
Constraint Satisfa
tion Approa
hes to Bus DriverS
hedulingbySuniel David CurtisSubmitted in a

ordan
e with the requirementsfor the degree of Do
tor of Philosophy.The University of LeedsS
hool of Computer StudiesFebruary 2000The
andidate
on�rms that the work submitted is his own and theappropriate
redit has been given where referen
e has been made to thework of others.

Abstra
tThe bus driver s
heduling problem
onsists of assigning bus work to drivers so that all thebus work is
overed and a
ombination of the number of drivers and asso
iated
osts isminimised. Restri
tions imposed by logisti
, legal and union agreements
ompli
ate theproblem.Su

essful present day systems for
omputerised driver s
heduling often use mathemati
alprogramming
ombined with heuristi
s. Purely heuristi
 approa
hes have found it verydiÆ
ult to produ
e eÆ
ient driver s
hedules for large s
heduling problems. Furthermore,some of these approa
hes may not be easily adaptable to di�erent
onditions. This thesispresents two new ways of using
onstraint satisfa
tion to form driver s
hedules. The twomethods di�er in their approa
h, one being a systemati

onstraint programming approa
hand the other being an adaptation of a lo
al sear
h method
alled GENET.The
onstraint programming approa
h uses a similar approa
h to mathemati
al program-ming systems in sele
ting the s
hedule from a large number of possible shifts, to allowadaptation to di�erent regulations. In parti
ular, a set partitioning formulation is used.It then makes use of the stru
ture of the problem and the relaxed linear programming so-lution to the problem in produ
ing a s
hedule. The GENET system has been adapted to
ope with minimising the numbers of drivers in a s
hedule and with the memory problems
aused by the huge number of
onstraints involved in the set partitioning model.The
onstraint programming approa
h has been shown to solve su

essfully several smalls
heduling problems from di�erent
ompanies using varying regulations. Lo
al sear
hpro
edures have hitherto not had great su

ess on driver s
heduling problems. GENEThas been adapted to solve some of the small s
hedules from its initial state where it
ouldnot solve any. Features of the adaptation may be of interest to resear
hers using GENETon similar problems. i

A
knowledgementsI would like to thank my supervisors, Dr. B. M. Smith and Professor A.Wren, for guidan
e.Further, my supervisors (again) and the friends/family who have given their support anden
ouragement that is important to me as a dyslexi
, you know who you are thank you.

ii

De
larationsSome parts of the work presented in this thesis have been published in the followingarti
les:S. D. Curtis, B. M. Smith, and A. Wren, \Forming Bus Driver S
heduling using ConstraintProgramming", Pra
ti
al Appli
ation of Constraint Te
hnologies and Logi
 ProgrammingPACLP99, (1999) 239{254.S. D. Curtis, B. M. Smith, and A. Wren, \Constru
ting Driver S
hedules using Iter-ative Repair", Pra
ti
al Appli
ation of Constraint Te
hnologies and Logi
 ProgrammingPACLP2000, (2000) 59{78.

iii

Contents1 Introdu
tion 11.1 Computerised driver s
heduling . 21.2 Thesis overview . 32 Constraint Programming 52.1 Introdu
tion . 52.2 The basi
s of systemati

omplete sear
h . 82.3 Implementations of AC and MAC/AC lookahead 92.4 Variable Ordering . 122.4.1 Fail �rst prin
iple or the smallest domain �rst ordering 122.5 Value ordering . 142.6 Optimisation . 152.7 Modelling . 162.7.1 Symmetry . 18iv

2.7.2 Adding extra
onstraints . 192.8 ILP vs. CP and evaluating algorithms in general 202.9 Lo
al sear
h . 222.10 Summary . 223 Lo
al sear
h for CSPs 243.1 Introdu
tion . 243.2 Neural networks . 253.3 Min-
on
i
t heuristi
 . 283.4 GSAT . 293.5 Methods for es
aping lo
al minima . 313.5.1 Simulated annealing . 313.5.2 Tabu Sear
h . 313.5.3 Es
aping lo
al minima in GSAT . 323.5.4 Breakout Method . 333.6 Des
ription of GENET . 333.6.1 Es
aping lo
al minima . 353.6.2 General
onsiderations . 363.6.3 Non-binary
onstraints . 373.6.4 Appli
ations and extensions of GENET 41v

3.6.5 Optimisation . 423.6.5.1 The tunnelling algorithm 433.6.5.2 Additional work on GENET for optimisation 463.6.6 Algorithms derived from GENET . 473.6.7 Con
lusions on GENET . 473.7 Summary and Con
lusions . 484 Review of driver s
heduling te
hniques 494.1 Introdu
tion . 494.2 Early heuristi
 methods . 514.2.1 RUCUS/RUCUS II . 514.2.2 Other heuristi
 systems . 524.3 Integer linear programming methods . 534.3.1 Mathemati
al model of set partitioning and set
overing 534.3.2 TRACS II . 554.3.2.1 TRACS II model . 564.3.2.2 Sele
tion of relief opportunities 564.3.2.3 Duty generation . 574.3.2.4 Redu
tion of the set of Duties 584.3.2.5 LP relaxation . 58vi

4.3.2.6 Bran
h and Bound . 604.3.2.7 TRACS II summary and results 604.3.2.8 S
heduling side issues . 614.3.3 HASTUS . 634.3.4 EXPRESS . 634.3.5 Air
rew and bus driver s
heduling
ompared 644.4 Constraint programming methods . 644.4.1 Guerinik and Caneghem . 654.4.2 Rodosek et al . 654.4.3 M�uller . 664.4.4 Darby-Dowman and Little . 674.4.5 Charlier and Simonis . 684.4.6 Yunes et al . 684.4.7 Lay�eld et al . 684.5 Evolutionary algorithms and other meta-heuristi
s 694.5.1 Tabu sear
h . 694.5.2 Kwan et al . 704.5.3 Chu and Beasley . 714.5.4 Forsyth . 724.6 Summary . 73vii

5 Driver s
heduling using CP 745.1 Introdu
tion . 745.1.1 Set partitioning or set
overing? . 755.2 The Models . 765.2.1 The �rst model: shifts as variables 765.2.2 The se
ond model: pie
es as variables 775.3 The Sear
h method . 795.4 Redu
tions . 815.5 The extended model . 855.6 Using The Relaxed LP Solution . 885.6.1 Value and variable ordering . 915.6.2 Additional
onstraints and heuristi
s to improve eÆ
ien
y 925.6.3 Related work . 945.7 Results . 955.8 Flexibility of CP model . 975.9 Con
lusions . 986 GENET for driver s
heduling 1016.1 Introdu
tion . 1016.2 The GENET model . 104viii

6.3 Sideways moves . 1066.4 Super
uous/redundant shifts . 1076.5 Optimisation . 1106.5.1 Improved starting solution . 1136.5.2 Removing whole shifts . 1146.6 A less deforming learning model . 1156.7 Summary and
on
lusion . 1207 Con
lusions 1237.1 Summary . 1237.2 Comparison between methods . 1247.3 Further work . 1267.4 S
ope of resear
h . 1287.5 A
hievements of the resear
h . 128Glossary 143
ix

List of Figures2.1 Making the
onstraint ar

onsistent . 72.2 Simple form of sear
h . 82.3 Sear
h with dynami
 variable ordering and MAC 132.4 Graph of
olouring problem to illustrate implied
onstraints 193.1 3 node Hop�eld neural network . 263.2 Diagram of energy fun
tion . 273.3 Pseudo
ode for basi
 GSAT pro
edure . 303.4 Three variable GENET network . 353.5 Pseudo
ode for basi
 GENET model . 363.6 The framework of a non-binary
onstraint in GENET 384.1 A fragment of vehi
le s
hedule showing possible
hosen shifts 514.2 TRACS II
omponents . 564.3 The di�erent levels of RO sele
tion . 61x

5.1 A Venn diagram of the domains of two pie
e variables, i and k 835.2 Fra
tional
overage of a running board . 895.3 Fra
tional
overage of a running board with over-
over 926.1 Two node
lusters with set partitioning
onstraints in GENET 1046.2 Set partitioning
onstraint node in GENET 1056.3 Set partitioning
onstraint node in GENET with more weight values 1186.4 Number of shifts in the solution at ea
h
y
le of the sear
h. 119

xi

List of Tables4.1 The set partitioning problem . 545.1 Results on data from several bus
ompanies using di�erent regulations. . . 805.2 Results of using the redu
tions dynami
ally 845.3 Results of using the RO with greedy ordering and adja
en
y 885.4 Results of using the RO model with domains of triples 905.5 Final results for
onstraint programming system 976.1 Results on allowing or not allowing sideways moves. 1076.2 Example shifts used in a state of GENET. 1086.3 Results of removing super
uous shifts. 1096.4 Results of using a te
hnique to optimise the number of shifts used. 1126.5 Results using a greedy heuristi
 to
onstru
t an initial solution as opposedto a random starting solution. 1146.6 Results showing the e�e
t of using global moves to repla
e whole shifts . . 1156.7 Using several weights for ea
h
onstraint. 117xii

6.8 Comparison between one weight and multiple weights for ea
h
onstraint . 120

xiii

Chapter 1Introdu
tion
In present day industry
ompetition is so �er
e that
utting
osts is paramount and im-proved s
hedules and timetables
an make huge monetary savings. This is true of drivers
heduling whi
h is an important real world problem as
rew
osts a

ount for a highproportion of total expenditure in most transport
ompanies. In the UK now that thetransportation industry is privatized pro�ts are important and with
onsumer
on
ernabout high fares, making the running of bus and trains eÆ
ient is the best way to max-imise pro�t. The pre
ursor to the driver s
heduling problem is the bus s
heduling problemwhere routes need to be worked out and vehi
les assigned to them. On
e this is done thebus driver s
heduling problem involves �nding the most eÆ
ient way of providing driversfor the given set of bus movements, in
luding dead running (journeys with no passengers).These two problems tend to be kept separate due to both problems being individually hard.If they were
ombined the ensuing problem would surpass
urrent
omputer s
hedulingmethods run on standard ma
hines used by transport
ompanies.There are several restri
tions on eÆ
ient provision of driver s
hedules, imposed by legal1

Chapter 1 2 Introdu
tionand logisti
al
onsiderations as well as trade union agreements. For example, a driver mayonly legally drive a
ertain number of
onse
utive hours. The
riterion is usually thatthe s
hedule should have the minimum number of shifts and lowest total hours of work.The total hours of work is normally a se
ondary
onsideration and be
ause of this it isdisregarded in the new method implemented in this thesis.1.1 Computerised driver s
hedulingEarly
omputerised methods for driver s
heduling were purely heuristi
 and often neededlarge amounts of manual intervention. As methods and
omputer power improved math-emati
al programming started to be used. In the present day there are some very goodsystems, for example TRACS II [37, 66, 125℄, whi
h
an provide eÆ
ient s
hedules for verylarge problems. Despite this the modern systems
annot be seen as bla
k boxes that pro-du
e working s
hedules. TRACS II has been adapted for several bus and rail
ompaniesand has through long development and experien
e working with these
ompanies rea
heda level of generality so it
an �t with many
ompanies' requirements. However, even afterthis has been done parameters must sometimes be manipulated to produ
e driver s
hed-ules for di�erent bus s
hedules. Su
h manipulation is frustrating and perhaps obs
ureto s
hedulers who have no knowledge of mathemati
al programming. This brings us toseveral areas where improvements
an be made. Firstly, the driver s
heduling problem isstill open, in that optimal results
annot be ensured by
urrent methods for any but themost trivial instan
es. Se
ondly,
exibility
an be improved; although great strides havebeen made with the mathemati
al approa
h there are some aspe
ts of s
heduling that arehard to in
orporate in a linear programming model. Thirdly, the present mathemati
alapproa
hes are hard to explain to people not versed in s
ien
e dis
iplines and this is notonly, as stated above, a problem in produ
ing individual s
hedules, it is a hindran
e inmutual development of systems between resear
hers in universities and s
heduling groupswithin
ompanies.

Chapter 1 3 Introdu
tion1.2 Thesis overviewWe have already stated how important the problem is and that there is room for improve-ment. In the previous se
tion three areas were highlighted as areas for development. Thelast two,
exibility of the model and understanding of the user, are the ones that thisthesis is
on
erned with. It is felt that the expressive qualities of the modelling languageof
onstraint satisfa
tion will be of use in these areas and therefore
onstraint satisfa
tionapproa
hes are investigated in this thesis.This thesis will explore two new approa
hes for produ
ing bus driver s
hedules. One isa systemati
 approa
h using a
onstraint programming method and the other is a lo
alsear
h method
alled GENET [121, 110℄. The thesis not only provides new resear
h inthe area of bus driver s
heduling but allows a
omparison of three of the popular �eldsof resear
h for solving
ombinatorial problems: mathemati
al programming,
onstraintprogramming and lo
al sear
h. They will be
ompared only on one type of problem,driver s
heduling, but ea
h te
hnique will be investigated in depth.The following summarises the
ontents and reason for ea
h
hapter.Chapter 1: Gives motivation for the new resear
h and gives an overview of the thesis.Chapter 2: Introdu
es
on
epts of
onstraint satisfa
tion and
onstraint programming.This
on
entrates on the methods used in the thesis and a dis
ussion on arguablythe most important issue in
onstraint satisfa
tion, modelling.Chapter 3: Gives a history of the build up to the lo
al sear
h method GENET whi
h isinvestigated in Chapter 6. It also gives a brief overview of other lo
al sear
h methodsfor
onstraint satisfa
tion problems.Chapter 4: Gives a brief history of driver s
heduling. It gives reasons why the problemis still open, in that optimal results
annot be ensured by
urrent methods for anybut the most trivial instan
es.

Chapter 1 4 Introdu
tionChapter 5: Details the
onstraint programming approa
h developed for produ
ing driv-er s
hedules. It shows that the program is su

essful on several small bus drivers
heduling problems and shows potential for marked improvement.Chapter 6: Details the adaptation of the lo
al sear
h method, GENET for
onstru
t-ing driver s
hedules. It gives promising results for several bus driver s
hedulingproblems.Chapter 7: Dis
ussion of the existing mathemati
al approa
h and the two new ap-proa
hes. This in
ludes thoughts on their potential and possible further work.

Chapter 2Constraint Programming
2.1 Introdu
tionConstraint satisfa
tion approa
hes for solving industrial problems are be
oming more wide-ly used be
ause they provide a good method of ta
kling large problems in a
exible andadaptable way. Constraint satisfa
tion provides a powerful and easy system for modellingrestri
tions and using these restri
tions to sear
h for a solution.There are several de�nitions that will be presented here to provide a ba
kground to thework in this thesis (see [106℄ for these and further de�nitions).A domain of a variable is the set of possible values that the variable
an take. A variablexi will have a domain Di. In this thesis we will only have variables with �nite domains.An assignment is a binding of a variable (u) to a value (v) to form a label < u; v >. Thelabel is the variable-value pairing. 5

Chapter 2 6 Constraint ProgrammingA
ompound label is a simultaneous assignment of variables to values. A k-
ompoundlabel is an assignment of k labels simultaneously and
an be represented as (< u1; v1 ><u2; v2 > : : : < uk ; vk >).A
onstraint restri
ts the values that variables
an be assigned to simultaneously. Formallya
onstraint
an be de�ned as a set of legal
ompound labels, although for eÆ
ien
y andexpressive reasons
onstraints
an be de�ned in many ways, su
h as equations, matri
es,fun
tions, et
. The number of variables that the
onstraint a
ts on is
alled the arity ofthe
onstraint. If it a
ts only on 2 variables it is
alled a binary
onstraint. A binary CSPis a CSP where all the
onstraints are binary or unary. In this thesis we will be usingmainly binary CSPs. A nogood is a
onstraint on a pair of labels whi
h states that both
annot simultaneously be
hosen.A solution to a CSP in this thesis means an assignment of a value to every variable. In afeasible solution all the
onstraints are satis�ed, formally a member of the set of
ompoundlabels of ea
h
onstraint exists in the solution. In an infeasible solution
onstraints arebroken (not satis�ed).A
onstraint satisfa
tion problem (CSP)
onsists of a set of variables (Z), a fun
tion (D)whi
h maps every member xi of Z to its domain Di and a set of
onstraints (C), a set ofall legal sets of
ompound labels. So a CSP is represented as the triple (Z;D;C).A binary CSP
an be represented as a graph, where the nodes of the graph
orrespondto the variables and the edges or ar
s represent binary
onstraints between variables. A
onstraint is bi-dire
tional and so
an be represented as an undire
ted edge. However, it isoften useful to represent a
onstraint as two ar
s, one for ea
h dire
tion of the
onstraint.So two nodes, x and y
an be
onne
ted by a
onstraint represented as the ar
s, (x,y)and (y,x). We de�ne an ar
 (x,y) to be ar

onsistent if and only if for every value ain the domain of x there exists a value in y that is
ompatible with the label < x; a >.We
an propagate the e�e
t of a
onstraint by removing values that do not satisfy thisar

onsistent property for the ar
s representing the
onstraint. This is
alled
onstraintpropagation. An example of this pro
ess is shown in Figure 2.1. The
onstraint is a simple

Chapter 2 7 Constraint Programminggreater than (>)
onstraint. Figure 2.1 (a) shows the original states of the domains ofthe variables before
onstraint propagation. Then (b) shows the ar
 (x,y) being made ar

onsistent. Finally both ar
s, (x,y) and (y,x) are ar

onsistent in (
).
B
D
 y

{1 ... 5}

x

{1 ... 5}

B
D
 y

{1 ... 5}

x

{1 ... 4}

B
D
 y

{2 ... 5}

x

{1 ... 4}

<

<

<

(a)

(b)

(C)
Figure 2.1: Making the
onstraint ar

onsistentUsing
onstraint programming tools
an greatly in
rease the ease of programming CPalgorithms. It also forms a base for sharing and
omparing
ode and algorithms in theresear
h
ommunity. These CP tools provide the user with implementations of standardpro
esses involved in
onstraint programming, su
h as ar

onsisten
y. They also de�nea stru
ture for the modelling problems and development of algorithms. The one used inpart of this thesis is a C++ library
alled ILOG Solver [85℄. There are however, severalother tools su
h as ECLiPSe [118℄ and Chip [52℄ both based on Prolog.A standard example of a problem that has been represented as a CSP is the n-queensproblem. The problem is to put a number (n) of queens on a n � n
hessboard withoutatta
king any others, so no queen
an be in the same row,
olumn or diagonal as another.A simple way of representing the problem is to have the queens as the variables. So ea
hqueen
an take any pla
e in the n � n
hessboard and the domain of ea
h variable is allthe squares of the board. There are then
onstraints to spe
ify that no two queens are inthe same row,
olumn or diagonal. This is a
tually a poor representation and Se
tion 2.7on modelling shows other ways of representing it.

Chapter 2 8 Constraint Programming2.2 The basi
s of systemati

omplete sear
hThe simplest form of systemati

omplete sear
h using
onstraints is
alled BT [47℄. Thebasi
 form of this sear
h
onsists of the following. The variables are ordered arbitrarily.Then working through the variables in this order, for ea
h variable assign to it the �rstvalue in its domain. This assignment is
he
ked to make sure it is
ompatible with allthe previously assigned variables. If it is not
ompatible a new assignment is tried andthe
urrent value is temporarily removed from the domain of the
urrent variable. If nolabel asso
iated with the
urrent variable is
ompatible the algorithm ba
ktra
ks to thepreviously assigned variable and a new value is tried for it. This
ase is
alled a failureor a fail. The sear
h terminates if a solution is found or there is nowhere to ba
ktra
k toafter a fail, whi
h signi�es there is no feasible solution for the problem. This terminationproperty makes BT a
omplete sear
h; if there is a feasible solution given time it will�nd it and if there is no feasible solution it will prove there is none. BT forms the basisof several sear
h algorithms des
ribed in this
hapter and this makes them all
ompletesear
hes. Figure 2.2 shows the BT pro
edure. In the BT algorithm no advantage is takenof any
onstraint propagation. An improvement of this pro
edure is FC [51℄ it is the sameas BT ex
ept in the way it performs
onsisten
y
he
ks. Every time an assignment ismade the values in
onsistent with all the labels
hosen are removed from the domains ofall unassigned variables. The
hoi
e fails and the algorithm ba
ktra
ks if any variable'sdomain be
omes empty. There is no need to
he
k an assignment's
ompatibility withearlier assignments be
ause if it was in
ompatible it would have been removed at the
assigned
 unassigned
current
Figure 2.2: Simple form of sear
h

Chapter 2 9 Constraint Programmingtime the previous assignment was made. However, it may o

ur that two unassignedvariables have values
ompatible with all the assigned variables but not with ea
h other.This
an be resolved by adding an ar
-
onsisten
y algorithm whi
h
he
ks for this typeof in
onsisten
y at every assignment. This is
alled ar
-
onsisten
y lookahead [107℄ ormaintaining ar
-
onsisten
y (MAC) [90℄ where both forward
he
king and ar
-
onsisten
yare used. Therefore, not only are the domains of the unassigned variables made
ompatiblewith
hosen labels, they are also
ompatible with ea
h other. Ways of maintaining ar
-
onsisten
y will be dis
ussed below.There has been debate on the best ar
-
onsisten
y algorithm. There has even been debateas to the usefulness of maintaining full ar
-
onsisten
y during sear
h [51, 90℄. This isbe
ause the more times that
onsisten
y is
he
ked for the greater the overheads on ea
hassignment, as more
he
ks need to be done. However, it is hoped that the more extensive
he
ks will redu
e the amount of ba
ktra
king and fruitless sear
hing. Early work byHarali
k and Elliot [51℄ suggested that only a limited amount of
onsisten
y
he
kingshould be used. However, later work by Sabin and Freuder [90℄ suggests that it is usefulto apply full ar
-
onsisten
y during the sear
h. The di�eren
e in view might be thatSabin and Freuder fo
used on harder random problems than Harali
k and Elliot. Further,AC algorithms have improved over time as des
ribed below. To as
ertain what level of
onsisten
y to apply depends on the problem being solved and is still an open question.2.3 Implementations of AC and MAC/AC lookaheadAC
an be established as a pre-pro
essing stage and as we have noted above
an alsobe in
orporated into sear
h. In this se
tion we will des
ribe the details of several of thealgorithms for establishing AC and then how these algorithms
an be used in sear
h.Algorithms for establishing AC have been developed over time. The �rst three variationsare des
ribed in [76℄. They are all similar and the �nal one of this series, AC-3 informally
onsists of queuing all the binary
onstraints and then going through this queue propagat-

Chapter 2 10 Constraint Programminging the e�e
t of ea
h
onstraint. As the
onstraints are propagated, the
onstraints thatare asso
iated with the variables that have their domains redu
ed are added to the endof the queue. Therefore, the queue will only be
ome empty when no more domains areredu
ed by
onstraint propagation. More formally, when we say a
onstraint is added tothe queue we mean only one of the ar
s representing the
onstraint is added. Therefore,
he
king the ar
 (i,j) means that we will
he
k that the values in the domain of variable iare
onsistent with those in the domain of j but not vi
e versa, so the a
tual additions tothe queue works in the following way, if the domain of i
hanges ar
s (i,j) for all existingj are added to the queue.After AC-3 the next important development (AC-4 in [79℄) in the AC algorithms was theidea that values support other values and when these supporting values are removed thesupported value should be removed. This pro
ess saves
onsisten
y
he
ks but requiresadditional memory be
ause it stores all the supporting values and a
ounter that is in
re-mentally de
reased as these supporting values are removed. It is shown that AC-3 has aworse
ase time
omplexity of 0(d3e) where AC-4 has 0(d2e); d is the size of the largestdomain and e is the total number of
onstraints [77, 79℄. Whereas the spa
e
omplexity ofAC-3 is 0(e+nd), where n is the number of variables and AC-4 is larger, O(d2e). Further,it has been shown that in the average time
omplexity of AC-4 is
lose to its worse
ase andAC-3 often runs faster [119℄. AC-5 [28℄ di�ers from the previous AC algorithms by givingonly a framework for applying AC. It allows the
onsisten
y
he
ks to be done di�erentlyby di�erent
onstraint types. This allows the user to provide the most eÆ
ient algorithmto take advantage of a parti
ular
lass of
onstraints. It does this by altering the queuethat is used in AC-3. Instead of just queuing the
onstraints (e.g. C(i,j)) it also in
ludesthe values � that have been removed from the variable asso
iated with the
onstraintthat we are removing values from (i). Deville and Hentenry
k [28℄ give examples of howthis
an be used to improve the eÆ
ien
y of some types of
onstraints. For these AC-5is a O(ed) algorithm. AC-5 allows users to provide
onstraint types and we will see howSolver allows this below. AC-6 [5℄ improves on AC-4 by redu
ing the spa
e
omplexitydown to 0(de) while maintaining the time
omplexity of 0(d2e). It does this by storing

Chapter 2 11 Constraint Programmingsupporting values as AC-4 does, but instead of storing all the supporting values, it onlystores one per
onstraint. If this value is then removed it looks for another. There hasbeen several improvements on AC-6 and these
ulminate in AC-7 [6℄. AC-7 extends thepro
ess by using inferen
e. For example, when establishing that value a in the domain ofu supports the value b in the domain of v we
an infer from this, that b is the support fora in the domain of u. In the paper [6℄ there are several other examples of how inferen
e
an be used if
ertain properties hold for the
onstraints.To maintain AC during the sear
h all that is done is that one of the AC algorithms isapplied to all unassigned variables at every assignment step. Therefore, at ea
h step ofthe maintaining ar

onsisten
y algorithm we need to do three updates. A step
onsistsof a
hoi
e of variable x and then an attempt to �nd a value for it. We pi
k a value v and�rst we need to
he
k that no non-binary
onstraints1 are violated by the
ombinationof the label <x,v> with the existing assignments. Then we need to do the FC stage,by removing all values that are in
onsistent with the
urrent label from the domains ofthe unassigned variables. Finally, the remaining problem (all the unassigned variables)is made ar
-
onsistent by one of the AC algorithms des
ribed above. If the �rst
he
kdoes not fail or the se
ond two pro
esses do not make any domain empty then that stepis
ompleted. However, if this is not the
ase new values are tried until it is the
ase orDx be
omes empty and ba
ktra
king to the previous step must o

ur.Solver [85℄
ombines all three pro
ess by altering the way steps are taken. Ea
h step isset up as a
hoi
e point whi
h opens two bran
hes. The �rst bran
h is to
onstrain avariable i to have a
ertain value j (this is an assignment). The e�e
t of this
onstraint ispropagated and if a fail o

urs then the se
ond bran
h is tried where a
onstraint removesj from i. The AC maintaining pro
ess is based on AC-5. At ea
h
hoi
e point the entirestate of the algorithm is saved with all the domains of the variables. If the algorithmba
ktra
ks to the
hoi
e point the domains are reinstated as they were.Sin
e Solver is based on AC-5 the way that
onstraints perform propagation is open1These are the non-binary
onstraints that are not used in the AC algorithm

Chapter 2 12 Constraint Programmingand this allows users to develop their own
onstraints as well as providing an extensive
olle
tion of prede�ned ones. Solver gives a base
lass for
onstraints and the user spe
i�eshow it will propagate. In Chapter 5 we will see examples of these.2.4 Variable OrderingThe order in whi
h variables are assigned values
an greatly a�e
t the number of failsan algorithm has before a solution is found. In some problems there may be a naturalproblem spe
i�
 order. However, there are several general methods. Some of them aredis
ussed in the following se
tion. These often work on the way variables are
onstrainedand how variables are related to ea
h other by
onstraints. They are
lassed into twotypes: stati
 orderings that are de
ided at the start of the sear
h and do not
hange anddynami
 orderings whi
h may
hange during the sear
h. Dynami
 orderings rely on extrainformation being generated during the sear
h and so require the domains of unassignedvariables to be altered due to the sear
h. For example, if ar
-
onsisten
y is maintained.2.4.1 Fail �rst prin
iple or the smallest domain �rst orderingArguably the most popular example of dynami
 variable ordering was introdu
ed by Har-ali
k and Elliot in [51℄. The idea was to assign values to the variables that are most likelyto
ause failure as early as possible rather than later in the sear
h. This would with theaid of
onstraint propagation in theory
ut o� fruitless bran
hes early, thus saving sear
hsteps. This is
alled the fail �rst prin
iple. The way this was implemented was at everystep to
hoose the variable with the smallest domain. The domain size was taken as anindi
ation of how hard it would be to �nd a value for the variable. This ordering is su
-
essful on many problems. However, work by Smith and Grant [98℄ to use a more a

urateindi
ation of how hard a variable is to satisfy had worse results. They
on
luded that itmight not be the fail �rst prin
iple that is behind the su

ess of the smallest domain �rstordering. Smith and Grant give a simple possible reason for the su

ess of the ordering,

Chapter 2 13 Constraint Programmingby putting the smallest domains �rst the size of the sear
h tree is redu
ed. However,this
annot explain the aspe
t of the ordering that Sabin and Freuder dis
overed [90℄.They used a FC algorithm
ombined with smallest domain ordering. This was tried onseveral problems with and without making them ar
-
onsistent in a prepro
essing stage.The results showed that on several of these problems the prepro
essing a
tually madethe algorithm perform mu
h worse. They
on
luded this was due to the ordering as thebehaviour did not exist when the FC algorithm was applied without the ordering. Mu
hof the work on this has been done on problems where the domains at the start are all ofthe same size. So the la
k of performan
e might be put down to having variables withdi�erent domain sizes before sear
h begins. Sin
e many pra
ti
al problems have variableswith di�erent sized domains the e�e
t of this is of notable importan
e.Figure 2.3 shows how the sear
h with dynami
 variable ordering and MAC di�ers from thesimple form of sear
h shown in 2.2. When variable Vk is assigned a value it is moved tothe assigned variables and Vm is
hosen by some heuristi
 to be the next
urrent variable.After ea
h step, variables that have their domains redu
ed to one value are bound, i.e.assigned that value. An example of this is shown in the �gure, when variable Vi wasassigned a value,
onstraint propagation set the value for Vj .
V
k
 V
m

assigned
 unassigned
current

V
i

V
j
Figure 2.3: Sear
h with dynami
 variable ordering and MAC

Chapter 2 14 Constraint Programming2.5 Value orderingValue ordering is useful when we are interested in �nding a single solution. If we wereafter all solutions value ordering would make no di�eren
e in
hronologi
al ba
ktra
king.The way the variables are ordered and the amount of
onstraint propagation a�e
ts the
hoi
es of values. If there is a large amount of
onstraint propagation done after ea
h valueassignment then failures
an be found qui
kly and so value ordering is less important.However, if the
onstraint propagation is not adequate wrong
hoi
es of values
an leadto a great deal of fruitless sear
h and ba
ktra
king. So it
an be important to
onsider avalue ordering heuristi
.As stated in [106℄ the idea is to pi
k the value most likely to be su

essful, to redu
eba
ktra
king. One way to assess the
han
e of su

ess is to pi
k the value whi
h
on
i
tswith the least number of values in the domains of unlabelled variables. There are severalvariations on this theme. The method of Geelen [41℄ and the method of Keng and Yun [63℄both temporarily assign all the values in turn for a variable and apply forward
he
king.Keng and Yun then
hoose the value a

ording to the number of values that would beremoved by FC. It uses the per
entage loss of values from the domains of unassignedvariables. This is similar to Geelen's method whi
h uses the domain sizes of unassignedvariables after FC redu
tion. The real di�eren
e in the methods is how they
ombine these
ost elements that
ome from ea
h of the unassigned variables. Geelen uses the produ
t ofthem and Keng and Yun uses the sum. In the Keng and Yun method all assignments thatwould overall remove the same number of values have the same desirability. For example,removing 3 values from one domain and 2 from another is the same as removing 0 valuesfrom one domain and 5 from another. However, Geelen argues this should not be truebe
ause a problem that has mostly large domains with a few very small domains will beharder to �nd a solution for than a problem whi
h has all average sized domains. Byusing the produ
t of domain sizes the two di�erent removals in above example will leadto di�erent evaluations.A further method is des
ribed by Minton [78℄. This uses a full assignment of variables

Chapter 2 15 Constraint Programmingwhere
onstraints may be broken. This is used to rate values in the
urrent variable toassign a value to. The less
on
i
ts the value with assignments in the full assignment thehigher the rating. At ea
h step of the sear
h the full assignment is redu
ed to the variablesthat have not already be assigned a value. This uses the min-
on
i
t heuristi
 whi
h isdes
ribed in Se
tion 3.3.There is a
ondition where the su

eed-�rst strategy will not be useful. This is when allthe values must be
hosen at some point and the only
hoi
e is whi
h variable is assignedto whi
h value. Smith [96℄ shows an example where this is the
ase and suggests applyingthe fail-�rst prin
iple,
hoosing the values that are most
onstrained �rst.However, even more so than variable ordering, problem spe
i�
 orderings are often thebest. This is be
ause general purpose value orderings des
ribed above are expensive timewise, as they require extensive
onsisten
y
he
ks. We will see below in the next se
tionhow greedy heuristi
s
an be used for value ordering.2.6 OptimisationWhen all solutions are not equal and some are desired more than others, often the best(optimal) or as
lose to the best solution as possible is desired. In these types of problemsa solution may have an asso
iated \
ost" that we are trying to minimise or 'pro�t' we aretrying to maximise. There will be an obje
tive fun
tion whi
h maps every solution tupleto a
ost. If we are requiring a pro�t we
an use the negation of the obje
tive fun
tionto provide a
ost to minimise. A naive approa
h would be to �nd all the solutions andthen
hoose the best from them. However, the amount of sear
hing
an often be redu
ed.When a solution is found the
ost of the solution is stored as a new bound on the optimal
ost. When building the next solution a partial
ost
an usually be maintained. If thisbreaks the stored bound then the
urrent partial solution
annot produ
e a better fullsolution and ba
ktra
king o

urs. The stored
ost bounds the
ost of future solutions.This pro
ess is
alled bran
h and bound. Even with this redu
tion the problem may have

Chapter 2 16 Constraint Programmingto be solved several times and on hard problems this
an be very time
onsuming. The
loser to the
ost of the optimal the original bound is the less sear
hing has to be done.So using heuristi
 orderings is a good idea to get as
lose as possible to the optimal
ostat the start.2.7 ModellingModelling a problem as a
onstraint satisfa
tion problem is probably the hardest part ofthe resear
h area to produ
e general methods for. This is the
onsensus of many peoplea
tive in the area of
onstraint satisfa
tion and is highlighted by Freuder [39℄. Sabin andFreuder have worked on automating the modelling pro
ess [91℄ but the work is far frombeing pra
ti
ally usable. The hardness of the task is partly due to the
exibility in howa problem
an be modelled and that ea
h problem on
e modelled
an be reformulatedand extended in numerous ways. In this se
tion we will look at reasons why
ertainrepresentations
an be better than others. The basi
 model must have one feature, everysolution to the CSP must give a solution to the real problem2. However, further questionsneed to be asked of the model. Here are several of these:1. What is the size of the CSP?The size of the CSP
an be measured by the number of
ombinations of possibleassignments. So this is the produ
t of the sizes of domains of all the de
ision vari-ables. There may be non-de
ision variables in the model where the a
tual value ofthem does not relate to the a
tual problem. These are normally used in
onjun
tionwith
onstraints to
onstrain de
ision variables. None of the algorithms dis
ussedin this
hapter would sear
h all possible values for de
ision variables and the for-ward looking ones would prune some bran
hes of the sear
h tree through
onstraintpropagation. However, the number of possible assignments is still a measure of howhard the problem will be to solve as long as it is taken in
onjun
tion with the other2Although a solution to a CSP
ould be a solution to a sub problem of the real problem or there
ouldbe some repair te
hniques

Chapter 2 17 Constraint Programmingmeasures. So it is logi
al that
hoosing a representation on its smallness is a goodjudge of how good a representation is.2. How easy are the
onstraints to implement eÆ
iently?It is easier to propagate redu
tion done by binary
onstraints than by higher arity
onstraints. It is very expensive to make a non-binary
onstraint ar
-
onsistent(in general) and the more variables involved the more expensive it is. There aresome
onstraints for whi
h spe
i�ed algorithms exist, for instan
e the all-di�erent
onstraint but these algorithms are still expensive. So a model that has only binary
onstraints is more favourable than one that has ternary or higher. Even though intheory higher order
onstraints
an be
onverted to binary
onstraints in pra
ti
ethis often will not result in a good model. However, it may be possible to �nd amodel whi
h has smaller arity
onstraints than the original. A further
onsiderationis the number of
onstraints and the amount of memory ea
h
onstraint requires.3. How
lose are the variables to the real obje
ts they are modelling?This is a little harder to de�ne than the previous two aspe
ts as it is not quanti�able.The more the variables and values
an be dire
tly asso
iated with the physi
al obje
tsin the problem the easier it is to
reate problem spe
i�
 heuristi
s. It will also allowany problem stru
ture to be seen more readily and possibly allow the problem tobe reformulated to improve the model. Another bene�t is that it makes it easier toexplain to non-
omputer s
ientists. This is parti
ularly useful if working with thepeople who used to solve by hand the problem that we are modelling. This will notonly allow better feedba
k but also a greater
han
e of a

eptan
e of the system.For example, manual s
hedulers are far more likely to be happy with a s
hedulingtool when they know the basi
s of how it works.4. How easy is it to apply general heuristi
s to the model?Certain ways of representing a problem as a CSP allow the dire
t use of some of thegeneral heuristi
s des
ribed in this Chapter. Others will need to adapt them to �tthe model.

