
Parallel Dynamic Load-Balancing for Adaptive DistributiveMemory PDE SolversbyNasir TouheedSubmitted in accordance with the requirementsfor the degree of Doctor of Philosophy
The University of LeedsSchool of Computer StudiesSeptember 1998The candidate con�rms that the work submitted is his own and that appropriatecredit has been given where reference has been made to the work of others.

iiAbstractThis thesis is concerned with the issue of dynamic load-balancing in connectionwith the parallel adaptive solution of partial di�erential equations (PDEs). We areinterested in parallel solutions based upon either �nite element or �nite volumeschemes on unstructured grids and we assume that geometric parallelism is used,whereby the �nite element or �nite volume grids are partitioned across the availableparallel processors. For parallel e�ciency it is necessary to maintain a well balancedpartition and to attempt to keep communication overheads as low as possible. Whenadaptivity occurs however a given partition may deteriorate in quality and so it mustbe modi�ed dynamically. This is the problem that we consider in this work.Chapters one and two outline the problem in more detail and review existingwork in this �eld. In Chapter one a brief history of parallel computers is presentedand di�erent kinds of parallel machines are mentioned. The �nite elementmethod isalso introduced and its parallel implementation is discussed in some detail: leadingto the derivation of a static load-balancing problem. A number of important staticload balancing algorithms are then discussed. Chapter two commences with a briefdescription of some error indicators and common techniques for mesh adaptivity.It is shown how this adaptivity may lead to a load imbalance among the availableprocessors of a parallel machine. We then discuss some ways in which the staticload-balancing algorithms of Chapter one can be modi�ed and used in the contextof dynamic load-balancing. The pros and cons of these strategies are discussed andthen �nally some speci�c dynamic load-balancing algorithms are introduced anddiscussed.In Chapter three a new dynamic load-balancing algorithm is proposed basedupon a number of generalisations of existing algorithms. The details of the newalgorithm are outlined and a number of preliminary numerical experiments are un-dertaken. In this preliminary (sequential) version the dual graph of an existingpartitioned computational mesh is repartioned among the same number of proces-sors so that after the repartitioning step each processor has an approximate equalload and the number of edges of this dual graph which cross from one processor toanother are relatively small.The remainder of the thesis is concerned with the practical parallel implemen-tation of this new algorithm and making comparison with existing techniques. InChapter four the algorithm is implemented for a 2-d adaptive �nite element solver

iiifor steady-state problems, and in Chapter �ve the generality of the implementationis enhanced and the algorithm is applied in conjunction with a 3-d adaptive �nitevolume solver for unsteady problems. In this situation frequent repartitioning ofthe mesh is required. In this chapter performance comparisons are made for the al-gorithm detailed here against new software that was developed simultaneously withthe work of this thesis. These comparisons are very favourable for certain problemswhich involve very non-uniform re�nement.All software implementations described in this thesis have been coded in ANSIC using MPI version 1.1 (where applicable). The Portability of the load-balancingcode has been tested by making use of a variety of platforms, including a Cray T3D,an SGI PowerChallenge, di�erent workstation networks (SGI Indys and SGI O2s),and an SGI Origin 2000. For the purposes of numerical comparisons all timingsquoted in this thesis are for the SGI Origin 2000 unless otherwise stated.

ivAcknowledgementsI would like to thank my supervisor Dr. Peter Jimack for his guidance andencouragement throughout the course of this research. Not only was he very helpfulin guiding me throughout my stay at Leeds, but he was also very patient when itcame to correcting my poorly drafted chapters as regards to the English language.Thanks also to Dr. Martin Berzins, Dr. David Hodgson and Dr. Paul Selwood fortheir helpful advice and discussions during this time.My thanks also go to the General O�ce and Support sta� of the School whowere always happy to help me.Thanks are also due to my colleagues Idrees Ahmad, Syed Shafaat Ali, Muham-mad Ra�q Asim, Fazilah Haron, Zahid Hussain, Jaw-Shyong Jan, Sharifullah Khan,Rashid Mahmood, Sarfraz Ahmad Nadeem, Allah Nawaz, Professor MuhammadAbdul-Rauf Quraishi, Shuja Muhammad Quraishi and Alex Tsai for matters notnecessarily related to the research.I would also like to acknowledge the Edinburgh Parallel Computing Centre at theUniversity of Edinburgh for allowing me to use their parallel computing facilities,including the Cray T3D, and to thank Dr. Alan Wood of University of York, for hishelp and support in the early days of my stay in York.Members of my extended family in Pakistan and of my immediate family herein the UK have been a great encouragement throughout the period of this research.I especially wish to thank my parents and sisters, brother-in-laws, mother-in-lawand father-in-law for their encouragement. My two daughters Maryam and Sidrah(who was a much needed and welcome addition to our family in the middle of thisproject) have been most patient while I �nished this task. This project would nothave been completed without the constant love and support of my wife, Shagufta.Finally, my thanks also go to the University of Karachi, the Government ofPakistan and the Committee of Vice-Chancellors and Principals of the Universitiesof the United Kingdom for supporting me �nancially throughout my research in theforms of Study-Leave, COTS and ORS Awards respectively.At the very end I would like to thank The Almighty, for the much needed courageand strength which He granted me at this relatively old age of my life to �nalisethe project.

Contents1 Introduction 11.1 Introduction to Parallel Computers : : : : : : : : : : : : : : : : : : 31.1.1 SIMD Systems : 41.1.2 General MIMD Systems : 41.2 Comparison Between SIMD and MIMD Computers : : : : : : : : : 71.3 Finite Element Methods for Elliptic PDEs : : : : : : : : : : : : : : 91.3.1 Piecewise Linear Finite Elements : : : : : : : : : : : : : : : 111.3.2 Algorithmic Details : 121.4 Time-Dependent Problems: The Linear Di�usion Equation : : : : : 151.4.1 The Method of Lines : 151.5 Parallel Finite Element and Load-Balancing : : : : : : : : : : : : : 171.6 Recursive Graph Partitioning Heuristics : : : : : : : : : : : : : : : 201.6.1 Recursive Coordinate Bisection (RCB) : : : : : : : : : : : : 201.6.2 Recursive Inertial Bisection (RIB) : : : : : : : : : : : : : : : 211.6.3 Recursive Graph Bisection (RGB) : : : : : : : : : : : : : : : 211.6.4 Modi�ed Recursive Graph Bisection (MRGB) : : : : : : : : 211.6.5 Recursive Spectral Bisection (RSB) : : : : : : : : : : : : : : 221.6.6 Recursive Node Cluster Bisection (RNCB) : : : : : : : : : : 231.7 Multisectional Graph Partitioning Heuristics : : : : : : : : : : : : : 241.7.1 Multidimensional Spectral Graph Partitioning : : : : : : : : 251.7.2 Stripwise Methods : 251.8 Other Graph Partitioning Techniques : : : : : : : : : : : : : : : : : 251.8.1 Greedy Algorithm (GR) : 251.8.2 Kernighan and Lin Type Algorithms : : : : : : : : : : : : : 261.8.3 State of the Art Software Tools for Graph Partitioning : : : 26v

CONTENTS vi2 Adaptivity and Dynamic Load Balancing 292.1 Spatial Error Indicators : 302.2 Di�erent Types of Re�nements : 312.2.1 Regeneration Schemes : 312.2.2 Local Mesh Adaptation Schemes : Hierarchical Re�nement : 322.3 Relation Between Adaptivity and Dynamic Load Balancing : : : : : 342.3.1 Generalisations of Static Algorithms : : : : : : : : : : : : : 362.4 Di�usion Algorithms : 392.4.1 Basic Di�usion Method : 402.4.2 A Multi-Level Di�usion Method : : : : : : : : : : : : : : : : 402.4.3 Dimension Exchange Method : : : : : : : : : : : : : : : : : 422.5 Minimising Data Migration : 432.6 Two Parallel Multilevel Algorithms : : : : : : : : : : : : : : : : : : 452.6.1 ParMETIS : 452.6.2 ParJOSTLE : 462.7 Two Further Paradigms : 472.7.1 Algorithm of Oliker & Biswas : : : : : : : : : : : : : : : : : 472.7.2 Algorithm of Vidwans et al. : : : : : : : : : : : : : : : : : : 483 A New Dynamic Load Balancer 503.1 Motivation of the Algorithm : 513.2 Description of the Algorithm : 513.2.1 Group Balancing : 523.2.2 Local Migration : 533.3 Further Re�nement of the Algorithm : Locally Improving the Parti-tion Quality : 563.4 Global Load-Balancing Strategy: Divide and Conquer Approach : : 583.5 Examples : 603.6 Conclusions : 734 Parallel Application of the Dynamic Load Balancer in 2-d 774.1 Introduction : 794.2 A Parallel Dynamic Load-Balancing Algorithm : : : : : : : : : : : : 804.2.1 Group Balancing : 81

CONTENTS vii4.2.2 Local Migration : 824.2.3 Divide and Conquer and Parallel Implementation : : : : : : 844.3 Discussion of the Algorithm : 874.3.1 Activity of Type 1 Processors : Packing the Load : : : : : : 884.3.2 Activity of Type 2 Processors : Unpacking the Load : : : : : 884.3.3 Activity of Type 3 Processors : Third Party Adjustment : : 884.4 Description of Related Data Structures Associated With the Redis-tribution of the Mesh : 894.5 Di�erent Issues and Related Functions Used in the Main AlgorithmBy Processors of Type 1 : 934.5.1 Handling of Vertices : 934.5.2 Handling of Edges : 954.6 Di�erent Issues Which are Related With Processors of Type 2 : : : 1004.7 Di�erent Issues Which are Related With Processors of Type 3 : : : 1014.7.1 insertion() : 1014.7.2 deletion() : 1014.8 Use of Message Passing Interface (MPI) : : : : : : : : : : : : : : : : 1014.9 Some Examples : 1034.9.1 Alternative Algorithms : 1034.9.2 Comparative Results : 1054.10 Discussion : 1214.10.1 Discussion I : 1214.10.2 Discussion II : 1224.11 Conclusions : 1235 Parallel Application of the Dynamic Load Balancer in 3-d 1255.1 Introduction : 1265.2 A Parallel Adaptive Flow Solver : 1285.2.1 A Parallel Adaptive Algorithm : : : : : : : : : : : : : : : : 1285.2.2 A Parallel Finite Volume Solver : : : : : : : : : : : : : : : : 1315.3 Dynamic Load Balancing : 1325.4 Application of the Parallel Dynamic Load-Balancing Algorithm : : 1335.4.1 Calculation of WPCG : 1335.4.2 Use of Tokens : 134

CONTENTS viii5.4.3 No Colouring : 1355.4.4 Use of Global Communication : : : : : : : : : : : : : : : : : 1365.5 Computational Results : 1375.5.1 Examples : 1385.6 Discussion : 1505.6.1 Discussion I : 1505.6.2 Discussion II : 1525.7 Investigation into Scalability of the Algorithm : : : : : : : : : : : : 1545.8 Conclusions : 1606 Conclusion and Future Areas of Research 1616.1 Summary of Thesis : 1616.2 Possible Extensions to the Research : : : : : : : : : : : : : : : : : : 162

List of Figures1.1 A linear array of processors. : 61.2 A ring of processors. : 61.3 Hypercubes of (a) dimension 1, (b) dimension 2 and (c) dimension 3. 71.4 (a) Two-dimensional mesh, (b) three-dimensional mesh. : : : : : : : 81.5 Two-dimensional torus. : 81.6 Entries of the Laplacian matrix. : 232.1 Di�usion method. : 412.2 Multi-level di�usion method. : 422.3 Dimension exchange method. : 432.4 The matrix A. : 443.1 Calculation of Sender, Receiver and Migtot: : : : : : : : : : : : : : : 543.2 The calculation of gain. : 553.3 Updation of gain densities and edges cut between the processors. : : 563.4 Initial version of load balancing of the two groups. : : : : : : : : : : 573.5 An algorithm for re�ning the partitions between a pair of processors. 583.6 Group-balancing algorithm: version two of load balancing of the twogroups. : 593.7 A divide & conquer type dynamic load-balancing algorithm. : : : : 613.8 The coarse mesh of Example 1. : 633.9 The coarse mesh of Example 2. : 653.10 The coarse \Texas" mesh of Example 4. : : : : : : : : : : : : : : : 693.11 Coarse mesh of 5184 elements adapted to initial shock condition forExample 5. : 723.12 Adapted mesh after 240 time-steps for Example 5. : : : : : : : : : : 724.1 Updating the gains. : 84ix

LIST OF FIGURES x4.2 Load balancing of the two groups. : : : : : : : : : : : : : : : : : : : 854.3 Parallel dynamic load-balancing algorithm. : : : : : : : : : : : : : : 864.4 The array nonodessuball which can accommodate nine coarse elements. 924.5 The function Shared(). : 944.6 The function Shared2(). : 944.7 The function Changenbhd(). : 964.8 The function Changenbhd2(). : 974.9 The function Changenbhd3(). : 984.10 The function EdgeChange(). : 994.11 The function DirichEdgeChange(). : : : : : : : : : : : : : : : : : : : 1004.12 The coarse mesh of Example 3. : 1084.13 The partial view of the coarse mesh of Example 4. : : : : : : : : : : 1095.1 Mesh data-structures in TETRAD : : : : : : : : : : : : : : : : : : 1295.2 Regular re�nement dissecting interior diagonal : : : : : : : : : : : : 1305.3 Green re�nement by the addition of an interior node : : : : : : : : 1315.4 Calculation of weights of vertices and edges of the weighted dual graph.1355.5 Calculation of a row of the weighted Laplacian matrix. : : : : : : : 1365.6 Scalability comparison using a re-balancing tolerance of 5% for Ex-ample 1 (where Time = RedTime + SolTime). : : : : : : : : : : : : 1555.7 Scalability comparison using a re-balancing tolerance of 10% for Ex-ample 1 (where Time = RedTime + SolTime). : : : : : : : : : : : : 1555.8 Scalability comparison using a re-balancing tolerance of 15% for Ex-ample 1 (where Time = RedTime + SolTime). : : : : : : : : : : : : 1555.9 Scalability comparison using a re-balancing tolerance of 5% for Ex-ample 2 (where Time = RedTime + SolTime). : : : : : : : : : : : : 1565.10 Scalability comparison using a re-balancing tolerance of 10% for Ex-ample 2 (where Time = RedTime + SolTime). : : : : : : : : : : : : 1565.11 Scalability comparison using a re-balancing tolerance of 15% for Ex-ample 2 (where Time = RedTime + SolTime). : : : : : : : : : : : : 1565.12 Scalability comparison using a re-balancing tolerance of 15% for Ex-ample 1 (where Time = RedTime + 0.2 * SolTime). : : : : : : : : : 1575.13 Scalability comparison using a re-balancing tolerance of 15% for Ex-ample 1 (where Time = RedTime + 5 * SolTime). : : : : : : : : : : 157

LIST OF FIGURES xi5.14 Scalability comparison using a re-balancing tolerance of 15% for Ex-ample 1 (where Time = RedTime + 25 * SolTime). : : : : : : : : : 1575.15 Scalability comparison using a re-balancing tolerance of 15% for Ex-ample 2 (where Time = RedTime + 0.2 * SolTime). : : : : : : : : : 1585.16 Scalability comparison using a re-balancing tolerance of 15% for Ex-ample 2 (where Time = RedTime + 5 * SolTime). : : : : : : : : : : 1585.17 Scalability comparison using a re-balancing tolerance of 15% for Ex-ample 2 (where Time = RedTime + 25 * SolTime). : : : : : : : : : 158

List of Tables3.1 Partition generated in parallel on 8 processors along with our �nalpartitions for Example 1. : 643.2 Summary of results when the New, Vidwans et al., Chaco and JOS-TLE algorithms are applied to the initial partition (see Table 3.1) ofExample 1. : 643.3 Partition generated in parallel on 8 processors along with our �nalpartitions for Example 2. : 663.4 Summary of results when the New, Vidwans et al., Chaco and JOS-TLE algorithms are applied to the initial partition (see Table 3.3) ofExample 2. : 663.5 Partition generated in parallel on 8 processors along with our �nalpartitions for Example 3. : 683.6 Summary of results when the New, Vidwans et al., Chaco and JOS-TLE algorithms are applied to the initial partition (see Table 3.5) ofExample 3. : 683.7 Partition generated in parallel on 16 processors along with our �nalpartitions for Example 4. : 703.8 Summary of results when the New, Vidwans et al. and JOSTLE algo-rithms are applied to the initial partition (see Table 3.7) of Example4. : 703.9 Initial and �nal partitions (produced by the New algorithm) for Ex-ample 5. : 733.10 Summary of results when the New, Vidwans et al., Chaco and JOS-TLE algorithms are applied to the initial partition (see Table 3.9) ofExample 5. : 73xii

LIST OF TABLES xiii3.11 Initial and �nal partitions (produced by the New algorithm) for Ex-ample 6. : 743.12 Summary of results when the New, Vidwans et al., Chaco and JOS-TLE algorithms are applied to the initial partition (see Table 3.11)of Example 6. : 744.1 Data for the partitions of Example 1 (involving parallel mesh gener-ation and repartitioning on 2 processors). : : : : : : : : : : : : : : : 1074.2 Data for the partitions of Example 2 (involving parallel mesh gener-ation and repartitioning on 4 processors). : : : : : : : : : : : : : : : 1074.3 Data for the partitions of Example 3 (involving parallel mesh gener-ation and repartitioning on 4 processors). : : : : : : : : : : : : : : : 1094.4 Data for the partitions of Example 4 (involving parallel mesh gener-ation and repartitioning on 4 processors). : : : : : : : : : : : : : : : 1104.5 Data for the partitions of Example 5 (involving parallel mesh gener-ation and repartitioning on 2 processors). : : : : : : : : : : : : : : : 1104.6 Data for the partitions of Example 6 (involving parallel mesh gener-ation and repartitioning on 4 processors). : : : : : : : : : : : : : : : 1114.7 Comparison of dynamic load-balancing results using four algorithmsfor Examples 1 to 6. : 1124.8 Data for the partitions of Example 7 (involving parallel mesh gener-ation and repartitioning on 8 processors). : : : : : : : : : : : : : : : 1134.9 Data for the partitions of Example 8 (involving parallel mesh gener-ation and repartitioning on 16 processors). : : : : : : : : : : : : : : 1154.10 Data for the partitions of Example 9 (involving parallel mesh gener-ation and repartitioning on 8 processors). : : : : : : : : : : : : : : : 1164.11 Data for the partitions of Example 10 (involving parallel mesh gen-eration and repartitioning on 16 processors). : : : : : : : : : : : : : 1174.12 Data for the partitions of Example 11 (involving parallel mesh gen-eration and repartitioning on 8 processors). : : : : : : : : : : : : : : 1184.13 Data for the partitions of Example 12 (involving parallel mesh gen-eration and repartitioning on 16 processors). : : : : : : : : : : : : : 1194.14 Comparison of dynamic load-balancing results using four algorithmsfor Examples 7 to 12. : 120

LIST OF TABLES xiv5.1 Some partition-quality metrics immediately before and after a singlere-balancing step for Example 1. : 1415.2 Solution times, redistribution times, total migration weights and mi-gration frequencies for 300 time-steps using a re-balancing toleranceof 5% for Example 1. : 1425.3 Solution times, redistribution times, total migration weights and mi-gration frequencies for 300 time-steps using a re-balancing toleranceof 10% for Example 1. : 1435.4 Solution times, redistribution times, total migration weights and mi-gration frequencies for 300 time-steps using a re-balancing toleranceof 15% for Example 1. : 1445.5 Some partition-quality metrics immediately before and after a singlere-balancing step for Example 2. : 1465.6 Solution times, redistribution times, total migration weights and mi-gration frequencies for 300 time-steps using a re-balancing toleranceof 5% for Example 2. : 1475.7 Solution times, redistribution times, total migration weights and mi-gration frequencies for 300 time-steps using a re-balancing toleranceof 10% for Example 2. : 1485.8 Solution times, redistribution times, total migration weights and mi-gration frequencies for 300 time-steps using a re-balancing toleranceof 15% for Example 2. : 149

Chapter 1IntroductionSince the middle of the current century, breakthroughs in computer technology havemade a tremendous impact on numerical methods in general and the numericalsolutions of partial di�erential equations in particular. During the infancy periodof computers they were serial in nature. This means that they were built usingthe von Neumann paradigm: with a single processor which runs as fast as possibleand has as much memory as is possible (or a�ordable). The processor is commonlyknown as the central processing unit (CPU) and is further divided into a controlunit and an arithmetic-logic unit (ALU). The memory stores both instructions anddata. The control unit directs the execution of programs, and the ALU carriesout the calculations called for in the program. When they are being used by theprogram, instructions and data are stored in very fast memory locations, calledregisters. As fast memory is quite expensive, there are relatively few registers.The performance of such computers is clearly limited by physical laws. Forexample, the maximum speed at which the data can travel from memory to CPUis that of the speed of light, so in order to build a computer which is capable ofcarrying out three trillion copies of data between memory and registers per secondsay, one has to �t each 32-bit word into a square with side length of 10�10 meters(this is approximately equal to the size of a relatively small atom). This is simplynot possible - see [79] for details.In order to speed up the machine, one possibility is to reduce the transfer timetaken by the data while travelling from memory to registers. This is achieved bythe use of cache memory - which is implemented on the same chip as the CPU. Theidea behind cache is the observation that programs tend to access both data and1

CHAPTER 1. INTRODUCTION 2instructions sequentially. Hence, if we store a small block of data and a small blockof instructions in fast memory (cache), most of the program's memory accesses willuse this cache memory rather than the slower main memory. This memory willbe slower than registers but it will be faster than the main memory implementedoutside the chip.During the initial stages in the development of microchips, designers typicallyused an increased chip area to introduce new and sophisticated instructions, ad-dressing modes and other mechanisms. These new features allowed the executionof high-level languages as well as the complex functions of operating systems, andthis trend continued until the 1980s. At this time a new design philosophy called thereduced instruction set computer (RISC) emerged. The RISC supporters argue thatall these new instructions complicate the design of the control unit, slowing downthe execution of basic operations. A simple instruction set allows, in principle, asimple, fast implementation, so the larger number of instructions that is require canbe more than compensated for by the increased speed. Another advantage claimedby RISC supporters is that the simpli�cation of the control unit helps to save chiparea for the control implementation. This can be used to implement special featuresin the operating unit, aimed at improving the execution speed. There are manyvariants of RISC processors, among them are Berkeley RISC, microprocessors with-out interlocked pipe stages (MIPS) and the Inmos Transputer (see Chapter 10 of[20]).Even after all these advancements in the development of the computer industrythere were and still are important classes of problem in science and engineeringwhich practitioners have not been able to solve successfully. For example, to attackthe \Grand Challenges" ([17]) months or even years are needed by the best of thesecomputers. A grand challenge is a fundamental problem in science or engineeringthat has a broad economic and scienti�c impact, and whose solution could be ad-vanced by applying high-performance computing techniques and resources ([67]).Many of these problems are basically large computational
uid dynamics problemswhich can be modelled by a set of partial di�erential equations (PDEs).To have an idea of the computing requirements to solve such problems numer-ically we consider here two examples. The �rst one is studied by Case et al. ([16])as mentioned in [26]. This is the simulation of a three-dimensional, fully resolved,turbulent
ow as might occur in the design of a portion of a ship hull. The primary

CHAPTER 1. INTRODUCTION 3parameter for characterising the turbulent
uid
ow is the dimensionless quantityknown as the Reynolds number (R). Such a simulation would have a Reynolds num-ber of about 104 or greater. In order to fully resolve important disturbances of asmall wave number in the
ow one needs R9=4 mesh points ([21]). That is N = 109mesh points for each time step. Each mesh point has one pressure term and threevelocity terms for both the current and the immediate past time step. This is atotal of 8 �109 scalar variables. If temperature or other parameters must also bemaintained for each point, then about 1010 words of data memory are required. Thenumber of arithmetic operations varies widely, depending upon the solution methodemployed. One e�cient approach that takes advantage of the problem geometry,has been estimated to require only about 500 additions and 300 multiplications pergrid point. This leads to an operations count of � 1012 operations per single timestep (see [26] for details).The second problem is that of modeling and forecasting of weather. Suppose wewant to predict the weather over an area of 3000 � 3000 miles for two-day periodand the parameters need to computed once every half hour. As mentioned in [67],if the area is being modeled up to a height of 11 miles and one wishes to partitionthis 3000 � 3000 � 11 cubic mile domain into segments of size 0.1 � 0.1 � 0.1then there would be 1011 di�erent segments. So we need at least 1011 words of datamemory. It is also estimated in [67] that for this prediction the total number ofoperations is 1015.The world's most powerful computer of the mid 70's was the CRAY-1, whichwas not even close to having enough capability ([84]) to perform these calculations.It's primary memory was limited to 106 words, and the execution rate was about108 operations/second.Hence by this time it was clear that new, more powerful computer systems wouldbe needed to solve this class of problems. Since the single processor machines hadbegun to start approaching its physical limits, the community had no choice but toconsider alternative paradigms such as parallel machines.1.1 Introduction to Parallel ComputersParallel computers perform their calculations by executing di�erent computationaltasks on a number of processors concurrently. The processors within a parallel

CHAPTER 1. INTRODUCTION 4computer generally exchange information during the execution of the parallel code.This exchange of information occurs either in the form of explicit messages sent byone processor to another or di�erent parallel processors sharing a speci�ed com-mon memory resource within the parallel computer. The parallel load-balancingalgorithms, proposed in this thesis, work very well on these paradigms.In 1966 Michael Flynn ([33]) classi�ed systems according to the number of in-struction streams and the number of data streams. The two important systemsare:� SIMD - Single Instruction stream, Multiple Data stream,� MIMD - Multiple Instruction stream, Multiple Data stream.This section provides a brief introduction to these important classes of parallelcomputing architecture.1.1.1 SIMD SystemsSuch a system has a single CPU devoted to exclusively to control, and a largecollection of subordinate processors, each having only ALUs, and their own (smallamount of) memory. During each instruction cycle, the control processor broadcastsan instruction to all of the subordinate processors, and each of the subordinateprocessors either executes the instruction or is idle.The most famous examples of SIMD machines are the CM-1 and CM-2 connec-tion Machines that were produced by Thinking Machines. The CM-2 had up to65,356 1-bit processors and up to 8 billion bytes of memory. Maspar also producedSIMD machines. The MP-2 has up to 16,384 32-bit ALUs and up to 4 billion bytesof memory.1.1.2 General MIMD SystemsThe key di�erence between MIMD and SIMD systems is that with MIMD systems,the processors are autonomous: each processor is a full-
edged CPU with both acontrol unit and an ALU. Thus each processors is capable of executing its ownprogram at its own pace. The world of MIMD systems is divided into shared-memory and distributed-memory systems.

CHAPTER 1. INTRODUCTION 5Shared-Memory MIMDA generic shared-memorymachine consists of a collection of processors and memorymodules interconnected by a network. Each processor has access to the entireaddress space of the memory modules. So that any data stored in the sharedmemory is common to, and can be accessed by, any of the processors. This has theadvantage of being very rapid (in principle) and is generally simpler to program.However, its main drawback is that there can be serious delays (contention time)if more than one processor wants to use the same location in memory at the sametime. The simplest network connection is bus based. Due to the limited bandwidthof a bus, these architectures do not scale to large number of processors: the largestcon�guration of the currently popular SGI Challenge XL has only 36 processors.Recently Silicon Graphics, Inc. has designed and manufactured the Origin 2000computer. The basic building block of the Origin is a node built upon two MIPSR10000 processors with a peak performance of 400 M
op each. The computerutilises Scalable Shared-memory MultiProcessing (S2MP) architecture. Most othershared-memory architectures rely on some type of switch-based interconnectionnetwork. For example the basic unit of the Convex SPP1200 is a 5 � 5 crossbarswitch.Distributed-Memory MIMDIn distributed-memory systems, each processor has its own private memory. Theseprocessors are connected directly or indirectly by means of communication wires.From the performance and programming point of view the ideal interconnectionnetwork is a fully connected network, in which each processor is directly connectedto every other processor. Unfortunately, the exponential growth in the size (andcost) of such a network makes it impractical to construct such a machine with morethan a few processors. At the opposite extreme from a fully connected network isa linear array: a static network in which all but two of the processors have twoimmediately adjacent neighbouring processors (see Figure 1.1). A ring is a slightlymore powerful network. This is just a linear array in which \terminal" processorshave been joined (see Figure 1.2). These networks are relatively inexpensive; theonly additional cost is the cost of p - 1 or p wires for a network of p processors.Moreover it is very cheap to upgrade the network - to add one processor we only

CHAPTER 1. INTRODUCTION 6
Figure 1.1: A linear array of processors.

Figure 1.2: A ring of processors.need one extra wire. There are two principal drawbacks:� if two processors are communicating, it's very likely that this will preventother processors which are also attempting to communicate from doing so,� in a linear array two processors that are attempting to communicate may haveto forward the message along as many as p - 1 wires, and in a ring it may benecessary to forward the message along as many as p/2 wires.In between the two extremes a hypercube is a practical static interconnectionnetwork that gives a good balance between the high cost and high speed of thefully connected network and the low cost but poor performance of the linear arrayor ring. Hypercubes are de�ned inductively: a dimension 0 hypercube consistsof a single processor. In order to construct a hypercube of dimension d > 0, wetake two hypercubes of dimension d� 1 and join the corresponding processors withcommunication wires (see Figure 1.3). It is clear that a hypercube of dimension

CHAPTER 1. INTRODUCTION 7
Figure 1.3: Hypercubes of (a) dimension 1, (b) dimension 2 and (c) dimension 3.d will consist of 2d processors. It is also clear that in a hypercube of dimensiond each processor is directly connected to d other processors and that if we followthe shortest path then the maximum number of wires a message has to travel isd. This is much few than for the linear array of ring. The principal drawback tothe hypercube is that it is not easy to upgrade the system : each time we wishto increase the machine size, we must double the number of processors and adda new wire to each processor. The �rst \massively parallel" MIMD system was ahypercube (an nCUBE 10 with 1024 processors).Intermediate between hypercubes and linear arrays are the meshes and tori(see Figures 1.4 and 1.5), which are simply higher dimensional analogues of lineararrays and rings, respectively. Observe that an n-dimensional torus can be obtainedfrom the n-dimensional mesh by adding \wrap-around" wires to the processors onthe border. As far as upgrading is concerned meshes and tori are better thanhypercubes (although not as good as linear arrays and rings). For example, ifone wishes to increase the size of a q � q mesh, one simply adds a q � 1 meshand q wires. Meshes and tori are currently quite popular. The Intel Paragon isa two-dimensional mesh, and the Cray T3D and T3E are both three-dimensionaltori.1.2 Comparison Between SIMD andMIMDCom-putersIn [67], Kumar et al. discuss the pros and cons of SIMD and MIMD computers.SIMD computers require less hardware and less memory than MIMD computers

CHAPTER 1. INTRODUCTION 8
Figure 1.4: (a) Two-dimensional mesh, (b) three-dimensional mesh.

Figure 1.5: Two-dimensional torus.

CHAPTER 1. INTRODUCTION 9because they have only one global control unit and only one copy of the programneeds to be stored. On the other hand, MIMD computers store the program andoperating system at each processor. SIMD computers are naturally suited for data-parallel programs; that is, programs in which the same set of instructions are ex-ecuted on a large data set (which is the case in the �eld of image processing forexample).A clear disadvantage of SIMD computers is that di�erent processors cannotexecute di�erent instructions in the same clock cycle, so if a program has manyconditional branches or long segments of code whose execution depends on condi-tionals, it is entirely possible that many processors will remain idle for long periodsof time. Data-parallel programs in which signi�cant parts of the computation arecontained in conditional statements are therefore better suited to MIMD computersthan to SIMD computers.Individual processors in an MIMD computer are more complex, because eachprocessors has its own control unit. It may seem that the cost of each processormust be higher than the cost of a SIMD processor. However, it is possible touse general-purpose microprocessors as processing units in MIMD computers. Incontrast, the CPU used in SIMD computers has to be specially designed. Hence,due to economies of scale, processors in MIMD computers may be both cheaper andmore powerful than processors in SIMD computers.1.3 Finite Element Methods for Elliptic PDEsProbably the three most popular numerical techniques for solving partial di�erentialequations are the �nite di�erence, the �nite element and the �nite volume methods.In the �nite di�erence approximation, the derivatives in a di�erential equation arereplaced by di�erence quotients. The di�erence operators are usually derived fromTaylor series and involve the values of the solution at neighbouring points in thedomain. After taking the boundary conditions into account, a (sparse) systemof algebraic simultaneous equations is obtained and can be solved for the nodalunknowns.The �nite di�erences method (FDM) is easy to understand and straightforwardto implement on regular domains. Unfortunately this method is di�cult to applyfor systems with irregular geometries and/or unusual boundary conditions.

CHAPTER 1. INTRODUCTION 10The �nite element method (FEM) provides an alternative that is better suitedfor such systems. In contrast to �nite di�erence techniques, the �nite elementmethod divides the solution domain into simply shaped regions or \elements". Anapproximate solution for the PDE can be developed for each of these elements. Thetotal solution is then generated by linking together or \assembling" the individualsolutions taking care to ensure continuity at the interelement boundaries. Thus thePDE is approximately satis�ed in a piecewise fashion (see below).The �nite volume method (FVM) may also be applied on unstructured meshes.In this scheme the solution is represented as a series of piecewise constant elements.The discretised form of the PDE is found by integrating the equation over theelements (control volumes). For each control volume the area integral is convertedinto a line integral over its edges and the numerical
ux at the boundaries alsocalculated.A comprehensive description of the �nite element method is beyond the scope ofthis thesis. The interested reader can consult the books of Johnson ([58]) and Strang& Fix ([95]). However we describe the method brie
y in the case of a particularPDE; Poisson's equation in 2 dimensions :�r2u(x) = f(x); for x 2
 � <2: (1.1)For clarity we assume the following boundary conditions are imposed :u = uE on �1 and @u@n = g on �2;where @
 = �1 [�2 and �1 \ �2 = ;:Note that this equation is a linear second order partial di�erential equation whicharises in a large number of physical situations (e.g.
ow of an ideal
uid).The boundary condition u = uE on �1 is called a Dirichlet (or essential)boundary condition and @u@n = g on �2 is called a Neumann (or natural) boundarycondition.We �rst derive the weak form of the equation (1.1). To do this we multiply theequation (1.1) by a test function w and integrate over
 to get,-R
 wr2u dx = R
 wf dx.By using the divergence theorem we get,

CHAPTER 1. INTRODUCTION 11R
ru:rw dx� R@
 @u@nw ds = R
 wf dx.If we choose w 2 H10 (
), (where H10 (
) stands for the space of all functions whose�rst derivatives are square integrable in
 and which are zero everywhere on �1)then above integral form reduces to,R
ru:rw dx� R�2 gw ds = R
 wf dx.For simplicity we will assume g � 0 in which case the expression simpli�es stillfurther: R
ru:rw dx = R
 wf dx.Now let H1E(
) be the space of all those functions whose �rst derivatives are squareintegrable in
 and which satisfy the Dirichlet boundary condition everywhere on�1. The above integral form then leads to the following weak form of the Poisson'sPDE.Find u 2 H1E(
) such thatZ
ru:rw dx = Z
 wf dx; (1.2)for all w 2 H10 (
).The rest of this section considers the �nite element approximation to the solutionof this weak form.1.3.1 Piecewise Linear Finite ElementsThe very �rst step in the approximation of u by the �nite element method is todivide the domain
 into a large number of small non-overlapping subdomains (inthis section we will assume these are triangles). This is always possible providedthat
 is itself a polygon (i.e. there are no curved boundaries). There are methodsto handle curved boundaries. One way is to approximate the curve boundary bymeans of a set of line segments in such a way that in the limit these line segmentsapproach to the curve boundary (see [95] for details). Another way is to triangulatethe domain
 using isoparametric �nite elements (see [19]).Let us suppose that the vertices (nodes) of the triangles have been numberedfrom 1 to N = nB + nE (where nB is the number of vertices in the interior of thedomain or on the Neumann boundary, �2, and nE is the number of vertices on

CHAPTER 1. INTRODUCTION 12the Dirichlet boundary, �1). On each triangle u is approximated by a low degreepolynomial. Although any degree polynomials can be selected for simplicity wechoose the �rst degree polynomials here (polynomials of degree zero can not beused since we require the derivatives to be square integrable).We next de�ne simple \basis" functions Pi(x) for all nodes i from 1 to N. Thesefunctions are linear on each triangle and satisfy Pj(x) = 1 if x is the position vectorof the node j and Pj(x) = 0 if x is the position vector of any of the other nodes.Now we can write �u (an approximations to u) in terms of these basis functions as,�u = NXi=1 aiPi(x); (1.3)where ai are unknown (to be determined) for i = 1, . . . , nB, and are given by theDirichlet boundary condition , u = uE, for i = nB+1, . . . ,nB + nE. (Note that,due to our choice of basis functions , ai is the value of �u when evaluated at the ithnode of the mesh). If we substitute the value of �u from equation (1.3) for u andreplace w by Pj(x), for j = 1, . . . ,nB, in equation (1.2) we then get a system of nBequations for the unknowns a1; : : : ; anB . This system, known as the Galerkin �niteelement equations is given by:nBXi=1 ai Z
rPi(x):rPj(x) dx = Z
 Pj(x)f(x) dx� NXi=nB+1 ai Z
rPi(x):rPj(x) dx;(1.4)for j = 1, . . . , nB.Typically this is written in matrix form asKa = f; (1.5)where K is referred to as the \global sti�ness matrix" (whose entries are given byKji = R
rPj(x):rPi(x) dx) and a is a vector of the unknowns a1; : : : ; anB .1.3.2 Algorithmic DetailsHaving derived the �nite element equations (1.5) we now discuss how the matrix Kand the vector f can be obtained systematically. The most important point to noteis that the entry Kji of the matrix K will always be zero if the vertices numbered jand i are not connected by an edge of the mesh. This is because the dot product ofrPj(x) and rPi(x) will be zero on every triangular element in such a case. Since

CHAPTER 1. INTRODUCTION 13this means that most of the entries of K will always be zero, we refer to this as a\sparse matrix".Suppose that the �nite element mesh consists of E triangular elements
e (e =1,. . . ,E). Then each entry of K may be obtained from the following formula:Kji = R
rPj(x):rPi(x) dx == PEe=1 R
e rPj(x):rPi(x) dx:Hence we may use the following pseudo-code to calculate K:for(j = 1; j � N; j++)for(i = 1; i � N; i++)fK(j,i) = 0for(e = 1; e � E; e++)K(j,i) = K(j,i) + R
erPj(x):rPi(x) dxg.The order of the loops can easily be re-arranged:for(j = 1; j � N; j++)for(i = 1; i � N; i++)K(j,i) = 0for(e = 1; e � E; e++)for(j = 1; j � N; j++)for(i = 1; i � N; i++)K(j,i) = K(j,i) + R
erPj(x):rPi(x) dx:Now we can make use of the sparsity caused by the local nature of P1; : : : ; PN :for(j = 1; j � N; j++)for(i = 1; i � N; i++)K(j,i) = 0for(e = 1; e � E; e++)for(J = 1; J � 3; J++)fj = number of node which is J-th vertex of element efor(I = 1; I � 3; I++)fi = number of node which is I-th vertex of element eK(j,i) = K(j,i) + R
erPj(x):rPi(x) dxgg.At this point we can make the following observations.

