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Abstract

This thesis is concerned with the issue of dynamic load-balancing in connection
with the parallel adaptive solution of partial differential equations (PDEs). We are
interested in parallel solutions based upon either finite element or finite volume
schemes on unstructured grids and we assume that geometric parallelism is used,
whereby the finite element or finite volume grids are partitioned across the available
parallel processors. For parallel efficiency it is necessary to maintain a well balanced
partition and to attempt to keep communication overheads as low as possible. When
adaptivity occurs however a given partition may deteriorate in quality and so it must
be modified dynamically. This is the problem that we consider in this work.

Chapters one and two outline the problem in more detail and review existing
work in this field. In Chapter one a brief history of parallel computers is presented
and different kinds of parallel machines are mentioned. The finite element method is
also introduced and its parallel implementation is discussed in some detail: leading
to the derivation of a static load-balancing problem. A number of important static
load balancing algorithms are then discussed. Chapter two commences with a brief
description of some error indicators and common techniques for mesh adaptivity.
It is shown how this adaptivity may lead to a load imbalance among the available
processors of a parallel machine. We then discuss some ways in which the static
load-balancing algorithms of Chapter one can be modified and used in the context
of dynamic load-balancing. The pros and cons of these strategies are discussed and
then finally some specific dynamic load-balancing algorithms are introduced and
discussed.

In Chapter three a new dynamic load-balancing algorithm is proposed based
upon a number of generalisations of existing algorithms. The details of the new
algorithm are outlined and a number of preliminary numerical experiments are un-
dertaken. In this preliminary (sequential) version the dual graph of an existing
partitioned computational mesh is repartioned among the same number of proces-
sors so that after the repartitioning step each processor has an approximate equal
load and the number of edges of this dual graph which cross from one processor to
another are relatively small.

The remainder of the thesis is concerned with the practical parallel implemen-
tation of this new algorithm and making comparison with existing techniques. In

Chapter four the algorithm is implemented for a 2-d adaptive finite element solver
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for steady-state problems, and in Chapter five the generality of the implementation
is enhanced and the algorithm is applied in conjunction with a 3-d adaptive finite
volume solver for unsteady problems. In this situation frequent repartitioning of
the mesh is required. In this chapter performance comparisons are made for the al-
gorithm detailed here against new software that was developed simultaneously with
the work of this thesis. These comparisons are very favourable for certain problems
which involve very non-uniform refinement.

All software implementations described in this thesis have been coded in ANSI
C using MPI version 1.1 (where applicable). The Portability of the load-balancing
code has been tested by making use of a variety of platforms, including a Cray T3D,
an SGI PowerChallenge, different workstation networks (SGI Indys and SGI O2s),
and an SGI Origin 2000. For the purposes of numerical comparisons all timings

quoted in this thesis are for the SGI Origin 2000 unless otherwise stated.
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Chapter 1

Introduction

Since the middle of the current century, breakthroughs in computer technology have
made a tremendous impact on numerical methods in general and the numerical
solutions of partial differential equations in particular. During the infancy period
of computers they were serial in nature. This means that they were built using
the von Neumann paradigm: with a single processor which runs as fast as possible
and has as much memory as is possible (or affordable). The processor is commonly
known as the central processing unit (CPU) and is further divided into a control
unit and an arithmetic-logic unit (ALU). The memory stores both instructions and
data. The control unit directs the execution of programs, and the ALU carries
out the calculations called for in the program. When they are being used by the
program, instructions and data are stored in very fast memory locations, called
registers. As fast memory is quite expensive, there are relatively few registers.

The performance of such computers is clearly limited by physical laws. For
example, the maximum speed at which the data can travel from memory to CPU
is that of the speed of light, so in order to build a computer which is capable of
carrying out three trillion copies of data between memory and registers per second
say, one has to fit each 32-bit word into a square with side length of 1071 meters
(this is approximately equal to the size of a relatively small atom). This is simply
not possible - see [79] for details.

In order to speed up the machine, one possibility is to reduce the transfer time
taken by the data while travelling from memory to registers. This is achieved by
the use of cache memory - which is implemented on the same chip as the CPU. The

idea behind cache is the observation that programs tend to access both data and
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instructions sequentially. Hence, if we store a small block of data and a small block
of instructions in fast memory (cache), most of the program’s memory accesses will
use this cache memory rather than the slower main memory. This memory will
be slower than registers but it will be faster than the main memory implemented
outside the chip.

During the initial stages in the development of microchips, designers typically
used an increased chip area to introduce new and sophisticated instructions, ad-
dressing modes and other mechanisms. These new features allowed the execution
of high-level languages as well as the complex functions of operating systems, and
this trend continued until the 1980s. At this time a new design philosophy called the
reduced instruction set computer (RISC) emerged. The RISC supporters argue that
all these new instructions complicate the design of the control unit, slowing down
the execution of basic operations. A simple instruction set allows, in principle, a
simple, fast implementation, so the larger number of instructions that is require can
be more than compensated for by the increased speed. Another advantage claimed
by RISC supporters is that the simplification of the control unit helps to save chip
area for the control implementation. This can be used to implement special features
in the operating unit, aimed at improving the execution speed. There are many
variants of RISC processors, among them are Berkeley RISC, microprocessors with-
out interlocked pipe stages (MIPS) and the Inmos Transputer (see Chapter 10 of
20))

Even after all these advancements in the development of the computer industry
there were and still are important classes of problem in science and engineering
which practitioners have not been able to solve successfully. For example, to attack
the “Grand Challenges” ([17]) months or even years are needed by the best of these
computers. A grand challenge is a fundamental problem in science or engineering
that has a broad economic and scientific impact, and whose solution could be ad-
vanced by applying high-performance computing techniques and resources ([67]).
Many of these problems are basically large computational fluid dynamics problems
which can be modelled by a set of partial differential equations (PDEs).

To have an idea of the computing requirements to solve such problems numer-
ically we consider here two examples. The first one is studied by Case et al. ([16])
as mentioned in [26]. This is the simulation of a three-dimensional, fully resolved,

turbulent flow as might occur in the design of a portion of a ship hull. The primary
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parameter for characterising the turbulent fluid flow is the dimensionless quantity
known as the Reynolds number (R). Such a simulation would have a Reynolds num-
ber of about 10* or greater. In order to fully resolve important disturbances of a
small wave number in the flow one needs R%* mesh points ([21]). That is N = 10°
mesh points for each time step. Each mesh point has one pressure term and three
velocity terms for both the current and the immediate past time step. This is a
total of 8 x10? scalar variables. If temperature or other parameters must also be
maintained for each point, then about 101 words of data memory are required. The
number of arithmetic operations varies widely, depending upon the solution method
employed. One efficient approach that takes advantage of the problem geometry,
has been estimated to require only about 500 additions and 300 multiplications per
grid point. This leads to an operations count of a8 10'? operations per single time
step (see [26] for details).

The second problem is that of modeling and forecasting of weather. Suppose we
want to predict the weather over an area of 3000 x 3000 miles for two-day period
and the parameters need to computed once every half hour. As mentioned in [67],
if the area is being modeled up to a height of 11 miles and one wishes to partition
this 3000 x 3000 x 11 cubic mile domain into segments of size 0.1 x 0.1 x 0.1
then there would be 10! different segments. So we need at least 10'! words of data
memory. It is also estimated in [67] that for this prediction the total number of
operations is 10%°.

The world’s most powerful computer of the mid 70’s was the CRAY-1, which
was not even close to having enough capability ([84]) to perform these calculations.
It’s primary memory was limited to 10® words, and the execution rate was about
10® operations/second.

Hence by this time it was clear that new, more powerful computer systems would
be needed to solve this class of problems. Since the single processor machines had
begun to start approaching its physical limits, the community had no choice but to

consider alternative paradigms such as parallel machines.

1.1 Introduction to Parallel Computers

Parallel computers perform their calculations by executing different computational

tasks on a number of processors concurrently. The processors within a parallel
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computer generally exchange information during the execution of the parallel code.
This exchange of information occurs either in the form of explicit messages sent by
one processor to another or different parallel processors sharing a specified com-
mon memory resource within the parallel computer. The parallel load-balancing
algorithms, proposed in this thesis, work very well on these paradigms.

In 1966 Michael Flynn ([33]) classified systems according to the number of in-
struction streams and the number of data streams. The two important systems

are:

e SIMD - Single Instruction stream, Multiple Data stream,

e MIMD - Multiple Instruction stream, Multiple Data stream.

This section provides a brief introduction to these important classes of parallel

computing architecture.

1.1.1 SIMD Systems

Such a system has a single CPU devoted to exclusively to control, and a large
collection of subordinate processors, each having only ALUs, and their own (small
amount of ) memory. During each instruction cycle, the control processor broadcasts
an instruction to all of the subordinate processors, and each of the subordinate
processors either executes the instruction or is idle.

The most famous examples of SIMD machines are the CM-1 and CM-2 connec-
tion Machines that were produced by Thinking Machines. The CM-2 had up to
65,356 1-bit processors and up to 8 billion bytes of memory. Maspar also produced
SIMD machines. The MP-2 has up to 16,384 32-bit ALUs and up to 4 billion bytes

of memory.

1.1.2 General MIMD Systems

The key difference between MIMD and SIMD systems is that with MIMD systems,
the processors are autonomous: each processor is a full-fledged CPU with both a
control unit and an ALU. Thus each processors is capable of executing its own
program at its own pace. The world of MIMD systems is divided into shared-

memory and distributed-memory systems.
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Shared-Memory MIMD

A generic shared-memory machine consists of a collection of processors and memory
modules interconnected by a network. Each processor has access to the entire
address space of the memory modules. So that any data stored in the shared
memory is common to, and can be accessed by, any of the processors. This has the
advantage of being very rapid (in principle) and is generally simpler to program.
However, its main drawback is that there can be serious delays (contention time)
if more than one processor wants to use the same location in memory at the same
time. The simplest network connection is bus based. Due to the limited bandwidth
of a bus, these architectures do not scale to large number of processors: the largest
configuration of the currently popular SGI Challenge XL has only 36 processors.
Recently Silicon Graphics, Inc. has designed and manufactured the Origin 2000
computer. The basic building block of the Origin is a node built upon two MIPS
R10000 processors with a peak performance of 400 Mflop each. The computer
utilises Scalable Shared-memory MultiProcessing (S2MP) architecture. Most other
shared-memory architectures rely on some type of switch-based interconnection
network. For example the basic unit of the Convex SPP1200 is a 5 X 5 crosshar

switch.

Distributed-Memory MIMD

In distributed-memory systems, each processor has its own private memory. These
processors are connected directly or indirectly by means of communication wires.
From the performance and programming point of view the ideal interconnection
network is a fully connected network, in which each processor is directly connected
to every other processor. Unfortunately, the exponential growth in the size (and
cost) of such a network makes it impractical to construct such a machine with more
than a few processors. At the opposite extreme from a fully connected network is
a linear array: a static network in which all but two of the processors have two
immediately adjacent neighbouring processors (see Figure 1.1). A ring is a slightly
more powerful network. This is just a linear array in which “terminal” processors
have been joined (see Figure 1.2). These networks are relatively inexpensive; the
only additional cost is the cost of p - 1 or p wires for a network of p processors.

Moreover it is very cheap to upgrade the network - to add one processor we only
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Figure 1.1: A linear array of processors.

Figure 1.2: A ring of processors.
need one extra wire. There are two principal drawbacks:

o if two processors are communicating, it’s very likely that this will prevent

other processors which are also attempting to communicate from doing so,

e in a linear array two processors that are attempting to communicate may have
to forward the message along as many as p - 1 wires, and in a ring it may be

necessary to forward the message along as many as p/2 wires.

In between the two extremes a hypercube is a practical static interconnection
network that gives a good balance between the high cost and high speed of the
fully connected network and the low cost but poor performance of the linear array
or ring. Hypercubes are defined inductively: a dimension 0 hypercube consists
of a single processor. In order to construct a hypercube of dimension d > 0, we
take two hypercubes of dimension d — 1 and join the corresponding processors with

communication wires (see Figure 1.3). It is clear that a hypercube of dimension
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Figure 1.3: Hypercubes of (a) dimension 1, (b) dimension 2 and (c) dimension 3.

d will consist of 2% processors. It is also clear that in a hypercube of dimension
d each processor is directly connected to d other processors and that if we follow
the shortest path then the maximum number of wires a message has to travel is
d. This is much few than for the linear array of ring. The principal drawback to
the hypercube is that it is not easy to upgrade the system : each time we wish
to increase the machine size, we must double the number of processors and add
a new wire to each processor. The first “massively parallel]” MIMD system was a
hypercube (an nCUBE 10 with 1024 processors).

Intermediate between hypercubes and linear arrays are the meshes and tori
(see Figures 1.4 and 1.5), which are simply higher dimensional analogues of linear
arrays and rings, respectively. Observe that an n-dimensional torus can be obtained
from the n-dimensional mesh by adding “wrap-around” wires to the processors on
the border. As far as upgrading is concerned meshes and tori are better than
hypercubes (although not as good as linear arrays and rings). For example, if
one wishes to increase the size of a ¢ X q mesh, one simply adds a q¢ x 1 mesh
and q wires. Meshes and tori are currently quite popular. The Intel Paragon is
a two-dimensional mesh, and the Cray T3D and T3E are both three-dimensional

tori.

1.2 Comparison Between SIMD and MIMD Com-
puters

In [67], Kumar et al. discuss the pros and cons of SIMD and MIMD computers.

SIMD computers require less hardware and less memory than MIMD computers
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Figure 1.5: Two-dimensional torus.
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because they have only one global control unit and only one copy of the program
needs to be stored. On the other hand, MIMD computers store the program and
operating system at each processor. SIMD computers are naturally suited for data-
parallel programs; that is, programs in which the same set of instructions are ex-
ecuted on a large data set (which is the case in the field of image processing for
example).

A clear disadvantage of SIMD computers is that different processors cannot
execute different instructions in the same clock cycle, so if a program has many
conditional branches or long segments of code whose execution depends on condi-
tionals, it is entirely possible that many processors will remain idle for long periods
of time. Data-parallel programs in which significant parts of the computation are
contained in conditional statements are therefore better suited to MIMD computers
than to SIMD computers.

Individual processors in an MIMD computer are more complex, because each
processors has its own control unit. It may seem that the cost of each processor
must be higher than the cost of a SIMD processor. However, it is possible to
use general-purpose microprocessors as processing units in MIMD computers. In
contrast, the CPU used in SIMD computers has to be specially designed. Hence,
due to economies of scale, processors in MIMD computers may be both cheaper and

more powerful than processors in SIMD computers.

1.3 Finite Element Methods for Elliptic PDEs

Probably the three most popular numerical techniques for solving partial differential
equations are the finite difference, the finite element and the finite volume methods.
In the finite difference approximation, the derivatives in a differential equation are
replaced by difference quotients. The difference operators are usually derived from
Taylor series and involve the values of the solution at neighbouring points in the
domain. After taking the boundary conditions into account, a (sparse) system
of algebraic simultaneous equations is obtained and can be solved for the nodal
unknowns.

The finite differences method (FDM) is easy to understand and straightforward
to implement on regular domains. Unfortunately this method is difficult to apply

for systems with irregular geometries and/or unusual boundary conditions.
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The finite element method (FEM) provides an alternative that is better suited
for such systems. In contrast to finite difference techniques, the finite element
method divides the solution domain into simply shaped regions or “elements”. An
approximate solution for the PDE can be developed for each of these elements. The
total solution is then generated by linking together or “assembling” the individual
solutions taking care to ensure continuity at the interelement boundaries. Thus the
PDE is approximately satisfied in a piecewise fashion (see below).

The finite volume method (FVM) may also be applied on unstructured meshes.
In this scheme the solution is represented as a series of piecewise constant elements.
The discretised form of the PDE is found by integrating the equation over the
elements (control volumes). For each control volume the area integral is converted
into a line integral over its edges and the numerical flux at the boundaries also
calculated.

A comprehensive description of the finite element method is beyond the scope of
this thesis. The interested reader can consult the books of Johnson ([58]) and Strang
& Fix ([95]). However we describe the method briefly in the case of a particular

PDE:; Poisson’s equation in 2 dimensions :
—V?u(z) = f(z), for x € @ C R (1.1)

For clarity we assume the following boundary conditions are imposed :

u=ugr on 'y and g—;‘:g on Iy,

where 0Q =T, ULy and T1NTy =0.
Note that this equation is a linear second order partial differential equation which
arises in a large number of physical situations (e.g. flow of an ideal fluid).

The boundary condition u = wug on I'y is called a Dirichlet (or essential)
boundary condition and g—z = g on 'y is called a Neumann (or natural) boundary
condition.

We first derive the weak form of the equation (1.1). To do this we multiply the

equation (1.1) by a test function w and integrate over € to get,

-JowViude = [qwf da.

By using the divergence theorem we get,
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JoVYuNwdz — [, g—;‘w ds = [qwf dz.

If we choose w € H}(Q), (where Hj(2) stands for the space of all functions whose
first derivatives are square integrable in € and which are zero everywhere on I'y)

then above integral form reduces to,
JoYuNw dz — [p, gw ds = [qwf dz.

For simplicity we will assume g = 0 in which case the expression simplifies still

further:
JoVYuNwde = [qwf dx.

Now let Hj(£2) be the space of all those functions whose first derivatives are square
integrable in ) and which satisfy the Dirichlet boundary condition everywhere on
I'y. The above integral form then leads to the following weak form of the Poisson’s
PDE.

Find v € H3(Q) such that

/Qzulw d&Z/wa dz, (1.2)

for all w € Hg ().
The rest of this section considers the finite element approximation to the solution

of this weak form.

1.3.1 Piecewise Linear Finite Elements

The very first step in the approximation of u by the finite element method is to
divide the domain € into a large number of small non-overlapping subdomains (in
this section we will assume these are triangles). This is always possible provided
that € is itself a polygon (i.e. there are no curved boundaries). There are methods
to handle curved boundaries. One way is to approximate the curve boundary by
means of a set of line segments in such a way that in the limit these line segments
approach to the curve boundary (see [95] for details). Another way is to triangulate
the domain € using isoparametric finite elements (see [19]).

Let us suppose that the vertices (nodes) of the triangles have been numbered
from 1 to N = ng + ng (where np is the number of vertices in the interior of the

domain or on the Neumann boundary, I';, and ng is the number of vertices on
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the Dirichlet boundary, I'y). On each triangle u is approximated by a low degree
polynomial. Although any degree polynomials can be selected for simplicity we
choose the first degree polynomials here (polynomials of degree zero can not be
used since we require the derivatives to be square integrable).

We next define simple “basis” functions P;(z) for all nodes i from 1 to N. These
functions are linear on each triangle and satisfy P;(a) = 1 if x is the position vector
of the node j and P;(xz) = 0 if a is the position vector of any of the other nodes.

Now we can write u (an approximations to u) in terms of these basis functions as,

where a; are unknown (to be determined) for i = 1, ..., ng, and are given by the
Dirichlet boundary condition , u = ug, for i = ng+1, ... ,ng + ng. (Note that,
due to our choice of basis functions , a; is the value of u when evaluated at the ¢
node of the mesh). If we substitute the value of u from equation (1.3) for u and
replace w by P;(z), for j = 1, ... ,npg, in equation (1.2) we then get a system of ng
equations for the unknowns «ay, ..., a,,. This system, known as the Galerkin finite

element equations is given by:

np N
2_ai /QYP i(2)-YFy(z) dz = /Q Pi(z)f(z) dz— 3 a; /Q VPi(2) YV Pi() da,
=1 i=npg+1
(1.4)
forj=1,..., ng.
Typically this is written in matrix form as
Ka=f, (1.5)

where K is referred to as the “global stiffness matrix” (whose entries are given by
K;i = JoVPj(x).NVP,(z) dx) and a is a vector of the unknowns ay,...,a,

B

1.3.2 Algorithmic Details

Having derived the finite element equations (1.5) we now discuss how the matrix K
and the vector f can be obtained systematically. The most important point to note
is that the entry Kj; of the matrix K will always be zero if the vertices numbered j
and i are not connected by an edge of the mesh. This is because the dot product of

VP;(x) and VP;(x) will be zero on every triangular element in such a case. Since
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this means that most of the entries of K will always be zero, we refer to this as a
“sparse matrix”.
Suppose that the finite element mesh consists of E triangular elements Q. (e =

L,...,E). Then each entry of K may be obtained from the following formula:

Kji = [N Pi(2). N Pi(z) dz == L, fo, YPj(2). Y Pi(2) de.
Hence we may use the following pseudo-code to calculate K:
for(j = 1;j < N; j++)

for(i = 151 < Ny i++){
K(,i) =0
for(e = 1; e < E; e+)
K1) = K1) + Jo, VPj(2) VPi(z) de
}.
The order of the loops can easily be re-arranged:
for(j = 1;j < N; j++)
for(i = 151 < Ny i++)
K(,i) =0
for(e = 1; e < E; e+)
for(j = 1;j < Nj j++)
for(i = 151 < Ny i++)
K1) = K1) + Jo, VP(2). VPi(z) da.
Now we can make use of the sparsity caused by the local nature of Py,..., Py:
for(j = 1;j < N; j++)
for(i = 151 < Ny i++)
K(,i) =0
for(e = 1; e < E; e+)
for(J = 1; J < 3; J++){
j = number of node which is J-th vertex of element e
for(I =1; 1 < 3; T++)4
i = number of node which is I-th vertex of element e

K(j,i) = K(,i) + Jo, YPj(z). Y Pi(z) dx

At this point we can make the following observations.
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o [t is necessary to number the vertices of each element, )., of the triangulation
of ©; 1,2,3. Also, an integer array, “icon” say, needs to be set up which stores

the node number of each vertex of each element.

e It is also necessary to store an array of the position vectors, s; say, of the

vertices of the mesh.

o A similar arrangement can be made in order to calculate f, where
fi =l F@)Py(x) de = 2, fo, f(2)Pi(2) da.
Now, if we assume that the ng nodes on 'y are numbered last, then the finite ele-
ment pseudo-code should now look something like:
for(j = 1;j < np; j++){
f(j) =10
for(i = 151 < np ;i++)
K(,i) =0
}
for(j = 1;j < np ; j++)
a(npg +j) = up(s(np +J,1), s(np + j, 2))
for(e = 1; e < E; e+)
for(J = 1; J < 3; J++){
j = icon(e,J)
if(j < nu){
f(G) =10) + Jo. f(z)F;(z)dz
for(I = 1; 1 < 3; I++ )4
i = icon(e,l)
i1f(1 <np)
K1) = K(i) + Jo, VPi(2) VF(2) dx

else

f(G) = 1G) - ai) Jo. Y.Pj(z). N Pi(z) dz

}

Solve the system: Ka = f.

The parallel generation and solution of this system will be discussed in §1.5.
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1.4 Time-Dependent Problems: The Linear Dif-
fusion Equation

We now move on to consider how we may generalise the above theory to deal with a
linear time-dependent differential equation. The simplest parabolic time-dependent

differential equation is the linear diffusion equation:

%u(g,t) = Viu(z,t)+ f(z,t) for(z,t) € Q x (0,T], (1.6)

subject to some initial condition, such as
u(z,0) = u’(z) for all z €9,

and some boundary conditions, such as

ou_

on
where 90 =T'y UTy and T'y NIy = (), as before.

gon Ty forallt € (0,T),

u=1ugonland

Note that in above all the spatial variables have been grouped together as x
and the Laplacian operator, V2, is assumed to apply only to these spatial variables
and the time variable t is treated separately. This distinction is necessary as the
variable t should not be thought of as being “just another independent variable”,
like x and y say, because the boundary conditions associated with this variable are
not the same.

As far as ‘t” is concerned we only know the solution at the boundary t = 0 and
would like to compute the solution for arbitrary values of t which are less than T
(we have no idea about the behaviour of the solution at time T). This differs from
the other variables where we generally know about the behaviour of the solution
throughout the boundary of the spatial domain.

Keeping in mind the special nature of the variable ‘t” we need a practical method
which treats the spatial variables and time variable independently. Fortunately the

method of lines exactly does the same.

1.4.1 The Method of Lines

This is a general method which reduces a system of PDEs to a system of ordinary

differential equations (ODEs), by only discretising in space in the first instance.
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The spatial and temporal discretisation are thus independent, allowing a variety
of spatial discretisations (e.g. finite element or finite volume) to be used with any
standard ODE solver (see [9], for example). We attempt to follow this approach
to obtain transient solutions using the finite element method presented in previous
section.

This means we only triangulate the spatial part of the domain (2, and then we
multiply equation (1.6) by a test function, P;(a), which has no time dependence.
This yields the following system of equations,

[ e Pile) de = [ Vule,0)Pi(e) de+ [ Sl 0)Pie) d.

and making use of the divergence theorem as before this becomes,

/Q%u(x t)Pj(z) dz = —/ Vu(z,t).V Pi(z) dz+

A-ﬁwxw @+/fxt () da. (1.7)

Q on
In two dimensions we may again divide the domain, (), into triangles and number
the vertices of these triangles from 1 to N = ng 4+ ng where ng and ng are as
defined in §1.3.1. Also let P; be the usual basis functions centred on the 7' node
of the mesh. Since we are interested in a time-dependent finite element solution we

seek an approximation, u(xz,t), to the true solution, u(x,t), of the form

where a;(t) are unknown (to be determined) for i = 1,... ,np, and are given by the
Dirichlet boundary condition, u = ug, fori = ng + 1,..., ng + ng.

Now, replacing u by u in equations (1.7) for j = 1,... ,np we again obtain a system
of np equations for ng unknowns (in this case a1(t),...,a,,(t)). This system is
given by

o5 alaZ

ngB
/Pﬂm_—Z%/VBVH@+/gﬂ%+/fﬂ@—
i=1 Y9 [ Q

nB+nE np+ng da:
1

m/YHDVde 3

i=npg+1 i=npg+1

/Ppm

As before we may express this in matrix notation, in which case it becomes,

da .
M5 = —Ka+ f(b). (1.8)
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Again, K is the “global stiffness matrix” (whose entries are given by K;; = [, V.V P;dx)
and the matrix M is known as the“Galerkin mass matrix” (with entries given by

M;; = [q PiPjdz). In this case the vector f depends upon t through the possible
dependence of the function f in equation (1.6) upon t, or the possible dependence

of the Dirichlet boundary condition upon t (through the function ug).

It should be noticed that the system of equations, (1.8), is not an algebraic
system, it is a system of ng ordinary differential equations for which we can easily
obtain initial values for the unknowns «;(¢) (from the function u°(x)). There are
many standard techniques (e.g. the software package SPRINT which is described
in [9]) for dealing with equations such as these in an efficient manner (i.e. using
local error through adaptive time-stepping). Nevertheless, at each time step a finite

element calculations similar to that described in §1.3 must be undertaken.

1.5 Parallel Finite Element and Load-Balancing

For a small problem where the number of degrees of freedom is just a few thousand
the system of equations (1.5) can be easily and quickly solved on a serial machine.
But when the number of degrees of freedom is in excess of a million or so then the
memory and speed of a serial machine start to become a serial bottleneck. Also
for some applications where the size of the problem is not so big the time taken
by a serial machine may still be very large (for non-linear problems for example,
where the iterative methods for solving the corresponding system (1.5) are quite
expensive). In these cases a promising way forward is to use a parallel architecture.
By using such a machine not only can we hope to solve larger problems (e.g. in
structural mechanics) but we can also hope to solve them more quickly.

In the rest of this section we discuss a method for assembling and solving the
sparse system of equations (1.5) in parallel. Let us suppose the domain € has been
divided into n subdomains Q;, Qs, .... ,Q, and the i** subdomain €; has been
assigned to the 1" processor of a parallel machine. Let us assume that the unknowns
on the interface between the subdomains are labelled ¢* and the unknowns inside
each subdomains are labelled a4, as,....,qa,. If we first number the unknowns in
a, then in ay,as,...,a, and lastly in ¢* then the system of equations (1.5) can be

written in the form,
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Ay Cy a, il
Ay sy @ iz
= : (1.9)
A, Gy a, I
Bl B2 . Bn A* Q* i*

where A;, B;, C; and A* are themselves usually sparse. It is clear from the definition
of the basis functions P; that f,, A;, B; and C} are totally housed by the i process
and hence can be assembled independent of each other in parallel. But f* and A* are
distributed across different processors. Each processor can compute and assemble
its own contribution to them, independently, storing them in the blocks L* and A7
say ( so that - :i: —I—i; + ... —I—L*1 and A* = A7 + As+...+ AL ).

In order to solve the system of equations (1.9) we first write it in component

form:

Aigi+Cia = [, 1=1,2,...n, (1.10)
> Bia; + A'a” = " (1.11)

If we substitute the value of ¢; from equation (1.10) in (1.11) we get the following
equation:

S BATN(f, — Cia’) + A" = [ (1.12)

On simplification this reduces to,

(A" — Z B AT Ca” = [ — Z BiAT' S, (1.13)
If we define A, by the equation,
Ay = A" — Z B;ATMC, (1.14)
then the equation (1.13) can simply be written as,
Asa” = [ = BAT (1.15)

If equation (1.15) is then solved for ¢* then this can be substituted into equation
(1.10) and solved for a; for all i. This approach is ideal for distributed memory

parallel machines because each system in equation (1.10) is entirely independent



CHAPTER 1. INTRODUCTION 19

and may therefore be solved in parallel with the others when required. Moreover, if
an iterative method, such as the conjugate gradient (CG) algorithm ([40]), is used
to solve equation (1.15) then it is not necessary to explicitly form the matrix A,
of (1.14). The main step involved is the matrix vector multiplication of w = A,p
where p is the direction vector obtained from the residual of the k™" iterates of a*,

so we have

w=A"p— Y B(AT(C.p). (1.16)

From equation (1.16) it is clear that w can be obtained using only matrix-vector
multiplication and subdomain solves (some local communication is also required
between processors sharing interpartition boundary vertices).

From above discussion it is clear that the communication overhead is propor-
tional to the number of vertices on the interpartition boundary, hence one should
try to keep this boundary as small as possible. Also once the vector ¢* is known
each subdomain will try to solve the equation (1.10) in parallel, hence it is desirable
that the number of unknowns in each of g; is approximately same (otherwise some
processors will be idle while others are still busy solving their systems).

Hence the decomposition of the elements of the mesh into subdomains should

have two main features,

e cach processor should store approximately the same number of vertices or

elements (to ensure equal load),

e number of vertices which lie on the boundary between the processors should

be kept low.

In order to achieve the above we first define the dual graph of a given mesh.
The dual graph of a given mesh is obtained by replacing each element by a node,
and that a pair of nodes is connected by an edge only if the corresponding elements
are neighbours of each other, then above problem becomes a special case of a more
general problem, namely the graph partitioning problem.

The n-way graph partitioning problem is defined as follows: Let G = G(N,E)
be an undirected graph where N is the set of nodes with ||N|| nodes and E is the
set of edges with ||E| edges, partition N into n subsets, Ny, Ny, ... N, such that
N; NN; =0 for i £ j, || N:]] = |IN|| / n and U; N; =N, and the number of edges
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of E whose incident vertices belong to different subsets is minimised. The n-way
partition problem is most frequently solved by recursive bisection. That is, we first
obtain a 2-way partition of N, and then we further subdivide each part using 2-
way partitions. After log n phases, graph G is partitioned into n parts. Thus, the
problem of performing a n-way partition is reduced to that of performing a sequence
of 2-way partitions or bisections.

Unfortunately this problem, which is well-known in the graph theory literature
, is not solvable in polynomial time. It is in fact an NP-hard problem ([22, 36, 68]).
Nevertheless there are heuristic approaches which perform well in most cases. In

the next few sections we review some of the more important of these heuristics.

1.6 Recursive Graph Partitioning Heuristics

For the sake of simplicity (as mentioned above), many graph partitioning heuristics
concentrate on bisecting the graph subject to the load balancing and cut-weight
(the number of edges on the inter-partition boundary is called the cut-weight) min-
imisation constraints. When more than two subdomains are required, the procedure
can be applied recursively on the recent subdomains. The main advantage of this
approach is that it is easy to implement in parallel because of the divide and conquer
nature, but the corresponding disadvantage is that the total number of subdomains

thus produced must be a power of 2.

1.6.1 Recursive Coordinate Bisection (RCB)

Let G = G(N,E) be a given undirected graph. We must also assume that there are
two or three-dimensional coordinates available for the nodes. A simple bisection
strategy, due to Simon ([90]), which is a slight generalisation of an earlier method
used by Williams in [114], for the graph G is to determine the coordinate direction
of the longest expansion of the domain. Without any loss of generality, assume that
this is the x-direction. Then all nodes are sorted with respect to their x-coordinate.
Half of the nodes with small x-coordinate are assigned to one subdomain, the re-
maining half are assigned to the other subdomain.

