal temperature of 550°C was applied to achieve a 

constant residual weight of the epoxy. Figure 4.14 shows the TOA profile result. The 

thermal degradation of Cyeom 977-20 starts at about 340°C and ends at about 770°C. 

The thermal degradation temperature of this system is higher than that of the Epikote 

828 system therefore, this system is used for high-end applications such as aerospace 

components. 

The TOA profile can be divided into four different stages, which were marked as 

A, B, C and D in Figure 4.14. Stage A shows that the initial weight loss of about 

0.05 molo occurred due to moisture content. Stage B represents decomposition of the 

resin in nitrogen. The weight loss gradually increased from 3900e to 550°C with a total 

mass loss of about 70 wt%. After holding at 5500e for 1 hr, the purge gas flowing over 

the sample was automatically switched to oxygen. The resin residue was burnt off 

started from 570°C and ended at 770°C with a mass loss of about 29 wt%, see Stage C. 

The maximum degradation temperature of 430°C and 646°C of the epoxy resin and its 

residues, respectively, was identified by the peak of the rate of weight loss versus 

sample temperature curve (see Figure 4.1(i) and (ii». Stage D shows that there is no 

material remained behind after exposing the resin residue to oxygen suggested no 

contamination of the resin. 

In addition, the resin was heated in N2 from 25°C to 8000e to confirm the amount 

of resin residue obtained in Stage C of Figure 4.14. The TOA result shows almost 

constant residual weight of about 27 wt% between 550-650°C, see Figure 4.15. This 

confirms the result obtain in Figure 4.14. Three samples were tested for each condition 

and the average values were presented in Table 4.4. 
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Table 4.4: Constituent content and degradation temperatur of y m 977-20 rc in 

based on TGA re ults. 

Heating program Weight fraction maximum degmdation 
(wt%) temperature 

-('C) 

Epoxy resin Resin residue Epoxy resin Resin residue 
Heating from 25°C to 70.18 ± 1.11 29.67 ± 0.59 427.17 ± 3.7 1 645 .80 ± 1.40 
5500e in 2 and then 
kept at 5500e for I hr, 
followed by heating 
to 8000e in air 
Burn in nitrogen from 72.73 ± 0.68 27.20 ± 0.69 421.00 ± 4.93 -
2SoC to 8000e 

4.3.2 Dimensional stability and glass tran ition temperature 

Figure 4.16 displays a typical TMA result of cured pure Cycom 977-20 anlpl , which 

was tested using the two heating cycle program (a shown in Figure 3.14b ection 

3.5.5). The coefficient of thermal expan ion (CTE) and gla tran ition temp rature (Tg) 

were determined based the 2nd heating cycle curve. Mean CTE below and above Tg, 

differential CTE curve and Tg were determined using the Pyris- ri s Dianlond TMA 

software. Figure 4.17 shows an exanlple of thermal analy i of Pure ycom 977-20 

polymer sample. 
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Figure 4.1 6: A typical TMA result of pure pikote 828 polym r, whi h wa h at d from 
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Figure 4.17: A typical TMA result of pure Cycom 977-20 polymer, which wa analy d 

using Pyris-series Diamond TMA oftwar . 

The sample expands when it is heated. It can b en from th diff! rentia! TE 

curve in Figure 4.17 that CTE value increases linearly with temp ratm until it reach 

glass transition event where the epoxy matrix exhibit a signifi ant change in lop due 

to an increase in its rate of expansion. The on et t mp ratur 

expansion behavior is the Tg of the resin, which i at 196.3 1 0 

f thi change in 

boy Tg, th T 

value keeps increasing with temperature and the linear T i more than twic a hi gh 

as that of the CTE below Tg. The material tart to d grad at t mp rature abo 3000
. 

Three samples were tested for the pur ycom 977-20 pol m r. The m 

below Tg was measured from the initial lin ar lop of th TMA curv at t mp ratur 

between 80 to 130°C while the CTE abo e Tg wa m a ur d from th nd lin ar 

slope of the curve between 230-2800 
• The av rag TE bel w g wa 64.62 ± 0.24 

f.!EfC and CTE above Tg was 156.21 ± 1.1 f.!Ef while th a rage Tg wa 200.19 ± 

l.94 °c. In addition, DSC was also conduct d to d t rmine the Tg of th 

977-20 polymer. 
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Figure 4.18: A typical DSC result of pure Cycom 977-20 analy ed using a Pyri -series 

DSC 7 software. 

Figure 4.18 shows a typical D C result of h at flow ver ample temperature. 

The Tg of the sample was determined using Pyris- erie D C 7 oftware a hown in 

Figure 4.18. Three samples were tested and the averag Tg for pure ycom 977-20 

polymer was 210.33 ± 0.85 0c. This value i lightly high r than that obtained u ing 

TMA because TMA is significantly more en itive than D for th m a ur m nt ofTg 

of crosslinked polymer. 

4.3.3 Compressive propertie 

The true and engineering compressive tress-strain curve w re c mpar d in Figur 4.19 

for pure Cycom 977-20 polymer. The cro sectional ar a f the p cim n incr a 

with the compressive strain and therefore sU'es wa calculated u ing the urI' nt r 

sectional area (true stress) instead of the initial cro - ctional area (engine ring tre ). 

The true stress-strain curve plot shows low r valu than the cngin ering ur a 

shown in Figure 4.19. This true wa LI ed t d term i ne the 

compressive properties of epoxy polym r. Figure 4.19 al th d ft rmation [a 

typical specimen at different compres ive strain over th c IT p nding tru 

strain curve. It can be seen that the mat rial d form d unifl rmly and baIT Iling ffe t 

was effectively minimi ed. 
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Figure 4.19: Typical engineering and true tress-strain curves of a cylindrical pectmen 

of pure Cycom 977-20 epoxy loaded in static unia ial comprc ion. (i), (ii), (iii) and (iv) 

show the deformation ofa typical specimcn in b tw en the c mpr ion rod at 

different compressive strains. A, B, , D, E, F, G and H ar the la tic region , pia ti 

region, elastic limit, yield point, plastic strain s ftening rcgi n, plat au r gion, pia tic 

strain hardening region and ultimatc trc , r 

In tension, epoxy resin usually fail at a very I w ten il train, at ab ut 2-3% 

strain at failure. However, in compres ion it e hibited a larg pia tic d G rmation. Pure 

Cycom 977-20 failed at about 38% failur train a ho n in Figur 4.19. Th true 

compressive stress-strain curve shows that epo y 

plastic (region B) behaviour before rupture. The If 

la tic (regi 11 ) and 

initially incr a pr p rtionally 

to the strain, obeying Hooke' law, until it r ach s an la ti limit (p int ). Th 
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compressive modulus of the epoxy was calculated based on the slope at I to 3% 

compressive strain. With an increase in load beyond the proportional limit, the strain 

begins to increase more rapidly for each increment in stress until it reaches yield stress 

(point D) where the material deforms without an increase in the applied force. After 

yielding, the deformation increases with a slightly decrease in the applied load, known 

as the plastic softening mechanism (region E), until the graph plateaus, where the strain 

increases with no noticeable increase in the compressive stress (see region F). As the 

material undergoes large softening strains, the cross-sectional area is continues to 

increase, resulting in increased resistance of the material to further deformation. Thus 

after region F, additional deformation requires an increase in the compressive load, 

known as the plastic hardening mechanism (region G), until it reaches maximum load 

where the material rupture occurs (known as ultimate stress, point H). 

In addition, the tests were also conducted on cubic shape specimens. The true 

compressive stress-strain curves of cylindrical and cubic specimens were illustrated in 

Figures 4.20a and 4.20b, respectively. Five specimens were tested for each type of 

specimen. Figure 4.21 illustrates that the prismatic specimens failed prematurely due to 

barrelling and longitudinal cracking triggered at sharp comers near the loaded ends and 

also end crushing at high loading. High localised stresses due to the non-uniform 

deformations lead to early damage and hence premature failure. This is the reason why 

the compressive stress of cylindrical specimens was higher than that of the cubic 

specimens at the same compressive strain. In addition, the non-uniform deformation of 

the material under compression results in a complex stress state induced in the cubic 

specimen. Hence, the true stress-strain response especially in the plastic region cannot 

be determined accurately. The compressive properties such as elastic modulus, strength, 

failure strain, yield strength and strain at yield point, were determined based on ASTM 

standard D695. Table 4.5 shows the comparison between the compressive properties of 

cylindrical and cubic specimens. It was found that both have a similar Young's 

modulus, however, the measured compressive strength and failure strain of the cube 

type specimens were significantly lower than those of the cylindrical specimens. 
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Figure 4.20: Typical true stre s-strain curves of (a) ylindrical and (b) cubic p 1m n 

loaded in tatic uniaxial com pre ion. 

Figure 4.21: Examples of axially loaded cubic typ p clm n fail d ia barr lIing and 

longitudinal cracking followed by end ru hing at high r lading. 

Table 4.5: Effect of specimen hape on compr 

polym r. 

Compre sive proper ty 

Com pre sive modulu ,E (GPa) 

Compres ive tress at yie ld, OJ. (MPa) 

Compressive train at yield point, ~ (%) 

Compres ive strength, a" (MPa) 

Compressi e train at break, sf (%) 
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e prop rti f pur y om 977-20 

Specimen typ 

Cylind rica l C ubic 

4.0 I ± 0.05 4.00 ± 0.02 

15 .0 ± 0.90 151.45 0.36 

10.96 ± 0.18 9.87 ± 0.37 

205 .81 1.84 151.45 ± 0.36 

7.1 6 ± 0.27 20.6 1 ± 0.88 
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4.3.4 Tensile properties 

The stress-strain response of pure Cycom 977-20 polym r dogbone hap 

loaded in tension is shown in Figure 4.22. The graph exhibit an initially traight 

portion with an average elastic modulus of 3.51 ± 0.0'" OPa mea ur d at 0.1-0.25% 

applied strain and followed by a continuously curved portion with a tang ntial modulus 

at failure of approximately 40% less than that of th linear part. The a erag failure 

strength was 62.60 ± 2.41 MPa and the mean failure strain was 2.27 ± 0.15%. 
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Figure 4.22 : tress-strain curves offive dogbone hape spccim ns load d in ten i n. (i) 

and (ii) show typical specimens before and aft r t ting, re p ctively. 

4.3.5 Flexural propertie 

Figure 4.23 shows the flexural tress-strain cwo es of pur yc m 977-20 p Iym r. Thi 

Figure shows that the stres initially increa prop rti nally t the train until it r a h 

the proportional limit at about 2.5% fl xural train ( e point A). B yond thi limit, th 

strain begins to increase more rapidly for each incr m nt in tr until it br ak at point 

B. Five specimens were tested and the av rag fie ural m dulu ,n ural tr ngth and 

failure strain of the resin were 3.61 ± 0.03 OPa, 135.78 ± .81 MPa and 5.05 ± 0.60%, 

respectively. 
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Figure 4.23: Flexural stress-strain respon e of five ampl t ted using a three-p int 

bending test fixture. (i) and Oi) show typical p cimen befor and after t ting, 

respecti vel y. 

4.3.6 Fracture tougbne s properties 

The fracture toughnes te t was conducted on the ingle-edge-not h bending pc 1m n 

(SENB). The load wa applied at 1 mm/min cro h ad p d, du to a mall ra k 

propagation area, and the corresponding typi al for - rack op ning di pIa emcnt 

curves were illustrated in Figure 4.24a. Thi figure how that the graph b gin with a 

straight line, where the force is proportional to th the 

ultimate force, where cracks start to growth and ata trophic failure Th 

material fails before any yielding or pIa tic d formati n tak pIa th r fI re it r. il In a 

brittle manner. The average of load at crack growth initiati n wa 49.61 ± 1.59 . Th 

mean critical stress inten ity factor K, . and mean riti al n rg r lea rat GJ(' w r 

1.14 ± 0.04 MPa. rm and 373.72 ± 14.67 J/m2
, rcspe ti I. Figure 4.24b h w the 

example of SENB specimen before and after t ting. 
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Figure 4.24: (a) Typical load - displacement curve of NB p irn ns loaded at I 

mrnImin strain rate for the measurement of fractur toughne f pure ycorn 977-20 

polymer and (b) examples of SENB specimens (i) before and (ii) after testing. 

4.4 Concluding remarks 

The pure resins of Epikote 828 and Cycom 977-20 wer chara leri ed ba d n their 

physical, thermal and mechanical properties. Based on th re ult , the ycom 977-20 

epoxy system exhibited a better performance compar d to th Epikote 28. The result 

of materials properties such as constituent content, T , Tg, la tic modulu , yi Id 

stress and strain, ultimate stress and strain, fracture toughn s w re de crib d in detail. 

These data are used as reference for the following chapt r to tudy the f~ ct f 

nanoparticles on the physical, thermal and mechanical properti of these re in y tern . 
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Chapter 5 

Nanomodified-resins: Synthesis, characterisation and 

analysis 

5.1 Summary 

The objectives of this chapter are (1) to characterise nanomodified epoxy polymers 

based on their mechanical, physical and thermal properties and (2) to select the best 

performance of the nanomodified resins for the fabrication of the nanomodified-CFRP 

composites. Mechanical performance of the nanomodified polymer systems was 

evaluated using compression, tensile, flexural and fracture toughness tests while the 

thermal properties were determined using TGA, TMA and DSC. The quality of the 

nanocomposites, such as the degree of dispersion or exfoliation of the nanoparticles in 

the matrix, was evaluated using TEM. The effects of nanosilica, eNT and nanoclay on 

the properties of Epikote 828 were studied. In addition, the effect of nanoclay on the 

properties of commercial aerospace grade epoxy (Cycom 977-20) was also evaluated. 

All results are presented in the following sections and Appendix A. 

5.2 Nanosilica-filled Epikote 828 epoxy polymer 

5.2.1 Morphology 

Homogeneous dispersion of nanofillers in a polymer is one of the major challenges in 

fabricating nanocomposites. Agglomeration of nanoparticles (usually in micrometer size 

clumps) often gives adverse effects on the thermal and mechanical properties of the 

epoxy. Hence, this does not represent the properties of a desired nanocomposite. 

In this study, a uniform distribution of nanosilica in Epikote 828 was achieved. 

This is supported by the TEM micrographs presented in Figure 5.1. There was no 
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agglomeration of the Si02 nanoparticles even at high volume fraction (see Figure 5.lc). 

The spherical shape silica nanoparticles have a mean particle size of 20 nm and 

maximum diameter of 40 nm as observed at high magnification (see Figure 5.1b(iii». 

Since the TEM slice is approximately 85 nm thick these TEM images do not reflect the 

actual volume fraction ofnanosilica in the matrix. The volume fraction of the nanosilica 

was therefore measured using thermo-gravimetry analysis (TGA) that is discussed in the 

following section. 

5.2.2 Thermogravimetry analysis and constituent volume fraction 

The volume fraction of nanosilica in the epoxy was determined using TGA. Besides, 

TGA was also used to study the effect of nanosilica on thermal degradation behaviour 

of Epikote 828. Figure 5.2a illustrates percentage of weight loss and rate of weight loss 

as a function of sample temperature. All samples started to decompose at about 250°C. 

The decomposition mechanisms involved during combustion of pure Epikote 828 has 

been explained in the previous chapter (see Section 4.2.1). As shown in Figure 5.2a, 

nanocomposites exhibited similar thermal decomposition mechanisms to that of the pure 

epoxy. However in the last stage (Stage D), the material remaining behind after 

exposing the nanocomposites to air was the inert silica nanofiller. Table 5.1 summarises 

the average constituent weight fraction and maximum degradation temperature of the 

pure and nanomodified epoxy with their carbon residues. At least three specimens were 

tested for each system. 

Table 5.1 shows that, for the 1 st heating program, the pure and nanomodified 

resins undergo maximum thermal degradation at about 440°C and the percentage of 

total weight loss decreasing with increasing in the nanosilica content. After holding at 

550°C for 1 hr, the nitrogen gas flowing over the sample was automatically switched to 

oxygen and hence, the carbon residues which were left from the combustion of the 

epoxy resins were burnt off with a total mass loss of about 17-20 wt%. Table 5.1 shows 

that the maximum degradation temperature of carbon residues (identified by the second 

peak of the rate of weight loss versus sample temperature curve as shown in Figure 

5.2a) was increased with increasing in nanosilica content. For instance, the addition of 

13 wt% nanosilica into the epoxy matrix increased the maximum degradation 

temperature of carbon residues by 70°C compared to the neat resin. This suggests that 

the nanofiller-matrix interfacial bonding is very strong and therefore a higher 
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temperature is needed to remove the epoxy which is stuck on the particle surface. 

Finally, the material remaining behind after exposing the sample to oxygen was the 

silica nanofiller, which the Table 5.1 shows 5.36 ± 0.03 wt%, 12.96 ± 0.08 wt% and 

25.23 ± 0.33 wt% nanosilica content for the three nanomodified systems investigated in 

the present study. 

In addition, the specimens were heated in two other conditions to study their 

thermal degradation behaviour and to confirm the amount of epoxy resin and silica 

nanofiller obtained using heating program 1 (see table 5. I). In order to confirm the 

weight fraction of epoxy resin, the specimens were heated from 2Soe to 8000e in 

nitrogen. TGA profiles, as shown in Figure 5.2b, show that the residual weight at 

temperature 600-700°C was almost constant. The average amount of epoxy resin 

obtained from Heating program 2 as shown in Table 5.1 was close to that obtained using 

heating program 1. Figure 5.2c shows that the maximum degradation temperature of the 

epoxy resins and their residues occurred at lower temperature by exposing to air 

compared to burnt in the first condition. The amount of ash left after combustion using 

heating program 3 confmned the amount of nanosilica in the epoxy which were 

obtained using the first heating program as shown in Table 5.1. 

Table 5.2 summarises density and volume fraction ofnanosilica in Epikote 828. A 

density of 1.22 g/cm3 was measured for the unmodified Epikote 828. The measured 

density was found to increase with the nanosilica content (see Table 5.1). The increase 

in density is expected because the density of silica, Psi = 1.8 g/cm3
, is greater than that 

of the epoxy matrix. The inclusion of 25 wt% nanosilica increased the density of the 

epoxy for about 11 %. The measured density was compared to the theoretical prediction 

based on the rule of mixtures. All measured densities were closed to the theoretical 

values. However, at high nanosilica content the measured density was slightly higher 

compared to the predicted value. This is due to the fact that some particle agglomeration 

or clusters of nanosilica rich region may occur at high filler content. These density data 

were used for the calculation ofnanosilica volume fraction in the epoxy resin. Table 5.2 

shows that for the three nanomodified systems investigated in the present study the 

average volume fraction of nanosilica in the epoxy resin was 3.7 vol%, 9.3 vol% and 

19.1 vol%. 

108 



Chapter 5 Nanomodified-resins: Synthesis. characterisation and analysis 

(i) 22500x (ii) 115000x 

(a) 5 wt% nanosilica 

(i) 22500x (ii) 115000x (iii) 225000x 

(b) 13 wt% nanosilica 

(i) 22500x (ii) 115000x 

(c) 25 wt% nanosilica 

Figure 5.1: TEM micrographs showing a homogeneous disper ion of (a) 5 wt%, (b) 13 

wt% and (c) 25 wfllo silica nanospheres in Epikote 828 observed under three different 

magnifications. The spherical silica nanoparticles have mean diameter of 20 nm and 

maximum diameter of 40 nm. 
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heated in three different heating condition. 

110 

800 



Chapter 5 Nanomodified-resins: Synthesis. characterisation and analysis 

Table 5.1: Weight fraction and maximum degradation temperature ofnanosilica-filled 

Epikote 828 resin based on TGA results. 

Heating Epoxy Weight fraction maximum degradation 

program system (wt%) temperature (DC) 

Epoxy carbon Silica Epoxy carbon 

resin residue nanofiller resin residue 

Heating Pure 81.33 ± 18.29 ± - 438.61 ± 609.67 ± 

program 1 0.17 0.15 2.20 4.02 

5 wr>1o 74.44 ± 19.80 ± 5.36± 441.85 ± 650.79 ± 

nanosilica 0.25 0.32 0.03 3.60 4.20 

13 wr>/o 65.51 ± 20.70 ± 12.96 ± 442.33 ± 680.03 ± 

nanosilica 0.74 0.65 0.08 2.08 5.46 

25 wr>/o 56.68 ± 17.25 ± 25.23 ± 444.39 ± 740.73 ± 

nanosilica 0.15 0.37 0.33 2.84 7.54 

Heating Pure 81.60 ± 18.32 ± - 430.17 ± -
program 2 0.25 0.23 3.90 

5wt% 74.34 ± - - 451.72 ± -
nanosilica 0.18 2.82 

13 wr>/o 66.97 ± - - 446.67 ± -
nanosilica 0.32 1.93 

25 wr>/o 56.03 ± - - 428.22 ± -
nanosilica 0.16 2.09 

Heating Pure 73.02 ± 26.83 ± - 424.34 ± 605.69 ± 

program 3 0.59 0.64 1.81 2.09 

5 wr>1o 68.00 ± 26.18 ± 5.04± 435.14 ± 647.70 ± 

nanosilica 0.30 0.23 0.12 2.59 1.41 

13 wt% 63.03 ± 23.26± 13.02 ± 430.48 ± 631.99 ± 

nanosilica 0.44 0.37 0.10 0.72 1.64 

25 wr>/o 53.91 ± 20.77 ± 24.85 ± 431.38 ± 654.59 ± 

nanosilica 0.20 0.58 0.22 1.06 1.19 

Heatmg program 1: Heatmg from 25°e to 550De in N2 and then kept at 550°C for 1 hr, 

followed by heating to 8000e in air, 

""Heating program 2: Heating from 25°e to 8000 e in N2 

"'Heatingprogram 3: Heating from 25°e to 8000e in O2 
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Table 5.2: Average density and volume fraction ofnanosilica in Epikote 828. 

Properties Pure Nanomoditied system (NMS) 

resin 5wt% si 13wt% si 25wt%si 

Density 1.22 1.25 1.29 1.36 

(measured by density balance), Arc (g/cm3
) 

Theoretical density 1.22 1.24 1.27 1.33 

(calculated using the rule of mixtures) 

Pnc(g/cm
3

) = Pep"V"p + PsYsi 

Weight fraction ofnanosilica (wt%) - 5.36 12.96 25.23 

(from Table 5.1), WSi (%) 

Volume fraction ofnanosilica (vol%) - 3.72 9.29 19.06 

V .(%) = W. X Pne , (where Psi = 1.8 glcm3
) 

SI SI 

Psi 

5.2.3 Dimensional stability and glass transition temperature 

The effect of nanosilica on thermal properties, such as CTE and Tg, of Epikote 828 was 

studies using TMA and DSC. The mean CTE below Tg was measured from the initial 

linear slope of the thennal strain-temperature plot (at temperature between 70 to 11 DOC) 

while the CTE above Tg was measured from the second linear slope of the curve 

between 15D-180oC. Figure 5.3 shows the effects of 5, 13 and 25 wt% nanosilica on the 

thennal strain-temperature response of Epikote 828. In general, the addition of 

nanosilica reduced the slope of the thermal strain-temperature curve of the Epikote 828. 

This means that the presence of nanosilica restrains the expansion of the Epikote 828 

and therefore contributes to a lower CTE value. In this study, Pyris series Diamond 

TMA software was used to detennine the Tg and mean erE below and above Tg. At 

least three specimens were tested for each system and the results were summarised in 

Table 5.3. 

Table 5.3 shows that the mean CTE below and above Tg were reduced with 

increasing in nanosilica content. For instance, the incorporation of 25 wt% nanosilica 

reduced the CTE below Tg for about 18% and eTE above Tg for about 9% than the 

pure epoxy. This is because nanosilica has a higher modulus and a lower eTE than that 

of the pure Epikote 828. As the temperature of the material increases the matrix tries to 
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expand in its usual way. However, the nanofillers rcsi t thi dimen ional chang 

resulting in reduction in dimensional expansion of the polymer. Thi contributes to the 

lower eTE values for nanosilica-filled epoxy ystem. 

Table 5.3 also shows the effect of nanosilica content on the Tg of th pikote 828. 

It was found that the nanocomposite has a lower Tg than the pure epoxy. Th Tg value 

decreased steadily with the increasing of nanosilica content was identi fied by both TMA 

and DSe instruments. For instance, the addition of 25 wt% naJ10silica reduced the Tg by 

about 10% which were measured by TMA while DS record d reduction of 7%. The 

different in Tg values recorded by TMA and 0 e was due to the different in mea uring 

concept. DSe marked Tg by the change in energy absorb d by the epoxy while TMA 

marked Tg by the shift in thermal expansion of the material. In addition, a different 

heating rate was employed (in accordance to British tandards) for these two 

instruments. The reduction of Tg value with increa ing nano ilica content was certified 

using these two instruments. This is possibly because of a decrease in cro link density 

of the epoxy resin. 
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Table 5.3: Effect ofnanosilica on eTE and Tg of Epikote 828. 

Thermal properties Pure resin Nanomodified system (NMS) 

Swt% si 13wt% si 2Swt% si 

Mean erE below Tg 79.78 ± 0.47 76.08 ± 0.38 68.23 ± 0.79 65.68 ± 1.64 

(J,18fC) 

Mean erE above Tg 187.76 ± 3.59 182.07 ± 1.61 173.15 ± 1.85 170.56 ± 1.14 

(~C) 

Tg measured by TMA 139.52 ± 1.02 134.36 ± 0.67 128.64 ± 0.52 124.68 ± 0.20 

eC) 
Tg measured by DSe 141.91 ± 0.77 136.48 ± 0.60 133.97 ± 1.05 131.60 ± 0.22 

eC) 

5.2.4 Compressive properties 

5.2.4.1 True compressive stress-strain behaviour 

The effect of nanosilica on the true compressive stress-strain response of the epoxy 

polymer is illustrated in Figure 5.4. It can be seen that the presence of nanosilica 

enhanced the compressive stress-strain behaviour of the epoxy polymer. In conventional 

systems, the addition of rigid microfillers or agglomerated nanofillers into epoxy resins 

commonly increases the stiffuess but leads to a detrimental effect on the strain to failure 

[4,43,44,59,107,117]. Moreover, the strength of the composite is also reduced as the 

amount of fillers is increase. This is due to the high local stress concentration, which 

leads to premature failure. Additionally, reduction in strength and failure strain 

demonstrated that the load transfer between matrix and particles is insufficient and the 

interface is weak. In contrast, for the current system, Figure 5.4 shows that the 

incorporation of nanosilica increased the compressive modulus and strength of the 

polymer without any significant reduction in failure strain even at high nanosilica 

content. A rigid silica nanoparticle has a Young's modulus of 70 GPa [73] while the 

neat Epikote 828 has an E=3 GPa. The presence of nanosilica improved ductility and 

promoted higher plastic hardening behaviour after yielding of the epoxy without 

reducing its strain to failure. This suggests that the rigid nanoparticles introduce 

additional mechanisms of energy absorption during compression. This gives a higher 
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resistance to deformation, which results in higher compressive stress and plastic 

hardening. In addition, the homogeneous dispersion of these high stiffhess nanofillers in 

the matrix enhanced the fracture toughness of the system (larger area under stress-strain 

curve, see Figure 5.4). 