CHAPTER 1. INTRODUCTION 14� It is necessary to number the vertices of each element,
e, of the triangulationof
; 1,2,3. Also, an integer array, \icon" say, needs to be set up which storesthe node number of each vertex of each element.� It is also necessary to store an array of the position vectors, sj say, of thevertices of the mesh.� A similar arrangement can be made in order to calculate f , wherefj = R
 f(x)Pj(x) dx =PEe=1 R
e f(x)Pj(x) dx:Now, if we assume that the nE nodes on �1 are numbered last, then the �nite ele-ment pseudo-code should now look something like:for(j = 1; j � nB; j++)ff(j) = 0for(i = 1; i � nB ; i++)K(j,i) = 0gfor(j = 1; j � nE ; j++)a(nB + j) = uE(s(nB + j; 1); s(nB + j; 2))for(e = 1; e � E; e++)for(J = 1; J � 3; J++)fj = icon(e,J)if(j � nB)ff(j) = f(j) + R
e f(x)Pj(x)dxfor(I = 1; I � 3; I++)fi = icon(e,I)if(i � nB)K(j,i) = K(j,i) + R
e rPj(x):rPi(x) dxelsef(j) = f(j) - a(i) R
erPj(x):rPi(x) dxgggSolve the system: Ka = f :The parallel generation and solution of this system will be discussed in x1.5.

CHAPTER 1. INTRODUCTION 151.4 Time-Dependent Problems: The Linear Dif-fusion EquationWe now move on to consider how we may generalise the above theory to deal with alinear time-dependent di�erential equation. The simplest parabolic time-dependentdi�erential equation is the linear di�usion equation:@@tu(x; t) = r2u(x; t) + f(x; t) for(x; t) 2
� (0; T]; (1.6)subject to some initial condition, such asu(x; 0) = u0(x) for all x 2
;and some boundary conditions, such asu = uE on �1 and @u@n = g on �2 for all t 2 (0; T);where @
 = �1 [�2 and �1 \ �2 = ;; as before.Note that in above all the spatial variables have been grouped together as xand the Laplacian operator, r2, is assumed to apply only to these spatial variablesand the time variable t is treated separately. This distinction is necessary as thevariable t should not be thought of as being \just another independent variable",like x and y say, because the boundary conditions associated with this variable arenot the same.As far as `t' is concerned we only know the solution at the boundary t = 0 andwould like to compute the solution for arbitrary values of t which are less than T(we have no idea about the behaviour of the solution at time T). This di�ers fromthe other variables where we generally know about the behaviour of the solutionthroughout the boundary of the spatial domain.Keeping in mind the special nature of the variable `t' we need a practical methodwhich treats the spatial variables and time variable independently. Fortunately themethod of lines exactly does the same.1.4.1 The Method of LinesThis is a general method which reduces a system of PDEs to a system of ordinarydi�erential equations (ODEs), by only discretising in space in the �rst instance.

CHAPTER 1. INTRODUCTION 16The spatial and temporal discretisation are thus independent, allowing a varietyof spatial discretisations (e.g. �nite element or �nite volume) to be used with anystandard ODE solver (see [9], for example). We attempt to follow this approachto obtain transient solutions using the �nite element method presented in previoussection.This means we only triangulate the spatial part of the domain
, and then wemultiply equation (1.6) by a test function, Pj(x), which has no time dependence.This yields the following system of equations,Z
 @@tu(x; t)Pj(x) dx = Z
r2u(x; t)Pj(x) dx+ Z
 f(x; t)Pj(x) dx;and making use of the divergence theorem as before this becomes,Z
 @@tu(x; t)Pj(x) dx = � Z
ru(x; t):rPj(x) dx+Z@
 @@nu(x; t)Pj(x)ds + Z
 f(x; t)Pj(x) dx: (1.7)In two dimensions we may again divide the domain,
, into triangles and numberthe vertices of these triangles from 1 to N = nB + nE where nB and nE are asde�ned in x1.3.1. Also let Pj be the usual basis functions centred on the jth nodeof the mesh. Since we are interested in a time-dependent �nite element solution weseek an approximation, �u(x; t), to the true solution, u(x,t), of the form�u = NXi=1 ai(t)Pi(x);where ai(t) are unknown (to be determined) for i = 1,. . . ,nB, and are given by theDirichlet boundary condition, u = uE, for i = nB + 1,. . . , nB + nE.Now, replacing u by �u in equations (1.7) for j = 1,. . . ,nB we again obtain a systemof nB equations for nB unknowns (in this case a1(t); : : : ; anB(t)). This system isgiven bynBXi=1 daidt Z
 PiPjdx = � nBXi=1 ai Z
rPi:rPjdx+ Z�2 gPjds+ Z
 fPjdx�nB+nEXi=nB+1 ai Z
rPi:rPjdx � nB+nEXi=nB+1 daidt Z
 PiPjdx:As before we may express this in matrix notation, in which case it becomes,Mdadt = �Ka+ f(t): (1.8)

CHAPTER 1. INTRODUCTION 17Again, K is the \global sti�ness matrix" (whose entries are given byKji = R
rPi:rPjdx)and the matrix M is known as the\Galerkin mass matrix" (with entries given byMji = R
 PiPjdx). In this case the vector f depends upon t through the possibledependence of the function f in equation (1.6) upon t, or the possible dependenceof the Dirichlet boundary condition upon t (through the function uE).It should be noticed that the system of equations, (1.8), is not an algebraicsystem, it is a system of nB ordinary di�erential equations for which we can easilyobtain initial values for the unknowns ai(t) (from the function u0(x)). There aremany standard techniques (e.g. the software package SPRINT which is describedin [9]) for dealing with equations such as these in an e�cient manner (i.e. usinglocal error through adaptive time-stepping). Nevertheless, at each time step a �niteelement calculations similar to that described in x1.3 must be undertaken.1.5 Parallel Finite Element and Load-BalancingFor a small problem where the number of degrees of freedom is just a few thousandthe system of equations (1.5) can be easily and quickly solved on a serial machine.But when the number of degrees of freedom is in excess of a million or so then thememory and speed of a serial machine start to become a serial bottleneck. Alsofor some applications where the size of the problem is not so big the time takenby a serial machine may still be very large (for non-linear problems for example,where the iterative methods for solving the corresponding system (1.5) are quiteexpensive). In these cases a promising way forward is to use a parallel architecture.By using such a machine not only can we hope to solve larger problems (e.g. instructural mechanics) but we can also hope to solve them more quickly.In the rest of this section we discuss a method for assembling and solving thesparse system of equations (1.5) in parallel. Let us suppose the domain
 has beendivided into n subdomains
1,
2, ,
n and the ith subdomain
i has beenassigned to the ith processor of a parallel machine. Let us assume that the unknownson the interface between the subdomains are labelled a� and the unknowns insideeach subdomains are labelled a1, a2,. . . .,an. If we �rst number the unknowns ina1 then in a2,a3,. . . ,an and lastly in a� then the system of equations (1.5) can bewritten in the form,

CHAPTER 1. INTRODUCTION 182666666666666664 A1 C1A2 C2: :: :An CnB1 B2 : : Bn A� 3777777777777775 2666666666666664 a1a2::ana� 3777777777777775 = 2666666666666664 f1f2::fnf� 3777777777777775 ; (1.9)where Ai, Bi, Ci and A� are themselves usually sparse. It is clear from the de�nitionof the basis functions Pj that f i , Ai, Bi and Ci are totally housed by the ith processand hence can be assembled independent of each other in parallel. But f� and A� aredistributed across di�erent processors. Each processor can compute and assembleits own contribution to them, independently, storing them in the blocks f�i and A�isay (so that f � = f�1 + f �2 + + f �n and A� = A�1 + A�2+. . .+ A�n).In order to solve the system of equations (1.9) we �rst write it in componentform: Aiai + Cia� = f i; i = 1; 2; : : : ; n; (1.10)Xi Biai +A�a� = f�: (1.11)If we substitute the value of ai from equation (1.10) in (1.11) we get the followingequation: Xi BiA�1i (f i � Cia�) +A�a� = f �; (1.12)On simpli�cation this reduces to,(A� �Xi BiA�1i Ci)a� = f� �Xi BiA�1i f i: (1.13)If we de�ne As by the equation,As = A� �Xi BiA�1i Ci; (1.14)then the equation (1.13) can simply be written as,Asa� = f� �Xi BiA�1i f i: (1.15)If equation (1.15) is then solved for a� then this can be substituted into equation(1.10) and solved for ai for all i. This approach is ideal for distributed memoryparallel machines because each system in equation (1.10) is entirely independent

CHAPTER 1. INTRODUCTION 19and may therefore be solved in parallel with the others when required. Moreover, ifan iterative method, such as the conjugate gradient (CG) algorithm ([40]), is usedto solve equation (1.15) then it is not necessary to explicitly form the matrix Asof (1.14). The main step involved is the matrix vector multiplication of w = Aspwhere p is the direction vector obtained from the residual of the kth iterates of a�,so we have w = A�p�Xi Bi(A�1i (C ip)): (1.16)From equation (1.16) it is clear that w can be obtained using only matrix-vectormultiplication and subdomain solves (some local communication is also requiredbetween processors sharing interpartition boundary vertices).From above discussion it is clear that the communication overhead is propor-tional to the number of vertices on the interpartition boundary, hence one shouldtry to keep this boundary as small as possible. Also once the vector a� is knowneach subdomain will try to solve the equation (1.10) in parallel, hence it is desirablethat the number of unknowns in each of ai is approximately same (otherwise someprocessors will be idle while others are still busy solving their systems).Hence the decomposition of the elements of the mesh into subdomains shouldhave two main features,� each processor should store approximately the same number of vertices orelements (to ensure equal load),� number of vertices which lie on the boundary between the processors shouldbe kept low.In order to achieve the above we �rst de�ne the dual graph of a given mesh.The dual graph of a given mesh is obtained by replacing each element by a node,and that a pair of nodes is connected by an edge only if the corresponding elementsare neighbours of each other, then above problem becomes a special case of a moregeneral problem, namely the graph partitioning problem.The n-way graph partitioning problem is de�ned as follows: Let G = G(N,E)be an undirected graph where N is the set of nodes with kNk nodes and E is theset of edges with kEk edges, partition N into n subsets, N1, N2, . . . ,Nn such thatNi \Nj = ; for i 6= j, kNik = kNk / n and Si Ni =N, and the number of edges

CHAPTER 1. INTRODUCTION 20of E whose incident vertices belong to di�erent subsets is minimised. The n-waypartition problem is most frequently solved by recursive bisection. That is, we �rstobtain a 2-way partition of N, and then we further subdivide each part using 2-way partitions. After log n phases, graph G is partitioned into n parts. Thus, theproblem of performing a n-way partition is reduced to that of performing a sequenceof 2-way partitions or bisections.Unfortunately this problem, which is well-known in the graph theory literature, is not solvable in polynomial time. It is in fact an NP-hard problem ([22, 36, 68]).Nevertheless there are heuristic approaches which perform well in most cases. Inthe next few sections we review some of the more important of these heuristics.1.6 Recursive Graph Partitioning HeuristicsFor the sake of simplicity (as mentioned above), many graph partitioning heuristicsconcentrate on bisecting the graph subject to the load balancing and cut-weight(the number of edges on the inter-partition boundary is called the cut-weight) min-imisation constraints. When more than two subdomains are required, the procedurecan be applied recursively on the recent subdomains. The main advantage of thisapproach is that it is easy to implement in parallel because of the divide and conquernature, but the corresponding disadvantage is that the total number of subdomainsthus produced must be a power of 2.1.6.1 Recursive Coordinate Bisection (RCB)Let G = G(N,E) be a given undirected graph. We must also assume that there aretwo or three-dimensional coordinates available for the nodes. A simple bisectionstrategy, due to Simon ([90]), which is a slight generalisation of an earlier methodused by Williams in [114], for the graph G is to determine the coordinate directionof the longest expansion of the domain. Without any loss of generality, assume thatthis is the x-direction. Then all nodes are sorted with respect to their x-coordinate.Half of the nodes with small x-coordinate are assigned to one subdomain, the re-maining half are assigned to the other subdomain.Although easy to program, the principal drawback of RCB is that the methoddoes not take advantage of the connectivity information given by the graph. It is

CHAPTER 1. INTRODUCTION 21therefore unlikely that the resulting partition will have a low cut-weight and so thismethod is not generally suitable for our purpose.1.6.2 Recursive Inertial Bisection (RIB)This method is a generalisation of RCB techniques which is described in [28, 75]for example. Here, the vertices of the dual graph are considered as point masseslocated at the centroid of their corresponding initial element. The principal axisof inertia for these point masses is then calculated and the domain is bisected bymaking a cut which is orthogonal to this axis (with approximately equal weights oneither side of it). This procedure is then repeated recursively for each subdomain.This method is extremely fast, but like the RCB it also produces partitions witha relatively high cut-weight ([28]).1.6.3 Recursive Graph Bisection (RGB)Here the idea is to use the graph distance as opposed to Euclidean distance used inx1.6.1. Recall that the graph distance between the two nodes ni and nj is given byd(ni, nj) = number of edges in the shortest path connecting ni and nj.Here the starting point is to �nd the diameter (or, since this is expensive to �nd,the pseudo-diameter) of the graph (see George and Liu ([37])) and then sort thenodes according to their distance from one of the extreme nodes. Half the verticeswhich are close to this extreme node are placed in one subdomain and the remaininghalf are placed in the other subdomain.If we start out with a connected graph then by construction it is guaranteedthat at least one of the two subdomains is connected. But it is still possible thatthe other subdomain may not be connected. Hence we may end up with a situationin which not all of the subdomains are connected.1.6.4 Modi�ed Recursive Graph Bisection (MRGB)In [50] Hodgson and Jimack present their own graph bisection method MRGB. Thismethod is a modi�cation of the RGB method, which tries to improve on the originalby attempting to produce subdomains which are all simply connected.In MRGB each bisection begins by �nding two approximately extremal nodes

CHAPTER 1. INTRODUCTION 22of the graph and then builds a partition up around them by forming two sets. Eachset �rst consists of those nodes which are at most one edge from one extremal node,then at most two edges, etc., until one partition contains half of all the nodes. Theformation of the smaller partition is then continued until no more nodes can beclaimed by it. If this partition also contains half of the nodes then the bisection iscomplete. Otherwise, there will remain unassigned nodes which are disconnectedfrom the smaller partition. These nodes will be assigned to the larger partitionthereby producing two connected subdomains which are not equal in their share ofthe nodes. If one insists on having balanced subdomains then some extra steps canbe executed to transfer nodes from the larger subdomain to the smaller subdomainin such a way that the new improved subdomains are well balanced and that theincrease in the cut-weight is not that large. Unfortunately due to the transferstep this method is still not guaranteed to produce simply connected subdomainsbut in practice (see [50] for details) the MRGB algorithm produces disconnectedsubdomains far less often than the RGB method and also produces subdomainswhich look more compact. Moreover the MRGB algorithm is computationally ascheap as the RGB method and nearly always produces partitioned subgraphs whichhave a smaller cost in terms of the cut-weight.1.6.5 Recursive Spectral Bisection (RSB)This method which was popularised by Pothen, Simon and Liou ([82]) is of a quitedi�erent nature to those above and is considerably less intuitive. It is in fact acontinuous version of the following discrete optimal bisection problem.With each node ni 2 N we assign a weight xi where xi is +1 or -1 (where allnodes with xi = 1 are in one subdomain and those with xi = -1 are in the other).Then the requirement of equal load among the two subdomains means PNi=1 xi = 0and the requirement of minimal cut-weight demands that we should minimise thequadratic P(v;w)2E(xv � xw)2/ 4 (as the quadratic P(v;w)2E(xv � xw)2/ 4 is in factthe cut-weight).Ignoring the factor of one quarter we note that P(v;w)2E(xv � xw)2 = xTLx,where L is the Laplacian matrix of the graph whose jth entry of row i is given inFigure 1.6.

CHAPTER 1. INTRODUCTION 23lij = 8>>>><>>>>: �1 if nodes i & j are connected,degree of node i if i = j,0 otherwise.Figure 1.6: Entries of the Laplacian matrix.Hence the discrete problem is:minimise xTLx such that Pi xi = 0 and xi = 1 or -1.But this is an NP-hard ([36]) problem, so the heuristic approach is to solve thefollowing continuous version of above discrete problem:minimise xTLx such that Pi xi = 0 and k x k2 = 1.Once we have the solution x� of this continuous problem, the subgroups are made bysorting the jNj entries of x� and placing nodes represented by x0i: i = 1; : : : ; jNj =2 inone subgraph (with x0 being the sorted vector) and those by x0i: i =jNj =2+1; : : : ; jNjin the other (assuming, here that N is even).It can be shown that ([50]) the vector x� is in fact the second eigenvector of L,provided the graph is connected (i.e. it is that eigenvector of L which correspondsto the smallest positive eigenvalue). This is known as the Fiedler vector.Experiments ([82]) has shown that RSB is an extremely good algorithm in termsof producing a small cut-weight. Unfortunately it is computationally expensive asit requires an eigenvector of a square matrix of size jNj which is often very large.Typically ([57]) a Lanczos algorithm is used to �nd the Fiedler vector but care isneeded to ensure that the algorithm has genuinely converged before accepting thevector produced ([80]).1.6.6 Recursive Node Cluster Bisection (RNCB)In [50] Hodgson and Jimack present their own hybrid algorithm, which they callrecursive node cluster bisection (RNCB), which attempts to combine features ofthe modi�ed recursive graph bisection (MRGB) and recursive spectral bisection(RSB) algorithms. It relies on the concept of node clusters introduced by Walshawand Berzins ([105]), who suggest that some connected elements of the mesh canbe grouped together to form clusters (this idea will appear again in the multilevelalgorithms outlined in x1.7.1). Such a cluster will have one corresponding node in

CHAPTER 1. INTRODUCTION 24the dual graph but will have as many edges incident to it as there are elements ad-jacent to those elements forming the node cluster. The weight of this cluster's entryin the Laplacian matrix will be greater than for a single element. A partitioningalgorithm which places the node cluster in a particular partition, places all of itscorresponding elements in that partition.The introduction of node clusters is an attempt to make the RSB method lessexpensive. The e�ect of creating node clusters is to lower the number of nodeswithin the dual graph and hence to decrease the size of the Laplacian matrix, somaking the Lanczos method converge much faster. They report that for somecases RNCB with 33% clustering often produces better partitions than the spectralalgorithm and at less cost. But for other meshes node clustering with 67% is better.Using this approach, there is a major problem ensuring that the �nal decompo-sition is properly load balanced. See [50] which discusses a few recovery schemeswhich produces properly load balanced partitions.The idea of clustering (also known as graph coarsening) introduced here hasbecome a very popular method for reducing the computational cost of a partitioner.There are many methods based on this idea, some of them will be discussed shortly.1.7 Multisectional Graph Partitioning HeuristicsThere are two major drawbacks in bisection based methods.� Lack of ability to decompose a given graph into an arbitrary number of sub-graphs (as by construction the number of subgraphs produced is of the form2n).� They do not attempt to produce a minimum cut-weight in the true globalsense (since they only try to produce a small number of common edges onbisections of subgraphs at each recursive level, without paying any attentionto the global scene).To overcome these drawbacks many researchers have considered non-bisection,or multisection, techniques such as those we are now about to present. Here thebasic idea is very simple, determine a \sort vector" to order all of the nodes in thegraph and then split the graph into the desired number of subgraphs (rather thanjust two).

CHAPTER 1. INTRODUCTION 251.7.1 Multidimensional Spectral Graph PartitioningIn [45, 47] Hendrickson and Leland describe a multidimensional Spectral Load Bal-ancing algorithm. Through a novel use of multiple eigenvectors, their algorithmcan divide a computation into 4 (spectral quadrisection) or 8 (spectral octasection)pieces at once. These spectral partitions are further improved by a multidimensionalgeneralisation of the Kernighan and Lin algorithm (see x1.8.2). They have shownthat for some problems their multidimensional approach signi�cantly outperformsspectral bisection.1.7.2 Stripwise MethodsIn this method one would sort the nodes in exactly the same manner as in RCB butthen make the desired number of orthogonal cuts along the chosen axis to produce aspeci�ed number of equally sized subgraphs. As shown in [49] generating a strip-likedecomposition of meshes is not generally advisable as this typically has an adversea�ect on the scalability of the parallel solver.1.8 Other Graph Partitioning TechniquesThere are many other heuristics which are used by researchers in the �eld. We nowdescribe some of the more popular.1.8.1 Greedy Algorithm (GR)Greedy algorithms have been around for decades. In [29] Farhat popularised theiruses in the application area of �nite elementmethod (FEM). It is a greedy algorithmbecause it �nds the �rst subdomain as well as it can without looking ahead. Oncethis is obtained it �nds the next subdomain as best as it can. Hence the qualityof the early subdomains is generally very good but if they are chosen too sel�shlythe quality of the later ones might be quite poor. Basically it is a graph basedalgorithm which uses the level-set principle of MRGB method to claim nodes in awalking tree fashion.

CHAPTER 1. INTRODUCTION 261.8.2 Kernighan and Lin Type AlgorithmsIn [65] Kernighan and Lin present a graph partitioning algorithm which is iterativein nature. It starts with an arbitrary partitioning of the graph. In each iterationtries to �nd a subset of vertices, from each part of the graph such that interchangingthem leads to a partition with smaller edge-cut. If such subsets exist, then theinterchange is performed and this becomes the partition for the next iteration. Thealgorithm continues by repeating the entire process. If it cannot �nd two suchsubsets, then the algorithm terminates, since the partition is at a local minimaand no further improvement can be made by the algorithm. Unfortunately thecomplexity of the algorithm is nonlinear, as each iteration of the algorithm takesO(kEk2 log kEk) time ([65]).Several improvements to the original algorithm have been developed. One suchalgorithm is by Fiduccia and Mattheyses ([32]). Their algorithm ful�lls the samepurpose but its complexity is O(kEk) which is linear. Nowadays, majority of thepartitioning algorithms appear to include Kernighan and Lin type ideas as a post-processing step. The algorithm introduced in Chapter 3 also uses the philosophy ofFiduccia and Mattheyses in order to decrease the cut-weight.1.8.3 State of the Art Software Tools for Graph Partition-ingDuring the last few years many public domain software tools have appeared forgraph partitioning. We discuss a few of them. Others, not discussed here, includePARTY ([83]) and SCOTCH ([81]).TOP/DOMDECIn [30] Farhat et al. describe the basic features of TOP/DOMDEC (a Software Toolfor Mesh Partitioning and Parallel Processing) and highlight their application of thistool in the parallel solution of computational
uid and solid mechanics problems.Basically in this software they have implemented the following algorithms.� The Greedy algorithm (GR).� The Reverse Cuthill-McKee algorithm (RCM) (see [18, 71]).

CHAPTER 1. INTRODUCTION 27� The Recursive RCM algorithm (RRCM).� The Principal Inertia algorithm (PI) (see [31]).� The Recursive Principal Inertia algorithm (RPI).� The Recursive Graph Bisection algorithm (RGB).� The 1D Topology Frontal algorithm (1DTF) (see [103]).� The Recursive Spectral Bisection algorithm (RSB).This allow the users to select whichever algorithm they feel is the most appropriatefor their applications.ChacoIn [44] Hendrickson and Leland describe the capabilities and operation of Chaco.Chaco is a software package designed to partition graphs. Currently the following�ve classes of partitioning algorithms have been implemented in Chaco.� Simple algorithms e.g. linear, random and scattered schemes.� Spectral algorithms.� Inertial algorithms (descriptions of these methods can be found in [75, 91]).� Kernighan-Lin algorithms.� Multilevel algorithms.Their method of choice for large problems in which high quality partitions aresought is the multilevel algorithm. This algorithm is fully described in [46]. In thisalgorithm the original graph is approximated by a sequence of increasingly smallerweighted graphs. The coarsest graph is then partitioned using a spectral method,and this partition is propagated back through the hierarchy of graphs with loadimprovement at each level using, a variant of the Kernighan-Lin algorithm.

CHAPTER 1. INTRODUCTION 28JOSTLEIn [106, 110, 111] Walshaw et al. outline the philosophy behind another methodfor solving this graph-partitioning problem. Their software tool, called JOSTLE,employs a combination of techniques including the Greedy algorithm to give aninitial partitioning together with some powerful optimisation heuristics. The graphcoarsening technique is additionally employed to speed up the whole processes.For time-dependent problems, unstructured mesh may be modi�ed every few time-steps and so the load-balancing must have low cost relative to that of the solutionalgorithm in between the remeshing. Their algorithm tries to accomplish this task.Experiments on graphs with up to a million nodes indicate that the resulting codeis up to an order of magnitude faster than existing state-of-the-art technique suchas Multilevel Recursive Spectral Bisection, whilst providing partitions of equivalentquality. But JOSTLE is still much slower than METIS (another Software Packagewhich is described below).METISRecently Karypis and Kumar have released version 3 of their Software Packagecalled METIS. This Package is designed for partitioning unstructured graphs, par-titioning meshes, and computing �ll-reducing orderings of sparse matrices. Thealgorithms implemented by METIS are also based on multilevel graph partitioningschemes, described in [60, 61, 62].The underlying algorithm consists of three phases: coarsening, partition of thecoarsest graph, and re�nement. They claim that the partitions produced by METISare consistently 10% to 50% better than those produced by spectral partitioningalgorithms and 5% to 15% better than those produced by Chaco multilevel.They also claim that it is extremely fast. Their experiments on a wide rangeof graphs have shown that METIS is one to two orders of magnitude faster thanother widely used partitioning algorithms. They have found that graphs with over amillion vertices can be partitioned into 256 parts in under 20 seconds on a PentiumPro personal computer.

Chapter 2Adaptivity and Dynamic LoadBalancingIf one wishes to solve large computational
uid dynamics (CFD) or computationalmechanics (CM) problems numerically using the FEM or FVM on a �xed unstruc-tured mesh then the mesh should be dense enough to accurately reproduce thecorrect solution throughout the domain. Since, in many cases, the exact locationof small-scale
ow features such as shocks, vortices and wakes is not known in ad-vance (and may vary with time), the mesh has to be �ne everywhere (or at leastin very large regions). This is not only very expensive computationally but alsoine�cient since it involves solving the problem for a great many unknowns whichare not required in reality.A remedy is to adapt the mesh in some way in order to maintain the qualityof the solution (i.e. the solution error) whilst optimising the number of unknowns.Typically, for steady problems, this involves starting with an initial mesh (whichwe will call a coarse mesh) and solving the given problem on it. Based on someerror criterion the mesh can now be adapted; i.e. it can be re�ned in that part ofthe region where the error indicator is high and possibly coarsened in that part ofthe region where the error indicator is very low. The process of solution followedby adaptivity can be repeated until a solution of the desired accuracy has beenreached.The above procedure is clearly only really valid for steady-state problems. Fortransient problem (where the small regions of the grid where there is a rapid spatialchange in the solution (e.g. due to a shock etc.) may themselves change with time)29

CHAPTER 2. ADAPTIVITY AND DYNAMIC LOAD BALANCING 30additional constraints have to be placed on the algorithms employed:� the adaptive algorithm must be very fast as the adaptation is done very often(every 5-20 time steps for typical shock-interaction problems). For steady-state problems the speed is not a relevant issue as adaptation is performedonly a few times (typically 3-5 times during the whole process),� in the case where transient calculations are performed with an explicit time-marching scheme, the allowable time step will be governed by the smallestelement in the mesh. Therefore, the minimum element size achieved by theadaptive re�nement algorithm should not be too much smaller than the de-sired minimumelement size. There is no such requirement for the steady-stateproblems as local time stepping may be employed.In the next two sections we discuss some techniques for estimating the error locallyand then introduce a few commonmethods for adapting a �nite element mesh basedupon this information. This will then be used to motivate the need for dynamicload balancing when parallel �nite element solvers are being used (see x2.3). Therest of the chapter reviews some dynamic load balancing algorithms and software.2.1 Spatial Error IndicatorsAs discussed above the use of adaptivity assumes that we can measure or estimatethe error of a given numerical solution. Clearly this error is not known exactly.However we can attempt to approximate the error.For the sake of simplicity we consider here the following simpli�ed version ofequation (1.1): �r2u(x) = f(x); for x 2
 � <2; (2.1)with u = 0 on @
.Then the corresponding weak form (equation (1.2)) simpli�es to:Find u 2 H10 (
) such that Z
ru:rw dx = Z
 wf dx; (2.2)for all w 2 H10 (
).

CHAPTER 2. ADAPTIVITY AND DYNAMIC LOAD BALANCING 31Let uh(x) = PNi=1 aiPi(x);2 H10 (
) be a piecewise polynomial (Lagrangian) ap-proximation of the true solution u obtained by using the FEM on a given mesh. Alsosuppose that ~uh is the interpolant of u on this mesh, i.e. ~uh(x) = PNi=1 u(xi)Pi(x);where xi is the position of the ith node of the mesh. For the sake of simplicity weconsider here the piecewise linear approximation only.It is shown in [58] that the following inequality holds:ju� uh jH1(
)�ju� ~uh jH1(
)� C[EXe=1(h
e ju jH2(
e))2]1=2; (2.3)where jv jHr(
)= (Pj�j=r R
 jD�v j2 dx)1=2 (i.e. jv jHr(
) measures the L2(
)-normof the partial derivatives of v of order exactly equal to r (hence it is a semi norm),and h
e is the longest side of the element e (which is called the diameter of theelement e)).In equation (2.3) h
e ju jH2(
e) is the contribution of the element
e to the totalerror. So to keep the error small we must choose h
e small where ju jH2(
e) is large.It is clear however that since u is unknown we can only try to approximate wherej u jH2(
e) is large by considering uh instead of u. When uh is piecewise linear thesecond derivatives of u are zero on each element hence we can estimate j u jH2(
e)by considering the jumps in @uh@n across each edge of
e. This is an example of oneof the simplest a posteriori estimates for the size of the error ju� uh jH1(
). Manyother, more complex and more general, algorithms have been proposed but theseare outside the scope of this work (see [1, 7, 24, 25, 76, 96] for a number of exampleshowever).2.2 Di�erent Types of Re�nementsThere are two popular classes of re�nement algorithm that may be associated withunstructured meshes, namely regeneration schemes and mesh adaptation schemes.Below we describe these schemes brie
y.2.2.1 Regeneration SchemesIn this approach one starts with a uniform mesh over the entire domain. Theproblem is then solved on this mesh. If the error indicator is too large in any regionthen the mesh is discarded and a new mesh is generated over the domain which has

CHAPTER 2. ADAPTIVITY AND DYNAMIC LOAD BALANCING 32a non-uniform density (with most elements in the region where the error indicatorwas largest). The problem is then solved again and a new error estimate is againobtained. If the new indicator is satisfactory the problem is successfully solved.Otherwise we again discard the current mesh altogether and generate another newnon-uniform mesh based on the latest error estimate and repeat the procedure.This method is recommended only if the procedure needs to be repeated just a fewtimes (e.g. for steady state problems (see for example [49] and [99, Chapter 5])).It has the advantage of being straightforward to implement in parallel, providedone has a reliable parallel mesh generator. In some situations it is not necessary todiscard the entire mesh, but only a portion of the mesh with a higher concentrationof points in the high error regions and a lower concentration of points in the lowererror regions may be regenerated. However in this case the newly generated portionof the mesh should smoothly paste together with the intact portion of the mesh.In case it has to be repeated a large number of times (e.g. for time dependentproblems), then due to the high computational cost associated with the generationof relatively re�ned meshes too many times, it is not bene�cial and one may considerthe second strategy described below.2.2.2 Local Mesh Adaptation Schemes : Hierarchical Re-�nementLet � > 0 be a given tolerance and suppose we want to obtain a FE approximationuh such that, ju� uh jH1(
)� �: (2.4)Relying on the error estimate (2.3) we see that (2.4) will be satis�ed if the corre-sponding FE mesh
e (e = 1, . . . , E) is chosen so that(h
e ju jH2(
e))2 � �2EC2 ; for all triangles e: (2.5)There are several ways to determine a trial space satisfying (2.5), the three mostcommon ones are brie
y described here.� Addition and deletion of points (h-re�nement). In this case the mesh is re�nedby adding more points to the mesh in regions where the error indicator is large,

CHAPTER 2. ADAPTIVITY AND DYNAMIC LOAD BALANCING 33and removing points from regions where the indicator is low (for details see[8, 54, 69] for 2-d cases and [8, 11, 59, 93, 115] for 3-d problems).� Movement of points (r-re�nement). In this case no new points are added,only adjustment of the locations of existing points are made so as to ensurethat the mesh density becomes higher where the error is large (e.g. [72, 74]).� Order enrichment (p-re�nement). The mesh remains the same, but we usechanging degrees of interpolation polynomials, i.e. in elements where theerror is large, higher order polynomial basis functions are used (e.g. [3, 119]).It is also possible to combine these methods in a hybrid fashion to produce mixedschemes. For instance in [24, 25] Demkowicz et al. use hp-re�nement in compressible
ow problems and in [14] Capon uses hr-re�nement for the compressible Navier-Stokes equations (see also [6, 15] for more hybrid applications). We now discuss the�rst method in detail as this method of re�nement will be used in the examples inChapter 5.h-re�nementIn this discussion, for simplicity, all the meshes are two dimensional and consist oftriangles. We also continue to use the trivial problem given by the equation (2.1)by way of an example although the ideas generalise to more complex problems andcorresponding generalised error estimates in a natural manner. Hence we proceedas follows: Choose a �rst mesh
e (e = 1, . . . , E) and compute a corresponding FEsolution uh. Using uh we can compute approximations to (h
e ju jH2(
e))2 denotedby (h
e juh jH2(
e))2 for e 2 f1, . . . , Eg.The quantity (h
e juh jH2(
e))2 for e 2 f1, . . . , Eg may be obtained using jumpsin the normal derivatives across the edges as described in x2.1 (or more complexschemes such as in [7] for example).We next construct a new mesh
e (e = 1, . . . , E) by subdividing into four equaltriangles each e 2 1, . . . , E for which (h
e j uh jH2(
e))2 > �2EC2 , where E is thenumber of triangles in
e. Next compute the FE solution uh on the new mesh
e(e = 1, . . . , E) and repeat the process until,(h
e ju jH2(
e))2 � �2EC2 ; for all triangles e: (2.6)

CHAPTER 2. ADAPTIVITY AND DYNAMIC LOAD BALANCING 34It is also possible to control the error in other norms than the one used in (2.4),for example we may want to use the maximum norm (for details see [58]). It maybe pointed out here that the advantage of h-re�nement is that relatively few meshpoints need to be added or deleted at each re�nement/coarsening step for time-dependent problems, but the disadvantages are the complicated logic and datastructure that are required to keep track of the points that are added and removed.For details see [14, 112] (and references therein) for 2-d cases and [88, 93] for 3-dcases. In Chapter 4 we consider an example of mesh regeneration scheme, andh-re�nement is considered in Chapter 5.2.3 Relation Between Adaptivity and DynamicLoad BalancingIn the case of a uniprocessor machine there are no side a�ects to be dealt with whenwe make use of adaptive FEM or FVM to solve a PDE or a system of PDEs. Onthe other hand when we implement these adaptive methods on parallel distributed-memory machines (or, at least, when programming under this paradigm), then weimmediately have the problem of load imbalance among the processors which areavailable on the parallel machine. This is due to the fact that the computationalintensity is now both space and time dependent. Unless some corrective measuresare taken, the current state of the load imbalance will signi�cantly reduce thee�ciency of the solver (as some processors will be idle whilst others are still doingsome work). It is interesting to observe that this is a dynamic version of thestatic load balancing problem �rst encountered in x1.5 while we were discussing theparallel �nite element method.These corrective measures are known as dynamic load-balancing algorithms. Aserial version of the algorithm is undesirable as it would carry a large communica-tions overhead, become a serial bottleneck and would be constrained by the amountof memory available to a single processor. Hence a parallel load-balancing algorithmis required which is capable of modifying an existing partition in a distributed man-ner so as to improve the quality of the partition whilst keeping the amount of datarelocation as small as possible (since there is a signi�cant communication overheadassociated with moving data between processors).

CHAPTER 2. ADAPTIVITY AND DYNAMIC LOAD BALANCING 35As described in x1.5 many heuristics have been devised to partition an initialunstructured mesh and hence minimise the load imbalance and interprocessor com-munication among processors. The redistribution of the re�ned mesh can also beachieved using some of these partitioning heuristics (with some modi�cation) whichwe describe in the following section. We then describe and discuss in xx2.4{2.7 somedynamic load balancing algorithms speci�cally designed to regain the balanced loadamong the processors in parallel.Before that we must discuss the ways in which we regain the balance. Thereare two possible ways of doing this. One way is to repartion the leaf mesh (i.e. theactual computational grid). This way it is possible to get a perfect load balancewith a relatively low number of elements residing on the interpartition boundary.However the problem with this method is that we have to have complicated datastructures to support this possibility (due to the hierarchical nature of the mesh).Also too much communication among the processors has to be performed (as wecould end up with the parent and children elements being on di�erent processors).The other possibility is to repartition the initial coarse mesh (with any childelements being located accordingly (we are focusing here on h-re�nement)). Inthis case one may not be able to get a perfect load balance among the processorsif some elements are heavily re�ned and also the number of elements residing onthe interpartition boundary may be little larger. However the relative advantageof this method over the previous one is that the parent and child elements are onthe same processor and hence further adaptivity is easy to achieve (without toomuch communication). In this thesis (see Chapters 4 and 5) we always consider thesecond possibility, i.e. repartition the initial coarse mesh.The task of repartitioning an adapted mesh can be converted into a graph par-titioning problem by the introduction of a weighted dual graph. For each element,i, of the coarse mesh de�ne a vertex of a dual graph and let this vertex have weightwi, where wi is the number of elements of the leaf mesh currently contained insidei. For each pair of face adjacent elements in the initial mesh de�ne an edge, j, ofthe dual graph and let this edge have weight ej, where ej is the number of pairs ofelements in the actual mesh which currently meet along edge j. At the end of eachadaptive step the weights of all the vertices and edges of the dual graph must beupdated. The amount of imbalance among the processors must be calculated. Ifthis amount is more than a preset tolerance then a dynamic load balancing tech-

CHAPTER 2. ADAPTIVITY AND DYNAMIC LOAD BALANCING 36nique must be applied to regain the balance. It may be helpful to keep in mindthat such a technique ideally should ful�ll the following 4 objectives:1. production of a load-balanced partition,2. a minimal number of elements ending up on the partition boundary,3. a minimal amount of data migration,4. the possibility of an e�cient parallel implementation.It is clear that these four requirements are not always self-consistent. For exam-ple, an existing partition could be so far from optimal that there is no way thata near-optimal partition (in terms of 1 and 2) can be reached by only migrating asmall proportion of the vertex weights. It is perhaps for this reason that quite alarge number of dynamic load-balancing heuristics have been suggested in recentyears ([23, 53, 104, 107] for example), each of which appear to put a slightly dif-ferent emphasis on the relative importance of the four properties. The algorithmdescribed in next chapter explicitly attempts to respect all of these requirements;however when con
icts do arise it is items 2 and 4, which relate more to the par-allel overhead than the partition quality, which are the �rst to be relaxed. Themotivation behind this is our decision that, when one is forced to choose betweenthe two, robustness is more important than parallel e�ciency in a parallel dynamicload-balancing algorithm. In the rest of this chapter we �rst discuss the possiblegeneralisations of some of the static partitioning algorithms of x1.6 and then somedynamic load balancing algorithms speci�cally proposed for regaining the balancedload in parallel.2.3.1 Generalisations of Static AlgorithmsIn this subsection we discuss the possibility of using the static partitioning algo-rithms referenced in x1.6 for the purpose of dynamically balancing the unbalancedload among the available processors which may have materialised as a consequenceof the adaptivity. Our discussion is based on the presentation of Hendrickson ([43])and the review paper of Jimack ([55]).