Although easy to program, the principal drawback of RCB is that the method

does not take advantage of the connectivity information given by the graph. It is
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therefore unlikely that the resulting partition will have a low cut-weight and so this

method is not generally suitable for our purpose.

1.6.2 Recursive Inertial Bisection (RIB)

This method is a generalisation of RCB techniques which is described in [28, 75]
for example. Here, the vertices of the dual graph are considered as point masses
located at the centroid of their corresponding initial element. The principal axis
of inertia for these point masses is then calculated and the domain is bisected by
making a cut which is orthogonal to this axis (with approximately equal weights on
either side of it). This procedure is then repeated recursively for each subdomain.

This method is extremely fast, but like the RCB it also produces partitions with
a relatively high cut-weight ([28]).

1.6.3 Recursive Graph Bisection (RGB)

Here the idea is to use the graph distance as opposed to Euclidean distance used in
§1.6.1. Recall that the graph distance between the two nodes n; and n; is given by
d(n;, n;) = number of edges in the shortest path connecting n; and n;.

Here the starting point is to find the diameter (or, since this is expensive to find,
the pseudo-diameter) of the graph (see George and Liu ([37])) and then sort the
nodes according to their distance from one of the extreme nodes. Half the vertices
which are close to this extreme node are placed in one subdomain and the remaining
half are placed in the other subdomain.

If we start out with a connected graph then by construction it is guaranteed
that at least one of the two subdomains is connected. But it is still possible that
the other subdomain may not be connected. Hence we may end up with a situation

in which not all of the subdomains are connected.

1.6.4 Modified Recursive Graph Bisection (MRGB)

In [50] Hodgson and Jimack present their own graph bisection method MRGB. This
method is a modification of the RGB method, which tries to improve on the original
by attempting to produce subdomains which are all simply connected.

In MRGB each bisection begins by finding two approximately extremal nodes
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of the graph and then builds a partition up around them by forming two sets. Each
set first consists of those nodes which are at most one edge from one extremal node,
then at most two edges, etc., until one partition contains half of all the nodes. The
formation of the smaller partition is then continued until no more nodes can be
claimed by it. If this partition also contains half of the nodes then the bisection is
complete. Otherwise, there will remain unassigned nodes which are disconnected
from the smaller partition. These nodes will be assigned to the larger partition
thereby producing two connected subdomains which are not equal in their share of
the nodes. If one insists on having balanced subdomains then some extra steps can
be executed to transfer nodes from the larger subdomain to the smaller subdomain
in such a way that the new improved subdomains are well balanced and that the
increase in the cut-weight is not that large. Unfortunately due to the transfer
step this method is still not guaranteed to produce simply connected subdomains
but in practice (see [50] for details) the MRGB algorithm produces disconnected
subdomains far less often than the RGB method and also produces subdomains
which look more compact. Moreover the MRGB algorithm is computationally as
cheap as the RGB method and nearly always produces partitioned subgraphs which

have a smaller cost in terms of the cut-weight.

1.6.5 Recursive Spectral Bisection (RSB)

This method which was popularised by Pothen, Simon and Liou ([82]) is of a quite
different nature to those above and is considerably less intuitive. It is in fact a
continuous version of the following discrete optimal bisection problem.

With each node n; € N we assign a weight x; where z; is +1 or -1 (where all
nodes with #; = 1 are in one subdomain and those with x; = -1 are in the other).
Then the requirement of equal load among the two subdomains means 3% | x; = 0
and the requirement of minimal cut-weight demands that we should minimise the
quadratic >3, wyep(Ty — 2,)?/ 4 ( as the quadratic > (wayen(Ty — 2,)?/ 4 is in fact
the cut-weight).

Ignoring the factor of one quarter we note that 3>, ,)ep(w, — z,)? = 2T Lz,
where L is the Laplacian matrix of the graph whose ;' entry of row 7 is given in

Figure 1.6.
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—1 if nodes i & j are connected,

degree of node 1 ifi =,

N

5

s
I

0 otherwise.

Figure 1.6: Entries of the Laplacian matrix.

Hence the discrete problem is:

minimise 2! Lz such that 3, ; = 0 and 2; = 1 or -1.

But this is an NP-hard ([36]) problem, so the heuristic approach is to solve the
following continuous version of above discrete problem:

minimise 27 Lz such that 3°; z; = 0 and || z || = 1.

Once we have the solution z* of this continuous problem, the subgroups are made by
sorting the |N| entries of * and placing nodes represented by «}: ¢ = 1,...,|N| /2in
one subgraph (with 2 being the sorted vector) and those by z;: i =|N| /24+1,...,|N|
in the other (assuming, here that N is even).

It can be shown that ([50]) the vector z* is in fact the second eigenvector of L,
provided the graph is connected (i.e. it is that eigenvector of L which corresponds
to the smallest positive eigenvalue). This is known as the Fiedler vector.

Experiments ([82]) has shown that RSB is an extremely good algorithm in terms
of producing a small cut-weight. Unfortunately it is computationally expensive as
it requires an eigenvector of a square matrix of size |N| which is often very large.
Typically ([57]) a Lanczos algorithm is used to find the Fiedler vector but care is
needed to ensure that the algorithm has genuinely converged before accepting the

vector produced ([80]).

1.6.6 Recursive Node Cluster Bisection (RNCB)

In [50] Hodgson and Jimack present their own hybrid algorithm, which they call
recursive node cluster bisection (RNCB), which attempts to combine features of
the modified recursive graph bisection (MRGB) and recursive spectral bisection
(RSB) algorithms. It relies on the concept of node clusters introduced by Walshaw
and Berzins ([105]), who suggest that some connected elements of the mesh can
be grouped together to form clusters (this idea will appear again in the multilevel

algorithms outlined in §1.7.1). Such a cluster will have one corresponding node in
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the dual graph but will have as many edges incident to it as there are elements ad-
jacent to those elements forming the node cluster. The weight of this cluster’s entry
in the Laplacian matrix will be greater than for a single element. A partitioning
algorithm which places the node cluster in a particular partition, places all of its
corresponding elements in that partition.

The introduction of node clusters is an attempt to make the RSB method less
expensive. The effect of creating node clusters is to lower the number of nodes
within the dual graph and hence to decrease the size of the Laplacian matrix, so
making the Lanczos method converge much faster. They report that for some
cases RNCB with 33% clustering often produces better partitions than the spectral
algorithm and at less cost. But for other meshes node clustering with 67% is better.

Using this approach, there is a major problem ensuring that the final decompo-
sition is properly load balanced. See [50] which discusses a few recovery schemes
which produces properly load balanced partitions.

The idea of clustering (also known as graph coarsening) introduced here has
become a very popular method for reducing the computational cost of a partitioner.

There are many methods based on this idea, some of them will be discussed shortly.

1.7 Multisectional Graph Partitioning Heuristics

There are two major drawbacks in bisection based methods.

o Lack of ability to decompose a given graph into an arbitrary number of sub-
graphs (as by construction the number of subgraphs produced is of the form

o).

e They do not attempt to produce a minimum cut-weight in the true global
sense (since they only try to produce a small number of common edges on
bisections of subgraphs at each recursive level, without paying any attention

to the global scene).

To overcome these drawbacks many researchers have considered non-bisection,
or multisection, techniques such as those we are now about to present. Here the
basic idea is very simple, determine a “sort vector” to order all of the nodes in the
graph and then split the graph into the desired number of subgraphs (rather than

just two).
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1.7.1 Multidimensional Spectral Graph Partitioning

In [45, 47] Hendrickson and Leland describe a multidimensional Spectral Load Bal-
ancing algorithm. Through a novel use of multiple eigenvectors, their algorithm
can divide a computation into 4 (spectral quadrisection) or 8 (spectral octasection)
pieces at once. These spectral partitions are further improved by a multidimensional
generalisation of the Kernighan and Lin algorithm (see §1.8.2). They have shown
that for some problems their multidimensional approach significantly outperforms

spectral bisection.

1.7.2 Stripwise Methods

In this method one would sort the nodes in exactly the same manner as in RCB but
then make the desired number of orthogonal cuts along the chosen axis to produce a
specified number of equally sized subgraphs. As shown in [49] generating a strip-like
decomposition of meshes is not generally advisable as this typically has an adverse

affect on the scalability of the parallel solver.

1.8 Other Graph Partitioning Techniques

There are many other heuristics which are used by researchers in the field. We now

describe some of the more popular.

1.8.1 Greedy Algorithm (GR)

Greedy algorithms have been around for decades. In [29] Farhat popularised their
uses in the application area of finite element method (FEM). It is a greedy algorithm
because it finds the first subdomain as well as it can without looking ahead. Once
this is obtained it finds the next subdomain as best as it can. Hence the quality
of the early subdomains is generally very good but if they are chosen too selfishly
the quality of the later ones might be quite poor. Basically it is a graph based
algorithm which uses the level-set principle of MRGB method to claim nodes in a

walking tree fashion.
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1.8.2 Kernighan and Lin Type Algorithms

In [65] Kernighan and Lin present a graph partitioning algorithm which is iterative
in nature. It starts with an arbitrary partitioning of the graph. In each iteration
tries to find a subset of vertices, from each part of the graph such that interchanging
them leads to a partition with smaller edge-cut. If such subsets exist, then the
interchange is performed and this becomes the partition for the next iteration. The
algorithm continues by repeating the entire process. If it cannot find two such
subsets, then the algorithm terminates, since the partition is at a local minima
and no further improvement can be made by the algorithm. Unfortunately the
complexity of the algorithm is nonlinear, as each iteration of the algorithm takes
O(IE|1? log || BIl) time ([65]).

Several improvements to the original algorithm have been developed. One such
algorithm is by Fiduccia and Mattheyses ([32]). Their algorithm fulfills the same
purpose but its complexity is O(||£]|) which is linear. Nowadays, majority of the
partitioning algorithms appear to include Kernighan and Lin type ideas as a post-
processing step. The algorithm introduced in Chapter 3 also uses the philosophy of

Fiduccia and Mattheyses in order to decrease the cut-weight.

1.8.3 State of the Art Software Tools for Graph Partition-
ing
During the last few years many public domain software tools have appeared for

graph partitioning. We discuss a few of them. Others, not discussed here, include

PARTY ([83]) and SCOTCH ([81]).

TOP/DOMDEC

In [30] Farhat et al. describe the basic features of TOP/DOMDEC (a Software Tool
for Mesh Partitioning and Parallel Processing) and highlight their application of this
tool in the parallel solution of computational fluid and solid mechanics problems.

Basically in this software they have implemented the following algorithms.
e The Greedy algorithm (GR).

e The Reverse Cuthill-McKee algorithm (RCM) (see [18, 71]).
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e The Recursive RCM algorithm (RRCM).
e The Principal Inertia algorithm (PI) (see [31]).
e The Recursive Principal Inertia algorithm (RPI).

e The Recursive Graph Bisection algorithm (RGB).

The 1D Topology Frontal algorithm (1DTF) (see [103]).
e The Recursive Spectral Bisection algorithm (RSB).

This allow the users to select whichever algorithm they feel is the most appropriate

for their applications.

Chaco

In [44] Hendrickson and Leland describe the capabilities and operation of Chaco.
Chaco is a software package designed to partition graphs. Currently the following

five classes of partitioning algorithms have been implemented in Chaco.

e Simple algorithms e.g. linear, random and scattered schemes.

e Spectral algorithms.

Inertial algorithms (descriptions of these methods can be found in [75, 91]).
e Kernighan-Lin algorithms.

o Multilevel algorithms.

Their method of choice for large problems in which high quality partitions are
sought is the multilevel algorithm. This algorithm is fully described in [46]. In this
algorithm the original graph is approximated by a sequence of increasingly smaller
weighted graphs. The coarsest graph is then partitioned using a spectral method,
and this partition is propagated back through the hierarchy of graphs with load

improvement at each level using, a variant of the Kernighan-Lin algorithm.
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JOSTLE

In [106, 110, 111] Walshaw et al. outline the philosophy behind another method
for solving this graph-partitioning problem. Their software tool, called JOSTLE,
employs a combination of techniques including the Greedy algorithm to give an
initial partitioning together with some powerful optimisation heuristics. The graph
coarsening technique is additionally employed to speed up the whole processes.
For time-dependent problems, unstructured mesh may be modified every few time-
steps and so the load-balancing must have low cost relative to that of the solution
algorithm in between the remeshing. Their algorithm tries to accomplish this task.
Experiments on graphs with up to a million nodes indicate that the resulting code
is up to an order of magnitude faster than existing state-of-the-art technique such

as Multilevel Recursive Spectral Bisection, whilst providing partitions of equivalent
quality. But JOSTLE is still much slower than METIS (another Software Package
which is described below).

METIS

Recently Karypis and Kumar have released version 3 of their Software Package
called METIS. This Package is designed for partitioning unstructured graphs, par-
titioning meshes, and computing fill-reducing orderings of sparse matrices. The
algorithms implemented by METIS are also based on multilevel graph partitioning
schemes, described in [60, 61, 62].

The underlying algorithm consists of three phases: coarsening, partition of the
coarsest graph, and refinement. They claim that the partitions produced by METIS
are consistently 10% to 50% better than those produced by spectral partitioning
algorithms and 5% to 15% better than those produced by Chaco multilevel.

They also claim that it is extremely fast. Their experiments on a wide range
of graphs have shown that METIS is one to two orders of magnitude faster than
other widely used partitioning algorithms. They have found that graphs with over a
million vertices can be partitioned into 256 parts in under 20 seconds on a Pentium

Pro personal computer.
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Adaptivity and Dynamic Load

Balancing

If one wishes to solve large computational fluid dynamics (CFD) or computational
mechanics (CM) problems numerically using the FEM or FVM on a fixed unstruc-
tured mesh then the mesh should be dense enough to accurately reproduce the
correct solution throughout the domain. Since, in many cases, the exact location
of small-scale flow features such as shocks, vortices and wakes is not known in ad-
vance (and may vary with time), the mesh has to be fine everywhere (or at least
in very large regions). This is not only very expensive computationally but also
inefficient since it involves solving the problem for a great many unknowns which
are not required in reality.

A remedy is to adapt the mesh in some way in order to maintain the quality
of the solution (i.e. the solution error) whilst optimising the number of unknowns.
Typically, for steady problems, this involves starting with an initial mesh (which
we will call a coarse mesh) and solving the given problem on it. Based on some
error criterion the mesh can now be adapted; i.e. it can be refined in that part of
the region where the error indicator is high and possibly coarsened in that part of
the region where the error indicator is very low. The process of solution followed
by adaptivity can be repeated until a solution of the desired accuracy has been
reached.

The above procedure is clearly only really valid for steady-state problems. For
transient problem (where the small regions of the grid where there is a rapid spatial

change in the solution (e.g. due to a shock etc.) may themselves change with time)

29



CHAPTER 2. ADAPTIVITY AND DYNAMIC LOAD BALANCING 30

additional constraints have to be placed on the algorithms employed:

o the adaptive algorithm must be very fast as the adaptation is done very often
(every 5-20 time steps for typical shock-interaction problems). For steady-
state problems the speed is not a relevant issue as adaptation is performed

only a few times (typically 3-5 times during the whole process),

e in the case where transient calculations are performed with an explicit time-
marching scheme, the allowable time step will be governed by the smallest
element in the mesh. Therefore, the minimum element size achieved by the
adaptive refinement algorithm should not be too much smaller than the de-
sired minimum element size. There is no such requirement for the steady-state

problems as local time stepping may be employed.

In the next two sections we discuss some techniques for estimating the error locally
and then introduce a few common methods for adapting a finite element mesh based
upon this information. This will then be used to motivate the need for dynamic
load balancing when parallel finite element solvers are being used (see §2.3). The

rest of the chapter reviews some dynamic load balancing algorithms and software.

2.1 Spatial Error Indicators

As discussed above the use of adaptivity assumes that we can measure or estimate
the error of a given numerical solution. Clearly this error is not known exactly.
However we can attempt to approximate the error.

For the sake of simplicity we consider here the following simplified version of

equation (1.1):

—Vu(z) = f(z), for z € Q C R, (2.1)

with u = 0 on 9 Q.
Then the corresponding weak form (equation (1.2)) simplifies to:
Find v € H}(Q) such that

/Qzulw d&Z/wa dz, (2.2)

for all w € Hg ().
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Let up(z) = YN, a:Pi(z), € HL(Q) be a piecewise polynomial (Lagrangian) ap-
proximation of the true solution u obtained by using the FEM on a given mesh. Also
suppose that @y, is the interpolant of u on this mesh, i.e. @y(z) = 2N, u(z;)Pi(z),
where 2, is the position of the :'* node of the mesh. For the sake of simplicity we
consider here the piecewise linear approximation only.

It is shown in [58] that the following inequality holds:

E
| — wn oy <l u — s o) < CD_(h,

e=1

Hr(Q)— (Z|Oz|=r Ja |DaU|2 d&)l/Q (i.e. |v

of the partial derivatives of v of order exactly equal to r (hence it is a semi norm),

ulpea)) 12, (2.3)

where |v

Hr(@) measures the Ly(Q)-norm

and hg, is the longest side of the element e (which is called the diameter of the

element e)).

In equation (2.3) hq, |u|p2(q.) is the contribution of the element (. to the total
error. So to keep the error small we must choose hg, small where |u |2, is large.
It is clear however that since u is unknown we can only try to approximate where
| u |m2(q,) is large by considering uy instead of u. When wuy, is piecewise linear the
second derivatives of u are zero on each element hence we can estimate |u |g2(q,)
by considering the jumps in 88% across each edge of {).. This is an example of one
of the simplest a posteriori estimates for the size of the error |u — uy |g1(q). Many
other, more complex and more general, algorithms have been proposed but these
are outside the scope of this work (see [1, 7, 24, 25, 76, 96] for a number of examples

however).

2.2 Different Types of Refinements

There are two popular classes of refinement algorithm that may be associated with
unstructured meshes, namely regeneration schemes and mesh adaptation schemes.

Below we describe these schemes briefly.

2.2.1 Regeneration Schemes

In this approach one starts with a uniform mesh over the entire domain. The
problem is then solved on this mesh. If the error indicator is too large in any region

then the mesh is discarded and a new mesh is generated over the domain which has
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a non-uniform density (with most elements in the region where the error indicator
was largest). The problem is then solved again and a new error estimate is again
obtained. If the new indicator is satisfactory the problem is successfully solved.
Otherwise we again discard the current mesh altogether and generate another new
non-uniform mesh based on the latest error estimate and repeat the procedure.
This method is recommended only if the procedure needs to be repeated just a few
times (e.g. for steady state problems (see for example [49] and [99, Chapter 5])).
It has the advantage of being straightforward to implement in parallel, provided
one has a reliable parallel mesh generator. In some situations it is not necessary to
discard the entire mesh, but only a portion of the mesh with a higher concentration
of points in the high error regions and a lower concentration of points in the lower
error regions may be regenerated. However in this case the newly generated portion
of the mesh should smoothly paste together with the intact portion of the mesh.
In case it has to be repeated a large number of times (e.g. for time dependent
problems), then due to the high computational cost associated with the generation
of relatively refined meshes too many times, it is not beneficial and one may consider

the second strategy described below.

2.2.2 Local Mesh Adaptation Schemes : Hierarchical Re-

finement

Let > 0 be a given tolerance and suppose we want to obtain a FE approximation

uy, such that,

Relying on the error estimate (2.3) we see that (2.4) will be satisfied if the corre-
sponding FE mesh Q. (e = 1, ..., E) is chosen so that

2

5
(ha, |u |H2(Qe))2 o~ To? for all triangles e. (2.5)

There are several ways to determine a trial space satisfying (2.5), the three most

common ones are briefly described here.

e Addition and deletion of points (h-refinement). In this case the mesh is refined

by adding more points to the mesh in regions where the error indicator is large,
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and removing points from regions where the indicator is low (for details see

[8, 54, 69] for 2-d cases and [8, 11, 59, 93, 115] for 3-d problems).

e Movement of points (r-refinement). In this case no new points are added,
only adjustment of the locations of existing points are made so as to ensure

that the mesh density becomes higher where the error is large (e.g. [72, 74]).

e Order enrichment (p-refinement). The mesh remains the same, but we use
changing degrees of interpolation polynomials, i.e. in elements where the

error is large, higher order polynomial basis functions are used (e.g. [3, 119]).

It is also possible to combine these methods in a hybrid fashion to produce mixed
schemes. For instance in [24, 25] Demkowicz et al. use hp-refinement in compressible
flow problems and in [14] Capon uses hr-refinement for the compressible Navier-
Stokes equations (see also [6, 15] for more hybrid applications). We now discuss the
first method in detail as this method of refinement will be used in the examples in

Chapter 5.

h-refinement

In this discussion, for simplicity, all the meshes are two dimensional and consist of
triangles. We also continue to use the trivial problem given by the equation (2.1)
by way of an example although the ideas generalise to more complex problems and
corresponding generalised error estimates in a natural manner. Hence we proceed

as follows: Choose a first mesh €, (e = 1, ..., ) and compute a corresponding FE

solution wy. Using u;, we can compute approximations to (hgq,
by (hﬁe |ﬂh |H2(§e))2 fOI’ e & {1, ceey E}
The quantity (hg, | |H2(§e))2 fore € {1, ..., E} may be obtained using jumps

u|m2(q.))? denoted

in the normal derivatives across the edges as described in §2.1 (or more complex

schemes such as in [7] for example).

We next construct a new mesh Q. (e =1, ..., E) by subdividing into four equal
triangles each e € 1, ..., F for which (hg. | @ |H2(§e))2 > Eé—;, where I is the
number of triangles in Q.. Next compute the FE solution uj on the new mesh €,
(e =1, ..., E) and repeat the process until,

52
(ha, |u |H2(Qe))2 o~ Toe for all triangles e. (2.6)
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It is also possible to control the error in other norms than the one used in (2.4),
for example we may want to use the maximum norm (for details see [58]). It may
be pointed out here that the advantage of h-refinement is that relatively few mesh
points need to be added or deleted at each refinement/coarsening step for time-
dependent problems, but the disadvantages are the complicated logic and data
structure that are required to keep track of the points that are added and removed.
For details see [14, 112] (and references therein) for 2-d cases and [88, 93] for 3-d
cases. In Chapter 4 we consider an example of mesh regeneration scheme, and

h-refinement is considered in Chapter 5.

2.3 Relation Between Adaptivity and Dynamic
Load Balancing

In the case of a uniprocessor machine there are no side affects to be dealt with when
we make use of adaptive FEM or FVM to solve a PDE or a system of PDEs. On
the other hand when we implement these adaptive methods on parallel distributed-
memory machines (or, at least, when programming under this paradigm), then we
immediately have the problem of load imbalance among the processors which are
available on the parallel machine. This is due to the fact that the computational
intensity is now both space and time dependent. Unless some corrective measures
are taken, the current state of the load imbalance will significantly reduce the
efficiency of the solver (as some processors will be idle whilst others are still doing
some work). It is interesting to observe that this is a dynamic version of the
static load balancing problem first encountered in §1.5 while we were discussing the
parallel finite element method.

These corrective measures are known as dynamic load-balancing algorithms. A
serial version of the algorithm is undesirable as it would carry a large communica-
tions overhead, become a serial bottleneck and would be constrained by the amount
of memory available to a single processor. Hence a parallel load-balancing algorithm
is required which is capable of modifying an existing partition in a distributed man-
ner so as to improve the quality of the partition whilst keeping the amount of data
relocation as small as possible (since there is a significant communication overhead

associated with moving data between processors).
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As described in §1.5 many heuristics have been devised to partition an initial
unstructured mesh and hence minimise the load imbalance and interprocessor com-
munication among processors. The redistribution of the refined mesh can also be
achieved using some of these partitioning heuristics (with some modification) which
we describe in the following section. We then describe and discuss in §§2.4-2.7 some
dynamic load balancing algorithms specifically designed to regain the balanced load
among the processors in parallel.

Before that we must discuss the ways in which we regain the balance. There
are two possible ways of doing this. One way is to repartion the leaf mesh (i.e. the
actual computational grid). This way it is possible to get a perfect load balance
with a relatively low number of elements residing on the interpartition boundary.
However the problem with this method is that we have to have complicated data
structures to support this possibility (due to the hierarchical nature of the mesh).
Also too much communication among the processors has to be performed (as we
could end up with the parent and children elements being on different processors).

The other possibility is to repartition the initial coarse mesh (with any child
elements being located accordingly (we are focusing here on h-refinement)). In
this case one may not be able to get a perfect load balance among the processors
if some elements are heavily refined and also the number of elements residing on
the interpartition boundary may be little larger. However the relative advantage
of this method over the previous one is that the parent and child elements are on
the same processor and hence further adaptivity is easy to achieve (without too
much communication). In this thesis (see Chapters 4 and 5) we always consider the
second possibility, i.e. repartition the initial coarse mesh.

The task of repartitioning an adapted mesh can be converted into a graph par-
titioning problem by the introduction of a weighted dual graph. For each element,
7, of the coarse mesh define a vertex of a dual graph and let this vertex have weight
w;, where w; is the number of elements of the leaf mesh currently contained inside
1. For each pair of face adjacent elements in the initial mesh define an edge, j, of
the dual graph and let this edge have weight ¢;, where ¢; is the number of pairs of
elements in the actual mesh which currently meet along edge j. At the end of each
adaptive step the weights of all the vertices and edges of the dual graph must be
updated. The amount of imbalance among the processors must be calculated. If

this amount is more than a preset tolerance then a dynamic load balancing tech-
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nique must be applied to regain the balance. It may be helpful to keep in mind
that such a technique ideally should fulfill the following 4 objectives:

1. production of a load-balanced partition,
2. a minimal number of elements ending up on the partition boundary,
3. a minimal amount of data migration,

4. the possibility of an efficient parallel implementation.

It is clear that these four requirements are not always self-consistent. For exam-
ple, an existing partition could be so far from optimal that there is no way that
a near-optimal partition (in terms of 1 and 2) can be reached by only migrating a
small proportion of the vertex weights. It is perhaps for this reason that quite a
large number of dynamic load-balancing heuristics have been suggested in recent
years ([23, 53, 104, 107] for example), each of which appear to put a slightly dif-
ferent emphasis on the relative importance of the four properties. The algorithm
described in next chapter explicitly attempts to respect all of these requirements;
however when conflicts do arise it is items 2 and 4, which relate more to the par-
allel overhead than the partition quality, which are the first to be relaxed. The
motivation behind this is our decision that, when one is forced to choose between
the two, robustness is more important than parallel efficiency in a parallel dynamic
load-balancing algorithm. In the rest of this chapter we first discuss the possible
generalisations of some of the static partitioning algorithms of §1.6 and then some
dynamic load balancing algorithms specifically proposed for regaining the balanced

load in parallel.

2.3.1 Generalisations of Static Algorithms

In this subsection we discuss the possibility of using the static partitioning algo-
rithms referenced in §1.6 for the purpose of dynamically balancing the unbalanced
load among the available processors which may have materialised as a consequence
of the adaptivity. Our discussion is based on the presentation of Hendrickson ([43])
and the review paper of Jimack ([55]).
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Recursive Coordinate Bisection (RCB)

Let us recall from §1.6.1 that in this method we first determine the coordinate di-
rection of the longest expansion of the domain. Suppose that this is the x-direction.
Then all nodes are sorted with respect to their x-coordinate. Half of the nodes with
small x-coordinate are assigned to one subdomain, the remaining half are assigned
to the other subdomain. The method is then repeated in a recursive manner until
the desired number of subdomains are obtained.

The recursive nature of the algorithm makes it possible to run in parallel: at each
level of the recursion, more and more subdomains may be bisected simultaneously.
So the method is a potential candidate from a dynamic load balancing point of
view. Also in case of local refinement there is a possibility of low migration as well.
However the method is not used in principal due to the apparent inability to use
the connectivity information given by the graph (hence the resulting partition may
have a very high cut-weight (as defined in §1.6 the cut-weight means the number of

fine edges on the inter-partition boundary)).

Recursive Inertial Bisection (RIB)

This method is first described in §1.6.2 and can also be used as a dynamic load

balancer due to the following facts:

o the recursive nature of the algorithm leads to a straight forward parallel im-

plementation,
e calculation of the principal axis of inertia for a given subdomain in parallel.

Also the data locality is generally preserved in this method as the principal axes

will only change gradually, provided the mesh steadily refines and derefines.

Recursive Spectral Bisection (RSB)

The simplest static load balancing form of this algorithm was first discussed in
§1.6.5. The weighted version of RSB is given in [47]. We now review this weighted
version of RSB. In order to partition a weighted dual graph into two subdomains
of equal size we start with a set of discreate variables x; where each x; corresponds

to the 1** vertex of the dual graph whose weight is w;. The only permissible values
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of x; are £ 1. The actual values of x; are determined by solving the following

optimisation problem:

o]
minimize - Z ej(xjqy — wj(z))2 , (2.7)
J

subject to,

Y owiw; =0, (2.8)

where j(1) and j(2) are the numbers of the two vertices at the ends of edge j.
Once the optimisation vector of this problem is determined we form the two sub-
domains by placing all those vertices for which z; = +1 in one subdomain whilst
the remainder, for which x; = —1, in the other.

It must be observed that the equation (2.8) guarantees that the two subdo-
mains have equal weights while the minimisation criteria itself ensures that the
total weights of all the edges on the boundary of the two subdomains is minimum.
Just like the original simple version of the RSB, this weighted version is also NP-
hard ([22, 36, 68]). So once again we are forced to look for heuristic to solve the
above optimisation problem. In this heuristic version we allow z; to be any real
number.

As explained in [51], the partitioning vector z = (zy,23,...,7,,)7 is given by

T; = ug,/\/w;, where u, is the Fiedler vector of the matrix S = DTLD, L is the

)

The subdomains are defined by sorting the m vertices of the dual graph according

weighted Laplacian matrix of the dual graph and D = diag (

to the size of their entry in z and placing elements represented by z;: i = 1...n in
one group (with z' being the sorted vector) and those by :1;; 1 =n+1,...,min

the other, with n chosen so that

n m
' '
=1 i=n+1

is as small as possible (where w; is the weight of the vertex represented by :1:;)
Unfortunately the current form is not suitable for the dynamic load balancing

point of view, since the new partition produced by the method has no correspon-

dence with the existing partition. So a large amount of data may have to be

migrated whenever this algorithm is used to repartition the current mesh.
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In [101] Van Driessche and Roose present the modified version of spectral algo-
rithm which is better suited for dynamic application by introducing some additional
vertices and edges to the weighted dual graph. For each existing subgraphs they
create a new vertex and join it with all the existing vertices in the subgraphs. It
may be observed that none of these new edges are cut by the current partition of
this extended graph. If we can repartition this graph in a way which dissallow the
migration of newly generated vertices then it follows that any new edges which are
now cut by the partition must correspond to the migration of a vertex of the dual
graph from one subdomain to another. As the spectral algorithm performs well in
terms of keeping the number of cut edges quite low it is to be expected that, when
applied to this extended graph, it will lead to a small amount of data migration.
However the success of this approach depends quite heavily on the choice of weight
that are assigned to the new edges. The initial results reported in [101] are quite
encouraging however.

The use of RCB and RIB as a dynamic load balancer is not so popular due
to their apparent inability to use the connectivity information of the graph, which
yields the relative high cut-weight. Also the use of RSB is quite sensitive to the
weights of the new edges. Due to these reasons what is really needed is a different
kind of heuristic that operates locally by migrating elements between the mapped
neighbouring partitions. During the past few years there have been many such
heuristics which are devised and implemented by the researchers working in this

field. Some of the more important will be discussed in the remainder of this chapter.

2.4 Diffusion Algorithms

Here we assume that h-refinement approach has been used and a hierarchy is main-
tained. In order to illustrate the simple idea behind diffusion algorithms it is con-
venient to introduce a weighted graph which, following Vidwans et al. ([104]), we
call a Weighted Partition Communication Graph (WPCG). This represents the face
adjacency of the || P|| processors being used (processors that share at least one edge
of a root element with a given processor are said to be face adjacent to that pro-
cessor). A WPCG is obtained by having one vertex for every processor and an
edge between two vertices if and only if they are face adjacent to each other. The

weight wy, of the i vertex is equal to the number of leaf-level elements of the
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mesh which reside on the :** processor and the weight wg,; of the edge connecting
the 7" and j** processors is equal to the number of leaf-level edges which lie on the
interpartition boundary between the two processors. Diffusion methods correspond
closely to simple iterative methods for the solution of diffusion problems; indeed,
the surplus load can be interpreted as diffusing through WPCG towards a steady

balanced state.

2.4.1 Basic Diffusion Method

This iterative approach, which is described in [12] for example, is a very simple
and intuitive parallel method for dynamic load balancing. Here for each vertex
in the WPCG we transfer an amount of work to each of its neighbours which is
proportional to the load difference between them. In general this approach will
not provide a balanced solution immediately, so the process has to be iterated a
number of times until the load difference between any two processors is smaller
than a specified value. In effect this method diffuses the load gradually amongst
neighbours. If we denote by [; the load of the processor p; then the above basic
diffusion method can be described algorithmically by the procedure given in Figure
2.1.

