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Abstra
tThe bus driver s
heduling problem 
onsists of assigning bus work to drivers so that all thebus work is 
overed and a 
ombination of the number of drivers and asso
iated 
osts isminimised. Restri
tions imposed by logisti
, legal and union agreements 
ompli
ate theproblem.Su

essful present day systems for 
omputerised driver s
heduling often use mathemati
alprogramming 
ombined with heuristi
s. Purely heuristi
 approa
hes have found it verydiÆ
ult to produ
e eÆ
ient driver s
hedules for large s
heduling problems. Furthermore,some of these approa
hes may not be easily adaptable to di�erent 
onditions. This thesispresents two new ways of using 
onstraint satisfa
tion to form driver s
hedules. The twomethods di�er in their approa
h, one being a systemati
 
onstraint programming approa
hand the other being an adaptation of a lo
al sear
h method 
alled GENET.The 
onstraint programming approa
h uses a similar approa
h to mathemati
al program-ming systems in sele
ting the s
hedule from a large number of possible shifts, to allowadaptation to di�erent regulations. In parti
ular, a set partitioning formulation is used.It then makes use of the stru
ture of the problem and the relaxed linear programming so-lution to the problem in produ
ing a s
hedule. The GENET system has been adapted to
ope with minimising the numbers of drivers in a s
hedule and with the memory problems
aused by the huge number of 
onstraints involved in the set partitioning model.The 
onstraint programming approa
h has been shown to solve su

essfully several smalls
heduling problems from di�erent 
ompanies using varying regulations. Lo
al sear
hpro
edures have hitherto not had great su

ess on driver s
heduling problems. GENEThas been adapted to solve some of the small s
hedules from its initial state where it 
ouldnot solve any. Features of the adaptation may be of interest to resear
hers using GENETon similar problems. i
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Chapter 1Introdu
tion
In present day industry 
ompetition is so �er
e that 
utting 
osts is paramount and im-proved s
hedules and timetables 
an make huge monetary savings. This is true of drivers
heduling whi
h is an important real world problem as 
rew 
osts a

ount for a highproportion of total expenditure in most transport 
ompanies. In the UK now that thetransportation industry is privatized pro�ts are important and with 
onsumer 
on
ernabout high fares, making the running of bus and trains eÆ
ient is the best way to max-imise pro�t. The pre
ursor to the driver s
heduling problem is the bus s
heduling problemwhere routes need to be worked out and vehi
les assigned to them. On
e this is done thebus driver s
heduling problem involves �nding the most eÆ
ient way of providing driversfor the given set of bus movements, in
luding dead running (journeys with no passengers).These two problems tend to be kept separate due to both problems being individually hard.If they were 
ombined the ensuing problem would surpass 
urrent 
omputer s
hedulingmethods run on standard ma
hines used by transport 
ompanies.There are several restri
tions on eÆ
ient provision of driver s
hedules, imposed by legal1



Chapter 1 2 Introdu
tionand logisti
al 
onsiderations as well as trade union agreements. For example, a driver mayonly legally drive a 
ertain number of 
onse
utive hours. The 
riterion is usually thatthe s
hedule should have the minimum number of shifts and lowest total hours of work.The total hours of work is normally a se
ondary 
onsideration and be
ause of this it isdisregarded in the new method implemented in this thesis.1.1 Computerised driver s
hedulingEarly 
omputerised methods for driver s
heduling were purely heuristi
 and often neededlarge amounts of manual intervention. As methods and 
omputer power improved math-emati
al programming started to be used. In the present day there are some very goodsystems, for example TRACS II [37, 66, 125℄, whi
h 
an provide eÆ
ient s
hedules for verylarge problems. Despite this the modern systems 
annot be seen as bla
k boxes that pro-du
e working s
hedules. TRACS II has been adapted for several bus and rail 
ompaniesand has through long development and experien
e working with these 
ompanies rea
heda level of generality so it 
an �t with many 
ompanies' requirements. However, even afterthis has been done parameters must sometimes be manipulated to produ
e driver s
hed-ules for di�erent bus s
hedules. Su
h manipulation is frustrating and perhaps obs
ureto s
hedulers who have no knowledge of mathemati
al programming. This brings us toseveral areas where improvements 
an be made. Firstly, the driver s
heduling problem isstill open, in that optimal results 
annot be ensured by 
urrent methods for any but themost trivial instan
es. Se
ondly, 
exibility 
an be improved; although great strides havebeen made with the mathemati
al approa
h there are some aspe
ts of s
heduling that arehard to in
orporate in a linear programming model. Thirdly, the present mathemati
alapproa
hes are hard to explain to people not versed in s
ien
e dis
iplines and this is notonly, as stated above, a problem in produ
ing individual s
hedules, it is a hindran
e inmutual development of systems between resear
hers in universities and s
heduling groupswithin 
ompanies.



Chapter 1 3 Introdu
tion1.2 Thesis overviewWe have already stated how important the problem is and that there is room for improve-ment. In the previous se
tion three areas were highlighted as areas for development. Thelast two, 
exibility of the model and understanding of the user, are the ones that thisthesis is 
on
erned with. It is felt that the expressive qualities of the modelling languageof 
onstraint satisfa
tion will be of use in these areas and therefore 
onstraint satisfa
tionapproa
hes are investigated in this thesis.This thesis will explore two new approa
hes for produ
ing bus driver s
hedules. One isa systemati
 approa
h using a 
onstraint programming method and the other is a lo
alsear
h method 
alled GENET [121, 110℄. The thesis not only provides new resear
h inthe area of bus driver s
heduling but allows a 
omparison of three of the popular �eldsof resear
h for solving 
ombinatorial problems: mathemati
al programming, 
onstraintprogramming and lo
al sear
h. They will be 
ompared only on one type of problem,driver s
heduling, but ea
h te
hnique will be investigated in depth.The following summarises the 
ontents and reason for ea
h 
hapter.Chapter 1: Gives motivation for the new resear
h and gives an overview of the thesis.Chapter 2: Introdu
es 
on
epts of 
onstraint satisfa
tion and 
onstraint programming.This 
on
entrates on the methods used in the thesis and a dis
ussion on arguablythe most important issue in 
onstraint satisfa
tion, modelling.Chapter 3: Gives a history of the build up to the lo
al sear
h method GENET whi
h isinvestigated in Chapter 6. It also gives a brief overview of other lo
al sear
h methodsfor 
onstraint satisfa
tion problems.Chapter 4: Gives a brief history of driver s
heduling. It gives reasons why the problemis still open, in that optimal results 
annot be ensured by 
urrent methods for anybut the most trivial instan
es.



Chapter 1 4 Introdu
tionChapter 5: Details the 
onstraint programming approa
h developed for produ
ing driv-er s
hedules. It shows that the program is su

essful on several small bus drivers
heduling problems and shows potential for marked improvement.Chapter 6: Details the adaptation of the lo
al sear
h method, GENET for 
onstru
t-ing driver s
hedules. It gives promising results for several bus driver s
hedulingproblems.Chapter 7: Dis
ussion of the existing mathemati
al approa
h and the two new ap-proa
hes. This in
ludes thoughts on their potential and possible further work.



Chapter 2Constraint Programming
2.1 Introdu
tionConstraint satisfa
tion approa
hes for solving industrial problems are be
oming more wide-ly used be
ause they provide a good method of ta
kling large problems in a 
exible andadaptable way. Constraint satisfa
tion provides a powerful and easy system for modellingrestri
tions and using these restri
tions to sear
h for a solution.There are several de�nitions that will be presented here to provide a ba
kground to thework in this thesis (see [106℄ for these and further de�nitions).A domain of a variable is the set of possible values that the variable 
an take. A variablexi will have a domain Di. In this thesis we will only have variables with �nite domains.An assignment is a binding of a variable (u) to a value (v) to form a label < u; v >. Thelabel is the variable-value pairing. 5



Chapter 2 6 Constraint ProgrammingA 
ompound label is a simultaneous assignment of variables to values. A k-
ompoundlabel is an assignment of k labels simultaneously and 
an be represented as (< u1; v1 ><u2; v2 > : : : < uk ; vk >).A 
onstraint restri
ts the values that variables 
an be assigned to simultaneously. Formallya 
onstraint 
an be de�ned as a set of legal 
ompound labels, although for eÆ
ien
y andexpressive reasons 
onstraints 
an be de�ned in many ways, su
h as equations, matri
es,fun
tions, et
. The number of variables that the 
onstraint a
ts on is 
alled the arity ofthe 
onstraint. If it a
ts only on 2 variables it is 
alled a binary 
onstraint. A binary CSPis a CSP where all the 
onstraints are binary or unary. In this thesis we will be usingmainly binary CSPs. A nogood is a 
onstraint on a pair of labels whi
h states that both
annot simultaneously be 
hosen.A solution to a CSP in this thesis means an assignment of a value to every variable. In afeasible solution all the 
onstraints are satis�ed, formally a member of the set of 
ompoundlabels of ea
h 
onstraint exists in the solution. In an infeasible solution 
onstraints arebroken (not satis�ed).A 
onstraint satisfa
tion problem (CSP) 
onsists of a set of variables (Z), a fun
tion (D)whi
h maps every member xi of Z to its domain Di and a set of 
onstraints (C), a set ofall legal sets of 
ompound labels. So a CSP is represented as the triple (Z;D;C).A binary CSP 
an be represented as a graph, where the nodes of the graph 
orrespondto the variables and the edges or ar
s represent binary 
onstraints between variables. A
onstraint is bi-dire
tional and so 
an be represented as an undire
ted edge. However, it isoften useful to represent a 
onstraint as two ar
s, one for ea
h dire
tion of the 
onstraint.So two nodes, x and y 
an be 
onne
ted by a 
onstraint represented as the ar
s, (x,y)and (y,x). We de�ne an ar
 (x,y) to be ar
 
onsistent if and only if for every value ain the domain of x there exists a value in y that is 
ompatible with the label < x; a >.We 
an propagate the e�e
t of a 
onstraint by removing values that do not satisfy thisar
 
onsistent property for the ar
s representing the 
onstraint. This is 
alled 
onstraintpropagation. An example of this pro
ess is shown in Figure 2.1. The 
onstraint is a simple
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onstraint. Figure 2.1 (a) shows the original states of the domains ofthe variables before 
onstraint propagation. Then (b) shows the ar
 (x,y) being made ar

onsistent. Finally both ar
s, (x,y) and (y,x) are ar
 
onsistent in (
).
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Figure 2.1: Making the 
onstraint ar
 
onsistentUsing 
onstraint programming tools 
an greatly in
rease the ease of programming CPalgorithms. It also forms a base for sharing and 
omparing 
ode and algorithms in theresear
h 
ommunity. These CP tools provide the user with implementations of standardpro
esses involved in 
onstraint programming, su
h as ar
 
onsisten
y. They also de�nea stru
ture for the modelling problems and development of algorithms. The one used inpart of this thesis is a C++ library 
alled ILOG Solver [85℄. There are however, severalother tools su
h as ECLiPSe [118℄ and Chip [52℄ both based on Prolog.A standard example of a problem that has been represented as a CSP is the n-queensproblem. The problem is to put a number (n) of queens on a n � n 
hessboard withoutatta
king any others, so no queen 
an be in the same row, 
olumn or diagonal as another.A simple way of representing the problem is to have the queens as the variables. So ea
hqueen 
an take any pla
e in the n � n 
hessboard and the domain of ea
h variable is allthe squares of the board. There are then 
onstraints to spe
ify that no two queens are inthe same row, 
olumn or diagonal. This is a
tually a poor representation and Se
tion 2.7on modelling shows other ways of representing it.
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s of systemati
 
omplete sear
hThe simplest form of systemati
 
omplete sear
h using 
onstraints is 
alled BT [47℄. Thebasi
 form of this sear
h 
onsists of the following. The variables are ordered arbitrarily.Then working through the variables in this order, for ea
h variable assign to it the �rstvalue in its domain. This assignment is 
he
ked to make sure it is 
ompatible with allthe previously assigned variables. If it is not 
ompatible a new assignment is tried andthe 
urrent value is temporarily removed from the domain of the 
urrent variable. If nolabel asso
iated with the 
urrent variable is 
ompatible the algorithm ba
ktra
ks to thepreviously assigned variable and a new value is tried for it. This 
ase is 
alled a failureor a fail. The sear
h terminates if a solution is found or there is nowhere to ba
ktra
k toafter a fail, whi
h signi�es there is no feasible solution for the problem. This terminationproperty makes BT a 
omplete sear
h; if there is a feasible solution given time it will�nd it and if there is no feasible solution it will prove there is none. BT forms the basisof several sear
h algorithms des
ribed in this 
hapter and this makes them all 
ompletesear
hes. Figure 2.2 shows the BT pro
edure. In the BT algorithm no advantage is takenof any 
onstraint propagation. An improvement of this pro
edure is FC [51℄ it is the sameas BT ex
ept in the way it performs 
onsisten
y 
he
ks. Every time an assignment ismade the values in
onsistent with all the labels 
hosen are removed from the domains ofall unassigned variables. The 
hoi
e fails and the algorithm ba
ktra
ks if any variable'sdomain be
omes empty. There is no need to 
he
k an assignment's 
ompatibility withearlier assignments be
ause if it was in
ompatible it would have been removed at the
assigned
 unassigned
current
Figure 2.2: Simple form of sear
h



Chapter 2 9 Constraint Programmingtime the previous assignment was made. However, it may o

ur that two unassignedvariables have values 
ompatible with all the assigned variables but not with ea
h other.This 
an be resolved by adding an ar
-
onsisten
y algorithm whi
h 
he
ks for this typeof in
onsisten
y at every assignment. This is 
alled ar
-
onsisten
y lookahead [107℄ ormaintaining ar
-
onsisten
y (MAC) [90℄ where both forward 
he
king and ar
-
onsisten
yare used. Therefore, not only are the domains of the unassigned variables made 
ompatiblewith 
hosen labels, they are also 
ompatible with ea
h other. Ways of maintaining ar
-
onsisten
y will be dis
ussed below.There has been debate on the best ar
-
onsisten
y algorithm. There has even been debateas to the usefulness of maintaining full ar
-
onsisten
y during sear
h [51, 90℄. This isbe
ause the more times that 
onsisten
y is 
he
ked for the greater the overheads on ea
hassignment, as more 
he
ks need to be done. However, it is hoped that the more extensive
he
ks will redu
e the amount of ba
ktra
king and fruitless sear
hing. Early work byHarali
k and Elliot [51℄ suggested that only a limited amount of 
onsisten
y 
he
kingshould be used. However, later work by Sabin and Freuder [90℄ suggests that it is usefulto apply full ar
-
onsisten
y during the sear
h. The di�eren
e in view might be thatSabin and Freuder fo
used on harder random problems than Harali
k and Elliot. Further,AC algorithms have improved over time as des
ribed below. To as
ertain what level of
onsisten
y to apply depends on the problem being solved and is still an open question.2.3 Implementations of AC and MAC/AC lookaheadAC 
an be established as a pre-pro
essing stage and as we have noted above 
an alsobe in
orporated into sear
h. In this se
tion we will des
ribe the details of several of thealgorithms for establishing AC and then how these algorithms 
an be used in sear
h.Algorithms for establishing AC have been developed over time. The �rst three variationsare des
ribed in [76℄. They are all similar and the �nal one of this series, AC-3 informally
onsists of queuing all the binary 
onstraints and then going through this queue propagat-
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t of ea
h 
onstraint. As the 
onstraints are propagated, the 
onstraints thatare asso
iated with the variables that have their domains redu
ed are added to the endof the queue. Therefore, the queue will only be
ome empty when no more domains areredu
ed by 
onstraint propagation. More formally, when we say a 
onstraint is added tothe queue we mean only one of the ar
s representing the 
onstraint is added. Therefore,
he
king the ar
 (i,j) means that we will 
he
k that the values in the domain of variable iare 
onsistent with those in the domain of j but not vi
e versa, so the a
tual additions tothe queue works in the following way, if the domain of i 
hanges ar
s (i,j) for all existingj are added to the queue.After AC-3 the next important development (AC-4 in [79℄) in the AC algorithms was theidea that values support other values and when these supporting values are removed thesupported value should be removed. This pro
ess saves 
onsisten
y 
he
ks but requiresadditional memory be
ause it stores all the supporting values and a 
ounter that is in
re-mentally de
reased as these supporting values are removed. It is shown that AC-3 has aworse 
ase time 
omplexity of 0(d3e) where AC-4 has 0(d2e); d is the size of the largestdomain and e is the total number of 
onstraints [77, 79℄. Whereas the spa
e 
omplexity ofAC-3 is 0(e+nd), where n is the number of variables and AC-4 is larger, O(d2e). Further,it has been shown that in the average time 
omplexity of AC-4 is 
lose to its worse 
ase andAC-3 often runs faster [119℄. AC-5 [28℄ di�ers from the previous AC algorithms by givingonly a framework for applying AC. It allows the 
onsisten
y 
he
ks to be done di�erentlyby di�erent 
onstraint types. This allows the user to provide the most eÆ
ient algorithmto take advantage of a parti
ular 
lass of 
onstraints. It does this by altering the queuethat is used in AC-3. Instead of just queuing the 
onstraints (e.g. C(i,j)) it also in
ludesthe values � that have been removed from the variable asso
iated with the 
onstraintthat we are removing values from (i). Deville and Hentenry
k [28℄ give examples of howthis 
an be used to improve the eÆ
ien
y of some types of 
onstraints. For these AC-5is a O(ed) algorithm. AC-5 allows users to provide 
onstraint types and we will see howSolver allows this below. AC-6 [5℄ improves on AC-4 by redu
ing the spa
e 
omplexitydown to 0(de) while maintaining the time 
omplexity of 0(d2e). It does this by storing



Chapter 2 11 Constraint Programmingsupporting values as AC-4 does, but instead of storing all the supporting values, it onlystores one per 
onstraint. If this value is then removed it looks for another. There hasbeen several improvements on AC-6 and these 
ulminate in AC-7 [6℄. AC-7 extends thepro
ess by using inferen
e. For example, when establishing that value a in the domain ofu supports the value b in the domain of v we 
an infer from this, that b is the support fora in the domain of u. In the paper [6℄ there are several other examples of how inferen
e
an be used if 
ertain properties hold for the 
onstraints.To maintain AC during the sear
h all that is done is that one of the AC algorithms isapplied to all unassigned variables at every assignment step. Therefore, at ea
h step ofthe maintaining ar
 
onsisten
y algorithm we need to do three updates. A step 
onsistsof a 
hoi
e of variable x and then an attempt to �nd a value for it. We pi
k a value v and�rst we need to 
he
k that no non-binary 
onstraints1 are violated by the 
ombinationof the label <x,v> with the existing assignments. Then we need to do the FC stage,by removing all values that are in
onsistent with the 
urrent label from the domains ofthe unassigned variables. Finally, the remaining problem (all the unassigned variables)is made ar
-
onsistent by one of the AC algorithms des
ribed above. If the �rst 
he
kdoes not fail or the se
ond two pro
esses do not make any domain empty then that stepis 
ompleted. However, if this is not the 
ase new values are tried until it is the 
ase orDx be
omes empty and ba
ktra
king to the previous step must o

ur.Solver [85℄ 
ombines all three pro
ess by altering the way steps are taken. Ea
h step isset up as a 
hoi
e point whi
h opens two bran
hes. The �rst bran
h is to 
onstrain avariable i to have a 
ertain value j (this is an assignment). The e�e
t of this 
onstraint ispropagated and if a fail o

urs then the se
ond bran
h is tried where a 
onstraint removesj from i. The AC maintaining pro
ess is based on AC-5. At ea
h 
hoi
e point the entirestate of the algorithm is saved with all the domains of the variables. If the algorithmba
ktra
ks to the 
hoi
e point the domains are reinstated as they were.Sin
e Solver is based on AC-5 the way that 
onstraints perform propagation is open1These are the non-binary 
onstraints that are not used in the AC algorithm



Chapter 2 12 Constraint Programmingand this allows users to develop their own 
onstraints as well as providing an extensive
olle
tion of prede�ned ones. Solver gives a base 
lass for 
onstraints and the user spe
i�eshow it will propagate. In Chapter 5 we will see examples of these.2.4 Variable OrderingThe order in whi
h variables are assigned values 
an greatly a�e
t the number of failsan algorithm has before a solution is found. In some problems there may be a naturalproblem spe
i�
 order. However, there are several general methods. Some of them aredis
ussed in the following se
tion. These often work on the way variables are 
onstrainedand how variables are related to ea
h other by 
onstraints. They are 
lassed into twotypes: stati
 orderings that are de
ided at the start of the sear
h and do not 
hange anddynami
 orderings whi
h may 
hange during the sear
h. Dynami
 orderings rely on extrainformation being generated during the sear
h and so require the domains of unassignedvariables to be altered due to the sear
h. For example, if ar
-
onsisten
y is maintained.2.4.1 Fail �rst prin
iple or the smallest domain �rst orderingArguably the most popular example of dynami
 variable ordering was introdu
ed by Har-ali
k and Elliot in [51℄. The idea was to assign values to the variables that are most likelyto 
ause failure as early as possible rather than later in the sear
h. This would with theaid of 
onstraint propagation in theory 
ut o� fruitless bran
hes early, thus saving sear
hsteps. This is 
alled the fail �rst prin
iple. The way this was implemented was at everystep to 
hoose the variable with the smallest domain. The domain size was taken as anindi
ation of how hard it would be to �nd a value for the variable. This ordering is su
-
essful on many problems. However, work by Smith and Grant [98℄ to use a more a

urateindi
ation of how hard a variable is to satisfy had worse results. They 
on
luded that itmight not be the fail �rst prin
iple that is behind the su

ess of the smallest domain �rstordering. Smith and Grant give a simple possible reason for the su

ess of the ordering,



Chapter 2 13 Constraint Programmingby putting the smallest domains �rst the size of the sear
h tree is redu
ed. However,this 
annot explain the aspe
t of the ordering that Sabin and Freuder dis
overed [90℄.They used a FC algorithm 
ombined with smallest domain ordering. This was tried onseveral problems with and without making them ar
-
onsistent in a prepro
essing stage.The results showed that on several of these problems the prepro
essing a
tually madethe algorithm perform mu
h worse. They 
on
luded this was due to the ordering as thebehaviour did not exist when the FC algorithm was applied without the ordering. Mu
hof the work on this has been done on problems where the domains at the start are all ofthe same size. So the la
k of performan
e might be put down to having variables withdi�erent domain sizes before sear
h begins. Sin
e many pra
ti
al problems have variableswith di�erent sized domains the e�e
t of this is of notable importan
e.Figure 2.3 shows how the sear
h with dynami
 variable ordering and MAC di�ers from thesimple form of sear
h shown in 2.2. When variable Vk is assigned a value it is moved tothe assigned variables and Vm is 
hosen by some heuristi
 to be the next 
urrent variable.After ea
h step, variables that have their domains redu
ed to one value are bound, i.e.assigned that value. An example of this is shown in the �gure, when variable Vi wasassigned a value, 
onstraint propagation set the value for Vj .
V
k
 V
m


assigned
 unassigned
current


V
i


V
j
Figure 2.3: Sear
h with dynami
 variable ordering and MAC



Chapter 2 14 Constraint Programming2.5 Value orderingValue ordering is useful when we are interested in �nding a single solution. If we wereafter all solutions value ordering would make no di�eren
e in 
hronologi
al ba
ktra
king.The way the variables are ordered and the amount of 
onstraint propagation a�e
ts the
hoi
es of values. If there is a large amount of 
onstraint propagation done after ea
h valueassignment then failures 
an be found qui
kly and so value ordering is less important.However, if the 
onstraint propagation is not adequate wrong 
hoi
es of values 
an leadto a great deal of fruitless sear
h and ba
ktra
king. So it 
an be important to 
onsider avalue ordering heuristi
.As stated in [106℄ the idea is to pi
k the value most likely to be su

essful, to redu
eba
ktra
king. One way to assess the 
han
e of su

ess is to pi
k the value whi
h 
on
i
tswith the least number of values in the domains of unlabelled variables. There are severalvariations on this theme. The method of Geelen [41℄ and the method of Keng and Yun [63℄both temporarily assign all the values in turn for a variable and apply forward 
he
king.Keng and Yun then 
hoose the value a

ording to the number of values that would beremoved by FC. It uses the per
entage loss of values from the domains of unassignedvariables. This is similar to Geelen's method whi
h uses the domain sizes of unassignedvariables after FC redu
tion. The real di�eren
e in the methods is how they 
ombine these
ost elements that 
ome from ea
h of the unassigned variables. Geelen uses the produ
t ofthem and Keng and Yun uses the sum. In the Keng and Yun method all assignments thatwould overall remove the same number of values have the same desirability. For example,removing 3 values from one domain and 2 from another is the same as removing 0 valuesfrom one domain and 5 from another. However, Geelen argues this should not be truebe
ause a problem that has mostly large domains with a few very small domains will beharder to �nd a solution for than a problem whi
h has all average sized domains. Byusing the produ
t of domain sizes the two di�erent removals in above example will leadto di�erent evaluations.A further method is des
ribed by Minton [78℄. This uses a full assignment of variables
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onstraints may be broken. This is used to rate values in the 
urrent variable toassign a value to. The less 
on
i
ts the value with assignments in the full assignment thehigher the rating. At ea
h step of the sear
h the full assignment is redu
ed to the variablesthat have not already be assigned a value. This uses the min-
on
i
t heuristi
 whi
h isdes
ribed in Se
tion 3.3.There is a 
ondition where the su

eed-�rst strategy will not be useful. This is when allthe values must be 
hosen at some point and the only 
hoi
e is whi
h variable is assignedto whi
h value. Smith [96℄ shows an example where this is the 
ase and suggests applyingthe fail-�rst prin
iple, 
hoosing the values that are most 
onstrained �rst.However, even more so than variable ordering, problem spe
i�
 orderings are often thebest. This is be
ause general purpose value orderings des
ribed above are expensive timewise, as they require extensive 
onsisten
y 
he
ks. We will see below in the next se
tionhow greedy heuristi
s 
an be used for value ordering.2.6 OptimisationWhen all solutions are not equal and some are desired more than others, often the best(optimal) or as 
lose to the best solution as possible is desired. In these types of problemsa solution may have an asso
iated \
ost" that we are trying to minimise or 'pro�t' we aretrying to maximise. There will be an obje
tive fun
tion whi
h maps every solution tupleto a 
ost. If we are requiring a pro�t we 
an use the negation of the obje
tive fun
tionto provide a 
ost to minimise. A naive approa
h would be to �nd all the solutions andthen 
hoose the best from them. However, the amount of sear
hing 
an often be redu
ed.When a solution is found the 
ost of the solution is stored as a new bound on the optimal
ost. When building the next solution a partial 
ost 
an usually be maintained. If thisbreaks the stored bound then the 
urrent partial solution 
annot produ
e a better fullsolution and ba
ktra
king o

urs. The stored 
ost bounds the 
ost of future solutions.This pro
ess is 
alled bran
h and bound. Even with this redu
tion the problem may have



Chapter 2 16 Constraint Programmingto be solved several times and on hard problems this 
an be very time 
onsuming. The
loser to the 
ost of the optimal the original bound is the less sear
hing has to be done.So using heuristi
 orderings is a good idea to get as 
lose as possible to the optimal 
ostat the start.2.7 ModellingModelling a problem as a 
onstraint satisfa
tion problem is probably the hardest part ofthe resear
h area to produ
e general methods for. This is the 
onsensus of many peoplea
tive in the area of 
onstraint satisfa
tion and is highlighted by Freuder [39℄. Sabin andFreuder have worked on automating the modelling pro
ess [91℄ but the work is far frombeing pra
ti
ally usable. The hardness of the task is partly due to the 
exibility in howa problem 
an be modelled and that ea
h problem on
e modelled 
an be reformulatedand extended in numerous ways. In this se
tion we will look at reasons why 
ertainrepresentations 
an be better than others. The basi
 model must have one feature, everysolution to the CSP must give a solution to the real problem2. However, further questionsneed to be asked of the model. Here are several of these:1. What is the size of the CSP?The size of the CSP 
an be measured by the number of 
ombinations of possibleassignments. So this is the produ
t of the sizes of domains of all the de
ision vari-ables. There may be non-de
ision variables in the model where the a
tual value ofthem does not relate to the a
tual problem. These are normally used in 
onjun
tionwith 
onstraints to 
onstrain de
ision variables. None of the algorithms dis
ussedin this 
hapter would sear
h all possible values for de
ision variables and the for-ward looking ones would prune some bran
hes of the sear
h tree through 
onstraintpropagation. However, the number of possible assignments is still a measure of howhard the problem will be to solve as long as it is taken in 
onjun
tion with the other2Although a solution to a CSP 
ould be a solution to a sub problem of the real problem or there 
ouldbe some repair te
hniques
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al that 
hoosing a representation on its smallness is a goodjudge of how good a representation is.2. How easy are the 
onstraints to implement eÆ
iently?It is easier to propagate redu
tion done by binary 
onstraints than by higher arity
onstraints. It is very expensive to make a non-binary 
onstraint ar
-
onsistent(in general) and the more variables involved the more expensive it is. There aresome 
onstraints for whi
h spe
i�ed algorithms exist, for instan
e the all-di�erent
onstraint but these algorithms are still expensive. So a model that has only binary
onstraints is more favourable than one that has ternary or higher. Even though intheory higher order 
onstraints 
an be 
onverted to binary 
onstraints in pra
ti
ethis often will not result in a good model. However, it may be possible to �nd amodel whi
h has smaller arity 
onstraints than the original. A further 
onsiderationis the number of 
onstraints and the amount of memory ea
h 
onstraint requires.3. How 
lose are the variables to the real obje
ts they are modelling?This is a little harder to de�ne than the previous two aspe
ts as it is not quanti�able.The more the variables and values 
an be dire
tly asso
iated with the physi
al obje
tsin the problem the easier it is to 
reate problem spe
i�
 heuristi
s. It will also allowany problem stru
ture to be seen more readily and possibly allow the problem tobe reformulated to improve the model. Another bene�t is that it makes it easier toexplain to non-
omputer s
ientists. This is parti
ularly useful if working with thepeople who used to solve by hand the problem that we are modelling. This will notonly allow better feedba
k but also a greater 
han
e of a

eptan
e of the system.For example, manual s
hedulers are far more likely to be happy with a s
hedulingtool when they know the basi
s of how it works.4. How easy is it to apply general heuristi
s to the model?Certain ways of representing a problem as a CSP allow the dire
t use of some of thegeneral heuristi
s des
ribed in this Chapter. Others will need to adapt them to �tthe model.



