
Constraint Satisfation Approahes to Bus DriverShedulingbySuniel David CurtisSubmitted in aordane with the requirementsfor the degree of Dotor of Philosophy.The University of LeedsShool of Computer StudiesFebruary 2000The andidate on�rms that the work submitted is his own and theappropriate redit has been given where referene has been made to thework of others.

AbstratThe bus driver sheduling problem onsists of assigning bus work to drivers so that all thebus work is overed and a ombination of the number of drivers and assoiated osts isminimised. Restritions imposed by logisti, legal and union agreements ompliate theproblem.Suessful present day systems for omputerised driver sheduling often use mathematialprogramming ombined with heuristis. Purely heuristi approahes have found it verydiÆult to produe eÆient driver shedules for large sheduling problems. Furthermore,some of these approahes may not be easily adaptable to di�erent onditions. This thesispresents two new ways of using onstraint satisfation to form driver shedules. The twomethods di�er in their approah, one being a systemati onstraint programming approahand the other being an adaptation of a loal searh method alled GENET.The onstraint programming approah uses a similar approah to mathematial program-ming systems in seleting the shedule from a large number of possible shifts, to allowadaptation to di�erent regulations. In partiular, a set partitioning formulation is used.It then makes use of the struture of the problem and the relaxed linear programming so-lution to the problem in produing a shedule. The GENET system has been adapted toope with minimising the numbers of drivers in a shedule and with the memory problemsaused by the huge number of onstraints involved in the set partitioning model.The onstraint programming approah has been shown to solve suessfully several smallsheduling problems from di�erent ompanies using varying regulations. Loal searhproedures have hitherto not had great suess on driver sheduling problems. GENEThas been adapted to solve some of the small shedules from its initial state where it ouldnot solve any. Features of the adaptation may be of interest to researhers using GENETon similar problems. i

AknowledgementsI would like to thank my supervisors, Dr. B. M. Smith and Professor A.Wren, for guidane.Further, my supervisors (again) and the friends/family who have given their support andenouragement that is important to me as a dyslexi, you know who you are thank you.

ii

DelarationsSome parts of the work presented in this thesis have been published in the followingartiles:S. D. Curtis, B. M. Smith, and A. Wren, \Forming Bus Driver Sheduling using ConstraintProgramming", Pratial Appliation of Constraint Tehnologies and Logi ProgrammingPACLP99, (1999) 239{254.S. D. Curtis, B. M. Smith, and A. Wren, \Construting Driver Shedules using Iter-ative Repair", Pratial Appliation of Constraint Tehnologies and Logi ProgrammingPACLP2000, (2000) 59{78.

iii

Contents1 Introdution 11.1 Computerised driver sheduling . 21.2 Thesis overview . 32 Constraint Programming 52.1 Introdution . 52.2 The basis of systemati omplete searh . 82.3 Implementations of AC and MAC/AC lookahead 92.4 Variable Ordering . 122.4.1 Fail �rst priniple or the smallest domain �rst ordering 122.5 Value ordering . 142.6 Optimisation . 152.7 Modelling . 162.7.1 Symmetry . 18iv

2.7.2 Adding extra onstraints . 192.8 ILP vs. CP and evaluating algorithms in general 202.9 Loal searh . 222.10 Summary . 223 Loal searh for CSPs 243.1 Introdution . 243.2 Neural networks . 253.3 Min-onit heuristi . 283.4 GSAT . 293.5 Methods for esaping loal minima . 313.5.1 Simulated annealing . 313.5.2 Tabu Searh . 313.5.3 Esaping loal minima in GSAT . 323.5.4 Breakout Method . 333.6 Desription of GENET . 333.6.1 Esaping loal minima . 353.6.2 General onsiderations . 363.6.3 Non-binary onstraints . 373.6.4 Appliations and extensions of GENET 41v

3.6.5 Optimisation . 423.6.5.1 The tunnelling algorithm 433.6.5.2 Additional work on GENET for optimisation 463.6.6 Algorithms derived from GENET . 473.6.7 Conlusions on GENET . 473.7 Summary and Conlusions . 484 Review of driver sheduling tehniques 494.1 Introdution . 494.2 Early heuristi methods . 514.2.1 RUCUS/RUCUS II . 514.2.2 Other heuristi systems . 524.3 Integer linear programming methods . 534.3.1 Mathematial model of set partitioning and set overing 534.3.2 TRACS II . 554.3.2.1 TRACS II model . 564.3.2.2 Seletion of relief opportunities 564.3.2.3 Duty generation . 574.3.2.4 Redution of the set of Duties 584.3.2.5 LP relaxation . 58vi

4.3.2.6 Branh and Bound . 604.3.2.7 TRACS II summary and results 604.3.2.8 Sheduling side issues . 614.3.3 HASTUS . 634.3.4 EXPRESS . 634.3.5 Air rew and bus driver sheduling ompared 644.4 Constraint programming methods . 644.4.1 Guerinik and Caneghem . 654.4.2 Rodosek et al . 654.4.3 M�uller . 664.4.4 Darby-Dowman and Little . 674.4.5 Charlier and Simonis . 684.4.6 Yunes et al . 684.4.7 Lay�eld et al . 684.5 Evolutionary algorithms and other meta-heuristis 694.5.1 Tabu searh . 694.5.2 Kwan et al . 704.5.3 Chu and Beasley . 714.5.4 Forsyth . 724.6 Summary . 73vii

5 Driver sheduling using CP 745.1 Introdution . 745.1.1 Set partitioning or set overing? . 755.2 The Models . 765.2.1 The �rst model: shifts as variables 765.2.2 The seond model: piees as variables 775.3 The Searh method . 795.4 Redutions . 815.5 The extended model . 855.6 Using The Relaxed LP Solution . 885.6.1 Value and variable ordering . 915.6.2 Additional onstraints and heuristis to improve eÆieny 925.6.3 Related work . 945.7 Results . 955.8 Flexibility of CP model . 975.9 Conlusions . 986 GENET for driver sheduling 1016.1 Introdution . 1016.2 The GENET model . 104viii

6.3 Sideways moves . 1066.4 Superuous/redundant shifts . 1076.5 Optimisation . 1106.5.1 Improved starting solution . 1136.5.2 Removing whole shifts . 1146.6 A less deforming learning model . 1156.7 Summary and onlusion . 1207 Conlusions 1237.1 Summary . 1237.2 Comparison between methods . 1247.3 Further work . 1267.4 Sope of researh . 1287.5 Ahievements of the researh . 128Glossary 143
ix

List of Figures2.1 Making the onstraint ar onsistent . 72.2 Simple form of searh . 82.3 Searh with dynami variable ordering and MAC 132.4 Graph of olouring problem to illustrate implied onstraints 193.1 3 node Hop�eld neural network . 263.2 Diagram of energy funtion . 273.3 Pseudo ode for basi GSAT proedure . 303.4 Three variable GENET network . 353.5 Pseudo ode for basi GENET model . 363.6 The framework of a non-binary onstraint in GENET 384.1 A fragment of vehile shedule showing possible hosen shifts 514.2 TRACS II omponents . 564.3 The di�erent levels of RO seletion . 61x

5.1 A Venn diagram of the domains of two piee variables, i and k 835.2 Frational overage of a running board . 895.3 Frational overage of a running board with over-over 926.1 Two node lusters with set partitioning onstraints in GENET 1046.2 Set partitioning onstraint node in GENET 1056.3 Set partitioning onstraint node in GENET with more weight values 1186.4 Number of shifts in the solution at eah yle of the searh. 119

xi

List of Tables4.1 The set partitioning problem . 545.1 Results on data from several bus ompanies using di�erent regulations. . . 805.2 Results of using the redutions dynamially 845.3 Results of using the RO with greedy ordering and adjaeny 885.4 Results of using the RO model with domains of triples 905.5 Final results for onstraint programming system 976.1 Results on allowing or not allowing sideways moves. 1076.2 Example shifts used in a state of GENET. 1086.3 Results of removing superuous shifts. 1096.4 Results of using a tehnique to optimise the number of shifts used. 1126.5 Results using a greedy heuristi to onstrut an initial solution as opposedto a random starting solution. 1146.6 Results showing the e�et of using global moves to replae whole shifts . . 1156.7 Using several weights for eah onstraint. 117xii

6.8 Comparison between one weight and multiple weights for eah onstraint . 120

xiii

Chapter 1Introdution
In present day industry ompetition is so �ere that utting osts is paramount and im-proved shedules and timetables an make huge monetary savings. This is true of driversheduling whih is an important real world problem as rew osts aount for a highproportion of total expenditure in most transport ompanies. In the UK now that thetransportation industry is privatized pro�ts are important and with onsumer onernabout high fares, making the running of bus and trains eÆient is the best way to max-imise pro�t. The preursor to the driver sheduling problem is the bus sheduling problemwhere routes need to be worked out and vehiles assigned to them. One this is done thebus driver sheduling problem involves �nding the most eÆient way of providing driversfor the given set of bus movements, inluding dead running (journeys with no passengers).These two problems tend to be kept separate due to both problems being individually hard.If they were ombined the ensuing problem would surpass urrent omputer shedulingmethods run on standard mahines used by transport ompanies.There are several restritions on eÆient provision of driver shedules, imposed by legal1

Chapter 1 2 Introdutionand logistial onsiderations as well as trade union agreements. For example, a driver mayonly legally drive a ertain number of onseutive hours. The riterion is usually thatthe shedule should have the minimum number of shifts and lowest total hours of work.The total hours of work is normally a seondary onsideration and beause of this it isdisregarded in the new method implemented in this thesis.1.1 Computerised driver shedulingEarly omputerised methods for driver sheduling were purely heuristi and often neededlarge amounts of manual intervention. As methods and omputer power improved math-ematial programming started to be used. In the present day there are some very goodsystems, for example TRACS II [37, 66, 125℄, whih an provide eÆient shedules for verylarge problems. Despite this the modern systems annot be seen as blak boxes that pro-due working shedules. TRACS II has been adapted for several bus and rail ompaniesand has through long development and experiene working with these ompanies reaheda level of generality so it an �t with many ompanies' requirements. However, even afterthis has been done parameters must sometimes be manipulated to produe driver shed-ules for di�erent bus shedules. Suh manipulation is frustrating and perhaps obsureto shedulers who have no knowledge of mathematial programming. This brings us toseveral areas where improvements an be made. Firstly, the driver sheduling problem isstill open, in that optimal results annot be ensured by urrent methods for any but themost trivial instanes. Seondly, exibility an be improved; although great strides havebeen made with the mathematial approah there are some aspets of sheduling that arehard to inorporate in a linear programming model. Thirdly, the present mathematialapproahes are hard to explain to people not versed in siene disiplines and this is notonly, as stated above, a problem in produing individual shedules, it is a hindrane inmutual development of systems between researhers in universities and sheduling groupswithin ompanies.

Chapter 1 3 Introdution1.2 Thesis overviewWe have already stated how important the problem is and that there is room for improve-ment. In the previous setion three areas were highlighted as areas for development. Thelast two, exibility of the model and understanding of the user, are the ones that thisthesis is onerned with. It is felt that the expressive qualities of the modelling languageof onstraint satisfation will be of use in these areas and therefore onstraint satisfationapproahes are investigated in this thesis.This thesis will explore two new approahes for produing bus driver shedules. One isa systemati approah using a onstraint programming method and the other is a loalsearh method alled GENET [121, 110℄. The thesis not only provides new researh inthe area of bus driver sheduling but allows a omparison of three of the popular �eldsof researh for solving ombinatorial problems: mathematial programming, onstraintprogramming and loal searh. They will be ompared only on one type of problem,driver sheduling, but eah tehnique will be investigated in depth.The following summarises the ontents and reason for eah hapter.Chapter 1: Gives motivation for the new researh and gives an overview of the thesis.Chapter 2: Introdues onepts of onstraint satisfation and onstraint programming.This onentrates on the methods used in the thesis and a disussion on arguablythe most important issue in onstraint satisfation, modelling.Chapter 3: Gives a history of the build up to the loal searh method GENET whih isinvestigated in Chapter 6. It also gives a brief overview of other loal searh methodsfor onstraint satisfation problems.Chapter 4: Gives a brief history of driver sheduling. It gives reasons why the problemis still open, in that optimal results annot be ensured by urrent methods for anybut the most trivial instanes.

Chapter 1 4 IntrodutionChapter 5: Details the onstraint programming approah developed for produing driv-er shedules. It shows that the program is suessful on several small bus driversheduling problems and shows potential for marked improvement.Chapter 6: Details the adaptation of the loal searh method, GENET for onstrut-ing driver shedules. It gives promising results for several bus driver shedulingproblems.Chapter 7: Disussion of the existing mathematial approah and the two new ap-proahes. This inludes thoughts on their potential and possible further work.

Chapter 2Constraint Programming
2.1 IntrodutionConstraint satisfation approahes for solving industrial problems are beoming more wide-ly used beause they provide a good method of takling large problems in a exible andadaptable way. Constraint satisfation provides a powerful and easy system for modellingrestritions and using these restritions to searh for a solution.There are several de�nitions that will be presented here to provide a bakground to thework in this thesis (see [106℄ for these and further de�nitions).A domain of a variable is the set of possible values that the variable an take. A variablexi will have a domain Di. In this thesis we will only have variables with �nite domains.An assignment is a binding of a variable (u) to a value (v) to form a label < u; v >. Thelabel is the variable-value pairing. 5

Chapter 2 6 Constraint ProgrammingA ompound label is a simultaneous assignment of variables to values. A k-ompoundlabel is an assignment of k labels simultaneously and an be represented as (< u1; v1 ><u2; v2 > : : : < uk ; vk >).A onstraint restrits the values that variables an be assigned to simultaneously. Formallya onstraint an be de�ned as a set of legal ompound labels, although for eÆieny andexpressive reasons onstraints an be de�ned in many ways, suh as equations, matries,funtions, et. The number of variables that the onstraint ats on is alled the arity ofthe onstraint. If it ats only on 2 variables it is alled a binary onstraint. A binary CSPis a CSP where all the onstraints are binary or unary. In this thesis we will be usingmainly binary CSPs. A nogood is a onstraint on a pair of labels whih states that bothannot simultaneously be hosen.A solution to a CSP in this thesis means an assignment of a value to every variable. In afeasible solution all the onstraints are satis�ed, formally a member of the set of ompoundlabels of eah onstraint exists in the solution. In an infeasible solution onstraints arebroken (not satis�ed).A onstraint satisfation problem (CSP) onsists of a set of variables (Z), a funtion (D)whih maps every member xi of Z to its domain Di and a set of onstraints (C), a set ofall legal sets of ompound labels. So a CSP is represented as the triple (Z;D;C).A binary CSP an be represented as a graph, where the nodes of the graph orrespondto the variables and the edges or ars represent binary onstraints between variables. Aonstraint is bi-diretional and so an be represented as an undireted edge. However, it isoften useful to represent a onstraint as two ars, one for eah diretion of the onstraint.So two nodes, x and y an be onneted by a onstraint represented as the ars, (x,y)and (y,x). We de�ne an ar (x,y) to be ar onsistent if and only if for every value ain the domain of x there exists a value in y that is ompatible with the label < x; a >.We an propagate the e�et of a onstraint by removing values that do not satisfy thisar onsistent property for the ars representing the onstraint. This is alled onstraintpropagation. An example of this proess is shown in Figure 2.1. The onstraint is a simple

Chapter 2 7 Constraint Programminggreater than (>) onstraint. Figure 2.1 (a) shows the original states of the domains ofthe variables before onstraint propagation. Then (b) shows the ar (x,y) being made aronsistent. Finally both ars, (x,y) and (y,x) are ar onsistent in ().
BD y

{1 ... 5}
x

{1 ... 5}

BD y
{1 ... 5}

x
{1 ... 4}

BD y
{2 ... 5}

x
{1 ... 4}

<

<

<

(a)

(b)

(C)Figure 2.1: Making the onstraint ar onsistentUsing onstraint programming tools an greatly inrease the ease of programming CPalgorithms. It also forms a base for sharing and omparing ode and algorithms in theresearh ommunity. These CP tools provide the user with implementations of standardproesses involved in onstraint programming, suh as ar onsisteny. They also de�nea struture for the modelling problems and development of algorithms. The one used inpart of this thesis is a C++ library alled ILOG Solver [85℄. There are however, severalother tools suh as ECLiPSe [118℄ and Chip [52℄ both based on Prolog.A standard example of a problem that has been represented as a CSP is the n-queensproblem. The problem is to put a number (n) of queens on a n � n hessboard withoutattaking any others, so no queen an be in the same row, olumn or diagonal as another.A simple way of representing the problem is to have the queens as the variables. So eahqueen an take any plae in the n � n hessboard and the domain of eah variable is allthe squares of the board. There are then onstraints to speify that no two queens are inthe same row, olumn or diagonal. This is atually a poor representation and Setion 2.7on modelling shows other ways of representing it.

Chapter 2 8 Constraint Programming2.2 The basis of systemati omplete searhThe simplest form of systemati omplete searh using onstraints is alled BT [47℄. Thebasi form of this searh onsists of the following. The variables are ordered arbitrarily.Then working through the variables in this order, for eah variable assign to it the �rstvalue in its domain. This assignment is heked to make sure it is ompatible with allthe previously assigned variables. If it is not ompatible a new assignment is tried andthe urrent value is temporarily removed from the domain of the urrent variable. If nolabel assoiated with the urrent variable is ompatible the algorithm baktraks to thepreviously assigned variable and a new value is tried for it. This ase is alled a failureor a fail. The searh terminates if a solution is found or there is nowhere to baktrak toafter a fail, whih signi�es there is no feasible solution for the problem. This terminationproperty makes BT a omplete searh; if there is a feasible solution given time it will�nd it and if there is no feasible solution it will prove there is none. BT forms the basisof several searh algorithms desribed in this hapter and this makes them all ompletesearhes. Figure 2.2 shows the BT proedure. In the BT algorithm no advantage is takenof any onstraint propagation. An improvement of this proedure is FC [51℄ it is the sameas BT exept in the way it performs onsisteny heks. Every time an assignment ismade the values inonsistent with all the labels hosen are removed from the domains ofall unassigned variables. The hoie fails and the algorithm baktraks if any variable'sdomain beomes empty. There is no need to hek an assignment's ompatibility withearlier assignments beause if it was inompatible it would have been removed at the
assigned unassignedcurrentFigure 2.2: Simple form of searh

Chapter 2 9 Constraint Programmingtime the previous assignment was made. However, it may our that two unassignedvariables have values ompatible with all the assigned variables but not with eah other.This an be resolved by adding an ar-onsisteny algorithm whih heks for this typeof inonsisteny at every assignment. This is alled ar-onsisteny lookahead [107℄ ormaintaining ar-onsisteny (MAC) [90℄ where both forward heking and ar-onsistenyare used. Therefore, not only are the domains of the unassigned variables made ompatiblewith hosen labels, they are also ompatible with eah other. Ways of maintaining ar-onsisteny will be disussed below.There has been debate on the best ar-onsisteny algorithm. There has even been debateas to the usefulness of maintaining full ar-onsisteny during searh [51, 90℄. This isbeause the more times that onsisteny is heked for the greater the overheads on eahassignment, as more heks need to be done. However, it is hoped that the more extensiveheks will redue the amount of baktraking and fruitless searhing. Early work byHaralik and Elliot [51℄ suggested that only a limited amount of onsisteny hekingshould be used. However, later work by Sabin and Freuder [90℄ suggests that it is usefulto apply full ar-onsisteny during the searh. The di�erene in view might be thatSabin and Freuder foused on harder random problems than Haralik and Elliot. Further,AC algorithms have improved over time as desribed below. To asertain what level ofonsisteny to apply depends on the problem being solved and is still an open question.2.3 Implementations of AC and MAC/AC lookaheadAC an be established as a pre-proessing stage and as we have noted above an alsobe inorporated into searh. In this setion we will desribe the details of several of thealgorithms for establishing AC and then how these algorithms an be used in searh.Algorithms for establishing AC have been developed over time. The �rst three variationsare desribed in [76℄. They are all similar and the �nal one of this series, AC-3 informallyonsists of queuing all the binary onstraints and then going through this queue propagat-

Chapter 2 10 Constraint Programminging the e�et of eah onstraint. As the onstraints are propagated, the onstraints thatare assoiated with the variables that have their domains redued are added to the endof the queue. Therefore, the queue will only beome empty when no more domains areredued by onstraint propagation. More formally, when we say a onstraint is added tothe queue we mean only one of the ars representing the onstraint is added. Therefore,heking the ar (i,j) means that we will hek that the values in the domain of variable iare onsistent with those in the domain of j but not vie versa, so the atual additions tothe queue works in the following way, if the domain of i hanges ars (i,j) for all existingj are added to the queue.After AC-3 the next important development (AC-4 in [79℄) in the AC algorithms was theidea that values support other values and when these supporting values are removed thesupported value should be removed. This proess saves onsisteny heks but requiresadditional memory beause it stores all the supporting values and a ounter that is inre-mentally dereased as these supporting values are removed. It is shown that AC-3 has aworse ase time omplexity of 0(d3e) where AC-4 has 0(d2e); d is the size of the largestdomain and e is the total number of onstraints [77, 79℄. Whereas the spae omplexity ofAC-3 is 0(e+nd), where n is the number of variables and AC-4 is larger, O(d2e). Further,it has been shown that in the average time omplexity of AC-4 is lose to its worse ase andAC-3 often runs faster [119℄. AC-5 [28℄ di�ers from the previous AC algorithms by givingonly a framework for applying AC. It allows the onsisteny heks to be done di�erentlyby di�erent onstraint types. This allows the user to provide the most eÆient algorithmto take advantage of a partiular lass of onstraints. It does this by altering the queuethat is used in AC-3. Instead of just queuing the onstraints (e.g. C(i,j)) it also inludesthe values � that have been removed from the variable assoiated with the onstraintthat we are removing values from (i). Deville and Hentenryk [28℄ give examples of howthis an be used to improve the eÆieny of some types of onstraints. For these AC-5is a O(ed) algorithm. AC-5 allows users to provide onstraint types and we will see howSolver allows this below. AC-6 [5℄ improves on AC-4 by reduing the spae omplexitydown to 0(de) while maintaining the time omplexity of 0(d2e). It does this by storing

Chapter 2 11 Constraint Programmingsupporting values as AC-4 does, but instead of storing all the supporting values, it onlystores one per onstraint. If this value is then removed it looks for another. There hasbeen several improvements on AC-6 and these ulminate in AC-7 [6℄. AC-7 extends theproess by using inferene. For example, when establishing that value a in the domain ofu supports the value b in the domain of v we an infer from this, that b is the support fora in the domain of u. In the paper [6℄ there are several other examples of how inferenean be used if ertain properties hold for the onstraints.To maintain AC during the searh all that is done is that one of the AC algorithms isapplied to all unassigned variables at every assignment step. Therefore, at eah step ofthe maintaining ar onsisteny algorithm we need to do three updates. A step onsistsof a hoie of variable x and then an attempt to �nd a value for it. We pik a value v and�rst we need to hek that no non-binary onstraints1 are violated by the ombinationof the label <x,v> with the existing assignments. Then we need to do the FC stage,by removing all values that are inonsistent with the urrent label from the domains ofthe unassigned variables. Finally, the remaining problem (all the unassigned variables)is made ar-onsistent by one of the AC algorithms desribed above. If the �rst hekdoes not fail or the seond two proesses do not make any domain empty then that stepis ompleted. However, if this is not the ase new values are tried until it is the ase orDx beomes empty and baktraking to the previous step must our.Solver [85℄ ombines all three proess by altering the way steps are taken. Eah step isset up as a hoie point whih opens two branhes. The �rst branh is to onstrain avariable i to have a ertain value j (this is an assignment). The e�et of this onstraint ispropagated and if a fail ours then the seond branh is tried where a onstraint removesj from i. The AC maintaining proess is based on AC-5. At eah hoie point the entirestate of the algorithm is saved with all the domains of the variables. If the algorithmbaktraks to the hoie point the domains are reinstated as they were.Sine Solver is based on AC-5 the way that onstraints perform propagation is open1These are the non-binary onstraints that are not used in the AC algorithm

Chapter 2 12 Constraint Programmingand this allows users to develop their own onstraints as well as providing an extensiveolletion of prede�ned ones. Solver gives a base lass for onstraints and the user spei�eshow it will propagate. In Chapter 5 we will see examples of these.2.4 Variable OrderingThe order in whih variables are assigned values an greatly a�et the number of failsan algorithm has before a solution is found. In some problems there may be a naturalproblem spei� order. However, there are several general methods. Some of them aredisussed in the following setion. These often work on the way variables are onstrainedand how variables are related to eah other by onstraints. They are lassed into twotypes: stati orderings that are deided at the start of the searh and do not hange anddynami orderings whih may hange during the searh. Dynami orderings rely on extrainformation being generated during the searh and so require the domains of unassignedvariables to be altered due to the searh. For example, if ar-onsisteny is maintained.2.4.1 Fail �rst priniple or the smallest domain �rst orderingArguably the most popular example of dynami variable ordering was introdued by Har-alik and Elliot in [51℄. The idea was to assign values to the variables that are most likelyto ause failure as early as possible rather than later in the searh. This would with theaid of onstraint propagation in theory ut o� fruitless branhes early, thus saving searhsteps. This is alled the fail �rst priniple. The way this was implemented was at everystep to hoose the variable with the smallest domain. The domain size was taken as anindiation of how hard it would be to �nd a value for the variable. This ordering is su-essful on many problems. However, work by Smith and Grant [98℄ to use a more aurateindiation of how hard a variable is to satisfy had worse results. They onluded that itmight not be the fail �rst priniple that is behind the suess of the smallest domain �rstordering. Smith and Grant give a simple possible reason for the suess of the ordering,

Chapter 2 13 Constraint Programmingby putting the smallest domains �rst the size of the searh tree is redued. However,this annot explain the aspet of the ordering that Sabin and Freuder disovered [90℄.They used a FC algorithm ombined with smallest domain ordering. This was tried onseveral problems with and without making them ar-onsistent in a preproessing stage.The results showed that on several of these problems the preproessing atually madethe algorithm perform muh worse. They onluded this was due to the ordering as thebehaviour did not exist when the FC algorithm was applied without the ordering. Muhof the work on this has been done on problems where the domains at the start are all ofthe same size. So the lak of performane might be put down to having variables withdi�erent domain sizes before searh begins. Sine many pratial problems have variableswith di�erent sized domains the e�et of this is of notable importane.Figure 2.3 shows how the searh with dynami variable ordering and MAC di�ers from thesimple form of searh shown in 2.2. When variable Vk is assigned a value it is moved tothe assigned variables and Vm is hosen by some heuristi to be the next urrent variable.After eah step, variables that have their domains redued to one value are bound, i.e.assigned that value. An example of this is shown in the �gure, when variable Vi wasassigned a value, onstraint propagation set the value for Vj .
Vk Vm

assigned unassignedcurrent

Vi

VjFigure 2.3: Searh with dynami variable ordering and MAC

Chapter 2 14 Constraint Programming2.5 Value orderingValue ordering is useful when we are interested in �nding a single solution. If we wereafter all solutions value ordering would make no di�erene in hronologial baktraking.The way the variables are ordered and the amount of onstraint propagation a�ets thehoies of values. If there is a large amount of onstraint propagation done after eah valueassignment then failures an be found quikly and so value ordering is less important.However, if the onstraint propagation is not adequate wrong hoies of values an leadto a great deal of fruitless searh and baktraking. So it an be important to onsider avalue ordering heuristi.As stated in [106℄ the idea is to pik the value most likely to be suessful, to reduebaktraking. One way to assess the hane of suess is to pik the value whih onitswith the least number of values in the domains of unlabelled variables. There are severalvariations on this theme. The method of Geelen [41℄ and the method of Keng and Yun [63℄both temporarily assign all the values in turn for a variable and apply forward heking.Keng and Yun then hoose the value aording to the number of values that would beremoved by FC. It uses the perentage loss of values from the domains of unassignedvariables. This is similar to Geelen's method whih uses the domain sizes of unassignedvariables after FC redution. The real di�erene in the methods is how they ombine theseost elements that ome from eah of the unassigned variables. Geelen uses the produt ofthem and Keng and Yun uses the sum. In the Keng and Yun method all assignments thatwould overall remove the same number of values have the same desirability. For example,removing 3 values from one domain and 2 from another is the same as removing 0 valuesfrom one domain and 5 from another. However, Geelen argues this should not be truebeause a problem that has mostly large domains with a few very small domains will beharder to �nd a solution for than a problem whih has all average sized domains. Byusing the produt of domain sizes the two di�erent removals in above example will leadto di�erent evaluations.A further method is desribed by Minton [78℄. This uses a full assignment of variables

Chapter 2 15 Constraint Programmingwhere onstraints may be broken. This is used to rate values in the urrent variable toassign a value to. The less onits the value with assignments in the full assignment thehigher the rating. At eah step of the searh the full assignment is redued to the variablesthat have not already be assigned a value. This uses the min-onit heuristi whih isdesribed in Setion 3.3.There is a ondition where the sueed-�rst strategy will not be useful. This is when allthe values must be hosen at some point and the only hoie is whih variable is assignedto whih value. Smith [96℄ shows an example where this is the ase and suggests applyingthe fail-�rst priniple, hoosing the values that are most onstrained �rst.However, even more so than variable ordering, problem spei� orderings are often thebest. This is beause general purpose value orderings desribed above are expensive timewise, as they require extensive onsisteny heks. We will see below in the next setionhow greedy heuristis an be used for value ordering.2.6 OptimisationWhen all solutions are not equal and some are desired more than others, often the best(optimal) or as lose to the best solution as possible is desired. In these types of problemsa solution may have an assoiated \ost" that we are trying to minimise or 'pro�t' we aretrying to maximise. There will be an objetive funtion whih maps every solution tupleto a ost. If we are requiring a pro�t we an use the negation of the objetive funtionto provide a ost to minimise. A naive approah would be to �nd all the solutions andthen hoose the best from them. However, the amount of searhing an often be redued.When a solution is found the ost of the solution is stored as a new bound on the optimalost. When building the next solution a partial ost an usually be maintained. If thisbreaks the stored bound then the urrent partial solution annot produe a better fullsolution and baktraking ours. The stored ost bounds the ost of future solutions.This proess is alled branh and bound. Even with this redution the problem may have

Chapter 2 16 Constraint Programmingto be solved several times and on hard problems this an be very time onsuming. Theloser to the ost of the optimal the original bound is the less searhing has to be done.So using heuristi orderings is a good idea to get as lose as possible to the optimal ostat the start.2.7 ModellingModelling a problem as a onstraint satisfation problem is probably the hardest part ofthe researh area to produe general methods for. This is the onsensus of many peopleative in the area of onstraint satisfation and is highlighted by Freuder [39℄. Sabin andFreuder have worked on automating the modelling proess [91℄ but the work is far frombeing pratially usable. The hardness of the task is partly due to the exibility in howa problem an be modelled and that eah problem one modelled an be reformulatedand extended in numerous ways. In this setion we will look at reasons why ertainrepresentations an be better than others. The basi model must have one feature, everysolution to the CSP must give a solution to the real problem2. However, further questionsneed to be asked of the model. Here are several of these:1. What is the size of the CSP?The size of the CSP an be measured by the number of ombinations of possibleassignments. So this is the produt of the sizes of domains of all the deision vari-ables. There may be non-deision variables in the model where the atual value ofthem does not relate to the atual problem. These are normally used in onjuntionwith onstraints to onstrain deision variables. None of the algorithms disussedin this hapter would searh all possible values for deision variables and the for-ward looking ones would prune some branhes of the searh tree through onstraintpropagation. However, the number of possible assignments is still a measure of howhard the problem will be to solve as long as it is taken in onjuntion with the other2Although a solution to a CSP ould be a solution to a sub problem of the real problem or there ouldbe some repair tehniques

Chapter 2 17 Constraint Programmingmeasures. So it is logial that hoosing a representation on its smallness is a goodjudge of how good a representation is.2. How easy are the onstraints to implement eÆiently?It is easier to propagate redution done by binary onstraints than by higher arityonstraints. It is very expensive to make a non-binary onstraint ar-onsistent(in general) and the more variables involved the more expensive it is. There aresome onstraints for whih spei�ed algorithms exist, for instane the all-di�erentonstraint but these algorithms are still expensive. So a model that has only binaryonstraints is more favourable than one that has ternary or higher. Even though intheory higher order onstraints an be onverted to binary onstraints in pratiethis often will not result in a good model. However, it may be possible to �nd amodel whih has smaller arity onstraints than the original. A further onsiderationis the number of onstraints and the amount of memory eah onstraint requires.3. How lose are the variables to the real objets they are modelling?This is a little harder to de�ne than the previous two aspets as it is not quanti�able.The more the variables and values an be diretly assoiated with the physial objetsin the problem the easier it is to reate problem spei� heuristis. It will also allowany problem struture to be seen more readily and possibly allow the problem tobe reformulated to improve the model. Another bene�t is that it makes it easier toexplain to non-omputer sientists. This is partiularly useful if working with thepeople who used to solve by hand the problem that we are modelling. This will notonly allow better feedbak but also a greater hane of aeptane of the system.For example, manual shedulers are far more likely to be happy with a shedulingtool when they know the basis of how it works.4. How easy is it to apply general heuristis to the model?Certain ways of representing a problem as a CSP allow the diret use of some of thegeneral heuristis desribed in this Chapter. Others will need to adapt them to �tthe model.