Chapter 2 18 Constraint ProgrammingOften a solution is a pairing of obje
ts in the real problem. For example, in the n-queensproblem there is a pairing of queens and squares. In these
ases it is possible to haveeither of these obje
ts as the variables. The n-queens problem
an be formulated withthe variables as the queens and the squares as the values. It
an also be formulated withthe squares as the variables with a binary domain of 1 to indi
ate a queen is present or 0to show one is not. The size of this representation is (n � n)2. How the
onstraints arerepresented are di�erent in ea
h model. However, in the se
ond method further
onstraintsneed to be added to ensure only n queens are pla
ed on the board.Din
bas et al [29℄ model a problem where the obje
ts
an be dire
tly swapped so thevariables and values
an be inter
hanged. There are 4 of one obje
t and 72 of the other.So the size of the problem
ould be 472 or 724. So by formulating the problem where thesize is 724 a redu
tion in the size of the problem is a
hieved. So this type of remodelling
an a�e
t how the
onstraints are represented and how many
onstraints there are (item 2)and the size of the problem (item 1). The third
ase des
ribed in Se
tion 5.3 will showthat as well as the previous two aspe
ts the remodelling
an a�e
t how general heuristi
s
an be applied (item 4).It is worth noting that the n-queens problem
an be represented better by taking advantageof the stru
ture of the problem. We
an see that every row must have a queen on it andso we
an have the row as the variable. The domain of a row will be the
olumns. Thesize of the problem is smaller than having the queens as variables, nn instead of (n� n)n.It does have a larger size than using the squares as variables, (n� n)2 but it removes theneed for several
onstraints e.g. the
onstraints added to stop more than one queen beingon ea
h row. This
omes from the fa
t that the variables and values are dire
tly relatedto the physi
al obje
ts of the problem (item 3).2.7.1 SymmetryAnother important
onsideration in modelling is symmetry. This is where several solutionsto a CSP represent the same solution to the a
tual problem. This leads to problems sizes

Chapter 2 19 Constraint Programmingbeing mu
h bigger than they needed to be be
ause
ertain
ombinations are the sameand need not be tried more than on
e (item 1). Work was done by Puget [84℄ to add
onstraints to eliminate symmetry. A
ommon example of symmetry
an be seen in then-queens problem. Sin
e a
hessboard is square if the top of the board is rotated, theside previously to its left be
omes the new top. So solutions that
an be mapped to ea
hother by rotation or re
e
tion are the same solution. A way of solving this problem thatis appli
able to many other instan
es is to arti�
ially dis
riminate the variables. Add a
onstraint that spe
i�es �rst queen must be
loser to the top left
orner than the se
ondqueen.2.7.2 Adding extra
onstraintsThere are other
ases as well as symmetry where adding
onstraints
an improve thesear
h. This is done by adding what are
alled redundant or implied
onstraints. ILOGSolver's manual [58℄ de�nes these as
onstraints that make expli
it a logi
al
onsequen
eof other
onstraints of a problem. An example of an impli
ated
onstraint
an be shownin the graph
olouring problem. Figure 2.4 shows that variables A and C must have thesame value so a
onstraint
an be introdu
ed to inform the sear
h of this before it starts.
A

C

B
D

=

C

B

A

D
Figure 2.4: This shows a
onstraint graph of a graph
olouring problem. The dotted lineshows an implied equality
onstraint that variables A and C must be equal. All the other
onstraints are inequality
onstraints.

Chapter 2 20 Constraint ProgrammingThis is similar to some of the implied
onstraints that Sqalli and Freuder uses in [101℄.Freuder also suggests the use of implied
onstraints to repla
e higher order
onstraints toimprove
onstraint propagation [39℄ (item 2). At the start of this se
tion on modelling itwas stated that the �rst thing needed in a model is that all the solutions to the CSP aresolutions in the real problem. However, does the reverse have to hold? If we are after onlya single solution it may be advantageous to remove some of the solution as long as we alsoredu
e the size of the problem. In large problems time limits may in pra
tise remove manypossibilities as there may be no time to explore all avenues. However, we must ensure atleast one solution remains. So we
an add extra
onstraints to
ut further the sear
h spa
eeven if they may
ut out possible solutions. This is further investigated in Se
tion 5.6.2.2.8 ILP vs. CP and evaluating algorithms in generalThere has been many studies
omparing ILP and CP [86, 22, 97, 87, 83℄. Many haveproposed ways of
ombining ILP and CP to take advantage of both te
hniques [8, 56, 87,31, 33, 32℄.From these studies several aspe
ts of ea
h te
hnique have been highlighted. The �rstaspe
t that is easy to see is that in ILP
onstraints must be linear whereas CP
onstantshave a mu
h larger range of expression. CP seems to do better on problems that
antake advantage of the eÆ
ient general
onstraints that have been implemented, foremostthe all-di�erent
onstraint (
onstrain a set of variables to have di�erent values) and toa lesser degree
onstraints to remove symmetry. The all-di�erent
onstraint is eÆ
ientlyimplemented in CP but in ILP applying
onstraints to do the same job vastly in
reases themodel size. This is shown in [97℄ and later on a similar problem in [22℄. Adding
onstraintsto remove symmetry in CP redu
es the sear
h spa
e and removes unne
essary sear
hing.However, adding similar
onstraints to a ILP model will not
ut the sear
h spa
e butin
rease the model size, this is seen in [22℄. This illustrates one of the main di�eren
esbetween the two methods. ILP globally
uts the sear
h spa
e whereas CP lo
ally redu
esthe sear
h spa
e. Therefore where the sear
h spa
e
an be easily
ut globally by good lower

Chapter 2 21 Constraint Programmingand upper bounds on optimisation problems then ILP usually performs well. However, ifthis is not possible, as in the job shop s
heduling problem3 [11℄, ILP may �nd it hard tosolve problems. CP depends on the
onstraints of the model providing enough propagationto redu
e the sear
h spa
e.In evaluating the e�e
tiveness of ILP and CP on pra
ti
al problems, we wish to put forwardseveral warnings. Moreover some of these apply to evaluating algorithms in general.1. Pra
ti
al is not always pra
ti
al.Often so
alled pra
ti
al problems are only approximations of real world problems.Sometimes side issues are ignore to make the problem easier for the
ommunity tograsp. Be
k et al [3℄ for example warn about the obsession with only optimisingmake-span time in job shop s
heduling. They
ite several other restri
tions thatmay need to be
onsidered in a real s
heduling situation. This over simpli�
ation ofreal world problems may make CP seem worse than ILP in general. This is be
auseCP has a more
exible language for de�ning problems than ILP and so side issuesare more likely to
ause problems for an ILP approa
h than a CP approa
h. Thisissue may be
ompounded by the fa
t that if the problem was formulated �rst by aresear
her in a parti
ular �eld they may introdu
e bias. The paper on CSPlib [45℄dis
usses how bias may be introdu
ed and therefore spe
i�es that real world problemsshould be spe
i�ed in a natural language so as to limit any bias in formulation.2. Number of problems testedIt is often hard to �nd enough suitable instan
es of an industrial problem. Whereasrandom problems
an be generated in their hundreds, many of the pra
ti
al problemshave few instan
es. For example, Darby-Dowman and Little [22℄ show results on
rews
heduling but only have 5 instan
es of the problem. There is however, little that
an be done about this ex
ept keeping it in mind when viewing results.3. The amounts of e�ort or expertise for ea
h te
hnique3The job shop s
heduling problem is an industrial problem involving assigning a number tasks toma
hines on a fa
tory
oor.

Chapter 2 22 Constraint ProgrammingIn some of the
omparisons very little e�ort is put into the CP and ILP algorithms tosolve the test problems. For example, Rodosek use no variable or value ordering intheir CP representations. Similarly with the ILP approa
h simple CPLEX standardalgorithms are used. Often the di�eren
e between ILP and CP is so overwhelmingit is unlikely that there will be a
hange if time is taken to improve ea
h algorithmbut this �eld should display the same rigours of s
ien
e as any area of physi
s or
hemistry.Further to these Hooker [55℄ puts forward an argument that
ompletive experiments ingeneral are diÆ
ult to judge fairly and moreover may not be produ
tive, as they do notgive the reasons why
ertain algorithms are faster or slower than others.2.9 Lo
al sear
hIn this Chapter we have dis
ussed aspe
ts of systemati
 sear
h on
onstraint satisfa
tionproblems. There has been some resear
h on how aspe
ts of systemati
 sear
h
an be relatedto lo
al sear
h te
hniques. Several papers have been published on adding
onsisten
y tolo
al sear
h te
hniques [62, 102℄. Another interesting aspe
t, symmetry's e�e
t on lo
alsear
h is dis
ussed in Se
tion 6.1.2.10 SummaryThere are many other basi
 sear
h methods and hybrids of the above methods. There arealso numerous heuristi
s and variable and value guides. Those that have been given herehave been sele
ted to relate to the resear
h in this thesis. A fuller a

ount of the range ofwork on
onstraint satisfa
tion is given in [106℄.Modelling problems as
onstraint satisfa
tion problems in an eÆ
ient way often needsinformal heuristi
s and
reative input by an expert in the �eld. There are general guides

Chapter 2 23 Constraint Programmingbut even these are open to debate.Evaluation of models, algorithms and te
hniques as a whole (e.g. CP vs. ILP) is notalways straight forward as often empiri
al eviden
e is need to be used. Su
h eviden
e byits nature is open to error and interpretation.The rest of the thesis will examine how the explained resear
h in this
hapter and themethodology issues dis
ussed
an be extended and developed to produ
e driver s
hedules.

Chapter 3Lo
al Sear
h for ConstraintSatisfa
tion Problems
3.1 Introdu
tionThere are numerous lo
al sear
h methods for solving
onstraint satisfa
tion problems. Anoverview of several is given in [49℄. Presented here are some of the more popular methodsand their origins. The main fo
us of this
hapter is the developments that lead to the
reation of the lo
al sear
h method GENET. GENET is the lo
al sear
h algorithm usedin Chapter 6 to
onstru
t driver s
hedules.Informally, the basi
s of lo
al sear
h
onsists of �rst
reating a possibly
awed solution toa problem. This
an be done either by random assignments or by heuristi
s. Then thesolution is iteratively altered in small ways to improve the solution. These are
alled lo
almoves as they
onsider only a small part of the solution and improve that part. There may24

Chapter 3 25 Lo
al sear
h for CSPsbe several possible moves and these will be assessed on a measure of improvement that maybe di�erent for ea
h problem, for example in a CSP the measure of improvement may bethe in
rease in the number of
onstraints that are satis�ed after the move is made. Thereis normally some randomness in
orporated into the
hoi
e of what lo
al move to make atea
h iteration. This prote
ts the solver from following a set path that may never lead to afeasible solution. If the solver is run several times it may produ
e di�erent solutions. Oneimportant aspe
t to note, is that the lo
al sear
h te
hnique will always produ
e some sortof solution even if it does not �nd a feasible solution. This follows be
ause at every stageof the sear
h a solution exists.One di�eren
e between the lo
al sear
h approa
hes and the systemati
 approa
hes re-viewed in Chapter 2 is that given time the systemati
 approa
hes will always �nd a feasi-ble solution if one exists. On the other hand, due to the sto
hasti
 nature of lo
al sear
hit may never end up �nding a feasible solution but keep
y
ling through infeasible solu-tions. However, in pra
ti
e large problems and time restri
tions may negate the ability ofa systemati

omplete sear
h to always �nd a feasible solution. If no feasible solution isfound then the
omplete sear
h will produ
e no solution at all. In these
ases lo
al sear
hte
hniques are often used to �nd as good a solution as possible. Furthermore, lo
al sear
hte
hniques used for optimisation
annot prove that they have found an optimal solution,unlike
omplete systemati
 approa
hes. Therefore, the stopping
riterion for a lo
al sear
hsystem may be a limit on number of iterations or a time limit. On
e stopped, the bestsolution produ
ed is given as the �nal output.3.2 Neural networksArti�
ial neural networks have attra
ted mu
h resear
h be
ause they are based on thehuman brain. This provides advantages su
h as learning and as we will see below someparallel pro
essing
an be done to speed up the algorithm. There are many good booksdes
ribing the general �eld of neural networks, one of whi
h is [1℄.

Chapter 3 26 Lo
al sear
h for CSPsNeural networks
onsist of a large number of neurons or nodes whi
h
ommuni
ate viaweighted
onne
tions. The neurons send inhibitory (negative) or ex
itatory (positive)signals via the
onne
tions. These signals range from -1 to 1 in the analog version of thesystem but we will restri
t ourselves to des
ribing the dis
rete version where the node
aneither be on or o� sending a signal of 1 or -1 respe
tively.A Hop�eld network is a neural network where every node is
onne
ted to every other nodebut not itself. A diagram of a Hop�eld network is given in Figure 3.1.
Figure 3.1: 3 node Hop�eld neural networkThe
onne
tions are weighted and this weight is symmetri
al, i.e. the weight wij of the
onne
tion from node i to node j is the same as wji, the weight of the
onne
tion from jto i. The output of a node is given as the input to all the other nodes multiplied by theweight asso
iated with ea
h
onne
tion.Every state of the network an asso
iated energy value E. The energy fun
tion is de�nedas: (notation from [1℄) E = �12Xi Xj 6=i wijxixj +Xi xiTi

Chapter 3 27 Lo
al sear
h for CSPswhere xi is the state of the node (ranging from -1 to 1). Ti is the threshold of a node. Ina hardware implementation this is an external input supplied to ea
h node.So there is a energy level for every state the network
an be in. This
reates an energylands
ape. An energy lands
ape is shown but only in one-dimension in Figure 3.2. This
Plateau

Global Minimum

Local Minimum

Possible states

E
ne

rg
y

Figure 3.2: Diagram of energy fun
tionlands
ape representation
an be produ
ed for all lo
al sear
h methods. There may beseveral global minima as several states may have the same energy level. When states ofthe same energy level are adja
ent to sear
h other we
all them a plateau.The network
an be updated in one of two ways. Either all the nodes are updated inparallel or they are updated sequentially, a node is pi
ked at random and then updated.The main di�eren
e is that in the sequential
ase the e�e
ts of the update of one node
anin
uen
e the state of the next node that is updated whereas in the parallel version all thenodes update independently. Ea
h update of a node
onsists of turning the node on (1) ifthe input is above the threshold and o� (-1) if below. When we use the Hop�eld networkto solve CSPs the threshold is set to zero and so if the input is above this it will be set toon.Tagliarini and Page [103, 104℄ used a Hop�eld network to solve a CSP, spe
i�
ally the

Chapter 3 28 Lo
al sear
h for CSPsn-queens problem The neurons represent the squares on the
hess board. If there is a
onstraint between the squares there would be an inhibitory weight. There is also a
omponent of the weights to guide the network towards a state where there are exa
tly nqueens on the board.A major
aw in this approa
h to solving CSPs was that the network would be
ome \stu
k"in lo
al minima. This would mean that
onstraints would be broken and so the solutionmight not be useful to the user. Moreover, there may be states where variables might nothave a value assigned to them. The
ommon way of dealing with this was to restart thenetwork every time it rea
hed a lo
al minimum. However, on hard problems this approa
his unlikely to �nd a global minimum as all the e�ort put into a previous sear
h is lost whenthe new sear
h starts. Further work, by Adorf and Johnston [61℄ solved at least part ofthis problem. Their guarded dis
rete sto
hasti
 (GDS) network ensured that a variablewould always have an asso
iated value in the network.3.3 Min-
on
i
t heuristi
In 1992 Minton et al [78℄ investigated why the neural network approa
h (spe
i�
ally theGDS network) was doing better on
ertain problems (e.g. the n-queens problem) than theba
ktra
king algorithms of that time.The �rst argument
onsiders the non-systemati
 nature of the GDS approa
h and thestru
ture of the sear
h spa
e. If the sear
h spa
e has solutions
lustered together ratherthan spread evenly, a systemati
 sear
h may take longer than a non-systemati
 sear
h to�nd a solution. This is explored in their paper by using a purely random sear
h, the LasVegas algorithm, whi
h they show performs better than a simple ba
ktra
king sear
h onthe n-queens problem. However, the GDS network outperforms the Las Vegas algorithmso there must be further explanation for the su

ess.The se
ond argument is that having a whole assignment to a problem gives knowledge

Chapter 3 29 Lo
al sear
h for CSPsthat is not available to a
onstru
tive ba
ktra
king approa
h. So out of the GDS networka simple heuristi
 was distilled to demonstrate the reason for the su

ess of the network,the min-
on
i
ts heuristi
:Given: A set of variables, a set of binary
onstraints, and an assignment of a value forea
h variable. Two variables
on
i
t if their values violate a
onstraint.Pro
edure: Sele
t a variable that is in
on
i
t, and assign it a value that minimises thenumber of
on
i
ts. (Break ties randomly.)Empiri
al eviden
e obtained from [78℄ using the min-
on
i
t heuristi
 for hill
limbing 1showed that the heuristi
 obtained similar results to the neural network, so supporting theargument that the network's su

ess is due to the prin
iple
aptured by the min-
on
i
tsheuristi
.Using the min-
on
i
ts heuristi
 instead of the GDS network allows more
exibility in theway the sear
h is
ondu
ted. For example in [78℄ a ba
ktra
king system is implementedusing the min-
on
i
t heuristi
 for variable and value ordering.The lo
al sear
h min-
on
i
ts heuristi
 worked well on problems su
h as the n-queensproblem, graph
olouring problems and the real world problem of s
heduling the HubbleSpa
e Teles
ope [78℄. However, still present was the problem of getting stu
k in lo
alminima. In se
tion 3.5 there is dis
ussion on methods for es
aping lo
al minima but �rstwe will introdu
e another algorithm used for solving CSPs.3.4 GSATGSAT [95℄ is a greedy lo
al sear
h for solving propositional satis�ability or SAT problems.To explain this the following is de�ned:1Hill
limbing is used to �nd a maximum in the sear
h spa
e and gradient des
ent is used to �nd aminimum. However, maximising the negation of the obje
tive is the same as minimising the obje
tivefun
tion so these terms will be used inter
hangeably

Chapter 3 30 Lo
al sear
h for CSPs1. A literal is a propositional variable or its negation. E.g. A or :A2. A
lause is a disjun
tion of literals. E.g. (:A _B _ F)3. A formula in
onjun
tive normal form (CNF) is a
onjun
tion of disjun
tions. E.g.(:A _ B _ F) ^ (B _ :C _ :D)^ . . .A SAT problem is: given a CNF formula �nd an assignment of true or false for its variables(a truth assignment) that satis�es the formula. CSPs
an be represented as SAT problems2and so GSAT
an solve them. The sear
h method starts with a random truth assignment.Then iteratively:
hange (\
ip") the variable's truth value that leads to the largest in
reasein the total number of satis�ed
lauses. After a user de�ned number of
ips (MAX-FLIPS)the sear
h starts over with a new random assignment. This whole pro
ess is repeated agiven number of times (MAX-TRIES). The full pro
edure is given in Figure 3.3.GSATwhere � is a set of
lausesFor MAX-TRIEST := a random truth assignmentFor MAX-FLIPSif T satis�es � then return T (solution)p := a propositional variable su
h that a
hange in its truth assignment givesthe largest in
rease in the total number of
lauses of � that satis�ed by T .Breaking ties randomly.T := T with the truth assignment of p reversed.endendreturn \no satisfying assignment found"Figure 3.3: Pseudo
ode for basi
 GSAT pro
edureBoth min-
on
i
ts and GSAT allow sideways moves, the
urrent solution is allowed tomove to another solution with the same energy level. This lets the pro
edure traverseplateaus in the energy lands
ape, see Figure 3.2. By doing this the sear
h
an �nd ways2CSPs represented as SAT problems
an have in
ated sear
h spa
es, see se
tion 3.6.4

Chapter 3 31 Lo
al sear
h for CSPso� the plateau and
ontinue gradient des
ent. GSAT a
tually allows uphill moves, if thereis no move that in
reases or retains the number of
lauses satis�ed. However, this is notenough to es
ape a lo
al minimum. To do this the heuristi
 has not only to move out ofit but try not to \fall" ba
k into it.3.5 Methods for es
aping lo
al minimaThere are several approa
hes for es
aping lo
al minima in heuristi
 improvement methods.These same methods
an often diversify the sear
h. These
an be
ategorised into twotypes of approa
h (or a mixture of the two): those that add randomness su
h as Simulatedannealing [64℄ and those that restru
ture the neighbourhood su
h as Tabu sear
h [46℄ andweighting approa
hes [80, 93℄.3.5.1 Simulated annealingSimulated annealing has been used for solving CSPs [73℄. The standard simulated an-nealing pro
ess works as a gradient des
ent neighbourhood sear
h allowing uphill moveswith a
ertain (possible varying) probability. A move
onsists of
hoosing a neighbouringstate at random and if this state has a lower energy then
hoose it. Otherwise
hoose itwith a probability P = e��E=T , where E is the energy and �E is the
hange in energythat would be produ
ed by the move. T is a temperature level, whi
h may be
onstant orde
reasing during the sear
h. This value a�e
ts how likely a non-improving move is made,the higher T the more
han
e.3.5.2 Tabu Sear
hTabu sear
h like GSAT allows uphill moves if no improving move
an be made, yet itexpli
itly tries not to \fall" ba
k into lo
al minima. It does this by making previous states(and related states) Tabu. It stores a list of these Tabu states and dynami
ally updates

Chapter 3 32 Lo
al sear
h for CSPsthis list as the sear
h pro
eeds. This is a
exible meta-heuristi
 and
an be implementedin many ways and hybridised with many other sear
h methods. An overview of these
anbe found in [46℄. The basi
 model is applied as follows. Start with an initial solution(possibly randomly generated). Move to the best available state even if this is a non-improving move. Update the Tabu list. In the basi
 model this
an be done by addingthe previous state to the Tabu list and removing states after a spe
i�ed number of moves.Repeat this until a set number of steps is rea
hed or no moves are available.3.5.3 Es
aping lo
al minima in GSATSimulated annealing and similar approa
hes have been in
orporated into GSAT [92, 94℄,one su
h approa
h was GSAT with Random walk. The prin
iple is outlined as:With probability p, pi
k a variable o

urring in some unsatis�ed
lause and
ip its truthassignmentWith probability 1 � p, follow GSAT, i.e. pi
k randomly from the list of variables thatgives the largest de
rease in the total number of unsatis�ed
lauses.A further method introdu
ed in [92℄ did not dire
tly es
ape lo
al minima but altered thesear
h spa
e to remove them. It was dis
overed that, in some problem instan
es, after ea
hrun the same set of
lauses would remain unsatis�ed (an example of this is given in [92℄).To
ombat this a weighting system to in
rease the importan
e of
ertain
lauses wasintrodu
ed. At the end of ea
h inner
y
le of GSAT (see Figure 3.3) the
ost of violatinga
lause that is violated in the
urrent assignment is in
reased. This work was later builton in [14℄ where a similar e�e
t was produ
ed by adding extra
lauses instead of
hangingweights. It is
laimed that this new method works better than the previous method. This
laim is founded on empiri
al eviden
e and in the paper a possible explanation is given.The best version of GSAT out of the ones shown was a

ording to Selman et al [94℄GSAT with Random Walk. However, this is debatable as in [13℄ it is
on
luded that

Chapter 3 33 Lo
al sear
h for CSPsGSAT-weighting is the best method. The reason for the debate of whi
h method is bestis be
ause performan
e is based on empiri
al testing on problem instan
es. For di�erent
lasses of problems di�erent solvers may be better. There have been several explorationsof various versions of SAT solvers(e.g. [44℄).3.5.4 Breakout MethodA similar approa
h to the weighting approa
h of the last se
tion des
ribed above wasdes
ribed in Morris [80℄.In the min-
on
i
t heuristi
, the
ost or energy fun
tion is the number of
onstraintsviolated. In this method ea
h
onstraint (represented as a nogood
onstraint) has a weight,initially 1. The
ost fun
tion is the sum of all of the weights of the violated
onstraints.A standard gradient des
ent sear
h is used until a lo
al minimum is rea
hed. Then theweights of the
urrent violated
onstraints are in
remented until the
urrent state is nolonger a lo
al minimum. The sear
h then
ontinues. This method di�ers from the GSAT-weighting in that as soon as a lo
al minimum is found the weights are in
reased ratherthan after a �xed number of iterations.Morris proves that if this in
rease of weights only a�e
ted the
urrent lo
al minimum thenthe algorithm would be
omplete and so given enough time would always �nd a globalminimum. However, the weighting e�e
t deforms other parts of the spa
e and this makesthe sear
h in
omplete.3.6 Des
ription of GENETGENET is a Neural Network adapted from a Hop�eld Network des
ribed above. Thenetwork
an represent a
onstraint satisfa
tion problem. It
ould be implemented intohardware and the design for this is detailed in [122℄. However, it has been su

essfullyused as software simulation and this is what is des
ribed here.

Chapter 3 34 Lo
al sear
h for CSPsEa
h neuron (or node) represents one label. The label nodes
orresponding to a parti
ularvariable form a
luster. Ea
h node
an be in an on or o� state. If the node is on, thenthe asso
iated variable and value are assigned. Therefore, only one node in ea
h
lusteris allowed to be on at any time, as a variable
an only have one value. The node's stateis governed by the input to the nodes in its
luster. In turn the node has an output andthis is 1 if the state is on and 0 if not.Binary
onstraints are represented by
onne
tions showing a nogood asso
iation betweenlabel nodes. These work in a similar way to the
onne
tions in a Hop�eld network.Consider two labels whose representing nodes are X and Y and whi
h are prohibitedfrom being on at on
e by a
onstraint. The
onne
tion denoting the
onstraint has anasso
iated inhibitory (negative) weight. This symmetri
al
onne
tion takes the output ofnode X (Y), multiplies it by the asso
iated weight and adds it to the input of Y (X),where wk is the weight and starts at -1. A diagram showing an example of GENET is givenbelow in Figure 3.4. Here variables A, B and C have domains of f1, 5, 7g, f8, 14g and f5,9, 11g respe
tively. There is a
onne
tion between the nodes denoting <A,1> and <B,14>(further referred to as A1 and B14) and this represents a binary
onstraint restri
ting theassignment of A to 1 and B to 14. Other binary
onstraints are similarly represented. Soif the nodes A1; B14; C9 and were on, the input would be: -2 to node B14, -1 to nodesA1; B7; C9 and 0 to the rest.The sear
h method is based on the min-
on
i
ts heuristi
 des
ribed above. It starts witha random assignment of values to variables. In the network a random node in ea
h
lusteris set to an on state. Then all weights are initialised to -1. For ea
h iteration of GENETthe variables are
y
led through in a random order. For ea
h variable
luster the labelnode with the highest (
losest to zero) input is turned on. Ties are broken as follows: Ifone of the nodes with the minimum input was previously on it stays on, otherwise ties arebroken randomly. This pro
ess is repeated until one of three situations o

urs:1. All the labels that are on have an input of zero (a global minimum has been found).2. No improving move
an be made for any of the variables (a lo
al minimum has been

Chapter 3 35 Lo
al sear
h for CSPsrea
hed). Dealing with this will be des
ribed in the next se
tion.3. Some prede�ned limit on the number of iterations or the maximum time has beenrea
hed.3.6.1 Es
aping lo
al minimaWhen
aught in a lo
al minimum GENET in
reases the importan
e of the
onstraintsthat are violated in that assignment i.e. it de
reases the weight of the
onstraints involvedby 1. So the energy lands
ape is altered and the lo
al minimum is raised or \�lled in"and des
ent
an
ontinue. This pro
ess is
alled \learning" be
ause by performing thisoperation GENET will dis
over whi
h are the hard
onstraints to satisfy, giving themmore importan
e. Learning also leads to the heuristi
 exploring a wider sear
h spa
e thanit would otherwise, be
ause features of previous assignments in lo
al minima are penalisedand so are less likely to re
ur. This is similar in e�e
t to the Tabu [46℄ pro
ess.So the �nal basi
 GENET algorithm is in Figure 3.5.
B
A

5

7

14

8

-1

-1

C

5

9

11

-1

-1
1

Figure 3.4: Three variable GENET network

Chapter 3 36 Lo
al sear
h for CSPs3.6.2 General
onsiderationsA
onsideration is whether to allow non-improving (sideways) moves i.e.
hanges that donot redu
e the number of violated
onstraints. The basi
 model des
ribed above does notallow sideways moves: a node that was previously on whi
h has the minimum input in the
luster stays on, even if other nodes have an equal input. The advantage of not allowingsideways moves is that this guarantees
onvergen
e. Given enough time the system willalways �nd a lo
al or global minimum, whereas if sideways moves are allowed the networkmay never stop
hanging states. Davenport [23℄ notes that GSAT su

essfully uses exten-sive sideways moves. A problem with sideways moves in GENET is that when we makea move we are only
onsidering one variable. It may be that there are improving movesthat
an be made with other variables and by making a sideways move we may removethis possible improvement. Although a similar state may o

ur without sideways movesbeing used, there may be a better move missed. Davenport developed three strategiesfor allowing sideways moves: None (only learning), limited and full. The full sidewaysmoves version allows all node
lusters to
hange the node with the on state, even if thereis no
on
i
t (i.e. the node that is on has zero input). If the network stays in the samestate after two
onse
utive
y
les learning is invoked. The limited approa
h allows theGENETRandomly turn on one node in ea
h
lusterRepeat :Repeat : Randomly order the
lustersFor ea
h
luster in orderOut of the set of nodes with highest input in the
luster; retainpreviously on node if member, else turn on a random member.until
onvergen
e (no label nodes
hanged state in a
y
le)if in a lo
al minimum (not all inputs to on label nodes are zero)Learnuntil in a global minimum or resour
e limit rea
hedFigure 3.5: Pseudo
ode for basi
 GENET model

Chapter 3 37 Lo
al sear
h for CSPssame moves as the full approa
h. However, it only allows two
onse
utive
y
les without
hanging the overall energy before learning o

urs. This method has both the advantageof guaranteed
onvergen
e and the advantage of sideways moves. Davenport experimentedwith several
lasses of problems: the n-queens, random binary, graph
olouring and plan-ning. From these Davenport
on
luded that no one system is better than another. Forexample, allowing full sideways moves is best for the n-queens problem while for planningproblems allowing no sideways moves is best. A possible reason for planning problemsbene�ting from not using sideways moves is that they are highly stru
tured and whethera label
auses
on
i
ts or not is strongly based on the
hoi
e of other labels.3.6.3 Non-binary
onstraintsAll non-binary
onstraints
an be represented as binary
onstraints [106℄. However, thistends to hugely in
ate the size of the problem. So there is a need to express more general
onstraints in GENET. For non-binary
onstraints the ar
hite
ture of the model has tobe
hanged. Constraint neurons are added whi
h represent the non-binary
onstraints.Davenport [25℄ introdu
ed ways of dealing with several general non-binary
onstraints. Abasis for these non-binary
onstraints and some spe
i�

onstraints will now be des
ribed.The input to a
onstraint node is the unweighted sum of the outputs of all labels thatviolate the
onstraint. The output is weighted just like the binary
onstraints. A weightis stored for ea
h
onstraint node. So the
onstraint node - label node
onne
tion is non-symmetri
al, unlike the label node - label node
onstraint
onne
tions. The input to a
onstraint node dire
tly a�e
ts its state (S) and has to be set up so that it a
ts in thefollowing way. If the
onstraint is being broken, S will be positive. If it may be broken byone variable
hanging value S will be zero. Otherwise, S should be negative.Figure 3.6 shows a model of a possible non-binary
onstraint. The
onstraint
ould penalisenode < A; 1 >, < B; 8 >, < C; 9> and/or < C; 11> as it has
onne
tions to these. Thereis one weight -1 stored in the
onstraint.