CHAPTER 2. ADAPTIVITY AND DYNAMIC LOAD BALANCING 37Recursive Coordinate Bisection (RCB)Let us recall from x1.6.1 that in this method we �rst determine the coordinate di-rection of the longest expansion of the domain. Suppose that this is the x-direction.Then all nodes are sorted with respect to their x-coordinate. Half of the nodes withsmall x-coordinate are assigned to one subdomain, the remaining half are assignedto the other subdomain. The method is then repeated in a recursive manner untilthe desired number of subdomains are obtained.The recursive nature of the algorithmmakes it possible to run in parallel: at eachlevel of the recursion, more and more subdomains may be bisected simultaneously.So the method is a potential candidate from a dynamic load balancing point ofview. Also in case of local re�nement there is a possibility of low migration as well.However the method is not used in principal due to the apparent inability to usethe connectivity information given by the graph (hence the resulting partition mayhave a very high cut-weight (as de�ned in x1.6 the cut-weight means the number of�ne edges on the inter-partition boundary)).Recursive Inertial Bisection (RIB)This method is �rst described in x1.6.2 and can also be used as a dynamic loadbalancer due to the following facts:� the recursive nature of the algorithm leads to a straight forward parallel im-plementation,� calculation of the principal axis of inertia for a given subdomain in parallel.Also the data locality is generally preserved in this method as the principal axeswill only change gradually, provided the mesh steadily re�nes and dere�nes.Recursive Spectral Bisection (RSB)The simplest static load balancing form of this algorithm was �rst discussed inx1.6.5. The weighted version of RSB is given in [47]. We now review this weightedversion of RSB. In order to partition a weighted dual graph into two subdomainsof equal size we start with a set of discreate variables xi where each xi correspondsto the ith vertex of the dual graph whose weight is wi. The only permissible values

CHAPTER 2. ADAPTIVITY AND DYNAMIC LOAD BALANCING 38of xi are � 1. The actual values of xi are determined by solving the followingoptimisation problem: minimize 14Xj ej(xj(1) � xj(2))2 ; (2.7)subject to, Xi xiwi = 0 ; (2.8)where j(1) and j(2) are the numbers of the two vertices at the ends of edge j.Once the optimisation vector of this problem is determined we form the two sub-domains by placing all those vertices for which xi = +1 in one subdomain whilstthe remainder, for which xi = �1, in the other.It must be observed that the equation (2.8) guarantees that the two subdo-mains have equal weights while the minimisation criteria itself ensures that thetotal weights of all the edges on the boundary of the two subdomains is minimum.Just like the original simple version of the RSB, this weighted version is also NP-hard ([22, 36, 68]). So once again we are forced to look for heuristic to solve theabove optimisation problem. In this heuristic version we allow xi to be any realnumber.As explained in [51], the partitioning vector x = (x1; x2; : : : ; xm)T is given byxi = u2i=pwi, where u2 is the Fiedler vector of the matrix S = DTLD, L is theweighted Laplacian matrix of the dual graph and D = diag � 1pwi �.The subdomains are de�ned by sorting them vertices of the dual graph accordingto the size of their entry in x and placing elements represented by x0i: i = 1 : : : n inone group (with x0 being the sorted vector) and those by x0i: i = n + 1; : : : ;m inthe other, with n chosen so that ������ nXi=1w0i � mXi=n+1w0i������is as small as possible (where w0i is the weight of the vertex represented by x0i).Unfortunately the current form is not suitable for the dynamic load balancingpoint of view, since the new partition produced by the method has no correspon-dence with the existing partition. So a large amount of data may have to bemigrated whenever this algorithm is used to repartition the current mesh.

CHAPTER 2. ADAPTIVITY AND DYNAMIC LOAD BALANCING 39In [101] Van Driessche and Roose present the modi�ed version of spectral algo-rithm which is better suited for dynamic application by introducing some additionalvertices and edges to the weighted dual graph. For each existing subgraphs theycreate a new vertex and join it with all the existing vertices in the subgraphs. Itmay be observed that none of these new edges are cut by the current partition ofthis extended graph. If we can repartition this graph in a way which dissallow themigration of newly generated vertices then it follows that any new edges which arenow cut by the partition must correspond to the migration of a vertex of the dualgraph from one subdomain to another. As the spectral algorithm performs well interms of keeping the number of cut edges quite low it is to be expected that, whenapplied to this extended graph, it will lead to a small amount of data migration.However the success of this approach depends quite heavily on the choice of weightthat are assigned to the new edges. The initial results reported in [101] are quiteencouraging however.The use of RCB and RIB as a dynamic load balancer is not so popular dueto their apparent inability to use the connectivity information of the graph, whichyields the relative high cut-weight. Also the use of RSB is quite sensitive to theweights of the new edges. Due to these reasons what is really needed is a di�erentkind of heuristic that operates locally by migrating elements between the mappedneighbouring partitions. During the past few years there have been many suchheuristics which are devised and implemented by the researchers working in this�eld. Some of the more important will be discussed in the remainder of this chapter.2.4 Di�usion AlgorithmsHere we assume that h-re�nement approach has been used and a hierarchy is main-tained. In order to illustrate the simple idea behind di�usion algorithms it is con-venient to introduce a weighted graph which, following Vidwans et al. ([104]), wecall a Weighted Partition Communication Graph (WPCG). This represents the faceadjacency of the kPk processors being used (processors that share at least one edgeof a root element with a given processor are said to be face adjacent to that pro-cessor). A WPCG is obtained by having one vertex for every processor and anedge between two vertices if and only if they are face adjacent to each other. Theweight wNi of the ith vertex is equal to the number of leaf-level elements of the

CHAPTER 2. ADAPTIVITY AND DYNAMIC LOAD BALANCING 40mesh which reside on the ith processor and the weight wEij of the edge connectingthe ith and jth processors is equal to the number of leaf-level edges which lie on theinterpartition boundary between the two processors. Di�usion methods correspondclosely to simple iterative methods for the solution of di�usion problems; indeed,the surplus load can be interpreted as di�using through WPCG towards a steadybalanced state.2.4.1 Basic Di�usion MethodThis iterative approach, which is described in [12] for example, is a very simpleand intuitive parallel method for dynamic load balancing. Here for each vertexin the WPCG we transfer an amount of work to each of its neighbours which isproportional to the load di�erence between them. In general this approach willnot provide a balanced solution immediately, so the process has to be iterated anumber of times until the load di�erence between any two processors is smallerthan a speci�ed value. In e�ect this method di�uses the load gradually amongstneighbours. If we denote by li the load of the processor pi then the above basicdi�usion method can be described algorithmically by the procedure given in Figure2.1.The main advantage of this method is that it only needs communications amongneighbours (which may also be asynchronous). The main disadvantage is that theconvergence can be slow (in the worst case the number of iterations needed to reacha given tolerance is O(kPk2) where kPk is the total number of processors ([52]))and the method is neither able to detect a global imbalance nor able to remedy it(see [52] for an example). It may also be noted that a processor pi essentially actssimultaneously on all its interprocessor communications channels. Even though amachine may have parallel hardware for communication, the communication willoften have to be serialised with respect to an individual processor.In order to avoid these shortcomings we consider another di�usion method, tobe called the multi-level di�usion method ([52]).2.4.2 A Multi-Level Di�usion MethodThis is basically a divide-and-conquer type of approach. Let P be the WPCG (seex2.4 for the de�nition of WPCG) at a given stage and kPk be number of processors

CHAPTER 2. ADAPTIVITY AND DYNAMIC LOAD BALANCING 41beginwhile (not converged) dofor all processors pi dofor all Ni neighbours pj of pi doif li > ljtransfer b(li � lj)=2c load from pi to pjend forend forend whileend. Figure 2.1: Di�usion method.
'
&

$
%in the set P at that stage. The change in computational load on processor pi isdenoted by li. The sum of the load increments li of all subproblems pi in the subsetPj of P is denoted by Lj. The procedure balance shown in Figure 2.2 achieves thedesired load balance. It is important to note that the bisection step in Figure 2.2means the following:- P1 \ P2 = ;,- P1 [P2 = P,- j kP1k � kP2k j � 1.It is also important to note that no assumptions on the processor topology aremade by the algorithm. Hence the user has the freedom to orient the bisection ofthe processor sets towards his/her processor topology if this is appropriate. It caneasily be seen that the average case time complexity of this algorithm is O(log kPk).The principle drawback of this algorithm is that it is not always possible to bisect aconnected graph into two connected subgraphs. Also the condition j kP1k�kP2k j �1 is too restrictive in the sense that relaxing this condition may improve the qualityof the load balancer.As a matter of fact the dynamic load balancing algorithm presented in forth-coming chapters relaxes this condition in addition to choosing the sorted version of

CHAPTER 2. ADAPTIVITY AND DYNAMIC LOAD BALANCING 42begin balance(P)if kPk = 1 then returnbisect P into P1 and P2calculate L1 and L2transfer b(L2kP1k � L1kP2k)=(kP1k+ kP2k)c load from P2 to P1balance (P1)balance (P2)end balance.Figure 2.2: Multi-level di�usion method.
'
&

$
%the Fiedler vector for the purpose of bisections.2.4.3 Dimension Exchange MethodIn [23] Cybenko shows that the basic di�usion algorithm is very slow to convergeand therefore proposes an alternative version of the algorithm known as the di-mension exchange method. This method is designed speci�cally with a hypercubearchitecture in mind.Let us �rst de�ne the edge-colouring of a graph G = (V,E). By this we meanthat the edges of G are coloured with some minimum number of colours (say k)such that no two adjoining edges are of the same colour. A dimension is thende�ned to be the collection of all edges of the same colour. Let us assume that wehave an edge-colouring of the WPCG. Then the dimension exchange method canbe described in terms of the procedure shown in Figure 2.3.Xu and Lau (see [117, 118]) have generalised the dimension exchange methodby introducing an exchange parameter and called the new method the generaliseddimension exchange method. In their paper they have also analyzed its propertiesand potential e�ciency.Unfortunately all of the above mentioned algorithms do not take into accountone important factor, namely that the data movement resulting from the load bal-ancing schedule should be kept to a minimum. Also no information is given aboutwhich elements should be transferred from one processor to another: one only cal-

CHAPTER 2. ADAPTIVITY AND DYNAMIC LOAD BALANCING 43Procedure for processor i (0 � i < kPk)beginwhile (not Terminate)for(c = 1; c � k; c++)if there is an incident edge coloured cload balance the two connected processorsend ifend forend whileend procedure.Figure 2.3: Dimension exchange method.
'
&

$
%culates the total weight to be transferred.2.5 Minimising Data MigrationThe basis of the algorithm due to Hu and Blake ([53]) is the minimisation of datamigration. Let G = (V,E) be the WPCG of the problem. Also let `i be the totalload on each processor (i.e. the weight of vertex i for i = 1; : : : ; P) and �̀ the averageload per processor. Suppose that �ij is the amount of the load that might be shiftedfrom processor i to processor j (where the corresponding vertices of the WPCGare connected by an edge, (i; j)) in order to regain the load balance across theprocessors. The following equations must clearly be satis�ed:X(i;j)2E �ij = `i � �̀ for i = 1; : : : ; kPk � 1; (2.9)where E is the set of all edges in the WPCG. (Note that if equations (2.9) aresatis�ed then it must also follow that the same equation also holds for i = kPk.)The variables �ij are directional, that is,�ij = ��ji; (2.10)representing the fact that if processor i is to send the amount �ij to processor j,then processor j is to receive the same amount (to send -�ij). Because of (2.10) we

CHAPTER 2. ADAPTIVITY AND DYNAMIC LOAD BALANCING 44Aij = 8>>>><>>>>: 1 if vertex i is the head of edge j,�1 if vertex i is the tail of edge j,0 otherwise.Figure 2.4: The matrix A.treat �ij as a variable only if i < j, for i > j we merely replace �ij by -�ji.Also note that in (2.9) we only have kPk - 1 independent equations for a total ofj E j variables. In general j E j is much larger than kPk - 1, so the system (2.9) hasin�nitely many solutions. Hu and Blake decided to choose among these solutionsone that minimises the data movement (it is important to note that there is alwaysat least one solution, even if WPCG is a linear array : ��������� : : :�����;in which case j E j = kPk - 1 so the minimisation problem does have a solution).If one writes the system (2.9) in matrix form:A x = b,where A is the kPk�1 � j E jmatrix associated with (2.9) and is given in Figure 2.4,and x and b are the vector of unknowns and the right-hand side of (2.9) respectively.Then the aforesaid minimisation problem can therefore be written mathematicallyas: minimise 1/2 xTxsubject to A x = b.It is important to observe that in the above the minimisation is taken over the L2norm rather than L1 or L1, as the computation over L2 is easier as compared tothe computations over other two norms.As shown in [53] the above is equivalent to solvingL � = b,where L is the Laplacian matrix of the WPCG and � is the vector of Lagrangemultipliers. Once we know the solution vector � then �ij = �i � �j .The idea of minimising data movement is a promising one. And the abovealgorithm does accomplish this task. But the method still does not pinpoint which

CHAPTER 2. ADAPTIVITY AND DYNAMIC LOAD BALANCING 45elements to migrate. Also there is no control over the size of the interpartitionboundary (as no provision is made in the algorithm for keeping the boundary toa minimum). A number of researchers have incorporated this idea into their ownwork. In [107] Walshaw et al. use the above method in their own quite sophisticatedalgorithm (see x2.6.2). Preliminary results reported in [107] are encouraging in thesense that the quality of the new partition is good and there is a relatively smallamount of data migration.2.6 Two Parallel Multilevel AlgorithmsIn recent years there have been a number of new multilevel algorithms which aredesigned for dynamic load balancing purposes. Of these, two such techniques calledParMETIS ([63]) and ParJOSTLE ([109]) have been implemented in parallel andreleased into the public domain (it may be noted that this work was all publishedafter the start of the research undertaken in this thesis). The general idea behindthese two algorithms (and also other multilevel algorithms) is to produce a hierarchyof coarsenings of the original weighted graph (where each level in the hierarchyis produced by merging together groups of neighbouring vertices of the graph atthe previous level), and then to perform a global partition only for the coarsestgraph. This partition is then projected onto the graph at the previous level andthen modi�ed using a local algorithm (such as [32, 65, 73]) in order to improvethe partition quality. This step of projection onto the previous level followed bylocal improvement is repeated until the original graph has been recovered, whenthe algorithm terminates. It is possible to make quite an expensive choice for theglobal partitioner (a spectral algorithm for example [47]) since it is only appliedonce and to the coarsest graph. Moreover, the technique may either be appliedto �nd a bisection of the original graph and then be repeated recursively on eachsubgraph, or it may be applied to �nd a k-way partition directly.2.6.1 ParMETISIn a series of papers ([61, 62, 63, 64, 85, 86]) Karypis et al. describe and justify theunderlying theory of their software called METIS and ParMETIS. The algorithmsin ParMETIS ([63]) are based on the multilevel partitioning and �ll-reducing or-

CHAPTER 2. ADAPTIVITY AND DYNAMIC LOAD BALANCING 46dering algorithms which are implemented in the serial package called METIS (seex1.8.3). However, ParMETIS extends the functionality provided by METIS and in-cludes routines that are especially suited for parallel computations and large scalenumerical simulations.In this parallel version the starting point is that an arbitrary weighted graphis already partitioned into k subgraphs (with an unacceptable load imbalance).The coarsening algorithm only permits vertices in the same subgraph to be mergedtogether at each level. The coarsest graph in the hierarchy can then be repartitionedquite cheaply (since it is small) before the re�nement stages begin. At each of thesere�nement stages the local transfer of some vertices is allowed to take place betweensubgroups so as to permit local improvements to the partition based upon the useof a greedy heuristic.They claim that it can quickly compute high quality repartitions of adaptivelyre�ned meshes which optimise both the number of vertices that are moved as wellas the edge-cut of the resulting partition. It may not always be possible howeverto produce a partition which satis�es a given tolerance as regard to load balancewhen working with non-uniformly weighted graphs (see Chapter 5).Also, as discussed in [55], there are numerous di�culties associated with keepingthe amount of interprocessor communication under control at the local improvementstages. In addition extensive experimentation is needed to establish the optimaldegree of coarsening and the choice of partitioning algorithm for the coarsest graph.2.6.2 ParJOSTLEIn [109] Walshaw et al. describe their own parallel multilevel method for the dy-namic partitioning of graphs. Their method introduces a new iterative optimisationtechnique, called relative gain optimisation which both balances the workload andattempts to minimise the interprocessor communication overhead. They report in[109] that the application of the algorithm to graphs corresponding to a number ofadaptively re�ned meshes leads to partitions of an equivalent, or higher quality, tothose produced by static partitioners (which of course do not start from the existingpartition) and much more quickly. They also point out that the algorithm resultsin only a small fraction of the amount of data migration compared to the staticpartitioners.

CHAPTER 2. ADAPTIVITY AND DYNAMIC LOAD BALANCING 472.7 Two Further ParadigmsWe complete this chapter with a discussion of two more algorithms concerning theapplication of dynamic load-balancing to adaptive solvers. These have been selectedbecause they both relate to the use of mesh adaptivity for the parallel solution oftime-dependent problems in three space dimensions and are hence of great practicalinterest.2.7.1 Algorithm of Oliker & BiswasIn [77] Oliker and Biswas present an important method which dynamically min-imises the amount of load imbalance which arises due to the adaptive nature of aparticular solver used to solve a given class of CFD problems on parallel machines.This appears to be the very �rst complete algorithm which can accomplish all of thetypical phases associated with such an adaptive approach; mesh adaptation, repar-titioning, processor assignments, and remapping are all done rapidly and e�cientlyso as not to cause a signi�cant overhead to the numerical simulation.For the repartitioning stage they use ParMETIS ([77]). As far as the processorassignment stage is concerned they make use of two cost functions: TotalV andMaxV. TotalV minimises the total volume of data moved along all processors, whileMaxV minimises the maximum
ow of data to or from any single processor.They �nally execute a remapping phase which is responsible for physically mov-ing data when it is reassigned to a di�erent processor. This remapping phase isfurther divided into two sub-phases: marking and subdivision. In the marking stagethe edges are simply marked for bisection (based on an error indicator). Once themarking stage is complete, the weight of the dual graph can be adjusted and basedon the new weights the load balancer may proceed in generating a new partition-ing. The newly redistributed mesh is then subdivided (and subsequently re�ned)based on the marking patterns. Since the actual re�nment is performed only afterthe subdivision stage it is believed that a relatively small amount of data must bemoved.

CHAPTER 2. ADAPTIVITY AND DYNAMIC LOAD BALANCING 482.7.2 Algorithm of Vidwans et al.In [104] Vidwans et al. present their own divide-and-conquer based algorithm de-signed to solve three-dimensional Navier-Stokes problems on unstructured meshesin parallel using adaptive techniques.The initial computational domain is partitioned among the available processors(which they assume is a power of two) by a partitioning algorithm based on theorthogonal recursive bisection method. At some later stage of the solution processwhen there is a load imbalance due to adaptivity they split the processors into twoequal groups based upon their IDs. The group with the higher load is termed as thesender group whilst the other is known as the receiver group. After that half of thedi�erence of loads is transferred from the sender group to that of the receiver group.The recursion is continue in the sense that each of the two groups at a given stageare further divided into two subgroups. The recursion is terminated when the size ofa particular group becomes 2, in which case the processors simply balance the sumof their individual loads by exchanging the loads across their common boundary.The algorithm is deterministic in the sense that recursion will terminate after logkPk steps, with kPk being the number of processors, irrespective of the amount ofimbalance and its distribution across the processors.As far as the migration of nodes (also known as cells) from the sender group tothe receiver group are concerned, they employed two di�erent approaches.� The grid-connectivity-based approach. In this approach they start with thosecells which have at least one face on the initial interprocessors boundary. Afterthat they select those cells which are neighbours of the cells selected in theprevious stage. The process is repeated until they have the desired numberof cells to be migrated. This is obviously done in \layers" starting from theoutermost layers of cells. In adapted regions a large number of layers relativelyoccupy small physical space. On the other hand in the dense region of themesh small number of layers occupy the large physical space. So this methodmay leads to jagged and long boundaries.� The coordinate-based approach. In this approach all those cells which havetheir centroids within a particular region in 3-d space are marked for migra-tion. This region is de�ned to be adjoining the interprocessors boundary. As

CHAPTER 2. ADAPTIVITY AND DYNAMIC LOAD BALANCING 49the number of cells in the region is not known a priori, the width of the re-gion has to be determined by trial-and-error approach so that it contains therequired number of cells. They say that this method is better than the grid-connectivity-based approach. This trial and error approach requires manualintervention not only for di�erent meshes, but also for a given mesh the man-ual intervention is required for ever changing boundaries of the partitions. Soa dynamic load balancing algorithm based on coordinate-based approach cannever be a robust one and also the trial and error nature of it will make thealgorithm less e�cient.Apart from improving the selection criteria for migrating cells, there are two othersteps in the algorithm which can be improved.� The restriction that at each stage the two subdomains should have samenumber of processors may reduce the quality of the mesh-partition especiallyif the mesh is non-uniform in nature. If this restriction can be relaxed in ameaningful way than this may improve the quality of the mesh-partition.� The division of a group into two groups which is based simply on the IDs ofthe processors in the original group may also reduce the quality of the load-balancer especially if this produces groups in which some of the processorsare physically unrelated from the other processors in the group.The new dynamic load balancing algorithm presented in the next chapter uses thisphilosophy of Vidwans et al. together with a signi�cant number of improvements.There, the two subgroups are not required to have the same number of processorsand the division of a given group into two groups is not simply based on the IDs ofthe processors present in the group. Instead a sorted version of the Fiedler vectoris used for the purpose of bisection. Also a gain-based approach (see Chapter 3) isused as the basis for the purpose of migrating cells.Experimentation shows that these three steps improve the quality of the newpartitioner, especially in the case where the underlying mesh is of a non-uniformnature (i.e. in some region of the mesh the elements are much �ner and in otherparts of the region they are relatively coarse).

Chapter 3A New Dynamic Load BalancerAs discussed in x1.4 an e�cient and e�ective way to solve a large transient problemnumerically is to use the FEM (or �nite volume method) on an adapting unstruc-tured mesh. Frequently the size of the problem is so large that it can also beadvantageous to solve such a problem on a parallel machine. Quite often, in thecase where a shock, or similar solution feature, is moving from one part of thedomain to another as time goes by (see x2.3), e�ective adaptivity will be achievedby re�ning the mesh ahead of the shock and coarsening the mesh behind it. Thisbasically involves adding points to the existing grid in regions where some errorindicator is high, and removing points from regions where it is low. On a parallelarchitecture, where the mesh has been partitioned in some way, this in turn leadsto a problem of load-imbalance.As mentioned in Chapter 2 there are various general purpose load balancingalgorithms for minimising load imbalance of a partition. However, they do notalways produce satisfactory results for the above adaptive situation. The di�usionalgorithm is very good as far as local improvement is concerned but is extremelyslow in terms of global improvement. The multilevel algorithms are designed toimprove the global rate of convergence but, due to the coarsening step built intothe algorithm, are not always able to produce a repartitioning of the mesh whichis below a given tolerance for the load-imbalance. For this reason we claim thatthere is a need for some sort of hybrid algorithm which combines the best features ofexisting techniques so that the load-imbalance may be reduced to an acceptable levelwithout increasing the cut-weight (the cut-weight is being de�ned as the sum of theweights of all those edges in the weighted dual graph (see x2.3 for the de�nition of the50

CHAPTER 3. A NEW DYNAMIC LOAD BALANCER 51weighted dual graph) which cross between two di�erent subdomains) substantially.In what follows we present a serial version of such an algorithm (improved parallelversions are described in the next two chapters).3.1 Motivation of the AlgorithmAs mentioned in x2.7.2, the new dynamic load balancing algorithm whose serialversion is being presented below, and whose parallel versions will be presented in thenext two chapters, uses the philosophy of Vidwans et al. together with a signi�cantnumber of modi�cations. Here, the two subgroups are not required to have thesame number of processors and the division of a given group into two groups is notsimply based on the IDs of the processors present in the group. Instead we use asorted version of the Fiedler vector for the purpose of bisection. We also use theconcept of gain density (see x3.2.2) as the basis for the purpose of migrating cells.In order to demonstrate the fact that these modi�cations do improve the algorithmwe also implemented a serial version of the original parallel algorithm of Vidwanset al. ([104]) which uses the grid-connectivity-based approach.Experimentation (see x3.5) shows that these modi�cations do improve the qual-ity of the new partition, in the sense that the New algorithm consistently producesbetter results than those produced by the serial version of the Vidwans et al. algo-rithm as far as the parameters MaxImb and CutWt (see x3.5) are concerned.3.2 Description of the AlgorithmLet us assume for the sake of simplicity that we are required to solve a givenpartial di�erential equation on a 2-d domain subject to given boundary and/orinitial conditions. Also suppose that there is a 2-d mesh of triangles which coversthis domain. As the problem is computationally extensive we would like to use aparallel solver. So the �rst step in this direction is to partition the mesh into anumber of subdomains.Let us suppose the parallel solver assumes that each subdomain is assigned toa single processor of a parallel machine and that all the processors are identical(i.e. we do not consider here, the possibility of a parallel machine consisting ofheterogeneous components). We assume that this partition is slightly unbalanced

CHAPTER 3. A NEW DYNAMIC LOAD BALANCER 52(but has a reasonably low cut weight) and our job is to balance it dynamically. Wewish to do this without re-partitioning the entire mesh from scratch and so we lookfor a more local approach. This method is described in what follows.3.2.1 Group BalancingIn this chapter we are interested in those cases where there is a root (also calledcoarse) and a computational (also called �ne) mesh where the latter is a re�nementof the former. Suppose there are P processors involved and we have a coarse meshwhich is already distributed across these processors (or the mesh may itself begenerated on these processors in parallel). We de�ne the weight of a coarse elementto be the number of �ne elements inside the coarse element and the weight of acoarse edge to be the number of �ne mesh edges along the coarse element edge.From now onwards, by a node we shall mean a node of the weighted dual graph(see x2.3) of the coarse mesh (i.e. a coarse element).Let us recall from x2.4 the de�nition of the Weighted Partition CommunicationGraph (WPCG) which represents the face adjacency of the partitions in the system(processors that share at least one edge of a coarse element with a given processorare said to be face adjacent to that processor): A WPCG is obtained by havingone vertex for every subdomain in the partition and an edge between two verticesif and only if they are face adjacent to each other. The weight wNi of the ith vertexis equal to the sum of weights of all coarse elements on the ith processor (whichis the same as the total number of \�ne" elements on the ith processor) and theweight wEij of the edge connecting the ith and jth processors is equal to the sum ofweights of all coarse element edges on the interpartition boundary between the twoprocessors.We �rst divide the WPCG into two groups either by using processor IDs asin [104] or by using some other bisection method. In fact, we choose to use aweighted version of the method of spectral bisection (see [47]). This method is oftenconsidered to be computationally expensive, however it does perform better thanmost algorithms in minimising the cut-weight. Also the computational expense isnot problematic for the WPCG as the number of processors in the system is alwaysassumed to be small compared to the number of coarse elements in the mesh.As explained in [51] and also in Chapter 2, the partitioning vector x is given by

CHAPTER 3. A NEW DYNAMIC LOAD BALANCER 53xi = u2i=pwNi, where u2 is the Fiedler vector of the matrix S = DTLD, L is theweighted Laplacian matrix of the WPCG and D = diag� 1pwNi �.The groups are de�ned by sorting the P vertices of the WPCG according to thesize of their entry in x and placing elements represented by x0i: i = 1 : : : n in onegroup (with x0 being the sorted vector) and those by x0i: i = n + 1; : : : ; P in theother, with n chosen so that ������ nXi=1w0Ni � PXi=n+1w0Ni������is as small as possible (where w0Ni is the weight of the vertex represented by x0i).These groups are called Group1 and Group2 respectively. Ideally we would likeeach group to contain the same number of processors and an equal total weight,but this may not be possible due to large variations in the weights when a meshis locally re�ned and the fact that P need not be even. However the cut weightresulting from this bisection is generally relatively small. The group with the higheraverage load per processor is termed as the larger group and the other one is calledthe smaller group. In the second stage of the algorithm we try to use the idea oflocal migration from the \larger" to the \smaller" group so that after migrationeach group contains approximately the same average weight per processor withoutthere being a signi�cant increase in the cut-weight.3.2.2 Local MigrationAs mentioned above the groups formed in the last section may not be ideally bal-anced. To balance them we now migrate nodes from the \larger" to the \smaller"group. There are many ways to do this. Due to the non-linear complexity of theKernighan and Lin algorithm ([65]) we decided to apply the ideas of Fiduccia andMattheyses ([32]) who have suggested an algorithm for the same purpose but whosecomplexity is linear.For obvious reason the \larger" group is called the Sender and the \smaller"group is called Receiver group respectively. The quantity Migtot stands for totalweights of all the nodes which are to be migrated from the Sender to the Receivergroup in order to leave them perfectly balanced.Let N1 and N2 be the number of processors in Group1 and Group2 respectively.Also let Ave be the average weight per processor in the WPCG and Ave1 & Ave2

CHAPTER 3. A NEW DYNAMIC LOAD BALANCER 54if(Ave1 � Ave2)fSender = Group2;Receiver = Group1;Migtot = N2 � (Ave2�Ave);gelsef Sender = Group1;Receiver = Group2;Migtot = N1 � (Ave1�Ave);g
'
&

$
%Figure 3.1: Calculation of Sender, Receiver and Migtot:are the average weights per processor in Group1 and Group2 respectively. Thecalculation of Sender, Receiver and Migtot is shown in Figure 3.1 below.Note that if we transfer a set of nodes from Sender to Receiver whose combinedweight is nearly or exactly equal to Migtot then after the transferring process theaverage weights of both the groups will be equal to that of global average Ave, i.e.the two groups will be load balanced. The next issue which must be addressedis that of how much load from which processors in the Sender group should betransferred to which processors in the Receiver group. There are many possibleways of tackling this. Our choice is closely related to that of Vidwans et al. ([104]).Following [104] we de�ne the concept of candidate processors. Processors in eachgroup that are face-adjacent to at least one processor in the other group are calledcandidate processors. We only allow the candidate processors to be involved in theactual migration of nodes from Sender to Receiver. Let Ntot be the total weights onall candidate processors of the Sender group. Then if the ith candidate processorin the Sender group is face adjacent to more than one candidate processor in theReceiver group we migrate nodes to that candidate processor in the Receiver groupwhich has the least weight. The amount of load shifted from ith candidate processorin Sender group is denoted by Migi and is given by,Migi = � NiNtot� �Migtot; (3.1)where Ni is the total weight of the ith candidate processor in the Sender group.Now that we know how much to transfer and where to transfer, all that remains to

CHAPTER 3. A NEW DYNAMIC LOAD BALANCER 55gain(k) = X(k;l)8>>>><>>>>: wEkl if l 2 jth processor,�wEkl if l 2 ith processor,0 otherwise.'& $%Figure 3.2: The calculation of gain.be decided is which nodes of the weighted dual graph (i.e. coarse elements) shouldactually be transferred. This is naturally accomplished by aiming to transfer thosenodes which result in a new cut weight which is as low as possible.The fundamental idea behind the algorithm for transferring these nodes whichminimise the cut-weight is the concept of the gain and gain density associated withmoving a node onto a di�erent processor. De�ne the gain(k) of node k to be the netreduction in the cost of cut edges that would result if node k were to migrate fromith candidate processor in the Sender group to the jth candidate processor in theReceiver group. The calculation of gain(k) is shown in Figure 3.2. It is importantto observe that in calculating the gain of a node k the sum is taken over all edgeswhich have node k at one end. The gain density of a node is de�ned as the gain ofthe node divided by the weight of the node. It may also be pointed out here that wealso calculate the gain densities of all the nodes of the jth processor in the Receivergroup (by de�nition the gain of a node in jth processor is the net reduction in thecost of cut edges that would result if the node were to migrate from jth processor tothe ith processor) as these densities are required in the x3.3 below where we movenodes around between the i; j processor pair to further minimise the number of cutedges whilst retaining the load balance.The bulk of the work needed to make a move consists of selecting the base node(a node which is about to be shifted from one processor to another processor is calleda base node), moving it, and then updating the gain densities of its neighbouringnodes. We solve the �rst problem, that of selecting a base node, by choosing thenode with the largest gain density on the ith processor and whose weight is lessthan or equal to Migi. We shift the node to the jth processor and update the gaindensities of its neighbouring nodes (observe that in general the node k will havethree neighbours when we have two-dimensional domains and four neighbours whenwe have three-dimensional domains) by the logic explained in Figure 3.3 below,

CHAPTER 3. A NEW DYNAMIC LOAD BALANCER 56For each nk which is a neighbour of the node k fLet pk be the processor to which nk belongs;if (pk == j) thendecrement gain(nk) by 2*wEnkk ;�nd the new gain density of the node nk;else if(pk == i) thenincrement gain(nk) by 2*wEnkk ;�nd the new gain density of the node nk;elseincrement the edges cut between pk and j by wEnkk ;decrement the edges cut between pk and i by wEnkk ;gchange the sign of gain(k);
'
&

$
%Figure 3.3: Updation of gain densities and edges cut between the processors.which also update the cut weights between the processors which are a�ected by themove. Observe that, if the gain density associated with the base node is positive,then making that move will not only make the groups closer to load-balance butit will also reduce the total cost of the edges cut in between the two processorsinvolved, and hence between the processors groups. The above logic is repeated forall possible candidate processors in the Sender group.Now we are in a position to present version one of our group balancing algorithm.The main three steps of this version of the algorithm are summarised in Figure 3.4.3.3 Further Re�nement of the Algorithm : Lo-cally Improving the Partition QualityThroughout this discussion our purpose is to load-balance the two groups, minimisethe edge cut-weight between the two groups, and keep migration local and as smallas possible. In order to further minimise the edge cut-weight between the two groupswe apply a local re�nement strategy to each processor pair, after the pair containsthe desired weights. For this purpose we use ideas similar to those of Hendrickson

CHAPTER 3. A NEW DYNAMIC LOAD BALANCER 57Until(there are no unprocessed candidate processors in Sender group)fUntil(required load is transferred from processor i to processor j)fCalculate gain densities;Move a node of highest possible gain density from ith processorto jth processor;Update gain densities and other variables of interests;gg
'
&

$
%Figure 3.4: Initial version of load balancing of the two groups.and Leland([46]). This section describes the approach in detail.Once the desired loadMigi has been moved from the ith processor in the Sendergroup to the jth processor in the Receiver group it may still be possible to movenodes around between the i; j processor pair to further minimise the number ofcut edges whilst retaining the load balance. We start with the current state ofthe two processors and save this state as a best-state so far achieved. We nowmove nodes between processors i and j in such a way that the absolute value of thedi�erence in the weights between the two remains below a certain tolerance (e.g.below some fraction of the maximum weight of a node on either processor or belowa �xed percentage of the combined weight of the two processors involved). Eachtime we pick a node of highest gain density, but we also allow the gain densities tobe negative for a while in an attempt to avoid local minima traps. The algorithm inFigure 3.5 fully describes this strategy. The algorithm consists of two nested loops.The inner loop presides over a sequence of moves of nodes from one processor toanother. The outer loop continues allowing attempted sequences until no furtherimprovement is detected. To avoid thrashing we insist that a node may be movedat most once within the inner loop.When a node is moved, it is locked and the gain densities of all its neighboursare modi�ed. Then another move is selected and the process is repeated. The bestpartition that is encountered in this sequence is recorded and the data is moved intothat con�guration prior to the start of the next inner loop. In practice, the numberof times the outer loop is executed tends to be quite small. The termination criteriaused in the inner loop is simply to run the loop for a speci�ed number of times (e.g.