5.2.4.2 Compressive properties 

The compressive properties of nanosilica-filled Epikote 828 are summarised in 

Table 5.4. It was found that the addition of nanosilica improved the compressive 

properties of the epoxy. For instance, the addition of 13 wt% nanosilica into the epoxy 

matrix enhances the compressive modulus by 19% and compressive strength by 58% 

with no significant changes in yield stress and failure strain. The highest content of 

nanosilica in the epoxy (25 wt%) gave a tremendous increase in compressive modulus 

and strength of more than 30% and 70%, respectively, compared to the neat polymer. 

This suggests that the nanofiller-matrix interaction is very favourable and therefore 

stresses are efficiently transferred via the interface, which leads to higher strength 

compared to the pristine polymer. 

5.2.4.3 Effect of specimen shape 

Figure 5.5 shows typical true stress-strain curves of prismatic specimens which were 

loaded in compression. The strain to failure and compressive strength of the pristine 

polymer were relatively lower than those of the nanomodified polymer. The resistance 

to plastic deformation of the nanomodified resin is higher compared to the pure resin 

system due to the presence of rigid nanoparticles. Table 5.4 also shows the comparison 

between the compressive properties of cylindrical and cubic specimens. It was found 

that both have a similar Young's modulus, however, the measured compressive strength 

and failure strain of the cube type specimens were significantly lower than those of the 

cylindrical specimens. This is due to the fact that the cubic specimens undergo a non­

uniform deformation during compression (as explained in Section 4.2.3) therefore the 

actual compressive stress induced especially in the plastic region cannot be accurately 

determined. 
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tres - train 

Table 5.4: Effect of specimen shape and geometry on th compre IV prop rti f 

nanosilica-fi lled epoxy nanocompo ite . 

Compressive Pure Nanomodified y tcm 

property Epikote 828 5 wt% si 13 wt % i 25 wt% . i 

Cyl. Cubic Cyt. Cubic Cyl. Cubic Cyl. C ubi 

Elastic 3 .02 3.12 3.34 3.39 3.58 3.60 4.05 4.04 

modulus, ± 0.06 ± 0.02 ± 0.08 ± 0.02 ± 0.02 ± 0.01 ± 0.07 ± 0.07 

E (GPa) 

Yield stress 132.99 126.59 130.35 130.93 133 .08 13 1.80 138.88 130.75 

ay(MPa) ± 0.20 ± 0.39 ± 0.31 ± 0.65 ± O. 9 ± 0.97 0 .84 1.13 

Strain at yield 6.50 5.53 5.70 5.37 5.46 4 .91 5. 12 4.49 

point, &y(% ) ± 0.05 ± 0.03 ± 0. 10 ± 0.04 ± 0.05 ± 0.1\ ± 0.07 0 .06 

Compressive 211.47 126.59 274.60 130.93 335.03 13 1.80 372.00 158.69 

strength, O"u ± 3.17 ± 0.39 ± 2.66 ± 0.65 ± I . 5 ± 0.97 ± 7.64 .± 9 .68 

(MPa) 

Strain at 42 .66 16.49 39.74 23 .67 42. 17 28.54 38.89 27.96 

break, &j (%) ± 0.65 ± 1.56 ± 2.55 ± 2.40 ± 0.48 ± 1.57 ± 0. 19 ± I. 4 
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5.2.4.4 Prediction of compressive modulus 

The elastic response of most polymer mao'ice u ually similar in ten ion and 

compression, and therefore the compressive ela tic modulu f th tudied y t m wa 

estimated using various models suggested and revi w d in [41,42,169-172]. Tabl 5.5 

sunlmarises several theoretical model that ar commonl u d t pr dict the modulus 

of elasticity of particle-modified polym r . These are rule f mi ture , Ilalpin-T ai 

[171] and Lewis-Nielsen [41,42,172] m del. Figure 5.6 how th 

predictions of compressive modulu compar d to th mea ur d alu . Il We fI und that 

most of the prediction curves were in a g od agr ment ith th m a ured data, wh r 

the compressive modulus increa es with th nano iii a cont nl. Th upper bound rule f 

mixtures equation give poor prediction when compared to th pre cnt exp rim ntal 

data. The Halpin-Tsai model [171] in Iud the hap fact r of th fill r parti I ; it 

should be noted that this equation i ba ed on the carl mi rom hanic w rk by Ilill 

[170] and experimental mea ur ment and ob r ati n to 

give reasonable stiffuess prediction for certain mat rial of 

spherical particles used in the pre ent work, th I ngth f th particl w qual the 

thickness of the particle I and therefore the hap fa t r C;=2w/I=2. F r a I w olum 
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fraction of the nanofiller, the Halpin-Tsai prediction gives a very good agreement with 

the experimental data. However, when the silica nanoparticle content is more than 

5 vol% the prediction curve lies above the measured values, see Figure 5.6. 

The Lewis-Nielsen model takes into account the degree of dispersion of particles 

in the matrix, V max and the particle-matrix adhesion, k£. Figure 5.1 shows no 

agglomeration of the nanosilica particles, therefore for random close packing and non­

agglomerated spheres, V max=O.632 was used in the calculation. Additionally, Figure 5.4 

shows that the compressive strength of the nanomodified system was higher than that of 

the pure polymer. This suggests a very strong nanofiller-matrix interfacial adhesion, 

which helps the load to be effectively transferred via the interface. Therefore, a perfect 

adhesion of ke=2.l67 was assumed in the non-slip Lewis-Nielsen model. This model 

gives the best agreement to the measured values when compared with the other models. 

However, at a very high nanofiller content (more than 19 vol%) the measured 

compressive modulus is lower than the predicted value. This is a common observation, 

since the model assumes that there is perfect bonding between the particles and the 

matrix, which may not be the case at very high filler content. This is due to the fact that 

some particle agglomeration may occur at high filler content in addition to particle 

slippage and imperfect adhesion. 
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Table 5.5: Prediction of compressive modulus ofnanosilica-filled Epikote 828 

nanocomposites using several types of theoretical models. 

Theoretical models Ref. Equation and input data 

Rule of mixtures [169] Upper bound. E =E rl + E V 1Ie', 'P'P 

Lower bound, E = E.,E,p 
II< E,r,p + EIPV", 

where 

Ene = predicted nanocomposites modulus 

Eep = modulus of the epoxy = 3.02 GPa 

ESi = modulus of the nanosilica = 70 GPa 

Vep = volume fraction of the epoxy 

Vsi = volume fraction of the nanosilica 

Halpin-Tsai model [171] E = 1+(I1v", E 
11< 1-1]V", .p 

where 

~ =shape factor = 2 for spherical particles 

(§~-I) 
".~.o .. 

E,p 

Lewis-Nielsen [41,42, E = 1+(kE-I)PV" E 

model 172] 
IfC 1- ppv" .p 

where 

kE = 2.167 if there is no slippage at the particle-matrix 

interface (73] 

kE = 0.867 if there is interfacial slip occurred [73] 

(t -I) 
fJ= 

(i:;-+(k.: -I») 

JJ = 1 + (1- V,')[(V"""v,,)+ (1- V,"", XI- v,,)] 
v""" 

Vmar = 0.632 for random close packing, non-

agglomerated spheres [42] 
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S.2.S Tensile properties 

The effect of nanosilica on the tensile stress-strain response of the epoxy polymer is 

illustrated in Figure 5.7. It can be seen that the presence of nanosilica enhanced the 

tensile stress-strain behaviour of the epoxy polymer. Nanocomposites exhibited higher 

tensile modulus (as measured at the initial slope of the graph) and strength without 

reducing its failure strain even at high nanosilica content. The increase in modulus is 

expected because the modulus of silica is about 70 GPa [73]. In addition, the 

homogeneous dispersion of these high stiffness nanofillers in the matrix enhanced the 

fracture toughness of the system as indicated by the larger area under stress-strain curve 

of the nanocomposite system, see Figure 5.7. As the tensile load increases, the matrix 

tries to elongate in its usual way. However, the nanofillers resist deformation. This 

results in smaller deformation compared to the neat polymer. Therefore, 

nanocomposites sustain more loads compared to the pure systems and contribute to a 

higher tensile modulus and strength. 

Table 5.6 summarises the tensile properties of nanomodified system compared to 

the pure resin. It was found that the addition of nanosilica improved the tensile 

properties of the epoxy. For instance, the addition of 13 wt% nanosilica into the epoxy 

matrix enhances the tensile modulus by 21 %, tensile strength by 20% and failure strain 

by 10%. The highest content of nanosilica in the epoxy (25 wt%) give a remarkable 

increase in tensile modulus and strength of about 38% and 24%, respectively, compared 

to the neat polymer without sacrificing the strain to failure. This suggests that the 

nanofiller-matrix interaction is very strong therefore the nanocomposites exhibited 

higher strength compared to the pristine polymer. 

5.2.6 Flexural properties 

Figure 5.8 shows the typical flexural stress-strain curves recorded at 2 mmlmin of strain 

rate for neat and nanosilica-filled systems. It was found that the slope of the stress-strain 

curves increases with increasing in nanosilica content. This indicates that nanosilica 

enhances the flexural modulus of the epoxy. As the flexural load increases, the 

nanomodified system exhibited less deflection compared to that of the unmodified 

system. The nanomodified system sustains more loads at the same flexural strain to the 

neat epoxy. The degree of plastic deformation increases especially with 5 wt% 

nanosiIica as shown in Figure 5.8. This shows that the presence of rigid nanosilica 
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particles does not restrict the mobility of the molecular chain to pass each other and 

results in higher failure stress and strain. Therefore the nanocomposites give benefits to 

elastic modulus and strength without sacrificing the strain to failure of the epoxy. 

The flexural tests were conducted on at least five specimens for each system. 

Table 5.6 shows the summary of the flexural properties. The addition of nanosilica 

enhances flexural modulus and strength of the epoxy without any significant reduction 

in its failure strain. For example, the addition of 5 wt% nanosilica in the epoxy matrix 

enhances the elastic modulus by 13%, flexural strength by 26% and failure strain by 

15%. The elastic modulus improves significantly with 25 wt% nanosilica, by about 

36%, without any further enhancement in the ultimate stress and strain to break. 

Nanosilica rich region or particle agglomeration may occur at higher nanosilica content 

hence contribute to a premature failure of the specimens. Therefore, this limits the 

flexural strength and failure strain enhancement. 

5.2.7 Fracture toughness properties 

Table 5.6 shows also the effect of nanosilica on fracture toughness of Epikote 828. At 

least five specimens were tested for each system and the results of typical load-crack 

opening displacement curves obtained from the compact tension tests with 5 - 25 wt% 

nanosilica were given in Appendix A. It was found that, the load at crack growth 

initiation FQ for nanomodified system was higher than that of the neat epoxy. Hence, 

the nanocomposites enhanced significantly the fracture toughness of the epoxy, see 

Table 5.6. For instance, the addition of 25 wt% nanosilica increased maximum load to 

about 82% compared with the pure Epikote 828. This gives enhancement in critical 

stress intensity factor and critical energy release rate of about 84% and 163%, 

respectively. The fracture energy increases steadily with the nanosilica content. This 

indicates a very good interfacial adhesion between matrix and nanofiller. 
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Table 5.6: Tensile, flexural and fracture toughness properties of the unmodified and 

nanomodified Epikote 828 resin with various concentrations of silica nanoparticles. 

Material properties Pure resin Nanomodified system (NMS) 

5wt% si 13 wt% si 25wt% si 

Tensile modulus, E, (GPa) 2.75 ± 0.02 3.08 ± 0.04 3.33 ± 0.04 3.80 ± 0.04 

Tensile strength, O"u,/ (MPa) 70.84 ± 1.08 79.42 ±4.00 85.25 ± 2.47 88.11 ± 1.41 

Tensile strain at break, &f,t 3.28 ± 0.09 3.47 ± 0.30 3.62 ± 0.23 3.52 ± 0.22 

(%) 

Flexural modulus, Eb 2.88 ± 0.03 3.25 ± 0.02 3.56 ± 0.02 3.93 ± 0.03 

(GPa) 

Flexural strength, O"u,b 117.73 ± 8.70 148.82 ± 5.29 145.17 ± 6.63 139.30 ± 8.55 

(MPa) 

Flexural strain at break, &j,b 4.84 ± 0.61 5.58 ± 0.40 4.89 ± 0.36 4.30 ± 0.47 

(%) 

Maximum load, FQ (N) 217.35 ± 7.43 279.30 ± 8.17 344.04 ± 8.58 395.21 ± 4.90 

Critical stress intensity 0.67 ± 0.02 0.87± 0.03 1.07 ± 0.03 1.23 ± 0.02 

factor, KJC (MPa. Jm ) 
Critical energy release rate, 152.73 ± 239.87 ± 329.91 ± 400.84 ± 

GJC (J/m
2
) 10.84 13.16 17.42 14.53 
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5.3 CNT -filled Epikote 828 epoxy polymer 

5.3.1 Morpbology 

A good dispersion of 0.5 and 1 wt% multiwalled CNT in the pikote 828 is illustrated 

in Figures 5.9 and 5.10, respectively. At high magnification, the TEM images show the 

presence of clusters of entangled CNT in the matrix. The multiwalled CNT has an 

average diameter of 10 nm as shown in high magnification TEM images. 

~ t __ ~ 

(a) 34000x (b) 115000x 

(c) 170000x 

Figure 5.9: TEM micrographs showing a homogeneou di p r i n of 0.5 wt% NT in 

Epikote 828 observed under three different magnification . 
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(a) 34000x (b) 115000x 

(c) 170000x 

Figure 5.10: TEM micrographs showing a good dispersion of 1 wt% eNT in pikote 

828 observed under three different magnifications. 
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5.3.2 Dimensional stability and glas tran ition temperature 

Figure 5.11 illustrates the effects of 0.5 and 1 wt% T nth dim n i nal tabilityof 

Epikote 828. At least three samples were te ted for each t m. Tabl 5.7 ummari e 

the mean CTE and Tg for nanomodified y tern compar d to th n at 

found that the mean CTE of the pikote 82 poxy r in wa li ghtl 

y. 1t wa 

rea ed b 

incorporation of CNT. By adding 1 wt% T, th mean T below and ab ve Tg were 

reduced for about 3-4%. There was also no significant erfl ct on th Tg by adding T 

to Epikote 828, see Table 5.7. This was recorded b both TM and D in trum I1tS. 
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Table 5.7: Effect of Ton T and Tg of ~ pik t 828. 

Thermal propertie Pure resin Nanomodified s 'tern (NMS) 

0.5 v t% CNT I wt% CNT 

Mean eTE below Tg (,..u:;fC) 79.78 ± 0.47 77 .30 ± 0.17 76.2 0.29 

Mean CTE above Tg (IlEfC) 187.76 ± 3.59 18 .70 ± 0.97 182.26 0.25 

Tg measured by TMA CC) 139.52± 1.02 I 7.69 0. 12 136.7 1 ± 0.42 

Tg mea ured by DSC (0C) 141.91 ± 0.77 1 9.5 ± 0.19 138.87 ± 0.09 
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5.3.3 Compressive properties 

The effect of multiwalled eNT on the true compressive stress-strain response of the 

epoxy polymer was illustrated in Figure 5.12. It can be seen that the presence of 

multiwalled eNT enhanced the compressive stress-strain behaviour of the epoxy 

polymer. The presence of eNT gives a higher resistance against deformation, which 

results in higher compressive strength and plastic hardening. In addition, 

nanocomposites exhibited a larger area under stress-strain graph compared to the pure 

system. This implies that nanocomposites has better fracture toughness properties. The 

compressive properties ofeNT-filled Epikote 828 are summarised in Table 5.8. It was 

found that the addition of eNT improved the compressive modulus and strength without 

any significant reduction in failure strain of the epoxy. For instance, the addition of 

1 wt% eNT into the epoxy matrix enhances the compressive modulus by 19% and 

compressive strength by 9%. However the yield strength of the epoxy reduces with an 

increase in CNT content. The addition of 1 wt% eNT slightly reduces the yield strength 

by about 2%. This implies that the interfacial bonding between CNT and epoxy matrix 

is not strong enough to resist plastic deformation of the material. Therefore the plastic 

deformation of the nanocomposites took place earlier than that of the pure resin. 

Table 5.8 shows also the comparison between the compressive properties of 

cylindrical and cubic specimens. It was found that both have a similar Young's 

modulus, however, the measured compressive strength and failure strain of the cube 

type specimens were significantly lower than those of the cylindrical specimens. This is 

due to the fact that the cubic specimens undergone non-uniform defonnation during 

compression and premature failure was triggered by the sharp comers. Therefore, the 

actual compressive stress induced especially in the plastic region cannot be accurately 

detennined. Figure 5.13 shows typical true stress-strain curves of prismatic specimens 

that were loaded in compression. The elastic modulus, strain to failure, compressive 

strength and fracture toughness (area under graph) of the nanocomposites were 

relatively higher than those of the pure polymer. 
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Table 5.8: Compressive propertie of mu lti wall d T-modified pikot 28 compared 

to the pure system. Compression test were conduct d on two diffl r I1t pecim n ; (i) 

cylindrical and (ii) cubic. 

Compres ive Pure Na nomodified ys tcm 

property E pikote 828 O.5wt% CNT J wt% CNT 

Cyt. C ubic Cyt. C ubic Cyt. Cubic 

Elastic modulus, 3.02 ± 3.12 ± 3.39 ± 3.37 ± 3.60 ± 3.59 ± 

E (OPa) 0.06 0.02 0.01 0.02 0.0 0.03 

Yield stress, 132.99 ± 126.59 ± 132.10 ± 131.49 ± 130.93 130.90 ± 

O'y(MPa) 0.20 0.39 0.27 0.5 0.6 0.87 

Strain at yield point, 6.50 ± 5.53 ± 5. 5 ± 5.20 ± 5. ± 5.00 ± 

&y(%) 0.05 0.03 0.06 0.06 0. 11 0.07 

Compressive trength, 211.47± 126.59 ± 188. 2 ± 131 .49 ± 23 1.5 1 ± 130.90 

O'u(MPa) 3.17 0.39 7.82 0.5 2.66 0.87 

Strain at break, 42.66 ± 16.49 ± 41.22 ± 28.1 ± 42.62 ± 28.79 ± 

Cj(%) 0.65 1.56 0.61 1.63 O. 6 1.5 8 
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5.3.4 Tensile properties 

T on the compr ive 

The effect of multiwalled CNT on th trc - train re pon e of th 

polymer was illustrated in Figure 5.14. It wa found that the 

curves increases with increases in NT cont nt. Thi indicate 

- train 

the tensile modulus of the epoxy. Table 5.9 ummari th ten ile pI' p rti of 

nanomodified system compared to the n at r in. The additi n of 0.5 and 1 wt% T 

enhanced the tensile modulus by 16% and 23%, re p tiv I . I10we r, it lightly 

improved the tensile strength and lightly r due d th failur strain . T'M imag (as 

shown in Figures 5.9 and 5.10) how th evidence f m ntangl m nt at 

some locations of CNT rich region pre nc 111 th nan . Thi rna 

contribute to high locali ed stres es in th a PI' matur 

failure at high stress. In addition, a reduction in mpre 1 e yi Id trength obtained in 

the previous section showed the evid nce of weak int rfa ial adh i 11 . Thi 

limits the stress transfer capability via th int rfa during ten il lading h n e 
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moderately enhancing the flexural strength and gives detrimental effect on the failure 

strain. 

5.3.5 Flexural properties 

The effect of multiwalled eNT on the flexural modulus, strength and failure strain was 

shown in Table 5.9. Figure 5.15 shows the typical flexural stress-strain curves recorded 

at 2 mmlmin of strain rate for neat and CNT-filled systems. Flexural modulus is the 

ratio of stress to strain within the elastic limit and this property was used to indicate the 

bending stiffness of the material while flexural strength shows the ability of the material 

to resist deformation under load. Figure 5.15 shows that the addition of multiwalled 

CNT enhances both the flexural modulus and strength of the epoxy without sacrificing 

its failure strain. The presence of high modulus and strength of CNT does not restrict 

the mobility of the molecular chain and promotes plastic deformation of the epoxy. This 

results in higher failure stress and strain. Table 5.9 shows that the elastic modulus, 

flexural strength and failure strain increases with eNT content. For instance, the 

addition of 1 wt% eNT into the epoxy matrix enhances the elastic modulus by 22%, 

flexural strength by 25% and failure strain by 17%. Nanocomposites show a better 

performance in bending and compression compared to that in tension. This is due to the 

fact that the tensile properties are primarily determined by flaws and submicroscopic 

cracks. In flexural tests part of the specimen is under tension and part under 

compression. Therefore the flexural strength tends to be greater than tensile strength and 

lower than the compressive strength. eNT -filled composites failed at low failure strain 

in tension compared to that of in compression. Therefore in bending, the failure of the 

specimens may initiate in tension region due to maximum stretching. 

5.3.6 Fracture toughness properties 

Table 5.6 shows also the effect of CNT on fracture toughness of Epikote 828. At least 

five specimens were tested for each system and the results of typical load-crack opening 

displacement curves obtained from the compact tension tests with 0.5 and 1 wt% CNT 

were given in Appendix A. It was found that, the fracture toughness increased with 

increasing eNT content. The load at crack growth initiation F Q for nanomodified 

system was higher than that of the neat epoxy. For instance, the addition of 0.5 and 1 
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wt% CNT increased maximum load for about 31 % and 53%, respectively, compared to 

that of the pure Epikote 828, This gives enhancement in the critical stress intensity 

factor for about 33% and 54%, respectively and, also, enhancement in fracture energy 

for about 62% and 100%, respectively, This suggests that, high modulus and strength of 

CNT introduce additional mechanisms of energy absorption during fracture, This gives 

higher resistance to plastic deformation and crack propagation, hence, improves its 

toughness. 

Table 5,9: Tensile, flexural and fracture toughness properties of the unmodified and 

nanomodified Epikote 828 resin with 0,5 and 1 wt% of multiwalled CNT, 

Material properties Pure resin Nanomodified system (NMS) 

O.5wt% CNT 1 wt% CNT 

Tensile modulus, Et (GPa) 2,75 ± 0,02 3.20 ± 0,02 3.39 ± 0,01 

Tensile strength, O'uAMPa) 70,84 ± 1.08 75,09 ± 0,87 74,76 ± 1.73 

Tensile strain at break, &j;1 3,28 ± 0,09 3.11 ± 0,07 3,06 ± 0,12 

(%) 

Flexural modulus, Eb (GPa) 2,88 ± 0,03 3,31 ± 0,04 3,51 ± 0,07 

Flexural strength, O'u,b (MPa) 117,73 ± 8,70 140,02 ± 6,88 147,38 ± 3,70 

Flexural strain at break, &f,b 4,84 ± 0,61 5,38 ± 0.57 5,68 ± 0.57 

(%) 

Maximum load, FQ (N) 217,35 ± 7.43 285.60 ± 4,75 331,60 ± 4,26 

Critical stress intensity factor, 0,67 ± 0,02 0,89 ± 0,02 1.03 ± 0,01 

KJC (MPa, Jm ) 
Critical energy release rate, 152,73 ± 10,84 246,82 ± 7.33 305,05 ± 9,20 

GJC (J/m2) 
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5.4 Nanoclay-filled Epikote 828 epoxy polymer 

5.4.1 Morphology 

The 1.28 montmorillonite (MMT) clay has dry particle size of 8-10 J..lm. It was a great 

challenge to transfonn the micron-sized clay particles into exfoliated state, which has a 

huge amount of nanoplatelets in the epoxy matrix, using a mechanical stirring 

technique. The gap between two adjacent silicate platelets in 1.28 nanoclay is about 2.4 

nm. One clay sheet has 1 nm thickness. 

Figure 5.16 shows the dispersion of 1, 3 and 5 wt% 1.28 MMT nanoclay in 

Epikote 828. At low magnification, TEM images show clusters of nanofiller-rich 

regions and resin-rich region. All TEM images at high magnification (170,000x) show 

that the gap between two adjacent platelets is more than 2.4 nm but less that 8 nm. 

These indicate that the nanocomposite has an intercalated structure. The d-spacing was 

seen to reduce with increasing clay content. The d-spacing of 5 wt% nanoclay in epoxy 

is about 3-4 nm (see Figure 5.17). Since a very small area of the specimen was sampled 

in each TEM image, at least 3 samples were examined for each epoxy system and at 

least 5 images were captured for each sample and the measurement of d-spacing was 

taken from multiple images captured from various locations of the specimen. 

The viscosity of the resin increases with increasing in the nanoclay content and the 

processing time was limited to 90 minutes after adding hardener into the epoxy. Clay 

content of more that 3 wt% led to processing problems, especially the degassing process 

of the resin mixture prior to curing became impossible. This results in entrapped air in 

the cured epoxy as shown in Figure 5.16c. 
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(i) (ii) 

(a) 1 ~Io nanoclay 

(i) (ii) 

(b) 3 ~Io nanoclay 

(i) (ii) 

( c) 5 wt% nanoclay 

Figure 5.16: TEM micrographs showing an intercalated structur of (a) 1 wt%, (b) 3 

wt% and (c) 5 wt% clay nanoplatelets in Epikote 828, prepared u ing the m chanica! 

stirring technique and observed under two different magnification, (i) 22500x and (ii) 

170000x. 
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Figure 5.17: TEM micrographs showing intercalated structures of 5 wt% clay 

nanoplatelets in Epikote 828 observed under 225000x magnification. One clay sheet has 

1 nm thickness. The d-spacing in between silicate layers is about 3-4 nm. 

5.4.2 Dimensional stability and glass transition temperature 

Figure 5.18 illustrates the effects of 1, 3 and 5 wt% 1.28 nanoclay on the dimensional 

stability of Epikote 828. The inclusion of nanoparticies significantly reduced the slope 

of thermal strain-temperature curve of the epoxy. This implies a better dimensional 

stability of the nanocomposites at elevated temperatures. At least three samples were 

tested for each system. Table 5.10 summarises the mean TE and Tg for the 

nanomodified system compared to the neat epoxy. It was found that the inclusion of 

nanoclay enhanced the thermal properties of Epikote 828. Table 5.10 shows that the 

mean eTE below and above Tg were significantly reduced with increasing in nanosilica 

content. For instance, the incorporation of 5 wt% nanoclay reduced the eTE below Tg 

by about 11 % and eTE above Tg by about 14% than the pure epoxy. This is due to the 

particle rigidity which obstructs the expansion of polymer chains at elevated 

temperatures. Hence, this contributes to tlle lower TE values for nanoclay-modified 

Epikote 828 system. 

Table 5.10 also shows the effect of nanoclay on the Tg of the Epikote 828. It was 

found that the nanocomposite has a higher Tg compared to the pure epoxy. The Tg 

values increased steadily with the increasing of nanoclay content. Thi was identified by 

both TMA and DSe instruments. For instance, the addition of 5 wt% nanoclay 

increased Tg by about 12% which was measured by TMA, while 13% increase was 
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recorded by DSC. Therefore the increa e in Tg value with incr a ing in naJ10clay 

content was certified using these two in trument . Thi increa i p ibly due to larg 

surface areas (750 m2jg) provided by the nanoclay ob tru ting the egmental motion of 

cross-links of the polymer at elevated temperature. 
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Figure 5.18: Typical thermal strain-temperatur cur e howing the effe t of l.2 

nanoclay on dim n ional stability of pik te 28. 