Chapter 3 38 Lo
al sear
h for CSPsThe learning me
hanism updates the weight in the same way as with binary
onstraints.The weight of the
onstraint is de
reased by 1 if it is in
on
i
t at a lo
al minimum. Thisweight is asso
iated with all the all label nodes
onne
ted to the
onstraint node and soa�e
ts the input of all of them.Davenport et al illustrate some spe
i�

onstraints in [25℄ and more in [23℄. Here is asummary of two of these:1. The Illegal (or nogood)
onstraint restri
ts the use of parti
ular
ompound labels.The
onstraint is given a k-
ompound label L that is invalid or illegal in a solution.The
onstraint node is
onne
ted to the k label nodes in L. The state of the illegal
onstraint node Sill is negative if the input Iill is less than k � 1. This is be
auseeven if one label
hanges state no violation
an o

ur if fewer than k � 1 nodes areon. However, if exa
tly k � 1 nodes are on Sill will be 0, be
ause if the remaininglabel node in the o� state is swit
hed on the
onstraint will be
ome violated. Thisis expressed by the equation: Sill = Iill � (k � 1)
5

7

14

8
 5

9

11

B
A
 C

-1

C

1

Figure 3.6: The framework of a non-binary
onstraint in GENET

Chapter 3 39 Lo
al sear
h for CSPsIf Sill = 0, i.e. only one node is in the o� state, we will dis
ourage this node fromturning on by the
onstraint applying a weighted output to it. The other labels arenot penalised, be
ause on their own, they will not
ause a violation.The last situation for Sill is if it is positive, i.e. all k label nodes are on. In this
aseall the nodes are penalised to persuade them to
hange state.The output (Vill < i; j >) of the illegal
onstraint node to ea
h label node < i; j >
an be represented by the equation:Vill<i;j> = 8><>: 0 if Sill < 01 + Sill � V<i;j> otherwisewhere V<i;j> is the state of the label node < i; j >.The Illegal
onstraint is useful as it
an be used to represent more general
onstraints.As any
onstraint
an be a represent by binary
onstraints any
onstraint
an berepresented as Illegal
onstraints. The Illegal
onstraint representation will be ofequal or smaller size to the
orresponding binary representation.2. The Atmost
onstraint is a
ommon
onstraint and so has been in
luded in CHIP.Given a set of variables V ar, a set of values V al and a number N , let L be the set oflabels that
an be generated from V ar and V al. That is, L = f< i; j > ji 2 V ar; j 2V al; j 2 Dig. Then the Atmost
onstraint states that any
ompound label in thesolution must
ontain at most N labels in L. So only N variables in V ar
an havevalues from V al.In GENET the Atmost
onstraint node is
onne
ted to all the labels in L. The stateSatm is determined as follows:Satm = Iatm �N where Iatm is the
onstraint's input.So as in the Illegal
onstraint if the state is negative no nodes are penalised and ifpositive all are penalised. However, if the state is zero it is dealt with di�erently.

Chapter 3 40 Lo
al sear
h for CSPsWhen Satm = 0 any of the remaining nodes turning on would
ause a violation.Unfortunately, if all of these remaining nodes were penalised a problem would o
-
ur. Unlike the Illegal
onstraint, in the Atmost
onstraint a single variable
an beasso
iated with several
onstrained labels. So say a variable i has two values (j andk) in its domain that are in V al. If the
onstraint state is zero and the label < i; j >is on and < i; k > is o� we would penalise < i; k > but not < i; j >. So in thenext move GENET
ould swit
h < i; j > o� and < i; k > on. This swit
h
ouldthen happen in reverse in the next move. So the network
ould os
illate betweenone node being on and the other on. To remove this problem all label nodes in thesame
luster re
eive the same output from this
onstraint. If all of them are o� thenthe
onstraint will output a one multiplied by the
onstraint weight to all of themto dissuade one of them
oming on. otherwise it will output a zero. To summarise,the output for a parti
ular label Vatm<i;j> is worked out as followsVatm<i;j> = 8>>>><>>>>: 0 if Satm < 01�MaxfV<i;k>jk 2 V alg if Satm = 01 otherwiseIn the original work by Davenport et. al. [25℄ it was stated that for ea
h
onstraintnode there was a separate weight asso
iated with every
onne
tion it had with alabel node. This idea was dropped in the later work [23℄ and so this newer versionis what has been des
ribed above. Only having one weight per
onstraint node doessave memory.There has also been work by other authors on allowing GENET to handle non-binary
onstraints. This work saw the emergen
e of EGENET [72℄. This method is similar tothe one des
ribed above. Some of the di�eren
es of note are that multiple penalty valuesare used for
onstraints in EGENET rather than a single weight. In a
onstraint thereis a penalty value for every
ombination (tuples) of assignments of values to variables.Ea
h penalty value starts at -1 for tuples that are prohibited and 0 for others. This allows

Chapter 3 41 Lo
al sear
h for CSPsgreater
exibility in de�nitions of
onstraints as the user just needs to de�ne prohibitedtuples to generate a
onstraint. However, this requires a mu
h greater amount of memorythen just storing a single weight. So an adaptation was introdu
ed [71℄ to
ompensatefor this problem. In [70℄ new
onstraints were introdu
ed to make EGENET more of ageneral CSP solver su
h as CHIP and SOLVER.In the light of the resear
h on EGENETwhere multiple penalties are used Davenport [23℄ mentions that only using one weight asopposed to multiple weights
an a�e
t the sear
h and suggest it is an area for furtherinvestigation. It will be shown later in Se
tion 6.6 that it is not always desirable to haveonly one weight.3.6.4 Appli
ations and extensions of GENETGENET has been su

essfully applied not only to random CSPs but to several otherproblems in
luding standard problems su
h as graph
olouring and real world problemssu
h as
ar sequen
ing and radio frequen
y assignment. These use the binary and non-binary versions and several expansions of GENET.Davenport et al [25℄
laim that GENET is superior to GSAT for problems su
h as graph
olouring. This is shown in experimental results and ba
ked up with the following explana-tion. In GSAT a problem with N verti
es, k
olours will require Nk variables to representit. The domain size of all the variables will be 2. The problem
an be represented as aCSP using only N variables with a domain size of k. So in GSAT the number of possibleassignments is 2Nk whereas in GENET, it is kN . So the sear
h spa
e is mu
h larger inGSAT.The
ar sequen
ing problem is a real world problem. Modern
ars often have di�erentmodels with varying features su
h as sunroofs and air-
onditioning. The number of ea
hmodel required is
alled the produ
tion requirement. On a produ
tion line there is amaximum number in any sub-sequen
e of
ars that
an be �tted with a parti
ular feature.These make up the
apa
ity
onstraints. This problem inspired a new neighbourhoodstrategy for GENET. This was
alled SWAPGENET [24℄. The original representation of

Chapter 3 42 Lo
al sear
h for CSPsthe problem was to have ea
h variable as a position on the
onveyor belt. The domain ofthese variables would be the di�erent models to produ
e. A normal move in GENET wouldbe to
hange a position in the
onveyor belt to
ontain a di�erent model. The number of
ars of ea
h model to be made are known. So an initial assignment
an be
reated havingthe right number of models produ
ed even if
apa
ity
onstraints are broken. The moveoperator
an be
hanged so that it
onsists of a variable swapping its value with the valuefrom another variable. This ensures that the produ
tion requirements do not need to beimplemented as
onstraints. A further advantage is that it
an be proved that the se
ondrepresentation gives a smaller sear
h than the original and so solutions should be foundfaster. SWAPGENET takes more time for ea
h repair. So although the number of repairsis redu
ed on easier problems, the time taken to solve them
an be greater.Another real world problem that GENET has been used on is the Radio Link Frequen-
y Assignment problem (RLFAP). Boy
e et al [10℄ explore using GENET and Tabu astwo te
hniques for solving the RLFAP. A paper [9℄ by the same authors with Bouju
on-
entrates on Tabu but gives more detail. This problem will be examined in the nextsubse
tion.Several other authors have extended GENET to deal with standard types of CSPs thatthe original GENET
ould not handle. Wong and Leung [124℄ enhan
ed GENET to beable to ta
kle a new
lass of CSPs; fuzzy CSPs (FCSP). In [17℄ Cox and Tsang designeda prototype of a GENET that
ould in
orporate
ontinuous domains. EGENET wasextended to make use of
onstraint
onsisten
y
he
king in [102℄.3.6.5 OptimisationGENET was originally designed to �nd a single solution, stopping on
e there are no vi-olated
onstraints. The
lass of CSPs where solutions
an be ordered and the aim isto �nd the best one are known as
onstraint satisfa
tion optimisation problems (CSOP-s). A variation of this problem is the Partial CSP (PCSP) where solutions that
ontainviolated
onstraints are allowed. The
onstraints that
an be broken are
alled soft
on-

Chapter 3 43 Lo
al sear
h for CSPsstraints. In this sort of problem, minimisation of
onstraint violations
an be the aim ofthe sear
h. There may be a hierar
hy of
onstraints and this will a�e
t the preferen
eorder of solutions. Sin
e optimisation problems are
ommon, resear
h was
arried out tointegrate optimisation into GENET. Two general ways of a

omplishing this are des
ribedin Se
tion 3.6.5.1 and 3.6.5.23.6.5.1 The tunnelling algorithmThe tunnelling algorithm was introdu
ed by Voudouris and Tsang in [113℄. The idea isto modify the
ost fun
tion to en
ode the desired
riterion or
riteria to optimise. Thisis done by adding extra terms to the input of ea
h label. In the original model thereare only
osts for violating
onstraints and all of these start at the same weighting. Inthe new version there are additional starting
osts for violating
onstraints and
osts forspe
i�
 assignments. This additional input
ombined with the original input is
alledthe tunnelling fun
tion. So now the
ost (
tk) of violating a
onstraint in the tunnellingfun
tions is:
tk = 8><>: rk + pk if
onstraint k is violated0 elsewhere pk starts at 0 and rk is a �xed
ost related to the importan
e of the
onstraint. Asimilar term is added for the labels:ltij = 8><>: aij + pij if node < i; j > is on0 elsewhere aij is a �xed
ost for ea
h label and pij starts at 0.There are two ways in whi
h the tunnelling algorithm
an work. The �rst is
alled theone stage tunnelling algorithm (1ST). This works just like the original GENET ex
ept the

Chapter 3 44 Lo
al sear
h for CSPsextra terms are in
luded in the
ost fun
tion. The se
ond,
alled the two stage tunnellingalgorithm (2ST) separates the obje
tive fun
tion from the tunnelling fun
tion. So theterms of the obje
tive are for the
onstraint terms:
k = 8><>: rk if
onstraint k is violated0 elseSimilarly with the label terms:lij = 8><>: aij if node < i; j > is on0 elseThis is done be
ause the tunnelling fun
tion
an be
ome distorted from the original ob-je
tive fun
tion that is to be minimised. This may
ause the algorithm to be unable to�nd a good solution.Unlike the original version of GENET the two stage tunnelling algorithm only adjusts theweights of
ertain terms in the tunnelling fun
tion at lo
al minima. This is so that themost important terms are penalised the most and so be
ome less and less likely to bebroken. However, to even the pro
ess up and so diversify the sear
h, the number of times(the absolute frequen
y) a term has been previously penalised is
onsidered. So a simplefun
tion is instigated to de
ide whi
h terms to penalise. This is
alled the Frequen
y toCost Ratio (FCR) where:FCR = Frequen
y / CostAt ea
h lo
al minimum a set of terms is
onstru
ted
onsisting of those with the minimumFCR whi
h also
ontribute to the total
ost. Out of this set all the ones with the maximum
ost are penalised. There is no indi
ation that experiments were used to derive the relativeimportan
e of frequen
y and
ost. They just taking them as equally important in de
iding

Chapter 3 45 Lo
al sear
h for CSPswhi
h terms to penalise.Another
hange from the original version of GENET is that the tunnelling version requiresextra work to de
ide how mu
h to penalise ea
h term in order to es
ape lo
al minima.This is partly due to the new version having two di�erent fun
tions to minimise and partlyto deal with the di�erent importan
e levels (
osts) of ea
h term. So the algorithm worksout the input to ea
h label for both fun
tions. Then for ea
h variable (v) it �nds theminimum label input for both and re
ords the di�eren
e (�gv). The important
riterionfor the
hange in the tunnelling fun
tion is that there must be a move (a
hange of onelabel to another) available after the weight
hanges have o

urred. However, the biggerthe
hange in the fun
tion the further from the original fun
tion it be
omes. Sin
e theoriginal fun
tion is the one that is to be maximised straying too far from it is not desirable.So to balan
e these two issues the following equation is used for ea
h term:PenaltyAmount = maxf
ost;minf�gvggBy using the
ost if it is high enough to make a
hange possible (i.e.
ost > f�gvg)the algorithm is more likely to retain the relative
osts of the original weighting. Thispro
essing takes up a lot more CPU time per
y
le than it does when the algorithm justhas one fun
tion. However, on some of the harder problems the redu
tion in the numberof
y
les outweighs this in
rease in time and the problem is solved in either a qui
ker timeor there is a higher rate of runs that �nd an optimal solution.The algorithm was used on: random CSPs and PCSPs, the graph
olouring problem, theRadio Link Frequen
y Assignment problem (des
ribed below) and the travelling salesmanproblem. So it has been shown that it
an be applied to a wide variety of problems bothrandom and real world.It is interesting that on some hard (tightly
onstrained) non-optimisation CSPs the tun-nelling algorithm found solutions on more runs than the original GENET.

Chapter 3 46 Lo
al sear
h for CSPsAn investigation of lo
al sear
h methods for PCSPs and a
omparison with a systemati
bran
h and bound method is given in [60℄.3.6.5.2 Additional work on GENET for optimisationThe other approa
h by Boy
e et al [10℄ developed for handling CSOPs and PCSPs issimilar to the one-stage tunnelling algorithm. The example used to show the optimisation
apabilities is the Radio Link Frequen
y Assignment problem. The general problem
on-sists of a set of frequen
ies and a set of radio links. Constraints o

ur be
ause frequen
ies
an have an e�e
t on ea
h other at
ertain distan
es. This imposes restri
tions on the
ombinations of frequen
ies that links whi
h are spatially neighbours
an have. A solutionis a mapping of radio links to frequen
ies. The problem
an be an optimisation problem
onsidering several
riteria. These in
lude: the number of frequen
ies used, the range offrequen
ies used and the number of violated
onstraints (i.e. the problem
an be a PCSP).In [10℄ to redu
e the number of frequen
ies used, ea
h label has an extra input term. Thisterm is the negation of the number of frequen
ies that the assignment would have if thatlabel were to be turned on. This extra term, derived from the state of the whole system,
an be varied to optimise whatever
riterion is desired. This is the main di�eren
e betweenthis approa
h and the 1ST. In 1ST system the extra term for ea
h label
onsists of thenumber of variables minus the number of variables that are assigned the proposed value.In [10℄ the three results where GENET optimises this
riterion show that GENET �ndsthe optimal number of frequen
ies. This is slightly marred by the fa
t that, in two out ofthe three problems, GENET
an only �nd the optimal solution in a maximum of 20% of itsruns. However, this is not a
lear performan
e indi
ation be
ause in this paper there is nomention of how
lose the other solutions are to being optimal. Moreover, there is only oneother method that it is
ompared with, Tabu sear
h. In the implementations used in thepaper, GENET outperforms Tabu. The su

ess in �nding optimal solutions in
ertain runswas due (at least in the Tabu version) to the way they ta
kled the following issue. Witha single reassignment of frequen
y to a link there are very few opportunities to remove

Chapter 3 47 Lo
al sear
h for CSPsa frequen
y entirely. So even when they tried weighting the
ost of using frequen
ies tobe very high the solution was often far from optimal. This was
ombated by
hangingthe initial solution from a randomly produ
ed one. In a random starting assignment, onaverage, the number of violations is less than half, but more than half of the availabledistin
t frequen
ies are used. So the prin
iple of starting with the minimum number offrequen
ies was used (this
ould be 1 if all the domains
ontain a parti
ular frequen
y).It greatly in
reases the initial number of violated
onstraints. However, the system addsfrequen
ies when ne
essary to redu
e violations and so in
reases the number of frequen
iesused. Doing this allows the program to �nd optimal solutions. This work is detailed in [9℄.3.6.6 Algorithms derived from GENETThe ideas and prin
iples of GENET were
arried forward into a new system whi
h allowsgreater generality and its basi
 model in
orporates solving CSOPs and PCSPs. This is
alled Guided Lo
al Sear
h (GLS) [109, 114, 115, 112, 116, 117℄. Instead of spe
ifying theobje
tive fun
tion as GENET does, GLS leaves it to the implementer. GLS just needs tobe supplied with an obje
tive fun
tion that maps every
ompound label to a
ost. In ea
h
y
le of the algorithm every variable is set to a value that gives the lowest overall
ost,breaking ties randomly. This allows sideways moves for ea
h variable but if after a full
y
le the total
ost has not been redu
ed then this is treated as a lo
al minimum. Thevariables are
hanged in an arbitrary stati
 order. This is a meta-heuristi
 and so
an \siton top of" other lo
al sear
h methods. This allows su
h hybrids as the Guided Geneti
Algorithm [68℄.3.6.7 Con
lusions on GENETTo
on
lude, GENET
an be modi�ed to
ope with many di�erent tasks and di�erentsear
h strategies
an be used. As well as general problems su
h as graph
olouring andrandom CSPs, GENET has been applied to a few real world problems su
h as the radio

Chapter 3 48 Lo
al sear
h for CSPsfrequen
y assignment and
ar sequen
ing. However, these
hanges are not straightforwardand require resear
h and experimentation to produ
e. An overview of some of the abovemethods are given in [108℄.3.7 Summary and Con
lusionsThe majority of the methods des
ribed above are similar in nature; the di�eren
e generallylies in the move operator (how it \steps" from state to state) and how it deals with spe
ialstates su
h as lo
al minima, plateaus and previously visited areas. When solving realworld problems, the move operators and spe
ial state operators are often spe
ialising totake in domain knowledge. This is usually done intuitively by an expert in the �eld.Equally some te
hniques require the setting of parameters that a�e
t the sear
h. Whilstexperimentation and empiri
al eviden
e are used to set these, informal heuristi
s andintuition are often used. These fa
tors may supersede the innate di�eren
e in resultsprodu
ed between di�erent algorithms when
ompared on a spe
i�
 problem.The methods here have been des
ribed in their basi
 form and there are always numerousways of adapting and hybridising them, for example there are several strategies for usingmethods used in systemati
 sear
h for lo
al sear
h [105, 62, 102, 128℄. There are severalstudies
omparing methods and how the stru
ture of the problem a�e
ts the performan
eof methods, for example [50, 16℄.The next
hapter will des
ribe how lo
al sear
h te
hniques shown in this
hapter,
on-straint programming te
hniques from the last
hapter and mathemati
al programmingte
hniques have been used for produ
ing driver s
hedules.

Chapter 4Review of driver s
hedulingte
hniques
4.1 Introdu
tionEarly bus driver s
heduling systems were heuristi
 based and limited in their usability.Many were spe
i�
 to individual bus
ompanies and the te
hniques used were not dire
tlytransportable to other
ompanies. Often a large amount of manual intervention wasneeded. Some systems were little more than validators. They just
he
ked the shiftsand s
hedules the manual s
heduler produ
ed. This was useful but
ould not be
ountedas automated s
heduling. Later, as
omputer power in
reased, the systems
ould takeadvantage of mathemati
al programming. Se
tion 4.2 will des
ribe some early heuristi
sand in Se
tion 4.3 we will progress to the later mathemati
al systems. In these two se
tionswe will restri
t our review to examples of approa
hes su

essful on
ommer
ial bus drivers
heduling problems. In Se
tions 4.4 and 4.5 we
ome to re
ent work. Here we will broaden49

Chapter 4 50 Review of driver s
heduling te
hniquesour s
ope to in
lude theoreti
al and potential approa
hes as well as work related to busdriver s
heduling. To open this Chapter we will introdu
e the me
hani
s of the problem.Bus driver s
hedules are designed to ensure that every bus has a driver at all times. Driverswork on pre-planned shifts, ea
h of whi
h obeys
ertain rules dependent on lo
al legislationand on agreements between drivers and management. Typi
al types of rule are:� No shift
an ex
eed a stipulated maximum driving time;� Every shift must have at least one meal break of a designated minimum duration;� No part of a shift
an ex
eed a stipulated time on duty without a meal break;� No shift
an ex
eed a given elapsed time from start to �nish (the maximum elapsedtime may depend on the type of shift).In pra
ti
e, there is usually a variety of further rules. In many
ountries, in
luding theUnited States and the United Kingdom, shifts usually
onsist of stret
hes of work, sepa-rated by a meal break. Ea
h stret
h may
ontain one or more spells of work, ea
h spellbeing on a di�erent bus. Drivers
an normally join or leave a bus only at designatedpoints (usually one per bus route or line); these relief points may be either intermediateor terminal points. We
all the times at whi
h buses are s
heduled to pass relief points,relief opportunities. We may represent the work of a bus throughout a day as a series ofrelief opportunities linked by indivisible pie
es of work, ea
h of whi
h must be
overed bya driver. A shift therefore
onsists of two or more spells, ea
h starting and ending at arelief opportunity and
onsisting of a number of
onse
utive pie
es of work.Figure 4.1 shows three buses with just the information required for driver s
heduling. Thesolid lines represent the work done by ea
h vehi
le; where a relief opportunity o

urs, thetime and lo
ation are shown (here, D is the depot and L is Leeds
ity
entre). The driverassigned to the �rst bus drives it until the bus returns to the depot. The dashed lineshows this spell of work. The driver then has a meal-break and following that takes overthe se
ond bus at 1015 in Leeds
ity
entre, from the driver who has already driven that

Chapter 4 51 Review of driver s
heduling te
hniquesbus from 0622 onwards. The se
ond driver in turn takes a meal-break and then takes overthe third bus from its previous driver, and so on.4.2 Early heuristi
 methodsThe early methods used for driver s
heduling were heuristi
 based. This was be
ause therewas not the
omputing power to use mathemati
al solvers. Many of the approa
hes havesimilarities. They
onstru
t an initial solution using a heuristi
 pro
ess and then makelimited alterations to it to try to improve the s
hedule.4.2.1 RUCUS/RUCUS IIRUCUS (RUn CUtting and S
heduling) [4, 75, 74℄ is an example of a system that generatesa initial s
hedule and then heuristi
ally improves it. It �rst
reates single spell shifts andthen two spell shifts, after this pro
ess any remaining pie
es of work that
annot beallo
ated to shifts are left as short overtime spells. This limits the use of the system andis a reason for RUCUS's demise, as a lot of
ompanies do not use overtime and even ifthey do they try to restri
t it. Further, it is generally ineÆ
ient to leave out \diÆ
ult"work in this way. On
e the initial solution is
reated the system then uses lo
al sear
hmoves to attempt to improve the solution. It either swaps some pie
es of work
overed by
D

0529
L

0721 0925
D

D
0622

L
0838

L
1015

L
1224

L
1346

L

D
0820

L
0838

L
1110

L L
1623

1435

1415 1538
LL

1234Figure 4.1: A fragment of vehi
le s
hedule showing possible
hosen shifts

Chapter 4 52 Review of driver s
heduling te
hniquesone shift with pie
es of work from another shift or it moves sele
ted relief opportunitiesforward or ba
kward. There is then a repair pro
edure whi
h attempts to �x any shiftsthat have be
ome invalid due to the
hanges. However, there may still be invalid shiftsleft in the �nal s
hedule and so manual intervention may be needed.4.2.2 Other heuristi
 systemsHOT and HOT II (Hamburg Optimisation Te
hniques) [54, 21, 111℄ start by trying to formgood shifts, one at a time, for ea
h morning bus, and then ea
h evening bus. Any workwhi
h is not treated in this pro
ess is formed into partial shifts, whi
h are then
ombinedinto full shifts by a variant of the Hungarian Algorithm. There is little improvement doneto the s
hedule on
e it is
onstru
ted. Sometimes it may leave uns
heduled pie
es of work.However, it has been used in several German bus operations. It is believed that it is nolonger widespread in use.TRACS is a heuristi
 system with a few di�eren
es from those already des
ribed. Thissystem was developed under the premise that an initial poor solution
annot be alteredinto a good solution by heuristi
 improvements. One reason why this may have beentrue was that development of this system started in 1967 and so the modern lo
al sear
hte
hniques were not available. A poor solution would be a poor lo
al minimum in thesear
h spa
e and would take several un-improving moves to get to a stage where it
ould besigni�
antly improved. The heuristi
s used at this time in driver s
heduling tended to useonly improving moves and so a s
hedule
ould not be greatly enhan
ed. So while TRACSdid do heuristi
 improvements, similar in nature to RUCUS, it would �rst
on
entrate onprodu
ing as good an initial solution as possible. This would take a lot of e�ort workingwith a bus
ompany to get heuristi
s spe
i�
 to the
ompany working, and this pro
esswould have to be altered, often substantially, to move the system to a new
ompany.Subsequently, a system, COMPACS, was developed by a
ommer
ial
ompany. COMPACSretained the initial solution generation phase of TRACS, but not the improving moves.It
ould also be used as an intera
tive s
heduling tool and would validate shifts as the

Chapter 4 53 Review of driver s
heduling te
hniquess
heduler wrote them.4.3 Integer linear programming methodsWhen resear
h into driver s
heduling was �rst undertaken in the 1960s, all pra
ti
al prob-lems were too large for a mathemati
al approa
h using the available te
hnology and meth-ods. To this day, a pure general purpose mathemati
al approa
h would still be inadequateto solve pra
ti
al driver s
heduling problems of value. Heuristi
 redu
tions are needed andgreat e�ort must be put into their development.4.3.1 Mathemati
al model of set partitioning and set
overingFrom the point of view of driver s
heduling, the vehi
le s
hedule
onsists of a set ofpie
es of work to
over I = f1; : : : ; mg. We
an then produ
e a large set of possibleshifts S = fS1; : : : ; Sng. Ea
h shift
overs a subset of the pie
es of work (Sj � I forj 2 J = f1; : : : ; ng). The shifts have an asso
iated
ost
j > 0. What we want is a subsetof shifts J� that together
over all the work. This
an be written as[j2J� Sj = I (4.1)where J� � J .If equation (4.1) holds, then J� is said to be a
over of I . If equation (4.2) below alsoholds then J� is
alled a partition of I .j; q 2 J�; j 6= q) Sj \ Sq = ; (4.2)i.e. no pie
e is
overed by more than one shift.We wish to produ
e a s
hedule whi
h has the minimal total
ost (Pj2J�
j) i.e. uses the

Chapter 4 54 Review of driver s
heduling te
hniques1 . . . mS1 a11 a21 . . am1S2 a12 . . . am2...Sn a1n . . . amnTable 4.1: The set partitioning problemminimum number of shifts. So now we
an de�ne our set partitioning problem as theInteger Linear Program (ILP): min x0 = nXj=1
jxj (4.3)subje
t to: nXj=1 aijxj = 1; i = 1; : : : ; mxj = 0; 1 j = 1; : : : ; nwhere: xj = 8><>: 1 if j is in the partition0 otherwiseaij = 8><>: 1 if i 2 Sj0 otherwiseThis problem
an be represented as a matrix, as shown in Table 4.1. The rows are theshifts and the
olumns the pie
es of work. When sele
ting a set partitioning solution wesele
t the minimum number of rows where the sum of ea
h
olumn of the sele
ted rowswill be 1.

Chapter 4 55 Review of driver s
heduling te
hniquesOften in
ommer
ial driver s
heduling pa
kages the problem is formulated as a set
overingor a set partitioning problem. However, there are often extra features added. For example,side
onstraints may be imposed to restri
t
ertain types of shifts. The other alteration tothe formulation is the in
orporation of optimising the number of shifts as well as the
ost.In
ommer
ial system a set
overing approa
h is often adopted over a set partitioningone. This is be
ause as a set partitioning problem there will not always be a solution. In
ontrast to this the set
overing formulation is guaranteed to have a solution. In prin
iple,restri
tions su
h as those on depots in train driver s
heduling
an negate this guaranteebut in pra
ti
e it works as long as an appropriate number of generated shifts
over ea
hpie
e. In train driver s
heduling it is often the
ase that several depots are in use. Thedistan
e between these depots
an be so great that provision has to be made to returnthe drivers to their own depot at the end of a shift. This may mean that drivers need totravel as passengers and systems often
ope with this by in
luding the passenger travel inthe shift as if the driver were a
tually driving it. It is then up to the manual s
heduler tode
ide whi
h driver should a
tually driver the train.To in
rease the likelihood of �nding a set partitioning solution we would need a mu
hlarger supply of possible shifts. This would in
rease the sear
h spa
e. Nevertheless, theadvantage of the set partitioning formulation is that it will produ
e a s
hedule with nooverlapping drivers (over-
over). This is preferable as over-
over
reates unprodu
tivetime for a driver. Even though the set
overing formulation produ
es over-
over we
anredu
e the amount of over-
over. For example, in TRACS II some of it
an be removedmanually or intera
tively by altering shifts at the end of the pro
ess.4.3.2 TRACS IIThe University of Leeds has a long history of driver s
heduling resear
h. Its �rst systemfor forming driver s
hedules was a heuristi
 one outlined above
alled TRACS [82℄. Latera mathemati
al system
alled IMPACS was developed in the 1980s. IMPACS is nowsuperseded by TRACS II. This new system has been generated with many train driver

Chapter 4 56 Review of driver s
heduling te
hniquess
heduling features in mind but retains the ability to produ
e bus driver s
hedules. In thisSe
tion we will des
ribe the model that this system uses. We will
on
entrate only on thenewest version of the program. Parts of this system are utilised in the methods that havebeen generated for this thesis.4.3.2.1 TRACS II model
SIEVE
BUILD
 SCHEDULE

Solve LP

Reduce

Branch

and

Bound

set of

shifts

reduced

shift set

Figure 4.2: TRACS II
omponents4.3.2.2 Sele
tion of relief opportunitiesThe IMPACS suite of programs
ontained a program
alled SELECT whi
h tried to redu
ethe size of the problem by removing
ertain ROs. Unfortunately, this type of redu
tion
andegrade the solutions produ
ed by TRACS II. With the re
ent improvements of TRACS IIallowing it to solve problems of larger sizes the SELECT program is now never used.However, sometimes ROs are removed manually by skilled users when problems are toolarge. Work des
ribed in Se
tion 4.4.7 is an attempt to repla
e the dated SELECT module.