CHAPTER 3. A NEW DYNAMIC LOAD BALANCER 58Improvement := True;Calculate all initial gain densities;While(Improvement)fImprovement := False;Unlock all the nodes;Best Partition := Current Partition;While(Termination criteria is not reached)fSelect node to move;Perform the move and lock the node;Update the gain densities of the moved node and all its neighbours;If(Current Partition is better than Best Partition)fBest Partition := Current Partition;Improvement := True;ggCurrent Partition := Best Partition;g

'

&

$

%Figure 3.5: An algorithm for re�ning the partitions between a pair of processors.25 percent of the total number of nodes involved).We end this section with Figure 3.6 which describes version two of the algorithmto balanced the two groups of processors in such a way that the cut weight betweenthem is as small as possible.3.4 Global Load-Balancing Strategy: Divide andConquer ApproachOnce the algorithm of x3.3 has been applied to the two processors groups they willhave approximately equal average weights. Hence, it is now possible to recursivelyapply the above technique to each of these two groups of processors in turn to bisectand then load balance them. This recursion will terminate when a group has lessthan three processors. In the case of a singleton group no action is required. For

CHAPTER 3. A NEW DYNAMIC LOAD BALANCER 59Until(there are no unprocessed candidate processors in Sender group)fUntil(required load is transferred from processor i to processor j)fCalculate gain densities;Move a node of highest possible gain density from ith processor tojth processor;Update gain densities and other variables of interest;gApply the local re�nement technique of the algorithm of Figure 3.5;g
'
&

$
%Figure 3.6: Group-balancing algorithm: version two of load balancing of the twogroups.a group consisting of two processors we simply divide the group into two singletongroups (the processor containing the larger weight is the Sender and the otherprocessor forms the Receiver) and try to load balance them by using the algorithmof Figure 3.6. This divide and conquer algorithm is fully described in Figure 3.7and discussed below.To implement the above divide and conquer philosophy we make use of two stackdata structures called Lower and Upper, controlled by a variable called Top. Wealso use an array called Index. At each stage of the recursion the entries of the Indexbetween two given positions represent the identities of processors involved at thatstage of the recursion in the order in which they appear in the sorted version of thelast Fiedler vector. In fact these sets of processors will be divided into two groupsfor further load balancing. The two given positions are in fact the top entries of thetwo stacks Lower and Upper respectively and are called Left and Right respectively.We initially push 0 to Lower and P-1 to Upper (since we follow the convention ofnumbering the P processors from 0,1,2, . . . ,P-1). Also, initially the ith entry ofIndex is equal to i, so at any stage of the algorithm the entries of Index are simplythe re-arrangement of the integers 0,1, . . . ,P-1.At each stage of the algorithm we pop one value from Lower and one value fromUpper. Based upon these values we pick that group of processors from the arrayIndex which lie in between the two given positions. We then form the weightedLaplacian matrix and calculate the corresponding Fiedler vector. Based upon the

CHAPTER 3. A NEW DYNAMIC LOAD BALANCER 60sorted version of this Fiedler vector we divide the group into two as explained inx3.2.1. After that we load balance them as described in the algorithm of Figure 3.6.We also shu�e the corresponding entries of the Index array based on the sortedFiedler vector. After this we push the starting positions of the two groups in thearray Index on to the stack Lower and ending positions on to the stack Upper andupdate the variable Top. This logic is repeated until the two stacks become empty(i.e. we stop when Top becomes null).3.5 ExamplesIn this section we present some numerical examples in which we compare new resultswith the results produced by the serial version of the Vidwans et al. (as mentionedin x3.1), Chaco ([48]) and JOSTLE Version-2 ([108]) algorithms (we are not ableto use the METIS algorithm in this chapter as it does not provide the facility ofimproving a given partition serially (however, the parallel version of the METISalgorithm is tested against our parallel implementation in Chapter 5)). In thecase of the Chaco algorithm we apply the Kernighan-Lin option after reading inthe existing partition (and graph). The REFINE PARTITION parameter in theChaco algorithm controls number of sweeps which are made through the pairs ofsubgraphs with a non-zero common boundary in order to improve the partition oncethe Kernighan-Lin option is invoked. For our application we found that a value of20 is reasonable.As mentioned in x3.3, in our algorithm we move nodes between a pair of pro-cessors as long as the absolute value of the di�erence in the weights between themremains below a certain tolerance known as Tol. We take Tol as a percentage of thecombined weight of the two processors involved. For the sake of uniformity we tryto present the results for two di�erent values of Tol. These values are respectively1% and 2% of the combined weight of the two processors involved. In some par-ticular cases we have also experimented with more than 2 values of the parameterTol. The maximum imbalance in a group is denoted by MaxImb and is de�ned by,MaxImb = ((Max - Ave) / Ave) * 100,where Max represents the weight of the heaviest processor in the group and Ave isthe average weight of a processor in the group (so MaxImb is the largest percent-age by which the total weight on any single processor exceeds the average weight

CHAPTER 3. A NEW DYNAMIC LOAD BALANCER 61Top = 0;Lower[Top] = 0;Upper[Top] = P - 1;Increment Top;Index[i] = i; for i = 0, 1, . . . , P-1;while(Top)Decrement Top;Left = Lower[Top];Right = Upper[Top];if(Left == Right) continue;if(Right == 1 + Left)weight1 = weight of processor Index[Right];weight2 = weight of processor Index[Left];if(weight1 � weight2)Sender = Index[Left]; Receiver = Index[Right];else Sender = Index[Right]; Receiver = Index[Left];Apply the Group Balancing algorithm of Figure 3.6;continue;Find the Weighted Laplacian L and Diagonal Matrix D of the groupfIndex[Left], . . . ,Index[Right]g;Based on Sorted form of the scaled version of the Fiedler vector dividethe group into two subgroups and update the array Index;Determine the Sender & Receiver group;Apply the Group Balancing algorithm of Figure 3.6 to this pair ofgroups;Push the left side of Sender on Lower stack;Push the right side of Sender on Upper stack;Increment the variable Top;Push the left side of Receiver on Lower stack;Push the right side of Receiver on Upper stack;Increment the variable Top;continue.

'

&

$

%Figure 3.7: A divide & conquer type dynamic load-balancing algorithm.

CHAPTER 3. A NEW DYNAMIC LOAD BALANCER 62per processor). Also, CutWt stands for the cut-weight (let us recall from the be-ginning of the chapter that the cut-weight is de�ned as the sum of the weights ofall those edges in the weighted dual graph which are cross between two di�erentsubdomains).A group is only divided into two subgroups if the maximum imbalance MaxImbin the group is larger than a �xed percentage, say Tol2 (again unless stated otherwiseTol2 is taken to be �xed; at 3%). Finally, in the process of �nding an optimalpartitioning we allowed the swapping of at most 25% of the combined total numberof nodes of the current i; j processor pair (as de�ned in x3.3) of the group involved.Example 1. Here we consider a mesh of 161 coarse elements, for which the dual graphhas 161 nodes and 217 edges (see Figure 3.8 for the corresponding coarse mesh).The element weights are assigned randomly in the range of 100 to 200 and the edgeweights are also assigned randomly in the range of 10 to 150. Initially the dualgraph is arbitrarily partitioned into eight subgraphs. Initial and �nal partitionsproduced by our algorithm and some associated features of these partitions areshown in Table 3.1. The total weights (i.e. the number of �ne elements) of all thecoarse elements is 23950, so the average weight per processor comes out to be 2994.Observe there is a di�erence in weights of 2070 between the processors with themaximum and minimum loads.We also apply the Vidwans et al., Chaco and JOSTLE algorithms to the initialpartition and the results are summarised in Table 3.2. The initial value of MaxImbis 39.6% and of CutWt is 1730. It is important to observe that in all cases (excludingthe Vidwans et al. algorithm) not only that we have a reduction in the MaxImb butwe also have a reduction in the CutWt. The reduction in both of these parametersis not surprising as the initial partitioning was totally arbitrary. With Tol = 1% theNew algorithm is able to reduce the MaxImb from 39.6% to 2.9% while with Tol =2% MaxImb has been reduced only to 4.6%. The �nal values of Cut-weighs are 1380for Tol = 1% and 1270 for Tol = 2%. When we use the Chaco algorithm the CutWtdecreases to 1030 while the MaxImb reduces to 4.6%. When we apply the JOSTLEalgorithm to the above initial partitioning the MaxImb is reduced to 8.2% only andthe CutWt is reduced to only 1560. In the case of the Vidwans et al. algorithmthe CutWt has increased by an amount of 400 (which is not surprising) while theMaxImb is reduced to 2.2%. In this case the Vidwans et al. algorithm produces a

CHAPTER 3. A NEW DYNAMIC LOAD BALANCER 63

Figure 3.8: The coarse mesh of Example 1.�nal partition with a least value of MaxImb whereas the Chaco algorithm producesa �nal partition with least amount of CutWt.Example 2. Here we consider a mesh (see Figure 3.9 for the corresponding coarsemesh) which is generated by the method of Hodgson and Jimack ([51]) in parallelusing 8 processors (Domain 1, Test 4 (\L-Shaped" geometry)). The initial and �nalsituations are shown in Table 3.3. The total vertex weight is 836183, so that theaverage load of a processor is 104523. The initial value of MaxImb is 7.8% and thatof CutWt is 3854. We apply our New algorithm to this moderately unbalancedpartition for three di�erent values of tolerance (Tol) namely 1% , 2%, and 4% ofthe combined weight of the two processors involved at each stage. Now the outcomewas di�erent for 1% and 2%, but the results for a tolerance of 4% were identical tothose of 2%. We also apply the Vidwans et al., Chaco and JOSTLE algorithms tothe above initial partitioning and the results are summarised in Table 3.4.It is interesting to observe that the �nal partition produced by the JOSTLEalgorithm has smallest value of MaxImb (which is 2.4%) but the corresponding valueof CutWt (which is 4087) is the second highest (the highest CutWt is produced by

CHAPTER 3. A NEW DYNAMIC LOAD BALANCER 64Coarse mesh : 161 elementsFinal mesh : 23950 elementsAverage load : 2994 �ne elementsProc. Processor Load Processor Load Processor LoadId. (initial) (�nal Tol = 1%) (�nal Tol = 2%)�ne % imb. coarse �ne % imb. coarse �ne % imb. coarse0 3060 2.2 21 2970 -0.8 20 3060 2.2 211 2800 -6.5 19 2950 -1.5 20 3120 4.2 212 2220 -25.8 15 2970 -0.8 20 2990 -0.1 203 4180 39.6 29 3040 1.5 21 2910 -2.8 204 2660 -11.1 18 2950 -1.5 20 2800 -6.5 195 3040 1.5 20 3080 2.9 21 3070 2.5 216 2110 -29.5 14 2970 -0.8 19 3130 4.6 207 3880 29.6 25 3020 0.9 20 2870 -4.1 19Table 3.1: Partition generated in parallel on 8 processors along with our �nal par-titions for Example 1. MaxImb Largest Smallest CutWtpartition partitionInitial result 39.6% 3 (4180) 6 (2110) 1730New result (Tol = 1%) 2.9% 5 (3080) 1 (2950) 1380New result (Tol = 2%) 4.6% 6 (3130) 4 (2800) 1270Vidwans et al. result 2.2% 0 (3060) 2 (2950) 2130Chaco result 4.6% 6 (3130) 5 (2940) 1030JOSTLE result 8.2% 1 (3240) 6 (2680) 1560Table 3.2: Summary of results when the New, Vidwans et al., Chaco and JOSTLEalgorithms are applied to the initial partition (see Table 3.1) of Example 1.

CHAPTER 3. A NEW DYNAMIC LOAD BALANCER 65

Figure 3.9: The coarse mesh of Example 2.the Vidwans et al. algorithm which is 4999 where the value of MaxImb is 3.7%)as compared to other �nal partitions. On the other hand in the case of the Chacoalgorithm, the value of MaxImb (which is 4.5%) is the highest as compared to other�nal partitions but the corresponding value of CutWt (which is 3517) is the smallestas compared to other �nal partitions. The result produced by the New algorithmare in between these two extremes. Our algorithm produces a �nal partition inwhich the value of MaxImb is 3.2% with the corresponding value of CutWt (withTol as 2%) being 3857.Example 3. Here we consider the same mesh as in Example 2, which is generated bythe method of Hodgson and Jimack ([51]) in parallel using 8 processors. Unlike inthe previous example however the weights correspond to the number of �ne verticesgenerated inside each coarse element and subdomain rather than the number of �neelements. Characteristics of both the initial as well as the �nal partitions (producedby the New algorithm) are shown in Table 3.5. The combined total vertex weightis 468495, so that the average load per processor is 58562. The di�erence in weightbetween the processors with the maximum and minimum loads is 12637. In order

CHAPTER 3. A NEW DYNAMIC LOAD BALANCER 66Coarse mesh : 1354 elementsFinal mesh : 836183 elementsAverage load : 104523 �ne elementsProc. Processor Load Processor Load Processor LoadId. (initial) (�nal Tol = 1%) (�nal Tol = 2%)�ne % imb. coarse �ne % imb. coarse �ne % imb. coarse0 103430 -1.0 52 103430 -1.0 52 103430 -1.0 521 98476 -5.8 607 106240 1.6 621 106240 1.6 6212 105313 0.8 274 107850 3.2 325 107850 3.2 3253 98017 -6.2 20 103854 -0.6 17 103854 -0.6 174 112686 7.8 20 106394 1.8 18 106394 1.8 185 104230 -0.3 305 102846 -1.6 246 102846 -1.6 2466 105677 1.1 18 104821 0.3 19 100306 -4.0 187 108354 3.7 58 100748 -3.6 56 105263 0.7 57Table 3.3: Partition generated in parallel on 8 processors along with our �nal par-titions for Example 2. MaxImb Largest Smallest CutWtpartition partitionInitial result 7.8% 4 (112686) 3 (98017) 3854New result (Tol = 1%) 3.2% 2 (107850) 7 (100748) 3900New result (Tol = 2%) 3.2% 2 (107850) 6 (100306) 3857Vidwans et al. result 3.7% 1 (108432) 6 (97659) 4999Chaco result 4.5% 2 (109204) 3 (99651) 3517JOSTLE result 2.4% 5 (107093) 3 (101665) 4087Table 3.4: Summary of results when the New, Vidwans et al., Chaco and JOSTLEalgorithms are applied to the initial partition (see Table 3.3) of Example 2.

CHAPTER 3. A NEW DYNAMIC LOAD BALANCER 67to further judge the New algorithm we also use the Vidwans et al., Chaco andJOSTLE algorithms and the results are summarised in Table 3.6.As is clear from Table 3.6, the initial value of MaxImb is 9.7% and that of CutWtis 3854. When the New algorithm is used with Tol = 1% the value of MaxImbreduced from 9.7% to 2.6% with a negligible increase in the value of CutWt. Whenthe value of Tol is increased to 2% we see a deterioration in both the values ofMaxImb as well as CutWt. When the value of Tol is further increased to 4%then the new partition is better in terms of CutWt but the value of MaxImb hasgone up. The �nal partition produced by the Chaco algorithm has a value of3.0% for the parameter MaxImb and a value of 3635 for the parameter CutWt.The corresponding values in the case of the JOSTLE algorithm are 2.7% and 3577respectively. Overall the partition produced by the JOSTLE algorithm for thisexample is superior to the partitions produced by other tools. The values of theparameters MaxImb and CutWt are 5.5% and 4842 respectively in the �nal partitionproduced by the Vidwans et al. algorithm which are the highest as compared to thecorresponding values produced by the other algorithms.Example 4. Here we consider another mesh which is also generated by the methodof Hodgson and Jimack ([51]) in parallel; this time using 16 processors. The geom-etry used is the \Texas" domain taken from PLTMG [5] (see Figure 3.10 for thecorresponding coarse mesh). The initial and �nal situations are shown in Table3.7. The combined load is 446151, so that the average load of a processor is 27884.We applied the New algorithm to this unbalanced partition for di�erent values oftolerance (Tol) but the results were identical in each case. We also apply the Vid-wans et al. and JOSTLE algorithms to the above initial partitioning and the resultsare summarised in Table 3.8. We are unable to compare our result with the resultproduced by the Chaco algorithm, as the option we choose to use in the Chacoalgorithm, only supports 8 or less subdomains ([48, Subsection 4.4]).As is clear from the Table 3.8, the initial value of MaxImb is 5.0% and thatof CutWt is 4869. It is interesting to observe that the �nal partition produced bythe Vidwans et al. algorithm has smallest value of MaxImb (which is 1.5%) but thecorresponding value of CutWt (which is 5435) is the highest as compared to other�nal partitions. The common features of other tools are that we have reduction notonly in the value of MaxImb but also in the value of CutWt. In these cases the new

CHAPTER 3. A NEW DYNAMIC LOAD BALANCER 68Coarse mesh : 1354 elementsFinal mesh : 468495 verticesAverage load : 58562 �ne verticesProc. Processor Load Processor Load Processor LoadId. (initial) (�nal Tol = 1%) (�nal Tol = 2%)�ne % imb. coarse �ne % imb. coarse �ne % imb. coarse0 56570 -3.4 52 58264 -0.5 54 58264 -0.5 541 64255 9.7 607 58915 0.6 593 58915 0.6 5932 61427 4.9 274 59512 1.6 276 56634 -3.3 2763 51618 -11.9 20 57292 -2.2 33 60170 2.7 334 59344 1.3 20 58524 -0.1 20 58524 -0.1 205 61320 4.7 305 60057 2.6 297 60057 2.6 2976 55598 -5.1 18 56418 -3.7 18 56418 -3.7 187 58363 -0.3 58 59513 1.6 63 59513 1.6 63Table 3.5: Partition generated in parallel on 8 processors along with our �nal par-titions for Example 3. MaxImb Largest Smallest CutWtpartition partitionInitial result 9.7% 1 (64255) 3 (51618) 3854New result (Tol = 1%) 2.6% 5 (60057) 6 (56418) 3855New result (Tol = 2%) 2.8% 3 (60170) 6 (56418) 3928New result (Tol = 4%) 5.1% 2 (61540) 3 (55264) 3782Vidwans et al. result 5.5% 2 (61795) 3 (55150) 4842Chaco result 3.0% 2 (60332) 6 (55472) 3635JOSTLE result 2.7% 6 (60138) 4 (56289) 3577Table 3.6: Summary of results when the New, Vidwans et al., Chaco and JOSTLEalgorithms are applied to the initial partition (see Table 3.5) of Example 3.

CHAPTER 3. A NEW DYNAMIC LOAD BALANCER 69

Figure 3.10: The coarse \Texas" mesh of Example 4.values of MaxImb are similar but the CutWt produced by the JOSTLE algorithmis better than the corresponding value of CutWt produced by the other algorithms.Example 5. In this example the coarse mesh consists of 5184 tetrahedral elementsand corresponds to a discretisation of a 3-d space. This space is the union of twotouching cuboids as used in [88, 93]. To simulate the shock wave di�raction aroundthe 3-d right-angled corner formed between the cuboids, Selwood and Berzins em-ploy a parallel adaptive Euler solver ([87]). We will return to this problem again inChapter 5 where it will be discussed in much more detail.Figures 3.11 and 3.12 illustrate how the mesh, which is distributed among 8processors, adapts to the solution as the shock progresses through the domain. Itis clear that although a partition of the mesh for the initial condition may be good,it is unlikely to remain so as the solution develops (as a matter of fact after 240time steps an imbalance of 27.8% emerged) and thus dynamic load-balancing ofthe distributed data will be required. After 240 time steps there were 23274 �neelements in the mesh and the cut weight was 1332. We apply the New algorithmand partitions before and after the load balancing is shown in Table 3.9. We also use

CHAPTER 3. A NEW DYNAMIC LOAD BALANCER 70Coarse mesh : 1331 elementsFinal mesh : 446151 elementsAverage load : 27884 �ne elementsProc. Processor Load Processor Load Processor LoadId. (initial) (�nal Tol = 1%) (�nal Tol = 2%)�ne % imb. coarse �ne % imb. coarse �ne % imb. coarse0 27985 0.4 94 27985 0.4 94 27985 0.4 941 28572 2.5 95 28572 2.5 95 28572 2.5 952 27536 -1.2 78 26765 -4.0 76 26765 -4.0 763 28238 1.3 89 27877 0.0 89 27877 0.0 894 29284 5.0 115 28287 1.4 112 28287 1.4 1125 28310 1.5 86 27708 -0.6 85 27708 -0.6 856 27903 0.1 91 28494 2.2 91 28494 2.2 917 27886 0.0 88 27892 0.0 88 27892 0.0 888 28282 1.4 76 28282 1.4 76 28282 1.4 769 28036 0.5 69 28036 0.5 69 28036 0.5 6910 26831 -3.8 71 26831 -3.8 71 26831 -3.8 7111 26548 -4.8 72 28064 0.6 76 28064 0.6 7612 28310 1.5 76 28310 1.5 76 28310 1.5 7613 27737 -0.5 64 27737 -0.5 64 27737 -0.5 6414 27625 -0.9 85 27625 -0.9 85 27625 -0.9 8515 27068 -2.9 82 27686 -0.7 84 27686 -0.7 84Table 3.7: Partition generated in parallel on 16 processors along with our �nalpartitions for Example 4. MaxImb Largest Smallest CutWtpartition partitionInitial result 5.0% 4 (29284) 11 (26548) 4869New result (Tol = 1%) 2.5% 1 (28572) 2 (26765) 4666New result (Tol = 2%) 2.5% 1 (28572) 2 (26765) 4666Vidwans et al. result 1.5% 12 (28310) 5 (27120) 5435JOSTLE result 2.4% 7 (28578) 1 (26906) 4064Table 3.8: Summary of results when the New, Vidwans et al. and JOSTLE algo-rithms are applied to the initial partition (see Table 3.7) of Example 4.

CHAPTER 3. A NEW DYNAMIC LOAD BALANCER 71the Vidwans et al., Chaco and JOSTLE algorithms and the results are summarisedin Table 3.10.As is clear from Table 3.10 the Chaco algorithm produces a �nal partition inwhich the value of MaxImb is smallest and the Vidwans et al. algorithm produces a�nal partition in which the value of of CutWt is highest. The least value of CutWt isenjoyed by the JOSTLE algorithm. The New algorithm produces the �nal partitionsin which the values of MaxImb and CutWt are 2.5% and 1344 respectively when Tolis 1% and the values of these parameters are 4.7% and 1336 in the case of Tol being2%. Again observe the a�ect of Tol on these parameters. As Tol increases so doesMaxImb. But on the other hand the value of CutWt decreases as Tol increases.Example 6. The underlying geometry of this problem is the same as that of previousexample, but the initial coarse mesh is bigger. Here the coarse mesh consists of34560 elements. At a certain time after applying the adaptive step of the solver,the maximum imbalance grew to 30.5%. To reduce this maximum imbalance amongthe processors the dynamic load balance algorithm is applied. Table 3.11 shows boththe partition before, as well as after the application of the algorithm. We also usethe Vidwans et al., Chaco and JOSTLE algorithms and the results are summarisedin Table 3.12.It is clear from Table 3.12 that the initial values of the parameters MaxImband CutWt are 30.5% and 3710 respectively. Just like Example 4, we apply theNew algorithm to this unbalanced partition for di�erent values of tolerance (Tol)but here the results were identical in each case. The partition produced by theChaco algorithm has the best �nal value of MaxImb and the partition producedby the Vidwans et al. algorithm has the worst �nal value of CutWt. In the caseof the JOSTLE algorithm, the �nal value of MaxImb is relatively high but the�nal value of the CutWt is fairly small. The value of MaxImb in the case of theNew algorithm is in between the corresponding values produced by the other tools.And the CutWt produced by the New algorithm is better than that produced bythe Chaco and Vidwans et al. algorithms but worse than that of produced by theJOSTLE algorithm.

CHAPTER 3. A NEW DYNAMIC LOAD BALANCER 72

Figure 3.11: Coarse mesh of 5184 elementsadapted to initial shock condition for Ex-ample 5.
Figure 3.12: Adapted mesh after 240 time-steps for Example 5.

CHAPTER 3. A NEW DYNAMIC LOAD BALANCER 73Coarse mesh : 5184 elementsFinal mesh : 23274 elementsAverage load : 2909 �ne elementsProc. Processor Load Processor Load Processor LoadId. (initial) (�nal Tol = 1%) (�nal Tol = 2%)�ne % imb. coarse �ne % imb. coarse �ne % imb. coarse0 2198 -24.4 247 2921 0.4 263 2921 0.4 2631 2737 -5.9 104 2929 0.7 117 2929 0.7 1172 2822 -3.0 2205 2890 -0.7 2131 2862 -1.6 21373 3719 27.8 84 2926 0.6 66 2926 0.6 664 3134 7.7 62 2897 -0.4 65 2897 -0.4 655 3201 10.0 137 2839 -2.4 131 2839 -2.4 1316 2978 2.4 71 2983 2.5 50 3046 4.7 517 2485 -14.6 2274 2889 -0.7 2361 2854 -1.9 2354Table 3.9: Initial and �nal partitions (produced by the New algorithm) for Example5. MaxImb Largest Smallest CutWtpartition partitionInitial result 27.8% 3 (3719) 0 (2198) 1332New result (Tol = 1%) 2.5% 6 (2983) 5 (2839) 1344New result (Tol = 2%) 4.7% 6 (3046) 5 (2839) 1336Vidwans et al. result 3.3% 2 (3005) 1 (2824) 1859Chaco result 2.0% 3 (2966) 0 (2859) 1578JOSTLE result 2.1% 3 (2973) 2 (2746) 1304Table 3.10: Summary of results when the New, Vidwans et al., Chaco and JOSTLEalgorithms are applied to the initial partition (see Table 3.9) of Example 5.3.6 ConclusionsIn this chapter a serial version of a new dynamic load balancing algorithm hasbeen presented. The algorithm is applied to six di�erent test problems which are

CHAPTER 3. A NEW DYNAMIC LOAD BALANCER 74Coarse mesh : 34560 elementsFinal mesh : 83486 elementsAverage load : 10436 �ne elementsProc. Processor Load Processor Load Processor LoadId. (initial) (�nal Tol = 1%) (�nal Tol = 2%)�ne % imb. coarse �ne % imb. coarse �ne % imb. coarse0 9871 -5.4 1378 10482 0.4 1522 10482 0.4 15221 8883 -14.9 288 10406 -0.3 910 10406 -0.3 9102 10678 2.3 977 10516 0.8 1088 10516 0.8 10883 8880 -14.9 253 10280 -1.5 390 10280 -1.5 3904 8519 -18.4 746 10498 0.6 2263 10498 0.6 22635 10677 2.3 6035 10403 -0.3 7486 10403 -0.3 74866 13620 30.5 13218 10451 0.1 10451 10451 0.1 104517 12358 18.4 11665 10450 0.1 10450 10450 0.1 10450Table 3.11: Initial and �nal partitions (produced by the New algorithm) for Example6. MaxImb Largest Smallest CutWtpartition partitionInitial result 30.5% 6 (13620) 4 (8519) 3710New result (Tol = 1%) 0.8% 2 (10516) 3 (10280) 4629New result (Tol = 2%) 0.8% 2 (10516) 3 (10280) 4629Vidwans et al. result 1.0% 0 (10540) 3 (10328) 11463Chaco result 0.5% 6 (10484) 3 (10403) 5915JOSTLE result 1.4% 2 (10585) 7 (10148) 2718Table 3.12: Summary of results when the New, Vidwans et al., Chaco and JOSTLEalgorithms are applied to the initial partition (see Table 3.11) of Example 6.

CHAPTER 3. A NEW DYNAMIC LOAD BALANCER 75representative of typical practical situations in both 2-d and 3-d. In the majority ofthe cases our results are comparable with the results produced by other state of theart algorithms. In all cases the values of the parameter CutWt in the �nal partitionproduced by the New algorithm are much less than the corresponding values in the�nal partition produced by the Vidwans et al. algorithm and in the majority ofcases the values of the parameter MaxImb produced by the New algorithm are alsomuch less than the corresponding values produced by the Vidwans et al. algorithm.This shows that the modi�cations made in the Vidwans et al. algorithm do improvethe quality of the new partitions.In the last problem the cost of our algorithm is a little high. It should be notedthat in this last example the coarse mesh is of relatively large size (34560 coarseelements) and initially 72% of the coarse mesh resides on just two processors (whoseID's are 6 & 7) as compared to only 31% of the �ne mesh which reside on theseprocessors. Unlike the JOSTLE algorithm, our algorithm has no graph coarseningfeature built into it and so is likely to be most e�cient for those problems where thesize of coarse mesh is not too great. This is not a major restriction however, sincestarting with a smaller size mesh one can always get a �ne mesh of much larger sizeby the repeated application of the adaptive re�nement algorithm.The main practical restriction on this algorithm as described in this chapter isthat one should not rely upon a serial dynamic load-balancing algorithm to regainthe balanced load of the processors while using a parallel adaptive solver. Such anapproach presents a signi�cant serial bottleneck; and in some cases it may not bepossible at all if the size of the mesh is too huge to �t into the memory of a singleprocessor. To avoid this serial bottleneck we present, in the next two chapters,practical parallel versions of our load-balancing algorithm which are designed forrebalancing hierarchical unstructured meshes in 2-d and 3-d space respectively.In Chapter 4 the parallel algorithm is implemented for a speci�c class of 2-dmeshes which are generated by the method of Hodgson and Jimack ([51]). Thealgorithm discussed there consists of two phases. In phase one we decide the newowners of the coarse elements and in second phase the actual migration of theseelements is undertaken. Phase one remains the same irrespective of the generationmethods of the partitioned meshes, however phase two does depend upon how themesh is generated and maintained on a given processor, and the way in whichconnectivity information is stored across the inter-partition boundaries. So for

CHAPTER 3. A NEW DYNAMIC LOAD BALANCER 76those types of unstructured mesh which are generated by other methods one hasto modify phase two only. The performance of our algorithm is compared with theperformance of the algorithms of Vidwans et al. ([104]) & Hu and Blake ([53]).In Chapter 5 we present that version of the algorithm which is designed to rebal-ance the 3-d meshes which consists of tetrahedral elements. There are some furtherimprovements and modi�cations to the algorithm for this work. The performanceof this new modi�ed algorithm is compared with the performance of the Vidwanset al. ([104]), ParJOSTLE ([109]) and ParMETIS ([63]) algorithms.

Chapter 4Parallel Application of theDynamic Load Balancer in 2-dIn this chapter we consider the parallel application of the algorithm presented in theprevious chapter. This particular parallel application is basically a post-processingstep which redistributes a 2-d mesh which has been created in parallel but is notperfectly load balanced among the number of available processors (due to reasonsdiscussed below in x4.1). In the next chapter we discuss the parallel applicationof the algorithm presented in Chapter 3 for a more general 3-d problem whichis designed to migrate some tetrahedral elements form one processor to anotherprocessor after an adaptivity step (see x2.3 for details) in order to regain a balancedload.In order to solve large Computational Fluid Dynamics (CFD) and Computa-tional Mechanics (CM) problems numerically on a parallel or sequential machine,the �rst step of most numerical methods is to generate a mesh of the underlyinggeometry (if one has not been generated already). For �nite element solvers thepopular choice is to generate an unstructured mesh. There are many advantages ofunstructured meshes over structured ones. One advantage is that they are ideallysuited for the discretisation of geometrically complicated domains, a second is thattheir use allows for the easy addition and removal of vertices and elements which areoften required in an adaptive setup. There are many ways to generate unstructuredmeshes and many review papers about the development of mesh generation tech-niques (see [94, 97, 113] for example). Since we wish to solve problems in parallelthe mesh should also be distributed among the number of available processors in77

CHAPTER 4. PARALLEL APPLICATION OF LOAD BALANCER IN 2-D 78an e�cient manner.One way to obtain a distributed mesh is to generate the entire mesh on a singleprocessor and then distribute it among the desired number of processors using anyof the static graph partitioning algorithms discussed in Chapter 1. This approachresults in a serial bottleneck at the generation stage however, and in some casesit may not even be possible due to the limited amount of memory that may beavailable on a single processor. Another possibility is to actually generate the meshin a parallel and distributed manner.Nowadays parallel mesh generation is becoming an important feature of anylarge distributed memory parallel CFD and CM codes as it ensures that:� there is no sequential bottleneck at this point in the code,� there is no parallel overhead incurred in partitioning an existing mesh,� that no single processor is required to have enough local memory to be ableto store the entire mesh.In recent years numerous algorithms have been proposed for the generation of un-structured �nite element and �nite volume meshes in parallel (see [2, 38, 51, 66,70, 116] for example). One of the main problems with many of these approacheshowever is that the �nal mesh, once generated, cannot generally be guaranteed tobe perfectly load-balanced. Since an unbalanced load may adversely a�ect the per-formance of the solver there is a clear need for executing a post-processing step inorder to get a well-balanced mesh at the end.In this chapter we propose a post-processing step for the parallel mesh generator,based upon the cheap and e�cient dynamic load-balancing technique of previouschapter. This technique is described and a number of numerical examples arepresented in order to demonstrate that the quality of the partition of the mesh canbe improved signi�cantly at only a small additional computational cost. It shouldbe mentioned here that this post-processing step is coupled with an existing parallelmesh-generator which is due to Hodgson and Jimack ([51]). However, the parallelapplication in the next chapter is quite general in the sense that it can be coupledwith any parallel adaptive mesh-generator.

CHAPTER 4. PARALLEL APPLICATION OF LOAD BALANCER IN 2-D 794.1 IntroductionThis chapter is concerned with dynamic load-balancing algorithms in connectionwith the parallel generation of unstructured meshes of triangles for complex ge-ometries in two dimensions (the parallel generation and adaptation of unstructuredmeshes of tetrahedra for complex geometries in three dimensions will be dealt within the next chapter). A large number of algorithms and codes have been developedfor parallel mesh generation in recent years and these may be divided into two broadcategories: those based upon re�nement of an initial coarse background mesh (e.g.[51, 70, 88, 98]), and those which mesh the domain in an alternative manner (e.g.[2, 66]). In this chapter we are concerned only with the �rst of these two categoriesand, for simplicity of exposition, we concentrate on the 2-d case. Extension to 3-dis possible and is the topic of next chapter.The common feature of all of the parallel mesh generators based upon re�ne-ment of a background grid is that this grid must �rst be partitioned across theavailable processors. The techniques by which this is done vary signi�cantly butthey each have the same goal: to ensure that the total number of generated ele-ments or points on each processor is about the same upon completion of the parallelmesh generation. Hence, if a mesh of uniform density is being generated and thebackground grid is also of uniform density then we would expect each processor tobe assigned about the same number of coarse elements. If, on the other hand, amesh of non-uniform density is being generated from a uniform background gridthen we would expect a potentially di�erent number of coarse elements to be as-signed to each processor. A secondary objective when partitioning the backgroundgrid is to ensure that the number of generated elements which have an edge on theboundary between two processors is as small as possible. This will ensure that theamount of communication required by the �nite element or �nite volume solver willbe minimised (see x2.3 for details).In order to attempt to achieve these objectives, a priori estimates need to bemade about how many elements, edges and nodes will be generated within eachcoarse element. Inevitably the actual values of these three numbers after generationwill not precisely match these estimates. In order to keep the di�erences as smallas possible some authors have developed quite elaborate schemes for improvingthe quality of their estimates; including the use of neural networks [98] or virtual

CHAPTER 4. PARALLEL APPLICATION OF LOAD BALANCER IN 2-D 80re�nement [51] for example. Even with these schemes however �nal load imbalancesof up to 10% are frequently observed in practice.In this chapter we suggest that, so long as a reasonable partition is produceda priori, a more pro�table use of resources is to improve the quality of the par-tition after the mesh has been generated in parallel through the use of a parallelpost-processing step. This step simply involves making local modi�cations to theload-balance before the solution phase commences. As will be demonstrated theselocal modi�cations are made in a manner designed to strike a balance between thepotentially con
icting requirements of1. improving the load-balance,2. maintaining data locality,3. minimising the number of �ne edges shared by two processors,4. avoiding sequential bottlenecks,which were �rst discussed in x2.3. In the following sections we outline a paralleldynamic load-balancing algorithm which is designed to meet these objectives. Thisalgorithm is a modi�cation of the algorithm presented in the previous chapter. Itis based upon earlier work of Vidwans et al. [104]. It should be noted that thealgorithm introduced may be directly applied to a more general class of dynamicload-balancing problem than that introduced above. In particular, we may have anadaptive hierarchical mesh, (see [92] for example) and/or an adaptive p-version ofthe �nite element algorithm (as in [3] for example). The next chapter describes indetails the version of the algorithm designed for dynamically rebalancing the 3-dadaptive hierarchical meshes.4.2 A Parallel Dynamic Load-Balancing AlgorithmSuppose we have a hierarchically re�ned root mesh which is distributed across pprocessors. As in x3.2.1 we de�ne the weight of a root element as the number ofleaf elements inside it and the weight of an edge of the root mesh as the numberof leaf element edges along it. We may also recall from x2.3 the de�nition of theweighted dual graph of the root mesh: each node of this graph corresponds to an

CHAPTER 4. PARALLEL APPLICATION OF LOAD BALANCER IN 2-D 81element of the root mesh (whose weight is same as the weight of the correspondingroot element), T0, and two nodes are connected if the corresponding root elementsare neighbours (the weight of this edge is being the weight of the common edge ofthe two corresponding root elements). The task of repartioning the triangulationT may therefore be represented in terms of this weighted graph. In particular, werequire an algorithm for repartitioning such a graph which satis�es the four criteriaenumerated in x4.1.4.2.1 Group BalancingLet us recall from x2.4 the de�nition of the Weighted Partition CommunicationGraph (WPCG): A WPCG is obtained by having one vertex for every processorand an edge between two vertices if and only if they are face adjacent to eachother. The weight wNi of the ith vertex is equal to the sum of weights of all rootelements on the ith processor and the weight wEij of the edge connecting the ithand jth processors is equal to the sum of weights of all root element edges on theinterpartition boundary between the two processors.We next divide the WPCG into two subgroups denoted by Group1 and Group2by using the same procedure of x3.2.1. It may be pointed out here that this divisionis performed on a single processor. Let us recall from x3.2.1 that during the divisionprocess of WPCG, one requires the weighted Laplacian matrix of the WPCG. In thepresent context the assembly of the ith row of this Laplacian is performed locallyby the ith processor. Each processor after assembling its own row sends it to oneprocessor (which we call a master processor). The master processor after receivingall the contributions from all other processors forms the Laplacian and then dividesthe WPCG in to 2 subgroups. Finally the master processor broadcasts this decisionto all other processors.If the leaf mesh is quite uniformly distributed across the processors then wewould expect each group to contain about the same number of processors andan almost identical total weight. If the existing partition is not well load balancedhowever then the number of processors in each group may be very di�erent. In eithercase the cut-weight resulting from this bisection will generally be very small. In thenext stage of the algorithm we use the idea of local migration from the \larger" tothe \smaller" group so that after migration each group contains approximately the

CHAPTER 4. PARALLEL APPLICATION OF LOAD BALANCER IN 2-D 82same average weight per processor without there being a signi�cant increase in thiscut-weight.4.2.2 Local MigrationAs mentioned above the subgroups formed in the last subsection may not be ideallybalanced. To balance them we now migrate nodes of the weighted dual graph fromthe \larger" to the \smaller" group by using the logic of x3.2.2. We call \larger" theSender and \smaller" the Receiver group respectively. The actual determinationof Sender and Receiver groups are performed in Figure 3.1 which also calculatesthe quantity Migtot which stands for the total weight of all the nodes which are tobe migrated from the Sender to the Receiver. Note that if the combined weight ofthe nodes transferred from the Sender to the Receiver is nearly or exactly equal toMigtot then the two groups will be load-balanced upon completion.Having established the required load to be transferred, the next issue to addressis that of how many nodes each processor in the Sender group should actually sendand which processors in the receiver group they should be sent to. We again usethe same idea of candidate processors as de�ned in x3.2.2. Recall that processorsin each group that are face-adjacent to at least one processor in the other groupare called candidate processors. We only allow the candidate processors to beinvolved in the actual migration of nodes from Sender to Receiver. Let Ntot bethe total weight on all candidate processors of the Sender group. Then if the ithcandidate processor in the Sender group is face adjacent to more than one candidateprocessor in the Receiver group we migrate nodes to that candidate processor whichhas the \longest" boundary (by this we mean that the cut-weight between the twoprocessors involved is maximum as compared to other possible pairs). The amountof load shifted from the ith candidate processor in Sender group is denoted byMigiand is calculated in precisely the same way as in x3.2.2 (equation 3.1).As far as the actual migration of the nodes in the weighted dual graph is con-cerned, we follow precisely the same logic as of x3.2.2. Recall from x3.2.2 that inthe process of migration of nodes we use the concepts of gain and gain densityassociated with the moving nodes. As in x3.2.2 by gain(k) of node k we mean thenet reduction in the cost of cut edges that would result if node k were to migratefrom ith candidate processor in the Sender group to the jth candidate processor in

CHAPTER 4. PARALLEL APPLICATION OF LOAD BALANCER IN 2-D 83the Receiver group (see Figure 3.2 for the calculation of gain(k)). The gain densityof a node is de�ned as the gain of the node divided by the weight of the node. Thebulk of the work needed to make a move consists of selecting the base node (a nodewhich is about to be shifted from one processor to another processor is called a basenode), moving it, and then updating the gains of its neighbouring nodes.Just like x3.2.2 the selection of a base node is made by choosing the node withthe largest gain density on the ith processor whose weight is less than or equal toMigi. We shift the node to the receiving processor and update the gains of itsneighbouring nodes using the algorithm outlined in Figure 4.1. Observe that, ifthe gain associated with the base node is positive, then transferring it will not onlyimprove the load-balance but will also reduce the total cut-weight between the twogroups. The above logic of balancing the two groups is presented in Figure 4.2.At this point we should discuss some major di�erences between the currentmethod of calculating and updating the gains and the previous method of calculat-ing and updating the gains used in the previous chapter. We �rst wish to emphasisethe use of the word processor. In the last chapter the word processor was used in asymbolic sense. This was nothing to do with the physical processor of the machine.On the other hand in the present context the word processor is both symbolic aswell as physical. At present each subdomain of the original domain is assignedto a unique physical processor of the parallel machine. In the previous chapterin principle only one physical processor was responsible to achieve the entire taskof load-balancing the dual graph. In doing so the concept of recursion was usedextensively. Starting with one group the problem was divided into two subgroups.To balance the original group some load was shifted from the Sender to the Re-ceiver subgroups. This was achieved by considering a pair of processors called i; jprocessor pair at a time. The actual migration of the load depends upon the gaindensities of the nodes which can be calculated by using the gains shown in Figure3.2 (which only calculates the gains of those nodes which belong to the ith proces-sor). As pointed out in x3.2.2 there was also calculations of gains of all the nodesbelonging to the jth processor (recall from x3.2.2 that the gain of a node belongingto jth processor is de�ne to be the net reduction in the cost of cut edges that wouldresult if the node were to migrate from jth processor to the ith processor). Thecalculation of gains for all the nodes of the i; j pair of processors facilitated thereshu�ing process of x3.3 (where we performed a sequence of moves of nodes from

CHAPTER 4. PARALLEL APPLICATION OF LOAD BALANCER IN 2-D 84For each nk 2 ith processor which is a neighbour of the node k fincrement gain(nk) by 2*wEnkk ;�nd the new gain density of the node nk;g Figure 4.1: Updating the gains.'& $%one processor to another).In the current situation each processor only calculates and updates the gainsof those nodes which it owns. A processor does not attempt to calculate the gainsof nodes owned by other processors. This is due to the fact that in the parallelimplementation we decided not to execute the re-shu�ing step of the serial version.The rational behind this decision is the fact that such a step is not possible withouta substantial amount of communication among the processors. We believe that thecost of such communication involved in the re-shu�ing steps will slow down theperformance of the parallel load-balancer substantially, whilst experience suggest itonly provides a small improvement in the partition quality.4.2.3 Divide and Conquer and Parallel ImplementationOnce we have obtained Sender and Receiver groups with the same average weights,it is possible to recursively apply the above splitting algorithm to each of thesetwo processor groups in parallel: bisecting them and load-balancing them. Therecursion terminates when every group consists of a single processor: each withapproximately the same load.This divide and conquer approach naturally permits a certain degree of paral-lelism in its implementation. Further parallelism is also facilitated by the fact thatit is possible for more than one sending processor in a Sender group to migrate dataonto its corresponding receiving processor at any given time.This divide and conquer algorithm is described fully in Figure 4.3 and discussedbelow.

