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Abstract 

Acid tar lagoons are heavily polluted, man-made environments found in several 

locations around the world, including the United Kingdom, Germany and the United 

States of America. Each lagoon is unique due to the different methods of tar production 

resulting in a specific waste tar composition. There is also a great deal of heterogeneity 

within each lagoon as a result of the viscous and mobile nature of the tar waste, 

alongside a combination of attempted remediation efforts and/or illegal fly tipping. 

The work presented in this thesis concerns one particular acid tar lagoon situated in the 

North West of England which arose as a result of deposition of waste from benzole 

refining. The effects on microbial diversity of a combination of low pH and high levels 

of organic pollutants were investigated using samples taken from various locations 

within this lagoon. A variety of techniques including classical microbiology, DGGE 

and T -RFLP, were used to examine the microbial diversity, which was found to be 

much lower in lagoon samples than pristine environments and appears to have 

similarities with the microbial communities present in the Rio Tinto, Spain. 

Following microbial diversity analysis a detailed examination of two specific organisms 

isolated from lagoon samples was carried out in order to understand some of the 

mechanisms of survival and tolerance to such an extreme environment. An 

acidotolerant unicellular alga which appears to form a large biofilm in several areas of 

the lagoon, Euglena gracilis G46, and an acidophilic bacterium, Acidocella 29, were the 

focus ofthis aspect ofthe work. It appears that E. gracilis G46 maintains a near-neutral 

pH under acidic conditions, Acidocella 29 is thought to have an unusually low 

intracellular pH. 
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Abbreviations 

Abbreviations used in this thesis, not including elemental symbols and SI units are as 

follows: 

ai: concentration inside the cell 

AMD: Acid Mine Drainage 

ao: concentration outside the cell 

APS: Ammonium persulphate 

ARDRA: Amplified Ribosomal DNA Restriction Analysis 

BAC: Bacterial Artificial Chromosome 

BSA: Bovine Serum Albumin 

BTEX: Benzene, Toluene, Ethylbenzene and Xylene 

CCCP: Carbonyl cyanide 3-chlorophenylhydrazone 

Chi: Chlorophyll 

DCMU: Diuron; 3-(3,4-dichlorophenyl)-l,l-dimethlyurea 

DGGE: Denaturing Gradient Gel Electrophoresis 

DMSO: Dimethylsulphoxide 

dpm: Disintegrations per minute 

ECV: extracellular volume 

EDT A: ethylenediaminetetraacetic acid 

ICV: intracellular volume 

NAD: nicotinamide adenine dinucleotide (oxidised form) 

NADH: nicotinamide adenine dinucleotide (reduced form) . 

OD: Optical density 

PAH: Polycyclic aromatic hydrocarbons 

PCR: Polymerase Chain Reaction 

pHi: Internal pH 

pHo: External pH 

rRNA: ribosomal Ribonucleic Acid 

TAB: Tris Acetate BOT A 

TEMED: N.N.N',N'-Tetramethylethylenediamine 

TGGE: Temperature Gradient Gel Electrophoresis 

T -RFLP: Terminal Restriction Fragment Length Polymorphism 

T -RF(s): Terminal Restriction Fragment(s) 
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Chapter One: General Introduction 

1.1: Microbial Diversity 

Biodiversity can be defined in several ways ranging from "a popular term used in 

scientific and media context to refer to the catalogue of living species that exist in a 

certain habitat or ecosystem" (Rodriguez-Valera 2002) to "an attribute of an area and 

specifically refers to the variety within and among living organisms, assemblages of 

living organisms, biotic communities, and biotic processes, whether naturally occurring 

or modified by humans. Biodiversity can be measured in tenns of genetic diversity and 

the identity and number of different types of species, assemblages of species, biotic 

communities and biotic processes, and the amount (e.g.: abundance, biomass, cover, 

rate) and structure of each." (DeLong 1996). The term "BioDiversity" was first coined 

in 1986 and since then the concept has been the subject of much research. 