Chapter 2 18 Constraint ProgrammingOften a solution is a pairing of obje
ts in the real problem. For example, in the n-queensproblem there is a pairing of queens and squares. In these 
ases it is possible to haveeither of these obje
ts as the variables. The n-queens problem 
an be formulated withthe variables as the queens and the squares as the values. It 
an also be formulated withthe squares as the variables with a binary domain of 1 to indi
ate a queen is present or 0to show one is not. The size of this representation is (n � n)2. How the 
onstraints arerepresented are di�erent in ea
h model. However, in the se
ond method further 
onstraintsneed to be added to ensure only n queens are pla
ed on the board.Din
bas et al [29℄ model a problem where the obje
ts 
an be dire
tly swapped so thevariables and values 
an be inter
hanged. There are 4 of one obje
t and 72 of the other.So the size of the problem 
ould be 472 or 724. So by formulating the problem where thesize is 724 a redu
tion in the size of the problem is a
hieved. So this type of remodelling
an a�e
t how the 
onstraints are represented and how many 
onstraints there are (item 2)and the size of the problem (item 1). The third 
ase des
ribed in Se
tion 5.3 will showthat as well as the previous two aspe
ts the remodelling 
an a�e
t how general heuristi
s
an be applied (item 4).It is worth noting that the n-queens problem 
an be represented better by taking advantageof the stru
ture of the problem. We 
an see that every row must have a queen on it andso we 
an have the row as the variable. The domain of a row will be the 
olumns. Thesize of the problem is smaller than having the queens as variables, nn instead of (n� n)n.It does have a larger size than using the squares as variables, (n� n)2 but it removes theneed for several 
onstraints e.g. the 
onstraints added to stop more than one queen beingon ea
h row. This 
omes from the fa
t that the variables and values are dire
tly relatedto the physi
al obje
ts of the problem (item 3).2.7.1 SymmetryAnother important 
onsideration in modelling is symmetry. This is where several solutionsto a CSP represent the same solution to the a
tual problem. This leads to problems sizes
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h bigger than they needed to be be
ause 
ertain 
ombinations are the sameand need not be tried more than on
e (item 1). Work was done by Puget [84℄ to add
onstraints to eliminate symmetry. A 
ommon example of symmetry 
an be seen in then-queens problem. Sin
e a 
hessboard is square if the top of the board is rotated, theside previously to its left be
omes the new top. So solutions that 
an be mapped to ea
hother by rotation or re
e
tion are the same solution. A way of solving this problem thatis appli
able to many other instan
es is to arti�
ially dis
riminate the variables. Add a
onstraint that spe
i�es �rst queen must be 
loser to the top left 
orner than the se
ondqueen.2.7.2 Adding extra 
onstraintsThere are other 
ases as well as symmetry where adding 
onstraints 
an improve thesear
h. This is done by adding what are 
alled redundant or implied 
onstraints. ILOGSolver's manual [58℄ de�nes these as 
onstraints that make expli
it a logi
al 
onsequen
eof other 
onstraints of a problem. An example of an impli
ated 
onstraint 
an be shownin the graph 
olouring problem. Figure 2.4 shows that variables A and C must have thesame value so a 
onstraint 
an be introdu
ed to inform the sear
h of this before it starts.
A


C


B
D

=


C


B


A


D
Figure 2.4: This shows a 
onstraint graph of a graph 
olouring problem. The dotted lineshows an implied equality 
onstraint that variables A and C must be equal. All the other
onstraints are inequality 
onstraints.



Chapter 2 20 Constraint ProgrammingThis is similar to some of the implied 
onstraints that Sqalli and Freuder uses in [101℄.Freuder also suggests the use of implied 
onstraints to repla
e higher order 
onstraints toimprove 
onstraint propagation [39℄ (item 2). At the start of this se
tion on modelling itwas stated that the �rst thing needed in a model is that all the solutions to the CSP aresolutions in the real problem. However, does the reverse have to hold? If we are after onlya single solution it may be advantageous to remove some of the solution as long as we alsoredu
e the size of the problem. In large problems time limits may in pra
tise remove manypossibilities as there may be no time to explore all avenues. However, we must ensure atleast one solution remains. So we 
an add extra 
onstraints to 
ut further the sear
h spa
eeven if they may 
ut out possible solutions. This is further investigated in Se
tion 5.6.2.2.8 ILP vs. CP and evaluating algorithms in generalThere has been many studies 
omparing ILP and CP [86, 22, 97, 87, 83℄. Many haveproposed ways of 
ombining ILP and CP to take advantage of both te
hniques [8, 56, 87,31, 33, 32℄.From these studies several aspe
ts of ea
h te
hnique have been highlighted. The �rstaspe
t that is easy to see is that in ILP 
onstraints must be linear whereas CP 
onstantshave a mu
h larger range of expression. CP seems to do better on problems that 
antake advantage of the eÆ
ient general 
onstraints that have been implemented, foremostthe all-di�erent 
onstraint (
onstrain a set of variables to have di�erent values) and toa lesser degree 
onstraints to remove symmetry. The all-di�erent 
onstraint is eÆ
ientlyimplemented in CP but in ILP applying 
onstraints to do the same job vastly in
reases themodel size. This is shown in [97℄ and later on a similar problem in [22℄. Adding 
onstraintsto remove symmetry in CP redu
es the sear
h spa
e and removes unne
essary sear
hing.However, adding similar 
onstraints to a ILP model will not 
ut the sear
h spa
e butin
rease the model size, this is seen in [22℄. This illustrates one of the main di�eren
esbetween the two methods. ILP globally 
uts the sear
h spa
e whereas CP lo
ally redu
esthe sear
h spa
e. Therefore where the sear
h spa
e 
an be easily 
ut globally by good lower



Chapter 2 21 Constraint Programmingand upper bounds on optimisation problems then ILP usually performs well. However, ifthis is not possible, as in the job shop s
heduling problem3 [11℄, ILP may �nd it hard tosolve problems. CP depends on the 
onstraints of the model providing enough propagationto redu
e the sear
h spa
e.In evaluating the e�e
tiveness of ILP and CP on pra
ti
al problems, we wish to put forwardseveral warnings. Moreover some of these apply to evaluating algorithms in general.1. Pra
ti
al is not always pra
ti
al.Often so 
alled pra
ti
al problems are only approximations of real world problems.Sometimes side issues are ignore to make the problem easier for the 
ommunity tograsp. Be
k et al [3℄ for example warn about the obsession with only optimisingmake-span time in job shop s
heduling. They 
ite several other restri
tions thatmay need to be 
onsidered in a real s
heduling situation. This over simpli�
ation ofreal world problems may make CP seem worse than ILP in general. This is be
auseCP has a more 
exible language for de�ning problems than ILP and so side issuesare more likely to 
ause problems for an ILP approa
h than a CP approa
h. Thisissue may be 
ompounded by the fa
t that if the problem was formulated �rst by aresear
her in a parti
ular �eld they may introdu
e bias. The paper on CSPlib [45℄dis
usses how bias may be introdu
ed and therefore spe
i�es that real world problemsshould be spe
i�ed in a natural language so as to limit any bias in formulation.2. Number of problems testedIt is often hard to �nd enough suitable instan
es of an industrial problem. Whereasrandom problems 
an be generated in their hundreds, many of the pra
ti
al problemshave few instan
es. For example, Darby-Dowman and Little [22℄ show results on 
rews
heduling but only have 5 instan
es of the problem. There is however, little that
an be done about this ex
ept keeping it in mind when viewing results.3. The amounts of e�ort or expertise for ea
h te
hnique3The job shop s
heduling problem is an industrial problem involving assigning a number tasks toma
hines on a fa
tory 
oor.
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omparisons very little e�ort is put into the CP and ILP algorithms tosolve the test problems. For example, Rodosek use no variable or value ordering intheir CP representations. Similarly with the ILP approa
h simple CPLEX standardalgorithms are used. Often the di�eren
e between ILP and CP is so overwhelmingit is unlikely that there will be a 
hange if time is taken to improve ea
h algorithmbut this �eld should display the same rigours of s
ien
e as any area of physi
s or
hemistry.Further to these Hooker [55℄ puts forward an argument that 
ompletive experiments ingeneral are diÆ
ult to judge fairly and moreover may not be produ
tive, as they do notgive the reasons why 
ertain algorithms are faster or slower than others.2.9 Lo
al sear
hIn this Chapter we have dis
ussed aspe
ts of systemati
 sear
h on 
onstraint satisfa
tionproblems. There has been some resear
h on how aspe
ts of systemati
 sear
h 
an be relatedto lo
al sear
h te
hniques. Several papers have been published on adding 
onsisten
y tolo
al sear
h te
hniques [62, 102℄. Another interesting aspe
t, symmetry's e�e
t on lo
alsear
h is dis
ussed in Se
tion 6.1.2.10 SummaryThere are many other basi
 sear
h methods and hybrids of the above methods. There arealso numerous heuristi
s and variable and value guides. Those that have been given herehave been sele
ted to relate to the resear
h in this thesis. A fuller a

ount of the range ofwork on 
onstraint satisfa
tion is given in [106℄.Modelling problems as 
onstraint satisfa
tion problems in an eÆ
ient way often needsinformal heuristi
s and 
reative input by an expert in the �eld. There are general guides
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hniques as a whole (e.g. CP vs. ILP) is notalways straight forward as often empiri
al eviden
e is need to be used. Su
h eviden
e byits nature is open to error and interpretation.The rest of the thesis will examine how the explained resear
h in this 
hapter and themethodology issues dis
ussed 
an be extended and developed to produ
e driver s
hedules.



Chapter 3Lo
al Sear
h for ConstraintSatisfa
tion Problems
3.1 Introdu
tionThere are numerous lo
al sear
h methods for solving 
onstraint satisfa
tion problems. Anoverview of several is given in [49℄. Presented here are some of the more popular methodsand their origins. The main fo
us of this 
hapter is the developments that lead to the
reation of the lo
al sear
h method GENET. GENET is the lo
al sear
h algorithm usedin Chapter 6 to 
onstru
t driver s
hedules.Informally, the basi
s of lo
al sear
h 
onsists of �rst 
reating a possibly 
awed solution toa problem. This 
an be done either by random assignments or by heuristi
s. Then thesolution is iteratively altered in small ways to improve the solution. These are 
alled lo
almoves as they 
onsider only a small part of the solution and improve that part. There may24
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al sear
h for CSPsbe several possible moves and these will be assessed on a measure of improvement that maybe di�erent for ea
h problem, for example in a CSP the measure of improvement may bethe in
rease in the number of 
onstraints that are satis�ed after the move is made. Thereis normally some randomness in
orporated into the 
hoi
e of what lo
al move to make atea
h iteration. This prote
ts the solver from following a set path that may never lead to afeasible solution. If the solver is run several times it may produ
e di�erent solutions. Oneimportant aspe
t to note, is that the lo
al sear
h te
hnique will always produ
e some sortof solution even if it does not �nd a feasible solution. This follows be
ause at every stageof the sear
h a solution exists.One di�eren
e between the lo
al sear
h approa
hes and the systemati
 approa
hes re-viewed in Chapter 2 is that given time the systemati
 approa
hes will always �nd a feasi-ble solution if one exists. On the other hand, due to the sto
hasti
 nature of lo
al sear
hit may never end up �nding a feasible solution but keep 
y
ling through infeasible solu-tions. However, in pra
ti
e large problems and time restri
tions may negate the ability ofa systemati
 
omplete sear
h to always �nd a feasible solution. If no feasible solution isfound then the 
omplete sear
h will produ
e no solution at all. In these 
ases lo
al sear
hte
hniques are often used to �nd as good a solution as possible. Furthermore, lo
al sear
hte
hniques used for optimisation 
annot prove that they have found an optimal solution,unlike 
omplete systemati
 approa
hes. Therefore, the stopping 
riterion for a lo
al sear
hsystem may be a limit on number of iterations or a time limit. On
e stopped, the bestsolution produ
ed is given as the �nal output.3.2 Neural networksArti�
ial neural networks have attra
ted mu
h resear
h be
ause they are based on thehuman brain. This provides advantages su
h as learning and as we will see below someparallel pro
essing 
an be done to speed up the algorithm. There are many good booksdes
ribing the general �eld of neural networks, one of whi
h is [1℄.
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al sear
h for CSPsNeural networks 
onsist of a large number of neurons or nodes whi
h 
ommuni
ate viaweighted 
onne
tions. The neurons send inhibitory (negative) or ex
itatory (positive)signals via the 
onne
tions. These signals range from -1 to 1 in the analog version of thesystem but we will restri
t ourselves to des
ribing the dis
rete version where the node 
aneither be on or o� sending a signal of 1 or -1 respe
tively.A Hop�eld network is a neural network where every node is 
onne
ted to every other nodebut not itself. A diagram of a Hop�eld network is given in Figure 3.1.
Figure 3.1: 3 node Hop�eld neural networkThe 
onne
tions are weighted and this weight is symmetri
al, i.e. the weight wij of the
onne
tion from node i to node j is the same as wji, the weight of the 
onne
tion from jto i. The output of a node is given as the input to all the other nodes multiplied by theweight asso
iated with ea
h 
onne
tion.Every state of the network an asso
iated energy value E. The energy fun
tion is de�nedas: (notation from [1℄) E = �12Xi Xj 6=i wijxixj +Xi xiTi
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al sear
h for CSPswhere xi is the state of the node (ranging from -1 to 1). Ti is the threshold of a node. Ina hardware implementation this is an external input supplied to ea
h node.So there is a energy level for every state the network 
an be in. This 
reates an energylands
ape. An energy lands
ape is shown but only in one-dimension in Figure 3.2. This
Plateau

Global Minimum

Local Minimum

Possible states

E
ne

rg
y

Figure 3.2: Diagram of energy fun
tionlands
ape representation 
an be produ
ed for all lo
al sear
h methods. There may beseveral global minima as several states may have the same energy level. When states ofthe same energy level are adja
ent to sear
h other we 
all them a plateau.The network 
an be updated in one of two ways. Either all the nodes are updated inparallel or they are updated sequentially, a node is pi
ked at random and then updated.The main di�eren
e is that in the sequential 
ase the e�e
ts of the update of one node 
anin
uen
e the state of the next node that is updated whereas in the parallel version all thenodes update independently. Ea
h update of a node 
onsists of turning the node on (1) ifthe input is above the threshold and o� (-1) if below. When we use the Hop�eld networkto solve CSPs the threshold is set to zero and so if the input is above this it will be set toon.Tagliarini and Page [103, 104℄ used a Hop�eld network to solve a CSP, spe
i�
ally the
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al sear
h for CSPsn-queens problem The neurons represent the squares on the 
hess board. If there is a
onstraint between the squares there would be an inhibitory weight. There is also a
omponent of the weights to guide the network towards a state where there are exa
tly nqueens on the board.A major 
aw in this approa
h to solving CSPs was that the network would be
ome \stu
k"in lo
al minima. This would mean that 
onstraints would be broken and so the solutionmight not be useful to the user. Moreover, there may be states where variables might nothave a value assigned to them. The 
ommon way of dealing with this was to restart thenetwork every time it rea
hed a lo
al minimum. However, on hard problems this approa
his unlikely to �nd a global minimum as all the e�ort put into a previous sear
h is lost whenthe new sear
h starts. Further work, by Adorf and Johnston [61℄ solved at least part ofthis problem. Their guarded dis
rete sto
hasti
 (GDS) network ensured that a variablewould always have an asso
iated value in the network.3.3 Min-
on
i
t heuristi
In 1992 Minton et al [78℄ investigated why the neural network approa
h (spe
i�
ally theGDS network) was doing better on 
ertain problems (e.g. the n-queens problem) than theba
ktra
king algorithms of that time.The �rst argument 
onsiders the non-systemati
 nature of the GDS approa
h and thestru
ture of the sear
h spa
e. If the sear
h spa
e has solutions 
lustered together ratherthan spread evenly, a systemati
 sear
h may take longer than a non-systemati
 sear
h to�nd a solution. This is explored in their paper by using a purely random sear
h, the LasVegas algorithm, whi
h they show performs better than a simple ba
ktra
king sear
h onthe n-queens problem. However, the GDS network outperforms the Las Vegas algorithmso there must be further explanation for the su

ess.The se
ond argument is that having a whole assignment to a problem gives knowledge
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al sear
h for CSPsthat is not available to a 
onstru
tive ba
ktra
king approa
h. So out of the GDS networka simple heuristi
 was distilled to demonstrate the reason for the su

ess of the network,the min-
on
i
ts heuristi
:Given: A set of variables, a set of binary 
onstraints, and an assignment of a value forea
h variable. Two variables 
on
i
t if their values violate a 
onstraint.Pro
edure: Sele
t a variable that is in 
on
i
t, and assign it a value that minimises thenumber of 
on
i
ts. (Break ties randomly.)Empiri
al eviden
e obtained from [78℄ using the min-
on
i
t heuristi
 for hill 
limbing 1showed that the heuristi
 obtained similar results to the neural network, so supporting theargument that the network's su

ess is due to the prin
iple 
aptured by the min-
on
i
tsheuristi
.Using the min-
on
i
ts heuristi
 instead of the GDS network allows more 
exibility in theway the sear
h is 
ondu
ted. For example in [78℄ a ba
ktra
king system is implementedusing the min-
on
i
t heuristi
 for variable and value ordering.The lo
al sear
h min-
on
i
ts heuristi
 worked well on problems su
h as the n-queensproblem, graph 
olouring problems and the real world problem of s
heduling the HubbleSpa
e Teles
ope [78℄. However, still present was the problem of getting stu
k in lo
alminima. In se
tion 3.5 there is dis
ussion on methods for es
aping lo
al minima but �rstwe will introdu
e another algorithm used for solving CSPs.3.4 GSATGSAT [95℄ is a greedy lo
al sear
h for solving propositional satis�ability or SAT problems.To explain this the following is de�ned:1Hill 
limbing is used to �nd a maximum in the sear
h spa
e and gradient des
ent is used to �nd aminimum. However, maximising the negation of the obje
tive is the same as minimising the obje
tivefun
tion so these terms will be used inter
hangeably
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al sear
h for CSPs1. A literal is a propositional variable or its negation. E.g. A or :A2. A 
lause is a disjun
tion of literals. E.g. (:A _B _ F )3. A formula in 
onjun
tive normal form (CNF) is a 
onjun
tion of disjun
tions. E.g.(:A _ B _ F ) ^ (B _ :C _ :D)^ . . .A SAT problem is: given a CNF formula �nd an assignment of true or false for its variables(a truth assignment) that satis�es the formula. CSPs 
an be represented as SAT problems2and so GSAT 
an solve them. The sear
h method starts with a random truth assignment.Then iteratively: 
hange (\
ip") the variable's truth value that leads to the largest in
reasein the total number of satis�ed 
lauses. After a user de�ned number of 
ips (MAX-FLIPS)the sear
h starts over with a new random assignment. This whole pro
ess is repeated agiven number of times (MAX-TRIES). The full pro
edure is given in Figure 3.3.GSATwhere � is a set of 
lausesFor MAX-TRIEST := a random truth assignmentFor MAX-FLIPSif T satis�es � then return T (solution)p := a propositional variable su
h that a 
hange in its truth assignment givesthe largest in
rease in the total number of 
lauses of � that satis�ed by T .Breaking ties randomly.T := T with the truth assignment of p reversed.endendreturn \no satisfying assignment found"Figure 3.3: Pseudo 
ode for basi
 GSAT pro
edureBoth min-
on
i
ts and GSAT allow sideways moves, the 
urrent solution is allowed tomove to another solution with the same energy level. This lets the pro
edure traverseplateaus in the energy lands
ape, see Figure 3.2. By doing this the sear
h 
an �nd ways2CSPs represented as SAT problems 
an have in
ated sear
h spa
es, see se
tion 3.6.4
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al sear
h for CSPso� the plateau and 
ontinue gradient des
ent. GSAT a
tually allows uphill moves, if thereis no move that in
reases or retains the number of 
lauses satis�ed. However, this is notenough to es
ape a lo
al minimum. To do this the heuristi
 has not only to move out ofit but try not to \fall" ba
k into it.3.5 Methods for es
aping lo
al minimaThere are several approa
hes for es
aping lo
al minima in heuristi
 improvement methods.These same methods 
an often diversify the sear
h. These 
an be 
ategorised into twotypes of approa
h (or a mixture of the two): those that add randomness su
h as Simulatedannealing [64℄ and those that restru
ture the neighbourhood su
h as Tabu sear
h [46℄ andweighting approa
hes [80, 93℄.3.5.1 Simulated annealingSimulated annealing has been used for solving CSPs [73℄. The standard simulated an-nealing pro
ess works as a gradient des
ent neighbourhood sear
h allowing uphill moveswith a 
ertain (possible varying) probability. A move 
onsists of 
hoosing a neighbouringstate at random and if this state has a lower energy then 
hoose it. Otherwise 
hoose itwith a probability P = e��E=T , where E is the energy and �E is the 
hange in energythat would be produ
ed by the move. T is a temperature level, whi
h may be 
onstant orde
reasing during the sear
h. This value a�e
ts how likely a non-improving move is made,the higher T the more 
han
e.3.5.2 Tabu Sear
hTabu sear
h like GSAT allows uphill moves if no improving move 
an be made, yet itexpli
itly tries not to \fall" ba
k into lo
al minima. It does this by making previous states(and related states) Tabu. It stores a list of these Tabu states and dynami
ally updates
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al sear
h for CSPsthis list as the sear
h pro
eeds. This is a 
exible meta-heuristi
 and 
an be implementedin many ways and hybridised with many other sear
h methods. An overview of these 
anbe found in [46℄. The basi
 model is applied as follows. Start with an initial solution(possibly randomly generated). Move to the best available state even if this is a non-improving move. Update the Tabu list. In the basi
 model this 
an be done by addingthe previous state to the Tabu list and removing states after a spe
i�ed number of moves.Repeat this until a set number of steps is rea
hed or no moves are available.3.5.3 Es
aping lo
al minima in GSATSimulated annealing and similar approa
hes have been in
orporated into GSAT [92, 94℄,one su
h approa
h was GSAT with Random walk. The prin
iple is outlined as:With probability p, pi
k a variable o

urring in some unsatis�ed 
lause and 
ip its truthassignmentWith probability 1 � p, follow GSAT, i.e. pi
k randomly from the list of variables thatgives the largest de
rease in the total number of unsatis�ed 
lauses.A further method introdu
ed in [92℄ did not dire
tly es
ape lo
al minima but altered thesear
h spa
e to remove them. It was dis
overed that, in some problem instan
es, after ea
hrun the same set of 
lauses would remain unsatis�ed (an example of this is given in [92℄).To 
ombat this a weighting system to in
rease the importan
e of 
ertain 
lauses wasintrodu
ed. At the end of ea
h inner 
y
le of GSAT (see Figure 3.3) the 
ost of violatinga 
lause that is violated in the 
urrent assignment is in
reased. This work was later builton in [14℄ where a similar e�e
t was produ
ed by adding extra 
lauses instead of 
hangingweights. It is 
laimed that this new method works better than the previous method. This
laim is founded on empiri
al eviden
e and in the paper a possible explanation is given.The best version of GSAT out of the ones shown was a

ording to Selman et al [94℄GSAT with Random Walk. However, this is debatable as in [13℄ it is 
on
luded that
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al sear
h for CSPsGSAT-weighting is the best method. The reason for the debate of whi
h method is bestis be
ause performan
e is based on empiri
al testing on problem instan
es. For di�erent
lasses of problems di�erent solvers may be better. There have been several explorationsof various versions of SAT solvers(e.g. [44℄).3.5.4 Breakout MethodA similar approa
h to the weighting approa
h of the last se
tion des
ribed above wasdes
ribed in Morris [80℄.In the min-
on
i
t heuristi
, the 
ost or energy fun
tion is the number of 
onstraintsviolated. In this method ea
h 
onstraint (represented as a nogood 
onstraint) has a weight,initially 1. The 
ost fun
tion is the sum of all of the weights of the violated 
onstraints.A standard gradient des
ent sear
h is used until a lo
al minimum is rea
hed. Then theweights of the 
urrent violated 
onstraints are in
remented until the 
urrent state is nolonger a lo
al minimum. The sear
h then 
ontinues. This method di�ers from the GSAT-weighting in that as soon as a lo
al minimum is found the weights are in
reased ratherthan after a �xed number of iterations.Morris proves that if this in
rease of weights only a�e
ted the 
urrent lo
al minimum thenthe algorithm would be 
omplete and so given enough time would always �nd a globalminimum. However, the weighting e�e
t deforms other parts of the spa
e and this makesthe sear
h in
omplete.3.6 Des
ription of GENETGENET is a Neural Network adapted from a Hop�eld Network des
ribed above. Thenetwork 
an represent a 
onstraint satisfa
tion problem. It 
ould be implemented intohardware and the design for this is detailed in [122℄. However, it has been su

essfullyused as software simulation and this is what is des
ribed here.
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al sear
h for CSPsEa
h neuron (or node) represents one label. The label nodes 
orresponding to a parti
ularvariable form a 
luster. Ea
h node 
an be in an on or o� state. If the node is on, thenthe asso
iated variable and value are assigned. Therefore, only one node in ea
h 
lusteris allowed to be on at any time, as a variable 
an only have one value. The node's stateis governed by the input to the nodes in its 
luster. In turn the node has an output andthis is 1 if the state is on and 0 if not.Binary 
onstraints are represented by 
onne
tions showing a nogood asso
iation betweenlabel nodes. These work in a similar way to the 
onne
tions in a Hop�eld network.Consider two labels whose representing nodes are X and Y and whi
h are prohibitedfrom being on at on
e by a 
onstraint. The 
onne
tion denoting the 
onstraint has anasso
iated inhibitory (negative) weight. This symmetri
al 
onne
tion takes the output ofnode X (Y ), multiplies it by the asso
iated weight and adds it to the input of Y (X),where wk is the weight and starts at -1. A diagram showing an example of GENET is givenbelow in Figure 3.4. Here variables A, B and C have domains of f1, 5, 7g, f8, 14g and f5,9, 11g respe
tively. There is a 
onne
tion between the nodes denoting <A,1> and <B,14>(further referred to as A1 and B14) and this represents a binary 
onstraint restri
ting theassignment of A to 1 and B to 14. Other binary 
onstraints are similarly represented. Soif the nodes A1; B14; C9 and were on, the input would be: -2 to node B14, -1 to nodesA1; B7; C9 and 0 to the rest.The sear
h method is based on the min-
on
i
ts heuristi
 des
ribed above. It starts witha random assignment of values to variables. In the network a random node in ea
h 
lusteris set to an on state. Then all weights are initialised to -1. For ea
h iteration of GENETthe variables are 
y
led through in a random order. For ea
h variable 
luster the labelnode with the highest (
losest to zero) input is turned on. Ties are broken as follows: Ifone of the nodes with the minimum input was previously on it stays on, otherwise ties arebroken randomly. This pro
ess is repeated until one of three situations o