Table 5.10: Effect of nanoclay on T and Tg of pik te 2 . 

Thermal properties Pure re in Nanomodifi d tem (NMS) 

1 wt% clay 3 wt% clay Swt% hl 

Mean CTE below Tg 79.78 ± 0.47 77.27 ± 0.4 74. 88 ± 0.24 71.29 ± 0.56 

(~fC) 

Mean CTE above Tg 187.76 ± 3.59 184.59 ± 6.54 173.59 ± 4. 2 160.79 ± 8.89 

(~EfC) 

Tg measured by TMA 139.52 ± 1.02 140.65 ± 0.95 149.86 ± 1.74 155.80 i 1.1 I 

(0C) 

Tg mea ured by DSC 141.91 ± 0.77 146.89 ± 0.98 155.87 ± 0.44 161.09 0.20 

(0C) 
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5.4.3 Compressive properties 

Typical true stress-strain curves of cylindrical and cubic p imen load d In tatic 

uniaxial compression were illustrated in Figur s 5.19 and 5.20. Both fi gur how the 

effect of 1.28 nanoclay on the compressive stre - train b havi ur of pikote 828. [t was 

found that the nanoc1ay enhanced th compres ive modulu of th xya indicated by 

a steeper slope in elastic region of the stress-strain cur e. Howev r a d trimental effect 

on the compressive yield strength and failure train wa ob erved. Reduction in 

compressive strength for 1 and 3 wt% nanoclay wa al 0 record d. Thi how that the 

intercalated structure of nanoc1ay create high localised tre e in the matri during 

compression. A weak nanopartic1e-matrix interface re trict th ability of transferring 

load and plastic deformation. This cau es the nanocompo it s to fail prematur Iy. Tabl 

5.11 shows that nanocomposites have lower yield strength compar d to the pur y tern. 

This is evidence of weak interfacial adh sion between th particl s and th matrix 

which leads to inter-platelets sliding and reduction in pIa ti yielding tr and train. 
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Table 5.11: Effect of specimen shape and geometry on the compr IV propertie of 

nanoclay-fiUed epoxy nanD omposit s. 

Compressive Pure Nanomodificd system 

property Epikote 828 1 wt% nanoclay 3 wt% nanoclay 5 wt% na noclay 

Cyl. Cubic Cyt. Cubic Cyt. Cubic CyJ. Cubic 

Elastic 3.02 3.12 3.28 ± 3.27 ± 3.44 ± .45 ± 3.60 ± 3.58 ± 

modulus, ± 0.06 ± 0.02 0.01 0.01 0.04 0.01 0.03 0.0 1 

E (GPa) 

Yield stress 132.99 126.59 129.95 127.94 129.6'" 127.78 128.90 128.08 

oy(MPa) ± 0.20 ± 0.39 ± 0.54 ± 0.18 ± 0.2 1 ± 0.27 ± 0. 11 ± O. 0 

Strain at yield 6.50 5.53 5.65 ± 5.83 ± 5.77 ± 5.1'" ± 5.53 ± 5.62 ± 

point, &y(%) ± 0.05 ± 0.03 0.09 0.04 0.07 0.06 0.07 0.10 

Compressive 21/.47 126.59 153 .76 127.94 179.32 127.78 23 1.26 128.08 

strength, (7" ± 3.17 ± 0.39 ±13.43 ± 0.18 ± 3.60 .± 0.27 ± 10.82 ± 0.30 

(MPa) 

Strain at 42.66 16.49 36.74 23.82 40.02 23.92 4 1.28 2 1.23 

break, &1 (%) ± 0.65 ± 1.56 ±2. 12 ± 1.37 ± 0.2 ± 1.19 ± 0.27 ± 1.39 
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5.4.4 Tensile properties 

The effect of 1.28 nanoclay on the tensile stress-strain response of the epoxy polymer 

was illustrated in Figure 5.21. It can be seen that the presence of nanosilica increased 

the slope of the stress-strain curve. Nanocomposites exhibited higher tensile modulus, 

however a reduction in tensile strength and failure strain was recorded. Moreover, the 

fracture toughness of the nanomodified system was also lower than that of the pure resin 

as indicated by the smaller area under stress-strain curve, see Figure 5.21. 

Table 5.12 summarises the tensile properties ofnanomodified system compared to 

the pure resin. It was found that the compressive modulus increases with increases in 

nanoclay content. The increase in modulus is expected because the elastic modulus of 

nanoclay is about 170 GPa [117]. The highest content of nanoclay in the epoxy (5 wt%) 

give a remarkable increase in tensile modulus of about 22%. In contrast, the tensile 

strength and failure strain were reduced with increasing in nanoclay content. For 

example, the addition of 5 wt% nanoclay reduced the tensile strength and failure strain 

for about 22% and 40%, respectively. The presence of particle agglomeration or clusters 

of intercalated rich regions, voids in the specimen and weak interfacial adhesion 

between nanoclay and the matrix are some factors which possibly degrade the tensile 

properties of the epoxy. 

5.4.5 Flexural properties 

Figure 5.22 shows the typical flexural stress-strain curves of neat and nanomodified 

polymers. In general, it has a similar effect as loading in tension. It was found that the 

slope of the stress-strain curves increases with increasing in nanoclay content. This 

indicates that nanoclay enhances the flexural modulus of the epoxy. The 

nanocomposites fail in a brittle manner without any plastic deformation. Table 5.12 

summarises the flexural properties of neat and nanomodified systems. The addition of 

nanoclay enhanced flexural modulus however, reduced the flexural strength and failure 

strain of the epoxy. For example, the addition of 5 wt% nanoclay enhanced the elastic 

modulus by 22% and reduced the flexural strength by 29% and failure strain by 50%. 

The reduction in flexural strength and failure strain may be due to similar reasons 

discussed earlier. 
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5.4.6 Fracture toughness propertie 

Table 5.12 shows also the effect of nanoclay on [ractur toughne of Epikot 828. 

least five specimens were tested for each ystem and th re ult of typi al load-crack 

opening displacement curves obtained from th compact ten ion te t with I - 5 wt% 

nanoclay were given in Appendix A. [t wa found that, th load at crack growth 

initiation FQ for nanomodified system was lightly higher than that r the neat po y. 

Hence, the nanocomposites slightly enhanced th fracture toughn of the poxy, e 

Table 5.12. For instance, the addition of 3 wt% nanoclay increa ed maximum load by 

about 28% compared to that of the pure Epikote 828. This gi nhanc m nt in critical 

stress intensity factor and critical energy relea e rate by about 30% and 60%, 

respectively. There is no further improvement in fracture toughne s by adding mor 

than 3 wt% nanoclay. This is due to a weaker interfacial adh ion betw n matrix and 

nanofiller with increasing in nanoclay content. 
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Table 5.12: Tensile, flexural and fracture toughn properti of the unm dir. d and 

nanomodified Epikote 828 re in with variou con ntration of 1.28 nan cl y. 

Materia l proper ties Pure re in Nanomodi fied t m (NMS) 

1 wt% clay 3 wt% cia 5 wt% clay 

Tensile modulus, E, (GPa) 2.75 ± 0.02 3.03 ± 0.0 I 3.16 ± 0.01 . 4± 0.01 

Tensile strength, OJ,,r (MPa) 70.84 ± 1.08 66.77 ± 3.51 57.88 ± 4.6 55.09 ± 4.00 

Ten ile strain at break, 8f, 3.28 ± 0.09 2.71 ± 0. 17 2.1 6 ± 0.19 1.97 ± 0. 17 

(%) 

Flexural modulus, Eb 2.88 ± 0.03 .22 ± 0.0 .:8 ± 0.07 3.50 ± 0.03 

(GPa) 

Flexural trength, <J'u.h 117.73 ± I 13.93 ± I I. 19 84.55 ± 1.99 83.4 1 ± 4.49 

(MPa) 8.70 

Flexural train at break, 8/.b 4.84 ± 0.61 4.13 ± 0.55 2.49 0.04 2.43 ± 0. 15 

(%) 

Maximum load, FQ (N) 217.35± 229.20 ± 5.04 278.90 249._0 

7.43 9.46 11.25 

Critical stress intensity 0.67 ± 0.02 0.71 ± 0.02 O. 7 ± 0.03 0. 77 0.0 

factor, KJ(' (MPa. rm ) 
Critical energy relea e rate, 152.73 ± 179.87 ± 7.18 244.63 ± 177.05 ± 

GIC (J/m2
) 10.84 15.42 15.80 
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5.5 Nanoclay-filled Cycom 977-20 epoxy polymer 

5.5.1 Morphology 

The degree of dispersion and exfoliation of the clay nanoplatelets in the epoxy 

matrix was investigated using the TEM. Low magnification TEM micrographs (at 

22,500x) show a good dispersion of nanoclay in the resin with three different clay 

contents prepared using two different methods as shown in Figure 5.23 (nanocomposites 

prepared using the 3-roll mill) and Figure 5.24 (nanocomposites prepared using the 

mechanical stirring). All TEM images at high magnification (l70,000x) show that the 

gap between two adjacent platelets is more than 2.37 nm (see Figures 1 and 2). This 

indicates that the nanocomposites prepared using both methods produced either 

intercalated or exfoliated structures. This is very good since closely spaced platelets 

limit the ability of the polymer chains to intercalate the gallery (d-spacing) and this 

reduces the load transfer capability between nanoclay and polymer. 

It was observed that, the 3-ro11 mill processing technique was more effective than 

the mechanical stirring method in separating nanomers 1.30 nanoclay (which has a mean 

dry particle size of 8-10 !Jll1) in the polymer. High magnification TEM images (at 

170,000x) shows that the distance between clay platelets is more than 8 run, see Figure 

5.23. These indicate that 3-roll mill technique successfully produced an exfoliated type 

nanocomposite. At low clay content (~ 3 wt%) a fully exfoliated structure with 

randomly dispersed nanoplatelets were observed with an occasional presence of ordered 

exfoliated structure. However, at clay content more than 3 wt%, the TEM images show 

an ordered exfoliated structure with d-spacing of 10-17 nm (see Figure 5.25a). Since a 

very small area of the specimen was sampled in each TEM image, all measurements of 

d-spacing were taken from mUltiple images captured from various locations of the 

specimen (at least 3 samples and 5 images for each sample). At high clay content (~ 5 

wt%), even though the morphology of nanoclay is predominantly exfoliated with 

ordered structure, low magnification TEM image shows evident of resin-rich region and 

nanofillers-rich region (see Figure 5.23c(i», therefore there may be some intercalated 

nanoclay structures presence at very high nanofillers-rich regions. 
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(i) (ii) 

(a) 1 wt% nanoclay 

(i) (ii) 

(b) 3 wt% nanoc1ay 

(i) (ii) 

(c) 5 wt% nanoclay 

Figure 5.23: TEM micrographs showing (a) a random exfoliated structure of 1 wt%, (b) 

an ordered exfoliated structure of 3 wt% and ( c) an ordered exfol iated structure of 5 

wt% clay nanoplatelets in Cycom 977-20, prepared using the 3-roll mill method and 

observed under two different magnifications, (i) 22500x and (ii) 170000x. 
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(i) (ii) 

(a) 1 wt% nanoclay 

(i) (ii) 

(b) 3 wt% nanoclay 
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(i) (ii) 

(c) 5 wt% nanoclay 

Figure 5.24: TEM micrographs showing (a) an ordered exfoliated structure of 1 wt%, 

(b) an intercalated structure of3 wt% and (c) an intercalated structure of 5 wt% clay 

nanoplatelets in Cycom 977-20, prepared using the mechanical stirring technique and 

observed under two different magnjfications, (i) 22500x and (ii) 170000x. 
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For the nanocomposites prepared using the mechanicaJ stirring method, the 

morphology of nanoclay is predominantly intercalated with some exfoliated regions (see 

Figure 5.24). At low clay content, 1 wt%, TEM image shows an ordered exfoliated 

structure with occasionally presence of randomly oriented clay nanoplatelets (see Figure 

5.24a). The d-spacing was seen to reduce with increasing clay content. At more than 3 

wt% nanoclay, TEM images show an intercalated structure of nanocomposites. The d­

spacing of 5 wt% nanoclay in epoxy is about 5-6 run (see Figure 5.25b). This is very 

low compared to the d-spacing obtained using the 3-roll mill technique at similar clay 

content (see Figure 5.25a). 

(a) 3-roll mill 

(d-spacing 10-17 nm) 

(b) Mechanical stirring 

(d-spacing 5-6 run) 

Figure 5.25: TEM micrographs showing (a) an ordered exfoliated and (b) intercalated 

structures of 5 wt% clay nanoplate1ets in Cycom 977-20 prepared using the 3-roll miIl 

and mechanical stirring methods, respectively, and observed under 225000x 

magnification. One clay sheet has 1 run thickness and about 100-200 nm length. 
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5.5.2 Thermogravimetry analysis and constituent volume fraction 

The effect of1.30 nanoclay on themal degradation behaviour and density ofCycom 977-

20 was studied. The volume fraction of nanoclay in epoxy matrix was calculated based 

on the TGA results. Figure 5.26 illustrates (i) percentage of weight loss and (ii) rate of 

weight loss as a function of sample temperature. All samples started to decompose at 

about 340°C. The decomposition mechanisms involved during combustion of pure 

Cycom 977-20 were explained in the previous chapter (see Section 4.3.1). As shown in 

Figure 5.26, nanocomposites exhibited a similar thermal decomposition mechanism to 

that of the pure epoxy. However at the last stage (Stage D), the material remaining 

behind after exposing the nanocomposites to air was the white powder clay. Table 5.13 

summarises the average constituent weight fraction and maximum degradation 

temperature of the pure and nanomodified epoxy with their carbon residues. Three 

specimens were tested for each system. 

Table 5.13 shows that the pure and nanomodified resins undergo maximum 

thermal degradation at about 430°C and the percentage of total weight loss decreasing 

with increasing the nanoclay content. After holding at 550°C for 1 hr, the nitrogen gas 

flowing over the sample was automatically switched to oxygen and hence, the carbon 

residues which were left from the combustion of the epoxy resins were burnt off with a 

total mass loss of about 27-30 wt%. Table 5.13 shows that the maximum degradation 

temperature of carbon residues (identified by the second peak of the rate of weight loss 

versus sample temperature curve as shown in Figure 5.26) was increased with 

increasing nanoclay content. For instance, the addition of 5 wt% nanoclay increased the 

maximum degradation temperature of resin residues by 64°C compared to the neat 

polymer. This suggests that the nanofiller-matrix interfacial bonding is very strong and 

therefore higher temperatures are needed to remove the epoxy which is stuck on the 

particle surface. Finally, the material remaining behind after exposing the sample to 

oxygen was the nanoclay. Table 5.13 shows that for the three nanomodified systems 

investigated in the present study, the average nanoclay weight fraction was 1.1,2.7 and 

4.8 wt%. 

Table 5.13 summarises also the density and volume fraction of nanoclay in the 

epoxy matrix. A density of 1.297 glcm3 was measured for the unmodified resin. The 

measured density was found to increase with the nanoclay content. The increase in 

density is expected because the density of silica, psi = 1.71 glcm3
, is greater than that of 
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the epoxy matrix. For in tance, the inclu ion of 5 wt% nano lay incr ased th d n ityof 

the epoxy by about 1.5%. The measured density wa c mpared t the theoretical 

prediction based on the rule of mixtures. It was found that the mea ured den i ty was in a 

very good agreement to the theoretical values. How ver, at high nanoclay content the 

measured density was slightly lower compared to the predi ted value. The visco ity of 

the resin increased with increasing nanoclay content. Th r fore the degassing proce 

became crucial and a small amount of air entrapped aft r curing slightly reduced the 

density of the high clay content nanocompo ite. The eden ity data were used for the 

calculation of nanoclay volume fraction in the epoxy re in. Table 5.13 hows that for 

the three nanomodified systems investigated in the pre ent tudy the averag volume 

fraction ofnanoclay in the epoxy resin was 0.8,2. 1 and 3.7 vol%. 
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Table 5.13: Physical and thermal properties ofnanoclay-modified Cycom 977-20 

compared to the pure resin. 

Physical and thermal properties Pure Nanomodified system (NMS) 

resin lwt% 3wt% Swt% 

clay clay clay 

Weight fraction of epoxy resin (%) 70.18 ± 69.82 ± 68.45 ± 67.02 ± 

1.11 1.59 0.72 1.06 

Maximum degradation temperature of epoxy 427.17 ± 429.77± 435.88 ± 439.24 ± 

resin eC) 3.71 3.53 2.90 2.50 

Weight fraction of carbon residue (%) 29.67 ± 28.88 ± 28.05 27.28 ± 

0.59 1.14 ±0.64 1.19 

Maximum degradation temperature of 645.80 ± 646.13 ± 696.75 ± 710.64 ± 

carbon residue eC) 1.40 3.51 6.34 9.02 

Weight fraction ofnanoclay (wfllo) - 1.10± 2.73 ± 4.81 ± 

(measured by TGA), Wc/ay(%) 0.09 0.21 0.15 

Density 1.297 ± 1.300 ± 1.305 ± 1.312 ± 

(measured by density balance), Pnc (g/cm3
) 0.001 0.002 0.001 0.001 

Theoretical density 1.297 1.302 1.308 1.316 

(calculated using the rule of mixtures) 

Pnc(g I em) == P.pv.p + P.,vclay 

Volume fraction ofnanoclay (vol%) - 0.8 2.1 3.7 

~/ay (%) = W cla)! X P nc 

Pclay 

5.5.3 Dimensional stability and glass transition temperature 

Figures 5.27 and 5.28 illustrate the effects of 1, 3 and 5 wt% 1.30 nanoclay on the 

dimensional stability of Cycom 977-20. Figure 5.27 shows that the incorporation of 

nanoc1ay into the epoxy reduces the slope of the thermal strain-temperature curve. This 

means that the presence of nanoclay reduces the CTE of the epoxy. This can clearly be 

seen in the differential CTE curve as shown in Figure 5.28. Nanocomposites exhibited 

lower crE (for both below and above Tg) compared to the pure resin. Figure 5.28 
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shows that the nanofilled system has similar thermal behaviour to that of the pure resin. 

The CTE value increases linearly with the sample temperature, until it reaches glass 

transition temperature where the rate of expansion changes and cause significant 

disruptions to the CTE. After this region, the CTE value is more than twice as high 

compared to the CTE value below the Tg region. The lower CTE of the nanomodified 

system is always related to the lower CTE and high modulus of elasticity of the 

nanoc1ay. As the material is heated, the nanoc1ay restrains the dimensional expansion 

and reduces the CTE value. 

At least three samples were tested for each system. Table 5.14 shows that the 

mean CTE below and above Tg were reduced with increases in nanoc1ay content. For 

instance, the incorporation of 5 wt% nanoclay reduced the CTE below Tg for about 

11% and CTE above Tg for about 10% than the pure epoxy. In addition, Table 5.14 

shows the effect of nanoclay on the Tg of Cycom 977-20. It was found that the 

nanocomposite has a lower Tg compared to the pure epoxy. The Tg values decreased 

steadily with the increasing of nanoclay content. This was identified by both TMA and 

DSC instruments. For instance, the addition of 5 wt% nanoclay decreased Tg for about 

3% which were recorded by both TMA and DSC. 

Clay particles have high specific surface area (about 750 m2/g [117]) therefore 

this provides a huge amount of interfacial area if the nanoc1ay is fully exfoliated in the 

resin. In order for the nanoc1ay to be compatible with the epoxy and to promote clay­

epoxy bonding, the surfaces of the nanoclay were treated with surfactant (for instance 

Octadecylamine is used to modify 1.30 nanoclay). Good adhesion is achieved by proper 

interaction of the treated surface of the particles and the polymer chains. This drastically 

alters the cross-link density of the resin. In addition, the interphase, in between the 

silicate layers and the epoxy matrix, was formed due to the surfactant. The properties of 

this interphase region are different from the matrix. At high temperature, this region 

may be weaker than the epoxy matrix and contributes to a lower Tg of the 

nanocomposites compared to the pure polymer. 
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Table 5.14: A summary ofCTE and Tg ofnanoclay-modified Cycom 977-20 compared 

to the pure system, 

Thermal properties Pure resin Nanomodified system (NMS) 

1 wt% clay 3 wt% clay Swt% clay 

Mean eTE below Tg 64,62 ± 0,24 62.54 ± 1.00 59,39 ± 0.83 57.25 ± 0.67 

(~C) 

Mean eTE above Tg 156.21 ± 1.18 148.26±4.12 144.86 ± 1.28 140.76 ± 0.74 

(JlEfC) 

Tg measured by TMA 199.77 ± 1.80 198.20 ± 0.65 196.74 ± 1.10 194.41 ± 0.60 

eC) 
Tg measured by DSe 210.33 ± 0.85 208.42 ± 0.39 206.09 ± 0.56 203.45 ± 0.45 

(0C) 

5.5.4 Compressive properties 

5.5.4.1 The effect ofnanoclay on stress-strain behaviour and compressive properties 

The effect of nanoclay on the true compressive stress-strain response of the epoxy 

polymer prepared using the 3-roll mill method was illustrated in Figure 5.29. It can be 

seen that the presence of nanoclay enhanced the compressive stress-strain behaviour of 

the epoxy polymer. The slope of the elastic region shows that the incorporation of 

nanoclay increases the compressive modulus. The ultimate stress was also increased 

with increasing nanoclay content. In addition, the presence of rigid nanoclay particles 

(Young modulus = 170GPa) improves ductility and promoted higher plastic hardening 

behaviour after yielding of the epoxy without reducing its strain to failure. This suggests 

that the rigid nanoparticles introduce additional mechanisms of energy absorption 

during compression. This gives a higher resistance to deformation which results in 

higher compressive stress and plastic hardening. The homogeneous dispersion of these 

high stiffness nanofillers in the matrix enhanced the fracture toughness of the system 

(larger area under stress-strain curve, see Figure 5.29). 

The compressive properties of nanomodified epoxy systems, which were prepared 

using the 3-roll mill technique, are summarised in Table 5.15. Generally, it was found 

that the addition of nanoclay improved the compressive properties of the epoxy. 
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Incorporation of fully exfoliated and randomly dispersed I wt% nanoclay enhanced the 

compressive modulus and strength by II %, yield stress by 4% and failure strain by 

12%. This suggests that the nanofiller-matrix interaction is very favourable and 

therefore stresses are efficiently transferred via the interface, which leads to higher 

strength compared to the pristine polymer. As the clay content increases, the elastic 

modulus, strength and failure strain also increases. It is very interesting to note that the 

nanocomposites exhibit an improvement in elastic modulus without sacrificing their 

strength and strain to failure. 

The enhancement of these properties is directly attributed to the reinforcement 

provided by the dispersed clay nanoplatelets. At high nanoclay content (~ 3 wt%), the 

presence of rich regions of ordered exfoliated structure and possibly some intercalated 

structures limits the reinforcement capability. For instance, the addition of 5 wt% 

nanoclay enhanced the compressive modulus by 19%, compressive strength by 17% and 

failure strain by 29% with slightly increased in stress at yield of 6%. It can be seen that, 

even though, the compressive modulus show substantial improvement with increasing 

in the clay content, the yield strength was moderately improved. The yield strength of 

the polymer is one of the most important characteristics to detennine quality of 

interfacial adhesion between the particles and the polymer. In theory, a strong 

particle/matrix interfacial bonding restricts the mobility of polymer chains hence 

increases the yield strength of the polymer under loading. Therefore, the reinforcement 

benefit is substantially greater for the fully exfoliated nanocomposite (of 1 wt% clay) 

compared to the ordered exfoliated and intercalated nanocomposite (> I wt% clay). 

5.5.4.2 The effect of processing methods 

The effect of processing methods (3-roll mill and mechanical stirring) on the true 

compressive stress-strain response and compressive properties of the epoxy was also 

studied. Figure 5.30 shows the stress-strain response of nanocomposites prepared using 

mechanical stirring method compared to the unmodified system. It can be seen that the 

presence of nanoclay improves ductility and promotes higher plastic hardening 

behaviour of the epoxy polymer. However the perfonnance of the nanocomposites 

significantly depends on the morphology of the nanoclay in the epoxy. It shows a 

similar reinforcement effect as nanocomposites prepared using the 3-roll mill method 

(see Figure 5.29). 
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The compressive properties were summarised in Table 5.15. The measured 

modulus was found to increase with an increasing proportion ofnanoclay. Incorporation 

of 1 wt% nanoc1ay (with ordered exfoliated structure) enhanced the compressive 

modulus by 11%, compressive strength by 6%, failure strain by 14% and a small 

improvement in yield stress. As the clay content increases, it was observed that there 

was no further improvement in compressive properties. This is due to the intercalated 

structure of the nanoc1ay which limits the stress transfer capability between the 

nanofillers and matrix when loaded in compression. 

The yield stress of nanocomposites prepared using the mechanical stirrer was 

lower than those prepared using the 3-ro11 mill suggesting a weaker interface between 

the nanofiller-matrix which perhaps contribute to interplatelets sliding under 

compression. Lower strength and strain to failure recorded possibly because of the 

presence of intercalated rich regions, Figure 5.24c(i) introducing high local stress 

concentrations and, hence, led to premature failure. In general, the compressive 

properties were improved with increasing in the degree of clay nanolayer separation. 

Therefore, 3-roll mill was more effective than direct mixing to produce high 

performance nanocomposite systems. 

5.5.4.3 The effect o/specimen shape 

The compression tests were also conducted on prismatic specimens (of nanocomposites 

prepared using mechanical stirring method) to study the effect of specimen shape and 

geometry on the compressive properties. Figure 5.31 shows typical true compressive 

stress-strain curves of nanocomposites compared to the unmodified system and table 

5.15 shows the summary of compressive properties. It was found that the compressive 

modulus was increased significantly with increasing clay content. This is similar to 

those tested using cylindrical specimens. However, there was no significant 

improvement in compressive strength and yield stress by adding nanocIay into the 

epoxy and even worse, it gave a detrimental effect on failure strain. The prismatic 

specimens failed prematurely due to buckling, which was triggered by longitudinal 

cracking formed at the specimen's edges (sharp comers) near the loaded ends. 

154 



Chapter 5 Nanomodified-re in : Synthesis. charac/erisa/ion and analysis 

250 

ro c.. 200 

6 
rJl 
rJl 

!!! 150 Vi 
CIl 
> 
'iii 
rJl 

!!! 100 a. 
E 
0 

0 

50 

0 
0 10 20 30 40 50 60 

Compressive strain (%) 

- Pure Cycom 977-20 - 1 wt. % nanoclay 

- 3 wt.% nanoclay - 5 wt. % nanoclay 

Figure 5.29: Typical true stress-strain curves of cylindrical sp cimen of clay-epo y 

nanocomposites (prepared using the 3-roll mill t chniquc) loaded in tatic uniaxial 

compression. 