Chapter 4 57 Review of driver s
heduling te
hniques4.3.2.3 Duty generationThe BUILD program generates a large set of valid shifts. It is des
ribed here but furtherdes
ription
an be found in [66℄ (although that paper relates to the
on
eptually similarrail driver s
heduling problem). The �rst priority of this program is to produ
e only shiftsthat are valid. However, there are many more aspe
ts it has to
onsider. If too manyshifts are generated the problem may be
ome too large for the mathemati
al solver to�nd a solution in a reasonable time. On the other hand, omitting important shifts
an bedetrimental to the eÆ
ien
y of the �nal s
hedule produ
ed. So the BUILD pro
ess triesto only produ
e \good" shifts. This is a task that takes several heuristi
 rules be
ause theultimate de
ider as to whether a shift is good or not depends on how it
ombines withother shifts and this
annot be found out until the problem is being solved.The BUILD pro
ess starts by generating a large number of spells. Rules apply to theminimum spell length so as not to produ
e spells whi
h
ontain ineÆ
iently little amountsof work. These spells are then
ombined where appropriate into stret
hes of one or twospells. Stret
hes also have a minimum length so as to prevent ineÆ
ien
ies, but they also
onform to rules governing their maximum length, whi
h is usually the maximum time adriver
an work without a meal break. These stret
hes are then
ombined to form shiftsof up to four spells. Between
onse
utive spells of work the driver has joinup time toget from an RO where one spell �nished to another RO where the new spell starts. Theother possibility is that the driver will have a meal break, if the time is suÆ
ient. Rulesare applied from legal, union and
ompany pra
ti
e, su
h as minimum meal break lengthand maximum driving time. As well as these
ommon sense
onsiderations it in
ludessu
h rules as not produ
ing shifts that
ontain a spell on a bus followed by a joinup andthen a spell
ontinuing on the same bus. On
e the shifts are generated, shifts that areseen to be obviously \poor" shifts
ompared to others are removed. For example, asshifts
ontaining a high number of spells are not usually desired, three spell shifts thatare ineÆ
ient
ompared with two spell shifts
ontaining a substantial portion of the samework are removed.

Chapter 4 58 Review of driver s
heduling te
hniquesThere are many di�erent types of shifts. Morning, evening, day, overtime and split. Ea
hmay have its own regulations. These are governed by parameters whi
h have to
onformwith di�ering bus
ompany regulations.4.3.2.4 Redu
tion of the set of DutiesIt is sometimes the
ase that BUILD produ
es more shifts than the mathemati
al solverin SCHEDULE
an handle, or more than is ne
essary to obtain a good solution. Theoriginal IMPACS version used a pro
ess
alled EVEN. This operated by removing shiftsthat
overed pie
es of work that were also
overed by many other shifts. TRACS II usesa di�erent pro
ess,
alled SIEVE.SIEVE initially removes shifts that are dupli
ates of other shifts. Next, SIEVE asks theuser to give a target number of shifts to remain after the pro
ess. SIEVE then ranksea
h shift a

ording to: a measurement of its
ost e�e
tiveness and the least and averagenumber of other shifts
overing the pie
es of work that the shift does. SIEVE then startsremoving the lowest ranking shifts, as long as this does not leave work un
overed, until thetarget number are remaining. At
ertain stages SIEVE re
omputes the ranks of remainingshifts, to re
e
t the fa
t that low ranking shifts may be
ome
riti
al after those of lesserrank are removed. The user then gets to reinstate shifts if they feel these shift's
oste�e
tiveness is too high for them to be removed.4.3.2.5 LP relaxationThe aim of the mathemati
al solver is to sele
t a set of shifts from the large set of potentialshifts. Several
riteria are to be optimised in this pro
ess, the most important usually beingthe number of shifts. TRACS II takes all of these
onsiderations into a single optimisation
riterion. In this des
ription we will des
ribe the newest versions of
omponents that arein
orporated in SCHEDULE. SCHEDULE is based on ZIP [89℄ and still retains mu
h ofits prin
iples.

Chapter 4 59 Review of driver s
heduling te
hniquesAs well as the set
overing
onstraints there are sometimes user de�ned side
onstraints.These are set to limit the number of di�erent types of shifts.The �rst part of the pro
ess is to relax the integrality
onstraints to allow fra
tionalsolutions. The solver then uses an initial solution to start the optimisation pro
ess. Theinitial solution was originally produ
ed by sele
ting still un
overed pie
es of work one ata time and then
hoosing a shift to
over it that minimises the following fun
tionCjNUj (4.4)where Cj is the
ost of the shift and NUj is the number of
urrently un
overed pie
esof work
overed by shift j. However, a new initial solution method was developed byWillers [123℄, suggesting the shifts should be sele
ted by:Max MXi=1 xijLi (4.5)where: xij = 8><>: 1 if shift j
overs the
urrently un
overed pie
e of work i0 otherwise,Li = duration of workpie
e i.There is not mu
h di�eren
e between the quality of the initial solutions produ
ed by thesetwo pro
esses, although the se
ond pro
ess is on average better. However, either pro
esswill provide a starting solution whi
h will lead to an optimal solution to the relaxed LP.The solver used for the relaxed LP is the dual steepest edge approa
h [59℄. If there is alarge number of potential shifts, a
olumn generation pro
ess developed by Fores [36℄ isused. On
e the problem is solved a new
onstraint is added whi
h in
reases the (possiblyfra
tional) total number of shifts used, up to the next highest integer. This will be thelower bound on the number of shifts in the optimal integer solution. The model is then

Chapter 4 60 Review of driver s
heduling te
hniquesre-solved using the dual steepest edge approa
h.4.3.2.6 Bran
h and BoundSmith [100℄ introdu
ed a method of greatly
utting down the number of shifts and thenumber of relief opportunities that go into the bran
h and bound method. This pro
essis
alled REDUCE. It removes many shifts from the sear
h by only using shifts that startor end at an RO that is used in the LP solution.On
e this has been done the pro
ess
ontinues into the bran
h and bound phase. The pro-
ess bran
hes on relief opportunities, this means that nodes of the sear
h tree
orrespondto ROs and have two bran
hes; either the RO is used (1) or not used (0). This pro
essuses the relaxed LP solution to form fra
tional values for ea
h RO (the details of this arefound in Se
tion 5.5). These values are used to
hoose whi
h bran
h of a node to explore�rst. The algorithm explores the 1 bran
h if the fra
tional value is
losest to 1, and the0 bran
h otherwise. The pro
ess
ould just bran
h on the shifts, i.e. ea
h node would
orrespond to a shift and ea
h bran
h to whether the shift is used or not. The reasonswhy it does not do this are dis
ussed in Se
tion 5.5. The pro
ess will run until a solutionis found with the minimum number of drivers or it has explored 500 nodes. If a solutionis found the pro
ess tries to further optimise the solution to redu
e the overall
ost of theshifts in the s
hedule, until 500 nodes have been explored.4.3.2.7 TRACS II summary and resultsTRACS II is in
orporated in a
ommer
ial system that has been su

essfully installed inseveral transport
ompanies. An example of a problem that is near the upper bound of thesize of problem that TRACS II
an deal with using the
olumn generation enhan
ements isa problem with 53297 potential shifts, 976 pie
es of work and 195 shifts in the �nal solution.Some problems have greater numbers of potential shifts entering ZIP, and similarly greaternumbers for pie
es of work and shifts in the �nal solution. However, this problem is overall

Chapter 4 61 Review of driver s
heduling te
hniquesone of the largest problems solved without de
omposition.Figure 4.3 illustrates the pro
ess that is used by TRACS II to produ
e a s
hedule. Theinitial stages are to remove potential ROs. This is done in several ways; by hand, possiblyin the future a new pro
edure by Lay�eld et al, des
ribed in Se
tion 4.4.7, and Smith'sredu
tion [100℄ des
ribed in Se
tion 4.3.2.6 is used just before entering the bran
h andbound phase. The �nal stage is to de
ide on the ROs that are to be used in the �nalsele
tion. This is done by the bran
h and bound pro
ess des
ribed in Se
tion 4.3.2.6.On
e this is done the shifts to be used in the �nal s
hedule are virtually set.
Full set of ROs

Heuristically

reduced set

of ROs

Only the ROs that

are in the

schedule
Figure 4.3: The di�erent levels of RO sele
tion. ROs
an be removed either intuitively orheuristi
ally to produ
e a redu
ed set or all ROs that are not in the �nal s
hedule
an beremoved.4.3.2.8 S
heduling side issuesAlthough the driver s
heduling problem is often modelled as a straightforward set parti-tioning or set
overing problem there are sometimes further restri
tions. In this se
tionwe will explain three su
h restri
tions and how they relate to TRACS II.One restri
tion arises be
ause often
ertain types of shifts are undesirable. For examplea split shift, where a driver will do a stret
h of driving in the morning followed by a longbreak and �nally do a stret
h of driving in the evening. These shifts are used be
ause

Chapter 4 62 Review of driver s
heduling te
hniquesthere is often a peak in the number of buses on the road during the morning, for peoplegoing into work, and the evening for their return home. However, the spans of these shiftsare long and so many drivers dislike them and unions sometimes make agreements withmanagement to restri
t the number of this type of shift in a given s
hedule. This problemhas been e�e
tively modelled in mathemati
al programming by side
onstraints.A diÆ
ulty has arisen for the TRACS II system in its development for solving train drivers
heduling problems. These problems, unlike bus driver s
heduling ones often, have manydepots, and due to the often large distan
es between them, provision has to be made fordrivers returning to their own depot. Further restri
tions apply be
ause often there is alimit on the number of drivers that
an
ome from ea
h depot. This
auses problems ina few ways. Normally a s
hedule
an be found with the number of drivers that is thesame as that of the lower bound given by solving the relaxed LP problem. However, itis possible that more drivers are needed when multiple depots o

ur. The reason for thishas not been proven but it may be due to the fa
t that often in the relaxed LP solutiona pie
e of work will be fra
tionally
overed by shifts from di�erent depots and when theinteger solution is derived both shifts will need to be used. Another problem is if SIEVEneeds to be used, sometimes shifts that
over similar work but
ome from di�erent depotswould be removed by the SIEVE pro
ess but have to be retained be
ause of the depotrestri
tions. This does
ause a small in
rease the size of the problem.There is one problem with the set partitioning/
overing model that has not been ta
kledin the TRACS II suite. This is windows of relief opportunities. Often vehi
les arrive at arelief point and remain there for several minutes before moving on, the a
tual time varying
onsiderably. Under some operating agreements a driver
hange
an be made at any timebetween the vehi
le's arrival and departure. However, in a set partitioning/
overing modelwhen generating shifts, a spe
i�
 point and time (an RO) is needed to
reate shifts. Tohave an RO for every minute a vehi
le stands at a relief point would in
rease the problemsize by an una

eptable amount. At present the RO time is normally taken to be whenthe vehi
le arrives at the relief point. Unfortunately, due to union agreements this mightmean that shifts that
ould in theory be allowed are not generated. This
ould be be
ause

Chapter 4 63 Review of driver s
heduling te
hniquesit may a�e
t some issues su
h as maximum time before a meal break. It is possible that adriver starting work when the vehi
le arrives at a relief point might have to drive for toolong before they
an be repla
ed at a time and pla
e that makes an eÆ
ient spell.4.3.3 HASTUSHASTUS [7℄ is a suite of programs that
ontains programs for
rew s
heduling as wellas for bus s
heduling. The HASTUS
rew s
heduling
omponent is broken down intotwo systems, HASTUS-mi
ro and HASTUS-ma
ro. HASTUS-ma
ro provides an initialsolution and HASTUS-mi
ro generates the �nal solution. HASTUS-ma
ro uses linearprogramming to generate a pseudo-s
hedule that provides an estimate of the number ofdrivers that are needed. The pseudo-s
hedule is built by pseudo-shifts, whi
h are generatedusing Pseudo-ROs, whi
h are simpli�
ations of the ROs; this is done by just
utting theday into user de�ned time slots. The pseudo-s
hedule is also used by HASTUS-mi
ro toprodu
e a �nal s
hedule by using it to produ
e real shifts that relate as
lose as possibleto those in the HASTUS-ma
ro solution.CREW_OPT [27, 26, 88℄ is a system that uses
olumn generation to produ
e s
hedules.Initially it
ould only be used for small s
heduling problems but more re
ent work [88℄suggest it has potential to repla
e the older HASTUS
omponents.HASTUS has been used widely in transport s
heduling as it provides a graphi
al userinterfa
e and a system that deals with all the s
heduling issues: bus, driver s
hedulingand rostering.4.3.4 EXPRESSEXPRESS [34, 35℄ is a bus driver s
heduling system developed for a
ompany inChrist
hur
h, New Zealand. This is an example of a method that uses a set partitioningformula. However, during the sear
h pro
ess the stri
tness of the model is diminished by

Chapter 4 64 Review of driver s
heduling te
hniquesthe addition of sla
k variables. It then uses a version of the original ZIP [89℄ program that
omponents of SCHEDULE in TRACS II are based on. The bran
hing model is slightlydi�erent from the one used in TRACS II, in this system the bran
h and bound algorithmbran
hes on the pie
es of work (
onstraint bran
hing) rather than the relief opportunities.Bran
hing on ROs was found to be a superior sear
h strategy by Smith [100℄.4.3.5 Air
rew and bus driver s
heduling
omparedMu
h of the work done on
onstraint programming for solving set partitioning problemshas been done on problems derived from air
rew s
heduling [48, 81, 87℄. There is a setof ben
hmarks for these in [2, 53℄. However, the terminology di�ers between bus driverand air
rew s
heduling and from
ompany to
ompany. The equivalent of shifts in air
rew are usually
alled rotations or pairings. The equivalent of pie
es of work are usually
alled
ight legs. More importantly the internal stru
ture of the two types of problem
an be very di�erent. There tends to be a lot more pie
es of work in bus s
hedules than
ight legs in air
raft s
hedules. This is be
ause in air
rew s
hedules a
ight leg may lastmany hours, whereas in bus driver s
heduling a pie
e may be as short as 10 minutes. Forthis reason, if we generated all possible shifts, even small bus s
hedules would be
omeimpra
ti
al to solve. Thus, we have to restri
t the number of generated shifts, by usingheuristi
s so as not to generate shifts that are thought to be \poor" in some sense e.g.they
over a small amount of work. However, this may lead to pie
es of work that
annotbe
overed without shifts overlapping (over-
over) and so in our generated shift set wemay not have a set partitioning solution.4.4 Constraint programming methodsConstraint programming approa
hes for produ
ing full
rew s
hedules have been almostex
lusively restri
ted to air
rew s
heduling. Furthermore, most of them depend heavilyon the use of LP solutions to guide variable and value ordering. Two ex
eptions to this rule

Chapter 4 65 Review of driver s
heduling te
hniquesare the systems des
ribed in Se
tions 4.4.5 and 4.4.4. Some of these methods have beenmentioned in Se
tion 2.8 to illustrate points about
omparing systems. In this se
tion amore detailed a

ount of these systems will be given.4.4.1 Guerinik and CaneghemGuerinik and Caneghem [48℄ devised a
onstraint programming approa
h whi
h used math-emati
al programming (MP) as a guide to solve the set partitioning problems derivedfrom air
rew s
heduling in [2℄. The system starts by applying mathemati
al redu
tionson the set partitioning problem as a prepro
essor phase. These will be further dis
ussedin Se
tion 5.4.This approa
h models the problem using the rotations as the variables, in the same way asthe ILP model does. The variables are ordered a

ording to their
orresponding fra
tionalvalue's
loseness to 1, the
losest �rst. The value �rst attempted for ea
h variable is 1.So while there are no fails the indi
ation given by the values of the relaxed LP solutionis
onsistent with the
hoi
es made. However, when a fail o

urs a variable will attemptthe value 0 and by so doing the relaxed LP solution will no longer be an a

urate guideand therefore the relaxed problem will be re-solved. The system does not perform aswell as a pure mathemati
al programming approa
h that was presented by Ho�man andPadberg [53℄.4.4.2 Rodosek et alRodosek et al [87℄ produ
ed a general way of
ombining mathemati
al programming and
onstraint programming. When the system is used to solve a problem it �rst solves therelaxed problem by an LP solver. It then uses this to order the variables, a

ording totheir
loseness to 0 or 1 (
losest �rst). It then
hooses the nearest integer value to thefra
tional value as the �rst
hoi
e for ea
h variable. Whenever there is a fail a new valueis tried and the relaxed problem is resolved with the existing assignments and the new

Chapter 4 66 Review of driver s
heduling te
hniquesassignment set. In this way the fra
tional values are a�e
ted by previous de
isions and sobe
ome a more a

urate predi
tion of what the �nal integer values will be.One of the problems that was used to test this system was an instan
e of the air
rews
heduling problem. It was the smallest one from the set given in the ORlib [2℄. To
omparetheir hybrid system they produ
ed a pure
onstraint programming approa
h. This CPapproa
h used the rotations as variables, as with the Guerinik and Caneghem model.They also produ
ed a pure mathemati
al programming approa
h using CPLEX [18℄. ThisMP approa
h produ
ed the optimal solution to the set partitioning problem that theyshowed in a mu
h shorter time than the CP approa
h. The hybrid approa
h took longerthan the MP approa
h, but mu
h shorter than the CP. So the hybrid approa
h did notseem to get anything useful from the
onstraint propagation, in fa
t, it was detrimentalas it slowed the pro
ess down. This may mean that with the Guerinik and Caneghemapproa
h the LP solver is also doing almost all of the work in solving the problem. Thestrong point of the system is that on the range of problems shown it usually did betterthan one of the pure CP or MP approa
hes.4.4.3 M�ullerM�uller [81℄ produ
ed a pure
onstraint programming system for solving the air
rew setpartitioning problems from ORlib. The system applies a pre-pro
essor to make severalmathemati
al redu
tions on the problem size, in a similar way to Guerinik and Caneghem.However, M�uller uses one redu
tion whi
h is di�erent from the ordinary mathemati
alones. This one �rst orders the rotations with the lowest
ost ones �rst. It then goesthrough and repla
es any single shift that
an be repla
ed by a set of shifts whi
h
overthe same
ight legs but have lower
ombined
ost. This redu
tion would not be useful ina system produ
ing driver s
hedules, be
ause the desire to redu
e the number of distin
tshifts in the s
hedule means that repla
ing single shifts with multiple shifts would not bea good idea. Besides, in driver s
heduling heuristi
ally
onstru
ted shifts are unlikely tobe able to be repla
ed in this manner.

Chapter 4 67 Review of driver s
heduling te
hniquesThe model is then set up in the same way as the pure
onstraint programming approa
hby Rodosek et al but the
onstraints are implemented di�erently. They add what they
all index sets to the model. There is one for ea
h element i (see Equation 4.1). Thesesets hold the indi
es of the subsets S whi
h
over i. When a variable is assigned a value,1 or 0, this has an e�e
t on the index sets. If the variable asso
iated with Sj is assigneda value 0 then j is removed from all the index sets. On the other hand, if it is assignedthe value 1 all the index sets that
ontain j are redu
ed to the singleton fjg. If any ofthe index sets are redu
ed to the empty set then a fail has o

urred and ba
ktra
kinghappens. This model of
onstraints will be further examined in Chapter 5.This system
ould solve problems but the size of the problem solvable was mu
h smallerthan those systems using mathemati
al programming.4.4.4 Darby-Dowman and LittleDarby-Dowman and Little [22℄
reated a simple CP program in 1998 for produ
ing drivers
hedules aimed at redu
ing
rew
osts (not number of drivers). They model the problemin a set
overing formulation, with the pie
es of work as the variables and the indexes ofthe shifts that
over that pie
e of work as domains. The
onstraints are di�erent fromthose in M�uller [81℄. For ea
h pie
e of work a
ounter is stored to show how many shifts
over that pie
e of work. If a variable is set to a value the
ounter is in
remented. Further,if a variable is set to a value, all the variables that have that value in their domain are setto that value if they are not already bound. If they are, their
ounter is in
remented. The
ounter starts at zero and when a value is
hosen for a variable then if there is no valuethat will keep the
ounter below three the variable is left unassigned and the pie
e of workasso
iated is left under-
overed. This model allows very little
onstraint propagation andit is unsurprising that this method produ
es poor results with large amounts of over-
overand under-
over.

Chapter 4 68 Review of driver s
heduling te
hniques4.4.5 Charlier and SimonisCharlier and Simonis have produ
ed a new
onstraint programming approa
h for produ
-ing driver s
hedules. It is a
ommer
ial system designed for North Western Trains. Thereis little known of the details of the system, the only published material is an abstra
t[15℄. What the system seems to do is generate shifts in a sequential order to produ
e afull s
hedule. It is believed to model the problem as a dire
ted graph. Ea
h node is an\a
tivity" (presumably a pie
e of work). The ar
s of the graph represent the possibilityof having the two a
tivities asso
iated with the two nodes
onne
ted to the ar
 followingea
h other in a shift. An ar
 has a weight to indi
ate how \good" an idea it is to havethe implied sequen
e of a
tivities in a shift. A shift is then generated by a shortest pathheuristi
. The results are un
lear and it is believed that it is not presently being used toprodu
e real s
hedules.4.4.6 Yunes et alYunes et al [129℄ in 1999 developed a hybrid CP/ILP approa
h for produ
ing bus drivers
hedules. The ILP approa
h is used to solve the set
overing problem, while the CPapproa
h generates shifts for the problem. The ILP approa
h is a
olumn generationapproa
h where the set
overing problem is solved with a minimal set of shifts. Thenshifts are added in to see if the solution
an be improved. The CP approa
h produ
esthese shifts that are added into the sear
h.The system has been tested on real data from a Brazilian transit
ompany. It has a
hievedgood results on relatively small problems (150 pie
es of work, with 19 shifts in the optimal).4.4.7 Lay�eld et alLay�eld et al [69℄ used
onstraint programming to produ
e a
omponent that
ould slotinto the TRACS II system. It would be put before the building phase and would do the

Chapter 4 69 Review of driver s
heduling te
hniquessame job as SELECT used to do in the IMPACS version. The goal of the program is toremove relief opportunities that are unlikely to be used in good s
hedules, thus
uttingdown the size of the problem be
ause not only will there be fewer pie
es of work but iffewer ROs are used the BUILD pro
ess will produ
e fewer shifts.The program initially looks at the morning part of the s
hedule. It produ
es shifts usingknowledge of how a manual s
heduler might do it. The program puts a limit on howmany spells of work ea
h of the buses will be broken up into, so that it does not produ
eshifts with spells that are too short. It
onstru
ts a morning s
hedule using randomisedheuristi
s to build the partial s
hedule one shift at a time. It does this several times andthen removes the ROs that are not used in any of the s
hedules. It
an also be used to
onstru
t a partial s
hedule for the evening part of the s
hedule and thus remove furtherROs. The pro
ess has speeded up TRACS II's solution time in several
ases. The
ost ofthe solutions are often slightly higher but sometimes less. The solution
an have a lower
ost be
ause TRACS II does not produ
e solutions with optimal
ost and stops when itgets to a \good" solution. So when TRACS II uses the
ut down version it might
ometo a lower
ost solution than the original before it stops.4.5 Evolutionary algorithms and other meta-heuristi
s4.5.1 Tabu sear
hCavique et al [12℄ have used Tabu sear
h [46℄ to extend and improve one of the methodsused in the early heuristi
s. Their algorithm starts with an initial solution produ
ed usingan approa
h similar to that used by TRACS. The method allows shifts that
ontain twospells of work or even less eÆ
ient shifts that
over single spells of work. The improvementphase then in
orporates Tabu sear
h. A move
onsists of removing a number of ineÆ
ientduties, and sometimes their neighbours and then generate shifts to make the s
hedulewhole again. Tabu sear
h is used to ensure that pie
es of work that appear frequentlyin ineÆ
ient shifts are given higher priority in in
orporating into shifts that
ontain two

Chapter 4 70 Review of driver s
heduling te
hniquesspells of work and so are more likely to be eÆ
ient. This is done to try to
over pie
es ofwork that are hard to
over using eÆ
ient shifts. The work they did on this Tabu Sear
happroa
h found that the method qui
kly improved the solution over the �rst few iterationsbut then found it hard to make further improvements. This is possibly be
ause they only
on
entrate on ineÆ
ient shifts and sometimes an eÆ
ient shift may have to be
hangedto make the leap to a really eÆ
ient s
hedule. They also provide another approa
h thatuses a mat
hing te
hnique that does better, possibly be
ause it expands the sear
h, notrestri
ting it to
hanging ineÆ
ient shifts.These algorithms were developed for the Lisbon Underground. There are several featuresto note about this operation. There is a maximum of two spells used in shifts. There arealso no
osts per shift, it is a straight minimisation of the number of drivers. Further, thereis only a short amount of driving time in ea
h duty (less than 5 hours) and the drivers
an only
hange at the terminus. These di�eren
es from the standard make it hard tojudge how the Tabu Sear
h program would work on problems from other
ompanies. Itmay have the same drawba
k as the early heuristi
s in that it would be hard to adapt todi�erent bus or rail operations.4.5.2 Kwan et alThe approa
h by Kwan et al [67℄ uses a geneti
 algorithm to produ
e driver s
hedules.This work was built on experien
e of the earlier attempt to do this byWren and Wren [127℄.This system uses the potential shifts generated by TRACS II. It also uses the LP solutionprodu
ed by TRACS II. In this system a
omplete representation of a s
hedule by ea
h
hromosome is abandoned to form a
on
ise representation that in
orporates the essen
eof the s
hedule. This is done by the
hromosome being made up of bits for ea
h shift in theLP solution generated by TRACS II. The reason why only these shifts are represented isthat empiri
al eviden
e has shown that at least 50% (and up to 98%) and on average 74%of the shifts in the �nal TRACS II solution were in the LP solution. So these shifts makethe ba
kbone of the s
hedule, and on
e a good
ombination of these is found it should be

Chapter 4 71 Review of driver s
heduling te
hniquesmu
h easier to make a good whole s
hedule. To make an entire s
hedule out of these agreedy repair te
hnique is used.This method has produ
ed s
hedules for some problems with the same number of shiftsas the TRACS II solutions. Unfortunately in other some
ases it does not get the samenumber of shifts, it has one or two more shifts. The strength of the GA method is thatit will always �nd a solution and has found solutions to problems that TRACS II
ouldonly solve after they have been de
omposed into subproblems. In these
ases it has foundsolutions with fewer shifts than the total number of shifts of the union of the de
omposeds
hedules produ
ed TRACS II. For example, it found a solution with 267 �nal shifts wherethe union of the TRACS solutions had 276 shifts.The te
hnique in
orporates the use of any good traits of a s
hedule to a�e
t the valuationof the s
hedule for mating. This would mean that s
hedules that had good parts but wereaverage overall would have a
han
e of mating. Ideally the mating pro
ess would be biasedto pass on the good segments of the s
hedule.4.5.3 Chu and BeasleyChu and Beasley have used a geneti
 algorithm to solve set partitioning problems derivedfrom air
rew s
heduling problems. The basi
 model is to have the genes representing nbits where n is the number of
olumns. Ea
h bit
an be 1 for a
olumn
ontained in thesolution or 0 for those not
ontained. This
ould lead to very large strings as the sizeof problems grow. Regardless, this is the model used and a uniform
rossover approa
his used. The algorithm di�ers from a standard GA in the way optimisation
riteria aredealt with. Ea
h
hromosome may or may not give a feasible partition. They note that�nding any set partitioning solution is not a trivial task for heuristi
 approa
hes. So it isimportant to drive the solution towards a feasible one as well as trying to redu
e the
ostof the solution. A standard way to deal with restri
tions imposed on a solution is to adda penalty value that is subtra
ted from the obje
tive value of ea
h solution. However, this
ould lead to loss of good parts of solutions with high obje
tive value but also with a high

Chapter 4 72 Review of driver s
heduling te
hniquespenalty value. To over
ome this they have added a dual optimisation
riterion with onemeasure being the
ost and the other the feasibility of the solution. The
hoi
e of parentswas then made on a
ombination of these. The
rossover and mutation would often leadto solutions with either large amount of over-
over or under
over. This was solved usingheuristi
 repair. The algorithm was su

essful on air
rew s
heduling problems. However,this problem is thought to be easier than the bus or train driver s
heduling problem.4.5.4 ForsythForsyth [38℄ has applied an optimisation method
alled the Ant system for produ
ingdriver s
hedules. An Ant system was developed by Dorigo et al [30℄ based on the methodants use to sear
h for food. A simpli�ed version of how ants forage for food is
onvertedinto a sear
h algorithm in the following way. In the simpli�ed version the ants set o� froma nest in random dire
tions. As they move they leave pheromone trails behind them whi
hslowly evaporate over time. When food is found the ant returns to the nest travelling ba
kwith highest probability along its own pheromone trail, thus strengthening the trail. Theants have an in-built bias towards following strong pheromone trails so over time moreants will
ome a
ross this trail and follow it, strengthening it even more. As there is stillrandomness in the ants' movements several paths will be made between the food and thenest. However, the shortest path will gain the largest deposits of pheromones, as ants willreturn along it sooner than ants on other trails.The ant system for driver s
heduling uses the shifts generated by BUILD to
reate as
hedule. Ea
h ant
omponent will
reate a solution at ea
h iteration. RO's are sele
tedby a probabilisti
 heuristi
 and then the ant
hooses a shift from the set that start at thatRO. This is repeated until all the work is
overed. As the system progresses iteration byiteration the good parts of solutions are more likely to be followed (i.e. good
ombinationsof shifts are sele
ted) and so over time the solutions improve.This method does not produ
e results
omparable to the TRACS II system.

Chapter 4 73 Review of driver s
heduling te
hniques4.6 SummaryThis Chapter
ontains a brief introdu
tion to the area of driver s
heduling. For furtherreading, an overview paper given by Wren and Rousseau [126℄ is a good round up of workdone to that date, however this was written in 1993 and mu
h resear
h has been donesin
e then.Almost all and possibly all of the early heuristi
s are no longer used in present
ommer
ialorganisations. They tended to be hard to adapt to new
onditions and on
e that wasdone they needed extensive manual intervention to produ
e s
hedules. Systems that usemathemati
al programming su
h as TRACS II and HASTUS have taken over from theseearly systems. They still sometimes need adaptation to new
onditions and some manualintervention but are an enormous improvement on the initial heuristi
 methods. Therehave been new heuristi
 methods tried, with the geneti
 algorithm by Kwan et al beingthe most promising, but none have a
hieved the quality of the mathemati
al programmingapproa
hes. This is not surprising as over 30 years of experien
e has been put into theTRACS II system. However, there is room for improvement in two features. TRACS II
annot prove that the solutions it produ
es are optimal, so it is possible that bettersolutions exist and
an be produ
ed. Further, the
exibility of the system
an be improved,as shown by the side issues des
ribed in 4.3.2.8. Before either of these issues
an be ta
kledby a new system a basi
 pro
ess needs to be produ
ed. Then it
an be further developedto improve solution quality and investigate to see how to in
orporate the side issues. Thenext two
hapters will detail the development of two systems to produ
e a basi
 pro
essfor produ
ing driver s
hedules.

Chapter 5Driver s
heduling using
onstraintprogramming
5.1 Introdu
tionThis Chapter des
ribes a systemati

onstraint programming approa
h to solve the drivers
heduling problem. It starts with a model that
ould be used on any set partitioningproblem and it is explained in the Summary the exa
t parts that
ould be used to solvegeneral set partitioning problems. Domain knowledge is in
orporated to develop a newmodel. Mu
h of the work in this Chapter has previously been published by Curtis etal [19℄.