Chapter 2 18 Constraint ProgrammingOften a solution is a pairing of objets in the real problem. For example, in the n-queensproblem there is a pairing of queens and squares. In these ases it is possible to haveeither of these objets as the variables. The n-queens problem an be formulated withthe variables as the queens and the squares as the values. It an also be formulated withthe squares as the variables with a binary domain of 1 to indiate a queen is present or 0to show one is not. The size of this representation is (n � n)2. How the onstraints arerepresented are di�erent in eah model. However, in the seond method further onstraintsneed to be added to ensure only n queens are plaed on the board.Dinbas et al [29℄ model a problem where the objets an be diretly swapped so thevariables and values an be interhanged. There are 4 of one objet and 72 of the other.So the size of the problem ould be 472 or 724. So by formulating the problem where thesize is 724 a redution in the size of the problem is ahieved. So this type of remodellingan a�et how the onstraints are represented and how many onstraints there are (item 2)and the size of the problem (item 1). The third ase desribed in Setion 5.3 will showthat as well as the previous two aspets the remodelling an a�et how general heuristisan be applied (item 4).It is worth noting that the n-queens problem an be represented better by taking advantageof the struture of the problem. We an see that every row must have a queen on it andso we an have the row as the variable. The domain of a row will be the olumns. Thesize of the problem is smaller than having the queens as variables, nn instead of (n� n)n.It does have a larger size than using the squares as variables, (n� n)2 but it removes theneed for several onstraints e.g. the onstraints added to stop more than one queen beingon eah row. This omes from the fat that the variables and values are diretly relatedto the physial objets of the problem (item 3).2.7.1 SymmetryAnother important onsideration in modelling is symmetry. This is where several solutionsto a CSP represent the same solution to the atual problem. This leads to problems sizes

Chapter 2 19 Constraint Programmingbeing muh bigger than they needed to be beause ertain ombinations are the sameand need not be tried more than one (item 1). Work was done by Puget [84℄ to addonstraints to eliminate symmetry. A ommon example of symmetry an be seen in then-queens problem. Sine a hessboard is square if the top of the board is rotated, theside previously to its left beomes the new top. So solutions that an be mapped to eahother by rotation or reetion are the same solution. A way of solving this problem thatis appliable to many other instanes is to arti�ially disriminate the variables. Add aonstraint that spei�es �rst queen must be loser to the top left orner than the seondqueen.2.7.2 Adding extra onstraintsThere are other ases as well as symmetry where adding onstraints an improve thesearh. This is done by adding what are alled redundant or implied onstraints. ILOGSolver's manual [58℄ de�nes these as onstraints that make expliit a logial onsequeneof other onstraints of a problem. An example of an impliated onstraint an be shownin the graph olouring problem. Figure 2.4 shows that variables A and C must have thesame value so a onstraint an be introdued to inform the searh of this before it starts.
A

C

BD
=

C

B

A

DFigure 2.4: This shows a onstraint graph of a graph olouring problem. The dotted lineshows an implied equality onstraint that variables A and C must be equal. All the otheronstraints are inequality onstraints.

Chapter 2 20 Constraint ProgrammingThis is similar to some of the implied onstraints that Sqalli and Freuder uses in [101℄.Freuder also suggests the use of implied onstraints to replae higher order onstraints toimprove onstraint propagation [39℄ (item 2). At the start of this setion on modelling itwas stated that the �rst thing needed in a model is that all the solutions to the CSP aresolutions in the real problem. However, does the reverse have to hold? If we are after onlya single solution it may be advantageous to remove some of the solution as long as we alsoredue the size of the problem. In large problems time limits may in pratise remove manypossibilities as there may be no time to explore all avenues. However, we must ensure atleast one solution remains. So we an add extra onstraints to ut further the searh spaeeven if they may ut out possible solutions. This is further investigated in Setion 5.6.2.2.8 ILP vs. CP and evaluating algorithms in generalThere has been many studies omparing ILP and CP [86, 22, 97, 87, 83℄. Many haveproposed ways of ombining ILP and CP to take advantage of both tehniques [8, 56, 87,31, 33, 32℄.From these studies several aspets of eah tehnique have been highlighted. The �rstaspet that is easy to see is that in ILP onstraints must be linear whereas CP onstantshave a muh larger range of expression. CP seems to do better on problems that antake advantage of the eÆient general onstraints that have been implemented, foremostthe all-di�erent onstraint (onstrain a set of variables to have di�erent values) and toa lesser degree onstraints to remove symmetry. The all-di�erent onstraint is eÆientlyimplemented in CP but in ILP applying onstraints to do the same job vastly inreases themodel size. This is shown in [97℄ and later on a similar problem in [22℄. Adding onstraintsto remove symmetry in CP redues the searh spae and removes unneessary searhing.However, adding similar onstraints to a ILP model will not ut the searh spae butinrease the model size, this is seen in [22℄. This illustrates one of the main di�erenesbetween the two methods. ILP globally uts the searh spae whereas CP loally reduesthe searh spae. Therefore where the searh spae an be easily ut globally by good lower

Chapter 2 21 Constraint Programmingand upper bounds on optimisation problems then ILP usually performs well. However, ifthis is not possible, as in the job shop sheduling problem3 [11℄, ILP may �nd it hard tosolve problems. CP depends on the onstraints of the model providing enough propagationto redue the searh spae.In evaluating the e�etiveness of ILP and CP on pratial problems, we wish to put forwardseveral warnings. Moreover some of these apply to evaluating algorithms in general.1. Pratial is not always pratial.Often so alled pratial problems are only approximations of real world problems.Sometimes side issues are ignore to make the problem easier for the ommunity tograsp. Bek et al [3℄ for example warn about the obsession with only optimisingmake-span time in job shop sheduling. They ite several other restritions thatmay need to be onsidered in a real sheduling situation. This over simpli�ation ofreal world problems may make CP seem worse than ILP in general. This is beauseCP has a more exible language for de�ning problems than ILP and so side issuesare more likely to ause problems for an ILP approah than a CP approah. Thisissue may be ompounded by the fat that if the problem was formulated �rst by aresearher in a partiular �eld they may introdue bias. The paper on CSPlib [45℄disusses how bias may be introdued and therefore spei�es that real world problemsshould be spei�ed in a natural language so as to limit any bias in formulation.2. Number of problems testedIt is often hard to �nd enough suitable instanes of an industrial problem. Whereasrandom problems an be generated in their hundreds, many of the pratial problemshave few instanes. For example, Darby-Dowman and Little [22℄ show results on rewsheduling but only have 5 instanes of the problem. There is however, little thatan be done about this exept keeping it in mind when viewing results.3. The amounts of e�ort or expertise for eah tehnique3The job shop sheduling problem is an industrial problem involving assigning a number tasks tomahines on a fatory oor.

Chapter 2 22 Constraint ProgrammingIn some of the omparisons very little e�ort is put into the CP and ILP algorithms tosolve the test problems. For example, Rodosek use no variable or value ordering intheir CP representations. Similarly with the ILP approah simple CPLEX standardalgorithms are used. Often the di�erene between ILP and CP is so overwhelmingit is unlikely that there will be a hange if time is taken to improve eah algorithmbut this �eld should display the same rigours of siene as any area of physis orhemistry.Further to these Hooker [55℄ puts forward an argument that ompletive experiments ingeneral are diÆult to judge fairly and moreover may not be produtive, as they do notgive the reasons why ertain algorithms are faster or slower than others.2.9 Loal searhIn this Chapter we have disussed aspets of systemati searh on onstraint satisfationproblems. There has been some researh on how aspets of systemati searh an be relatedto loal searh tehniques. Several papers have been published on adding onsisteny toloal searh tehniques [62, 102℄. Another interesting aspet, symmetry's e�et on loalsearh is disussed in Setion 6.1.2.10 SummaryThere are many other basi searh methods and hybrids of the above methods. There arealso numerous heuristis and variable and value guides. Those that have been given herehave been seleted to relate to the researh in this thesis. A fuller aount of the range ofwork on onstraint satisfation is given in [106℄.Modelling problems as onstraint satisfation problems in an eÆient way often needsinformal heuristis and reative input by an expert in the �eld. There are general guides

Chapter 2 23 Constraint Programmingbut even these are open to debate.Evaluation of models, algorithms and tehniques as a whole (e.g. CP vs. ILP) is notalways straight forward as often empirial evidene is need to be used. Suh evidene byits nature is open to error and interpretation.The rest of the thesis will examine how the explained researh in this hapter and themethodology issues disussed an be extended and developed to produe driver shedules.

Chapter 3Loal Searh for ConstraintSatisfation Problems
3.1 IntrodutionThere are numerous loal searh methods for solving onstraint satisfation problems. Anoverview of several is given in [49℄. Presented here are some of the more popular methodsand their origins. The main fous of this hapter is the developments that lead to thereation of the loal searh method GENET. GENET is the loal searh algorithm usedin Chapter 6 to onstrut driver shedules.Informally, the basis of loal searh onsists of �rst reating a possibly awed solution toa problem. This an be done either by random assignments or by heuristis. Then thesolution is iteratively altered in small ways to improve the solution. These are alled loalmoves as they onsider only a small part of the solution and improve that part. There may24

Chapter 3 25 Loal searh for CSPsbe several possible moves and these will be assessed on a measure of improvement that maybe di�erent for eah problem, for example in a CSP the measure of improvement may bethe inrease in the number of onstraints that are satis�ed after the move is made. Thereis normally some randomness inorporated into the hoie of what loal move to make ateah iteration. This protets the solver from following a set path that may never lead to afeasible solution. If the solver is run several times it may produe di�erent solutions. Oneimportant aspet to note, is that the loal searh tehnique will always produe some sortof solution even if it does not �nd a feasible solution. This follows beause at every stageof the searh a solution exists.One di�erene between the loal searh approahes and the systemati approahes re-viewed in Chapter 2 is that given time the systemati approahes will always �nd a feasi-ble solution if one exists. On the other hand, due to the stohasti nature of loal searhit may never end up �nding a feasible solution but keep yling through infeasible solu-tions. However, in pratie large problems and time restritions may negate the ability ofa systemati omplete searh to always �nd a feasible solution. If no feasible solution isfound then the omplete searh will produe no solution at all. In these ases loal searhtehniques are often used to �nd as good a solution as possible. Furthermore, loal searhtehniques used for optimisation annot prove that they have found an optimal solution,unlike omplete systemati approahes. Therefore, the stopping riterion for a loal searhsystem may be a limit on number of iterations or a time limit. One stopped, the bestsolution produed is given as the �nal output.3.2 Neural networksArti�ial neural networks have attrated muh researh beause they are based on thehuman brain. This provides advantages suh as learning and as we will see below someparallel proessing an be done to speed up the algorithm. There are many good booksdesribing the general �eld of neural networks, one of whih is [1℄.

Chapter 3 26 Loal searh for CSPsNeural networks onsist of a large number of neurons or nodes whih ommuniate viaweighted onnetions. The neurons send inhibitory (negative) or exitatory (positive)signals via the onnetions. These signals range from -1 to 1 in the analog version of thesystem but we will restrit ourselves to desribing the disrete version where the node aneither be on or o� sending a signal of 1 or -1 respetively.A Hop�eld network is a neural network where every node is onneted to every other nodebut not itself. A diagram of a Hop�eld network is given in Figure 3.1.
Figure 3.1: 3 node Hop�eld neural networkThe onnetions are weighted and this weight is symmetrial, i.e. the weight wij of theonnetion from node i to node j is the same as wji, the weight of the onnetion from jto i. The output of a node is given as the input to all the other nodes multiplied by theweight assoiated with eah onnetion.Every state of the network an assoiated energy value E. The energy funtion is de�nedas: (notation from [1℄) E = �12Xi Xj 6=i wijxixj +Xi xiTi

Chapter 3 27 Loal searh for CSPswhere xi is the state of the node (ranging from -1 to 1). Ti is the threshold of a node. Ina hardware implementation this is an external input supplied to eah node.So there is a energy level for every state the network an be in. This reates an energylandsape. An energy landsape is shown but only in one-dimension in Figure 3.2. This
Plateau

Global Minimum

Local Minimum

Possible states

E
ne

rg
y

Figure 3.2: Diagram of energy funtionlandsape representation an be produed for all loal searh methods. There may beseveral global minima as several states may have the same energy level. When states ofthe same energy level are adjaent to searh other we all them a plateau.The network an be updated in one of two ways. Either all the nodes are updated inparallel or they are updated sequentially, a node is piked at random and then updated.The main di�erene is that in the sequential ase the e�ets of the update of one node aninuene the state of the next node that is updated whereas in the parallel version all thenodes update independently. Eah update of a node onsists of turning the node on (1) ifthe input is above the threshold and o� (-1) if below. When we use the Hop�eld networkto solve CSPs the threshold is set to zero and so if the input is above this it will be set toon.Tagliarini and Page [103, 104℄ used a Hop�eld network to solve a CSP, spei�ally the

Chapter 3 28 Loal searh for CSPsn-queens problem The neurons represent the squares on the hess board. If there is aonstraint between the squares there would be an inhibitory weight. There is also aomponent of the weights to guide the network towards a state where there are exatly nqueens on the board.A major aw in this approah to solving CSPs was that the network would beome \stuk"in loal minima. This would mean that onstraints would be broken and so the solutionmight not be useful to the user. Moreover, there may be states where variables might nothave a value assigned to them. The ommon way of dealing with this was to restart thenetwork every time it reahed a loal minimum. However, on hard problems this approahis unlikely to �nd a global minimum as all the e�ort put into a previous searh is lost whenthe new searh starts. Further work, by Adorf and Johnston [61℄ solved at least part ofthis problem. Their guarded disrete stohasti (GDS) network ensured that a variablewould always have an assoiated value in the network.3.3 Min-onit heuristiIn 1992 Minton et al [78℄ investigated why the neural network approah (spei�ally theGDS network) was doing better on ertain problems (e.g. the n-queens problem) than thebaktraking algorithms of that time.The �rst argument onsiders the non-systemati nature of the GDS approah and thestruture of the searh spae. If the searh spae has solutions lustered together ratherthan spread evenly, a systemati searh may take longer than a non-systemati searh to�nd a solution. This is explored in their paper by using a purely random searh, the LasVegas algorithm, whih they show performs better than a simple baktraking searh onthe n-queens problem. However, the GDS network outperforms the Las Vegas algorithmso there must be further explanation for the suess.The seond argument is that having a whole assignment to a problem gives knowledge

Chapter 3 29 Loal searh for CSPsthat is not available to a onstrutive baktraking approah. So out of the GDS networka simple heuristi was distilled to demonstrate the reason for the suess of the network,the min-onits heuristi:Given: A set of variables, a set of binary onstraints, and an assignment of a value foreah variable. Two variables onit if their values violate a onstraint.Proedure: Selet a variable that is in onit, and assign it a value that minimises thenumber of onits. (Break ties randomly.)Empirial evidene obtained from [78℄ using the min-onit heuristi for hill limbing 1showed that the heuristi obtained similar results to the neural network, so supporting theargument that the network's suess is due to the priniple aptured by the min-onitsheuristi.Using the min-onits heuristi instead of the GDS network allows more exibility in theway the searh is onduted. For example in [78℄ a baktraking system is implementedusing the min-onit heuristi for variable and value ordering.The loal searh min-onits heuristi worked well on problems suh as the n-queensproblem, graph olouring problems and the real world problem of sheduling the HubbleSpae Telesope [78℄. However, still present was the problem of getting stuk in loalminima. In setion 3.5 there is disussion on methods for esaping loal minima but �rstwe will introdue another algorithm used for solving CSPs.3.4 GSATGSAT [95℄ is a greedy loal searh for solving propositional satis�ability or SAT problems.To explain this the following is de�ned:1Hill limbing is used to �nd a maximum in the searh spae and gradient desent is used to �nd aminimum. However, maximising the negation of the objetive is the same as minimising the objetivefuntion so these terms will be used interhangeably

Chapter 3 30 Loal searh for CSPs1. A literal is a propositional variable or its negation. E.g. A or :A2. A lause is a disjuntion of literals. E.g. (:A _B _ F)3. A formula in onjuntive normal form (CNF) is a onjuntion of disjuntions. E.g.(:A _ B _ F) ^ (B _ :C _ :D)^ . . .A SAT problem is: given a CNF formula �nd an assignment of true or false for its variables(a truth assignment) that satis�es the formula. CSPs an be represented as SAT problems2and so GSAT an solve them. The searh method starts with a random truth assignment.Then iteratively: hange (\ip") the variable's truth value that leads to the largest inreasein the total number of satis�ed lauses. After a user de�ned number of ips (MAX-FLIPS)the searh starts over with a new random assignment. This whole proess is repeated agiven number of times (MAX-TRIES). The full proedure is given in Figure 3.3.GSATwhere � is a set of lausesFor MAX-TRIEST := a random truth assignmentFor MAX-FLIPSif T satis�es � then return T (solution)p := a propositional variable suh that a hange in its truth assignment givesthe largest inrease in the total number of lauses of � that satis�ed by T .Breaking ties randomly.T := T with the truth assignment of p reversed.endendreturn \no satisfying assignment found"Figure 3.3: Pseudo ode for basi GSAT proedureBoth min-onits and GSAT allow sideways moves, the urrent solution is allowed tomove to another solution with the same energy level. This lets the proedure traverseplateaus in the energy landsape, see Figure 3.2. By doing this the searh an �nd ways2CSPs represented as SAT problems an have inated searh spaes, see setion 3.6.4

Chapter 3 31 Loal searh for CSPso� the plateau and ontinue gradient desent. GSAT atually allows uphill moves, if thereis no move that inreases or retains the number of lauses satis�ed. However, this is notenough to esape a loal minimum. To do this the heuristi has not only to move out ofit but try not to \fall" bak into it.3.5 Methods for esaping loal minimaThere are several approahes for esaping loal minima in heuristi improvement methods.These same methods an often diversify the searh. These an be ategorised into twotypes of approah (or a mixture of the two): those that add randomness suh as Simulatedannealing [64℄ and those that restruture the neighbourhood suh as Tabu searh [46℄ andweighting approahes [80, 93℄.3.5.1 Simulated annealingSimulated annealing has been used for solving CSPs [73℄. The standard simulated an-nealing proess works as a gradient desent neighbourhood searh allowing uphill moveswith a ertain (possible varying) probability. A move onsists of hoosing a neighbouringstate at random and if this state has a lower energy then hoose it. Otherwise hoose itwith a probability P = e��E=T , where E is the energy and �E is the hange in energythat would be produed by the move. T is a temperature level, whih may be onstant ordereasing during the searh. This value a�ets how likely a non-improving move is made,the higher T the more hane.3.5.2 Tabu SearhTabu searh like GSAT allows uphill moves if no improving move an be made, yet itexpliitly tries not to \fall" bak into loal minima. It does this by making previous states(and related states) Tabu. It stores a list of these Tabu states and dynamially updates

Chapter 3 32 Loal searh for CSPsthis list as the searh proeeds. This is a exible meta-heuristi and an be implementedin many ways and hybridised with many other searh methods. An overview of these anbe found in [46℄. The basi model is applied as follows. Start with an initial solution(possibly randomly generated). Move to the best available state even if this is a non-improving move. Update the Tabu list. In the basi model this an be done by addingthe previous state to the Tabu list and removing states after a spei�ed number of moves.Repeat this until a set number of steps is reahed or no moves are available.3.5.3 Esaping loal minima in GSATSimulated annealing and similar approahes have been inorporated into GSAT [92, 94℄,one suh approah was GSAT with Random walk. The priniple is outlined as:With probability p, pik a variable ourring in some unsatis�ed lause and ip its truthassignmentWith probability 1 � p, follow GSAT, i.e. pik randomly from the list of variables thatgives the largest derease in the total number of unsatis�ed lauses.A further method introdued in [92℄ did not diretly esape loal minima but altered thesearh spae to remove them. It was disovered that, in some problem instanes, after eahrun the same set of lauses would remain unsatis�ed (an example of this is given in [92℄).To ombat this a weighting system to inrease the importane of ertain lauses wasintrodued. At the end of eah inner yle of GSAT (see Figure 3.3) the ost of violatinga lause that is violated in the urrent assignment is inreased. This work was later builton in [14℄ where a similar e�et was produed by adding extra lauses instead of hangingweights. It is laimed that this new method works better than the previous method. Thislaim is founded on empirial evidene and in the paper a possible explanation is given.The best version of GSAT out of the ones shown was aording to Selman et al [94℄GSAT with Random Walk. However, this is debatable as in [13℄ it is onluded that

Chapter 3 33 Loal searh for CSPsGSAT-weighting is the best method. The reason for the debate of whih method is bestis beause performane is based on empirial testing on problem instanes. For di�erentlasses of problems di�erent solvers may be better. There have been several explorationsof various versions of SAT solvers(e.g. [44℄).3.5.4 Breakout MethodA similar approah to the weighting approah of the last setion desribed above wasdesribed in Morris [80℄.In the min-onit heuristi, the ost or energy funtion is the number of onstraintsviolated. In this method eah onstraint (represented as a nogood onstraint) has a weight,initially 1. The ost funtion is the sum of all of the weights of the violated onstraints.A standard gradient desent searh is used until a loal minimum is reahed. Then theweights of the urrent violated onstraints are inremented until the urrent state is nolonger a loal minimum. The searh then ontinues. This method di�ers from the GSAT-weighting in that as soon as a loal minimum is found the weights are inreased ratherthan after a �xed number of iterations.Morris proves that if this inrease of weights only a�eted the urrent loal minimum thenthe algorithm would be omplete and so given enough time would always �nd a globalminimum. However, the weighting e�et deforms other parts of the spae and this makesthe searh inomplete.3.6 Desription of GENETGENET is a Neural Network adapted from a Hop�eld Network desribed above. Thenetwork an represent a onstraint satisfation problem. It ould be implemented intohardware and the design for this is detailed in [122℄. However, it has been suessfullyused as software simulation and this is what is desribed here.

Chapter 3 34 Loal searh for CSPsEah neuron (or node) represents one label. The label nodes orresponding to a partiularvariable form a luster. Eah node an be in an on or o� state. If the node is on, thenthe assoiated variable and value are assigned. Therefore, only one node in eah lusteris allowed to be on at any time, as a variable an only have one value. The node's stateis governed by the input to the nodes in its luster. In turn the node has an output andthis is 1 if the state is on and 0 if not.Binary onstraints are represented by onnetions showing a nogood assoiation betweenlabel nodes. These work in a similar way to the onnetions in a Hop�eld network.Consider two labels whose representing nodes are X and Y and whih are prohibitedfrom being on at one by a onstraint. The onnetion denoting the onstraint has anassoiated inhibitory (negative) weight. This symmetrial onnetion takes the output ofnode X (Y), multiplies it by the assoiated weight and adds it to the input of Y (X),where wk is the weight and starts at -1. A diagram showing an example of GENET is givenbelow in Figure 3.4. Here variables A, B and C have domains of f1, 5, 7g, f8, 14g and f5,9, 11g respetively. There is a onnetion between the nodes denoting <A,1> and <B,14>(further referred to as A1 and B14) and this represents a binary onstraint restriting theassignment of A to 1 and B to 14. Other binary onstraints are similarly represented. Soif the nodes A1; B14; C9 and were on, the input would be: -2 to node B14, -1 to nodesA1; B7; C9 and 0 to the rest.The searh method is based on the min-onits heuristi desribed above. It starts witha random assignment of values to variables. In the network a random node in eah lusteris set to an on state. Then all weights are initialised to -1. For eah iteration of GENETthe variables are yled through in a random order. For eah variable luster the labelnode with the highest (losest to zero) input is turned on. Ties are broken as follows: Ifone of the nodes with the minimum input was previously on it stays on, otherwise ties arebroken randomly. This proess is repeated until one of three situations ours:1. All the labels that are on have an input of zero (a global minimum has been found).2. No improving move an be made for any of the variables (a loal minimum has been

Chapter 3 35 Loal searh for CSPsreahed). Dealing with this will be desribed in the next setion.3. Some prede�ned limit on the number of iterations or the maximum time has beenreahed.3.6.1 Esaping loal minimaWhen aught in a loal minimum GENET inreases the importane of the onstraintsthat are violated in that assignment i.e. it dereases the weight of the onstraints involvedby 1. So the energy landsape is altered and the loal minimum is raised or \�lled in"and desent an ontinue. This proess is alled \learning" beause by performing thisoperation GENET will disover whih are the hard onstraints to satisfy, giving themmore importane. Learning also leads to the heuristi exploring a wider searh spae thanit would otherwise, beause features of previous assignments in loal minima are penalisedand so are less likely to reur. This is similar in e�et to the Tabu [46℄ proess.So the �nal basi GENET algorithm is in Figure 3.5.
BA

5

7

14

8

-1

-1

C

5

9

11

-1

-11

Figure 3.4: Three variable GENET network

Chapter 3 36 Loal searh for CSPs3.6.2 General onsiderationsA onsideration is whether to allow non-improving (sideways) moves i.e. hanges that donot redue the number of violated onstraints. The basi model desribed above does notallow sideways moves: a node that was previously on whih has the minimum input in theluster stays on, even if other nodes have an equal input. The advantage of not allowingsideways moves is that this guarantees onvergene. Given enough time the system willalways �nd a loal or global minimum, whereas if sideways moves are allowed the networkmay never stop hanging states. Davenport [23℄ notes that GSAT suessfully uses exten-sive sideways moves. A problem with sideways moves in GENET is that when we makea move we are only onsidering one variable. It may be that there are improving movesthat an be made with other variables and by making a sideways move we may removethis possible improvement. Although a similar state may our without sideways movesbeing used, there may be a better move missed. Davenport developed three strategiesfor allowing sideways moves: None (only learning), limited and full. The full sidewaysmoves version allows all node lusters to hange the node with the on state, even if thereis no onit (i.e. the node that is on has zero input). If the network stays in the samestate after two onseutive yles learning is invoked. The limited approah allows theGENETRandomly turn on one node in eah lusterRepeat :Repeat : Randomly order the lustersFor eah luster in orderOut of the set of nodes with highest input in the luster; retainpreviously on node if member, else turn on a random member.until onvergene (no label nodes hanged state in a yle)if in a loal minimum (not all inputs to on label nodes are zero)Learnuntil in a global minimum or resoure limit reahedFigure 3.5: Pseudo ode for basi GENET model

Chapter 3 37 Loal searh for CSPssame moves as the full approah. However, it only allows two onseutive yles withouthanging the overall energy before learning ours. This method has both the advantageof guaranteed onvergene and the advantage of sideways moves. Davenport experimentedwith several lasses of problems: the n-queens, random binary, graph olouring and plan-ning. From these Davenport onluded that no one system is better than another. Forexample, allowing full sideways moves is best for the n-queens problem while for planningproblems allowing no sideways moves is best. A possible reason for planning problemsbene�ting from not using sideways moves is that they are highly strutured and whethera label auses onits or not is strongly based on the hoie of other labels.3.6.3 Non-binary onstraintsAll non-binary onstraints an be represented as binary onstraints [106℄. However, thistends to hugely inate the size of the problem. So there is a need to express more generalonstraints in GENET. For non-binary onstraints the arhiteture of the model has tobe hanged. Constraint neurons are added whih represent the non-binary onstraints.Davenport [25℄ introdued ways of dealing with several general non-binary onstraints. Abasis for these non-binary onstraints and some spei� onstraints will now be desribed.The input to a onstraint node is the unweighted sum of the outputs of all labels thatviolate the onstraint. The output is weighted just like the binary onstraints. A weightis stored for eah onstraint node. So the onstraint node - label node onnetion is non-symmetrial, unlike the label node - label node onstraint onnetions. The input to aonstraint node diretly a�ets its state (S) and has to be set up so that it ats in thefollowing way. If the onstraint is being broken, S will be positive. If it may be broken byone variable hanging value S will be zero. Otherwise, S should be negative.Figure 3.6 shows a model of a possible non-binary onstraint. The onstraint ould penalisenode < A; 1 >, < B; 8 >, < C; 9> and/or < C; 11> as it has onnetions to these. Thereis one weight -1 stored in the onstraint.