250 

200 
III 
c.. 
6 
rJl 
en 150 !!! 
Vi 
CIl 
> 
'iii 
en 100 
CIl ... 
a. 
E 
0 
u 

50 

o 
o 10 20 30 40 50 60 

Compressive strain (%) 

- Pure Cycom 977-20 - 1 wt. % nanoclay 

- 3 wt.% nanoclay - 5 wt.% nanoclay 

Figure 5.30: Typical true tre -strain curv [c lindri al p cimen 

nanocomposites (prepar d u ing the mechani al tirring method) loaded in tatic 

uniaxial compre i n. 

155 

y 



Chapter 5 Nanomodified-resins: Synthesis, characterisatioll and 1I11al)lsis 

250 

200 
ro-a.. 
5 
C/l 

150 C/l 
(I) 

~ 
C/l 

(I) 

> 
'iii 
en 100 (I) .... 
e. 
E 
0 
() 

50 

o 
o 10 20 30 40 50 60 

Compressive strain (%) 

- Pure Cycom 977-20 - 1 wt,% nanoclay 

- 3 wt,% nanoclay - 5 wt.% nanoclay 

Figure 5,31: Typical true stress-strain curves of cubi pecimen or lay-epoxy 

nanocomposites (prepared using the mechanical tin'ing method) loaded in tatic 

uniaxial comprc ion . 

156 



Chapter 5 Nanomodified-resins: Synthesis. characterisation and analysis 

Table 5.15: Summary of compressive properties ofnanoclay-modified Cycom 977-20 epoxy nanocomposites compared to the neat system. This 

table shows the effect of clay contents, processing methods and specimen shape and geometry on the compressive properties of epoxy polymer. 

Compressive properties Nanomodified system 

Three-roll mill Mechanical stirrer Mechanical stirrer 

(Cylindrical specimen) (Cylindrical specimen) (Cubic specimen) I 
I 

Owt% 1 wt% 3wt% 5wt% lwt% 3wt% 5wt% Owt% lwt% 3wt% 5wt% ' 

(pure) (pure) 

Compressive modulus, E 4.01 ± 4.43 ± 4.63 ± 4.75± 4.41± 4.62± 4.70± 4.00± 4.39± 4.6S± 4.81 ± 

(GPa) 0.05 0.08 0.06 0.03 0.02 0.02 0.01 0.02 0.04 0.02 0.02 

Compressive stress at 158.00± 164.60± 162.90± 167.20 ± 161.30 ± 160.50 ± 161.60 ± 151.45 ± 151.94 ± 151.92 ± 152.51 ± 

yield, O"y(MPa) 0.90 0.62 0.53 0.28 0.44 0.53 0.42 0.36 0.72 0.48 0.85 

Compressive strain at 10.96± 11.11± 10.36 ± 10.52 ± 10.33 ± 10.25 ± 10.11 ± 9.87± 9.87± 8.86± 8.43± 

yield point, ey(%) 0.18 0.06 0.09 0.14 0.13 0.13 0.11 0.37 0.30 0.37 0.23 

Compressive strength, 0"11 205.81 ± 228.19 ± 228.00± 239.79 ± 218.65 ± 214.76 ± 207.22± 151.45 ± 151.94 ± 151.92 ± 152.51 ± 

(MPa) 1.84 7.74 2.31 1.39 10.39 9.90 11.95 0.36 0.72 0.48 0.85 

Compressive strain at 37.16 ± 41.49 ± 43.04± 47.78 ± 42.34 ± 41.72 ± 39.17 ± 20.61 ± 20.18 ± 19.69± 19.43 ± 

break, 0/ (%) 0.27 1.80 0.90 1.50 2.52 2.73 3.77 0.88 0.82 1.63 1.25 

- - - -- -- - ----- '---
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5.5.4.4 Prediction of compressive modulus 

The compressive modulus for unmodified Cycom 977-20 polymer was 4.01 GPa, as 

shown in Table 5.15. The measured modulus was found to increase with the nanoclay 

content. A maximum modulus of 4.75 GPa was measured for the epoxy polymer with 5 

wt% ofnanoclay. The increase in modulus was expected because of the stiffer nanoclay 

(E = 172 GPa [121,173-175]), provided that there is a strong adhesion between the 

nanofillers and the resin. 

The measured elastic modulus can be compared to theoretical predictions. In 

tension, there are several models that are commonly used to estimate the modulus of 

elasticity of particle-modified polymers [41,42,169-172,176-178]. The most widely 

used are the rule of mixtures [169], Halpin-Tsai [171,176], Lewis-Nielsen [41,42,172] 

and Mori-Tanaka [174-175,177-178]. Since the elastic response of most polymer 

matrices is similar in tension and compression, in the present work the compressive 

modulus is estimated using the rules of mixtures and Halpin Tsai models. Table 5.16 

summarises relationships and the input data used to predict the elastic modulus of 

clay/epoxy nanocomposite. The upper bound rule of mixtures assumes that the material 

is a continuous fibre composite where the fibres are unidirectionally-aligned parallel to 

the direction of loading while the lower bound assumes the fibres unidirectionally 

aligned transverse to the direction of loading. The upper bound rule of mixtures always 

over predicts the elastic modulus of the nanocomposites since the particles cannot be 

treated like a continuous fibre. This can clearly be seen from Figure 32 where the upper 

bound rule of mixtures equation gives poor prediction when compared to the present 

experimental data. 

The Halpin-Tsai model [171,176] includes the shape factor of the filler particle. 

This is a well known composite theory for predicting the stiffhess of unidirectional fibre 

composite as a function of aspect ratio. The longitudinal and transverse elastic modulus 

are expressed in the general form: 

(5.1) 
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where Ee and Em represent the Young's modulus of the composite and matrix, 

respectively, (is a shape parameter dependent on the filler geometry and loading 

direction, Jtf is the volume fraction of the fibre and 1] is given by 

(5.2) 

where Ejis the Young's modulus of the fibre. Halpin and Tsai noted that the value of ( 

must lie between zero and infinity. If (=0 then Equation 5.1 reduces to the upper bound 

rule of mixtures while if (=00 then it reduces to the lower bound rule of mixtures. In this 

study the clay nanoplatelets are treated as rectangular shape particles with thickness 

t= 1 nm and width w= 100 nm. The shape factors of (=2w/t and (=2 are used to calculate 

the elastic modulus of a polymer with particles aligned with the loading direction 

(called longitudinal elastic modulus EL) and with particles perpendicular to the loading 

direction (called transverse elastic modulus Er), respectively. However, Van Es [173J 

reported that the value of (=2w/t is too high for most particle modified polymers and 

recommended using (=2w/3t for the prediction of longitudinal elastic modulus. For 

polymers with randomly distributed particles, VanEs [173] proposed that the elastic 

modulus: 

(5.3) 

where the longitudinal and transverse moduli are calculated using the Halpin-Isai 

model with ,=2wI3t and '=2, respectively. Ihis is known as Halpin-Isai random 

model. Halpin-Tsai-Longitudinal (,=2w/t and (=2w/3t), Halpin-Tsai-Transverse (,=2) 

and Halpin-Tsai-Random models were used to estimate the compressive modulus of 

clay/epoxy system in this study. However, as shown in Figure 5.32, none of these 

models can successfully predict the measured increase in stiffness. This is because no 

ideal conditions are achieved for full exfoliation, dispersion and orientation of the clay 

platelets in the matrix. TEM micrographs show a mixture of randomly dispersed 

nanoplatelets and ordered exfoliated clusters (see Figure 5.23). Therefore, the shape 

159 



Chapter 5 Nanomodified-resins: Synthesis. characterisation and analysis 

factor should include the effect of particle volume fraction and the degree of exfoliation 

or intercalation. 

The effective thickness of clay nanoplatelets was estimated based on the TEM 

micrograph; for 1 wt% nanoclay/epoxy system (see Figure 5.23a), the stacked 

nanoplatelets (in ordered exfoliated nanocomposite) has an effective thickness of 10 nm 

(tefl = 10 nanoplatelets x Inm). Thus for 3 and 5 wt% nanoclay/epoxy have 30 and 50 

effective thickness, respectively. The estimation of effective thickness tefl was used to 

develop the shape factor ~as a function of the clay volume fraction Vel as follows: 

(5.4) 

where the effective thickness is a function of particle volume fraction (t elf = 1200v",), see 

Figure 5.33. This ~ value is incorporated into the Halpin-Tsai model to predict the 

compressive elastic modulus of the current clay/epoxy system. Figure 5.33 illustrates 

that for a very low nanoclay volume content, it is assumed that the nanocomposite has a 

randomly exfoliated structure and therefore, the effective thickness of clay nanoplatelets 

tef!= 1 nm (actual thickness of one nanoclay sheet). For a high nanoclay content (usually 

max. of 7-10 vol.%) the effective thickness equals its width lei! = 100 nm, which 

represents the tactoid type nanoclay. 

Figure 5.32 shows that the current modified-Halpin-Tsai model gives a good 

agreement to the measured values. This analysis captured the effect of nanoclay volume 

fraction on the shape factor ~ where the stacked nanoplatelets reduce its value. This 

relationship was developed based on the number of clay nanoplatelets showed on the 

TEM micrographs and results in a reasonable correlation with experimental 

measurements. 
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Table 5.16: Prediction of compressive modulus ofnanoclay-modified Cycom 977-20 

epoxy nanocomposites using several types of theoretical models. 

Theoretical Ref. Egn. and input data 

models 

Rule of mixtures [169] Upper bound, E =E IVI + E V nc at;. 'Pep 

Lower bound, E = Ec/E,p 
/Ie EelV.p + EepVc/ 

where, 
Ene = predicted nanocomposites modulus, 
Eep = modulus of the epoxy = 4.01 GPa, 
Eel = modulus of the nanoclay = 172 GPa, 
Vep = volume fraction of the epoxy, 
Vel = volume fraction of the nanoclay 

Halpin-Tsai [171,17 E = I + ST,vcl E ; 

6] 
/IC 1-'7~1 ep 

where, 
a) For longitudinal elastic modulus 

, =shape factor = 2w = 200 
t 

(for rectangular shape clay nanoplatelet of 
width=lOOnm and thickness=1 nm) 

'7=( Eel -1)/[ Eel +S )=0.17 
Eop Eep 

b) For transverse elastic modulus 
, = 2 and 11 = 0.93 

c) Van Es [173] proposed, = 2w = 66.67 and 1] ::: 0.38 
3t 

for longitudinal elastic modulus. 

Halpin-Tsai- [173] Ene = 0.49EL +0.51E1' ; 

Random where, 
For longitudinal elastic modulus EL , 

, = 2w = 66.67 and 11 = 0.38 
3t 

and for transverse elastic modulus E1' , 
S = 2 and 7] = 0.93 

Modified-Halpin- - E = l+'1JV
c/ E ; 

Tsai 
'" 1-1JV

d 
'P 

where, 
(present model) , = 2w shape factor as a function of ~'I 

l'lf 

teff = 1200Vcl (for 0 < Vel ~ 0.1) = effective thickness of the 

stacked nanoclay platelets. 

~=(t -I)/(t +(J 
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Figure 5.32: Theoretical prediction of the compressive modulus of nanoclay-modified 

Cycom 977-20 nanocomposite in comparison with the experimental values. All curves 

were calculated based on models and input data summarised in Table 5.16. 
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The stacked nanoplatelets in ordered exfoliated type nanocomposites reduce the shape 

factor. (1 wt% = 0.84 vol.%, 3 wt% = 1.93 vol.% and 5 wt% = 3.56 vol.%) 
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5.5.5 Tensile properties 

The effect of 1.30 nanoc1ay on the tensile stress-strain response of the epoxy polymer 

was illustrated in Figure 5.34. The dogbone specimens were prepared using two 

different methods, (a) three-roll mill and (b) mechanical stirring. It was found that the 

tensile properties of nanocomposites prepared using the three-roll mill technique (see 

Figure 5.34a) were better than that of prepared using the mechanical stirring technique 

(see Figure 5.34b). Figure 5.34a shows that the nanocomposites have better tensile 

modulus, ultimate stress and failure strain compared to the pure polymer. The overall 

properties were summarised in Table 5.17. For the three roll mill technique, the addition 

of 5 wt"Jo nanoc1ay enhanced the elastic modulus by 21 %, ultimate stress by 25% and 

failure strain by 23% compared to the pure polymer. Whereas for the specimens 

prepared using mechanical stirring technique, Table 5.17 shows that the elastic modulus 

improved with increasing nanoclay content. For more than 1 wt% nanoclay, the 

nanocomposites show no further improvement in tensile strength and, even worst, 

reduction in failure strain less than the pure polymer. The enhancement in tensile 

properties mostly depends on the degree of exfoliation of nanoclay in the resin. Three 

roll mill technique produced fully exfoliated nanocomposites therefore the interfacial 

adhesion between nanoc1ay-epoxy is very strong. As a result. the nanocomposites 

prepared using this technique exhibited better overall tensile properties. 

5.5.6 Flexural properties 

Figure 5.35 shows the effect of nanoclay on flexural stress-strain curves compared to 

the neat system. The tests were conducted on two different specimens; (a) prepared 

using the three-roll mill and (b) prepared using the mechanical stirring. It was found that 

the slope of the stress-strain curves increases with increasing nanoclay content as shown 

in Figure 5.35. This indicates that nanoclay enhanced the flexural modulus of the epoxy. 

The degree of reinforcement depends on the degree of dispersion of the nanoclay in the 

epoxy. Table 5.17 shows that the nanocomposites prepared using the three roll mill 

technique enhanced the flexural strength, however this coincided with a slight reduction 

in failure strain. While the nanocomposites prepared using the mechanical stirring 

technique reduced both the flexural strength and failure strain with increasing in 

nanoclay content. This may be due to the presence of particle agglomeration or clusters 

of intercalated rich regions, voids in the specimen and weak interfacial adhesion 
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between nanoclay and the matrix that contribute to a lower flexural propertie compared 

to the neat epoxy. 

5.5.7 Fracture toughness properties 

Graphs in Figure 5.36 show the effect of nanoclay on the load-crack opening 

displacement curves for two different specimens that were prepared using (a) three-roll 

mill and (b) mechanical stirring techniques. Table 5.17 ummarises the fracture 

toughness properties of neat and nanomodified ystems. It was found that, the load at 

crack growth initiation FQ for nanocomposites prepared using the three roll mill 

technique was higher than that of the neat epoxy. Hence, the nanocomposites 

significantly enhanced the fracture toughness of the epoxy, see Table 5.17. For both 

techniques, the addition of 1 wt% nanoclay gave the highest fracture toughness 

properties. There was no further improvement in fracture toughness by adding clay 

more that 1 wt%. This indicates that fully exfoliated nanoclay in the epoxy provide 

good interfacial adhesion between matrix and nanofi lIer therefore enhanced the fracture 

toughness properties. 
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Figure 5.34: Typical tensile stres - train curv s of 1.30 nanoclay-modified ycom 977-

20, prepared using two different methods (a) three-roll mill and (b) mechanical stirring, 

compared to the neat epoxy. 
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Table 5.17: Tensile, flexural and fracture toughness properties of the unmodified and nanomodified Cycom 977-20 resin with various concentrations 

of 130 clay nanoparticles. 

Material properties Unmodified Nanomodified system 
system Three-roll mill Mechanical stirrer 

1 wt%elay 3wt% clay Swt% clay 1 wt%c1ay 3wt% clay Swt% clay 

Tensile modulus, E, (GPa) 3.51 ± 0.03 3.84± 0.03 4.07 ±0.02 4.24 ±0.04 3.86 ± 0.08 4.03 ± 0.09 4.20± 0.06 

Tensile strength, ulI,,(MPa) 62.60± 2.41 73.92± 4.96 75.77 ± 7.73 78.19 ± 4.49 71.01 ± 3.90 66.02 ± 6.75 64.28 ± 4.51 

Tensile strain at break, Ej;1 2.27 ± 0.15 2.86±0.29 2.81 ± 0.41 2.79±0.24 2.85 ± 0.27 2.48 ± 0.27 2.16±0.18 

(0/0) 

Flexural modulus, Eb (GPa) 3.61 ± 0.03 3.92 ± 0.03 4.16 ± 0.04 4.33 ± 0.06 3.91 ± 0.07 4.15 ± 0.03 4.31 ± 0.04 

Flexural strength, ud (MPa) 136.79 ± 9.38 143.31 ± 8.52 149.40 ± 15.55 141.48± 10.17 134.70 ± 10.62 128.33 ± 6.10 118.26 ± 5.60 

Flexural strain at break, &r.b 5.27 ± 0.76 4.47 ± 0.41 4.85 ± 0.81 3.92 ± 0.39 4.01 ± 0.35 3.46 ± 0.19 3.00 ± 0.21 

(0/0) 

Maximum load, FQ (N) 49.61 ± 1.60 59.85 ± 0.98 55.79 ± 0.57 53.42 ± 0.58 56.07 ± 1.15 51.68 ± 1.28 47.10±1.51 

Critical stress intensity factor, 1.14 ± 0.04 1.37 ± 0.02 1.28 ± 0.01 1.23 ± 0.01 1.29 ± 0.03 1.19 ± 0.03 1.08 ± 0.04 

K1c (MPa. rm ) 
Critical energy release rate, 373.72 ± 14.67 535.94 ± 16.36 446.67 ± 4.58 377.72 ± 11.69 476.15 ± 20.70 390.50 ± 20.41 289.27 ± 16.10 

G,c (J/m2
) 

--- --- -- ---- _ .. _-L- _______ 
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5.6 Concluding remarks 

Polymer nanocomposites were manufactured using three types of modifiers, including 

silica nanospheres, carbon nanotubes and clay nanoplatelets. The performance of the 

nanocomposites was evaluated based on the degree of dispersion in the epoxy, thermal, 

mechanical and fracture properties. All TMA results showed that nanocomposites have 

a better dimensional stability (due to reduced in CTE) when compared to the pure 

polymers. Thermogravimetry analysis on silical828 and clay/977 systems showed that 

nanocomposites have better thermal stability (due to increased in thermal degradation 

temperature) compared to the pure systems. 

The compressive, tensile and flexural moduli of the epoxies were improved with 

increases in multiwalled CNT and MMT nanoclay content. However, the degree of 

enhancement in ultimate strengths and failure strains was limited by the presence of 

entangled CNT or clusters of intercalated structure nanoclay in the epoxies. In addition, 

the degassing process of the mixtures became very challenging at high CNT and clay 

content, hence air was entrapped in the cured resins. These reduced the strength, failure 

strain and fracture toughness properties of the nanocomposites. 

In contrast, the addition of nanosilica offered a very significant increase in the 

compressive, tensile and flexural moduli and strengths without any significant reduction 

in failure strains of the epoxy. Moreover, the fracture toughness of the epoxy was 

enhanced tremendously. For example, a 160% increase in fracture energy by adding 25 

wt% nanosilica. In addition, homogeneous dispersion and relatively low viscosity 

during processing even at high silica content (25 wt«J1o) rendered this nanomodified­

epoxy to be the most suitable candidate for impregnation process with carbon fibre. 

Therefore, the effect of nanosilica on the carbon fibre reinforced polymer composite is 

discussed in Chapter 6. The results are also compared with the HTS40/977 -2 CFRP 

composites that are currently used for commercial aircraft structures. A full discussion 

on the influence of nanofillers on the properties of epoxy polymers and how they 

contribute to the enhanced mechanical properties of CFRP laminates is presented in 

Chapter 7. 
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Chapter 6 

Compressive strength of nanomodified-CFRP 

composite laminates 

6.1 Summary 

The effect of nanosilica on the compressive properties of unidirectional (UD) 

HTS40/828 laminates was studied. At first, the quality of the UD laminates was 

evaluated using an image analysis technique and the volume fraction of nanosilica was 

determined using TGA. Scanning electron microscopy (SEM) and optical microscopy 

were used to study the failure mechanisms involved during compression. In addition, 

the effect of nanosilica on in-plane shear properties of the HTS40/828 [±45hs laminate 

was also investigated. The compressive strength of the UD laminate was estimated 

using several models based on fibre microbuckling and kinking failure modes. The 

results are compared to HTS40/977-20 thermoplastic-toughened CFRP composite 

system, which is currently used in aerospace structural applications. All results are 

presented in the following sections and Appendix B. 

6.2 Nanosilica-filled HTS40/828 CFRP composite 

6.2.1 Physical and thermal properties 

Figure 6.1 shows a typical SEM micrograph of cross-section of UO CFRP composite, 

which was made of HTS40 carbon fibre and Epikote 828 resin. The carbon fibre has 

been treated with polyurethane to promote interfacial bonding to the matrix. The 

strength of the UD composite laminate in compression mainly depends on the quality of 

the fabricated specimens and the properties of the matrix, fibres and fibre/matrix 

interfacial adhesion. Imperfections in the laminate, such as non-uniform fibre 



Chapter 6 Compressive strength ofnanomodified- 'FRP omposile laminates 

distributions (presence of fibre- and matrix-rich region ), misalignment of fibre (or 

fibre waviness) and microvoids in the matrix, could not b completely eliminated during 

the manufacturing process. These defects could act as site of local stre s concentration, 

which can initiate failure. In this study, the quality of the fabricated pecimens was 

evaluated using image analysis and TGA techniques. 

pikote 828 

fibre: HT 40 

Carbon fibre/epoxy 

interface 

Figure 6.1: A typical SEM micrograph showing the cros section of UD HTS40/828 

laminate. 

6.2.1.1 Fibre distribution 

Figure 6.2 shows the optical micrograph of a polished tran ver e section of HT 40/828 

UD laminate. This low magnification (20x) image hows that the fibres have a uniform 

circular cross-section. The average diameter of the fibr wa mea ured u ing image at 

higher magnification (lOOx). igure 6.3 hows th diameter di tribution as mea ured 

with KSRUN ZEISS image analy er. These high tensil strength (HT 40) carbon fibre 

have a narrow diameter distribution with mean diameter of 6.97 J.IIT1 and tandard 

deviation of 0.18 pm. Figure 6.2 shows that the fibr ar non-unifl rmly di tributed, 

with regions of high and low packing fraction while thi undesirable it i typically 

observed in FRP composite systems. 

170 



Chapter 6 Compressive strength ofnanomodified- FRP composite laminates 
(i) fibre-rich region 

Figure 6.2: Fibre distribution across thickness of the unidirectional [OJs HTS40/828 

laminate. 

0.45 -

Z 0.40 j 

Mean diameter = 6.97 I-Lm 

Standard deviation = 0.18 11m 

% 
c:: 
Q) 
::J 

~ 
u.. -

0.35 

0.30 

0.25 

0.20 -+ 

0.15 t 

0.10 

0.05 

0.00 

6.00 6.25 6.50 6.75 7.00 7.25 7.50 7.75 8.00 

Fibre diameter (11m) 

Figure 6.3: Diameter di tribution ofRT 40 carb n ftbr ; ampl ize (N) of498 was 

u ed. 

171 



Chapter 6 Compressive strength ofnanomodified-CFRP composite laminates 

6.2.1.2 Fihre volume fraction 

The compressive strength of the composite laminates also depends on the fibre volume 

fraction, Vj. This is because the fibre supports most of the applied load. After the fibres 

break, the load is supported by the matrix. The volume fraction of carbon fibre in the 

laminate mostly depends on the type of fabrication method. For instance, the 8 layers of 

un HTS40/977-2 CFRP fabricated using hot press technique produced a laminate with 

average Vj = 58 vol.% [7]. While, in current work, a similar 8 layers prepreg prepared 

using an autoclave method produced a laminate with average Vj = 62 vol. %. The pure 

and nanomodified HTS40/828 systems, which were manufactured using a technique 

described in Section 3.4.1 (using the dry filament winding, resin impregnation and 

vacuum bagging), have an average fibre volume fraction of 41-43 vol.%, as shown in 

Table 6.1. The v.r of the UD laminate was determined using the image analysis method 

as outlined in Section 3.5.4.2. Figure 6.4 shows that the cross-section fibre density in 

the HTS40/977-2 composite is higher than that of the HTS40/828 system. This indicates 

a lower volume fraction of HTS40/828 system. The average fibre volume fraction, as 

given in Table 6.1, was calculated based on at least 25 optical micrographs for each 

system using the KSRUN version 3.0 ZEISS software. The greyscale image was 

converted into binary image, as shown in Figure 6.4. The Vj was calculated by dividing 

the total field area to the total frame area. The total frame area for IOOx image is 

12870.05xlO-12 m2 and SOx image is 51479.97 xlO-12 m2
• 

Table 6.1: Summary of fibre volume fraction of unmodified and nanomodified­

HTS40/828 and HTS40/977-2 unidirectional laminates measured using image analysis 

technique. 

Physical properties HTS401 NanosilicaIHTS401828 HTS401 

828 "NMSI NMS2 NMS3 977-2 

Fibre volume fraction, VrCYo) 42.27 ± 40.66± 43.31 ± 42.16 ± 62.43 ± 

0.98 0.92 0.90 0.95 1.29 

NMS - Nanomodtfied system 
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(i) (ii) 

(a) HTS40/828 

(i) (ii) 

(b) HT 40/977-2 

Figure 6.4: Optical micrographs of cross sections of (a) HT 40/828 and (b) HT 40/977-

2 unidirectional laminates showing greyscale image (i) that were converted into binary 

images (ii) for the measurement of fibre volume fraction u ing the K RUN ZEI 

software. 

6.2.1.3 Thermogravimetry analysis and IIallosilica voilime/ractioll 

The amount of nanosilica content in the compo ite lamin t wa d termined u ing the 

TGA technique as described in section 3.5.3. In addition T A wa also u ed to study 

the thermal stability of pure and nanomodified H 40/828 RP comp ite y tern . 

Figure 6.5a illustrates the thermal degradation behaviour of pure HT 40/828 laminate, 

which was burned in N2 gas from 40° to 550° at 10° Imin th n kept at 550° for 1 hr 

and followed by heating in air to 1000° at 10° Imin. hi figure hows that the 
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laminate starts to degrade at 250°C and the combustion completes at 961°C. This TGA 

profile can be divided into five different events (marked as A, B, C, D and E on Figure 

6.5a). Stage A shows that the initial weight loss of 0.1 wt% occurred due to vaporization 

of moisture in the laminate. Stage B represents decomposition of the resin in nitrogen. 

The weight loss gradually increases from 380°C to 550°C with a total mass loss of 38.6 

wt%. After holding at 550°C for 1 hr, the purge gas flowing over the sample was 

automatically switched to air. The SEM micrograph of the sample residue, which was 

collected at 550°C, shows that the resin remains deposited on the carbon fibres, see 

Figure 6.6b. Therefore, the sample was heated to 10000C in air to remove the resin 

residue and then burn off the carbon fibres. Figure 6.5a shows that the resin residue 

starts to burn at 575°C and completes at 695°C with a total mass loss of 10.6 wt%, see 

Stage C. Figure 6.5b shows that the maximum degradation temperature of the epoxy 

resin and its residues occur at 441°C (point (i» and 637°C (point (ii», respectively. 