The main advantage of this method is that it only needs communications among
neighbours (which may also be asynchronous). The main disadvantage is that the
convergence can be slow (in the worst case the number of iterations needed to reach
a given tolerance is O(||P||?) where || P]| is the total number of processors ([52]))
and the method is neither able to detect a global imbalance nor able to remedy it
(see [52] for an example). It may also be noted that a processor p; essentially acts
simultaneously on all its interprocessor communications channels. Even though a
machine may have parallel hardware for communication, the communication will
often have to be serialised with respect to an individual processor.

In order to avoid these shortcomings we consider another diffusion method, to

be called the multi-level diffusion method ([52]).

2.4.2 A Multi-Level Diffusion Method

This is basically a divide-and-conquer type of approach. Let P be the WPCG (see
§2.4 for the definition of WPCG) at a given stage and ||P|| be number of processors
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/ begin \

while (not converged) do

for all processors p; do
for all N; neighbours p; of p; do
it l; > 1
transfer | (I; — {;)/2] load from p; to p,
end for
end for

end while

end.

- /

Figure 2.1: Diffusion method.

in the set P at that stage. The change in computational load on processor p; is
denoted by [;. The sum of the load increments [; of all subproblems p; in the subset
P; of P is denoted by L;. The procedure balance shown in Figure 2.2 achieves the
desired load balance. It is important to note that the bisection step in Figure 2.2

means the following:
- PN Py =1,
-PUP =P,
- Al =[Pl T <1,

It is also important to note that no assumptions on the processor topology are
made by the algorithm. Hence the user has the freedom to orient the bisection of
the processor sets towards his/her processor topology if this is appropriate. It can
easily be seen that the average case time complexity of this algorithm is O(log || P||).
The principle drawback of this algorithm is that it is not always possible to bisect a
connected graph into two connected subgraphs. Also the condition | || P]|— || P | <
1 is too restrictive in the sense that relaxing this condition may improve the quality
of the load balancer.

As a matter of fact the dynamic load balancing algorithm presented in forth-

coming chapters relaxes this condition in addition to choosing the sorted version of
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/begin balance(P) \
if ||P]| = 1 then return
bisect P into P, and P,

calculate L, and Lo

transier (LB — L PR + [P load from P to P
balance (F;)

balance (F,)

end balance.

- /

Figure 2.2: Multi-level diffusion method.

the Fiedler vector for the purpose of bisections.

2.4.3 Dimension Exchange Method

In [23] Cybenko shows that the basic diffusion algorithm is very slow to converge
and therefore proposes an alternative version of the algorithm known as the di-
mension exchange method. This method is designed specifically with a hypercube
architecture in mind.

Let us first define the edge-colouring of a graph G = (V,E). By this we mean
that the edges of G are coloured with some minimum number of colours (say k)
such that no two adjoining edges are of the same colour. A dimension is then
defined to be the collection of all edges of the same colour. Let us assume that we
have an edge-colouring of the WPCG. Then the dimension exchange method can
be described in terms of the procedure shown in Figure 2.3.

Xu and Lau (see [117, 118]) have generalised the dimension exchange method
by introducing an exchange parameter and called the new method the generalised
dimension exchange method. In their paper they have also analyzed its properties
and potential efficiency.

Unfortunately all of the above mentioned algorithms do not take into account
one important factor, namely that the data movement resulting from the load bal-
ancing schedule should be kept to a minimum. Also no information is given about

which elements should be transferred from one processor to another: one only cal-
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/ Procedure for processor i ( 0 <i < ||P||) \

begin
while (not Terminate)
for( c = 1; ¢ < k; c++)
if there is an incident edge coloured ¢
load balance the two connected processors
end if
end for

end while
K end procedure. /

Figure 2.3: Dimension exchange method.

culates the total weight to be transferred.

2.5 Minimising Data Migration

The basis of the algorithm due to Hu and Blake ([53]) is the minimisation of data
migration. Let G = (V,E) be the WPCG of the problem. Also let /; be the total
load on each processor (i.e. the weight of vertex i fori = 1,..., P) and { the average
load per processor. Suppose that ¢;; is the amount of the load that might be shifted
from processor ¢ to processor j (where the corresponding vertices of the WPCG
are connected by an edge, (7,7)) in order to regain the load balance across the

processors. The following equations must clearly be satisfied:
Yo Sy=4;—( fori =1,...,|P|| -1, (2.9)
(¢,7)eE

where E is the set of all edges in the WPCG. (Note that if equations (2.9) are

satisfied then it must also follow that the same equation also holds for i = || P||.)

The variables §;; are directional, that is,

representing the fact that if processor 7 is to send the amount §;; to processor j,

then processor j is to receive the same amount (to send -4;;). Because of (2.10) we
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1 if vertex 1 is the head of edge j,
Ay = —1 if vertex i is the tail of edge j,

0 otherwise.

Figure 2.4: The matrix A.

treat 0;; as a variable only if 7 < j, for ¢ > j we merely replace ;; by -d;.

Also note that in (2.9) we only have || P|| - 1 independent equations for a total of
| F'| variables. In general | F | is much larger than ||P|| - 1, so the system (2.9) has
infinitely many solutions. Hu and Blake decided to choose among these solutions
one that minimises the data movement (it is important to note that there is always
at least one solution, even if WPCG is a linear array : e —— —e———eo...0 —— —e,
in which case | £ | = ||P|| - 1 so the minimisation problem does have a solution).

If one writes the system (2.9) in matrix form:
Az=0b,

where A is the || P||—1 x | F' | matrix associated with (2.9) and is given in Figure 2.4,
and z and b are the vector of unknowns and the right-hand side of (2.9) respectively.
Then the aforesaid minimisation problem can therefore be written mathematically

as:

minimise 1/2 272

subject to A & = b.

It is important to observe that in the above the minimisation is taken over the L,
norm rather than L; or L., as the computation over L, is easier as compared to
the computations over other two norms.

As shown in [53] the above is equivalent to solving
LA=b,

where L is the Laplacian matrix of the WPCG and A is the vector of Lagrange
multipliers. Once we know the solution vector A then é;; = A; — A;.
The idea of minimising data movement is a promising one. And the above

algorithm does accomplish this task. But the method still does not pinpoint which
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elements to migrate. Also there is no control over the size of the interpartition
boundary (as no provision is made in the algorithm for keeping the boundary to
a minimum). A number of researchers have incorporated this idea into their own
work. In [107] Walshaw et al. use the above method in their own quite sophisticated
algorithm (see §2.6.2). Preliminary results reported in [107] are encouraging in the
sense that the quality of the new partition is good and there is a relatively small

amount of data migration.

2.6 Two Parallel Multilevel Algorithms

In recent years there have been a number of new multilevel algorithms which are
designed for dynamic load balancing purposes. Of these, two such techniques called
ParMETIS ([63]) and ParJOSTLE ([109]) have been implemented in parallel and
released into the public domain (it may be noted that this work was all published
after the start of the research undertaken in this thesis). The general idea behind
these two algorithms (and also other multilevel algorithms) is to produce a hierarchy
of coarsenings of the original weighted graph (where each level in the hierarchy
is produced by merging together groups of neighbouring vertices of the graph at
the previous level), and then to perform a global partition only for the coarsest
graph. This partition is then projected onto the graph at the previous level and
then modified using a local algorithm (such as [32, 65, 73]) in order to improve
the partition quality. This step of projection onto the previous level followed by
local improvement is repeated until the original graph has been recovered, when
the algorithm terminates. It is possible to make quite an expensive choice for the
global partitioner (a spectral algorithm for example [47]) since it is only applied
once and to the coarsest graph. Moreover, the technique may either be applied
to find a bisection of the original graph and then be repeated recursively on each

subgraph, or it may be applied to find a k-way partition directly.

2.6.1 ParMETIS

In a series of papers ([61, 62, 63, 64, 85, 86]) Karypis et al. describe and justify the
underlying theory of their software called METIS and ParMETIS. The algorithms
in ParMETIS ([63]) are based on the multilevel partitioning and fill-reducing or-
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dering algorithms which are implemented in the serial package called METIS (see
§1.8.3). However, ParMETIS extends the functionality provided by METIS and in-
cludes routines that are especially suited for parallel computations and large scale
numerical simulations.

In this parallel version the starting point is that an arbitrary weighted graph
is already partitioned into k subgraphs (with an unacceptable load imbalance).
The coarsening algorithm only permits vertices in the same subgraph to be merged
together at each level. The coarsest graph in the hierarchy can then be repartitioned
quite cheaply (since it is small) before the refinement stages begin. At each of these
refinement stages the local transfer of some vertices is allowed to take place between
subgroups so as to permit local improvements to the partition based upon the use
of a greedy heuristic.

They claim that it can quickly compute high quality repartitions of adaptively
refined meshes which optimise both the number of vertices that are moved as well
as the edge-cut of the resulting partition. It may not always be possible however
to produce a partition which satisfies a given tolerance as regard to load balance
when working with non-uniformly weighted graphs (see Chapter 5).

Also, as discussed in [55], there are numerous difficulties associated with keeping
the amount of interprocessor communication under control at the local improvement
stages. In addition extensive experimentation is needed to establish the optimal

degree of coarsening and the choice of partitioning algorithm for the coarsest graph.

2.6.2 ParJOSTLE

In [109] Walshaw et al. describe their own parallel multilevel method for the dy-
namic partitioning of graphs. Their method introduces a new iterative optimisation
technique, called relative gain optimisation which both balances the workload and
attempts to minimise the interprocessor communication overhead. They report in
[109] that the application of the algorithm to graphs corresponding to a number of
adaptively refined meshes leads to partitions of an equivalent, or higher quality, to
those produced by static partitioners (which of course do not start from the existing
partition) and much more quickly. They also point out that the algorithm results
in only a small fraction of the amount of data migration compared to the static

partitioners.
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2.7 Two Further Paradigms

We complete this chapter with a discussion of two more algorithms concerning the
application of dynamic load-balancing to adaptive solvers. These have been selected
because they both relate to the use of mesh adaptivity for the parallel solution of
time-dependent problems in three space dimensions and are hence of great practical

interest.

2.7.1 Algorithm of Oliker & Biswas

In [77] Oliker and Biswas present an important method which dynamically min-
imises the amount of load imbalance which arises due to the adaptive nature of a
particular solver used to solve a given class of CFD problems on parallel machines.
This appears to be the very first complete algorithm which can accomplish all of the
typical phases associated with such an adaptive approach; mesh adaptation, repar-
titioning, processor assignments, and remapping are all done rapidly and efficiently
so as not to cause a significant overhead to the numerical simulation.

For the repartitioning stage they use ParMETIS ([77]). As far as the processor
assignment stage is concerned they make use of two cost functions: TotalV and
MaxV. TotalV minimises the total volume of data moved along all processors, while
MaxV minimises the maximum flow of data to or from any single processor.

They finally execute a remapping phase which is responsible for physically mov-
ing data when it is reassigned to a different processor. This remapping phase is
further divided into two sub-phases: marking and subdivision. In the marking stage
the edges are simply marked for bisection (based on an error indicator). Once the
marking stage is complete, the weight of the dual graph can be adjusted and based
on the new weights the load balancer may proceed in generating a new partition-
ing. The newly redistributed mesh is then subdivided (and subsequently refined)
based on the marking patterns. Since the actual refinment is performed only after
the subdivision stage it is believed that a relatively small amount of data must be

moved.



CHAPTER 2. ADAPTIVITY AND DYNAMIC LOAD BALANCING 48

2.7.2 Algorithm of Vidwans et al.

In [104] Vidwans et al. present their own divide-and-conquer based algorithm de-
signed to solve three-dimensional Navier-Stokes problems on unstructured meshes
in parallel using adaptive techniques.

The initial computational domain is partitioned among the available processors
(which they assume is a power of two) by a partitioning algorithm based on the
orthogonal recursive bisection method. At some later stage of the solution process
when there is a load imbalance due to adaptivity they split the processors into two
equal groups based upon their IDs. The group with the higher load is termed as the
sender group whilst the other is known as the receiver group. After that half of the
difference of loads is transferred from the sender group to that of the receiver group.
The recursion is continue in the sense that each of the two groups at a given stage
are further divided into two subgroups. The recursion is terminated when the size of
a particular group becomes 2, in which case the processors simply balance the sum
of their individual loads by exchanging the loads across their common boundary.
The algorithm is deterministic in the sense that recursion will terminate after log
| P|| steps, with || P|| being the number of processors, irrespective of the amount of
imbalance and its distribution across the processors.

As far as the migration of nodes (also known as cells) from the sender group to

the receiver group are concerned, they employed two different approaches.

o The grid-connectivity-based approach. In this approach they start with those
cells which have at least one face on the initial interprocessors boundary. After
that they select those cells which are neighbours of the cells selected in the
previous stage. The process is repeated until they have the desired number
of cells to be migrated. This is obviously done in “layers” starting from the
outermost layers of cells. In adapted regions a large number of layers relatively
occupy small physical space. On the other hand in the dense region of the
mesh small number of layers occupy the large physical space. So this method

may leads to jagged and long boundaries.

e The coordinate-based approach. In this approach all those cells which have
their centroids within a particular region in 3-d space are marked for migra-

tion. This region is defined to be adjoining the interprocessors boundary. As
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the number of cells in the region is not known a priori, the width of the re-
gion has to be determined by trial-and-error approach so that it contains the
required number of cells. They say that this method is better than the grid-
connectivity-based approach. This trial and error approach requires manual
intervention not only for different meshes, but also for a given mesh the man-
ual intervention is required for ever changing boundaries of the partitions. So
a dynamic load balancing algorithm based on coordinate-based approach can
never be a robust one and also the trial and error nature of it will make the

algorithm less efficient.

Apart from improving the selection criteria for migrating cells, there are two other

steps in the algorithm which can be improved.

o The restriction that at each stage the two subdomains should have same
number of processors may reduce the quality of the mesh-partition especially
if the mesh is non-uniform in nature. If this restriction can be relaxed in a

meaningful way than this may improve the quality of the mesh-partition.

e The division of a group into two groups which is based simply on the 1Ds of
the processors in the original group may also reduce the quality of the load-
balancer especially if this produces groups in which some of the processors

are physically unrelated from the other processors in the group.

The new dynamic load balancing algorithm presented in the next chapter uses this
philosophy of Vidwans et al. together with a significant number of improvements.
There, the two subgroups are not required to have the same number of processors
and the division of a given group into two groups is not simply based on the IDs of
the processors present in the group. Instead a sorted version of the Fiedler vector
is used for the purpose of bisection. Also a gain-based approach (see Chapter 3) is
used as the basis for the purpose of migrating cells.

Experimentation shows that these three steps improve the quality of the new
partitioner, especially in the case where the underlying mesh is of a non-uniform
nature (i.e. in some region of the mesh the elements are much finer and in other

parts of the region they are relatively coarse).



Chapter 3

A New Dynamic Load Balancer

As discussed in §1.4 an efficient and effective way to solve a large transient problem
numerically is to use the FEM (or finite volume method) on an adapting unstruc-
tured mesh. Frequently the size of the problem is so large that it can also be
advantageous to solve such a problem on a parallel machine. Quite often, in the
case where a shock, or similar solution feature, is moving from one part of the
domain to another as time goes by (see §2.3), effective adaptivity will be achieved
by refining the mesh ahead of the shock and coarsening the mesh behind it. This
basically involves adding points to the existing grid in regions where some error
indicator is high, and removing points from regions where it is low. On a parallel
architecture, where the mesh has been partitioned in some way, this in turn leads
to a problem of load-imbalance.

As mentioned in Chapter 2 there are various general purpose load balancing
algorithms for minimising load imbalance of a partition. However, they do not
always produce satisfactory results for the above adaptive situation. The diffusion
algorithm is very good as far as local improvement is concerned but is extremely
slow in terms of global improvement. The multilevel algorithms are designed to
improve the global rate of convergence but, due to the coarsening step built into
the algorithm, are not always able to produce a repartitioning of the mesh which
is below a given tolerance for the load-imbalance. For this reason we claim that
there is a need for some sort of hybrid algorithm which combines the best features of
existing techniques so that the load-imbalance may be reduced to an acceptable level
without increasing the cut-weight (the cut-weight is being defined as the sum of the
weights of all those edges in the weighted dual graph (see §2.3 for the definition of the

50
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weighted dual graph) which cross between two different subdomains) substantially.
In what follows we present a serial version of such an algorithm (improved parallel

versions are described in the next two chapters).

3.1 Motivation of the Algorithm

As mentioned in §2.7.2, the new dynamic load balancing algorithm whose serial
version is being presented below, and whose parallel versions will be presented in the
next two chapters, uses the philosophy of Vidwans et al. together with a significant
number of modifications. Here, the two subgroups are not required to have the
same number of processors and the division of a given group into two groups is not
simply based on the IDs of the processors present in the group. Instead we use a
sorted version of the Fiedler vector for the purpose of bisection. We also use the
concept of gain density (see §3.2.2) as the basis for the purpose of migrating cells.
In order to demonstrate the fact that these modifications do improve the algorithm
we also implemented a serial version of the original parallel algorithm of Vidwans
et al. ([104]) which uses the grid-connectivity-based approach.

Experimentation (see §3.5) shows that these modifications do improve the qual-
ity of the new partition, in the sense that the New algorithm consistently produces
better results than those produced by the serial version of the Vidwans et al. algo-

rithm as far as the parameters MaxImb and CutWt (see §3.5) are concerned.

3.2 Description of the Algorithm

Let us assume for the sake of simplicity that we are required to solve a given
partial differential equation on a 2-d domain subject to given boundary and/or
initial conditions. Also suppose that there is a 2-d mesh of triangles which covers
this domain. As the problem is computationally extensive we would like to use a
parallel solver. So the first step in this direction is to partition the mesh into a
number of subdomains.

Let us suppose the parallel solver assumes that each subdomain is assigned to
a single processor of a parallel machine and that all the processors are identical
(i.e. we do not consider here, the possibility of a parallel machine consisting of

heterogeneous components). We assume that this partition is slightly unbalanced
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(but has a reasonably low cut weight) and our job is to balance it dynamically. We
wish to do this without re-partitioning the entire mesh from scratch and so we look

for a more local approach. This method is described in what follows.

3.2.1 Group Balancing

In this chapter we are interested in those cases where there is a root (also called
coarse) and a computational (also called fine) mesh where the latter is a refinement
of the former. Suppose there are P processors involved and we have a coarse mesh
which is already distributed across these processors (or the mesh may itself be
generated on these processors in parallel). We define the weight of a coarse element
to be the number of fine elements inside the coarse element and the weight of a
coarse edge to be the number of fine mesh edges along the coarse element edge.
From now onwards, by a node we shall mean a node of the weighted dual graph
(see §2.3) of the coarse mesh (i.e. a coarse element).

Let us recall from §2.4 the definition of the Weighted Partition Communication
Graph (WPCGQ) which represents the face adjacency of the partitions in the system
(processors that share at least one edge of a coarse element with a given processor
are said to be face adjacent to that processor): A WPCG is obtained by having
one vertex for every subdomain in the partition and an edge between two vertices
if and only if they are face adjacent to each other. The weight wy, of the i'* vertex
is equal to the sum of weights of all coarse elements on the i processor (which
is the same as the total number of “fine” elements on the i processor) and the
weight wg,; of the edge connecting the " and 7' processors is equal to the sum of
weights of all coarse element edges on the interpartition boundary between the two
pProcessors.

We first divide the WPCG into two groups either by using processor 1Ds as
in [104] or by using some other bisection method. In fact, we choose to use a
weighted version of the method of spectral bisection (see [47]). This method is often
considered to be computationally expensive, however it does perform better than
most algorithms in minimising the cut-weight. Also the computational expense is
not problematic for the WPCG as the number of processors in the system is always
assumed to be small compared to the number of coarse elements in the mesh.

As explained in [51] and also in Chapter 2, the partitioning vector z is given by
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T; = Uy, /\/Wn,, where u, is the Fiedler vector of the matrix S = DTLD, L is the

weighted Laplacian matrix of the WPCG and D = diag (wiT)

The groups are defined by sorting the P vertices of the WPCG according to the

size of their entry in z and placing elements represented by zi: ¢ = 1...7n in one
group (with 2’ being the sorted vector) and those by z;: ¢ = n 4 1,..., P in the

other, with n chosen so that

n / P /
d_wNn = D Wy,
=1

i=n+1

is as small as possible (where w}vi is the weight of the vertex represented by ).
These groups are called Groupl and Group2 respectively. Ideally we would like
each group to contain the same number of processors and an equal total weight,
but this may not be possible due to large variations in the weights when a mesh
is locally refined and the fact that P need not be even. However the cut weight
resulting from this bisection is generally relatively small. The group with the higher
average load per processor is termed as the larger group and the other one is called
the smaller group. In the second stage of the algorithm we try to use the idea of
local migration from the “larger” to the “smaller” group so that after migration
each group contains approximately the same average weight per processor without

there being a significant increase in the cut-weight.

3.2.2 Local Migration

As mentioned above the groups formed in the last section may not be ideally bal-
anced. To balance them we now migrate nodes from the “larger” to the “smaller”
group. There are many ways to do this. Due to the non-linear complexity of the
Kernighan and Lin algorithm ([65]) we decided to apply the ideas of Fiduccia and
Mattheyses ([32]) who have suggested an algorithm for the same purpose but whose
complexity is linear.

For obvious reason the “larger” group is called the Sender and the “smaller”
group is called Receiver group respectively. The quantity Mig,,, stands for total
weights of all the nodes which are to be migrated from the Sender to the Receiver
group in order to leave them perfectly balanced.

Let Ny and N, be the number of processors in Groupl and Group2 respectively.
Also let Ave be the average weight per processor in the WPCG and Ave; & Aves
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/ if(Ave; < Aver){ \

Sender = Group2;

Receiver = Groupl;

Mig,.,; = Nz * (Avey — Ave);
}
else{

Sender = Groupl;

Receiver = Group?2;

Mig,,, = N1 * (Ave; — Ave);
N /

Figure 3.1: Calculation of Sender, Receiver and Mig,,,.

are the average weights per processor in Groupl and Group2 respectively. The
calculation of Sender, Receiver and Mig, , is shown in Figure 3.1 below.

Note that if we transfer a set of nodes from Sender to Receiver whose combined
weight is nearly or exactly equal to Mig, , then after the transferring process the
average weights of both the groups will be equal to that of global average Ave, i.e.
the two groups will be load balanced. The next issue which must be addressed
is that of how much load from which processors in the Sender group should be
transferred to which processors in the Receiver group. There are many possible
ways of tackling this. Our choice is closely related to that of Vidwans et al. ([104]).
Following [104] we define the concept of candidate processors. Processors in each
group that are face-adjacent to at least one processor in the other group are called
candidate processors. We only allow the candidate processors to be involved in the
actual migration of nodes from Sender to Receiver. Let Ny, be the total weights on
all candidate processors of the Sender group. Then if the :'* candidate processor
in the Sender group is face adjacent to more than one candidate processor in the
Receiver group we migrate nodes to that candidate processor in the Receiver group
which has the least weight. The amount of load shifted from i** candidate processor

in Sender group is denoted by Mig; and is given by,

N; .
) * Mig, ., (3-1)

& Ntot

where N; is the total weight of the i* candidate processor in the Sender group.

Now that we know how much to transfer and where to transfer, all that remains to
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wg,, if 1 € 7 processor,

gain(k) = > —wg,, if | € 1" processor,

(k1) )
0 otherwise.

Figure 3.2: The calculation of gain.

be decided is which nodes of the weighted dual graph (i.e. coarse elements) should
actually be transferred. This is naturally accomplished by aiming to transfer those
nodes which result in a new cut weight which is as low as possible.

The fundamental idea behind the algorithm for transferring these nodes which
minimise the cut-weight is the concept of the gain and gain density associated with
moving a node onto a different processor. Define the gain(k) of node k to be the net
reduction in the cost of cut edges that would result if node k were to migrate from
i candidate processor in the Sender group to the ;% candidate processor in the
Receiver group. The calculation of gain(k) is shown in Figure 3.2. It is important
to observe that in calculating the gain of a node k the sum is taken over all edges
which have node k at one end. The gain density of a node is defined as the gain of
the node divided by the weight of the node. It may also be pointed out here that we
also calculate the gain densities of all the nodes of the j* processor in the Receiver
group (by definition the gain of a node in ;™ processor is the net reduction in the
cost of cut edges that would result if the node were to migrate from j** processor to
the 1'" processor) as these densities are required in the §3.3 below where we move
nodes around between the ¢, 7 processor pair to further minimise the number of cut
edges whilst retaining the load balance.

The bulk of the work needed to make a move consists of selecting the base node
(anode which is about to be shifted from one processor to another processor is called
a base node), moving it, and then updating the gain densities of its neighbouring
nodes. We solve the first problem, that of selecting a base node, by choosing the
node with the largest gain density on the i processor and whose weight is less
than or equal to Mig;. We shift the node to the ;' processor and update the gain
densities of its neighbouring nodes (observe that in general the node k will have
three neighbours when we have two-dimensional domains and four neighbours when

we have three-dimensional domains) by the logic explained in Figure 3.3 below,
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/ For each nj which is a neighbour of the node k { \
Let pr be the processor to which n; belongs;
if (pr == j) then
decrement gain(ny) by Z*wEnkk;
find the new gain density of the node ny;
else if(py == 1) then
increment gain(ny) by Z*wEnkk;
find the new gain density of the node ny;

else

increment the edges cut between p; and j by WE,

decrement the edges cut between p; and ¢ by WE,

}

change the sign of gain(k);

/

Figure 3.3: Updation of gain densities and edges cut between the processors.

which also update the cut weights between the processors which are affected by the
move. Observe that, if the gain density associated with the base node is positive,
then making that move will not only make the groups closer to load-balance but
it will also reduce the total cost of the edges cut in between the two processors
involved, and hence between the processors groups. The above logic is repeated for
all possible candidate processors in the Sender group.

Now we are in a position to present version one of our group balancing algorithm.

The main three steps of this version of the algorithm are summarised in Figure 3.4.

3.3 Further Refinement of the Algorithm : Lo-
cally Improving the Partition Quality

Throughout this discussion our purpose is to load-balance the two groups, minimise
the edge cut-weight between the two groups, and keep migration local and as small
as possible. In order to further minimise the edge cut-weight between the two groups
we apply a local refinement strategy to each processor pair, after the pair contains

the desired weights. For this purpose we use ideas similar to those of Hendrickson
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/Until(there are no unprocessed candidate processors in Sender group)}
Until(required load is transferred from processor i to processor j){
Calculate gain densities;
Move a node of highest possible gain density from " processor
to j* processor;

Update gain densities and other variables of interests;

& Y,

Figure 3.4: Initial version of load balancing of the two groups.

and Leland([46]). This section describes the approach in detail.

Once the desired load Mig; has been moved from the i** processor in the Sender
group to the j processor in the Receiver group it may still be possible to move
nodes around between the ¢, processor pair to further minimise the number of
cut edges whilst retaining the load balance. We start with the current state of
the two processors and save this state as a best-state so far achieved. We now
move nodes between processors i and j in such a way that the absolute value of the
difference in the weights between the two remains below a certain tolerance (e.g.
below some fraction of the maximum weight of a node on either processor or below
a fixed percentage of the combined weight of the two processors involved). Each
time we pick a node of highest gain density, but we also allow the gain densities to
be negative for a while in an attempt to avoid local minima traps. The algorithm in
Figure 3.5 fully describes this strategy. The algorithm consists of two nested loops.
The inner loop presides over a sequence of moves of nodes from one processor to
another. The outer loop continues allowing attempted sequences until no further
improvement is detected. To avoid thrashing we insist that a node may be moved
at most once within the inner loop.

When a node is moved, it is locked and the gain densities of all its neighbours
are modified. Then another move is selected and the process is repeated. The best
partition that is encountered in this sequence is recorded and the data is moved into
that configuration prior to the start of the next inner loop. In practice, the number
of times the outer loop is executed tends to be quite small. The termination criteria

used in the inner loop is simply to run the loop for a specified number of times (e.g.
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/ Improvement := True;

\}

Calculate all initial gain densities;

While(Improvement ){

Improvement := False;

Unlock all the nodes;

Best Partition := Current Partition;

While(Termination criteria is not reached){
Select node to move;

Perform the move and lock the node;

Update the gain densities of the moved node and all its neighbours;

If(Current Partition is better than Best Partition){
Best Partition := Current Partition;

Improvement := True;

}

Current Partition := Best Partition;

/

Figure 3.5: An algorithm for refining the partitions between a pair of processors.

25 percent of the total number of nodes involved).

We end this section with Figure 3.6 which describes version two of the algorithm

to balanced the two groups of processors in such a way that the cut weight between

them is as small as possible.

3.4 Global Load-Balancing Strategy: Divide and

Conquer Approach

Once the algorithm of §3.3 has been applied to the two processors groups they will

have approximately equal average weights. Hence, it is now possible to recursively

apply the above technique to each of these two groups of processors in turn to bisect

and then load balance them. This recursion will terminate when a group has less

than three processors. In the case of a singleton group no action is required. For
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mntil(there are no unprocessed candidate processors in Sender group){ \
Until(required load is transferred from processor i to processor j){
Calculate gain densities;
Move a node of highest possible gain density from " processor to
3t processor;
Update gain densities and other variables of interest;

}

Apply the local refinement technique of the algorithm of Figure 3.5;
N /

Figure 3.6: Group-balancing algorithm: version two of load balancing of the two

groups.

a group consisting of two processors we simply divide the group into two singleton
groups (the processor containing the larger weight is the Sender and the other
processor forms the Receiver) and try to load balance them by using the algorithm
of Figure 3.6. This divide and conquer algorithm is fully described in Figure 3.7
and discussed below.

To implement the above divide and conquer philosophy we make use of two stack
data structures called Lower and Upper, controlled by a variable called Top. We
also use an array called Index. At each stage of the recursion the entries of the Index
between two given positions represent the identities of processors involved at that
stage of the recursion in the order in which they appear in the sorted version of the
last Fiedler vector. In fact these sets of processors will be divided into two groups
for further load balancing. The two given positions are in fact the top entries of the
two stacks Lower and Upper respectively and are called Left and Right respectively.
We initially push 0 to Lower and P-1 to Upper (since we follow the convention of
numbering the P processors from 0,1,2, ..., P-1). Also, initially the i"* entry of
Index is equal to i, so at any stage of the algorithm the entries of Index are simply
the re-arrangement of the integers 0,1, ... P-1.

At each stage of the algorithm we pop one value from Lower and one value from
Upper. Based upon these values we pick that group of processors from the array
Index which lie in between the two given positions. We then form the weighted

Laplacian matrix and calculate the corresponding Fiedler vector. Based upon the
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sorted version of this Fiedler vector we divide the group into two as explained in
§3.2.1. After that we load balance them as described in the algorithm of Figure 3.6.
We also shuffle the corresponding entries of the Index array based on the sorted
Fiedler vector. After this we push the starting positions of the two groups in the
array Index on to the stack Lower and ending positions on to the stack Upper and
update the variable Top. This logic is repeated until the two stacks become empty

(i.e. we stop when Top becomes null).

3.5 Examples

In this section we present some numerical examples in which we compare new results
with the results produced by the serial version of the Vidwans et al. (as mentioned
in §3.1), Chaco ([48]) and JOSTLE Version-2 ([108]) algorithms (we are not able
to use the METIS algorithm in this chapter as it does not provide the facility of
improving a given partition serially (however, the parallel version of the METIS
algorithm is tested against our parallel implementation in Chapter 5)). In the
case of the Chaco algorithm we apply the Kernighan-Lin option after reading in
the existing partition (and graph). The REFINE_PARTITION parameter in the
Chaco algorithm controls number of sweeps which are made through the pairs of
subgraphs with a non-zero common boundary in order to improve the partition once
the Kernighan-Lin option is invoked. For our application we found that a value of
20 is reasonable.