Chapter 3 38 Loal searh for CSPsThe learning mehanism updates the weight in the same way as with binary onstraints.The weight of the onstraint is dereased by 1 if it is in onit at a loal minimum. Thisweight is assoiated with all the all label nodes onneted to the onstraint node and soa�ets the input of all of them.Davenport et al illustrate some spei� onstraints in [25℄ and more in [23℄. Here is asummary of two of these:1. The Illegal (or nogood) onstraint restrits the use of partiular ompound labels.The onstraint is given a k-ompound label L that is invalid or illegal in a solution.The onstraint node is onneted to the k label nodes in L. The state of the illegalonstraint node Sill is negative if the input Iill is less than k � 1. This is beauseeven if one label hanges state no violation an our if fewer than k � 1 nodes areon. However, if exatly k � 1 nodes are on Sill will be 0, beause if the remaininglabel node in the o� state is swithed on the onstraint will beome violated. Thisis expressed by the equation: Sill = Iill � (k � 1)
5

7

14

8 5

9

11

BA C

-1

C

1

Figure 3.6: The framework of a non-binary onstraint in GENET

Chapter 3 39 Loal searh for CSPsIf Sill = 0, i.e. only one node is in the o� state, we will disourage this node fromturning on by the onstraint applying a weighted output to it. The other labels arenot penalised, beause on their own, they will not ause a violation.The last situation for Sill is if it is positive, i.e. all k label nodes are on. In this aseall the nodes are penalised to persuade them to hange state.The output (Vill < i; j >) of the illegal onstraint node to eah label node < i; j >an be represented by the equation:Vill<i;j> = 8><>: 0 if Sill < 01 + Sill � V<i;j> otherwisewhere V<i;j> is the state of the label node < i; j >.The Illegal onstraint is useful as it an be used to represent more general onstraints.As any onstraint an be a represent by binary onstraints any onstraint an berepresented as Illegal onstraints. The Illegal onstraint representation will be ofequal or smaller size to the orresponding binary representation.2. The Atmost onstraint is a ommon onstraint and so has been inluded in CHIP.Given a set of variables V ar, a set of values V al and a number N , let L be the set oflabels that an be generated from V ar and V al. That is, L = f< i; j > ji 2 V ar; j 2V al; j 2 Dig. Then the Atmost onstraint states that any ompound label in thesolution must ontain at most N labels in L. So only N variables in V ar an havevalues from V al.In GENET the Atmost onstraint node is onneted to all the labels in L. The stateSatm is determined as follows:Satm = Iatm �N where Iatm is the onstraint's input.So as in the Illegal onstraint if the state is negative no nodes are penalised and ifpositive all are penalised. However, if the state is zero it is dealt with di�erently.

Chapter 3 40 Loal searh for CSPsWhen Satm = 0 any of the remaining nodes turning on would ause a violation.Unfortunately, if all of these remaining nodes were penalised a problem would o-ur. Unlike the Illegal onstraint, in the Atmost onstraint a single variable an beassoiated with several onstrained labels. So say a variable i has two values (j andk) in its domain that are in V al. If the onstraint state is zero and the label < i; j >is on and < i; k > is o� we would penalise < i; k > but not < i; j >. So in thenext move GENET ould swith < i; j > o� and < i; k > on. This swith ouldthen happen in reverse in the next move. So the network ould osillate betweenone node being on and the other on. To remove this problem all label nodes in thesame luster reeive the same output from this onstraint. If all of them are o� thenthe onstraint will output a one multiplied by the onstraint weight to all of themto dissuade one of them oming on. otherwise it will output a zero. To summarise,the output for a partiular label Vatm<i;j> is worked out as followsVatm<i;j> = 8>>>><>>>>: 0 if Satm < 01�MaxfV<i;k>jk 2 V alg if Satm = 01 otherwiseIn the original work by Davenport et. al. [25℄ it was stated that for eah onstraintnode there was a separate weight assoiated with every onnetion it had with alabel node. This idea was dropped in the later work [23℄ and so this newer versionis what has been desribed above. Only having one weight per onstraint node doessave memory.There has also been work by other authors on allowing GENET to handle non-binaryonstraints. This work saw the emergene of EGENET [72℄. This method is similar tothe one desribed above. Some of the di�erenes of note are that multiple penalty valuesare used for onstraints in EGENET rather than a single weight. In a onstraint thereis a penalty value for every ombination (tuples) of assignments of values to variables.Eah penalty value starts at -1 for tuples that are prohibited and 0 for others. This allows

Chapter 3 41 Loal searh for CSPsgreater exibility in de�nitions of onstraints as the user just needs to de�ne prohibitedtuples to generate a onstraint. However, this requires a muh greater amount of memorythen just storing a single weight. So an adaptation was introdued [71℄ to ompensatefor this problem. In [70℄ new onstraints were introdued to make EGENET more of ageneral CSP solver suh as CHIP and SOLVER.In the light of the researh on EGENETwhere multiple penalties are used Davenport [23℄ mentions that only using one weight asopposed to multiple weights an a�et the searh and suggest it is an area for furtherinvestigation. It will be shown later in Setion 6.6 that it is not always desirable to haveonly one weight.3.6.4 Appliations and extensions of GENETGENET has been suessfully applied not only to random CSPs but to several otherproblems inluding standard problems suh as graph olouring and real world problemssuh as ar sequening and radio frequeny assignment. These use the binary and non-binary versions and several expansions of GENET.Davenport et al [25℄ laim that GENET is superior to GSAT for problems suh as grapholouring. This is shown in experimental results and baked up with the following explana-tion. In GSAT a problem with N verties, k olours will require Nk variables to representit. The domain size of all the variables will be 2. The problem an be represented as aCSP using only N variables with a domain size of k. So in GSAT the number of possibleassignments is 2Nk whereas in GENET, it is kN . So the searh spae is muh larger inGSAT.The ar sequening problem is a real world problem. Modern ars often have di�erentmodels with varying features suh as sunroofs and air-onditioning. The number of eahmodel required is alled the prodution requirement. On a prodution line there is amaximum number in any sub-sequene of ars that an be �tted with a partiular feature.These make up the apaity onstraints. This problem inspired a new neighbourhoodstrategy for GENET. This was alled SWAPGENET [24℄. The original representation of

Chapter 3 42 Loal searh for CSPsthe problem was to have eah variable as a position on the onveyor belt. The domain ofthese variables would be the di�erent models to produe. A normal move in GENET wouldbe to hange a position in the onveyor belt to ontain a di�erent model. The number ofars of eah model to be made are known. So an initial assignment an be reated havingthe right number of models produed even if apaity onstraints are broken. The moveoperator an be hanged so that it onsists of a variable swapping its value with the valuefrom another variable. This ensures that the prodution requirements do not need to beimplemented as onstraints. A further advantage is that it an be proved that the seondrepresentation gives a smaller searh than the original and so solutions should be foundfaster. SWAPGENET takes more time for eah repair. So although the number of repairsis redued on easier problems, the time taken to solve them an be greater.Another real world problem that GENET has been used on is the Radio Link Frequen-y Assignment problem (RLFAP). Boye et al [10℄ explore using GENET and Tabu astwo tehniques for solving the RLFAP. A paper [9℄ by the same authors with Bouju on-entrates on Tabu but gives more detail. This problem will be examined in the nextsubsetion.Several other authors have extended GENET to deal with standard types of CSPs thatthe original GENET ould not handle. Wong and Leung [124℄ enhaned GENET to beable to takle a new lass of CSPs; fuzzy CSPs (FCSP). In [17℄ Cox and Tsang designeda prototype of a GENET that ould inorporate ontinuous domains. EGENET wasextended to make use of onstraint onsisteny heking in [102℄.3.6.5 OptimisationGENET was originally designed to �nd a single solution, stopping one there are no vi-olated onstraints. The lass of CSPs where solutions an be ordered and the aim isto �nd the best one are known as onstraint satisfation optimisation problems (CSOP-s). A variation of this problem is the Partial CSP (PCSP) where solutions that ontainviolated onstraints are allowed. The onstraints that an be broken are alled soft on-

Chapter 3 43 Loal searh for CSPsstraints. In this sort of problem, minimisation of onstraint violations an be the aim ofthe searh. There may be a hierarhy of onstraints and this will a�et the prefereneorder of solutions. Sine optimisation problems are ommon, researh was arried out tointegrate optimisation into GENET. Two general ways of aomplishing this are desribedin Setion 3.6.5.1 and 3.6.5.23.6.5.1 The tunnelling algorithmThe tunnelling algorithm was introdued by Voudouris and Tsang in [113℄. The idea isto modify the ost funtion to enode the desired riterion or riteria to optimise. Thisis done by adding extra terms to the input of eah label. In the original model thereare only osts for violating onstraints and all of these start at the same weighting. Inthe new version there are additional starting osts for violating onstraints and osts forspei� assignments. This additional input ombined with the original input is alledthe tunnelling funtion. So now the ost (tk) of violating a onstraint in the tunnellingfuntions is: tk = 8><>: rk + pk if onstraint k is violated0 elsewhere pk starts at 0 and rk is a �xed ost related to the importane of the onstraint. Asimilar term is added for the labels:ltij = 8><>: aij + pij if node < i; j > is on0 elsewhere aij is a �xed ost for eah label and pij starts at 0.There are two ways in whih the tunnelling algorithm an work. The �rst is alled theone stage tunnelling algorithm (1ST). This works just like the original GENET exept the

Chapter 3 44 Loal searh for CSPsextra terms are inluded in the ost funtion. The seond, alled the two stage tunnellingalgorithm (2ST) separates the objetive funtion from the tunnelling funtion. So theterms of the objetive are for the onstraint terms:k = 8><>: rk if onstraint k is violated0 elseSimilarly with the label terms:lij = 8><>: aij if node < i; j > is on0 elseThis is done beause the tunnelling funtion an beome distorted from the original ob-jetive funtion that is to be minimised. This may ause the algorithm to be unable to�nd a good solution.Unlike the original version of GENET the two stage tunnelling algorithm only adjusts theweights of ertain terms in the tunnelling funtion at loal minima. This is so that themost important terms are penalised the most and so beome less and less likely to bebroken. However, to even the proess up and so diversify the searh, the number of times(the absolute frequeny) a term has been previously penalised is onsidered. So a simplefuntion is instigated to deide whih terms to penalise. This is alled the Frequeny toCost Ratio (FCR) where:FCR = Frequeny / CostAt eah loal minimum a set of terms is onstruted onsisting of those with the minimumFCR whih also ontribute to the total ost. Out of this set all the ones with the maximumost are penalised. There is no indiation that experiments were used to derive the relativeimportane of frequeny and ost. They just taking them as equally important in deiding

Chapter 3 45 Loal searh for CSPswhih terms to penalise.Another hange from the original version of GENET is that the tunnelling version requiresextra work to deide how muh to penalise eah term in order to esape loal minima.This is partly due to the new version having two di�erent funtions to minimise and partlyto deal with the di�erent importane levels (osts) of eah term. So the algorithm worksout the input to eah label for both funtions. Then for eah variable (v) it �nds theminimum label input for both and reords the di�erene (�gv). The important riterionfor the hange in the tunnelling funtion is that there must be a move (a hange of onelabel to another) available after the weight hanges have ourred. However, the biggerthe hange in the funtion the further from the original funtion it beomes. Sine theoriginal funtion is the one that is to be maximised straying too far from it is not desirable.So to balane these two issues the following equation is used for eah term:PenaltyAmount = maxfost;minf�gvggBy using the ost if it is high enough to make a hange possible (i.e. ost > f�gvg)the algorithm is more likely to retain the relative osts of the original weighting. Thisproessing takes up a lot more CPU time per yle than it does when the algorithm justhas one funtion. However, on some of the harder problems the redution in the numberof yles outweighs this inrease in time and the problem is solved in either a quiker timeor there is a higher rate of runs that �nd an optimal solution.The algorithm was used on: random CSPs and PCSPs, the graph olouring problem, theRadio Link Frequeny Assignment problem (desribed below) and the travelling salesmanproblem. So it has been shown that it an be applied to a wide variety of problems bothrandom and real world.It is interesting that on some hard (tightly onstrained) non-optimisation CSPs the tun-nelling algorithm found solutions on more runs than the original GENET.

Chapter 3 46 Loal searh for CSPsAn investigation of loal searh methods for PCSPs and a omparison with a systematibranh and bound method is given in [60℄.3.6.5.2 Additional work on GENET for optimisationThe other approah by Boye et al [10℄ developed for handling CSOPs and PCSPs issimilar to the one-stage tunnelling algorithm. The example used to show the optimisationapabilities is the Radio Link Frequeny Assignment problem. The general problem on-sists of a set of frequenies and a set of radio links. Constraints our beause frequeniesan have an e�et on eah other at ertain distanes. This imposes restritions on theombinations of frequenies that links whih are spatially neighbours an have. A solutionis a mapping of radio links to frequenies. The problem an be an optimisation problemonsidering several riteria. These inlude: the number of frequenies used, the range offrequenies used and the number of violated onstraints (i.e. the problem an be a PCSP).In [10℄ to redue the number of frequenies used, eah label has an extra input term. Thisterm is the negation of the number of frequenies that the assignment would have if thatlabel were to be turned on. This extra term, derived from the state of the whole system,an be varied to optimise whatever riterion is desired. This is the main di�erene betweenthis approah and the 1ST. In 1ST system the extra term for eah label onsists of thenumber of variables minus the number of variables that are assigned the proposed value.In [10℄ the three results where GENET optimises this riterion show that GENET �ndsthe optimal number of frequenies. This is slightly marred by the fat that, in two out ofthe three problems, GENET an only �nd the optimal solution in a maximum of 20% of itsruns. However, this is not a lear performane indiation beause in this paper there is nomention of how lose the other solutions are to being optimal. Moreover, there is only oneother method that it is ompared with, Tabu searh. In the implementations used in thepaper, GENET outperforms Tabu. The suess in �nding optimal solutions in ertain runswas due (at least in the Tabu version) to the way they takled the following issue. Witha single reassignment of frequeny to a link there are very few opportunities to remove

Chapter 3 47 Loal searh for CSPsa frequeny entirely. So even when they tried weighting the ost of using frequenies tobe very high the solution was often far from optimal. This was ombated by hangingthe initial solution from a randomly produed one. In a random starting assignment, onaverage, the number of violations is less than half, but more than half of the availabledistint frequenies are used. So the priniple of starting with the minimum number offrequenies was used (this ould be 1 if all the domains ontain a partiular frequeny).It greatly inreases the initial number of violated onstraints. However, the system addsfrequenies when neessary to redue violations and so inreases the number of frequeniesused. Doing this allows the program to �nd optimal solutions. This work is detailed in [9℄.3.6.6 Algorithms derived from GENETThe ideas and priniples of GENET were arried forward into a new system whih allowsgreater generality and its basi model inorporates solving CSOPs and PCSPs. This isalled Guided Loal Searh (GLS) [109, 114, 115, 112, 116, 117℄. Instead of speifying theobjetive funtion as GENET does, GLS leaves it to the implementer. GLS just needs tobe supplied with an objetive funtion that maps every ompound label to a ost. In eahyle of the algorithm every variable is set to a value that gives the lowest overall ost,breaking ties randomly. This allows sideways moves for eah variable but if after a fullyle the total ost has not been redued then this is treated as a loal minimum. Thevariables are hanged in an arbitrary stati order. This is a meta-heuristi and so an \siton top of" other loal searh methods. This allows suh hybrids as the Guided GenetiAlgorithm [68℄.3.6.7 Conlusions on GENETTo onlude, GENET an be modi�ed to ope with many di�erent tasks and di�erentsearh strategies an be used. As well as general problems suh as graph olouring andrandom CSPs, GENET has been applied to a few real world problems suh as the radio

Chapter 3 48 Loal searh for CSPsfrequeny assignment and ar sequening. However, these hanges are not straightforwardand require researh and experimentation to produe. An overview of some of the abovemethods are given in [108℄.3.7 Summary and ConlusionsThe majority of the methods desribed above are similar in nature; the di�erene generallylies in the move operator (how it \steps" from state to state) and how it deals with speialstates suh as loal minima, plateaus and previously visited areas. When solving realworld problems, the move operators and speial state operators are often speialising totake in domain knowledge. This is usually done intuitively by an expert in the �eld.Equally some tehniques require the setting of parameters that a�et the searh. Whilstexperimentation and empirial evidene are used to set these, informal heuristis andintuition are often used. These fators may supersede the innate di�erene in resultsprodued between di�erent algorithms when ompared on a spei� problem.The methods here have been desribed in their basi form and there are always numerousways of adapting and hybridising them, for example there are several strategies for usingmethods used in systemati searh for loal searh [105, 62, 102, 128℄. There are severalstudies omparing methods and how the struture of the problem a�ets the performaneof methods, for example [50, 16℄.The next hapter will desribe how loal searh tehniques shown in this hapter, on-straint programming tehniques from the last hapter and mathematial programmingtehniques have been used for produing driver shedules.

Chapter 4Review of driver shedulingtehniques
4.1 IntrodutionEarly bus driver sheduling systems were heuristi based and limited in their usability.Many were spei� to individual bus ompanies and the tehniques used were not diretlytransportable to other ompanies. Often a large amount of manual intervention wasneeded. Some systems were little more than validators. They just heked the shiftsand shedules the manual sheduler produed. This was useful but ould not be ountedas automated sheduling. Later, as omputer power inreased, the systems ould takeadvantage of mathematial programming. Setion 4.2 will desribe some early heuristisand in Setion 4.3 we will progress to the later mathematial systems. In these two setionswe will restrit our review to examples of approahes suessful on ommerial bus driversheduling problems. In Setions 4.4 and 4.5 we ome to reent work. Here we will broaden49

Chapter 4 50 Review of driver sheduling tehniquesour sope to inlude theoretial and potential approahes as well as work related to busdriver sheduling. To open this Chapter we will introdue the mehanis of the problem.Bus driver shedules are designed to ensure that every bus has a driver at all times. Driverswork on pre-planned shifts, eah of whih obeys ertain rules dependent on loal legislationand on agreements between drivers and management. Typial types of rule are:� No shift an exeed a stipulated maximum driving time;� Every shift must have at least one meal break of a designated minimum duration;� No part of a shift an exeed a stipulated time on duty without a meal break;� No shift an exeed a given elapsed time from start to �nish (the maximum elapsedtime may depend on the type of shift).In pratie, there is usually a variety of further rules. In many ountries, inluding theUnited States and the United Kingdom, shifts usually onsist of strethes of work, sepa-rated by a meal break. Eah streth may ontain one or more spells of work, eah spellbeing on a di�erent bus. Drivers an normally join or leave a bus only at designatedpoints (usually one per bus route or line); these relief points may be either intermediateor terminal points. We all the times at whih buses are sheduled to pass relief points,relief opportunities. We may represent the work of a bus throughout a day as a series ofrelief opportunities linked by indivisible piees of work, eah of whih must be overed bya driver. A shift therefore onsists of two or more spells, eah starting and ending at arelief opportunity and onsisting of a number of onseutive piees of work.Figure 4.1 shows three buses with just the information required for driver sheduling. Thesolid lines represent the work done by eah vehile; where a relief opportunity ours, thetime and loation are shown (here, D is the depot and L is Leeds ity entre). The driverassigned to the �rst bus drives it until the bus returns to the depot. The dashed lineshows this spell of work. The driver then has a meal-break and following that takes overthe seond bus at 1015 in Leeds ity entre, from the driver who has already driven that

Chapter 4 51 Review of driver sheduling tehniquesbus from 0622 onwards. The seond driver in turn takes a meal-break and then takes overthe third bus from its previous driver, and so on.4.2 Early heuristi methodsThe early methods used for driver sheduling were heuristi based. This was beause therewas not the omputing power to use mathematial solvers. Many of the approahes havesimilarities. They onstrut an initial solution using a heuristi proess and then makelimited alterations to it to try to improve the shedule.4.2.1 RUCUS/RUCUS IIRUCUS (RUn CUtting and Sheduling) [4, 75, 74℄ is an example of a system that generatesa initial shedule and then heuristially improves it. It �rst reates single spell shifts andthen two spell shifts, after this proess any remaining piees of work that annot bealloated to shifts are left as short overtime spells. This limits the use of the system andis a reason for RUCUS's demise, as a lot of ompanies do not use overtime and even ifthey do they try to restrit it. Further, it is generally ineÆient to leave out \diÆult"work in this way. One the initial solution is reated the system then uses loal searhmoves to attempt to improve the solution. It either swaps some piees of work overed by
D

0529
L

0721 0925
D

D
0622

L
0838

L
1015

L
1224

L
1346

L

D
0820

L
0838

L
1110

L L
1623

1435

1415 1538
LL

1234Figure 4.1: A fragment of vehile shedule showing possible hosen shifts

Chapter 4 52 Review of driver sheduling tehniquesone shift with piees of work from another shift or it moves seleted relief opportunitiesforward or bakward. There is then a repair proedure whih attempts to �x any shiftsthat have beome invalid due to the hanges. However, there may still be invalid shiftsleft in the �nal shedule and so manual intervention may be needed.4.2.2 Other heuristi systemsHOT and HOT II (Hamburg Optimisation Tehniques) [54, 21, 111℄ start by trying to formgood shifts, one at a time, for eah morning bus, and then eah evening bus. Any workwhih is not treated in this proess is formed into partial shifts, whih are then ombinedinto full shifts by a variant of the Hungarian Algorithm. There is little improvement doneto the shedule one it is onstruted. Sometimes it may leave unsheduled piees of work.However, it has been used in several German bus operations. It is believed that it is nolonger widespread in use.TRACS is a heuristi system with a few di�erenes from those already desribed. Thissystem was developed under the premise that an initial poor solution annot be alteredinto a good solution by heuristi improvements. One reason why this may have beentrue was that development of this system started in 1967 and so the modern loal searhtehniques were not available. A poor solution would be a poor loal minimum in thesearh spae and would take several un-improving moves to get to a stage where it ould besigni�antly improved. The heuristis used at this time in driver sheduling tended to useonly improving moves and so a shedule ould not be greatly enhaned. So while TRACSdid do heuristi improvements, similar in nature to RUCUS, it would �rst onentrate onproduing as good an initial solution as possible. This would take a lot of e�ort workingwith a bus ompany to get heuristis spei� to the ompany working, and this proesswould have to be altered, often substantially, to move the system to a new ompany.Subsequently, a system, COMPACS, was developed by a ommerial ompany. COMPACSretained the initial solution generation phase of TRACS, but not the improving moves.It ould also be used as an interative sheduling tool and would validate shifts as the

Chapter 4 53 Review of driver sheduling tehniquessheduler wrote them.4.3 Integer linear programming methodsWhen researh into driver sheduling was �rst undertaken in the 1960s, all pratial prob-lems were too large for a mathematial approah using the available tehnology and meth-ods. To this day, a pure general purpose mathematial approah would still be inadequateto solve pratial driver sheduling problems of value. Heuristi redutions are needed andgreat e�ort must be put into their development.4.3.1 Mathematial model of set partitioning and set overingFrom the point of view of driver sheduling, the vehile shedule onsists of a set ofpiees of work to over I = f1; : : : ; mg. We an then produe a large set of possibleshifts S = fS1; : : : ; Sng. Eah shift overs a subset of the piees of work (Sj � I forj 2 J = f1; : : : ; ng). The shifts have an assoiated ost j > 0. What we want is a subsetof shifts J� that together over all the work. This an be written as[j2J� Sj = I (4.1)where J� � J .If equation (4.1) holds, then J� is said to be a over of I . If equation (4.2) below alsoholds then J� is alled a partition of I .j; q 2 J�; j 6= q) Sj \ Sq = ; (4.2)i.e. no piee is overed by more than one shift.We wish to produe a shedule whih has the minimal total ost (Pj2J� j) i.e. uses the

Chapter 4 54 Review of driver sheduling tehniques1 . . . mS1 a11 a21 . . am1S2 a12 . . . am2...Sn a1n . . . amnTable 4.1: The set partitioning problemminimum number of shifts. So now we an de�ne our set partitioning problem as theInteger Linear Program (ILP): min x0 = nXj=1 jxj (4.3)subjet to: nXj=1 aijxj = 1; i = 1; : : : ; mxj = 0; 1 j = 1; : : : ; nwhere: xj = 8><>: 1 if j is in the partition0 otherwiseaij = 8><>: 1 if i 2 Sj0 otherwiseThis problem an be represented as a matrix, as shown in Table 4.1. The rows are theshifts and the olumns the piees of work. When seleting a set partitioning solution weselet the minimum number of rows where the sum of eah olumn of the seleted rowswill be 1.

Chapter 4 55 Review of driver sheduling tehniquesOften in ommerial driver sheduling pakages the problem is formulated as a set overingor a set partitioning problem. However, there are often extra features added. For example,side onstraints may be imposed to restrit ertain types of shifts. The other alteration tothe formulation is the inorporation of optimising the number of shifts as well as the ost.In ommerial system a set overing approah is often adopted over a set partitioningone. This is beause as a set partitioning problem there will not always be a solution. Inontrast to this the set overing formulation is guaranteed to have a solution. In priniple,restritions suh as those on depots in train driver sheduling an negate this guaranteebut in pratie it works as long as an appropriate number of generated shifts over eahpiee. In train driver sheduling it is often the ase that several depots are in use. Thedistane between these depots an be so great that provision has to be made to returnthe drivers to their own depot at the end of a shift. This may mean that drivers need totravel as passengers and systems often ope with this by inluding the passenger travel inthe shift as if the driver were atually driving it. It is then up to the manual sheduler todeide whih driver should atually driver the train.To inrease the likelihood of �nding a set partitioning solution we would need a muhlarger supply of possible shifts. This would inrease the searh spae. Nevertheless, theadvantage of the set partitioning formulation is that it will produe a shedule with nooverlapping drivers (over-over). This is preferable as over-over reates unprodutivetime for a driver. Even though the set overing formulation produes over-over we anredue the amount of over-over. For example, in TRACS II some of it an be removedmanually or interatively by altering shifts at the end of the proess.4.3.2 TRACS IIThe University of Leeds has a long history of driver sheduling researh. Its �rst systemfor forming driver shedules was a heuristi one outlined above alled TRACS [82℄. Latera mathematial system alled IMPACS was developed in the 1980s. IMPACS is nowsuperseded by TRACS II. This new system has been generated with many train driver

Chapter 4 56 Review of driver sheduling tehniquessheduling features in mind but retains the ability to produe bus driver shedules. In thisSetion we will desribe the model that this system uses. We will onentrate only on thenewest version of the program. Parts of this system are utilised in the methods that havebeen generated for this thesis.4.3.2.1 TRACS II model
SIEVEBUILD SCHEDULE

Solve LP

Reduce

Branch
and

Bound

set of
shifts

reduced
shift set

Figure 4.2: TRACS II omponents4.3.2.2 Seletion of relief opportunitiesThe IMPACS suite of programs ontained a program alled SELECT whih tried to reduethe size of the problem by removing ertain ROs. Unfortunately, this type of redution andegrade the solutions produed by TRACS II. With the reent improvements of TRACS IIallowing it to solve problems of larger sizes the SELECT program is now never used.However, sometimes ROs are removed manually by skilled users when problems are toolarge. Work desribed in Setion 4.4.7 is an attempt to replae the dated SELECT module.