Figure 6.6c illustrates that after exposing the sample to 650°C, most of the resin residue 

was already removed from the fibre's surfaces. The TGA curve for the CFRP composite 

was also compared to the decomposition behaviour of pure Epikote 828 polymer 

(obtained from Section 4.2). The TGA curve of the Epikote 828 confirms that the resin 

was completely burnt off at 680°C. Therefore, the material remaining behind after 

69SoC is the carbon fibres. Stage D shows that the carbon fibre starts to burn at 700°C 

and completes at 962°C with a total mass loss of 49.7 wt%. The maximum degradation 

temperature of the carbon fibre as identified by the peak of the rate of weight loss versus 

sample temperature curve (see Figure 6.5(iii) is 910°C. This is confirmed by the TGA 

curve of the neat HTS40 carbon fibre, which was burnt under similar conditions. The 

TGA curve of neat HTS40 carbon fibre shows that it starts to burn at 650°C and 

completes at 872°C (see Figure 6.5a) with a maximum combustion rate occurs at 852°C 

(see Figure 6.5b). A slightly higher degradation temperature of carbon fibres in CFRP 

composite was recorded compared to that of the pure carbon fibres because of the 

presence of resin residue, which was deposited on the fibre surface. Finally. stage E 

shows that there is no material remaining behind after exposing the sample to more that 

962°C. This suggests no contamination of the pure HTS40/828 laminate. 

The fibre and resin volume fractions in HTS40/828 laminate were calculated in 

accordance to ASTM standard D3171-99 (as discussed in Chapter 3 Section 3.5.4). 

Three samples were tested. The TGA results showed that the average weight fraction of 

the carbon fibre and resin was 51.11 wt% and 48.22 wt%, respectively. The average 
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density of HTS40/828 CFRP composite, which was determined using a density balance, 

was 1.45 glcm3
• The density ofHTS40 carbon fibre, as provided by the manufacturer, 

was 1.77 g/cm3 and the density of Epikote 828 polymer was 1.22 glcm3 (determined 

using the density balance). The fibre and resin volume fractions in the CFRP composite 

were 41.87 vol.% and 57.31 vol.%, respectively. The fibre volume fraction measured 

using the TGA technique was very close to the value obtained using the image analysis 

technique as given in Table 6.1. The average of void volume fraction in the laminate 

was 0.8%. This shows a good quality CFRP composite. A good composite usually has 

less than 1 vol. % voids, whereas a poorly manufactured composite can has up to 5 

vol.% voids [165]. 

The effect of nanosilica on the thermal degradation behaviour of HTS40/828 

laminate was studied. As shown in Figure 6.7, nanomodified CFRP systems exhibited 

similar thermal decomposition mechanisms to that of the unmodified HTS40/828 

system. However, in the final stage (Stage E), the material remaining behind after 

exposing the nanomodified laminates to air was the inert silica nanofiller. At least three 

samples were tested for each system. Table 6.2 summarises the average weight fraction 

of nanosilica in the laminate. 

Figure 6.7 shows that all nanomodified laminate samples start to burn at slightly 

higher temperature than that of the pure system. These show that nanomodified system 

has a better thermal stability. The nanomodified epoxy starts to burn at 330°C and 

finished at 550°C. After isothermal temperature of 550°C, the carbon fibres were 

covered with the nanosilica and carbon residues, which were left from the 

nanomodified-epoxy. These residues underwent thermal degradation at a higher 

temperature compared to the carbon residues left from pure Epikote 828, as explained in 

Section 5.2.2 (see Figure 5.2a). Therefore, the weight fraction of carbon fibre in 

nanomodified CFRP composite system could not be determined through TGA curves 

due to a high thermal stability of the nanomodified-matrix. The resin residues and 

carbon fibre were completely burnt off at 990°C. After this temperature, the material left 

was silica nanofiller. 
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(a) 25 °C (c) 650 ° 

Figure 6.6: Typical SEM micrograph showing the UD HT 40/828 TGA specimen 

before heating (a) and after heating at 550° (b) and 650°C (c). 
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Table 6.2 shows that the average weight fraction of nanosilica in three different 

nanomodified systems was 3.83, 8.96 and 15.49 wt%. The measured density of the 

nanomodified CFRP composite systems using the density balance was also summarised 

in Table 6.2. The measured density of nanomodified system was found to increase with 

an increase in the nanosilica content. The increase in density is expected because the 

density of silica, Psi = 1.8 g/cm3, is greater than that of the pure HTS40/828 system (Pc = 

1.45 g/cm3
). The volume fraction of nanosilica in the laminate for the three different 

nanomodified CFRP composite systems was about 3, 7 and 13 vol.%, which were 

calculated using equation given in Section 3.5.4. 

Table 6.2: Summary of density of pure and nanomodified HTS40/828 CFRP composite 

measured using a density balance and nanosilica content in the laminate measured by 

TGA. 

Physical properties HTS40/828 NanosilicaIHTS401818 

"NMSI NMSl NMS3 

Weight fraction of nanosilica, - 3.83 ± 0.32 8.96 ± 0.52 15.49 ± 0.63 

w"i(%) 

Density, Pc (glcm3
) 1.450 ± 1.473 ± 1.494 ± 1.534 ± 

0.006 0.007 0.003 0.001 

Volume fraction of nanosilica - 3.12 7.43 13.13 

v (%)=w x Pc (vo1%) 
SJ sl 

P'I 

NMS = Nanomodtfied system 

6.2.1.4 Fib,.e misalignment 

Fibre misalignment or fibre waviness is one of the manufacturing defects. which occurs 

during the fibre winding process or the curing process. The compressive strength of the 

composites is mostly influenced by the initial fibre misalignment in the composite. For 

instance, the compressive failure strength of HTS40/977-2 system, which has initial 

fibre misalignment of 5° is 61 % lower than that of laminate with 10 initial fibre 

misalignment [7]. Therefore, the strength of the composite reduces with increasing fibre 

misalignment angle in the composite. 
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The distribution of fibre misalignment angle for UO unmodified and 

nanomodified HTS401828 laminates was measured using Yugartis method, as described 

in Chapter 3 Section 3.5.7. Figure 6.8 shows a typical optical micrograph of UD 

HTS40/828 laminate compared to that of UO HTS40/977-2 laminate (prepared using 

autoclave), which were sectioned at an angle of approximately 8cut=5° to the 0°-fibre 

axis. Non-uniform distribution of the fibre's elliptical cross section of HTS40/828 

laminate indicated a large distribution of fibre misalignment in the composite. The 

major axial length of the cut fibre's elliptical surface as shown in Figure 6.9 was 

measured using the KSRUN ZEISS software. About 2000 or more ellipse lengths were 

measured for each system. The angle of cut for each fibre B; was calculated and sorted 

into the class interval width at the angle of 0.5° as shown in Figure 6.10. The actual 

plane cut angle for each system was determined based on the mean of fibre waviness 

distribution and summarised in Table 6.3. Finally, the transformation between Bi and tPi 

was made. The results of fibre misalignment angle distribution for unmodified and 

nanomodified-HTS40/828 systems were illustrated in Figure 6.11 and summarised in 

Table 6.3. It was found that the maximum fibre misalignment angle for unmodified and 

nanomodified HTS40/828 system was 4_5°. However, it is interesting to note that the 

presence of nanosilica results in a narrow fibre angle distribution of the UO HTS40/828 

laminate, where a smaller standard deviation of fibre distribution was recorded for 

nanomodified systems compared to the unmodified system. Figure 6.11 shows that for 

the unmodified system about 90% of the fibre volume was within ±20 to the 0°-fibre 

direction while the addition of 7 and 13 vol. % of nanosilica reduced the fibre 

misalignment to ±1.So. This indicates that the nanomodified resin contributes to a better 

fibre alignment in the laminate. This probably due to the fact that a lower CTE of 

nanomodified resin reduces the thermal mismatch between fibre and the matrix during 

curing hence reduces the fibre waviness. The UO HTS40/977-2 laminate, which was 

prepared using the autoclave, had a very narrow fibre distribution where 95% fibre 

volume was within ± 1 ° to the 0°-fibre direction, as shown in Figure 6.12. This type of 

laminate was manufactured using prepreg material and had a VI = 62%, therefore 

densely packed fibres provide a better fibre alignment when compared to the 

HTS40/828 system. In addition the Cycom 977-2 has lower CTE compared to that of 

Epikote 828, therefore this perhaps contributes to lower fibre waviness of the 

HTS40/977-2Iaminate. 
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(a) HTS40/828 

100,....m 
I I 

(b) HTS40/977-2 

100,....m 
I I 

Figure 6.8: Optical micrographs of (a) HTS40/828 and (b) HTS40/977-2 unidirectional 

laminates sectioned at an angle of approximately SO to the fibre for the measurement of 

fibre misalignment. 

Figure 6.9: Measurement of major axial length fthe cut fibr ' s elliptical urface aj 

using the K RUN Z I oftware. 
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Table 6.3: Summary of fibre misalignment angle of pure and nanomodified HTS40/828 

CFRP composite compared to HTS40/977-2 system. 

Physical properties HTS401 NanosilicaIHTS40/818 HTS401 

828 3vol.% 7 vol.% 13 vol.% 977-2 

Actual plane-cut angle, 5.50 5.44 6.95 5.15 5.28 

tAx:0 

Overall fibre -3.75° to _3.19° to -3.70° to -2.90° to -2.03° to 

misalignment distribution 4.25° 3.81° 4.80° 4.60° 2.97° 

Standard deviation 1.19° 1.11° 0.84° 0.89° 0.62° 

Fibre misalignment angle 91% 92% 93% 90% 95% 

within within within within within 

±2.0° ±2.0o ±t.So ±1.5° ±I.O° 

6.2.2 Compressive properties 

6.2.2.1 Compressive stress-strain behaviour 

The compressive stress-strain response of a typical UD HTS40/828 specimen is shown 

in Figure 6.13. The longitudinal strain on front and back faces (strain gauges 1 and 2) of 

the specimen was initially the same, however as the compressive load was increased, 

the strains diverge indicating some bending of the specimen. This is probably due to a 

slight lack of flatness of the specimen or slight misalignment of the test piece in the test 

rig. The graph was linear up to a strain of 0.7% with an elastic modulus of 86 GPa 

measured at 0.25% applied strain and followed by a continuously curved portion with a 

tangential modulus at failure of approximately 15% less than that of the linear part. This 

non-linearity seems to be caused by the non-linear behaviour or instability of the fibre 

since the matrix was observed to remain elastic at this compressive strain value (as 

observed in Section 5.2.4, Figure 5.4). Catastrophic failure occurred at the average 

failure stress of 826 MPa and strain at failure of 1.02%. 
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Figure 6.13: A typical compressive stre s-strain r pon of a UD HT 40/828 FRP 

composite laminate and fractured specimen. 

6.2.2.2 Characteristics of fractured sutface 

At least five specimens were tested for each ystem. All p cimen failed udd nlyand 

catastrophically near the junction of th nd tab and gauge ection, a hown in Figur 

6.l3 , accompan ied by the pontan ou release of ound. Fracture occurred within the 

specimen gauge length, implying that the te t wa ucce sfu!. Thi i an a ceptable 

failure mode according to the A TM D3410 [1641, which wa id ntified a transver e 

shear near top grip/tab failure (cod TAT). 

Figure 6.14a show an overall failure mod fat pi al 0 spe imen after 

loading in compression. The test piec wa partition d into tw piece with fracture 

surfaces inclined at typical angles f3 betw en 10-30°, a hown in rigure 6.14 . 1 he 

failure was caused by the in tability of the fibre , whi hindu ed fibr mi robu kling 

and subsequent fibre kinking m chani m . Th fra ture urface al hibit d me 

longitudinal splitting and interlaminar cracking, as h 6.14b. Ilowe r, 

thi was attributed to post-failur damage rath r than bing a call r failure . The 

failure may initiate from the pecimen fre edg or prc- i ting mat rial imperfecti n 

such as voids, fibre mi alignment and re in rich r gion . Figur 6. 15 illu trate in-plane 
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fibre microbuckling failure mode, which initiate from (a) th pecimen' free edg and 

(b) the resin rich region. It shows that the fibr s break at two point and cr ate a kink 

band inclined at an angle fJ to the tran verse direction. Th fibr s within the band rotal 

by the angle ¢ from the initial fibre direction and the kinked fibr propagate aero s th 

width. Finally, this mechanism causes final eollap e of the p cim n. 

(a) 

(c) 

(b) 

x (width) 

1..------1. Y (loading a i : 
fibre dire ti n) 

Figure 6.14: Overall failure mod s of D HT 40/828 laminal aft r c mpr 

observed under EM (b) and pti al mi ro opy (c). 

n (a) a 
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Specimen free 
edge 0° fibre direction Resin rich 

~ ~ region 
I I 

I 

Figure 6.15: Optical micrographs showing in-plane fibre microbuckling in a HTS40/828 

unidirectional laminate. The failure initiates from the specimen's free edge or from the 

resin rich region. It grows at an angle P=20-300 across the specimen width. 

Post failure examination on the fracture surface of unmodified and nanomodified 

HTS40/828 system using a scanning electron microscope revealed that the specimens 

failed via fibre microbuckling, as shown in Figures 6.16-6.18. Figure 6.16 shows that 

the fibres fail in rows and plastic deformation of the matrix occurs due to bending of the 

fibres. Figure 6.17 shows a hackle or serration markings on the matrix between adjacent 

fibres, which indicates the formation of resin shear yielding due to local shear loading. 

This figure shows that the fibre/matrix interfacial bonding is strong since no evidence of 

extensive matrix cracking was observed between adjacent fibres. Closer inspection on 

the fracture surface reveals that the individual fibre failed in bending as shown in Figure 

6.18. The fracture surface of the fibre can be divided into two distinct regions; (i) 

smooth surface indicates tensile region and (b) rough, irregular and serrated surface 

indicate compressive region. 
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(a) Pure 

(b) 3 vol% nanosilica 

(c) 13 vol% nanosilica 

Figure 6.] 6: Fracture surface of pure and nanomodified HTS40/828 UD laminate after 

compression. SEM micrographs show fibres fail in rows due to micro-bending 

(microbuckling). The specimens fail in compression catastrophically therefore some 

areas on the fibre surface were crushed due to overload compressive force on the 

surface of broken fibres. 
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(a) Pure 

(b) 3 vol% nanosilica 

(c) 13 vol% nanosilica 

Figure 6.17: SEM micrographs show that individual fibres failed due to microbuckling 

and plastic deformation of the matrix. Matrix cracking or fibre/matrix interface 

debonding occurred due to high compressive and shear (at the interface) stresses. 
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(a) Pure 

(b) 3 vol% nanosilica 

(c) 13 vol% nanosilica 

Figure 6.18: SEM micrographs illustrate tensile (i) and compressive (ii) surfaces on 

individual fibre failed due to microbuckling at high magnification, as marked in (b). The 

compressive surface (ii) appears to be more serrated, irregular and rougher while the 

tensile surface (i) is relatively smoother. 

189 



Chapter 6 Compressive stren~th ofnanomodified-CFRP composite laminates 

6.2.2.3 Effect of nanosilica on compressive properties 0/ HTS401828 CFRP composite 

Table 6.4 summarises the compressive properties of unmodified and nanomodified 

HTS40/828 systems compared to the commercial system HTS40/977-2. It shows the 

effect of nanosilica on compressive modulus, strength and failure strain of the un 
laminate. It was found that the addition of nanosilica improved the compressive 

properties considerably. For instance, the addition of 7 vol.% nanosilica into the CFRP 

composite enhanced the compressive modulus by 40%, compressive strength by 54% 

and failure strain by 23%. The highest content ofnanosilica in the CFRP composite (13 

vol.%) gave a tremendous increase in compressive modulus of about 54% compared to 

the neat polymer with less than 3% reduction in failure strain. This suggests that the 

nanofiller-matrix interaction is very good and therefore stresses are more efficiently 

transferred via the interface, which leads to higher compressive properties when 

compared to the unmodified CFRP system. 

In conventional systems, the addition of rigid micron-sized fillers or ply interleaf 

between fibres plies or agglomerated nanofillers into epoxy resins commonly increase 

the stiffness but have a detrimental effect on the failure strain [4,42,56,59]. Moreover, 

the strength of the composite is also reduced as the amount of these fillers increases. 

Premature failure of the composite laminate mainly occurs due to the high local stress 

concentrations caused by agglomeration or non-uniform dispersion of the fillers. Also, 

reduction in strength and failure strain can be due to improper load transfer between 

matrix and fillers (caused by a poorly optimised interface). In contrast, in the present 

study, Figure 6.19 and Table 6.4 show that the incorporation of nanosilica enhances the 

compressive modulus and strength of the laminate without reducing its failure strain 

even at high nanosilica content. The Poisson's ratio of nanomodified-CFRP composite 

is less than the pure system. This indicates a stiffer system. 

A rigid silica nanoparticle has a Young's modulus of 70 GPa [73]. Once it is 

dispersed in Epikote 828, the elastic modulus of the matrix increases with increasing 

nanosilica content. As discussed earlier, the un laminate fails due to fibre instability 

under compression. Therefore, the nanomodified resin (which has a higher stiffness than 

the pure resin) provides a better support to the fibre and enhances the stiffness and 

strength of the composite. This means that nanosilica gives a better resistance against 

micro bending to the fibre and plastic deformation to the matrix. Therefore it introduces 

additional mechanisms of energy absorption during compression. SEM observation on 
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fracture surface of nanomodified CFRP composite, as shown in Figures 6.17 and 6.18 b­

c, show no evidence of particle agglomeration even at high silica content. Homogeneous 

distribution of silica nanoparticles promotes more textured fracture surfaces in the 

matrix due to plastic shear yielding deformation, as clearly can be seen in Figure 6.18c, 

compared to a more brittle fracture surface (smooth surface) of pure resin as shown in 

Figure 6.18a. This is evidence of tougher matrix. 

These results give a promising future for the development of better CFRP systems 

using nano-modifiers. For example, the addition of 13 vol% of nanosilica into 

HTS40/828 CFRP composite offered a better compressive modulus (E=132 GPa) 

compared to that of a commercial aerospace grade HTS40/977-2 system prepared using 

hot press (E=112 GPa) [7] and prepared using autoclave (E=130 GPa), see Table 6.4. At 

high nanosilica content (13vol.%si) the composite failed prematurely. This perhaps due 

to the presence of nanosilica rich regions, which contribute to higher stress 

concentrations in the laminate or other imperfections such as nanovoids and fibre 

misalignment. However, the 7%siIHTS40/828, which has E=120 GPa and fails at 1268 

MPa compressive strength, is also comparable to the HTS40/977-2 system. The 

performance of these two different systems is comparable since the fibre volume 

fraction of the 7%siIHTS40/828 system is 43 voI.% when compared to the HTS40/977-

2 system having Vr = 58 vol.% [7] (prepared using hot press) and Vr = 62 vol.% 

(prepared using autoclave). Higher fibre volume fraction contributes to higher 

compressive properties of the composite laminate. Therefore it can be concluded that 

the nanomodified CFRP system developed using appropriately treated nanosilica and 

low cost epoxy (Epikote 828) provides comparable if not better performance when 

compared to the commercial system HTS40/977-2 currently being used for the 

construction of aircraft structures such as the Boeing 787. This is a very promising new 

result but, of course, hygrothermal and fatigue properties of the nanomodified system 

need also to be considered before it can be selected for the fabrication of primary 

aerostructures. 

191 



Chapter 6 Compressive strength ofnanomodified- FRP composite lamil1ates 

Table 6.4: Compressive properties of nano ilica-modified HT 40/828 laminate 

compared to pure system and commercial system HT 40/977-2. 

Compressive properties HTS401 NanosilicaIHTS40/828 HTS401 

828 3 vol.% 7 vol.% 13 vol.% 977-2 

Compressive modulus, 85.74 ± 107.75 ± 120.42 ± 132.38 ± 129.66 ± 

E (GPa) 2.27 1.63 1.90 4.40 1.48 

Compressive strength, 825 .93 ± 1150.60 ± 1268.01 ± 1172.20 1505.48 ± 

o;,(MPa) 12.60 31.78 45.78 ± 46.17 29 .67 

Compressive strain at 1.06 ± 1.24 ± 1.30 ± 1.03 ± 1.32 ± 

break 0/(%) 0.02 0.07 0.08 0.05 0.08 

Principal Poisson 's ratio, 0.330 ± 0.300 ± 0.290 ± 0.260 ± 0.300 ± 

VI2 0.006 0.005 0.003 0.006 0.005 
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Figure 6.19: Typical compressive stres - train curve of unmodified and nanomodified 

UD HTS40/828 CFRP composites specimen loaded in static uniaxial compre ion. 
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6.2.3 In-plane shear properties 

Figure 6.20a shows a typical normal stress-strain response obtained from the tensile test 

of the [±45]2s HTS40/828 composite laminate and a typical failed specimen. The 

corresponding in-plane shear stress-strain curve, as shown in Figure 6.21, was plotted 

based on this graph (Figure 6.20a) to determine the shear modulus, shear yield stress 

and strain, shear strength and failure strain. Figure 6.21 shows that the material 

undergoes elastoplastic behaviour before rupture. The stress initially increases 

proportional to the strain, obeying Hooke's law, until it reaches an elastic limit (point 

A). In this elastic region, the elastic shear modulus was calculated at 0.1-0.5% shear 

strain. Beyond the proportional limit, the strain begins to increase more rapidly for each 

increment in stress until it reaches maximum load at point C. The materials failed at 45° 

to the loading axis as shown in Figure 6.20b. This indicates a pure shear failure mode. 

In the previous section, observation of fractured specimens of UD laminates after 

loaded in compression showed that the specimens failed due to fibre microbuckling and 

kinking. Budiansky [45] suggested that composites failed when the shear yield strength 

is reached causing fibre kinking. While, Berbinau et al [461 proposed that the 

composites failed when the initially misaligned fibre reached its maximum amplitude 

due to bending. This fibre micro buckling mechanism is mainly influenced by the initial 

misalignment angle of the fibre and the in-plane shear modulus of the composite. In the 

current work, Berbinau's concept was extended to incorporate the non-linear in-plane 

shear modulus (as a function of the shear strain) based on the elastoplastic shear stress­

strain response into the fibre micro buckling model. These show that the in-plane shear 

modulus and yield stress play an important role in determining the strength of the 

composite system loaded in compression. 

There is no standard method to determine the shear yield stress { Ty } and strain {]Y}. 

Mackinley [47] and Lee [165] used a graphical method to determine the yield point. 

This method involves several steps; (i) two tangent lines were draw on the shear stress­

strain curve at the origin and at 6% shear strain, (ii) a vertical line was plotted through 

the point of intersection of the tangents and (iii) the yield stress was taken based on the 

point at which the vertical line intersected with the T-ycurve. The yield stress obtained 

using this method is similar to the value of 0.5% offset shear stress. This can be 

determined by translating the shear modulus of elasticity line along the strain axis from 

the origin by 0.5% strain. This offset line is extended until it intersects the T-y curve 

where this intersection point is the shear yield point. This 0.5% offset technique is more 
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reliable since the [±4Shs laminate with reduc d gaug length of SO mm fail d at Ie s 

thatn 6% shear strain, as shown in Figure 6.20a. Moreover, a tandard techniqu needs 

to be consistently employed in order to study the effect of nano ilica on the hear yield 

stress of the HTS40/828 CFRP composite. Therefore, thi O.S% offs t technique was 

implemented in this study to determine the yield point, as shown in Figure 6.2 1 point B. 
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Figure 6.20: (a) A typical normal stre - train re pon of a [±4Shs r IT 40/828 

laminate loaded in ten ion and (b) an exan1pl of failed p im n . Th normal and 

transv rse strains w re m a ured by 1200 train gaug . 
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Figure 6.21: A typical in-plane shear stres - train re pon of[±45hs JIT 40/828 

laminate showing the elastic limit, point A, yield point at 0.5% offset (off: et shear 

stress), point B, and shear strength, point C. 

The effect of nanosilica on the in-plane shear stre - train r pon e of the 

HTS40/828 system i illustrated in Figure 6.22. It can be seen that the presenc of 

nanosilica enhanced the in-plane hear prop rties of the FRP compo it . The 

nanomodified CFRP exhibited higher ela tic hear modulu (as mea ured at the initial 

slope of the graph) and shear strength compar d to th unmodified system. The increa e 

in shear modulus is expected becau e the ela tic moduli f pikote 82 in compre ion, 

tension and bending were increased with increasing nano ilica content. Ther for a 

stiffer matrix enhances the stiffness of the HT 40/828 sy t m. 

Table 6.5 summari es the in-plan shear prop rtie f nanomodifi d FRP 

compared to the unmodified ystem. The in-plane shear modulu , tr ngth and yield 

stress were increased with increa ing nano ilica cont nt. Th tabl how that the 

HT 40/828 system ha average in-plane sh ar modulu , trength and ield tr of 4.27 

GPa, 61 MPa and 52 MPa, respectively. By adding I vol% nano iii a into the 

HTS40/828 laminate enhanced the in-plane sh ar modulu by 49%, trcngth by 45% 

and yield stress by 40%. The improv ment in the hear properti ugg t that the high 

stiffness matrix introduce higher resistance to hard formation and failure. 
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Figure 6.22: The effect of nanosilica on in-plan h ar tre -strain response of 

HT 40/82 8 CFRP composite. 

Table 6.5: In-plane shear properties of nano ilica-modified HT 40/828 laminate 

compared to pure sy tern and commercial y tern HT 40/977-2. 

In-plane hear HTS40/ Nano i1icaIHTS40/828 HTS40/977-2 

properties 828 3 vol% 7vol% 13 vol% SOmm 100 mm 

GL L 

Elastic in-plane Shear 4.27 ± 5.33 ± 5.72 ± 6.37 ± 5.39 ± 5.45 ± 

Modulu , G)e2 (GPa) 0.07 0.09 0.22 0. 13 0.04 0.10 

In-plane shear 61.00 ± 72.23 ± 77.93 ± 88 .69 ± 82.88 ± 11 2.80 ± 

trength , 'ull (MPa) 1.24 1.47 1.12 1.52 0 .99 1.05 

Maximum shear 2.96 ± 3.25 ± 3.23 ± JO ± 3.38 ± 16.81 ± 

stra i n, y,,,, (%) 0.17 0.05 0.11 0.08 0.00 0.3 1 

In-plane hear yield 51.48 ± 58.67 ± 64.51 ± 72.25 ± 64.25 ± 62.09 ± 

strength, 'y (M Pa) 0.41 0.62 0.56 0.78 0.78 0.77 

In-plane hear strain 1.71 ± 1.61 ± 1.64 ± 1.64 ± 1.70 ± 1.73 ± 

at yield, JY(%) 0.01 0.03 0.04 0.02 0.01 0.03 
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In table 6.5, the results of unmodified and nanomodified HTS40/828 were also 

compared to the commercial HTS40/977·2 system. The [±45hs HTS40/977-2 laminate 

was fabricated using prepreg materials and cured using the autoclave. This industry 

standard fabrication technique produced a very high quality composite with fibre 

volume fraction of 62 vol%. While in the current work, HTS40/828 and its 

nanomodified system were produced using the dry filament winding and wet resin 

impregnation technique. This lab scale technique produced a 42 vol % CFRP composite. 