In 1998 the known biodiversity on Earth consisted of 1.5 million animal species, 0.3 

million plant species (Cases and Lorenzo 2002) and half a million insects (Pace 1997), 

compared to only 4500 prokaryotes (Torsvik et al. 2002). This number of prokaryotes 

significantly less than 1 % of the total number of species on Earth, which is an 

astonishingly small percentage when one considers that prokaryotes have been 

estimated to contain between 60-100 % of the total carbon contained in plants 

(Whitman et al. 1998). 

This begs the question, why have so few microbial species been identified? There are 

several reasons for our lack of knowledge regarding microbial diversity. One of the 

most significant and well known reasons is the "Great Plate Count Anomaly", a phrase 

coined by Staley and Konopka (1985) referring to the discrepancy between the large 

number of ceIJs which are visible by microscopy or detectable by fluorescence 

hybridisation compared to the numbers which can be cultured by traditional methods 

(Staley and Konopka 1985). For example, Torsvik et al achieved a viable colony count 

of 4.3 x 107 compared to 1.5 x 1010 bacteria gram·[ from microscope observations of soil 

samples (Torsvik et al. 1990). 

This anomaly can be explained by cells which are viable but not culturable. These may 

be cells which are unknown species for which no culturing method has been developed, 

known species which have entered a dormant state or for which the culturing conditions 
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are not suitable (Amann et al. 1995). For instance, bacteria that are dominant in a 

natural environment are not usually adapted to high concentrations of complex organic 

carbon (Connon and Giovannoni 2002). Furthermore, many microorganisms require 

complex nutritional requirements to grow successfully and can only then be cultured by 

specialised techniques (Button et al. 1998; Driessen et al. 1996; Ferris et al. 1996; 

Vancanneyt et al. 2001; Wirsen et al. 2002). 

Modem microbiology relies on our ability to grow pure cultures, thus media are 

specifically designed to promote the growth of one particular type of microorganism, 

which usually means that the organisms which are capable of the fastest growth will out 

compete all other organisms (Rawlings et al. 1999). This means that it is difficult to 

retrieve more than a few organisms from an environmental sample using traditional 

methods. Even if a range of media were used to culture organisms from an 

environmental sample it is highly unlikely that more than a few species' of organisms 

would be recovered from each medium. 

Conventional cultivation methods are highly biased and selective, as well as time 

consuming (Amann et al. 1995). Attempts to mimic natural conditions are often equally 

unsuccessful, suggestions for the lack of success in each case ranging from quorum 

sensing inhibition and lysogenic phages to the unknown effects of a microniche 

(Rodriguez-Valera 2002). 

In many cases there may be complex interactions between microbes growing in a 

particular environment. For example, the breakdown of a compound by a particular 

organism may remove an inhibiting substance and thus permit growth of other 

organisms, as is the case for sulphate reducing bacteria. These organisms require 

aerobic organisms to remove acetic acid, a toxic by-product of their anaerobic sulphate 

reduction which would kill the cells if it was not removed by other microbial species 

(Kimura et al. 2006). Attempts to grow microbes in pure culture may never succeed for 

certain organisms which may rely on the presence and activities of other 

microorganisms in order to grow. Therefore, isolating certain microorganisms from 

environmental samples may not be possible unless other organisms are co-cultured, 

which given our limited knowledge and inability to culture most organisms may not be 

possible. 
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High throughput methods have been developed using very low nutrient media in an 

attempt to isolate previously unknown organisms. Although these methods are 

laborious a few organisms have been isolated and cultured. Some 2500 dilution 

cultures screened over a three year period gave up to a 1400 fold increase in numbers 

compared to traditional methods; however, only four unknown organisms were isolated 

(Connon and Giovannoni 2002). 