urs:1. All the labels that are on have an input of zero (a global minimum has been found).2. No improving move 
an be made for any of the variables (a lo
al minimum has been
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h for CSPsrea
hed). Dealing with this will be des
ribed in the next se
tion.3. Some prede�ned limit on the number of iterations or the maximum time has beenrea
hed.3.6.1 Es
aping lo
al minimaWhen 
aught in a lo
al minimum GENET in
reases the importan
e of the 
onstraintsthat are violated in that assignment i.e. it de
reases the weight of the 
onstraints involvedby 1. So the energy lands
ape is altered and the lo
al minimum is raised or \�lled in"and des
ent 
an 
ontinue. This pro
ess is 
alled \learning" be
ause by performing thisoperation GENET will dis
over whi
h are the hard 
onstraints to satisfy, giving themmore importan
e. Learning also leads to the heuristi
 exploring a wider sear
h spa
e thanit would otherwise, be
ause features of previous assignments in lo
al minima are penalisedand so are less likely to re
ur. This is similar in e�e
t to the Tabu [46℄ pro
ess.So the �nal basi
 GENET algorithm is in Figure 3.5.
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Figure 3.4: Three variable GENET network
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al sear
h for CSPs3.6.2 General 
onsiderationsA 
onsideration is whether to allow non-improving (sideways) moves i.e. 
hanges that donot redu
e the number of violated 
onstraints. The basi
 model des
ribed above does notallow sideways moves: a node that was previously on whi
h has the minimum input in the
luster stays on, even if other nodes have an equal input. The advantage of not allowingsideways moves is that this guarantees 
onvergen
e. Given enough time the system willalways �nd a lo
al or global minimum, whereas if sideways moves are allowed the networkmay never stop 
hanging states. Davenport [23℄ notes that GSAT su

essfully uses exten-sive sideways moves. A problem with sideways moves in GENET is that when we makea move we are only 
onsidering one variable. It may be that there are improving movesthat 
an be made with other variables and by making a sideways move we may removethis possible improvement. Although a similar state may o

ur without sideways movesbeing used, there may be a better move missed. Davenport developed three strategiesfor allowing sideways moves: None (only learning), limited and full. The full sidewaysmoves version allows all node 
lusters to 
hange the node with the on state, even if thereis no 
on
i
t (i.e. the node that is on has zero input). If the network stays in the samestate after two 
onse
utive 
y
les learning is invoked. The limited approa
h allows theGENETRandomly turn on one node in ea
h 
lusterRepeat :Repeat : Randomly order the 
lustersFor ea
h 
luster in orderOut of the set of nodes with highest input in the 
luster; retainpreviously on node if member, else turn on a random member.until 
onvergen
e (no label nodes 
hanged state in a 
y
le)if in a lo
al minimum (not all inputs to on label nodes are zero)Learnuntil in a global minimum or resour
e limit rea
hedFigure 3.5: Pseudo 
ode for basi
 GENET model
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al sear
h for CSPssame moves as the full approa
h. However, it only allows two 
onse
utive 
y
les without
hanging the overall energy before learning o

urs. This method has both the advantageof guaranteed 
onvergen
e and the advantage of sideways moves. Davenport experimentedwith several 
lasses of problems: the n-queens, random binary, graph 
olouring and plan-ning. From these Davenport 
on
luded that no one system is better than another. Forexample, allowing full sideways moves is best for the n-queens problem while for planningproblems allowing no sideways moves is best. A possible reason for planning problemsbene�ting from not using sideways moves is that they are highly stru
tured and whethera label 
auses 
on
i
ts or not is strongly based on the 
hoi
e of other labels.3.6.3 Non-binary 
onstraintsAll non-binary 
onstraints 
an be represented as binary 
onstraints [106℄. However, thistends to hugely in
ate the size of the problem. So there is a need to express more general
onstraints in GENET. For non-binary 
onstraints the ar
hite
ture of the model has tobe 
hanged. Constraint neurons are added whi
h represent the non-binary 
onstraints.Davenport [25℄ introdu
ed ways of dealing with several general non-binary 
onstraints. Abasis for these non-binary 
onstraints and some spe
i�
 
onstraints will now be des
ribed.The input to a 
onstraint node is the unweighted sum of the outputs of all labels thatviolate the 
onstraint. The output is weighted just like the binary 
onstraints. A weightis stored for ea
h 
onstraint node. So the 
onstraint node - label node 
onne
tion is non-symmetri
al, unlike the label node - label node 
onstraint 
onne
tions. The input to a
onstraint node dire
tly a�e
ts its state (S) and has to be set up so that it a
ts in thefollowing way. If the 
onstraint is being broken, S will be positive. If it may be broken byone variable 
hanging value S will be zero. Otherwise, S should be negative.Figure 3.6 shows a model of a possible non-binary 
onstraint. The 
onstraint 
ould penalisenode < A; 1 >, < B; 8 >, < C; 9> and/or < C; 11> as it has 
onne
tions to these. Thereis one weight -1 stored in the 
onstraint.
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al sear
h for CSPsThe learning me
hanism updates the weight in the same way as with binary 
onstraints.The weight of the 
onstraint is de
reased by 1 if it is in 
on
i
t at a lo
al minimum. Thisweight is asso
iated with all the all label nodes 
onne
ted to the 
onstraint node and soa�e
ts the input of all of them.Davenport et al illustrate some spe
i�
 
onstraints in [25℄ and more in [23℄. Here is asummary of two of these:1. The Illegal (or nogood) 
onstraint restri
ts the use of parti
ular 
ompound labels.The 
onstraint is given a k-
ompound label L that is invalid or illegal in a solution.The 
onstraint node is 
onne
ted to the k label nodes in L. The state of the illegal
onstraint node Sill is negative if the input Iill is less than k � 1. This is be
auseeven if one label 
hanges state no violation 
an o

ur if fewer than k � 1 nodes areon. However, if exa
tly k � 1 nodes are on Sill will be 0, be
ause if the remaininglabel node in the o� state is swit
hed on the 
onstraint will be
ome violated. Thisis expressed by the equation: Sill = Iill � (k � 1)
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Figure 3.6: The framework of a non-binary 
onstraint in GENET
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al sear
h for CSPsIf Sill = 0, i.e. only one node is in the o� state, we will dis
ourage this node fromturning on by the 
onstraint applying a weighted output to it. The other labels arenot penalised, be
ause on their own, they will not 
ause a violation.The last situation for Sill is if it is positive, i.e. all k label nodes are on. In this 
aseall the nodes are penalised to persuade them to 
hange state.The output (Vill < i; j >) of the illegal 
onstraint node to ea
h label node < i; j >
an be represented by the equation:Vill<i;j> = 8><>: 0 if Sill < 01 + Sill � V<i;j> otherwisewhere V<i;j> is the state of the label node < i; j >.The Illegal 
onstraint is useful as it 
an be used to represent more general 
onstraints.As any 
onstraint 
an be a represent by binary 
onstraints any 
onstraint 
an berepresented as Illegal 
onstraints. The Illegal 
onstraint representation will be ofequal or smaller size to the 
orresponding binary representation.2. The Atmost 
onstraint is a 
ommon 
onstraint and so has been in
luded in CHIP.Given a set of variables V ar, a set of values V al and a number N , let L be the set oflabels that 
an be generated from V ar and V al. That is, L = f< i; j > ji 2 V ar; j 2V al; j 2 Dig. Then the Atmost 
onstraint states that any 
ompound label in thesolution must 
ontain at most N labels in L. So only N variables in V ar 
an havevalues from V al.In GENET the Atmost 
onstraint node is 
onne
ted to all the labels in L. The stateSatm is determined as follows:Satm = Iatm �N where Iatm is the 
onstraint's input.So as in the Illegal 
onstraint if the state is negative no nodes are penalised and ifpositive all are penalised. However, if the state is zero it is dealt with di�erently.
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al sear
h for CSPsWhen Satm = 0 any of the remaining nodes turning on would 
ause a violation.Unfortunately, if all of these remaining nodes were penalised a problem would o
-
ur. Unlike the Illegal 
onstraint, in the Atmost 
onstraint a single variable 
an beasso
iated with several 
onstrained labels. So say a variable i has two values (j andk) in its domain that are in V al. If the 
onstraint state is zero and the label < i; j >is on and < i; k > is o� we would penalise < i; k > but not < i; j >. So in thenext move GENET 
ould swit
h < i; j > o� and < i; k > on. This swit
h 
ouldthen happen in reverse in the next move. So the network 
ould os
illate betweenone node being on and the other on. To remove this problem all label nodes in thesame 
luster re
eive the same output from this 
onstraint. If all of them are o� thenthe 
onstraint will output a one multiplied by the 
onstraint weight to all of themto dissuade one of them 
oming on. otherwise it will output a zero. To summarise,the output for a parti
ular label Vatm<i;j> is worked out as followsVatm<i;j> = 8>>>><>>>>: 0 if Satm < 01�MaxfV<i;k>jk 2 V alg if Satm = 01 otherwiseIn the original work by Davenport et. al. [25℄ it was stated that for ea
h 
onstraintnode there was a separate weight asso
iated with every 
onne
tion it had with alabel node. This idea was dropped in the later work [23℄ and so this newer versionis what has been des
ribed above. Only having one weight per 
onstraint node doessave memory.There has also been work by other authors on allowing GENET to handle non-binary
onstraints. This work saw the emergen
e of EGENET [72℄. This method is similar tothe one des
ribed above. Some of the di�eren
es of note are that multiple penalty valuesare used for 
onstraints in EGENET rather than a single weight. In a 
onstraint thereis a penalty value for every 
ombination (tuples) of assignments of values to variables.Ea
h penalty value starts at -1 for tuples that are prohibited and 0 for others. This allows
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al sear
h for CSPsgreater 
exibility in de�nitions of 
onstraints as the user just needs to de�ne prohibitedtuples to generate a 
onstraint. However, this requires a mu
h greater amount of memorythen just storing a single weight. So an adaptation was introdu
ed [71℄ to 
ompensatefor this problem. In [70℄ new 
onstraints were introdu
ed to make EGENET more of ageneral CSP solver su
h as CHIP and SOLVER.In the light of the resear
h on EGENETwhere multiple penalties are used Davenport [23℄ mentions that only using one weight asopposed to multiple weights 
an a�e
t the sear
h and suggest it is an area for furtherinvestigation. It will be shown later in Se
tion 6.6 that it is not always desirable to haveonly one weight.3.6.4 Appli
ations and extensions of GENETGENET has been su

essfully applied not only to random CSPs but to several otherproblems in
luding standard problems su
h as graph 
olouring and real world problemssu
h as 
ar sequen
ing and radio frequen
y assignment. These use the binary and non-binary versions and several expansions of GENET.Davenport et al [25℄ 
laim that GENET is superior to GSAT for problems su
h as graph
olouring. This is shown in experimental results and ba
ked up with the following explana-tion. In GSAT a problem with N verti
es, k 
olours will require Nk variables to representit. The domain size of all the variables will be 2. The problem 
an be represented as aCSP using only N variables with a domain size of k. So in GSAT the number of possibleassignments is 2Nk whereas in GENET, it is kN . So the sear
h spa
e is mu
h larger inGSAT.The 
ar sequen
ing problem is a real world problem. Modern 
ars often have di�erentmodels with varying features su
h as sunroofs and air-
onditioning. The number of ea
hmodel required is 
alled the produ
tion requirement. On a produ
tion line there is amaximum number in any sub-sequen
e of 
ars that 
an be �tted with a parti
ular feature.These make up the 
apa
ity 
onstraints. This problem inspired a new neighbourhoodstrategy for GENET. This was 
alled SWAPGENET [24℄. The original representation of
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al sear
h for CSPsthe problem was to have ea
h variable as a position on the 
onveyor belt. The domain ofthese variables would be the di�erent models to produ
e. A normal move in GENET wouldbe to 
hange a position in the 
onveyor belt to 
ontain a di�erent model. The number of
ars of ea
h model to be made are known. So an initial assignment 
an be 
reated havingthe right number of models produ
ed even if 
apa
ity 
onstraints are broken. The moveoperator 
an be 
hanged so that it 
onsists of a variable swapping its value with the valuefrom another variable. This ensures that the produ
tion requirements do not need to beimplemented as 
onstraints. A further advantage is that it 
an be proved that the se
ondrepresentation gives a smaller sear
h than the original and so solutions should be foundfaster. SWAPGENET takes more time for ea
h repair. So although the number of repairsis redu
ed on easier problems, the time taken to solve them 
an be greater.Another real world problem that GENET has been used on is the Radio Link Frequen-
y Assignment problem (RLFAP). Boy
e et al [10℄ explore using GENET and Tabu astwo te
hniques for solving the RLFAP. A paper [9℄ by the same authors with Bouju 
on-
entrates on Tabu but gives more detail. This problem will be examined in the nextsubse
tion.Several other authors have extended GENET to deal with standard types of CSPs thatthe original GENET 
ould not handle. Wong and Leung [124℄ enhan
ed GENET to beable to ta
kle a new 
lass of CSPs; fuzzy CSPs (FCSP). In [17℄ Cox and Tsang designeda prototype of a GENET that 
ould in
orporate 
ontinuous domains. EGENET wasextended to make use of 
onstraint 
onsisten
y 
he
king in [102℄.3.6.5 OptimisationGENET was originally designed to �nd a single solution, stopping on
e there are no vi-olated 
onstraints. The 
lass of CSPs where solutions 
an be ordered and the aim isto �nd the best one are known as 
onstraint satisfa
tion optimisation problems (CSOP-s). A variation of this problem is the Partial CSP (PCSP) where solutions that 
ontainviolated 
onstraints are allowed. The 
onstraints that 
an be broken are 
alled soft 
on-
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al sear
h for CSPsstraints. In this sort of problem, minimisation of 
onstraint violations 
an be the aim ofthe sear
h. There may be a hierar
hy of 
onstraints and this will a�e
t the preferen
eorder of solutions. Sin
e optimisation problems are 
ommon, resear
h was 
arried out tointegrate optimisation into GENET. Two general ways of a

omplishing this are des
ribedin Se
tion 3.6.5.1 and 3.6.5.23.6.5.1 The tunnelling algorithmThe tunnelling algorithm was introdu
ed by Voudouris and Tsang in [113℄. The idea isto modify the 
ost fun
tion to en
ode the desired 
riterion or 
riteria to optimise. Thisis done by adding extra terms to the input of ea
h label. In the original model thereare only 
osts for violating 
onstraints and all of these start at the same weighting. Inthe new version there are additional starting 
osts for violating 
onstraints and 
osts forspe
i�
 assignments. This additional input 
ombined with the original input is 
alledthe tunnelling fun
tion. So now the 
ost (
tk) of violating a 
onstraint in the tunnellingfun
tions is: 
tk = 8><>: rk + pk if 
onstraint k is violated0 elsewhere pk starts at 0 and rk is a �xed 
ost related to the importan
e of the 
onstraint. Asimilar term is added for the labels:ltij = 8><>: aij + pij if node < i; j > is on0 elsewhere aij is a �xed 
ost for ea
h label and pij starts at 0.There are two ways in whi
h the tunnelling algorithm 
an work. The �rst is 
alled theone stage tunnelling algorithm (1ST). This works just like the original GENET ex
ept the
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al sear
h for CSPsextra terms are in
luded in the 
ost fun
tion. The se
ond, 
alled the two stage tunnellingalgorithm (2ST) separates the obje
tive fun
tion from the tunnelling fun
tion. So theterms of the obje
tive are for the 
onstraint terms:
k = 8><>: rk if 
onstraint k is violated0 elseSimilarly with the label terms:lij = 8><>: aij if node < i; j > is on0 elseThis is done be
ause the tunnelling fun
tion 
an be
ome distorted from the original ob-je
tive fun
tion that is to be minimised. This may 
ause the algorithm to be unable to�nd a good solution.Unlike the original version of GENET the two stage tunnelling algorithm only adjusts theweights of 
ertain terms in the tunnelling fun
tion at lo
al minima. This is so that themost important terms are penalised the most and so be
ome less and less likely to bebroken. However, to even the pro
ess up and so diversify the sear
h, the number of times(the absolute frequen
y) a term has been previously penalised is 
onsidered. So a simplefun
tion is instigated to de
ide whi
h terms to penalise. This is 
alled the Frequen
y toCost Ratio (FCR) where:FCR = Frequen
y / CostAt ea
h lo
al minimum a set of terms is 
onstru
ted 
onsisting of those with the minimumFCR whi
h also 
ontribute to the total 
ost. Out of this set all the ones with the maximum
ost are penalised. There is no indi
ation that experiments were used to derive the relativeimportan
e of frequen
y and 
ost. They just taking them as equally important in de
iding
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al sear
h for CSPswhi
h terms to penalise.Another 
hange from the original version of GENET is that the tunnelling version requiresextra work to de
ide how mu
h to penalise ea
h term in order to es
ape lo
al minima.This is partly due to the new version having two di�erent fun
tions to minimise and partlyto deal with the di�erent importan
e levels (
osts) of ea
h term. So the algorithm worksout the input to ea
h label for both fun
tions. Then for ea
h variable (v) it �nds theminimum label input for both and re
ords the di�eren
e (�gv). The important 
riterionfor the 
hange in the tunnelling fun
tion is that there must be a move (a 
hange of onelabel to another) available after the weight 
hanges have o

urred. However, the biggerthe 
hange in the fun
tion the further from the original fun
tion it be
omes. Sin
e theoriginal fun
tion is the one that is to be maximised straying too far from it is not desirable.So to balan
e these two issues the following equation is used for ea
h term:PenaltyAmount = maxf
ost;minf�gvggBy using the 
ost if it is high enough to make a 
hange possible (i.e. 
ost > f�gvg)the algorithm is more likely to retain the relative 
osts of the original weighting. Thispro
essing takes up a lot more CPU time per 
y
le than it does when the algorithm justhas one fun
tion. However, on some of the harder problems the redu
tion in the numberof 
y
les outweighs this in
rease in time and the problem is solved in either a qui
ker timeor there is a higher rate of runs that �nd an optimal solution.The algorithm was used on: random CSPs and PCSPs, the graph 
olouring problem, theRadio Link Frequen
y Assignment problem (des
ribed below) and the travelling salesmanproblem. So it has been shown that it 
an be applied to a wide variety of problems bothrandom and real world.It is interesting that on some hard (tightly 
onstrained) non-optimisation CSPs the tun-nelling algorithm found solutions on more runs than the original GENET.
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al sear
h for CSPsAn investigation of lo
al sear
h methods for PCSPs and a 
omparison with a systemati
bran
h and bound method is given in [60℄.3.6.5.2 Additional work on GENET for optimisationThe other approa
h by Boy
e et al [10℄ developed for handling CSOPs and PCSPs issimilar to the one-stage tunnelling algorithm. The example used to show the optimisation
apabilities is the Radio Link Frequen
y Assignment problem. The general problem 
on-sists of a set of frequen
ies and a set of radio links. Constraints o

ur be
ause frequen
ies
an have an e�e
t on ea
h other at 
ertain distan
es. This imposes restri
tions on the
ombinations of frequen
ies that links whi
h are spatially neighbours 
an have. A solutionis a mapping of radio links to frequen
ies. The problem 
an be an optimisation problem
onsidering several 
riteria. These in
lude: the number of frequen
ies used, the range offrequen
ies used and the number of violated 
onstraints (i.e. the problem 
an be a PCSP).In [10℄ to redu
e the number of frequen
ies used, ea
h label has an extra input term. Thisterm is the negation of the number of frequen
ies that the assignment would have if thatlabel were to be turned on. This extra term, derived from the state of the whole system,
an be varied to optimise whatever 
riterion is desired. This is the main di�eren
e betweenthis approa
h and the 1ST. In 1ST system the extra term for ea
h label 
onsists of thenumber of variables minus the number of variables that are assigned the proposed value.In [10℄ the three results where GENET optimises this 
riterion show that GENET �ndsthe optimal number of frequen
ies. This is slightly marred by the fa
t that, in two out ofthe three problems, GENET 
an only �nd the optimal solution in a maximum of 20% of itsruns. However, this is not a 
lear performan
e indi
ation be
ause in this paper there is nomention of how 
lose the other solutions are to being optimal. Moreover, there is only oneother method that it is 
ompared with, Tabu sear
h. In the implementations used in thepaper, GENET outperforms Tabu. The su

ess in �nding optimal solutions in 
ertain runswas due (at least in the Tabu version) to the way they ta
kled the following issue. Witha single reassignment of frequen
y to a link there are very few opportunities to remove
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al sear
h for CSPsa frequen
y entirely. So even when they tried weighting the 
ost of using frequen
ies tobe very high the solution was often far from optimal. This was 
ombated by 
hangingthe initial solution from a randomly produ
ed one. In a random starting assignment, onaverage, the number of violations is less than half, but more than half of the availabledistin
t frequen
ies are used. So the prin
iple of starting with the minimum number offrequen
ies was used (this 
ould be 1 if all the domains 
ontain a parti
ular frequen
y).It greatly in
reases the initial number of violated 
onstraints. However, the system addsfrequen
ies when ne
essary to redu
e violations and so in
reases the number of frequen
iesused. Doing this allows the program to �nd optimal solutions. This work is detailed in [9℄.3.6.6 Algorithms derived from GENETThe ideas and prin
iples of GENET were 
arried forward into a new system whi
h allowsgreater generality and its basi
 model in
orporates solving CSOPs and PCSPs. This is
alled Guided Lo
al Sear
h (GLS) [109, 114, 115, 112, 116, 117℄. Instead of spe
ifying theobje
tive fun
tion as GENET does, GLS leaves it to the implementer. GLS just needs tobe supplied with an obje
tive fun
tion that maps every 
ompound label to a 
ost. In ea
h
y
le of the algorithm every variable is set to a value that gives the lowest overall 
ost,breaking ties randomly. This allows sideways moves for ea
h variable but if after a full
y
le the total 
ost has not been redu
ed then this is treated as a lo
al minimum. Thevariables are 
hanged in an arbitrary stati
 order. This is a meta-heuristi
 and so 
an \siton top of" other lo
al sear
h methods. This allows su
h hybrids as the Guided Geneti
Algorithm [68℄.3.6.7 Con
lusions on GENETTo 
on
lude, GENET 
an be modi�ed to 
ope with many di�erent tasks and di�erentsear
h strategies 
an be used. As well as general problems su
h as graph 
olouring andrandom CSPs, GENET has been applied to a few real world problems su
h as the radio
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al sear
h for CSPsfrequen
y assignment and 
ar sequen
ing. However, these 
hanges are not straightforwardand require resear
h and experimentation to produ
e. An overview of some of the abovemethods are given in [108℄.3.7 Summary and Con
lusionsThe majority of the methods des
ribed above are similar in nature; the di�eren
e generallylies in the move operator (how it \steps" from state to state) and how it deals with spe
ialstates su
h as lo
al minima, plateaus and previously visited areas. When solving realworld problems, the move operators and spe
ial state operators are often spe
ialising totake in domain knowledge. This is usually done intuitively by an expert in the �eld.Equally some te
hniques require the setting of parameters that a�e
t the sear
h. Whilstexperimentation and empiri
al eviden
e are used to set these, informal heuristi
s andintuition are often used. These fa
tors may supersede the innate di�eren
e in resultsprodu
ed between di�erent algorithms when 
ompared on a spe
i�
 problem.The methods here have been des
ribed in their basi
 form and there are always numerousways of adapting and hybridising them, for example there are several strategies for usingmethods used in systemati
 sear
h for lo
al sear
h [105, 62, 102, 128℄. There are severalstudies 
omparing methods and how the stru
ture of the problem a�e
ts the performan
eof methods, for example [50, 16℄.The next 
hapter will des
ribe how lo
al sear
h te
hniques shown in this 
hapter, 
on-straint programming te
hniques from the last 
hapter and mathemati
al programmingte
hniques have been used for produ
ing driver s
hedules.