74

Chapter 5 75 Driver s
heduling using CP5.1.1 Set partitioning or set
overing?The �rst question to ask in developing a new system is whether we should use either ofthe present standard formulations, whi
h are set partitioning and set
overing, or shouldwe use a di�erent representation. Early heuristi
 methods did not use a set partition-ing/
overing approa
h, they generated shifts as needed. However, this means that all theunion agreements and other restri
tions need to be built into the solver and hen
e thesolver has to be altered every time the
onditions are altered. Further, the solver maybe too domain-dependent and be poor or useless on problems with di�erent regulations.Charlier and Simonis [15℄ developed a system using
onstraint programming where thes
hedule is built up as shifts are generated (see Se
tion 4.4.5). However, as mentioned thedetails are unavailable at present. What information that is available shows that the sys-tem has only been produ
ed for one organisation, North Western Trains, but it is un
learif it is in operation. For the reasons just given it is unlikely that this system would beeasily adaptable for use with other rail organisations.We have opted for a set partitioning/
overing formulation. We use the shifts generated bythe TRACS II
omponent BUILD (see Se
tion 4.3.2.3) to provide the initial pool of shiftsto sele
t from. This means that our program needs no knowledge of what
onstitutes alegal shift. The program does not use the knowledge of how shifts were built to
onstru
ta s
hedule. This makes it (in prin
iple) independent of any
hanges in how the shifts are
onstru
ted. The next de
ision was whi
h of these two formulations, set partitioning or set
overing to
hoose from. As stated in Se
tion 4.3.1 the hindran
e with a set partitioningformulation is that there may be no solution to the problem with the
urrent set of shiftsor that to �nd a solution to a problem, the solver would need a greater pool of potentialshifts than if a set
overing formulation was used. However, it is diÆ
ult to work witha set
overing formulation in
onstraint programming, be
ause the de
ision to in
lude ashift in the s
hedule leads to no
onstraint propagation, whereas in set partitioning on
ea shift is
hosen we
an remove all other potential shifts that
over any pie
es of work in
ommon with the
hosen shift. This propagation is needed to guide the sear
h so that it

Chapter 5 76 Driver s
heduling using CPdoes not use unne
essary shifts. There has been a program devised by Darby-Dowmanand Little [22℄ that used a set
overing approa
h but it did not perform well and one of thereasons for this is probably due to the la
k of
onstraint propagation (see Se
tion 4.4.4).Therefore, we
hoose to use a set partitioning formulation.To illustrate our algorithm's ability to solve problems we have, in our results, only in
ludedinstan
es that we know to have a set partitioning solution within the available set of shifts.5.2 The ModelsHow a problem is modelled as a
onstraint satisfa
tion problem
an greatly a�e
t the per-forman
e of the algorithm. We will dis
uss two models of the set partitioning problem asa
onstraint satisfa
tion problem and their advantages and disadvantages. We have imple-mented the se
ond model, as well as an extension to it that greatly improves performan
e.This is des
ribed later in the Chapter.5.2.1 The �rst model: shifts as variablesThe most obvious representation is a straightforward translation of the mathemati
alprogramming model des
ribed earlier in Se
tion 4.3.1. The shifts are the variables, witha binary domain [0,1℄, where 1 means that the shift is used in the solution and 0 meansthe shift is not in the solution. This is the model
hosen in the papers of Guerinik andCaneghem [48℄, Rodosek et al [87℄ and M�uller [81℄.The
onstraints follow dire
tly from the set partitioning formulation. For every pie
e ofwork one, and only one, shift variable that
overs that pie
e
an be set to 1. So when weset a shift variable to 1 we set all the other variables of shifts that
over a
ommon pie
e ofwork to 0. The number of possible assignments of values to variables in this model is 2n,where n is the number of shifts: this is an indi
ation of the
omplexity of the model.

Chapter 5 77 Driver s
heduling using CPOne drawba
k of this method is that, when it is de
ided to use a shift i.e. assign the
orresponding variable the value 1, a powerful de
ision is made, removing many otherpossible shifts from the sear
h spa
e. When the de
ision is made not to use a shift, itmakes very little di�eren
e as there are probably several other available shifts that
overthe work in question. Later we will dis
uss how to alleviate this \all or nothing"
hoi
e.5.2.2 The se
ond model: pie
es as variablesThe following is the formulation investigated in this Chapter and implemented using ILOGSolver version 3.2 [57, 58℄. The variables represent the pie
es of work Pi (where i 2 I , theset of indi
es of the pie
es of work). The domain of ea
h variable, Di, is the set of indi
esof the shifts that
over pie
e of work i (Di � J where J is the set of indi
es of the shifts).If Pi is assigned the value j 2 J then in the s
hedule, pie
e i is
overed by shift Sj .In this formulation the number of possible assignments,Qmi=1 jDij, is less than the previousmodel. This representation automati
ally ensures that in the solution all pie
es of workhave a shift
overing them, be
ause every variable must have a value.Suppose variable Pi is assigned the value j 2 J . Then the ith pie
e of work will be workedby shift Sj . This implies, be
ause of the set partitioning formulation, that all pie
es ofwork
overed by Sj will be performed by shift Sj . So for any other pie
e of work su
h thatj 2 Dk we must have Pk = j. This gives the
onstraint:(Pi = j) () (Pk = j) 8i; k 2 I su
h that Di \Dk 6= ;, 8j 2 Di \Dk (5.1)So if pie
e i is assigned shift j then pie
e k will be assigned shift j and vi
e versa. This
anbe expressed easily in Solver, as an equality
onstraint. A se
ond
onstraint is added topropagate eÆ
iently the e�e
t of
hoosing values in a set partitioning formulation. If onepie
e variable has a value removed from its domain e.g. the variable is assigned another

Chapter 5 78 Driver s
heduling using CPvalue, then the removed value must be removed from the domain of all other variables.If a shift is not used by one of the pie
es of work it
overs, it
annot be used by any ofthe others. For this a new
onstraint was developed using the Solver
onstraint template.This is
alled the rem
onstraint.These
onstraints
ould be applied (posted) to all pie
e variables with shifts in
ommon.However, there is a way of redu
ing the number of
onstraints. This is done by using thefollowing: for ea
h shift, the
onstraints are posted between only one of the pie
es whi
his
overed by that shift,
hosen arbitrarily, and all the other pie
es that are
overed bythat shift, rather than between all pairs of pie
es
overed by the shift. Then the e�e
tpropagates through these pie
es.This model has the same drawba
k as the last model in the \all or nothing"
hoi
e ofshifts. We will see in the extension to this model, des
ribed later, how we
an use thestru
ture of the driver s
heduling problem to over
ome this.Although M�uller's approa
h [81℄ des
ribed in Se
tion 4.4.3 was independently developed itrelates to the method used here. It uses shifts as the variables, with a binary domain andnot pie
es of work as we do. However, to implement the
onstraints, M�uller employs whathe
alls index sets whi
h are sets of indi
es of the subsets S (in our
ase these would be theshifts). This de�nition mat
hes our de�nition of the pie
e variables, be
ause the domainsof our pie
e variables are the indi
es of the shifts
overing them. M�uller then applies thesame two set partitioning
onstraints as we do on these index sets. During the sear
hthe
hoi
es are made on the binary subset (shift) variables and the e�e
t is propagatedto the index sets. If an index set be
omes empty then ba
ktra
king is instigated. So theonly important di�eren
e between our se
ond approa
h as des
ribed so far and M�uller'salgorithm is that M�uller's assigns values to the binary subset (shift) variables whereas oursare assigned to the pie
e variables. The bene�t of pro
essing the variables in our way willbe made
lear in the next se
tion.

Chapter 5 79 Driver s
heduling using CP5.3 The Sear
h methodSolver's standard ba
ktra
king algorithm whi
h maintains ar

onsisten
y is used (SeeSe
tion 2.3). We
ustomise the sear
h by variable and value ordering heuristi
s.A useful variable ordering that has been applied in many
onstraint programming appli
a-tions is to
hoose the unbound variable with the smallest domain (see Se
tion 2.4.1). We
an see that assigning values to pie
e variables allows a more natural use of this orderingthan using shift variables, be
ause these would all have binary domains.In the �rst version of the system we used a bran
h and bound method to minimise thenumber of shifts. In this approa
h, on
e a solution is found, we try to �nd a solution witha lower obje
tive value. When no new solution
an be found, the existing solution is anoptimal solution.The obje
tive here is to redu
e the number of shifts used, so when a solution with n + 1shifts was found the algorithm applied a
onstraint that no more than n shifts
ould beused and started a new sear
h. This
onstraint only had a propagation e�e
t when
loseto n shifts had been assigned. So if we started the new sear
h with no shifts assignedthe algorithm had to assign nearly n shifts to being used before the
onstraint
ould a
t.To improve on this, when a new sear
h was started, the old assignment was used as astarting point (we
all this \restart from existing solution"). Table 5.1 illustrates howthis strategy and using the smallest domain ordering a�e
ted performan
e. The problems
ome from three di�erent bus
ompanies: Reading (r1 to r4) [125℄, CentreWest Ealingarea (
1,
1a), the former London Transport (t1 and t2). The problems have di�eringregulations and features (e.g. urban and short distan
e rural bus s
hedules
an have verydi�erent features). The size of the CSPs representing these problems is given. Note thatr1 and r1a are the same problem, but have di�erent numbers of generated shifts and
1,
1a similarly.The program is run on a networked Sili
on Graphi
s O2 workstation. It is stopped af-

Chapter 5 80 Driver s
heduling using CP
Instan
e t1 r1 r1a r2 t2 r3
1
1a r4pie
es 24 53 53 54 125 160 186 186 203initial shifts 77 2503 4273 3001 3015 19091 3829 7543 2484size 271 12k 21k 13k 17k 214k 27k 53k 17kopt # shifts 7 11 11 14 19 16 26 26 25rn:best result 7 15 18 18 21 om n/a n/a 31fails 5 2053 544 432 4972 n/a >10k >10k 4510time (se
s) 0.06 299 148 62 612 n/a >590 >7.4k 268fails to prove opt 168 n/a n/a n/a n/a n/a n/a n/a n/atime to prove opt 0.61 n/a n/a n/a n/a n/a n/a n/a n/arn sd:best result 7 18 18 19 22 om 30 31 31fails 2 231 1543 1809 6192 n/a 1790 96 9569time (se
s) 0.05 45 416 325 938 n/a 191 64 807fails to prove opt 168 n/a n/a n/a n/a n/a n/a n/a n/atime to prove opt 0.49 n/a n/a n/a n/a n/a n/a n/a n/ars:best result 7 15 18 18 21 om n/a n/a 31fails 5 2018 485 299 4891 n/a >10k >10k 4510time (se
s) 0.06 295 76 592 595 n/a >900 >7.6k 273fails to prove opt 163 n/a n/a n/a n/a n/a n/a n/a n/atime to prove opt 0.52 n/a n/a n/a n/a n/a n/a n/a n/ars sd:best result 7 18 18 19 22 om 30 31 31fails 2 223 1437 1796 4838 n/a 921 96 9558time (se
s) 0.052 38 361 301 725 n/a 94 65 810fails to prove opt 119 n/a n/a n/a n/a n/a n/a n/a n/atime to prove opt 0.45 n/a n/a n/a n/a n/a n/a n/a n/aTable 5.1: Results on data from several bus
ompanies using di�erent regulations.sd = smallest domain ordering, rs = restart from previous, rn = restart from noassignments, opt = optimal, om = ma
hine ran out of memory

Chapter 5 81 Driver s
heduling using CPter 10000 fails (10000 ba
ktra
ks) and we use the number of shifts in the best solutionobtained, the number of fails, and the time taken, as the performan
e
riteria. The num-ber of fails shows us how many times our program ba
ktra
ks. We
an see from the tablethat, using these basi
 methods, only for the t1 problem
an an optimal solution be found.(Throughout the Chapter optimal means here, the optimal number of shifts for the set ofpotential shifts after heuristi
 redu
tions.) If no solution, or no optimal solution, has beenfound we put n/a in the appropriate
olumn. If we restart from an existing solution ea
htime a new one is found, in all
ases the number of fails is redu
ed. Using the smallestdomain ordering generally in
reases the number of fails to �nd the best solution found.However, it does enable us to �nd a solution for the
1 and
1a problem that we
ouldnot �nd an answer for otherwise.5.4 Redu
tionsThere are several mathemati
al redu
tions that
an be applied to a set partitioning prob-lem, as des
ribed in [40, 81℄. The systems of M�uller [81℄ and Guerinik and Caneghem [48℄apply redu
tions at a pre-pro
essing stage of their
onstraint programming systems. Tohelp us see how to apply these redu
tions during the sear
h, let us envisage the ba
k-tra
king algorithm as redu
ing the problem size whenever a variable is assigned a value;it removes at least one variable from the set of unassigned variables. Note, this may onlybe a temporary assignment as ba
ktra
king
an o

ur. The smaller problem is again a setpartitioning one, with a redu
ed set of variables and values. Hen
e in theory the redu
-tions
an be re-applied. Not all the redu
tions have the potential to bene�t from morethan a single appli
ation, this is why the deletion of dupli
ates des
ribed below is left asa pre-pro
essor. The redu
tions are:� All dupli
ate shifts (shifts
overing an identi
al set of pie
es of work) are removedat the generation stage. If Sj = Sq for any pair (j; q) 2 J delete Sj .� The subset
onstraint: if Di � Dk for any pair of pie
es (i; k 2 I), i 6= k, then

Chapter 5 82 Driver s
heduling using CP8j =2 Di and j 2 Dk, delete j from Dk. If pie
e i is
overed only by shifts thatalso
over another pie
e k, then pie
e k
annot be
overed by a shift that does not
over i. This has been implemented in the following way: between all variables witha shift in
ommon there is a
onstraint that
he
ks if that domain is a subset ofanother whenever the domain of one of the variables
hanges. If domain i is a subsetof domain k, the
onstraint will remove from k's domain all the shifts that do not
over pie
e i. The set partitioning
onstraint then ensures that variables i and khave the same value.� The one-di�
onstraint: this states that if only one shift that
overs pie
e i doesnot
over pie
e k and vi
e versa we
an make a redu
tion. If jDi � (Di \ Dk)j =jDk�(Di\Dk)j = 1 for any pair of (i; k) 2 I; i 6= k, then let shift j = Di�(Di\Dk)and shift q = Dk � (Di \Dk)1. If Sj \ Sq = ; then shifts j and q are merged into a single shift having a
ost
j +
q. (In our
ase, sin
e the
ost of ea
h shift is 1, the
ost of the mergedshift would be 2.) Delete pie
e k.2. If Sj \ Sq 6= ;, then delete shifts j and q. Delete pie
e k.We
an see in Figure 5.1 a Venn diagram representing this
ase, where ea
h ovalrepresents the set of shifts that
over a pie
e and we
an see that there is only oneshift in the non-overlapping part of ea
h oval. The two shifts that
over one pie
ebut not the other are j and q. If j and q
over no
ommon pie
e then we join them toform a single shift with a
ost equal to the sum of both of the shifts. This is be
auseif shift j is pi
ked then shift q needs to
hosen so that both pie
es are
overed. If theshifts have a pie
e in
ommon then one
annot be pi
ked, therefore neither
an bepi
ked and this means that i and k must be
overed by the same shift. This
an beimplemented in Solver by a
onstraint that
he
ks this
ase whenever variables witha shift in
ommon have their domains
hanged, and removes shifts if needed. Thereis no need to merge the shifts as the propagation of the set partitioning
onstraintswill for
e the use of both if one is used. Similarly there is no need to delete the pie
ek as this will be assigned a value in a

ordan
e to the
onstraints.

Chapter 5 83 Driver s
heduling using CPTo the knowledge of the author, applying these set partitioning
onstraints dynam-i
ally is new.
j q

DDi k

Figure 5.1: A Venn diagram of the domains of two pie
e variables, i and kTable 5.2 shows the result of using the dynami
 redu
tions. The subset
onstraint ingeneral redu
es the number of fails and we
an see in the r1a problem it produ
es as
hedule with one less shift than without the redu
tion. Interestingly on the
1 data thenumber of shifts in the best solution found has in
reased by one. This we believe to bedue to the e�e
t of the smallest domain ordering and restarting from the existing solutionafter ea
h new bound is pla
ed on the problem. The subset
onstraint redu
es the sizeof domains and so this will a�e
t the ordering if we use smallest domain ordering. If wedo not use these two te
hniques, using the subset
onstraint redu
es the number of failsevery time, but the
1 problem is still unsolvable without the smallest domain ordering.Applying the subset redu
tion throughout the sear
h is an expensive pro
ess (in termsof memory) and the de
rease in the number of fails is o�set by this in
rease. In fa
tusing the subset
onstraint with the
1a problem the ma
hine runs out of memory (shownby 'om' in Table 5.2) before it
an �nd a solution. So depending on the user's needs inlimiting memory or time of exe
ution the
onstraint may or not be of use. This led toimplementing a new way of expressing the
onstraint. The original
onstraint is postedon a pair of variables that have a value in
ommon. Every time the domain of either ofthese
hanges, the
onstraint
he
ks to see if the one with the smaller domain is a subsetof the other. As it does this it stores the values that are unique to the larger domain. Ifthe smaller domain is found to be a subset then these stored values are removed from the

Chapter 5 84 Driver s
heduling using CP
Instan
e t1 r1 r1a r2 t2 r3
1
1a r4pie
es 24 53 53 54 125 160 186 186 203initial shifts 77 2503 4273 3001 3015 19091 3829 7543 2484size 271 12k 21k 13k 17k 214k 27k 53k 17kopt # shifts 7 11 11 14 19 16 26 26 25rs sd:best result 7 18 18 19 22 om 30 31 31fails 2 223 1437 1796 4838 n/a 921 96 9558time (se
s) 0.052 38 361 301 725 n/a 94 65 810fails to prove opt 119 n/a n/a n/a n/a n/a n/a n/a n/atime to prove opt 0.45 n/a n/a n/a n/a n/a n/a n/a n/ars sd Subset:best result 7 18 17 19 22 om 31 om 31fails 1 123 2893 825 1004 om 397 om 755time (se
s) 0.07 39 873 199 483 om 174 om 159fails to prove opt 162 n/a n/a n/a n/a n/a n/a n/a n/atime to prove opt 0.41 n/a n/a n/a n/a n/a n/a n/a n/ars sd new Subset:best result 7 18 17 19 22 om 31 33 31fails 1 123 2893 825 1004 om 397 7 755time (se
s) 0.11 61 1101 261 104 om 351 182 327fails to prove opt 162 n/a n/a n/a n/a n/a n/a n/a n/atime to prove opt 0.96 n/a n/a n/a n/a n/a n/a n/a n/ars sd One-Di�:best result 7 18 18 19 22 om 30 31 31fails 2 221 1433 1788 4826 om 1033 95 9302time (se
s) 0.07 40 366 308 812 om 113 79 1006fails to prove opt 166 n/a n/a n/a n/a n/a n/a n/a n/atime to prove opt 0.58 n/a n/a n/a n/a n/a n/a n/a n/aTable 5.2: Results of using the redu
tions dynami
allysd = smallest domain ordering, rs = restart from existing solution, rn = restart froms
rat
h, opt = optimal, om = ma
hine ran out of memory

Chapter 5 85 Driver s
heduling using CPlarger domain. However, this storage in
reases the memory needed. A simpler method,rather than storing values, is to dynami
ally post a
onstraint that the two variables mustbe assigned the same value on
e one variable's domain is found to be a subset of the other.Solver allows this dynami
 posting of
onstraints and if the algorithm ba
ktra
ks to the
hoi
e point before the
onstraint was applied, the
onstraint will be removed. The resultsof this implementation are also shown in Table 5.2. The memory used is redu
ed and asolution with 33 shifts is found for the
1a problem. However, the program runs out ofmemory after this solution is found and so produ
es a worse result than without using theredu
tion. Further, this implementation tends to take more time as Solver has to re-
he
kwhat values are in the larger domain that are not in the smaller domain and then has toremove them.The one-di�
onstraint on most of the problems makes little impa
t on redu
ing thenumber of fails as the situation where the redu
tion
an be made does not o

ur often.These redu
tions are not used in the �nal system due to the fa
t that an eÆ
ient imple-mentation for the subset
onstraint has not been found and the one-di�
onstraint haslittle pra
ti
al use. However, the subset
onstraint does generally redu
e the number offails to �nd a solution and sometimes dramati
ally. If an eÆ
ient implementation
ouldbe found it
ould prove to be a useful
onstraint for solving set partitioning problems.5.5 The extended modelIn ILP, bran
h-and-bound
an be used to �nd a good or optimal integer solution from theLP optimum. This se
tion will further explain the bran
hing strategy used in TRACS IIas was des
ribed in Se
tion 4.3.2.6 and how it is adapted to be used in this
onstraintprogramming system. The standard approa
h is to
hoose a variable (in driver s
heduling,a shift) whose value in the LP optimum is fra
tional (in this
ase, stri
tly between 0 and1) and to form two bran
hes: on one bran
h, this variable is for
ed to have the value 0and on the other, the value 1. A new optimum solution is formed in ea
h
ase, followed

Chapter 5 86 Driver s
heduling using CPby the formation of further bran
hes, and so on. A bran
h terminates if either an integersolution is found, or its value is greater than the best integer solution already known. Inthe development of IMPACS, it was found at an early stage that this form of bran
hing(variable bran
hing) is
ompletely ine�e
tive for driver s
heduling problems, for reasonssimilar to those given in Se
tion 5.2.1. The alternative bran
hing strategy developed forIMPACS and later used in TRACS II is relief time bran
hing. This assigns a (possibly)fra
tional value to ea
h relief time (stri
tly, relief opportunity) in the bus s
hedule, basedon the
urrent non-integer LP solution. This is the sum of the values of the variablesrepresenting shifts whi
h �nish a spell at that RO. A bran
h is then formed by
hoosingan RO for whi
h this value is fra
tional (again, stri
tly between 0 and 1). The value isfor
ed to be 0 on one bran
h (whi
h means that all shifts starting or �nishing a spellat that RO are banned) and 1 on the other (whi
h means that all shifts
overing bothpie
es of work immediately before and after this RO are banned). This bran
hing strategywas found to be very su

essful, and in
omparably more useful than variable bran
hing.Choosing whi
h ROs are to be used does not expli
itly
hoose the shifts to use. However,on
e the ROs have been set the
hoi
e of shifts is redu
ed dramati
ally and the problembe
omes trivial.This experien
e prompted us to implement RO bran
hing in our
onstraint programmingpro
ess. We have a set of variables R = fRk; k = 1 : : :rg where Rk is an \a
tive" ROand r is the number of su
h ROs. A
tive ROs are the ones that we need to
hoose avalue for, i.e. ROs whi
h start or end a bus are ex
luded, as these have to be used. Sor = m � b where b = number of buses and as before m is the number of pie
es of work.These variables have a binary domain with values 1 (use) or 0 (do not use). For ea
h ROvariable Rk there is a
orresponding pie
e variable Pi su
h that the RO with index k isthe start of the pie
e of work with index i. We then set up a
onstraintRk = 1 �! Pi�1 6= Pi (5.2)Rk = 0 �! Pi�1 = Pi (5.3)

Chapter 5 87 Driver s
heduling using CPfor: k = 1; : : : ; r; i = 2; : : : ; m.So if an RO is used, its adja
ent pie
es must have di�erent values i.e. be
overed bydi�erent shifts and if it is not used, its adja
ent pie
es must have the same value. This
an be seen as an extension to the se
ond model, the pie
es as variables model. The
omplexity of the RO extended model is 2r (where r is the number of ROs) whi
h is lessthan the previous two models and it avoids the \all or nothing"
hoi
e of shifts. As statedabove, on
e the
hoi
e of the RO variables is made assignments to the pie
e variables is inpra
ti
e trivial. In e�e
t by using ROs as variables we are making higher level de
isionsthan what shifts to use. The e�e
t of these de
isions then propagates to the pie
e variablesand so the
hoi
e of shifts. If we make the right higher level de
isions we have to makefewer de
isions than if we just used low level de
isions to get a solution.We order the RO variables �rst, followed by any pie
e variables that have not alreadybeen assigned a value. We have investigated several orderings for the set of RO variables:1. Ordering by adja
en
y, where we order starting from the �rst RO on the �rst busthen the se
ond on the �rst bus, et
. until the last on the last bus. So we aredealing with the ROs on a bus in order of their time. However, the ordering of thebuses is generally arbitrary.2. Ordering by
hoosing �rst the ROs that
ut out the greatest number of shifts.3. Ordering by time of day, where we pi
k the variables in order of time of day, earliest�rst. This is similar to the way some human s
hedulers build up a s
hedule.At this stage the adja
en
y ordering produ
ed the best results with the least number offails.The �rst attempt at value ordering involved a greedy pro
ess of binding an RO variable to

Chapter 5 88 Driver s
heduling using CPInstan
e t1 r1 r1a r2 t2 r3
1
1a r4pie
es 24 53 53 54 125 160 186 186 203initial shifts 77 2503 4273 3001 3015 19091 3829 7543 2484size 271 12k 21k 13k 17k 214k 27k 53k 17kopt # shifts 7 11 11 14 19 16 26 26 25basi
 RO:best result 7 12 12 14 n/a om n/a n/a n/afails 721 402 29 2562 >10k n/a >10k >10k >10ktime (se
s) 1.60 44 31 289 >962 n/a >1k >3k >567fails to prove opt >10k n/a n/a n/a n/a n/a n/a n/a n/atime to prove opt 27 n/a n/a n/a n/a n/a n/a n/a n/aTable 5.3: Results of using the RO with greedy ordering and adja
en
y0 as �rst
hoi
e (i.e. not using the RO). So as the program goes through the RO variablesit
hooses not to use ea
h RO until a fail o

urs and then it sets the
urrent RO variableto be used. The prin
iple behind this heuristi
 is that we will tend to use fewer shifts if weuse fewer ROs. It also tends to maximise spell length whi
h is similar to the way a humans
heduler goes about the task, although a human s
heduler would use informal heuristi
sand intuition to de
ide when to use a shorter spell length. By using the extended modelwith the adja
ent ordering and this greedy value ordering for the RO variables, there wasa general improvement in performan
e. Table 5.3 shows that an optimal solution wasfound for the r2 problem for the �rst time. However the program
ould not prove this wasoptimal. For the larger problems no solution
an be found. This is be
ause
ombinations ofassignments are made by the greedy heuristi
 early in the sear
h pro
ess that
annot leadto a solution. The resulting fail only o

urs later in the sear
h pro
ess and the algorithmnever ba
ktra
ks far enough to undo the early errors.5.6 Using The Relaxed LP SolutionWhen TRACS II forms s
hedules it �rst solves the relaxed LP problem for the generatedset of shifts. The relaxed LP problem is the set
overing problem without integrality
onstraints on the shift variables. The method used to solve this problem is detailed inSe
tion 4.3.2.5 and [37℄.

Chapter 5 89 Driver s
heduling using CPThe relaxed LP solution is an assignment of possibly fra
tional values to shifts, in whi
hthe sum of the shifts
overing any pie
e of work is greater than or equal to 1. The numberof shifts used in this solution, i.e. the sum of the possibly fra
tional values, gives us alower bound on the optimal number of shifts. In pra
ti
e rounding up the number of shiftsto the next higher integer almost always gives the optimal number of shifts.Although the relaxed LP solution is not a feasible driver s
hedule, we
an plot it as if itwere. Figure 5.2 shows the
overage of a running board in su
h a solution. Ea
h fra
tionalvalue of a spell is the sum of all the fra
tional values of the shifts
ontaining that spell.We
an see in this example, that the sum of the fra
tional values of the spells
overingea
h pie
e of work is 1, so there is always, mathemati
ally, exa
tly one full driver (madeup of fra
tional drivers).
D L

0529 0728

L

0905

L

1053

L

1244

1.00.438

0.562

0.875

0.125

0.437Figure 5.2: Fra
tional
overage of a running boardWe investigated the fra
tional solutions of several problem instan
es in sear
h of
ommonfeatures that we
ould take advantage of. Some ROs have fra
tional shifts starting then.Out of these a high proportion had shifts starting then in TRACS II's �nal s
hedule. Thisobservation led us to the �rst attempt to use the LP solution as a guide, although we willdes
ribe later why it was unsu

essful and was repla
ed by the se
ond attempt. We �rsttry to solve the subproblem of
hoosing whi
h ROs will have shifts starting at them. On
ethis subproblem is solved then the rest of the problem will be trivial. We
an use the LPsolution by guiding the
hoi
e of whi
h ROs to use as starting ROs. So as a heuristi
 for
hoosing the ROs that will be starting ROs in the �nal solution we
an
hoose all the ROswith shifts starting then in the LP solution.To integrate this into our program we adapt the RO variables to have triples for theirdomain: use as a start (0), use but not as a start, (1) and do not use (2). If we use the

Chapter 5 90 Driver s
heduling using CPInstan
e t1 r1 r1a r2 t2 r3
1
1a r4pie
es 24 53 53 54 125 160 186 186 203initial shifts 77 2503 4273 3001 3015 19091 3829 7543 2484size 271 12k 21k 13k 17k 214k 27k 53k 17kopt # shifts 7 11 11 14 19 16 26 26 25nostart:best result n/a n/a 16 15 n/a om n/a n/a n/afails >10k >10k 6819 30 >10k n/a >10k >10k >10ktime (se
s) >4 >1.6k 1168 14 >972 n/a >2k >1.4k >510fails to prove opt n/a n/a n/a n/a n/a n/a n/a n/a n/atime to prove opt n/a n/a n/a n/a n/a n/a n/a n/a n/aTable 5.4: Results of using the RO model with domains of triplesrs = restart from existing solution, nostart = using triple RO domain, om = ma
hine ranout of memoryRO as a starting RO (0) we not only remove all the shifts that do not have a spell startingor �nishing at the RO but also all the shifts that do not have their �rst spell starting atit. If we use the RO but not as a starting RO (1) then we remove shifts that do not startor end a spell then, as well as shifts that have their �rst spell starting then. If we do notuse the RO (2) then we remove all shifts that have spells starting or ending then. Thereis a
onstraint that imposes the impli
ations of an RO variable's (Rk) assignment on thepie
e variables. It is asso
iated with the RO in question and the two pie
e variables that
orrespond to the pie
es of work on either side of the RO (Pi�1 and Pi). This is be
ausethe
onstraint may have to remove values from both of the pie
e variables' domains, asshifts with spells starting at the RO will be in the domain of Pi but not in Pi�1 and vi
eversa for shifts with spells �nishing at the RO.The sear
h �rsts assigns values to the RO variables that were starting ROs in the fra
tionalsolution. These are given the value 0. The rest are assigned value 2. The variables wereordered a

ording to adja
en
y as des
ribed in the previous se
tion.The results for this heuristi
 are shown in Table 5.4. The results obtained doing it thisway are worse than not using the guide and just using the greedy heuristi
. The reasonfor this we believe is that we are in
reasing the size of the problem greatly by having three
hoi
es instead of two for ea
h RO. It was hoped by
on
entrating on the starting ROs we

Chapter 5 91 Driver s
heduling using CPwould in pra
ti
e be de
reasing the e�e
tive size of the problem. However, for this to betrue either a large amount of propagation or a very good value guide is needed. It seemsthat there is not enough propagation and the value guide is not good enough in this
ase.In the TRACS II system fra
tional values of ROs are used to guide the bran
h and boundpro
ess. Fra
tional values are assigned to an RO by adding up the fra
tional values of allthe shifts starting (or all �nishing) at it. So, for example, if we return to Figure 5.2 we seethat the RO at time 0728 has a fra
tional value of 0.562, as the sum of the fra
tional spellsstarting at that time is 0.125 + 0.437. Smith [99℄ implemented a heuristi
 redu
tion thatbefore going into the bran
h and bound pro
ess removed all ROs that in the relaxed LPsolution had zero value and were not used by shifts in the basi
 feasible solution1. Thisredu
tion greatly de
reases problem size and has little - if any - detrimental e�e
t on thequality of the �nal solution. We have adopted this approa
h and remove all zero valueROs.5.6.1 Value and variable orderingThe fra
tional values are further in
orporated into our pro
ess as a guide to value
hoi
e.If the fra
tional value is greater than 0.5, then the �rst
hoi
e of a value for the RO variableis 1; otherwise it is 0.We also use the fra
tional values by ordering the variables a

ording to
loseness to inte-grality i.e.
loseness to 1 or 0. So we begin by
hoosing to use ROs whose value in theLP optimum is 1 or
lose to 1, and not to use ROs whose value is 0 or
lose to 0. Interms of the bus s
hedule, this is a slightly unnatural way of pro
essing the RO variablesas the algorithm will jump around the di�erent buses, maybe only setting a value for oneRO before jumping to the next bus. However, we think that it is sensible that we shouldset the values of variables that we are most sure about �rst. This assumes that fra
tionalvalues that are
losest to 1 are most likely to be used and those
losest to 0 are least likely1O

asionally, a shift in the basis at zero value uses an RO whi
h has itself zero value. Be
ause TRACS IIuses the LP optimum basis as the starting point of the sear
h for an integer solution, it may need to keepsu
h a shift.