As mentioned in §3.3, in our algorithm we move nodes between a pair of pro-
cessors as long as the absolute value of the difference in the weights between them
remains below a certain tolerance known as Tol. We take Tol as a percentage of the
combined weight of the two processors involved. For the sake of uniformity we try
to present the results for two different values of Tol. These values are respectively
1% and 2% of the combined weight of the two processors involved. In some par-
ticular cases we have also experimented with more than 2 values of the parameter
Tol. The maximum imbalance in a group is denoted by MaxImb and is defined by,

MaxImb = ( (Max - Ave) /| Ave) * 100,
where Max represents the weight of the heaviest processor in the group and Ave is
the average weight of a processor in the group (so MaxImb is the largest percent-

age by which the total weight on any single processor exceeds the average weight
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/TOP = 0; \

Lower[Top] = 0;
Upper[Top] = P - 1;

Increment Top;
Index[i] = i; fori=0, 1, ..., P-1;
while(Top)
Decrement Top;
Left = Lower|Top];
Right = Upper[Top];
if(Left == Right) continue;
if(Right == 1 4 Left)
weightl = weight of processor Index[Right];
weight2 = weight of processor Index|Left];
if(weightl < weight2)
Sender = Index[Left]; Receiver = Index[Right];
else
Sender = Index[Right]; Receiver = Index|[Left];
Apply the Group_Balancing algorithm of Figure 3.6;
continue;
Find the Weighted Laplacian L. and Diagonal Matrix D of the group
{Index|[Left], ... Index[Right]};
Based on Sorted form of the scaled version of the Fiedler vector divide
the group into two subgroups and update the array Index;
Determine the Sender & Receiver group;
Apply the Group_Balancing algorithm of Figure 3.6 to this pair of
groups;
Push the left side of Sender on Lower stack;
Push the right side of Sender on Upper stack;
Increment the variable Top;
Push the left side of Receiver on Lower stack;
Push the right side of Receiver on Upper stack;

Increment the variable Top;

K continue. /

Figure 3.7: A divide & conquer type dynamic load-balancing algorithm.
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per processor). Also, CutWt stands for the cut-weight (let us recall from the be-
ginning of the chapter that the cut-weight is defined as the sum of the weights of
all those edges in the weighted dual graph which are cross between two different
subdomains).

A group is only divided into two subgroups if the maximum imbalance MaxImb
in the group is larger than a fixed percentage, say Tol2 (again unless stated otherwise
Tol2 is taken to be fixed; at 3%). Finally, in the process of finding an optimal
partitioning we allowed the swapping of at most 25% of the combined total number

of nodes of the current 7, j processor pair (as defined in §3.3) of the group involved.

Example 1. Here we consider a mesh of 161 coarse elements, for which the dual graph
has 161 nodes and 217 edges (see Figure 3.8 for the corresponding coarse mesh).
The element weights are assigned randomly in the range of 100 to 200 and the edge
weights are also assigned randomly in the range of 10 to 150. Initially the dual
graph is arbitrarily partitioned into eight subgraphs. Initial and final partitions
produced by our algorithm and some associated features of these partitions are
shown in Table 3.1. The total weights (i.e. the number of fine elements) of all the
coarse elements is 23950, so the average weight per processor comes out to be 2994.
Observe there is a difference in weights of 2070 between the processors with the
maximum and minimum loads.

We also apply the Vidwans et al., Chaco and JOSTLE algorithms to the initial
partition and the results are summarised in Table 3.2. The initial value of MaxImb
is 39.6% and of CutWt is 1730. It is important to observe that in all cases (excluding
the Vidwans et al. algorithm) not only that we have a reduction in the MaxImb but
we also have a reduction in the CutWt. The reduction in both of these parameters
is not surprising as the initial partitioning was totally arbitrary. With Tol = 1% the
New algorithm is able to reduce the MaxImb from 39.6% to 2.9% while with Tol =
2% MaxImb has been reduced only to 4.6%. The final values of Cut-weighs are 1380
for Tol = 1% and 1270 for Tol = 2%. When we use the Chaco algorithm the CutWt
decreases to 1030 while the MaxImb reduces to 4.6%. When we apply the JOSTLE
algorithm to the above initial partitioning the MaxImb is reduced to 8.2% only and
the CutWt is reduced to only 1560. In the case of the Vidwans et al. algorithm
the CutWt has increased by an amount of 400 (which is not surprising) while the
MaxImb is reduced to 2.2%. In this case the Vidwans et al. algorithm produces a
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Figure 3.8: The coarse mesh of Example 1.

final partition with a least value of MaxImb whereas the Chaco algorithm produces

a final partition with least amount of CutWt.

Example 2. Here we consider a mesh (see Figure 3.9 for the corresponding coarse
mesh) which is generated by the method of Hodgson and Jimack ([51]) in parallel
using 8 processors (Domain 1, Test 4 (“L-Shaped” geometry)). The initial and final
situations are shown in Table 3.3. The total vertex weight is 836183, so that the
average load of a processor is 104523. The initial value of MaxImb is 7.8% and that
of CutWt is 3854. We apply our New algorithm to this moderately unbalanced
partition for three different values of tolerance (Tol) namely 1% , 2%, and 4% of
the combined weight of the two processors involved at each stage. Now the outcome
was different for 1% and 2%, but the results for a tolerance of 4% were identical to
those of 2%. We also apply the Vidwans et al., Chaco and JOSTLE algorithms to
the above initial partitioning and the results are summarised in Table 3.4.

It is interesting to observe that the final partition produced by the JOSTLE
algorithm has smallest value of MaxImb (which is 2.4%) but the corresponding value
of CutWt (which is 4087) is the second highest (the highest CutWt is produced by
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Coarse mesh : 161 elements
Final mesh : 23950 elements
Average load : 2994 fine elements
Proc. Processor Load Processor Load Processor Load
Id. (initial) (final Tol = 1%) (final Tol = 2%)
fine | % imb. | coarse | fine | % imb. | coarse | fine | % imb. | coarse
0 3060 2.2 21 2970 | -0.8 20 3060 2.2 21
1 2800 | -6.5 19 2950 | -1.5 20 3120 4.2 21
2 2220 | -25.8 15 2970 | -0.8 20 2990 | -0.1 20
3 4180 | 39.6 29 3040 1.5 21 2910 | -2.8 20
4 2660 | -11.1 18 2950 | -1.5 20 2800 | -6.5 19
5 3040 1.5 20 3080 2.9 21 3070 2.5 21
6 2110 | -29.5 14 2970 | -0.8 19 3130 4.6 20
7 3880 | 29.6 25 3020 0.9 20 2870 | -4.1 19

Table 3.1: Partition generated in parallel on 8 processors along with our final par-

titions for Example 1.

MaxImb | Largest | Smallest | CutWt
partition | partition
Initial result 39.6% | 3 (4180) | 6 (2110) | 1730
New result (Tol = 1%) 2.9% 5 (3080) | 1(2950) | 1380
New result (Tol = 2%) 4.6% 6 (3130) | 4 (2800) | 1270
Vidwans et al. result 2.2% 0 (3060) | 2 (2950) | 2130
Chaco result 4.6% 6 (3130) | 5 (2940) 1030
JOSTLE result 8.2% 1 (3240) | 6 (2680) | 1560

Table 3.2: Summary of results when the New, Vidwans et al., Chaco and JOSTLE

algorithms are applied to the initial partition (see Table 3.1) of Example 1.
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Figure 3.9: The coarse mesh of Example 2.

the Vidwans et al. algorithm which is 4999 where the value of MaxImb is 3.7%)
as compared to other final partitions. On the other hand in the case of the Chaco
algorithm, the value of MaxImb (which is 4.5%) is the highest as compared to other
final partitions but the corresponding value of CutWt (which is 3517) is the smallest
as compared to other final partitions. The result produced by the New algorithm
are in between these two extremes. Our algorithm produces a final partition in
which the value of MaxImb is 3.2% with the corresponding value of CutWt (with
Tol as 2%) being 3857.

Example 3. Here we consider the same mesh as in Example 2, which is generated by
the method of Hodgson and Jimack ([51]) in parallel using 8 processors. Unlike in
the previous example however the weights correspond to the number of fine vertices
generated inside each coarse element and subdomain rather than the number of fine
elements. Characteristics of both the initial as well as the final partitions (produced
by the New algorithm) are shown in Table 3.5. The combined total vertex weight
is 468495, so that the average load per processor is 58562. The difference in weight

between the processors with the maximum and minimum loads is 12637. In order
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Coarse

Average load :

mesh :

1354 elements
Final mesh : 836183 elements
104523 fine elements

66

Proc. Processor Load Processor Load Processor Load

Id. (initial) (final Tol = 1%) (final Tol = 2%)
fine | % imb. | coarse | fine | % imb. | coarse | fine | % imb. | coarse

0 103430 | -1.0 52 103430 | -1.0 52 103430 | -1.0 52
1 98476 -5.8 607 | 106240 1.6 621 | 106240 1.6 621
2 105313 0.8 274 | 107850 3.2 325 | 107850 3.2 325
3 98017 -6.2 20 103854 | -0.6 17 103854 | -0.6 17
4 112686 7.8 20 106394 1.8 18 106394 1.8 18
5 104230 | -0.3 305 | 102846 | -1.6 246 | 102846 | -1.6 246
6 105677 1.1 18 104821 0.3 19 100306 | -4.0 18
7 108354 3.7 58 100748 | -3.6 56 105263 0.7 57

Table 3.3: Partition generated in parallel on 8 processors along with our final par-

titions for Example 2.

MaxImb | Largest Smallest | CutWt
partition partition

Initial result 7.8% |4 (112686) | 3 (98017) | 3854
New result (Tol = 1%) 3.2% | 2 (107850) | 7 (100748) | 3900
New result (Tol = 2%) 3.2% | 2 (107850) | 6 (100306) | 3857
Vidwans et al. result 3. 7% 1 (108432) | 6 (97659) 4999
Chaco result 4.5% | 2(109204) | 3 (99651) | 3517
JOSTLE result 2.4% | 5(107093) | 3 (101665) | 4087

Table 3.4: Summary of results when the New, Vidwans et al., Chaco and JOSTLE

algorithms are applied to the initial partition (see Table 3.3) of Example 2.
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to further judge the New algorithm we also use the Vidwans et al., Chaco and
JOSTLE algorithms and the results are summarised in Table 3.6.

As is clear from Table 3.6, the initial value of MaxImb is 9.7% and that of CutWt
is 3854. When the New algorithm is used with Tol = 1% the value of MaxImb
reduced from 9.7% to 2.6% with a negligible increase in the value of CutWt. When
the value of Tol is increased to 2% we see a deterioration in both the values of
MaxImb as well as CutWt. When the value of Tol is further increased to 4%
then the new partition is better in terms of CutWt but the value of MaxImb has
gone up. The final partition produced by the Chaco algorithm has a value of
3.0% for the parameter MaxImb and a value of 3635 for the parameter CutWt.
The corresponding values in the case of the JOSTLE algorithm are 2.7% and 3577
respectively. Overall the partition produced by the JOSTLE algorithm for this
example is superior to the partitions produced by other tools. The values of the
parameters MaxImb and CutWt are 5.5% and 4842 respectively in the final partition
produced by the Vidwans et al. algorithm which are the highest as compared to the

corresponding values produced by the other algorithms.

Example 4. Here we consider another mesh which is also generated by the method
of Hodgson and Jimack ([51]) in parallel; this time using 16 processors. The geom-
etry used is the “Texas” domain taken from PLTMG [5] (see Figure 3.10 for the
corresponding coarse mesh). The initial and final situations are shown in Table
3.7. The combined load is 446151, so that the average load of a processor is 27884.
We applied the New algorithm to this unbalanced partition for different values of
tolerance (Tol) but the results were identical in each case. We also apply the Vid-
wans el al. and JOSTLE algorithms to the above initial partitioning and the results
are summarised in Table 3.8. We are unable to compare our result with the result
produced by the Chaco algorithm, as the option we choose to use in the Chaco
algorithm, only supports 8 or less subdomains ([48, Subsection 4.4]).

As is clear from the Table 3.8, the initial value of MaxImb is 5.0% and that
of CutWt is 4869. It is interesting to observe that the final partition produced by
the Vidwans et al. algorithm has smallest value of MaxImb (which is 1.5%) but the
corresponding value of CutWt (which is 5435) is the highest as compared to other
final partitions. The common features of other tools are that we have reduction not

only in the value of MaxImb but also in the value of CutWt. In these cases the new
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Coarse mesh :

Final mesh : 468495 vertices

1354 elements

Average load : 58562 fine vertices

68

Proc. Processor Load Processor Load Processor Load

Id. (initial) (final Tol = 1%) (final Tol = 2%)
fine | % imb. | coarse | fine | % imb. | coarse | fine | % imb. | coarse

0 56570 | -3.4 52 58264 | -0.5 54 58264 | -0.5 54
1 64255 9.7 607 | 58915 0.6 593 | 58915 0.6 593
2 61427 4.9 274 | 59512 1.6 276 | 56634 | -3.3 276
3 51618 | -11.9 20 57292 | -2.2 33 60170 2.7 33
4 59344 1.3 20 58524 | -0.1 20 58524 | -0.1 20
5 61320 4.7 305 | 60057 2.6 297 | 60057 2.6 297
6 55598 | -5.1 18 56418 | -3.7 18 56418 | -3.7 18
7 58363 | -0.3 58 59513 1.6 63 59513 1.6 63

Table 3.5: Partition generated in parallel on 8 processors along with our final par-

titions for Example 3.

MaxImb | Largest | Smallest | CutWt
partition | partition

Initial result 9.7% 1 (64255) | 3 (51618) | 3854
New result (Tol = 1%) 2.6% 5 (60057) | 6 (56418) | 3855
New result (Tol = 2%) 2.8% 3 (60170) | 6 (56418) | 3928
New result (Tol = 4%) 51% 2 (61540) | 3 (55264) | 3782
Vidwans et al. result 5.5% 2 (61795) | 3 (55150) | 4842
Chaco result 3.0% 2 (60332) | 6 (55472) | 3635
JOSTLE result 2.7% 6 (60138) | 4 (56289) | 3577

Table 3.6: Summary of results when the New, Vidwans et al., Chaco and JOSTLE

algorithms are applied to the initial partition (see Table 3.5) of Example 3.
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Figure 3.10: The coarse “Texas” mesh of Example 4.

values of MaxImb are similar but the CutWt produced by the JOSTLE algorithm
is better than the corresponding value of CutWt produced by the other algorithms.

Example 5. In this example the coarse mesh consists of 5184 tetrahedral elements
and corresponds to a discretisation of a 3-d space. This space is the union of two
touching cuboids as used in [88, 93]. To simulate the shock wave diffraction around
the 3-d right-angled corner formed between the cuboids, Selwood and Berzins em-
ploy a parallel adaptive Euler solver ([87]). We will return to this problem again in
Chapter 5 where it will be discussed in much more detail.

Figures 3.11 and 3.12 illustrate how the mesh, which is distributed among 8
processors, adapts to the solution as the shock progresses through the domain. It
is clear that although a partition of the mesh for the initial condition may be good,
it is unlikely to remain so as the solution develops (as a matter of fact after 240
time steps an imbalance of 27.8% emerged) and thus dynamic load-balancing of
the distributed data will be required. After 240 time steps there were 23274 fine
elements in the mesh and the cut weight was 1332. We apply the New algorithm

and partitions before and after the load balancing is shown in Table 3.9. We also use
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Coarse mesh : 1331 elements
Final mesh : 446151 elements
Average load : 27884 fine elements
Proc. Processor Load Processor Load Processor Load
Id. (initial) (final Tol = 1%) (final Tol = 2%)
fine | % imb. | coarse | fine | % imb. | coarse | fine | % imb. | coarse

0 27985 0.4 94 27985 0.4 94 27985 0.4 94
1 28572 2.5 95 28572 2.5 95 28572 2.5 95
2 27536 | -1.2 78 26765 | -4.0 76 26765 | -4.0 76
3 28238 1.3 89 27877 0.0 89 27877 0.0 89
4 29284 5.0 115 | 28287 1.4 112 | 28287 1.4 112
5 28310 1.5 86 27708 | -0.6 85 27708 | -0.6 85
6 27903 0.1 91 28494 2.2 91 28494 2.2 91
7 27886 0.0 88 27892 0.0 88 27892 0.0 88
8 28282 1.4 76 28282 1.4 76 28282 1.4 76
9 28036 0.5 69 28036 0.5 69 28036 0.5 69
10 | 26831 | -3.8 71 26831 | -3.8 71 26831 | -3.8 71
11 | 26548 | -4.8 72 28064 0.6 76 28064 0.6 76
12| 28310 1.5 76 28310 1.5 76 28310 1.5 76
13 | 27737 | -0.5 64 27737 | -0.5 64 27737 | -0.5 64
14 127625 | -0.9 85 27625 | -0.9 85 27625 | -0.9 85
15 | 27068 | -2.9 82 27686 | -0.7 84 27686 | -0.7 84

Table 3.7: Partition generated in parallel on 16 processors along with our final

partitions for Example 4.

MaxImb | Largest Smallest | CutWt
partition partition
Initial result 5.0% 4(29284) | 11 (26548) | 4869
New result (Tol = 1%) 2.5% 1 (28572) | 2 (26765) 4666
New result (Tol = 2%) 2.5% 1 (28572) | 2 (26765) 4666
Vidwans et al. result 1.5% 12 (28310) | 5 (27120) 5435
JOSTLE result 2.4% 7 (28578) | 1 (26906) 4064

Table 3.8: Summary of results when the New, Vidwans et al. and JOSTLE algo-

rithms are applied to the initial partition (see Table 3.7) of Example 4.
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the Vidwans et al., Chaco and JOSTLE algorithms and the results are summarised
in Table 3.10.

As is clear from Table 3.10 the Chaco algorithm produces a final partition in
which the value of MaxImb is smallest and the Vidwans et al. algorithm produces a
final partition in which the value of of CutWt is highest. The least value of CutWt is
enjoyed by the JOSTLE algorithm. The New algorithm produces the final partitions
in which the values of MaxImb and CutWt are 2.5% and 1344 respectively when Tol
is 1% and the values of these parameters are 4.7% and 1336 in the case of Tol being
2%. Again observe the affect of Tol on these parameters. As Tol increases so does

MaxImb. But on the other hand the value of CutWt decreases as Tol increases.

Example 6. The underlying geometry of this problem is the same as that of previous
example, but the initial coarse mesh is bigger. Here the coarse mesh consists of
34560 elements. At a certain time after applying the adaptive step of the solver,
the maximum imbalance grew to 30.5%. To reduce this maximum imbalance among
the processors the dynamic load balance algorithm is applied. Table 3.11 shows both
the partition before, as well as after the application of the algorithm. We also use
the Vidwans et al., Chaco and JOSTLE algorithms and the results are summarised
in Table 3.12.

It is clear from Table 3.12 that the initial values of the parameters MaxImb
and CutWt are 30.5% and 3710 respectively. Just like Example 4, we apply the
New algorithm to this unbalanced partition for different values of tolerance (Tol)
but here the results were identical in each case. The partition produced by the
Chaco algorithm has the best final value of MaxImb and the partition produced
by the Vidwans et al. algorithm has the worst final value of CutWt. In the case
of the JOSTLE algorithm, the final value of MaxImb is relatively high but the
final value of the CutWt is fairly small. The value of MaxImb in the case of the
New algorithm is in between the corresponding values produced by the other tools.
And the CutWt produced by the New algorithm is better than that produced by
the Chaco and Vidwans et al. algorithms but worse than that of produced by the
JOSTLE algorithm.
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Figure 3.11: Coarse mesh of 5184 elements

adapted to initial shock condition for Ex-

ample 5.

Figure 3.12: Adapted mesh after 240 time-

steps for Example 5.
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Coarse mesh : 5184 elements
Final mesh : 23274 elements
Average load : 2909 fine elements

Proc. Processor Load Processor Load Processor Load
Id. (initial) (final Tol = 1%) (final Tol = 2%)
fine | % imb. | coarse | fine | % imb. | coarse | fine | % imb. | coarse
0 2198 | -24.4 247 | 2921 0.4 263 | 2921 0.4 263
1 2737 | 5.9 104 | 2929 0.7 117 | 2929 0.7 117
2 2822 | -3.0 2205 | 2890 | -0.7 2131 | 2862 | -1.6 2137
3 3719 | 27.8 84 2926 0.6 66 2926 0.6 66
4 3134 7.7 62 2897 | -0.4 65 2897 | -0.4 65
5 3201 | 10.0 137 | 2839 | -24 131 | 2839 | -24 131
6 2978 2.4 71 2983 2.5 50 3046 4.7 51
7 2485 | -14.6 2274 | 2889 | -0.7 2361 | 2854 | -1.9 2354

Table 3.9: Initial and final partitions (produced by the New algorithm) for Example

3.

MaxImb | Largest | Smallest | CutWt
partition | partition
Initial result 27.8% | 3(3719) | 0 (2198) 1332
New result (Tol = 1%) 2.5% 6 (2983) | 5(2839) | 1344
New result (Tol = 2%) 4.7% 6 (3046) | 5 (2839) | 1336
Vidwans et al. result 3.3% 2 (3005) | 1(2824) | 1859
Chaco result 2.0% 3 (2966) | 0 (2859) 1578
JOSTLE result 2.1% 3(2973) | 2 (2746) | 1304

Table 3.10: Summary of results when the New, Vidwans et al., Chaco and JOSTLE

algorithms are applied to the initial partition (see Table 3.9) of Example 5.

3.6

Conclusions

In this chapter a serial version of a new dynamic load balancing algorithm has

been presented. The algorithm is applied to six different test problems which are
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Average load :

Coarse mesh : 34560 elements

Final mesh : 83486 elements

10436 fine elements

74

Proc. Processor Load Processor Load Processor Load
Id. (initial) (final Tol = 1%) (final Tol = 2%)
fine | % imb. | coarse | fine | % imb. | coarse | fine | % imb. | coarse
0 9871 -5.4 1378 | 10482 0.4 1522 | 10482 0.4 1522
1 8883 | -14.9 288 | 10406 | -0.3 910 | 10406 | -0.3 910
2 10678 2.3 977 | 10516 0.8 1088 | 10516 0.8 1088
3 8880 | -14.9 253 | 10280 | -1.5 390 | 10280 | -1.5 390
4 8519 | -18.4 746 | 10498 0.6 2263 | 10498 0.6 2263
5 10677 2.3 6035 | 10403 | -0.3 7486 | 10403 | -0.3 7486
6 13620 | 30.5 | 13218 | 10451 0.1 10451 | 10451 0.1 10451
7 12358 | 18.4 | 11665 | 10450 0.1 10450 | 10450 0.1 10450

Table 3.11: Initial and final partitions (produced by the New algorithm) for Example

6.

MaxImb | Largest | Smallest | CutWt
partition | partition

Initial result 30.5% | 6 (13620) | 4 (8519) 3710
New result (Tol = 1%) 0.8% 2 (10516) | 3 (10280) | 4629
New result (Tol = 2%) 0.8% 2 (10516) | 3 (10280) | 4629
Vidwans et al. result 1.0% 0 (10540) | 3 (10328) | 11463
Chaco result 0.5% 6 (10484) | 3 (10403) | 5915
JOSTLE result 1.4% 2 (10585) | 7 (10148) | 2718

Table 3.12: Summary of results when the New, Vidwans et al., Chaco and JOSTLE

algorithms are applied to the initial partition (see Table 3.11) of Example 6.
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representative of typical practical situations in both 2-d and 3-d. In the majority of
the cases our results are comparable with the results produced by other state of the
art algorithms. In all cases the values of the parameter CutWt in the final partition
produced by the New algorithm are much less than the corresponding values in the
final partition produced by the Vidwans et al. algorithm and in the majority of
cases the values of the parameter MaxImb produced by the New algorithm are also
much less than the corresponding values produced by the Vidwans et al. algorithm.
This shows that the modifications made in the Vidwans et al. algorithm do improve
the quality of the new partitions.

In the last problem the cost of our algorithm is a little high. It should be noted
that in this last example the coarse mesh is of relatively large size (34560 coarse
elements) and initially 72% of the coarse mesh resides on just two processors (whose
ID’s are 6 & 7) as compared to only 31% of the fine mesh which reside on these
processors. Unlike the JOSTLE algorithm, our algorithm has no graph coarsening
feature built into it and so is likely to be most efficient for those problems where the
size of coarse mesh is not too great. This is not a major restriction however, since
starting with a smaller size mesh one can always get a fine mesh of much larger size
by the repeated application of the adaptive refinement algorithm.

The main practical restriction on this algorithm as described in this chapter is
that one should not rely upon a serial dynamic load-balancing algorithm to regain
the balanced load of the processors while using a parallel adaptive solver. Such an
approach presents a significant serial bottleneck; and in some cases it may not be
possible at all if the size of the mesh is too huge to fit into the memory of a single
processor. To avoid this serial bottleneck we present, in the next two chapters,
practical parallel versions of our load-balancing algorithm which are designed for
rebalancing hierarchical unstructured meshes in 2-d and 3-d space respectively.

In Chapter 4 the parallel algorithm is implemented for a specific class of 2-d
meshes which are generated by the method of Hodgson and Jimack ([51]). The
algorithm discussed there consists of two phases. In phase one we decide the new
owners of the coarse elements and in second phase the actual migration of these
elements is undertaken. Phase one remains the same irrespective of the generation
methods of the partitioned meshes, however phase two does depend upon how the
mesh is generated and maintained on a given processor, and the way in which

connectivity information is stored across the inter-partition boundaries. So for
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those types of unstructured mesh which are generated by other methods one has
to modify phase two only. The performance of our algorithm is compared with the
performance of the algorithms of Vidwans et al. ([104]) & Hu and Blake ([53]).

In Chapter 5 we present that version of the algorithm which is designed to rebal-
ance the 3-d meshes which consists of tetrahedral elements. There are some further
improvements and modifications to the algorithm for this work. The performance
of this new modified algorithm is compared with the performance of the Vidwans

et al. ([104]), ParJOSTLE ([109]) and ParMETIS ([63]) algorithms.



Chapter 4

Parallel Application of the

Dynamic Load Balancer in 2-d

In this chapter we consider the parallel application of the algorithm presented in the
previous chapter. This particular parallel application is basically a post-processing
step which redistributes a 2-d mesh which has been created in parallel but is not
perfectly load balanced among the number of available processors (due to reasons
discussed below in §4.1). In the next chapter we discuss the parallel application
of the algorithm presented in Chapter 3 for a more general 3-d problem which
is designed to migrate some tetrahedral elements form one processor to another
processor after an adaptivity step (see §2.3 for details) in order to regain a balanced
load.

In order to solve large Computational Fluid Dynamics (CFD) and Computa-
tional Mechanics (CM) problems numerically on a parallel or sequential machine,
the first step of most numerical methods is to generate a mesh of the underlying
geometry (if one has not been generated already). For finite element solvers the
popular choice is to generate an unstructured mesh. There are many advantages of
unstructured meshes over structured ones. One advantage is that they are ideally
suited for the discretisation of geometrically complicated domains, a second is that
their use allows for the easy addition and removal of vertices and elements which are
often required in an adaptive setup. There are many ways to generate unstructured
meshes and many review papers about the development of mesh generation tech-
niques (see [94, 97, 113] for example). Since we wish to solve problems in parallel

the mesh should also be distributed among the number of available processors in
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an efficient manner.

One way to obtain a distributed mesh is to generate the entire mesh on a single
processor and then distribute it among the desired number of processors using any
of the static graph partitioning algorithms discussed in Chapter 1. This approach
results in a serial bottleneck at the generation stage however, and in some cases
it may not even be possible due to the limited amount of memory that may be
available on a single processor. Another possibility is to actually generate the mesh
in a parallel and distributed manner.

Nowadays parallel mesh generation is becoming an important feature of any

large distributed memory parallel CFD and CM codes as it ensures that:
e there is no sequential bottleneck at this point in the code,
o there is no parallel overhead incurred in partitioning an existing mesh,

e that no single processor is required to have enough local memory to be able

to store the entire mesh.

In recent years numerous algorithms have been proposed for the generation of un-
structured finite element and finite volume meshes in parallel (see [2, 38, 51, 66,
70, 116] for example). One of the main problems with many of these approaches
however is that the final mesh, once generated, cannot generally be guaranteed to
be perfectly load-balanced. Since an unbalanced load may adversely affect the per-
formance of the solver there is a clear need for executing a post-processing step in
order to get a well-balanced mesh at the end.

In this chapter we propose a post-processing step for the parallel mesh generator,
based upon the cheap and efficient dynamic load-balancing technique of previous
chapter. This technique is described and a number of numerical examples are
presented in order to demonstrate that the quality of the partition of the mesh can
be improved significantly at only a small additional computational cost. It should
be mentioned here that this post-processing step is coupled with an existing parallel
mesh-generator which is due to Hodgson and Jimack ([51]). However, the parallel
application in the next chapter is quite general in the sense that it can be coupled

with any parallel adaptive mesh-generator.
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4.1 Introduction

This chapter is concerned with dynamic load-balancing algorithms in connection
with the parallel generation of unstructured meshes of triangles for complex ge-
ometries in two dimensions (the parallel generation and adaptation of unstructured
meshes of tetrahedra for complex geometries in three dimensions will be dealt with
in the next chapter). A large number of algorithms and codes have been developed
for parallel mesh generation in recent years and these may be divided into two broad
categories: those based upon refinement of an initial coarse background mesh (e.g.
[51, 70, 88, 98]), and those which mesh the domain in an alternative manner (e.g.
[2, 66]). In this chapter we are concerned only with the first of these two categories
and, for simplicity of exposition, we concentrate on the 2-d case. Extension to 3-d
is possible and is the topic of next chapter.

The common feature of all of the parallel mesh generators based upon refine-
ment of a background grid is that this grid must first be partitioned across the
available processors. The techniques by which this is done vary significantly but
they each have the same goal: to ensure that the total number of generated ele-
ments or points on each processor is about the same upon completion of the parallel
mesh generation. Hence, if a mesh of uniform density is being generated and the
background grid is also of uniform density then we would expect each processor to
be assigned about the same number of coarse elements. If, on the other hand, a
mesh of non-uniform density is being generated from a uniform background grid
then we would expect a potentially different number of coarse elements to be as-
signed to each processor. A secondary objective when partitioning the background
grid is to ensure that the number of generated elements which have an edge on the
boundary between two processors is as small as possible. This will ensure that the
amount of communication required by the finite element or finite volume solver will
be minimised (see §2.3 for details).

In order to attempt to achieve these objectives, a priori estimates need to be
made about how many elements, edges and nodes will be generated within each
coarse element. Inevitably the actual values of these three numbers after generation
will not precisely match these estimates. In order to keep the differences as small
as possible some authors have developed quite elaborate schemes for improving

the quality of their estimates; including the use of neural networks [98] or virtual
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refinement [51] for example. Even with these schemes however final load imbalances
of up to 10% are frequently observed in practice.

In this chapter we suggest that, so long as a reasonable partition is produced
a priori, a more profitable use of resources is to improve the quality of the par-
tition after the mesh has been generated in parallel through the use of a parallel
post-processing step. This step simply involves making local modifications to the
load-balance before the solution phase commences. As will be demonstrated these
local modifications are made in a manner designed to strike a balance between the

potentially conflicting requirements of

1. improving the load-balance,
2. maintaining data locality,
3. minimising the number of fine edges shared by two processors,

4. avoiding sequential bottlenecks,

which were first discussed in §2.3. In the following sections we outline a parallel
dynamic load-balancing algorithm which is designed to meet these objectives. This
algorithm is a modification of the algorithm presented in the previous chapter. It
is based upon earlier work of Vidwans et al. [104]. It should be noted that the
algorithm introduced may be directly applied to a more general class of dynamic
load-balancing problem than that introduced above. In particular, we may have an
adaptive hierarchical mesh, (see [92] for example) and/or an adaptive p-version of
the finite element algorithm (as in [3] for example). The next chapter describes in
details the version of the algorithm designed for dynamically rebalancing the 3-d

adaptive hierarchical meshes.

4.2 A Parallel Dynamic Load-Balancing Algorithm

Suppose we have a hierarchically refined root mesh which is distributed across p
processors. As in §3.2.1 we define the weight of a root element as the number of
leaf elements inside it and the weight of an edge of the root mesh as the number
of leaf element edges along it. We may also recall from §2.3 the definition of the
weighted dual graph of the root mesh: each node of this graph corresponds to an



CHAPTER 4. PARALLEL APPLICATION OF LOAD BALANCER IN 2-D 81

element of the root mesh (whose weight is same as the weight of the corresponding
root element), 7o, and two nodes are connected if the corresponding root elements
are neighbours (the weight of this edge is being the weight of the common edge of
the two corresponding root elements). The task of repartioning the triangulation
T may therefore be represented in terms of this weighted graph. In particular, we
require an algorithm for repartitioning such a graph which satisfies the four criteria

enumerated in §4.1.

4.2.1 Group Balancing

Let us recall from §2.4 the definition of the Weighted Partition Communication
Graph (WPCG): A WPCG is obtained by having one vertex for every processor
and an edge between two vertices if and only if they are face adjacent to each
other. The weight wy, of the i'" vertex is equal to the sum of weights of all root
elements on the i* processor and the weight wg,; of the edge connecting the it
and j' processors is equal to the sum of weights of all root element edges on the
interpartition boundary between the two processors.

We next divide the WPCG into two subgroups denoted by Groupl and Group?2
by using the same procedure of §3.2.1. It may be pointed out here that this division
is performed on a single processor. Let us recall from §3.2.1 that during the division
process of WPCG, one requires the weighted Laplacian matrix of the WPCG. In the
present context the assembly of the ¥ row of this Laplacian is performed locally
by the ' processor. Each processor after assembling its own row sends it to one
processor (which we call a master processor). The master processor after receiving
all the contributions from all other processors forms the Laplacian and then divides
the WPCG in to 2 subgroups. Finally the master processor broadcasts this decision
to all other processors.