The viscosity of the resin increases with increasing nanosilica content. Therefore the 

wet resin impregnation technique fully degassed the resin before curing process. This 

minimises the void content in the cured specimen even at high filler content. This 

contributes to the enhancement in the shear properties of the HTS40/828 by adding 

nanosilica. However, this lab-scale fabrication technique limits the in-plane shear 

specimen geometry to 50 mm gauge length. This limitation causes a premature failure in 

the composite laminate when it was loaded in tension. This was proven by conducting 

the in-plane shear tests on HTS40/977-2 system with a gauge length of 50 mm and 100 

mm (according to ASTM D3518). Figure 6.23 shows typical shear stress-strain results 

of HTS40/977-2 system with these two different gauge lengths. The 100 mm specimen 

exhibits higher shear strength and strain compared to the 50 mm specimen. Table 6.5 

shows that the 100 mm specimens failed at an average of 16.8% failure strain and 112.8 

MPa shear strength, while only 3.38% failure strain and 82.9 MPa shear strength were 

recorded for the 50 mm specimen. 

It is interesting to note that the nanomodified HTS40/828 with 13 vol. % 

nanosilica exhibited a higher overall shear properties compared to that of the 

HTS40/977-2 system (with 50 mm gauge length) as illustrated in Figure 6.23 and 

shown in Table 6.5. The shear modulus, strength and yield stress were higher than that 

of the HTS40/977-2 system by 18%, 7% and 13%, respectively. These are very 

promising results since the fabricated nanomodified CFRP system has a low fibre 

volume fraction. The shear properties of composites are mostly determined by the 

properties of the matrix and the quality of the fabricated specimen. 
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6.3 Prediction of compressive strength of UD laminate 

The experimentally ob erved fractur mechani m f 0 unmodift d and nanomodified 

HTS40/828 CFRP compo ite laminate, which wa loaded in compr ion, involv d 

both fibre microbuckling and plastic fibr kinking. The mechani m were govern d 

by initial waviness of the fibre in the matrix and th of the matrix 

material. It is assumed that the failure is triggered by th local in tability f mi align d 

fibres embedded in the matri . Th misaligned fibres break at tw pint up n r ached 

maximum micro-bending deformation. Thi lead t th ft rmati n of two plane f 

fracture. The kinked fibr s di rupt the tability of th adja nt on , and hen e th 

neighbouring fibres also fail in buckling. Th pro continues a ro th pe imen 's 

width until the whole laminate break , at a c 11ain kink band in linati n angl , int two 

pieces. These scenarios were propo ed ba d on 

discussed in Section 6.2.2. Therefore, in thi 

HT 40/828 laminate and its nanomodifi d 

p rimental ob rvali n a 

n, the c mpre i e trength f 0 

t mare pr diet d u ing fibr 

microbuckling and fibre kinking models. Th r ult are c mpared t the mea ur d 
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values. In addition, the performance of this new developed system is also evaluated by 

comparing to the compressive strength of the commercial UD HTS40/977-2 laminate. 

The fibre micro buckling models, which were developed by Rosen [48] and 

Berbinau et al. [46] and the fibre kinking models, which were developed by Argon [49] 

and Budiansky [45], are implemented and discussed in detail in the following sections. 

6.3.1 Fibre microbuckling models 

6.3.1.1 Rosen '5 model 

One of the earliest experimental works conducted by Rosen [48] investigated the 

compressive failure of un glass-epoxy composite plates. The compressive failure was 

assumed to be triggered by the local instability of fibres embedded in the matrix. The 

failure of these plates was due to fibres microbuckling, analogous to the buckling of 

columns supported by an elastic matrix. In the 2-dimension model, the UD fibre 

composite was treated as parallel fibre layers. The fibre layers were initially perfectly 

straight aligned and evenly spaced. Both the matrix and the fibre materials were 

assumed to be linear elastic. When the compressive load was applied, the fibres buckled 

into either one of two possible microbuckling modes: the extension mode or the shear 

mode as shown in Figure 6.24a-b. 

(a) (b) 

Figure 6.24: Failure modes of un composite subjected to longitudinal compressive 

load: (a) fibre microbuckling in extensional mode and (b) fibre microbuckling in shear 

mode. 
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The adjacent fibres in a composite may buckle independently of each other or 

cooperatively with each other. In the first case, the matrix deforms in extension mode 

causing the fibres to buckle out of phase relative to each other as shown in Figure 6.24a. 

This buckling mode is possible if the fibre-to-fibre distance is quite large or when the 

fibre volume fraction of the composite is very small (Vj<O.4) [48]. In the second case, 

the matrix deforms in shear mode causing transverse deformation in adjacent fibres, 

which are in phase with each other as shown in Figure 6.24b. This type of buckling 

mode is the most common failure mode observed in CFRP composites, which has fibre 

volume fraction more than 40%. Rosen [48] derived analytical equations for the 

prediction of compressive strength using an energy method for both extension and shear 

modes. For the extension mode, the compressive strength can be calculated using the 

following equation: 

(6.1) 

and for the shear mode, the compressive strength is 

G 1f
2Vf d l (J' = __ m_+_...::..--..:...-

c 1- VI 12,1, 
(6.2) 

where Vjis the fibre volume fraction, Em and Ejare the Young's modulus for the matrix 

and the fibre respectively, Gm is the shear modulus for the matrix, dj is the fibre 

diameter and A is the half-wavelength of the buckling mode shape. The magnitude of 

the second term in Equation (6.2) is small compared to the magnitude of the first term 

since the half-wavelength is much greater than the fibre diameter (see Figure 6.15, the 

length of the broken fibres = 60-100 J.U11 while the diameter of the fibre = 6.97 J..lm). 

Neglecting the second term Rosen [48] obtained the approximate and often quoted 

equation for the shear mode as below: 

Gm (]' =--
C I-V 

I 
(6.3) 

According to Rosen's bifurcation analysis, the compressive strength of a UD composite 

was approximately equal to the elastic shear modulus, GJ] of the composite. Therefore 

Equation (6.3) becomes: 

200 



Chapter 6 Compressive strength ofnanomodified-CFRP composite laminates 

G -- - m_G 
u ---"'" 12 

C I-V 
J 

(6.4) 

In the current work, the fibre volume fraction obtained for unmodified and 

nanomodified systems was 41-43 vol. %. If the composite fails in extension mode, the 

predicted compressive strength, using Equation (6.1) and data in Table 6.6, deviated 

from the measured values, see Table 6.7. This confirms that the HTS40/828 system fails 

in shear mode. However, the compressive strength as predicted using Equation (6.4) 

showed four to five times greater than experimental values as shown in Table 6.7. 

Similar results were reported elsewhere [3,46,50-52] for various types of CFRP 

composite systems. Even though Rosen's predictions overestimated the UD 

compressive strength and are not acceptable for the case of modem CFRP composite 

systems, the model highlights the properties of the polymer matrix and their vital role in 

determining the compressive strength of the composites. 

Table 6.6: Input data for the prediction of compressive strength using Rosen model. 

Input data Sym- HTS40/ NanosilicaIHTS40/818 HTS401 

bol 828 3vol% 7vol% 13 vol% 977-2 

Fibre volume fraction (%) fJ 42 41 43 42 62 

Elastic modulus of the EJ 239 239 239 239 239 

fibre (GPa) 

Elastic modulus of the Em 2.75 3.08 3.33 3.80 3.52 

matrix (GPa) 

Table 6.7: Predicted compressive strength using Rosen's model compared to the 

experimental values. 

Compressive strengtb Eqn HTS401 NanosilicaIHTS40/828 HTS401 

828 3vol% 7vol% 13vol% 977-2 

Extensional mode (6.1) 10580 10710 12200 12400 26500 

microbuckling (MPa) 

Shear mode (6.4) 4270 5330 5720 6370 5450 

microbuckling (MPa) 

Measured compressive - 826 1151 1268 ll72 1505 

strength (MPa) 

Experimental data from Section 6.2.2 
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6.3.1.2 Berbinau's model 

Based on the concept proposed by Rosen [48], Berbinau et al. [46] suggested that in 

addition to the shear modulus, the unidirectional compressive strength also depends on 

the quality of the laminate and the properties of the fibre. Several important factors that 

contribute to the strength of the laminate were considered in Berbinau' s model. These 

include the configuration of fibre waviness (initial fibre misalignment and wavelength), 

in-plane shear properties (shear yield stress and strain, shear strength and modulus), 

fibre properties (diameter and elastic modulus) and fibre volume fraction. 

Berbinau et al. [46] developed a general fibre microbuckling equation of 0° fibre 

under compressive load by assuming that the fibre (possessing an initial fibre 

misalignment) acted as an Euler slender column supported by a non-linear foundation 

(resin). Based on the fact that carbon fibres in the 0° UD laminates are not perfectly 

aligned with the loading direction, (in current work, up to 5° fibre misalignment, see 

Figure 6.11), Berbinau et al [46] modelled the initial fibre waviness by a sine function 

vo(x) as shown in Figure 6.25a. 

2~ 

I 
I 

,. 1~¢Jo 

I 
I 
I 

(i) Initial fibre waviness 

p 

l 
-4-V 

t 
P 

(ii) Defonnedfibre 

Figure 6.25: A schematic diagram of fibre microbuckling mode [46] . 

The following 4th order differential equation was derived by Berbinau et al. [46] 

based on a free body diagram of an infinitesimal element of a deformed fibre proposed 

202 



Chapter 6 Compressive strength ofnanomodified-CFRP composite laminates 

by Hahn and Williams [53], refer to Appendix C for details. The following equation 

when solved gives the 0° fibre stress as a function of amplitude v: 

E I d
4
(v-vO) + AfO"o d

2
v -A Gep( )d

2
(v-vo) =0 

f f dx4 V (}x 2 f 12 r dx2 
f 

(6.5) 

where Ej and I.t are the elasticity modulus and the second moment of area of the fibre, 

respectively. Ajis the fibre cross-section area, v.,-is the fibre volume fraction and GJef(r) 

is the experimental nonlinear shear modulus as a function of shear strain. The 

expression of G:r (y) is given by: 

(6.6) 

where G:2 is the elastic shear modulus (tangent at 0.1-0.5% shear strain) and Gt2 is the 

plastic shear modulus (calculate tangent at yield point). t' y and t' ull are the yield and 

ultimate shear stresses, respectively. 

In this study, Equation (6.5) was solved numerically using Fortran programming. 

This programme was compiled and executed via a commercial Fortran compiler to 

predict the compressive strength of unmodified and nanomodified-UD HTS40/828 

CFRP composite. The result was given by a relationship between the applied 

compressive stress d~ and the maximum amplitude V of the buckled fibre during 

uniaxial compression. Failure of the axial fibre occurred when its amplitude V started to 

increase asymptotically. 

Tables 6.6 and 6.8 summarise the input data which were used in the Fortran 

programme. As discussed in Section 6.2.3, the in-plane shear samples failed 

prematurely due to the reduced gauge length. Therefore, the overall shear-stress strain 

response were predicted using the following equation: 

T(y)=+-ex{ -G;:Y ))+fr.. -T,{l-ex{ -T:~J) (6.7) 

This equation is developed based on Berbinau-Soutis earlier work [46] and 

derived from the experimental shear stress-strain curve. Figure 6.26 presents the overall 

in-plane shear stress-strain response of unmodified and nanomodified HTS40/828 

CFRP composite systems predicted using Equation (6.7) that shows a very good 
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agreement when compared to the experimental curves. The predicted in-plane shear 

properties based on all experimental results (where at least five specimens were tested 

for each system) are summarised in Table 6.8. In addition, the fibre diameter df = 6.97 

JIffi, initial half fibre wavelength .10 = 10 d" laminate width w = 10 mm, laminate 

thickness to = 2 mm and number of plies n = 8 were also used as the input data. 

Table 6.8: Input data for the prediction of compressive strength using Rosen modeL 

Input data Sym HTS401 NanosilicaIHTS40/828 HTS401 

-bol 828 3vol% 7vol% 13vol% 977-2 

Initial misalignment angle (Po 1_20 1_20 1_20 1_20 10 

In-plane shear yield strength Ty 51.48 58.67 64.51 72.25 64.25 

(MPa) 

In-plane shear strain at yield JY 1.71 1.61 1.64 1.64 1.70 

(%) 

In-plane shear strength Tult 70.2 77.4 87.6 97.8 112.80 

(MPa) 

Maximum shear strain (%) Yull 7.00 7.00 7.00 7.00 16.81 

Elastic in-plane Shear Gt2 4.27 5.33 5.72 6.37 5.45 

Modulus (GPa) 

Plastic in-plane Shear Gt2 1.23 1.34 1.52 1.65 0.89 

Modulus, (GPa) 

Figure 6.27a presents the maximum amplitude V of the 0° buckled fibre versus the 

applied stress U
CC curves for the UD HTS40/828 CFRP composite laminate which were 

predicted using three different initial fibre misalignment angles; ;0=1°, 1.5° and 2°. All 

curves show that V increases slowly with increasing applied stress U
CC and then grows 

exponentially until it reaches the maximum microbuckling stress Umb where the curve 

increases asymptotically. Fibre breakage is assumed to occur when the fibre amplitude 

increases without any significant changes in applied stress. The predicted microbuckling 

stress Umb of the HTS40/828 UD composite laminate at ;0= 1 ° is 610 MPa, which is 26% 

lower than the experimentally measured compressive strength. The microbuckling stress 

is reduced to 417 MPa at an assumed value ;0=2°. From the fibre waviness distribution 

as shown in Figure 6.11, most of the fibres lie in between 1 to 2° from the 0° fibre axis. 
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If the mean fibre waviness of ¢o=2° is applied, the compre ive trength predicted using 

Berbinau's model is about 50% less than the mea ured val ue. 
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Figure 6.26: Typical predicted in-plane sh ar stre - train cur e of HT 40/828 FRP 

composite system compared to th experim ntal re ults. Th predicted curves were 

plotted ba ed on analytical quation (6.7). 

Figure 6.27 shows that the microbuckling tre In with increa ing 

nanosilica content at a imilar vaJue of ¢o. For in tance, th addition of 3, 7 and 13 

vol.% nanosilica in HT 40/828 incr a ed the microbu kling tre by 35%, 74% and 

110%, respectively, at ¢o=l°. All predicted value of U Ing 

Berbinau 's model , a shown in Figure 6.27, hibit lower than th e perim ntal 

except 13%siIHT 40/828 laminate which i predict d at ¢o=1 0. A 

6.2.2, the 13%si/HT 40/828 laminate failed prcmatur I during th compr ion t tat 

1172 MPa. As shown in Figure 6.27d, th predict d compr str ngth i 1283 MPa 

at ¢o= lo. Figure 6.28 shows that the compr i e trength of the TIT 40/977-2 

composite laminate at ¢o= lo i 1232 MPa, whi h is 2_% lower than the p rimentall 

measured compres ive strength. Thi figure al 0 how the fibr mi r f 

the 7%si1HTS40/828 is 16% low r than that of the lIT 40/977-2 tem. Th two 
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systems are comparable since the Vj = 43 vol.% wa used to predict the compre Ive 

strength of7%silHTS40/828 compared to Vj = 62 vol.% for the HT 40/977-2 system. 
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Figure 6.27: Fibre amplitude V normalised by initial fibre imperfection Vo v r u 

applied compressive stre s 0'00 curves for unmodifi d (a) and nanomodifi d (b-d) UD 

HTS40/828 CFRP composite. The unidirectional compre ive tr ngth i prcdi t d [or 

three different initial fibre misaligrun nt angle; ¢o = 1°, 1.50 and 2°. 

The results showed that Berbinau ' mod lund r timatc the actual mpre Ive 

strength. This is because it as urnes that the cata trophic failur f th comp ite 

occurs when the fibre microbuckling initiate , where this i not nece arily the final 
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failure stress of the whole laminate. Experimental observation showed that th un 
laminate collapsed due to fibre instability or microbuckling and fibre kinking. The 

composite failure by kinking mechanism is discu sed in the following ection. 

2 
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-- HTS40/977-2 -- 13%si/HTS40/828 --- 7%siIHTS40/828 

Figure 6.28: Predition of micro buckling stres ofHT 40/977-2 un laminate compared 

to HTS40/828 laminate, which wa modified with 7 vol% and 13 vol.% nano ilica. 

6.3.2 Fibre kinking models 

6.3.2.1 Argon's model 

Argon [49] proposed that the compre ive fa ilure i initiated by pia ti sh ar 

deformation of the matrix associated with the rotation of initial mi align d fibr within 

a certain band before final failure occur. Thi model con ider d both pia tic h ar 

deformation and initial fibre mi alignment. A I ped by Argon 149] 

was based on the a sumption that once th h ar trc 10 th r gion of fibre 

misalignment reaches the composite shear yield trength, th ompo it failure would 

take place. This model is called fibre kink band model and th compre ive trength i 

expressed as: 
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, 
cr=..L c ,po (6.8) 

where;, is the shear yield stress of the composite and t/Jo is the initial fibre misalignment 

angle. 

The UD compressive strength for unmodified and nanomodified HTS40/828 UO 

CFRP composite system was predicted using Argon's model based on input data 

summarised in Table 6.8. Table 6.9 shows the predicted compressive strength using two 

different initial misalignment angles: t/Jo = 1 ° and 2°. It was found that the predicted 

values were 4-5 times higher than the experimental values if t/Jo = 1°, while by assuming 

average t/Jo = 2° the predicted values were twice as high as the measured values. 

In general, Argon's model over predicted the longitudinal compressive strength 

for UD CFRP composite systems as shown in Table 6.9. From the analysis, Argon's 

model shows that shear strength and fibre misalignment are important parameters 

affecting the compressive strength of the composite. The initial maximum angular 

misalignment or waviness of the fibres ,po causes shear stresses to develop at the 

fibre-matrix interface as the compressive load is applied as illustrated in Figure 6.29a. 

However, Equation (6.8) predicts a kink orientation angle p = 0 which is not in 

agreement with the experimental observation p = 20°_30° (see Section 6.2.2 Figure 

6.15). 

Table 6.9: Predicted compressive strength using Argon's model compared to the 

experimental values. 

Compressive strength HTS401 NanosilicaIHTS401818 HTS40/ 

828 3vol% 7vol% 13 vol% 977-2 

Predicted compressive strength, 2949 3361 3696 4139 3681 

with fA, = 1°, (MPa) 

Predicted compressive strength, 1475 1681 1848 2070 1840 

with ;0 = 2°, (MPa) 

"Measured compressive strength 826 1151 1268 1 t 72 1505 

(MPa) 

Experimental data from Section 6.2.2 
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+++++ 

+++++ 
(a) Argon's model (b) Budiansky's model 

Figure 6.29: Fibre kinking models (a) Argon's model with schematic geometry of the 

initial maximum angular misalignment of the fibres;o and (b) Budiansky's model with 

schematic geometry of a kink band width w oriented at an angle <I> to the 1-direction 

(fibre direction). 

6.3.2.2 Budiansky's model 

Experimental observations, based on optical microscopy and SEM micrographs (in 

Section 6.2.2) revealed that the laminate failed via fibre microbuckling, which is 

associated with yielding of the matrix to form fibre kinking. Budiansky [45] extended 

Argon's model by considering elastic-perfectly plastic matrix material behaviour in the 

kink band model. The theory for failure of composites in a kink mode proposed by 

Budiansky [45], as illustrated in Figure 6.29b, involves two stages as follows: 

(i) Elastic deformation 

When the compressive load (parallel to the fibres) is applied to the UD fibre 

polymer matrix with wavy fibres, shear stresses are developed due to the angle 

between the misaligned fibres and the loading axis (;0)' Hence the resulting shear 

strains increase the misalignment angle of the fibres (¢o+}'). For a small applied 

stress, equilibrium is obtained and the materials deformed elastically. 
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(ii) Plastic deformation 

As the stress is increased, the fibres, which are supported by the matrix, become 

unstable. Yielding of the matrix and fibres contribute to large plastic 

deformations. This leads to fibres breaking in a cooperative manner between 

adjacent fibres forming two planes offtacture. A narrow band inclined at an angle 

p to the horizontal axis is formed called fibre kink band. As a consequence, the 

fibre kinking phenomena causes catastrophic compression rupture of the un 
laminate when the ultimate stress is reached. 

Based on this theory, Budiansky [45] suggested that the compressive strength of 

the composites (derived in [54-55]) is expressed as: 

(6.9) 

where Ty is the in-plane shear yield strength, O'ry is the transverse yield strength, }y is the 

shear yield strain, t/Jo is the initial fibre misalignment angle and P is the kink band 

inclination angle of the composite. For a very small p, equation (6.9) becomes: 

(6.10) 

Figure 6.30 shows the theoretical compressive stress O'e versus fibre rotation response tP 

(refer to Figure 6.29b) graph for un HTS40/828 CFRP composite system. This graph 

was developed based on Equation (6.10) by assuming the initial fibre misalignment 

angle ,po = 2°. The curve describes the post buckling behaviour of the composite material 

which consists of: (a) initiation ofHTS40 fibre microbuckle, (b) the fibres break, (c) the 

matrix or interface between the matrix and the fibres fails and finally (d) the overall 

composite collapses. The predicted compressive strength of the HTS40/828 laminate by 

Budiansky's model is 990 MPa (see point (b), Figure 6.30). The system is assumed to 

fail when the elastic shear yield point is reached and plastic deformation has taken place 

causing catastrophic failure at point (b). 
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Figure 6.30: Theoretical stress-strain response ofHT 40/828 UD composite laminate 

after the initiation of fibre microbuckling. 

Table 6.10 summarises the predicted UD compressive strength values for 

unmodified and nanomodified HT 40/828 UO ystem u ing Budiansky' model 

(Equation 6.10) based on input data summarised in Table 6.8. The compressive strength 

was predicted using two different initial misalignment angles: ¢o = 1 ° and 2°. It wa 

found that the predicted value for the unmodified HT 40/828 system, using ¢o = 2°, wa 

20% higher than the experimental value. For the nanomodified ystem with 3 and 7 

vo1.% nanosilica, the predicted compressive strength values, using ¢o = 2° showed a 

very good agreement with the measured data. The e perimental result of fibre waviness 
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distribution of the HTS40/977-2 system (see Figure 6.12) showed that 95% fibres lie in 

between ± 1 ° from the 0° fibre axis. However, if this value f/Jo = 1 ° is incorporated into 

Equation (6.10), the predicted compressive strength is 23% higher than the measured 

value. As shown in Figure 6.12, the fibre waviness in the laminate varies until up to 3°. 

If the mean initial fibre misalignment angle is applied ({I\, = 1.5°), the compressive 

strength predicted using Budiansky's model is 1494 MPa. This is close to the measured 

value. The question of course then becomes: is the maximum fibre misalignment that 

dictates ultimate strength or some statistical fibre misalignment angle distribution would 

be more appropriate? Further work is required on this aspect, which is beyond the scope 

of the present study. 

Table 6.10: Predicted compressive strength using Budiansky's model compared to the 

experimental values. 

Compressive strength HTS401 NanosilicaIHTS40/828 HTS401 

828 3vol% 7vol% 13 vol% 977-2 

Predicted compressive strength, 1490 1748 1905 2097 1849 

with ¢o = 1°, (MPa) 

Predicted compressive strength, 990 1150 1257 1392 1231 

with ¢Jo = 2°, (MPa) 

Measured compressive strength 826 1151 1268 1172 1505 

(MPa) 

Experimental data from Section 6.2.2 

6.4 Concluding remarks 

A new CFRP composite system was developed based on nanosilica modified epoxy 

resin. The results showed that the presence of nanosilica in the UD laminate improved 

the compressive modulus and strength without sacrificing the failure strain, provided 

that the volume fraction of the nanosilica is less than 13 vol. % and carefully dispersed 

nanosilica in the resin as discussed in Chapter 5. In addition the in-plane shear 

properties were also increased by incorporation of silica nanoparticles. SEM and optical 

microscopy revealed that the fibre microbuckling mechanism triggered the failure of the 

un laminate during compression. The Budiansky model gave a good estimate of the 
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compressive strength. The addition of nanosilica enhanced the shear properties and 

hence the compressive properties of the HTS40/828 laminate. It is interesting to note 

that the compressive strength of the 13%siIHTS40/828 laminate was 1392 MPa as 

predicted using the Budiansky's model. This shows that the compressive properties of7 

and 13 vol% nanosilica-filled CFRP composite systems (Vf= 42%) were comparable to 

that of the commercial system HTS40/977 -2 (Vj = 62%). The performance of this new 

system (especially 13 vol.% silica-filled HTS40/828) would perhaps out-perform the 

commercial system HTS40/977 -2 if a better fabrication method is employed. As a 

conclusion, these results are very promising in an effort to develop a more damage 

tolerant and damage resistance CFRP system using appropriate nano-modifiers; see 

Chapter 7 for further discussion. 
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Chapter 7 

Overall discussion 

7.1 Summary 

This chapter discusses the influence of nanofillers on the properties of epoxy polymers 

and how it contributes to the degree of reinforcement in a CFRP composite. The effects 

of (i) nanosilica, multiwalled CNT and 1.28 nanoclay on the physical, thermal and 

mechanical properties of Epikote 828 and (ii) 1.30 nanoclay on the overall properties of 

Cycom-977-20 are discussed based on the results reported in Chapter 5. Based on all 

results obtained in Chapter 5, nanosilica-modified Epikote 828 was found to improve 

the elastic moduli, strengths and fracture toughness properties of the Epikote 828 

without any significant reduction in thermal properties and failure strains. Therefore the 

study was extended to the investigation of the properties of a nanomodified CFRP 

composite. The effects of nanosilica on the mechanical properties of HTS40/828 carbon 

fibre-epoxy system are discussed based on the results reported in Chapter 6. SEM was 

used to identify the failure modes and toughening mechanisms involved during 

mechanical tests. Therefore this chapter is divided into two sections; (i) the effect of 

nanofillers on the properties of epoxy polymers and (ii) the effect of nanosilica on the 

properties of HTS40/828 CFRP laminates. 

7.2 Effect of nanoparticles on the properties of epoxy polymers 

7.2.1 Degree ofnanofiller distribution 

The degree of dispersion of the nanofiller in the matrix indicates the quality of the 

fabricated nanocomposites. Nanosilica, multi walled CNT and 1.28 nanoclay were 

dispersed in the Epikote 828 using a mechanical stirrer at 400 rpm. The mixing time of 
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the nanomodified epoxy with the hardener and accelerator was limited to 20 min. 

Degassing of the mixtures in vacuum at 80°C was limited to a maximum of 90 min, by 

which the time the viscosity started to increase. Unlike Cycom 977-20, Epikote 828 

cures at a lower temperature (120°C) and has less processing time. 

The TEM results (as reported in Sections 5.2.1, 5.3.l and 5.4.1) on the 

morphology of nanomodified systems showed that the nanosilicalepoxy system has the 

best degree of dispersion. The nanosilica, which was supplied by the Nanoresins AG 

(Germany), has been surface-treated with organosilane and pre-dispersed in the epoxy. 

This nanomodifed epoxy was successfully cured with anhydride type curing agent 

(NMA). A very good system was created, based on these materials (Nanosilica, Epikote 

828 and NMA) where a homogeneously dispersed and non-agglomerated nanosilica in 

the epoxy, even at high weight fraction of 25 wt%, was revealed by the TEM 

micrographs. 

Pre-dispersed surface-treated multiwalled CNTs in epoxy resin, which was 

supplied by Nanocyl (Belgium), was also used in this study. The TEM micrographs 

showed a good dispersion of CNT with occasional presence of entangled nanotubes. 