Chapter 4Review of driver s
hedulingte
hniques
4.1 Introdu
tionEarly bus driver s
heduling systems were heuristi
 based and limited in their usability.Many were spe
i�
 to individual bus 
ompanies and the te
hniques used were not dire
tlytransportable to other 
ompanies. Often a large amount of manual intervention wasneeded. Some systems were little more than validators. They just 
he
ked the shiftsand s
hedules the manual s
heduler produ
ed. This was useful but 
ould not be 
ountedas automated s
heduling. Later, as 
omputer power in
reased, the systems 
ould takeadvantage of mathemati
al programming. Se
tion 4.2 will des
ribe some early heuristi
sand in Se
tion 4.3 we will progress to the later mathemati
al systems. In these two se
tionswe will restri
t our review to examples of approa
hes su

essful on 
ommer
ial bus drivers
heduling problems. In Se
tions 4.4 and 4.5 we 
ome to re
ent work. Here we will broaden49
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heduling te
hniquesour s
ope to in
lude theoreti
al and potential approa
hes as well as work related to busdriver s
heduling. To open this Chapter we will introdu
e the me
hani
s of the problem.Bus driver s
hedules are designed to ensure that every bus has a driver at all times. Driverswork on pre-planned shifts, ea
h of whi
h obeys 
ertain rules dependent on lo
al legislationand on agreements between drivers and management. Typi
al types of rule are:� No shift 
an ex
eed a stipulated maximum driving time;� Every shift must have at least one meal break of a designated minimum duration;� No part of a shift 
an ex
eed a stipulated time on duty without a meal break;� No shift 
an ex
eed a given elapsed time from start to �nish (the maximum elapsedtime may depend on the type of shift).In pra
ti
e, there is usually a variety of further rules. In many 
ountries, in
luding theUnited States and the United Kingdom, shifts usually 
onsist of stret
hes of work, sepa-rated by a meal break. Ea
h stret
h may 
ontain one or more spells of work, ea
h spellbeing on a di�erent bus. Drivers 
an normally join or leave a bus only at designatedpoints (usually one per bus route or line); these relief points may be either intermediateor terminal points. We 
all the times at whi
h buses are s
heduled to pass relief points,relief opportunities. We may represent the work of a bus throughout a day as a series ofrelief opportunities linked by indivisible pie
es of work, ea
h of whi
h must be 
overed bya driver. A shift therefore 
onsists of two or more spells, ea
h starting and ending at arelief opportunity and 
onsisting of a number of 
onse
utive pie
es of work.Figure 4.1 shows three buses with just the information required for driver s
heduling. Thesolid lines represent the work done by ea
h vehi
le; where a relief opportunity o

urs, thetime and lo
ation are shown (here, D is the depot and L is Leeds 
ity 
entre). The driverassigned to the �rst bus drives it until the bus returns to the depot. The dashed lineshows this spell of work. The driver then has a meal-break and following that takes overthe se
ond bus at 1015 in Leeds 
ity 
entre, from the driver who has already driven that
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heduling te
hniquesbus from 0622 onwards. The se
ond driver in turn takes a meal-break and then takes overthe third bus from its previous driver, and so on.4.2 Early heuristi
 methodsThe early methods used for driver s
heduling were heuristi
 based. This was be
ause therewas not the 
omputing power to use mathemati
al solvers. Many of the approa
hes havesimilarities. They 
onstru
t an initial solution using a heuristi
 pro
ess and then makelimited alterations to it to try to improve the s
hedule.4.2.1 RUCUS/RUCUS IIRUCUS (RUn CUtting and S
heduling) [4, 75, 74℄ is an example of a system that generatesa initial s
hedule and then heuristi
ally improves it. It �rst 
reates single spell shifts andthen two spell shifts, after this pro
ess any remaining pie
es of work that 
annot beallo
ated to shifts are left as short overtime spells. This limits the use of the system andis a reason for RUCUS's demise, as a lot of 
ompanies do not use overtime and even ifthey do they try to restri
t it. Further, it is generally ineÆ
ient to leave out \diÆ
ult"work in this way. On
e the initial solution is 
reated the system then uses lo
al sear
hmoves to attempt to improve the solution. It either swaps some pie
es of work 
overed by
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heduling te
hniquesone shift with pie
es of work from another shift or it moves sele
ted relief opportunitiesforward or ba
kward. There is then a repair pro
edure whi
h attempts to �x any shiftsthat have be
ome invalid due to the 
hanges. However, there may still be invalid shiftsleft in the �nal s
hedule and so manual intervention may be needed.4.2.2 Other heuristi
 systemsHOT and HOT II (Hamburg Optimisation Te
hniques) [54, 21, 111℄ start by trying to formgood shifts, one at a time, for ea
h morning bus, and then ea
h evening bus. Any workwhi
h is not treated in this pro
ess is formed into partial shifts, whi
h are then 
ombinedinto full shifts by a variant of the Hungarian Algorithm. There is little improvement doneto the s
hedule on
e it is 
onstru
ted. Sometimes it may leave uns
heduled pie
es of work.However, it has been used in several German bus operations. It is believed that it is nolonger widespread in use.TRACS is a heuristi
 system with a few di�eren
es from those already des
ribed. Thissystem was developed under the premise that an initial poor solution 
annot be alteredinto a good solution by heuristi
 improvements. One reason why this may have beentrue was that development of this system started in 1967 and so the modern lo
al sear
hte
hniques were not available. A poor solution would be a poor lo
al minimum in thesear
h spa
e and would take several un-improving moves to get to a stage where it 
ould besigni�
antly improved. The heuristi
s used at this time in driver s
heduling tended to useonly improving moves and so a s
hedule 
ould not be greatly enhan
ed. So while TRACSdid do heuristi
 improvements, similar in nature to RUCUS, it would �rst 
on
entrate onprodu
ing as good an initial solution as possible. This would take a lot of e�ort workingwith a bus 
ompany to get heuristi
s spe
i�
 to the 
ompany working, and this pro
esswould have to be altered, often substantially, to move the system to a new 
ompany.Subsequently, a system, COMPACS, was developed by a 
ommer
ial 
ompany. COMPACSretained the initial solution generation phase of TRACS, but not the improving moves.It 
ould also be used as an intera
tive s
heduling tool and would validate shifts as the
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heduler wrote them.4.3 Integer linear programming methodsWhen resear
h into driver s
heduling was �rst undertaken in the 1960s, all pra
ti
al prob-lems were too large for a mathemati
al approa
h using the available te
hnology and meth-ods. To this day, a pure general purpose mathemati
al approa
h would still be inadequateto solve pra
ti
al driver s
heduling problems of value. Heuristi
 redu
tions are needed andgreat e�ort must be put into their development.4.3.1 Mathemati
al model of set partitioning and set 
overingFrom the point of view of driver s
heduling, the vehi
le s
hedule 
onsists of a set ofpie
es of work to 
over I = f1; : : : ; mg. We 
an then produ
e a large set of possibleshifts S = fS1; : : : ; Sng. Ea
h shift 
overs a subset of the pie
es of work (Sj � I forj 2 J = f1; : : : ; ng). The shifts have an asso
iated 
ost 
j > 0. What we want is a subsetof shifts J� that together 
over all the work. This 
an be written as[j2J� Sj = I (4.1)where J� � J .If equation (4.1) holds, then J� is said to be a 
over of I . If equation (4.2) below alsoholds then J� is 
alled a partition of I .j; q 2 J�; j 6= q ) Sj \ Sq = ; (4.2)i.e. no pie
e is 
overed by more than one shift.We wish to produ
e a s
hedule whi
h has the minimal total 
ost (Pj2J� 
j) i.e. uses the
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hniques1 . . . mS1 a11 a21 . . am1S2 a12 . . . am2...Sn a1n . . . amnTable 4.1: The set partitioning problemminimum number of shifts. So now we 
an de�ne our set partitioning problem as theInteger Linear Program (ILP): min x0 = nXj=1 
jxj (4.3)subje
t to: nXj=1 aijxj = 1; i = 1; : : : ; mxj = 0; 1 j = 1; : : : ; nwhere: xj = 8><>: 1 if j is in the partition0 otherwiseaij = 8><>: 1 if i 2 Sj0 otherwiseThis problem 
an be represented as a matrix, as shown in Table 4.1. The rows are theshifts and the 
olumns the pie
es of work. When sele
ting a set partitioning solution wesele
t the minimum number of rows where the sum of ea
h 
olumn of the sele
ted rowswill be 1.
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heduling te
hniquesOften in 
ommer
ial driver s
heduling pa
kages the problem is formulated as a set 
overingor a set partitioning problem. However, there are often extra features added. For example,side 
onstraints may be imposed to restri
t 
ertain types of shifts. The other alteration tothe formulation is the in
orporation of optimising the number of shifts as well as the 
ost.In 
ommer
ial system a set 
overing approa
h is often adopted over a set partitioningone. This is be
ause as a set partitioning problem there will not always be a solution. In
ontrast to this the set 
overing formulation is guaranteed to have a solution. In prin
iple,restri
tions su
h as those on depots in train driver s
heduling 
an negate this guaranteebut in pra
ti
e it works as long as an appropriate number of generated shifts 
over ea
hpie
e. In train driver s
heduling it is often the 
ase that several depots are in use. Thedistan
e between these depots 
an be so great that provision has to be made to returnthe drivers to their own depot at the end of a shift. This may mean that drivers need totravel as passengers and systems often 
ope with this by in
luding the passenger travel inthe shift as if the driver were a
tually driving it. It is then up to the manual s
heduler tode
ide whi
h driver should a
tually driver the train.To in
rease the likelihood of �nding a set partitioning solution we would need a mu
hlarger supply of possible shifts. This would in
rease the sear
h spa
e. Nevertheless, theadvantage of the set partitioning formulation is that it will produ
e a s
hedule with nooverlapping drivers (over-
over). This is preferable as over-
over 
reates unprodu
tivetime for a driver. Even though the set 
overing formulation produ
es over-
over we 
anredu
e the amount of over-
over. For example, in TRACS II some of it 
an be removedmanually or intera
tively by altering shifts at the end of the pro
ess.4.3.2 TRACS IIThe University of Leeds has a long history of driver s
heduling resear
h. Its �rst systemfor forming driver s
hedules was a heuristi
 one outlined above 
alled TRACS [82℄. Latera mathemati
al system 
alled IMPACS was developed in the 1980s. IMPACS is nowsuperseded by TRACS II. This new system has been generated with many train driver
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heduling features in mind but retains the ability to produ
e bus driver s
hedules. In thisSe
tion we will des
ribe the model that this system uses. We will 
on
entrate only on thenewest version of the program. Parts of this system are utilised in the methods that havebeen generated for this thesis.4.3.2.1 TRACS II model
SIEVE
BUILD
 SCHEDULE


Solve LP


Reduce


Branch

and


Bound


set of

shifts


reduced

shift set


Figure 4.2: TRACS II 
omponents4.3.2.2 Sele
tion of relief opportunitiesThe IMPACS suite of programs 
ontained a program 
alled SELECT whi
h tried to redu
ethe size of the problem by removing 
ertain ROs. Unfortunately, this type of redu
tion 
andegrade the solutions produ
ed by TRACS II. With the re
ent improvements of TRACS IIallowing it to solve problems of larger sizes the SELECT program is now never used.However, sometimes ROs are removed manually by skilled users when problems are toolarge. Work des
ribed in Se
tion 4.4.7 is an attempt to repla
e the dated SELECT module.
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heduling te
hniques4.3.2.3 Duty generationThe BUILD program generates a large set of valid shifts. It is des
ribed here but furtherdes
ription 
an be found in [66℄ (although that paper relates to the 
on
eptually similarrail driver s
heduling problem). The �rst priority of this program is to produ
e only shiftsthat are valid. However, there are many more aspe
ts it has to 
onsider. If too manyshifts are generated the problem may be
ome too large for the mathemati
al solver to�nd a solution in a reasonable time. On the other hand, omitting important shifts 
an bedetrimental to the eÆ
ien
y of the �nal s
hedule produ
ed. So the BUILD pro
ess triesto only produ
e \good" shifts. This is a task that takes several heuristi
 rules be
ause theultimate de
ider as to whether a shift is good or not depends on how it 
ombines withother shifts and this 
annot be found out until the problem is being solved.The BUILD pro
ess starts by generating a large number of spells. Rules apply to theminimum spell length so as not to produ
e spells whi
h 
ontain ineÆ
iently little amountsof work. These spells are then 
ombined where appropriate into stret
hes of one or twospells. Stret
hes also have a minimum length so as to prevent ineÆ
ien
ies, but they also
onform to rules governing their maximum length, whi
h is usually the maximum time adriver 
an work without a meal break. These stret
hes are then 
ombined to form shiftsof up to four spells. Between 
onse
utive spells of work the driver has joinup time toget from an RO where one spell �nished to another RO where the new spell starts. Theother possibility is that the driver will have a meal break, if the time is suÆ
ient. Rulesare applied from legal, union and 
ompany pra
ti
e, su
h as minimum meal break lengthand maximum driving time. As well as these 
ommon sense 
onsiderations it in
ludessu
h rules as not produ
ing shifts that 
ontain a spell on a bus followed by a joinup andthen a spell 
ontinuing on the same bus. On
e the shifts are generated, shifts that areseen to be obviously \poor" shifts 
ompared to others are removed. For example, asshifts 
ontaining a high number of spells are not usually desired, three spell shifts thatare ineÆ
ient 
ompared with two spell shifts 
ontaining a substantial portion of the samework are removed.
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heduling te
hniquesThere are many di�erent types of shifts. Morning, evening, day, overtime and split. Ea
hmay have its own regulations. These are governed by parameters whi
h have to 
onformwith di�ering bus 
ompany regulations.4.3.2.4 Redu
tion of the set of DutiesIt is sometimes the 
ase that BUILD produ
es more shifts than the mathemati
al solverin SCHEDULE 
an handle, or more than is ne
essary to obtain a good solution. Theoriginal IMPACS version used a pro
ess 
alled EVEN. This operated by removing shiftsthat 
overed pie
es of work that were also 
overed by many other shifts. TRACS II usesa di�erent pro
ess, 
alled SIEVE.SIEVE initially removes shifts that are dupli
ates of other shifts. Next, SIEVE asks theuser to give a target number of shifts to remain after the pro
ess. SIEVE then ranksea
h shift a

ording to: a measurement of its 
ost e�e
tiveness and the least and averagenumber of other shifts 
overing the pie
es of work that the shift does. SIEVE then startsremoving the lowest ranking shifts, as long as this does not leave work un
overed, until thetarget number are remaining. At 
ertain stages SIEVE re
omputes the ranks of remainingshifts, to re
e
t the fa
t that low ranking shifts may be
ome 
riti
al after those of lesserrank are removed. The user then gets to reinstate shifts if they feel these shift's 
oste�e
tiveness is too high for them to be removed.4.3.2.5 LP relaxationThe aim of the mathemati
al solver is to sele
t a set of shifts from the large set of potentialshifts. Several 
riteria are to be optimised in this pro
ess, the most important usually beingthe number of shifts. TRACS II takes all of these 
onsiderations into a single optimisation
riterion. In this des
ription we will des
ribe the newest versions of 
omponents that arein
orporated in SCHEDULE. SCHEDULE is based on ZIP [89℄ and still retains mu
h ofits prin
iples.
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heduling te
hniquesAs well as the set 
overing 
onstraints there are sometimes user de�ned side 
onstraints.These are set to limit the number of di�erent types of shifts.The �rst part of the pro
ess is to relax the integrality 
onstraints to allow fra
tionalsolutions. The solver then uses an initial solution to start the optimisation pro
ess. Theinitial solution was originally produ
ed by sele
ting still un
overed pie
es of work one ata time and then 
hoosing a shift to 
over it that minimises the following fun
tionCjNUj (4.4)where Cj is the 
ost of the shift and NUj is the number of 
urrently un
overed pie
esof work 
overed by shift j. However, a new initial solution method was developed byWillers [123℄, suggesting the shifts should be sele
ted by:Max MXi=1 xijLi (4.5)where: xij = 8><>: 1 if shift j 
overs the 
urrently un
overed pie
e of work i0 otherwise,Li = duration of workpie
e i.There is not mu
h di�eren
e between the quality of the initial solutions produ
ed by thesetwo pro
esses, although the se
ond pro
ess is on average better. However, either pro
esswill provide a starting solution whi
h will lead to an optimal solution to the relaxed LP.The solver used for the relaxed LP is the dual steepest edge approa
h [59℄. If there is alarge number of potential shifts, a 
olumn generation pro
ess developed by Fores [36℄ isused. On
e the problem is solved a new 
onstraint is added whi
h in
reases the (possiblyfra
tional) total number of shifts used, up to the next highest integer. This will be thelower bound on the number of shifts in the optimal integer solution. The model is then
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hniquesre-solved using the dual steepest edge approa
h.4.3.2.6 Bran
h and BoundSmith [100℄ introdu
ed a method of greatly 
utting down the number of shifts and thenumber of relief opportunities that go into the bran
h and bound method. This pro
essis 
alled REDUCE. It removes many shifts from the sear
h by only using shifts that startor end at an RO that is used in the LP solution.On
e this has been done the pro
ess 
ontinues into the bran
h and bound phase. The pro-
ess bran
hes on relief opportunities, this means that nodes of the sear
h tree 
orrespondto ROs and have two bran
hes; either the RO is used (1) or not used (0). This pro
essuses the relaxed LP solution to form fra
tional values for ea
h RO (the details of this arefound in Se
tion 5.5). These values are used to 
hoose whi
h bran
h of a node to explore�rst. The algorithm explores the 1 bran
h if the fra
tional value is 
losest to 1, and the0 bran
h otherwise. The pro
ess 
ould just bran
h on the shifts, i.e. ea
h node would
orrespond to a shift and ea
h bran
h to whether the shift is used or not. The reasonswhy it does not do this are dis
ussed in Se
tion 5.5. The pro
ess will run until a solutionis found with the minimum number of drivers or it has explored 500 nodes. If a solutionis found the pro
ess tries to further optimise the solution to redu
e the overall 
ost of theshifts in the s
hedule, until 500 nodes have been explored.4.3.2.7 TRACS II summary and resultsTRACS II is in
orporated in a 
ommer
ial system that has been su

essfully installed inseveral transport 
ompanies. An example of a problem that is near the upper bound of thesize of problem that TRACS II 
an deal with using the 
olumn generation enhan
ements isa problem with 53297 potential shifts, 976 pie
es of work and 195 shifts in the �nal solution.Some problems have greater numbers of potential shifts entering ZIP, and similarly greaternumbers for pie
es of work and shifts in the �nal solution. However, this problem is overall
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heduling te
hniquesone of the largest problems solved without de
omposition.Figure 4.3 illustrates the pro
ess that is used by TRACS II to produ
e a s
hedule. Theinitial stages are to remove potential ROs. This is done in several ways; by hand, possiblyin the future a new pro
edure by Lay�eld et al, des
ribed in Se
tion 4.4.7, and Smith'sredu
tion [100℄ des
ribed in Se
tion 4.3.2.6 is used just before entering the bran
h andbound phase. The �nal stage is to de
ide on the ROs that are to be used in the �nalsele
tion. This is done by the bran
h and bound pro
ess des
ribed in Se
tion 4.3.2.6.On
e this is done the shifts to be used in the �nal s
hedule are virtually set.
Full set of ROs


Heuristically

reduced set


of ROs


Only the ROs that

are in the

schedule
Figure 4.3: The di�erent levels of RO sele
tion. ROs 
an be removed either intuitively orheuristi
ally to produ
e a redu
ed set or all ROs that are not in the �nal s
hedule 
an beremoved.4.3.2.8 S
heduling side issuesAlthough the driver s
heduling problem is often modelled as a straightforward set parti-tioning or set 
overing problem there are sometimes further restri
tions. In this se
tionwe will explain three su
h restri
tions and how they relate to TRACS II.One restri
tion arises be
ause often 
ertain types of shifts are undesirable. For examplea split shift, where a driver will do a stret
h of driving in the morning followed by a longbreak and �nally do a stret
h of driving in the evening. These shifts are used be
ause
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heduling te
hniquesthere is often a peak in the number of buses on the road during the morning, for peoplegoing into work, and the evening for their return home. However, the spans of these shiftsare long and so many drivers dislike them and unions sometimes make agreements withmanagement to restri
t the number of this type of shift in a given s
hedule. This problemhas been e�e
tively modelled in mathemati
al programming by side 
onstraints.A diÆ
ulty has arisen for the TRACS II system in its development for solving train drivers
heduling problems. These problems, unlike bus driver s
heduling ones often, have manydepots, and due to the often large distan
es between them, provision has to be made fordrivers returning to their own depot. Further restri
tions apply be
ause often there is alimit on the number of drivers that 
an 
ome from ea
h depot. This 
auses problems ina few ways. Normally a s
hedule 
an be found with the number of drivers that is thesame as that of the lower bound given by solving the relaxed LP problem. However, itis possible that more drivers are needed when multiple depots o

ur. The reason for thishas not been proven but it may be due to the fa
t that often in the relaxed LP solutiona pie
e of work will be fra
tionally 
overed by shifts from di�erent depots and when theinteger solution is derived both shifts will need to be used. Another problem is if SIEVEneeds to be used, sometimes shifts that 
over similar work but 
ome from di�erent depotswould be removed by the SIEVE pro
ess but have to be retained be
ause of the depotrestri
tions. This does 
ause a small in
rease the size of the problem.There is one problem with the set partitioning/
overing model that has not been ta
kledin the TRACS II suite. This is windows of relief opportunities. Often vehi
les arrive at arelief point and remain there for several minutes before moving on, the a
tual time varying
onsiderably. Under some operating agreements a driver 
hange 
an be made at any timebetween the vehi
le's arrival and departure. However, in a set partitioning/
overing modelwhen generating shifts, a spe
i�
 point and time (an RO) is needed to 
reate shifts. Tohave an RO for every minute a vehi
le stands at a relief point would in
rease the problemsize by an una

eptable amount. At present the RO time is normally taken to be whenthe vehi
le arrives at the relief point. Unfortunately, due to union agreements this mightmean that shifts that 
ould in theory be allowed are not generated. This 
ould be be
ause
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heduling te
hniquesit may a�e
t some issues su
h as maximum time before a meal break. It is possible that adriver starting work when the vehi
le arrives at a relief point might have to drive for toolong before they 
an be repla
ed at a time and pla
e that makes an eÆ
ient spell.4.3.3 HASTUSHASTUS [7℄ is a suite of programs that 
ontains programs for 
rew s
heduling as wellas for bus s
heduling. The HASTUS 
rew s
heduling 
omponent is broken down intotwo systems, HASTUS-mi
ro and HASTUS-ma
ro. HASTUS-ma
ro provides an initialsolution and HASTUS-mi
ro generates the �nal solution. HASTUS-ma
ro uses linearprogramming to generate a pseudo-s
hedule that provides an estimate of the number ofdrivers that are needed. The pseudo-s
hedule is built by pseudo-shifts, whi
h are generatedusing Pseudo-ROs, whi
h are simpli�
ations of the ROs; this is done by just 
utting theday into user de�ned time slots. The pseudo-s
hedule is also used by HASTUS-mi
ro toprodu
e a �nal s
hedule by using it to produ
e real shifts that relate as 
lose as possibleto those in the HASTUS-ma
ro solution.CREW_OPT [27, 26, 88℄ is a system that uses 
olumn generation to produ
e s
hedules.Initially it 
ould only be used for small s
heduling problems but more re
ent work [88℄suggest it has potential to repla
e the older HASTUS 
omponents.HASTUS has been used widely in transport s
heduling as it provides a graphi
al userinterfa
e and a system that deals with all the s
heduling issues: bus, driver s
hedulingand rostering.4.3.4 EXPRESSEXPRESS [34, 35℄ is a bus driver s
heduling system developed for a 
ompany inChrist
hur
h, New Zealand. This is an example of a method that uses a set partitioningformula. However, during the sear
h pro
ess the stri
tness of the model is diminished by
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heduling te
hniquesthe addition of sla
k variables. It then uses a version of the original ZIP [89℄ program that
omponents of SCHEDULE in TRACS II are based on. The bran
hing model is slightlydi�erent from the one used in TRACS II, in this system the bran
h and bound algorithmbran
hes on the pie
es of work (
onstraint bran
hing) rather than the relief opportunities.Bran
hing on ROs was found to be a superior sear
h strategy by Smith [100℄.4.3.5 Air 
rew and bus driver s
heduling 
omparedMu
h of the work done on 
onstraint programming for solving set partitioning problemshas been done on problems derived from air 
rew s
heduling [48, 81, 87℄. There is a setof ben
hmarks for these in [2, 53℄. However, the terminology di�ers between bus driverand air 
rew s
heduling and from 
ompany to 
ompany. The equivalent of shifts in air
rew are usually 
alled rotations or pairings. The equivalent of pie
es of work are usually
alled 
ight legs. More importantly the internal stru
ture of the two types of problem
an be very di�erent. There tends to be a lot more pie
es of work in bus s
hedules than
ight legs in air
raft s
hedules. This is be
ause in air 
rew s
hedules a 
ight leg may lastmany hours, whereas in bus driver s
heduling a pie
e may be as short as 10 minutes. Forthis reason, if we generated all possible shifts, even small bus s
hedules would be
omeimpra
ti
al to solve. Thus, we have to restri
t the number of generated shifts, by usingheuristi
s so as not to generate shifts that are thought to be \poor" in some sense e.g.they 
over a small amount of work. However, this may lead to pie
es of work that 
annotbe 
overed without shifts overlapping (over-
over) and so in our generated shift set wemay not have a set partitioning solution.4.4 Constraint programming methodsConstraint programming approa
hes for produ
ing full 
rew s
hedules have been almostex
lusively restri
ted to air 
rew s
heduling. Furthermore, most of them depend heavilyon the use of LP solutions to guide variable and value ordering. Two ex
eptions to this rule
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heduling te
hniquesare the systems des
ribed in Se
tions 4.4.5 and 4.4.4. Some of these methods have beenmentioned in Se
tion 2.8 to illustrate points about 
omparing systems. In this se
tion amore detailed a

ount of these systems will be given.4.4.1 Guerinik and CaneghemGuerinik and Caneghem [48℄ devised a 
onstraint programming approa
h whi
h used math-emati
al programming (MP) as a guide to solve the set partitioning problems derivedfrom air 
rew s
heduling in [2℄. The system starts by applying mathemati
al redu
tionson the set partitioning problem as a prepro
essor phase. These will be further dis
ussedin Se
tion 5.4.This approa
h models the problem using the rotations as the variables, in the same way asthe ILP model does. The variables are ordered a

ording to their 
orresponding fra
tionalvalue's 
loseness to 1, the 
losest �rst. The value �rst attempted for ea
h variable is 1.So while there are no fails the indi
ation given by the values of the relaxed LP solutionis 
onsistent with the 
hoi
es made. However, when a fail o

urs a variable will attemptthe value 0 and by so doing the relaxed LP solution will no longer be an a

urate guideand therefore the relaxed problem will be re-solved. The system does not perform aswell as a pure mathemati
al programming approa
h that was presented by Ho�man andPadberg [53℄.4.4.2 Rodosek et alRodosek et al [87℄ produ
ed a general way of 
ombining mathemati
al programming and
onstraint programming. When the system is used to solve a problem it �rst solves therelaxed problem by an LP solver. It then uses this to order the variables, a

ording totheir 
loseness to 0 or 1 (
losest �rst). It then 
hooses the nearest integer value to thefra
tional value as the �rst 
hoi
e for ea
h variable. Whenever there is a fail a new valueis tried and the relaxed problem is resolved with the existing assignments and the new
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heduling te
hniquesassignment set. In this way the fra
tional values are a�e
ted by previous de
isions and sobe
ome a more a

urate predi
tion of what the �nal integer values will be.One of the problems that was used to test this system was an instan
e of the air 
rews
heduling problem. It was the smallest one from the set given in the ORlib [2℄. To 
omparetheir hybrid system they produ
ed a pure 
onstraint programming approa
h. This CPapproa
h used the rotations as variables, as with the Guerinik and Caneghem model.They also produ
ed a pure mathemati
al programming approa
h using CPLEX [18℄. ThisMP approa
h produ
ed the optimal solution to the set partitioning problem that theyshowed in a mu
h shorter time than the CP approa
h. The hybrid approa
h took longerthan the MP approa
h, but mu
h shorter than the CP. So the hybrid approa
h did notseem to get anything useful from the 
onstraint propagation, in fa
t, it was detrimentalas it slowed the pro
ess down. This may mean that with the Guerinik and Caneghemapproa
h the LP solver is also doing almost all of the work in solving the problem. Thestrong point of the system is that on the range of problems shown it usually did betterthan one of the pure CP or MP approa
hes.4.4.3 M�ullerM�uller [81℄ produ
ed a pure 
onstraint programming system for solving the air 
rew setpartitioning problems from ORlib. The system applies a pre-pro
essor to make severalmathemati
al redu
tions on the problem size, in a similar way to Guerinik and Caneghem.However, M�uller uses one redu
tion whi
h is di�erent from the ordinary mathemati
alones. This one �rst orders the rotations with the lowest 
ost ones �rst. It then goesthrough and repla
es any single shift that 
an be repla
ed by a set of shifts whi
h 
overthe same 
ight legs but have lower 
ombined 
ost. This redu
tion would not be useful ina system produ
ing driver s
hedules, be
ause the desire to redu
e the number of distin
tshifts in the s
hedule means that repla
ing single shifts with multiple shifts would not bea good idea. Besides, in driver s
heduling heuristi
ally 
onstru
ted shifts are unlikely tobe able to be repla
ed in this manner.
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heduling te
hniquesThe model is then set up in the same way as the pure 
onstraint programming approa
hby Rodosek et al but the 
onstraints are implemented di�erently. They add what they
all index sets to the model. There is one for ea
h element i (see Equation 4.1). Thesesets hold the indi
es of the subsets S whi
h 
over i. When a variable is assigned a value,1 or 0, this has an e�e
t on the index sets. If the variable asso
iated with Sj is assigneda value 0 then j is removed from all the index sets. On the other hand, if it is assignedthe value 1 all the index sets that 
ontain j are redu
ed to the singleton fjg. If any ofthe index sets are redu
ed to the empty set then a fail has o