CHAPTER 4. PARALLEL APPLICATION OF LOAD BALANCER IN 2-D 85
While(there are unprocessed candidate procs. in Sender group)fLet Migi (as explained above) be the amount of load to beshifted from the ith candidate proc. in Sender group to thejth candidate proc. in Receiver group,Calculate gain densities.Until(required load is transferred from the ith proc. to the jth proc.)fMove a node of highest possible gain density from the ith proc.to the jth proc.,Update gain densities of neighbours of the moved node.gg Figure 4.2: Load balancing of the two groups.
'
&

$
%

CHAPTER 4. PARALLEL APPLICATION OF LOAD BALANCER IN 2-D 86While (Any Groups contain two or more processors)fFind the maximum load Max and the average load Ave of the Group,Find the percentage of maximum imbalance MaxImb in the Groupby using the formula:MaxImb = ((Max - Ave) / Ave) * 100.If (The Group has more than one processors)fSend the contribution of the Laplacian to the processor 0.If (Rank of the processor is 0)fForm the Laplacian matrix after receiving the contributionfrom other processors,Find the Fiedler vector and by using it decide the Receiverand Sender groups.gIf (MaxImb is more than a given tolerance)fMove some load from the processors in the Sender Group to the processorsin the Receiver Group in such as way that after the migration twoGroups have the same average load and the increase in the cut weightis as small as possible.ggIf (The migration a�ects the current processor)fModify the necessary data structures to re
ect the migration.gDivide the Group into two Groups (i.e. from now onwards both Senderand Receiver will be called Group).g Figure 4.3: Parallel dynamic load-balancing algorithm.

'

&

$

%

CHAPTER 4. PARALLEL APPLICATION OF LOAD BALANCER IN 2-D 874.3 Discussion of the AlgorithmAfter deciding how much to shift and where to shift we face practical implementa-tion di�culties. For example, if two neighbouring coarse elements (note that twoelements are neighbours of each other if they have a common vertex or a commonedge) migrate then it is very hard to modify the data structures (this is due to thefact that when two neighbouring elements migrate we have to use forwarded mes-sages to other subdomains to tell them the rapidly changing situation, sending thistype of message is a complicated business). To avoid this di�culty we decided tonot move any neighbouring elements simultaneously. For this reason we colour thecoarse mesh and allow the simultaneous migration of elements of the same colouronly. In case of triangular meshes only 6 to 10 colours are required to colour themesh (in three dimensions the number of colours may change dramatically from onemesh to another mesh!). This means the migration step will take in general between6 to 10 phases. In our implementation all of the processors must be synchronisedafter the migration of elements of the same colour.Another point to be discussed here is the movement of data objects associatedwith the migrating nodes. As is clear from the description of the load-balancer thenodes of the dual graph will be migrating from one processor to another processorbefore they necessarily reach their �nal destination. Ideally we should pass some sortof token (as we do in the next chapter) to the transitory processor of the migratingnode rather than passing the entire data objects associated with the migrating nodeto the transitory processor. Only at the very end should we pass entire data objectsfrom the original processor of the migrating node to the �nal destination of the node.However in the current implementation we decided to pass the entire data objectsassociated with the migrating node to the transitory processor of the node. In 2-d,this strategy does not increase the cost of the migration process substantially (asis clear from Tables 4.7 and 4.14 where the maximum rebalancing time is just 1.3seconds involving a mesh of 0.7 million �ne elements). However in the next chaptersuch a strategy would be very costly (partly because of the use of halo elements) sothere we only pass tokens when a node is migrated from one processor to anotherone and the entire data objects are passed only at the end of the process from thevery original processor of the migrating node to the �nal destination of the node.In the above algorithm there are basically three types of processor. The �rst

CHAPTER 4. PARALLEL APPLICATION OF LOAD BALANCER IN 2-D 88type of processor are those processors from which there is actual migration of coarseelements. The second type of processors are those which actually receives somecoarse elements. The third type of processors are those processors which are a�ectedby the above migration of elements (these are those processors which have at leastone coarse element which is a neighbour of the migrated coarse elements). Observethat during the migration of coarse elements the intersection of type 1 and type2 processors is empty but it is possible for a type 3 processors to be a type 1 ortype 2 processor as well. We brie
y discuss the activities of these three types ofprocessor here; more details are given in the next section when we also discuss theaccompanying data structures.4.3.1 Activity of Type 1 Processors : Packing the LoadThe type 1 (sending) processors will pack the following which will be sent to thetype 2 (receiver) processors.� Connectivity information of the �ne mesh inside the coarse element.� Coordinates of the interior points of the coarse element.� Coordinates of the unshared corner points of the coarse element.� Sharing information (by this we mean the IDs of those processors with whichthe vertices and edges are shared) of all the vertices and edges of the coarseelement.4.3.2 Activity of Type 2 Processors : Unpacking the LoadThe type 2 (Receiver) processors will receive and unpack the above message toestablish the new coarse element and associated �ne mesh.4.3.3 Activity of Type 3 Processors : Third Party Adjust-mentWhen a coarse element migrates from one processor to another processor, not onlythese two processors are a�ected but also other processors may be a�ected in thesense that they may also have to modify their neighbourhood relations.

CHAPTER 4. PARALLEL APPLICATION OF LOAD BALANCER IN 2-D 894.4 Description of Related Data Structures Asso-ciated With the Redistribution of the MeshAs stated earlier the dynamic load-balancing algorithm presented in this chapteris coupled with a particular mesh generator which is due to Hodgson and Jimack([51]). We describe here existing data structures used by this mesh generator and bythe dynamic load-balancing algorithm which is associated with a typical subdomain.� nocrseelems By nocrseelems we mean the total number of coarse elements inthe current subdomain.� nonodessub By nonodessub[i] we mean the number of vertices inside the ithcoarse element. These interior vertices are called vertices of \type 1".� noelemssub By noelemssub[i] we mean the number of �ne elements inside theith coarse element.� �nevts By �nevts[i] we mean a pointer leading to the information about the co-ordinates of all the vertices of \type 1" in the ith coarse element (so �nevts[i][2j-1] and �nevts[i][2j] represent respectively the x and y co-ordinates of the jthvertex of \type 1" in the ith coarse element).� crsetri By crsetri[i] we mean a pointer leading to the information about theith coarse element (this information is basically about the connectivity andthe colour of the element).� crsedges By crsedges[i] we mean a pointer leading to the information aboutthree edges of the ith coarse element (this information is basically the IDs ofthese edges).� �netri By �netri[i] we mean a pointer leading to the information about the�ne elements of the ith coarse element (this information is basically about theconnectivity of these �ne elements).� noedges By noedges we mean total numbers of non-Dirichlet coarse edges inthe subdomain.

CHAPTER 4. PARALLEL APPLICATION OF LOAD BALANCER IN 2-D 90� noedgevts By noedgevts we mean the total number of edge vertices (an internalvertex of an edge of a coarse element, which does not lie on the boundary ofthe domain is called an edge vertex). All the edge vertices are stored in a twodimensional array called edgevts. For example edgevts[i][2j-1] and edgevts[i][2j]represent the x and y coordinates of the jth internal vertex of the ith coarseedge of the subdomain respectively; an edge vertex is also referred to as beinga vertex of \type 2".� nocrsevts By nocrsevts we mean total number of coarse vertices (a vertex of acoarse element which does not lie on the boundary of the domain is called acoarse vertex); a coarse vertex is also referred as being a vertex of \type 3".All coordinates of the coarse vertices are stored in an array called crsevts. Forexample crsevts[2i-1] and crsevts[2i] represent the x and y coordinates of theith coarse vertex of the subdomain.� nobndvts By nobndvts we mean total number of boundary vertices in the �nemesh (a vertex which lies on the external boundary is called a boundaryvertex); a boundary vertex is also referred as being a vertex of \type 4". Allcoordinates of the boundary vertices are stored in an array called bndvts. Forexample bndvts[2i-1] and bndvts[2i] represent the x and y coordinates of theith boundary vertex of the subdomain.� transfer By transfer[i][0] we mean the total number of coarse vertices commonwith ith subdomain and transfer[i][j] gives the number of the jth such coarsevertex. If nid represents the ID of the current subdomain then by trans-fer[nid][0] we mean the total number of coarse vertices in the subdomain andtransfer[nid][j] gives the multiplicity of the jth coarse vertex (by multiplicitywe mean the number of subdomains with which the vertex is shared). For thecorresponding information about the boundary vertices we use transfer2.� nomyintf By nomyintf we mean number of vertices of \type 3" which arecommon with other subdomains.� nomyintf2 By nomyintf2 we mean number of vertices of \type 4" which arecommon with other subdomains.

CHAPTER 4. PARALLEL APPLICATION OF LOAD BALANCER IN 2-D 91� numngbrs By numngbrs we mean number of neighbouring subdomains andthe IDs of these subdomains are stored in the array myngbrs.Since during the course of the algorithm the coarse elements from one subdomainwill migrate to other subdomains, we face a twofold problem:� each subdomain of type 2 must be ready to accommodate an unspeci�ednumber of coarse elements coming from subdomains of type 1,� these coarse elements must be linked together with the existing elements al-ready contained in the subdomain in an e�cient manner.To overcome this we decided to extend certain arrays to accommodate new itemsif the size of an element of the array is not too big - if the size is too large then wecreate a companion pointer array which is large enough to contain the addresses ofthe current elements as well as that of forthcoming ones (e.g. the size of an elementof the array nonodessub is just four bytes (the size of an integer) so we simply extendthis array, on the other hand the size of an element of the array crsetri is twentyfour so we do not extend this array, instead we create a companion pointer arraywhich is large enough to contain the addresses of the current elements as well asthat of forthcoming ones). The rational behind this decision is to have a trade o�between the available memory and the execution speed of the algorithm - creatinglarge arrays to accommodate the worst possible scenario would reduce the amountof the memory for other tasks (in some cases it may not even be possible to doso), on the other hand creating the arrays which are capable of handling currentelements only and extending them in future, should the need arise, will slow downthe execution of the algorithm as the dynamically creating / extending arrays isa painfully slow process. Let nocrseelemsall be the variable which represents themaximum number of coarse elements which are possible in a certain subdomain.We extend the array nonodessub from nocrseelems to nocrseelemsall+1, with thenew index set from 0 to nocrseelemsall. The elements from 1 to nocrseelems containthe old values and the remaining elements form a linked list ready for new arrivalsaccording to the following recipe:� nonodessub[0] = nocrseelems + 1,� nonodessub[i] = -(i+1) for i from nocrseelems + 1 to nocrseelemsall.

CHAPTER 4. PARALLEL APPLICATION OF LOAD BALANCER IN 2-D 920 7 0 8 0 31 4 1 4 1 42 0 2 0 2 03 5 3 5 3 -84 3 4 3 4 35 0 5 0 5 06 6 6 6 6 67 -8 7 9 7 98 -9 8 -9 8 -99 -10 9 -10 9 -10initially there are 6coarse elements inthe subdomain a new coarse elementwith wt. 9 has joinedthe subdomain the third coarse ele-ment has migrated toanother subdomainFigure 4.4: The array nonodessuball which can accommodate nine coarse elements.
'
&

$
%'& $%'& $%'& $%			 		 			

The new coarse element will always be given the number stored in nonodessub[0]and the linked list will be updated accordingly (i.e. we update the value of non-odessub[0] by using the formula nonodessub[0] = -nonodessub[nonodessub[0]]). Ifa coarse element (say i) migrates from the current subdomain then its positionwill always be inserted at the beginning of the linked list (i.e. we execute thestatements : nonodessub[i] = -nonodessub[0] and nonodessub[0] = i) (Figure 4.4 de-scribes the situation for a small mesh in a subdomain). This way we can minimisethe gap in numbering the coarse elements in a subdomain. We also extend thearray noelemssub from nocrseelems to nocrseelemsall, with the new index set from1 to nocrseelemsall. The elements from 1 to nocrseelems contain the old values andthe remaining elements are reserved for future arrivals (note that there is no needto form a linked list here as this array (like the following four pointer arrays) iscontrolled by means of the pointer entries of the array nonodessub!). The extendedversion of these two arrays are called nonodessuball and noelemssuball respectively.We next de�ne the following four pointer arrays each consisting of nocrseelemsallelements.� �nevtsall The �rst nocrseelems elements contain the addresses of the corre-sponding elements of the array �nevts.

CHAPTER 4. PARALLEL APPLICATION OF LOAD BALANCER IN 2-D 93� crsetriall The �rst nocrseelems elements contain the addresses of the corre-sponding elements of the array crsetri.� crsedgesall The �rst nocrseelems elements contain the addresses of the corre-sponding elements of the array crsedges.� �netrigroup The �rst nocrseelems elements contain the starting addresses ofthe corresponding group of �ne elements belonging to the corresponding coarseelements.Note the remaining elements in the above four arrays are reserved for future entries.We also extend the arrays nonodesdirichedge and nonodesedge just like the arraynonodessub, again with the understanding that the negative entries form the linkedlist for future arrivals.4.5 Di�erent Issues and Related Functions Usedin the Main Algorithm By Processors of Type1There are various issues related with the transfer of data items. Suppose, as a resultof applying the algorithm, we discover that coarse element i from a subdomain nid(say) of type 1 is to be migrated to another subdomain j (say) of type 2. Then thefollowing issues are to be considered.4.5.1 Handling of VerticesWhen a coarse elementmigrates from one subdomain to another subdomain we haveto examine its three vertices carefully (recall from x4.4 that these are the verticesof type greater than 2: type 3 means coarse vertex and type 4 means boundaryvertex). This is the job of the present section. Let v be a vertex of type 3 or 4of the element i in the subdomain nid. It is important to know if the vertex v isshared between nid and j before and/or after the migration.

CHAPTER 4. PARALLEL APPLICATION OF LOAD BALANCER IN 2-D 94if(transfer[nid][v] == 1 or !transfer[j][0]) /* either v is not shared with */return(0); /* anyone, or shared with others but not with j */else /* would like to see if v is shared with the neighbour j */for(m = 1; m <= transfer[j][0]; m++)if(v == transfer[j][m]) /* yes, v is shared with the neighbour j and */return(m); /* the relative position is m */return(0); /* no, v is not shared with the neighbour j */Figure 4.5: The function Shared().
'
&

$
%for(ce = 1; ce � nocrseelems; ce++) /* go through all the coarse elements */if(nonodessub[ce] � 0) /* ignore the element which is already gone */for(k = 0; k < 3; k++) /* check if the element has vertex vof desired type */if(v == the kth vertex of the coarse element ce)return(1); /* search is successful */return(0); /* search is not successful */Figure 4.6: The function Shared2().

'
&

$
%Shared() and Shared2() FunctionsTo check if it is shared before the migration we have to use the array transfer.The function Shared() shown in Figure 4.5 does this job. It returns 0 if v is notshared before the migration and returns m otherwise, where m is the relative sharingposition (i.e. v == transfer[j][m]).To check if v is shared after the migration we have to examine if it also lieson another coarse element of the subdomain nid, this is the job of the functionShared2() which is shown in Figure 4.6. This function returns 1 as soon as itdiscovers that even after migration of coarse element i the vertex v is still sharedbetween both the subdomains and it returns 0 otherwise, i.e. after the migrationthe two subdomains do not share vertex v.

CHAPTER 4. PARALLEL APPLICATION OF LOAD BALANCER IN 2-D 95Changenbhd(), Changenbhd2() and Changenbhd3() FunctionsWhen the element i goes from nid to j there are 4 possibilities concerning eachvertex v of type 3 (a coarse one) or type 4 (a boundary one). These possibilitiesare described below.� v is shared among the subdomains nid and j both before as well as afterthe migration. In this case we simply replace v by its counterpart in thesubdomain j.� v is shared among the subdomains nid and j before the migration (at therelative position m) but not after it. Here we remove it from nid and adjustthe neighbouring relation. This is the job of the function Changenbhd() whichis shown in Figure 4.7.� v is not shared among nid and j before the migration but shared after it. Herewe create a new vertex vj in j and make necessary changes in the subdomainj. This is the job of the function Changenbhd2() which is shown in Figure 4.8.� v is neither shared before nor shared after the migration. Here we create anew vertex vj in j and make necessary changes in the subdomain j, we removev from nid and make some changes in the subdomain nid as well. This is thejob of the function Changenbhd3() which is shown in Figure 4.9.4.5.2 Handling of EdgesWhen a coarse element goes from one subdomain to another subdomain we haveto consider various issues related to the edges of the element. The following twosubsections discuss this situation.Non-Dirichlet Edge: EdgeChange() FunctionLet e be a non-Dirichlet edge of the element i which is about to be migrate fromsubdomain nid (say) of type 1 to another subdomain j (say) of type 2. Then thefunction EdgeChange() shown in Figure 4.10 makes the necessary changes whichare related with this migration.

CHAPTER 4. PARALLEL APPLICATION OF LOAD BALANCER IN 2-D 961. fCheck all the neighboursg Repeat the following steps for k = 0 to p - 1.(a) if(k == nid) continue,(b) if(k == j) mk = m else mk = Shared(),(c) if(mk == 0) continue,(d) Remove the mkth vertex from its neighbouring row which corresponds tosubdomain k,(e) Send a message to the subdomain k which will also remove the mkthvertex from its neighbouring row which corresponds to subdomain nid,(f) transfer[nid][v] = transfer[nid][v] - 1,(g) if(transfer[nid][v] == 1) break.2. fRemove v from nidg(a) transfer[nid][v] = - transfer[nid][0],(b) transfer[nid][0] = v.3. fUpdate no. of boundary verticesg nomyintf = nomyintf - 1.Figure 4.7: The function Changenbhd().

'

&

$

%

CHAPTER 4. PARALLEL APPLICATION OF LOAD BALANCER IN 2-D 971. fto check if it is a newly shared vertexg if(transfer[nid][v] == 1) nomyintf =nomyintf + 1.2. fnid is a new neighbour at v to jg transfer[j][0] = transfer[j][0] + 1.3. finsert v in the neighbouring list which corresponds to the neighbour jg trans-fer[j][transfer[j][0]] = v.4. fpack the ID (the integer nid) and the multiplicity of v (the integer trans-fer[nid][v]) for the neighbour jg5. finitialise the variable k1g k1 = 2.6. fCheck all the neighbours of nid other than jg Repeat the following steps fork = 0 to p - 1.(a) if(k1 >transfer[nid][v]) break,(b) if(k == j or k == nid) continue,(c) mk = Shared(),(d) if(mk == 0) continue,(e) fpack the ID (the integer k) of the subdomain k for the subdomain jg,(f) fstore the information for the type 3 processor k so that it will be ableto update his neighbouring list which corresponds to the subdomain jg,(g) fincrement the variable k1g k1 = k1 + 1.7. fIncrement the multiplicity of vg transfer[nid][v] = transfer[nid][v] + 1.Figure 4.8: The function Changenbhd2().

'

&

$

%

CHAPTER 4. PARALLEL APPLICATION OF LOAD BALANCER IN 2-D 981. fcheck if v is shared among nid and some other subdomaingif(transfer[nid][v] > 1) nomyintf = nomyintf - 1.2. fpack the integer transfer[nid][v] - 1 for the subdomain j which will use thisto make the insertions in his corresponding neighbouring listsg.3. fcheck all the neighboursg Repeat the following steps for k = 0 to p - 1.(a) if(transfer[nid][v] == 1) break,(b) if(k == nid or k == j) continue,(c) mk = Shared(),(d) if(mk == 0) continue,(e) fstore the information so that nid will delete latter on v from its neigh-bouring list which corresponds to the subdomain kg,(f) fsend the information to the subdomain k so that it will delete latter onthe counter part of v from its neighbouring list which corresponds to thesubdomain nidg,(g) fpack the ID (the integer k) of the subdomain k for the subdomain jg.4. fRemove v from nidg(a) transfer[nid][v] = - transfer[nid][0],(b) transfer[nid][0] = v.Figure 4.9: The function Changenbhd3().

'

&

$

%

CHAPTER 4. PARALLEL APPLICATION OF LOAD BALANCER IN 2-D 991. Pack the ID of the subdomain with which e is shared (in case e is an internaledge pack the integer -1 (which means e is an internal edge)) for subdomainj.2. If e is not shared between any two subdomains then do the following:(a) Pack the necessary information for the subdomain j so that it will createand establish the necessary edge data which corresponds to the edge e,(b) Include e into the neighbouring list which corresponds to subdomain jand pack the necessary information for the subdomain j so that it will dothe same for the the neighbouring list which corresponds to subdomainnid,(c) Pack the number of edges on the edge e and their coordinates for thesubdomain j.3. If e is shared between the subdomains nid and j then do the following:(a) Pack the relative sharing position of the edge e with the subdomain j forthe subdomain j,(b) Store the informations for the subdomain nid so that it will remove e fromthe subdomain nid and also from the neighbouring list which correspondsto subdomain j,(c) Pack the informations for the subdomain j so that it will remove thecounter part of e from the neighbouring list which corresponds to sub-domain nid,(d) Update the counter for the number of vertices of type 2.4. If e is shared between the subdomains nid and k (6= j) then do the following:(a) Pack the necessary information for the subdomain j so that it will createand establish the necessary edge data which corresponds to the edge e,(b) Store the information so that e will be removed from the subdomain nidand also from the neighbouring list which corresponds to subdomain kand also send the necessary information to the subdomain k so that itwill also remove the counter part of e from the neighbouring list whichcorresponds to subdomain nid and include it in the neighbouring listwhich corresponds to the subdomain j,(c) Pack the number of edges on the edge e and their coordinates for thesubdomain j,(d) Store the information for the subdomain j so that it will insert the newlycreated edge into the neighbouring list which corresponds to the subdo-main k,(e) Update the counter for the number of vertices of type 2.Figure 4.10: The function EdgeChange().

'

&

$

%

CHAPTER 4. PARALLEL APPLICATION OF LOAD BALANCER IN 2-D 1001. Pack the integer representing the number of vertices and their coordinates forthe subdomain j.2. Update the counter for the number of vertices of type 4.3. Remove the Dirichlet edge e from the subdomain nid.Figure 4.11: The function DirichEdgeChange().
'& $%Dirichlet Edge: DirichEdgeChange() FunctionLet e be a Dirichlet edge of the element i which is about to be migrate from subdo-main nid to subdomain j. Since this type of edge is never shared between any pairof subdomains, it must be removed from nid and be inserted into j. The functionDirichEdgeChange(), shown in Figure 4.11, makes the necessary changes which arerelated with this situation.4.6 Di�erent Issues Which are RelatedWith Pro-cessors of Type 2Recall that the type 2 processors are those processors which receive migrating el-ements from processors of type 1. The information about forthcoming coarse ele-ments is received by means of packed messages. The job of this type of processor isto receive the packed message and unpack the data and modify or establish the nec-essary data structures. It starts creating a new coarse element by �rst modifying thearrays nonodessub and noelemssub. After that if there are incoming vertices of type1 it will create the location for them and will save the corresponding coordinates.After that it will create the necessary space for the associated �ne elements andmove the received �ne mesh into the space. It then starts observing the three coarsevertices so that the necessary neighbourhood relations with other subdomains maybe established. In likewise manner it examines the three old edges one by one andestablish the edge data and other neighbouring relations with other subdomains.

CHAPTER 4. PARALLEL APPLICATION OF LOAD BALANCER IN 2-D 1014.7 Di�erent Issues Which are RelatedWith Pro-cessors of Type 3Recall that the type 3 processors are those processors whose data structures area�ected by the migration of coarse elements from processors of type 1 to processorsof type 2. The basic job of such processors are to modify the neighbourhood relationsarising due to above migrations. This modi�cation is accomplished by means offollowing two functions:4.7.1 insertion()The job of this function is to make required insertions in the neighbouring listsassociated with other subdomains.4.7.2 deletion()The job of this function is to make required deletions in the neighbouring listsassociated with other subdomains.4.8 Use of Message Passing Interface (MPI)The message passing paradigm which is well known and well understood has beenwidely used on parallel machines since their inception. However there have beenmany di�erent versions of it over the years, each designed with a speci�c hardwarein mind. This lack of standardisation used to be a major cause of not being ableto produce portable software and libraries for message-passing machines. MPI (likePVM [41] which came before it) is a step forward in bringing a uni�ed standardinto the parallel community. Basically MPI is a set of routines which are useful to awide range of users and implemented e�ciently on a wide range of computers. MPIis intended to become the de facto standard, gradually replacing vendor-speci�cand other interfaces used by C/C++ and Fortran/Fortran90 programs today.The MPI standardisation e�ort began in 1992 when an MPI Forum was estab-lished consisting about 60 people from 40 organisations mainly from the UnitedStates and Europe. Most of the major vendors of concurrent computers were in-volved in MPI, along with researchers from universities, government laboratories,

CHAPTER 4. PARALLEL APPLICATION OF LOAD BALANCER IN 2-D 102and industry. In designing MPI they sought to make use of the most attractivefeatures of a number of existing message passing systems, rather than selecting oneof them and adopting it as the standard. By 1994 an initial MPI standard was pub-lished [34] and since that time many e�cient implementations have been releasedfor all types of parallel architecture.Since the original publication of the MPI standard in 1994 ([34]) there have beena number of enhancements, and so this original version of the library is referred to asMPI-1.1 (which also includes a small number of clari�cations and minor correctionsto the original document [34]). There is now also an MPI-1.2 and an MPI-2. Theformer contains further clari�cations and corrections to MPI-1.1 whilst the latterincludes a number of signi�cant extensions (see [35] for complete details of bothMPI-1.2 and MPI-2). These extensions include: support for parallel i/o, dynamicprocesses, extended collective operations, and one-sided communication, as well asspeci�c bindings for both Fortran90 and C++. (Although MPI-2 has yet to beaccepted with the same enthusiasm as MPI-1 was when it was �rst announced.)The implementation of the dynamic load-balancing algorithm that is used for thenumerical experiments described in the next section was completed using only theMPI-1.1 version (as this was the only version available at the start of the project).Incidentally, this version is also ideally suited to the divide and conquer philosophysince it provides explicit mechanisms for the de�nition and splitting of processorgroups.To implement the above divide and conquer philosophy we make use of thefunction MPI Comm split() available in the MPI library. This function takes asinput a communicator, a colour, and a key. All processors with the same colour areplaced into the same new communicator, which is returned in the fourth argument.The processes are ranked in the new communicator in the order given by the key.In our application we assign the value 1 (value 0) if the processor is in the Sendergroup (Receiver group) to colour and the key is taken to be the ID (rank) of theprocessor.When a coarse element migrates from the Sender group to the Receiver groupwe have to update numerous complicated data structures (which not only involvethe processors on the Receiver and the Sender groups but also involve the proces-sors outside these two groups), so we need to maintain the presence of the veryinitial group. This means each processor is a member of two groups, the initial

CHAPTER 4. PARALLEL APPLICATION OF LOAD BALANCER IN 2-D 103group (called the I Group) which consists of all the p processors involved and whichremains the same throughout the discussion and the current group (known simplyas the Group) which is a variable group and changes with each application of theDivide and Conquer algorithm. This is because each application of the Divide andConquer Approach means dividing the Group into two Groups (i.e. we essentiallyhave the identical �rst and fourth parameter in the function MPI Comm split()).Note that the above Divide and Conquer Approach is repeated until all theGroups have exactly one processor. If at some stage a few groups still have morethan one processors in them then they will need to balance themselves; but afterthis rebalancing step even the groups consisting of singleton processor may have toupdate their data structures (if a migrated coarse element has something commonwith these processors), hence the singleton groups are not entirely idle at this stage.4.9 Some ExamplesIn this section we describe some computations in which a parallel implementation ofour dynamic load-balancing algorithm is tested and contrasted with parallel imple-mentations of other alternative methods (which have been described and discussedin detail in x2.7.2 and x2.5 respectively): those of Vidwans et al. [104] and Hu andBlake [53].Computational results which corresponds to some non-uniformly re�ned meshesare dynamically load-balanced on between 2 and 16 processors of the SGI Origin2000 system. We believe that the use of more than 16 processors for solving a 2-dsteady state problem is not justi�ed on this particular machine. However in the nextchapter we do use more than 16 processors to solve a time dependent problem in3-d as the size of such problems are so huge that the use of more than 16 processorsis totally justi�able.4.9.1 Alternative AlgorithmsLet us recall from x2.7.2, that our dynamic load-balancing algorithm which is de-scribed in x4.2 is an improved and modi�ed version of the dynamic load-balancingalgorithm of Vidwans et al. ([104]). These modi�cations are basically concerned inmodifying and improving a number of steps proposed by Vidwans et al. The �rst

CHAPTER 4. PARALLEL APPLICATION OF LOAD BALANCER IN 2-D 104two modi�cations are concerned with bisecting a processor group into Sender andReceiver subgroups. In the case of the New algorithm we relax the condition thatthe size of these two new subgroups should be the same. Also instead of using theprocessors IDs we use sorted version of Fiedler Vector for the purpose of bisectingthe original processor group. The �nal substantial modi�cation is that the notionof gains and gain densities is used in the local migration phase of our algorithm.(Note Vidwans et al. propose two di�erent methods for this purpose whose pronsand cons are discussed in x2.7.2.)In order to show the gradual improvement of these modi�cations we have im-plemented two versions of the algorithm of Vidwans et al. which we call VKV0 andVKV1. The VKV0 version is the original algorithm of Vidwans et al. ([104]). Inthe VKV1 version we use a slightly more sophisticated mechanism for dividing theprocessors into two equally-sized groups than simply using the processors IDs. Thisis achieved by considering the weighted partition communication graph (WPCG)(see x4.2.1) of the initial partition of the mesh T0. We then use a weighted versionof the spectral bisection algorithm (see, for example, [46]) to order the processors(as opposed to just using their IDs) before dividing them into two groups of equalsize. The algorithm then proceeds as in the VKV0 algorithm above (but with themodi�ed scheme which uses the same concept of \gain" and \gain density" as usedin the case of the New algorithm for selecting which cells to migrate at each level ofthe recursion). As clear from x4.10 the partitions produced by the VKV0 versionis of poor quality while those produced by the VKV1 version are of comparablequality as compared to the partitions produced by the other algorithms.The other algorithm that we use for the purposes of comparison is denoted byHB which is described by Hu and Blake in [53] (see x2.5 for details). This is notbased upon recursive splitting but instead seeks to calculate the optimal route froman existing partition to one in which the weighted dual graph of the root meshis perfectly load-balanced. For the purposes of this algorithm the term \optimal"is used to mean that the Euclidean norm of the migrated load is minimised. Itshould be noted that the algorithm doesn't take into account that the load on eachprocessor comes in discrete units (i.e. the weights of the root elements) and so itmay require that the weight to be transferred between two processors is a valuethat is not actually achievable in practice. Clearly transferring an approximationto this load is the best that can be practically achieved (and on occasions where

CHAPTER 4. PARALLEL APPLICATION OF LOAD BALANCER IN 2-D 105the root mesh is very heavily locally re�ned this may be far from ideal).In the original description of the algorithm, Hu and Blake only determine theload which needs to be migrated from a set of processors to another set of processors.The question of which elements are to be migrated is not addressed there. In orderto be as fair as possible in our parallel implementation of Hu and Blake's methodwe take great care to ensure that the particular root elements that are transferredbetween processors are chosen with the overall cut-weight in mind: again making useof the notion of the \gain" and \gain-density" of each node on a sending processor.Hence we are really comparing our algorithm with improved version of Hu andBlake's algorithm.At this point we would like to recall from x2.6 another two important softwaretools which are now available in the public domain; namely ParJOSTLE ([109]) andParMETIS ([63]). At the time that the work of this chapter was undertaken thesehad not yet been released and so we postpone comparison of the performance ofour algorithm with the performance of these algorithms until the next chapter.4.9.2 Comparative ResultsWe are now in a position to compare our New dynamic load balancing algorithmwith the three algorithms described above. In this subsection we consider twodi�erent sets of examples, each consisting of six test problems, which are relatedto di�erent geometries
 and di�erent root meshes. In �rst set the number ofsubdomains used are relatively small (2 and 4) whilst the second set uses relativelylarge number of subdomains (8 and 16). The common feature of Examples 1, 2,3, 6, 7, 8, 9, and 10 is that these root meshes are all subject to extremely non-uniform local re�nement which leads to a large proportion of the leaf elementsbeing contained on a relatively small number of root elements (this is typical in anadaptive �nite element or �nite volume solver). In addition, the initial partition ofthe leaf mesh is not very well load-balanced but it does have a short interprocessorpartition boundary (i.e. a small cut-weight). The other four problems (Examples4, 5, 11 and 12) do not have such extreme non-uniform local re�nement.In order to demonstrate the practical utility of our algorithm we also pro-grammed a simple parallel FE solver for the Laplace's equation subject to simpleDirichlet boundary conditions. For the purpose of comparing we attempt to �nd

CHAPTER 4. PARALLEL APPLICATION OF LOAD BALANCER IN 2-D 106the numerical solution to an accuracy of 4 decimal places throughout the chapter.Also all our timings are wall clock timings (as the time is calculated by using theMPI function, MPI Wtime()).The abbreviations used in Tables 4.1 to 4.6 and 4.8 to 4.13 have the followingmeanings:� %imb - which stands for the percentage imbalance of �ne elements and it isthe percentage by which the total weight (number of �ne elements) on thecurrent processor exceeds the average weight of a processor (mathematically%imb = 100 * (weight - average weight) / average weight).� crse - total number of coarse elements on the current processor.Example 1. In this case the root mesh contains 792 elements and the leaf meshconsists of 317911 elements which are split across 2 processors. The geometryused is the \L-Shaped" domain taken from [51] and the initial partition has 198root elements in one subdomain and 594 root elements in the other subdomain (seeFigure 3.9 which shows a slightly bigger coarse mesh of same geometry). The initialmaximum imbalance and cut-weight are 1.6% and 387 respectively. The initialpartition is shown in Table 4.1, which also contains the �nal partitions producedby four algorithms. A summary of some of the salient features of these partitionsare given in Table 4.7 and results are discussed in x4.10.Example 2. The geometry of the mesh is the same as in the previous example, butwe increase the size of the root mesh as well as the number of processors (to 4). Thenew mesh now has 1354 root elements and 340294 �ne elements in it. The initialpartition has between 76 and 661 root elements in each subdomain. The initialmaximum imbalance and cut-weight are 3.2% and 1359 respectively. The initialpartition is shown in Table 4.2 which also contains the �nal partitions produced byfour algorithms. A summary of some of the salient features of these partitions aregiven in Table 4.7 and results are discussed in x4.10.Example 3. Here the root mesh contains 1259 elements and the leaf mesh has 256440elements which are split across 4 processors. The geometry is taken from [51]

CHAPTER 4. PARALLEL APPLICATION OF LOAD BALANCER IN 2-D 107Coarse mesh : 792 elementsFinal mesh : 317911 elementsAverage load : 158956 �ne elementsProc. Proc. Load Proc. Load Proc. Load Proc. Load Proc. LoadId. (Initial) (HB) (VKV0) (VKV1) (New)%imb crse %imb crse %imb crse %imb crse %imb crse0 1.6 198 0.0 192 0.0 156 0.0 192 0.0 1921 -1.6 594 0.0 600 0.0 636 0.0 600 0.0 600Table 4.1: Data for the partitions of Example 1 (involving parallel mesh generationand repartitioning on 2 processors).
Coarse mesh : 1354 elementsFinal mesh : 340294 elementsAverage load : 85074 �ne elementsProc. Proc. Load Proc. Load Proc. Load Proc. Load Proc. LoadId. (Initial) (HB) (VKV0) (VKV1) (New)%imb crse %imb crse %imb crse %imb crse %imb crse0 -4.1 661 0.0 670 0.0 788 0.0 670 0.0 6751 0.6 292 0.0 330 0.0 194 0.0 291 0.0 3342 0.2 325 0.0 286 0.2 325 0.2 325 0.0 2803 3.2 76 0.1 68 -0.2 47 -0.2 68 0.0 65Table 4.2: Data for the partitions of Example 2 (involving parallel mesh generationand repartitioning on 4 processors).