If the leaf mesh is quite uniformly distributed across the processors then we
would expect each group to contain about the same number of processors and
an almost identical total weight. If the existing partition is not well load balanced
however then the number of processors in each group may be very different. In either
case the cut-weight resulting from this bisection will generally be very small. In the
next stage of the algorithm we use the idea of local migration from the “larger” to

the “smaller” group so that after migration each group contains approximately the
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same average weight per processor without there being a significant increase in this

cut-weight.

4.2.2 Local Migration

As mentioned above the subgroups formed in the last subsection may not be ideally
balanced. To balance them we now migrate nodes of the weighted dual graph from
the “larger” to the “smaller” group by using the logic of §3.2.2. We call “larger” the
Sender and “smaller” the Receiver group respectively. The actual determination
of Sender and Receiver groups are performed in Figure 3.1 which also calculates
the quantity Mig, , which stands for the total weight of all the nodes which are to
be migrated from the Sender to the Receiver. Note that if the combined weight of
the nodes transferred from the Sender to the Receiver is nearly or exactly equal to
Mig,., then the two groups will be load-balanced upon completion.

Having established the required load to be transferred, the next issue to address
is that of how many nodes each processor in the Sender group should actually send
and which processors in the receiver group they should be sent to. We again use
the same idea of candidate processors as defined in §3.2.2. Recall that processors
in each group that are face-adjacent to at least one processor in the other group
are called candidate processors. We only allow the candidate processors to be
involved in the actual migration of nodes from Sender to Receiver. Let Ny, be
the total weight on all candidate processors of the Sender group. Then if the 7%
candidate processor in the Sender group is face adjacent to more than one candidate
processor in the Receiver group we migrate nodes to that candidate processor which
has the “longest” boundary (by this we mean that the cut-weight between the two
processors involved is maximum as compared to other possible pairs). The amount
of load shifted from the i** candidate processor in Sender group is denoted by Mig;
and is calculated in precisely the same way as in §3.2.2 (equation 3.1).

As far as the actual migration of the nodes in the weighted dual graph is con-
cerned, we follow precisely the same logic as of §3.2.2. Recall from §3.2.2 that in
the process of migration of nodes we use the concepts of gain and gain density
associated with the moving nodes. As in §3.2.2 by gain(k) of node k we mean the
net reduction in the cost of cut edges that would result if node k were to migrate

h

from ' candidate processor in the Sender group to the j** candidate processor in
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the Receiver group (see Figure 3.2 for the calculation of gain(k)). The gain density
of a node is defined as the gain of the node divided by the weight of the node. The
bulk of the work needed to make a move consists of selecting the base node (a node
which is about to be shifted from one processor to another processor is called a base
node), moving it, and then updating the gains of its neighbouring nodes.

Just like §3.2.2 the selection of a base node is made by choosing the node with
the largest gain density on the " processor whose weight is less than or equal to
Mig,. We shift the node to the receiving processor and update the gains of its
neighbouring nodes using the algorithm outlined in Figure 4.1. Observe that, if
the gain associated with the base node is positive, then transferring it will not only
improve the load-balance but will also reduce the total cut-weight between the two
groups. The above logic of balancing the two groups is presented in Figure 4.2.

At this point we should discuss some major differences between the current
method of calculating and updating the gains and the previous method of calculat-
ing and updating the gains used in the previous chapter. We first wish to emphasise
the use of the word processor. In the last chapter the word processor was used in a
symbolic sense. This was nothing to do with the physical processor of the machine.
On the other hand in the present context the word processor is both symbolic as
well as physical. At present each subdomain of the original domain is assigned
to a unique physical processor of the parallel machine. In the previous chapter
in principle only one physical processor was responsible to achieve the entire task
of load-balancing the dual graph. In doing so the concept of recursion was used
extensively. Starting with one group the problem was divided into two subgroups.
To balance the original group some load was shifted from the Sender to the Re-
ceiver subgroups. This was achieved by considering a pair of processors called 1, j
processor pair at a time. The actual migration of the load depends upon the gain
densities of the nodes which can be calculated by using the gains shown in Figure
3.2 (which only calculates the gains of those nodes which belong to the i'* proces-
sor). As pointed out in §3.2.2 there was also calculations of gains of all the nodes
belonging to the ;' processor (recall from §3.2.2 that the gain of a node belonging
to %" processor is define to be the net reduction in the cost of cut edges that would
result if the node were to migrate from ;' processor to the i’ processor). The
calculation of gains for all the nodes of the ¢, pair of processors facilitated the

reshuffling process of §3.3 (where we performed a sequence of moves of nodes from
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For each nj, € i processor which is a neighbour of the node k {

increment gain(ny) by Q*UJEnkk;

find the new gain density of the node ny;

Figure 4.1: Updating the gains.

one processor to another).

In the current situation each processor only calculates and updates the gains
of those nodes which it owns. A processor does not attempt to calculate the gains
of nodes owned by other processors. This is due to the fact that in the parallel
implementation we decided not to execute the re-shuffling step of the serial version.
The rational behind this decision is the fact that such a step is not possible without
a substantial amount of communication among the processors. We believe that the
cost of such communication involved in the re-shuffling steps will slow down the
performance of the parallel load-balancer substantially, whilst experience suggest it

only provides a small improvement in the partition quality.

4.2.3 Divide and Conquer and Parallel Implementation

Once we have obtained Sender and Receiver groups with the same average weights,
it is possible to recursively apply the above splitting algorithm to each of these
two processor groups in parallel: bisecting them and load-balancing them. The
recursion terminates when every group consists of a single processor: each with
approximately the same load.

This divide and conquer approach naturally permits a certain degree of paral-
lelism in its implementation. Further parallelism is also facilitated by the fact that
it is possible for more than one sending processor in a Sender group to migrate data
onto its corresponding receiving processor at any given time.

This divide and conquer algorithm is described fully in Figure 4.3 and discussed

below.
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a N

While(there are unprocessed candidate procs. in Sender group){
Let Mig; (as explained above) be the amount of load to be
shifted from the :'* candidate proc. in Sender group to the
7% candidate proc. in Receiver group,
Calculate gain densities.
Until(required load is transferred from the " proc. to the 7% proc. ){
Move a node of highest possible gain density from the :** proc.

to the 5% proc.,

Update gain densities of neighbours of the moved node.

Figure 4.2: Load balancing of the two groups.
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/While (Any Groups contain two or more processors){
Find the maximum load Max and the average load Ave of the Group,
Find the percentage of maximum imbalance MaxImb in the Group
by using the formula:
MaxImb = ( (Max - Ave) / Ave) * 100.
If (The Group has more than one processors){
Send the contribution of the Laplacian to the processor 0.
If (Rank of the processor is 0){
Form the Laplacian matrix after receiving the contribution
from other processors,
Find the Fiedler vector and by using it decide the Receiver
and Sender groups.
}
If (MaxImb is more than a given tolerance){
Move some load from the processors in the Sender Group to the processors
in the Receiver Group in such as way that after the migration two

Groups have the same average load and the increase in the cut weight

is as small as possible.

}

If (The migration affects the current processor){
Modify the necessary data structures to reflect the migration.
}
Divide the Group into two Groups (i.e. from now onwards both Sender

and Receiver will be called Group).

\J

Figure 4.3: Parallel dynamic load-balancing algorithm.
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4.3 Discussion of the Algorithm

After deciding how much to shift and where to shift we face practical implementa-
tion difficulties. For example, if two neighbouring coarse elements (note that two
elements are neighbours of each other if they have a common vertex or a common
edge) migrate then it is very hard to modify the data structures (this is due to the
fact that when two neighbouring elements migrate we have to use forwarded mes-
sages to other subdomains to tell them the rapidly changing situation, sending this
type of message is a complicated business). To avoid this difficulty we decided to
not move any neighbouring elements simultaneously. For this reason we colour the
coarse mesh and allow the simultaneous migration of elements of the same colour
only. In case of triangular meshes only 6 to 10 colours are required to colour the
mesh (in three dimensions the number of colours may change dramatically from one
mesh to another mesh!). This means the migration step will take in general between
6 to 10 phases. In our implementation all of the processors must be synchronised
after the migration of elements of the same colour.

Another point to be discussed here is the movement of data objects associated
with the migrating nodes. As is clear from the description of the load-balancer the
nodes of the dual graph will be migrating from one processor to another processor
before they necessarily reach their final destination. Ideally we should pass some sort
of token (as we do in the next chapter) to the transitory processor of the migrating
node rather than passing the entire data objects associated with the migrating node
to the transitory processor. Only at the very end should we pass entire data objects
from the original processor of the migrating node to the final destination of the node.
However in the current implementation we decided to pass the entire data objects
associated with the migrating node to the transitory processor of the node. In 2-d,
this strategy does not increase the cost of the migration process substantially (as
is clear from Tables 4.7 and 4.14 where the maximum rebalancing time is just 1.3
seconds involving a mesh of 0.7 million fine elements). However in the next chapter
such a strategy would be very costly (partly because of the use of halo elements) so
there we only pass tokens when a node is migrated from one processor to another
one and the entire data objects are passed only at the end of the process from the
very original processor of the migrating node to the final destination of the node.

In the above algorithm there are basically three types of processor. The first
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type of processor are those processors from which there is actual migration of coarse
elements. The second type of processors are those which actually receives some
coarse elements. The third type of processors are those processors which are affected
by the above migration of elements (these are those processors which have at least
one coarse element which is a neighbour of the migrated coarse elements). Observe
that during the migration of coarse elements the intersection of type 1 and type
2 processors is empty but it is possible for a type 3 processors to be a type 1 or
type 2 processor as well. We briefly discuss the activities of these three types of
processor here; more details are given in the next section when we also discuss the

accompanying data structures.

4.3.1 Activity of Type 1 Processors : Packing the Load

The type 1 (sending) processors will pack the following which will be sent to the

type 2 (receiver) processors.

e Connectivity information of the fine mesh inside the coarse element.

Coordinates of the interior points of the coarse element.

Coordinates of the unshared corner points of the coarse element.

Sharing information (by this we mean the IDs of those processors with which
the vertices and edges are shared) of all the vertices and edges of the coarse

element.

4.3.2 Activity of Type 2 Processors : Unpacking the Load

The type 2 (Receiver) processors will receive and unpack the above message to

establish the new coarse element and associated fine mesh.

4.3.3 Activity of Type 3 Processors : Third Party Adjust-
ment
When a coarse element migrates from one processor to another processor, not only

these two processors are affected but also other processors may be affected in the

sense that they may also have to modify their neighbourhood relations.
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4.4 Description of Related Data Structures Asso-
ciated With the Redistribution of the Mesh

As stated earlier the dynamic load-balancing algorithm presented in this chapter
is coupled with a particular mesh generator which is due to Hodgson and Jimack
([51]). We describe here existing data structures used by this mesh generator and by

the dynamic load-balancing algorithm which is associated with a typical subdomain.

e nocrseelems By nocrseelems we mean the total number of coarse elements in

the current subdomain.

o nonodessub By nonodessub[i] we mean the number of vertices inside the ¢

coarse element. These interior vertices are called vertices of “type 17.

o noclemssub By noelemssub|i] we mean the number of fine elements inside the

it" coarse element.

e fineuvls By finevts[i] we mean a pointer leading to the information about the co-
ordinates of all the vertices of “type 1” in the 1! coarse element (so finevts|i][2j-
1] and fineuvts[i][2j] represent respectively the x and y co-ordinates of the j

vertex of “type 17 in the i’ coarse element).

o crsetri By crsetri[i] we mean a pointer leading to the information about the
i coarse element (this information is basically about the connectivity and

the colour of the element).

o crsedges By crsedges[i] we mean a pointer leading to the information about
three edges of the i coarse element (this information is basically the IDs of

these edges).

o finetri By finetri[i] we mean a pointer leading to the information about the
fine elements of the :'* coarse element (this information is basically about the

connectivity of these fine elements).

o noedges By noedges we mean total numbers of non-Dirichlet coarse edges in

the subdomain.
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e noedgevts By noedgevts we mean the total number of edge vertices (an internal
vertex of an edge of a coarse element, which does not lie on the boundary of
the domain is called an edge vertex). All the edge vertices are stored in a two
dimensional array called edgevts. For example edgeuvts|i][2j-1] and edgevts[i][2]]
represent the x and y coordinates of the j* internal vertex of the i*" coarse
edge of the subdomain respectively; an edge vertex is also referred to as being

a vertex of “type 27.

e nocrsevts By nocrsevts we mean total number of coarse vertices (a vertex of a
coarse element which does not lie on the boundary of the domain is called a
coarse vertex); a coarse vertex is also referred as being a vertex of “type 3”.
All coordinates of the coarse vertices are stored in an array called crsevts. For
example ersevts[2i-1] and ersevts|2i] represent the x and y coordinates of the

it" coarse vertex of the subdomain.

e nobnduvts By nobndvts we mean total number of boundary vertices in the fine
mesh (a vertex which lies on the external boundary is called a boundary
vertex); a boundary vertex is also referred as being a vertex of “type 4”7. All
coordinates of the boundary vertices are stored in an array called bnduvts. For
example bndvts[2i-1] and bnduts[2i] represent the x and y coordinates of the

i'" boundary vertex of the subdomain.

e lransfer By transfer(i][0] we mean the total number of coarse vertices common
with ** subdomain and transfer|i][j] gives the number of the ;% such coarse
vertex. If nid represents the ID of the current subdomain then by trans-
fer[nid][0] we mean the total number of coarse vertices in the subdomain and
transfer[nid][j] gives the multiplicity of the ;% coarse vertex (by multiplicity
we mean the number of subdomains with which the vertex is shared). For the

corresponding information about the boundary vertices we use transfer2.

o nomyintf By nomyintf we mean number of vertices of “type 3”7 which are

common with other subdomains.

o nomyintf2 By nomyintf2 we mean number of vertices of “type 4”7 which are

common with other subdomains.
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o numngbrs By numngbrs we mean number of neighbouring subdomains and

the IDs of these subdomains are stored in the array myngbrs.

Since during the course of the algorithm the coarse elements from one subdomain

will migrate to other subdomains, we face a twofold problem:

e cach subdomain of type 2 must be ready to accommodate an unspecified

number of coarse elements coming from subdomains of type 1,

o these coarse elements must be linked together with the existing elements al-

ready contained in the subdomain in an efficient manner.

To overcome this we decided to extend certain arrays to accommodate new items
if the size of an element of the array is not too big - if the size is too large then we
create a companion pointer array which is large enough to contain the addresses of
the current elements as well as that of forthcoming ones (e.g. the size of an element
of the array nonodessub is just four bytes (the size of an integer) so we simply extend
this array, on the other hand the size of an element of the array crsetri is twenty
four so we do not extend this array, instead we create a companion pointer array
which is large enough to contain the addresses of the current elements as well as
that of forthcoming ones). The rational behind this decision is to have a trade off
between the available memory and the execution speed of the algorithm - creating
large arrays to accommodate the worst possible scenario would reduce the amount
of the memory for other tasks (in some cases it may not even be possible to do
s0), on the other hand creating the arrays which are capable of handling current
elements only and extending them in future, should the need arise, will slow down
the execution of the algorithm as the dynamically creating / extending arrays is
a painfully slow process. Let nocrseelemsall be the variable which represents the
maximum number of coarse elements which are possible in a certain subdomain.
We extend the array nonodessub from nocrseelems to nocrseelemsall4+1, with the
new index set from 0 to nocrseelemsall. The elements from 1 to nocrseelems contain
the old values and the remaining elements form a linked list ready for new arrivals

according to the following recipe:
e nonodessub[0] = nocrseelems + 1,

e nonodessubi] = -(i+1) for i from nocrseelems + 1 to nocrseelemsall.
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Figure 4.4: The array nonodessuball which can accommodate nine coarse elements.

The new coarse element will always be given the number stored in nonodessub|0]
and the linked list will be updated accordingly (i.e. we update the value of non-
odessub[0] by using the formula nonodessub[0] = -nonodessub[nonodessub[0]]). If
a coarse element (say i) migrates from the current subdomain then its position
will always be inserted at the beginning of the linked list (i.e. we execute the
statements : nonodessubli] = -nonodessub[0] and nonodessub[0] = i) (Figure 4.4 de-
scribes the situation for a small mesh in a subdomain). This way we can minimise
the gap in numbering the coarse elements in a subdomain. We also extend the
array noelemssub from nocrseelems to nocrseelemsall, with the new index set from
1 to nocrseelemsall. The elements from 1 to nocrseelems contain the old values and
the remaining elements are reserved for future arrivals (note that there is no need
to form a linked list here as this array (like the following four pointer arrays) is
controlled by means of the pointer entries of the array nonodessub!). The extended
version of these two arrays are called nonodessuball and noelemssuball respectively.
We next define the following four pointer arrays each consisting of nocrseelemsall

elements.

o finevtsall The first nocrseelems elements contain the addresses of the corre-

sponding elements of the array finevts.
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o crsetriall The first nocrseelems elements contain the addresses of the corre-

sponding elements of the array crsetri.

o crsedgesall The first nocrseelems elements contain the addresses of the corre-

sponding elements of the array crsedges.

o finetrigroup The first nocrseelems elements contain the starting addresses of
the corresponding group of fine elements belonging to the corresponding coarse

elements.

Note the remaining elements in the above four arrays are reserved for future entries.
We also extend the arrays nonodesdirichedge and nonodesedge just like the array
nonodessub, again with the understanding that the negative entries form the linked

list for future arrivals.

4.5 Different Issues and Related Functions Used
in the Main Algorithm By Processors of Type
1

There are various issues related with the transfer of data items. Suppose, as a result
of applying the algorithm, we discover that coarse element i from a subdomain nid
(say) of type 1 is to be migrated to another subdomain j (say) of type 2. Then the

following issues are to be considered.

4.5.1 Handling of Vertices

When a coarse element migrates from one subdomain to another subdomain we have
to examine its three vertices carefully (recall from §4.4 that these are the vertices
of type greater than 2: type 3 means coarse vertex and type 4 means boundary
vertex). This is the job of the present section. Let v be a vertex of type 3 or 4
of the element i in the subdomain nid. It is important to know if the vertex v is

shared between nid and j before and/or after the migration.



CHAPTER 4. PARALLEL APPLICATION OF LOAD BALANCER IN 2-D 94

/ if(transfer[nid)[v] == 1 or ltransfer(j][0]) /* either v is not shared with */\
return(0); /* anyone, or shared with others but not with j */
else /* would like to see if v is shared with the neighbour j*/
for(m = 1; m <= transfer{j][0]; m++)
if(v == transfer[j][m]) /* yes, v is shared with the neighbour j and */

return(m); /* the relative position is m */

return(0); /* no, v is not shared with the neighbour j */

Figure 4.5: The function Shared().

for(ce = 1; ce < nocrseelems; ce++) /* go through all the coarse elements */
if(nonodessublce] > 0) /* ignore the element which is already gone */
for(k = 0; k < 3; k++) /* check if the element has vertex v
of desired type */

if(v == the k' vertex of the coarse element ce )

return(1); /* search is successful */

Kreturn(()); /* search is not successful *//

Figure 4.6: The function Shared?2().

Shared() and Shared2() Functions

To check if it is shared before the migration we have to use the array transfer.
The function Shared() shown in Figure 4.5 does this job. It returns 0 if v is not
shared before the migration and returns m otherwise, where m is the relative sharing
position (i.e. v == transfer[j][m]).

To check if v is shared after the migration we have to examine if it also lies
on another coarse element of the subdomain nid, this is the job of the function
Shared2() which is shown in Figure 4.6. This function returns 1 as soon as it
discovers that even after migration of coarse element ¢ the vertex v is still shared
between both the subdomains and it returns 0 otherwise, i.e. after the migration

the two subdomains do not share vertex v.



CHAPTER 4. PARALLEL APPLICATION OF LOAD BALANCER IN 2-D 95

Changenbhd(), Changenbhd2() and Changenbhd3() Functions

When the element ¢ goes from nid to j there are 4 possibilities concerning each
vertex v of type 3 (a coarse one) or type 4 (a boundary one). These possibilities

are described below.

e v is shared among the subdomains nid and j both before as well as after
the migration. In this case we simply replace v by its counterpart in the

subdomain .

e v is shared among the subdomains nid and j before the migration (at the
relative position m) but not after it. Here we remove it from nid and adjust
the neighbouring relation. This is the job of the function Changenbhd() which

is shown in Figure 4.7.

e v is not shared among nid and j before the migration but shared after it. Here
we create a new vertex v; in j and make necessary changes in the subdomain

J- This is the job of the function Changenbhd2() which is shown in Figure 4.8.

o v is neither shared before nor shared after the migration. Here we create a
new vertex v; in j and make necessary changes in the subdomain j, we remove
v from nid and make some changes in the subdomain nid as well. This is the

job of the function Changenbhd3() which is shown in Figure 4.9.

4.5.2 Handling of Edges

When a coarse element goes from one subdomain to another subdomain we have
to consider various issues related to the edges of the element. The following two

subsections discuss this situation.

Non-Dirichlet Edge: EdgeChange() Function

Let e be a non-Dirichlet edge of the element ¢ which is about to be migrate from
subdomain nid (say) of type 1 to another subdomain j (say) of type 2. Then the
function FdgeChange() shown in Figure 4.10 makes the necessary changes which

are related with this migration.
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1. {Check all the neighbours} Repeat the following steps for k = 0 to p - 1.

(a) if(k == nid) continue,

(b) if(k == j) mk = m else mk = Shared(),

(¢) if(mk == 0) continue,

(d) Remove the mk'™ vertex from its neighbouring row which corresponds to
subdomain k,

(e) Send a message to the subdomain k which will also remove the mk"

vertex from its neighbouring row which corresponds to subdomain nid,
(f) transfer[nid][v] = transfer[nid][v] - 1,

(g) if(transfer[nid][v] == 1) break.
2. {Remove v from nid}

(a) transfer[nid|[v] = - transfer[nid][0],

(b) transfer[nid][0] = v.

3. {Update no. of boundary vertices} nomyintf = nomyintf - 1.

o

Figure 4.7: The function Changenbhd().
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-

1. {to check if it is a newly shared vertex} if(transfer|nid|[v] == 1) nomyintf =
nomyintf + 1.

2. {nid is a new neighbour at v to j} transferj][0] = transferj][0] + 1.

3. {insert v in the neighbouring list which corresponds to the neighbour j} trans-

fer[jl[transfer]j][0]] = v.

4. {pack the ID (the integer nid) and the multiplicity of v (the integer trans-
fer[nid|[v]) for the neighbour j}

5. {initialise the variable k1} k1 = 2.

6. {Check all the neighbours of nid other than j} Repeat the following steps for
k=0top-1.

(a) if(kl >transfer[nid][v]) break,
(b) if(k == jor k == nid) continue,
(¢) mk = Shared(),
(d) if(mk == 0) continue,
)
)

(e) {pack the ID (the integer k) of the subdomain k for the subdomain j},
(f) {store the information for the type 3 processor k so that it will be able
to update his neighbouring list which corresponds to the subdomain j},

(g) {increment the variable k1} k1 = k1 + 1.

7. {Increment the multiplicity of v} transfer[nid][v] = transfer[nid][v] + 1.

o

Figure 4.8: The function Changenbhd?2().
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a

~

{check if v is shared among nid and some other subdomain}

if(transfer[nid)[v] > 1) nomyintf = nomyintf- 1.

2. {pack the integer transfer[nid][v] - 1 for the subdomain j which will use this

to make the insertions in his corresponding neighbouring lists}.
3. {check all the neighbours} Repeat the following steps for k = 0 to p - 1.

a) if(transfernid][v] == 1) break,
b) if(k == nid or k == j) continue,

(c

d) if(mk == 0) continue,

(a)
(b)
) mk = Shared(),
(d)
)

(e) {store the information so that nid will delete latter on v from its neigh-

bouring list which corresponds to the subdomain k},

(f) {send the information to the subdomain k so that it will delete latter on
the counter part of v from its neighbouring list which corresponds to the

subdomain nid},

(g) {pack the ID (the integer k) of the subdomain k for the subdomain j}.

4. {Remove v from nid}

(a) transfer[nid|[v] = - transfer[nid][0],
(b) transfer[nid][0] = v.

- /

Figure 4.9: The function Changenbhd3().
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(Pack the ID of the subdomain with which e is shared (in case e is an internal
edge pack the integer -1 (which means e is an internal edge)) for subdomain

J-
2. If e is not shared between any two subdomains then do the following:

(a) Pack the necessary information for the subdomain j so that it will create
and establish the necessary edge data which corresponds to the edge e,

(b) Include e into the neighbouring list which corresponds to subdomain j
and pack the necessary information for the subdomain j so that it will do
the same for the the neighbouring list which corresponds to subdomain
nid,

(c¢) Pack the number of edges on the edge e and their coordinates for the
subdomain j.

3. If e is shared between the subdomains nid and j then do the following:

(a) Pack the relative sharing position of the edge e with the subdomain j for
the subdomain j,

(b) Store the informations for the subdomain nid so that it will remove e from
the subdomain nid and also from the neighbouring list which corresponds
to subdomain j,

(c¢) Pack the informations for the subdomain j so that it will remove the
counter part of e from the neighbouring list which corresponds to sub-
domain nid,

(d) Update the counter for the number of vertices of type 2.
4. If e is shared between the subdomains nid and k (# j) then do the following:

(a) Pack the necessary information for the subdomain j so that it will create
and establish the necessary edge data which corresponds to the edge e,

(b) Store the information so that e will be removed from the subdomain nid
and also from the neighbouring list which corresponds to subdomain k
and also send the necessary information to the subdomain k so that it
will also remove the counter part of e from the neighbouring list which
corresponds to subdomain nid and include it in the neighbouring list
which corresponds to the subdomain j,

(c¢) Pack the number of edges on the edge e and their coordinates for the
subdomain 7,

(d) Store the information for the subdomain jso that it will insert the newly
created edge into the neighbouring list which corresponds to the subdo-
main k,

(e) Update the counter for the number of vertices of type 2.

o

Figure 4.10: The function EdgeChange().
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-

1. Pack the integer representing the number of vertices and their coordinates for

the subdomain j.
2. Update the counter for the number of vertices of type 4.

K 3. Remove the Dirichlet edge e from the subdomain nid.

/

Figure 4.11: The function DirichEdgeChange().
Dirichlet Edge: DirichEdgeChange() Function

Let e be a Dirichlet edge of the element ¢ which is about to be migrate from subdo-
main nid to subdomain j. Since this type of edge is never shared between any pair
of subdomains, it must be removed from nid and be inserted into j. The function
DirichEdge Change(), shown in Figure 4.11, makes the necessary changes which are

related with this situation.

4.6 Different Issues Which are Related With Pro-
cessors of Type 2

Recall that the type 2 processors are those processors which receive migrating el-
ements from processors of type 1. The information about forthcoming coarse ele-
ments is received by means of packed messages. The job of this type of processor is
to receive the packed message and unpack the data and modify or establish the nec-
essary data structures. It starts creating a new coarse element by first modifying the
arrays nonodessub and noelemssub. After that if there are incoming vertices of type
1 it will create the location for them and will save the corresponding coordinates.
After that it will create the necessary space for the associated fine elements and
move the received fine mesh into the space. It then starts observing the three coarse
vertices so that the necessary neighbourhood relations with other subdomains may
be established. In likewise manner it examines the three old edges one by one and

establish the edge data and other neighbouring relations with other subdomains.
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4.7 Different Issues Which are Related With Pro-
cessors of Type 3

Recall that the type 3 processors are those processors whose data structures are
affected by the migration of coarse elements from processors of type 1 to processors
of type 2. The basic job of such processors are to modify the neighbourhood relations
arising due to above migrations. This modification is accomplished by means of

following two functions:

4.7.1 nsertion()

The job of this function is to make required insertions in the neighbouring lists

associated with other subdomains.

4.7.2  deletion()

The job of this function is to make required deletions in the neighbouring lists

associated with other subdomains.

4.8 Use of Message Passing Interface (MPI)

The message passing paradigm which is well known and well understood has been
widely used on parallel machines since their inception. However there have been
many different versions of it over the years, each designed with a specific hardware
in mind. This lack of standardisation used to be a major cause of not being able
to produce portable software and libraries for message-passing machines. MPT (like
PVM [41] which came before it) is a step forward in bringing a unified standard
into the parallel community. Basically MPI is a set of routines which are useful to a
wide range of users and implemented efficiently on a wide range of computers. MPI
is intended to become the de facto standard, gradually replacing vendor-specific
and other interfaces used by C/C++ and Fortran/Fortran90 programs today.

The MPI standardisation effort began in 1992 when an MPI Forum was estab-
lished consisting about 60 people from 40 organisations mainly from the United
States and Europe. Most of the major vendors of concurrent computers were in-

volved in MPI, along with researchers from universities, government laboratories,
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and industry. In designing MPI they sought to make use of the most attractive
features of a number of existing message passing systems, rather than selecting one
of them and adopting it as the standard. By 1994 an initial MPI standard was pub-
lished [34] and since that time many efficient implementations have been released
for all types of parallel architecture.

Since the original publication of the MPI standard in 1994 ([34]) there have been
a number of enhancements, and so this original version of the library is referred to as
MPI-1.1 (which also includes a small number of clarifications and minor corrections
to the original document [34]). There is now also an MPI-1.2 and an MPI-2. The
former contains further clarifications and corrections to MPI-1.1 whilst the latter
includes a number of significant extensions (see [35] for complete details of both
MPI-1.2 and MPI-2). These extensions include: support for parallel i/o, dynamic
processes, extended collective operations, and one-sided communication, as well as
specific bindings for both Fortran90 and C++. (Although MPI-2 has yet to be
accepted with the same enthusiasm as MPI-1 was when it was first announced.)

The implementation of the dynamic load-balancing algorithm that is used for the
numerical experiments described in the next section was completed using only the
MPI-1.1 version (as this was the only version available at the start of the project).
Incidentally, this version is also ideally suited to the divide and conquer philosophy
since it provides explicit mechanisms for the definition and splitting of processor
groups.

To implement the above divide and conquer philosophy we make use of the
function MPI_Comm_split() available in the MPI library. This function takes as
input a communicator, a colour, and a key. All processors with the same colour are
placed into the same new communicator, which is returned in the fourth argument.
The processes are ranked in the new communicator in the order given by the key.
In our application we assign the value 1 (value 0) if the processor is in the Sender
group (Receiver group) to colour and the key is taken to be the ID (rank) of the
processor.

When a coarse element migrates from the Sender group to the Receiver group
we have to update numerous complicated data structures (which not only involve
the processors on the Receiver and the Sender groups but also involve the proces-
sors outside these two groups), so we need to maintain the presence of the very

initial group. This means each processor is a member of two groups, the initial



CHAPTER 4. PARALLEL APPLICATION OF LOAD BALANCER IN 2-D 103

group (called the I_Group) which consists of all the p processors involved and which
remains the same throughout the discussion and the current group (known simply
as the Group) which is a variable group and changes with each application of the
Divide and Conquer algorithm. This is because each application of the Divide and
Conquer Approach means dividing the Group into two Groups (i.e. we essentially
have the identical first and fourth parameter in the function MPI_Comm split()).
Note that the above Divide and Conquer Approach is repeated until all the
Groups have exactly one processor. If at some stage a few groups still have more
than one processors in them then they will need to balance themselves; but after
this rebalancing step even the groups consisting of singleton processor may have to
update their data structures (if a migrated coarse element has something common

with these processors), hence the singleton groups are not entirely idle at this stage.

4.9 Some Examples

In this section we describe some computations in which a parallel implementation of
our dynamic load-balancing algorithm is tested and contrasted with parallel imple-
mentations of other alternative methods (which have been described and discussed
in detail in §2.7.2 and §2.5 respectively): those of Vidwans et al. [104] and Hu and
Blake [53].

Computational results which corresponds to some non-uniformly refined meshes
are dynamically load-balanced on between 2 and 16 processors of the SGI Origin
2000 system. We believe that the use of more than 16 processors for solving a 2-d
steady state problem is not justified on this particular machine. However in the next
chapter we do use more than 16 processors to solve a time dependent problem in
3-d as the size of such problems are so huge that the use of more than 16 processors

is totally justifiable.

4.9.1 Alternative Algorithms

Let us recall from §2.7.2, that our dynamic load-balancing algorithm which is de-
scribed in §4.2 is an improved and modified version of the dynamic load-balancing
algorithm of Vidwans et al. ([104]). These modifications are basically concerned in

modifying and improving a number of steps proposed by Vidwans et al. The first
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two modifications are concerned with bisecting a processor group into Sender and
Receiver subgroups. In the case of the New algorithm we relax the condition that
the size of these two new subgroups should be the same. Also instead of using the
processors IDs we use sorted version of Fiedler Vector for the purpose of bisecting
the original processor group. The final substantial modification is that the notion
of gains and gain densities is used in the local migration phase of our algorithm.
(Note Vidwans et al. propose two different methods for this purpose whose prons
and cons are discussed in §2.7.2.)