urred and ba
ktra
kinghappens. This model of 
onstraints will be further examined in Chapter 5.This system 
ould solve problems but the size of the problem solvable was mu
h smallerthan those systems using mathemati
al programming.4.4.4 Darby-Dowman and LittleDarby-Dowman and Little [22℄ 
reated a simple CP program in 1998 for produ
ing drivers
hedules aimed at redu
ing 
rew 
osts (not number of drivers). They model the problemin a set 
overing formulation, with the pie
es of work as the variables and the indexes ofthe shifts that 
over that pie
e of work as domains. The 
onstraints are di�erent fromthose in M�uller [81℄. For ea
h pie
e of work a 
ounter is stored to show how many shifts
over that pie
e of work. If a variable is set to a value the 
ounter is in
remented. Further,if a variable is set to a value, all the variables that have that value in their domain are setto that value if they are not already bound. If they are, their 
ounter is in
remented. The
ounter starts at zero and when a value is 
hosen for a variable then if there is no valuethat will keep the 
ounter below three the variable is left unassigned and the pie
e of workasso
iated is left under-
overed. This model allows very little 
onstraint propagation andit is unsurprising that this method produ
es poor results with large amounts of over-
overand under-
over.
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heduling te
hniques4.4.5 Charlier and SimonisCharlier and Simonis have produ
ed a new 
onstraint programming approa
h for produ
-ing driver s
hedules. It is a 
ommer
ial system designed for North Western Trains. Thereis little known of the details of the system, the only published material is an abstra
t[15℄. What the system seems to do is generate shifts in a sequential order to produ
e afull s
hedule. It is believed to model the problem as a dire
ted graph. Ea
h node is an\a
tivity" (presumably a pie
e of work). The ar
s of the graph represent the possibilityof having the two a
tivities asso
iated with the two nodes 
onne
ted to the ar
 followingea
h other in a shift. An ar
 has a weight to indi
ate how \good" an idea it is to havethe implied sequen
e of a
tivities in a shift. A shift is then generated by a shortest pathheuristi
. The results are un
lear and it is believed that it is not presently being used toprodu
e real s
hedules.4.4.6 Yunes et alYunes et al [129℄ in 1999 developed a hybrid CP/ILP approa
h for produ
ing bus drivers
hedules. The ILP approa
h is used to solve the set 
overing problem, while the CPapproa
h generates shifts for the problem. The ILP approa
h is a 
olumn generationapproa
h where the set 
overing problem is solved with a minimal set of shifts. Thenshifts are added in to see if the solution 
an be improved. The CP approa
h produ
esthese shifts that are added into the sear
h.The system has been tested on real data from a Brazilian transit 
ompany. It has a
hievedgood results on relatively small problems (150 pie
es of work, with 19 shifts in the optimal).4.4.7 Lay�eld et alLay�eld et al [69℄ used 
onstraint programming to produ
e a 
omponent that 
ould slotinto the TRACS II system. It would be put before the building phase and would do the
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heduling te
hniquessame job as SELECT used to do in the IMPACS version. The goal of the program is toremove relief opportunities that are unlikely to be used in good s
hedules, thus 
uttingdown the size of the problem be
ause not only will there be fewer pie
es of work but iffewer ROs are used the BUILD pro
ess will produ
e fewer shifts.The program initially looks at the morning part of the s
hedule. It produ
es shifts usingknowledge of how a manual s
heduler might do it. The program puts a limit on howmany spells of work ea
h of the buses will be broken up into, so that it does not produ
eshifts with spells that are too short. It 
onstru
ts a morning s
hedule using randomisedheuristi
s to build the partial s
hedule one shift at a time. It does this several times andthen removes the ROs that are not used in any of the s
hedules. It 
an also be used to
onstru
t a partial s
hedule for the evening part of the s
hedule and thus remove furtherROs. The pro
ess has speeded up TRACS II's solution time in several 
ases. The 
ost ofthe solutions are often slightly higher but sometimes less. The solution 
an have a lower
ost be
ause TRACS II does not produ
e solutions with optimal 
ost and stops when itgets to a \good" solution. So when TRACS II uses the 
ut down version it might 
ometo a lower 
ost solution than the original before it stops.4.5 Evolutionary algorithms and other meta-heuristi
s4.5.1 Tabu sear
hCavique et al [12℄ have used Tabu sear
h [46℄ to extend and improve one of the methodsused in the early heuristi
s. Their algorithm starts with an initial solution produ
ed usingan approa
h similar to that used by TRACS. The method allows shifts that 
ontain twospells of work or even less eÆ
ient shifts that 
over single spells of work. The improvementphase then in
orporates Tabu sear
h. A move 
onsists of removing a number of ineÆ
ientduties, and sometimes their neighbours and then generate shifts to make the s
hedulewhole again. Tabu sear
h is used to ensure that pie
es of work that appear frequentlyin ineÆ
ient shifts are given higher priority in in
orporating into shifts that 
ontain two
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heduling te
hniquesspells of work and so are more likely to be eÆ
ient. This is done to try to 
over pie
es ofwork that are hard to 
over using eÆ
ient shifts. The work they did on this Tabu Sear
happroa
h found that the method qui
kly improved the solution over the �rst few iterationsbut then found it hard to make further improvements. This is possibly be
ause they only
on
entrate on ineÆ
ient shifts and sometimes an eÆ
ient shift may have to be 
hangedto make the leap to a really eÆ
ient s
hedule. They also provide another approa
h thatuses a mat
hing te
hnique that does better, possibly be
ause it expands the sear
h, notrestri
ting it to 
hanging ineÆ
ient shifts.These algorithms were developed for the Lisbon Underground. There are several featuresto note about this operation. There is a maximum of two spells used in shifts. There arealso no 
osts per shift, it is a straight minimisation of the number of drivers. Further, thereis only a short amount of driving time in ea
h duty (less than 5 hours) and the drivers
an only 
hange at the terminus. These di�eren
es from the standard make it hard tojudge how the Tabu Sear
h program would work on problems from other 
ompanies. Itmay have the same drawba
k as the early heuristi
s in that it would be hard to adapt todi�erent bus or rail operations.4.5.2 Kwan et alThe approa
h by Kwan et al [67℄ uses a geneti
 algorithm to produ
e driver s
hedules.This work was built on experien
e of the earlier attempt to do this byWren and Wren [127℄.This system uses the potential shifts generated by TRACS II. It also uses the LP solutionprodu
ed by TRACS II. In this system a 
omplete representation of a s
hedule by ea
h
hromosome is abandoned to form a 
on
ise representation that in
orporates the essen
eof the s
hedule. This is done by the 
hromosome being made up of bits for ea
h shift in theLP solution generated by TRACS II. The reason why only these shifts are represented isthat empiri
al eviden
e has shown that at least 50% (and up to 98%) and on average 74%of the shifts in the �nal TRACS II solution were in the LP solution. So these shifts makethe ba
kbone of the s
hedule, and on
e a good 
ombination of these is found it should be
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heduling te
hniquesmu
h easier to make a good whole s
hedule. To make an entire s
hedule out of these agreedy repair te
hnique is used.This method has produ
ed s
hedules for some problems with the same number of shiftsas the TRACS II solutions. Unfortunately in other some 
ases it does not get the samenumber of shifts, it has one or two more shifts. The strength of the GA method is thatit will always �nd a solution and has found solutions to problems that TRACS II 
ouldonly solve after they have been de
omposed into subproblems. In these 
ases it has foundsolutions with fewer shifts than the total number of shifts of the union of the de
omposeds
hedules produ
ed TRACS II. For example, it found a solution with 267 �nal shifts wherethe union of the TRACS solutions had 276 shifts.The te
hnique in
orporates the use of any good traits of a s
hedule to a�e
t the valuationof the s
hedule for mating. This would mean that s
hedules that had good parts but wereaverage overall would have a 
han
e of mating. Ideally the mating pro
ess would be biasedto pass on the good segments of the s
hedule.4.5.3 Chu and BeasleyChu and Beasley have used a geneti
 algorithm to solve set partitioning problems derivedfrom air 
rew s
heduling problems. The basi
 model is to have the genes representing nbits where n is the number of 
olumns. Ea
h bit 
an be 1 for a 
olumn 
ontained in thesolution or 0 for those not 
ontained. This 
ould lead to very large strings as the sizeof problems grow. Regardless, this is the model used and a uniform 
rossover approa
his used. The algorithm di�ers from a standard GA in the way optimisation 
riteria aredealt with. Ea
h 
hromosome may or may not give a feasible partition. They note that�nding any set partitioning solution is not a trivial task for heuristi
 approa
hes. So it isimportant to drive the solution towards a feasible one as well as trying to redu
e the 
ostof the solution. A standard way to deal with restri
tions imposed on a solution is to adda penalty value that is subtra
ted from the obje
tive value of ea
h solution. However, this
ould lead to loss of good parts of solutions with high obje
tive value but also with a high
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heduling te
hniquespenalty value. To over
ome this they have added a dual optimisation 
riterion with onemeasure being the 
ost and the other the feasibility of the solution. The 
hoi
e of parentswas then made on a 
ombination of these. The 
rossover and mutation would often leadto solutions with either large amount of over-
over or under
over. This was solved usingheuristi
 repair. The algorithm was su

essful on air 
rew s
heduling problems. However,this problem is thought to be easier than the bus or train driver s
heduling problem.4.5.4 ForsythForsyth [38℄ has applied an optimisation method 
alled the Ant system for produ
ingdriver s
hedules. An Ant system was developed by Dorigo et al [30℄ based on the methodants use to sear
h for food. A simpli�ed version of how ants forage for food is 
onvertedinto a sear
h algorithm in the following way. In the simpli�ed version the ants set o� froma nest in random dire
tions. As they move they leave pheromone trails behind them whi
hslowly evaporate over time. When food is found the ant returns to the nest travelling ba
kwith highest probability along its own pheromone trail, thus strengthening the trail. Theants have an in-built bias towards following strong pheromone trails so over time moreants will 
ome a
ross this trail and follow it, strengthening it even more. As there is stillrandomness in the ants' movements several paths will be made between the food and thenest. However, the shortest path will gain the largest deposits of pheromones, as ants willreturn along it sooner than ants on other trails.The ant system for driver s
heduling uses the shifts generated by BUILD to 
reate as
hedule. Ea
h ant 
omponent will 
reate a solution at ea
h iteration. RO's are sele
tedby a probabilisti
 heuristi
 and then the ant 
hooses a shift from the set that start at thatRO. This is repeated until all the work is 
overed. As the system progresses iteration byiteration the good parts of solutions are more likely to be followed (i.e. good 
ombinationsof shifts are sele
ted) and so over time the solutions improve.This method does not produ
e results 
omparable to the TRACS II system.
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heduling te
hniques4.6 SummaryThis Chapter 
ontains a brief introdu
tion to the area of driver s
heduling. For furtherreading, an overview paper given by Wren and Rousseau [126℄ is a good round up of workdone to that date, however this was written in 1993 and mu
h resear
h has been donesin
e then.Almost all and possibly all of the early heuristi
s are no longer used in present 
ommer
ialorganisations. They tended to be hard to adapt to new 
onditions and on
e that wasdone they needed extensive manual intervention to produ
e s
hedules. Systems that usemathemati
al programming su
h as TRACS II and HASTUS have taken over from theseearly systems. They still sometimes need adaptation to new 
onditions and some manualintervention but are an enormous improvement on the initial heuristi
 methods. Therehave been new heuristi
 methods tried, with the geneti
 algorithm by Kwan et al beingthe most promising, but none have a
hieved the quality of the mathemati
al programmingapproa
hes. This is not surprising as over 30 years of experien
e has been put into theTRACS II system. However, there is room for improvement in two features. TRACS II
annot prove that the solutions it produ
es are optimal, so it is possible that bettersolutions exist and 
an be produ
ed. Further, the 
exibility of the system 
an be improved,as shown by the side issues des
ribed in 4.3.2.8. Before either of these issues 
an be ta
kledby a new system a basi
 pro
ess needs to be produ
ed. Then it 
an be further developedto improve solution quality and investigate to see how to in
orporate the side issues. Thenext two 
hapters will detail the development of two systems to produ
e a basi
 pro
essfor produ
ing driver s
hedules.



Chapter 5Driver s
heduling using 
onstraintprogramming
5.1 Introdu
tionThis Chapter des
ribes a systemati
 
onstraint programming approa
h to solve the drivers
heduling problem. It starts with a model that 
ould be used on any set partitioningproblem and it is explained in the Summary the exa
t parts that 
ould be used to solvegeneral set partitioning problems. Domain knowledge is in
orporated to develop a newmodel. Mu
h of the work in this Chapter has previously been published by Curtis etal [19℄.

74



Chapter 5 75 Driver s
heduling using CP5.1.1 Set partitioning or set 
overing?The �rst question to ask in developing a new system is whether we should use either ofthe present standard formulations, whi
h are set partitioning and set 
overing, or shouldwe use a di�erent representation. Early heuristi
 methods did not use a set partition-ing/
overing approa
h, they generated shifts as needed. However, this means that all theunion agreements and other restri
tions need to be built into the solver and hen
e thesolver has to be altered every time the 
onditions are altered. Further, the solver maybe too domain-dependent and be poor or useless on problems with di�erent regulations.Charlier and Simonis [15℄ developed a system using 
onstraint programming where thes
hedule is built up as shifts are generated (see Se
tion 4.4.5). However, as mentioned thedetails are unavailable at present. What information that is available shows that the sys-tem has only been produ
ed for one organisation, North Western Trains, but it is un
learif it is in operation. For the reasons just given it is unlikely that this system would beeasily adaptable for use with other rail organisations.We have opted for a set partitioning/
overing formulation. We use the shifts generated bythe TRACS II 
omponent BUILD (see Se
tion 4.3.2.3) to provide the initial pool of shiftsto sele
t from. This means that our program needs no knowledge of what 
onstitutes alegal shift. The program does not use the knowledge of how shifts were built to 
onstru
ta s
hedule. This makes it (in prin
iple) independent of any 
hanges in how the shifts are
onstru
ted. The next de
ision was whi
h of these two formulations, set partitioning or set
overing to 
hoose from. As stated in Se
tion 4.3.1 the hindran
e with a set partitioningformulation is that there may be no solution to the problem with the 
urrent set of shiftsor that to �nd a solution to a problem, the solver would need a greater pool of potentialshifts than if a set 
overing formulation was used. However, it is diÆ
ult to work witha set 
overing formulation in 
onstraint programming, be
ause the de
ision to in
lude ashift in the s
hedule leads to no 
onstraint propagation, whereas in set partitioning on
ea shift is 
hosen we 
an remove all other potential shifts that 
over any pie
es of work in
ommon with the 
hosen shift. This propagation is needed to guide the sear
h so that it
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heduling using CPdoes not use unne
essary shifts. There has been a program devised by Darby-Dowmanand Little [22℄ that used a set 
overing approa
h but it did not perform well and one of thereasons for this is probably due to the la
k of 
onstraint propagation (see Se
tion 4.4.4).Therefore, we 
hoose to use a set partitioning formulation.To illustrate our algorithm's ability to solve problems we have, in our results, only in
ludedinstan
es that we know to have a set partitioning solution within the available set of shifts.5.2 The ModelsHow a problem is modelled as a 
onstraint satisfa
tion problem 
an greatly a�e
t the per-forman
e of the algorithm. We will dis
uss two models of the set partitioning problem asa 
onstraint satisfa
tion problem and their advantages and disadvantages. We have imple-mented the se
ond model, as well as an extension to it that greatly improves performan
e.This is des
ribed later in the Chapter.5.2.1 The �rst model: shifts as variablesThe most obvious representation is a straightforward translation of the mathemati
alprogramming model des
ribed earlier in Se
tion 4.3.1. The shifts are the variables, witha binary domain [0,1℄, where 1 means that the shift is used in the solution and 0 meansthe shift is not in the solution. This is the model 
hosen in the papers of Guerinik andCaneghem [48℄, Rodosek et al [87℄ and M�uller [81℄.The 
onstraints follow dire
tly from the set partitioning formulation. For every pie
e ofwork one, and only one, shift variable that 
overs that pie
e 
an be set to 1. So when weset a shift variable to 1 we set all the other variables of shifts that 
over a 
ommon pie
e ofwork to 0. The number of possible assignments of values to variables in this model is 2n,where n is the number of shifts: this is an indi
ation of the 
omplexity of the model.
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heduling using CPOne drawba
k of this method is that, when it is de
ided to use a shift i.e. assign the
orresponding variable the value 1, a powerful de
ision is made, removing many otherpossible shifts from the sear
h spa
e. When the de
ision is made not to use a shift, itmakes very little di�eren
e as there are probably several other available shifts that 
overthe work in question. Later we will dis
uss how to alleviate this \all or nothing" 
hoi
e.5.2.2 The se
ond model: pie
es as variablesThe following is the formulation investigated in this Chapter and implemented using ILOGSolver version 3.2 [57, 58℄. The variables represent the pie
es of work Pi (where i 2 I , theset of indi
es of the pie
es of work). The domain of ea
h variable, Di, is the set of indi
esof the shifts that 
over pie
e of work i (Di � J where J is the set of indi
es of the shifts).If Pi is assigned the value j 2 J then in the s
hedule, pie
e i is 
overed by shift Sj .In this formulation the number of possible assignments,Qmi=1 jDij, is less than the previousmodel. This representation automati
ally ensures that in the solution all pie
es of workhave a shift 
overing them, be
ause every variable must have a value.Suppose variable Pi is assigned the value j 2 J . Then the ith pie
e of work will be workedby shift Sj . This implies, be
ause of the set partitioning formulation, that all pie
es ofwork 
overed by Sj will be performed by shift Sj . So for any other pie
e of work su
h thatj 2 Dk we must have Pk = j. This gives the 
onstraint:(Pi = j) () (Pk = j) 8i; k 2 I su
h that Di \Dk 6= ;, 8j 2 Di \Dk (5.1)So if pie
e i is assigned shift j then pie
e k will be assigned shift j and vi
e versa. This 
anbe expressed easily in Solver, as an equality 
onstraint. A se
ond 
onstraint is added topropagate eÆ
iently the e�e
t of 
hoosing values in a set partitioning formulation. If onepie
e variable has a value removed from its domain e.g. the variable is assigned another
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heduling using CPvalue, then the removed value must be removed from the domain of all other variables.If a shift is not used by one of the pie
es of work it 
overs, it 
annot be used by any ofthe others. For this a new 
onstraint was developed using the Solver 
onstraint template.This is 
alled the rem 
onstraint.These 
onstraints 
ould be applied (posted) to all pie
e variables with shifts in 
ommon.However, there is a way of redu
ing the number of 
onstraints. This is done by using thefollowing: for ea
h shift, the 
onstraints are posted between only one of the pie
es whi
his 
overed by that shift, 
hosen arbitrarily, and all the other pie
es that are 
overed bythat shift, rather than between all pairs of pie
es 
overed by the shift. Then the e�e
tpropagates through these pie
es.This model has the same drawba
k as the last model in the \all or nothing" 
hoi
e ofshifts. We will see in the extension to this model, des
ribed later, how we 
an use thestru
ture of the driver s
heduling problem to over
ome this.Although M�uller's approa
h [81℄ des
ribed in Se
tion 4.4.3 was independently developed itrelates to the method used here. It uses shifts as the variables, with a binary domain andnot pie
es of work as we do. However, to implement the 
onstraints, M�uller employs whathe 
alls index sets whi
h are sets of indi
es of the subsets S (in our 
ase these would be theshifts). This de�nition mat
hes our de�nition of the pie
e variables, be
ause the domainsof our pie
e variables are the indi
es of the shifts 
overing them. M�uller then applies thesame two set partitioning 
onstraints as we do on these index sets. During the sear
hthe 
hoi
es are made on the binary subset (shift) variables and the e�e
t is propagatedto the index sets. If an index set be
omes empty then ba
ktra
king is instigated. So theonly important di�eren
e between our se
ond approa
h as des
ribed so far and M�uller'salgorithm is that M�uller's assigns values to the binary subset (shift) variables whereas oursare assigned to the pie
e variables. The bene�t of pro
essing the variables in our way willbe made 
lear in the next se
tion.
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heduling using CP5.3 The Sear
h methodSolver's standard ba
ktra
king algorithm whi
h maintains ar
 
onsisten
y is used (SeeSe
tion 2.3). We 
ustomise the sear
h by variable and value ordering heuristi
s.A useful variable ordering that has been applied in many 
onstraint programming appli
a-tions is to 
hoose the unbound variable with the smallest domain (see Se
tion 2.4.1). We
an see that assigning values to pie
e variables allows a more natural use of this orderingthan using shift variables, be
ause these would all have binary domains.In the �rst version of the system we used a bran
h and bound method to minimise thenumber of shifts. In this approa
h, on
e a solution is found, we try to �nd a solution witha lower obje
tive value. When no new solution 
an be found, the existing solution is anoptimal solution.The obje
tive here is to redu
e the number of shifts used, so when a solution with n + 1shifts was found the algorithm applied a 
onstraint that no more than n shifts 
ould beused and started a new sear
h. This 
onstraint only had a propagation e�e
t when 
loseto n shifts had been assigned. So if we started the new sear
h with no shifts assignedthe algorithm had to assign nearly n shifts to being used before the 
onstraint 
ould a
t.To improve on this, when a new sear
h was started, the old assignment was used as astarting point (we 
all this \restart from existing solution"). Table 5.1 illustrates howthis strategy and using the smallest domain ordering a�e
ted performan
e. The problems
ome from three di�erent bus 
ompanies: Reading (r1 to r4) [125℄, CentreWest Ealingarea (
1, 
1a), the former London Transport (t1 and t2). The problems have di�eringregulations and features (e.g. urban and short distan
e rural bus s
hedules 
an have verydi�erent features). The size of the CSPs representing these problems is given. Note thatr1 and r1a are the same problem, but have di�erent numbers of generated shifts and 
1,
1a similarly.The program is run on a networked Sili
on Graphi
s O2 workstation. It is stopped af-
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Instan
e t1 r1 r1a r2 t2 r3 
1 
1a r4pie
es 24 53 53 54 125 160 186 186 203initial shifts 77 2503 4273 3001 3015 19091 3829 7543 2484size 271 12k 21k 13k 17k 214k 27k 53k 17kopt # shifts 7 11 11 14 19 16 26 26 25rn:best result 7 15 18 18 21 om n/a n/a 31fails 5 2053 544 432 4972 n/a >10k >10k 4510time (se
s) 0.06 299 148 62 612 n/a >590 >7.4k 268fails to prove opt 168 n/a n/a n/a n/a n/a n/a n/a n/atime to prove opt 0.61 n/a n/a n/a n/a n/a n/a n/a n/arn sd:best result 7 18 18 19 22 om 30 31 31fails 2 231 1543 1809 6192 n/a 1790 96 9569time (se
s) 0.05 45 416 325 938 n/a 191 64 807fails to prove opt 168 n/a n/a n/a n/a n/a n/a n/a n/atime to prove opt 0.49 n/a n/a n/a n/a n/a n/a n/a n/ars:best result 7 15 18 18 21 om n/a n/a 31fails 5 2018 485 299 4891 n/a >10k >10k 4510time (se
s) 0.06 295 76 592 595 n/a >900 >7.6k 273fails to prove opt 163 n/a n/a n/a n/a n/a n/a n/a n/atime to prove opt 0.52 n/a n/a n/a n/a n/a n/a n/a n/ars sd:best result 7 18 18 19 22 om 30 31 31fails 2 223 1437 1796 4838 n/a 921 96 9558time (se
s) 0.052 38 361 301 725 n/a 94 65 810fails to prove opt 119 n/a n/a n/a n/a n/a n/a n/a n/atime to prove opt 0.45 n/a n/a n/a n/a n/a n/a n/a n/aTable 5.1: Results on data from several bus 
ompanies using di�erent regulations.sd = smallest domain ordering, rs = restart from previous, rn = restart from noassignments, opt = optimal, om = ma
hine ran out of memory
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ktra
ks) and we use the number of shifts in the best solutionobtained, the number of fails, and the time taken, as the performan
e 
riteria. The num-ber of fails shows us how many times our program ba
ktra
ks. We 
an see from the tablethat, using these basi
 methods, only for the t1 problem 
an an optimal solution be found.(Throughout the Chapter optimal means here, the optimal number of shifts for the set ofpotential shifts after heuristi
 redu
tions.) If no solution, or no optimal solution, has beenfound we put n/a in the appropriate 
olumn. If we restart from an existing solution ea
htime a new one is found, in all 
ases the number of fails is redu
ed. Using the smallestdomain ordering generally in
reases the number of fails to �nd the best solution found.However, it does enable us to �nd a solution for the 
1 and 
1a problem that we 
ouldnot �nd an answer for otherwise.5.4 Redu
tionsThere are several mathemati
al redu
tions that 
an be applied to a set partitioning prob-lem, as des
ribed in [40, 81℄. The systems of M�uller [81℄ and Guerinik and Caneghem [48℄apply redu
tions at a pre-pro
essing stage of their 
onstraint programming systems. Tohelp us see how to apply these redu
tions during the sear
h, let us envisage the ba
k-tra
king algorithm as redu
ing the problem size whenever a variable is assigned a value;it removes at least one variable from the set of unassigned variables. Note, this may onlybe a temporary assignment as ba
ktra
king 
an o

ur. The smaller problem is again a setpartitioning one, with a redu
ed set of variables and values. Hen
e in theory the redu
-tions 
an be re-applied. Not all the redu
tions have the potential to bene�t from morethan a single appli
ation, this is why the deletion of dupli
ates des
ribed below is left asa pre-pro
essor. The redu
tions are:� All dupli
ate shifts (shifts 
overing an identi
al set of pie
es of work) are removedat the generation stage. If Sj = Sq for any pair (j; q) 2 J delete Sj .� The subset 
onstraint: if Di � Dk for any pair of pie
es (i; k 2 I), i 6= k, then
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e i is 
overed only by shifts thatalso 
over another pie
e k, then pie
e k 
annot be 
overed by a shift that does not
over i. This has been implemented in the following way: between all variables witha shift in 
ommon there is a 
onstraint that 
he
ks if that domain is a subset ofanother whenever the domain of one of the variables 
hanges. If domain i is a subsetof domain k, the 
onstraint will remove from k's domain all the shifts that do not
over pie
e i. The set partitioning 
onstraint then ensures that variables i and khave the same value.� The one-di� 
onstraint: this states that if only one shift that 
overs pie
e i doesnot 
over pie
e k and vi
e versa we 
an make a redu
tion. If jDi � (Di \ Dk)j =jDk�(Di\Dk)j = 1 for any pair of (i; k) 2 I; i 6= k, then let shift j = Di�(Di\Dk)and shift q = Dk � (Di \Dk)1. If Sj \ Sq = ; then shifts j and q are merged into a single shift having a 
ost
j + 
q. (In our 
ase, sin
e the 
ost of ea
h shift is 1, the 
ost of the mergedshift would be 2.) Delete pie
e k.2. If Sj \ Sq 6= ;, then delete shifts j and q. Delete pie
e k.We 
an see in Figure 5.1 a Venn diagram representing this 
ase, where ea
h ovalrepresents the set of shifts that 
over a pie
e and we 
an see that there is only oneshift in the non-overlapping part of ea
h oval. The two shifts that 
over one pie
ebut not the other are j and q. If j and q 
over no 
ommon pie
e then we join them toform a single shift with a 
ost equal to the sum of both of the shifts. This is be
auseif shift j is pi
ked then shift q needs to 
hosen so that both pie
es are 
overed. If theshifts have a pie
e in 
ommon then one 
annot be pi
ked, therefore neither 
an bepi
ked and this means that i and k must be 
overed by the same shift. This 
an beimplemented in Solver by a 
onstraint that 
he
ks this 
ase whenever variables witha shift in 
ommon have their domains 
hanged, and removes shifts if needed. Thereis no need to merge the shifts as the propagation of the set partitioning 
onstraintswill for
e the use of both if one is used. Similarly there is no need to delete the pie
ek as this will be assigned a value in a

ordan
e to the 
onstraints.
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onstraints dynam-i
ally is new.
j q