Chapter 5 92 Driver s
heduling using CPto be used.
D L

0529 0728

L

0905

L

1053

L

1244

1.00.438

0.562

0.875

0.125

0.737Figure 5.3: Fra
tional
overage of a running board with over-
overThe LP solution is set
overing and so may
ontain over-
over, so the fra
tional valueof an RO
ould be greater than one. Further, an RO
ould have two di�erent valuesdepending on whether we summed the shifts starting or �nishing at it. We
an see thisin Figure 5.3. If we sum at the start then the RO at time 0905 has a fra
tional value0.875 but if we sum the end of shift we get a value of 1.175. This fra
tional over-
over
ould
ause problems, as we are trying to use the fra
tional values to guide us to a setpartitioning solution, but the fra
tional values
ould
orrespond to a relaxed set
overingsolution and so be a poor guide. In pra
ti
e none of the problem instan
es in the resultshave over-
over in their LP solution. However, we have found it in a problem instan
ethat we
annot �nd a solution to. It is unlikely that this over-
over is what is stoppingus from �nd a solution be
ause the problem instan
e in question is mu
h larger than thetest problems we have shown results for2 and so it would be unlikely that we
ould �nda solution whether there was over-
over or not. So at the moment we do not need to
onsider this situation further than to propose a way of ta
kling it. This would be done byleaving any ambiguous fra
tional values till last, by then propagation will probably haveset the value of the RO(s) in question anyway.5.6.2 Additional
onstraints and heuristi
s to improve eÆ
ien
yIn the relaxed LP solutions we noti
ed that in several
ases the sum of the fra
tionalvalues of pairs of adja
ent ROs on the same bus was 1 (for example in the r1 there aretwo adja
ent ROs with values 0.24 and 0.76). An observed
hara
teristi
 of su
h pairs2The problem has a larger number of pie
es, 242, and shifts in the optimal shifts, 29, than the testproblems. It has 2202 shifts

Chapter 5 93 Driver s
heduling using CPwas that in the integer optimal solution only one of the pair would be used. Therefore, weadded a
onstraint between su
h variables, stating that only one of them
ould be used.With the su

ess of this heuristi
 we expanded it to triples of variables whose fra
tionalvalues summed to very
lose 1. We
all these the Combo
onstraints; the double Combofor the pairs and the triple Combo when we have three adja
ent ROs (for example withvalues: 0.12, 0.24 and 0.64).An additional way of aiding the sear
h was found by examining the stru
ture of the buss
hedule. From this it is
lear that in theory the RO model is open to extra propagationon the values of ROs. For example, if we use RO A we
annot use the following ROB if no spell starts at A and ends at B. So when there is no su
h spell we
an set thevariable
orresponding to B not to be used if we
hoose to use A. This propagation wouldnot be normally inferred by the
urrent
onstraints, unless the domains of the pie
es ofwork adja
ent to B be
ame identi
al. We have implemented two ways of dealing with thissituation: the �rst is to deal with it in pre-pro
essing and the se
ond is to deal with itduring the sear
h.In pre-pro
essing we set up
onstraints between adja
ent ROs that do not have spellsbetween them, stating that if one is on the other is o�. We have also implemented this
onstraint so it
an a
t during the sear
h. This is be
ause shifts are removed during thesear
h, therefore this situation may o

ur during the sear
h. We have therefore imple-mented a
onstraint that wat
hes for this situation during the sear
h. On
e found it isdealt with in the same way as the pre-pro
essing
onstraint. This takes more time thanthe pre-pro
essing
onstraint, as we have to
he
k ea
h time a
onstrained RO gets a value.However, both extra propagations on the ROs (dynami
 and pre-pro
essing) in pra
ti
ehave no impa
t on the solution or how many fails it takes to be obtained. In two out of the9 test
ases they both removed two
hoi
e points but made no di�eren
e in the other test
ases. The reason for this is probably that the LP solution value guide impli
itly
atersfor this situation.

Chapter 5 94 Driver s
heduling using CP5.6.3 Related workRelated work has previously been des
ribed in Se
tion 4.4. In this se
tion we will relatethe systems des
ribed there that use mathemati
al programming
ombined with
onstraintprogramming with the work shown here.The previous
onstraint programming systems that have used the relaxed LP solution haveused it in a di�erent way to ours and have not used the stru
ture of the problem to in
reasethe usefulness of the solution. Guerinik and Caneghem [48℄ and Rodosek et al [87℄ use thefra
tional value of a shift (rotation in air
rew s
heduling) as the guide to the �rst value
hosen for their shift variables. They take slightly di�erent approa
hes in their sear
h. InGuerinik's and Caneghem's paper the variables are ordered a

ording to their
loseness to1, the
losest �rst. The value �rst attempted for ea
h variable is 1. So while there are nofails the values of the relaxed LP solution are
onsistent with the
hoi
es made. However,when a fail o

urs a variable will attempt the value 0 and by so doing the relaxed LPsolution will no longer be in a

ordan
e with the partial
onstraint programming solutionand therefore the relaxed problem will be re-solved. Rodosek et al order the variablesa

ording to their
loseness to 0 or 1 (
losest �rst) and
hoose the nearest integer valueto the fra
tional value as the �rst
hoi
e. This is more like the way that we use the LPsolution than the method by Guerinik and Caneghem. However, Rodosek et al resolvethe relaxed problem whenever there is a fail. In this way the fra
tional values are a�e
tedby previous de
isions and so be
ome a more a

urate predi
tion of what the �nal integervalues will be.In our system we do not re-solve the relaxed LP, thereby making our pro
ess less dependenton the LP te
hniques and so maintaining the
exibility of the
onstraint satisfa
tionformulation. We
an envisage a s
enario in whi
h we might solve the basi
 relaxed LPand then add any
onstraints that are hard to express in the LP formulation, �nding aninteger solution using
onstraint programming. We are
urrently investigating situationswhere su
h
onstraints may o

ur. It is worth noting that by adding these
onstraints,the LP solution will be
ome less appli
able to the �nal solution, whi
h is why it is only

Chapter 5 95 Driver s
heduling using CPused as a guide.The major di�eren
e between our use of the relaxed LP solution and the use in the twosystems des
ribed above is that they use the fra
tional value of a shift and we use thefra
tional value of an RO. This is similar to the di�eren
e between variable bran
hing andRO bran
hing in IMPACS as dis
ussed in se
tion 5.5. The fra
tional value of a shift islikely to be of less use than the fra
tional value of an RO. Several shifts may
over similarsets of pie
es of work and so if a shift has a high fra
tional value then it is likely that asimilar shift will be used but not ne
essarily this parti
ular shift, whereas if an RO has ahigh fra
tional value it is likely to be used.5.7 ResultsUsing the �nal version of the program we have obtained the optimal number of shifts inall problem instan
es. Without using the RO variables an optimal solution
ould onlybe found for the very small t1 problem. A summary of results
an be seen in Table 5.5.We have shown the results of all the heuristi
s that were tested in the �nal developmentstage of the system. For ea
h of these we have the number of fails to produ
e an optimalsolution. In all
ases we use RO variables and fra
tional values of these as a value orderingguide.The double Combo
onstraint makes a signi�
ant redu
tion in the number of fails inseveral problem instan
es. Moreover there is only one
ase where it has a detrimentale�e
t, whi
h is when using adja
en
y ordering (Se
tion 5.5) on r1a; it did not �nd anoptimal solution after 50000 fails. Yet this does not matter, be
ause we use
losest tointeger ordering (Se
tion 5.6.1) in the �nal system sin
e in the test
ases it always produ
esthe optimal in no more fails than the adja
en
y ordering. This fa
t also makes the tripleCombo
onstraints obsolete and so they are not in
orporated in the Table 5.5 be
ausethat
onstraint only makes a di�eren
e for the adja
en
y ordering but not for
losest tointeger ordering.

Chapter 5 96 Driver s
heduling using CPThe best set of heuristi
s is to use the extended RO model, using the relaxed LP solution asa value and variable ordering guide. The extended model has redu
ed the
omplexity of theproblem and allowed us to make better use of the relaxed LP solution. So the formulationof the problem makes an enormous di�eren
e, not only in redu
ing the
omplexity of theproblem but also in enabling better sear
h strategies to be used. The most su

essfulvariable ordering is the
losest to integer ordering. The double Combo
onstraint is auseful
onstraint and is in
orporated into the �nal system.The last row of the table shows how a new implementation of the rem
onstraint(Se
tion 5.2.2) speeds up the
onstraint handling pro
ess and so speeds up the algo-rithm. In the �rst implementation a
onstraint was set up between a pair of variablesthat had a value (shift) that was
ommon to both domains. Every time the domain ofone of the variables
hanges the
onstraint
he
ks to see if the shift asso
iated with it hasbeen removed from one of the domains that has
hanged. If this is the
ase then thatshift is removed from the other domain. The new implementation only has one
onstraintper pair of variables that have a shift
ommon to both of their domains. The
onstraintmakes use of the fa
t that at every
hoi
e point Solver stores the values removed from ea
hdomain. If there are any values removed from a domain in a pair of
onstrained variables,the
onstraint
y
les through the store of these that Solver retains and removes them fromthe other domain in the pair.With problems tested that were larger than the ones shown the �nal algorithm
ould not�nd a s
hedule with the optimal number of shifts in the allowed number of fails. However,size is hard to measure as the number of potential shifts, the number of pie
es and thenumber of shifts in the optimal s
hedule all a�e
t the size. We have de�ned size as the sizeof the CSP (see Se
tion 2.7). Despite this, it is a mistake to dire
tly relate this measureto how hard a problem is to solve. We
an measure how hard a problem is to solve byrunning an algorithm on it and seeing if the algorithm
an solve it. If it
an solve it wemeasure how long it takes to solve it and use this as a measure of diÆ
ulty. However,there is no algorithm independent measure of hardness and this remains an open questionfor the driver s
heduling problems and for CSPs in general. We believe failures to �nd

Chapter 5 97 Driver s
heduling using CPInstan
e t1 r1 r1a r2 t2 r3
1
1a r4pie
es 24 53 53 54 125 160 186 186 203initial shifts 77 2503 4273 3001 3015 19091 3829 7543 2484size 271 12k 21k 13k 17k 214k 27k 53k 17kopt # shifts 7 11 11 14 19 16 26 26 25fails 49 10 3713 22 >50k >50k 877 5113 28822time (se
s) 0.87 1.05 172 2.00 >1.8k >12k 10.90 56 229
:fails 1 10 >50k 22 >50k >50k 3 2 1519time (se
s) 0.04 1.05 >2k 1.97 >1.5k >12k 1.05 1.22 13.21po:fails 45 121 303 22 3118 5942 68 191 496time (se
s) 0.08 2.73 17.97 2.05 94 1525 72 3.79 7.70po
:fails 0 10 228 22 174 5942 1 1 9time (se
s) 0.06 1.03 15.44 2.04 7.81 1525 1.04 1.22 1.26Final systempo
 nr:fails 0 10 228 22 174 5942 1 1 9time (se
s) 0.03 0.08 13.42 1.65 6.12 1078 0.95 1.11 1.17Table 5.5: Final results for
onstraint programming systemnr = new implementation of the rem
onstraintpo =
losest to an integer value ordering
 = using the double
ombo
onstraints,opt = optimalsolutions for larger problems may be due to the systemati
 ba
ktra
king sear
h system.To illustrate this, let us say there is an RO that has a value
lose to 1 in the relaxed LPsolution, our program would set this to be used. It may then make many more de
isionsand, due to the size of the problem, never be able to ba
ktra
k to
hange that de
ision.So if it is
ru
ial not to use that RO the program will never �nd an optimal solution.5.8 Flexibility of CP modelSome areas where the ILP te
hnique has been found la
king are dis
ussed in Se
tion 4.3.2.8.An advantage of CP over ILP is that the CP approa
h is more
exible in its expressive-ness. This
exibility was originally one of the reasons why the CP method was tried. A

Chapter 5 98 Driver s
heduling using CPpossible area when an advantage might be found is with windows of relief opportunity (seeSe
tion 4.3.2.8).Windows of relief opportunity would be diÆ
ult to represent in any set partition-ing/
overing formulation, as su
h formulations deal with spe
i�
 hand-over times. How-ever,
onstraint satisfa
tion may provide the key. The
onstraint programming approa
hbuilds up a s
hedule, and it may be possible to
reate some shifts during the pro
ess, inparti
ular when a fail o

urs. If the fail o

urs due to an assignment of a relief opportunityvariable, it might be possible to adjust the time of the relief opportunity and generate newshifts. Mu
h resear
h would be needed to develop and test this idea. Alternatively, usingone RO for every minute in the window may not
ause the same problems for CP as itdoes for ILP. In CP a
onstraint
ould be set up to spe
ify that only one RO within thetime window
ould be used. This lo
al
onstraint
uts the e�e
tive size of the problem,unlike adding a similar
onstraint in an ILP model.5.9 Con
lusionsWe have used both a pure
onstraint programming approa
h and an improved hybridCP/LP approa
h for solving real world problems of driver s
heduling. The program'slimited use of the relaxed LP solution brings an amount of independen
e that will allowthe
exibility of the CP approa
h to be taken advantage of fully. The model,
onstraints,and variable and value ordering, have been spe
ially developed to take advantage of the
onstraint programming formulation and the driver s
heduling problem stru
ture. Thedomain spe
i�
 knowledge in
orporated allows us to solve set partitioning problems ofsizes beyond the rea
h of pure
onstraint programming systems.ILP based systems su
h as TRACS II are still faster and
an produ
e solutions for mu
hlarger problems than this system. Nevertheless, it is hoped that the advantages and
exibility of
onstraint programming will be useful in adding further
onstraints that arehard to model in an LP formulation as dis
ussed in Se
tion 5.8.

Chapter 5 99 Driver s
heduling using CPAlthough we have des
ribed the
onstraint satisfa
tion system we have developed interms of shifts and pie
es of work, all the models, redu
tions and sear
h methods be-fore Se
tion 5.5
ould be applied to any set partitioning problem. The pie
es of workwould then
orrespond to the elements of the set I and the shifts to the set of subsets S,as referred to in Se
tion 5.1.This resear
h has been very domain spe
i�
. However, it has highlighted several
onsider-ations that are useful for modelling pra
ti
al
onstraint satisfa
tion problems. These arethe following:1. Variable ordering in pra
ti
al problems (Se
tions 5.3 and 5.6.1). We have seen thatthe smallest domain dynami
 ordering is not ne
essarily better than ordering basedon the stru
ture of the problem. The ordering based on the stru
ture works wellbe
ause it is not purely random, it groups the pie
es of work a

ording to the busthey are on and what time of day it is. The advantages of this are dis
ussed inSe
tion 7.3. The
on
lusion is that in pra
ti
al problems a natural ordering mayo

ur that takes advantage of hidden stru
ture in the CSP and is therefore betterthan a general ordering heuristi
.2. Adding heuristi

onstraints, that may remove solutions from the sear
h spa
e. Anexample of this is the Combo
onstraint 5.6.2. These heuristi

onstraints will beuseful in hard to solve stru
tured problems where there is already no guarantee of�nding a solution in the required operational time of the
ompany. There have beenno rigorous studies of this type of
onstraint even though as we have seen in thiswork they
an be more useful than adding implied
onstraints.3. Mathemati
al redu
tions during the sear
h (Se
tion 5.4). It may be possible to
arry out mathemati
al prepro
essing steps during the sear
h. The important thingto do when adding this type of implied
onstraint is to weigh up the extra
onstraintpropagation pro
essing that has to be done against the redu
tion in the number offails. We have seen also that how the
onstraint is implemented
an make a largedi�eren
e to performan
e (both in memory and in time).

Chapter 5 100 Driver s
heduling using CP4. Higher level de
isions. We
an see that using the extended model with ROs asvariables allows high level de
isions to be made, rather than just
hoosing shifts.However, without a good value guide these high level de
isions in
rease the size ofthe problem as there are more de
ision variables. In a problem where
onstraintpropagation did more pruning, in
orre
t value assignment might be dete
ted early,but in this problem it is essential to have a good value guide. When the LP solutionis used as a value guide the solutions improve greatly. This
an be taken on board bydevelopers working on other pra
ti
al problems. Taking higher level de
isions beforelow level de
isions
an make a great di�eren
e to solution quality. Higher levelde
isions are related to domain splitting (at ea
h bran
h of the sear
h removing aportion of the domain). Although domain splitting
auses less propagation thanassigning a value to a variable, if a good bran
hing heuristi
 (value guide)
an befound then it
an be more e�e
tive.It is
lear that there is further work that
ould be done on the implementation of the
onstraints in the model. A more eÆ
ient implementation of the subset
onstraint
ouldredu
e the time needed to produ
e a solution without undue in
rease in the use of memory.The improved version of the rem
onstraint has speeded up the algorithm. It would alsobe of use to investigate new ways of expressing the
onstraint that sets variables thathave a value in
ommon to that value if one of them is set to it. This has so far resistedattempts to improve on its representation.

Chapter 6Using GENET on the Drivers
heduling problem modelled as aConstraint Satisfa
tion problem
6.1 Introdu
tionMu
h of the work in this Chapter has previously been published by Curtis et al [20℄.Lo
al sear
h methods have hitherto not had mu
h su

ess in the
onstru
tion of bus drivers
hedules. An ex
eption is the appli
ation of geneti
 algorithms to bus driver s
hedulingdes
ribed by Kwan et al in [67℄ and Se
tion 4.5.2. Given a solution of reasonable quality,it is often possible to make minor adjustments to individual shifts, and still maintainthe legality of the s
hedule: this is for instan
e how we eliminate over-
over if there isany in the best solution found by TRACS II. However, it is very diÆ
ult to make major101

Chapter 6 102 GENET for driver s
hedulingimprovements, for instan
e on the s
ale required to redu
e the number of shifts in thesolution, unless the existing solution
ontains gross over-
over. If there is little over-
overor none at all, the
hanges required to eliminate a shift would entail simultaneous
hangesto many other shifts in the solution, whi
h would be diÆ
ult for a lo
al sear
h pro
edureto �nd. Furthermore, investigations by Kwan [65℄ have suggested that, for some problemsat least, the number of possible s
hedules with the minimum number of shifts is very small.When there are very few solutions, or in this
ase very few optimal solutions, lo
al sear
his expe
ted to perform poorly.However, GENET is a lo
al sear
h pro
edure whi
h has been su

essfully appliedto
onstraint satisfa
tion problems of several kinds, in
luding optimisation problems(Se
tion 3.6.5). For this reason it was deemed worthwhile to investigate whether it wouldgive good results on the driver s
heduling problem. Although its performan
e is not
om-parable with TRACS II, we have been able to a
hieve
onsiderable improvements overthe initial simplisti
 model. We believe that the experien
es shown here would be usefulto others using GENET to solve large diÆ
ult
onstraint satisfa
tion problems and inparti
ular problems with similar optimisation
riteria.In Se
tion 5.1 we gave reasons for using a set partitioning formulation. However, usingthis formulation restri
ts the range of problems we
an solve as we
an only solve problemswith a set partitioning solution. The ideal would be to have a formulation that has theguiding nature of set partitioning but the
exibility of set
overing. With GENET we
ana
hieve this as GENET only tries to minimise the number of
onstraint violations and isnot restri
ted to solutions whi
h satisfy all the
onstraints. E�e
tively, we
an work witha set partitioning formulation but a

ept set
overing solutions.In the systemati
 approa
h detailed in the previous
hapter the basi
 formulation of theproblem is to have the pie
es of work as the variables, the workpie
e model. The
hapteralso mentioned another possible way of representing the problem would be to do it in thesame way as the mathemati
al programming approa
h. In this shift model, the shifts arethe variables. The domains are binary, with values representing whether to use the shift

Chapter 6 103 GENET for driver s
hedulingor not use it.The workpie
e representation has two main advantages over the shift model. As dis
ussedin Se
tion 5.2.2 in the latter model, the number of de
ision variables is mu
h larger. Fur-thermore, the number of assignments of values to variables in the shift model is 2n, wheren is the number of shifts. This is mu
h larger than the number of possible assignmentsin the workpie
e model, whi
h is Qmi=1 ni (where ni is the number of shifts
overing pie
ei). Although with
onstraint propagation not all the possible assignments will be tried,the number of possible assignments gives an indi
ation of the
omplexity of the model. Inthe systemati
 approa
h this gave a large advantage to the workpie
e model. However,with a lo
al sear
h method the possible number of assignments (size) is less important tothe algorithms ability to �nd a near optimal solution. This is be
ause the lo
al sear
hmethod will only try a fra
tion of the possible
hoi
es, whereas the systemati
 approa
hwill impli
itly try all possibilities. The a
tual importan
e of size is problem spe
i�
 andis dependent on the type of systemati
 and lo
al sear
h methods used.Another disadvantage of the shift model is that there must be
onstraints in pla
e toensure that no pie
es of work are left un
overed. If those
onstraints are violated, thesolution is not a feasible s
hedule and
annot easily be
onverted to one, unlike a solutionwith over-
over. On the other hand, when using lo
al sear
h with the workpie
e model,every state of the sear
h
ould be a s
hedule (however ineÆ
ient). This is the reason wehave opted to maintain the workpie
e model in the GENET system.One of the drawba
ks of a sto
hasti
 method su
h as GENET is the loss of a guaranteeof produ
ing an optimal solution. Given time, an exhaustive sear
h will always �nd anoptimal solution whereas a sto
hasti
 method may not. However, the fa
t that we havea heuristi
ally redu
ed set of shifts means that we have sa
ri�
ed the guarantee of a realoptimal solution and aim to produ
e near optimal or possibly optimal solutions. So theguarantee is already lost. Moreover, if a lo
al sear
h method
an deal with a large initialset of shifts then fewer heuristi
 redu
tions need to be done and there is less
han
e ofremoving useful shifts.

Chapter 6 104 GENET for driver s
heduling6.2 The GENET modelThe
onstraints in the set partitioning formulation are binary and so
ould be set up inthe original format of GENET (see Se
tion 3.6). If any two variables (pie
es of work) havea shift that
overs both of them then we need to set up
onstraints to deter one variablefrom
hoosing that shift and the other one not. Hen
e, the network
ould be set up as inFigure 6.1. The
luster of three neurons on the left represents variable A and the
lusterof two on the right represents variable B. The value asso
iated with ea
h neuron is thenumber of the
orresponding shift. The symmetri
al weighted
onne
tions are shown bylines between the neurons: the weights are initialised to -1. The pie
es of work
ould bothbe
overed by shift 5 and so if one
hooses 5 and the other does not, over-
over will o

ur.We want to deter this from happening by having nogood
onne
tions between label nodes.To illustrate how the network would work let the labels <A,3> and <B,5> be on. Label<A,3> and <B,5> therefore output a 1; labels <A,1> and <A,3> re
eive an input of -1 from<B,5> and label <B,5> re
eives an input of -1 from <A,3>. Other inputs remain at 0.When we repair variable A the label, <A,5> is turned on as this has the largest input (0).So now there is no
on
i
t between variables A and B; the same shift is
overing both.
B
A

-1

-1

-1

1

3

5

5

8
Figure 6.1: Two node
lusters with set partitioning
onstraints in GENET

Chapter 6 105 GENET for driver s
hedulingWhen we use pie
es as variables and shifts as values and allow
onstraints to be brokenwe introdu
e a mapping of one to many from the set of possible solutions to the set ofpossible states of GENET. This means that a variable might
hange values and yet thes
hedule would remain the same. If the variables were the shifts and the values were 0 and1 then this would not happen. However, in a lo
al sear
h method this is not as mu
h of ahindran
e as this type of symmetry would be to an approa
h that sear
hed exhaustively.Instead of stepping from a s
hedule to a di�erent s
hedule, having this symmetry
an beviewed as allowing sub-steps that will eventually lead to another s
hedule.Unfortunately,
onne
ting all pairs of in
onsistent labels takes up too mu
h memory. On-ly the smallest problem (t1) in the test data
an be represented using GENET's existingbinary-
onstraint representation. To
ombat this a new
onstraint neuron has been de-veloped in a similar way to GENET's non-binary
onstraints des
ribed in Se
tion 3.6.3.Figure 6.2 illustrates the use of the new neuron to represent the
onstraint between thepie
es A and B.
A
 B

3

-1

1
 5

-1

8

5

-1

A,B

-1

Figure 6.2: Set partitioning
onstraint node in GENETThe
onne
tions are no longer symmetri
; if a label node is on then it outputs a 1 to the
onstraint neuron. The
onstraint neuron then de
ides, knowing whi
h label nodes it hasre
eived an input from, whi
h label nodes need to be penalised. It then sends an output to

Chapter 6 106 GENET for driver s
hedulingthose nodes whi
h will be negatively weighted by the
onstraint node's stored weight. Asbefore labels <A,1>, <A,3> and <B,5> re
eive an input of -1 if <A,3> and <B,5> are on.Ea
h
onstraint node has only a single weight, initialised to -1, so that all label nodes thatare penalised by a
onstraint are penalised equally. This is di�erent to the representationdes
ribed above, where the weights of individual
onne
tions between two node
lustersmay be
ome di�erent through the learning pro
ess. Hen
e, the energy lands
ape willbe
ome di�erent for the two models.6.3 Sideways movesThe �rst
onsideration is to investigate the suitability for this parti
ular problem of side-ways moves (see Se
tion 3.6.2). In su
h a highly stru
tured problem it is unlikely thatsideways move would be useful. The
hoi
e of value that a variable takes is so dependenton the
hoi
es that other variables make, that
hanging these values without reason isunlikely to lead to improvement. This theory is borne out by the results in Table 6.1. Thetable shows the results for the 9 problem instan
es des
ribed in Se
tion 5.3. The �nal
ol-umn shows the average of these. For ea
h problem instan
e the program was run 10 timeswith 10 di�erent seeds for the program's random number generator. A run is terminatedafter 3000
y
les. This is be
ause, although the CPU time to �nd the best solution is oftenshort, the user time
an be mu
h longer and the program has to be run 90 times to testea
h heuristi
. All the runs of the program where done on an SGI O
tane ma
hine. Thisis a di�erent ma
hine to the one used for the
onstraint programming approa
h des
ribedin Chapter 5. The reason for this is that, due to the restri
tions imposed by the Solverli
en
e and an implementation issue with GENET, ea
h algorithm
annot be run on thema
hine the other was run on. This means that the timings are not dire
tly
omparable.Sample runs were made up to 10000
y
les but no extra improvements were made on thesolution. Listed in the results is the average of the number of shifts in the best solutionfound for ea
h run. The standard deviation is not given but for the basi
 model the aver-age standard deviation is less than 1 whole shift (the average standard deviation for the

Chapter 6 107 GENET for driver s
hedulingInstan
e t1 r1 r1a r2 t2 r3
1
1a r4 avpie
es 24 53 53 54 125 160 186 186 203 n/ainitial shifts 77 2503 4273 3001 3015 19091 3829 7543 2484 n/asize 271 12k 21k 13k 17k 214k 27k 53k 17k n/aopt # shifts 7 11 11 14 19 16 26 26 25 17.2basi
:av. # shifts 7.20 16.8 18.2 19.6 23.5 21.8 34.9 36.2 33.3 23.5av. time (se
s) 0.09 0.06 0.03 0.03 0.33 1.00 0.84 0.92 0.87 0.46best # shifts 7 15 16 19 23 21 34 34 32 22.3time (se
s) 0.01 0.20 0.03 0.02 0.17 0.64 0.68 1.12 1.24 0.46lsw:av. # shifts 7.70 16.7 18.5 19.5 23.8 21.7 35.2 36.2 33.6 23.7av. time (se
s) 0.11 0.16 0.08 0.09 1.83 11.7 5.3 5.02 3.78 3.12best # shifts 7 16 18 18 23 20 34 35 32 22.6time (se
s) 0.01 0.09 0.05 0.22 0.67 8.4 7.10 3.77 3.0 2.59av. # shifts 7.20 17.1 18.4 19.6 26.4 41.9 51.4 52.1 47.5 31.3av. time (se
s) 0.11 0.60 0.26 0.29 3.09 8.30 0.92 0.77 3.95 2.03best # shifts 7 16 17 18 23 34 46 50 43 28.2time (se
s) 0.01 0.59 0.20 0.77 6.11 18.5 7.74 0.27 13.1 5.26Table 6.1: Results on allowing or not allowing sideways moves.lsw = limited sideways moves, fsw = full sideways moves�nal model is also less than 1). Also shown is the average time at whi
h these solutionswere found. The �nal two rows give the lowest number of shifts a
hieved out of all 10 runsand the time it took to �nd this solution.The results using limited sideways moves and no sideways moves are very similar. Althoughin some
ases one is better than the other, neither has a signi�
ant advantage. However,the full sideways moves strategy is mu
h worse than the other two espe
ially for largerproblems.6.4 Super
uous/redundant shiftsAn extreme situation that
an o

ur when allowing
onstraints to be broken, so allowingover-
over, is that the shift that is sele
ted by some variable might not uniquely
overany pie
e of work, i.e. every pie
e of work
overed by this shift is also
overed by anothersele
ted shift. In examining states of the network it was found that at times this did

Chapter 6 108 GENET for driver s
hedulingshift pie
es
overed88 6, 886 6, 8, 14135 8, 14173 13170 13, 14, 15, 16177 15, 16Table 6.2: Example shifts used in a state of GENET.happen. These super
uous shifts
an be removed, thus redu
ing the number of shiftswithout leaving any un
overed pie
es of work. To ta
kle this situation a routine wasdevised to take a
tion at lo
al minima.There may not be a unique way of removing super
uous shifts; for instan
e, if one pie
eof work is
overed by two super
uous shifts and no other shift, then when either shiftis removed the other is no longer super
uous. This means that shifts may potentiallybe super
uous but in fa
t may be
ome needed if other potentially super
uous shifts areremoved. We will use a real set of shifts that were in use in a state of GENET to illustratethis. Table 6.2 shows the index of ea
h shift and the numbers of the pie
es of work thatit
overs.If we remove shifts 86, 170 then there are no
on
i
ts and all the pie
es are still
overed.We will dis
uss how we might translate this pro
ess into a general formula for removingshifts.There are several possible general strategies. For instan
e:1. Remove all shifts that are a subset of another shift. In the example above we wouldremove 88, 135, 173, 177. This would still
ause a
on
i
t between 86 and 170 butwould leave only 2 shifts being used.2. Remove potentially super
uous shifts that are a superset of another (e.g. 86, 170).This leaves no
on
i
ts but uses 4 shifts.3. Solve the problem of �nding an optimal set of super
uous shifts to remove as a

Chapter 6 109 GENET for driver s
hedulingInstan
e t1 r1 r1a r2 t2 r3
1
1a r4 avpie
es 24 53 53 54 125 160 186 186 203 n/ainitial shifts 77 2503 4273 3001 3015 19091 3829 7543 2484 n/asize 271 12k 21k 13k 17k 214k 27k 53k 17k n/aopt # shifts 7 11 11 14 19 16 26 26 25 17.22rem:av. # shifts 7.10 16.3 18.4 18.7 23.2 21.0 33.9 35.0 31.8 22.8av. time (se
s) 0.02 0.02 0.01 0.01 0.16 1.24 0.28 0.38 0.29 0.27best # shifts 7 15 16 17 23 20 33 34 31 21.8time (se
s) 0.00 0.04 0.05 0.01 0.09 0.34 0.22 0.31 0.13 0.13Table 6.3: Results of removing super
uous shifts.rem = remove super
uous shiftsseparate subproblem.4. Repeatedly randomly remove a potentially super
uous shift until there are no su-per
uous shifts left.5. Look at the overall energy
hange of removing ea
h shift. Remove the shift thatwould produ
e the best
hange.6. Remove all potentially super
uous shifts from the
urrent state of GENET, for
ingvariables to
hoose di�erent shifts.Super
uous shifts are not alway present and in the latter stages of the sear
h there areusually only 1 or 2, if any. Therefore, using a great deal of
omputing power and extrame
hanisms to solve this problem is deemed to be fruitless. Therefore, the option de
idedon was strategy 6 and this was implemented by just tagging super
uous shifts to not beused in the next
y
le, so that other shifts are used to
over the work. No attempt ismade to as
ertain whether two super
uous shifts would be
ome non-super
uous if onewere removed.Table 6.3, giving results for the same problems as in Table 6.1, shows that adding a
omponent to remove super
uous shifts at lo
al minima does improve the solutions overjust using the basi
 sear
h, in several
ases. We will see below that the problem ofsuper
uous shifts disappears as we introdu
e general me
hanisms to redu
e the number

Chapter 6 110 GENET for driver s
hedulingof shifts.6.5 OptimisationGENET has been used to solve optimisation problems and this has been des
ribed inse
tions 3.6.5 and 3.6.5.2. In the driver s
heduling problem the most important
riterionto optimise, the number of shifts, is a global
riterion and so
osts
annot be set on thelabels initially. The
ost of a label
annot be worked out lo
ally be
ause knowledge ofthe states of other variables is needed. A well known problem with a similar optimisation
riterion is the Radio Frequen
y Assignment problem, when it is required to minimisethe number of frequen
ies used. The diÆ
ulty in this type of minimisation is that toremove a frequen
y all the transmitters that are assigned to that frequen
y need to
hangestate, whi
h may require several independent moves. As mentioned in Se
tion 3.6.5.2 thisproblem was solved by initially using only the minimum number of frequen
ies needed to
over all
hannels. This produ
es many
onstraint violations, but be
ause the domainsof most of the variables are the same, very few frequen
ies need be used, possibly onlyone. GENET then adds frequen
ies to redu
e the
on
i
ts and the number of frequen
iesadded is thereby kept low.Unfortunately, in the driver s
heduling problem we
annot have one shift that would
overall the pie
es, and
hoosing a minimal set of initial shifts
overing all the pie
es of workamounts to solving the problem. We
an start with all the pie
es un
overed, whi
h issimilar, although an un
overed pie
e is in
on
i
t with everything, whereas one frequen
ywill not be. By in
luding a virtual shift as a value in the domain of all pie
es of work,
orresponding to the pie
e being left un
overed, we
an start the pro
ess with this virtualshift
hosen for all variables. We add a single
onstraint to penalise the use of the virtualshift and so GENET will add shifts to remove it. There is only one virtual shift whi
h isheavily penalised. The risk of not �nding a solution is low and all under-
over is normallyremoved in the �rst few
y
les. The �rst entry (un
ov) in Table 6.4 shows that the numbersof shifts in the solutions produ
ed are less than or equal to the numbers of shifts produ
ed