Even though the processing of 1 wt% CNT in the epoxy resin was difficult due to high 

viscosity, no evidence of entrapped air was present in the matrix as observed using the 

TEM. This shows complete degassing. 

1.28 montmorillonite (MMT) nanoclay, which was supplied by Nanocor Inc 

(USA), has been surface treated with trimethyl stearyl ammonium to be compatible with 

DGEBA epoxy and anhydride type hardener. The dry MMT clay, that initially has 8-10 

IJIIl particle size, was successfully dispersed in the epoxy with intercalated structure. 

The nanocomposites have a d-spacing (the distance between silicate platelets) of more 

than 4 run as revealed by the TEM. However the presence of voids at high nanoclay 

content (more than 3 wt%) showed a low quality nanocomposite. The viscosity of the 

clay/epoxy mixtures increased exponentially with the clay content. Limitation on 

mixing and degassing time was a major factor which contributes to clusters of 

intercalated nanoclay structures and nanovoids. These factors contribute to a low quality 

nanocomposite and of course, this will influence the overall mechanical properties of 

the material system. 

High performance epoxy resin, such as Cycom 977-20, was cured at high 

temperature and can be processed for a longer time compared to the low molecular 
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weight epoxy, such as Epikote 828. In this study, a series of epoxy/clay nanocomposite 

was fabricated using three roll mill and conventional mechanical stirring techniques. An 

octadecylamine-treated MMT nanoclay namely nanomer 1.30 (supplied by Nanocor 

Inc.) was specifically designed to be dispersed in amine-cured epoxy resins. Therefore it 

was mixed with Cycom 977-20 at three different weight fractions; 1,3 and 5 wt%. 

TEM micrographs (as reported in Section 5.5.1) showed that the 8-10 ).lm MMT 

clay particle was successfully dispersed in Cycom 977-20, using both methods, with d­

spacing of more than 6 nm. It was found that the three roll mill produced a better quality 

of nanocomposites where a combination of ordered and disordered (random) exfoliated 

clay nanoplatelets in the epoxy matrix was revealed by the TEM micrographs. However, 

the conventional technique (mechanical stirring) produced intercalated structure 

nanocomposites. This suggests that the 3-roll mill successfully exfoliate the stacked 

layers of silicate clay in the epoxy matrix in two steps: (i) the external shear forces 

generated between the adjacent rollers dispersed the particles into smaller tactoids, 

followed by (ii) the combined shear and diffusion processes helped the separation and 

penetration of polymer between clay platelets to form the exfoliated structure. 

In addition, the nanocomposites, which were prepared using the 3-roll mill in the 

present study, were better than those prepared using the other methods reported in [118-

121,124] on similar type and amount of nanoclay. The TEM micrographs also showed 

no evidence of voids in the nanocomposites. Unlike clay/828 system, the Clay/977-20 

resin can be degassed to a maximum time of 3 hours. Therefore cured epoxy was fully 

degassed. This contributes to a good quality ofnanocomposites. 

7.2.2 Thermal degradation temperature 

The effect of nanoparticles on the thermal degradation temperature of the epoxy was 

studied using two systems; (i) nanosilica-filled Epikote 828 and (ii) 1.30 nanoclay-filled 

Cycom 977-20 that demonstrated the best mechanical properties, see Sections 5.2 and 

5.5. Figure 7.1 summarises the maximum degradation temperature of resin residue of 

nanocomposites compared to the neat polymers. The results of both systems showed 

that the nanocomposites have a better thermal stability due to a higher thermal 

degradation temperature compared to that of the unreinforced polymers. The maximum 

increase in the temperature of about 22% was recorded for the addition of 25 wt% 
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nanosilica into the Epikote 828. Thi uggest that the interfacial adhe ion between 

particle and matrix is very good therefore higher temperatures are needed to remove the 

epoxy which is stuck on the particles' surface. 
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Figure 7.1: Comparison of maximwn thermal degradation temperatures of two different 

types of nanocomposites with the unmodified Epikot 828 and ycom 977-20 epoxies. 

7.2.3 Coefficient of thermal expansion 

Coefficient of thermal expansion (CTE) i one of th most important considerations for 

the fabrication of polymer composite tructures. For CFRP compo it sy terns, th 

epoxy has much larger CTE than the carbon fibre. Therefore, during hating or 

cooling, the epoxy expands or contracts more than th fibres. Thi mismatch in th TE 

induces thermal residual stress in th compo it material P 79]. Th p Iym r n ar to 

the surface of the fibres may be subjected to strong internal t nile forces. Thi could 

lead to internal micro-cracks and r duce the strength of th compo ites. Micro-cracking 

phenomena could obviously be observed when the material wa e po ed to cry genic 

cycling [131]. 

The CTE plays an important role pecially during cooling down (after curing 

temperature) in the fabrication of FRP compo it . If th adh ion f the polymer to 

the long fibre is good, the fibre can be buckled into a wa y hap. Thi fibr undulation 

mechanism wa properly tudied by JochLml et al. [180] u ing a ingle T300 carbon 

fibre in an L Y556 epoxy. The CTE of the carbon fibre i -0.74 ~H::f while the matrix 
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has CTE=150 I-LE fC, therefore during cooling the matrix hrink 200 time m r than 

the carbon fibre. This contributes to fibre wavine s. Fibre wavine s i one of the mo t 

important factors which contributes to a low com pre ive trength of FRP compo ite. 

Therefore, in theory, introducing a lower eTE of the matrix will reduc TE mismatch 

to the fibre and therefore produce a better quality of FRP. 

The inclusion of rigid nanofillers, which have low CT valu compared to the 

epoxy such as nanosilica, nanoclay and MWe T, is expect d to reduce the TE of the 

polymer. This was proven in the current study by experimental observations. Figure 7.2 

shows the comparison of CTE below Tg values of nanomodifed epoxies with their pure 

resins. All nanomodified systems have a lower eTE compared to that of the unmodifi d 

resin. This was a very promi ing result since, in theory, thi will minimise the thermal 

mismatch between carbon fibre and epoxy, thus reducing fibre wavine s due to low r 

thermal shrinkage of the epoxy during curing of CFRP compo ites. Therefore, better 

quality composites are achieved compared to conv ntional y tern. Figure 7.2 how 

that the nanosilica-filled Epikote 828 y t m ha the bigge t [fect on reducing T. 

For example the addition of 25 wt% nanosilica r duced T by about 18%. Thi was 

followed by nanoclay-filled Cycom 977-20 system, where inclu ion of 5 wt% nanoclay 

reduced CTE by about 12%. 
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7.2.4 Glass tran ition temperature 

The glass transition of a polymer composite i a temperature-induced change in the 

matrix material from the glassy to the rubbery state during hating or from a rubber to a 

glass during cooling. The glass transition is determined or marked by ( I) a change in the 

coefficient of thermal expansion or thermal strain of the material which is measured by 

TMA or (2) a change in the heat capacity of the mat rial which i measured by D C or 

(3) a change in matrix stiffness which is measured by DMA. In this tudy, TMA and 

DSC were used to study the effect of nanoparticles on Tg. All nanocomposites howed a 

slight reduction in Tg compared to the pure sy tern exc pt 1.28 nanoclay-filled pikote 

828 as shown in Figure 7.3 . This effect was recorded by both, TMA and D . 1.28 

nanoclay enhanced the Tg of Epikote 828 for a maximum of 12% with the addition of 5 

wt%. Nanoc1ay has the best effect on Tg for low mol cular weight epoxy, such as 

Epikote 828, by restricting th egmental motion of cro s-link at matrix-nanoplatelet 

interfaces [181]. 
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with the 

7.2.5 Stress- train behaviour 

Figure 7.4 shows the xampl of b ha i lIT of pure and nan modifi d 

Epikote 828 systems. Str s-strain curv are v ry dep ndent on the type of loading. In 
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tension and bending, epoxy polymer fails in a brittle manner, while in compression it 

behaves like a ductile material with a yield point and has higher failure strain. In tension 

and bending, cured Epikote 828 failed at a very low failure strains, of about 3.3% and 

4.8% respectively, while in compression it exhibited a large plastic deformation, up to 

43% failure strain. These three curves show that the materials properties, such as elastic 

modulus, ultimate strength and failure strain, have absolutely different values. Even the 

first parts of the curves, determined by the Young's modulus are different. The elastic 

modulus determined using the true compressive stress-strain curve is slightly higher 

than those determined in tension and bending. The tensile properties are largely 

determined by specimen imperfections such as flaws and submicroscopic cracks 

therefore the material is no longer continuum. However, the compressive stresses tend 

to close the cracks rather than open them. This behaviour was also observed by Nielsen 

and Landel [42]. The effects of defects are therefore minimised in compression tests. 

This means that the compression test characterises the actual properties of the pure 

polymer, provided that the effects of friction are eliminated by proper lubrication and 

proper selection of a specimen dimensions and geometry. In bending, part of the 

specimen is under tension and part under compression. The failure of the specimen is 

expected to be initiated in the tension part rather than the compression part due to a 

lower tensile failure strain. 

In the present work, the objective of conducting the mechanical tests was to 

investigate the stiffening, strengthening and toughening effects caused by nanomodifiers 

in the epoxy. The stress-strain response of the nanomodified systems under several 

types of loading (compression, tension and bending) was compared to the unmodified 

systems. Figure 7.4 shows that the mechanical performance of the epoxy can easily and 

effectively be studied through a compression test. For example, the addition of26 wt% 

nanosilica into the Epikote 828, as shown in Figure 7.4b, enhanced the (i) elastic 

modulus (indicated by the initial slope), (ii) ultimate stress (indicated by the highest 

stress value), (iii) yield stress (indicated by the peak stress at the transition from elastic 

to plastic behaviour) and (iv) fracture toughness (indicated by the area under graph) 

without any significant changes in strain at failure of the epoxy. Compared to the results 

in tension and bending, the elastic modulus, ultimate stress and failure strain depends on 

the quality of the specimens and test procedures where specimen misalignment and 

imperfections (such as agglomerated nanoparticles or inhomogeneous nanoparticle 
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distribution and low particle-matrix adhesion, void and microcrack ) cau e premature 

failure in the systems. 

The true compressive stress-strain response of almo t all nanomodified epoxy 

systems (results presented in Chapter 5 and Appendix A) showed that the pre ence of 

nanomodifiers, especially nanosilica and I.30 nanoclay, tiffened and strengthened the 

matrix, improved ductility and promoted higher plastic hard ning behaviour after 

yielding. Of course the degree of reinforcement depend on the quality of the fabricated 

nanocomposites such as the degree of disper ion and micro tructure of the nanoparticles 

in the epoxy, particle-matrix adhesion and voids. Th effect of nanoparticles on 

mechanical properties, which were obtained from the stress-strain curves, is discussed 

in detail in the following sections. 
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Figure 7.4: tress-strain behaviour of (a) pure Epikot 28 and (b) 25 wt% ilica in 

Epikote 828 polymers loaded in compr ion, tcn i nand b nding. 

7.2.6 Elastic modulus 

Elastic moduli measure th resi tance to deformati n of material when cxternal for 

are applied, where stiffer material show high r alu of Young' m dulu . urn rou 

method have been u ed to mea ure the ela tic modulu . The mo t common te t are 

221 



Chapter 7 Overall discu ion 

tensile, compression and flexural. In thi study, the e tc t wer condu ted to tudy th 

effect of nanofillers on the elastic moduli of epoxy. la tic modulu wa determin d by 

taking the initial slope of the tres - train curve in the ela tic region. Th result wer 

summarised in Figure 7.5. This figure show that the nanocompo ite offi r high r 

stiffness subjected to all types of loading. The elastic moduli wer found to increa e 

with increasing nanofiller content. 
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The degree of reinforcement was mainly determined by the stiffness and volume 

content of the nanofillers. A rigid nanosilica has Young's modulus of 70 GPa [73]. 

Therefore, the highest content of nanosilica in Epikote 828 (25 wt%) gave a maximum 

reinforcement to the epoxy where it enhanced the compressive modulus by 34%, the 

tensile modulus by 38% and flexural modulus by 37%. It is interesting to note that by 

adding only 1 wt% of CNT, improves compressive, tensile and flexural moduli by 19%, 

23% and 21%, respectively. This is due to the Young's modulus of multi walled CNT of 

1000 GPa [86]. Therefore, the effect of CNT is highly significant even at a low volume 

content. However, in this study the maximum CNT content was limited to 1 wt% 

because the viscosity of the resin was too high for further addition of the CNT and this 

led to degassing problems. The addition of MMT nanoclay, which has E=170 GPa 

[121], into epoxy was also found to enhance the elastic moduli for both systems; 

clay/828 and clay/977. The inclusion on 5 wt% nanoclay into the epoxy, enhanced the 

compressive, tensile and flexural moduli by 19-21 % for both systems. 

Additionally, the compressive modulus of silical828 and clay/977 systems was 

also estimated using several types models (as presented in Sections 5.2.4.4 and 5.5.4.4). 

For silical828 system, the predicted modulus of elasticity using the Lewis-Nielsen 

model showed a very good agreement when compared to measured values. While, for 

the clay/977 system the modified Halpin-Tsai model was proposed to predict the 

compressive modulus. This model captured the effect of nanoclay volume fraction on 

the shape factor;' where the stacked nanoplatelets reduced the shape factor. This 

relationship successfully predicted the elastic modulus of the nanocomposite at various 

clay contents. 

7.2.7 Yield and Ultimate stresses 

The influence of nanofillers on yield strength of epoxy polymers was studied on four 

different systems loaded in compression as shown in Figure 7.6. This figure shows that 

Cycom 977-20 system has higher yield strength when compared to a lower molecular 

weight epoxy, Epikote 828. This could be due to the presence of aromatic groups in a 

densely crosslinked molecular network of Cycom 977-20. The presence of high content 

of nanosilica (25 wt%) slightly increased the yield strength of Epikote 828 while there 

was no improvement recorded for the CNT/828 system. For the clay/828 system, the 

yield strength reduced with rising filler content. But for the clay/977 system, 
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nanocomposites (which were prepared using the thr e roll mill method) have a better 

yield strength compared to the pure polymer. The maximum of 6% incr a d wa 

recorded, by adding 5 wt% 1.30 into Cycom 977-20. Howev r, clay/977 

nanocomposites prepared using a mechanical tirring method recorded Ie than 3% 

improvement in yield strength, see Section 5.5.4 Table 5.15. 

175 

150 

cu 125 
Q. 

:2 
?; 100 
g> 
!!! 
Cii 75 
:2 
Q) 

>= 50 

25 

o • 

Legend: 

_ 5 wt% Silica 
_ 13 wt% Silica 

- 25 wt% Silica 
- 0.5wt% CNT 
- 1 wt% CNT 
o 1 wt% 1.28 Clay 
CJ 3 wt% 1.28 Clay 

5 wt% 1.28 Clay 
- 1 wt% 1.30 Clay 
- 3 wt% 1.30 Clay 
- 5 wt% 1.30 Clay 
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For nanocomposite systems, the d gre of reinforcem nt in the yi Id and ultimat 

stresses are usually related to the quality of the nanofiller-matri int rfa . Thi i true 

because nanofillers produce an enormou amount f urfac ar a d in th 

matrix. For example, silica nano ph re provid 50-3 0 m2/g, earb n nan tub pro id 

250-300 m2/g and clay nanoplatelet provide 750 m2/g p iii urfa area 

[56,61 ,117]. Therefore, the particle/matrix adh ion tr ngth and th int rfacial tiffn 

play an important role to tran fer stre s and ela tic deC! rmation fr m th matri ' t the 

nanofillers [72-74]. If the nanofiller -matrix interacti nip r, th fill r ar unable to 

carry any part of the external load ther fore the tr ngth f th nan omp ite cannot b 

higher than that of the neat polymer. Mor v r, if the b nding betw en nan filler and 

the matrix is strong enough, th yi Id trength of the nano mp an b higher than 

orre pond t a hi gh that of the pure polymer. Of cour e, a high interfa 

nanocomposite modulu . The effect of nanoIiller on th compr i e, and 

flexural strength of epoxy polym r wa illustrat din Figur 7.7. iii a/82 y tern ha 
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very good compressive and tensile strength compared to the pure polymer and the 

other systems. This suggests that the quality of the nanosilica- poxy interface i very 

good therefore the stresses are efficiently transferred via the interface. In contra t, the 

CNT/828 system shows a slight improvement in tensil and compressive trengths, for 

about 6-10% increase compared to the pure Epikote 828. v n though T's have a 

tensile strength of 11-200 GPa [61] compared to that of 60-80 MPa only for neat 

epoxies, it does not contribute to the maximum enhancem nt to the properties of the 

nanocomposites. This indicates that the stress is not effectively tran fer to th C T 

through the interface. 
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For the clay/epoxy system, the reinforcement benefits were determined by the 

degree of exfoliation of the clay nanoplatelets in the matrix. In the case when fully 

exfoliation clay-platelets in the matrix was not achieved, where clusters of intercalated 

structures remain in the matrix, a local concentration stress built up with the applied 

load and then easily induced the initiation of the final failure. This obviously can be 

seen in clay/828 system where at higher filler contents, more intercalates clumps and 

voids are likely to be found. A low quality of fabricated clay/828 nanocomposites 

contributes to lower compressive, tensile and flexural strengths compared to that of the 

pure polymer. As expected, the reinforcement benefit is substantially greater for the 

exfoliated nanocomposites where the presence of 1.30 nanoclay improved the overall 

strengths ofCycom 977-20. 

As mentioned above, the reinforcement effect of the clay/epoxy system is 

dependent on the extend of silica nanolayer separation where closely spaced platelets 

(low d-spacing) limit the ability of the polymer chains to intercalate the gallery. This 

reduces the load transfer capability of the epoxy to the fillers and increases the 

possibility of interplatelets sliding due to weak interfacial adhesion. These contribute to 

low strength properties of the nanocomposites. This effect can obviously be seen by 

comparing the strength results of clay/977 nanocomposites that were prepared using the 

three roll mill and mechanical stirring techniques. The three roll mill produced an 

exfoliated structure while the mechanical stirring produced predominantly intercalated 

structure nanocomposite. Using the mechanical stirring technique, the nanocomposite 

slightly improved the compressive strength by 1-6% and tensile strength by 3-13% 

while reduced the flexural strength to a maximum of 14% compared to the pure Cycom 

977-20, see Section 5.5 Tables 5.15 and 5.17. However, clay/977 nanocomposites 

prepared using the three roll mill method significantly improved the compressive 

strength by 10-17%, tensile strength by 18-24 % and flexural strength by 3-9% 

compared to the pure polymer as shown in Figure 7.7. Therefore the dispersion state of 

the nanofillers plays an important role in determining the overall properties of the 

nanocomposites. 

7.2.8 Failure strain 

For nanocomposite systems, most deformation comes from the polymer. This is due to 

the fact that, rigid nanofiller has a very high stiffness compared to that of the resin, such 
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as the Young's modulus of nanosilica is 70 GPa, eNT is 1000 GPa and nanoclay is 170 

GPa compared to only 3 GPa elastic modulus of pure epoxy. Therefore, when the 

nanocomposite is loaded in compression, tension or bending, the nanofiller restrains the 

deformation of the polymer provided that the interfacial stiffness between the filler and 

the matrix is strong. This resistance against deformation mechanisms contribute to the 

higher modulus of the nanocomposites in the elastic region. However, the degree of 

deformation in the plastic region depends on the interfacial stiffness. Figure 7.8 shows 

the effect of nanofillers on the failure strains of epoxy polymers that were loaded in 

compression, tension and bending. It is surprising to observe that there is no significant 

reduction in failure strain in the nanocomposites, except the clay/828 system, which 

fails prematurely due to several imperfections or defects of the fabricated specimens as 

discussed earlier. This shows that there is a strong interfacial stiffness between the filler 

and the matrix which contributes to the extent of matrix deformation. 

It is interesting to note that the silical828 system offers a simultaneous 

improvement in the compressive, tensile and flexural moduli and strengths without 

sacrificing the failure strains, as shown in Figures 7.5, 7.7 and 7.8. This suggests that 

the nanoparticles are able to introduce additional mechanisms of energy absorption 

without heavily blocking the matrix deformation. In addition, this is in contrast to 

conventional composites systems, where the addition of rigid micron-sized fillers 

enhanced the stiffness, however reduced the strain to failure with rising filler content. 

The addition of elastic micron-sized fillers (such as rubber and elastomers) increased the 

strain to failure on the one hand, but on the other hand, gives detrimental effect on 

elastic modulus and strength [4,25,26,33,36,37,43,44,56,59,117]. 

CNT/828 nanocomposite was also expected to enhance both the overall stiffness 

and strength, due to the excellent properties of the eNT. However, it was found that the 

nanocomposite when subjected to compression and tension, did not maximise the 

capability of the eNT. The presence of CNT moderately improved the tensile and 

compressive properties with no noticeable increased in the failure strains. However, the 

CNT contributes to a good resistance to deflection when the nanocomposite was loaded 

in bending, where it enhanced the flexural modulus, strength and failure strain 

simultaneously, as shown in Figures 7.5, 7.7 and 7.8. 

In contrast to clay/828 system, a highly exfoliated 1.30 clay nanoplatelets 

enhanced the overall properties of Cycom 977-20. The clay/977 nanocomposite has a 
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higher compressive, tensile and flexural moduli and trength compared to th pure 

polymer. The improvement in train to failure of the nanocompo ite loaded In 

compression and tension was also recorded, see Figure 7.8. However, the pr enc of 

clusters of ordered exfoliated clay nanoplatelet in the nanocompo ite rna reduce th 

matrix deformation when it wa loaded in bending, henc reduc d the flexural train at 

fracture. 
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_ 5 wt% Silica 
_ 13 wt% Silica 
_ 25 wt% Silica 
_ 0.5wt% CNT 
_ 1 wt% CNT 
o 1 wt% 1.28 Clay 
o 3 wt% 1.28 Clay 

5 wt% 1.28 Clay 
- 1 wt% 1.30 Clay 
- 3 wt% 1.30 Clay 
- 5 wt% 1.30 Clay 

Figure 7.8: Compari on of (a) compr i c, (b) ten il and ( n ' ural train at break 

of four different typ s of nanocompo it with th unm dified p I m r . 
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7.2.9 Fracture toughness and toughening mechanisms 

Fracture toughness is one of the most important characteristics that needs to be 

considered in the fabrication of polymer composites. It measures the ability of the 

material to resist the extension of a pre-existing crack by a specified type of stress, 

which can be defined in terms of two factors; (i) a critical stress intensity factor KJC or 

(ii) a critical strain energy release rate G,c [160]. From the load at which the crack starts 

to rapidly propagate (F Q), the fracture surface energy can be calculated for a specimen 

of specified geometry (refer to Section 3.6.4) using equations given in British standard 

13586 [160]. Higber values of Klc and GIC represent higher fracture toughness 

properties of the composite system where the material shows higher resistance against 

crack initiation and propagation. 

Figure 7.9 shows the effect of nanofillers on the fracture toughness properties of 

epoxy polymers. All nanocomposite systems show a better fracture toughness compared 

to the pure polymers. Silical828 showed a tremendous improvement in KJC and G1C 

compared to the neat epoxy. As the nanosilica content is increased, both the KJC and 

GIC increase. The addition of 25 wt% nanosilica offered a maximum improvement to 

the KJC for about 84% and GIC for about 163%. It is interesting to note that the 

nanosilica improves fracture toughness, elastic moduli and strengths simultaneously and 

with no detrimental effect on failure strain and thermal properties of the Epikote 828. 

This is totally different to the conventional composite systems, such as rubber-, glass 

beads-, elastomer-, thermoplastic-, alumina- microparticle-filled epoxy, where attempts 

to improve toughness usually accompanied by reduction in thermal and stiffuess 

properties and vice-versa [4,25,26,33,36,37,43,44,56,59,117]. The improvement in KJC 

and G IC indicates that higher energy is needed to initiate and propagate crack. 

The improvement in fracture toughness was also recorded for nanocomposites 

prepared using eNT and clay nanofillers. The addition of 1 wt% eNT improved KJC 

and G IC of Epikote 828 by 54% and 100%, respectively. While, the degree of 

enhancement in fracture toughness for clay/828 system is dependent on the quality of 

the fabricated samples. At high clay content, the presence of nanoclay rich regions and 

voids limits the toughening capability of the nancomposites due to a lower epoxy-clay 

adhesion. The incorporation of I.30 nanoclay improved the fracture toughness of Cycom 

977-20. A fully exfoliated nanocomposite of 1 wt% nanoclay offered 20 % increased in 

KJC and 43% increased in G]C values compared to that of the neat epoxy. However, 
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further addition of the nanofillers decreased slightly the fracture toughne but remain 

above that of the neat matrix. This is due to the presence of ordered exfoliat d tructure 

of nanoclay in the epoxy at high filler content. 
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In addition, the increased of the area under the stress-strain curves of the 

nanomodified polymer loaded in compression, tension and bending, as discussed 

previously in Section 7.2.5, also indicated improvement in fracture toughness when 

compared to the neat polymer. In order to explain the increase in energy absorption of 

nanocomposites, visual examinations of the fracture surfaces of neat and nano-filled 

polymers using SEM were conducted. 

Figure 7.lOa shows the prismatic specimens after compression where the failure 

of the specimens was via barrelling and longitudinal cracking. SEM examination of the 

fracture surfaces of neat and nanomodified epoxy polymers can provide detailed 

information on the cause and location of failure and, hence, explain the increase in 

fracture toughness of the nanocomposites. The fracture surface of neat and modified 

epoxy samples can be roughly divided into two regions: crack initiation zone (high 

stress concentration region where crack initiates) and crack propagation zone (crack 

growth region where the cracks propagate) as shown in Figure 7.lOb. The effect of 

nanofillers on the morphology of fracture surface of the epoxy at these two different 

zones was studied. Figures 7.11-7.14 show the SEM images of broken cubic specimens 

of nanosilica-, CNT- and nanoclay-filled Epikote 828 systems after compression, while 

Figures 7.15-7.16 show SEM images of broken nanoclay-modified Cycom 977-20 

samples after compression, tension, bending and fracture toughness tests. 