DDi k

Figure 5.1: A Venn diagram of the domains of two pie
e variables, i and kTable 5.2 shows the result of using the dynami
 redu
tions. The subset 
onstraint ingeneral redu
es the number of fails and we 
an see in the r1a problem it produ
es as
hedule with one less shift than without the redu
tion. Interestingly on the 
1 data thenumber of shifts in the best solution found has in
reased by one. This we believe to bedue to the e�e
t of the smallest domain ordering and restarting from the existing solutionafter ea
h new bound is pla
ed on the problem. The subset 
onstraint redu
es the sizeof domains and so this will a�e
t the ordering if we use smallest domain ordering. If wedo not use these two te
hniques, using the subset 
onstraint redu
es the number of failsevery time, but the 
1 problem is still unsolvable without the smallest domain ordering.Applying the subset redu
tion throughout the sear
h is an expensive pro
ess (in termsof memory) and the de
rease in the number of fails is o�set by this in
rease. In fa
tusing the subset 
onstraint with the 
1a problem the ma
hine runs out of memory (shownby 'om' in Table 5.2) before it 
an �nd a solution. So depending on the user's needs inlimiting memory or time of exe
ution the 
onstraint may or not be of use. This led toimplementing a new way of expressing the 
onstraint. The original 
onstraint is postedon a pair of variables that have a value in 
ommon. Every time the domain of either ofthese 
hanges, the 
onstraint 
he
ks to see if the one with the smaller domain is a subsetof the other. As it does this it stores the values that are unique to the larger domain. Ifthe smaller domain is found to be a subset then these stored values are removed from the
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Instan
e t1 r1 r1a r2 t2 r3 
1 
1a r4pie
es 24 53 53 54 125 160 186 186 203initial shifts 77 2503 4273 3001 3015 19091 3829 7543 2484size 271 12k 21k 13k 17k 214k 27k 53k 17kopt # shifts 7 11 11 14 19 16 26 26 25rs sd:best result 7 18 18 19 22 om 30 31 31fails 2 223 1437 1796 4838 n/a 921 96 9558time (se
s) 0.052 38 361 301 725 n/a 94 65 810fails to prove opt 119 n/a n/a n/a n/a n/a n/a n/a n/atime to prove opt 0.45 n/a n/a n/a n/a n/a n/a n/a n/ars sd Subset:best result 7 18 17 19 22 om 31 om 31fails 1 123 2893 825 1004 om 397 om 755time (se
s) 0.07 39 873 199 483 om 174 om 159fails to prove opt 162 n/a n/a n/a n/a n/a n/a n/a n/atime to prove opt 0.41 n/a n/a n/a n/a n/a n/a n/a n/ars sd new Subset:best result 7 18 17 19 22 om 31 33 31fails 1 123 2893 825 1004 om 397 7 755time (se
s) 0.11 61 1101 261 104 om 351 182 327fails to prove opt 162 n/a n/a n/a n/a n/a n/a n/a n/atime to prove opt 0.96 n/a n/a n/a n/a n/a n/a n/a n/ars sd One-Di�:best result 7 18 18 19 22 om 30 31 31fails 2 221 1433 1788 4826 om 1033 95 9302time (se
s) 0.07 40 366 308 812 om 113 79 1006fails to prove opt 166 n/a n/a n/a n/a n/a n/a n/a n/atime to prove opt 0.58 n/a n/a n/a n/a n/a n/a n/a n/aTable 5.2: Results of using the redu
tions dynami
allysd = smallest domain ordering, rs = restart from existing solution, rn = restart froms
rat
h, opt = optimal, om = ma
hine ran out of memory
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reases the memory needed. A simpler method,rather than storing values, is to dynami
ally post a 
onstraint that the two variables mustbe assigned the same value on
e one variable's domain is found to be a subset of the other.Solver allows this dynami
 posting of 
onstraints and if the algorithm ba
ktra
ks to the
hoi
e point before the 
onstraint was applied, the 
onstraint will be removed. The resultsof this implementation are also shown in Table 5.2. The memory used is redu
ed and asolution with 33 shifts is found for the 
1a problem. However, the program runs out ofmemory after this solution is found and so produ
es a worse result than without using theredu
tion. Further, this implementation tends to take more time as Solver has to re-
he
kwhat values are in the larger domain that are not in the smaller domain and then has toremove them.The one-di� 
onstraint on most of the problems makes little impa
t on redu
ing thenumber of fails as the situation where the redu
tion 
an be made does not o

ur often.These redu
tions are not used in the �nal system due to the fa
t that an eÆ
ient imple-mentation for the subset 
onstraint has not been found and the one-di� 
onstraint haslittle pra
ti
al use. However, the subset 
onstraint does generally redu
e the number offails to �nd a solution and sometimes dramati
ally. If an eÆ
ient implementation 
ouldbe found it 
ould prove to be a useful 
onstraint for solving set partitioning problems.5.5 The extended modelIn ILP, bran
h-and-bound 
an be used to �nd a good or optimal integer solution from theLP optimum. This se
tion will further explain the bran
hing strategy used in TRACS IIas was des
ribed in Se
tion 4.3.2.6 and how it is adapted to be used in this 
onstraintprogramming system. The standard approa
h is to 
hoose a variable (in driver s
heduling,a shift) whose value in the LP optimum is fra
tional (in this 
ase, stri
tly between 0 and1) and to form two bran
hes: on one bran
h, this variable is for
ed to have the value 0and on the other, the value 1. A new optimum solution is formed in ea
h 
ase, followed
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hes, and so on. A bran
h terminates if either an integersolution is found, or its value is greater than the best integer solution already known. Inthe development of IMPACS, it was found at an early stage that this form of bran
hing(variable bran
hing) is 
ompletely ine�e
tive for driver s
heduling problems, for reasonssimilar to those given in Se
tion 5.2.1. The alternative bran
hing strategy developed forIMPACS and later used in TRACS II is relief time bran
hing. This assigns a (possibly)fra
tional value to ea
h relief time (stri
tly, relief opportunity) in the bus s
hedule, basedon the 
urrent non-integer LP solution. This is the sum of the values of the variablesrepresenting shifts whi
h �nish a spell at that RO. A bran
h is then formed by 
hoosingan RO for whi
h this value is fra
tional (again, stri
tly between 0 and 1). The value isfor
ed to be 0 on one bran
h (whi
h means that all shifts starting or �nishing a spellat that RO are banned) and 1 on the other (whi
h means that all shifts 
overing bothpie
es of work immediately before and after this RO are banned). This bran
hing strategywas found to be very su

essful, and in
omparably more useful than variable bran
hing.Choosing whi
h ROs are to be used does not expli
itly 
hoose the shifts to use. However,on
e the ROs have been set the 
hoi
e of shifts is redu
ed dramati
ally and the problembe
omes trivial.This experien
e prompted us to implement RO bran
hing in our 
onstraint programmingpro
ess. We have a set of variables R = fRk; k = 1 : : :rg where Rk is an \a
tive" ROand r is the number of su
h ROs. A
tive ROs are the ones that we need to 
hoose avalue for, i.e. ROs whi
h start or end a bus are ex
luded, as these have to be used. Sor = m � b where b = number of buses and as before m is the number of pie
es of work.These variables have a binary domain with values 1 (use) or 0 (do not use). For ea
h ROvariable Rk there is a 
orresponding pie
e variable Pi su
h that the RO with index k isthe start of the pie
e of work with index i. We then set up a 
onstraintRk = 1 �! Pi�1 6= Pi (5.2)Rk = 0 �! Pi�1 = Pi (5.3)
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ent pie
es must have di�erent values i.e. be 
overed bydi�erent shifts and if it is not used, its adja
ent pie
es must have the same value. This
an be seen as an extension to the se
ond model, the pie
es as variables model. The
omplexity of the RO extended model is 2r (where r is the number of ROs) whi
h is lessthan the previous two models and it avoids the \all or nothing" 
hoi
e of shifts. As statedabove, on
e the 
hoi
e of the RO variables is made assignments to the pie
e variables is inpra
ti
e trivial. In e�e
t by using ROs as variables we are making higher level de
isionsthan what shifts to use. The e�e
t of these de
isions then propagates to the pie
e variablesand so the 
hoi
e of shifts. If we make the right higher level de
isions we have to makefewer de
isions than if we just used low level de
isions to get a solution.We order the RO variables �rst, followed by any pie
e variables that have not alreadybeen assigned a value. We have investigated several orderings for the set of RO variables:1. Ordering by adja
en
y, where we order starting from the �rst RO on the �rst busthen the se
ond on the �rst bus, et
. until the last on the last bus. So we aredealing with the ROs on a bus in order of their time. However, the ordering of thebuses is generally arbitrary.2. Ordering by 
hoosing �rst the ROs that 
ut out the greatest number of shifts.3. Ordering by time of day, where we pi
k the variables in order of time of day, earliest�rst. This is similar to the way some human s
hedulers build up a s
hedule.At this stage the adja
en
y ordering produ
ed the best results with the least number offails.The �rst attempt at value ordering involved a greedy pro
ess of binding an RO variable to
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e t1 r1 r1a r2 t2 r3 
1 
1a r4pie
es 24 53 53 54 125 160 186 186 203initial shifts 77 2503 4273 3001 3015 19091 3829 7543 2484size 271 12k 21k 13k 17k 214k 27k 53k 17kopt # shifts 7 11 11 14 19 16 26 26 25basi
 RO:best result 7 12 12 14 n/a om n/a n/a n/afails 721 402 29 2562 >10k n/a >10k >10k >10ktime (se
s) 1.60 44 31 289 >962 n/a >1k >3k >567fails to prove opt >10k n/a n/a n/a n/a n/a n/a n/a n/atime to prove opt 27 n/a n/a n/a n/a n/a n/a n/a n/aTable 5.3: Results of using the RO with greedy ordering and adja
en
y0 as �rst 
hoi
e (i.e. not using the RO). So as the program goes through the RO variablesit 
hooses not to use ea
h RO until a fail o

urs and then it sets the 
urrent RO variableto be used. The prin
iple behind this heuristi
 is that we will tend to use fewer shifts if weuse fewer ROs. It also tends to maximise spell length whi
h is similar to the way a humans
heduler goes about the task, although a human s
heduler would use informal heuristi
sand intuition to de
ide when to use a shorter spell length. By using the extended modelwith the adja
ent ordering and this greedy value ordering for the RO variables, there wasa general improvement in performan
e. Table 5.3 shows that an optimal solution wasfound for the r2 problem for the �rst time. However the program 
ould not prove this wasoptimal. For the larger problems no solution 
an be found. This is be
ause 
ombinations ofassignments are made by the greedy heuristi
 early in the sear
h pro
ess that 
annot leadto a solution. The resulting fail only o

urs later in the sear
h pro
ess and the algorithmnever ba
ktra
ks far enough to undo the early errors.5.6 Using The Relaxed LP SolutionWhen TRACS II forms s
hedules it �rst solves the relaxed LP problem for the generatedset of shifts. The relaxed LP problem is the set 
overing problem without integrality
onstraints on the shift variables. The method used to solve this problem is detailed inSe
tion 4.3.2.5 and [37℄.
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tional values to shifts, in whi
hthe sum of the shifts 
overing any pie
e of work is greater than or equal to 1. The numberof shifts used in this solution, i.e. the sum of the possibly fra
tional values, gives us alower bound on the optimal number of shifts. In pra
ti
e rounding up the number of shiftsto the next higher integer almost always gives the optimal number of shifts.Although the relaxed LP solution is not a feasible driver s
hedule, we 
an plot it as if itwere. Figure 5.2 shows the 
overage of a running board in su
h a solution. Ea
h fra
tionalvalue of a spell is the sum of all the fra
tional values of the shifts 
ontaining that spell.We 
an see in this example, that the sum of the fra
tional values of the spells 
overingea
h pie
e of work is 1, so there is always, mathemati
ally, exa
tly one full driver (madeup of fra
tional drivers).
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0.125

0.437Figure 5.2: Fra
tional 
overage of a running boardWe investigated the fra
tional solutions of several problem instan
es in sear
h of 
ommonfeatures that we 
ould take advantage of. Some ROs have fra
tional shifts starting then.Out of these a high proportion had shifts starting then in TRACS II's �nal s
hedule. Thisobservation led us to the �rst attempt to use the LP solution as a guide, although we willdes
ribe later why it was unsu

essful and was repla
ed by the se
ond attempt. We �rsttry to solve the subproblem of 
hoosing whi
h ROs will have shifts starting at them. On
ethis subproblem is solved then the rest of the problem will be trivial. We 
an use the LPsolution by guiding the 
hoi
e of whi
h ROs to use as starting ROs. So as a heuristi
 for
hoosing the ROs that will be starting ROs in the �nal solution we 
an 
hoose all the ROswith shifts starting then in the LP solution.To integrate this into our program we adapt the RO variables to have triples for theirdomain: use as a start (0), use but not as a start, (1) and do not use (2). If we use the



Chapter 5 90 Driver s
heduling using CPInstan
e t1 r1 r1a r2 t2 r3 
1 
1a r4pie
es 24 53 53 54 125 160 186 186 203initial shifts 77 2503 4273 3001 3015 19091 3829 7543 2484size 271 12k 21k 13k 17k 214k 27k 53k 17kopt # shifts 7 11 11 14 19 16 26 26 25nostart:best result n/a n/a 16 15 n/a om n/a n/a n/afails >10k >10k 6819 30 >10k n/a >10k >10k >10ktime (se
s) >4 >1.6k 1168 14 >972 n/a >2k >1.4k >510fails to prove opt n/a n/a n/a n/a n/a n/a n/a n/a n/atime to prove opt n/a n/a n/a n/a n/a n/a n/a n/a n/aTable 5.4: Results of using the RO model with domains of triplesrs = restart from existing solution, nostart = using triple RO domain, om = ma
hine ranout of memoryRO as a starting RO (0) we not only remove all the shifts that do not have a spell startingor �nishing at the RO but also all the shifts that do not have their �rst spell starting atit. If we use the RO but not as a starting RO (1) then we remove shifts that do not startor end a spell then, as well as shifts that have their �rst spell starting then. If we do notuse the RO (2) then we remove all shifts that have spells starting or ending then. Thereis a 
onstraint that imposes the impli
ations of an RO variable's (Rk) assignment on thepie
e variables. It is asso
iated with the RO in question and the two pie
e variables that
orrespond to the pie
es of work on either side of the RO (Pi�1 and Pi). This is be
ausethe 
onstraint may have to remove values from both of the pie
e variables' domains, asshifts with spells starting at the RO will be in the domain of Pi but not in Pi�1 and vi
eversa for shifts with spells �nishing at the RO.The sear
h �rsts assigns values to the RO variables that were starting ROs in the fra
tionalsolution. These are given the value 0. The rest are assigned value 2. The variables wereordered a

ording to adja
en
y as des
ribed in the previous se
tion.The results for this heuristi
 are shown in Table 5.4. The results obtained doing it thisway are worse than not using the guide and just using the greedy heuristi
. The reasonfor this we believe is that we are in
reasing the size of the problem greatly by having three
hoi
es instead of two for ea
h RO. It was hoped by 
on
entrating on the starting ROs we
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ti
e be de
reasing the e�e
tive size of the problem. However, for this to betrue either a large amount of propagation or a very good value guide is needed. It seemsthat there is not enough propagation and the value guide is not good enough in this 
ase.In the TRACS II system fra
tional values of ROs are used to guide the bran
h and boundpro
ess. Fra
tional values are assigned to an RO by adding up the fra
tional values of allthe shifts starting (or all �nishing) at it. So, for example, if we return to Figure 5.2 we seethat the RO at time 0728 has a fra
tional value of 0.562, as the sum of the fra
tional spellsstarting at that time is 0.125 + 0.437. Smith [99℄ implemented a heuristi
 redu
tion thatbefore going into the bran
h and bound pro
ess removed all ROs that in the relaxed LPsolution had zero value and were not used by shifts in the basi
 feasible solution1. Thisredu
tion greatly de
reases problem size and has little - if any - detrimental e�e
t on thequality of the �nal solution. We have adopted this approa
h and remove all zero valueROs.5.6.1 Value and variable orderingThe fra
tional values are further in
orporated into our pro
ess as a guide to value 
hoi
e.If the fra
tional value is greater than 0.5, then the �rst 
hoi
e of a value for the RO variableis 1; otherwise it is 0.We also use the fra
tional values by ordering the variables a

ording to 
loseness to inte-grality i.e. 
loseness to 1 or 0. So we begin by 
hoosing to use ROs whose value in theLP optimum is 1 or 
lose to 1, and not to use ROs whose value is 0 or 
lose to 0. Interms of the bus s
hedule, this is a slightly unnatural way of pro
essing the RO variablesas the algorithm will jump around the di�erent buses, maybe only setting a value for oneRO before jumping to the next bus. However, we think that it is sensible that we shouldset the values of variables that we are most sure about �rst. This assumes that fra
tionalvalues that are 
losest to 1 are most likely to be used and those 
losest to 0 are least likely1O

asionally, a shift in the basis at zero value uses an RO whi
h has itself zero value. Be
ause TRACS IIuses the LP optimum basis as the starting point of the sear
h for an integer solution, it may need to keepsu
h a shift.
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0.737Figure 5.3: Fra
tional 
overage of a running board with over-
overThe LP solution is set 
overing and so may 
ontain over-
over, so the fra
tional valueof an RO 
ould be greater than one. Further, an RO 
ould have two di�erent valuesdepending on whether we summed the shifts starting or �nishing at it. We 
an see thisin Figure 5.3. If we sum at the start then the RO at time 0905 has a fra
tional value0.875 but if we sum the end of shift we get a value of 1.175. This fra
tional over-
over
ould 
ause problems, as we are trying to use the fra
tional values to guide us to a setpartitioning solution, but the fra
tional values 
ould 
orrespond to a relaxed set 
overingsolution and so be a poor guide. In pra
ti
e none of the problem instan
es in the resultshave over-
over in their LP solution. However, we have found it in a problem instan
ethat we 
annot �nd a solution to. It is unlikely that this over-
over is what is stoppingus from �nd a solution be
ause the problem instan
e in question is mu
h larger than thetest problems we have shown results for2 and so it would be unlikely that we 
ould �nda solution whether there was over-
over or not. So at the moment we do not need to
onsider this situation further than to propose a way of ta
kling it. This would be done byleaving any ambiguous fra
tional values till last, by then propagation will probably haveset the value of the RO(s) in question anyway.5.6.2 Additional 
onstraints and heuristi
s to improve eÆ
ien
yIn the relaxed LP solutions we noti
ed that in several 
ases the sum of the fra
tionalvalues of pairs of adja
ent ROs on the same bus was 1 (for example in the r1 there aretwo adja
ent ROs with values 0.24 and 0.76). An observed 
hara
teristi
 of su
h pairs2The problem has a larger number of pie
es, 242, and shifts in the optimal shifts, 29, than the testproblems. It has 2202 shifts
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onstraint between su
h variables, stating that only one of them 
ould be used.With the su

ess of this heuristi
 we expanded it to triples of variables whose fra
tionalvalues summed to very 
lose 1. We 
all these the Combo 
onstraints; the double Combofor the pairs and the triple Combo when we have three adja
ent ROs (for example withvalues: 0.12, 0.24 and 0.64).An additional way of aiding the sear
h was found by examining the stru
ture of the buss
hedule. From this it is 
lear that in theory the RO model is open to extra propagationon the values of ROs. For example, if we use RO A we 
annot use the following ROB if no spell starts at A and ends at B. So when there is no su
h spell we 
an set thevariable 
orresponding to B not to be used if we 
hoose to use A. This propagation wouldnot be normally inferred by the 
urrent 
onstraints, unless the domains of the pie
es ofwork adja
ent to B be
ame identi
al. We have implemented two ways of dealing with thissituation: the �rst is to deal with it in pre-pro
essing and the se
ond is to deal with itduring the sear
h.In pre-pro
essing we set up 
onstraints between adja
ent ROs that do not have spellsbetween them, stating that if one is on the other is o�. We have also implemented this
onstraint so it 
an a
t during the sear
h. This is be
ause shifts are removed during thesear
h, therefore this situation may o

ur during the sear
h. We have therefore imple-mented a 
onstraint that wat
hes for this situation during the sear
h. On
e found it isdealt with in the same way as the pre-pro
essing 
onstraint. This takes more time thanthe pre-pro
essing 
onstraint, as we have to 
he
k ea
h time a 
onstrained RO gets a value.However, both extra propagations on the ROs (dynami
 and pre-pro
essing) in pra
ti
ehave no impa
t on the solution or how many fails it takes to be obtained. In two out of the9 test 
ases they both removed two 
hoi
e points but made no di�eren
e in the other test
ases. The reason for this is probably that the LP solution value guide impli
itly 
atersfor this situation.
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heduling using CP5.6.3 Related workRelated work has previously been des
ribed in Se
tion 4.4. In this se
tion we will relatethe systems des
ribed there that use mathemati
al programming 
ombined with 
onstraintprogramming with the work shown here.The previous 
onstraint programming systems that have used the relaxed LP solution haveused it in a di�erent way to ours and have not used the stru
ture of the problem to in
reasethe usefulness of the solution. Guerinik and Caneghem [48℄ and Rodosek et al [87℄ use thefra
tional value of a shift (rotation in air 
rew s
heduling) as the guide to the �rst value
hosen for their shift variables. They take slightly di�erent approa
hes in their sear
h. InGuerinik's and Caneghem's paper the variables are ordered a

ording to their 
loseness to1, the 
losest �rst. The value �rst attempted for ea
h variable is 1. So while there are nofails the values of the relaxed LP solution are 
onsistent with the 
hoi
es made. However,when a fail o

urs a variable will attempt the value 0 and by so doing the relaxed LPsolution will no longer be in a

ordan
e with the partial 
onstraint programming solutionand therefore the relaxed problem will be re-solved. Rodosek et al order the variablesa

ording to their 
loseness to 0 or 1 (
losest �rst) and 
hoose the nearest integer valueto the fra
tional value as the �rst 
hoi
e. This is more like the way that we use the LPsolution than the method by Guerinik and Caneghem. However, Rodosek et al resolvethe relaxed problem whenever there is a fail. In this way the fra
tional values are a�e
tedby previous de
isions and so be
ome a more a

urate predi
tion of what the �nal integervalues will be.In our system we do not re-solve the relaxed LP, thereby making our pro
ess less dependenton the LP te
hniques and so maintaining the 
exibility of the 
onstraint satisfa
tionformulation. We 
an envisage a s
enario in whi
h we might solve the basi
 relaxed LPand then add any 
onstraints that are hard to express in the LP formulation, �nding aninteger solution using 
onstraint programming. We are 
urrently investigating situationswhere su
h 
onstraints may o

ur. It is worth noting that by adding these 
onstraints,the LP solution will be
ome less appli
able to the �nal solution, whi
h is why it is only



Chapter 5 95 Driver s
heduling using CPused as a guide.The major di�eren
e between our use of the relaxed LP solution and the use in the twosystems des
ribed above is that they use the fra
tional value of a shift and we use thefra
tional value of an RO. This is similar to the di�eren
e between variable bran
hing andRO bran
hing in IMPACS as dis
ussed in se
tion 5.5. The fra
tional value of a shift islikely to be of less use than the fra
tional value of an RO. Several shifts may 
over similarsets of pie
es of work and so if a shift has a high fra
tional value then it is likely that asimilar shift will be used but not ne
essarily this parti
ular shift, whereas if an RO has ahigh fra
tional value it is likely to be used.5.7 ResultsUsing the �nal version of the program we have obtained the optimal number of shifts inall problem instan
es. Without using the RO variables an optimal solution 
ould onlybe found for the very small t1 problem. A summary of results 
an be seen in Table 5.5.We have shown the results of all the heuristi
s that were tested in the �nal developmentstage of the system. For ea
h of these we have the number of fails to produ
e an optimalsolution. In all 
ases we use RO variables and fra
tional values of these as a value orderingguide.The double Combo 
onstraint makes a signi�
ant redu
tion in the number of fails inseveral problem instan
es. Moreover there is only one 
ase where it has a detrimentale�e
t, whi
h is when using adja
en
y ordering (Se
tion 5.5) on r1a; it did not �nd anoptimal solution after 50000 fails. Yet this does not matter, be
ause we use 
losest tointeger ordering (Se
tion 5.6.1) in the �nal system sin
e in the test 
ases it always produ
esthe optimal in no more fails than the adja
en
y ordering. This fa
t also makes the tripleCombo 
onstraints obsolete and so they are not in
orporated in the Table 5.5 be
ausethat 
onstraint only makes a di�eren
e for the adja
en
y ordering but not for 
losest tointeger ordering.



Chapter 5 96 Driver s
heduling using CPThe best set of heuristi
s is to use the extended RO model, using the relaxed LP solution asa value and variable ordering guide. The extended model has redu
ed the 
omplexity of theproblem and allowed us to make better use of the relaxed LP solution. So the formulationof the problem makes an enormous di�eren
e, not only in redu
ing the 
omplexity of theproblem but also in enabling better sear
h strategies to be used. The most su

essfulvariable ordering is the 
losest to integer ordering. The double Combo 
onstraint is auseful 
onstraint and is in
orporated into the �nal system.The last row of the table shows how a new implementation of the rem 
onstraint(Se
tion 5.2.2) speeds up the 
onstraint handling pro
ess and so speeds up the algo-rithm. In the �rst implementation a 
onstraint was set up between a pair of variablesthat had a value (shift) that was 
ommon to both domains. Every time the domain ofone of the variables 
hanges the 
onstraint 
he
ks to see if the shift asso
iated with it hasbeen removed from one of the domains that has 
hanged. If this is the 
ase then thatshift is removed from the other domain. The new implementation only has one 
onstraintper pair of variables that have a shift 
ommon to both of their domains. The 
onstraintmakes use of the fa
t that at every 
hoi
e point Solver stores the values removed from ea
hdomain. If there are any values removed from a domain in a pair of 
onstrained variables,the 
onstraint 
y
les through the store of these that Solver retains and removes them fromthe other domain in the pair.With problems tested that were larger than the ones shown the �nal algorithm 
ould not�nd a s
hedule with the optimal number of shifts in the allowed number of fails. However,size is hard to measure as the number of potential shifts, the number of pie
es and thenumber of shifts in the optimal s
hedule all a�e
t the size. We have de�ned size as the sizeof the CSP (see Se
tion 2.7). Despite this, it is a mistake to dire
tly relate this measureto how hard a problem is to solve. We 
an measure how hard a problem is to solve byrunning an algorithm on it and seeing if the algorithm 
an solve it. If it 
an solve it wemeasure how long it takes to solve it and use this as a measure of diÆ
ulty. However,there is no algorithm independent measure of hardness and this remains an open questionfor the driver s
heduling problems and for CSPs in general. We believe failures to �nd
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e t1 r1 r1a r2 t2 r3 
1 
1a r4pie
es 24 53 53 54 125 160 186 186 203initial shifts 77 2503 4273 3001 3015 19091 3829 7543 2484size 271 12k 21k 13k 17k 214k 27k 53k 17kopt # shifts 7 11 11 14 19 16 26 26 25fails 49 10 3713 22 >50k >50k 877 5113 28822time (se
s) 0.87 1.05 172 2.00 >1.8k >12k 10.90 56 229
:fails 1 10 >50k 22 >50k >50k 3 2 1519time (se
s) 0.04 1.05 >2k 1.97 >1.5k >12k 1.05 1.22 13.21po:fails 45 121 303 22 3118 5942 68 191 496time (se
s) 0.08 2.73 17.97 2.05 94 1525 72 3.79 7.70po 
:fails 0 10 228 22 174 5942 1 1 9time (se
s) 0.06 1.03 15.44 2.04 7.81 1525 1.04 1.22 1.26Final systempo 
 nr:fails 0 10 228 22 174 5942 1 1 9time (se
s) 0.03 0.08 13.42 1.65 6.12 1078 0.95 1.11 1.17Table 5.5: Final results for 
onstraint programming systemnr = new implementation of the rem 
onstraintpo = 
losest to an integer value ordering
 = using the double 
ombo 
onstraints,opt = optimalsolutions for larger problems may be due to the systemati
 ba
ktra
king sear
h system.To illustrate this, let us say there is an RO that has a value 
lose to 1 in the relaxed LPsolution, our program would set this to be used. It may then make many more de
isionsand, due to the size of the problem, never be able to ba
ktra
k to 
hange that de
ision.So if it is 
ru
ial not to use that RO the program will never �nd an optimal solution.5.8 Flexibility of CP modelSome areas where the ILP te
hnique has been found la
king are dis
ussed in Se
tion 4.3.2.8.An advantage of CP over ILP is that the CP approa
h is more 
exible in its expressive-ness. This 
exibility was originally one of the reasons why the CP method was tried. A
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heduling using CPpossible area when an advantage might be found is with windows of relief opportunity (seeSe
tion 4.3.2.8).Windows of relief opportunity would be diÆ
ult to represent in any set partition-ing/
overing formulation, as su
h formulations deal with spe
i�
 hand-over times. How-ever, 
onstraint satisfa
tion may provide the key. The 
onstraint programming approa
hbuilds up a s
hedule, and it may be possible to 
reate some shifts during the pro
ess, inparti
ular when a fail o

urs. If the fail o

urs due to an assignment of a relief opportunityvariable, it might be possible to adjust the time of the relief opportunity and generate newshifts. Mu
h resear
h would be needed to develop and test this idea. Alternatively, usingone RO for every minute in the window may not 
ause the same problems for CP as itdoes for ILP. In CP a 
onstraint 
ould be set up to spe
ify that only one RO within thetime window 
ould be used. This lo
al 
onstraint 
uts the e�e
tive size of the problem,unlike adding a similar 
onstraint in an ILP model.5.9 Con
lusionsWe have used both a pure 
onstraint programming approa
h and an improved hybridCP/LP approa
h for solving real world problems of driver s
heduling. The program'slimited use of the relaxed LP solution brings an amount of independen
e that will allowthe 
exibility of the CP approa
h to be taken advantage of fully. The model, 
onstraints,and variable and value ordering, have been spe
ially developed to take advantage of the
onstraint programming formulation and the driver s
heduling problem stru
ture. Thedomain spe
i�
 knowledge in
orporated allows us to solve set partitioning problems ofsizes beyond the rea
h of pure 
onstraint programming systems.ILP based systems su
h as TRACS II are still faster and 
an produ
e solutions for mu
hlarger problems than this system. Nevertheless, it is hoped that the advantages and
exibility of 
onstraint programming will be useful in adding further 
onstraints that arehard to model in an LP formulation as dis
ussed in Se
tion 5.8.
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heduling using CPAlthough we have des
ribed the 
onstraint satisfa
tion system we have developed interms of shifts and pie
es of work, all the models, redu
tions and sear
h methods be-fore Se
tion 5.5 
ould be applied to any set partitioning problem. The pie
es of workwould then 
orrespond to the elements of the set I and the shifts to the set of subsets S,as referred to in Se
tion 5.1.This resear
h has been very domain spe
i�
. However, it has highlighted several 
onsider-ations that are useful for modelling pra
ti
al 
onstraint satisfa
tion problems. These arethe following:1. Variable ordering in pra
ti
al problems (Se
tions 5.3 and 5.6.1). We have seen thatthe smallest domain dynami
 ordering is not ne
essarily better than ordering basedon the stru
ture of the problem. The ordering based on the stru
ture works wellbe
ause it is not purely random, it groups the pie
es of work a

ording to the busthey are on and what time of day it is. The advantages of this are dis
ussed inSe
tion 7.3. The 
on
lusion is that in pra
ti
al problems a natural ordering mayo

ur that takes advantage of hidden stru
ture in the CSP and is therefore betterthan a general ordering heuristi
.2. Adding heuristi
 
onstraints, that may remove solutions from the sear
h spa
e. Anexample of this is the Combo 
onstraint 5.6.2. These heuristi
 
onstraints will beuseful in hard to solve stru
tured problems where there is already no guarantee of�nding a solution in the required operational time of the 
ompany. There have beenno rigorous studies of this type of 
onstraint even though as we have seen in thiswork they 
an be more useful than adding implied 
onstraints.3. Mathemati
al redu
tions during the sear
h (Se
tion 5.4). It may be possible to
arry out mathemati
al prepro
essing steps during the sear
h. The important thingto do when adding this type of implied 
onstraint is to weigh up the extra 
onstraintpropagation pro
essing that has to be done against the redu
tion in the number offails. We have seen also that how the 
onstraint is implemented 
an make a largedi�eren
e to performan
e (both in memory and in time).