The addition of signalling molecules such as cyclic AMP (cAMP) to media containing a 

low concentration of carbon substrate has been shown to increase cultivation 

efficiencies when using the most-probable-number (MPN) technique for enumeration. 

However, dot blot hybridisation revealed that the strains which had been most 

successfully cultured represented only a small fraction of the bacterial community, 

indicating limitations in the MPN method (Bruns et al. 2002). 

With perseverance and patience there are some successes; with at least 16 of the 27 new 

phyla identified since 1986 having cultured representatives (Leadbetter 2003). For 

example, Sait and colleagues successfully cultured the first representative of the 

previously uncultured subdivision three of the Acidobacteria phylum by waiting for 12 

weeks for colonies to develop (Sait et al. 2002). Combined with the use of very dilute 

nutrient broth and long incubation times the group also cultured strains representing six 

new genera of subdivision I of the Acidobacteria phylum. 

Estimates of true prokaryotic diversity range from 13000 (Torsvik et al. 1990) to 36000 

(Dykhuizen 1998) species in one 30 cm3 soil sample, leading to one suggestion that 

there are more than a thousand million species of bacteria worldwide (Dykhuizen 1998). 

Furthermore, evidence suggests that there is a far greater number of organisms present 

in the subsurface of the Earth yet to be discovered (pace 1997). Microbial diversity is 

extremely rich and for the most part unexplored. The potential for exploitation for 

biotechnology given the genetic and biochemical diversity which exists, and which we 

have little knowledge of, is enormous (Horkioshi 1995). 

One of the reasons why there is such a range in estimates of microbial diversity is the 

controversy surrounding what is a species, and more importantly, what is defined as a 

species. Traditionally, taxonomists have used visible characteristics to classify higher 

organisms such as plants and animals, however this was not particularly suitable when 
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applied to microorganisms which do not exhibit a great deal of morphology and thus 

their limited morphologies and biochemistry were used to classify them. This 

undoubtedly resulted in many mistakes and it was not until the development of 

molecular sequencing that the true phylogenetic perspective was resolved. 

By tradition, higher organisms have been defined as species if they interbred and were 

able to produce viable offspring. Unfortunately, given the mode of replication. and 

genetic exchange in prokaryotes this definition does not apply. One of the most 

commonly used and accepted defmitions of a prokaryotic species is DNA-DNA 

hybridisation of more than 70 % combined with S 5 °C difference in melting 

temperature of DNA, where both units are considered (Wayne et al. 1987). Dykhuizen 

(1998) discusses this and concludes that defining species in terms of DNA homology 

will underestimate the number of species. 

More recently still an operational definition of bacterial species nas been described as "a 

monophyletic and genomically coherent cluster of individual organisms that show a 

high degree of overall similarity in many independent characteristics, and is diagnosable 

by a discriminative phenotypic property" (Rossello-Mora and Amann 200 I). Despite 

the discrepancies which arise as a result of species definition there is still exists a large 

number of bacterial species to be discovered and characterised. But, how do we resolve 

this deficit in our knowledge? Recent work has focused on molecular methods in order 

to identify species diversity using 16S rRNA as a molecular marker in many cases. 

1.2: Molecular Methods Used to Assess Diversity 

Molecular markers are much more reliable for relating and classifying organisms than 

phenotypic information because they are more informative with regard to evolutionary 

relationships and they are also more readily available (Woese 1987). Molecular 

markers were the basis of one of the most significant discoveries in modem biology; 

namely that life on Earth consists of three evolutionary lines and not two as had been 

thought previously. Based on work with 16S rRNA Carl Woese, and colleagues, 

proposed that there should be a new level of taxon above the 5 kingdoms, known as a 

domain, and that there would be three domains, comprising archaea, bacteria and 

eucarya (Woese et al. 1990) (Figure 1.1). However, almost 20 years on from this 

proposal there are still those who do not accept this classification, such as Lyon 