Chapter 4 57 Review of driver sheduling tehniques4.3.2.3 Duty generationThe BUILD program generates a large set of valid shifts. It is desribed here but furtherdesription an be found in [66℄ (although that paper relates to the oneptually similarrail driver sheduling problem). The �rst priority of this program is to produe only shiftsthat are valid. However, there are many more aspets it has to onsider. If too manyshifts are generated the problem may beome too large for the mathematial solver to�nd a solution in a reasonable time. On the other hand, omitting important shifts an bedetrimental to the eÆieny of the �nal shedule produed. So the BUILD proess triesto only produe \good" shifts. This is a task that takes several heuristi rules beause theultimate deider as to whether a shift is good or not depends on how it ombines withother shifts and this annot be found out until the problem is being solved.The BUILD proess starts by generating a large number of spells. Rules apply to theminimum spell length so as not to produe spells whih ontain ineÆiently little amountsof work. These spells are then ombined where appropriate into strethes of one or twospells. Strethes also have a minimum length so as to prevent ineÆienies, but they alsoonform to rules governing their maximum length, whih is usually the maximum time adriver an work without a meal break. These strethes are then ombined to form shiftsof up to four spells. Between onseutive spells of work the driver has joinup time toget from an RO where one spell �nished to another RO where the new spell starts. Theother possibility is that the driver will have a meal break, if the time is suÆient. Rulesare applied from legal, union and ompany pratie, suh as minimum meal break lengthand maximum driving time. As well as these ommon sense onsiderations it inludessuh rules as not produing shifts that ontain a spell on a bus followed by a joinup andthen a spell ontinuing on the same bus. One the shifts are generated, shifts that areseen to be obviously \poor" shifts ompared to others are removed. For example, asshifts ontaining a high number of spells are not usually desired, three spell shifts thatare ineÆient ompared with two spell shifts ontaining a substantial portion of the samework are removed.

Chapter 4 58 Review of driver sheduling tehniquesThere are many di�erent types of shifts. Morning, evening, day, overtime and split. Eahmay have its own regulations. These are governed by parameters whih have to onformwith di�ering bus ompany regulations.4.3.2.4 Redution of the set of DutiesIt is sometimes the ase that BUILD produes more shifts than the mathematial solverin SCHEDULE an handle, or more than is neessary to obtain a good solution. Theoriginal IMPACS version used a proess alled EVEN. This operated by removing shiftsthat overed piees of work that were also overed by many other shifts. TRACS II usesa di�erent proess, alled SIEVE.SIEVE initially removes shifts that are dupliates of other shifts. Next, SIEVE asks theuser to give a target number of shifts to remain after the proess. SIEVE then rankseah shift aording to: a measurement of its ost e�etiveness and the least and averagenumber of other shifts overing the piees of work that the shift does. SIEVE then startsremoving the lowest ranking shifts, as long as this does not leave work unovered, until thetarget number are remaining. At ertain stages SIEVE reomputes the ranks of remainingshifts, to reet the fat that low ranking shifts may beome ritial after those of lesserrank are removed. The user then gets to reinstate shifts if they feel these shift's oste�etiveness is too high for them to be removed.4.3.2.5 LP relaxationThe aim of the mathematial solver is to selet a set of shifts from the large set of potentialshifts. Several riteria are to be optimised in this proess, the most important usually beingthe number of shifts. TRACS II takes all of these onsiderations into a single optimisationriterion. In this desription we will desribe the newest versions of omponents that areinorporated in SCHEDULE. SCHEDULE is based on ZIP [89℄ and still retains muh ofits priniples.

Chapter 4 59 Review of driver sheduling tehniquesAs well as the set overing onstraints there are sometimes user de�ned side onstraints.These are set to limit the number of di�erent types of shifts.The �rst part of the proess is to relax the integrality onstraints to allow frationalsolutions. The solver then uses an initial solution to start the optimisation proess. Theinitial solution was originally produed by seleting still unovered piees of work one ata time and then hoosing a shift to over it that minimises the following funtionCjNUj (4.4)where Cj is the ost of the shift and NUj is the number of urrently unovered pieesof work overed by shift j. However, a new initial solution method was developed byWillers [123℄, suggesting the shifts should be seleted by:Max MXi=1 xijLi (4.5)where: xij = 8><>: 1 if shift j overs the urrently unovered piee of work i0 otherwise,Li = duration of workpiee i.There is not muh di�erene between the quality of the initial solutions produed by thesetwo proesses, although the seond proess is on average better. However, either proesswill provide a starting solution whih will lead to an optimal solution to the relaxed LP.The solver used for the relaxed LP is the dual steepest edge approah [59℄. If there is alarge number of potential shifts, a olumn generation proess developed by Fores [36℄ isused. One the problem is solved a new onstraint is added whih inreases the (possiblyfrational) total number of shifts used, up to the next highest integer. This will be thelower bound on the number of shifts in the optimal integer solution. The model is then

Chapter 4 60 Review of driver sheduling tehniquesre-solved using the dual steepest edge approah.4.3.2.6 Branh and BoundSmith [100℄ introdued a method of greatly utting down the number of shifts and thenumber of relief opportunities that go into the branh and bound method. This proessis alled REDUCE. It removes many shifts from the searh by only using shifts that startor end at an RO that is used in the LP solution.One this has been done the proess ontinues into the branh and bound phase. The pro-ess branhes on relief opportunities, this means that nodes of the searh tree orrespondto ROs and have two branhes; either the RO is used (1) or not used (0). This proessuses the relaxed LP solution to form frational values for eah RO (the details of this arefound in Setion 5.5). These values are used to hoose whih branh of a node to explore�rst. The algorithm explores the 1 branh if the frational value is losest to 1, and the0 branh otherwise. The proess ould just branh on the shifts, i.e. eah node wouldorrespond to a shift and eah branh to whether the shift is used or not. The reasonswhy it does not do this are disussed in Setion 5.5. The proess will run until a solutionis found with the minimum number of drivers or it has explored 500 nodes. If a solutionis found the proess tries to further optimise the solution to redue the overall ost of theshifts in the shedule, until 500 nodes have been explored.4.3.2.7 TRACS II summary and resultsTRACS II is inorporated in a ommerial system that has been suessfully installed inseveral transport ompanies. An example of a problem that is near the upper bound of thesize of problem that TRACS II an deal with using the olumn generation enhanements isa problem with 53297 potential shifts, 976 piees of work and 195 shifts in the �nal solution.Some problems have greater numbers of potential shifts entering ZIP, and similarly greaternumbers for piees of work and shifts in the �nal solution. However, this problem is overall

Chapter 4 61 Review of driver sheduling tehniquesone of the largest problems solved without deomposition.Figure 4.3 illustrates the proess that is used by TRACS II to produe a shedule. Theinitial stages are to remove potential ROs. This is done in several ways; by hand, possiblyin the future a new proedure by Lay�eld et al, desribed in Setion 4.4.7, and Smith'sredution [100℄ desribed in Setion 4.3.2.6 is used just before entering the branh andbound phase. The �nal stage is to deide on the ROs that are to be used in the �nalseletion. This is done by the branh and bound proess desribed in Setion 4.3.2.6.One this is done the shifts to be used in the �nal shedule are virtually set.
Full set of ROs

Heuristically
reduced set

of ROs

Only the ROs that
are in the
scheduleFigure 4.3: The di�erent levels of RO seletion. ROs an be removed either intuitively orheuristially to produe a redued set or all ROs that are not in the �nal shedule an beremoved.4.3.2.8 Sheduling side issuesAlthough the driver sheduling problem is often modelled as a straightforward set parti-tioning or set overing problem there are sometimes further restritions. In this setionwe will explain three suh restritions and how they relate to TRACS II.One restrition arises beause often ertain types of shifts are undesirable. For examplea split shift, where a driver will do a streth of driving in the morning followed by a longbreak and �nally do a streth of driving in the evening. These shifts are used beause

Chapter 4 62 Review of driver sheduling tehniquesthere is often a peak in the number of buses on the road during the morning, for peoplegoing into work, and the evening for their return home. However, the spans of these shiftsare long and so many drivers dislike them and unions sometimes make agreements withmanagement to restrit the number of this type of shift in a given shedule. This problemhas been e�etively modelled in mathematial programming by side onstraints.A diÆulty has arisen for the TRACS II system in its development for solving train driversheduling problems. These problems, unlike bus driver sheduling ones often, have manydepots, and due to the often large distanes between them, provision has to be made fordrivers returning to their own depot. Further restritions apply beause often there is alimit on the number of drivers that an ome from eah depot. This auses problems ina few ways. Normally a shedule an be found with the number of drivers that is thesame as that of the lower bound given by solving the relaxed LP problem. However, itis possible that more drivers are needed when multiple depots our. The reason for thishas not been proven but it may be due to the fat that often in the relaxed LP solutiona piee of work will be frationally overed by shifts from di�erent depots and when theinteger solution is derived both shifts will need to be used. Another problem is if SIEVEneeds to be used, sometimes shifts that over similar work but ome from di�erent depotswould be removed by the SIEVE proess but have to be retained beause of the depotrestritions. This does ause a small inrease the size of the problem.There is one problem with the set partitioning/overing model that has not been takledin the TRACS II suite. This is windows of relief opportunities. Often vehiles arrive at arelief point and remain there for several minutes before moving on, the atual time varyingonsiderably. Under some operating agreements a driver hange an be made at any timebetween the vehile's arrival and departure. However, in a set partitioning/overing modelwhen generating shifts, a spei� point and time (an RO) is needed to reate shifts. Tohave an RO for every minute a vehile stands at a relief point would inrease the problemsize by an unaeptable amount. At present the RO time is normally taken to be whenthe vehile arrives at the relief point. Unfortunately, due to union agreements this mightmean that shifts that ould in theory be allowed are not generated. This ould be beause

Chapter 4 63 Review of driver sheduling tehniquesit may a�et some issues suh as maximum time before a meal break. It is possible that adriver starting work when the vehile arrives at a relief point might have to drive for toolong before they an be replaed at a time and plae that makes an eÆient spell.4.3.3 HASTUSHASTUS [7℄ is a suite of programs that ontains programs for rew sheduling as wellas for bus sheduling. The HASTUS rew sheduling omponent is broken down intotwo systems, HASTUS-miro and HASTUS-maro. HASTUS-maro provides an initialsolution and HASTUS-miro generates the �nal solution. HASTUS-maro uses linearprogramming to generate a pseudo-shedule that provides an estimate of the number ofdrivers that are needed. The pseudo-shedule is built by pseudo-shifts, whih are generatedusing Pseudo-ROs, whih are simpli�ations of the ROs; this is done by just utting theday into user de�ned time slots. The pseudo-shedule is also used by HASTUS-miro toprodue a �nal shedule by using it to produe real shifts that relate as lose as possibleto those in the HASTUS-maro solution.CREW_OPT [27, 26, 88℄ is a system that uses olumn generation to produe shedules.Initially it ould only be used for small sheduling problems but more reent work [88℄suggest it has potential to replae the older HASTUS omponents.HASTUS has been used widely in transport sheduling as it provides a graphial userinterfae and a system that deals with all the sheduling issues: bus, driver shedulingand rostering.4.3.4 EXPRESSEXPRESS [34, 35℄ is a bus driver sheduling system developed for a ompany inChristhurh, New Zealand. This is an example of a method that uses a set partitioningformula. However, during the searh proess the stritness of the model is diminished by

Chapter 4 64 Review of driver sheduling tehniquesthe addition of slak variables. It then uses a version of the original ZIP [89℄ program thatomponents of SCHEDULE in TRACS II are based on. The branhing model is slightlydi�erent from the one used in TRACS II, in this system the branh and bound algorithmbranhes on the piees of work (onstraint branhing) rather than the relief opportunities.Branhing on ROs was found to be a superior searh strategy by Smith [100℄.4.3.5 Air rew and bus driver sheduling omparedMuh of the work done on onstraint programming for solving set partitioning problemshas been done on problems derived from air rew sheduling [48, 81, 87℄. There is a setof benhmarks for these in [2, 53℄. However, the terminology di�ers between bus driverand air rew sheduling and from ompany to ompany. The equivalent of shifts in airrew are usually alled rotations or pairings. The equivalent of piees of work are usuallyalled ight legs. More importantly the internal struture of the two types of probleman be very di�erent. There tends to be a lot more piees of work in bus shedules thanight legs in airraft shedules. This is beause in air rew shedules a ight leg may lastmany hours, whereas in bus driver sheduling a piee may be as short as 10 minutes. Forthis reason, if we generated all possible shifts, even small bus shedules would beomeimpratial to solve. Thus, we have to restrit the number of generated shifts, by usingheuristis so as not to generate shifts that are thought to be \poor" in some sense e.g.they over a small amount of work. However, this may lead to piees of work that annotbe overed without shifts overlapping (over-over) and so in our generated shift set wemay not have a set partitioning solution.4.4 Constraint programming methodsConstraint programming approahes for produing full rew shedules have been almostexlusively restrited to air rew sheduling. Furthermore, most of them depend heavilyon the use of LP solutions to guide variable and value ordering. Two exeptions to this rule

Chapter 4 65 Review of driver sheduling tehniquesare the systems desribed in Setions 4.4.5 and 4.4.4. Some of these methods have beenmentioned in Setion 2.8 to illustrate points about omparing systems. In this setion amore detailed aount of these systems will be given.4.4.1 Guerinik and CaneghemGuerinik and Caneghem [48℄ devised a onstraint programming approah whih used math-ematial programming (MP) as a guide to solve the set partitioning problems derivedfrom air rew sheduling in [2℄. The system starts by applying mathematial redutionson the set partitioning problem as a preproessor phase. These will be further disussedin Setion 5.4.This approah models the problem using the rotations as the variables, in the same way asthe ILP model does. The variables are ordered aording to their orresponding frationalvalue's loseness to 1, the losest �rst. The value �rst attempted for eah variable is 1.So while there are no fails the indiation given by the values of the relaxed LP solutionis onsistent with the hoies made. However, when a fail ours a variable will attemptthe value 0 and by so doing the relaxed LP solution will no longer be an aurate guideand therefore the relaxed problem will be re-solved. The system does not perform aswell as a pure mathematial programming approah that was presented by Ho�man andPadberg [53℄.4.4.2 Rodosek et alRodosek et al [87℄ produed a general way of ombining mathematial programming andonstraint programming. When the system is used to solve a problem it �rst solves therelaxed problem by an LP solver. It then uses this to order the variables, aording totheir loseness to 0 or 1 (losest �rst). It then hooses the nearest integer value to thefrational value as the �rst hoie for eah variable. Whenever there is a fail a new valueis tried and the relaxed problem is resolved with the existing assignments and the new

Chapter 4 66 Review of driver sheduling tehniquesassignment set. In this way the frational values are a�eted by previous deisions and sobeome a more aurate predition of what the �nal integer values will be.One of the problems that was used to test this system was an instane of the air rewsheduling problem. It was the smallest one from the set given in the ORlib [2℄. To omparetheir hybrid system they produed a pure onstraint programming approah. This CPapproah used the rotations as variables, as with the Guerinik and Caneghem model.They also produed a pure mathematial programming approah using CPLEX [18℄. ThisMP approah produed the optimal solution to the set partitioning problem that theyshowed in a muh shorter time than the CP approah. The hybrid approah took longerthan the MP approah, but muh shorter than the CP. So the hybrid approah did notseem to get anything useful from the onstraint propagation, in fat, it was detrimentalas it slowed the proess down. This may mean that with the Guerinik and Caneghemapproah the LP solver is also doing almost all of the work in solving the problem. Thestrong point of the system is that on the range of problems shown it usually did betterthan one of the pure CP or MP approahes.4.4.3 M�ullerM�uller [81℄ produed a pure onstraint programming system for solving the air rew setpartitioning problems from ORlib. The system applies a pre-proessor to make severalmathematial redutions on the problem size, in a similar way to Guerinik and Caneghem.However, M�uller uses one redution whih is di�erent from the ordinary mathematialones. This one �rst orders the rotations with the lowest ost ones �rst. It then goesthrough and replaes any single shift that an be replaed by a set of shifts whih overthe same ight legs but have lower ombined ost. This redution would not be useful ina system produing driver shedules, beause the desire to redue the number of distintshifts in the shedule means that replaing single shifts with multiple shifts would not bea good idea. Besides, in driver sheduling heuristially onstruted shifts are unlikely tobe able to be replaed in this manner.

Chapter 4 67 Review of driver sheduling tehniquesThe model is then set up in the same way as the pure onstraint programming approahby Rodosek et al but the onstraints are implemented di�erently. They add what theyall index sets to the model. There is one for eah element i (see Equation 4.1). Thesesets hold the indies of the subsets S whih over i. When a variable is assigned a value,1 or 0, this has an e�et on the index sets. If the variable assoiated with Sj is assigneda value 0 then j is removed from all the index sets. On the other hand, if it is assignedthe value 1 all the index sets that ontain j are redued to the singleton fjg. If any ofthe index sets are redued to the empty set then a fail has ourred and baktrakinghappens. This model of onstraints will be further examined in Chapter 5.This system ould solve problems but the size of the problem solvable was muh smallerthan those systems using mathematial programming.4.4.4 Darby-Dowman and LittleDarby-Dowman and Little [22℄ reated a simple CP program in 1998 for produing drivershedules aimed at reduing rew osts (not number of drivers). They model the problemin a set overing formulation, with the piees of work as the variables and the indexes ofthe shifts that over that piee of work as domains. The onstraints are di�erent fromthose in M�uller [81℄. For eah piee of work a ounter is stored to show how many shiftsover that piee of work. If a variable is set to a value the ounter is inremented. Further,if a variable is set to a value, all the variables that have that value in their domain are setto that value if they are not already bound. If they are, their ounter is inremented. Theounter starts at zero and when a value is hosen for a variable then if there is no valuethat will keep the ounter below three the variable is left unassigned and the piee of workassoiated is left under-overed. This model allows very little onstraint propagation andit is unsurprising that this method produes poor results with large amounts of over-overand under-over.

Chapter 4 68 Review of driver sheduling tehniques4.4.5 Charlier and SimonisCharlier and Simonis have produed a new onstraint programming approah for produ-ing driver shedules. It is a ommerial system designed for North Western Trains. Thereis little known of the details of the system, the only published material is an abstrat[15℄. What the system seems to do is generate shifts in a sequential order to produe afull shedule. It is believed to model the problem as a direted graph. Eah node is an\ativity" (presumably a piee of work). The ars of the graph represent the possibilityof having the two ativities assoiated with the two nodes onneted to the ar followingeah other in a shift. An ar has a weight to indiate how \good" an idea it is to havethe implied sequene of ativities in a shift. A shift is then generated by a shortest pathheuristi. The results are unlear and it is believed that it is not presently being used toprodue real shedules.4.4.6 Yunes et alYunes et al [129℄ in 1999 developed a hybrid CP/ILP approah for produing bus drivershedules. The ILP approah is used to solve the set overing problem, while the CPapproah generates shifts for the problem. The ILP approah is a olumn generationapproah where the set overing problem is solved with a minimal set of shifts. Thenshifts are added in to see if the solution an be improved. The CP approah produesthese shifts that are added into the searh.The system has been tested on real data from a Brazilian transit ompany. It has ahievedgood results on relatively small problems (150 piees of work, with 19 shifts in the optimal).4.4.7 Lay�eld et alLay�eld et al [69℄ used onstraint programming to produe a omponent that ould slotinto the TRACS II system. It would be put before the building phase and would do the

Chapter 4 69 Review of driver sheduling tehniquessame job as SELECT used to do in the IMPACS version. The goal of the program is toremove relief opportunities that are unlikely to be used in good shedules, thus uttingdown the size of the problem beause not only will there be fewer piees of work but iffewer ROs are used the BUILD proess will produe fewer shifts.The program initially looks at the morning part of the shedule. It produes shifts usingknowledge of how a manual sheduler might do it. The program puts a limit on howmany spells of work eah of the buses will be broken up into, so that it does not produeshifts with spells that are too short. It onstruts a morning shedule using randomisedheuristis to build the partial shedule one shift at a time. It does this several times andthen removes the ROs that are not used in any of the shedules. It an also be used toonstrut a partial shedule for the evening part of the shedule and thus remove furtherROs. The proess has speeded up TRACS II's solution time in several ases. The ost ofthe solutions are often slightly higher but sometimes less. The solution an have a lowerost beause TRACS II does not produe solutions with optimal ost and stops when itgets to a \good" solution. So when TRACS II uses the ut down version it might ometo a lower ost solution than the original before it stops.4.5 Evolutionary algorithms and other meta-heuristis4.5.1 Tabu searhCavique et al [12℄ have used Tabu searh [46℄ to extend and improve one of the methodsused in the early heuristis. Their algorithm starts with an initial solution produed usingan approah similar to that used by TRACS. The method allows shifts that ontain twospells of work or even less eÆient shifts that over single spells of work. The improvementphase then inorporates Tabu searh. A move onsists of removing a number of ineÆientduties, and sometimes their neighbours and then generate shifts to make the shedulewhole again. Tabu searh is used to ensure that piees of work that appear frequentlyin ineÆient shifts are given higher priority in inorporating into shifts that ontain two

Chapter 4 70 Review of driver sheduling tehniquesspells of work and so are more likely to be eÆient. This is done to try to over piees ofwork that are hard to over using eÆient shifts. The work they did on this Tabu Searhapproah found that the method quikly improved the solution over the �rst few iterationsbut then found it hard to make further improvements. This is possibly beause they onlyonentrate on ineÆient shifts and sometimes an eÆient shift may have to be hangedto make the leap to a really eÆient shedule. They also provide another approah thatuses a mathing tehnique that does better, possibly beause it expands the searh, notrestriting it to hanging ineÆient shifts.These algorithms were developed for the Lisbon Underground. There are several featuresto note about this operation. There is a maximum of two spells used in shifts. There arealso no osts per shift, it is a straight minimisation of the number of drivers. Further, thereis only a short amount of driving time in eah duty (less than 5 hours) and the driversan only hange at the terminus. These di�erenes from the standard make it hard tojudge how the Tabu Searh program would work on problems from other ompanies. Itmay have the same drawbak as the early heuristis in that it would be hard to adapt todi�erent bus or rail operations.4.5.2 Kwan et alThe approah by Kwan et al [67℄ uses a geneti algorithm to produe driver shedules.This work was built on experiene of the earlier attempt to do this byWren and Wren [127℄.This system uses the potential shifts generated by TRACS II. It also uses the LP solutionprodued by TRACS II. In this system a omplete representation of a shedule by eahhromosome is abandoned to form a onise representation that inorporates the esseneof the shedule. This is done by the hromosome being made up of bits for eah shift in theLP solution generated by TRACS II. The reason why only these shifts are represented isthat empirial evidene has shown that at least 50% (and up to 98%) and on average 74%of the shifts in the �nal TRACS II solution were in the LP solution. So these shifts makethe bakbone of the shedule, and one a good ombination of these is found it should be

Chapter 4 71 Review of driver sheduling tehniquesmuh easier to make a good whole shedule. To make an entire shedule out of these agreedy repair tehnique is used.This method has produed shedules for some problems with the same number of shiftsas the TRACS II solutions. Unfortunately in other some ases it does not get the samenumber of shifts, it has one or two more shifts. The strength of the GA method is thatit will always �nd a solution and has found solutions to problems that TRACS II ouldonly solve after they have been deomposed into subproblems. In these ases it has foundsolutions with fewer shifts than the total number of shifts of the union of the deomposedshedules produed TRACS II. For example, it found a solution with 267 �nal shifts wherethe union of the TRACS solutions had 276 shifts.The tehnique inorporates the use of any good traits of a shedule to a�et the valuationof the shedule for mating. This would mean that shedules that had good parts but wereaverage overall would have a hane of mating. Ideally the mating proess would be biasedto pass on the good segments of the shedule.4.5.3 Chu and BeasleyChu and Beasley have used a geneti algorithm to solve set partitioning problems derivedfrom air rew sheduling problems. The basi model is to have the genes representing nbits where n is the number of olumns. Eah bit an be 1 for a olumn ontained in thesolution or 0 for those not ontained. This ould lead to very large strings as the sizeof problems grow. Regardless, this is the model used and a uniform rossover approahis used. The algorithm di�ers from a standard GA in the way optimisation riteria aredealt with. Eah hromosome may or may not give a feasible partition. They note that�nding any set partitioning solution is not a trivial task for heuristi approahes. So it isimportant to drive the solution towards a feasible one as well as trying to redue the ostof the solution. A standard way to deal with restritions imposed on a solution is to adda penalty value that is subtrated from the objetive value of eah solution. However, thisould lead to loss of good parts of solutions with high objetive value but also with a high

Chapter 4 72 Review of driver sheduling tehniquespenalty value. To overome this they have added a dual optimisation riterion with onemeasure being the ost and the other the feasibility of the solution. The hoie of parentswas then made on a ombination of these. The rossover and mutation would often leadto solutions with either large amount of over-over or underover. This was solved usingheuristi repair. The algorithm was suessful on air rew sheduling problems. However,this problem is thought to be easier than the bus or train driver sheduling problem.4.5.4 ForsythForsyth [38℄ has applied an optimisation method alled the Ant system for produingdriver shedules. An Ant system was developed by Dorigo et al [30℄ based on the methodants use to searh for food. A simpli�ed version of how ants forage for food is onvertedinto a searh algorithm in the following way. In the simpli�ed version the ants set o� froma nest in random diretions. As they move they leave pheromone trails behind them whihslowly evaporate over time. When food is found the ant returns to the nest travelling bakwith highest probability along its own pheromone trail, thus strengthening the trail. Theants have an in-built bias towards following strong pheromone trails so over time moreants will ome aross this trail and follow it, strengthening it even more. As there is stillrandomness in the ants' movements several paths will be made between the food and thenest. However, the shortest path will gain the largest deposits of pheromones, as ants willreturn along it sooner than ants on other trails.The ant system for driver sheduling uses the shifts generated by BUILD to reate ashedule. Eah ant omponent will reate a solution at eah iteration. RO's are seletedby a probabilisti heuristi and then the ant hooses a shift from the set that start at thatRO. This is repeated until all the work is overed. As the system progresses iteration byiteration the good parts of solutions are more likely to be followed (i.e. good ombinationsof shifts are seleted) and so over time the solutions improve.This method does not produe results omparable to the TRACS II system.

Chapter 4 73 Review of driver sheduling tehniques4.6 SummaryThis Chapter ontains a brief introdution to the area of driver sheduling. For furtherreading, an overview paper given by Wren and Rousseau [126℄ is a good round up of workdone to that date, however this was written in 1993 and muh researh has been donesine then.Almost all and possibly all of the early heuristis are no longer used in present ommerialorganisations. They tended to be hard to adapt to new onditions and one that wasdone they needed extensive manual intervention to produe shedules. Systems that usemathematial programming suh as TRACS II and HASTUS have taken over from theseearly systems. They still sometimes need adaptation to new onditions and some manualintervention but are an enormous improvement on the initial heuristi methods. Therehave been new heuristi methods tried, with the geneti algorithm by Kwan et al beingthe most promising, but none have ahieved the quality of the mathematial programmingapproahes. This is not surprising as over 30 years of experiene has been put into theTRACS II system. However, there is room for improvement in two features. TRACS IIannot prove that the solutions it produes are optimal, so it is possible that bettersolutions exist and an be produed. Further, the exibility of the system an be improved,as shown by the side issues desribed in 4.3.2.8. Before either of these issues an be takledby a new system a basi proess needs to be produed. Then it an be further developedto improve solution quality and investigate to see how to inorporate the side issues. Thenext two hapters will detail the development of two systems to produe a basi proessfor produing driver shedules.

Chapter 5Driver sheduling using onstraintprogramming
5.1 IntrodutionThis Chapter desribes a systemati onstraint programming approah to solve the driversheduling problem. It starts with a model that ould be used on any set partitioningproblem and it is explained in the Summary the exat parts that ould be used to solvegeneral set partitioning problems. Domain knowledge is inorporated to develop a newmodel. Muh of the work in this Chapter has previously been published by Curtis etal [19℄.

74

Chapter 5 75 Driver sheduling using CP5.1.1 Set partitioning or set overing?The �rst question to ask in developing a new system is whether we should use either ofthe present standard formulations, whih are set partitioning and set overing, or shouldwe use a di�erent representation. Early heuristi methods did not use a set partition-ing/overing approah, they generated shifts as needed. However, this means that all theunion agreements and other restritions need to be built into the solver and hene thesolver has to be altered every time the onditions are altered. Further, the solver maybe too domain-dependent and be poor or useless on problems with di�erent regulations.Charlier and Simonis [15℄ developed a system using onstraint programming where theshedule is built up as shifts are generated (see Setion 4.4.5). However, as mentioned thedetails are unavailable at present. What information that is available shows that the sys-tem has only been produed for one organisation, North Western Trains, but it is unlearif it is in operation. For the reasons just given it is unlikely that this system would beeasily adaptable for use with other rail organisations.We have opted for a set partitioning/overing formulation. We use the shifts generated bythe TRACS II omponent BUILD (see Setion 4.3.2.3) to provide the initial pool of shiftsto selet from. This means that our program needs no knowledge of what onstitutes alegal shift. The program does not use the knowledge of how shifts were built to onstruta shedule. This makes it (in priniple) independent of any hanges in how the shifts areonstruted. The next deision was whih of these two formulations, set partitioning or setovering to hoose from. As stated in Setion 4.3.1 the hindrane with a set partitioningformulation is that there may be no solution to the problem with the urrent set of shiftsor that to �nd a solution to a problem, the solver would need a greater pool of potentialshifts than if a set overing formulation was used. However, it is diÆult to work witha set overing formulation in onstraint programming, beause the deision to inlude ashift in the shedule leads to no onstraint propagation, whereas in set partitioning onea shift is hosen we an remove all other potential shifts that over any piees of work inommon with the hosen shift. This propagation is needed to guide the searh so that it

Chapter 5 76 Driver sheduling using CPdoes not use unneessary shifts. There has been a program devised by Darby-Dowmanand Little [22℄ that used a set overing approah but it did not perform well and one of thereasons for this is probably due to the lak of onstraint propagation (see Setion 4.4.4).Therefore, we hoose to use a set partitioning formulation.To illustrate our algorithm's ability to solve problems we have, in our results, only inludedinstanes that we know to have a set partitioning solution within the available set of shifts.5.2 The ModelsHow a problem is modelled as a onstraint satisfation problem an greatly a�et the per-formane of the algorithm. We will disuss two models of the set partitioning problem asa onstraint satisfation problem and their advantages and disadvantages. We have imple-mented the seond model, as well as an extension to it that greatly improves performane.This is desribed later in the Chapter.5.2.1 The �rst model: shifts as variablesThe most obvious representation is a straightforward translation of the mathematialprogramming model desribed earlier in Setion 4.3.1. The shifts are the variables, witha binary domain [0,1℄, where 1 means that the shift is used in the solution and 0 meansthe shift is not in the solution. This is the model hosen in the papers of Guerinik andCaneghem [48℄, Rodosek et al [87℄ and M�uller [81℄.The onstraints follow diretly from the set partitioning formulation. For every piee ofwork one, and only one, shift variable that overs that piee an be set to 1. So when weset a shift variable to 1 we set all the other variables of shifts that over a ommon piee ofwork to 0. The number of possible assignments of values to variables in this model is 2n,where n is the number of shifts: this is an indiation of the omplexity of the model.