CHAPTER 4. PARALLEL APPLICATION OF LOAD BALANCER IN 2-D 108

Figure 4.12: The coarse mesh of Example 3.(geometry 2) and features a complex hole in the interior of the region. The initialpartition has between 34 and 685 root elements in each subdomain (see Figure 4.12for coarse mesh). The initial maximum imbalance and cut-weight are 3.4% and1093 respectively. The initial partition is shown in Table 4.3 which also containsthe �nal partitions produced by four algorithms. A summary of some of the salientfeatures of these partitions are given in Table 4.7 and results are discussed in x4.10.Example 4. Here the root mesh contains 3305 elements and the leaf mesh contains275535 elements which are split across 4 processors. The geometry is the regionaround a NACA0012 aerofoil (see Figure 4.13 for a partial view of the coarse mesharound the cavity) and the initial partition has between 669 and 984 root elementsin each subdomain. The initial maximum imbalance and cut-weight are 1.4% and1104 respectively. The initial partition is shown in Table 4.4 which also containsthe �nal partitions produced by four algorithms. A summary of some of the salientfeatures of these partitions are given in Table 4.7 and results are discussed in x4.10.Example 5. Here the root mesh contains 1210 elements and the leaf mesh contains255093 elements which are distributed among 2 processors. The geometry used is

CHAPTER 4. PARALLEL APPLICATION OF LOAD BALANCER IN 2-D 109Coarse mesh : 1259 elementsFinal mesh : 256440 elementsAverage load : 64110 �ne elementsProc. Proc. Load Proc. Load Proc. Load Proc. Load Proc. LoadId. (Initial) (HB) (VKV0) (VKV1) (New)%imb crse %imb crse %imb crse %imb crse %imb crse0 0.1 685 -0.1 698 -0.7 536 -0.7 681 -0.7 6811 1.5 34 0.3 30 0.9 31 0.8 31 0.8 312 -5.0 449 -0.2 464 -0.2 650 0.0 464 0.0 4643 3.4 91 0.0 67 0.0 42 0.0 83 0.0 83Table 4.3: Data for the partitions of Example 3 (involving parallel mesh generationand repartitioning on 4 processors).

Figure 4.13: The partial view of the coarse mesh of Example 4.

CHAPTER 4. PARALLEL APPLICATION OF LOAD BALANCER IN 2-D 110Coarse mesh : 3305 elementsFinal mesh : 275535 elementsAverage load : 68884 �ne elementsProc. Proc. Load Proc. Load Proc. Load Proc. Load Proc. LoadId. (Initial) (HB) (VKV0) (VKV1) (New)%imb crse %imb crse %imb crse %imb crse %imb crse0 -0.7 984 0.0 1068 0.0 825 0.0 982 0.0 9821 -0.8 823 0.0 839 -0.4 1090 -0.4 832 -0.5 8322 0.1 829 0.0 750 0.5 995 0.5 840 0.5 8403 1.4 669 0.0 648 0.0 395 0.0 651 0.0 651Table 4.4: Data for the partitions of Example 4 (involving parallel mesh generationand repartitioning on 4 processors).Coarse mesh : 1210 elementsFinal mesh : 255093 elementsAverage load : 127546 �ne elementsProc. Proc. Load Proc. Load Proc. Load Proc. Load Proc. LoadId. (Initial) (HB) (VKV0) (VKV1) (New)%imb crse %imb crse %imb crse %imb crse %imb crse0 1.3 494 0.0 488 0.0 476 0.0 488 0.0 4881 -1.3 716 0.0 722 0.0 734 0.0 722 0.0 722Table 4.5: Data for the partitions of Example 5 (involving parallel mesh generationand repartitioning on 2 processors).the \Texas" domain taken from PLTMG [5] (see Figure 3.10 for the correspondingcoarse mesh) and the initial partition has 494 root elements in one subdomain and716 root elements in the other subdomain. The initial maximum imbalance andcut-weight are 1.3% and 355 respectively. The initial partition is shown in Table4.5 which also contains the �nal partitions produced by all four algorithms. Asummary of some of the salient features of these partitions are given in Table 4.7and results are discussed in x4.10.

CHAPTER 4. PARALLEL APPLICATION OF LOAD BALANCER IN 2-D 111Coarse mesh : 1568 elementsFinal mesh : 362329 elementsAverage load : 90582 �ne elementsProc. Proc. Load Proc. Load Proc. Load Proc. Load Proc. LoadId. (Initial) (HB) (VKV0) (VKV1) (New)%imb crse %imb crse %imb crse %imb crse %imb crse0 3.8 184 0.2 175 0.3 173 0.2 175 0.2 1751 -2.8 504 -0.2 506 -0.2 504 -0.2 508 -0.2 5082 3.4 258 0.1 249 0.0 241 0.0 249 0.0 2493 -4.4 622 -0.1 638 0.0 650 0.0 636 0.0 636Table 4.6: Data for the partitions of Example 6 (involving parallel mesh generationand repartitioning on 4 processors).Example 6. Here the geometry of the mesh is the same as of previous examplebut the size of the mesh is bigger and we use more processors. Now the rootmesh contains 1568 elements and the leaf mesh contains 362329 elements whichare distributed among 4 processors. The initial partition has between 184 and 622root elements in each subdomain. The initial maximum imbalance and cut-weightare 3.8% and 1141 respectively. The initial partition is shown in Table 4.6 whichalso contains the �nal partitions produced by all four algorithms. A summary ofsome of the salient features of these partitions are given in Table 4.7 and resultsare discussed in x4.10.Example 7. Here the root mesh contains 1371 elements and the leaf mesh has 847659elements which are split across 8 processors. The geometry is the same as of Exam-ple 3. The initial partition has between 13 and 408 root elements in each subdomain(see Figure 4.12 for coarse mesh). The initial maximum imbalance and cut-weightare 3.1% and 3329 respectively. The initial partition is shown in Table 4.8 whichalso contains the �nal partitions produced by four algorithms. A summary of someof the salient features of these partitions are given in Table 4.14 and results arediscussed in x4.10.

CHAPTER 4. PARALLEL APPLICATION OF LOAD BALANCER IN 2-D 112Example Feature Initial HB VKV0 VKV1 NewI MaxImb 1.6% 0.0% 0.0% 0.0% 0.0%CutWt 387 413 613 413 413G R Time 22.7 0.0 0.0 0.0 0.0SolTime 264.7 258.5 264.1 258.6 258.7II MaxImb 3.2% 0.1% 0.2% 0.2% 0.0%CutWt 1359 1523 1769 1487 1426G R Time 13.8 0.1 0.1 0.1 0.0SolTime 172.4 137.4 145.9 137.7 138.8III MaxImb 3.4% 0.3% 0.9% 0.8% 0.8%CutWt 1093 1107 1267 1157 1157G R Time 13.9 0.1 0.1 0.1 0.1SolTime 113.1 104.7 107.7 101.6 102.5IV MaxImb 1.4% 0.0% 0.5% 0.5% 0.5%CutWt 1104 1110 1265 1080 1079G R Time 19.7 0.2 0.1 0.1 0.1SolTime 83.4 82.8 83.1 82.9 82.8V MaxImb 1.3% 0.0% 0.0% 0.0% 0.0%CutWt 355 308 502 308 308G R Time 15.78 0.0 0.0 0.0 0.0SolTime 166.2 164.1 165.9 164.1 164.0VI MaxImb 3.8% 0.2% 0.3% 0.2% 0.2%CutWt 1141 1076 1537 1031 1032G R Time 13.3 0.1 0.1 0.1 0.1SolTime 146.5 144.3 145.9 142.2 142.8Table 4.7: Comparison of dynamic load-balancing results using four algorithms forExamples 1 to 6.

CHAPTER 4. PARALLEL APPLICATION OF LOAD BALANCER IN 2-D 113
Coarse mesh : 1371 elementsFinal mesh : 847659 elementsAverage load :105957 �ne elementsProc. Proc. Load Proc. Load Proc. Load Proc. Load Proc. LoadId. (Initial) (HB) (VKV0) (VKV1) (New)%imb crse %imb crse %imb crse %imb crse %imb crse0 -3.8 408 0.0 421 -0.2 529 -0.6 416 -0.6 4161 -2.1 385 -0.5 392 -0.2 343 -0.6 393 -0.6 3932 -1.6 13 0.1 18 0.2 35 -0.3 13 -0.3 133 -0.3 19 0.4 20 0.2 37 1.4 19 1.4 194 3.0 368 0.0 360 -0.9 263 -0.9 364 -0.9 3645 3.1 112 -0.2 100 1.0 83 1.0 109 1.0 1096 1.8 28 0.3 27 0.1 26 0.2 25 0.2 257 -0.2 38 0.0 33 -0.1 55 -0.1 32 -0.1 32Table 4.8: Data for the partitions of Example 7 (involving parallel mesh generationand repartitioning on 8 processors).

CHAPTER 4. PARALLEL APPLICATION OF LOAD BALANCER IN 2-D 114Example 8. The geometry of the mesh is the same as in the third and previousexamples, but we increase the size of the mesh as well as the number of processorsto achieve the load balance and getting the numerical solution of the above PDE.The new mesh now has 2071 root elements and 1776023 �ne elements in it. Theinitial partition has between 4 and 643 root elements in each subdomain. The initialmaximum imbalance and cut-weight are 6.9% and 8389 respectively. The initialpartition is shown in Table 4.9 which also contains the �nal partitions produced byfour algorithms. A summary of some of the salient features of these partitions aregiven in Table 4.14 and results are discussed in x4.10.Example 9. Here the root mesh contains 4153 elements and the leaf mesh contains566919 elements which are split across 8 processors. The geometry is the sameas of Example 4. The initial partition has between 102 and 1113 root elementsin each subdomain. The initial maximum imbalance and cut-weight are 2.1% and3327 respectively. The initial partition is shown in Table 4.10 which also containsthe �nal partitions produced by four algorithms. A summary of some of the salientfeatures of these partitions are given in Table 4.14 and results are discussed in x4.10.Example 10. We consider here the same mesh as of Examples four and nine, butwith yet more elements and more processors. Now the root mesh contains 4701elements and the leaf mesh contains 736255 elements which are distributed among16 processors. The initial partition has between 54 and 1061 root elements in eachsubdomain. The initial maximum imbalance and cut-weight are 2.3% and 9340respectively. The initial partition is shown in Table 4.11 which also contains the�nal partitions produced by four algorithms. A summary of some of the salientfeatures of these partitions are given in Table 4.14 and results are discussed inx4.10.Example 11. Here the root mesh contains 1784 elements and the leaf mesh contains1116372 elements which are distributed among 8 processors. The geometry usedis the same as of Examples �ve and six above. The initial partition has between104 and 437 root elements in each subdomain. The initial maximum imbalance andcut-weight are 4.2% and 4097 respectively. The initial partition is shown in Table

CHAPTER 4. PARALLEL APPLICATION OF LOAD BALANCER IN 2-D 115
Coarse mesh : 2071 elementsFinal mesh : 1776023 elementsAverage load : 111001 �ne elementsProc. Proc. Load Proc. Load Proc. Load Proc. Load Proc. LoadId. (Initial) (HB) (VKV0) (VKV1) (New)%imb crse %imb crse %imb crse %imb crse %imb crse0 -0.6 643 0.0 646 -0.6 643 -0.6 643 -0.6 6431 0.6 153 0.0 151 0.6 153 0.6 153 0.6 1532 -0.8 140 0.0 169 -0.8 140 -0.8 140 -0.8 1403 -1.1 483 -2.0 424 -0.3 382 0.0 483 0.0 4884 6.9 14 2.1 9 2.3 9 2.1 10 0.1 95 -0.8 4 -0.8 4 1.2 6 1.4 5 0.0 56 -6.0 15 -1.6 26 -0.8 20 -0.9 20 -2.4 217 3.5 13 0.5 10 -0.5 8 -0.7 8 0.5 108 2.5 16 2.5 16 2.5 16 2.5 16 2.5 169 0.6 469 -1.3 456 -2.8 504 -2.8 462 0.0 45410 -0.3 24 -0.1 25 -0.1 34 -0.1 25 0.0 2811 -1.4 23 -0.1 29 -0.1 66 -0.1 26 0.2 2512 -4.9 35 -2.0 63 -1.7 39 -1.7 39 -0.8 3413 0.5 10 1.5 12 0.5 10 0.5 10 0.5 1014 -3.7 13 0.6 20 0.2 23 0.3 15 0.1 1715 5.0 16 0.6 11 0.4 18 0.3 16 0.1 18Table 4.9: Data for the partitions of Example 8 (involving parallel mesh generationand repartitioning on 16 processors).

CHAPTER 4. PARALLEL APPLICATION OF LOAD BALANCER IN 2-D 116
Coarse mesh : 4153 elementsFinal mesh : 566919 elementsAverage load : 70865 �ne elementsProc. Proc. Load Proc. Load Proc. Load Proc. Load Proc. LoadId. (Initial) (HB) (VKV0) (VKV1) (New)%imb crse %imb crse %imb crse %imb crse %imb crse0 2.1 109 0.2 105 0.4 105 0.3 106 0.0 1061 -1.5 707 -0.4 695 -0.1 571 0.0 691 0.1 6982 0.6 102 0.6 102 0.6 102 0.6 102 0.0 1263 -1.0 1082 -0.2 1056 -0.8 1169 -0.8 1086 -0.1 10544 2.0 103 0.5 100 0.1 99 0.1 100 0.1 1005 -1.8 1113 -0.2 1147 -0.1 922 -0.2 1115 -0.1 11186 1.7 114 0.2 112 0.0 109 0.0 112 0.0 1117 -2.1 823 -0.6 836 -0.1 1076 0.0 841 0.0 840Table 4.10: Data for the partitions of Example 9 (involving parallel mesh generationand repartitioning on 8 processors).

CHAPTER 4. PARALLEL APPLICATION OF LOAD BALANCER IN 2-D 117
Coarse mesh : 4701 elementsFinal mesh : 736255 elementsAverage load : 46016 �ne elementsProc. Proc. Load Proc. Load Proc. Load Proc. Load Proc. LoadId. (Initial) (HB) (VKV0) (VKV1) (New)%imb crse %imb crse %imb crse %imb crse %imb crse0 0.5 55 -0.2 55 -0.4 54 -0.5 54 -0.4 541 1.1 73 0.2 72 1.1 73 1.1 73 0.1 722 2.3 103 0.2 99 0.8 98 0.9 101 0.9 1013 -5.1 860 -0.5 892 -0.6 1040 -0.7 878 -0.3 8904 0.4 55 0.4 55 -0.6 54 -0.6 54 0.9 555 1.8 71 0.9 70 0.6 69 0.5 69 0.3 706 2.0 102 0.2 98 0.3 95 0.5 99 0.1 1007 -2.8 1061 -1.0 1042 0.6 919 0.6 1061 -0.8 10228 1.0 63 0.2 62 -0.4 63 -0.4 63 0.6 639 0.5 62 -0.1 61 -0.1 61 -0.3 61 -0.5 6110 2.3 111 0.7 106 0.9 107 0.9 109 -0.1 11811 -3.7 1056 -0.7 1072 -0.5 942 -0.6 1058 -0.3 104512 -0.7 54 0.1 56 -0.7 54 -0.7 54 -0.7 5413 1.8 80 0.4 78 0.1 79 0.4 80 -0.1 7814 1.6 101 0.0 96 -0.2 95 -0.3 97 -0.3 12915 -2.8 794 -0.9 787 -0.7 898 -0.6 790 0.7 789Table 4.11: Data for the partitions of Example 10 (involving parallel mesh genera-tion and repartitioning on 16 processors).

CHAPTER 4. PARALLEL APPLICATION OF LOAD BALANCER IN 2-D 118Coarse mesh : 1784 elementsFinal mesh : 1116372 elementsAverage load : 139546 �ne elementsProc. Proc. Load Proc. Load Proc. Load Proc. Load Proc. LoadId. (Initial) (HB) (VKV0) (VKV1) (New)%imb crse %imb crse %imb crse %imb crse %imb crse0 -3.6 111 0.1 117 -0.5 117 -0.4 116 -0.4 1161 -5.8 104 -0.2 112 0.3 116 0.2 113 0.4 1132 4.2 342 0.1 331 0.1 327 0.2 332 0.1 3323 1.8 189 0.1 193 0.0 193 0.0 191 0.0 1914 -2.3 144 0.0 149 0.0 151 0.0 149 0.0 1495 -0.7 155 0.0 158 0.1 159 0.1 159 0.0 1586 2.3 437 0.0 430 0.0 429 -0.1 431 0.0 4327 4.1 302 -0.1 294 0.1 292 0.1 293 0.1 293Table 4.12: Data for the partitions of Example 11 (involving parallel mesh genera-tion and repartitioning on 8 processors).4.12 which also contains the �nal partitions produced by all four algorithms. Asummary of some of the salient features of these partitions are given in Table 4.14and results are discussed in x4.10.Example 12. Here the geometry of the mesh is the same as of Examples �ve, six andeleven. But the size of the mesh is bigger and we use more processors. Now the rootmesh contains 3896 elements and the leaf mesh contains 2329856 elements whichare distributed among 16 processors. The initial partition has between 93 and 539root elements in each subdomain. The initial maximum imbalance and cut-weightare 3.5% and 9612 respectively. The initial partition is shown in Table 4.13 whichalso contains the �nal partitions produced by all four algorithms. A summary ofsome of the salient features of these partitions are given in Table 4.14 and resultsare discussed in x4.10.

CHAPTER 4. PARALLEL APPLICATION OF LOAD BALANCER IN 2-D 119
Coarse mesh : 3896 elementsFinal mesh : 2329856 elementsAverage load : 145616 �ne elementsProc. Proc. Load Proc. Load Proc. Load Proc. Load Proc. LoadId. (Initial) (HB) (VKV0) (VKV1) (New)%imb crse %imb crse %imb crse %imb crse %imb crse0 -6.1 101 0.0 107 -0.3 112 -0.2 107 -0.2 1071 1.8 164 -0.1 166 0.2 160 -0.1 164 0.0 1642 -3.3 93 -0.1 99 0.0 99 0.1 99 0.0 973 -3.9 111 -0.2 116 -0.1 121 -0.1 115 -0.1 1164 2.1 430 0.0 421 0.1 420 0.0 421 0.0 4215 3.5 325 0.0 317 0.0 324 0.0 323 0.0 3246 -0.9 173 -0.1 185 -0.1 182 -0.1 179 -0.1 1797 1.1 241 0.0 244 0.0 250 0.0 243 0.1 2448 -2.7 137 -0.3 142 -0.3 142 -0.1 142 -0.1 1429 2.3 184 0.1 179 0.2 180 0.0 180 0.0 18010 -1.7 154 0.1 158 0.0 160 0.1 160 0.0 15811 1.4 200 0.4 199 0.0 199 0.1 197 0.1 19912 0.3 539 0.0 537 0.3 539 0.3 539 0.3 53913 1.9 368 0.1 361 0.6 362 0.7 364 0.7 36414 1.4 433 0.1 425 -0.5 412 -0.4 425 -0.5 42415 2.8 243 0.0 240 -0.3 234 -0.2 238 -0.2 238Table 4.13: Data for the partitions of Example 12 (involving parallel mesh genera-tion and repartitioning on 16 processors).

CHAPTER 4. PARALLEL APPLICATION OF LOAD BALANCER IN 2-D 120Example Feature Initial HB VKV0 VKV1 NewVII MaxImb 3.1% 0.4% 1.0% 1.4% 1.4%CutWt 3329 3909 4215 3436 3436G R Time 30.9 0.2 0.3 0.3 0.3SolTime 479.2 455.8 484.6 442.3 437.5VIII MaxImb 6.9% 2.5% 2.5% 2.5% 2.5%CutWt 8389 9425 9837 9272 9049G R Time 44.9 0.9 0.9 0.8 0.8SolTime 592.3 583.5 588.7 532.4 558.2IX MaxImb 2.1% 0.6% 0.6% 0.6% 0.1%CutWt 3327 3235 3601 3193 3356G R Time 30.4 0.4 0.4 0.3 0.3SolTime 139.8 142.0 150.6 118.2 118.5X MaxImb 2.3% 0.9% 1.1% 1.1% 0.9%CutWt 9340 9379 9988 9370 9327G R Time 64.7 2.1 1.1 0.9 1.3SolTime 406.3 400.8 430.8 419.7 355.4XI MaxImb 4.2% 0.1% 0.3% 0.2% 0.4%CutWt 4097 3868 5199 3862 3815G R Time 19.4 0.2 0.4 0.3 0.3SolTime 404.3 390.9 401.7 392.6 392.4XII MaxImb 3.5% 0.4% 0.6% 0.7% 0.7%CutWt 9612 10056 12956 9677 9632G R Time 32.3 0.8 1.3 1.1 1.1SolTime 836.3 818.2 831.7 828.4 809.9Table 4.14: Comparison of dynamic load-balancing results using four algorithms forExamples 7 to 12.

CHAPTER 4. PARALLEL APPLICATION OF LOAD BALANCER IN 2-D 1214.10 DiscussionFor simplicity and clarity we split our discussion in two parts. Part one of the dis-cussion corresponds to Examples 1 to 6 above, where we have only 2 or 4 processorsinvolved. The second part of the discussion corresponds to Examples 7 to 12 above,where the number of processors involved are either 8 or 16.4.10.1 Discussion IThe results of applying the four algorithms to each of the �rst six test problems aresummarised in Table 4.7. In the table MaxImb stands for the maximum imbalance(see x3.5 for a quantitative de�nition of this). Qualitatively, this means the largestpercentage by which the total weight on any single processor exceeds the averageweight per processor. Also, CutWt stands for the cut-weight. As in Chapter 3 it isde�ned as the total weight of all of those edges of the weighted dual graph of theroot mesh which are cut by the partition boundary. The entry G R Time meansthe generation or rebalance time of the corresponding mesh and SolTime means thetime taken by the solver to numerically solve the simple PDE mentioned above.We start our discussion with Examples 1 and 5. In these problems the number ofsubdomains are exactly 2. As expected all algorithms (except the VKV0 algorithm)produce identical results (as in the case of 2 processors all they have to do (exceptthe VKV0 algorithm) is to shift some load from the heavily loaded processor tothe lightly loaded processor using the concept of \gain density"). In the case ofthe VKV0 algorithm results are di�erent as it does not use the concept of \gaindensity". Upon completion all four algorithms produce perfectly load balancedpartitions.There is a substantial increase in the cut weight for the VKV0 algorithm in bothExamples 1 and 5 whereas for the other algorithms there is only a small increasein Example 1 and a signi�cant decrease in the cut weight for Example 5. There isvery little saving in the solution time. This is to be expected on the grounds thatthe initial imbalance was not that high (being less than 1.7% in both the cases). Asa matter of fact the particular mesh-generator is very good in terms of producingwell balanced meshes in case of two subdomains (this is why we present only twoexamples using 2 processors).For other problems where we use four processors the VKV0 algorithm produces

CHAPTER 4. PARALLEL APPLICATION OF LOAD BALANCER IN 2-D 122�nal partitions with relatively high cut-weight. In the case of the VKV1 and Newalgorithms the cut-weight is relatively smaller and almost identical (except for Ex-ample 2 where cut-weight produced by the New algorithm is smallest comparedto the other three). The cut-weights produced by the algorithm of Hu and Blakeare in between these two extremes. Also the solutions times are all roughly same.Apart from Examples 2 and 3 the reduction in the solution time is not that sig-ni�cant. This can be explained by observing that although the initial imbalancein the current situation is higher than the corresponding imbalance in case of twosubdomains (except Example 4 where the initial imbalance is slightly less than thatof initial imbalance of Example 1) it is still not high enough to produce any signif-icant increase in the solution time when solver is applied on the modi�ed meshes.Also the time to rebalance the meshes is negligible, always less than or equal to 0.1seconds (except Example 4 where the algorithm of Hu and Blake took 0.2 seconds).4.10.2 Discussion IIThe results of applying the four algorithms to each of the last six test problems aresummarised in Table 4.14. All the headings in this table are exactly the same asgiven in Table 4.7 and also have same meanings as described in x4.10.1.There are a number of comments which need to be made concerning these re-sults. Firstly, the cut-weights produced by the VKV0 algorithm are higher thanthe corresponding cut-weights produced by the VKV1 algorithm (as a matter offact cut-weights produced by the VKV0 algorithm are highest as compared to thecut-weights produced by all other algorithms). This clearly shows the e�ect of usingthe concept of gains in the migration phase of the VKV1 algorithm. Also, by look-ing at second problem (e.g. problem 8), it may appear on �rst inspection that allfour of these techniques perform quite poorly in terms of the size of the maximumimbalance (the �nal maximum imbalance is well above the desired allowable targetof 1% (which we maintained throughout the chapter)). This is not really the casehowever since the mesh re�nement in this example is highly localised (as is typicalin the adaptive solution of partial di�erential equations) and so some root elementshave extremely large weights compared with others. This makes it impossible toachieve an exact load-balance in this case without increasing the cut-weight mas-sively. However the situation in all other �ve problems is not so bad. In these

CHAPTER 4. PARALLEL APPLICATION OF LOAD BALANCER IN 2-D 123examples each algorithm consistently achieves a maximum imbalance of well under1% (with two exceptions - in Example 7 a highest maximum imbalance of 1.4%is produced by both the VKV1 and New algorithms and in Example 10 both theVKV0 and VKV1 algorithms achieve a maximum imbalance of exactly 1.1%).As mentioned above in all problems the VKV0 algorithm produces the highestcut-weight as compared to the other three algorithms. Apart from Examples 7 and9 the New algorithm has the least amount of cut-weight. In Example 9 the VKV1algorithm enjoys the least amount of cut-weight. In Example 7 both the VKV1 andNew algorithms produce the least amount of cut-weight.It is interesting to observe that the parallel execution times for all of thesealgorithms are generally quite similar with only one exception, the exception beingExample 10 (which is rather surprising) in which case the algorithm of Hu andBlake is taking twice as much time as taken by other two algorithms. But in eithercase the cost of rebalancing the mesh is only a fraction of the cost of generating themesh. Hence for this class of problem with these reasonably good initial partitions,it would appear that minimising data migration is not as important as obtaining ahigh quality partition.A �nal note for this section is to analyse the parallel execution time taken by oursimple solver. This is the most important parameter of any dynamic load balancingalgorithm. As far as the New algorithm is concerned the net saving in solver timeranges from 3% to 15%. Except for Example 11 the SolTime of the solver usingthe partition of the New algorithm is less than the corresponding SolTime of thesolver using the partition algorithm of Hu and Blake. The corresponding di�erencein time in case of Example 11 is negligible. In all cases the SolTime taken by theVKV0 algorithm is higher than the corresponding time of other algorithms.4.11 ConclusionsIn this chapter we have introduced a post-processing algorithm for the parallelgeneration of unstructured meshes for use in parallel �nite element or �nite volumeanalysis. The algorithm is based upon a parallel implementation of the dynamicload-balancing algorithm of Chapter 3 so as to perform a local modi�cation of thepartition of an underlying background grid from which the mesh was generated inparallel. This modi�cation aims to improve the load-balance whilst respecting data

CHAPTER 4. PARALLEL APPLICATION OF LOAD BALANCER IN 2-D 124locality and ensuring that the length of the partition boundary is not increasedunnecessarily.We have successfully demonstrated an implementation of this algorithm in twodimensions. In addition it has been shown that the execution time of the code,implemented in C using MPI, is extremely competitive. It should be noted howeverthat the post-processing step described here can only be as e�ective as the coarsemesh allows it to be. For example, if the background grid only has a small numberof elements which are evenly spread across the domain and the �ne mesh is very �nein some particularly local regions, then it is possible that even an optimal solution ofthe corresponding load-balancing problem may have a very large imbalance and/orcut-weight (e.g. Example 8 above).As mentioned earlier, at the time of undertaking the work of this chapter nopublic domain dynamic load-balancing algorithm was available to compare withour algorithm. Recently, parallel versions of the publicly available software pack-ages METIS [63] and JOSTLE [109] have been released and so it would now alsobe possible to make use of these within the post-processing step and compare theperformance of these with the above algorithm. We have not made these compar-isons however since extensive use of both of these packages is made in the nextchapter in which the load-balancing algorithms are applied to a problem arisingin the adaptive solution of 3-d time-dependent equations. Moreover, some furthermodi�cations to our new dynamic load-balancer have been made for this 3-d ap-plication and it is with this �nal version that we compare the parallel versions ofMETIS and JOSTLE.

Chapter 5Parallel Application of theDynamic Load Balancer in 3-dAs mentioned in previous chapters the objective here is to demonstrate the per-formance of our new dynamic load-balancing algorithm when used in conjunctionwith any parallel, adaptive, time-dependent, 3-d
ow solver. In order to get somenumerical results we decided to couple it with a particular parallel, adaptive andtime-dependent solver that has recently been developed at Leeds by Selwood et al.([87, 88]) which is a parallel version of a serial code also developed at Leeds bySpeares and Berzins ([93]). An overview of this adaptive solver is given along witha detailed description of the application of the the new dynamic load-balancing al-gorithm. The e�ectiveness of this algorithm is then assessed when it is coupled withthe solver to tackle a model 3-d
ow problem in parallel. Three alternative paralleldynamic load balancing algorithms are also described and tested on the same
owproblem. Perhaps we should mention here the two major di�erences of this solveras compared to the solver used in x4.9.2 (apart from the obvious fact that we arenow solving a 3-d problem over a 3-d mesh). The �rst major di�erence is the use ofhalo objects. These halo objects in a particular subdomain are the copies of thoseobjects which are owned by other subdomains but which share a common boundarywith the current subdomain. The use of these halo objects simpli�es the parallelsolver, albeit at the expense of more communication and more reallocation of dataobjects during the execution of the dynamic load-balancing algorithm. The othermajor di�erence is that the solution technique used by this solver is that of �nitevolume method (see x1.3 and x5.2.2). 125

CHAPTER 5. PARALLEL APPLICATION OF LOAD BALANCER IN 3-D 1265.1 IntroductionAs stated in previous chapter the use of multiprocessor computers for the solutionof large, complex CFD and CM problems has great potential for both signi�cantincreases in mesh sizes and the signi�cant reduction of solution times. For transientproblems accuracy and e�ciency constraints also require the use of mesh adaptationsince solution features on di�erent length scales are likely to evolve. Signi�cantly,the meshes that are generally used for these problems on parallel machines are typi-cally too large for serial adaptivity to be viable in conjunction with a parallel solverwithout causing a major serial bottleneck and a large communication overhead. Inaddition the size of the �nal mesh would be arti�cially constrained by the amount ofmemory available to a single processor. There is therefore a clear need for paralleladaptivity procedures to be supplied in addition to the parallel solver itself. Thisadaptivity should allow both the addition and deletion of degrees of freedom acrossthe solution domain in a distributed manner, without ever requiring the entire meshto be held on a single processor { see [56] for a discussion of some examples of suchtechniques.In order for the parallel solver to perform e�ciently however it is necessarythat, at each stage of the solution process, the work load of each processor shouldbe about equal (or proportional to its computational power in the case of an hetero-geneous system). If this equality of load is initially achieved through appropriatelypartitioning the original �nite element/volume mesh across the processors then itis clear that the use of parallel adaptivity will eventually cause the quality of thepartition to deteriorate. For the same reasons that it is undesirable to perform meshadaptivity on a single processor it is also undesirable to re-partition the mesh usingjust one processor: it would carry a large communication overhead, become a serialbottleneck and would be constrained by the amount of memory available to justone processor. Hence we again conclude that a parallel load balancing technique isrequired which is capable of modifying an existing partition in a distributed man-ner so as to improve the quality of the partition (see x5.3 below) whilst keeping theamount of data relocation as small as possible.In this chapter we consider the dynamic load balancing problem which arisesin the adaptive solution of time-dependent partial di�erential equations using aparticular parallel adaptive algorithm based upon hierarchical mesh re�nement.

CHAPTER 5. PARALLEL APPLICATION OF LOAD BALANCER IN 3-D 127This algorithm is applicable to problems in three space dimensions of the form@u@t (x; t) = L(u(x; t)) for (x; t) 2
� (0; T], (5.1)where
 � <3 and L is some spatial operator. It is based upon the adaptivere�nement of a coarse root mesh, T0 say, of tetrahedra which covers the spatialdomain
. The
exibility of the data structures held within the adaptivity code(see x5.2.1 below) means that the exact nature of the parallel solver may vary (e.g.�nite element or �nite volume) provided it uses a tetrahedral mesh and is able towork with a partition of the elements of this mesh.In the following section an overview of this parallel adaptive algorithm is given,along with a brief description of a particular parallel solver based upon a cell-centred�nite volume scheme. In x5.3 we re-visit the dynamic load balancing problem. The�nal version of the parallel dynamic load-balancing algorithm is introduced in x5.4,where its implementation is also outlined. The chapter then concludes by reportingthe results of a number of numerical tests which are used to contrast the fourload balancing algorithms (our algorithm, the Vidwans et al. algorithm ([104]) andtwo very recent software tools for tackling this distributed problem in parallel)considered for this particular adaptive solver.To conclude this introductory section we observe that the parallel dynamic loadbalancing problem addressed in this chapter can arise in numerous other contextsin parallel computational mechanics. As well as the use of local h-re�nement, otheralgorithms which permit the distribution of the computational load across the do-main
 to vary as the simulation proceeds will require a dynamic load balancingstrategy. This includes algorithms based upon p-re�nement (see [24, 27] for exam-ple) or those for solving systems, such as those arising in phase-change problemsfor example (e.g. [4]), in which the computational nature of the solution can changewith time at each point in
. Another important situation in which dynamic loadbalancing often arises is when a parallel code is executed on an heterogeneous net-work (such as a cluster of workstations for example), in which the performance ofeach processor may vary with time as its load increases or decreases. All of thesesituations may be treated by the algorithms discussed in x5.3 and x5.4 below how-ever, for the sake of clarity, we now restrict all further discussion, examples andcomparisons to the three-dimensional h-re�nement code described in the followingsection.

CHAPTER 5. PARALLEL APPLICATION OF LOAD BALANCER IN 3-D 1285.2 A Parallel Adaptive Flow Solver5.2.1 A Parallel Adaptive AlgorithmThe software outlined in this subsection (called PTETRAD) was written by Sel-wood et al. [87, 88] and is based upon a parallel implementation of a generalpurpose serial code, TETRAD (TETRahedral ADaptivity), for the adaptation ofunstructured tetrahedral meshes [93]. The technique used is that of local re�ne-ments/dere�nements of the mesh to ensure su�cient density of the approximationspace throughout the spatial domain,
, at all times. A more complete discussionof the parallel algorithms and data structures may be found in [87, 88, 89, 100].Data structuresOne of the major issues involved in parallelising an adaptive code such as TETRADis how to treat the existing data-structures. TETRAD utilises a complex tree-based hierarchicalmesh structure, with a rich interconnection betweenmesh objects.Figure 5.1 indicates the mesh object structures used in TETRAD. In particular, notethat the main connectivity information used is `node to element' and that a completemesh hierarchy is maintained by both element and edge trees. Furthermore, as themeshes are unstructured, there is no way of knowing a-priori how many elementsshare any given edge or node.For parallelisation of TETRAD, there are two main data-structure issues. The�rst is how to partition a hierarchical mesh, the second is that speci�c new data-structures are required to support parallel partitioning of the mesh.1. As we �rst discussed in x2.3 there are two options for partitioning a hierarchi-cal mesh. The �rst is to partition the grid at the root or coarsest level, T0. Thishas a number of advantages. The local hierarchy is maintained on a processorand thus all parent/child interactions (such as re�nement/dere�nement) arelocal to a processor. The partitioning cost will also be low, as the coarse meshis generally quite small. The main disadvantage of this approach however isthat, for comparatively small coarse meshes with large amounts of re�nement,it may be di�cult to get a good partitioning, both in terms of load balanceand communication requirements.The other main approach is to partition the leaf-level mesh, i.e. the actual

CHAPTER 5. PARALLEL APPLICATION OF LOAD BALANCER IN 3-D 129
Element

Child

Parent

Child

Parent
Nodes[4]

Child[Nc]
Parent
Edges[6]

Child[2]

 Parent

Nodes[2] +

EDGE

FACE

ELEMENT

NODE

+ ...