In order to show the gradual improvement of these modifications we have im-
plemented two versions of the algorithm of Vidwans et al. which we call VKV0 and
VKVI1. The VKVO version is the original algorithm of Vidwans et al. ([104]). In
the VKV1 version we use a slightly more sophisticated mechanism for dividing the
processors into two equally-sized groups than simply using the processors IDs. This
is achieved by considering the weighted partition communication graph (WPCQ)
(see §4.2.1) of the initial partition of the mesh Ty. We then use a weighted version
of the spectral bisection algorithm (see, for example, [46]) to order the processors
(as opposed to just using their IDs) before dividing them into two groups of equal
size. The algorithm then proceeds as in the VKVO0 algorithm above (but with the
modified scheme which uses the same concept of “gain” and “gain density” as used
in the case of the New algorithm for selecting which cells to migrate at each level of
the recursion). As clear from §4.10 the partitions produced by the VKVO0 version
is of poor quality while those produced by the VKV1 version are of comparable
quality as compared to the partitions produced by the other algorithms.

The other algorithm that we use for the purposes of comparison is denoted by
HB which is described by Hu and Blake in [53] (see §2.5 for details). This is not
based upon recursive splitting but instead seeks to calculate the optimal route from
an existing partition to one in which the weighted dual graph of the root mesh
is perfectly load-balanced. For the purposes of this algorithm the term “optimal”
is used to mean that the Euclidean norm of the migrated load is minimised. It
should be noted that the algorithm doesn’t take into account that the load on each
processor comes in discrete units (i.e. the weights of the root elements) and so it
may require that the weight to be transferred between two processors is a value
that is not actually achievable in practice. Clearly transferring an approximation

to this load is the best that can be practically achieved (and on occasions where
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the root mesh is very heavily locally refined this may be far from ideal).

In the original description of the algorithm, Hu and Blake only determine the
load which needs to be migrated from a set of processors to another set of processors.
The question of which elements are to be migrated is not addressed there. In order
to be as fair as possible in our parallel implementation of Hu and Blake’s method
we take great care to ensure that the particular root elements that are transferred
between processors are chosen with the overall cut-weight in mind: again making use
of the notion of the “gain” and “gain-density” of each node on a sending processor.
Hence we are really comparing our algorithm with improved version of Hu and
Blake’s algorithm.

At this point we would like to recall from §2.6 another two important software
tools which are now available in the public domain; namely ParJOSTLE ([109]) and
ParMETIS ([63]). At the time that the work of this chapter was undertaken these
had not yet been released and so we postpone comparison of the performance of

our algorithm with the performance of these algorithms until the next chapter.

4.9.2 Comparative Results

We are now in a position to compare our New dynamic load balancing algorithm
with the three algorithms described above. In this subsection we consider two
different sets of examples, each consisting of six test problems, which are related
to different geometries ) and different root meshes. In first set the number of
subdomains used are relatively small (2 and 4) whilst the second set uses relatively
large number of subdomains (8 and 16). The common feature of Examples 1, 2,
3,6, 7,8, 9, and 10 is that these root meshes are all subject to extremely non-
uniform local refinement which leads to a large proportion of the leaf elements
being contained on a relatively small number of root elements (this is typical in an
adaptive finite element or finite volume solver). In addition, the initial partition of
the leaf mesh is not very well load-balanced but it does have a short interprocessor
partition boundary (i.e. a small cut-weight). The other four problems (Examples
4,5, 11 and 12) do not have such extreme non-uniform local refinement.

In order to demonstrate the practical utility of our algorithm we also pro-
grammed a simple parallel FE solver for the Laplace’s equation subject to simple

Dirichlet boundary conditions. For the purpose of comparing we attempt to find
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the numerical solution to an accuracy of 4 decimal places throughout the chapter.
Also all our timings are wall clock timings (as the time is calculated by using the
MPI function, MPI_Wtime()).

The abbreviations used in Tables 4.1 to 4.6 and 4.8 to 4.13 have the following

meanings:

e %imb - which stands for the percentage imbalance of fine elements and it is
the percentage by which the total weight (number of fine elements) on the
current processor exceeds the average weight of a processor (mathematically

%imb = 100 * (weight - average weight) / average weight).

e crse - total number of coarse elements on the current processor.

Example 1. In this case the root mesh contains 792 elements and the leaf mesh
consists of 317911 elements which are split across 2 processors. The geometry
used is the “L-Shaped” domain taken from [51] and the initial partition has 198
root elements in one subdomain and 594 root elements in the other subdomain (see
Figure 3.9 which shows a slightly bigger coarse mesh of same geometry). The initial
maximum imbalance and cut-weight are 1.6% and 387 respectively. The initial
partition is shown in Table 4.1, which also contains the final partitions produced
by four algorithms. A summary of some of the salient features of these partitions

are given in Table 4.7 and results are discussed in §4.10.

Example 2. The geometry of the mesh is the same as in the previous example, but
we increase the size of the root mesh as well as the number of processors (to 4). The
new mesh now has 1354 root elements and 340294 fine elements in it. The initial
partition has between 76 and 661 root elements in each subdomain. The initial
maximum imbalance and cut-weight are 3.2% and 1359 respectively. The initial
partition is shown in Table 4.2 which also contains the final partitions produced by
four algorithms. A summary of some of the salient features of these partitions are

given in Table 4.7 and results are discussed in §4.10.

Example 3. Here the root mesh contains 1259 elements and the leaf mesh has 256440

elements which are split across 4 processors. The geometry is taken from [51]
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Coarse mesh : 792 elements
Final mesh : 317911 elements
: 158956 fine elements

Average load

Proc. | Proc. Load | Proc. Load | Proc. Load | Proc. Load | Proc. Load
Id. (Initial) (HB) (VKV0) (VKVI) (New)
%imb | crse | %imb | crse | %imb | crse | %imb | crse | %imb | crse
0 1.6 [ 198 | 0.0 | 192 | 0.0 | 156 | 0.0 | 192 | 0.0 | 192
1 -1.6 | 594 | 0.0 |[600 | 00 | 636 | 0.0 | 600 | 0.0 | 600
Table 4.1: Data for the partitions of Example 1 (involving parallel mesh generation

and repartitioning on 2 processors).

Coarse mesh : 1354 elements
Final mesh : 340294 elements
Average load : 85074 fine elements

Proc. | Proc. Load | Proc. Load | Proc. Load | Proc. Load | Proc. Load
Id. (Initial) (HB) (VKV0) (VKVI) (New)

%imb | crse | %imb | crse | %imb | crse | %imb | crse | %imb | crse

0 -4.1 | 661 | 00 |[670 | 0.0 |78 | 0.0 | 670 | 0.0 | 675

1 06 292 | 00 |[330| 00 |194| 0.0 [291 ] 0.0 | 334

2 02 |325] 00 |28 | 0.2 |325| 0.2 |325| 0.0 | 280

3 3.2 76 0.1 68 | -0.2 | 47 | -0.2 | 68 0.0 65

Table 4.2: Data for the partitions of Example 2 (involving parallel mesh generation

and repartitioning on 4 processors).
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Figure 4.12: The coarse mesh of Example 3.

(geometry 2) and features a complex hole in the interior of the region. The initial
partition has between 34 and 685 root elements in each subdomain (see Figure 4.12
for coarse mesh). The initial maximum imbalance and cut-weight are 3.4% and
1093 respectively. The initial partition is shown in Table 4.3 which also contains
the final partitions produced by four algorithms. A summary of some of the salient

features of these partitions are given in Table 4.7 and results are discussed in §4.10.

Example 4. Here the root mesh contains 3305 elements and the leaf mesh contains
275535 elements which are split across 4 processors. The geometry is the region
around a NACAQ012 aerofoil (see Figure 4.13 for a partial view of the coarse mesh
around the cavity) and the initial partition has between 669 and 984 root elements
in each subdomain. The initial maximum imbalance and cut-weight are 1.4% and
1104 respectively. The initial partition is shown in Table 4.4 which also contains
the final partitions produced by four algorithms. A summary of some of the salient

features of these partitions are given in Table 4.7 and results are discussed in §4.10.

Example 5. Here the root mesh contains 1210 elements and the leaf mesh contains

255093 elements which are distributed among 2 processors. The geometry used is
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Coarse mesh : 1259 elements

Final mesh : 256440 elements

Average load : 64110 fine elements

Proc. | Proc. Load | Proc. Load | Proc. Load | Proc. Load | Proc. Load
1d. (Initial) (HB) (VKV0) (VKVI) (New)

%imb | crse | %imb | crse | %imb | crse | %imb | crse | %imb | crse

0.1 |68 | -0.1 |698 | -0.7 | 536 | -0.7 | 681 | -0.7 | 681
1.5 34 0.3 30 0.9 31 0.8 31 0.8 31
-5.0 | 449 | -0.2 | 464 | -0.2 | 650 | 0.0 | 464 | 0.0 | 464
3.4 91 0.0 67 0.0 42 0.0 83 0.0 83

W N | = O

Table 4.3: Data for the partitions of Example 3 (involving parallel mesh generation

and repartitioning on 4 processors).
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Figure 4.13: The partial view of the coarse mesh of Example 4.
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Coarse mesh : 3305 elements

Final mesh : 275535 elements

Average load : 68884 fine elements

Proc. | Proc. Load | Proc. Load Proc. Load | Proc. Load | Proc. Load
1d. (Initial) (HB) (VKV0) (VKVI) (New)

%imb | crse | %imb | crse | %imb | crse | %imb | crse | %imb | crse

-0.7 | 984 | 0.0 | 1068 | 0.0 825 0.0 1982 ] 0.0 | 982
-0.8 | 823 | 0.0 839 | -0.4 1090 | -04 | 832 | -0.5 | 832
0.1 829 ] 0.0 750 0.5 995 0.5 | 840 | 0.5 | 840
1.4 1669 | 0.0 648 0.0 395 0.0 651 | 0.0 | 651

W N | =] O

Table 4.4: Data for the partitions of Example 4 (involving parallel mesh generation

and repartitioning on 4 processors).

Coarse mesh : 1210 elements
Final mesh : 255093 elements
Average load : 127546 fine elements

Proc. | Proc. Load | Proc. Load | Proc. Load | Proc. Load | Proc. Load
1d. (Initial) (HB) (VKV0) (VKVI) (New)

%imb | crse | %imb | crse | %imb | crse | %imb | crse | %imb | crse

0 1.3 1494 | 0.0 | 488 | 0.0 | 476 | 0.0 | 488 | 0.0 | 488
1 -1.3 | 716 | 00 | 722] 00 | 734 | 0.0 | 722 0.0 | 722

Table 4.5: Data for the partitions of Example 5 (involving parallel mesh generation

and repartitioning on 2 processors).

the “Texas” domain taken from PLTMG [5] (see Figure 3.10 for the corresponding
coarse mesh) and the initial partition has 494 root elements in one subdomain and
716 root elements in the other subdomain. The initial maximum imbalance and
cut-weight are 1.3% and 355 respectively. The initial partition is shown in Table
4.5 which also contains the final partitions produced by all four algorithms. A
summary of some of the salient features of these partitions are given in Table 4.7

and results are discussed in §4.10.
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Coarse mesh : 1568 elements
Final mesh : 362329 elements
Average load : 90582 fine elements

Proc. | Proc. Load | Proc. Load | Proc. Load | Proc. Load | Proc. Load
1d. (Initial) (HB) (VKV0) (VKVI) (New)

%imb | crse | %imb | crse | %imb | crse | %imb | crse | %imb | crse

3.:. [ 184 | 0.2 (175 | 03 | 173 | 0.2 | 175 | 0.2 | 175
-2.8 | 504 | -0.2 | 506 | -0.2 | 504 | -0.2 | 508 | -0.2 | 508
3.4 1258 0.1 | 249 | 0.0 | 241 | 0.0 | 249 | 0.0 | 249
-44 1622 | -0.1 | 6383 | 0.0 |650 | 0.0 |636 | 0.0 | 636

W N | =] O

Table 4.6: Data for the partitions of Example 6 (involving parallel mesh generation

and repartitioning on 4 processors).

Example 6. Here the geometry of the mesh is the same as of previous example
but the size of the mesh is bigger and we use more processors. Now the root
mesh contains 1568 elements and the leaf mesh contains 362329 elements which
are distributed among 4 processors. The initial partition has between 184 and 622
root elements in each subdomain. The initial maximum imbalance and cut-weight
are 3.8% and 1141 respectively. The initial partition is shown in Table 4.6 which
also contains the final partitions produced by all four algorithms. A summary of
some of the salient features of these partitions are given in Table 4.7 and results

are discussed in §4.10.

Example 7. Here the root mesh contains 1371 elements and the leaf mesh has 847659
elements which are split across 8 processors. The geometry is the same as of Exam-
ple 3. The initial partition has between 13 and 408 root elements in each subdomain
(see Figure 4.12 for coarse mesh). The initial maximum imbalance and cut-weight
are 3.1% and 3329 respectively. The initial partition is shown in Table 4.8 which
also contains the final partitions produced by four algorithms. A summary of some

of the salient features of these partitions are given in Table 4.14 and results are

discussed in §4.10.
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Example | Feature | Initial | HB | VKVO | VKV1 | New

I MaxImb | 1.6% | 0.0% | 0.0% | 0.0% | 0.0%
CutWt 387 413 613 413 413

G_R_Time | 22.7 0.0 0.0 0.0 0.0
SolTime | 264.7 | 258.5 | 264.1 | 258.6 | 258.7

I MaxImb | 3.2% | 0.1% | 0.2% | 0.2% | 0.0%
CutWt 1359 | 1523 | 1769 1487 | 1426

G_R_Time | 13.8 0.1 0.1 0.1 0.0
SolTime | 172.4 | 1374 | 1459 | 137.7 | 138.8

11 MaxImb | 3.4% | 0.3% | 0.9% | 0.8% | 0.8%
CutWt 1093 | 1107 | 1267 1157 | 1157

G_R_Time | 13.9 0.1 0.1 0.1 0.1
SolTime | 113.1 | 104.7 | 107.7 | 101.6 | 102.5

v MaxImb | 1.4% | 0.0% | 0.5% | 0.5% | 0.5%
CutWt 1104 | 1110 | 1265 1080 | 1079

G_R_Time | 19.7 0.2 0.1 0.1 0.1
SolTime 83.4 | 82.8 83.1 82.9 82.8

vV MaxImb | 1.3% | 0.0% | 0.0% | 0.0% | 0.0%
CutWt 355 308 502 308 308

G_R_Time | 15.78 | 0.0 0.0 0.0 0.0
SolTime | 166.2 | 164.1 | 165.9 | 164.1 | 164.0

VI MaxImb | 3.8% | 0.2% | 0.3% | 0.2% | 0.2%
CutWt 1141 | 1076 | 1537 1031 | 1032

G_R_Time | 13.3 0.1 0.1 0.1 0.1

SolTime | 146.5 | 144.3 | 145.9 | 142.2 | 1428

Table 4.7: Comparison of dynamic load-balancing results using four algorithms for

Examples 1 to 6.
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Coarse mesh : 1371 elements
Final mesh : 847659 elements
Average load :105957 fine elements

Proc. | Proc. Load | Proc. Load | Proc. Load | Proc. Load | Proc. Load
1d. (Initial) (HB) (VKV0) (VKVI) (New)

%imb | crse | %imb | crse | %imb | crse | %imb | crse | %imb | crse

-3.8 408 | 0.0 | 421 | -0.2 | 529 | -0.6 | 416 | -0.6 | 416
2.1 1385 <05 1392 -0.2 | 343 | -0.6 | 393 | -0.6 | 393
-1.6 13 0.1 18 0.2 35 -0.3 13 -0.3 13
-0.3 19 0.4 20 0.2 37 1.4 19 1.4 19
3.0 1368 ] 0.0 |360 | -0.9 |263 | -09 | 364 | -0.9 | 364
3.1 112 | -0.2 | 100 1.0 83 1.0 109 1.0 109
1.8 28 0.3 27 0.1 26 0.2 25 0.2 25
-0.2 38 0.0 33 -0.1 55 -0.1 32 -0.1 32

| O | O W N O

Table 4.8: Data for the partitions of Example 7 (involving parallel mesh generation

and repartitioning on 8 processors).
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Example 8. The geometry of the mesh is the same as in the third and previous
examples, but we increase the size of the mesh as well as the number of processors
to achieve the load balance and getting the numerical solution of the above PDE.
The new mesh now has 2071 root elements and 1776023 fine elements in it. The
initial partition has between 4 and 643 root elements in each subdomain. The initial
maximum imbalance and cut-weight are 6.9% and 8389 respectively. The initial
partition is shown in Table 4.9 which also contains the final partitions produced by
four algorithms. A summary of some of the salient features of these partitions are

given in Table 4.14 and results are discussed in §4.10.

Example 9. Here the root mesh contains 4153 elements and the leaf mesh contains
566919 elements which are split across 8 processors. The geometry is the same
as of Example 4. The initial partition has between 102 and 1113 root elements
in each subdomain. The initial maximum imbalance and cut-weight are 2.1% and
3327 respectively. The initial partition is shown in Table 4.10 which also contains
the final partitions produced by four algorithms. A summary of some of the salient

features of these partitions are given in Table 4.14 and results are discussed in §4.10.

Example 10. We consider here the same mesh as of Examples four and nine, but
with yet more elements and more processors. Now the root mesh contains 4701
elements and the leaf mesh contains 736255 elements which are distributed among
16 processors. The initial partition has between 54 and 1061 root elements in each
subdomain. The initial maximum imbalance and cut-weight are 2.3% and 9340
respectively. The initial partition is shown in Table 4.11 which also contains the
final partitions produced by four algorithms. A summary of some of the salient

features of these partitions are given in Table 4.14 and results are discussed in

§4.10.

Example 11. Here the root mesh contains 1784 elements and the leaf mesh contains
1116372 elements which are distributed among 8 processors. The geometry used
is the same as of Examples five and six above. The initial partition has between
104 and 437 root elements in each subdomain. The initial maximum imbalance and

cut-weight are 4.2% and 4097 respectively. The initial partition is shown in Table
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Coarse mesh : 2071 elements

Final mesh : 1776023 elements

Average load : 111001 fine elements

Proc. | Proc. Load | Proc. Load | Proc. Load | Proc. Load | Proc. Load
Id. (Initial) (HB) (VKV0) (VKVI) (New)
%imb | crse | %imb | crse | %imb | crse | %imb | crse | %imb | crse
0 -06 | 643 | 0.0 | 646 | -0.6 | 643 | -0.6 | 643 | -0.6 | 643
1 06 | 153 ] 00 | 151 | 06 | 153 | 0.6 | 153 | 0.6 | 153
2 -0.8 | 140 | 0.0 | 169 | -0.8 | 140 | -0.8 | 140 | -0.8 | 140
3 -1.1 | 483 | 2.0 | 424 | -0.3 | 382 | 0.0 | 483 | 0.0 | 488
4 6.9 14 2.1 9 2.3 9 2.1 10 0.1 9
5 -0.8 4 -0.8 4 1.2 6 1.4 5 0.0 5
6 -6.0 5 | -1.6 | 26 | -0.8 | 20 | -0.9 | 20 | 24 | 21
7 3.5 13 0.5 10 | -0.5 8 -0.7 8 0.5 10
8 2.5 16 2.5 16 2.5 16 2.5 16 2.5 16
9 0.6 | 469 | -1.3 | 456 | -2.8 | 504 | -2.8 | 462 | 0.0 | 454
10 -0.3 | 24 | -0.1 25 | -0.1 34 | -0.1 25 0.0 28
11 -1.4 | 23 | -0.1 29 | -0.1 66 | -0.1 26 0.2 25
12 -49 | 35 | 20 | 63 | -1.7 | 39 | -1.7 | 39 | -0.8 | 34
13 0.5 10 1.5 12 0.5 10 0.5 10 0.5 10
14 -3.7 13 0.6 20 0.2 23 0.3 15 0.1 17
15 5.0 16 0.6 11 0.4 18 0.3 16 0.1 18

Table 4.9: Data for the partitions of Example 8 (involving parallel mesh generation

and repartitioning on 16 processors).
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Coarse mesh : 4153 elements

Final mesh : 566919 elements

Average load : 70865 fine elements

Proc. | Proc. Load Proc. Load Proc. Load Proc. Load Proc. Load
1d. (Initial) (HB) (VKV0) (VKVI) (New)

%imb | crse | %imb | crse | %imb | crse | %imb | crse | %imb | crse

2.1 109 0.2 105 0.4 105 0.3 106 0.0 106

-1.5 | 707 | -0.4 | 695 | -0.1 | 571 0.0 691 0.1 698

0.6 102 0.6 102 0.6 102 0.6 102 0.0 126

-1.0 | 1082 | -0.2 | 1056 | -0.8 | 1169 | -0.8 | 1086 | -0.1 | 1054

2.0 103 0.5 100 0.1 99 0.1 100 0.1 100

-1.8 | 1113 | -0.2 | 1147 | -0.1 922 | -0.2 | 1115 | -0.1 | 1118

1.7 114 0.2 112 0.0 109 0.0 112 0.0 111

O | O W N = O

-21 | 823 | -0.6 | 836 | -0.1 | 1076 | 0.0 841 0.0 840

Table 4.10: Data for the partitions of Example 9 (involving parallel mesh generation

and repartitioning on 8 processors).
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Coarse mesh : 4701 elements

Final mesh : 736255 elements

Average load : 46016 fine elements

Proc. | Proc. Load | Proc. Load | Proc. Load | Proc. Load | Proc. Load
Id. (Initial) (HB) (VKV0) (VKVI) (New)
%imb | crse | %imb | crse | %imb | crse | %imb | crse | %imb | crse
0 0.5 55 -0.2 55 -0.4 54 -0.5 54 -0.4 54
1 1.1 73 0.2 72 1.1 73 1.1 73 0.1 72
2 2.3 103 0.2 99 0.8 98 0.9 101 0.9 101
3 =51 | 860 | -0.5 | 892 | -0.6 | 1040 | -0.7 | 878 | -0.3 | 890
4 0.4 55 0.4 55 -0.6 54 -0.6 54 0.9 55
5 1.8 71 0.9 70 0.6 69 0.5 69 0.3 70
6 2.0 102 0.2 98 0.3 95 0.5 99 0.1 100
7 -2.8 | 1061 | -1.0 [1042 | 0.6 919 0.6 |1061 | -0.8 | 1022
8 1.0 63 0.2 62 -0.4 63 -0.4 63 0.6 63
9 0.5 62 -0.1 61 -0.1 61 -0.3 61 -0.5 61
10 2.3 111 0.7 106 0.9 107 0.9 109 | -0.1 | 118
11 -3.7 | 1056 | -0.7 | 1072 | -0.5 | 942 | -0.6 | 1058 | -0.3 | 1045
12 -0.7 54 0.1 56 -0.7 54 -0.7 54 -0.7 54
13 1.8 80 0.4 78 0.1 79 0.4 80 -0.1 78
14 1.6 101 0.0 96 -0.2 95 -0.3 97 -0.3 | 129
15 2.8 | 794 | -0.9 | 787 | -0.7 | 898 | -0.6 | 790 0.7 789

Table 4.11: Data for the partitions of Example 10 (involving parallel mesh genera-

tion and repartitioning on 16 processors).
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Coarse mesh : 1784 elements
Final mesh : 1116372 elements
Average load : 139546 fine elements

Proc. | Proc. Load | Proc. Load | Proc. Load | Proc. Load | Proc. Load
1d. (Initial) (HB) (VKV0) (VKVI) (New)

%imb | crse | %imb | crse | %imb | crse | %imb | crse | %imb | crse

-3.6 | 111 0.1 1171 -0.5 | 117 | -0.4 | 116 | -0.4 | 116
-5.8 (104 ] -0.2 | 112 | 0.3 | 116 | 0.2 113 | 04 | 113
4.2 | 342 | 0.1 | 331 0.1 327 | 02 |332] 0.1 332
1.8 189 | 0.1 193 | 0.0 | 193 | 0.0 191 0.0 191
-2.3 (144 | 0.0 | 149 | 0.0 | 151 0.0 149 | 0.0 149
-0.7 | 155 0.0 | 158 | 0.1 159 | 0.1 159 | 0.0 158
23 437 0.0 [430 | 0.0 |429 | -0.1 | 431 0.0 | 432
4.1 302 | -0.1 | 294 | 0.1 |292| 0.1 293 | 0.1 293

| O | O W N = O

Table 4.12: Data for the partitions of Example 11 (involving parallel mesh genera-

tion and repartitioning on 8 processors).

4.12 which also contains the final partitions produced by all four algorithms. A
summary of some of the salient features of these partitions are given in Table 4.14

and results are discussed in §4.10.

Example 12. Here the geometry of the mesh is the same as of Examples five, six and
eleven. But the size of the mesh is bigger and we use more processors. Now the root
mesh contains 3896 elements and the leaf mesh contains 2329856 elements which
are distributed among 16 processors. The initial partition has between 93 and 539
root elements in each subdomain. The initial maximum imbalance and cut-weight
are 3.5% and 9612 respectively. The initial partition is shown in Table 4.13 which
also contains the final partitions produced by all four algorithms. A summary of
some of the salient features of these partitions are given in Table 4.14 and results

are discussed in §4.10.
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Coarse mesh : 3896 elements
Final mesh : 2329856 elements
Average load : 145616 fine elements

Proc. | Proc. Load | Proc. Load | Proc. Load | Proc. Load | Proc. Load
Id. (Initial) (HB) (VKV0) (VKVI) (New)
%imb | crse | %imb | crse | %imb | crse | %imb | crse | %imb | crse
0 -6.1 | 101 | 0.0 | 107 | -0.3 | 112 | -0.2 | 107 | -0.2 | 107
1 1.8 | 164 | -0.1 | 166 | 0.2 | 160 | -0.1 | 164 | 0.0 | 164
2 3.3 | 93 | -0.1 99 0.0 99 0.1 99 0.0 97
3 -3.9 | 111 | -0.2 | 116 | -0.1 | 121 | -0.1 | 115 | -0.1 | 116
4 21 1430 0.0 |[421| 0.1 |420| 0.0 | 421 | 0.0 | 421
5 3.5 1325 00 | 317 | 0.0 |324 | 0.0 [323] 0.0 | 324
6 -09 | 173 | -0.1 |18 | -0.1 | 182 | -0.1 | 179 | -0.1 | 179
7 1.1 | 241 00 | 244 | 0.0 | 250 | 0.0 |243 | 0.1 | 244
8 2.7 | 137 -0.3 | 142 | -0.3 | 142 | -0.1 | 142 | -0.1 | 142
9 23 |18 01 | 179 | 0.2 |18 | 0.0 | 180 | 0.0 | 180
10 -1.7 | 154 0.1 | 158 | 0.0 | 160 | 0.1 | 160 | 0.0 | 158
11 1.4 1200 04 | 199 00 | 199 | 0.1 | 197 | 0.1 | 199
12 03 |539 ] 00 |537 | 03 |539 | 03 |539 | 0.3 | 539
13 1.9 1368 | 0.1 |361 | 0.6 |362]| 07 |364] 0.7 | 364
14 1.4 1433 | 0.1 | 425 | -0.5 | 412 | -0.4 | 425 | -0.5 | 424
15 2.8 243 ] 0.0 |[240 | -0.3 | 234 | -0.2 | 238 | -0.2 | 238

Table 4.13: Data for the partitions of Example 12 (involving parallel mesh genera-

tion and repartitioning on 16 processors).
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Example | Feature | Initial | HB | VKVO0 | VKV1 | New

VII MaxImb | 3.1% | 0.4% | 1.0% | 1.4% | 1.4%
CutWt 3329 | 3909 | 4215 3436 | 3436
G_R_Time | 30.9 0.2 0.3 0.3 0.3

SolTime | 479.2 | 455.8 | 484.6 | 442.3 | 437.5

VIIT MaxImb | 6.9% | 2.5% | 2.5% | 2.5% | 2.5%
CutWt 8389 | 9425 | 9837 | 9272 | 9049
G_R_Time | 44.9 0.9 0.9 0.8 0.8

SolTime | 592.3 | 583.5 | 588.7 | 532.4 | 558.2

X MaxImb | 2.1% | 0.6% | 0.6% | 0.6% | 0.1%
CutWt 3327 | 3235 | 3601 3193 | 3356
G_R_Time | 304 0.4 0.4 0.3 0.3

SolTime | 139.8 | 142.0 | 150.6 | 118.2 | 118.5

X MaxImb | 23% | 0.9% | 1.1% | 1.1% | 0.9%
CutWt 9340 | 9379 | 9988 9370 | 9327
G_R_Time | 64.7 2.1 1.1 0.9 1.3

SolTime | 406.3 | 400.8 | 430.8 | 419.7 | 355.4

X1 MaxImb | 4.2% | 0.1% | 0.3% | 0.2% | 0.4%
CutWt 4097 | 3868 | 5199 3862 | 3815
G_R.Time | 194 0.2 0.4 0.3 0.3

SolTime | 404.3 | 390.9 | 401.7 | 392.6 | 392.4

XII MaxImb | 3.5% | 0.4% | 0.6% | 0.7% | 0.7%
CutWt 9612 | 10056 | 12956 | 9677 | 9632
G_R_Time | 32.3 0.8 1.3 1.1 1.1

SolTime | 836.3 | 818.2 | 831.7 | 828.4 | 809.9

Examples 7 to 12.

Table 4.14: Comparison of dynamic load-balancing results using four algorithms for
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4.10 Discussion

For simplicity and clarity we split our discussion in two parts. Part one of the dis-
cussion corresponds to Examples 1 to 6 above, where we have only 2 or 4 processors
involved. The second part of the discussion corresponds to Examples 7 to 12 above,

where the number of processors involved are either 8 or 16.

4.10.1 Discussion I

The results of applying the four algorithms to each of the first six test problems are
summarised in Table 4.7. In the table MaxImb stands for the maximum imbalance
(see §3.5 for a quantitative definition of this). Qualitatively, this means the largest
percentage by which the total weight on any single processor exceeds the average
weight per processor. Also, CutWt stands for the cut-weight. As in Chapter 3 it is
defined as the total weight of all of those edges of the weighted dual graph of the
root mesh which are cut by the partition boundary. The entry G_R_Time means
the generation or rebalance time of the corresponding mesh and SolTime means the
time taken by the solver to numerically solve the simple PDE mentioned above.

We start our discussion with Examples 1 and 5. In these problems the number of
subdomains are exactly 2. As expected all algorithms (except the VKVO algorithm)
produce identical results (as in the case of 2 processors all they have to do (except
the VKVO0 algorithm) is to shift some load from the heavily loaded processor to
the lightly loaded processor using the concept of “gain density”). In the case of
the VKVO algorithm results are different as it does not use the concept of “gain
density”. Upon completion all four algorithms produce perfectly load balanced
partitions.

There is a substantial increase in the cut weight for the VKVO0 algorithm in both
Examples 1 and 5 whereas for the other algorithms there is only a small increase
in Example 1 and a significant decrease in the cut weight for Example 5. There is
very little saving in the solution time. This is to be expected on the grounds that
the initial imbalance was not that high (being less than 1.7% in both the cases). As
a matter of fact the particular mesh-generator is very good in terms of producing
well balanced meshes in case of two subdomains (this is why we present only two
examples using 2 processors).

For other problems where we use four processors the VKV0 algorithm produces
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final partitions with relatively high cut-weight. In the case of the VKV1 and New
algorithms the cut-weight is relatively smaller and almost identical (except for Ex-
ample 2 where cut-weight produced by the New algorithm is smallest compared
to the other three). The cut-weights produced by the algorithm of Hu and Blake
are in between these two extremes. Also the solutions times are all roughly same.
Apart from Examples 2 and 3 the reduction in the solution time is not that sig-
nificant. This can be explained by observing that although the initial imbalance
in the current situation is higher than the corresponding imbalance in case of two
subdomains (except Example 4 where the initial imbalance is slightly less than that
of initial imbalance of Example 1) it is still not high enough to produce any signif-
icant increase in the solution time when solver is applied on the modified meshes.
Also the time to rebalance the meshes is negligible, always less than or equal to 0.1

seconds (except Example 4 where the algorithm of Hu and Blake took 0.2 seconds).

4.10.2 Discussion II

The results of applying the four algorithms to each of the last six test problems are
summarised in Table 4.14. All the headings in this table are exactly the same as
given in Table 4.7 and also have same meanings as described in §4.10.1.