Chapter 5 77 Driver sheduling using CPOne drawbak of this method is that, when it is deided to use a shift i.e. assign theorresponding variable the value 1, a powerful deision is made, removing many otherpossible shifts from the searh spae. When the deision is made not to use a shift, itmakes very little di�erene as there are probably several other available shifts that overthe work in question. Later we will disuss how to alleviate this \all or nothing" hoie.5.2.2 The seond model: piees as variablesThe following is the formulation investigated in this Chapter and implemented using ILOGSolver version 3.2 [57, 58℄. The variables represent the piees of work Pi (where i 2 I , theset of indies of the piees of work). The domain of eah variable, Di, is the set of indiesof the shifts that over piee of work i (Di � J where J is the set of indies of the shifts).If Pi is assigned the value j 2 J then in the shedule, piee i is overed by shift Sj .In this formulation the number of possible assignments,Qmi=1 jDij, is less than the previousmodel. This representation automatially ensures that in the solution all piees of workhave a shift overing them, beause every variable must have a value.Suppose variable Pi is assigned the value j 2 J . Then the ith piee of work will be workedby shift Sj . This implies, beause of the set partitioning formulation, that all piees ofwork overed by Sj will be performed by shift Sj . So for any other piee of work suh thatj 2 Dk we must have Pk = j. This gives the onstraint:(Pi = j) () (Pk = j) 8i; k 2 I suh that Di \Dk 6= ;, 8j 2 Di \Dk (5.1)So if piee i is assigned shift j then piee k will be assigned shift j and vie versa. This anbe expressed easily in Solver, as an equality onstraint. A seond onstraint is added topropagate eÆiently the e�et of hoosing values in a set partitioning formulation. If onepiee variable has a value removed from its domain e.g. the variable is assigned another

Chapter 5 78 Driver sheduling using CPvalue, then the removed value must be removed from the domain of all other variables.If a shift is not used by one of the piees of work it overs, it annot be used by any ofthe others. For this a new onstraint was developed using the Solver onstraint template.This is alled the rem onstraint.These onstraints ould be applied (posted) to all piee variables with shifts in ommon.However, there is a way of reduing the number of onstraints. This is done by using thefollowing: for eah shift, the onstraints are posted between only one of the piees whihis overed by that shift, hosen arbitrarily, and all the other piees that are overed bythat shift, rather than between all pairs of piees overed by the shift. Then the e�etpropagates through these piees.This model has the same drawbak as the last model in the \all or nothing" hoie ofshifts. We will see in the extension to this model, desribed later, how we an use thestruture of the driver sheduling problem to overome this.Although M�uller's approah [81℄ desribed in Setion 4.4.3 was independently developed itrelates to the method used here. It uses shifts as the variables, with a binary domain andnot piees of work as we do. However, to implement the onstraints, M�uller employs whathe alls index sets whih are sets of indies of the subsets S (in our ase these would be theshifts). This de�nition mathes our de�nition of the piee variables, beause the domainsof our piee variables are the indies of the shifts overing them. M�uller then applies thesame two set partitioning onstraints as we do on these index sets. During the searhthe hoies are made on the binary subset (shift) variables and the e�et is propagatedto the index sets. If an index set beomes empty then baktraking is instigated. So theonly important di�erene between our seond approah as desribed so far and M�uller'salgorithm is that M�uller's assigns values to the binary subset (shift) variables whereas oursare assigned to the piee variables. The bene�t of proessing the variables in our way willbe made lear in the next setion.

Chapter 5 79 Driver sheduling using CP5.3 The Searh methodSolver's standard baktraking algorithm whih maintains ar onsisteny is used (SeeSetion 2.3). We ustomise the searh by variable and value ordering heuristis.A useful variable ordering that has been applied in many onstraint programming applia-tions is to hoose the unbound variable with the smallest domain (see Setion 2.4.1). Wean see that assigning values to piee variables allows a more natural use of this orderingthan using shift variables, beause these would all have binary domains.In the �rst version of the system we used a branh and bound method to minimise thenumber of shifts. In this approah, one a solution is found, we try to �nd a solution witha lower objetive value. When no new solution an be found, the existing solution is anoptimal solution.The objetive here is to redue the number of shifts used, so when a solution with n + 1shifts was found the algorithm applied a onstraint that no more than n shifts ould beused and started a new searh. This onstraint only had a propagation e�et when loseto n shifts had been assigned. So if we started the new searh with no shifts assignedthe algorithm had to assign nearly n shifts to being used before the onstraint ould at.To improve on this, when a new searh was started, the old assignment was used as astarting point (we all this \restart from existing solution"). Table 5.1 illustrates howthis strategy and using the smallest domain ordering a�eted performane. The problemsome from three di�erent bus ompanies: Reading (r1 to r4) [125℄, CentreWest Ealingarea (1, 1a), the former London Transport (t1 and t2). The problems have di�eringregulations and features (e.g. urban and short distane rural bus shedules an have verydi�erent features). The size of the CSPs representing these problems is given. Note thatr1 and r1a are the same problem, but have di�erent numbers of generated shifts and 1,1a similarly.The program is run on a networked Silion Graphis O2 workstation. It is stopped af-

Chapter 5 80 Driver sheduling using CP
Instane t1 r1 r1a r2 t2 r3 1 1a r4piees 24 53 53 54 125 160 186 186 203initial shifts 77 2503 4273 3001 3015 19091 3829 7543 2484size 271 12k 21k 13k 17k 214k 27k 53k 17kopt # shifts 7 11 11 14 19 16 26 26 25rn:best result 7 15 18 18 21 om n/a n/a 31fails 5 2053 544 432 4972 n/a >10k >10k 4510time (ses) 0.06 299 148 62 612 n/a >590 >7.4k 268fails to prove opt 168 n/a n/a n/a n/a n/a n/a n/a n/atime to prove opt 0.61 n/a n/a n/a n/a n/a n/a n/a n/arn sd:best result 7 18 18 19 22 om 30 31 31fails 2 231 1543 1809 6192 n/a 1790 96 9569time (ses) 0.05 45 416 325 938 n/a 191 64 807fails to prove opt 168 n/a n/a n/a n/a n/a n/a n/a n/atime to prove opt 0.49 n/a n/a n/a n/a n/a n/a n/a n/ars:best result 7 15 18 18 21 om n/a n/a 31fails 5 2018 485 299 4891 n/a >10k >10k 4510time (ses) 0.06 295 76 592 595 n/a >900 >7.6k 273fails to prove opt 163 n/a n/a n/a n/a n/a n/a n/a n/atime to prove opt 0.52 n/a n/a n/a n/a n/a n/a n/a n/ars sd:best result 7 18 18 19 22 om 30 31 31fails 2 223 1437 1796 4838 n/a 921 96 9558time (ses) 0.052 38 361 301 725 n/a 94 65 810fails to prove opt 119 n/a n/a n/a n/a n/a n/a n/a n/atime to prove opt 0.45 n/a n/a n/a n/a n/a n/a n/a n/aTable 5.1: Results on data from several bus ompanies using di�erent regulations.sd = smallest domain ordering, rs = restart from previous, rn = restart from noassignments, opt = optimal, om = mahine ran out of memory

Chapter 5 81 Driver sheduling using CPter 10000 fails (10000 baktraks) and we use the number of shifts in the best solutionobtained, the number of fails, and the time taken, as the performane riteria. The num-ber of fails shows us how many times our program baktraks. We an see from the tablethat, using these basi methods, only for the t1 problem an an optimal solution be found.(Throughout the Chapter optimal means here, the optimal number of shifts for the set ofpotential shifts after heuristi redutions.) If no solution, or no optimal solution, has beenfound we put n/a in the appropriate olumn. If we restart from an existing solution eahtime a new one is found, in all ases the number of fails is redued. Using the smallestdomain ordering generally inreases the number of fails to �nd the best solution found.However, it does enable us to �nd a solution for the 1 and 1a problem that we ouldnot �nd an answer for otherwise.5.4 RedutionsThere are several mathematial redutions that an be applied to a set partitioning prob-lem, as desribed in [40, 81℄. The systems of M�uller [81℄ and Guerinik and Caneghem [48℄apply redutions at a pre-proessing stage of their onstraint programming systems. Tohelp us see how to apply these redutions during the searh, let us envisage the bak-traking algorithm as reduing the problem size whenever a variable is assigned a value;it removes at least one variable from the set of unassigned variables. Note, this may onlybe a temporary assignment as baktraking an our. The smaller problem is again a setpartitioning one, with a redued set of variables and values. Hene in theory the redu-tions an be re-applied. Not all the redutions have the potential to bene�t from morethan a single appliation, this is why the deletion of dupliates desribed below is left asa pre-proessor. The redutions are:� All dupliate shifts (shifts overing an idential set of piees of work) are removedat the generation stage. If Sj = Sq for any pair (j; q) 2 J delete Sj .� The subset onstraint: if Di � Dk for any pair of piees (i; k 2 I), i 6= k, then

Chapter 5 82 Driver sheduling using CP8j =2 Di and j 2 Dk, delete j from Dk. If piee i is overed only by shifts thatalso over another piee k, then piee k annot be overed by a shift that does notover i. This has been implemented in the following way: between all variables witha shift in ommon there is a onstraint that heks if that domain is a subset ofanother whenever the domain of one of the variables hanges. If domain i is a subsetof domain k, the onstraint will remove from k's domain all the shifts that do notover piee i. The set partitioning onstraint then ensures that variables i and khave the same value.� The one-di� onstraint: this states that if only one shift that overs piee i doesnot over piee k and vie versa we an make a redution. If jDi � (Di \ Dk)j =jDk�(Di\Dk)j = 1 for any pair of (i; k) 2 I; i 6= k, then let shift j = Di�(Di\Dk)and shift q = Dk � (Di \Dk)1. If Sj \ Sq = ; then shifts j and q are merged into a single shift having a ostj + q. (In our ase, sine the ost of eah shift is 1, the ost of the mergedshift would be 2.) Delete piee k.2. If Sj \ Sq 6= ;, then delete shifts j and q. Delete piee k.We an see in Figure 5.1 a Venn diagram representing this ase, where eah ovalrepresents the set of shifts that over a piee and we an see that there is only oneshift in the non-overlapping part of eah oval. The two shifts that over one pieebut not the other are j and q. If j and q over no ommon piee then we join them toform a single shift with a ost equal to the sum of both of the shifts. This is beauseif shift j is piked then shift q needs to hosen so that both piees are overed. If theshifts have a piee in ommon then one annot be piked, therefore neither an bepiked and this means that i and k must be overed by the same shift. This an beimplemented in Solver by a onstraint that heks this ase whenever variables witha shift in ommon have their domains hanged, and removes shifts if needed. Thereis no need to merge the shifts as the propagation of the set partitioning onstraintswill fore the use of both if one is used. Similarly there is no need to delete the pieek as this will be assigned a value in aordane to the onstraints.

Chapter 5 83 Driver sheduling using CPTo the knowledge of the author, applying these set partitioning onstraints dynam-ially is new.
j q

DDi k

Figure 5.1: A Venn diagram of the domains of two piee variables, i and kTable 5.2 shows the result of using the dynami redutions. The subset onstraint ingeneral redues the number of fails and we an see in the r1a problem it produes ashedule with one less shift than without the redution. Interestingly on the 1 data thenumber of shifts in the best solution found has inreased by one. This we believe to bedue to the e�et of the smallest domain ordering and restarting from the existing solutionafter eah new bound is plaed on the problem. The subset onstraint redues the sizeof domains and so this will a�et the ordering if we use smallest domain ordering. If wedo not use these two tehniques, using the subset onstraint redues the number of failsevery time, but the 1 problem is still unsolvable without the smallest domain ordering.Applying the subset redution throughout the searh is an expensive proess (in termsof memory) and the derease in the number of fails is o�set by this inrease. In fatusing the subset onstraint with the 1a problem the mahine runs out of memory (shownby 'om' in Table 5.2) before it an �nd a solution. So depending on the user's needs inlimiting memory or time of exeution the onstraint may or not be of use. This led toimplementing a new way of expressing the onstraint. The original onstraint is postedon a pair of variables that have a value in ommon. Every time the domain of either ofthese hanges, the onstraint heks to see if the one with the smaller domain is a subsetof the other. As it does this it stores the values that are unique to the larger domain. Ifthe smaller domain is found to be a subset then these stored values are removed from the

Chapter 5 84 Driver sheduling using CP
Instane t1 r1 r1a r2 t2 r3 1 1a r4piees 24 53 53 54 125 160 186 186 203initial shifts 77 2503 4273 3001 3015 19091 3829 7543 2484size 271 12k 21k 13k 17k 214k 27k 53k 17kopt # shifts 7 11 11 14 19 16 26 26 25rs sd:best result 7 18 18 19 22 om 30 31 31fails 2 223 1437 1796 4838 n/a 921 96 9558time (ses) 0.052 38 361 301 725 n/a 94 65 810fails to prove opt 119 n/a n/a n/a n/a n/a n/a n/a n/atime to prove opt 0.45 n/a n/a n/a n/a n/a n/a n/a n/ars sd Subset:best result 7 18 17 19 22 om 31 om 31fails 1 123 2893 825 1004 om 397 om 755time (ses) 0.07 39 873 199 483 om 174 om 159fails to prove opt 162 n/a n/a n/a n/a n/a n/a n/a n/atime to prove opt 0.41 n/a n/a n/a n/a n/a n/a n/a n/ars sd new Subset:best result 7 18 17 19 22 om 31 33 31fails 1 123 2893 825 1004 om 397 7 755time (ses) 0.11 61 1101 261 104 om 351 182 327fails to prove opt 162 n/a n/a n/a n/a n/a n/a n/a n/atime to prove opt 0.96 n/a n/a n/a n/a n/a n/a n/a n/ars sd One-Di�:best result 7 18 18 19 22 om 30 31 31fails 2 221 1433 1788 4826 om 1033 95 9302time (ses) 0.07 40 366 308 812 om 113 79 1006fails to prove opt 166 n/a n/a n/a n/a n/a n/a n/a n/atime to prove opt 0.58 n/a n/a n/a n/a n/a n/a n/a n/aTable 5.2: Results of using the redutions dynamiallysd = smallest domain ordering, rs = restart from existing solution, rn = restart fromsrath, opt = optimal, om = mahine ran out of memory

Chapter 5 85 Driver sheduling using CPlarger domain. However, this storage inreases the memory needed. A simpler method,rather than storing values, is to dynamially post a onstraint that the two variables mustbe assigned the same value one one variable's domain is found to be a subset of the other.Solver allows this dynami posting of onstraints and if the algorithm baktraks to thehoie point before the onstraint was applied, the onstraint will be removed. The resultsof this implementation are also shown in Table 5.2. The memory used is redued and asolution with 33 shifts is found for the 1a problem. However, the program runs out ofmemory after this solution is found and so produes a worse result than without using theredution. Further, this implementation tends to take more time as Solver has to re-hekwhat values are in the larger domain that are not in the smaller domain and then has toremove them.The one-di� onstraint on most of the problems makes little impat on reduing thenumber of fails as the situation where the redution an be made does not our often.These redutions are not used in the �nal system due to the fat that an eÆient imple-mentation for the subset onstraint has not been found and the one-di� onstraint haslittle pratial use. However, the subset onstraint does generally redue the number offails to �nd a solution and sometimes dramatially. If an eÆient implementation ouldbe found it ould prove to be a useful onstraint for solving set partitioning problems.5.5 The extended modelIn ILP, branh-and-bound an be used to �nd a good or optimal integer solution from theLP optimum. This setion will further explain the branhing strategy used in TRACS IIas was desribed in Setion 4.3.2.6 and how it is adapted to be used in this onstraintprogramming system. The standard approah is to hoose a variable (in driver sheduling,a shift) whose value in the LP optimum is frational (in this ase, stritly between 0 and1) and to form two branhes: on one branh, this variable is fored to have the value 0and on the other, the value 1. A new optimum solution is formed in eah ase, followed

Chapter 5 86 Driver sheduling using CPby the formation of further branhes, and so on. A branh terminates if either an integersolution is found, or its value is greater than the best integer solution already known. Inthe development of IMPACS, it was found at an early stage that this form of branhing(variable branhing) is ompletely ine�etive for driver sheduling problems, for reasonssimilar to those given in Setion 5.2.1. The alternative branhing strategy developed forIMPACS and later used in TRACS II is relief time branhing. This assigns a (possibly)frational value to eah relief time (stritly, relief opportunity) in the bus shedule, basedon the urrent non-integer LP solution. This is the sum of the values of the variablesrepresenting shifts whih �nish a spell at that RO. A branh is then formed by hoosingan RO for whih this value is frational (again, stritly between 0 and 1). The value isfored to be 0 on one branh (whih means that all shifts starting or �nishing a spellat that RO are banned) and 1 on the other (whih means that all shifts overing bothpiees of work immediately before and after this RO are banned). This branhing strategywas found to be very suessful, and inomparably more useful than variable branhing.Choosing whih ROs are to be used does not expliitly hoose the shifts to use. However,one the ROs have been set the hoie of shifts is redued dramatially and the problembeomes trivial.This experiene prompted us to implement RO branhing in our onstraint programmingproess. We have a set of variables R = fRk; k = 1 : : :rg where Rk is an \ative" ROand r is the number of suh ROs. Ative ROs are the ones that we need to hoose avalue for, i.e. ROs whih start or end a bus are exluded, as these have to be used. Sor = m � b where b = number of buses and as before m is the number of piees of work.These variables have a binary domain with values 1 (use) or 0 (do not use). For eah ROvariable Rk there is a orresponding piee variable Pi suh that the RO with index k isthe start of the piee of work with index i. We then set up a onstraintRk = 1 �! Pi�1 6= Pi (5.2)Rk = 0 �! Pi�1 = Pi (5.3)

Chapter 5 87 Driver sheduling using CPfor: k = 1; : : : ; r; i = 2; : : : ; m.So if an RO is used, its adjaent piees must have di�erent values i.e. be overed bydi�erent shifts and if it is not used, its adjaent piees must have the same value. Thisan be seen as an extension to the seond model, the piees as variables model. Theomplexity of the RO extended model is 2r (where r is the number of ROs) whih is lessthan the previous two models and it avoids the \all or nothing" hoie of shifts. As statedabove, one the hoie of the RO variables is made assignments to the piee variables is inpratie trivial. In e�et by using ROs as variables we are making higher level deisionsthan what shifts to use. The e�et of these deisions then propagates to the piee variablesand so the hoie of shifts. If we make the right higher level deisions we have to makefewer deisions than if we just used low level deisions to get a solution.We order the RO variables �rst, followed by any piee variables that have not alreadybeen assigned a value. We have investigated several orderings for the set of RO variables:1. Ordering by adjaeny, where we order starting from the �rst RO on the �rst busthen the seond on the �rst bus, et. until the last on the last bus. So we aredealing with the ROs on a bus in order of their time. However, the ordering of thebuses is generally arbitrary.2. Ordering by hoosing �rst the ROs that ut out the greatest number of shifts.3. Ordering by time of day, where we pik the variables in order of time of day, earliest�rst. This is similar to the way some human shedulers build up a shedule.At this stage the adjaeny ordering produed the best results with the least number offails.The �rst attempt at value ordering involved a greedy proess of binding an RO variable to

Chapter 5 88 Driver sheduling using CPInstane t1 r1 r1a r2 t2 r3 1 1a r4piees 24 53 53 54 125 160 186 186 203initial shifts 77 2503 4273 3001 3015 19091 3829 7543 2484size 271 12k 21k 13k 17k 214k 27k 53k 17kopt # shifts 7 11 11 14 19 16 26 26 25basi RO:best result 7 12 12 14 n/a om n/a n/a n/afails 721 402 29 2562 >10k n/a >10k >10k >10ktime (ses) 1.60 44 31 289 >962 n/a >1k >3k >567fails to prove opt >10k n/a n/a n/a n/a n/a n/a n/a n/atime to prove opt 27 n/a n/a n/a n/a n/a n/a n/a n/aTable 5.3: Results of using the RO with greedy ordering and adjaeny0 as �rst hoie (i.e. not using the RO). So as the program goes through the RO variablesit hooses not to use eah RO until a fail ours and then it sets the urrent RO variableto be used. The priniple behind this heuristi is that we will tend to use fewer shifts if weuse fewer ROs. It also tends to maximise spell length whih is similar to the way a humansheduler goes about the task, although a human sheduler would use informal heuristisand intuition to deide when to use a shorter spell length. By using the extended modelwith the adjaent ordering and this greedy value ordering for the RO variables, there wasa general improvement in performane. Table 5.3 shows that an optimal solution wasfound for the r2 problem for the �rst time. However the program ould not prove this wasoptimal. For the larger problems no solution an be found. This is beause ombinations ofassignments are made by the greedy heuristi early in the searh proess that annot leadto a solution. The resulting fail only ours later in the searh proess and the algorithmnever baktraks far enough to undo the early errors.5.6 Using The Relaxed LP SolutionWhen TRACS II forms shedules it �rst solves the relaxed LP problem for the generatedset of shifts. The relaxed LP problem is the set overing problem without integralityonstraints on the shift variables. The method used to solve this problem is detailed inSetion 4.3.2.5 and [37℄.

Chapter 5 89 Driver sheduling using CPThe relaxed LP solution is an assignment of possibly frational values to shifts, in whihthe sum of the shifts overing any piee of work is greater than or equal to 1. The numberof shifts used in this solution, i.e. the sum of the possibly frational values, gives us alower bound on the optimal number of shifts. In pratie rounding up the number of shiftsto the next higher integer almost always gives the optimal number of shifts.Although the relaxed LP solution is not a feasible driver shedule, we an plot it as if itwere. Figure 5.2 shows the overage of a running board in suh a solution. Eah frationalvalue of a spell is the sum of all the frational values of the shifts ontaining that spell.We an see in this example, that the sum of the frational values of the spells overingeah piee of work is 1, so there is always, mathematially, exatly one full driver (madeup of frational drivers).
D L

0529 0728

L

0905

L

1053

L

1244

1.00.438

0.562

0.875

0.125

0.437Figure 5.2: Frational overage of a running boardWe investigated the frational solutions of several problem instanes in searh of ommonfeatures that we ould take advantage of. Some ROs have frational shifts starting then.Out of these a high proportion had shifts starting then in TRACS II's �nal shedule. Thisobservation led us to the �rst attempt to use the LP solution as a guide, although we willdesribe later why it was unsuessful and was replaed by the seond attempt. We �rsttry to solve the subproblem of hoosing whih ROs will have shifts starting at them. Onethis subproblem is solved then the rest of the problem will be trivial. We an use the LPsolution by guiding the hoie of whih ROs to use as starting ROs. So as a heuristi forhoosing the ROs that will be starting ROs in the �nal solution we an hoose all the ROswith shifts starting then in the LP solution.To integrate this into our program we adapt the RO variables to have triples for theirdomain: use as a start (0), use but not as a start, (1) and do not use (2). If we use the

Chapter 5 90 Driver sheduling using CPInstane t1 r1 r1a r2 t2 r3 1 1a r4piees 24 53 53 54 125 160 186 186 203initial shifts 77 2503 4273 3001 3015 19091 3829 7543 2484size 271 12k 21k 13k 17k 214k 27k 53k 17kopt # shifts 7 11 11 14 19 16 26 26 25nostart:best result n/a n/a 16 15 n/a om n/a n/a n/afails >10k >10k 6819 30 >10k n/a >10k >10k >10ktime (ses) >4 >1.6k 1168 14 >972 n/a >2k >1.4k >510fails to prove opt n/a n/a n/a n/a n/a n/a n/a n/a n/atime to prove opt n/a n/a n/a n/a n/a n/a n/a n/a n/aTable 5.4: Results of using the RO model with domains of triplesrs = restart from existing solution, nostart = using triple RO domain, om = mahine ranout of memoryRO as a starting RO (0) we not only remove all the shifts that do not have a spell startingor �nishing at the RO but also all the shifts that do not have their �rst spell starting atit. If we use the RO but not as a starting RO (1) then we remove shifts that do not startor end a spell then, as well as shifts that have their �rst spell starting then. If we do notuse the RO (2) then we remove all shifts that have spells starting or ending then. Thereis a onstraint that imposes the impliations of an RO variable's (Rk) assignment on thepiee variables. It is assoiated with the RO in question and the two piee variables thatorrespond to the piees of work on either side of the RO (Pi�1 and Pi). This is beausethe onstraint may have to remove values from both of the piee variables' domains, asshifts with spells starting at the RO will be in the domain of Pi but not in Pi�1 and vieversa for shifts with spells �nishing at the RO.The searh �rsts assigns values to the RO variables that were starting ROs in the frationalsolution. These are given the value 0. The rest are assigned value 2. The variables wereordered aording to adjaeny as desribed in the previous setion.The results for this heuristi are shown in Table 5.4. The results obtained doing it thisway are worse than not using the guide and just using the greedy heuristi. The reasonfor this we believe is that we are inreasing the size of the problem greatly by having threehoies instead of two for eah RO. It was hoped by onentrating on the starting ROs we

Chapter 5 91 Driver sheduling using CPwould in pratie be dereasing the e�etive size of the problem. However, for this to betrue either a large amount of propagation or a very good value guide is needed. It seemsthat there is not enough propagation and the value guide is not good enough in this ase.In the TRACS II system frational values of ROs are used to guide the branh and boundproess. Frational values are assigned to an RO by adding up the frational values of allthe shifts starting (or all �nishing) at it. So, for example, if we return to Figure 5.2 we seethat the RO at time 0728 has a frational value of 0.562, as the sum of the frational spellsstarting at that time is 0.125 + 0.437. Smith [99℄ implemented a heuristi redution thatbefore going into the branh and bound proess removed all ROs that in the relaxed LPsolution had zero value and were not used by shifts in the basi feasible solution1. Thisredution greatly dereases problem size and has little - if any - detrimental e�et on thequality of the �nal solution. We have adopted this approah and remove all zero valueROs.5.6.1 Value and variable orderingThe frational values are further inorporated into our proess as a guide to value hoie.If the frational value is greater than 0.5, then the �rst hoie of a value for the RO variableis 1; otherwise it is 0.We also use the frational values by ordering the variables aording to loseness to inte-grality i.e. loseness to 1 or 0. So we begin by hoosing to use ROs whose value in theLP optimum is 1 or lose to 1, and not to use ROs whose value is 0 or lose to 0. Interms of the bus shedule, this is a slightly unnatural way of proessing the RO variablesas the algorithm will jump around the di�erent buses, maybe only setting a value for oneRO before jumping to the next bus. However, we think that it is sensible that we shouldset the values of variables that we are most sure about �rst. This assumes that frationalvalues that are losest to 1 are most likely to be used and those losest to 0 are least likely1Oasionally, a shift in the basis at zero value uses an RO whih has itself zero value. Beause TRACS IIuses the LP optimum basis as the starting point of the searh for an integer solution, it may need to keepsuh a shift.