Chapter 6 111 GENET for driver s
hedulingusing a random start (the basi
 model of Table 6.1), but the improvement is small.In order to �nd solutions with the same number of drivers as TRACS II, we need to addressthe diÆ
ulty that there are few opportunities to remove whole shifts. We
an either putmore e�ort into looking for global moves whi
h will remove shifts by
onsidering thesolution as a whole or introdu
e a bias into GENET's lo
al moves whi
h will hopefullyallow a sequen
e of lo
al moves to lead to the removal of a shift. One possible way ofdoing this is by progressively penalising shifts that are not assigned to all their pie
es ofwork, thus dissuading individual variables from using su
h a shift. This should guide thesear
h to states where only one variable is using this shift and so to a position where it
ould be removed with a single
hange. To do this we add a term Popt:<i;j> to the inputthat a label node < i; j > gets:Popt:<i;j> = �I + Ij � L<i;j> (6.1)where I is the number of variables, Ij is the number of variables assigned to value j andL<i;j> is a number that starts at zero and in
reases by one every time that label node< i; j > is on at a lo
al minimum. The number of variables is obviously
onstant and isput in to ensure that the optimisation term is always inhibitory. The more variables thereare whi
h
hoose the value, the less inhibitory the term is.A minor adaptation of this optimisation te
hnique has been tried. The di�eren
e betweenit and the original te
hnique is that shifts that are assigned to all the pie
es they
over arenot penalised. So there is no large negative in
uen
e of the
onstant value of the numberof variables (I). This puts a large bias on shifts that are
hosen by all their pie
es. Thiswas introdu
ed to stabilise the sear
h. By not penalising shifts that are
hosen by all theirpie
es of work it is mu
h more likely that these shifts will be retained.Using the optimisation te
hnique des
ribed above, Table 6.4 shows that in the overallaverages there is a de
rease in the number of shifts
ompared to the basi
 model. In
omparison with the basi
 model of Table 6.1, it tends to produ
e slightly better solutions

Chapter 6 112 GENET for driver s
heduling
Instan
e t1 r1 r1a r2 t2 r3
1
1a r4 avpie
es 24 53 53 54 125 160 186 186 203 n/ainitial shifts 77 2503 4273 3001 3015 19091 3829 7543 2484 n/asize 271 12k 21k 13k 17k 214k 27k 53k 17k n/aopt # shifts 7 11 11 14 19 16 26 26 25 17.22un
ov:av. # shifts 7.60 15.0 17.6 18.8 23.7 22.0 34.4 36.2 32.9 23.1av. time (se
s) 0.06 0.17 0.13 0.07 0.48 6.38 1.43 1.74 0.91 1.26best # shifts 7 14 16 17 23 20 32 35 32 21.8time (se
s) 0.04 0.27 0.72 0.04 0.26 3.26 1.03 1.33 1.42 0.93optl:av. # shifts 7.70 15.0 15.9 17.6 24.4 21.5 35.9 37.5 33.6 23.2av. time (se
s) 0.03 0.32 0.24 0.23 1.19 4.95 2.23 2.25 2.10 1.50best # shifts 7 14 15 16 23 19 34 36 32 21.8time (se
s) 0.00 0.16 0.77 0.06 0.50 3.43 1.25 1.89 1.60 1.07optl+nf:av. # shifts 7.70 15.0 16.0 18.5 23.6 21.9 34.7 36.1 32.8 22.9av. time (se
s) 0.00 0.08 0.05 0.02 0.35 1.59 0.42 0.49 0.65 0.41best # shifts 7 14 14 18 22 20 34 35 32 21.8time (se
s) 0.00 0.06 0.09 0.01 0.08 1.54 0.20 0.32 0.19 0.28Table 6.4: Results of using a te
hnique to optimise the number of shifts used.un
ov = all the pie
es of work start o� un
overedoptl = the optimisation te
hniquenf = do not penalise shift that
over all their pie
es

Chapter 6 113 GENET for driver s
hedulingon smaller problems and worse on larger problems. This shows how diÆ
ult it is to removea shift using a sequen
e of moves. A further problem is that to redu
e the overall numberof shifts a new shift may need to be introdu
ed whi
h �ts better than an existing shift. Inthe optimisation s
heme, shifts that are not used, i.e. no asso
iated label node is on, willbe heavily penalised and so are unlikely to be introdu
ed, whether it is useful to do so ornot. Below, we will retain the optimisation te
hnique and investigate other ways to solvethe two problems stated above.The results in Table 6.4 also show that in
luding the option to not penalise shifts that
overall their pie
es only makes a minor di�eren
e by slightly de
reasing the overall averagenumber of shifts. This option will be further investigated in the �nal version of the sear
hpro
ess.6.5.1 Improved starting solutionBy using a random initial solution to start the sear
h, a large number of shifts is used.Sin
e removing shifts is something that GENET �nds diÆ
ult, a method was used toimprove the quality of the initial solution. A simple greedy algorithm was used to
reatethe initial solution. The algorithm starts with the earliest pie
e of work in the bus s
hedule.It then pi
ks the shift to
over it that
overs the largest number of other pie
es of work.Then it
ontinues pi
king un
overed work in
hronologi
al order and
hoosing the shiftwhi
h
overs the most un
overed pie
es of work until all pie
es of work are
overed by atleast one shift. The starting value (shift) assigned to ea
h variable (pie
e) is then
hosenrandomly from the shifts that
ould
over it in this initial solution.Table 6.5 shows the number of shifts used in the initial solution and the solutions foundby GENET. In
omparison with earlier results GENET improves the best found solutionon several of the problems (
1, t2, r2). However, the best solution found is often nobetter than the initial solution. In the following se
tions, when testing new heuristi
s andadaptations of GENET, we will investigate
ombining the new features with the greedyinitial solution.

Chapter 6 114 GENET for driver s
hedulingInstan
e t1 r1 r1a r2 t2 r3
1
1a r4 avpie
es 24 53 53 54 125 160 186 186 203 n/ainitial shifts 77 2503 4273 3001 3015 19091 3829 7543 2484 n/asize 271 12k 21k 13k 17k 214k 27k 53k 17k n/aopt # shifts 7 11 11 14 19 16 26 26 25 17.22Initsol 7 13 14 16 22 19 32 33 30 20.7optl+init:av. # shifts 7.00 13.0 14.0 15.9 20.8 19.1 32.0 32.7 30.0 20.5av. time (se
s) 0.00 0.02 0.01 0.02 0.02 0.37 0.04 0.10 0.02 0.07best # shifts 7 13 14 15 20 19 32 32 30 20.2time (se
s) 0.00 0.00 0.00 0.05 0.01 0.23 0.00 0.14 0.00 0.05Table 6.5: Results using a greedy heuristi
 to
onstru
t an initial solution as opposed toa random starting solution.Initsol = the number of shifts of the initial solution produ
ed by the greedy heuristi
init = use initial solution produ
ed by greedy heuristi
optl = optimisation with learning6.5.2 Removing whole shiftsIn this se
tion we examine a way of using global moves to redu
e the number of shifts.The idea is to take two shifts in the
urrent solution and repla
e them with one shift. Thiswould be very hard to do if there were little or no over-
over be
ause it is then unlikelythat the union of the pie
es of work that two shifts
over is identi
al to the pie
es of work
overed by another shift. However, if there is enough over-
over it
an be possible to �nd ashift that
overs the work that two shifts
over uniquely between them. This is a good wayof rapidly redu
ing the number of shifts and leaving the solution with little over-
over. We
an
ombine these global moves with lo
al moves and so let the lo
al moves \�ne tune" thesolution. This is done by allowing the algorithm to work as normal until it rea
hes a lo
alminimum, at whi
h point it sear
hes for two shifts that are in use that
an be repla
ed byone shift. The results are shown in Table 6.6. The solutions are an improvement on theapproa
h with the optimisation te
hnique. However, it will be seen in later se
tions thatwe
an do better using only lo
al moves.

Chapter 6 115 GENET for driver s
hedulingInstan
e t1 r1 r1a r2 t2 r3
1
1a r4 avpie
es 24 53 53 54 125 160 186 186 203 n/ainitial shifts 77 2503 4273 3001 3015 19091 3829 7543 2484 n/asize 271 12k 21k 13k 17k 214k 27k 53k 17k n/aopt # shifts 7 11 11 14 19 16 26 26 25 17.22rep:av. # shifts 7.00 15.1 15.7 17.7 21.3 20.5 32.5 32.4 30.0 21.4av. time (se
s) 0.01 0.11 0.12 0.24 0.94 8.70 2.10 6.17 1.13 2.17best # shifts 7 14 14 16 17 16 30 29 28 19.0time (se
s) 0.00 0.07 0.18 0.12 0.05 28.2 12.8 11.2 1.92 6.06rep+init:av. # shifts 7.00 13.0 13.5 16.3 20.2 20.6 30.0 30.0 27.8 19.8av. time (se
s) 0.00 0.02 0.03 0.05 0.09 2.96 0.64 1.22 0.60 0.62best # shifts 7 13 13 16 20 17 29 28 27 18.9time (se
s) 0.00 0.01 0.03 0.04 0.04 15.62 0.74 1.23 0.62 2.04Table 6.6: Results showing the e�e
t of using global moves to repla
e whole shiftsrep = try to repla
e two shifts with oneinit = use initial solution produ
ed by greedy heuristi
6.6 A less deforming learning modelIn the model we originally developed, ea
h
onstraint node has one asso
iated weight.This weights the output to all the label nodes
onne
ted to that
onstraint. Ea
h
on-straint node, is
onne
ted to all the label nodes representing two variables (see Figure 6.2).Through learning, the weight of the
onstraint node will in
rease every time any two la-bel nodes
onne
ted to the
onstraint are on and are in
on
i
t with ea
h other. In theoriginal version of GENET, there is a weight for every nogood pairing of label nodes, andthis weight will only in
rease when this pairing of label nodes is on at a lo
al minimum.With only one weight asso
iated with a
onstraint the weight will in
rease more frequentlythan individual weights on nogood pairings. This is undesirable and so a
ompromise hasbeen stru
k between having a weight for ea
h nogood and only having one weight for ea
h
onstraint. This
ompromise also has the added advantage of introdu
ing bias into themodel to redu
e the number of shifts used.To re�ne the learning method we have introdu
ed more than one weight per
onstraint.We repla
e the single weight on the
onstraint (W) with a weight for ea
h shift that is

Chapter 6 116 GENET for driver s
hedulingin the domain of both of the variables (w
 where
 = 1, . . . , C and C is the number ofshifts in
ommon) and a single weight (wn) for all the shifts that are not
ommon to bothvariables. Whether a label node is penalised or not is
hosen in the same way as before,but how mu
h it is penalised is
hosen di�erently. Ea
h label node is penalised by itsasso
iated weight. So the di�eren
e between the new
onstraint representation and theold one shown in Figure 6.2 is that we are using several weights instead of one. All theweights start at -1 as did W but the lands
ape for the two models be
ome di�erent throughlearning. With only one weight it in
reases every time the two asso
iated variables are in
on
i
t whereas in the new model only two of the weights in
rease (for example if the iand j were
ommon shifts and both were on in a lo
al minima only weights wi and wjwould be
ome more negative).Figure 6.3 illustrates how using these extra weights works. There are now 3 weights stored:one ea
h for shifts 3 and 8 as these are
ommon to both pie
es and one for the other shifts.All the weights start at -1 but through learning they
an be
ome di�erent, in our examplethe weight for shift 8 has be
ome -2 while the others remain at -1. In the example shown,if the
onstraint had only one weight and nodes <A,3> and <B,2> are on, nodes <B,2>and <B,8> would be penalised be
ause they being on
orresponds to over-
over. Similarly,<A,8> would be penalised be
ause B is at the moment
overed by shift 2 and so would beover-
overed if shift 8 were also used. With multiple weights the same nodes are penalisedbut by di�erent amounts, <B,8> by -2 be
ause the weight linked with 8 is -2 and similarly<A,3> by -1.Having extra weights has a twofold advantage over just having a single weight. Firstly, ifthere is only one weight the input of all penalised label nodes will be
ome more negativeby the same amount when the weight in
reases. Therefore, the asso
iated variables aremore likely to have nodes with the same input than if several di�erent weights label nodesare used. This means that more moves are available if several di�erent weights are used.The se
ond advantage of using weights for shifts that are in
ommon is that
ertain shiftswill get more penalised, thus leading to their removal.

Chapter 6 117 GENET for driver s
hedulingInstan
e t1 r1 r1a r2 t2 r3
1
1a r4 avpie
es 24 53 53 54 125 160 186 186 203 n/ainitial shifts 77 2503 4273 3001 3015 19091 3829 7543 2484 n/asize 271 12k 21k 13k 17k 214k 27k 53k 17k n/aopt # shifts 7 11 11 14 19 16 26 26 25 17.22Initsol 7 13 14 16 22 19 32 33 30 20.7mwt:av. # shifts 7.00 14.3 18.0 18.0 20.6 16.8 29.0 29.1 27.7 20.1av. time (se
s) 0.02 0.16 0.07 0.07 0.71 13.7 1.72 2.63 1.33 2.26best # shifts 7 12 16 16 20 16 28 28 27 18.9time (se
s) 0.01 0.32 0.10 0.08 0.71 13.0 1.13 1.18 1.32 1.99mwt+optl+init:av. # shifts 7.00 12.3 13.8 14.3 21.0 16.3 30.5 31.1 29.5 19.5av. time (se
s) 0.00 0.41 0.16 0.46 0.04 11.7 1.63 1.78 1.19 1.93best # shifts 7 11 12 14 21 16 29 30 29 18.8time (se
s) 0.00 0.31 1.26 0.18 0.03 6.32 3.39 2.68 1.41 1.73mwt+optl+rem:av. # shifts 7.00 12.1 14.0 14.0 22.2 16.3 30.7 30.1 29.2 19.5av. time (se
s) 0.03 0.55 0.47 0.56 1.00 13.8 4.40 4.94 2.49 3.14best # shifts 7 11 12 14 22 16 29 29 28 18.7time (se
s) 0.00 0.85 2.27 0.17 0.36 6.56 6.44 2.84 2.01 2.39mwt+optl+rep:av. # shifts 7.20 14.0 14.2 16.1 23.0 19.4 32.0 33.0 33.0 21.3av. time (se
s) 0.01 0.43 0.30 0.24 0.39 6.36 1.15 3.78 0.47 1.46best # shifts 7 13 13 15 22 16 29 30 30 19.4time (se
s) 0.00 0.06 0.25 0.32 0.23 7.39 2.86 2.20 1.36 1.63mwt+optl+nf:av. # shifts 7.00 12.8 14.8 16.1 20.7 16.5 29.1 29.2 27.9 19.4av. time (se
s) 0.25 2.24 0.93 1.32 4.74 17.4 8.34 10.41 8.02 5.96best # shifts 7 12 12 14 20 16 28 28 27 18.2time (se
s) 0.03 1.45 1.60 3.12 5.15 15.14 5.28 17.7 4.55 6.00mwt+optl:av. # shifts 7.00 11.8 14.1 14.2 22.3 16.3 30.5 30.4 29.5 19.6av. time (se
s) 0.03 0.46 0.24 0.63 0.93 9.90 2.00 2.37 1.37 1.99best # shifts 7 11 11 14 21 16 29 29 28 18.4time (se
s) 0.00 0.52 0.45 0.19 0.48 6.03 3.52 2.19 1.20 1.62Table 6.7: Using several weights for ea
h
onstraint.Initsol = the number of shifts of the initial solution produ
ed by the greedy heuristi
optl = optimisation with learningnf = do not penalise shifts that
over all their pie
esmwt = using more than one weight per
onstraintinit = use initial solution produ
ed by greedy heuristi
rep = try to repla
e two shifts with one

Chapter 6 118 GENET for driver s
hedulingTable 6.7 shows the results of using several weights to represent ea
h
onstraint
ombinedwith the strategies
onsidered earlier. There is a
onsiderable improvement over the initialresults shown in Table 6.1 and in many
ases the best solutions found have the samenumber of shifts as in the TRACS II solution. It is no longer worthwhile to use the greedyheuristi
 to build a starting solution; a random initial solution does just as well. Hen
ethe
redit for the quality of the �nal solution is due entirely to the sear
h algorithm.Furthermore, removing super
uous shifts now makes hardly any di�eren
e to the qualityof the solutions. Equally the repla
e heuristi
 that removed whole shifts at lo
al minimais no longer of use. The only alteration that does have a positive in
uen
e on the pro
essof using several weights is not penalising shifts that are
hosen by all the pie
es of workthat they
an
over. By doing this one fewer shift is used in the best solution obtainedin four of the larger problems. However, the best solution obtained for r1 and r1a now
ontain one mores shift than the result produ
ed by TRACS II.By examining what the algorithm is doing during the sear
h we
an see how the improve-ment o

urs. In its �rst two
olumns, Table 6.8 shows the average number of times a shift
A

-1(3) , -2(8),

-1

A,B

B

-1
-1

5
 3

3
 2

8
 8

-2
-2
Figure 6.3: Set partitioning
onstraint node in GENET with more weight values

Chapter 6 119 GENET for driver s
heduling

15

20

25

30

35

40

45

50

0 500 1000 1500 2000 2500 3000

N
u
m
b
e
r

o
f

s
h
i
f
t
s

Number of cycles

(a) Without extra weights

15

20

25

30

35

40

45

50

0 500 1000 1500 2000 2500 3000

N
u
m
b
e
r

o
f

s
h
i
f
t
s

Number of cycles

(b) With extra weights

Figure 6.4: Number of shifts in the solution at ea
h
y
le of the sear
h.

Chapter 6 120 GENET for driver s
hedulingInstan
e Revisits Changes % Lo
al minper
y
le1 wt > 1 wt 1 wt > 1 wt 1 wt > 1 wtt1 3.32 1.86 1.63 2.51 48.63 40.23r1 1.53 1.97 2.28 3.56 44.94 38.58r1a 1.34 1.57 2.63 3.12 43.49 39.33r2 1.27 1.71 2.63 3.32 43.78 39.66t2 3.44 2.73 4.63 7.08 40.67 30.52r3 3.62 3.04 7.80 16.80 31.13 22.80
1 4.00 3.29 5.38 9.20 38.92 27.73
1a 3.91 3.02 6.13 9.69 38.18 27.47r4 3.77 3.29 5.33 9.41 35.61 27.34av 2.91 2.50 4.27 7.18 40.59 32.63Table 6.8: Comparison between one weight and multiple weights for ea
h
onstraint.Revisits is the average number of times a shift is removed and later reinstated. Changesper
y
le is the average number of
lusters that
hange the label node that is on per
y
le.% Lo
al minima is the per
entage of moves that are in a lo
al minimum.is removed and reinstated in GENET until the best solution is found. The table givesresults for the 9 problems and the overall average. We
an see that using more than oneweight per
onstraint de
reases, on average, the number of times a shift is revisited. Thenext two
olumns show the average number of variable
lusters that
hange the label nodethat is on per
y
le. In every
ase using more than one weight in
reases the number of
hanges and so does more sear
hing on ea
h
y
le. Finally the last two
olumns show theper
entage of moves that ended in a lo
al minimum: the proportion of these unprodu
tivemoves is higher in every
ase when only one weight is used per
onstraint. Figure 6.4
ompares in detail the sear
h pro
ess with and without extra weights for a parti
ular in-stan
e. Using the extra weights allows the sear
h to
hange more at ea
h
y
le than whenonly one weight is used. It allows the sear
h to move between states with few shifts eventhough it may have to temporarily add shifts to get between these states.6.7 Summary and
on
lusionSeveral adaptations to GENET have been made to try to redu
e the number of shiftsused. These
onsist of: introdu
ing a bias in the lo
al moves; making global moves; and

Chapter 6 121 GENET for driver s
hedulingstarting the sear
h from an improved state. The most su

essful method was one of theattempts to in
lude a bias in the lo
al moves, by using multiple weights for ea
h
onstraint.This made several of the other te
hniques obsolete. The reason for the su

ess has beenexplained and eviden
e is given by examining the sear
h pro
ess. This is interesting asusing the biasing method enhan
es performan
e without adding additional me
hani
s tothe sear
h pro
ess, just adapting the
onstraints to improve the existing learning pro
ess.As with the previous Chapter the resear
h done here is domain spe
i�
 however lessonsmay be learned for solving other pra
ti
al and generals problems using GENET. Theseaspe
ts are the following:1. Optimisation. This resear
h
ombined with that in [10, 9℄ shows the poor resultsobtained when trying to optimise a global optimisation
riterion (number of driversor number of frequen
ies) using the type of optimisation term used in Se
tion 3.6.5and 6.5. We have shown that the diÆ
ulty lies in having to make a su

ession of lo
almoves to make a di�eren
e to the optimisation
riterion. We have also introdu
eda method whi
h allows for this type of sequen
e of lo
al moves to improve thesolution(Se
tion 6.6).2. Less deforming model. The original work on GENET for adding non-binary
on-straints dis
ussed in Se
tion 3.6.3 used only one weight per
onstraint node. How-ever, we have shown in Se
tion 6.6 that using more weights
an make a signi�
antdi�eren
e to solution quality.3. Sideways moves. How to de
ide whether sideways moves should be allowed whensolving a parti
ular problem using lo
al sear
h is still an open question. However,this resear
h has put forward the idea that with hard, highly stru
tured problemssideways moves should not be used. A full analysis of varying stru
ture and its e�e
ton the solution quality when using sideways moves is beyond the s
ope of the thesisbut is an area for investigation.Further work
ould be
arried out in several areas. Using a relaxed linear programming

Chapter 6 122 GENET for driver s
hedulingsolution to the set partitioning problem greatly in
reased the performan
e of the system-ati
 approa
h des
ribed in the previous
hapter. Further, the only su

essful lo
al sear
happroa
h to large set/
overing partitioning problems for driver s
heduling [67℄ dependsgreatly on this LP solution. Therefore, examining how the LP solution
ould be in
or-porated into GENET may be very produ
tive. The me
hani
s of using the LP solutionneed to be resear
hed but there is a positive indi
ation that it may work very well. Thisis be
ause the LP solution and the GENET model have similarities. The assignment of apie
e of work to a shift in GENET is similar to
hoosing a fra
tion of the shift to
overit in the LP solution. So translating the LP solution into a state in GENET would be arelatively easy task.Another area for future work would be to expand the algorithm to ta
kle some of thefurther restri
tions that
an be imposed by bus
ompanies. The driver s
heduling prob-lem sometimes has side
onstraints and features that are hard to express in a pure setpartitioning formulation. Examination of these to see if the expressive power of
onstraintsatisfa
tion
an model these better than ILP
ould be very useful. This has been dis
ussedin Se
tion 5.8 and is further dis
ussed in Se
tion 7.3.Lastly, a more general area for further work is to do with how GENET uses weights aswe dis
ussed in Item 2 above. The resear
h dealt with the high memory requirementsgenerated by representing the problem using GENET's original binary
onstraints. Theproblem was represented using an adaptation of the non-binary
onstraints developed forGENET to be used as binary
onstraints. It was found that using this type of
onstraintlow quality results were produ
ed, with large numbers of unne
essary drivers in the s
hed-ule. The possible reasons for this were examined by extra
ting information on the sear
h.Using multiple weights instead of single weights improved the results greatly and the ex-amination of the sear
h gave possible reasons for this. An area open to resear
h is whetherin non-binary CSPs GENET should have ea
h
onstraint with a single or multiple weight.A study of a range of problems with non-binary
onstraints, extra
ting the same sear
hinformation, may shed light on this issue. So although this type of resear
h is beyond thes
ope of this thesis, it has provided a dire
tion for su
h resear
h.

Chapter 7Con
lusions
7.1 SummaryThe driver s
heduling problem and its
ommer
ial importan
e has been presented. The
urrent methods for driver s
heduling have been des
ribed and their shortfalls expressed.The fa
t that it is sometimes hard to adapt methods between organisations and thatprovably optimal solutions to pra
ti
al problems are not obtainable has been dis
ussed.The problem is tightly restri
ted and heuristi
 methods have found it hard to produ
e goodresults for it. On the other hand, mixtures of heuristi
s and mathemati
al programminghave been very su

essful, although even these have their
aws, whi
h have stimulatedinvestigation of other approa
hes.This thesis has investigated two methods that use
onstraint satisfa
tion for modellingand solving the bus driver s
heduling problem. These methods start from a prede�nedset of shifts, and from this they sele
t shifts to produ
e a s
hedule. This ta
ti
 has been
hosen over produ
ing shifts as the s
hedule is built up be
ause it allows the solver to be123

Chapter 7 124 Con
lusionsgeneri
 and more independent of individual
ompanies' regulations.These methods have a
hieved su

ess in solving small driver s
heduling problems fromdi�erent
ompanies with varying regulations. However, the mathemati
al programmingsystem TRACS II [37, 66, 125℄
an solve mu
h larger problems. It is unsurprising thatthe new methods
annot
ompete, as there has been over 30 years of resear
h invested inthe TRACS II system. However, our results are en
ouraging, and indi
ate dire
tions forfurther resear
h.7.2 Comparison between methodsThe two new methods des
ribed in Chapters 5 and 6 are di�erent in many ways. The�rst approa
h employs systemati
 sear
h, whereas the se
ond is a lo
al sear
h methoddeveloped from GENET [121, 110℄. This means that in theory the systemati
 approa
hwill, given enough time, produ
e an optimal solution but the lo
al sear
h method maynever �nd the optimum. However, in pra
ti
al terms, the problem is hard to solve and timeis limited, so the systemati
 approa
h may also not �nd an optimal solution. Furthermore,as the set of possible shifts that are to be sele
ted from is heuristi
ally generated, shiftsthat are
ru
ial to produ
e an optimal solution may not be
ontained in the set, leadingto no optimal solution being obtained.In examining results, the two methods
annot be dire
tly
ompared. The two approa
hesta
kle slightly di�erent problems. GENET would a

ept set
overing problems that the
onstraint programming approa
h will not. Moreover, the timings of runs
annot be
ompared as explained in Se
tion 6.3.For our test problems TRACS II produ
es the optimal number of drivers that
an bea
hieved by sele
ting from the generated set of shifts. However, it is possible (althoughhighly unlikely for problems of this size) that if we were to sele
t from the set of all possibleshifts, solutions with fewer drivers would exist. So therefore we will
all a solution with the

Chapter 7 125 Con
lusionssame number of drivers as TRACS II a pseudo-optimal solution. It is worth noting in theresear
h done in this thesis we do not
onsider asso
iated
osts of shifts, but TRACS IIdoes and attempts to redu
e them. Therefore, the pseudo-optimal solutions we speakof may in pra
ti
e not be as good as the TRACS II solutions. In every one of the test
ases, the systemati
 approa
h produ
ed a pseudo-optimal solution. However, the GENETadaptation failed to produ
e the same number of drivers in four
ases. Some fa
tors maya

ount for this di�eren
e in solution quality. In terms of the �nal version, GENETdeals with the problem more as a general set partitioning problem than the systemati
approa
h. GENET takes no advantage of the stru
ture of the problem. On the otherhand, the systemati

onstraint programming approa
h uses the solution to the LP givenby relaxing the integrality
onditions to guide the sear
h and uses the stru
ture of thebus s
hedule in the form of the relief opportunities to e�e
tively redu
e the size of theproblem. It is believed that using the LP solution in some role within GENET will improveperforman
e greatly. Without the use of the relaxed LP solution, the systemati
 approa
h
ould only �nd a pseudo-optimal solution on a trivially small problem instan
e. However,GENET has found a pseudo-optimal solution for the test problem with the largest numberof potential shifts. Therefore, GENET may have the greater potential of the two.An advantage GENET has over the systemati

omplete sear
h method is that it willalways �nd a solution of some quality. In the four
ases in whi
h it
ould not �nd apseudo-optimal solution, the best solutions it found were only one or two shifts away fromthe TRACS II solution. Furthermore, GENET
an handle set
overing problems and soif there is no set partitioning solution it
an still �nd a solution.In this thesis when we
ompare the three sear
h methods, mathemati
al programming,CP and Lo
al sear
h we
an
ompare not just the �rst basi
 algorithms developed butalso the
omparison of how ea
h approa
h
an be adapted and improved. The mathemat-i
al approa
h has been developed over a long time and has been improved greatly withheuristi
s and improvements in its sear
h te
hnique. The CP approa
h has: examinedmodelling issues; used implied
onstraints, both mathemati
al and heuristi
; used valueand variable ordering; and used domain spe
i�
 knowledge to enhan
e these. The lo
al

Chapter 7 126 Con
lusionssear
h method explores several of the issues important to this type of sear
h: es
aping lo-
al minima; sideways moves; several te
hniques for optimisation in
luding di�erent movesoperators; di�erent starting solutions; and adapting the
onstraints. As stated above theGENET model did not in
orporate as mu
h domain spe
i�
 knowledge as the
onstraintprogramming approa
h. Part of the reason for this is that in adapting and improving theGENET model the details of these improvements are often down to intuitive developmentfrom empiri
al eviden
e rather than the logi
al improvements possible with the CP ap-proa
h. For example it is
lear that a good value guide is useful to the CP approa
h but agood initial solution in the �nal GENET approa
h did not give improvements in the bestsolutions found.7.3 Further workApart from the further developments that
ould be done individually to the two algorithmsdes
ribed in this thesis, there is also further resear
h appli
able to both, and alternativeareas that do not dire
tly relate to either algorithm, but to using
onstraint satisfa
tionin general for driver s
heduling.The individual areas of resear
h for ea
h algorithm are outlined in the
on
lusions of therelevant
hapter. The following will summarise these. The systemati
 approa
h
ouldbene�t from further development in the implementation of the
onstraints to improvetheir time and spa
e
omplexity. GENET
ould be advan
ed greatly by in
orporating useof the stru
ture of the problem and of the LP solution.There are issues that
ould be explored possibly in extensions of both of these systems.Examining how regulations
ould be modelled in the
onstraint satisfa
tion frameworkwould be of great value. For example, it would be useful to be able to model the frequentrequirement that there is a maximum number of split shifts allowed in the s
hedule (seeSe
tion 4.3.2.8). This
ould be done simply in the systemati
 approa
h by having avariable for ea
h split shift. These would have a binary domain (0,1) and be
onstrained

Chapter 7 127 Con
lusionsto have a 1 if the split shift was in use. A
onstraint would ensure that at most n ofthese variables would be permitted to have a value 1 at any single time, where n is themaximum allowed number of split shifts. How this would a�e
t the quality the performan
eof the algorithm would be something to be tested. Further restri
tions that are hard tomodel in the ILP approa
h are windows of relief opportunities and multi-depots (seeSe
tion 4.3.2.8). Windows of relief opportunity would be diÆ
ult to represent in any setpartitioning/
overing formulation, as su
h formulations deal with spe
i�
 hand-over times.However,
onstraint satisfa
tion may provide the key. The reason for this are outlined inSe
tion 5.8.The problems used in this thesis for testing the algorithms produ
ed were submitted toand will appear in the
onstraint satisfa
tion ben
hmarking library CSPlib [45℄. This willallow other resear
hers a

ess to the problems, so they
an either develop new algorithmsor perhaps test algorithms developed for air-
rew s
heduling set partitioning problemson driver s
heduling problems. It would be of bene�t to resear
hers to study the drivers
heduling problem purely as a CSP. They might investigate how this CSP relates torandomly generated CSPs and to other pra
ti
al problems formulated as CSPs. There areseveral aspe
ts that
an be investigated, and ea
h may prove useful. One measure of theproblem would be the
onstrainedness [42℄ whi
h measures how restri
tive the
onstraintsof the problems are on the possible assignments. This would be useful be
ause there havebeen studies on the
onstrainedness of problems and how this
an be used in sear
h [43℄.Kwan [65℄ did a
ursory examination of the number of solutions with the pseudo-optimalnumber of shifts. A more in-depth study
ould be
ondu
ted whi
h
ould prove interestingin the light of su
h studies as Clark et al [16℄, whi
h examined how lo
al sear
h is a�e
tedby the number of feasible solutions present in the sear
h spa
e. Walsh [120℄ examined howstru
ture might a�e
t sear
h. The set partitioning problem is stru
tured so that pie
evariables that represent
onse
utive pie
es of work on the same bus are highly likely tohave
onstraints between them. Variables representing pie
es of work several hours apartare less likely to have
onstraints between them. This
an a�e
t whi
h ordering is thebest to use and we have seen a
omparison of a dynami
 ordering with a natural ordering,

Chapter 7 128 Con
lusionsas dis
ussed in Se
tion 5.9. Resear
h into these issues would bene�t the CSP
ommunityand may also provide knowledge on how to improve the
onstraint satisfa
tion approa
hesfor driver s
heduling. It would also be of interest to see how these measures would di�erbetween air-
rew, bus and train driver s
heduling set partitioning problems.7.4 S
ope of resear
hAlthough the resear
h in this thesis is domain spe
i�
 there are areas of general use to theresear
h
ommunity. Some of these have been highlighted in Se
tions 5.9 and 6.7. Whenreviewing the thesis ea
h Se
tion has its own s
ope, these
an be
ategorised as:1. Those only useful to the driver s
heduling problem. These are the extended mod-el in Se
tion 5.5, super
uous shifts in Se
tion 6.4 and removing whole shifts inSe
tion 6.5.2.2. Those useful to the set partitioning problem. These are the se
ond model inSe
tion 5.2.2 and the redu
tions in Se
tion 5.4.3. Those useful to applying GENET to general problems. When to apply sidewaysmoves dis
ussed in 6.7, analysis of sear
h in Se
tion 6.6 and the less deformingmodel also in Se
tion 6.6.4. Those useful for pra
ti
al problems in general. These are fully detailed in Se
tions 5.9and 6.7.7.5 A
hievements of the resear
hThe resear
h has allowed the
omparison of three di�erent sear
h methods. This studyhas been
arried out on only one type of problem. However, it has been a
omprehensivestudy in that it explored many features of ea
h of the te
hniques. So not only a basi
model has been tried but many aspe
ts of ea
h type of sear
h have been investigated.