There are a number of comments which need to be made concerning these re-
sults. Firstly, the cut-weights produced by the VKVO0 algorithm are higher than
the corresponding cut-weights produced by the VKV1 algorithm (as a matter of
fact cut-weights produced by the VKVO0 algorithm are highest as compared to the
cut-weights produced by all other algorithms). This clearly shows the effect of using
the concept of gains in the migration phase of the VKV1 algorithm. Also, by look-
ing at second problem (e.g. problem 8), it may appear on first inspection that all
four of these techniques perform quite poorly in terms of the size of the maximum
imbalance (the final maximum imbalance is well above the desired allowable target
of 1% (which we maintained throughout the chapter)). This is not really the case
however since the mesh refinement in this example is highly localised (as is typical
in the adaptive solution of partial differential equations) and so some root elements
have extremely large weights compared with others. This makes it impossible to
achieve an exact load-balance in this case without increasing the cut-weight mas-

sively. However the situation in all other five problems is not so bad. In these
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examples each algorithm consistently achieves a maximum imbalance of well under
1% (with two exceptions - in Example 7 a highest maximum imbalance of 1.4%
is produced by both the VKV1 and New algorithms and in Example 10 both the
VKV0 and VKV algorithms achieve a maximum imbalance of exactly 1.1%).

As mentioned above in all problems the VKV0 algorithm produces the highest
cut-weight as compared to the other three algorithms. Apart from Examples 7 and
9 the New algorithm has the least amount of cut-weight. In Example 9 the VKV1
algorithm enjoys the least amount of cut-weight. In Example 7 both the VKV1 and
New algorithms produce the least amount of cut-weight.

It is interesting to observe that the parallel execution times for all of these
algorithms are generally quite similar with only one exception, the exception being
Example 10 (which is rather surprising) in which case the algorithm of Hu and
Blake is taking twice as much time as taken by other two algorithms. But in either
case the cost of rebalancing the mesh is only a fraction of the cost of generating the
mesh. Hence for this class of problem with these reasonably good initial partitions,
it would appear that minimising data migration is not as important as obtaining a
high quality partition.

A final note for this section is to analyse the parallel execution time taken by our
simple solver. This is the most important parameter of any dynamic load balancing
algorithm. As far as the New algorithm is concerned the net saving in solver time
ranges from 3% to 15%. Except for Example 11 the SolTime of the solver using
the partition of the New algorithm is less than the corresponding SolTime of the
solver using the partition algorithm of Hu and Blake. The corresponding difference
in time in case of Example 11 is negligible. In all cases the SolTime taken by the

VEKVO algorithm is higher than the corresponding time of other algorithms.

4.11 Conclusions

In this chapter we have introduced a post-processing algorithm for the parallel
generation of unstructured meshes for use in parallel finite element or finite volume
analysis. The algorithm is based upon a parallel implementation of the dynamic
load-balancing algorithm of Chapter 3 so as to perform a local modification of the
partition of an underlying background grid from which the mesh was generated in

parallel. This modification aims to improve the load-balance whilst respecting data
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locality and ensuring that the length of the partition boundary is not increased
unnecessarily.

We have successfully demonstrated an implementation of this algorithm in two
dimensions. In addition it has been shown that the execution time of the code,
implemented in C using MPI, is extremely competitive. It should be noted however
that the post-processing step described here can only be as effective as the coarse
mesh allows it to be. For example, if the background grid only has a small number
of elements which are evenly spread across the domain and the fine mesh is very fine
in some particularly local regions, then it is possible that even an optimal solution of
the corresponding load-balancing problem may have a very large imbalance and/or
cut-weight (e.g. Example 8 above).

As mentioned earlier, at the time of undertaking the work of this chapter no
public domain dynamic load-balancing algorithm was available to compare with
our algorithm. Recently, parallel versions of the publicly available software pack-
ages METIS [63] and JOSTLE [109] have been released and so it would now also
be possible to make use of these within the post-processing step and compare the
performance of these with the above algorithm. We have not made these compar-
isons however since extensive use of both of these packages is made in the next
chapter in which the load-balancing algorithms are applied to a problem arising
in the adaptive solution of 3-d time-dependent equations. Moreover, some further
modifications to our new dynamic load-balancer have been made for this 3-d ap-

plication and it is with this final version that we compare the parallel versions of

METIS and JOSTLE.



Chapter 5

Parallel Application of the

Dynamic Load Balancer in 3-d

As mentioned in previous chapters the objective here is to demonstrate the per-
formance of our new dynamic load-balancing algorithm when used in conjunction
with any parallel, adaptive, time-dependent, 3-d flow solver. In order to get some
numerical results we decided to couple it with a particular parallel, adaptive and
time-dependent solver that has recently been developed at Leeds by Selwood et al.
([87, 88]) which is a parallel version of a serial code also developed at Leeds by
Speares and Berzins ([93]). An overview of this adaptive solver is given along with
a detailed description of the application of the the new dynamic load-balancing al-
gorithm. The effectiveness of this algorithm is then assessed when it is coupled with
the solver to tackle a model 3-d flow problem in parallel. Three alternative parallel
dynamic load balancing algorithms are also described and tested on the same flow
problem. Perhaps we should mention here the two major differences of this solver
as compared to the solver used in §4.9.2 (apart from the obvious fact that we are
now solving a 3-d problem over a 3-d mesh). The first major difference is the use of
halo objects. These halo objects in a particular subdomain are the copies of those
objects which are owned by other subdomains but which share a common boundary
with the current subdomain. The use of these halo objects simplifies the parallel
solver, albeit at the expense of more communication and more reallocation of data
objects during the execution of the dynamic load-balancing algorithm. The other
major difference is that the solution technique used by this solver is that of finite

volume method (see §1.3 and §5.2.2).

125
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5.1 Introduction

As stated in previous chapter the use of multiprocessor computers for the solution
of large, complex CFD and CM problems has great potential for both significant
increases in mesh sizes and the significant reduction of solution times. For transient
problems accuracy and efficiency constraints also require the use of mesh adaptation
since solution features on different length scales are likely to evolve. Significantly,
the meshes that are generally used for these problems on parallel machines are typi-
cally too large for serial adaptivity to be viable in conjunction with a parallel solver
without causing a major serial bottleneck and a large communication overhead. In
addition the size of the final mesh would be artificially constrained by the amount of
memory available to a single processor. There is therefore a clear need for parallel
adaptivity procedures to be supplied in addition to the parallel solver itself. This
adaptivity should allow both the addition and deletion of degrees of freedom across
the solution domain in a distributed manner, without ever requiring the entire mesh
to be held on a single processor — see [56] for a discussion of some examples of such
techniques.

In order for the parallel solver to perform efficiently however it is necessary
that, at each stage of the solution process, the work load of each processor should
be about equal (or proportional to its computational power in the case of an hetero-
geneous system). If this equality of load is initially achieved through appropriately
partitioning the original finite element/volume mesh across the processors then it
is clear that the use of parallel adaptivity will eventually cause the quality of the
partition to deteriorate. For the same reasons that it is undesirable to perform mesh
adaptivity on a single processor it is also undesirable to re-partition the mesh using
just one processor: it would carry a large communication overhead, become a serial
bottleneck and would be constrained by the amount of memory available to just
one processor. Hence we again conclude that a parallel load balancing technique is
required which is capable of modifying an existing partition in a distributed man-
ner so as to improve the quality of the partition (see §5.3 below) whilst keeping the
amount of data relocation as small as possible.

In this chapter we consider the dynamic load balancing problem which arises
in the adaptive solution of time-dependent partial differential equations using a

particular parallel adaptive algorithm based upon hierarchical mesh refinement.
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This algorithm is applicable to problems in three space dimensions of the form

%(%t) = L(u(z,1)) for (z,1) € Q x (0,77, (5.1)

where 0 C R? and £ is some spatial operator. It is based upon the adaptive
refinement of a coarse root mesh, 7Ty say, of tetrahedra which covers the spatial
domain 2. The flexibility of the data structures held within the adaptivity code
(see §5.2.1 below) means that the exact nature of the parallel solver may vary (e.g.
finite element or finite volume) provided it uses a tetrahedral mesh and is able to
work with a partition of the elements of this mesh.

In the following section an overview of this parallel adaptive algorithm is given,
along with a brief description of a particular parallel solver based upon a cell-centred
finite volume scheme. In §5.3 we re-visit the dynamic load balancing problem. The
final version of the parallel dynamic load-balancing algorithm is introduced in §5.4,
where its implementation is also outlined. The chapter then concludes by reporting
the results of a number of numerical tests which are used to contrast the four
load balancing algorithms (our algorithm, the Vidwans et al. algorithm ([104]) and
two very recent software tools for tackling this distributed problem in parallel)
considered for this particular adaptive solver.

To conclude this introductory section we observe that the parallel dynamic load
balancing problem addressed in this chapter can arise in numerous other contexts
in parallel computational mechanics. As well as the use of local h-refinement, other
algorithms which permit the distribution of the computational load across the do-
main {2 to vary as the simulation proceeds will require a dynamic load balancing
strategy. This includes algorithms based upon p-refinement (see [24, 27] for exam-
ple) or those for solving systems, such as those arising in phase-change problems
for example (e.g. [4]), in which the computational nature of the solution can change
with time at each point in ). Another important situation in which dynamic load
balancing often arises is when a parallel code is executed on an heterogeneous net-
work (such as a cluster of workstations for example), in which the performance of
each processor may vary with time as its load increases or decreases. All of these
situations may be treated by the algorithms discussed in §5.3 and §5.4 below how-
ever, for the sake of clarity, we now restrict all further discussion, examples and
comparisons to the three-dimensional h-refinement code described in the following

section.
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5.2 A Parallel Adaptive Flow Solver

5.2.1 A Parallel Adaptive Algorithm

The software outlined in this subsection (called PTETRAD) was written by Sel-
wood et al. [87, 88] and is based upon a parallel implementation of a general
purpose serial code, TETRAD (TETRahedral ADaptivity), for the adaptation of
unstructured tetrahedral meshes [93]. The technique used is that of local refine-
ments/derefinements of the mesh to ensure sufficient density of the approximation
space throughout the spatial domain, €2, at all times. A more complete discussion

of the parallel algorithms and data structures may be found in [87, 88, 89, 100].

Data structures

One of the major issues involved in parallelising an adaptive code such as TETRAD
is how to treat the existing data-structures. TETRAD utilises a complex tree-
based hierarchical mesh structure, with a rich interconnection between mesh objects.
Figure 5.1 indicates the mesh object structures used in TETRAD. In particular, note
that the main connectivity information used is ‘node to element’ and that a complete
mesh hierarchy is maintained by both element and edge trees. Furthermore, as the
meshes are unstructured, there is no way of knowing a-priori how many elements
share any given edge or node.

For parallelisation of TETRAD, there are two main data-structure issues. The
first is how to partition a hierarchical mesh, the second is that specific new data-

structures are required to support parallel partitioning of the mesh.

1. As we first discussed in §2.3 there are two options for partitioning a hierarchi-
cal mesh. The first is to partition the grid at the root or coarsest level, To. This
has a number of advantages. The local hierarchy is maintained on a processor
and thus all parent/child interactions (such as refinement/derefinement) are
local to a processor. The partitioning cost will also be low, as the coarse mesh
is generally quite small. The main disadvantage of this approach however is
that, for comparatively small coarse meshes with large amounts of refinement,
it may be difficult to get a good partitioning, both in terms of load balance

and communication requirements.

The other main approach is to partition the leaf-level mesh, i.e. the actual



CHAPTER 5. PARALLEL APPLICATION OF LOAD BALANCER IN 3-D 129
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Figure 5.1: Mesh data-structures in TETRAD

computational grid. The pros and cons of this approach are the opposite of
those with the coarse level partitioning. In particular, the quality in terms of
load balance and cut-weight of the partition is likely to be better, albeit at
the expense of a longer partitioning time. However, the data-structures have
to be more complicated as hierarchical operations, such as multigrid V-cycles
and derefinement for example, are no longer necessarily local to a processor

(and are therefore likely to be slower).

The approach taken for parallelising TETRAD is that of partitioning the
coarse mesh. The only disadvantage of this, that of possible suboptimal par-
tition quality, can be avoided if the initial, coarse mesh is scaled as one adds

more processors.

2. Given a partitioned mesh, data-structures are required in order to support
inter-processor communication and to ensure data consistency. Data con-
sistency is handled by assigning ownership of mesh objects (elements, faces,
edges and nodes). As is common in many solvers such as those used by [13, 87]

PTETRAD uses halo elements: these are copies of inter-processor boundary
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N

Figure 5.2: Regular refinement dissecting interior diagonal

elements (with their associated data) used to reduce communication over-
heads. In order to have complete data-structures (e.g. elements have locally
held nodes) on each processor, halo copies of edges, nodes and face objects
are also used. If a mesh object shares a boundary with many processors, it
may have a halo copy on each of these. All halos have the same owner as
the original mesh object. In situations where halos may have different data
than the original, the original is used to overwrite the halo copies and thus
is definitive. This is used to help prevent inconsistency between the various

copies of data held.

Adaptivity Algorithms

Both TETRAD [93] and its parallel implementation, PTETRAD [87, 88], use a
similar strategy to that outlined in [70] to perform adaptivity. Edges are first
marked for refinement/derefinement (or neither) according to some estimate or
indicator (provided as part of the parallel solver: see §5.2.2 below for example).
Elements with all edges marked for refinement may then be refined regularly into
eight children. To deal with the remaining elements which have one or more edge
to be refined so-called “green” refinement is used. This places an extra node at the
centroid of each element and provides a link between regular elements of differing
levels of refinement. The types of refinement are illustrated in Figures 5.2 and 5.3.
An important restriction that is made is that green elements may not be further
refined as this may adversely affect mesh quality ([78]). Instead, they are first
removed and then uniform refinement applied to the parent element.

Immediately before the refinement of a mesh, the derefinement stage occurs.

This may only take place when all edges of all children of an element are marked
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Figure 5.3: Green refinement by the addition of an interior node

for derefinement and when none of the neighbours of an element to be deleted are
green elements or have edges which have been marked for refinement. This is to
prevent the deleted elements immediately being generated again at the refinement
stage which follows. A further necessary constraint is that no edges or elements at
the coarsest level, 7y, may be derefined.

For further details of the implementation of these adaptive algorithms using
MPI ([34]) please refer to [87, 88]. These papers discuss important issues such as
performing parallel searches in order to allow refinement of edges of green elements
(which requires coarsening followed by regular refinement), maintaining mesh con-

sistency and dealing with halo data in parallel.

5.2.2 A Parallel Finite Volume Solver

In order to apply the above adaptive algorithm to systems of PDEs of the form
(5.1) a parallel solver is also required. The data structures supported by TETRAD
have been used with both finite element and finite volume solvers (cell-centred and
cell-vertex), however in the examples used in this chapter numerical experiments
are based only around a cell-centred finite volume scheme.

The scheme used is applicable when (5.1) represents a system of hyperbolic
conservation laws of the form

Ou | 0F(w)  0G(w)  OH(u)
ot dx dy 0z

~0, (5.2)

such as the three-dimensional Euler equations for example, and is a parallel version
of the algorithm described in detail [93]. This is a conservative cell-centred scheme
which is a second-order extension of Gudunov’s Riemann problem-based scheme

([39]), using MUSCL-type piecewise linear reconstructions of the primitive variables
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within each element ([102]). Although the time-stepping is explicit it is executed
in two distinct phases: a non-conservative predictor-type update (referred to in
[102] as the “Hancock step”) followed by a second half-time-step based upon the
application of the underlying conservation law. Implicit in this numerical method is
the need to solve a Riemann problem at each element interface at each time-step —
although this is only done approximately using a modified form of the approximate
solver described in [42].

The parallel version of the solver was also implemented by Selwood and Berzins
([87]). This implementation was quite straightforward due to the face data structure
that exists within the adaptivity software (see Figure 5.1 for example). To avoid any
conflicts at the boundary between two subdomains a standard “owner computes”
rule is used for each of the faces when solving the approximate Riemann problems to
determine fluxes. The use of halo elements ensures that the owner of each face has
a copy of all of the data required to complete these flux calculations provided the
halo data is updated twice for each time-step (i.e. immediately before the Hancock

step and then again before the second half-time-step).

5.3 Dynamic Load Balancing

As explained in §5.2.1 above parallel solvers such as PTETRAD require the compu-
tational domain to be partitioned into subdomains. In the case of PTETRAD this
partition should be applied to the coarse root mesh 7y (as discussed above in §5.2.1).
It is usual to express the requirements of such a partition in terms of the weighted
dual graph of this mesh. Let us recall from §2.3 the definition of the weighted dual
graph - for each element, i, of the root mesh define a corresponding vertex of the
dual graph and let this vertex have weight v;, where v; is the number of leaf-level
elements of the current mesh which lie within root element . For each pair of face
adjacent elements in the root mesh define an edge, j, of the dual graph and let this
edge have weight e;, where e; is the number of pairs of leaf-level elements in the
current mesh which meet along face j. We may also recall from §2.3 that, for a
homogeneous network of processors, we would like to be able to partition this graph

so that at all times the following four conditions are satisfied:

1. the total vertex weight in each subgraph is approximately equal,
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2. the total cut-weight of the partition is kept to a minimum,
3. there is a minimal amount of migration of data between subgraphs,

4. the load balancing should be completed in parallel.

Note that the first two constraints on the partition of 7y (or its dual graph)
should hold at each time-step. However, when parallel adaptivity occurs it is likely
that the weights v; and e; will change. In particular, changes in the vertex weights v;
are liable to cause an existing well-balanced partition of 75 to become unbalanced.
The objective of a dynamic load balancing algorithm is to modify an existing,
inadequate, partition of the dual graph so as to meet objectives 1 and 2 above but
in such a way that the last two constraints are also satisfied. The motivation behind
third requirement is simply that there is a significant communication overhead
associated with moving data between processors and this overhead should not be
allowed to nullify the computational advantages of obtaining an improved partition.
And without the last requirement there would be a sequential bottleneck in the
whole solution procedure at the load balancing stage which could seriously reduce

the overall efficiency and performance of the adaptive parallel solver.

5.4 Application of the Parallel Dynamic Load-
Balancing Algorithm

In this section we are going to modify the parallel dynamic load-balancing algorithm
already introduced in Chapters 3 and 4. These modifications are required to add
generality to the code due to the different nature of solver as well as underlying
meshes. This modified algorithm is similar in strategy to that of Chapter 4 with
Group Balancing, Data Migration and a Divide and Conquer philosophy. However,
as far as the implementation is concerned there are major differences between this

and Chapter 4. We now discuss these differences in details.

5.4.1 Calculation of WPCG

The idea of the Weighted Partition Communication Graph (WPCG) was first intro-
duced in §2.4 and since then has been used extensively in the previous two chapters.

Let us recall from §2.4 that a WPCG is obtained by having one vertex for every
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processor and an edge between two vertices if and only if they are face adjacent to
each other. Although the definition of WPCG is quite standard the actual determi-
nation may vary from one context to another. In the present situation the concept
of ’halo’ elements together with the hierarchical nature of the mesh plays an im-
portant role in the determination of the WPCG. During the bisection process of
the WPCG it is necessary to calculate the weighted Laplacian of WPCG as well as
the weights of all the vertices of WPCG. This is done in two phases. In phase one,
which is shown in Figure 5.4, we calculate the weights of all the vertices and edges
of the dual graph with the help of the c-style function FindWeights(). In phase two,
which is shown in Figure 5.5, we use these edge weights to find the weighted Lapla-
cian of the WPCG. It is interesting to observe the recursive nature of the function
FindWeights() shown in Figure 5.4 (the very first call to this function is of the form
FindWeights( Element, Element,WeightO f Element,WeightO f Element Edge)). 1t
may also be observed that as the original mesh is already distributed across a num-
ber of processors of a parallel machine, the calculations in Figure 5.4 are performed
by each processor on those roots elements which it currently owns. Also, the &k
row of the WPCG is assembled by the k' processor with the help of Figure 5.5
(note that in this figure the weight of 7 element face is the same as the weight of
the corresponding edge in the dual graph). Just like in §4.2.1 each processor, after
assembling its own row, sends it to one processor (which we call a master processor).
The master processor, after receiving all the contributions from all other processors,
forms the Laplacian and then divides the WPCG into two subgroups denoted by

Groupl and Group2 using the same procedure as in §3.2.1.

5.4.2 Use of Tokens

At each level of the recursive re-balancing algorithm, after deciding how much to
shift between the different processors, we face the same practical difficulties as
encountered in the previous chapter. However to overcome these difficulties we
take a different approach to that taken in the previous chapter. The first difference,
which is a major one, is concerned with passing the information associated with
moving a coarse element. In the previous chapter, whenever a coarse element goes
from one subdomain to another subdomain all of its associated data structures are

sent, even if the new home is only a transitory one. In the current implementation
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/FindWeights(ElmC,Elm,WeightOfElm,WeightOfElmEdge[]){ \
if (ElmC has no child){
WeightO f Elm—++;
if (ElmC has a face which is contained in j face of Elm)
Weight OfEImEdge[7]++;
}
for(s = 0; ¢ < Children of ElmC;i4++) {
BElmC?2 = i** child of EImC;
FindWeights( ElmC2,Elm W eightO f Elm W eightO f Elm Edge]));

N /

Figure 5.4: Calculation of weights of vertices and edges of the weighted dual graph.

the communication of the full coarse element hierarchies is left until the very end of
the load-balancing process, with much smaller tokens being passed instead during
the transitory stages. There are many reasons for doing this. One reason is that in
the previous chapter the load-balancing algorithm was used only once, usually at
the end of the generation of the mesh and before the solution process commences,
but in the current context it can be used possibly after each adaptation step (in
case the resulting imbalance is greater than a predefined tolerance). The second
reason is that in the 2-d application the size of the accompanying data structure of a
moving element is much smaller than the corresponding size in this 3-d application.
In fact the re-balancing times in all the problems of Chapter 4 were less than a
second (except problems 10 and 12 where it was slightly higher than a second),
showing that in 2-d steady state cases moving all the information associated with

a migrating coarse element is indeed not that costly.

5.4.3 No Colouring

The other major difference between the current implementation and that of the
previous chapter is to drop the colouring methodology. Note that the colouring
scheme in the 2-d case was implemented in order to avoid the complication involved

in the simultaneous migration of two neighbouring elements (without it, complicated



CHAPTER 5. PARALLEL APPLICATION OF LOAD BALANCER IN 3-D 136

@r(e = 1; e < total no. of root elements; e++ ){ \
Weight of the k™ vertex of WPCG = Weight of the root element e;
if (element e is not halo)
for(j = 155 < 4 j++)
if (1" face of element ¢ touches the boundary of i'* processor) {
Lapr[i] -= weight of j* element face;

Lapr[k] 4= weight of j'* element face;

N y,

Figure 5.5: Calculation of a row of the weighted Laplacian matrix.

forwarding messages would have been required to accomplish the same task). The
decision to drop the colouring approach in the current context is based upon the
fact that in the 3-d setup it is computationally more expensive to implement. In
2-d the average number of colours used was never more than 10. But in 3-d a given
vertex may have 100 (or even more) common tetrahedral elements. So the colouring
scheme would almost certainly adversely affect the performance of the dynamic load

balancer. An alternative to the colouring approach is discussed below.

5.4.4 Use of Global Communication

Rather than use the colouring scheme introduced in Chapter 4 in order to to avoid
data conflicts (see §4.3) we decided to make use of global arrays, whereby each
processor knows the owners of every coarse element in the entire coarse mesh.
These arrays are updated after each level of the recursive step. Note that each level
of the algorithm starts with a given group. Based upon the sorted version of the
Fiedler vector it is divided into two subgroups which are called Sender and Receiver
groups respectively. A certain number of coarse elements are marked for migration
from the Sender to the Receiver groups in an attempt to balance the computational
load evenly.

Initially each processor in a group is assigned as the owner of all non-halo coarse
elements which reside within the processor: the unique owner for each coarse el-

ement being the ID of the processor itself. Soon after these assignments, which
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are local to each processor, the list of elements owned by each processor is broad-
casted globally within the I_.Group (let us recall from §4.8 that each processor is a
member of two groups, the initial group (called the I_Group) which consists of all
the p processors involved and which remains the same throughout the discussion
and the current group (known simply as the Group) which is a variable group and
changes with each application of the Divide and Conquer algorithm). As a result
of this broadcast every processor now knows the owner of every coarse element in
the entire mesh. When a coarse element in the Sender group is marked for a mi-
gration, the owning processor of the coarse element keeps a note of this change (i.e.
it records the new owner of the coarse element (which is the ID of some processor
in the Receiver group)).

At the end of this symbolic migration step each candidate processor in the
Sender group broadcasts globally within the I_Group the new owners of those coarse
elements which are marked for migration from the processor. As a result of this
broadcast every processor knows not only the IDs of those processors from which
there would be migration of coarse elements but they also know the new owners
of these coarse elements. Soon after the broadcast each processor updates its own
version of the array which keeps track of the owner of all the coarse element in the
entire coarse mesh.

It may be pointed out here the this broadcasting step consists of two separate
steps. In the first step each candidate processor in the Sender group broadcasts
only the number of coarse elements marked for the migration. In the second step
it broadcasts the new owners of these coarse elements. This division of the broad-
casting was necessary. The first step is necessary for the second step. After the first
step each processor can create the necessary temporary arrays in order to accom-
modate the new owners of the marked coarse elements (which will be broadcast in
the second step).

An overview of the whole algorithm is given in Figure 4.3.

5.5 Computational Results

We now present some computational results produced by the new dynamic load-
balancing algorithm when used in conjunction with Selwood’s parallel adaptive flow

solver outlined in §5.3. We also compare our results with the results produced by the
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original algorithm of Vidwans et al. (for details see [104] and §2.7.2) which uses the
grid-connectivity-based approach for the purpose of the migration of nodes and two
publically available software tools; namely the ParJOSTLE ([107]) and ParMETIS
([63]) algorithms. It should be noted that this flow solver requires a partition of the
root mesh, 7o, such that the total number of leaf-level elements on each processor
is approximately equal. When there is heavy local refinement in some regions of
the spatial domain € (as in the examples below) it follows that the dual graph of
To will have highly disparate weights. Hence, in this chapter we are only testing
the performance of the dynamic load balancing algorithms for one specific class of

problem: the repartitioning of highly non-uniformly weighted graphs.

5.5.1 Examples

For these examples we apply the parallel adaptive Euler solver to model a shock
wave diffraction around the 3-d right-angled corner formed between two cuboid
mesh regions (taken from [88, 93]). The initial condition is of Rankine-Hugoniot
shock data at the interface of the two cuboid regions with a shock speed of Mach
1.7. Figures 3.11 and 3.12 illustrate how the mesh adapts to the solution as the
shock progresses through the domain. It is clear that although a partition of the
mesh for the initial condition may be good, it is unlikely to remain so as the solution
develops and thus dynamic load balancing of the distributed data will be required.
It should be noted that for all the calculations described below, the ParJOSTLE
algorithm was used with its graph reduction threshold parameter set to 300 (see [87]
where Selwood and Berzins use the same value) which appeared to give consistently
better results than either of the other values tried: 20 (the default) and 50. All other
parameters in both the ParJOSTLE and ParMETIS algorithms were left at their
default values. It should be observed that in the case of Example 1 the ParMETIS
and Vidwans et al. algorithms were unable to produce any results when we used
32 processors (in such cases the ParMETIS algorithm was showing the message
"Too much suppression’ and the results were absurd). Very recently (and after the
completion of this chapter) two alpha versions of the ParMETIS 2.0 algorithm have
been released which we hope would produce satisfactory results in this situation
(at the time of writing we have not yet experiment with these however). The

abbreviations used in Tables 5.1 to 5.8 have the following meanings:
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o MaxImb - which stands for maximum imbalance and it is the largest percent-
age by which the total weight on any single processor exceeds the average

weight per processor (see §3.5 for quantitative definition).

o CutWt - which stands for cut-weight and is defined as the sum of the weights
of all those edges in the weighted dual graph which cross between two different
subdomains (see Chapter 3).

e SolTime- which stands for the solution time and represents the wall-clock time
(in seconds) taken by the parallel finite volume solver, either using the initial
partition or using a new partition after application of one of the dynamic

load-balancing algorithms.

e RedTime - which stands for the repartitioning and redistribution times and
represents the wall-clock time (in seconds) that is required in calculating the
new partitioning vector and redistribution (i.e. copying) of mesh objects across
the machine as a result of applying one of the dynamic load-balancing algo-

rithms.

e Migration - total number of fine elements which are migrated by one of the

dynamic load-balancing algorithms.

o Migkreq - which stands for the migration frequency and represents the num-
ber of times the repartitioning needed to be undertaken throughout the 300
time-steps as a result of applying one of the dynamic load-balancing algo-

rithms (note the maximum value of Migkreq is 10 here).

Example 1. In the computations whose results are tabulated in Tables 5.1 to 5.4 the
root mesh, Ty, contained 5148 elements (see Figures 3.11 and 3.12 which illustrate
how the mesh adapts to the solution as the shock progresses through the domain).
Up to three levels of refinement are allowed which leads to an initial fine mesh con-
taining between 84446 to 91008 elements depending upon the number of processors
used (it is interesting to observe that the initial size depends upon the number of
processors used due to a variable number of green elements at the boundary which

depends on the number of processors used!) with many more elements appearing
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in this leaf-level mesh at later times (or there may be a drop in the size in case of
heavy coarsening). Note that throughout these calculations, the adaptive mesh has
resolution equivalent to a mesh of 2.6 million uniform, regular elements.

Table 5.1 presents a comparison of some partition-quality metrics when four
different dynamic load-balancing algorithms are applied using 2, 4, 8, 16 and 32
processors of an SGI Origin 2000 computer. In each case the initial partition has
a maximum imbalance of over 32%. The solution times quoted represent the wall-
clock time (in seconds) taken by the parallel finite volume solver for the next 30
time-steps, either using the initial partition or using a new partition after application
of one of the dynamic load-balancing algorithms. Finally, when load-balancing has
been performed, the total weight of all of the root elements of Ty that have been
migrated from one processor to another is quoted.

An alternative form of comparison between the four dynamic load-balancing
algorithms is provided by Tables 5.2, 5.3 and 5.4. For these results sequences
of 300 time-steps were taken with adaptivity taking place on up to ten occasions
(after every 30 time-steps). Whenever the maximum imbalance exceeds a prescribed
tolerance (which is 5% for Table 5.2, 10% for Table 5.3 and 15% for Table 5.4) after
mesh adaptivity has taken place the dynamic load-balancing algorithm is called.
The solution times quoted are the total times for the finite volume solver to complete
the 300 time-steps excluding the repartitioning and redistribution times (which are
also quoted separately). This gives an indication of the quality of the dynamic load-
balancing algorithm. As additional, architecture independent, comparison of their
overheads these tables also show the total weight of all of the root elements that
were migrated throughout the 300 time steps (Migration) as well as the number
of times that repartitioning needed to be undertaken (Migkreq). See §5.6 for a

discussion of these results.

Example 2. In the computations whose results are tabulated in Tables 5.5 to 5.8
the root mesh, Ty, contained 34560 elements (this is a little more than for the
illustrative examples shown in Figures 3.11 and 3.12). Up to three levels of refine-
ment are allowed which leads to an initial fine mesh containing between 291094 to
304186 elements depending upon the number of processors used (again the initial
size depends upon the number of processors used due to a variable number of green

elements at the boundary) with many more elements appearing in this leaf-level
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Initial | ParMETIS | ParJOSTLE | Vidwans et al. | Recursive

Processors 2

MaxImb 40% 5% 0% 0% 0%

CutWt 958 1709 959 2387 2127
SolTime | 126.0 96.4 91.3 95.2 93.8
Migration - 17909 44955 16780 16786
Processors 4

MaxImb 34% 4% 1% 0% 0%

CutWt 1720 2423 2399 3958 2791
SolTime 62.0 48.3 46.4 474 46.6
Migration - 18831 27122 23750 34445
Processors 8

MaxImb 33% 5% 3% 2% 0%

CutWt 3064 4139 4129 5634 4905
SolTime 32.0 25.3 26.2 27.5 27.3
Migration - 21435 44982 26569 25182
Processors 16

MaxImb 55% 9% 9% 2% 4%

CutWt 4760 6439 5525 8010 7510
SolTime 17.0 12.1 12.0 12.1 11.9
Migration - 35001 63580 31507 30424
Processors 32

MaxImb | 143% - 42% - 24%

CutWt 5616 - 7103 - 8959
SolTime 11.2 - 6.7 - 6.2
Migration - - 43884 - 36714

re-balancing step for Example 1.