(x,y,z)

Element[Nf]

X,Y,Z

Element

Nodes[3]

Figure 5.1: Mesh data-structures in TETRADcomputational grid. The pros and cons of this approach are the opposite ofthose with the coarse level partitioning. In particular, the quality in terms ofload balance and cut-weight of the partition is likely to be better, albeit atthe expense of a longer partitioning time. However, the data-structures haveto be more complicated as hierarchical operations, such as multigrid V-cyclesand dere�nement for example, are no longer necessarily local to a processor(and are therefore likely to be slower).The approach taken for parallelising TETRAD is that of partitioning thecoarse mesh. The only disadvantage of this, that of possible suboptimal par-tition quality, can be avoided if the initial, coarse mesh is scaled as one addsmore processors.2. Given a partitioned mesh, data-structures are required in order to supportinter-processor communication and to ensure data consistency. Data con-sistency is handled by assigning ownership of mesh objects (elements, faces,edges and nodes). As is common in many solvers such as those used by [13, 87]PTETRAD uses halo elements: these are copies of inter-processor boundary

CHAPTER 5. PARALLEL APPLICATION OF LOAD BALANCER IN 3-D 130
Figure 5.2: Regular re�nement dissecting interior diagonalelements (with their associated data) used to reduce communication over-heads. In order to have complete data-structures (e.g. elements have locallyheld nodes) on each processor, halo copies of edges, nodes and face objectsare also used. If a mesh object shares a boundary with many processors, itmay have a halo copy on each of these. All halos have the same owner asthe original mesh object. In situations where halos may have di�erent datathan the original, the original is used to overwrite the halo copies and thusis de�nitive. This is used to help prevent inconsistency between the variouscopies of data held.Adaptivity AlgorithmsBoth TETRAD [93] and its parallel implementation, PTETRAD [87, 88], use asimilar strategy to that outlined in [70] to perform adaptivity. Edges are �rstmarked for re�nement/dere�nement (or neither) according to some estimate orindicator (provided as part of the parallel solver: see x5.2.2 below for example).Elements with all edges marked for re�nement may then be re�ned regularly intoeight children. To deal with the remaining elements which have one or more edgeto be re�ned so-called \green" re�nement is used. This places an extra node at thecentroid of each element and provides a link between regular elements of di�eringlevels of re�nement. The types of re�nement are illustrated in Figures 5.2 and 5.3.An important restriction that is made is that green elements may not be furtherre�ned as this may adversely a�ect mesh quality ([78]). Instead, they are �rstremoved and then uniform re�nement applied to the parent element.Immediately before the re�nement of a mesh, the dere�nement stage occurs.This may only take place when all edges of all children of an element are marked

CHAPTER 5. PARALLEL APPLICATION OF LOAD BALANCER IN 3-D 131
Figure 5.3: Green re�nement by the addition of an interior nodefor dere�nement and when none of the neighbours of an element to be deleted aregreen elements or have edges which have been marked for re�nement. This is toprevent the deleted elements immediately being generated again at the re�nementstage which follows. A further necessary constraint is that no edges or elements atthe coarsest level, T0, may be dere�ned.For further details of the implementation of these adaptive algorithms usingMPI ([34]) please refer to [87, 88]. These papers discuss important issues such asperforming parallel searches in order to allow re�nement of edges of green elements(which requires coarsening followed by regular re�nement), maintaining mesh con-sistency and dealing with halo data in parallel.5.2.2 A Parallel Finite Volume SolverIn order to apply the above adaptive algorithm to systems of PDEs of the form(5.1) a parallel solver is also required. The data structures supported by TETRADhave been used with both �nite element and �nite volume solvers (cell-centred andcell-vertex), however in the examples used in this chapter numerical experimentsare based only around a cell-centred �nite volume scheme.The scheme used is applicable when (5.1) represents a system of hyperbolicconservation laws of the form@u@t + @F (u)@x + @G(u)@y + @H(u)@z = 0 ; (5.2)such as the three-dimensional Euler equations for example, and is a parallel versionof the algorithm described in detail [93]. This is a conservative cell-centred schemewhich is a second-order extension of Gudunov's Riemann problem-based scheme([39]), using MUSCL-type piecewise linear reconstructions of the primitive variables

CHAPTER 5. PARALLEL APPLICATION OF LOAD BALANCER IN 3-D 132within each element ([102]). Although the time-stepping is explicit it is executedin two distinct phases: a non-conservative predictor-type update (referred to in[102] as the \Hancock step") followed by a second half-time-step based upon theapplication of the underlying conservation law. Implicit in this numerical method isthe need to solve a Riemann problem at each element interface at each time-step {although this is only done approximately using a modi�ed form of the approximatesolver described in [42].The parallel version of the solver was also implemented by Selwood and Berzins([87]). This implementation was quite straightforward due to the face data structurethat exists within the adaptivity software (see Figure 5.1 for example). To avoid anycon
icts at the boundary between two subdomains a standard \owner computes"rule is used for each of the faces when solving the approximate Riemann problems todetermine
uxes. The use of halo elements ensures that the owner of each face hasa copy of all of the data required to complete these
ux calculations provided thehalo data is updated twice for each time-step (i.e. immediately before the Hancockstep and then again before the second half-time-step).5.3 Dynamic Load BalancingAs explained in x5.2.1 above parallel solvers such as PTETRAD require the compu-tational domain to be partitioned into subdomains. In the case of PTETRAD thispartition should be applied to the coarse root mesh T0 (as discussed above in x5.2.1).It is usual to express the requirements of such a partition in terms of the weighteddual graph of this mesh. Let us recall from x2.3 the de�nition of the weighted dualgraph - for each element, i, of the root mesh de�ne a corresponding vertex of thedual graph and let this vertex have weight vi, where vi is the number of leaf-levelelements of the current mesh which lie within root element i. For each pair of faceadjacent elements in the root mesh de�ne an edge, j, of the dual graph and let thisedge have weight ej, where ej is the number of pairs of leaf-level elements in thecurrent mesh which meet along face j. We may also recall from x2.3 that, for ahomogeneous network of processors, we would like to be able to partition this graphso that at all times the following four conditions are satis�ed:1. the total vertex weight in each subgraph is approximately equal,

CHAPTER 5. PARALLEL APPLICATION OF LOAD BALANCER IN 3-D 1332. the total cut-weight of the partition is kept to a minimum,3. there is a minimal amount of migration of data between subgraphs,4. the load balancing should be completed in parallel.Note that the �rst two constraints on the partition of T0 (or its dual graph)should hold at each time-step. However, when parallel adaptivity occurs it is likelythat the weights vi and ej will change. In particular, changes in the vertex weights viare liable to cause an existing well-balanced partition of T0 to become unbalanced.The objective of a dynamic load balancing algorithm is to modify an existing,inadequate, partition of the dual graph so as to meet objectives 1 and 2 above butin such a way that the last two constraints are also satis�ed. The motivation behindthird requirement is simply that there is a signi�cant communication overheadassociated with moving data between processors and this overhead should not beallowed to nullify the computational advantages of obtaining an improved partition.And without the last requirement there would be a sequential bottleneck in thewhole solution procedure at the load balancing stage which could seriously reducethe overall e�ciency and performance of the adaptive parallel solver.5.4 Application of the Parallel Dynamic Load-Balancing AlgorithmIn this section we are going to modify the parallel dynamic load-balancing algorithmalready introduced in Chapters 3 and 4. These modi�cations are required to addgenerality to the code due to the di�erent nature of solver as well as underlyingmeshes. This modi�ed algorithm is similar in strategy to that of Chapter 4 withGroup Balancing, Data Migration and a Divide and Conquer philosophy. However,as far as the implementation is concerned there are major di�erences between thisand Chapter 4. We now discuss these di�erences in details.5.4.1 Calculation of WPCGThe idea of the Weighted Partition Communication Graph (WPCG) was �rst intro-duced in x2.4 and since then has been used extensively in the previous two chapters.Let us recall from x2.4 that a WPCG is obtained by having one vertex for every

CHAPTER 5. PARALLEL APPLICATION OF LOAD BALANCER IN 3-D 134processor and an edge between two vertices if and only if they are face adjacent toeach other. Although the de�nition of WPCG is quite standard the actual determi-nation may vary from one context to another. In the present situation the conceptof 'halo' elements together with the hierarchical nature of the mesh plays an im-portant role in the determination of the WPCG. During the bisection process ofthe WPCG it is necessary to calculate the weighted Laplacian of WPCG as well asthe weights of all the vertices of WPCG. This is done in two phases. In phase one,which is shown in Figure 5.4, we calculate the weights of all the vertices and edgesof the dual graph with the help of the c-style function FindWeights(). In phase two,which is shown in Figure 5.5, we use these edge weights to �nd the weighted Lapla-cian of the WPCG. It is interesting to observe the recursive nature of the functionFindWeights() shown in Figure 5.4 (the very �rst call to this function is of the formFindWeights(Element,Element,WeightOfElement,WeightOfElementEdge)). Itmay also be observed that as the original mesh is already distributed across a num-ber of processors of a parallel machine, the calculations in Figure 5.4 are performedby each processor on those roots elements which it currently owns. Also, the kthrow of the WPCG is assembled by the kth processor with the help of Figure 5.5(note that in this �gure the weight of jth element face is the same as the weight ofthe corresponding edge in the dual graph). Just like in x4.2.1 each processor, afterassembling its own row, sends it to one processor (which we call a master processor).The master processor, after receiving all the contributions from all other processors,forms the Laplacian and then divides the WPCG into two subgroups denoted byGroup1 and Group2 using the same procedure as in x3.2.1.5.4.2 Use of TokensAt each level of the recursive re-balancing algorithm, after deciding how much toshift between the di�erent processors, we face the same practical di�culties asencountered in the previous chapter. However to overcome these di�culties wetake a di�erent approach to that taken in the previous chapter. The �rst di�erence,which is a major one, is concerned with passing the information associated withmoving a coarse element. In the previous chapter, whenever a coarse element goesfrom one subdomain to another subdomain all of its associated data structures aresent, even if the new home is only a transitory one. In the current implementation

CHAPTER 5. PARALLEL APPLICATION OF LOAD BALANCER IN 3-D 135FindWeights(ElmC,Elm,WeightOfElm,WeightOfElmEdge[])fif (ElmC has no child)fWeightOfElm++;if (ElmC has a face which is contained in jth face of Elm)WeightOfElmEdge[j]++;gfor(i = 0; i < Children of ElmC; i++) fElmC2 = ith child of ElmC;FindWeights(ElmC2,Elm,WeightOfElm,WeightOfElmEdge[]);gg
'
&

$
%Figure 5.4: Calculation of weights of vertices and edges of the weighted dual graph.the communication of the full coarse element hierarchies is left until the very end ofthe load-balancing process, with much smaller tokens being passed instead duringthe transitory stages. There are many reasons for doing this. One reason is that inthe previous chapter the load-balancing algorithm was used only once, usually atthe end of the generation of the mesh and before the solution process commences,but in the current context it can be used possibly after each adaptation step (incase the resulting imbalance is greater than a prede�ned tolerance). The secondreason is that in the 2-d application the size of the accompanying data structure of amoving element is much smaller than the corresponding size in this 3-d application.In fact the re-balancing times in all the problems of Chapter 4 were less than asecond (except problems 10 and 12 where it was slightly higher than a second),showing that in 2-d steady state cases moving all the information associated witha migrating coarse element is indeed not that costly.5.4.3 No ColouringThe other major di�erence between the current implementation and that of theprevious chapter is to drop the colouring methodology. Note that the colouringscheme in the 2-d case was implemented in order to avoid the complication involvedin the simultaneous migration of two neighbouring elements (without it, complicated

CHAPTER 5. PARALLEL APPLICATION OF LOAD BALANCER IN 3-D 136for(e = 1; e � total no. of root elements; e++)fWeight of the kth vertex of WPCG = Weight of the root element e;if (element e is not halo)for(j = 1; j � 4; j++)if (jth face of element e touches the boundary of ith processor) fLapr[i] -= weight of jth element face;Lapr[k] += weight of jth element face;gg
'
&

$
%Figure 5.5: Calculation of a row of the weighted Laplacian matrix.forwarding messages would have been required to accomplish the same task). Thedecision to drop the colouring approach in the current context is based upon thefact that in the 3-d setup it is computationally more expensive to implement. In2-d the average number of colours used was never more than 10. But in 3-d a givenvertex may have 100 (or even more) common tetrahedral elements. So the colouringscheme would almost certainly adversely a�ect the performance of the dynamic loadbalancer. An alternative to the colouring approach is discussed below.5.4.4 Use of Global CommunicationRather than use the colouring scheme introduced in Chapter 4 in order to to avoiddata con
icts (see x4.3) we decided to make use of global arrays, whereby eachprocessor knows the owners of every coarse element in the entire coarse mesh.These arrays are updated after each level of the recursive step. Note that each levelof the algorithm starts with a given group. Based upon the sorted version of theFiedler vector it is divided into two subgroups which are called Sender and Receivergroups respectively. A certain number of coarse elements are marked for migrationfrom the Sender to the Receiver groups in an attempt to balance the computationalload evenly.Initially each processor in a group is assigned as the owner of all non-halo coarseelements which reside within the processor: the unique owner for each coarse el-ement being the ID of the processor itself. Soon after these assignments, which

CHAPTER 5. PARALLEL APPLICATION OF LOAD BALANCER IN 3-D 137are local to each processor, the list of elements owned by each processor is broad-casted globally within the I Group (let us recall from x4.8 that each processor is amember of two groups, the initial group (called the I Group) which consists of allthe p processors involved and which remains the same throughout the discussionand the current group (known simply as the Group) which is a variable group andchanges with each application of the Divide and Conquer algorithm). As a resultof this broadcast every processor now knows the owner of every coarse element inthe entire mesh. When a coarse element in the Sender group is marked for a mi-gration, the owning processor of the coarse element keeps a note of this change (i.e.it records the new owner of the coarse element (which is the ID of some processorin the Receiver group)).At the end of this symbolic migration step each candidate processor in theSender group broadcasts globally within the I Group the new owners of those coarseelements which are marked for migration from the processor. As a result of thisbroadcast every processor knows not only the IDs of those processors from whichthere would be migration of coarse elements but they also know the new ownersof these coarse elements. Soon after the broadcast each processor updates its ownversion of the array which keeps track of the owner of all the coarse element in theentire coarse mesh.It may be pointed out here the this broadcasting step consists of two separatesteps. In the �rst step each candidate processor in the Sender group broadcastsonly the number of coarse elements marked for the migration. In the second stepit broadcasts the new owners of these coarse elements. This division of the broad-casting was necessary. The �rst step is necessary for the second step. After the �rststep each processor can create the necessary temporary arrays in order to accom-modate the new owners of the marked coarse elements (which will be broadcast inthe second step).An overview of the whole algorithm is given in Figure 4.3.5.5 Computational ResultsWe now present some computational results produced by the new dynamic load-balancing algorithm when used in conjunction with Selwood's parallel adaptive
owsolver outlined in x5.3. We also compare our results with the results produced by the

CHAPTER 5. PARALLEL APPLICATION OF LOAD BALANCER IN 3-D 138original algorithm of Vidwans et al. (for details see [104] and x2.7.2) which uses thegrid-connectivity-based approach for the purpose of the migration of nodes and twopublically available software tools; namely the ParJOSTLE ([107]) and ParMETIS([63]) algorithms. It should be noted that this
ow solver requires a partition of theroot mesh, T0, such that the total number of leaf-level elements on each processoris approximately equal. When there is heavy local re�nement in some regions ofthe spatial domain
 (as in the examples below) it follows that the dual graph ofT0 will have highly disparate weights. Hence, in this chapter we are only testingthe performance of the dynamic load balancing algorithms for one speci�c class ofproblem: the repartitioning of highly non-uniformly weighted graphs.5.5.1 ExamplesFor these examples we apply the parallel adaptive Euler solver to model a shockwave di�raction around the 3-d right-angled corner formed between two cuboidmesh regions (taken from [88, 93]). The initial condition is of Rankine-Hugoniotshock data at the interface of the two cuboid regions with a shock speed of Mach1:7. Figures 3.11 and 3.12 illustrate how the mesh adapts to the solution as theshock progresses through the domain. It is clear that although a partition of themesh for the initial condition may be good, it is unlikely to remain so as the solutiondevelops and thus dynamic load balancing of the distributed data will be required.It should be noted that for all the calculations described below, the ParJOSTLEalgorithm was used with its graph reduction threshold parameter set to 300 (see [87]where Selwood and Berzins use the same value) which appeared to give consistentlybetter results than either of the other values tried: 20 (the default) and 50. All otherparameters in both the ParJOSTLE and ParMETIS algorithms were left at theirdefault values. It should be observed that in the case of Example 1 the ParMETISand Vidwans et al. algorithms were unable to produce any results when we used32 processors (in such cases the ParMETIS algorithm was showing the message'Too much suppression' and the results were absurd). Very recently (and after thecompletion of this chapter) two alpha versions of the ParMETIS 2.0 algorithm havebeen released which we hope would produce satisfactory results in this situation(at the time of writing we have not yet experiment with these however). Theabbreviations used in Tables 5.1 to 5.8 have the following meanings:

CHAPTER 5. PARALLEL APPLICATION OF LOAD BALANCER IN 3-D 139� MaxImb - which stands for maximum imbalance and it is the largest percent-age by which the total weight on any single processor exceeds the averageweight per processor (see x3.5 for quantitative de�nition).� CutWt - which stands for cut-weight and is de�ned as the sum of the weightsof all those edges in the weighted dual graph which cross between two di�erentsubdomains (see Chapter 3).� SolTime - which stands for the solution time and represents the wall-clock time(in seconds) taken by the parallel �nite volume solver, either using the initialpartition or using a new partition after application of one of the dynamicload-balancing algorithms.� RedTime - which stands for the repartitioning and redistribution times andrepresents the wall-clock time (in seconds) that is required in calculating thenew partitioning vector and redistribution (i.e. copying) of mesh objects acrossthe machine as a result of applying one of the dynamic load-balancing algo-rithms.� Migration - total number of �ne elements which are migrated by one of thedynamic load-balancing algorithms.� MigFreq - which stands for the migration frequency and represents the num-ber of times the repartitioning needed to be undertaken throughout the 300time-steps as a result of applying one of the dynamic load-balancing algo-rithms (note the maximum value of MigFreq is 10 here).Example 1. In the computations whose results are tabulated in Tables 5.1 to 5.4 theroot mesh, T0, contained 5148 elements (see Figures 3.11 and 3.12 which illustratehow the mesh adapts to the solution as the shock progresses through the domain).Up to three levels of re�nement are allowed which leads to an initial �ne mesh con-taining between 84446 to 91008 elements depending upon the number of processorsused (it is interesting to observe that the initial size depends upon the number ofprocessors used due to a variable number of green elements at the boundary whichdepends on the number of processors used!) with many more elements appearing

CHAPTER 5. PARALLEL APPLICATION OF LOAD BALANCER IN 3-D 140in this leaf-level mesh at later times (or there may be a drop in the size in case ofheavy coarsening). Note that throughout these calculations, the adaptive mesh hasresolution equivalent to a mesh of 2:6 million uniform, regular elements.Table 5.1 presents a comparison of some partition-quality metrics when fourdi�erent dynamic load-balancing algorithms are applied using 2, 4, 8, 16 and 32processors of an SGI Origin 2000 computer. In each case the initial partition hasa maximum imbalance of over 32%. The solution times quoted represent the wall-clock time (in seconds) taken by the parallel �nite volume solver for the next 30time-steps, either using the initial partition or using a new partition after applicationof one of the dynamic load-balancing algorithms. Finally, when load-balancing hasbeen performed, the total weight of all of the root elements of T0 that have beenmigrated from one processor to another is quoted.An alternative form of comparison between the four dynamic load-balancingalgorithms is provided by Tables 5.2, 5.3 and 5.4. For these results sequencesof 300 time-steps were taken with adaptivity taking place on up to ten occasions(after every 30 time-steps). Whenever the maximum imbalance exceeds a prescribedtolerance (which is 5% for Table 5.2, 10% for Table 5.3 and 15% for Table 5.4) aftermesh adaptivity has taken place the dynamic load-balancing algorithm is called.The solution times quoted are the total times for the �nite volume solver to completethe 300 time-steps excluding the repartitioning and redistribution times (which arealso quoted separately). This gives an indication of the quality of the dynamic load-balancing algorithm. As additional, architecture independent, comparison of theiroverheads these tables also show the total weight of all of the root elements thatwere migrated throughout the 300 time steps (Migration) as well as the numberof times that repartitioning needed to be undertaken (MigFreq). See x5.6 for adiscussion of these results.Example 2. In the computations whose results are tabulated in Tables 5.5 to 5.8the root mesh, T0, contained 34560 elements (this is a little more than for theillustrative examples shown in Figures 3.11 and 3.12). Up to three levels of re�ne-ment are allowed which leads to an initial �ne mesh containing between 291094 to304186 elements depending upon the number of processors used (again the initialsize depends upon the number of processors used due to a variable number of greenelements at the boundary) with many more elements appearing in this leaf-level

CHAPTER 5. PARALLEL APPLICATION OF LOAD BALANCER IN 3-D 141Initial ParMETIS ParJOSTLE Vidwans et al. RecursiveProcessors 2MaxImb 40% 5% 0% 0% 0%CutWt 958 1709 959 2387 2127SolTime 126.0 96.4 91.3 95.2 93.8Migration { 17909 44955 16780 16786Processors 4MaxImb 34% 4% 1% 0% 0%CutWt 1720 2423 2399 3958 2791SolTime 62.0 48.3 46.4 47.4 46.6Migration { 18831 27122 23750 34445Processors 8MaxImb 33% 5% 3% 2% 0%CutWt 3064 4139 4129 5634 4905SolTime 32.0 25.3 26.2 27.5 27.3Migration { 21435 44982 26569 25182Processors 16MaxImb 55% 9% 9% 2% 4%CutWt 4760 6439 5525 8010 7510SolTime 17.0 12.1 12.0 12.1 11.9Migration { 35001 63580 31507 30424Processors 32MaxImb 143% { 42% { 24%CutWt 5616 { 7103 { 8959SolTime 11.2 { 6.7 { 6.2Migration { { 43884 { 36714Table 5.1: Some partition-quality metrics immediately before and after a singlere-balancing step for Example 1.

CHAPTER 5. PARALLEL APPLICATION OF LOAD BALANCER IN 3-D 142Initial ParMETIS ParJOSTLE Vidwans et al. RecursiveProcessors 2SolTime 1054.0 848.6 811.1 808.3 818.9RedTime { 9.3 26.5 21.8 30.3Migration { 17909 57892 18891 21560MigFreq { 1 2 2 3Processors 4SolTime 518.3 413.9 406.6 420.9 408.4RedTime { 32.8 18.5 14.1 11.8Migration { 30296 65719 25222 40382MigFreq { 7 3 2 2Processors 8SolTime 276.4 205.3 214.5 239.2 234.8RedTime { 17.3 56.7 27.7 33.8Migration { 48636 309312 35063 36976MigFreq { 4 7 5 7Processors 16SolTime 146.2 107.0 108.9 124.8 113.9RedTime { 34.8 51.4 43.1 28.1Migration { 133303 498071 57339 47317MigFreq { 10 10 10 7Processors 32SolTime 104.3 { 66.5 { 71.3RedTime { { 36.9 { 32.1Migration { { 263986 { 69507MigFreq { { 10 { 10Table 5.2: Solution times, redistribution times, total migration weights and migra-tion frequencies for 300 time-steps using a re-balancing tolerance of 5% for Example1.

CHAPTER 5. PARALLEL APPLICATION OF LOAD BALANCER IN 3-D 143Initial ParMETIS ParJOSTLE Vidwans et al. RecursiveProcessors 2SolTime 1054.0 848.6 810.9 833.2 826.3RedTime { 9.3 12.3 12.9 22.7Migration { 17909 44955 16780 20949MigFreq { 1 1 1 2Processors 4SolTime 518.3 416.6 414.8 429.3 408.4RedTime { 15.6 11.6 8.8 11.8Migration { 27616 48654 23750 40382MigFreq { 3 2 1 2Processors 8SolTime 276.4 206.1 212.3 240.9 235.5RedTime { 11.5 14.7 16.6 16.4Migration { 26948 95260 32477 34547MigFreq { 3 2 3 3Processors 16SolTime 146.2 109.1 110.2 125.8 115.0RedTime { 21.4 30.9 22.3 16.1Migration { 103898 294794 50006 46165MigFreq { 5 6 5 4Processors 32SolTime 104.3 { 64.2 { 69.7RedTime { { 32.3 { 33.0Migration { { 251810 { 68871MigFreq { { 10 { 10Table 5.3: Solution times, redistribution times, total migration weights and mi-gration frequencies for 300 time-steps using a re-balancing tolerance of 10% forExample 1.

CHAPTER 5. PARALLEL APPLICATION OF LOAD BALANCER IN 3-D 144Initial ParMETIS ParJOSTLE Vidwans et al. RecursiveProcessors 2SolTime 1054.0 848.6 810.9 833.2 831.7RedTime { 9.3 12.3 12.9 12.5Migration { 17909 44955 16780 16786MigFreq { 1 1 1 1Processors 4SolTime 518.3 432.1 414.7 429.3 408.4RedTime { 17.4 11.7 8.8 11.8Migration { 29258 48654 23750 40382MigFreq { 3 2 1 2Processors 8SolTime 276.4 224.7 219.6 222.6 215.1RedTime { 8.9 15.4 13.2 15.2Migration { 25407 102105 32268 35409MigFreq { 2 2 2 3Processors 16SolTime 146.2 112.8 113.8 124.1 115.4RedTime { 14.9 14.7 17.8 11.9Migration { 91719 164763 46843 44615MigFreq { 3 3 4 3Processors 32SolTime 104.3 { 66.1 { 71.2RedTime { { 34.3 { 23.1Migration { { 238785 { 63810MigFreq { { 10 { 6Table 5.4: Solution times, redistribution times, total migration weights and mi-gration frequencies for 300 time-steps using a re-balancing tolerance of 15% forExample 1.

CHAPTER 5. PARALLEL APPLICATION OF LOAD BALANCER IN 3-D 145mesh at later times (or there may be a drop in the size in case of heavy coarsen-ing). Note that throughout these calculations, the adaptive mesh has resolutionequivalent to a mesh of 17:7 million uniform, regular elements.Table 5.5 presents a comparison of some partition-quality metrics when the fourdi�erent load-balancing algorithms are applied using 2, 4, 8, 16 and 32 processorsof an SGI Origin 2000 computer. In each case the initial partition has a maximumimbalance of over 28%. The solution times quoted represent the wall-clock time(in seconds) taken by the parallel �nite volume solver for the next 30 time-steps,either using the initial partition or using a new partition after application of oneof the dynamic load-balancing algorithms. Finally, when load-balancing has beenperformed, the total weight of all of the root elements of T0 that have been migratedfrom one processor to another is quoted. On this occasion the ParMETIS andVidwans et al. algorithms did work satisfactorily (due to there being a larger coarsemesh).An alternative form of comparison between the four load-balancing algorithmsis provided by Tables 5.6, 5.7 and 5.8. For these results sequences of 300 time-steps were taken with adaptivity taking place on up to ten occasions (after every30 time-steps). Whenever the maximum imbalance exceeds a prescribed tolerance(which is 5% for Table 5.6, 10% for Table 5.7 and 15% for Table 5.8) after meshadaptivity has taken place the dynamic load-balancing algorithm is called. Thesolution times quoted are the total times for the �nite volume solver to completethe 300 time-steps excluding the repartitioning and redistribution times (which arealso quoted separately). This gives an indication of the quality of the dynamic load-balancing algorithms. As additional, architecture independent, comparison of theiroverheads these tables also show the total weight of all of the root elements thatwere migrated throughout the 300 time steps (Migration) as well as the numberof times that repartitioning needed to be undertaken (MigFreq). Note that Table5.8 has no entries which corresponds to two or four processors as these entries areidentical to the corresponding entries of Table 5.7 (as a matter of fact if toleranceis � 10 the load-balancing algorithm is called only at the beginning of the wholeprocess, provided the number of processors are � 4). See x5.6 for a discussion ofthese results.

CHAPTER 5. PARALLEL APPLICATION OF LOAD BALANCER IN 3-D 146Initial ParMETIS ParJOSTLE Vidwans et al. RecursiveProcessors 2MaxImb 29% 4% 0% 0% 0%CutWt 1660 1626 1793 5456 3358SolTime 417.2 355.7 375.4 376.8 345.3Migration { 53844 73808 44539 44539Processors 4MaxImb 43% 5% 1% 0% 0%CutWt 3334 5155 3873 9637 7815SolTime 251.7 181.4 185.7 191.4 192.2Migration { 79133 75248 70754 78642Processors 8MaxImb 48% 5% 2% 0% 2%CutWt 6776 8699 7156 15947 11395SolTime 139.1 87.7 91.6 90.2 91.5Migration { 83249 220105 89811 77261Processors 16MaxImb 91% 7% 2% 0% 1%CutWt 9183 12056 10719 20490 16027SolTime 97.3 48.1 42.4 44.6 42.3Migration { 131248 192875 115058 117723Processors 32MaxImb 96% 9% 9% 2% 2%CutWt 12875 16162 15009 23457 22950SolTime 42.5 23.8 24.7 24.7 23.8Migration { 134191 176209 129931 128408Table 5.5: Some partition-quality metrics immediately before and after a singlere-balancing step for Example 2.

CHAPTER 5. PARALLEL APPLICATION OF LOAD BALANCER IN 3-D 147Initial ParMETIS ParJOSTLE Vidwans et al. RecursiveProcessors 2SolTime 3013.4 2920.2 2873.7 2876.1 2567.6RedTime { 52.8 34.7 44.7 28.8Migration { 60242 73808 44539 44539MigFreq { 2 1 1 1Processors 4SolTime 1856.7 1495.1 1260.1 1314.0 1323.9RedTime { 25.8 42.1 128.6 44.1Migration { 79133 157523 92664 83911MigFreq { 1 2 5 2Processors 8SolTime 1264.6 776.2 809.2 822.7 804.5RedTime { 68.5 113.8 109.3 64.0Migration { 129401 682913 125472 110418MigFreq { 6 4 6 4Processors 16SolTime 876.6 414.1 413.1 473.4 444.5RedTime { 84.8 100.1 104.1 115.3Migration { 326707 889233 162362 185772MigFreq { 9 5 6 8Processors 32SolTime 422.4 214.9 225.3 263.1 239.9RedTime { 72.3 128.0 113.7 93.4Migration { 249751 1672496 186305 192690MigFreq { 10 10 9 9Table 5.6: Solution times, redistribution times, total migration weights and migra-tion frequencies for 300 time-steps using a re-balancing tolerance of 5% for Example2.

CHAPTER 5. PARALLEL APPLICATION OF LOAD BALANCER IN 3-D 148Initial ParMETIS ParJOSTLE Vidwans et al. RecursiveProcessors 2SolTime 3013.4 2880.1 2873.7 2876.1 2567.6RedTime { 30.5 34.7 44.7 28.8Migration { 53844 73808 44539 44539MigFreq { 1 1 1 1Processors 4SolTime 1856.7 1495.1 1475.1 1501.7 1493.8RedTime { 25.8 19.2 43.0 25.0Migration { 79133 75248 70754 78642MigFreq { 1 1 1 1Processors 8SolTime 1264.6 805.8 833.2 880.1 814.1RedTime { 39.9 42.3 56.9 40.4Migration { 110435 362968 118299 99744MigFreq { 3 2 3 2Processors 16SolTime 876.6 414.2 430.2 468.3 432.6RedTime { 48.8 63.2 70.2 75.1Migration { 217530 586957 158496 169039MigFreq { 4 3 4 4Processors 32SolTime 422.4 217.6 211.5 265.3 232.3RedTime { 54.6 77.9 88.0 53.2Migration { 292716 1184563 180421 173236MigFreq { 6 7 6 5Table 5.7: Solution times, redistribution times, total migration weights and mi-gration frequencies for 300 time-steps using a re-balancing tolerance of 10% forExample 2.

CHAPTER 5. PARALLEL APPLICATION OF LOAD BALANCER IN 3-D 149
Initial ParMETIS ParJOSTLE Vidwans et al. RecursiveProcessors 8SolTime 1264.6 791.9 817.5 805.7 801.6RedTime { 27.1 40.2 48.3 16.2Migration { 95914 373527 114166 77261MigFreq { 2 2 2 1Processors 16SolTime 876.6 426.1 401.6 451.1 420.8RedTime { 36.3 27.0 52.2 56.9Migration { 171606 390243 157631 170719MigFreq { 3 2 3 3Processors 32SolTime 422.4 211.1 227.5 279.8 245.6RedTime { 46.0 56.6 69.1 48.8Migration { 209883 668654 161495 160964MigFreq { 6 4 3 3Table 5.8: Solution times, redistribution times, total migration weights and mi-gration frequencies for 300 time-steps using a re-balancing tolerance of 15% forExample 2.

CHAPTER 5. PARALLEL APPLICATION OF LOAD BALANCER IN 3-D 1505.6 DiscussionFor simplicity and clarity we split our discussion in two parts. Part one of the dis-cussion corresponds to Example 1 above, where we have a relatively smaller coarsemesh. The second part of the discussion corresponds to Example 2 above, wherethe coarse mesh is relatively larger. Also our dynamic load-balancing algorithm isreferred as the Recursive algorithm. These discussions basically involve the e�-ciency and performance of the four dynamic load-balancing algorithms. The otherimportant factor of the parallel adaptivity itself is not discussed here. The issuesrelated to adaptivity are addressed by Selwood and Berzins and can be found in[87].5.6.1 Discussion IWe �rst discuss the results shown in Table 5.1. It is clear that the cut-weights pro-duced by the Vidwans et al. algorithm are highest as compared to the cut-weightsproduced by all other algorithms. The Recursive algorithm produces the best load-balance after re-partitioning (except the case of 16 processors where the Vidwans etal. algorithm produces the best load-balance after re-partitioning), however this isalways achieved at the expense of a larger cut-weight as compared to the ParMETISand ParJOSTLE algorithms. In general the ParMETIS algorithm tends to migratethe least amount of data albeit at the expense of a larger value of MaxImb. TheParJOSTLE algorithm produces a new partitioning in which the value of the pa-rameter CutWt is the least. However it also tends to move the highest number ofelements (with one exemption, the exemption being the case of 4 processors wherethe Recursive algorithm migrates the highest number of elements). The ParJOS-TLE algorithm also produces a new partitioning in which the value of MaxImbis better then the corresponding value produced by the ParMETIS algorithm butworse than that produced by the Recursive and Vidwans et al. algorithms.As far as the parameter SolTime is concerned it is roughly the same for alltechniques. It also scales well (as it reduces approximately to half when the numberof processors are doubled).We next consider the results shown in Table 5.2 where we are using a re-balancing tolerance of 5%. From this table it is clear that the value of SolTimeis roughly the same (except two cases: in the case of 2 processors it is slightly

CHAPTER 5. PARALLEL APPLICATION OF LOAD BALANCER IN 3-D 151higher for the ParMETIS algorithm and in the case of 8 processors it is slightlyhigher for the Vidwans et al. and Recursive algorithms) for all four techniques.It is also clear from this table that the the ParJOSTLE algorithm produces themost data migration. In the case of 2 processors it is the ParMETIS algorithmwho migrates the least amount of data whilst in the cases of 4 and 8 processorsthis property is enjoyed by Vidwans et al. algorithm and in the last two cases itis the Recursive algorithm who migrates the least amount of data. As far as thevalue of the parameter RedTime is concerned, it is smallest in the cases of 2 and 8processors for the ParMETIS algorithm (in other 3 cases this property is enjoyedby the Recursive algorithm). In the last 3 cases (where we use more than 4 pro-cessors) this value is highest in the case of the ParJOSTLE algorithm. Also thisvalue is highest for the Recursive and ParMETIS algorithms in the cases of 2 and4 processors respectively.In the case of Table 5.3 where we are using a re-balancing tolerance of 10%, thevalue of the parameter SolTime is relatively high for the Vidwans et al. algorithm(except in the case of 2 processors where it is relatively high for the ParMETISalgorithm). For other techniques it is roughly the same (except two cases: in thecase of 2 processors it is relatively small for the ParJOSTLE algorithm and in thecase of 8 processors it is the second highest for the Recursive algorithm). The valueof the parameter RedTime is smallest respectively for the ParMETIS algorithm inthe cases of 2 and 8 processors, for the Vidwans et al. algorithm in the case of4 processors, for the Recursive algorithm in the case of 16 processors and for theParJOSTLE algorithm in the case of 32 processors. As far as the smallest valueof the parameter Migration is concerned its behaviour is exactly the same as thebehaviour of the RedTime above (except two cases: in the case of 2 processors thesmallest value is produced by the Vidwans et al. algorithm whilst in the case of 32processors the smallest value is produced by the Recursive algorithm). The valueof the parameter Migration is still highest for the ParJOSTLE algorithm.We next turn to the Table 5.4 where we are using a re-balancing tolerance of15%. Here the values of the parameter SolTime are relatively high in the casesof the ParMETIS and Vidwans et al. algorithms and are relatively low for othertechniques (except two cases: for 16 processors case this value is smallest for theParMETIS algorithm and for 2 processors case this value is also high for the Re-cursive algorithm). The value of the parameter RedTime is smallest respectively

CHAPTER 5. PARALLEL APPLICATION OF LOAD BALANCER IN 3-D 152for the ParMETIS algorithm in the cases of 2 and 8 processors, for the Vidwans etal. algorithm in the case of 4 processors and for the Recursive algorithm in the last2 cases. The behaviour of the parameter Migration is exactly the same as in Table5.3.It is clear from above analysis that every algorithm has some plus points andsome minus points. In general the Recursive, Vidwans et al. and ParMETIS algo-rithms tend to migrate the least amount of data whilst the ParJOSTLE algorithmtends to migrate the huge amount of data. The Recursive and Vidwans et al. al-gorithms lead to the best load-balance whilst the ParMETIS algorithm leads tothe worst load-balance after re-partitioning. The ParJOSTLE algorithm producesa partitioning in which this indicator is better than the ParMETIS algorithm andworse than other techniques. As far as the the value of the parameter CutWt isconcerned the ParJOSTLE algorithm is a clear cut winner while the Vidwans et al.algorithm �nishes at the bottom place { with the ParMETIS algorithm taking themiddle ground. But they all have one common property, the sum of RedTime andSolTime is much less than the corresponding value of SolTime (except that in thecase of 16 processors the ParJOSTLE (with a re-balancing tolerance of 5%) andVidwans et al. (with a re-balancing tolerance of 5% and 10%) algorithms take alittle higher time) where no dynamic load-balancing algorithm is called upon (seeFigures 5.6 to 5.8 which clearly supports the conjecture).Finally, it is interesting to observe the behaviour of the parameter MigFreq. Thevalue of MigFreq increases as one increases the number of processors. This is due tothe fact that the more processors are used, the more quickly imbalance is generatedby the adaptation.5.6.2 Discussion IIWe next discuss the results shown in Table 5.5. Let us recall that these resultscorresponds to a larger base mesh which has 34560 coarse elements. Just like thesmaller mesh of Example 1, here too, the Recursive and Vidwans et al. algorithmstend to produce the best load-balance after re-partitioning, however this is achievedat the expense of a larger cut-weight. In particular the cut-weights produced bythe Vidwans et al. algorithm are highest as compared to other techniques. Exceptthe cases of 4 and 16 processors, the Recursive algorithm migrates the least amount

CHAPTER 5. PARALLEL APPLICATION OF LOAD BALANCER IN 3-D 153of data (this property is enjoyed by the Vidwans et al. algorithm in the cases of 4and 16 processors). Also the value of SolTime is roughly same for all algorithms(except that in the case of 2 processors it is relatively high for the ParJOSTLEalgorithm and relatively small for the Recursive algorithm). The ParJOSTLE algo-rithm produces new partitioning in which the value of the parameter CutWt is theleast one (except 2 processors case where this property is enjoyed by the ParMETISalgorithm) but this is always achieved at the expense of huge data migration. Asin the case of smaller mesh, the ParMETIS algorithm tends to produces the worstload-balance after re-partitioning. The amount of imbalance produced by the Par-JOSTLE algorithm is roughly the same as produced by the Recursive and Vidwanset al. algorithms (except 32 processors case in which it produces an imbalance of9% as oppose to 2% produced by the Recursive and Vidwans et al. algorithms).We next turn to the Table 5.6 which corresponds to a re-balancing toleranceof 5%. Here the value of the parameter SolTime is highest respectively for theParMETIS algorithm in �rst two cases and for the Vidwans et al. algorithm forlast three cases. There is no clear pattern as far as the parameters RedTime andMigration are concerned. The �rst parameter is small for the Recursive algorithmin the cases of 2 and 8 processors and this property is enjoyed by the ParMETISalgorithm for remaining 3 cases. The second parameter is small respectively for theParMETIS algorithm in the case of 4 processors, for the Vidwans et al. algorithmin the cases of 16 and 32 processors and for the Recursive algorithm in the cases of2 and 8 processors. As usual heavy migration results in the case of the ParJOSTLEalgorithm.We next analyse Table 5.7 where the results correspond to a re-balancing tol-erance of 10%. Here the value of the parameter SolTime is relatively high for theVidwans et al. algorithm (except in the case of 2 processors where it is relativelyhigh for the ParMETIS algorithm). Also the value of the parameter RedTime isrelatively high for the Vidwans et al. algorithm (except in the case of 16 processorswhere it is relatively high for the Recursive algorithm). Apart from 4 processorscase the value of the parameter Migration is high for the ParJOSTLE algorithm.In the case of 4 processors this parameter is high for the ParMETIS algorithm. Thevalue of the parameter Migration is smallest for the Recursive algorithm (except 4and 16 processors cases where it is smallest for the Vidwans et al. algorithm).As far as the Table 5.8 is concerned (where we use a re-balancing tolerance of

CHAPTER 5. PARALLEL APPLICATION OF LOAD BALANCER IN 3-D 15415%) the value of SolTime is smallest for the ParMETIS algorithm in the cases of8 and 32 processors and for the ParJOSTLE algorithm in the case of 16 processorsrespectively. The value of the parameter RedTime is smallest for the Recursivealgorithm in the case of 8 processors, for the ParJOSTLE algorithm in the case of 16processors and for the ParMETIS algorithm in the case of 32 processors respectively.As usual heavy migration results in the case of the ParJOSTLE algorithm. Leastamount of migration materialised by the Vidwans et al. algorithm in the case of 16processors whilst for other than 16 processors case this property is enjoyed by theRecursive algorithm.As in the case of the smaller mesh here too, no single algorithm emerges asa clear cut winner in all respects. The Recursive and Vidwans et al. algorithmsproduce the best load-balance after re-partitioning but su�ers by the fact that ithas a relatively high value of CutWt. In the case of the ParJOSTLE algorithmCutWt is relatively low but resulting migration is huge one. Resulting value ofMaxImb in the case of the ParMETIS algorithm is relatively high as compared tothe other three algorithms. Once again they all have same common property, thesum of RedTime and SolTime is much less than the corresponding value of SolTimewhere no dynamic load-balancing algorithm is called upon (see Figures 5.9 to 5.11which clearly supports the conjecture).In all cases the qualitative behaviour of the parameter MigFreq is exactly the thesame as for the smaller mesh (i.e. the value of MigFreq increases as one increasesthe number of processors).A �nal important question is what is the optimal value of the re-balancingtolerance parameter? From Tables 5.6 to 5.8 it is clear that in cases where largenumber of processors are used it does not pay to call the dynamic load-balancer atlower values of the parameter. Using the tolerance of 5% is more costly as comparedto the other values tried (namely 10% and 15%). So in such case a smaller valuesof the parameter should be avoided.5.7 Investigation into Scalability of the AlgorithmIt is clear that the scalability of any dynamic load-balancing algorithm which isused in an adaptive mesh solver is a complex issue. Clearly the performance of thedynamic load-balancer depends upon how often the adaptivity has taken place. But

CHAPTER 5. PARALLEL APPLICATION OF LOAD BALANCER IN 3-D 155
100

200

400

800

1200

2 4 8 16

T
im

e
in

 S
ec

on
ds

Number of Processors

Initial
ParMetis
ParJostle

Vidwans et al.
Recursive

Figure 5.6: Scalability comparison using a re-balancing tolerance of5% for Example 1 (where Time = RedTime + SolTime).
100

200

400

800

1200

2 4 8 16

T
im

e
in

 S
ec

on
ds

Number of Processors

Initial
ParMetis
ParJostle

Vidwans et al.
Recursive

Figure 5.7: Scalability comparison using a re-balancing tolerance of10% for Example 1 (where Time = RedTime + SolTime).
100

200

400

800

1200

2 4 8 16

T
im

e
in

 S
ec

on
ds

Number of Processors

Initial
ParMetis
ParJostle

Vidwans et al.
Recursive

Figure 5.8: Scalability comparison using a re-balancing tolerance of15% for Example 1 (where Time = RedTime + SolTime).