Margulis and Michael Dolan (Margulis and Dolan 1999). 
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Phylogenetic Tree of Life 
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Figure 1.1: Phylogenetic tree of life. Figure from NASA Astrobiology Institute 

(http://nai.arc.nasa.gov/library/imageslnews articIes/big 274 3.jpg) 

Ribosomal RNA (rRNA) (Figure 1.2) is the most commonly used molecular marker for 

several reasons. Firstly and most importantly, it is present in all organisms and has been 

for a very long time (Olsen et al. 1986). The overall structure of rRNA is well 

conserved between all organisms which means that it is easy to identify rRNA by size 

alone (Olsen et al. 1986). rRNA molecules are a necessary element of one of the most 

basic cellular functions, protein synthesis, and thus, form a significant proportion of 

cellular mass, therefore rRNA is readily recoverable from all cell types (Olsen et al. 

1986). In addition, it is possible to sequence rRNA directly and rapidly using reverse 

transcriptase (Hugenholtz and Pace 1996; Woese 1987). 
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Figure 1.2: Two dimensional secondary structure of a 16S rRNA molecule from E. 

coli. Figure taken from Behrens et al. (2003). The magenta oval highlights the V3 

region; the green oval highlights the V9 region whilst the blue circle highlights bases 

180-197, the V2.2 hypervariable region. 

13 



16S rRNA molecules are large (approximately 13 times larger than 5S rRNA) and 

consist of many domains which also facilitates their use as molecular markers (Figure 

1.2). Certain stretches of rRNA are highly conserved, showing little if any variation 

between species, whereas other stretches vary greatly, meaning that sequences can be 

aligned by matching invariable stretches and analysed on the basis of differences in 

highly variable loop regions. For example, archaeal 16S rRNA molecules are easily 

identified from bacterial 16S rRNA or eukaryal 18S rRNA by their unique structure 

between positions 180 and 197 (Johnson et al. 2001; Ma et al. 2004; Woese et al. 

1990). Furthermore, the length of rRNA is sufficient to permit statistically significant 

comparisons (Olsen et al. 1986). 

In 1987 over 500 species had been characterised in terms of their rRNA. As of 

November 8th 2007 there were 451545 16S rRNA sequences in the Ribosomal Database 

Project (Cole et al. 2005; Olsen et al. 1992). Improvements in molecular methods, 

sequencing and the genomics revolution have resulted in a vast expansion in our 

phylogenetic knowledge of both culturable and non-culturable microorganisms. 

Furthermore, as a result of 16S rRNA sequencing from environmental samples, there 

has been an increase in the number of phyla from 12 to 52. Only 26 of the putative 52 

phyla have cultured representatives (Rappe and Giovanoni 2003). thus we must bear in 

mind the limitations of this resource. For instance, whilst 16S rRNA is a good 

molecular marker it comprises on average only 0.05 % of the total genome and 

therefore is not completely representative (Rodriguez-Valera 2002). Additionally, if an 

organism is less than 95 % similar to a cultured organism as assessed by rRNA. very 

little can be predicted about its characteristics (Rodriguez-Valera 2002). The methods 

used to correlate the data gathered from sequencing are variable, each with advantages 

and disadvantages, with the most commonly used method being cluster analysis (Olsen 

et al. 1986). resulting in dendrograms such as Figure 1.3. 

Several of the techniques described below rely on the extraction of total genomic DNA 

from environmental samples. As a starting point for all the molecular techniques 

described below it is essential that this process is efficient and results not only in 

suitable yields of DNA but also suitably sized DNA. Shearing and damage of DNA 

often occurs which can result in DNA which is too small to be used in the techniques 

described. 
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Figure 1.3: A typical dendrogram showing three phylogenetic groups of 

Leptospirillum. Figure taken from Johnson et al (2003). 