Chapter 5 100 Driver s
heduling using CP4. Higher level de
isions. We 
an see that using the extended model with ROs asvariables allows high level de
isions to be made, rather than just 
hoosing shifts.However, without a good value guide these high level de
isions in
rease the size ofthe problem as there are more de
ision variables. In a problem where 
onstraintpropagation did more pruning, in
orre
t value assignment might be dete
ted early,but in this problem it is essential to have a good value guide. When the LP solutionis used as a value guide the solutions improve greatly. This 
an be taken on board bydevelopers working on other pra
ti
al problems. Taking higher level de
isions beforelow level de
isions 
an make a great di�eren
e to solution quality. Higher levelde
isions are related to domain splitting (at ea
h bran
h of the sear
h removing aportion of the domain). Although domain splitting 
auses less propagation thanassigning a value to a variable, if a good bran
hing heuristi
 (value guide) 
an befound then it 
an be more e�e
tive.It is 
lear that there is further work that 
ould be done on the implementation of the
onstraints in the model. A more eÆ
ient implementation of the subset 
onstraint 
ouldredu
e the time needed to produ
e a solution without undue in
rease in the use of memory.The improved version of the rem 
onstraint has speeded up the algorithm. It would alsobe of use to investigate new ways of expressing the 
onstraint that sets variables thathave a value in 
ommon to that value if one of them is set to it. This has so far resistedattempts to improve on its representation.



Chapter 6Using GENET on the Drivers
heduling problem modelled as aConstraint Satisfa
tion problem
6.1 Introdu
tionMu
h of the work in this Chapter has previously been published by Curtis et al [20℄.Lo
al sear
h methods have hitherto not had mu
h su

ess in the 
onstru
tion of bus drivers
hedules. An ex
eption is the appli
ation of geneti
 algorithms to bus driver s
hedulingdes
ribed by Kwan et al in [67℄ and Se
tion 4.5.2. Given a solution of reasonable quality,it is often possible to make minor adjustments to individual shifts, and still maintainthe legality of the s
hedule: this is for instan
e how we eliminate over-
over if there isany in the best solution found by TRACS II. However, it is very diÆ
ult to make major101
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hedulingimprovements, for instan
e on the s
ale required to redu
e the number of shifts in thesolution, unless the existing solution 
ontains gross over-
over. If there is little over-
overor none at all, the 
hanges required to eliminate a shift would entail simultaneous 
hangesto many other shifts in the solution, whi
h would be diÆ
ult for a lo
al sear
h pro
edureto �nd. Furthermore, investigations by Kwan [65℄ have suggested that, for some problemsat least, the number of possible s
hedules with the minimum number of shifts is very small.When there are very few solutions, or in this 
ase very few optimal solutions, lo
al sear
his expe
ted to perform poorly.However, GENET is a lo
al sear
h pro
edure whi
h has been su

essfully appliedto 
onstraint satisfa
tion problems of several kinds, in
luding optimisation problems(Se
tion 3.6.5). For this reason it was deemed worthwhile to investigate whether it wouldgive good results on the driver s
heduling problem. Although its performan
e is not 
om-parable with TRACS II, we have been able to a
hieve 
onsiderable improvements overthe initial simplisti
 model. We believe that the experien
es shown here would be usefulto others using GENET to solve large diÆ
ult 
onstraint satisfa
tion problems and inparti
ular problems with similar optimisation 
riteria.In Se
tion 5.1 we gave reasons for using a set partitioning formulation. However, usingthis formulation restri
ts the range of problems we 
an solve as we 
an only solve problemswith a set partitioning solution. The ideal would be to have a formulation that has theguiding nature of set partitioning but the 
exibility of set 
overing. With GENET we 
ana
hieve this as GENET only tries to minimise the number of 
onstraint violations and isnot restri
ted to solutions whi
h satisfy all the 
onstraints. E�e
tively, we 
an work witha set partitioning formulation but a

ept set 
overing solutions.In the systemati
 approa
h detailed in the previous 
hapter the basi
 formulation of theproblem is to have the pie
es of work as the variables, the workpie
e model. The 
hapteralso mentioned another possible way of representing the problem would be to do it in thesame way as the mathemati
al programming approa
h. In this shift model, the shifts arethe variables. The domains are binary, with values representing whether to use the shift
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hedulingor not use it.The workpie
e representation has two main advantages over the shift model. As dis
ussedin Se
tion 5.2.2 in the latter model, the number of de
ision variables is mu
h larger. Fur-thermore, the number of assignments of values to variables in the shift model is 2n, wheren is the number of shifts. This is mu
h larger than the number of possible assignmentsin the workpie
e model, whi
h is Qmi=1 ni (where ni is the number of shifts 
overing pie
ei). Although with 
onstraint propagation not all the possible assignments will be tried,the number of possible assignments gives an indi
ation of the 
omplexity of the model. Inthe systemati
 approa
h this gave a large advantage to the workpie
e model. However,with a lo
al sear
h method the possible number of assignments (size) is less important tothe algorithms ability to �nd a near optimal solution. This is be
ause the lo
al sear
hmethod will only try a fra
tion of the possible 
hoi
es, whereas the systemati
 approa
hwill impli
itly try all possibilities. The a
tual importan
e of size is problem spe
i�
 andis dependent on the type of systemati
 and lo
al sear
h methods used.Another disadvantage of the shift model is that there must be 
onstraints in pla
e toensure that no pie
es of work are left un
overed. If those 
onstraints are violated, thesolution is not a feasible s
hedule and 
annot easily be 
onverted to one, unlike a solutionwith over-
over. On the other hand, when using lo
al sear
h with the workpie
e model,every state of the sear
h 
ould be a s
hedule (however ineÆ
ient). This is the reason wehave opted to maintain the workpie
e model in the GENET system.One of the drawba
ks of a sto
hasti
 method su
h as GENET is the loss of a guaranteeof produ
ing an optimal solution. Given time, an exhaustive sear
h will always �nd anoptimal solution whereas a sto
hasti
 method may not. However, the fa
t that we havea heuristi
ally redu
ed set of shifts means that we have sa
ri�
ed the guarantee of a realoptimal solution and aim to produ
e near optimal or possibly optimal solutions. So theguarantee is already lost. Moreover, if a lo
al sear
h method 
an deal with a large initialset of shifts then fewer heuristi
 redu
tions need to be done and there is less 
han
e ofremoving useful shifts.
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heduling6.2 The GENET modelThe 
onstraints in the set partitioning formulation are binary and so 
ould be set up inthe original format of GENET (see Se
tion 3.6). If any two variables (pie
es of work) havea shift that 
overs both of them then we need to set up 
onstraints to deter one variablefrom 
hoosing that shift and the other one not. Hen
e, the network 
ould be set up as inFigure 6.1. The 
luster of three neurons on the left represents variable A and the 
lusterof two on the right represents variable B. The value asso
iated with ea
h neuron is thenumber of the 
orresponding shift. The symmetri
al weighted 
onne
tions are shown bylines between the neurons: the weights are initialised to -1. The pie
es of work 
ould bothbe 
overed by shift 5 and so if one 
hooses 5 and the other does not, over-
over will o

ur.We want to deter this from happening by having nogood 
onne
tions between label nodes.To illustrate how the network would work let the labels <A,3> and <B,5> be on. Label<A,3> and <B,5> therefore output a 1; labels <A,1> and <A,3> re
eive an input of -1 from<B,5> and label <B,5> re
eives an input of -1 from <A,3>. Other inputs remain at 0.When we repair variable A the label, <A,5> is turned on as this has the largest input (0).So now there is no 
on
i
t between variables A and B; the same shift is 
overing both.
B
A


-1


-1


-1

1


3


5


5


8
Figure 6.1: Two node 
lusters with set partitioning 
onstraints in GENET
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hedulingWhen we use pie
es as variables and shifts as values and allow 
onstraints to be brokenwe introdu
e a mapping of one to many from the set of possible solutions to the set ofpossible states of GENET. This means that a variable might 
hange values and yet thes
hedule would remain the same. If the variables were the shifts and the values were 0 and1 then this would not happen. However, in a lo
al sear
h method this is not as mu
h of ahindran
e as this type of symmetry would be to an approa
h that sear
hed exhaustively.Instead of stepping from a s
hedule to a di�erent s
hedule, having this symmetry 
an beviewed as allowing sub-steps that will eventually lead to another s
hedule.Unfortunately, 
onne
ting all pairs of in
onsistent labels takes up too mu
h memory. On-ly the smallest problem (t1) in the test data 
an be represented using GENET's existingbinary-
onstraint representation. To 
ombat this a new 
onstraint neuron has been de-veloped in a similar way to GENET's non-binary 
onstraints des
ribed in Se
tion 3.6.3.Figure 6.2 illustrates the use of the new neuron to represent the 
onstraint between thepie
es A and B.
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Figure 6.2: Set partitioning 
onstraint node in GENETThe 
onne
tions are no longer symmetri
; if a label node is on then it outputs a 1 to the
onstraint neuron. The 
onstraint neuron then de
ides, knowing whi
h label nodes it hasre
eived an input from, whi
h label nodes need to be penalised. It then sends an output to
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hedulingthose nodes whi
h will be negatively weighted by the 
onstraint node's stored weight. Asbefore labels <A,1>, <A,3> and <B,5> re
eive an input of -1 if <A,3> and <B,5> are on.Ea
h 
onstraint node has only a single weight, initialised to -1, so that all label nodes thatare penalised by a 
onstraint are penalised equally. This is di�erent to the representationdes
ribed above, where the weights of individual 
onne
tions between two node 
lustersmay be
ome di�erent through the learning pro
ess. Hen
e, the energy lands
ape willbe
ome di�erent for the two models.6.3 Sideways movesThe �rst 
onsideration is to investigate the suitability for this parti
ular problem of side-ways moves (see Se
tion 3.6.2). In su
h a highly stru
tured problem it is unlikely thatsideways move would be useful. The 
hoi
e of value that a variable takes is so dependenton the 
hoi
es that other variables make, that 
hanging these values without reason isunlikely to lead to improvement. This theory is borne out by the results in Table 6.1. Thetable shows the results for the 9 problem instan
es des
ribed in Se
tion 5.3. The �nal 
ol-umn shows the average of these. For ea
h problem instan
e the program was run 10 timeswith 10 di�erent seeds for the program's random number generator. A run is terminatedafter 3000 
y
les. This is be
ause, although the CPU time to �nd the best solution is oftenshort, the user time 
an be mu
h longer and the program has to be run 90 times to testea
h heuristi
. All the runs of the program where done on an SGI O
tane ma
hine. Thisis a di�erent ma
hine to the one used for the 
onstraint programming approa
h des
ribedin Chapter 5. The reason for this is that, due to the restri
tions imposed by the Solverli
en
e and an implementation issue with GENET, ea
h algorithm 
annot be run on thema
hine the other was run on. This means that the timings are not dire
tly 
omparable.Sample runs were made up to 10000 
y
les but no extra improvements were made on thesolution. Listed in the results is the average of the number of shifts in the best solutionfound for ea
h run. The standard deviation is not given but for the basi
 model the aver-age standard deviation is less than 1 whole shift (the average standard deviation for the
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e t1 r1 r1a r2 t2 r3 
1 
1a r4 avpie
es 24 53 53 54 125 160 186 186 203 n/ainitial shifts 77 2503 4273 3001 3015 19091 3829 7543 2484 n/asize 271 12k 21k 13k 17k 214k 27k 53k 17k n/aopt # shifts 7 11 11 14 19 16 26 26 25 17.2basi
:av. # shifts 7.20 16.8 18.2 19.6 23.5 21.8 34.9 36.2 33.3 23.5av. time (se
s) 0.09 0.06 0.03 0.03 0.33 1.00 0.84 0.92 0.87 0.46best # shifts 7 15 16 19 23 21 34 34 32 22.3time (se
s) 0.01 0.20 0.03 0.02 0.17 0.64 0.68 1.12 1.24 0.46lsw:av. # shifts 7.70 16.7 18.5 19.5 23.8 21.7 35.2 36.2 33.6 23.7av. time (se
s) 0.11 0.16 0.08 0.09 1.83 11.7 5.3 5.02 3.78 3.12best # shifts 7 16 18 18 23 20 34 35 32 22.6time (se
s) 0.01 0.09 0.05 0.22 0.67 8.4 7.10 3.77 3.0 2.59av. # shifts 7.20 17.1 18.4 19.6 26.4 41.9 51.4 52.1 47.5 31.3av. time (se
s) 0.11 0.60 0.26 0.29 3.09 8.30 0.92 0.77 3.95 2.03best # shifts 7 16 17 18 23 34 46 50 43 28.2time (se
s) 0.01 0.59 0.20 0.77 6.11 18.5 7.74 0.27 13.1 5.26Table 6.1: Results on allowing or not allowing sideways moves.lsw = limited sideways moves, fsw = full sideways moves�nal model is also less than 1). Also shown is the average time at whi
h these solutionswere found. The �nal two rows give the lowest number of shifts a
hieved out of all 10 runsand the time it took to �nd this solution.The results using limited sideways moves and no sideways moves are very similar. Althoughin some 
ases one is better than the other, neither has a signi�
ant advantage. However,the full sideways moves strategy is mu
h worse than the other two espe
ially for largerproblems.6.4 Super
uous/redundant shiftsAn extreme situation that 
an o

ur when allowing 
onstraints to be broken, so allowingover-
over, is that the shift that is sele
ted by some variable might not uniquely 
overany pie
e of work, i.e. every pie
e of work 
overed by this shift is also 
overed by anothersele
ted shift. In examining states of the network it was found that at times this did
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hedulingshift pie
es 
overed88 6, 886 6, 8, 14135 8, 14173 13170 13, 14, 15, 16177 15, 16Table 6.2: Example shifts used in a state of GENET.happen. These super
uous shifts 
an be removed, thus redu
ing the number of shiftswithout leaving any un
overed pie
es of work. To ta
kle this situation a routine wasdevised to take a
tion at lo
al minima.There may not be a unique way of removing super
uous shifts; for instan
e, if one pie
eof work is 
overed by two super
uous shifts and no other shift, then when either shiftis removed the other is no longer super
uous. This means that shifts may potentiallybe super
uous but in fa
t may be
ome needed if other potentially super
uous shifts areremoved. We will use a real set of shifts that were in use in a state of GENET to illustratethis. Table 6.2 shows the index of ea
h shift and the numbers of the pie
es of work thatit 
overs.If we remove shifts 86, 170 then there are no 
on
i
ts and all the pie
es are still 
overed.We will dis
uss how we might translate this pro
ess into a general formula for removingshifts.There are several possible general strategies. For instan
e:1. Remove all shifts that are a subset of another shift. In the example above we wouldremove 88, 135, 173, 177. This would still 
ause a 
on
i
t between 86 and 170 butwould leave only 2 shifts being used.2. Remove potentially super
uous shifts that are a superset of another (e.g. 86, 170).This leaves no 
on
i
ts but uses 4 shifts.3. Solve the problem of �nding an optimal set of super
uous shifts to remove as a
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e t1 r1 r1a r2 t2 r3 
1 
1a r4 avpie
es 24 53 53 54 125 160 186 186 203 n/ainitial shifts 77 2503 4273 3001 3015 19091 3829 7543 2484 n/asize 271 12k 21k 13k 17k 214k 27k 53k 17k n/aopt # shifts 7 11 11 14 19 16 26 26 25 17.22rem:av. # shifts 7.10 16.3 18.4 18.7 23.2 21.0 33.9 35.0 31.8 22.8av. time (se
s) 0.02 0.02 0.01 0.01 0.16 1.24 0.28 0.38 0.29 0.27best # shifts 7 15 16 17 23 20 33 34 31 21.8time (se
s) 0.00 0.04 0.05 0.01 0.09 0.34 0.22 0.31 0.13 0.13Table 6.3: Results of removing super
uous shifts.rem = remove super
uous shiftsseparate subproblem.4. Repeatedly randomly remove a potentially super
uous shift until there are no su-per
uous shifts left.5. Look at the overall energy 
hange of removing ea
h shift. Remove the shift thatwould produ
e the best 
hange.6. Remove all potentially super
uous shifts from the 
urrent state of GENET, for
ingvariables to 
hoose di�erent shifts.Super
uous shifts are not alway present and in the latter stages of the sear
h there areusually only 1 or 2, if any. Therefore, using a great deal of 
omputing power and extrame
hanisms to solve this problem is deemed to be fruitless. Therefore, the option de
idedon was strategy 6 and this was implemented by just tagging super
uous shifts to not beused in the next 
y
le, so that other shifts are used to 
over the work. No attempt ismade to as
ertain whether two super
uous shifts would be
ome non-super
uous if onewere removed.Table 6.3, giving results for the same problems as in Table 6.1, shows that adding a
omponent to remove super
uous shifts at lo
al minima does improve the solutions overjust using the basi
 sear
h, in several 
ases. We will see below that the problem ofsuper
uous shifts disappears as we introdu
e general me
hanisms to redu
e the number
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hedulingof shifts.6.5 OptimisationGENET has been used to solve optimisation problems and this has been des
ribed inse
tions 3.6.5 and 3.6.5.2. In the driver s
heduling problem the most important 
riterionto optimise, the number of shifts, is a global 
riterion and so 
osts 
annot be set on thelabels initially. The 
ost of a label 
annot be worked out lo
ally be
ause knowledge ofthe states of other variables is needed. A well known problem with a similar optimisation
riterion is the Radio Frequen
y Assignment problem, when it is required to minimisethe number of frequen
ies used. The diÆ
ulty in this type of minimisation is that toremove a frequen
y all the transmitters that are assigned to that frequen
y need to 
hangestate, whi
h may require several independent moves. As mentioned in Se
tion 3.6.5.2 thisproblem was solved by initially using only the minimum number of frequen
ies needed to
over all 
hannels. This produ
es many 
onstraint violations, but be
ause the domainsof most of the variables are the same, very few frequen
ies need be used, possibly onlyone. GENET then adds frequen
ies to redu
e the 
on
i
ts and the number of frequen
iesadded is thereby kept low.Unfortunately, in the driver s
heduling problem we 
annot have one shift that would 
overall the pie
es, and 
hoosing a minimal set of initial shifts 
overing all the pie
es of workamounts to solving the problem. We 
an start with all the pie
es un
overed, whi
h issimilar, although an un
overed pie
e is in 
on
i
t with everything, whereas one frequen
ywill not be. By in
luding a virtual shift as a value in the domain of all pie
es of work,
orresponding to the pie
e being left un
overed, we 
an start the pro
ess with this virtualshift 
hosen for all variables. We add a single 
onstraint to penalise the use of the virtualshift and so GENET will add shifts to remove it. There is only one virtual shift whi
h isheavily penalised. The risk of not �nding a solution is low and all under-
over is normallyremoved in the �rst few 
y
les. The �rst entry (un
ov) in Table 6.4 shows that the numbersof shifts in the solutions produ
ed are less than or equal to the numbers of shifts produ
ed
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 model of Table 6.1), but the improvement is small.In order to �nd solutions with the same number of drivers as TRACS II, we need to addressthe diÆ
ulty that there are few opportunities to remove whole shifts. We 
an either putmore e�ort into looking for global moves whi
h will remove shifts by 
onsidering thesolution as a whole or introdu
e a bias into GENET's lo
al moves whi
h will hopefullyallow a sequen
e of lo
al moves to lead to the removal of a shift. One possible way ofdoing this is by progressively penalising shifts that are not assigned to all their pie
es ofwork, thus dissuading individual variables from using su
h a shift. This should guide thesear
h to states where only one variable is using this shift and so to a position where it
ould be removed with a single 
hange. To do this we add a term Popt:<i;j> to the inputthat a label node < i; j > gets:Popt:<i;j> = �I + Ij � L<i;j> (6.1)where I is the number of variables, Ij is the number of variables assigned to value j andL<i;j> is a number that starts at zero and in
reases by one every time that label node< i; j > is on at a lo
al minimum. The number of variables is obviously 
onstant and isput in to ensure that the optimisation term is always inhibitory. The more variables thereare whi
h 
hoose the value, the less inhibitory the term is.A minor adaptation of this optimisation te
hnique has been tried. The di�eren
e betweenit and the original te
hnique is that shifts that are assigned to all the pie
es they 
over arenot penalised. So there is no large negative in
uen
e of the 
onstant value of the numberof variables (I). This puts a large bias on shifts that are 
hosen by all their pie
es. Thiswas introdu
ed to stabilise the sear
h. By not penalising shifts that are 
hosen by all theirpie
es of work it is mu
h more likely that these shifts will be retained.Using the optimisation te
hnique des
ribed above, Table 6.4 shows that in the overallaverages there is a de
rease in the number of shifts 
ompared to the basi
 model. In
omparison with the basi
 model of Table 6.1, it tends to produ
e slightly better solutions
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Instan
e t1 r1 r1a r2 t2 r3 
1 
1a r4 avpie
es 24 53 53 54 125 160 186 186 203 n/ainitial shifts 77 2503 4273 3001 3015 19091 3829 7543 2484 n/asize 271 12k 21k 13k 17k 214k 27k 53k 17k n/aopt # shifts 7 11 11 14 19 16 26 26 25 17.22un
ov:av. # shifts 7.60 15.0 17.6 18.8 23.7 22.0 34.4 36.2 32.9 23.1av. time (se
s) 0.06 0.17 0.13 0.07 0.48 6.38 1.43 1.74 0.91 1.26best # shifts 7 14 16 17 23 20 32 35 32 21.8time (se
s) 0.04 0.27 0.72 0.04 0.26 3.26 1.03 1.33 1.42 0.93optl:av. # shifts 7.70 15.0 15.9 17.6 24.4 21.5 35.9 37.5 33.6 23.2av. time (se
s) 0.03 0.32 0.24 0.23 1.19 4.95 2.23 2.25 2.10 1.50best # shifts 7 14 15 16 23 19 34 36 32 21.8time (se
s) 0.00 0.16 0.77 0.06 0.50 3.43 1.25 1.89 1.60 1.07optl+nf:av. # shifts 7.70 15.0 16.0 18.5 23.6 21.9 34.7 36.1 32.8 22.9av. time (se
s) 0.00 0.08 0.05 0.02 0.35 1.59 0.42 0.49 0.65 0.41best # shifts 7 14 14 18 22 20 34 35 32 21.8time (se
s) 0.00 0.06 0.09 0.01 0.08 1.54 0.20 0.32 0.19 0.28Table 6.4: Results of using a te
hnique to optimise the number of shifts used.un
ov = all the pie
es of work start o� un
overedoptl = the optimisation te
hniquenf = do not penalise shift that 
over all their pie
es
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hedulingon smaller problems and worse on larger problems. This shows how diÆ
ult it is to removea shift using a sequen
e of moves. A further problem is that to redu
e the overall numberof shifts a new shift may need to be introdu
ed whi
h �ts better than an existing shift. Inthe optimisation s
heme, shifts that are not used, i.e. no asso
iated label node is on, willbe heavily penalised and so are unlikely to be introdu
ed, whether it is useful to do so ornot. Below, we will retain the optimisation te
hnique and investigate other ways to solvethe two problems stated above.The results in Table 6.4 also show that in
luding the option to not penalise shifts that 
overall their pie
es only makes a minor di�eren
e by slightly de
reasing the overall averagenumber of shifts. This option will be further investigated in the �nal version of the sear
hpro
ess.6.5.1 Improved starting solutionBy using a random initial solution to start the sear
h, a large number of shifts is used.Sin
e removing shifts is something that GENET �nds diÆ
ult, a method was used toimprove the quality of the initial solution. A simple greedy algorithm was used to 
reatethe initial solution. The algorithm starts with the earliest pie
e of work in the bus s
hedule.It then pi
ks the shift to 
over it that 
overs the largest number of other pie
es of work.Then it 
ontinues pi
king un
overed work in 
hronologi
al order and 
hoosing the shiftwhi
h 
overs the most un
overed pie
es of work until all pie
es of work are 
overed by atleast one shift. The starting value (shift) assigned to ea
h variable (pie
e) is then 
hosenrandomly from the shifts that 
ould 
over it in this initial solution.Table 6.5 shows the number of shifts used in the initial solution and the solutions foundby GENET. In 
omparison with earlier results GENET improves the best found solutionon several of the problems (
1, t2, r2). However, the best solution found is often nobetter than the initial solution. In the following se
tions, when testing new heuristi
s andadaptations of GENET, we will investigate 
ombining the new features with the greedyinitial solution.
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e t1 r1 r1a r2 t2 r3 
1 
1a r4 avpie
es 24 53 53 54 125 160 186 186 203 n/ainitial shifts 77 2503 4273 3001 3015 19091 3829 7543 2484 n/asize 271 12k 21k 13k 17k 214k 27k 53k 17k n/aopt # shifts 7 11 11 14 19 16 26 26 25 17.22Initsol 7 13 14 16 22 19 32 33 30 20.7optl+init:av. # shifts 7.00 13.0 14.0 15.9 20.8 19.1 32.0 32.7 30.0 20.5av. time (se
s) 0.00 0.02 0.01 0.02 0.02 0.37 0.04 0.10 0.02 0.07best # shifts 7 13 14 15 20 19 32 32 30 20.2time (se
s) 0.00 0.00 0.00 0.05 0.01 0.23 0.00 0.14 0.00 0.05Table 6.5: Results using a greedy heuristi
 to 
onstru
t an initial solution as opposed toa random starting solution.Initsol = the number of shifts of the initial solution produ
ed by the greedy heuristi
init = use initial solution produ
ed by greedy heuristi
optl = optimisation with learning6.5.2 Removing whole shiftsIn this se
tion we examine a way of using global moves to redu
e the number of shifts.The idea is to take two shifts in the 
urrent solution and repla
e them with one shift. Thiswould be very hard to do if there were little or no over-
over be
ause it is then unlikelythat the union of the pie
es of work that two shifts 
over is identi
al to the pie
es of work
overed by another shift. However, if there is enough over-
over it 
an be possible to �nd ashift that 
overs the work that two shifts 
over uniquely between them. This is a good wayof rapidly redu
ing the number of shifts and leaving the solution with little over-
over. We
an 
ombine these global moves with lo
al moves and so let the lo
al moves \�ne tune" thesolution. This is done by allowing the algorithm to work as normal until it rea
hes a lo
alminimum, at whi
h point it sear
hes for two shifts that are in use that 
an be repla
ed byone shift. The results are shown in Table 6.6. The solutions are an improvement on theapproa
h with the optimisation te
hnique. However, it will be seen in later se
tions thatwe 
an do better using only lo
al moves.
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e t1 r1 r1a r2 t2 r3 
1 
1a r4 avpie
es 24 53 53 54 125 160 186 186 203 n/ainitial shifts 77 2503 4273 3001 3015 19091 3829 7543 2484 n/asize 271 12k 21k 13k 17k 214k 27k 53k 17k n/aopt # shifts 7 11 11 14 19 16 26 26 25 17.22rep:av. # shifts 7.00 15.1 15.7 17.7 21.3 20.5 32.5 32.4 30.0 21.4av. time (se
s) 0.01 0.11 0.12 0.24 0.94 8.70 2.10 6.17 1.13 2.17best # shifts 7 14 14 16 17 16 30 29 28 19.0time (se
s) 0.00 0.07 0.18 0.12 0.05 28.2 12.8 11.2 1.92 6.06rep+init:av. # shifts 7.00 13.0 13.5 16.3 20.2 20.6 30.0 30.0 27.8 19.8av. time (se
s) 0.00 0.02 0.03 0.05 0.09 2.96 0.64 1.22 0.60 0.62best # shifts 7 13 13 16 20 17 29 28 27 18.9time (se
s) 0.00 0.01 0.03 0.04 0.04 15.62 0.74 1.23 0.62 2.04Table 6.6: Results showing the e�e
t of using global moves to repla
e whole shiftsrep = try to repla
e two shifts with oneinit = use initial solution produ
ed by greedy heuristi
6.6 A less deforming learning modelIn the model we originally developed, ea
h 
onstraint node has one asso
iated weight.This weights the output to all the label nodes 
onne
ted to that 
onstraint. Ea
h 
on-straint node, is 
onne
ted to all the label nodes representing two variables (see Figure 6.2).Through learning, the weight of the 
onstraint node will in
rease every time any two la-bel nodes 
onne
ted to the 
onstraint are on and are in 
on
i
t with ea
h other. In theoriginal version of GENET, there is a weight for every nogood pairing of label nodes, andthis weight will only in
rease when this pairing of label nodes is on at a lo
al minimum.With only one weight asso
iated with a 
onstraint the weight will in
rease more frequentlythan individual weights on nogood pairings. This is undesirable and so a 
ompromise hasbeen stru
k between having a weight for ea
h nogood and only having one weight for ea
h
onstraint. This 
ompromise also has the added advantage of introdu
ing bias into themodel to redu
e the number of shifts used.To re�ne the learning method we have introdu
ed more than one weight per 
onstraint.We repla
e the single weight on the 
onstraint (W ) with a weight for ea
h shift that is
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 where 
 = 1, . . . , C and C is the number ofshifts in 
ommon) and a single weight (wn) for all the shifts that are not 
ommon to bothvariables. Whether a label node is penalised or not is 
hosen in the same way as before,but how mu
h it is penalised is 
hosen di�erently. Ea
h label node is penalised by itsasso
iated weight. So the di�eren
e between the new 
onstraint representation and theold one shown in Figure 6.2 is that we are using several weights instead of one. All theweights start at -1 as did W but the lands
ape for the two models be
ome di�erent throughlearning. With only one weight it in
reases every time the two asso
iated variables are in
on
i
t whereas in the new model only two of the weights in
rease (for example if the iand j were 
ommon shifts and both were on in a lo
al minima only weights wi and wjwould be
ome more negative).Figure 6.3 illustrates how using these extra weights works. There are now 3 weights stored:one ea
h for shifts 3 and 8 as these are 
ommon to both pie
es and one for the other shifts.All the weights start at -1 but through learning they 
an be
ome di�erent, in our examplethe weight for shift 8 has be
ome -2 while the others remain at -1. In the example shown,if the 
onstraint had only one weight and nodes <A,3> and <B,2> are on, nodes <B,2>and <B,8> would be penalised be
ause they being on 
orresponds to over-
over. Similarly,<A,8> would be penalised be
ause B is at the moment 
overed by shift 2 and so would beover-
overed if shift 8 were also used. With multiple weights the same nodes are penalisedbut by di�erent amounts, <B,8> by -2 be
ause the weight linked with 8 is -2 and similarly<A,3> by -1.Having extra weights has a twofold advantage over just having a single weight. Firstly, ifthere is only one weight the input of all penalised label nodes will be
ome more negativeby the same amount when the weight in
reases. Therefore, the asso
iated variables aremore likely to have nodes with the same input than if several di�erent weights label nodesare used. This means that more moves are available if several di�erent weights are used.The se
ond advantage of using weights for shifts that are in 
ommon is that 
ertain shiftswill get more penalised, thus leading to their removal.
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e t1 r1 r1a r2 t2 r3 
1 
1a r4 avpie
es 24 53 53 54 125 160 186 186 203 n/ainitial shifts 77 2503 4273 3001 3015 19091 3829 7543 2484 n/asize 271 12k 21k 13k 17k 214k 27k 53k 17k n/aopt # shifts 7 11 11 14 19 16 26 26 25 17.22Initsol 7 13 14 16 22 19 32 33 30 20.7mwt:av. # shifts 7.00 14.3 18.0 18.0 20.6 16.8 29.0 29.1 27.7 20.1av. time (se
s) 0.02 0.16 0.07 0.07 0.71 13.7 1.72 2.63 1.33 2.26best # shifts 7 12 16 16 20 16 28 28 27 18.9time (se
s) 0.01 0.32 0.10 0.08 0.71 13.0 1.13 1.18 1.32 1.99mwt+optl+init:av. # shifts 7.00 12.3 13.8 14.3 21.0 16.3 30.5 31.1 29.5 19.5av. time (se
s) 0.00 0.41 0.16 0.46 0.04 11.7 1.63 1.78 1.19 1.93best # shifts 7 11 12 14 21 16 29 30 29 18.8time (se
s) 0.00 0.31 1.26 0.18 0.03 6.32 3.39 2.68 1.41 1.73mwt+optl+rem:av. # shifts 7.00 12.1 14.0 14.0 22.2 16.3 30.7 30.1 29.2 19.5av. time (se
s) 0.03 0.55 0.47 0.56 1.00 13.8 4.40 4.94 2.49 3.14best # shifts 7 11 12 14 22 16 29 29 28 18.7time (se
s) 0.00 0.85 2.27 0.17 0.36 6.56 6.44 2.84 2.01 2.39mwt+optl+rep:av. # shifts 7.20 14.0 14.2 16.1 23.0 19.4 32.0 33.0 33.0 21.3av. time (se
s) 0.01 0.43 0.30 0.24 0.39 6.36 1.15 3.78 0.47 1.46best # shifts 7 13 13 15 22 16 29 30 30 19.4time (se
s) 0.00 0.06 0.25 0.32 0.23 7.39 2.86 2.20 1.36 1.63mwt+optl+nf:av. # shifts 7.00 12.8 14.8 16.1 20.7 16.5 29.1 29.2 27.9 19.4av. time (se
s) 0.25 2.24 0.93 1.32 4.74 17.4 8.34 10.41 8.02 5.96best # shifts 7 12 12 14 20 16 28 28 27 18.2time (se
s) 0.03 1.45 1.60 3.12 5.15 15.14 5.28 17.7 4.55 6.00mwt+optl:av. # shifts 7.00 11.8 14.1 14.2 22.3 16.3 30.5 30.4 29.5 19.6av. time (se
s) 0.03 0.46 0.24 0.63 0.93 9.90 2.00 2.37 1.37 1.99best # shifts 7 11 11 14 21 16 29 29 28 18.4time (se
s) 0.00 0.52 0.45 0.19 0.48 6.03 3.52 2.19 1.20 1.62Table 6.7: Using several weights for ea
h 
onstraint.Initsol = the number of shifts of the initial solution produ
ed by the greedy heuristi
optl = optimisation with learningnf = do not penalise shifts that 
over all their pie
esmwt = using more than one weight per 
onstraintinit = use initial solution produ
ed by greedy heuristi
rep = try to repla
e two shifts with one
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hedulingTable 6.7 shows the results of using several weights to represent ea
h 
onstraint 
ombinedwith the strategies 
onsidered earlier. There is a 
onsiderable improvement over the initialresults shown in Table 6.1 and in many 
ases the best solutions found have the samenumber of shifts as in the TRACS II solution. It is no longer worthwhile to use the greedyheuristi
 to build a starting solution; a random initial solution does just as well. Hen
ethe 
redit for the quality of the �nal solution is due entirely to the sear
h algorithm.Furthermore, removing super
uous shifts now makes hardly any di�eren
e to the qualityof the solutions. Equally the repla
e heuristi
 that removed whole shifts at lo
al minimais no longer of use. The only alteration that does have a positive in
uen
e on the pro
essof using several weights is not penalising shifts that are 
hosen by all the pie
es of workthat they 
an 
over. By doing this one fewer shift is used in the best solution obtainedin four of the larger problems. However, the best solution obtained for r1 and r1a now
ontain one mores shift than the result produ
ed by TRACS II.By examining what the algorithm is doing during the sear
h we 
an see how the improve-ment o