Chapter 7 129 Con
lusionsThis is di�erent from the
omparisons given in [22, 87℄ where only rudimentary modelsand sear
h te
hniques where used.The �rst stage of the resear
h su

essfully extra
ted experien
e from the existing mathe-mati
al programming method for driver s
heduling, TRACS II, and in
orporated it intothe
onstraint programming system to greatly improve the quality of solutions produ
edby the system. This new approa
h produ
es solutions for real driver s
heduling problems.It has been shown to solve problems from di�erent bus
ompanies with di�erent regula-tions, whereas for most of the re
ent modern heuristi
 approa
hes results have only beengiven for one
ompany [12, 22, 129℄ . The size of these problems is mu
h greater than pureCP approa
hes
ould solve. It also tested implied
onstraints (mathemati
al redu
tions,see Se
tion 5.4) on the set partitioning problem whi
h to the knowledge of the author hasnever been tried before. The work also highlights several aspe
ts that may be of use inmodelling other pra
ti
al
onstraint satisfa
tion problems, as des
ribed in Se
tion 5.9.Lo
al sear
h pro
esses have found the driver s
heduling problem very hard. The solutionspa
e is rife with lo
al minima and these swamp the global minima. Also the optimisation
riterion, minimising the number of shifts, is diÆ
ult to ta
kle with the type of lo
alsear
h method GENET uses, as usually a su

ession of lo
al moves need to be madeto make an improvement. With the adaptations made to GENET, it has for severalproblems found pseudo-optimal solutions. It also demonstrated the examination of thesear
h pro
ess and showed how these adaptations a
tual worked to improve the sear
h.These adaptations and how they were examined may be of interest to those using GENETon similar problem areas. The adaptations are explained in Se
tion 6.7 and guidelines fortheir general appli
ability are given.A basi
 understanding of how
onstraint satisfa
tion
an be used in driver s
heduling hasbeen developed and demonstrated this
an be extended in future studies.

Bibliography[1℄ R. Beale and T. Ja
kson. Neural Computing: an Introdu
tion. IOP Publishing Ltd,1992.[2℄ J. E. Beasley. OR-Library: distributing test problems by ele
troni
 mail. Journalof the Operational Resear
h So
iety, 41(11):1069{1072, 1990.[3℄ J. C. Be
k, A. J. Davenport, and M. S. Fox. Five pitfalls of empiri
al s
hedulingresear
h. In Prin
iples and Pra
ti
e of Constraint Programming - CP97, pages 390{404. Springer, 1997.[4℄ G. Bennington and K. Rebibio. Overview of RUCUS vehi
le s
heduling pro-gram(BLOCKS). In D. Bergmann and L. Bodin, editors, Preprints: Workshop onAutomated Te
hniques for S
heduling of Vehi
le Operators for Urban Publi
 Trans-portation Servi
es, 1975.[5℄ C. Bessiere and M.-O. Cordier. Ar
-
onsisten
y and ar
-
onsisten
y again. In Pro
.of AAAI-93, pages 108{113, 1993.[6℄ C. Bessiere, E. C. Freuder, and J.-C. Regin. Using inferen
e to redu
e ar

onsisten
y
omputation. In Pro
. of IJCAI 95, pages 592{598, 1995.[7℄ J. Y. Blais and J. M. Rousseau. Overview of HASTUS
urrent and future versions.In J. R. Daduna and A. Wren, editors, Computer-aided Transport S
heduling, pages175{187. Springer-Verlag, 1988. 130

Chapter 7 131 BIBLIOGRAPHY[8℄ A. Bo
kmayr and T. Kasper. Bran
h and infer: A unifying framework for integer and�nite domain
onstraint programming. INFORMS Journal on Computing, 10:287{300, 1998.[9℄ A. Bouju, J.F. Boy
e, C. H. D. Dimitropoulous, and J. G. vom S
heidt, G. Taylor.Tabu sear
h for the radio link frequen
y assignment problem. In the InternationalConferen
e on Digital Signal Pro
essing, 1995.[10℄ J.F. Boy
e, C.H. D. Dimitropoulous, G. vom S
heidt, and J. G. Taylor. GENETand tabu sear
h for
ombinatorial optimization problems. In World Congress onNeural Networks. INNS press, 1995.[11℄ Carlier, J. and Pinson, E. An Algorithm for Solving the Job-Shop Problem. Man-agement S
ien
e, 35(2):164{176, 1989.[12℄ L. Cavique, C. Rego, and I. Themido. Subgraph eje
tion
hains and tabu sear
h forthe
rew s
heduling problem. European Journal of Operational Resear
h, 50:608{616,1999.[13℄ B. Cha and K. Iwama. Performan
e test of lo
al sear
h algorithms using new typesof random CNF formulas. In Pro
. of IJCAI 95, pages 304{310, 1995.[14℄ B. Cha and K. Iwama. Adding new
lauses for faster lo
al sear
h. In Pro
. ofAAAI-96, pages 332{337. AAAI Press/MIT Press, 1996.[15℄ P Charlier and H. Simonis. Abstra
t: A system for train
rew s
heduling. InDIMACSWorkshop on
onstraint programming and large s
ale dis
rete optimisation,1998.[16℄ D. A. Clark, J. Frank, I. P. Gent, E. Ma
Intyre, N. Tomov, and T. Walsh. Lo-
al sear
h and the number of solutions. In Prin
iples and Pra
ti
e of ConstraintProgramming - CP96, pages 119{133. Springer, 1996.[17℄ M. D. J. Cox and E. P. K. Tsang. Appli
ation of GENET/GLS in future
ommuni
a-tions management. In Advan
ed Software Appli
ations using logi
 and Constraints.CompulogNet, 1998.

Chapter 7 132 BIBLIOGRAPHY[18℄ CPLEX. Using the CPLEX
allable library, version 3.0. In CPLEX Optimization,In
, 1994.[19℄ S. D. Curtis, B. M. Smith, and A. Wren. Forming bus driver s
hedules using
on-straint programming. In Pra
ti
al Appli
ation of Constraint Te
hnologies and Logi
Programming Conferen
e - PACLP99, pages 239{254. The Pra
ti
al Appli
ationCompany Ltd, 1999.[20℄ S. D. Curtis, B. M. Smith, and A.Wren. Constru
ting driver s
hedules using iterativerepair. In Pra
ti
al Appli
ation of Constraint Te
hnologies and Logi
 ProgrammingConferen
e - PACLP2000, page to appear. The Pra
ti
al Appli
ation Company Ltd,2000.[21℄ J. R. Daduna and M. Mojsilovi
. Computer-aided vehi
le and duty s
heduling usingthe HOT programme system. In A. Wren, editor, Computer-Aided Transit S
hedul-ing, pages 133{146. Springer-Verlag, 1988.[22℄ K. Darby-Dowman and J. Little. Properties of some
ombinatorial optimisationproblems and their e�e
t on the performan
e of integer programming and
onstraintlogi
 programming. INFORMS Journal on Computing, 10:276{286, 1998.[23℄ A. Davenport. GENET Adaptation and Evaluation. PhD thesis, Computer S
ien
e,University of Essex, 1997.[24℄ A. Davenport and E. P. K. Tsang. Solving
onstraint satisfa
tion sequen
ing prob-lems by iterative repair: an appli
ation to
ar sequen
ing. In The Pra
ti
al Appli-
ation of Constraint Te
hnologies and Logi
 Programming Conferen
e - PACLP99,pages 345{358. The Pra
ti
al Appli
ation Company Ltd, 1999.[25℄ A. Davenport, E. P. K. Tsang, C. J. Wang, and Z. Kangmin. GENET: A
onne
tion-ist ar
hite
ture for solving
onstraint satisfa
tion problems by iterative improvement.In Pro
. of AAAI-94, pages 325{330. AAAI Press/MIT Press, 1994.[26℄ M. Desro
hers, J. Gilbert, M. Sauve, and F. Soumis. CREW-OPT: subproblem mod-eling in a
olumn generation approa
h to urban
rew s
heduling. In M. Desro
hers

Chapter 7 133 BIBLIOGRAPHYand J. M. Rousseau, editors, Computer-aided Transport S
heduling, pages 395{406.Springer-Verlag, 1990.[27℄ M. Desro
hers and F. Soumis. CREW-OPT:
rew s
heduling by
olumn generation.In J. R. Daduna and A. Wren, editors, Computer-aided Transport S
heduling, pages83{90. Springer-Verlag, 1988.[28℄ Y. Deville and P. Van Hentenry
k. An eÆ
ient ar

onsisten
y algorithm for a
lassof CSP problems. In Pro
. of IJCAI 91, pages 325{330, 1991.[29℄ M. Din
bas, H. Simonis, and P. Van Hentenry
k. Solving a
utting-sto
k problemin
onstraint logi
 programming. In R. Kowalski and K. Brown, editors, Logi
Programming, 1988.[30℄ M. Dorigo, V. Maniezzo, and A. Colorni. The ANT system: Optimisation by a
olony of
ooperating agents. IEEE Transa
tions on Systems, Man, and Cyberneti
s,25(12), 1995.[31℄ H. El Sakkout. Modelling
eet assignment in a
exible environment. In Pra
ti
alAppli
ation of Constraint Te
hnology - PACT96, pages 27{39. The Pra
ti
al Appli-
ation Company Ltd, 1996.[32℄ H. El Sakkout. Improving ba
ktra
k sear
h: three
ase studies of lo
alized dynami
hybridization. PhD thesis, IC-Par
, Imperial College of S
ien
e, Te
hnology andMedi
ine, University of London, 1999.[33℄ H. El Sakkout, E. T. Ri
hards, and Walla
e M G. Minimal perturbation in dynami
s
heduling. In Pro
. of ECAI 98, pages 47{51, 1998.[34℄ J. C. Falkner and D. M. Ryan. Aspe
ts of bus
rew s
heduling using a set partitioningmodel. In J. R. Daduna and A. Wren, editors, Computer-aided Transport S
heduling,pages 91{103. Springer-Verlag, 1988.[35℄ J. C. Falkner and D. M. Ryan. EXPRESS: set partitioning for bus
rew s
hedulingin Christ
hur
h. In M. Desro
hers and J. M. Rousseau, editors, Computer-aidedTransport S
heduling, pages 359{378. Springer-Verlag, 1990.

Chapter 7 134 BIBLIOGRAPHY[36℄ S. Fores. Column Generation Approa
hes to Bus Driver S
heduling. PhD thesis,S
hool of Computer Studies, University of Leeds, 1996.[37℄ S. Fores, L.G. Proll, and A. Wren. An improved ILP system for driver s
heduling.In N.H.M. Wilson, editor, Computer-Aided S
heduling of Publi
 Transport, pages43{62. Springer, 1999.[38℄ P. Forsyth and A. Wren. An ant system for driver s
heduling. Te
hni
al Report97.25, Computer Studies, University of Leeds, 1997.[39℄ E. C. Freuder. Modeling: The �nal frontier. In Pra
ti
al Appli
ation of ConstraintTe
hnologies and Logi
 Programming Conferen
e - PACLP99, pages 15{22. ThePra
ti
al Appli
ation Company Ltd, 1999.[40℄ R. S. Gar�nkel and G. L. Nemhauser. Integer Programming. Wiley-Inters
ien
e,1972.[41℄ P. A. Geelen. Dual viewpoint heuristi
s for binary
onstraint satisfa
tion problems.In Pro
. of ECAI 92, pages 31{35, 1992.[42℄ I. Gent, E. Ma
Intyre, P. Prosser, and T. Walsh. The
onstrainedness of sear
h. InPro
. of AAAI-96, pages 246{252. AAAI Press/MIT Press, 1996.[43℄ I. P. Gent, E. Ma
Intyre, P. Prosser, B. M. Smith, and T. Walsh. An empiri
al studyof dynami
 variable ordering heuristi
s for the
onstraint satisfa
tion problem. InPrin
iples and Pra
ti
e of Constraint Programming - CP96, pages 179{193. Springer,1996.[44℄ I. P. Gent and T. Walsh. Towards an understanding of hill-
limbing pro
edures forSAT. In Pro
. of AAAI-93, pages 28{33. AAAI Press/MIT Press, 1993.[45℄ I.P. Gent and T. Walsh. CSPLib: a ben
hmark library for
onstraints. Te
h-ni
al Report APES-09-1999, University of Strath
lyde, 1999. Available fromhttp://
splib.
s.strath.a
.uk/. A shorter version appears in: Prin
iples and Pra
-ti
es of Constraint Programming - CP99.

Chapter 7 135 BIBLIOGRAPHY[46℄ F. Glover and M. Laguna. Tabu sear
h. Kluwer A
ademi
 Publishers, 1998.[47℄ S. W. Golomb and L. D. Baumert. Ba
ktra
king programming. Journal of the ACM,12:516{524, 1965.[48℄ N. Guerinik and M. V. Caneghem. Solving
rew s
heduling problems by
onstraintprogramming. In U. Montanari and F. Rossi, editors, Prin
iples and Pra
ti
e ofConstraint Programming - CP95, pages 481{498. Springer, 1995.[49℄ N. S. Hans. Constraint satisfa
tion problems. In C. T. Leondes, editor, OptimizationTe
hniques, pages 209{248. A
ademi
 Press Ltd, 1998.[50℄ J. Hao and R. Dorne. Empiri
al studies of heuristi
 lo
al sear
h for
onstraintsolving. In U. Montanari and F. Rossi, editors, Prin
iples and Pra
ti
e of ConstraintProgramming - CP96, pages 194{208. Springer, 1996.[51℄ R. Harali
k and G. Elliot. In
reasing tree sear
h eÆ
ien
y for
onstraint satisfa
tionproblems. Arti�
ial Intelligen
e, 14:263{313, 1980.[52℄ S. Helmut. The CHIP system and its appli
ations. In U. Montanari and F. Rossi,editors, Prin
iples and Pra
ti
e of Constraint Programming - CP95, pages 643{646.Springer, 1995.[53℄ K. L. Ho�man and M. Padberg. Solving air
rew-s
heduling by bran
h-and-
ut.Te
hni
al report, Geoge Mason University and New York University, 1992.[54℄ J. Ho�stadt. Computerized vehi
le and driver s
heduling for the hamburgerHo
hbahn Aktiengesells
haft. In A. Wren, editor, Computer S
heduling of Publi
Transport, pages 35{52. North-Holland, 1981.[55℄ J. N. Hooker. Testing heuristi
s: We have it all wrong. Journal of Heuristi
s,1(1):33{42, 1995.[56℄ J. N. Hooker, Ottosson G., T. S. Erlendur, and H-J. Kin. On intergrating
onstraintpropogation and linear programming for
ombinatortial optimisation. In Pro
. ofAAAI-99, pages 136{141. AAAI Press/MIT Press, 1999.

Chapter 7 136 BIBLIOGRAPHY[57℄ ILOG. Solver referen
e manual, 3.2 edition, 1996.[58℄ ILOG. Solver user manual, 3.2 edition, 1996.[59℄ Forrest J. J. and D. Goldfarb. Steepest edge simplex algorithms for linear program-ming. Mathemati
al Programming, 57:341{374, 1992.[60℄ Walla
e R. J. Analysis of heuristi
 methods for partial
onstraint satisfa
tion prob-lems. In Prin
iples and Pra
ti
e of Constaint Programming - CP96, 1996.[61℄ M. D. Johnston and H. M. Adorf. Learning in sto
hasti
 neural networks for
on-straint satisfa
tion problems. In Pro
. of the NASA
onferen
e on Spa
e Teleroboti
s,1989.[62℄ K. Kask and R. De
hter. GSAT and lo
al
onsisten
y. In Pro
. of IJCAI 95, pages616{622, 1995.[63℄ N. Keng and D. Y. Y. Yun. A planning/s
heduling methodology for the
onstrainedresour
e problem. In Pro
. of IJCAI 89, pages 998{1003, 1989.[64℄ S. Kirkpatri
k, Gelatt C. D., and Ve

hi M. P. Optimization by simulated annealing.S
ien
e, (220):671{680, 1983.[65℄ A.S.K. Kwan. Train Driver S
heduling. PhD thesis, S
hool of Computer Studies,University of Leeds, 1999.[66℄ A.S.K. Kwan, R.S.K. Kwan, M.E. Parker, and A. Wren. Produ
ing train drivers
hedules under di�ering operating strategies. In N.H.M. Wilson, editor, Computer-aided Transport S
heduling, pages 129{154, 1999.[67℄ A.S.K. Kwan, R.S.K. Kwan, and A. Wren. Driver s
heduling using geneti
algorithms with embedded
ombinatorial traits. In N.H.M. Wilson, editor,Computer-aided Transport S
heduling, pages 81{102, 1999.[68℄ Lau T. L. and Tsang E. P. K. Solving the pro
essor
on�guration problem with amutation-based geneti
 algorithm. International Journal on Arti�
ial Intelligen
eTools - IJAIT97, 6(4):567{585, 1997.

Chapter 7 137 BIBLIOGRAPHY[69℄ C. J. Lay�eld, B. M. Smith, and A. Wren. Bus relief opportunity sele
tion using
onstraint programming. In Pra
ti
al Appli
ation of Constraint Te
hnologies andLogi
 Programming Conferen
e - PACLP99, pages 537{552. The Pra
ti
al Appli
a-tion Company Ltd, 1999.[70℄ J. H. M. Lee, P. J. Stu
key, V. W. L. Tam, and H. W. Won. Performan
e of a
omprehensive and eÆ
ient
onstraint library using lo
al sear
h. In 11th AustralianJoint Conferen
e on Arti�
ial Intelligen
e, pages 191{202. Springer-Verlag, 1998.[71℄ J.H.M. Lee, H. Leung, and H. Won. Towards a more eÆ
ient sto
hasti

onstraintsolver. In Prin
iples and Pra
ti
e of Constaint Programming - CP96, pages 531{552,1996.[72℄ J.H.M. Lee, H. F. Leung, and H. W. Won. Extending GENET for non-binary
onstraint satisfa
tion problems. In 7th International Conferen
e on Tools withArti�
ial Intelligen
e, pages 338{342, 1995.[73℄ J. Leinba
h. Automati
 lo
al annealing. In D. S. Touretzky, editor, Advan
es in Neu-ral Information Pro
essing systems 1, pages 602{609. Morgan Kaufmann PublishersIn
., 1989.[74℄ L. K. Luedtke. RUCUS II: A review of system
apabilities. In J.-M. Rousseau,editor, Computer S
heduling of Publi
 Transport 2, pages 61{116. North-Holland,1985.[75℄ L. D. Bodin M. O. Ball and J. Greenberg. Enhan
ements to the RUCUS II
rews
heduling system. In J.-M. Rousseau, editor, Computer Aided S
heduling of Publi
Transport 2, pages 279{294. North-Holland, 1985.[76℄ A. K. Ma
kworth. Consisten
y in networks of relations. Arti�
ial Intelligen
e,28:99{118, 1986.[77℄ A. K. Ma
kworth and E. C. Freuder. The
omplexity of some polynomial network
onsisten
y algorithms for
onstraint satisfa
tion problems. Arti�
ial Intelligen
e,25:65{74, 1985.

Chapter 7 138 BIBLIOGRAPHY[78℄ S. Minton, M. D. Johnston, A. B. Philips, and P. Laird. Minimizing
on
i
ts: aheuristi
 repair method for
onstraint satisfa
tion and s
heduling problems. Arti�
ialIntelligen
e, 58:161{204, 1992.[79℄ R. Mohr and T. C Henderson. Ar
 and path
onsisten
y revisited. Arti�
ial Intel-ligen
e, 28:225{233, 1986.[80℄ P. Morris. The breakout method for es
aping from lo
al minima. In Pro
. of AAAI-93, pages 40{45. AAAI Press/MIT Press, 1993.[81℄ T. M�uller. Solving set partitioning problems with
onstraint programming. In PAP-PACT98, pages 313{332. The Pra
ti
al Appli
ation Company Ltd, 1998.[82℄ M. E. Parker and B. M. Smith. Two approa
hes to
omputer
rew s
heulding. InA. Wren, editor, Pro
. of the Se
ond International Workshop on Computer-AidedS
heduling of Publi
 Transport, pages 193{222. North-Holland, 1981.[83℄ L. Proll and B. M. Smith. Integer linear programming and
onstraint programmingapproa
hes to a template design problem. INFORMS Journal on Computing, 10:265{275, 1998.[84℄ J.-F. Puget. On the satis�ability of symmetri
al
onstrained satisfa
tion problems.In J. Komorowski and Z. W. Ras, editors, Methodologies for Intelligent Systems:Pro
. of the 7th International Symposium ISMIS-93, pages 350{361. Springer, 1993.[85℄ J.F. Puget. A C++ implementation of CLP. In Pro
. of SPICIS 94, 1994.[86℄ J.F. Puget. A
omparison between
onstraint programming and integer program-ming. In Conferen
e on Applied Mathemati
al Programming and Modelling (AP-MOD95), 1995.[87℄ R. Rodosek, M.G. Walla
e, and T. Hajian. A new approa
h to integrate mixedinteger programming. CP96 workshop on Constraint Programming Appli
ations:An Inventory and Taxonomy, 1996.

Chapter 7 139 BIBLIOGRAPHY[88℄ J-M. Rousseau and M. Desro
hers. Results obtained with CREW-OPT, a
oloumngeneration method for transit
rew s
heduling. In J. R. Dauna, I. Bran
o, andPaixao, editors, Computer-aided Transport S
heduling, pages 349{358. Springer-Verlag, 1995.[89℄ D.M. Ryan and B.A. Foster. An integer programming approa
h to s
heduling. InA. Wren, editor, Computer S
heduling of Publi
 Transport, pages 269{280. North-Holland Publishing Company, 1981.[90℄ D. Sabin and E. C. Freuder. Contradi
ting
onventional wisdom in
onstraint satis-fa
tion problems. In A. Cohn, editor, Pro
. of ECAI 94, pages 125{129. John Wiley& Sons, Ltd, 1994.[91℄ M. Sabin and E. C. Freuder. Automated formulation of
onstraint satisfa
tion prob-lems. In Pro
. of AAAI-96, page 1407. AAAI Press/MIT Press, 1996.[92℄ B. Selman and H. A. Krautz. Domain-independent extensions to GSAT: Solvinglarge stru
tured satis�ability problems. In R. Baj
sy, editor, IJCN-93, pages 290{295. Morgan Kaufmann Publishers In
, 1993.[93℄ B. Selman and H. A. Krautz. An empiri
al study of greedy lo
al sear
h for satis�a-bility testing. In Pro
. of AAAI-93, pages 46{51. AAAI Press/MIT Press, 1993.[94℄ B. Selman and H. A. Krautz. Noise strategies for improving lo
al sear
h. In Pro
.of AAAI-94, pages 337{343. AAAI Press/MIT Press, 1994.[95℄ B. Selman, H. Levesque, and D. Mit
hell. A new method for solving hard satis-�ablility problems. In Pro
. of AAAI-92, pages 440{446. AAAI Press/MIT Press,1992.[96℄ B. M. Smith. Su

eed-�rst or fail-�rst: A
ase study in variable and value orderingheuristi
s. In Pro
. of PACT97, pages 321{330. The Pra
ti
al Appli
ation CompanyLtd, 1997.[97℄ B. M. Smith, S. C. Brailsford, P. M. Hubbard, and H.P. Williams. The progressiveparty problem: Integer programming and
onstraint programming
ompared. In

Chapter 7 140 BIBLIOGRAPHYU. Montanari and F. Rossi, editors, Prin
iples and Pra
ti
e of Constraint Program-ming - CP95, pages 36{52. Springer, 1995.[98℄ B. M. Smith and S. A. Grant. Trying harder to fail �rst. In Henri Prade, editor,Pro
. of ECAI 98, pages 249{253, 1998.[99℄ B.M. Smith. Bus Crew S
heduling Using Mathemati
al Programming. PhD thesis,S
hool of Computer Studies, University of Leeds, 1986.[100℄ B.M. Smith and A. Wren. A bus
rew s
heduling system using set
overing formu-lation. Transpn.Res., (22A):97{108, 1988.[101℄ M. Sqalli and E. C. Freuder. Inferen
e-based
onstraint satisfa
tion supports expla-nation. In Pro
. of AAAI-96, pages 318{325. AAAI Press/MIT Press, 1996.[102℄ P. Stu
key and V. Tam. Extending EGENET with lazy
onstraint
onsisten
y. InIEEE 9th International Conferen
e on Tools with AI, 1997.[103℄ G. A. Tagliarini and E.W. Page. Solving
onstraint satisfa
tion problems with neuralnetworks. In Pro
. of the International Joint Conferen
e on Neural Networks, 1987.[104℄ G. A. Tagliarini and E. W. Page. Learning in systemati
ally designed networks. InPro
. of the International Joint Conferen
e on Neural Networks, 1989.[105℄ J. Thornton and A. Sattar. Using ar
 weights to improve iterative repair. In Pro
.of AAAI-98, pages 367{372. AAAI Press/MIT Press, 1998.[106℄ E. P. K. Tsang. Foundations of Constraint Satisfa
tion. A
ademi
 Press, 1993.[107℄ E. P. K. Tsang. No more "partial" and "full looking ahead". Arti�
ial Intelligen
e,98:351{361, 1998.[108℄ E. P. K. Tsang, Wang C. J., A. Davenport, C. Voudouris, and T. L. Lau. A family ofsto
hasti
 methods for
onstraint satisfa
tion. In Pra
ti
al Appli
ation of ConstraintTe
hnologies and Logi
 Programming Conferen
e - PACLP99, pages 359{385. ThePra
ti
al Appli
ation Company Ltd, 1999.

Chapter 7 141 BIBLIOGRAPHY[109℄ E. P. K. Tsang and C. Voudouris. Fast lo
al sear
h and guided lo
al sear
h and theirappli
ation to british tele
om's workforse s
heduling problem. In Pra
ti
al Appli
a-tion of Constraint Te
hnology - PACT96, volume 20, pages 119{127, Amsterdam,1997. Elsevier S
ien
e Publishers.[110℄ E. P. K. Tsang and C. J. Wang. A generi
 neural network approa
h for
onstraintsatisfa
tion problems. Neural Network Appli
ations, pages 12{22, 1992.[111℄ M. V�olker and P. S
h�utze. Re
ent developments of the HOT system. In I. Bran
oJ. R. Daduna and J. M. P. Paix�ao, editors, Computer-Aided Transit S
heduling,pages 334{348. Springer-Verlag, 1995.[112℄ C. Voudouris. Guided Lo
al Sear
h for Combinatorial Optimisation Problems. PhDthesis, Department of Computer S
ien
e, University of Essex, 1997.[113℄ C. Voudouris and E. P. K. Tsang. The tunneling algorithm for partial CSPs and
ombinatorial optimization problems. Te
hni
al Report CSM-213, University ofEssex, 1994.[114℄ C. Voudouris and E. P. K. Tsang. Guided lo
al sear
h. Te
hni
al Report CSM-247,University of Essex, 1995.[115℄ C. Voudouris and E. P. K. Tsang. Partial
onstraint satisfa
tion and guided lo
alsear
h. In Pra
ti
al Appli
ation of Constraint Te
hnology - PACT96, pages 337{356.The Pra
ti
al Appli
ation Company Ltd, 1996.[116℄ C. Voudouris and E. P. K. Tsang. Guided lo
al sear
h joins the elite in dis
reteoptimisation. In DIMACS Workshop on Constraint Programming and Large S
aleDis
rete Optimisation, 1998.[117℄ C. Voudouris and E. P. K. Tsang. Guided lo
al sear
h and its appli
ation to thetraveling salesman problem. European Journal of Operational Resear
h, 113:469{499, 1999.[118℄ M. Walla
e, S. Novello, and J. S
himpf. ECLiPSe: a platform for
onstraint logi
programming. Te
hni
al report, Imperial College, 1997.

Chapter 7 142 BIBLIOGRAPHY[119℄ R. J. Walla
e. Why AC-3 is almost always better than AC-4 for establishing ar
-
onsisten
y in CSPs. In Pro
. of AAAI-93, pages 239{245. AAAI Press/MIT Press,1993.[120℄ T. Walsh. Sear
h in a small world. In Pro
. of IJCAI 99, pages 1172{1178, 1999.[121℄ C.J. Wang and E.P.K. Tsang. Solving
onstraint satisfa
tion problems using neuralnetworks. In IEE Se
ond International Conferen
e on Arti�
ial Neural Networks,pages 295{299, 1991.[122℄ C.J. Wang and E.P.K. Tsang. A
as
adable VLSI design for GENET. In Interna-tional Workshop on VLSI for Neural Networks and Arti�
ial Intelligen
e, 1992.[123℄ W. P. Willers. Improved Algorithms for Bus Crew S
heduling. PhD thesis, S
hoolof Computer Studies, University of Leeds, 1995.[124℄ J. H. Y. Wong and H. F. Leung. Solving fuzzy
onstraint satisfa
tion problems withfuzzy GENET. In IEEE ICTAI98, 1998.[125℄ A. Wren and R. S. K. Kwan. Installing an urban transport s
heduling system.Journal of S
heduling, 2:3{17, 1999.[126℄ A. Wren and J-M. Rousseau. Bus driver s
heduling -an overview. In J. R. Daduna,I. Bran
o, and J. M. P. Paix�ao, editors, Computer-aided Transit S
heduling, pages173{187. Springer-Verlag, 1995.[127℄ A. Wren and D. O. Wren. A geneti
 algorithm for publi
 transport s
heudling.Computers and Operations Resear
h, 22:101{110, 1995.[128℄ N. Yugami, Y. Ohta, and H. Hara. Improving repair-based
onstraint satisfa
-tion methods by value propagation. In Pro
. of AAAI-94, pages 344{349. AAAIPress/MIT Press, 1994.[129℄ T. H. Yunnes, A. V. Moura, and C. C. de Souza. Solving large s
ale
rew s
hedulingproblems with
onstraint programming and integer programming. Te
hni
al ReportIC 99-19, Institute of Computing, UNICAMP, 1999.

Chapter 7 143 BIBLIOGRAPHYGlossaryThis is a glossary of the transport s
heduling terms used in this thesis. Note that di�erenttransport
ompanies may have di�erent meanings for the words, des
ribed here are themeanings purely for this thesis.depot: A
entre of operation for a
ompany. Normally a pla
e where vehi
les and
rewsare dispat
hed from at the start of their work period and returned to at the end ofit.
ight leg: The equivalent to a pie
e of work in air
rew s
hedulingjoinup: The time period between two spells of work that allows time to
hange busesbut is not a meal break.meal break: A rest break during a shift whi
h must be of a
ertain length as spe
i�edby union agreements.over-
over: When two or more drivers are on the same bus during a pie
e of work.pie
e of work: An indivisible period of driving work, between two relief opportunities.relief opportunities (RO): A relief time and relief point pairing to stipulate a spe-
i�
 time and pla
e where drivers
an
hange over.relief point: Designated lo
ations on bus routes where drivers may
hange over.relief time: A time when a bus passes a relief point.rotation: The equivalent to a shift in air
rew s
hedulingrunning board: A des
ription of the work a bus does in a day.shift/duty: The work a driver does in a day, normally
onsisting of two stret
hes ofwork seperated by a meal break.spell: A
ontinuous period of driving on one bus.

Chapter 7 144 BIBLIOGRAPHYsplit shift: A type of shift where the driver has a mu
h longer break in the middle of theshift than a normal shift.stret
h: One or more spells of work in a shift, ea
h spell being on a di�erent bus andseparated by a joinup.union agreements: Rules agreed between sta� unions and the
ompany
on
erning driv-ing
onditions.window of relief opportunity: The time that a vehi
le remains at a relief point, su
has a bus station, where there is a
hoi
e of times to
hange the driver.