CHAPTER 5. PARALLEL APPLICATION OF LOAD BALANCER IN 3-D 156
300

600

1200

2400

4000

2 4 8 16 32

T
im

e
in

 S
ec

on
ds

Number of Processors

Initial
ParMetis
ParJostle

Vidwans et al.
Recursive

Figure 5.9: Scalability comparison using a re-balancing tolerance of5% for Example 2 (where Time = RedTime + SolTime).
300

600

1200

2400

4000

2 4 8 16 32

T
im

e
in

 S
ec

on
ds

Number of Processors

Initial
ParMetis
ParJostle

Vidwans et al.
Recursive

Figure 5.10: Scalability comparison using a re-balancing tolerance of10% for Example 2 (where Time = RedTime + SolTime).
300

600

1200

2400

4000

2 4 8 16 32

T
im

e
in

 S
ec

on
ds

Number of Processors

Initial
ParMetis
ParJostle

Vidwans et al.
Recursive

Figure 5.11: Scalability comparison using a re-balancing tolerance of15% for Example 2 (where Time = RedTime + SolTime).

CHAPTER 5. PARALLEL APPLICATION OF LOAD BALANCER IN 3-D 157
30

60

120

240

2 4 8 16

T
im

e
in

 S
ec

on
ds

Number of Processors

Initial
ParMetis
ParJostle

Vidwans et al.
Recursive

Figure 5.12: Scalability comparison using a re-balancing tolerance of15% for Example 1 (where Time = RedTime + 0.2 * SolTime).
600

1200

2400

4800

2 4 8 16

T
im

e
in

 S
ec

on
ds

Number of Processors

Initial
ParMetis
ParJostle

Vidwans et al.
Recursive

Figure 5.13: Scalability comparison using a re-balancing tolerance of15% for Example 1 (where Time = RedTime + 5 * SolTime).
3000

6000

12000

24000

2 4 8 16

T
im

e
in

 S
ec

on
ds

Number of Processors

Initial
ParMetis
ParJostle

Vidwans et al.
Recursive

Figure 5.14: Scalability comparison using a re-balancing tolerance of15% for Example 1 (where Time = RedTime + 25 * SolTime).

CHAPTER 5. PARALLEL APPLICATION OF LOAD BALANCER IN 3-D 158
90

180

360

720

2 4 8 16 32

T
im

e
in

 S
ec

on
ds

Number of Processors

Initial
ParMetis
ParJostle

Vidwans et al.
Recursive

Figure 5.15: Scalability comparison using a re-balancing tolerance of15% for Example 2 (where Time = RedTime + 0.2 * SolTime).
1200

2400

4800

9600

19200

2 4 8 16 32

T
im

e
in

 S
ec

on
ds

Number of Processors

Initial
ParMetis
ParJostle

Vidwans et al.
Recursive

Figure 5.16: Scalability comparison using a re-balancing tolerance of15% for Example 2 (where Time = RedTime + 5 * SolTime).
6000

12000

24000

48000

96000

2 4 8 16 32

T
im

e
in

 S
ec

on
ds

Number of Processors

Initial
ParMetis
ParJostle

Vidwans et al.
Recursive

Figure 5.17: Scalability comparison using a re-balancing tolerance of15% for Example 2 (where Time = RedTime + 25 * SolTime).

CHAPTER 5. PARALLEL APPLICATION OF LOAD BALANCER IN 3-D 159it also depends upon other parameters. For example if after the adaptation stage,the amount of imbalance remains below a speci�ed tolerance no redistribution ofdata will occur. The other parameter upon which it depends is the number of pro-cessors used. The numerical results shown above suggest that the more processorsare used, the more quickly imbalance is generated by the adaptation. Another pa-rameter is the number of levels of re�nements. Also, repartitioning consists almostentirely of communication and since the work involved is not evenly distributed, ittends not to scale well.The more important quantity to consider is the combined performance of thesolver and the dynamic load-balancer. In practice one wishes to see the net savingwhich results in using a solver combined with a dynamic load-balancer. In Figures5.6 to 5.17 we plot the time (which is a function of RedTime and SolTime) againstthe number of processors used. In Figures 5.6 to 5.11 the time function is simplythe sum of RedTime and SolTime. In Figures 5.12 to 5.17 the time function is equalto RedTime + � SolTime, where � is a positive constant other than unity. Notethat by varying � we can analyse the equivalent e�ect of other simpler (for which� < 1) or more expensive (for which � > 1) solvers. (Alternatively, we can viewthe variation of � as representing slower or faster inter-processor communicationsrespectively.)It is clear from Figure 5.6 that in this case the use of the ParJOSTLE andVidwans et al. have an adverse a�ect and there is a small saving in case one usesthe ParMETIS or Recursive algorithm when 16 processors are used. In other cases(see Figures 5.7 to 5.11) it pays o� to use the dynamic load-balancing algorithm.As pointed out above, for the larger base mesh it is better to use a relatively largervalue of the re-balancing tolerance parameter in those cases where the number ofprocessors are greater than 8 (see Figures 5.9 to 5.11).We next discuss the relationship between the intensity of the solver and the useof the dynamic load-balancer. From Figures 5.12 and 5.15 it is clear that calling adynamic load-balancer in the case of a very cheap solver does not pay anything. Itin fact increases the cost. However, in the case of an expensive solver it pays o� touse a dynamic load-balancer (especially when using a large number of processors).For example if we are having a solver which is 25 times more expensive than thecurrent solver and we are using 16 processors to solve the problem then at leastthere is a 15% saving in the case of the smaller base mesh and a 48% saving in the

CHAPTER 5. PARALLEL APPLICATION OF LOAD BALANCER IN 3-D 160case of the larger base mesh as a result of using a dynamic-load balancing algorithm.5.8 ConclusionsIn this chapter we have demonstrated that good load-balancing results can be ob-tained provided one choses the re-balancing thresholds carefully. As one wouldexpect, we have also shown that the more expensive is the solver the more wouldbe the saving that can be achieved by using a dynamic load-balancer. Moreover,we have demonstrated that the Recursive algorithm is very competitive when con-trasted with other parallel dynamic load-balancing algorithms developed simulta-neously with this work. In some situations it gives the best performance of all fourapproaches and in all cases the performance is comparable. Clearly the choice ofwhich of the four algorithms is the best to use will depend on the precise nature ofthe problem being solved and on the exact nature of the parallel architecture.

Chapter 6Conclusion and Future Areas ofResearch6.1 Summary of ThesisThe main contribution of this thesis has been to present the development of a newparallel dynamic load-balancing algorithm designed speci�cally for application inthe conjunction with parallel adaptive �nite element or �nite volume codes. We�rst discussed a uniprocessor version in Chapter 3 which was tested on a numberof di�erent model problems. It was observed in this chapter that the algorithmproduces satisfactory results in the sense that the �nal partitions are reasonablywell balanced and the relative increase in the cut-weights are also small (in somecases the cut-weight is even smaller than the original value). In few cases, wherethe coarse mesh is large with the majority of coarse elements having unit weight,the cost of this algorithm is a little high (this issue is discussed in the next sectionbelow).In Chapter 4 we presented an initial parallel dynamic load-balancing version ofthe the algorithm of Chapter 3. This new version of the algorithm was successfullyapplied to a variety of 2-d unstructured meshes which were generated in parallel butwere not always perfectly balanced (for reasons mentioned in the chapter). Thisversion is not only very fast (in the majority of the cases it took less than a secondto get the balanced mesh on the test problems studied) but also produces a �nalpartition which is reasonably load balanced. A net saving in solver time rangingfrom 3% to 15% was also achieved. 161

CHAPTER 6. CONCLUSION AND FUTURE AREAS OF RESEARCH 162In Chapter 5 a further, slightly more general, version of the algorithm of Chapter3 was introduced. This new version was developed to allow, amongst other applica-tions, possible use after the adaptivity steps of a 3-d parallel adaptive solver (whichinevitably has some sort of imbalance after the adaptivity step). It was applied on anumber of 3-d problems on a di�ering number of processors. It is shown that resultsproduced are compatible with those produced by other state-of-the-art techniques(which were developed simultaneously with this work). The resulting amount ofimbalance was generally less than the corresponding value produced by other tech-niques and in many cases less data migration is required (certainly in comparisonwith the ParJOSTLE algorithm). In contrast with the other algorithms consideredthe resulting cut-weights after repartitioning are relatively high (but not in com-parison with the other algorithms considered in Chapter 4). Overall, for the typeof application of interest here there was little to choose between the performanceof the new algorithm presented here and that of the other algorithms considered(with each method, including the new algorithm, performing best in some particularcases).A �nal point to be mentioned concerns the availability of the new algorithm aspublic domain software. Both ParMETIS and ParJOSTLE are publicly available(although, as we have seen in Chapter 5, their current implementations are far fromstable) whilst the new algorithm is not. Unfortunately such software developmentwas beyond the scope of this project.6.2 Possible Extensions to the ResearchThere are number of ways in which the research described in this thesis could beextended. One important possibility that I would like to explore is to build into thescheme a partial coarsening. Recall that this possibility is �rst discussed at end ofChapter 3 where it is suggested that the use of a partial coarsening may increasethe e�ciency of the algorithm. Observe that in Example 6 of this chapter 72%of the coarse mesh was residing on 2 (out of 8 possible) processors whereas 31%of the �ne mesh was contained on these two processors. In a situation like this alarge portion of the coarse mesh consists of coarse elements whose weights are verylow (the majority of the elements have only unit weights). So if these nodes canbe combined into some sort of coarse, higher-level, nodes then it is hoped that a

CHAPTER 6. CONCLUSION AND FUTURE AREAS OF RESEARCH 163signi�cant improvement in terms of speed may be obtained.A major change from Chapter 3 to Chapters 4 and 5 was the absence of theswapping steps once the load balance among two subgroups is achieved. Recallthat in Chapter 3 such a step was executed in hope of �nding any \hidden" minimaas regard to the cut-weight. The algorithm of Chapter 3 was a serial one so nocommunication cost was involved with this. The versions of Chapters 4 and 5 areparallel ones however. The major decision of dropping this step was taken dueto the communication cost involved in keeping it. This decision was based uponpersonal judgement. In order to prove (or disprove) this conjecture, this extra stepcould be implemented and the cost of implementing this step verses the resultingnet saving in the solver time (due to a reduced cut-weight) may be examined.Apart from above there is a clear need for further research in other directions aswell. In general the repartitioning thresholds have a very signi�cant impact on theperformance and scalability of the whole repartitioning process. More investigationcould certainly be undertaken in this area. Smaller thresholds may result in toofrequent re-mapping of the mesh (which results in a higher communication cost)and larger thresholds obviously lead to keeping an unbalanced mesh for a muchlarger time (which results in a relatively higher solver cost). Even a �xed choice ofthe threshold may be problematic. It my be worthwhile to consider other optionssuch as to calculate the redistribution cost and compare it with the saving (or someestimate of the saving) which may result from running the adapted mesh on thenew partition rather than on the old partition. Only if this is favourable wouldthe repartitioning step be executed. Pioneering work in this �eld has already beenstarted by Biswas and Oliker [10, 77]. More investigation is needed in this area (e.g.the impact on future costs of the current decision: a too greedy saving may result inpaying more cost in future in some situations!). Also the relation between the sizeof the mesh, the number of processors used and the repartitioning thresholds couldbe examined in further detail. Finally, there is also a need to explore some othermetrics for the cost of balancing distributed loads: the current trend is to minimisethe total amount of migration but an arguably more important metric would be tominimise the maximum amount of migration for any single processor.Another factor to be further explored is of the number of levels of re�nementthat are used, especially in three-dimensional problems. In Chapter 5 we consideredup to 3 levels of re�nement, which means the maximum possible weight of a coarse

CHAPTER 6. CONCLUSION AND FUTURE AREAS OF RESEARCH 164element was 512. Considering a fourth level of re�nment would mean up to 4096�ne elements inside each coarse element. Thus, in order to consider this level ofre�nement the underlying coarse mesh would have to be very large which couldadd signi�cantly to computational costs (although this overhead could be almosttotally eliminated if the partial re�nement idea described above could be successfullyimplemented).Other investigations that would be worthwhile to undertake include the appli-cation of the dynamic load-balancing algorithm to a wider variety of problems. InChapter 5 we only considered the solution of one particular equation, it would beworthwhile to try a wider variety of equations and parallel solvers using the sameparallel adaptivity code. Also di�erent re�nement algorithms (such p-re�nement orhp-re�nement) could be considered, as well as the use of heterogeneous networks.Note that in situations like these one has to generalise the de�nition of the weightsof coarse elements. It is no longer equal to the number of �ne elements presentbut has to be adjusted to incorporate the di�ering amounts of work required bydi�erent coarse elements and the varying speeds of the individual component of theheterogeneous network involved.One approach that has not been considered at all in this thesis is to performload-balancing based upon a partition of the �ne mesh in a grid hierarchy ratherthan the coarse mesh. There are many implications to considering such a strategy,which appears to allow more
exibility in the partition than by distributing thecoarse grid, and it is quite possible that a full study of this would require anotherthesis.

Bibliography[1] M Ainsworth and J T Oden. A uni�ed approach to a posteriori error estima-tion using element residual methods. Numerische Mathematik, 65(1):23{50,1993.[2] T Arthur and M J Bockelie. A comparison of using APPL and PVM for a par-allel implementation of an unstructured grid generation program. TechnicalReport 191425, NASA Computer Sciences Corporation, Hampton, Virginia,1993.[3] I Babuska, B A Szabo, and I N Katz. The p-version of the �nite elementmethod. SIAM Journal on Numerical Analysis, 18(3):515{545, 1981.[4] C Bailey, P Chow, M Cross, Y Fryer, and K Pericleous. Multiphysics mod-elling of the shape casting process. In Proceedings of the Royal Society 0fLondon Series A-Mathematical Physical and Engineering Sciences, volume452, pages 459{486, 1996.[5] R E Bank. PLTMG Users' Guide 7.0. SIAM, Philadelphia, 1994.[6] R E Bank. PLTMG Users' Guide 8.0. SIAM, Philadelphia, 1998.[7] R E Bank and A Weiser. Some a posteriori error estimates for partial di�er-ential equations. Mathematics of Computation, 44:283{301, 1985.[8] P Bastian, K Birken, K Johannsen, S Lang, K Eckstein, N Neuss, H Rentz-Reichert, and C Wieners. UG - A
exible software toolbox for solving partialdi�erential equations. Computing and Visualization in Science (To appear),1998. 165

BIBLIOGRAPHY 166[9] M Berzins and R M Furzeland. A user's manual for SPRINT - A versatilesoftware package for solving systems of algebraic, ordinary and partial dif-ferential equations: Part 1 - algebraic and ordinary di�erential equations.Technical Report TNER.85.058, Thornton Research Centre, Shell ResearchLimited, 1985.[10] R Biswas and L Oliker. Load balancing unstructured adaptive grids for CFDproblems. In M Heath et al., editors, Eighth SIAM Conference on ParallelProcessing for Scienti�c Computing, Philadelphia, 1997.[11] R Biswas and R C Strawn. A new procedure for dynamic adaption of three-dimensional unstructured grids. Applied Numerical Mathematics, 13:437{452,1994.[12] J E Boillat. Load balancing and Poisson equation in a graph. Concurrency:Practice and Experience, 2:289{313, 1990.[13] J Cabello. Parallel explicit unstructured grid solvers on distributed memorycomputers. Advances in Engineering Software, 23:189{200, 1996.[14] P J Capon. Adaptive Stable Finite Element Methods for the CompressibleNavier-Stokes Equations. PhD thesis, School of Computer Studies, Universityof Leeds, 1995.[15] P J Capon and P K Jimack. An adaptive �nite element method for thecompressible Navier-Stokes equations. In M J Baines and K W Morton,editors, Numerical Methods for Fluid Dynamics 5, pages 327{334. OUP, 1995.[16] K M Case et al. Problems in transition from laminar to turbulent Flow-II.Technical Report JASON JSR-77-18, SRI International, Arlington VA, 1978.[17] Grand Challenges. High performance computing and communications. The�scal year 1992 U.S. research and development program. Technical report,by the Committee on Physical, Mathematical and Engineering Sciences, NSFWashington, 1992.[18] W Chan and A George. A linear time implementation of the Reverse CuthillMcKee algorithm. BIT, 20:8{14, 1980.

BIBLIOGRAPHY 167[19] P G Ciarlet. The �nite element method for elliptic problems. North-HollandPublishing Company, 1978.[20] L Ciminiera and A Valenzano. Advanced microprocessor architectures.Addison-Wesley Publishing Company, 1987.[21] S Corrsin. Turbulent
ow. American Scientist, 49:300{325, 1961.[22] D M Cvetkovic, M Doob, I Gutman, and A Torgasev. Recent results in thetheory of graph spectra. Annal Discrete Mathematics, 36, 1988.[23] G Cybenko. Dynamic load balancing for distributed memorymultiprocessors.Journal of Parallel and Distributed Computing, 7:279{301, 1989.[24] L Demkowicz, J T Oden, and W Rachowicz. A new �nite element method forsolving compressible Navier-Stokes equations based on an operator splittingmethod and h-p adaptivity. Computer Methods in Applied Mechanics andEngineering, 84:275{326, 1990.[25] L Demkowicz, J T Oden, W Rachowicz, and O Hardy. An h-p Taylor-Galerkin�nite element method for compressible Euler equations. Computer Methodsin Applied Mechanics and Engineering, 88:363{396, 1991.[26] A M Despain. A massive multiple microcomputer system. In James ClarkSolinsky, editor, Advanced Computer Concepts (LJI Conference Proceedings),pages 91{105, La Jolla Institute, 1981.[27] K D Devine and J E Flaherty. Parallel adaptive hp-re�nement techniques forconservation laws. Applied Numerical Mathematics, 20:367{386, 1996.[28] P Diniz, S Plimpton, B Hendrickson, and R Leland. Parallel algorithms fordynamically partitioning unstructured grids. In D H Bailey et al., editors,Seventh SIAM Conference on Parallel Processing for Scienti�c Computing,SIAM, Philadelphia, 1995.[29] C Farhat. A simple and e�cient automatic FEM domain decomposer. Com-puters and Structures, 28(5):579{602, 1988.

BIBLIOGRAPHY 168[30] C Farhat, S Lanteri, and H D Simon. TOP/DOMDEC - a software tool formesh partitioning and parallel processing. Computing Systems in Engineering,6(1):13{26, 1995.[31] C Farhat and M Lesoinne. Automatic partitioning of unstructured meshes forthe parallel solution of problems in computational mechanics. InternationalJournal for Numerical Methods in Engineering, 36(5):745{764, 1993.[32] C M Fiduccia and R M Mattheyses. A linear time heuristic for improvingnetwork partitions. In Proceedings of the Nineteenth IEEE Design AutomationConference, pages 175{181. IEEE, 1982.[33] M Flynn. Very high-speed computing systems. In Proceedings of the IEEE,volume 54, pages 1901{1909, 1966.[34] Message Passing Interface Forum. MPI: A Message Passing Interface stan-dard. International Journal of Supercomputer Applications, 8(3/4), 1994.[35] Message Passing Interface Forum. MPI-2: Extensions to the Message PassingInterface. http://www.mpi-forum.org/docs/mpi-20-html/mpi2-report.html,1997.[36] M Garey, D Johnson, and L Stockmeyer. Some simpli�ed NP-complete graphproblems. Theoretical Computer Science, 1:237{267, 1976.[37] A George and J W Liu. Computer Solution of Large Sparse Positive De�niteSystems. Prentice Hall, 1981.[38] G Globisch. PARMESH: A parallel mesh generator. Parallel Computing,21(3):509{524, 1995.[39] S K Godunov. A �nite di�erence method for the numerical computation ofdiscontinuous solutions of the equations of
uid dynamics. Mat. Sb., 47:357{393, 1959.[40] G H Golub and C F Van Loan. Matrix Computations. John Hopkins Univer-sity Press, Baltimore, 1989.

BIBLIOGRAPHY 169[41] B K Grant and A Skjellum. The PVM system: An in-depth analysis anddocumenting study { concise edition. Technical Report UCRL-JC-112016,LLNL, Livermore, CA, 1992.[42] A Harten, P D Lax, and B van Leer. On upstream di�erencing and Godunovtype schemes for hyperbolic conservation laws. SIAM Review, 25(1):36{61,1983.[43] B Hendrickson. Can static load balancing algorithms be appropriate in adynamic setting? Dynamic Load Balancing on MPP Systems: Progress,Challenges and Issues. A 1-day meeting at CCLRC Daresbury Laboratory,Daresbury, Warrington, UK, 1995.[44] B Hendrickson and R Leland. The Chaco user's guide, version 1.o. Techni-cal Report SAND93{2339, Sandia National Laboratories, Albuquerque, NM,1993.[45] B Hendrickson and R Leland. Multidimensional spectral load balancing.Technical Report SAND93{0074, Sandia National Laboratories, Albuquerque,NM, 1993.[46] B Hendrickson and R Leland. A multilevel algorithm for partitioning graphs.Technical Report SAND93{1301, Sandia National Laboratories, Albuquerque,NM, 1993.[47] B Hendrickson and R Leland. An improved spectral graph partitioning algo-rithm for mapping parallel computations. SIAM Journal on Scienti�c Com-puting, 16:452{469, 1995.[48] B Hendrickson and R Leland. The Chaco user's guide, version 2.o. Techni-cal Report SAND95{2344, Sandia National Laboratories, Albuquerque, NM,1995.[49] D C Hodgson. E�cient Mesh Partitioning and Domain Decomposition Meth-ods on Parallel Distributed Memory Machines. PhD thesis, School of Com-puter Studies, University of Leeds, 1995.

BIBLIOGRAPHY 170[50] D C Hodgson and P K Jimack. E�cient mesh partitioning for parallel P.D.E.solvers on distributed memory machines. In Sixth SIAM Conference ParallelProcessing for Scienti�c Computing, Norfolk, VA, 1993.[51] D C Hodgson and P K Jimack. E�cient parallel generation of partitioned,unstructured meshes. Advances in Engineering Software, 27(1/2):59{70, 1996.[52] G Horton. A multi-level di�usion method for dynamic load balancing. ParallelComputing, 19(2):209{218, 1993.[53] Y F Hu and R J Blake. An optimal dynamic load balancing algorithm. Techni-cal Report DL-P-95-011, The Central Laboratory for the Research Councils,Daresbury Laboratory, Daresbury, Warrington, Cheshire, UK (To be pub-lished in Concurrency: Practice and Experience), 1995.[54] P K Jimack. A new approach to �nite element error control for time-dependent problems. In Baines and K W Morton, editors, Numerical Methodsfor Fluid Dynamics 4, pages 567{573. OUP, 1993.[55] P K Jimack. An overview of dynamic load-balancing for parallel adaptivecomputational mechanics codes. In B H V Topping, editor, Parallel andDistributed Processing for Computational Mechanics I. Saxe-Coburg Publica-tions, 1997.[56] P K Jimack. Techniques for parallel adaptivity. In B H V Topping, editor,Parallel and Distributed Processing for Computational Mechanics II. Saxe-Coburg Publications, 1998.[57] Z Johan. Data Parallel Finite Element Techniques for Large-scale Computa-tional Fluid Dynamics. PhD thesis, Stanford University, 1992.[58] C Johnson. Numerical solution of partial di�erential equations by the �niteelement method. Cambridge University Press, 1987.[59] Y Kallinderis and P Vijayan. Adaptive re�nement-coarsening scheme for 3-Dunstructured meshes. AIAA Journal, 31(8):1440{1447, 1993.[60] G Karypis and V Kumar. A fast and high quality multilevel scheme forpartitioning irregular graphs. Technical Report TR 95{035, Department ofComputer Science, University of Minnesota, Minneapolis, USA, 1995.

BIBLIOGRAPHY 171[61] G Karypis and V Kumar. Multilevel k-way partitioning scheme for irregulargraphs. Technical report, Department of Computer Science, University ofMinnesota, Minneapolis, USA, 1995.[62] G Karypis and V Kumar. Parallel multilevel k-way partitioning scheme forirregular graphs. Technical report, Department of Computer Science, Univer-sity of Minnesota, Minneapolis, USA, 1996.[63] G Karypis and V Kumar. A coarse-grain parallel formulation of multilevelk-way graph partitioning algorithm. In M Heath et al., editors, Eighth SIAMConference on Parallel Processing for Scienti�c Computing, Philadelphia,1997.[64] G Karypis, K Schloegel, and V Kumar. ParMETIS, parallel graph partitioningand sparse matrix ordering library, version 1.0. Department of ComputerScience, University of Minnesota, Minneapolis, USA.[65] B W Kernighan and S Lin. An e�cient heuristic procedure for partitioninggraphs. The Bell System Technical Journal, 49:291{307, 1970.[66] A I Khan and B H V Topping. Parallel adaptive mesh generation. ComputerSystems in Engineering, 2(1):75{101, 1991.[67] V Kumar, A Grama, A Gupta, and G Karypis. Introduction to parallel com-puting: design and analysis of parallel algorithms. The Benjamin/CummingPublishing Company, Inc., 1994.[68] T Lengauer. Combinatorical algorithms for integrated circuit layout. Teubner-Verlag, Stuttgart, 1990.[69] R L�ohner. An adaptive �nite element scheme for transient problems in CFD.Computer Methods in Applied Mechanics and Engineering, 61:323{338, 1987.[70] R L�ohner, J Camberos, and M Merriam. Parallel unstructured grid genera-tion. Computer Methods in Applied Mechanics and Engineering, 95:343{357,1992.[71] J G Malone. Automated mesh decomposition and concurrent �nite elementanalysis for hypercube multiprocessors computers. Computer Methods in Ap-plied Mechanics and Engineering, 70(1):27{58, 1988.

BIBLIOGRAPHY 172[72] K Miller and R N Miller. Moving �nite elements, Part I. SIAM Journal onNumerical Analysis, 18(6):1019{1032, 1981.[73] B Monien and R Diekmann. A local graph partitioning heuristic meetingbisection bounds. In M Heath et al., editors, Eighth SIAM Conference onParallel Processing for Scienti�c Computing, Philadelphia, 1997.[74] M C Mosher. A variable node �nite element method. Journal of Computa-tional Physics, 57:157{187, 1985.[75] B Nour-Omid, A Raefsky, and G Lyzenga. Solving �nite element equations onconcurrent computers. In A K Noor, editor, Parallel Computations and TheirImpact on Mechanics, New York, 1986. American Soc. Mech. Eng. 209{227.[76] J T Oden, T Strouboulis, and P H Devloo. Adaptive �nite elements forhigh-speed compressible
ow. International Journal for Numerical Methodsin Fluids, 7:1211{1228, 1987.[77] L Oliker and R Biswas. E�cient load balancing and data remapping foradaptive grid calculations. Technical report, NASA Ames Research Center,Mo�ett Field, CA, USA, 1997.[78] M E G Ong. Uniform re�nement of tetrahedron. SIAM Journal on Scienti�cComputing, 15(5):1134{1144, 1994.[79] P Pacheco. Parallel Programming with MPI. Morgan Kaufmann Publishers,Inc., 1997.[80] B N Parlett, H D Simon, and L Stringer. Estimating the largest eigenvaluewith the Lanczos algorithm. Mathematics of Computation, 38:153{165, 1982.[81] F Pellegrini. SCOTCH 3.2 user's guide. Universit�e Bordeaux I, 1997.[82] A Pothen, H D Simon, and K P Liou. Partitioning sparse matrices witheigenvectors of graphs. SIAM J. Mat. Anal. Appl., 11(3):430{452, 1990.[83] R Preis and R Diekmann. PARTY - A software library for graph partitioning.In B HV Topping, editor, Advances in Computational Mechanics with Paralleland Distributed Processing, pages 63{71. Civil{Comp Press, Edinburgh, 1997.

BIBLIOGRAPHY 173[84] R M Russell. The CRAY-1 computer system. Comm. ACM, 21(1):63{72,1978.[85] K Schloegel, G Karypis, and V Kumar. Multilevel di�usion schemes forrepartitioning of adaptive meshes. Technical Report 97{013, University ofMinnesota, Department of Computer Science, Minneapolis, USA, 1997.[86] K Schloegel, G Karypis, and V Kumar. Parallel multilevel di�usion schemesfor repartitioning of adaptive meshes. Technical Report 97{014, Universityof Minnesota, Department of Computer Science and Army HPC centre, Min-neapolis, USA, 1997.[87] P M Selwood and M Berzins. Parallel unstructured tetrahedral mesh adapta-tion: Algorithms, implementation and scalability. Submitted to Concurrency,1998.[88] P M Selwood, M Berzins, and P M Dew. 3-D parallel mesh adaptivity: Data-structures and algorithms. InM Heath et al., editors, Eighth SIAM Conferenceon Parallel Processing for Scienti�c Computing, Philadelphia, 1977.[89] P M Selwood, N A Verhoeven, J M Nash, M Berzins, N P Weatherill, P MDew, and K Morgan. Parallel mesh generation and adaptivity : Partitioningand analysis. In A Ecer, J Periaux, N Satufoka, and P Schiano, editors,Parallel CFD { Proc. of Parallel CFD 96 Conference. Elesvier Science BV,1997.[90] H D Simon. Partitioning of unstructured problems for parallel processing.Computing Systems in Engineering, 2(2/3):135{148, 1991.[91] H D Simon. Partitioning of unstructured problems for parallel processing.In Conference on Parallel Methods on Large Scale Structural Analysis andPhysics Applications. Pergammon Press, 1991.[92] W E Speares and M Berzins. A fast 3-D unstructured mesh adaptation al-gorithm ith time-dependent upwind Euler shock di�raction calculations. InM Hafez and K Oshima, editors, Proc. of 6th Int. Symp. on ComputationalFluid Dynamics, volume III, pages 1181{1188, 1995.

BIBLIOGRAPHY 174[93] W E Speares and M Berzins. A 3-D unstructured mesh adaptation algorithmfor time dependent shock dominated problems. International Journal forNumerical Methods in Fluids, 25:81{104, 1997.[94] J L Steger. Technical evaluation report: AGRD
uid dynamics panel specialistmeeting on application of mesh generation to complex 3-D con�gurations.Technical Report AGARD-AR-268, AGARD, 1991.[95] G W Strang and G J Fix. An analysis of the �nite element method. Prentice-Hall, 1973.[96] E Suli and P Houston. Finite element methods for hyperbolic problems: Aposteriori error analysis and adaptivity. In I Du� and G A Watson, editors,State of the Art in Numerical Analysis, pages 441{471. OUP, 1997.[97] J F Thompson and N P Weatherill. Aspects of numerical grid generation:Current science and art. In Invited paper, 11th AIAA Applied AerodynamicsConference, Monterey, Ca, 1993.[98] B H V Topping and A I Khan. Sub-domain generation method for non-convexdomains. In B H V Topping and A I Khan, editors, Information Technologyfor Civil and Structural Engineering, pages 219{234. Civil{Comp Press, 1993.[99] B H V Topping and A I Khan. Parallel Finite Element Computations. Saxe-Coburg Publications, Edinburgh,UK, 1996.[100] N Touheed, P M Selwood, P K Jimack, M Berzins, and P M Dew. Paral-lel dynamic load-balancing for the solution of transient CFD problems usingadaptive tetrahedral meshes. In D R Emerson et al., editors, Parallel Compu-tational Fluid Mechanics (Proc. of Parallel CFD 97 Conference, May, 1997,Manchester, UK), pages 81{88. Elsevier, Amsterdam, 1998.[101] R Van Driessche and D Roose. An improved spectral bisection algorithmand its application to dynamic load balancing. Parallel Computing, 21:29{48,1995.[102] B van Leer. On the relation between upwind di�erence schemes. SIAMJournal on Scienti�c and Statistical Computing, 5:1{20, 1984.

BIBLIOGRAPHY 175[103] D Vanderstraeten, O Zone, R Keunings, and L Wolsey. Non-deterministicheuristics for automatic domain decomposition in direct parallel �nite elementcalculations. In R F Sincovec et al., editors, Parallel Processing for Scienti�cComputing, pages 929{932. SIAM, 1993.[104] A Vidwans, Y Kallinderis, and V Venkatakrishnan. Parallel dynamic load-balancing algorithm for 3-dimensional adaptive unstructured grids. AIAAJournal, 32(3):497{505, 1994.[105] C Walshaw and M Berzins. Dynamic load-balancing for PDE solvers on adap-tive unstructured meshes. Concurrency: Practice and Experience, 7(1):17{28,1995.[106] C Walshaw, M Cross, and M G Everett. A parallelisable algorithm for opti-mising unstructured mesh partitions. Mathematics Research Report, Schoolof Mathematics, Statistics and Scienti�c Computing, University of Greenwich,London, UK, 1995.[107] C Walshaw, M Cross, and M G Everett. Dynamic load-balancing for paralleladaptive unstructured meshes. In M Heath et al., editors, Eighth SIAM Con-ference on Parallel Processing for Scienti�c Computing, Philadelphia, 1997.[108] C Walshaw, M Cross, and M G Everett. Mesh partitioning and load-balancingfor distributed memory parallel systems. In B H V Topping, editor, Advancesin Computational Mechanics with Parallel and Distributed Processing (Proc.Parallel & Distributed Computing for Computational Mechanics, Lochinver,Scotland), 97{103, Edinburgh, 1997. Civil{Comp Press.[109] C Walshaw, M Cross, and M G Everett. Parallel dynamic graph-partitioningfor unstructured meshes. Journal of Parallel and Distributed Computing (inpress), 1998.[110] C Walshaw, M Cross, S Johnson, and M G Everett. A parallelisable algorithmfor partitioning unstructured meshes. In Irregular '94: Parallel Algorithmsfor Irregularly Structured Problems, Geneva, 1994.[111] C Walshaw, M Cross, S Johnson, and M G Everett. JOSTLE: Partition-ing of unstructured meshes for massively parallel machines. In N Satofuka

BIBLIOGRAPHY 176et al., editors, Parallel Computational Fluid Dynamics: New Algorithms andApplications (Proc. Parallel CFD'94, Kyoto, 1994), pages 273{280. Elsevier,Amsterdam, 1995.[112] J M Ware. The Adaptive Solution of Time-Dependent Partial Di�erentialEquations in Two Space Dimensions. PhD thesis, School of Computer Studies,University of Leeds, 1993.[113] N P Weatherill. A review of mesh generation. In Advances in Finite ElementTechnology, pages 1{10. Civil{Comp Press, Budapest, 1996.[114] R D Williams. Performance of dynamic load balancing for unstructured meshcalculations. Concurrency: Practice and Experience, 3:457{481, 1991.[115] J K Wilson and B H V Topping. A new element bisection algorithm for un-structured adaptive tetrahedral mesh generation. Engineering Computations,15(5):588{615, 1998.[116] P Wu and E N Houstis. Parallel dynamic mesh generation and domain de-composition. Technical Report, Computer Sciences Dept., Purdue University,1993.[117] C Z Xu and F C M Lau. Analysis of the generalized dimension exchangemethod for dynamic load balancing. Journal of Parallel and Distributed Com-puting, 16:385{393, 1992.[118] C Z Xu and F C M Lau. The generalized dimension exchange method for loadbalancing in k-ary ncubes and variants. Journal of Parallel and DistributedComputing, 24:72{85, 1995.[119] O C Zienkiewicz, D W Kelly, and J P Gago. The hierarchical concept in�nite element analysis. International Journal of Computers and Structures,16:53{65, 1983.