Chapter 5 92 Driver sheduling using CPto be used.
D L

0529 0728

L

0905

L

1053

L

1244

1.00.438

0.562

0.875

0.125

0.737Figure 5.3: Frational overage of a running board with over-overThe LP solution is set overing and so may ontain over-over, so the frational valueof an RO ould be greater than one. Further, an RO ould have two di�erent valuesdepending on whether we summed the shifts starting or �nishing at it. We an see thisin Figure 5.3. If we sum at the start then the RO at time 0905 has a frational value0.875 but if we sum the end of shift we get a value of 1.175. This frational over-overould ause problems, as we are trying to use the frational values to guide us to a setpartitioning solution, but the frational values ould orrespond to a relaxed set overingsolution and so be a poor guide. In pratie none of the problem instanes in the resultshave over-over in their LP solution. However, we have found it in a problem instanethat we annot �nd a solution to. It is unlikely that this over-over is what is stoppingus from �nd a solution beause the problem instane in question is muh larger than thetest problems we have shown results for2 and so it would be unlikely that we ould �nda solution whether there was over-over or not. So at the moment we do not need toonsider this situation further than to propose a way of takling it. This would be done byleaving any ambiguous frational values till last, by then propagation will probably haveset the value of the RO(s) in question anyway.5.6.2 Additional onstraints and heuristis to improve eÆienyIn the relaxed LP solutions we notied that in several ases the sum of the frationalvalues of pairs of adjaent ROs on the same bus was 1 (for example in the r1 there aretwo adjaent ROs with values 0.24 and 0.76). An observed harateristi of suh pairs2The problem has a larger number of piees, 242, and shifts in the optimal shifts, 29, than the testproblems. It has 2202 shifts

Chapter 5 93 Driver sheduling using CPwas that in the integer optimal solution only one of the pair would be used. Therefore, weadded a onstraint between suh variables, stating that only one of them ould be used.With the suess of this heuristi we expanded it to triples of variables whose frationalvalues summed to very lose 1. We all these the Combo onstraints; the double Combofor the pairs and the triple Combo when we have three adjaent ROs (for example withvalues: 0.12, 0.24 and 0.64).An additional way of aiding the searh was found by examining the struture of the busshedule. From this it is lear that in theory the RO model is open to extra propagationon the values of ROs. For example, if we use RO A we annot use the following ROB if no spell starts at A and ends at B. So when there is no suh spell we an set thevariable orresponding to B not to be used if we hoose to use A. This propagation wouldnot be normally inferred by the urrent onstraints, unless the domains of the piees ofwork adjaent to B beame idential. We have implemented two ways of dealing with thissituation: the �rst is to deal with it in pre-proessing and the seond is to deal with itduring the searh.In pre-proessing we set up onstraints between adjaent ROs that do not have spellsbetween them, stating that if one is on the other is o�. We have also implemented thisonstraint so it an at during the searh. This is beause shifts are removed during thesearh, therefore this situation may our during the searh. We have therefore imple-mented a onstraint that wathes for this situation during the searh. One found it isdealt with in the same way as the pre-proessing onstraint. This takes more time thanthe pre-proessing onstraint, as we have to hek eah time a onstrained RO gets a value.However, both extra propagations on the ROs (dynami and pre-proessing) in pratiehave no impat on the solution or how many fails it takes to be obtained. In two out of the9 test ases they both removed two hoie points but made no di�erene in the other testases. The reason for this is probably that the LP solution value guide impliitly atersfor this situation.

Chapter 5 94 Driver sheduling using CP5.6.3 Related workRelated work has previously been desribed in Setion 4.4. In this setion we will relatethe systems desribed there that use mathematial programming ombined with onstraintprogramming with the work shown here.The previous onstraint programming systems that have used the relaxed LP solution haveused it in a di�erent way to ours and have not used the struture of the problem to inreasethe usefulness of the solution. Guerinik and Caneghem [48℄ and Rodosek et al [87℄ use thefrational value of a shift (rotation in air rew sheduling) as the guide to the �rst valuehosen for their shift variables. They take slightly di�erent approahes in their searh. InGuerinik's and Caneghem's paper the variables are ordered aording to their loseness to1, the losest �rst. The value �rst attempted for eah variable is 1. So while there are nofails the values of the relaxed LP solution are onsistent with the hoies made. However,when a fail ours a variable will attempt the value 0 and by so doing the relaxed LPsolution will no longer be in aordane with the partial onstraint programming solutionand therefore the relaxed problem will be re-solved. Rodosek et al order the variablesaording to their loseness to 0 or 1 (losest �rst) and hoose the nearest integer valueto the frational value as the �rst hoie. This is more like the way that we use the LPsolution than the method by Guerinik and Caneghem. However, Rodosek et al resolvethe relaxed problem whenever there is a fail. In this way the frational values are a�etedby previous deisions and so beome a more aurate predition of what the �nal integervalues will be.In our system we do not re-solve the relaxed LP, thereby making our proess less dependenton the LP tehniques and so maintaining the exibility of the onstraint satisfationformulation. We an envisage a senario in whih we might solve the basi relaxed LPand then add any onstraints that are hard to express in the LP formulation, �nding aninteger solution using onstraint programming. We are urrently investigating situationswhere suh onstraints may our. It is worth noting that by adding these onstraints,the LP solution will beome less appliable to the �nal solution, whih is why it is only

Chapter 5 95 Driver sheduling using CPused as a guide.The major di�erene between our use of the relaxed LP solution and the use in the twosystems desribed above is that they use the frational value of a shift and we use thefrational value of an RO. This is similar to the di�erene between variable branhing andRO branhing in IMPACS as disussed in setion 5.5. The frational value of a shift islikely to be of less use than the frational value of an RO. Several shifts may over similarsets of piees of work and so if a shift has a high frational value then it is likely that asimilar shift will be used but not neessarily this partiular shift, whereas if an RO has ahigh frational value it is likely to be used.5.7 ResultsUsing the �nal version of the program we have obtained the optimal number of shifts inall problem instanes. Without using the RO variables an optimal solution ould onlybe found for the very small t1 problem. A summary of results an be seen in Table 5.5.We have shown the results of all the heuristis that were tested in the �nal developmentstage of the system. For eah of these we have the number of fails to produe an optimalsolution. In all ases we use RO variables and frational values of these as a value orderingguide.The double Combo onstraint makes a signi�ant redution in the number of fails inseveral problem instanes. Moreover there is only one ase where it has a detrimentale�et, whih is when using adjaeny ordering (Setion 5.5) on r1a; it did not �nd anoptimal solution after 50000 fails. Yet this does not matter, beause we use losest tointeger ordering (Setion 5.6.1) in the �nal system sine in the test ases it always produesthe optimal in no more fails than the adjaeny ordering. This fat also makes the tripleCombo onstraints obsolete and so they are not inorporated in the Table 5.5 beausethat onstraint only makes a di�erene for the adjaeny ordering but not for losest tointeger ordering.

Chapter 5 96 Driver sheduling using CPThe best set of heuristis is to use the extended RO model, using the relaxed LP solution asa value and variable ordering guide. The extended model has redued the omplexity of theproblem and allowed us to make better use of the relaxed LP solution. So the formulationof the problem makes an enormous di�erene, not only in reduing the omplexity of theproblem but also in enabling better searh strategies to be used. The most suessfulvariable ordering is the losest to integer ordering. The double Combo onstraint is auseful onstraint and is inorporated into the �nal system.The last row of the table shows how a new implementation of the rem onstraint(Setion 5.2.2) speeds up the onstraint handling proess and so speeds up the algo-rithm. In the �rst implementation a onstraint was set up between a pair of variablesthat had a value (shift) that was ommon to both domains. Every time the domain ofone of the variables hanges the onstraint heks to see if the shift assoiated with it hasbeen removed from one of the domains that has hanged. If this is the ase then thatshift is removed from the other domain. The new implementation only has one onstraintper pair of variables that have a shift ommon to both of their domains. The onstraintmakes use of the fat that at every hoie point Solver stores the values removed from eahdomain. If there are any values removed from a domain in a pair of onstrained variables,the onstraint yles through the store of these that Solver retains and removes them fromthe other domain in the pair.With problems tested that were larger than the ones shown the �nal algorithm ould not�nd a shedule with the optimal number of shifts in the allowed number of fails. However,size is hard to measure as the number of potential shifts, the number of piees and thenumber of shifts in the optimal shedule all a�et the size. We have de�ned size as the sizeof the CSP (see Setion 2.7). Despite this, it is a mistake to diretly relate this measureto how hard a problem is to solve. We an measure how hard a problem is to solve byrunning an algorithm on it and seeing if the algorithm an solve it. If it an solve it wemeasure how long it takes to solve it and use this as a measure of diÆulty. However,there is no algorithm independent measure of hardness and this remains an open questionfor the driver sheduling problems and for CSPs in general. We believe failures to �nd

Chapter 5 97 Driver sheduling using CPInstane t1 r1 r1a r2 t2 r3 1 1a r4piees 24 53 53 54 125 160 186 186 203initial shifts 77 2503 4273 3001 3015 19091 3829 7543 2484size 271 12k 21k 13k 17k 214k 27k 53k 17kopt # shifts 7 11 11 14 19 16 26 26 25fails 49 10 3713 22 >50k >50k 877 5113 28822time (ses) 0.87 1.05 172 2.00 >1.8k >12k 10.90 56 229:fails 1 10 >50k 22 >50k >50k 3 2 1519time (ses) 0.04 1.05 >2k 1.97 >1.5k >12k 1.05 1.22 13.21po:fails 45 121 303 22 3118 5942 68 191 496time (ses) 0.08 2.73 17.97 2.05 94 1525 72 3.79 7.70po :fails 0 10 228 22 174 5942 1 1 9time (ses) 0.06 1.03 15.44 2.04 7.81 1525 1.04 1.22 1.26Final systempo nr:fails 0 10 228 22 174 5942 1 1 9time (ses) 0.03 0.08 13.42 1.65 6.12 1078 0.95 1.11 1.17Table 5.5: Final results for onstraint programming systemnr = new implementation of the rem onstraintpo = losest to an integer value ordering = using the double ombo onstraints,opt = optimalsolutions for larger problems may be due to the systemati baktraking searh system.To illustrate this, let us say there is an RO that has a value lose to 1 in the relaxed LPsolution, our program would set this to be used. It may then make many more deisionsand, due to the size of the problem, never be able to baktrak to hange that deision.So if it is ruial not to use that RO the program will never �nd an optimal solution.5.8 Flexibility of CP modelSome areas where the ILP tehnique has been found laking are disussed in Setion 4.3.2.8.An advantage of CP over ILP is that the CP approah is more exible in its expressive-ness. This exibility was originally one of the reasons why the CP method was tried. A

Chapter 5 98 Driver sheduling using CPpossible area when an advantage might be found is with windows of relief opportunity (seeSetion 4.3.2.8).Windows of relief opportunity would be diÆult to represent in any set partition-ing/overing formulation, as suh formulations deal with spei� hand-over times. How-ever, onstraint satisfation may provide the key. The onstraint programming approahbuilds up a shedule, and it may be possible to reate some shifts during the proess, inpartiular when a fail ours. If the fail ours due to an assignment of a relief opportunityvariable, it might be possible to adjust the time of the relief opportunity and generate newshifts. Muh researh would be needed to develop and test this idea. Alternatively, usingone RO for every minute in the window may not ause the same problems for CP as itdoes for ILP. In CP a onstraint ould be set up to speify that only one RO within thetime window ould be used. This loal onstraint uts the e�etive size of the problem,unlike adding a similar onstraint in an ILP model.5.9 ConlusionsWe have used both a pure onstraint programming approah and an improved hybridCP/LP approah for solving real world problems of driver sheduling. The program'slimited use of the relaxed LP solution brings an amount of independene that will allowthe exibility of the CP approah to be taken advantage of fully. The model, onstraints,and variable and value ordering, have been speially developed to take advantage of theonstraint programming formulation and the driver sheduling problem struture. Thedomain spei� knowledge inorporated allows us to solve set partitioning problems ofsizes beyond the reah of pure onstraint programming systems.ILP based systems suh as TRACS II are still faster and an produe solutions for muhlarger problems than this system. Nevertheless, it is hoped that the advantages andexibility of onstraint programming will be useful in adding further onstraints that arehard to model in an LP formulation as disussed in Setion 5.8.

Chapter 5 99 Driver sheduling using CPAlthough we have desribed the onstraint satisfation system we have developed interms of shifts and piees of work, all the models, redutions and searh methods be-fore Setion 5.5 ould be applied to any set partitioning problem. The piees of workwould then orrespond to the elements of the set I and the shifts to the set of subsets S,as referred to in Setion 5.1.This researh has been very domain spei�. However, it has highlighted several onsider-ations that are useful for modelling pratial onstraint satisfation problems. These arethe following:1. Variable ordering in pratial problems (Setions 5.3 and 5.6.1). We have seen thatthe smallest domain dynami ordering is not neessarily better than ordering basedon the struture of the problem. The ordering based on the struture works wellbeause it is not purely random, it groups the piees of work aording to the busthey are on and what time of day it is. The advantages of this are disussed inSetion 7.3. The onlusion is that in pratial problems a natural ordering mayour that takes advantage of hidden struture in the CSP and is therefore betterthan a general ordering heuristi.2. Adding heuristi onstraints, that may remove solutions from the searh spae. Anexample of this is the Combo onstraint 5.6.2. These heuristi onstraints will beuseful in hard to solve strutured problems where there is already no guarantee of�nding a solution in the required operational time of the ompany. There have beenno rigorous studies of this type of onstraint even though as we have seen in thiswork they an be more useful than adding implied onstraints.3. Mathematial redutions during the searh (Setion 5.4). It may be possible toarry out mathematial preproessing steps during the searh. The important thingto do when adding this type of implied onstraint is to weigh up the extra onstraintpropagation proessing that has to be done against the redution in the number offails. We have seen also that how the onstraint is implemented an make a largedi�erene to performane (both in memory and in time).

Chapter 5 100 Driver sheduling using CP4. Higher level deisions. We an see that using the extended model with ROs asvariables allows high level deisions to be made, rather than just hoosing shifts.However, without a good value guide these high level deisions inrease the size ofthe problem as there are more deision variables. In a problem where onstraintpropagation did more pruning, inorret value assignment might be deteted early,but in this problem it is essential to have a good value guide. When the LP solutionis used as a value guide the solutions improve greatly. This an be taken on board bydevelopers working on other pratial problems. Taking higher level deisions beforelow level deisions an make a great di�erene to solution quality. Higher leveldeisions are related to domain splitting (at eah branh of the searh removing aportion of the domain). Although domain splitting auses less propagation thanassigning a value to a variable, if a good branhing heuristi (value guide) an befound then it an be more e�etive.It is lear that there is further work that ould be done on the implementation of theonstraints in the model. A more eÆient implementation of the subset onstraint ouldredue the time needed to produe a solution without undue inrease in the use of memory.The improved version of the rem onstraint has speeded up the algorithm. It would alsobe of use to investigate new ways of expressing the onstraint that sets variables thathave a value in ommon to that value if one of them is set to it. This has so far resistedattempts to improve on its representation.

Chapter 6Using GENET on the Driversheduling problem modelled as aConstraint Satisfation problem
6.1 IntrodutionMuh of the work in this Chapter has previously been published by Curtis et al [20℄.Loal searh methods have hitherto not had muh suess in the onstrution of bus drivershedules. An exeption is the appliation of geneti algorithms to bus driver shedulingdesribed by Kwan et al in [67℄ and Setion 4.5.2. Given a solution of reasonable quality,it is often possible to make minor adjustments to individual shifts, and still maintainthe legality of the shedule: this is for instane how we eliminate over-over if there isany in the best solution found by TRACS II. However, it is very diÆult to make major101

Chapter 6 102 GENET for driver shedulingimprovements, for instane on the sale required to redue the number of shifts in thesolution, unless the existing solution ontains gross over-over. If there is little over-overor none at all, the hanges required to eliminate a shift would entail simultaneous hangesto many other shifts in the solution, whih would be diÆult for a loal searh proedureto �nd. Furthermore, investigations by Kwan [65℄ have suggested that, for some problemsat least, the number of possible shedules with the minimum number of shifts is very small.When there are very few solutions, or in this ase very few optimal solutions, loal searhis expeted to perform poorly.However, GENET is a loal searh proedure whih has been suessfully appliedto onstraint satisfation problems of several kinds, inluding optimisation problems(Setion 3.6.5). For this reason it was deemed worthwhile to investigate whether it wouldgive good results on the driver sheduling problem. Although its performane is not om-parable with TRACS II, we have been able to ahieve onsiderable improvements overthe initial simplisti model. We believe that the experienes shown here would be usefulto others using GENET to solve large diÆult onstraint satisfation problems and inpartiular problems with similar optimisation riteria.In Setion 5.1 we gave reasons for using a set partitioning formulation. However, usingthis formulation restrits the range of problems we an solve as we an only solve problemswith a set partitioning solution. The ideal would be to have a formulation that has theguiding nature of set partitioning but the exibility of set overing. With GENET we anahieve this as GENET only tries to minimise the number of onstraint violations and isnot restrited to solutions whih satisfy all the onstraints. E�etively, we an work witha set partitioning formulation but aept set overing solutions.In the systemati approah detailed in the previous hapter the basi formulation of theproblem is to have the piees of work as the variables, the workpiee model. The hapteralso mentioned another possible way of representing the problem would be to do it in thesame way as the mathematial programming approah. In this shift model, the shifts arethe variables. The domains are binary, with values representing whether to use the shift

Chapter 6 103 GENET for driver shedulingor not use it.The workpiee representation has two main advantages over the shift model. As disussedin Setion 5.2.2 in the latter model, the number of deision variables is muh larger. Fur-thermore, the number of assignments of values to variables in the shift model is 2n, wheren is the number of shifts. This is muh larger than the number of possible assignmentsin the workpiee model, whih is Qmi=1 ni (where ni is the number of shifts overing pieei). Although with onstraint propagation not all the possible assignments will be tried,the number of possible assignments gives an indiation of the omplexity of the model. Inthe systemati approah this gave a large advantage to the workpiee model. However,with a loal searh method the possible number of assignments (size) is less important tothe algorithms ability to �nd a near optimal solution. This is beause the loal searhmethod will only try a fration of the possible hoies, whereas the systemati approahwill impliitly try all possibilities. The atual importane of size is problem spei� andis dependent on the type of systemati and loal searh methods used.Another disadvantage of the shift model is that there must be onstraints in plae toensure that no piees of work are left unovered. If those onstraints are violated, thesolution is not a feasible shedule and annot easily be onverted to one, unlike a solutionwith over-over. On the other hand, when using loal searh with the workpiee model,every state of the searh ould be a shedule (however ineÆient). This is the reason wehave opted to maintain the workpiee model in the GENET system.One of the drawbaks of a stohasti method suh as GENET is the loss of a guaranteeof produing an optimal solution. Given time, an exhaustive searh will always �nd anoptimal solution whereas a stohasti method may not. However, the fat that we havea heuristially redued set of shifts means that we have sari�ed the guarantee of a realoptimal solution and aim to produe near optimal or possibly optimal solutions. So theguarantee is already lost. Moreover, if a loal searh method an deal with a large initialset of shifts then fewer heuristi redutions need to be done and there is less hane ofremoving useful shifts.

Chapter 6 104 GENET for driver sheduling6.2 The GENET modelThe onstraints in the set partitioning formulation are binary and so ould be set up inthe original format of GENET (see Setion 3.6). If any two variables (piees of work) havea shift that overs both of them then we need to set up onstraints to deter one variablefrom hoosing that shift and the other one not. Hene, the network ould be set up as inFigure 6.1. The luster of three neurons on the left represents variable A and the lusterof two on the right represents variable B. The value assoiated with eah neuron is thenumber of the orresponding shift. The symmetrial weighted onnetions are shown bylines between the neurons: the weights are initialised to -1. The piees of work ould bothbe overed by shift 5 and so if one hooses 5 and the other does not, over-over will our.We want to deter this from happening by having nogood onnetions between label nodes.To illustrate how the network would work let the labels <A,3> and <B,5> be on. Label<A,3> and <B,5> therefore output a 1; labels <A,1> and <A,3> reeive an input of -1 from<B,5> and label <B,5> reeives an input of -1 from <A,3>. Other inputs remain at 0.When we repair variable A the label, <A,5> is turned on as this has the largest input (0).So now there is no onit between variables A and B; the same shift is overing both.
BA

-1

-1

-1
1

3

5

5

8Figure 6.1: Two node lusters with set partitioning onstraints in GENET

Chapter 6 105 GENET for driver shedulingWhen we use piees as variables and shifts as values and allow onstraints to be brokenwe introdue a mapping of one to many from the set of possible solutions to the set ofpossible states of GENET. This means that a variable might hange values and yet theshedule would remain the same. If the variables were the shifts and the values were 0 and1 then this would not happen. However, in a loal searh method this is not as muh of ahindrane as this type of symmetry would be to an approah that searhed exhaustively.Instead of stepping from a shedule to a di�erent shedule, having this symmetry an beviewed as allowing sub-steps that will eventually lead to another shedule.Unfortunately, onneting all pairs of inonsistent labels takes up too muh memory. On-ly the smallest problem (t1) in the test data an be represented using GENET's existingbinary-onstraint representation. To ombat this a new onstraint neuron has been de-veloped in a similar way to GENET's non-binary onstraints desribed in Setion 3.6.3.Figure 6.2 illustrates the use of the new neuron to represent the onstraint between thepiees A and B.
A B

3

-1

1 5

-1

8

5

-1

A,B

-1

Figure 6.2: Set partitioning onstraint node in GENETThe onnetions are no longer symmetri; if a label node is on then it outputs a 1 to theonstraint neuron. The onstraint neuron then deides, knowing whih label nodes it hasreeived an input from, whih label nodes need to be penalised. It then sends an output to

Chapter 6 106 GENET for driver shedulingthose nodes whih will be negatively weighted by the onstraint node's stored weight. Asbefore labels <A,1>, <A,3> and <B,5> reeive an input of -1 if <A,3> and <B,5> are on.Eah onstraint node has only a single weight, initialised to -1, so that all label nodes thatare penalised by a onstraint are penalised equally. This is di�erent to the representationdesribed above, where the weights of individual onnetions between two node lustersmay beome di�erent through the learning proess. Hene, the energy landsape willbeome di�erent for the two models.6.3 Sideways movesThe �rst onsideration is to investigate the suitability for this partiular problem of side-ways moves (see Setion 3.6.2). In suh a highly strutured problem it is unlikely thatsideways move would be useful. The hoie of value that a variable takes is so dependenton the hoies that other variables make, that hanging these values without reason isunlikely to lead to improvement. This theory is borne out by the results in Table 6.1. Thetable shows the results for the 9 problem instanes desribed in Setion 5.3. The �nal ol-umn shows the average of these. For eah problem instane the program was run 10 timeswith 10 di�erent seeds for the program's random number generator. A run is terminatedafter 3000 yles. This is beause, although the CPU time to �nd the best solution is oftenshort, the user time an be muh longer and the program has to be run 90 times to testeah heuristi. All the runs of the program where done on an SGI Otane mahine. Thisis a di�erent mahine to the one used for the onstraint programming approah desribedin Chapter 5. The reason for this is that, due to the restritions imposed by the Solverliene and an implementation issue with GENET, eah algorithm annot be run on themahine the other was run on. This means that the timings are not diretly omparable.Sample runs were made up to 10000 yles but no extra improvements were made on thesolution. Listed in the results is the average of the number of shifts in the best solutionfound for eah run. The standard deviation is not given but for the basi model the aver-age standard deviation is less than 1 whole shift (the average standard deviation for the

Chapter 6 107 GENET for driver shedulingInstane t1 r1 r1a r2 t2 r3 1 1a r4 avpiees 24 53 53 54 125 160 186 186 203 n/ainitial shifts 77 2503 4273 3001 3015 19091 3829 7543 2484 n/asize 271 12k 21k 13k 17k 214k 27k 53k 17k n/aopt # shifts 7 11 11 14 19 16 26 26 25 17.2basi:av. # shifts 7.20 16.8 18.2 19.6 23.5 21.8 34.9 36.2 33.3 23.5av. time (ses) 0.09 0.06 0.03 0.03 0.33 1.00 0.84 0.92 0.87 0.46best # shifts 7 15 16 19 23 21 34 34 32 22.3time (ses) 0.01 0.20 0.03 0.02 0.17 0.64 0.68 1.12 1.24 0.46lsw:av. # shifts 7.70 16.7 18.5 19.5 23.8 21.7 35.2 36.2 33.6 23.7av. time (ses) 0.11 0.16 0.08 0.09 1.83 11.7 5.3 5.02 3.78 3.12best # shifts 7 16 18 18 23 20 34 35 32 22.6time (ses) 0.01 0.09 0.05 0.22 0.67 8.4 7.10 3.77 3.0 2.59av. # shifts 7.20 17.1 18.4 19.6 26.4 41.9 51.4 52.1 47.5 31.3av. time (ses) 0.11 0.60 0.26 0.29 3.09 8.30 0.92 0.77 3.95 2.03best # shifts 7 16 17 18 23 34 46 50 43 28.2time (ses) 0.01 0.59 0.20 0.77 6.11 18.5 7.74 0.27 13.1 5.26Table 6.1: Results on allowing or not allowing sideways moves.lsw = limited sideways moves, fsw = full sideways moves�nal model is also less than 1). Also shown is the average time at whih these solutionswere found. The �nal two rows give the lowest number of shifts ahieved out of all 10 runsand the time it took to �nd this solution.The results using limited sideways moves and no sideways moves are very similar. Althoughin some ases one is better than the other, neither has a signi�ant advantage. However,the full sideways moves strategy is muh worse than the other two espeially for largerproblems.6.4 Superuous/redundant shiftsAn extreme situation that an our when allowing onstraints to be broken, so allowingover-over, is that the shift that is seleted by some variable might not uniquely overany piee of work, i.e. every piee of work overed by this shift is also overed by anotherseleted shift. In examining states of the network it was found that at times this did

Chapter 6 108 GENET for driver shedulingshift piees overed88 6, 886 6, 8, 14135 8, 14173 13170 13, 14, 15, 16177 15, 16Table 6.2: Example shifts used in a state of GENET.happen. These superuous shifts an be removed, thus reduing the number of shiftswithout leaving any unovered piees of work. To takle this situation a routine wasdevised to take ation at loal minima.There may not be a unique way of removing superuous shifts; for instane, if one pieeof work is overed by two superuous shifts and no other shift, then when either shiftis removed the other is no longer superuous. This means that shifts may potentiallybe superuous but in fat may beome needed if other potentially superuous shifts areremoved. We will use a real set of shifts that were in use in a state of GENET to illustratethis. Table 6.2 shows the index of eah shift and the numbers of the piees of work thatit overs.If we remove shifts 86, 170 then there are no onits and all the piees are still overed.We will disuss how we might translate this proess into a general formula for removingshifts.There are several possible general strategies. For instane:1. Remove all shifts that are a subset of another shift. In the example above we wouldremove 88, 135, 173, 177. This would still ause a onit between 86 and 170 butwould leave only 2 shifts being used.2. Remove potentially superuous shifts that are a superset of another (e.g. 86, 170).This leaves no onits but uses 4 shifts.3. Solve the problem of �nding an optimal set of superuous shifts to remove as a

Chapter 6 109 GENET for driver shedulingInstane t1 r1 r1a r2 t2 r3 1 1a r4 avpiees 24 53 53 54 125 160 186 186 203 n/ainitial shifts 77 2503 4273 3001 3015 19091 3829 7543 2484 n/asize 271 12k 21k 13k 17k 214k 27k 53k 17k n/aopt # shifts 7 11 11 14 19 16 26 26 25 17.22rem:av. # shifts 7.10 16.3 18.4 18.7 23.2 21.0 33.9 35.0 31.8 22.8av. time (ses) 0.02 0.02 0.01 0.01 0.16 1.24 0.28 0.38 0.29 0.27best # shifts 7 15 16 17 23 20 33 34 31 21.8time (ses) 0.00 0.04 0.05 0.01 0.09 0.34 0.22 0.31 0.13 0.13Table 6.3: Results of removing superuous shifts.rem = remove superuous shiftsseparate subproblem.4. Repeatedly randomly remove a potentially superuous shift until there are no su-peruous shifts left.5. Look at the overall energy hange of removing eah shift. Remove the shift thatwould produe the best hange.6. Remove all potentially superuous shifts from the urrent state of GENET, foringvariables to hoose di�erent shifts.Superuous shifts are not alway present and in the latter stages of the searh there areusually only 1 or 2, if any. Therefore, using a great deal of omputing power and extramehanisms to solve this problem is deemed to be fruitless. Therefore, the option deidedon was strategy 6 and this was implemented by just tagging superuous shifts to not beused in the next yle, so that other shifts are used to over the work. No attempt ismade to asertain whether two superuous shifts would beome non-superuous if onewere removed.Table 6.3, giving results for the same problems as in Table 6.1, shows that adding aomponent to remove superuous shifts at loal minima does improve the solutions overjust using the basi searh, in several ases. We will see below that the problem ofsuperuous shifts disappears as we introdue general mehanisms to redue the number

Chapter 6 110 GENET for driver shedulingof shifts.6.5 OptimisationGENET has been used to solve optimisation problems and this has been desribed insetions 3.6.5 and 3.6.5.2. In the driver sheduling problem the most important riterionto optimise, the number of shifts, is a global riterion and so osts annot be set on thelabels initially. The ost of a label annot be worked out loally beause knowledge ofthe states of other variables is needed. A well known problem with a similar optimisationriterion is the Radio Frequeny Assignment problem, when it is required to minimisethe number of frequenies used. The diÆulty in this type of minimisation is that toremove a frequeny all the transmitters that are assigned to that frequeny need to hangestate, whih may require several independent moves. As mentioned in Setion 3.6.5.2 thisproblem was solved by initially using only the minimum number of frequenies needed toover all hannels. This produes many onstraint violations, but beause the domainsof most of the variables are the same, very few frequenies need be used, possibly onlyone. GENET then adds frequenies to redue the onits and the number of frequeniesadded is thereby kept low.Unfortunately, in the driver sheduling problem we annot have one shift that would overall the piees, and hoosing a minimal set of initial shifts overing all the piees of workamounts to solving the problem. We an start with all the piees unovered, whih issimilar, although an unovered piee is in onit with everything, whereas one frequenywill not be. By inluding a virtual shift as a value in the domain of all piees of work,orresponding to the piee being left unovered, we an start the proess with this virtualshift hosen for all variables. We add a single onstraint to penalise the use of the virtualshift and so GENET will add shifts to remove it. There is only one virtual shift whih isheavily penalised. The risk of not �nding a solution is low and all under-over is normallyremoved in the �rst few yles. The �rst entry (unov) in Table 6.4 shows that the numbersof shifts in the solutions produed are less than or equal to the numbers of shifts produed