There are various toughening mechanisms, such as crack pinning, particle 

bridging, void nucleation, crack tip blunting or crack tip deformation, localised inelastic 

matrix deformation, crack path deflection, particle yielding induced shear banding, step 

formations and microcracking [26,43,44,27,28,38], that have been used to explain the 

energy-dissipative mechanisms of the conventional rigid particle filled epoxy systems 

loaded in various types of loadings. Among these, crack pinning, crack deflection, 

filler/matrix debonding, crack bridging, shear yielding and shear banding have been 

proposed as applicable for nanofiller-modified epoxy systems 

[56,60,70,73,75,77,118,121,182,183]. In the current work, some of these mechanisms 

such as large scale plastic deformation (shear yielding, shear banding and step 

formation) of the matrix and crack deflection can clearly be observed on the fracture 

surface ofnanocomposites as shown in Figures 7.11-7.16. 
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(i) crack (ii) crack propagation 
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Figure 7.10: (a) Axially loaded cube typ peclm n fail via barrelling and longitudinal 

cracking followed by buckling at higher loading and (b) . M mi rograph [th 

fracture urface showing crack initiati n and crack propagation z ne . 
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Overall view crack initiation zone crack propagation zone 

(i) (ii) (iii) 

(d) 25 wt% nanosilica in Epikote 828 

Figure 7.11: SEM examination on fracture surface of cubic specimens of pure pikote 

828 and nanosilica-filled Epikote 828 after compression. Pure pikote 828 (a) show 

smooth fracture surface while nanocomposites (b, c and d) show crack deflection 

mechanism and large scale resin shear deformation that leads to the formation of shear 

bands. More textured surface is observed as the nanopartic1e content is increa ed (d). 
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Overall view crack initiation zone crack propagation zone 

(i) (ii) (iii) 

Cd) 5 wt% 1.28 nanoclay in Epikote 828 

Figure 7.12: SEM examination on fracture surface of cubic specimens of NT/828 and 

clay/828 nanocomposite systems after compres ion. 
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(a) circled area indicate cluster ofCNT (b) CNT in epoxy at 80000x 

Figure 7.13: SEM micrographs showing fracture surface of 1 wt% multiwalled CNT in 

Epikote 828 resin as observed under two different high magnifications where (a) 

clusters of CNT in epoxy contribute to crack deflection mechanism and (b) close-up 

view of a cluster of multiwalled CNT in epoxy. 

-

(a) circled area indicate intercalated region (b) nanoclay in epoxy matrix 

Figure 7.14: SEM micrographs showing fracture surface of 5 wt% clay/epoxy 

nanocomposite prepared using mechanical stirring technique ob erved under two 

different magnifications where (a) clusters of nanoc\ay in epoxy (max. ize 15-25 /-Lm) 

and (b) intercalated structure clay/epoxy nanocompo ite. 
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Overall view crack initiation zone crack propagation zone 

(i) (ii) (iii) 

(d) 5 wt% 1.30 nanoclay in Cycom 977-20 

Figure 7.15: SEM examination on fracture surface of cubic shape specimens of clay/977 

system, prepared using mechanical stirring technique, after compression. 
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(i) Pure Cycom 977-20 (ii) 1 wtO/o 1.30 nanoclay (iii) 5 wt% 1.30 nanoclay 

(a) Tensile 

(i) Pure Cycom 977-20 (ii) 1 wt% 1.30 nanoclay (iii) 5 wt% 1.30 nanoclay 

(b) Flexural 

(i) Pure Cycom 977-20 (ii) 1 wfl/o J.30 nanoclay (iii) 5 wt% 1.30 nanoclay 

( c) Fracture toughness 

Figure 7.l6: SEM examination on fracture surface of (a) tensile, (b) flexural and (c) 

fracture toughness specimens of pure and nanoclay-modified ycorn 977-20 polymer . 
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The fracture surface of pure Epikote 828 is shown in Figure 7.11a where the 

direction of crack propagation is from left to right. The fracture surface is relatively 

smooth and glassy, which is typical of a brittle material where there is no plastic 

deformation during fracture. The observations on crack initiation and propagation zones 

agree well with the low measured toughness of the pure polymer, where KIC=0.67 

MPa.mI12 and G1c=I52.73 J/m2
• The addition of nanosilica, CNT and nanoclay 

obviously roughened the fracture surface of the Epikote 828 as shown in Figures 7.11-

7.14. The fracture surface of nanomodified polymers demonstrates large-scale plastic 

deformation of the matrix and crack deflection mechanisms. This contributes to a higher 

fracture energy and a tougher system compared to neat polymer. Of course, the degree 

of toughening effect depends on the type and amount of the nanofillers, the degree of 

distribution or exfoliation of the nanofillers in the matrix or quality of the fabricated 

nanocomposites and filler/matrix interfacial adhesion. 

Figure 7.11 shows that an increase in nanosilica content causes an increase in 

surface roughness. The addition of nanosilica improved the matrix plasticity behaviour 

which led to shear yielding of the matrix mechanism and the formation of shear bands. 

This explains the increasing in K}c and G IC of the epoxy with increasing in nanosilica 

content as shown in Figure 7.9. The toughening effect can obviously be seen in Figure 

7.11d where the addition of25 wfOlo nanosilica contributes to a large plastic deformation 

of the matrix and hence agrees well with the enhancement of about 163% in fracture 

energy compared to pure epoxy. Figure 7.12b shows that the crack path deflection is the 

major mechanismthat contributes to a higher fracture toughness of CNT/828 

nanocomposite. This mechanism occurs when the crack front approaches the CNT rich 

regions and it is tilted and even twisted out of its original plane. This alters the stress 

state near crack tip, produces non-planar cracks, increases fracture surface roughness 

and consumes additional fracture energy. Therefore the addition of CNT causes 

improvement in fracture toughness of about 60-100% compared to the neat epoxy as 

shown in Figure 7.9b. The crack path deflection mechanism can be seen clearly on high 

magnification SEM images as shown in Figure 7.13 where the clusters of 10 nm 

multiwalled CNTs can clearly be observed under 80000x magnification. 

For the clay/828 system, the increased surface roughness, as shown in Figure 

7.12c-d, implies that the path of the crack tip is distorted because of the clay platelets, 

hence, making crack propagation more difficult. The crack deflection and plastic 

deformation of the matrix as observed on the fracture surfaces were responsible for the 
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increased in fracture energy for about 16-60% by adding 1.28 nanoclay into the Epikote 

828, as shown in Figure 7.9b. However, at high nanoclay content, the clusters of 

intercalated regions (nanoclay rich regions), as shown in Figure 7.14, limit the 

toughening capability of the nanoclay. The weak interfacial adhesion between 

agglomerated nanoclay and the matrix allowed the cracks to easily pass through them. 

Moreover some microvoids and matrix cracking can also be observed on the fracture 

surface, see Figure 7.12c-d. This contribute to a slightly lower fracture toughness 

compared to low content clay nanocomposite system, see Figure 7.9. 

Examination of the fracture surface of pure Cycom 977-20 specimen after 

compression, Figure 7.15a, showed a relatively smooth and glassy surface (brittle-like 

failure) compared to those of the nanoclay-modified polymer which demonstrate a crack 

deflection mechanism and micro-rough fracture surface, as shown in Figure 7.ISb-d. 

The surface roughness increases with increasing clay content. Therefore, the formation 

of a large number of micro-cracks and the increase in the fracture surface area due to 

crack deflection can be considered as the major toughening mechanisms in the clay/977 

system. The crack deflection toughening is created when the crack front approaches an 

exfoliated or intercalated rich region. It is deflected out of its original plane and 

produced non-planar cracks. A large number of microcracks and large fracture surface 

areas, as shown in Figure 7.1Sb-d, consumes additional fracture energy, and hence, 

contribute to a tougher system. However, as shown in Figure 7.9 the presence of 

intercalated structure nanoclay in the epoxy reduced the toughening effect. Thus, the 

nanocomposite with 3 and 5 wfOlo nanoclay has a lower KJC and OIC values compared to 

that of the nanocomposite with 1 wt% nanoclay. 

The topography of the fracture surfaces of clay/977 system after tensile, flexural 

and fracture toughness tests were also observed under SEM. Figure 7.16 shows that 

nanoclay gave a similar effect on the fracture morphology of tensile, flexural and 

fracture toughness specimens as have been discussed previously on compression 

specimens. The addition of nanoclay into the epoxy increased the surface roughness of 

failed specimens. Figure 7.16a shows the presence of numerous dimples on the fracture 

surface of the nanomodified system, and the dimple density increases with nanoclay 

content. The formation of large number of dimples contributes to an increase in the 

fracture surface areas and thus much of the fracture energy is likely to dissipate, thus 

contributing to a tougher system. Figure 7.l6a also shows that for the nanocomposites 

system, the clay contributes to the formation of the dimples where a cluster of clay 
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particles can be found in the middle of the dimples. This shows that the cluster of 

intercalated structure clay induces high-localised stress concentrations in the specimen 

that is loaded in tension. This may initiate premature failure if the filler/matrix interface 

is weak and thus leads to low fracture toughness at high clay content. This is the reason 

why the fracture toughness of nanocomposites with 3 and 5 wt% nanoclay was less than 

the fully exfoliated nanocomposite (1 wt<'110 nanoclay) as shown in Figure 7.9. A similar 

fracture mechanism was found on the fracture surface of flexural specimens as shown in 

Figure 7.16b. In bending, the specimens are subjected to a combination of tension and 

compression stresses. The pure and nanomodified epoxy are more likely to fail in 

tension rather than in compression because the epoxy has very low tensile failure strain. 

Therefore the fracture surface of neat and nanomodifed systems shows the formation of 

dimples. The fracture surface areas increase with increasing clay content. 

Figure 7.16c shows the fracture surface of neat and nanomodified epoxy of SENB 

specimens loaded in three-point bending. The fracture surface of the neat epoxy shows a 

brittle failure with very smooth surface areas, while the addition of nanoclay roughened 

the surface with the formation of secondary cracks. The surface roughness increases 

with increasing clay content and the major toughening mechanisms is by the formation 

of micro-cracks via crack deflection. Figure 7.16c(iii) shows evidence of micro-voids 

and clusters of nanoclay rich region in the matrix and nanoparticle debonding occurred 

at high clay content. This limits the toughening benefit of large surface areas offered by 

the nanoparticles due to a weak filler/matrix interfacial bonding. 

7.3 Effect of nanosilica on the compressive properties of HTS40/828 

laminates 

7.3.1 Physical properties 

In the previous section, it was shown that nanomodified epoxy with uniformly dispersed 

silica nanospheres enhanced the compressive, tensile, flexural and fracture toughness 

properties with no significant reduction in thermal properties of the Epikote 828. The 

study was then extended to the fabrication of CFRP laminates using the 5, 13 and 25 

wt% nanosilica-modified Epikote 828 and HTS40 carbon fibres. A conventional 

technique, using dry filament winding, resin impregnation and vacuum bagging, was 
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employed to fabricate a series of nanosilica-modified HTS40/828 laminates. The TGA 

results confirmed that the nanosilica contents in the HTS40/828 laminate were 3, 7 and 

13 vol. %. It is well known that density is one of the most important characteristics in 

composite design. The density of the unmodified system is 1.45 glcm3 while the 

addition of 13 vol. % nanosilica slightly increased the density of the HTS40/828 

laminate to 1.53 glcm3
• The measured density of commercial system HTS40/977-2 was 

1.54 glcm3
• Therefore this value is similar to 13%siIHTS40/828 system. 

The fabricated laminate has average Vj = 42%, low fibre waviness distribution 

(average t/Jo = 2.5") and less than 1% void content. This implies that the fabrication 

technique, which was employed in the current work, successfully produced good quality 

laminates. The fibre volume fraction (Vj = 42%) measured by image analysis was 

proven using the TGA technique. In addition, the TGA results showed that the addition 

of nanosilica improved the thermal stability of the laminate. The presence of nanosilica 

also results in a narrow fibre angle distribution in the HTS40/828 laminate. For 

instance, for the unmodified system, 90% of fibre volume fraction within ±2° to the 0°­

fibre direction while ±1.5° fibre misalignment was recorded for 13%siIHTS40/828 

system. This suggests that the nanomodified resin contributes to a better fibre alignment 

in the laminate. It provides a better thermal stability hence reduces the fibre waviness 

caused by fibre/resin thermal mismatched during curing. 

7.3.2 In-plane shear properties 

The addition of nanosilica enhanced the in-plane shear stress-strain response of the 

HTS40/828 laminate. This is desirable since raising the elastic and plastic tangent shear 

modulus leads to a higher compressive strength of the composite. The 0.5% offset 

technique was introduced to determine the in-plane shear yield stress. The [±45hs 

laminate failed prematurely in tension due to a reduced gauge length. Therefore, the 

overall in-plane shear stress-strain response was also plotted, using an equation given in 

[7], to determine the in-plane elastic and plastic moduli and shear yield and ultimate 

stresses. For instance, the addition of 13 vol.% nanosilica improved the in-plane shear 

elastic modulus, plastic modulus, yield stress and strength by 49%,34%,40% and 39%, 

respectively. The in-plane shear properties were incorporated into several analytical 

models in order to study the effect of nanosilica on compressive properties of UD 

HTS40/828 laminate. 
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7.3.3 Compressive properties 

The degree of reinforcement provided by a very well dispersed nanosilica in the epoxy 

was evaluated using compression tests on the un laminate. The valid measurement of 

the compressive response of CFRP has always presented difficulties [161]. This is 

because the compression testing is sensitive to various factors such as Euler buckling 

and specimen designs, type of test fixtures and applied loads to the specimens, specimen 

misalignment in the test fixture, bending/stretching coupling in the laminate and local 

stress concentrations near the end tab [161,184]. For example, the experimentally 

measured compressive strength data presented in [4-6] were concluded as invalid due to 

premature failure of the specimens. The UD laminates were tested using a short-block 

compression fixture. The test specimens failed by longitudinal splitting, crushing and 

end-brooming at the load introduction end. 

In the current work, the specimen failed within the gauge length. This was 

identified as transverse shear failure mode according to ASTM D3410. This implies that 

the compression tests, using the ICSTM test fixture, were successful. The results 

showed that the addition of nanosilica improved the compressive properties of the 

HTS40/828 laminate. The post failure examination on the fracture surface of the 

unmodified and nanomodified composites showed that individual fibres failed due to 

micro-bending, where tension and compression regions can be clearly identified on the 

fracture surface. The optical micrographs also showed that the kink band zones were 

formed after the fibres break. Therefore, based on these failure mechanisms, the 

compressive strength of UD laminates was predicted using fibre micro buckling and 

fibre kinking models. 

Figure 7.17 shows the predicted compressive strength of un laminates using three 

different models. The compressive strength of unmodified and nanomodified­

HTS40/828 systems was predicted using initial fibre misalignment angle f/Jo of 2°, while 

for HTS40/977-2 system used f/Jo = 1°. These values were chosen based on the fibre 

angle distribution plots, as discussed in Chapter 6 Section 6.2.1, where 90-95% fibres 

lie within these angles with respect to the 0°-fibre axis. 
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Figure 7.17: Comparison of predicted and mea ured compre sive str ngth fth 0 

HTS40/828 and HTS40/977-2 CFRP composites. Th compr IV trength f 

unmodified and nanomodified HTS40/828 laminat was pr dieted u ing ¢o = 2°, whil 

tPo = 1 ° was used for HTS40/977-2 system (based on e pcrim ntal r ult) . 

Figure 7.17 shows that all model predict d enhanc m nt in th 

strength of HT 40/828 system by the inclu ion of ilica nanoparti I degr e r 
reinforcement depend on various parameter such a initial tibr mi alignm nl angl , 

in-plane shear elastic and plastic moduli , h ar yi Id and ultimat and fibr 

volume fraction. However if all of these param ters were on id rcd in th pr di ti n 

model, Berbinau 's model und restimat d the actual compr hi 

because the predicted value corre ponds to th riti al tr at hi h fibr inslabilit r 

micro buckling initiates and not nece arily the finaJ failur trc f th wh I laminat 

caused by both fibre microbuckling (damage initiation) and pia ti kinking (d mag 

propagation mechanism). For instance, th compr tr ngth f I IT 

laminate, which was predicted using Berbinau ' model , wa 610 MPa at ¢o = III and 4 17 

MPa at ¢o = 2°. These values fall within the mat rial ' 

compressive stress-strain curve as shown in Figure 7.18. Th refore, ~ r th UlT nt 

system, the buckled fibr s continue to support load and final failurc occur wh n th 
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fibre kink band zone has propagated acro s the specimen width. Th compre i e 

strength predicted using Budiansky's fibre kinking model showed a good agr m nt t 

the measured value. For 90 = 1°, none of these models could predict th compre i 

strength of the thermoplastic-toughened CFRP compo ite ystem HT 40/977-2. 

However, the predicted compressive strength of thi system was very close t th 

measured value of 1505 MPa if 90 = l.5° was employed the Budian ky mod I. 
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Conclusions and suggestions for future work 

8.1 Concluding remarks 

The compressive strength of UO CFRP composites is primarily influenced by the 

properties of the matrix and fibre alignment in the laminate [7]. Therefore, this study is 

aimed at enhancing the compressive properties by introducing nanofiller into the matrix. 

In order to achieve this, a series of nanomodified resins using silica, eNT and clay 

nanofillers, were evaluated. Based on the thermal and mechanical tests results, a number 

of conclusions are drawn. 

• Stiffer resins were successfully developed using nanosilica, eNT and nanoclay. The 

elastic modulus of the epoxy polymer (measured in compression, tension and 

bending) was increased with increasing nanofiller content. 

• Nanosilica was homogeneously dispersed in Epikote 828 polymer. The addition of 

nanosilica improves the compressive, tensile, flexural, fracture toughness, thermal 

stability and dimensional stability of the epoxy polymer. The major tOUghening 

mechanisms involved the formation of crack deflection, micro-cracks and plastic 

yielding as revealed by SEM micrographs. 

• At low CNT content, a good quality of nanocomposite was fabricated however, at 

high eNT content (>0.5 wt%) the TEM micrographs showed evidence of some eNT 

entanglement. eNT moderately improved the compressive and tensile properties of 

the epoxy polymer, however it gave significant improvement in flexural properties 

and fracture toughness. 

• The presence of 1.28 nanoclay slightly improved the elastic modulus of the Epikote 

828, however the nanocomposite failed prematurely when it was loaded in 

compression, tension and 3-point bending. The TEM micrographs revealed the 
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presence of nanovoids and clusters of intercalated nanoclay in the nanocomposite. 

Limitations in processing time and high nanoresin viscosity contributed to a low 

quality nanocomposite. Despite all weaknesses in mechanical performance, 1.28 

nanoc1ay significantly improved the thermal and dimensional stabilities of the epoxy 

polymer. 

• At low content, the 1.30 nanoclay was successfully exfoliated in Cycom 977-20 

resin by using a 3-roll mill machine. However, at high clay content (>3 wt%), 

clusters of intercalated nanoclay were found in the polymer due to processing 

difficulties. The addition of nanoclay improved the dimensional stability, thermal 

stability, compressive and tensile properties of the polymer. However, in bending, 

no improvement in strength and failure strain was recorded. The degree of 

reinforcement in fracture toughness was also dependent on the microstructure of the 

nanocomposite. At low clay content, exfoliated structure nanocomposite 

substantially improved the fracture toughness {Klc and Old, however this 

toughening effect was reduced as the clay content increased. 

Unlike conventional toughening systems using micron-sized fillers and agglomerated 

nanofillers, nanosilica improved the stiffness and strength without sacrificing toughness, 

failure strain and thermal properties of the Epikote 828. These interesting properties 

rendered this type of nanoresin as a suitable candidate for the fabrication of CFRP 

composite. Therefore the study was extended to investigate the effect of nanosilica on 

the compressive properties of HTS40/828 laminate. Based on the physical, thermal and 

mechanical tests that have been conducted, a number of conclusions are drawn. 

• The 3, 7 and 13 vol.% nanosilica-modified HTS40/828 composite laminates were 

successfully fabricated using a conventional technique (dry filament winding, wet 

resin impregnation and vacuum bagging). A good quality laminate (such as V,F42 

vol% and narrow fibre waviness distribution) was revealed by TOA and image 

analysis. 

• The in-plane shear properties of the HTS40/828 composite, such as elastic modulus, 

yield stress and shear strength, were increased with increasing nanosilica content. 
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• The presence of nanosilica significantly improved the compressive modulus and 

strength without sacrificing the failure strain of the laminate provided that the 

nanosilica content was less than 13 vol. %. 

• The SEM and optical micrographs showed that the failure of the UD laminate was 

due to fibre micro buckling and kinking mechanisms. Therefore, the un 
compressive strength was predicted using several analytical models based on these 

failure mechanisms. The predicted strength using Budiansky's model showed a 

good agreement to the experimental results. However, a conservative prediction was 

made by Berbinau's model, where the model provides a good indication of the 

initiation of fibre microbuckling in the composite during compression. 

• The experimental results showed that the compressive modulus of 7 and 13 vol% 

nanosilica-filled HTS40/828 was comparable to that of the commercial CFRP 

composite system HTS40/977-2. As predicted using Budiansky's model, the 

compressive strength of 13%siIHTS40/828 was 1392 MPa. This suggests that the 

performance of this newly developed system could be even better than that of the 

commercial system provided an improved fabrication method (commercial type) is 

employed. 

Based on the systematic experimental investigation and results that have been discussed 

in the previous chapters, it can be concluded that a nanomodified CFRP system 

(developed using appropriate treated-nanofiller and epoxy resin) is a promising 

advanced material that can be used in modern FRP structures to improve damage 

tolerance and damage resistance properties. A large number of opportunities for further 

study have arisen based on various topics which have been investigated in this thesis. 

These are briefly listed in the following section. 
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8.2 Recommendations for future work 

The work performed during this project demonstrated that a properly treated-nanosilica 

dispersed in CFRP composite enhanced the compressive and in-plane shear properties. 

However, in order to compete with commercially available systems, the other properties 

must be studied further. The tensile, bending, fracture toughness and thermal properties 

of the nanomodified laminates must be further investigated. In addition, the 

performance of the CFRP composite materials is usually characterised by their damage 

resistance and damage tolerance. Damage resistance is the resistance of a material to 

damage from impact, while damage tolerance is the ability of a material or structure to 

perform safely after damage. These properties are often measured using the 

compression after impact (CAl) and the open hole compression (OHC) tests. Therefore, 

there is a strong need to investigate the effect of nanosilica on these two properties. In 

addition, hygrothermal effect and fatigue performance of the nanomodified-CFRP 

systems also need further examination. 

Even though DGEBA type epoxies (such as Epikote 828) have widely been used 

for various applications, high performance resins (which have high thermal properties 

such as Cycom 977 series) are usually selected for the development of advanced 

systems and structures such as aerospace and high-end automotive. A preliminary work 

has been conducted to disperse a similar type of nanosilica into commercial resin 

Cycom 977-20. TEM micrographs showed a homogeneous dispersion of nanosilica in 

the epoxy. Therefore, this work should be extended to investigate the reinforcement 

effect ofnanosilica on the properties of the high performance resin (Cycom 977-20). 

With many industries looking to lower cost and high quality composites, higher 

volume manufacturing and fabrication methods, such as prepreg, autoclave and resin 

transfer moulding, are becoming of increasing interest. A conventional lab-scale 

technique was employed in this study yielded CFRP laminates with a 42% volume 

fraction. Therefore, a better fabrication method such as resin transfer moulding or 

prepreg technique must be further explored. 

CNT is one of the most versatile nanofillers that currently used to improve 

electrical and thermal properties of polymers. It has high elastic modulus (1 OOOGPa) 

and strength (1l-200GPa) [61,86]. However, the full potential of reinforcement offered 

by this type of nanofiller is always limited by improper treatment of the CNT's Wall, 

selection on the resin system and dispersion of CNT in the matrix. These limit the 
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capability of transferring load between filler and the matrix. Therefore, further 

investigation should be conducted to improve the system. This is a promising nanoresin 

for CFRP system in order to improve bending, fracture toughness, electrical and thermal 

properties. 

Clay/epoxy nanocomposites exhibit good thermal and dimensional stability. This 

low cost nanofillers has high elastic modulus and provide enormous surface areas when 

properly distributed in the resins. In this study, it enhanced the mechanical and thermal 

properties of Cycom 977-20. However, limitation in processing time due to the presence 

of hardener during milling limits the degree of dispersion. Hence, TEM micrographs 

revealed the high-density clay nanoplatelets distributed in the matrix. Therefore, further 

improvement in the fabrication process is still required. 
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Appendix A: Mechanical test results of nanomodified-epoxy polymer 
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(i) Tensile test (ii) Flexural te t 
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(i) Cylindrical specimens 
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(i) Cylindrical specimens (ii) Cubic specimens 
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Appendix B: Mechanical test results of CFRP composites 
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Appendix C: Berbinau's Fibre Microbuckling Model [46] 

The fibre microbuckling model was developed by Berbinau et al. [46] based on the 

assumption of fibre acts as an Euler slender column supported by a non-linear matrix. 

Based on the fact that carbon fibres in the 0° UO laminates are not perfectly aligned 

with the loading direction, (up to 5° fibre misalignment; mainly due to the thermal 

mismatch), therefore Berbinau et al. [46] modelled the initial fibre waviness by a sin 

function vo(x) as shown in Figure CIa. 

(a) p (b) y 

2~ 
2-1. 

(i) Initial fib're waviness 

P 
(ii) Deformed fibre 

Figure Cl : (a) A schematic of fibre microbuckling [46] (b) Fre body diagram for a 

fibre element [53]. P = Axial compr iv force, Q = Tran ver e h ar, M = B nding 

moment, p = Applied distributed axial force, q = Appli d di tribut d tran er e fI rc , 

m = Applied distributed b nding m m nt. 

A sin function vo(x) i characteri d by it amplitude Vo and it half-wa I ngth 

A.o a follows: 

( I ) 
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Figure CIa shows when the compressive load is applied the misaligned fibre deform 

into a new sine function v(x) of amplitude V and half-wavelength A.. The function v(x) is 

given by: 

Vex) = VSin( ~) (C2) 

Figure C I b shows a free body diagram of an infinitesimal element of a deformed fibre. 

Assume that a small deflection and the initial fibre axis to be along the x-axis, the 

equilibrium equations can be written [53] as follows: 

dP dO) 
p- dx +Qd;=O (C3) 

q + dQ + P dO) = 0 
dx dx 

L F;ransverse = 0 
(C4) 

dM 
dx -Q+m=O (C5 

where 0) is the slope of the deflected fibre axis. If v is the transverse deflection of the 

fibre therefore 0) = dv . Based on the assumption of fibres buckle in-phase (fibres kink 
dx 

in-phase with one another) and all fibres deform the same way therefore p = q = O. 

Other than that, a constant axial force P is used to reduce the equilibrium conditions for 

the transverse forces and bending moments into the following equilibrium equation: 

d 2M d 2v dm --+p-+-=o 
dx 2 dx 2 dx 

(C6) 

Noting that, d 2(v-vo) M 
dx 2 = EJIJ 

(C7) 

where Eland Ilare the elasticity modulus and the second moment of area of the fibre 

respectively. The compressive load P applied to the fibre is related to the global stress 

Db on the 0°-ply by the following equation: 

PVI (To=-­
AI 
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where Vj is the fibre volume fraction of the composite. The equation of applied 

distributed bending moment m is given by: 

Then 

dm = -A d1'(Y) dy = -A G(y) dy 
dx f dy dx f dx 

Since the shear strain ycan be approximated byy ~ d(v-vo) ,therefore 
dx 

(C9) 

(CIO) 

(CII) 

where Aj is the cross section area of the fibre, G(n is the composite shear modulus in a 

function of the shear strain, l' and y are the composite shear stress and strain, 

respectively. Based on the non-linear behaviour of in-plane shear stress-strain response, 

Jumahat et aI. [7] proposed the equation of elasto-plastic shear modulus as follows: 

(C12) 

where Gt2 is the elastic shear modulus (tangent at 0.1-0.5% shear strain) and G~ is the 

plastic shear modulus (calculate tangent at yield point). "y and "ult are the yield and 

ultimate shear stress, respectively. Substitute Equations (C7), (C8), (CII) and (C12) 

into equation (C6) hence the equation becomes: 

(C13) 
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