urs. In its �rst two 
olumns, Table 6.8 shows the average number of times a shift
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Figure 6.3: Set partitioning 
onstraint node in GENET with more weight values
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e Revisits Changes % Lo
al minper 
y
le1 wt > 1 wt 1 wt > 1 wt 1 wt > 1 wtt1 3.32 1.86 1.63 2.51 48.63 40.23r1 1.53 1.97 2.28 3.56 44.94 38.58r1a 1.34 1.57 2.63 3.12 43.49 39.33r2 1.27 1.71 2.63 3.32 43.78 39.66t2 3.44 2.73 4.63 7.08 40.67 30.52r3 3.62 3.04 7.80 16.80 31.13 22.80
1 4.00 3.29 5.38 9.20 38.92 27.73
1a 3.91 3.02 6.13 9.69 38.18 27.47r4 3.77 3.29 5.33 9.41 35.61 27.34av 2.91 2.50 4.27 7.18 40.59 32.63Table 6.8: Comparison between one weight and multiple weights for ea
h 
onstraint.Revisits is the average number of times a shift is removed and later reinstated. Changesper 
y
le is the average number of 
lusters that 
hange the label node that is on per 
y
le.% Lo
al minima is the per
entage of moves that are in a lo
al minimum.is removed and reinstated in GENET until the best solution is found. The table givesresults for the 9 problems and the overall average. We 
an see that using more than oneweight per 
onstraint de
reases, on average, the number of times a shift is revisited. Thenext two 
olumns show the average number of variable 
lusters that 
hange the label nodethat is on per 
y
le. In every 
ase using more than one weight in
reases the number of
hanges and so does more sear
hing on ea
h 
y
le. Finally the last two 
olumns show theper
entage of moves that ended in a lo
al minimum: the proportion of these unprodu
tivemoves is higher in every 
ase when only one weight is used per 
onstraint. Figure 6.4
ompares in detail the sear
h pro
ess with and without extra weights for a parti
ular in-stan
e. Using the extra weights allows the sear
h to 
hange more at ea
h 
y
le than whenonly one weight is used. It allows the sear
h to move between states with few shifts eventhough it may have to temporarily add shifts to get between these states.6.7 Summary and 
on
lusionSeveral adaptations to GENET have been made to try to redu
e the number of shiftsused. These 
onsist of: introdu
ing a bias in the lo
al moves; making global moves; and
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hedulingstarting the sear
h from an improved state. The most su

essful method was one of theattempts to in
lude a bias in the lo
al moves, by using multiple weights for ea
h 
onstraint.This made several of the other te
hniques obsolete. The reason for the su

ess has beenexplained and eviden
e is given by examining the sear
h pro
ess. This is interesting asusing the biasing method enhan
es performan
e without adding additional me
hani
s tothe sear
h pro
ess, just adapting the 
onstraints to improve the existing learning pro
ess.As with the previous Chapter the resear
h done here is domain spe
i�
 however lessonsmay be learned for solving other pra
ti
al and generals problems using GENET. Theseaspe
ts are the following:1. Optimisation. This resear
h 
ombined with that in [10, 9℄ shows the poor resultsobtained when trying to optimise a global optimisation 
riterion (number of driversor number of frequen
ies) using the type of optimisation term used in Se
tion 3.6.5and 6.5. We have shown that the diÆ
ulty lies in having to make a su

ession of lo
almoves to make a di�eren
e to the optimisation 
riterion. We have also introdu
eda method whi
h allows for this type of sequen
e of lo
al moves to improve thesolution(Se
tion 6.6).2. Less deforming model. The original work on GENET for adding non-binary 
on-straints dis
ussed in Se
tion 3.6.3 used only one weight per 
onstraint node. How-ever, we have shown in Se
tion 6.6 that using more weights 
an make a signi�
antdi�eren
e to solution quality.3. Sideways moves. How to de
ide whether sideways moves should be allowed whensolving a parti
ular problem using lo
al sear
h is still an open question. However,this resear
h has put forward the idea that with hard, highly stru
tured problemssideways moves should not be used. A full analysis of varying stru
ture and its e�e
ton the solution quality when using sideways moves is beyond the s
ope of the thesisbut is an area for investigation.Further work 
ould be 
arried out in several areas. Using a relaxed linear programming
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hedulingsolution to the set partitioning problem greatly in
reased the performan
e of the system-ati
 approa
h des
ribed in the previous 
hapter. Further, the only su

essful lo
al sear
happroa
h to large set/
overing partitioning problems for driver s
heduling [67℄ dependsgreatly on this LP solution. Therefore, examining how the LP solution 
ould be in
or-porated into GENET may be very produ
tive. The me
hani
s of using the LP solutionneed to be resear
hed but there is a positive indi
ation that it may work very well. Thisis be
ause the LP solution and the GENET model have similarities. The assignment of apie
e of work to a shift in GENET is similar to 
hoosing a fra
tion of the shift to 
overit in the LP solution. So translating the LP solution into a state in GENET would be arelatively easy task.Another area for future work would be to expand the algorithm to ta
kle some of thefurther restri
tions that 
an be imposed by bus 
ompanies. The driver s
heduling prob-lem sometimes has side 
onstraints and features that are hard to express in a pure setpartitioning formulation. Examination of these to see if the expressive power of 
onstraintsatisfa
tion 
an model these better than ILP 
ould be very useful. This has been dis
ussedin Se
tion 5.8 and is further dis
ussed in Se
tion 7.3.Lastly, a more general area for further work is to do with how GENET uses weights aswe dis
ussed in Item 2 above. The resear
h dealt with the high memory requirementsgenerated by representing the problem using GENET's original binary 
onstraints. Theproblem was represented using an adaptation of the non-binary 
onstraints developed forGENET to be used as binary 
onstraints. It was found that using this type of 
onstraintlow quality results were produ
ed, with large numbers of unne
essary drivers in the s
hed-ule. The possible reasons for this were examined by extra
ting information on the sear
h.Using multiple weights instead of single weights improved the results greatly and the ex-amination of the sear
h gave possible reasons for this. An area open to resear
h is whetherin non-binary CSPs GENET should have ea
h 
onstraint with a single or multiple weight.A study of a range of problems with non-binary 
onstraints, extra
ting the same sear
hinformation, may shed light on this issue. So although this type of resear
h is beyond thes
ope of this thesis, it has provided a dire
tion for su
h resear
h.



Chapter 7Con
lusions
7.1 SummaryThe driver s
heduling problem and its 
ommer
ial importan
e has been presented. The
urrent methods for driver s
heduling have been des
ribed and their shortfalls expressed.The fa
t that it is sometimes hard to adapt methods between organisations and thatprovably optimal solutions to pra
ti
al problems are not obtainable has been dis
ussed.The problem is tightly restri
ted and heuristi
 methods have found it hard to produ
e goodresults for it. On the other hand, mixtures of heuristi
s and mathemati
al programminghave been very su

essful, although even these have their 
aws, whi
h have stimulatedinvestigation of other approa
hes.This thesis has investigated two methods that use 
onstraint satisfa
tion for modellingand solving the bus driver s
heduling problem. These methods start from a prede�nedset of shifts, and from this they sele
t shifts to produ
e a s
hedule. This ta
ti
 has been
hosen over produ
ing shifts as the s
hedule is built up be
ause it allows the solver to be123
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lusionsgeneri
 and more independent of individual 
ompanies' regulations.These methods have a
hieved su

ess in solving small driver s
heduling problems fromdi�erent 
ompanies with varying regulations. However, the mathemati
al programmingsystem TRACS II [37, 66, 125℄ 
an solve mu
h larger problems. It is unsurprising thatthe new methods 
annot 
ompete, as there has been over 30 years of resear
h invested inthe TRACS II system. However, our results are en
ouraging, and indi
ate dire
tions forfurther resear
h.7.2 Comparison between methodsThe two new methods des
ribed in Chapters 5 and 6 are di�erent in many ways. The�rst approa
h employs systemati
 sear
h, whereas the se
ond is a lo
al sear
h methoddeveloped from GENET [121, 110℄. This means that in theory the systemati
 approa
hwill, given enough time, produ
e an optimal solution but the lo
al sear
h method maynever �nd the optimum. However, in pra
ti
al terms, the problem is hard to solve and timeis limited, so the systemati
 approa
h may also not �nd an optimal solution. Furthermore,as the set of possible shifts that are to be sele
ted from is heuristi
ally generated, shiftsthat are 
ru
ial to produ
e an optimal solution may not be 
ontained in the set, leadingto no optimal solution being obtained.In examining results, the two methods 
annot be dire
tly 
ompared. The two approa
hesta
kle slightly di�erent problems. GENET would a

ept set 
overing problems that the
onstraint programming approa
h will not. Moreover, the timings of runs 
annot be
ompared as explained in Se
tion 6.3.For our test problems TRACS II produ
es the optimal number of drivers that 
an bea
hieved by sele
ting from the generated set of shifts. However, it is possible (althoughhighly unlikely for problems of this size) that if we were to sele
t from the set of all possibleshifts, solutions with fewer drivers would exist. So therefore we will 
all a solution with the
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lusionssame number of drivers as TRACS II a pseudo-optimal solution. It is worth noting in theresear
h done in this thesis we do not 
onsider asso
iated 
osts of shifts, but TRACS IIdoes and attempts to redu
e them. Therefore, the pseudo-optimal solutions we speakof may in pra
ti
e not be as good as the TRACS II solutions. In every one of the test
ases, the systemati
 approa
h produ
ed a pseudo-optimal solution. However, the GENETadaptation failed to produ
e the same number of drivers in four 
ases. Some fa
tors maya

ount for this di�eren
e in solution quality. In terms of the �nal version, GENETdeals with the problem more as a general set partitioning problem than the systemati
approa
h. GENET takes no advantage of the stru
ture of the problem. On the otherhand, the systemati
 
onstraint programming approa
h uses the solution to the LP givenby relaxing the integrality 
onditions to guide the sear
h and uses the stru
ture of thebus s
hedule in the form of the relief opportunities to e�e
tively redu
e the size of theproblem. It is believed that using the LP solution in some role within GENET will improveperforman
e greatly. Without the use of the relaxed LP solution, the systemati
 approa
h
ould only �nd a pseudo-optimal solution on a trivially small problem instan
e. However,GENET has found a pseudo-optimal solution for the test problem with the largest numberof potential shifts. Therefore, GENET may have the greater potential of the two.An advantage GENET has over the systemati
 
omplete sear
h method is that it willalways �nd a solution of some quality. In the four 
ases in whi
h it 
ould not �nd apseudo-optimal solution, the best solutions it found were only one or two shifts away fromthe TRACS II solution. Furthermore, GENET 
an handle set 
overing problems and soif there is no set partitioning solution it 
an still �nd a solution.In this thesis when we 
ompare the three sear
h methods, mathemati
al programming,CP and Lo
al sear
h we 
an 
ompare not just the �rst basi
 algorithms developed butalso the 
omparison of how ea
h approa
h 
an be adapted and improved. The mathemat-i
al approa
h has been developed over a long time and has been improved greatly withheuristi
s and improvements in its sear
h te
hnique. The CP approa
h has: examinedmodelling issues; used implied 
onstraints, both mathemati
al and heuristi
; used valueand variable ordering; and used domain spe
i�
 knowledge to enhan
e these. The lo
al
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lusionssear
h method explores several of the issues important to this type of sear
h: es
aping lo-
al minima; sideways moves; several te
hniques for optimisation in
luding di�erent movesoperators; di�erent starting solutions; and adapting the 
onstraints. As stated above theGENET model did not in
orporate as mu
h domain spe
i�
 knowledge as the 
onstraintprogramming approa
h. Part of the reason for this is that in adapting and improving theGENET model the details of these improvements are often down to intuitive developmentfrom empiri
al eviden
e rather than the logi
al improvements possible with the CP ap-proa
h. For example it is 
lear that a good value guide is useful to the CP approa
h but agood initial solution in the �nal GENET approa
h did not give improvements in the bestsolutions found.7.3 Further workApart from the further developments that 
ould be done individually to the two algorithmsdes
ribed in this thesis, there is also further resear
h appli
able to both, and alternativeareas that do not dire
tly relate to either algorithm, but to using 
onstraint satisfa
tionin general for driver s
heduling.The individual areas of resear
h for ea
h algorithm are outlined in the 
on
lusions of therelevant 
hapter. The following will summarise these. The systemati
 approa
h 
ouldbene�t from further development in the implementation of the 
onstraints to improvetheir time and spa
e 
omplexity. GENET 
ould be advan
ed greatly by in
orporating useof the stru
ture of the problem and of the LP solution.There are issues that 
ould be explored possibly in extensions of both of these systems.Examining how regulations 
ould be modelled in the 
onstraint satisfa
tion frameworkwould be of great value. For example, it would be useful to be able to model the frequentrequirement that there is a maximum number of split shifts allowed in the s
hedule (seeSe
tion 4.3.2.8). This 
ould be done simply in the systemati
 approa
h by having avariable for ea
h split shift. These would have a binary domain (0,1) and be 
onstrained
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lusionsto have a 1 if the split shift was in use. A 
onstraint would ensure that at most n ofthese variables would be permitted to have a value 1 at any single time, where n is themaximum allowed number of split shifts. How this would a�e
t the quality the performan
eof the algorithm would be something to be tested. Further restri
tions that are hard tomodel in the ILP approa
h are windows of relief opportunities and multi-depots (seeSe
tion 4.3.2.8). Windows of relief opportunity would be diÆ
ult to represent in any setpartitioning/
overing formulation, as su
h formulations deal with spe
i�
 hand-over times.However, 
onstraint satisfa
tion may provide the key. The reason for this are outlined inSe
tion 5.8.The problems used in this thesis for testing the algorithms produ
ed were submitted toand will appear in the 
onstraint satisfa
tion ben
hmarking library CSPlib [45℄. This willallow other resear
hers a

ess to the problems, so they 
an either develop new algorithmsor perhaps test algorithms developed for air-
rew s
heduling set partitioning problemson driver s
heduling problems. It would be of bene�t to resear
hers to study the drivers
heduling problem purely as a CSP. They might investigate how this CSP relates torandomly generated CSPs and to other pra
ti
al problems formulated as CSPs. There areseveral aspe
ts that 
an be investigated, and ea
h may prove useful. One measure of theproblem would be the 
onstrainedness [42℄ whi
h measures how restri
tive the 
onstraintsof the problems are on the possible assignments. This would be useful be
ause there havebeen studies on the 
onstrainedness of problems and how this 
an be used in sear
h [43℄.Kwan [65℄ did a 
ursory examination of the number of solutions with the pseudo-optimalnumber of shifts. A more in-depth study 
ould be 
ondu
ted whi
h 
ould prove interestingin the light of su
h studies as Clark et al [16℄, whi
h examined how lo
al sear
h is a�e
tedby the number of feasible solutions present in the sear
h spa
e. Walsh [120℄ examined howstru
ture might a�e
t sear
h. The set partitioning problem is stru
tured so that pie
evariables that represent 
onse
utive pie
es of work on the same bus are highly likely tohave 
onstraints between them. Variables representing pie
es of work several hours apartare less likely to have 
onstraints between them. This 
an a�e
t whi
h ordering is thebest to use and we have seen a 
omparison of a dynami
 ordering with a natural ordering,
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lusionsas dis
ussed in Se
tion 5.9. Resear
h into these issues would bene�t the CSP 
ommunityand may also provide knowledge on how to improve the 
onstraint satisfa
tion approa
hesfor driver s
heduling. It would also be of interest to see how these measures would di�erbetween air-
rew, bus and train driver s
heduling set partitioning problems.7.4 S
ope of resear
hAlthough the resear
h in this thesis is domain spe
i�
 there are areas of general use to theresear
h 
ommunity. Some of these have been highlighted in Se
tions 5.9 and 6.7. Whenreviewing the thesis ea
h Se
tion has its own s
ope, these 
an be 
ategorised as:1. Those only useful to the driver s
heduling problem. These are the extended mod-el in Se
tion 5.5, super
uous shifts in Se
tion 6.4 and removing whole shifts inSe
tion 6.5.2.2. Those useful to the set partitioning problem. These are the se
ond model inSe
tion 5.2.2 and the redu
tions in Se
tion 5.4.3. Those useful to applying GENET to general problems. When to apply sidewaysmoves dis
ussed in 6.7, analysis of sear
h in Se
tion 6.6 and the less deformingmodel also in Se
tion 6.6.4. Those useful for pra
ti
al problems in general. These are fully detailed in Se
tions 5.9and 6.7.7.5 A
hievements of the resear
hThe resear
h has allowed the 
omparison of three di�erent sear
h methods. This studyhas been 
arried out on only one type of problem. However, it has been a 
omprehensivestudy in that it explored many features of ea
h of the te
hniques. So not only a basi
model has been tried but many aspe
ts of ea
h type of sear
h have been investigated.
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lusionsThis is di�erent from the 
omparisons given in [22, 87℄ where only rudimentary modelsand sear
h te
hniques where used.The �rst stage of the resear
h su

essfully extra
ted experien
e from the existing mathe-mati
al programming method for driver s
heduling, TRACS II, and in
orporated it intothe 
onstraint programming system to greatly improve the quality of solutions produ
edby the system. This new approa
h produ
es solutions for real driver s
heduling problems.It has been shown to solve problems from di�erent bus 
ompanies with di�erent regula-tions, whereas for most of the re
ent modern heuristi
 approa
hes results have only beengiven for one 
ompany [12, 22, 129℄ . The size of these problems is mu
h greater than pureCP approa
hes 
ould solve. It also tested implied 
onstraints (mathemati
al redu
tions,see Se
tion 5.4) on the set partitioning problem whi
h to the knowledge of the author hasnever been tried before. The work also highlights several aspe
ts that may be of use inmodelling other pra
ti
al 
onstraint satisfa
tion problems, as des
ribed in Se
tion 5.9.Lo
al sear
h pro
esses have found the driver s
heduling problem very hard. The solutionspa
e is rife with lo
al minima and these swamp the global minima. Also the optimisation
riterion, minimising the number of shifts, is diÆ
ult to ta
kle with the type of lo
alsear
h method GENET uses, as usually a su

ession of lo
al moves need to be madeto make an improvement. With the adaptations made to GENET, it has for severalproblems found pseudo-optimal solutions. It also demonstrated the examination of thesear
h pro
ess and showed how these adaptations a
tual worked to improve the sear
h.These adaptations and how they were examined may be of interest to those using GENETon similar problem areas. The adaptations are explained in Se
tion 6.7 and guidelines fortheir general appli
ability are given.A basi
 understanding of how 
onstraint satisfa
tion 
an be used in driver s
heduling hasbeen developed and demonstrated this 
an be extended in future studies.
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Chapter 7 143 BIBLIOGRAPHYGlossaryThis is a glossary of the transport s
heduling terms used in this thesis. Note that di�erenttransport 
ompanies may have di�erent meanings for the words, des
ribed here are themeanings purely for this thesis.depot: A 
entre of operation for a 
ompany. Normally a pla
e where vehi
les and 
rewsare dispat
hed from at the start of their work period and returned to at the end ofit.
ight leg: The equivalent to a pie
e of work in air 
rew s
hedulingjoinup: The time period between two spells of work that allows time to 
hange busesbut is not a meal break.meal break: A rest break during a shift whi
h must be of a 
ertain length as spe
i�edby union agreements.over-
over: When two or more drivers are on the same bus during a pie
e of work.pie
e of work: An indivisible period of driving work, between two relief opportunities.relief opportunities (RO): A relief time and relief point pairing to stipulate a spe-
i�
 time and pla
e where drivers 
an 
hange over.relief point: Designated lo
ations on bus routes where drivers may 
hange over.relief time: A time when a bus passes a relief point.rotation: The equivalent to a shift in air 
rew s
hedulingrunning board: A des
ription of the work a bus does in a day.shift/duty: The work a driver does in a day, normally 
onsisting of two stret
hes ofwork seperated by a meal break.spell: A 
ontinuous period of driving on one bus.



Chapter 7 144 BIBLIOGRAPHYsplit shift: A type of shift where the driver has a mu
h longer break in the middle of theshift than a normal shift.stret
h: One or more spells of work in a shift, ea
h spell being on a di�erent bus andseparated by a joinup.union agreements: Rules agreed between sta� unions and the 
ompany 
on
erning driv-ing 
onditions.window of relief opportunity: The time that a vehi
le remains at a relief point, su
has a bus station, where there is a 
hoi
e of times to 
hange the driver.