Chapter 6 111 GENET for driver shedulingusing a random start (the basi model of Table 6.1), but the improvement is small.In order to �nd solutions with the same number of drivers as TRACS II, we need to addressthe diÆulty that there are few opportunities to remove whole shifts. We an either putmore e�ort into looking for global moves whih will remove shifts by onsidering thesolution as a whole or introdue a bias into GENET's loal moves whih will hopefullyallow a sequene of loal moves to lead to the removal of a shift. One possible way ofdoing this is by progressively penalising shifts that are not assigned to all their piees ofwork, thus dissuading individual variables from using suh a shift. This should guide thesearh to states where only one variable is using this shift and so to a position where itould be removed with a single hange. To do this we add a term Popt:<i;j> to the inputthat a label node < i; j > gets:Popt:<i;j> = �I + Ij � L<i;j> (6.1)where I is the number of variables, Ij is the number of variables assigned to value j andL<i;j> is a number that starts at zero and inreases by one every time that label node< i; j > is on at a loal minimum. The number of variables is obviously onstant and isput in to ensure that the optimisation term is always inhibitory. The more variables thereare whih hoose the value, the less inhibitory the term is.A minor adaptation of this optimisation tehnique has been tried. The di�erene betweenit and the original tehnique is that shifts that are assigned to all the piees they over arenot penalised. So there is no large negative inuene of the onstant value of the numberof variables (I). This puts a large bias on shifts that are hosen by all their piees. Thiswas introdued to stabilise the searh. By not penalising shifts that are hosen by all theirpiees of work it is muh more likely that these shifts will be retained.Using the optimisation tehnique desribed above, Table 6.4 shows that in the overallaverages there is a derease in the number of shifts ompared to the basi model. Inomparison with the basi model of Table 6.1, it tends to produe slightly better solutions

Chapter 6 112 GENET for driver sheduling
Instane t1 r1 r1a r2 t2 r3 1 1a r4 avpiees 24 53 53 54 125 160 186 186 203 n/ainitial shifts 77 2503 4273 3001 3015 19091 3829 7543 2484 n/asize 271 12k 21k 13k 17k 214k 27k 53k 17k n/aopt # shifts 7 11 11 14 19 16 26 26 25 17.22unov:av. # shifts 7.60 15.0 17.6 18.8 23.7 22.0 34.4 36.2 32.9 23.1av. time (ses) 0.06 0.17 0.13 0.07 0.48 6.38 1.43 1.74 0.91 1.26best # shifts 7 14 16 17 23 20 32 35 32 21.8time (ses) 0.04 0.27 0.72 0.04 0.26 3.26 1.03 1.33 1.42 0.93optl:av. # shifts 7.70 15.0 15.9 17.6 24.4 21.5 35.9 37.5 33.6 23.2av. time (ses) 0.03 0.32 0.24 0.23 1.19 4.95 2.23 2.25 2.10 1.50best # shifts 7 14 15 16 23 19 34 36 32 21.8time (ses) 0.00 0.16 0.77 0.06 0.50 3.43 1.25 1.89 1.60 1.07optl+nf:av. # shifts 7.70 15.0 16.0 18.5 23.6 21.9 34.7 36.1 32.8 22.9av. time (ses) 0.00 0.08 0.05 0.02 0.35 1.59 0.42 0.49 0.65 0.41best # shifts 7 14 14 18 22 20 34 35 32 21.8time (ses) 0.00 0.06 0.09 0.01 0.08 1.54 0.20 0.32 0.19 0.28Table 6.4: Results of using a tehnique to optimise the number of shifts used.unov = all the piees of work start o� unoveredoptl = the optimisation tehniquenf = do not penalise shift that over all their piees

Chapter 6 113 GENET for driver shedulingon smaller problems and worse on larger problems. This shows how diÆult it is to removea shift using a sequene of moves. A further problem is that to redue the overall numberof shifts a new shift may need to be introdued whih �ts better than an existing shift. Inthe optimisation sheme, shifts that are not used, i.e. no assoiated label node is on, willbe heavily penalised and so are unlikely to be introdued, whether it is useful to do so ornot. Below, we will retain the optimisation tehnique and investigate other ways to solvethe two problems stated above.The results in Table 6.4 also show that inluding the option to not penalise shifts that overall their piees only makes a minor di�erene by slightly dereasing the overall averagenumber of shifts. This option will be further investigated in the �nal version of the searhproess.6.5.1 Improved starting solutionBy using a random initial solution to start the searh, a large number of shifts is used.Sine removing shifts is something that GENET �nds diÆult, a method was used toimprove the quality of the initial solution. A simple greedy algorithm was used to reatethe initial solution. The algorithm starts with the earliest piee of work in the bus shedule.It then piks the shift to over it that overs the largest number of other piees of work.Then it ontinues piking unovered work in hronologial order and hoosing the shiftwhih overs the most unovered piees of work until all piees of work are overed by atleast one shift. The starting value (shift) assigned to eah variable (piee) is then hosenrandomly from the shifts that ould over it in this initial solution.Table 6.5 shows the number of shifts used in the initial solution and the solutions foundby GENET. In omparison with earlier results GENET improves the best found solutionon several of the problems (1, t2, r2). However, the best solution found is often nobetter than the initial solution. In the following setions, when testing new heuristis andadaptations of GENET, we will investigate ombining the new features with the greedyinitial solution.

Chapter 6 114 GENET for driver shedulingInstane t1 r1 r1a r2 t2 r3 1 1a r4 avpiees 24 53 53 54 125 160 186 186 203 n/ainitial shifts 77 2503 4273 3001 3015 19091 3829 7543 2484 n/asize 271 12k 21k 13k 17k 214k 27k 53k 17k n/aopt # shifts 7 11 11 14 19 16 26 26 25 17.22Initsol 7 13 14 16 22 19 32 33 30 20.7optl+init:av. # shifts 7.00 13.0 14.0 15.9 20.8 19.1 32.0 32.7 30.0 20.5av. time (ses) 0.00 0.02 0.01 0.02 0.02 0.37 0.04 0.10 0.02 0.07best # shifts 7 13 14 15 20 19 32 32 30 20.2time (ses) 0.00 0.00 0.00 0.05 0.01 0.23 0.00 0.14 0.00 0.05Table 6.5: Results using a greedy heuristi to onstrut an initial solution as opposed toa random starting solution.Initsol = the number of shifts of the initial solution produed by the greedy heuristiinit = use initial solution produed by greedy heuristioptl = optimisation with learning6.5.2 Removing whole shiftsIn this setion we examine a way of using global moves to redue the number of shifts.The idea is to take two shifts in the urrent solution and replae them with one shift. Thiswould be very hard to do if there were little or no over-over beause it is then unlikelythat the union of the piees of work that two shifts over is idential to the piees of workovered by another shift. However, if there is enough over-over it an be possible to �nd ashift that overs the work that two shifts over uniquely between them. This is a good wayof rapidly reduing the number of shifts and leaving the solution with little over-over. Wean ombine these global moves with loal moves and so let the loal moves \�ne tune" thesolution. This is done by allowing the algorithm to work as normal until it reahes a loalminimum, at whih point it searhes for two shifts that are in use that an be replaed byone shift. The results are shown in Table 6.6. The solutions are an improvement on theapproah with the optimisation tehnique. However, it will be seen in later setions thatwe an do better using only loal moves.

Chapter 6 115 GENET for driver shedulingInstane t1 r1 r1a r2 t2 r3 1 1a r4 avpiees 24 53 53 54 125 160 186 186 203 n/ainitial shifts 77 2503 4273 3001 3015 19091 3829 7543 2484 n/asize 271 12k 21k 13k 17k 214k 27k 53k 17k n/aopt # shifts 7 11 11 14 19 16 26 26 25 17.22rep:av. # shifts 7.00 15.1 15.7 17.7 21.3 20.5 32.5 32.4 30.0 21.4av. time (ses) 0.01 0.11 0.12 0.24 0.94 8.70 2.10 6.17 1.13 2.17best # shifts 7 14 14 16 17 16 30 29 28 19.0time (ses) 0.00 0.07 0.18 0.12 0.05 28.2 12.8 11.2 1.92 6.06rep+init:av. # shifts 7.00 13.0 13.5 16.3 20.2 20.6 30.0 30.0 27.8 19.8av. time (ses) 0.00 0.02 0.03 0.05 0.09 2.96 0.64 1.22 0.60 0.62best # shifts 7 13 13 16 20 17 29 28 27 18.9time (ses) 0.00 0.01 0.03 0.04 0.04 15.62 0.74 1.23 0.62 2.04Table 6.6: Results showing the e�et of using global moves to replae whole shiftsrep = try to replae two shifts with oneinit = use initial solution produed by greedy heuristi6.6 A less deforming learning modelIn the model we originally developed, eah onstraint node has one assoiated weight.This weights the output to all the label nodes onneted to that onstraint. Eah on-straint node, is onneted to all the label nodes representing two variables (see Figure 6.2).Through learning, the weight of the onstraint node will inrease every time any two la-bel nodes onneted to the onstraint are on and are in onit with eah other. In theoriginal version of GENET, there is a weight for every nogood pairing of label nodes, andthis weight will only inrease when this pairing of label nodes is on at a loal minimum.With only one weight assoiated with a onstraint the weight will inrease more frequentlythan individual weights on nogood pairings. This is undesirable and so a ompromise hasbeen struk between having a weight for eah nogood and only having one weight for eahonstraint. This ompromise also has the added advantage of introduing bias into themodel to redue the number of shifts used.To re�ne the learning method we have introdued more than one weight per onstraint.We replae the single weight on the onstraint (W) with a weight for eah shift that is

Chapter 6 116 GENET for driver shedulingin the domain of both of the variables (w where = 1, . . . , C and C is the number ofshifts in ommon) and a single weight (wn) for all the shifts that are not ommon to bothvariables. Whether a label node is penalised or not is hosen in the same way as before,but how muh it is penalised is hosen di�erently. Eah label node is penalised by itsassoiated weight. So the di�erene between the new onstraint representation and theold one shown in Figure 6.2 is that we are using several weights instead of one. All theweights start at -1 as did W but the landsape for the two models beome di�erent throughlearning. With only one weight it inreases every time the two assoiated variables are inonit whereas in the new model only two of the weights inrease (for example if the iand j were ommon shifts and both were on in a loal minima only weights wi and wjwould beome more negative).Figure 6.3 illustrates how using these extra weights works. There are now 3 weights stored:one eah for shifts 3 and 8 as these are ommon to both piees and one for the other shifts.All the weights start at -1 but through learning they an beome di�erent, in our examplethe weight for shift 8 has beome -2 while the others remain at -1. In the example shown,if the onstraint had only one weight and nodes <A,3> and <B,2> are on, nodes <B,2>and <B,8> would be penalised beause they being on orresponds to over-over. Similarly,<A,8> would be penalised beause B is at the moment overed by shift 2 and so would beover-overed if shift 8 were also used. With multiple weights the same nodes are penalisedbut by di�erent amounts, <B,8> by -2 beause the weight linked with 8 is -2 and similarly<A,3> by -1.Having extra weights has a twofold advantage over just having a single weight. Firstly, ifthere is only one weight the input of all penalised label nodes will beome more negativeby the same amount when the weight inreases. Therefore, the assoiated variables aremore likely to have nodes with the same input than if several di�erent weights label nodesare used. This means that more moves are available if several di�erent weights are used.The seond advantage of using weights for shifts that are in ommon is that ertain shiftswill get more penalised, thus leading to their removal.

Chapter 6 117 GENET for driver shedulingInstane t1 r1 r1a r2 t2 r3 1 1a r4 avpiees 24 53 53 54 125 160 186 186 203 n/ainitial shifts 77 2503 4273 3001 3015 19091 3829 7543 2484 n/asize 271 12k 21k 13k 17k 214k 27k 53k 17k n/aopt # shifts 7 11 11 14 19 16 26 26 25 17.22Initsol 7 13 14 16 22 19 32 33 30 20.7mwt:av. # shifts 7.00 14.3 18.0 18.0 20.6 16.8 29.0 29.1 27.7 20.1av. time (ses) 0.02 0.16 0.07 0.07 0.71 13.7 1.72 2.63 1.33 2.26best # shifts 7 12 16 16 20 16 28 28 27 18.9time (ses) 0.01 0.32 0.10 0.08 0.71 13.0 1.13 1.18 1.32 1.99mwt+optl+init:av. # shifts 7.00 12.3 13.8 14.3 21.0 16.3 30.5 31.1 29.5 19.5av. time (ses) 0.00 0.41 0.16 0.46 0.04 11.7 1.63 1.78 1.19 1.93best # shifts 7 11 12 14 21 16 29 30 29 18.8time (ses) 0.00 0.31 1.26 0.18 0.03 6.32 3.39 2.68 1.41 1.73mwt+optl+rem:av. # shifts 7.00 12.1 14.0 14.0 22.2 16.3 30.7 30.1 29.2 19.5av. time (ses) 0.03 0.55 0.47 0.56 1.00 13.8 4.40 4.94 2.49 3.14best # shifts 7 11 12 14 22 16 29 29 28 18.7time (ses) 0.00 0.85 2.27 0.17 0.36 6.56 6.44 2.84 2.01 2.39mwt+optl+rep:av. # shifts 7.20 14.0 14.2 16.1 23.0 19.4 32.0 33.0 33.0 21.3av. time (ses) 0.01 0.43 0.30 0.24 0.39 6.36 1.15 3.78 0.47 1.46best # shifts 7 13 13 15 22 16 29 30 30 19.4time (ses) 0.00 0.06 0.25 0.32 0.23 7.39 2.86 2.20 1.36 1.63mwt+optl+nf:av. # shifts 7.00 12.8 14.8 16.1 20.7 16.5 29.1 29.2 27.9 19.4av. time (ses) 0.25 2.24 0.93 1.32 4.74 17.4 8.34 10.41 8.02 5.96best # shifts 7 12 12 14 20 16 28 28 27 18.2time (ses) 0.03 1.45 1.60 3.12 5.15 15.14 5.28 17.7 4.55 6.00mwt+optl:av. # shifts 7.00 11.8 14.1 14.2 22.3 16.3 30.5 30.4 29.5 19.6av. time (ses) 0.03 0.46 0.24 0.63 0.93 9.90 2.00 2.37 1.37 1.99best # shifts 7 11 11 14 21 16 29 29 28 18.4time (ses) 0.00 0.52 0.45 0.19 0.48 6.03 3.52 2.19 1.20 1.62Table 6.7: Using several weights for eah onstraint.Initsol = the number of shifts of the initial solution produed by the greedy heuristioptl = optimisation with learningnf = do not penalise shifts that over all their pieesmwt = using more than one weight per onstraintinit = use initial solution produed by greedy heuristirep = try to replae two shifts with one

Chapter 6 118 GENET for driver shedulingTable 6.7 shows the results of using several weights to represent eah onstraint ombinedwith the strategies onsidered earlier. There is a onsiderable improvement over the initialresults shown in Table 6.1 and in many ases the best solutions found have the samenumber of shifts as in the TRACS II solution. It is no longer worthwhile to use the greedyheuristi to build a starting solution; a random initial solution does just as well. Henethe redit for the quality of the �nal solution is due entirely to the searh algorithm.Furthermore, removing superuous shifts now makes hardly any di�erene to the qualityof the solutions. Equally the replae heuristi that removed whole shifts at loal minimais no longer of use. The only alteration that does have a positive inuene on the proessof using several weights is not penalising shifts that are hosen by all the piees of workthat they an over. By doing this one fewer shift is used in the best solution obtainedin four of the larger problems. However, the best solution obtained for r1 and r1a nowontain one mores shift than the result produed by TRACS II.By examining what the algorithm is doing during the searh we an see how the improve-ment ours. In its �rst two olumns, Table 6.8 shows the average number of times a shift
A

-1(3) , -2(8),
-1

A,B

B

-1-1

5 3

3 2

8 8

-2-2Figure 6.3: Set partitioning onstraint node in GENET with more weight values

Chapter 6 119 GENET for driver sheduling

15

20

25

30

35

40

45

50

0 500 1000 1500 2000 2500 3000

N
u
m
b
e
r

o
f

s
h
i
f
t
s

Number of cycles

(a) Without extra weights

15

20

25

30

35

40

45

50

0 500 1000 1500 2000 2500 3000

N
u
m
b
e
r

o
f

s
h
i
f
t
s

Number of cycles

(b) With extra weights

Figure 6.4: Number of shifts in the solution at eah yle of the searh.

Chapter 6 120 GENET for driver shedulingInstane Revisits Changes % Loal minper yle1 wt > 1 wt 1 wt > 1 wt 1 wt > 1 wtt1 3.32 1.86 1.63 2.51 48.63 40.23r1 1.53 1.97 2.28 3.56 44.94 38.58r1a 1.34 1.57 2.63 3.12 43.49 39.33r2 1.27 1.71 2.63 3.32 43.78 39.66t2 3.44 2.73 4.63 7.08 40.67 30.52r3 3.62 3.04 7.80 16.80 31.13 22.801 4.00 3.29 5.38 9.20 38.92 27.731a 3.91 3.02 6.13 9.69 38.18 27.47r4 3.77 3.29 5.33 9.41 35.61 27.34av 2.91 2.50 4.27 7.18 40.59 32.63Table 6.8: Comparison between one weight and multiple weights for eah onstraint.Revisits is the average number of times a shift is removed and later reinstated. Changesper yle is the average number of lusters that hange the label node that is on per yle.% Loal minima is the perentage of moves that are in a loal minimum.is removed and reinstated in GENET until the best solution is found. The table givesresults for the 9 problems and the overall average. We an see that using more than oneweight per onstraint dereases, on average, the number of times a shift is revisited. Thenext two olumns show the average number of variable lusters that hange the label nodethat is on per yle. In every ase using more than one weight inreases the number ofhanges and so does more searhing on eah yle. Finally the last two olumns show theperentage of moves that ended in a loal minimum: the proportion of these unprodutivemoves is higher in every ase when only one weight is used per onstraint. Figure 6.4ompares in detail the searh proess with and without extra weights for a partiular in-stane. Using the extra weights allows the searh to hange more at eah yle than whenonly one weight is used. It allows the searh to move between states with few shifts eventhough it may have to temporarily add shifts to get between these states.6.7 Summary and onlusionSeveral adaptations to GENET have been made to try to redue the number of shiftsused. These onsist of: introduing a bias in the loal moves; making global moves; and

Chapter 6 121 GENET for driver shedulingstarting the searh from an improved state. The most suessful method was one of theattempts to inlude a bias in the loal moves, by using multiple weights for eah onstraint.This made several of the other tehniques obsolete. The reason for the suess has beenexplained and evidene is given by examining the searh proess. This is interesting asusing the biasing method enhanes performane without adding additional mehanis tothe searh proess, just adapting the onstraints to improve the existing learning proess.As with the previous Chapter the researh done here is domain spei� however lessonsmay be learned for solving other pratial and generals problems using GENET. Theseaspets are the following:1. Optimisation. This researh ombined with that in [10, 9℄ shows the poor resultsobtained when trying to optimise a global optimisation riterion (number of driversor number of frequenies) using the type of optimisation term used in Setion 3.6.5and 6.5. We have shown that the diÆulty lies in having to make a suession of loalmoves to make a di�erene to the optimisation riterion. We have also introdueda method whih allows for this type of sequene of loal moves to improve thesolution(Setion 6.6).2. Less deforming model. The original work on GENET for adding non-binary on-straints disussed in Setion 3.6.3 used only one weight per onstraint node. How-ever, we have shown in Setion 6.6 that using more weights an make a signi�antdi�erene to solution quality.3. Sideways moves. How to deide whether sideways moves should be allowed whensolving a partiular problem using loal searh is still an open question. However,this researh has put forward the idea that with hard, highly strutured problemssideways moves should not be used. A full analysis of varying struture and its e�eton the solution quality when using sideways moves is beyond the sope of the thesisbut is an area for investigation.Further work ould be arried out in several areas. Using a relaxed linear programming

Chapter 6 122 GENET for driver shedulingsolution to the set partitioning problem greatly inreased the performane of the system-ati approah desribed in the previous hapter. Further, the only suessful loal searhapproah to large set/overing partitioning problems for driver sheduling [67℄ dependsgreatly on this LP solution. Therefore, examining how the LP solution ould be inor-porated into GENET may be very produtive. The mehanis of using the LP solutionneed to be researhed but there is a positive indiation that it may work very well. Thisis beause the LP solution and the GENET model have similarities. The assignment of apiee of work to a shift in GENET is similar to hoosing a fration of the shift to overit in the LP solution. So translating the LP solution into a state in GENET would be arelatively easy task.Another area for future work would be to expand the algorithm to takle some of thefurther restritions that an be imposed by bus ompanies. The driver sheduling prob-lem sometimes has side onstraints and features that are hard to express in a pure setpartitioning formulation. Examination of these to see if the expressive power of onstraintsatisfation an model these better than ILP ould be very useful. This has been disussedin Setion 5.8 and is further disussed in Setion 7.3.Lastly, a more general area for further work is to do with how GENET uses weights aswe disussed in Item 2 above. The researh dealt with the high memory requirementsgenerated by representing the problem using GENET's original binary onstraints. Theproblem was represented using an adaptation of the non-binary onstraints developed forGENET to be used as binary onstraints. It was found that using this type of onstraintlow quality results were produed, with large numbers of unneessary drivers in the shed-ule. The possible reasons for this were examined by extrating information on the searh.Using multiple weights instead of single weights improved the results greatly and the ex-amination of the searh gave possible reasons for this. An area open to researh is whetherin non-binary CSPs GENET should have eah onstraint with a single or multiple weight.A study of a range of problems with non-binary onstraints, extrating the same searhinformation, may shed light on this issue. So although this type of researh is beyond thesope of this thesis, it has provided a diretion for suh researh.

Chapter 7Conlusions
7.1 SummaryThe driver sheduling problem and its ommerial importane has been presented. Theurrent methods for driver sheduling have been desribed and their shortfalls expressed.The fat that it is sometimes hard to adapt methods between organisations and thatprovably optimal solutions to pratial problems are not obtainable has been disussed.The problem is tightly restrited and heuristi methods have found it hard to produe goodresults for it. On the other hand, mixtures of heuristis and mathematial programminghave been very suessful, although even these have their aws, whih have stimulatedinvestigation of other approahes.This thesis has investigated two methods that use onstraint satisfation for modellingand solving the bus driver sheduling problem. These methods start from a prede�nedset of shifts, and from this they selet shifts to produe a shedule. This tati has beenhosen over produing shifts as the shedule is built up beause it allows the solver to be123

Chapter 7 124 Conlusionsgeneri and more independent of individual ompanies' regulations.These methods have ahieved suess in solving small driver sheduling problems fromdi�erent ompanies with varying regulations. However, the mathematial programmingsystem TRACS II [37, 66, 125℄ an solve muh larger problems. It is unsurprising thatthe new methods annot ompete, as there has been over 30 years of researh invested inthe TRACS II system. However, our results are enouraging, and indiate diretions forfurther researh.7.2 Comparison between methodsThe two new methods desribed in Chapters 5 and 6 are di�erent in many ways. The�rst approah employs systemati searh, whereas the seond is a loal searh methoddeveloped from GENET [121, 110℄. This means that in theory the systemati approahwill, given enough time, produe an optimal solution but the loal searh method maynever �nd the optimum. However, in pratial terms, the problem is hard to solve and timeis limited, so the systemati approah may also not �nd an optimal solution. Furthermore,as the set of possible shifts that are to be seleted from is heuristially generated, shiftsthat are ruial to produe an optimal solution may not be ontained in the set, leadingto no optimal solution being obtained.In examining results, the two methods annot be diretly ompared. The two approahestakle slightly di�erent problems. GENET would aept set overing problems that theonstraint programming approah will not. Moreover, the timings of runs annot beompared as explained in Setion 6.3.For our test problems TRACS II produes the optimal number of drivers that an beahieved by seleting from the generated set of shifts. However, it is possible (althoughhighly unlikely for problems of this size) that if we were to selet from the set of all possibleshifts, solutions with fewer drivers would exist. So therefore we will all a solution with the

Chapter 7 125 Conlusionssame number of drivers as TRACS II a pseudo-optimal solution. It is worth noting in theresearh done in this thesis we do not onsider assoiated osts of shifts, but TRACS IIdoes and attempts to redue them. Therefore, the pseudo-optimal solutions we speakof may in pratie not be as good as the TRACS II solutions. In every one of the testases, the systemati approah produed a pseudo-optimal solution. However, the GENETadaptation failed to produe the same number of drivers in four ases. Some fators mayaount for this di�erene in solution quality. In terms of the �nal version, GENETdeals with the problem more as a general set partitioning problem than the systematiapproah. GENET takes no advantage of the struture of the problem. On the otherhand, the systemati onstraint programming approah uses the solution to the LP givenby relaxing the integrality onditions to guide the searh and uses the struture of thebus shedule in the form of the relief opportunities to e�etively redue the size of theproblem. It is believed that using the LP solution in some role within GENET will improveperformane greatly. Without the use of the relaxed LP solution, the systemati approahould only �nd a pseudo-optimal solution on a trivially small problem instane. However,GENET has found a pseudo-optimal solution for the test problem with the largest numberof potential shifts. Therefore, GENET may have the greater potential of the two.An advantage GENET has over the systemati omplete searh method is that it willalways �nd a solution of some quality. In the four ases in whih it ould not �nd apseudo-optimal solution, the best solutions it found were only one or two shifts away fromthe TRACS II solution. Furthermore, GENET an handle set overing problems and soif there is no set partitioning solution it an still �nd a solution.In this thesis when we ompare the three searh methods, mathematial programming,CP and Loal searh we an ompare not just the �rst basi algorithms developed butalso the omparison of how eah approah an be adapted and improved. The mathemat-ial approah has been developed over a long time and has been improved greatly withheuristis and improvements in its searh tehnique. The CP approah has: examinedmodelling issues; used implied onstraints, both mathematial and heuristi; used valueand variable ordering; and used domain spei� knowledge to enhane these. The loal

Chapter 7 126 Conlusionssearh method explores several of the issues important to this type of searh: esaping lo-al minima; sideways moves; several tehniques for optimisation inluding di�erent movesoperators; di�erent starting solutions; and adapting the onstraints. As stated above theGENET model did not inorporate as muh domain spei� knowledge as the onstraintprogramming approah. Part of the reason for this is that in adapting and improving theGENET model the details of these improvements are often down to intuitive developmentfrom empirial evidene rather than the logial improvements possible with the CP ap-proah. For example it is lear that a good value guide is useful to the CP approah but agood initial solution in the �nal GENET approah did not give improvements in the bestsolutions found.7.3 Further workApart from the further developments that ould be done individually to the two algorithmsdesribed in this thesis, there is also further researh appliable to both, and alternativeareas that do not diretly relate to either algorithm, but to using onstraint satisfationin general for driver sheduling.The individual areas of researh for eah algorithm are outlined in the onlusions of therelevant hapter. The following will summarise these. The systemati approah ouldbene�t from further development in the implementation of the onstraints to improvetheir time and spae omplexity. GENET ould be advaned greatly by inorporating useof the struture of the problem and of the LP solution.There are issues that ould be explored possibly in extensions of both of these systems.Examining how regulations ould be modelled in the onstraint satisfation frameworkwould be of great value. For example, it would be useful to be able to model the frequentrequirement that there is a maximum number of split shifts allowed in the shedule (seeSetion 4.3.2.8). This ould be done simply in the systemati approah by having avariable for eah split shift. These would have a binary domain (0,1) and be onstrained

Chapter 7 127 Conlusionsto have a 1 if the split shift was in use. A onstraint would ensure that at most n ofthese variables would be permitted to have a value 1 at any single time, where n is themaximum allowed number of split shifts. How this would a�et the quality the performaneof the algorithm would be something to be tested. Further restritions that are hard tomodel in the ILP approah are windows of relief opportunities and multi-depots (seeSetion 4.3.2.8). Windows of relief opportunity would be diÆult to represent in any setpartitioning/overing formulation, as suh formulations deal with spei� hand-over times.However, onstraint satisfation may provide the key. The reason for this are outlined inSetion 5.8.The problems used in this thesis for testing the algorithms produed were submitted toand will appear in the onstraint satisfation benhmarking library CSPlib [45℄. This willallow other researhers aess to the problems, so they an either develop new algorithmsor perhaps test algorithms developed for air-rew sheduling set partitioning problemson driver sheduling problems. It would be of bene�t to researhers to study the driversheduling problem purely as a CSP. They might investigate how this CSP relates torandomly generated CSPs and to other pratial problems formulated as CSPs. There areseveral aspets that an be investigated, and eah may prove useful. One measure of theproblem would be the onstrainedness [42℄ whih measures how restritive the onstraintsof the problems are on the possible assignments. This would be useful beause there havebeen studies on the onstrainedness of problems and how this an be used in searh [43℄.Kwan [65℄ did a ursory examination of the number of solutions with the pseudo-optimalnumber of shifts. A more in-depth study ould be onduted whih ould prove interestingin the light of suh studies as Clark et al [16℄, whih examined how loal searh is a�etedby the number of feasible solutions present in the searh spae. Walsh [120℄ examined howstruture might a�et searh. The set partitioning problem is strutured so that pieevariables that represent onseutive piees of work on the same bus are highly likely tohave onstraints between them. Variables representing piees of work several hours apartare less likely to have onstraints between them. This an a�et whih ordering is thebest to use and we have seen a omparison of a dynami ordering with a natural ordering,

Chapter 7 128 Conlusionsas disussed in Setion 5.9. Researh into these issues would bene�t the CSP ommunityand may also provide knowledge on how to improve the onstraint satisfation approahesfor driver sheduling. It would also be of interest to see how these measures would di�erbetween air-rew, bus and train driver sheduling set partitioning problems.7.4 Sope of researhAlthough the researh in this thesis is domain spei� there are areas of general use to theresearh ommunity. Some of these have been highlighted in Setions 5.9 and 6.7. Whenreviewing the thesis eah Setion has its own sope, these an be ategorised as:1. Those only useful to the driver sheduling problem. These are the extended mod-el in Setion 5.5, superuous shifts in Setion 6.4 and removing whole shifts inSetion 6.5.2.2. Those useful to the set partitioning problem. These are the seond model inSetion 5.2.2 and the redutions in Setion 5.4.3. Those useful to applying GENET to general problems. When to apply sidewaysmoves disussed in 6.7, analysis of searh in Setion 6.6 and the less deformingmodel also in Setion 6.6.4. Those useful for pratial problems in general. These are fully detailed in Setions 5.9and 6.7.7.5 Ahievements of the researhThe researh has allowed the omparison of three di�erent searh methods. This studyhas been arried out on only one type of problem. However, it has been a omprehensivestudy in that it explored many features of eah of the tehniques. So not only a basimodel has been tried but many aspets of eah type of searh have been investigated.