Table 5.1: Some partition-quality metrics immediately before and after a single
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Initial | ParMETIS | ParJOSTLE | Vidwans et al. | Recursive

Processors 2

SolTime | 1054.0 848.6 811.1 808.3 818.9
RedTime - 9.3 26.5 21.8 30.3
Migration - 17909 57892 18891 21560
Migkreq - 1 2 2 3
Processors 4

SolTime | 518.3 413.9 406.6 420.9 408.4
RedTime - 32.8 18.5 14.1 11.8
Migration - 30296 65719 25222 40382
Miglreq - 7 3 2 2
Processors 8

SolTime | 276.4 205.3 214.5 239.2 234.8
RedTime - 17.3 56.7 27.7 33.8
Migration - 48636 309312 35063 36976
Migkreq - 4 7 5 7
Processors 16

SolTime | 146.2 107.0 108.9 124.8 113.9
RedTime - 34.8 51.4 43.1 28.1
Migration - 133303 498071 57339 47317
Miglreq - 10 10 10 7
Processors 32

SolTime | 104.3 - 66.5 - 71.3
RedTime - - 36.9 - 32.1
Migration - - 263986 - 69507
Miglreq - - 10 - 10

Table 5.2: Solution times, redistribution times, total migration weights and migra-
tion frequencies for 300 time-steps using a re-balancing tolerance of 5% for Example

1.
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Initial | ParMETIS | ParJOSTLE | Vidwans et al. | Recursive

Processors 2

SolTime | 1054.0 848.6 810.9 833.2 826.3
RedTime - 9.3 12.3 12.9 22.7
Migration - 17909 44955 16780 20949
Miglreq - 1 1 1 2
Processors 4

SolTime | 518.3 416.6 414.8 429.3 408.4
RedTime - 15.6 11.6 8.8 11.8
Migration - 27616 48654 23750 40382
Miglreq - 3 2 1 2
Processors 8

SolTime | 276.4 206.1 212.3 240.9 235.5
RedTime - 11.5 14.7 16.6 16.4
Migration - 26948 95260 32477 34547
Miglreq - 3 2 3 3
Processors 16

SolTime | 146.2 109.1 110.2 125.8 115.0
RedTime - 21.4 30.9 22.3 16.1
Migration - 103898 294794 50006 46165
Miglreq - 5 6 5 4
Processors 32

SolTime | 104.3 - 64.2 - 69.7
RedTime - - 32.3 - 33.0
Migration - - 251810 - 68871
Miglreq - - 10 - 10

Table 5.3: Solution times, redistribution times, total migration weights and mi-
gration frequencies for 300 time-steps using a re-balancing tolerance of 10% for

Example 1.
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Initial | ParMETIS | ParJOSTLE | Vidwans et al. | Recursive

Processors 2

SolTime | 1054.0 848.6 810.9 833.2 831.7
RedTime - 9.3 12.3 12.9 12.5
Migration - 17909 44955 16780 16786
Miglreq - 1 1 1 1
Processors 4

SolTime | 518.3 432.1 414.7 429.3 408.4
RedTime - 17.4 11.7 8.8 11.8
Migration - 29258 48654 23750 40382
Miglreq - 3 2 1 2
Processors 8

SolTime | 276.4 224.7 219.6 222.6 215.1
RedTime - 8.9 15.4 13.2 15.2
Migration - 25407 102105 32268 35409
Migkreq - 2 2 2 3
Processors 16

SolTime | 146.2 112.8 113.8 124.1 115.4
RedTime - 14.9 14.7 17.8 11.9
Migration - 91719 164763 46843 44615
Miglreq - 3 3 4 3
Processors 32

SolTime | 104.3 - 66.1 - 71.2
RedTime - - 34.3 - 23.1
Migration - - 238785 - 63810
Miglreq - - 10 - 6

Table 5.4: Solution times, redistribution times, total migration weights and mi-
gration frequencies for 300 time-steps using a re-balancing tolerance of 15% for

Example 1.
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mesh at later times (or there may be a drop in the size in case of heavy coarsen-
ing). Note that throughout these calculations, the adaptive mesh has resolution
equivalent to a mesh of 17.7 million uniform, regular elements.

Table 5.5 presents a comparison of some partition-quality metrics when the four
different load-balancing algorithms are applied using 2, 4, 8, 16 and 32 processors
of an SGI Origin 2000 computer. In each case the initial partition has a maximum
imbalance of over 28%. The solution times quoted represent the wall-clock time
(in seconds) taken by the parallel finite volume solver for the next 30 time-steps,
either using the initial partition or using a new partition after application of one
of the dynamic load-balancing algorithms. Finally, when load-balancing has been
performed, the total weight of all of the root elements of Ty that have been migrated
from one processor to another is quoted. On this occasion the ParMETIS and
Vidwans et al. algorithms did work satisfactorily (due to there being a larger coarse
mesh).

An alternative form of comparison between the four load-balancing algorithms
is provided by Tables 5.6, 5.7 and 5.8. For these results sequences of 300 time-
steps were taken with adaptivity taking place on up to ten occasions (after every
30 time-steps). Whenever the maximum imbalance exceeds a prescribed tolerance
(which is 5% for Table 5.6, 10% for Table 5.7 and 15% for Table 5.8) after mesh
adaptivity has taken place the dynamic load-balancing algorithm is called. The
solution times quoted are the total times for the finite volume solver to complete
the 300 time-steps excluding the repartitioning and redistribution times (which are
also quoted separately). This gives an indication of the quality of the dynamic load-
balancing algorithms. As additional, architecture independent, comparison of their
overheads these tables also show the total weight of all of the root elements that
were migrated throughout the 300 time steps (Migration) as well as the number
of times that repartitioning needed to be undertaken (Migkreq). Note that Table
5.8 has no entries which corresponds to two or four processors as these entries are
identical to the corresponding entries of Table 5.7 (as a matter of fact if tolerance
is > 10 the load-balancing algorithm is called only at the beginning of the whole
process, provided the number of processors are < 4). See §5.6 for a discussion of

these results.
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Initial | ParMETIS | ParJOSTLE | Vidwans et al. | Recursive

Processors 2

MaxImb 29% 4% 0% 0% 0%

CutWt 1660 1626 1793 5456 3358

SolTime | 417.2 355.7 375.4 376.8 345.3
Migration - 53844 73808 44539 44539
Processors 4

MaxImb 43% 5% 1% 0% 0%

CutWt 3334 5155 3873 9637 7815

SolTime | 251.7 181.4 185.7 191.4 192.2
Migration - 79133 75248 70754 78642
Processors 8

MaxImb 48% 5% 2% 0% 2%

CutWt 6776 8699 7156 15947 11395
SolTime | 139.1 87.7 91.6 90.2 91.5
Migration - 83249 220105 89811 77261
Processors 16

MaxImb 91% ™% 2% 0% 1%

CutWt 9183 12056 10719 20490 16027
SolTime 97.3 48.1 42.4 44.6 42.3
Migration - 131248 192875 115058 117723
Processors 32

MaxImb 96% 9% 9% 2% 2%

CutWt 12875 16162 15009 23457 22950
SolTime 42.5 23.8 24.7 24.7 23.8
Migration - 134191 176209 129931 128408

re-balancing step for Example 2.

Table 5.5: Some partition-quality metrics immediately before and after a single
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Initial | ParMETIS | ParJOSTLE | Vidwans et al. | Recursive

Processors 2

SolTime | 3013.4 2920.2 2873.7 2876.1 2567.6
RedTime - 52.8 34.7 44.7 28.8
Migration - 60242 73808 44539 44539
Miglreq - 2 1 1 1
Processors 4

SolTime | 1856.7 1495.1 1260.1 1314.0 1323.9
RedTime - 25.8 42.1 128.6 44.1
Migration - 79133 157523 92664 83911
Miglreq - 1 2 5 2
Processors 8

SolTime | 1264.6 776.2 809.2 822.7 804.5
RedTime - 68.5 113.8 109.3 64.0
Migration - 129401 682913 125472 110418
Miglreq - 6 4 6 4
Processors 16

SolTime | 876.6 414.1 413.1 473.4 444.5
RedTime - 84.8 100.1 104.1 115.3
Migration - 326707 889233 162362 185772

Miglreq - 9 5 6 8
Processors 32

SolTime | 422.4 214.9 225.3 263.1 239.9
RedTime - 72.3 128.0 113.7 93.4
Migration - 249751 1672496 186305 192690

Miglreq - 10 10 9 9

Table 5.6: Solution times, redistribution times, total migration weights and migra-
tion frequencies for 300 time-steps using a re-balancing tolerance of 5% for Example

2.
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Initial | ParMETIS | ParJOSTLE | Vidwans et al. | Recursive
Processors 2
SolTime | 3013.4 2880.1 2873.7 2876.1 2567.6
RedTime - 30.5 34.7 44.7 28.8
Migration - 53844 73808 44539 44539
Miglreq - 1 1 1 1
Processors 4
SolTime | 1856.7 1495.1 1475.1 1501.7 1493.8
RedTime - 25.8 19.2 43.0 25.0
Migration - 79133 75248 70754 78642
Miglreq - 1 1 1 1
Processors 8
SolTime | 1264.6 805.8 833.2 880.1 814.1
RedTime - 39.9 42.3 56.9 40.4
Migration - 110435 362968 118299 99744
Miglreq - 3 2 3 2
Processors 16
SolTime | 876.6 414.2 430.2 468.3 432.6
RedTime - 48.8 63.2 70.2 75.1
Migration - 217530 586957 158496 169039
Miglreq - 4 3 4 4
Processors 32
SolTime | 422.4 217.6 211.5 265.3 232.3
RedTime - 54.6 77.9 88.0 53.2
Migration - 292716 1184563 180421 173236
Miglreq - 6 7 6 3

Table 5.7: Solution times, redistribution times, total migration weights and mi-

gration frequencies for 300 time-steps using a re-balancing tolerance of 10% for

Example 2.
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Initial | ParMETIS | ParJOSTLE | Vidwans et al. | Recursive
Processors 8
SolTime | 1264.6 791.9 817.5 805.7 801.6
RedTime - 27.1 40.2 48.3 16.2
Migration - 95914 373527 114166 77261
Miglreq - 2 2 2 1
Processors 16
SolTime | 876.6 426.1 401.6 451.1 420.8
RedTime - 36.3 27.0 52.2 56.9
Migration - 171606 390243 157631 170719
Miglreq - 3 2 3 3
Processors 32
SolTime | 422.4 211.1 227.5 279.8 245.6
RedTime - 46.0 56.6 69.1 48.8
Migration - 209883 668654 161495 160964
Miglreq - 6 4 3 3

Table 5.8: Solution times, redistribution times, total migration weights and mi-

gration frequencies for 300 time-steps using a re-balancing tolerance of 15% for

Example 2.
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5.6 Discussion

For simplicity and clarity we split our discussion in two parts. Part one of the dis-
cussion corresponds to Example 1 above, where we have a relatively smaller coarse
mesh. The second part of the discussion corresponds to Example 2 above, where
the coarse mesh is relatively larger. Also our dynamic load-balancing algorithm is
referred as the Recursive algorithm. These discussions basically involve the effi-
ciency and performance of the four dynamic load-balancing algorithms. The other
important factor of the parallel adaptivity itself is not discussed here. The issues

related to adaptivity are addressed by Selwood and Berzins and can be found in

[87].

5.6.1 Discussion I

We first discuss the results shown in Table 5.1. It is clear that the cut-weights pro-
duced by the Vidwans et al. algorithm are highest as compared to the cut-weights
produced by all other algorithms. The Recursive algorithm produces the best load-
balance after re-partitioning (except the case of 16 processors where the Vidwans et
al. algorithm produces the best load-balance after re-partitioning), however this is
always achieved at the expense of a larger cut-weight as compared to the ParMETIS
and ParJOSTLE algorithms. In general the ParMETIS algorithm tends to migrate
the least amount of data albeit at the expense of a larger value of MaxImb. The
ParJOSTLE algorithm produces a new partitioning in which the value of the pa-
rameter CutWt is the least. However it also tends to move the highest number of
elements (with one exemption, the exemption being the case of 4 processors where
the Recursive algorithm migrates the highest number of elements). The ParJOS-
TLE algorithm also produces a new partitioning in which the value of MaxImb
is better then the corresponding value produced by the ParMETIS algorithm but
worse than that produced by the Recursive and Vidwans et al. algorithms.

As far as the parameter SolTime is concerned it is roughly the same for all
techniques. It also scales well (as it reduces approximately to half when the number
of processors are doubled).

We next consider the results shown in Table 5.2 where we are using a re-
balancing tolerance of 5%. From this table it is clear that the value of SolTime

is roughly the same (except two cases: in the case of 2 processors it is slightly
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higher for the ParMETIS algorithm and in the case of 8 processors it is slightly
higher for the Vidwans et al. and Recursive algorithms) for all four techniques.
It is also clear from this table that the the ParJOSTLE algorithm produces the
most data migration. In the case of 2 processors it is the ParMETIS algorithm
who migrates the least amount of data whilst in the cases of 4 and 8 processors
this property is enjoyed by Vidwans et al. algorithm and in the last two cases it
is the Recursive algorithm who migrates the least amount of data. As far as the
value of the parameter RedTime is concerned, it is smallest in the cases of 2 and 8
processors for the ParMETIS algorithm (in other 3 cases this property is enjoyed
by the Recursive algorithm). In the last 3 cases (where we use more than 4 pro-
cessors) this value is highest in the case of the ParJOSTLE algorithm. Also this
value is highest for the Recursive and ParMETIS algorithms in the cases of 2 and
4 processors respectively.

In the case of Table 5.3 where we are using a re-balancing tolerance of 10%, the
value of the parameter SolTime is relatively high for the Vidwans et al. algorithm
(except in the case of 2 processors where it is relatively high for the ParMETIS
algorithm). For other techniques it is roughly the same (except two cases: in the
case of 2 processors it is relatively small for the ParJOSTLE algorithm and in the
case of 8 processors it is the second highest for the Recursive algorithm). The value
of the parameter RedTime is smallest respectively for the ParMETIS algorithm in
the cases of 2 and 8 processors, for the Vidwans et al. algorithm in the case of
4 processors, for the Recursive algorithm in the case of 16 processors and for the
ParJOSTLE algorithm in the case of 32 processors. As far as the smallest value
of the parameter Migration is concerned its behaviour is exactly the same as the
behaviour of the RedTime above (except two cases: in the case of 2 processors the
smallest value is produced by the Vidwans et al. algorithm whilst in the case of 32
processors the smallest value is produced by the Recursive algorithm). The value
of the parameter Migration is still highest for the ParJOSTLE algorithm.

We next turn to the Table 5.4 where we are using a re-balancing tolerance of
15%. Here the values of the parameter SolTime are relatively high in the cases
of the ParMETIS and Vidwans et al. algorithms and are relatively low for other
techniques (except two cases: for 16 processors case this value is smallest for the
ParMETIS algorithm and for 2 processors case this value is also high for the Re-

cursive algorithm). The value of the parameter RedTime is smallest respectively
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for the ParMETIS algorithm in the cases of 2 and 8 processors, for the Vidwans et
al. algorithm in the case of 4 processors and for the Recursive algorithm in the last
2 cases. The behaviour of the parameter Migration is exactly the same as in Table
5.3.

It is clear from above analysis that every algorithm has some plus points and
some minus points. In general the Recursive, Vidwans et al. and ParMETIS algo-
rithms tend to migrate the least amount of data whilst the ParJOSTLE algorithm
tends to migrate the huge amount of data. The Recursive and Vidwans et al. al-
gorithms lead to the best load-balance whilst the ParMETIS algorithm leads to
the worst load-balance after re-partitioning. The ParJOSTLE algorithm produces
a partitioning in which this indicator is better than the ParMETIS algorithm and
worse than other techniques. As far as the the value of the parameter CutWt is
concerned the ParJOSTLE algorithm is a clear cut winner while the Vidwans et al.
algorithm finishes at the bottom place — with the ParMETIS algorithm taking the
middle ground. But they all have one common property, the sum of RedTime and
SolTime is much less than the corresponding value of SolTime (except that in the
case of 16 processors the ParJOSTLE (with a re-balancing tolerance of 5%) and
Vidwans et al. (with a re-balancing tolerance of 5% and 10%) algorithms take a
little higher time) where no dynamic load-balancing algorithm is called upon (see
Figures 5.6 to 5.8 which clearly supports the conjecture).

Finally, it is interesting to observe the behaviour of the parameter Migkreq. The
value of MigFreq increases as one increases the number of processors. This is due to
the fact that the more processors are used, the more quickly imbalance is generated

by the adaptation.

5.6.2 Discussion I1

We next discuss the results shown in Table 5.5. Let us recall that these results
corresponds to a larger base mesh which has 34560 coarse elements. Just like the
smaller mesh of Example 1, here too, the Recursive and Vidwans et al. algorithms
tend to produce the best load-balance after re-partitioning, however this is achieved
at the expense of a larger cut-weight. In particular the cut-weights produced by
the Vidwans et al. algorithm are highest as compared to other techniques. Fxcept

the cases of 4 and 16 processors, the Recursive algorithm migrates the least amount
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of data (this property is enjoyed by the Vidwans et al. algorithm in the cases of 4
and 16 processors). Also the value of SolTime is roughly same for all algorithms
(except that in the case of 2 processors it is relatively high for the ParJOSTLE
algorithm and relatively small for the Recursive algorithm). The ParJOSTLE algo-
rithm produces new partitioning in which the value of the parameter CutWt is the
least one (except 2 processors case where this property is enjoyed by the ParMETIS
algorithm) but this is always achieved at the expense of huge data migration. As
in the case of smaller mesh, the ParMETIS algorithm tends to produces the worst
load-balance after re-partitioning. The amount of imbalance produced by the Par-
JOSTLE algorithm is roughly the same as produced by the Recursive and Vidwans
et al. algorithms (except 32 processors case in which it produces an imbalance of
9% as oppose to 2% produced by the Recursive and Vidwans et al. algorithms).

We next turn to the Table 5.6 which corresponds to a re-balancing tolerance
of 5%. Here the value of the parameter SolTime is highest respectively for the
ParMETIS algorithm in first two cases and for the Vidwans et al. algorithm for
last three cases. There is no clear pattern as far as the parameters RedTime and
Migration are concerned. The first parameter is small for the Recursive algorithm
in the cases of 2 and 8 processors and this property is enjoyed by the ParMETIS
algorithm for remaining 3 cases. The second parameter is small respectively for the
ParMETIS algorithm in the case of 4 processors, for the Vidwans et al. algorithm
in the cases of 16 and 32 processors and for the Recursive algorithm in the cases of
2 and 8 processors. As usual heavy migration results in the case of the ParJOSTLE
algorithm.

We next analyse Table 5.7 where the results correspond to a re-balancing tol-
erance of 10%. Here the value of the parameter SolTime is relatively high for the
Vidwans et al. algorithm (except in the case of 2 processors where it is relatively
high for the ParMETIS algorithm). Also the value of the parameter RedTime is
relatively high for the Vidwans et al. algorithm (except in the case of 16 processors
where it is relatively high for the Recursive algorithm). Apart from 4 processors
case the value of the parameter Migration is high for the ParJOSTLE algorithm.
In the case of 4 processors this parameter is high for the ParMETIS algorithm. The
value of the parameter Migration is smallest for the Recursive algorithm (except 4
and 16 processors cases where it is smallest for the Vidwans et al. algorithm).

As far as the Table 5.8 is concerned (where we use a re-balancing tolerance of
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15%) the value of SolTime is smallest for the ParMETIS algorithm in the cases of
8 and 32 processors and for the ParJOSTLE algorithm in the case of 16 processors
respectively. The value of the parameter RedTime is smallest for the Recursive
algorithm in the case of 8 processors, for the ParJOSTLE algorithm in the case of 16
processors and for the ParMETIS algorithm in the case of 32 processors respectively.
As usual heavy migration results in the case of the ParJOSTLE algorithm. Least
amount of migration materialised by the Vidwans et al. algorithm in the case of 16
processors whilst for other than 16 processors case this property is enjoyed by the
Recursive algorithm.

As in the case of the smaller mesh here too, no single algorithm emerges as
a clear cut winner in all respects. The Recursive and Vidwans et al. algorithms
produce the best load-balance after re-partitioning but suffers by the fact that it
has a relatively high value of CutWt. In the case of the ParJOSTLE algorithm
CutWt is relatively low but resulting migration is huge one. Resulting value of
MaxImb in the case of the ParMETIS algorithm is relatively high as compared to
the other three algorithms. Once again they all have same common property, the
sum of RedTime and SolTime is much less than the corresponding value of SolTime
where no dynamic load-balancing algorithm is called upon (see Figures 5.9 to 5.11
which clearly supports the conjecture).

In all cases the qualitative behaviour of the parameter Migkreq is exactly the the
same as for the smaller mesh (i.e. the value of MigFreq increases as one increases
the number of processors).

A final important question is what is the optimal value of the re-balancing
tolerance parameterl’ From Tables 5.6 to 5.8 it is clear that in cases where large
number of processors are used it does not pay to call the dynamic load-balancer at
lower values of the parameter. Using the tolerance of 5% is more costly as compared
to the other values tried (namely 10% and 15%). So in such case a smaller values

of the parameter should be avoided.

5.7 Investigation into Scalability of the Algorithm

It is clear that the scalability of any dynamic load-balancing algorithm which is
used in an adaptive mesh solver is a complex issue. Clearly the performance of the

dynamic load-balancer depends upon how often the adaptivity has taken place. But
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Figure 5.6: Scalability comparison using a re-balancing tolerance of

5% for Example 1 (where Time = RedTime + SolTime).
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Figure 5.7: Scalability comparison using a re-balancing tolerance of

10% for Example 1 (where Time = RedTime + SolTime).
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Figure 5.8: Scalability comparison using a re-balancing tolerance of

15% for Example 1 (where Time = RedTime + SolTime).



CHAPTER 5. PARALLEL APPLICATION OF LOAD BALANCER IN 3-D 156

T T T T T

4000 Initial —-— 4
ParMetis -+
r ParJostle -=-- 1
X Vidwans et al. -
2400 S Recursive ---

1200

Time in Seconds
T

600 -

300

! ! ! ! !

2 4 8 16 32
Number of Processors

Figure 5.9: Scalability comparison using a re-balancing tolerance of

5% for Example 2 (where Time = RedTime + SolTime).
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Figure 5.10: Scalability comparison using a re-balancing tolerance of

10% for Example 2 (where Time = RedTime + SolTime).
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Figure 5.11: Scalability comparison using a re-balancing tolerance of

15% for Example 2 (where Time = RedTime + SolTime).



CHAPTER 5. PARALLEL APPLICATION OF LOAD BALANCER IN 3-D 157

T T T T
240 Initial —-— 4
ParMetis -+

r ParJostle -=-- 1
Vidwans et al. -

r Recursive --- -

120

60

Time in Seconds

30

! ! ! !

2 4 8 16
Number of Processors

Figure 5.12: Scalability comparison using a re-balancing tolerance of

15% for Example 1 (where Time = RedTime + 0.2 * SolTime).
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Figure 5.13: Scalability comparison using a re-balancing tolerance of

15% for Example 1 (where Time = RedTime + 5 * SolTime).
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Figure 5.14: Scalability comparison using a re-balancing tolerance of

15% for Example 1 (where Time = RedTime + 25 * SolTime).



CHAPTER 5. PARALLEL APPLICATION OF LOAD BALANCER IN 3-D 158

T T T T T

Initial —-—

720 | ParMetis -+
ParJostle -=--

Vidwans et al. -

Recursive -&--

360

Time in Seconds

180

90

! ! ! ! !

Number of Processors

Figure 5.15: Scalability comparison using a re-balancing tolerance of

15% for Example 2 (where Time = RedTime + 0.2 * SolTime).
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Figure 5.16: Scalability comparison using a re-balancing tolerance of

15% for Example 2 (where Time = RedTime + 5 * SolTime).
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Figure 5.17: Scalability comparison using a re-balancing tolerance of

15% for Example 2 (where Time = RedTime + 25 * SolTime).
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it also depends upon other parameters. For example if after the adaptation stage,
the amount of imbalance remains below a specified tolerance no redistribution of
data will occur. The other parameter upon which it depends is the number of pro-
cessors used. The numerical results shown above suggest that the more processors
are used, the more quickly imbalance is generated by the adaptation. Another pa-
rameter is the number of levels of refinements. Also, repartitioning consists almost
entirely of communication and since the work involved is not evenly distributed, it
tends not to scale well.

The more important quantity to consider is the combined performance of the
solver and the dynamic load-balancer. In practice one wishes to see the net saving
which results in using a solver combined with a dynamic load-balancer. In Figures
5.6 to 5.17 we plot the time (which is a function of RedTime and SolTime) against
the number of processors used. In Figures 5.6 to 5.11 the time function is simply
the sum of RedTime and SolTime. In Figures 5.12 to 5.17 the time function is equal
to RedTime + « SolTime, where « is a positive constant other than unity. Note
that by varying a we can analyse the equivalent effect of other simpler (for which
a < 1) or more expensive (for which o > 1) solvers. (Alternatively, we can view
the variation of « as representing slower or faster inter-processor communications
respectively.)

It is clear from Figure 5.6 that in this case the use of the ParJOSTLE and
Vidwans et al. have an adverse affect and there is a small saving in case one uses
the ParMETIS or Recursive algorithm when 16 processors are used. In other cases
(see Figures 5.7 to 5.11) it pays off to use the dynamic load-balancing algorithm.
As pointed out above, for the larger base mesh it is better to use a relatively larger
value of the re-balancing tolerance parameter in those cases where the number of
processors are greater than 8 (see Figures 5.9 to 5.11).

We next discuss the relationship between the intensity of the solver and the use
of the dynamic load-balancer. From Figures 5.12 and 5.15 it is clear that calling a
dynamic load-balancer in the case of a very cheap solver does not pay anything. It
in fact increases the cost. However, in the case of an expensive solver it pays off to
use a dynamic load-balancer (especially when using a large number of processors).
For example if we are having a solver which is 25 times more expensive than the
current solver and we are using 16 processors to solve the problem then at least

there is a 15% saving in the case of the smaller base mesh and a 48% saving in the
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case of the larger base mesh as a result of using a dynamic-load balancing algorithm.

5.8 Conclusions

In this chapter we have demonstrated that good load-balancing results can be ob-
tained provided one choses the re-balancing thresholds carefully. As one would
expect, we have also shown that the more expensive is the solver the more would
be the saving that can be achieved by using a dynamic load-balancer. Moreover,
we have demonstrated that the Recursive algorithm is very competitive when con-
trasted with other parallel dynamic load-balancing algorithms developed simulta-
neously with this work. In some situations it gives the best performance of all four
approaches and in all cases the performance is comparable. Clearly the choice of
which of the four algorithms is the best to use will depend on the precise nature of

the problem being solved and on the exact nature of the parallel architecture.



Chapter 6

Conclusion and Future Areas of

Research

6.1 Summary of Thesis

The main contribution of this thesis has been to present the development of a new
parallel dynamic load-balancing algorithm designed specifically for application in
the conjunction with parallel adaptive finite element or finite volume codes. We
first discussed a uniprocessor version in Chapter 3 which was tested on a number
of different model problems. It was observed in this chapter that the algorithm
produces satisfactory results in the sense that the final partitions are reasonably
well balanced and the relative increase in the cut-weights are also small (in some
cases the cut-weight is even smaller than the original value). In few cases, where
the coarse mesh is large with the majority of coarse elements having unit weight,
the cost of this algorithm is a little high (this issue is discussed in the next section
below).

In Chapter 4 we presented an initial parallel dynamic load-balancing version of
the the algorithm of Chapter 3. This new version of the algorithm was successfully
applied to a variety of 2-d unstructured meshes which were generated in parallel but
were not always perfectly balanced (for reasons mentioned in the chapter). This
version is not only very fast (in the majority of the cases it took less than a second
to get the balanced mesh on the test problems studied) but also produces a final
partition which is reasonably load balanced. A net saving in solver time ranging

from 3% to 15% was also achieved.

161
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In Chapter 5 a further, slightly more general, version of the algorithm of Chapter
3 was introduced. This new version was developed to allow, amongst other applica-
tions, possible use after the adaptivity steps of a 3-d parallel adaptive solver (which
inevitably has some sort of imbalance after the adaptivity step). It was applied on a
number of 3-d problems on a differing number of processors. It is shown that results
produced are compatible with those produced by other state-of-the-art techniques
(which were developed simultaneously with this work). The resulting amount of
imbalance was generally less than the corresponding value produced by other tech-
niques and in many cases less data migration is required (certainly in comparison
with the ParJOSTLE algorithm). In contrast with the other algorithms considered
the resulting cut-weights after repartitioning are relatively high (but not in com-
parison with the other algorithms considered in Chapter 4). Overall, for the type
of application of interest here there was little to choose between the performance
of the new algorithm presented here and that of the other algorithms considered
(with each method, including the new algorithm, performing best in some particular
cases).

A final point to be mentioned concerns the availability of the new algorithm as
public domain software. Both ParMETIS and ParJOSTLE are publicly available
(although, as we have seen in Chapter 5, their current implementations are far from
stable) whilst the new algorithm is not. Unfortunately such software development

was beyond the scope of this project.

6.2 Possible Extensions to the Research

There are number of ways in which the research described in this thesis could be
extended. One important possibility that I would like to explore is to build into the
scheme a partial coarsening. Recall that this possibility is first discussed at end of
Chapter 3 where it is suggested that the use of a partial coarsening may increase
the efficiency of the algorithm. Observe that in Example 6 of this chapter 72%
of the coarse mesh was residing on 2 (out of 8 possible) processors whereas 31%
of the fine mesh was contained on these two processors. In a situation like this a
large portion of the coarse mesh consists of coarse elements whose weights are very
low (the majority of the elements have only unit weights). So if these nodes can

be combined into some sort of coarse, higher-level, nodes then it is hoped that a
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significant improvement in terms of speed may be obtained.

A major change from Chapter 3 to Chapters 4 and 5 was the absence of the
swapping steps once the load balance among two subgroups is achieved. Recall
that in Chapter 3 such a step was executed in hope of finding any “hidden” minima
as regard to the cut-weight. The algorithm of Chapter 3 was a serial one so no
communication cost was involved with this. The versions of Chapters 4 and 5 are
parallel ones however. The major decision of dropping this step was taken due
to the communication cost involved in keeping it. This decision was based upon
personal judgement. In order to prove (or disprove) this conjecture, this extra step
could be implemented and the cost of implementing this step verses the resulting
net saving in the solver time (due to a reduced cut-weight) may be examined.

Apart from above there is a clear need for further research in other directions as
well. In general the repartitioning thresholds have a very significant impact on the
performance and scalability of the whole repartitioning process. More investigation
could certainly be undertaken in this area. Smaller thresholds may result in too
frequent re-mapping of the mesh (which results in a higher communication cost)
and larger thresholds obviously lead to keeping an unbalanced mesh for a much
larger time (which results in a relatively higher solver cost). Even a fixed choice of
the threshold may be problematic. It my be worthwhile to consider other options
such as to calculate the redistribution cost and compare it with the saving (or some
estimate of the saving) which may result from running the adapted mesh on the
new partition rather than on the old partition. Only if this is favourable would
the repartitioning step be executed. Pioneering work in this field has already been
started by Biswas and Oliker [10, 77]. More investigation is needed in this area (e.g.
the impact on future costs of the current decision: a too greedy saving may result in
paying more cost in future in some situations!). Also the relation between the size
of the mesh, the number of processors used and the repartitioning thresholds could
be examined in further detail. Finally, there is also a need to explore some other
metrics for the cost of balancing distributed loads: the current trend is to minimise
the total amount of migration but an arguably more important metric would be to
minimise the maximum amount of migration for any single processor.

Another factor to be further explored is of the number of levels of refinement
that are used, especially in three-dimensional problems. In Chapter 5 we considered

up to 3 levels of refinement, which means the maximum possible weight of a coarse
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element was 512. Considering a fourth level of refinment would mean up to 4096
fine elements inside each coarse element. Thus, in order to consider this level of
refinement the underlying coarse mesh would have to be very large which could
add significantly to computational costs (although this overhead could be almost
totally eliminated if the partial refinement idea described above could be successfully
implemented).

Other investigations that would be worthwhile to undertake include the appli-
cation of the dynamic load-balancing algorithm to a wider variety of problems. In
Chapter 5 we only considered the solution of one particular equation, it would be
worthwhile to try a wider variety of equations and parallel solvers using the same
parallel adaptivity code. Also different refinement algorithms (such p-refinement or
hp-refinement) could be considered, as well as the use of heterogeneous networks.
Note that in situations like these one has to generalise the definition of the weights
of coarse elements. It is no longer equal to the number of fine elements present
but has to be adjusted to incorporate the differing amounts of work required by
different coarse elements and the varying speeds of the individual component of the
heterogeneous network involved.

One approach that has not been considered at all in this thesis is to perform
load-balancing based upon a partition of the fine mesh in a grid hierarchy rather
than the coarse mesh. There are many implications to considering such a strategy,
which appears to allow more flexibility in the partition than by distributing the
coarse grid, and it is quite possible that a full study of this would require another

thesis.
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