Chapter 7 129 ConlusionsThis is di�erent from the omparisons given in [22, 87℄ where only rudimentary modelsand searh tehniques where used.The �rst stage of the researh suessfully extrated experiene from the existing mathe-matial programming method for driver sheduling, TRACS II, and inorporated it intothe onstraint programming system to greatly improve the quality of solutions produedby the system. This new approah produes solutions for real driver sheduling problems.It has been shown to solve problems from di�erent bus ompanies with di�erent regula-tions, whereas for most of the reent modern heuristi approahes results have only beengiven for one ompany [12, 22, 129℄ . The size of these problems is muh greater than pureCP approahes ould solve. It also tested implied onstraints (mathematial redutions,see Setion 5.4) on the set partitioning problem whih to the knowledge of the author hasnever been tried before. The work also highlights several aspets that may be of use inmodelling other pratial onstraint satisfation problems, as desribed in Setion 5.9.Loal searh proesses have found the driver sheduling problem very hard. The solutionspae is rife with loal minima and these swamp the global minima. Also the optimisationriterion, minimising the number of shifts, is diÆult to takle with the type of loalsearh method GENET uses, as usually a suession of loal moves need to be madeto make an improvement. With the adaptations made to GENET, it has for severalproblems found pseudo-optimal solutions. It also demonstrated the examination of thesearh proess and showed how these adaptations atual worked to improve the searh.These adaptations and how they were examined may be of interest to those using GENETon similar problem areas. The adaptations are explained in Setion 6.7 and guidelines fortheir general appliability are given.A basi understanding of how onstraint satisfation an be used in driver sheduling hasbeen developed and demonstrated this an be extended in future studies.

Bibliography[1℄ R. Beale and T. Jakson. Neural Computing: an Introdution. IOP Publishing Ltd,1992.[2℄ J. E. Beasley. OR-Library: distributing test problems by eletroni mail. Journalof the Operational Researh Soiety, 41(11):1069{1072, 1990.[3℄ J. C. Bek, A. J. Davenport, and M. S. Fox. Five pitfalls of empirial shedulingresearh. In Priniples and Pratie of Constraint Programming - CP97, pages 390{404. Springer, 1997.[4℄ G. Bennington and K. Rebibio. Overview of RUCUS vehile sheduling pro-gram(BLOCKS). In D. Bergmann and L. Bodin, editors, Preprints: Workshop onAutomated Tehniques for Sheduling of Vehile Operators for Urban Publi Trans-portation Servies, 1975.[5℄ C. Bessiere and M.-O. Cordier. Ar-onsisteny and ar-onsisteny again. In Pro.of AAAI-93, pages 108{113, 1993.[6℄ C. Bessiere, E. C. Freuder, and J.-C. Regin. Using inferene to redue ar onsistenyomputation. In Pro. of IJCAI 95, pages 592{598, 1995.[7℄ J. Y. Blais and J. M. Rousseau. Overview of HASTUS urrent and future versions.In J. R. Daduna and A. Wren, editors, Computer-aided Transport Sheduling, pages175{187. Springer-Verlag, 1988. 130

Chapter 7 131 BIBLIOGRAPHY[8℄ A. Bokmayr and T. Kasper. Branh and infer: A unifying framework for integer and�nite domain onstraint programming. INFORMS Journal on Computing, 10:287{300, 1998.[9℄ A. Bouju, J.F. Boye, C. H. D. Dimitropoulous, and J. G. vom Sheidt, G. Taylor.Tabu searh for the radio link frequeny assignment problem. In the InternationalConferene on Digital Signal Proessing, 1995.[10℄ J.F. Boye, C.H. D. Dimitropoulous, G. vom Sheidt, and J. G. Taylor. GENETand tabu searh for ombinatorial optimization problems. In World Congress onNeural Networks. INNS press, 1995.[11℄ Carlier, J. and Pinson, E. An Algorithm for Solving the Job-Shop Problem. Man-agement Siene, 35(2):164{176, 1989.[12℄ L. Cavique, C. Rego, and I. Themido. Subgraph ejetion hains and tabu searh forthe rew sheduling problem. European Journal of Operational Researh, 50:608{616,1999.[13℄ B. Cha and K. Iwama. Performane test of loal searh algorithms using new typesof random CNF formulas. In Pro. of IJCAI 95, pages 304{310, 1995.[14℄ B. Cha and K. Iwama. Adding new lauses for faster loal searh. In Pro. ofAAAI-96, pages 332{337. AAAI Press/MIT Press, 1996.[15℄ P Charlier and H. Simonis. Abstrat: A system for train rew sheduling. InDIMACSWorkshop on onstraint programming and large sale disrete optimisation,1998.[16℄ D. A. Clark, J. Frank, I. P. Gent, E. MaIntyre, N. Tomov, and T. Walsh. Lo-al searh and the number of solutions. In Priniples and Pratie of ConstraintProgramming - CP96, pages 119{133. Springer, 1996.[17℄ M. D. J. Cox and E. P. K. Tsang. Appliation of GENET/GLS in future ommunia-tions management. In Advaned Software Appliations using logi and Constraints.CompulogNet, 1998.

Chapter 7 132 BIBLIOGRAPHY[18℄ CPLEX. Using the CPLEX allable library, version 3.0. In CPLEX Optimization,In, 1994.[19℄ S. D. Curtis, B. M. Smith, and A. Wren. Forming bus driver shedules using on-straint programming. In Pratial Appliation of Constraint Tehnologies and LogiProgramming Conferene - PACLP99, pages 239{254. The Pratial AppliationCompany Ltd, 1999.[20℄ S. D. Curtis, B. M. Smith, and A.Wren. Construting driver shedules using iterativerepair. In Pratial Appliation of Constraint Tehnologies and Logi ProgrammingConferene - PACLP2000, page to appear. The Pratial Appliation Company Ltd,2000.[21℄ J. R. Daduna and M. Mojsilovi. Computer-aided vehile and duty sheduling usingthe HOT programme system. In A. Wren, editor, Computer-Aided Transit Shedul-ing, pages 133{146. Springer-Verlag, 1988.[22℄ K. Darby-Dowman and J. Little. Properties of some ombinatorial optimisationproblems and their e�et on the performane of integer programming and onstraintlogi programming. INFORMS Journal on Computing, 10:276{286, 1998.[23℄ A. Davenport. GENET Adaptation and Evaluation. PhD thesis, Computer Siene,University of Essex, 1997.[24℄ A. Davenport and E. P. K. Tsang. Solving onstraint satisfation sequening prob-lems by iterative repair: an appliation to ar sequening. In The Pratial Appli-ation of Constraint Tehnologies and Logi Programming Conferene - PACLP99,pages 345{358. The Pratial Appliation Company Ltd, 1999.[25℄ A. Davenport, E. P. K. Tsang, C. J. Wang, and Z. Kangmin. GENET: A onnetion-ist arhiteture for solving onstraint satisfation problems by iterative improvement.In Pro. of AAAI-94, pages 325{330. AAAI Press/MIT Press, 1994.[26℄ M. Desrohers, J. Gilbert, M. Sauve, and F. Soumis. CREW-OPT: subproblem mod-eling in a olumn generation approah to urban rew sheduling. In M. Desrohers

Chapter 7 133 BIBLIOGRAPHYand J. M. Rousseau, editors, Computer-aided Transport Sheduling, pages 395{406.Springer-Verlag, 1990.[27℄ M. Desrohers and F. Soumis. CREW-OPT: rew sheduling by olumn generation.In J. R. Daduna and A. Wren, editors, Computer-aided Transport Sheduling, pages83{90. Springer-Verlag, 1988.[28℄ Y. Deville and P. Van Hentenryk. An eÆient ar onsisteny algorithm for a lassof CSP problems. In Pro. of IJCAI 91, pages 325{330, 1991.[29℄ M. Dinbas, H. Simonis, and P. Van Hentenryk. Solving a utting-stok problemin onstraint logi programming. In R. Kowalski and K. Brown, editors, LogiProgramming, 1988.[30℄ M. Dorigo, V. Maniezzo, and A. Colorni. The ANT system: Optimisation by aolony of ooperating agents. IEEE Transations on Systems, Man, and Cybernetis,25(12), 1995.[31℄ H. El Sakkout. Modelling eet assignment in a exible environment. In PratialAppliation of Constraint Tehnology - PACT96, pages 27{39. The Pratial Appli-ation Company Ltd, 1996.[32℄ H. El Sakkout. Improving baktrak searh: three ase studies of loalized dynamihybridization. PhD thesis, IC-Par, Imperial College of Siene, Tehnology andMediine, University of London, 1999.[33℄ H. El Sakkout, E. T. Rihards, and Wallae M G. Minimal perturbation in dynamisheduling. In Pro. of ECAI 98, pages 47{51, 1998.[34℄ J. C. Falkner and D. M. Ryan. Aspets of bus rew sheduling using a set partitioningmodel. In J. R. Daduna and A. Wren, editors, Computer-aided Transport Sheduling,pages 91{103. Springer-Verlag, 1988.[35℄ J. C. Falkner and D. M. Ryan. EXPRESS: set partitioning for bus rew shedulingin Christhurh. In M. Desrohers and J. M. Rousseau, editors, Computer-aidedTransport Sheduling, pages 359{378. Springer-Verlag, 1990.

Chapter 7 134 BIBLIOGRAPHY[36℄ S. Fores. Column Generation Approahes to Bus Driver Sheduling. PhD thesis,Shool of Computer Studies, University of Leeds, 1996.[37℄ S. Fores, L.G. Proll, and A. Wren. An improved ILP system for driver sheduling.In N.H.M. Wilson, editor, Computer-Aided Sheduling of Publi Transport, pages43{62. Springer, 1999.[38℄ P. Forsyth and A. Wren. An ant system for driver sheduling. Tehnial Report97.25, Computer Studies, University of Leeds, 1997.[39℄ E. C. Freuder. Modeling: The �nal frontier. In Pratial Appliation of ConstraintTehnologies and Logi Programming Conferene - PACLP99, pages 15{22. ThePratial Appliation Company Ltd, 1999.[40℄ R. S. Gar�nkel and G. L. Nemhauser. Integer Programming. Wiley-Intersiene,1972.[41℄ P. A. Geelen. Dual viewpoint heuristis for binary onstraint satisfation problems.In Pro. of ECAI 92, pages 31{35, 1992.[42℄ I. Gent, E. MaIntyre, P. Prosser, and T. Walsh. The onstrainedness of searh. InPro. of AAAI-96, pages 246{252. AAAI Press/MIT Press, 1996.[43℄ I. P. Gent, E. MaIntyre, P. Prosser, B. M. Smith, and T. Walsh. An empirial studyof dynami variable ordering heuristis for the onstraint satisfation problem. InPriniples and Pratie of Constraint Programming - CP96, pages 179{193. Springer,1996.[44℄ I. P. Gent and T. Walsh. Towards an understanding of hill-limbing proedures forSAT. In Pro. of AAAI-93, pages 28{33. AAAI Press/MIT Press, 1993.[45℄ I.P. Gent and T. Walsh. CSPLib: a benhmark library for onstraints. Teh-nial Report APES-09-1999, University of Strathlyde, 1999. Available fromhttp://splib.s.strath.a.uk/. A shorter version appears in: Priniples and Pra-ties of Constraint Programming - CP99.

Chapter 7 135 BIBLIOGRAPHY[46℄ F. Glover and M. Laguna. Tabu searh. Kluwer Aademi Publishers, 1998.[47℄ S. W. Golomb and L. D. Baumert. Baktraking programming. Journal of the ACM,12:516{524, 1965.[48℄ N. Guerinik and M. V. Caneghem. Solving rew sheduling problems by onstraintprogramming. In U. Montanari and F. Rossi, editors, Priniples and Pratie ofConstraint Programming - CP95, pages 481{498. Springer, 1995.[49℄ N. S. Hans. Constraint satisfation problems. In C. T. Leondes, editor, OptimizationTehniques, pages 209{248. Aademi Press Ltd, 1998.[50℄ J. Hao and R. Dorne. Empirial studies of heuristi loal searh for onstraintsolving. In U. Montanari and F. Rossi, editors, Priniples and Pratie of ConstraintProgramming - CP96, pages 194{208. Springer, 1996.[51℄ R. Haralik and G. Elliot. Inreasing tree searh eÆieny for onstraint satisfationproblems. Arti�ial Intelligene, 14:263{313, 1980.[52℄ S. Helmut. The CHIP system and its appliations. In U. Montanari and F. Rossi,editors, Priniples and Pratie of Constraint Programming - CP95, pages 643{646.Springer, 1995.[53℄ K. L. Ho�man and M. Padberg. Solving air rew-sheduling by branh-and-ut.Tehnial report, Geoge Mason University and New York University, 1992.[54℄ J. Ho�stadt. Computerized vehile and driver sheduling for the hamburgerHohbahn Aktiengesellshaft. In A. Wren, editor, Computer Sheduling of PubliTransport, pages 35{52. North-Holland, 1981.[55℄ J. N. Hooker. Testing heuristis: We have it all wrong. Journal of Heuristis,1(1):33{42, 1995.[56℄ J. N. Hooker, Ottosson G., T. S. Erlendur, and H-J. Kin. On intergrating onstraintpropogation and linear programming for ombinatortial optimisation. In Pro. ofAAAI-99, pages 136{141. AAAI Press/MIT Press, 1999.

Chapter 7 136 BIBLIOGRAPHY[57℄ ILOG. Solver referene manual, 3.2 edition, 1996.[58℄ ILOG. Solver user manual, 3.2 edition, 1996.[59℄ Forrest J. J. and D. Goldfarb. Steepest edge simplex algorithms for linear program-ming. Mathematial Programming, 57:341{374, 1992.[60℄ Wallae R. J. Analysis of heuristi methods for partial onstraint satisfation prob-lems. In Priniples and Pratie of Constaint Programming - CP96, 1996.[61℄ M. D. Johnston and H. M. Adorf. Learning in stohasti neural networks for on-straint satisfation problems. In Pro. of the NASA onferene on Spae Telerobotis,1989.[62℄ K. Kask and R. Dehter. GSAT and loal onsisteny. In Pro. of IJCAI 95, pages616{622, 1995.[63℄ N. Keng and D. Y. Y. Yun. A planning/sheduling methodology for the onstrainedresoure problem. In Pro. of IJCAI 89, pages 998{1003, 1989.[64℄ S. Kirkpatrik, Gelatt C. D., and Vehi M. P. Optimization by simulated annealing.Siene, (220):671{680, 1983.[65℄ A.S.K. Kwan. Train Driver Sheduling. PhD thesis, Shool of Computer Studies,University of Leeds, 1999.[66℄ A.S.K. Kwan, R.S.K. Kwan, M.E. Parker, and A. Wren. Produing train drivershedules under di�ering operating strategies. In N.H.M. Wilson, editor, Computer-aided Transport Sheduling, pages 129{154, 1999.[67℄ A.S.K. Kwan, R.S.K. Kwan, and A. Wren. Driver sheduling using genetialgorithms with embedded ombinatorial traits. In N.H.M. Wilson, editor,Computer-aided Transport Sheduling, pages 81{102, 1999.[68℄ Lau T. L. and Tsang E. P. K. Solving the proessor on�guration problem with amutation-based geneti algorithm. International Journal on Arti�ial IntelligeneTools - IJAIT97, 6(4):567{585, 1997.

Chapter 7 137 BIBLIOGRAPHY[69℄ C. J. Lay�eld, B. M. Smith, and A. Wren. Bus relief opportunity seletion usingonstraint programming. In Pratial Appliation of Constraint Tehnologies andLogi Programming Conferene - PACLP99, pages 537{552. The Pratial Applia-tion Company Ltd, 1999.[70℄ J. H. M. Lee, P. J. Stukey, V. W. L. Tam, and H. W. Won. Performane of aomprehensive and eÆient onstraint library using loal searh. In 11th AustralianJoint Conferene on Arti�ial Intelligene, pages 191{202. Springer-Verlag, 1998.[71℄ J.H.M. Lee, H. Leung, and H. Won. Towards a more eÆient stohasti onstraintsolver. In Priniples and Pratie of Constaint Programming - CP96, pages 531{552,1996.[72℄ J.H.M. Lee, H. F. Leung, and H. W. Won. Extending GENET for non-binaryonstraint satisfation problems. In 7th International Conferene on Tools withArti�ial Intelligene, pages 338{342, 1995.[73℄ J. Leinbah. Automati loal annealing. In D. S. Touretzky, editor, Advanes in Neu-ral Information Proessing systems 1, pages 602{609. Morgan Kaufmann PublishersIn., 1989.[74℄ L. K. Luedtke. RUCUS II: A review of system apabilities. In J.-M. Rousseau,editor, Computer Sheduling of Publi Transport 2, pages 61{116. North-Holland,1985.[75℄ L. D. Bodin M. O. Ball and J. Greenberg. Enhanements to the RUCUS II rewsheduling system. In J.-M. Rousseau, editor, Computer Aided Sheduling of PubliTransport 2, pages 279{294. North-Holland, 1985.[76℄ A. K. Makworth. Consisteny in networks of relations. Arti�ial Intelligene,28:99{118, 1986.[77℄ A. K. Makworth and E. C. Freuder. The omplexity of some polynomial networkonsisteny algorithms for onstraint satisfation problems. Arti�ial Intelligene,25:65{74, 1985.

Chapter 7 138 BIBLIOGRAPHY[78℄ S. Minton, M. D. Johnston, A. B. Philips, and P. Laird. Minimizing onits: aheuristi repair method for onstraint satisfation and sheduling problems. Arti�ialIntelligene, 58:161{204, 1992.[79℄ R. Mohr and T. C Henderson. Ar and path onsisteny revisited. Arti�ial Intel-ligene, 28:225{233, 1986.[80℄ P. Morris. The breakout method for esaping from loal minima. In Pro. of AAAI-93, pages 40{45. AAAI Press/MIT Press, 1993.[81℄ T. M�uller. Solving set partitioning problems with onstraint programming. In PAP-PACT98, pages 313{332. The Pratial Appliation Company Ltd, 1998.[82℄ M. E. Parker and B. M. Smith. Two approahes to omputer rew sheulding. InA. Wren, editor, Pro. of the Seond International Workshop on Computer-AidedSheduling of Publi Transport, pages 193{222. North-Holland, 1981.[83℄ L. Proll and B. M. Smith. Integer linear programming and onstraint programmingapproahes to a template design problem. INFORMS Journal on Computing, 10:265{275, 1998.[84℄ J.-F. Puget. On the satis�ability of symmetrial onstrained satisfation problems.In J. Komorowski and Z. W. Ras, editors, Methodologies for Intelligent Systems:Pro. of the 7th International Symposium ISMIS-93, pages 350{361. Springer, 1993.[85℄ J.F. Puget. A C++ implementation of CLP. In Pro. of SPICIS 94, 1994.[86℄ J.F. Puget. A omparison between onstraint programming and integer program-ming. In Conferene on Applied Mathematial Programming and Modelling (AP-MOD95), 1995.[87℄ R. Rodosek, M.G. Wallae, and T. Hajian. A new approah to integrate mixedinteger programming. CP96 workshop on Constraint Programming Appliations:An Inventory and Taxonomy, 1996.

Chapter 7 139 BIBLIOGRAPHY[88℄ J-M. Rousseau and M. Desrohers. Results obtained with CREW-OPT, a oloumngeneration method for transit rew sheduling. In J. R. Dauna, I. Brano, andPaixao, editors, Computer-aided Transport Sheduling, pages 349{358. Springer-Verlag, 1995.[89℄ D.M. Ryan and B.A. Foster. An integer programming approah to sheduling. InA. Wren, editor, Computer Sheduling of Publi Transport, pages 269{280. North-Holland Publishing Company, 1981.[90℄ D. Sabin and E. C. Freuder. Contraditing onventional wisdom in onstraint satis-fation problems. In A. Cohn, editor, Pro. of ECAI 94, pages 125{129. John Wiley& Sons, Ltd, 1994.[91℄ M. Sabin and E. C. Freuder. Automated formulation of onstraint satisfation prob-lems. In Pro. of AAAI-96, page 1407. AAAI Press/MIT Press, 1996.[92℄ B. Selman and H. A. Krautz. Domain-independent extensions to GSAT: Solvinglarge strutured satis�ability problems. In R. Bajsy, editor, IJCN-93, pages 290{295. Morgan Kaufmann Publishers In, 1993.[93℄ B. Selman and H. A. Krautz. An empirial study of greedy loal searh for satis�a-bility testing. In Pro. of AAAI-93, pages 46{51. AAAI Press/MIT Press, 1993.[94℄ B. Selman and H. A. Krautz. Noise strategies for improving loal searh. In Pro.of AAAI-94, pages 337{343. AAAI Press/MIT Press, 1994.[95℄ B. Selman, H. Levesque, and D. Mithell. A new method for solving hard satis-�ablility problems. In Pro. of AAAI-92, pages 440{446. AAAI Press/MIT Press,1992.[96℄ B. M. Smith. Sueed-�rst or fail-�rst: A ase study in variable and value orderingheuristis. In Pro. of PACT97, pages 321{330. The Pratial Appliation CompanyLtd, 1997.[97℄ B. M. Smith, S. C. Brailsford, P. M. Hubbard, and H.P. Williams. The progressiveparty problem: Integer programming and onstraint programming ompared. In

Chapter 7 140 BIBLIOGRAPHYU. Montanari and F. Rossi, editors, Priniples and Pratie of Constraint Program-ming - CP95, pages 36{52. Springer, 1995.[98℄ B. M. Smith and S. A. Grant. Trying harder to fail �rst. In Henri Prade, editor,Pro. of ECAI 98, pages 249{253, 1998.[99℄ B.M. Smith. Bus Crew Sheduling Using Mathematial Programming. PhD thesis,Shool of Computer Studies, University of Leeds, 1986.[100℄ B.M. Smith and A. Wren. A bus rew sheduling system using set overing formu-lation. Transpn.Res., (22A):97{108, 1988.[101℄ M. Sqalli and E. C. Freuder. Inferene-based onstraint satisfation supports expla-nation. In Pro. of AAAI-96, pages 318{325. AAAI Press/MIT Press, 1996.[102℄ P. Stukey and V. Tam. Extending EGENET with lazy onstraint onsisteny. InIEEE 9th International Conferene on Tools with AI, 1997.[103℄ G. A. Tagliarini and E.W. Page. Solving onstraint satisfation problems with neuralnetworks. In Pro. of the International Joint Conferene on Neural Networks, 1987.[104℄ G. A. Tagliarini and E. W. Page. Learning in systematially designed networks. InPro. of the International Joint Conferene on Neural Networks, 1989.[105℄ J. Thornton and A. Sattar. Using ar weights to improve iterative repair. In Pro.of AAAI-98, pages 367{372. AAAI Press/MIT Press, 1998.[106℄ E. P. K. Tsang. Foundations of Constraint Satisfation. Aademi Press, 1993.[107℄ E. P. K. Tsang. No more "partial" and "full looking ahead". Arti�ial Intelligene,98:351{361, 1998.[108℄ E. P. K. Tsang, Wang C. J., A. Davenport, C. Voudouris, and T. L. Lau. A family ofstohasti methods for onstraint satisfation. In Pratial Appliation of ConstraintTehnologies and Logi Programming Conferene - PACLP99, pages 359{385. ThePratial Appliation Company Ltd, 1999.

Chapter 7 141 BIBLIOGRAPHY[109℄ E. P. K. Tsang and C. Voudouris. Fast loal searh and guided loal searh and theirappliation to british teleom's workforse sheduling problem. In Pratial Applia-tion of Constraint Tehnology - PACT96, volume 20, pages 119{127, Amsterdam,1997. Elsevier Siene Publishers.[110℄ E. P. K. Tsang and C. J. Wang. A generi neural network approah for onstraintsatisfation problems. Neural Network Appliations, pages 12{22, 1992.[111℄ M. V�olker and P. Sh�utze. Reent developments of the HOT system. In I. BranoJ. R. Daduna and J. M. P. Paix�ao, editors, Computer-Aided Transit Sheduling,pages 334{348. Springer-Verlag, 1995.[112℄ C. Voudouris. Guided Loal Searh for Combinatorial Optimisation Problems. PhDthesis, Department of Computer Siene, University of Essex, 1997.[113℄ C. Voudouris and E. P. K. Tsang. The tunneling algorithm for partial CSPs andombinatorial optimization problems. Tehnial Report CSM-213, University ofEssex, 1994.[114℄ C. Voudouris and E. P. K. Tsang. Guided loal searh. Tehnial Report CSM-247,University of Essex, 1995.[115℄ C. Voudouris and E. P. K. Tsang. Partial onstraint satisfation and guided loalsearh. In Pratial Appliation of Constraint Tehnology - PACT96, pages 337{356.The Pratial Appliation Company Ltd, 1996.[116℄ C. Voudouris and E. P. K. Tsang. Guided loal searh joins the elite in disreteoptimisation. In DIMACS Workshop on Constraint Programming and Large SaleDisrete Optimisation, 1998.[117℄ C. Voudouris and E. P. K. Tsang. Guided loal searh and its appliation to thetraveling salesman problem. European Journal of Operational Researh, 113:469{499, 1999.[118℄ M. Wallae, S. Novello, and J. Shimpf. ECLiPSe: a platform for onstraint logiprogramming. Tehnial report, Imperial College, 1997.

Chapter 7 142 BIBLIOGRAPHY[119℄ R. J. Wallae. Why AC-3 is almost always better than AC-4 for establishing ar-onsisteny in CSPs. In Pro. of AAAI-93, pages 239{245. AAAI Press/MIT Press,1993.[120℄ T. Walsh. Searh in a small world. In Pro. of IJCAI 99, pages 1172{1178, 1999.[121℄ C.J. Wang and E.P.K. Tsang. Solving onstraint satisfation problems using neuralnetworks. In IEE Seond International Conferene on Arti�ial Neural Networks,pages 295{299, 1991.[122℄ C.J. Wang and E.P.K. Tsang. A asadable VLSI design for GENET. In Interna-tional Workshop on VLSI for Neural Networks and Arti�ial Intelligene, 1992.[123℄ W. P. Willers. Improved Algorithms for Bus Crew Sheduling. PhD thesis, Shoolof Computer Studies, University of Leeds, 1995.[124℄ J. H. Y. Wong and H. F. Leung. Solving fuzzy onstraint satisfation problems withfuzzy GENET. In IEEE ICTAI98, 1998.[125℄ A. Wren and R. S. K. Kwan. Installing an urban transport sheduling system.Journal of Sheduling, 2:3{17, 1999.[126℄ A. Wren and J-M. Rousseau. Bus driver sheduling -an overview. In J. R. Daduna,I. Brano, and J. M. P. Paix�ao, editors, Computer-aided Transit Sheduling, pages173{187. Springer-Verlag, 1995.[127℄ A. Wren and D. O. Wren. A geneti algorithm for publi transport sheudling.Computers and Operations Researh, 22:101{110, 1995.[128℄ N. Yugami, Y. Ohta, and H. Hara. Improving repair-based onstraint satisfa-tion methods by value propagation. In Pro. of AAAI-94, pages 344{349. AAAIPress/MIT Press, 1994.[129℄ T. H. Yunnes, A. V. Moura, and C. C. de Souza. Solving large sale rew shedulingproblems with onstraint programming and integer programming. Tehnial ReportIC 99-19, Institute of Computing, UNICAMP, 1999.

Chapter 7 143 BIBLIOGRAPHYGlossaryThis is a glossary of the transport sheduling terms used in this thesis. Note that di�erenttransport ompanies may have di�erent meanings for the words, desribed here are themeanings purely for this thesis.depot: A entre of operation for a ompany. Normally a plae where vehiles and rewsare dispathed from at the start of their work period and returned to at the end ofit.ight leg: The equivalent to a piee of work in air rew shedulingjoinup: The time period between two spells of work that allows time to hange busesbut is not a meal break.meal break: A rest break during a shift whih must be of a ertain length as spei�edby union agreements.over-over: When two or more drivers are on the same bus during a piee of work.piee of work: An indivisible period of driving work, between two relief opportunities.relief opportunities (RO): A relief time and relief point pairing to stipulate a spe-i� time and plae where drivers an hange over.relief point: Designated loations on bus routes where drivers may hange over.relief time: A time when a bus passes a relief point.rotation: The equivalent to a shift in air rew shedulingrunning board: A desription of the work a bus does in a day.shift/duty: The work a driver does in a day, normally onsisting of two strethes ofwork seperated by a meal break.spell: A ontinuous period of driving on one bus.

Chapter 7 144 BIBLIOGRAPHYsplit shift: A type of shift where the driver has a muh longer break in the middle of theshift than a normal shift.streth: One or more spells of work in a shift, eah spell being on a di�erent bus andseparated by a joinup.union agreements: Rules agreed between sta� unions and the ompany onerning driv-ing onditions.window of relief opportunity: The time that a vehile remains at a relief point, suhas a bus station, where there is a hoie of times to hange the driver.