DNA purity is also a concern, especially when dealing with soil samples where levels of 

peR inhibitors, such as humic acids, are high. Furthermore, certain extraction 

procedures can result in a bias towards recovery of DNA from specific microorganisms 

and are not always truly representative. Therefore several extraction and purification 

methods have been developed and optimised in order to achieve suitably sized DNA. 

There are two main methods of DNA extraction from sediments and soils; direct and 

indirect. Direct extraction encompasses all methods which lyse cells within the 

sediment or soil, whereas indirect methods are those methods which remove cells from 

the soil or sediment before lysis. Direct lysis techniques yield more DNA and are 

thought to yield a less biased sample of the microbial community diversity than indirect 

cell extraction techniques, where certain cells are much more difficult to remove from 

soil colloids for example (Leff et al. 1995). 

Direct methods can be further subdivided into three basic elements, including physical 

disruption, enzymatic lysis and chemical lysis, of which one, two or all three 

components may be involved. Physical disruption methods include ultrasonication, 

grinding under liquid nitrogen, freeze-thawing and beadmill homogenisation with the 

latter two methods being the most common. Sonication is used infrequently due to a 
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high level of shearing (Krsek and Wellington 1999). Beadmill homogenisation yields 

more DNA than freeze-thaw methods (Kuske et al. 1998), but it also results in more 

shearing of DNA and greater coextraction of PCR inhibiting compounds (Leff et al. 

1995). 

Chemical lysis methods are further subdivided into mixtures that contain either NaCI, 

buffers (usually phosphate or Tris, pH 7-8) or detergents, such as sodium dodecyl 

sulphate (SDS) (Kuske et al. 1998) or Sarkosyl. Adaptations to chemical lysis methods 

include the addition of a phenol or chloroform extraction step, incorporation of a 

chelating agent such as EDT A in order to increase soil particle dispersal, and an 

increased temperature incubation step at temperatures ranging from 60°C to 100°C 

(Kuske et al. 1998). Enzymatic lysis using enzymes such as lysozyme, proteinase K 

and proteinase E often forms the final step of extraction procedures. Enzymatic lysis is 

insufficient alone but does improve the purity of extracted DNA, either by breaking 

glycosidic bonds (Krsek and Wellington 1999) within humic components or 

precipitating humic acids (Maarit Niemi et al. 2001). 

Indirect lysis, also known as the cell extraction method, has been shown to yield the 

purest DNA and thus may be the preferred method if the DNA extracted is to be used 

for PCR where yield is less important (Leff et al. 1995). Indirect lysis is subdivided 

into two methods; blending methods, a method in which cells are mechanically released 

from the sample matrix, and cation-exchange methods, a method in which cells are 

dispersed by chemical disruption usually using Chelex 100 (Gabor et al. 2003). Indirect 

lysis methods are rarely used because it is difficult to process a large number of samples 

at one time and it is more biased, often only acquiring yields of 25 to 35 % of the total 

bacterial population (Frostegard et al. 1999). 

1.2.1: Terminal Restriction Fragment Length Polymorphisms (T -RFLP) 

T -RFLP is a very useful community fmgerprinting technique. The technique involves 

PCR amplification with the exception that one or both of the primers are fluorescently 

labelled. Following PCR, multiple, single restriction digests of the PCR product are 

carried out to generate fluorescently labelled terminal restriction fragments (T-RFs). 

The T-RFs generated will be of a specific length for each bacterium present in the 

sample and thus separation of the fragments by high resolution electrophoresis 

combined with automated DNA sequencing allows characterisation of a community or 
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environment. 168 rRNA is the most commonly used marker however any genetic 

marker with conserved sequence domains which would allow appropriate primer design 

could be utilised. 

A wide range of restriction enzymes can be selected, however studies have been 

undertaken which revealed that AluI, HhaI and ThaI are preferential since they are most 

discriminatory in terms of the number and size of different T-RFs generated (Osbom et 

al. 2000). Osbom et al (2000) assessed a range of variables which contribute to 

reproducibility including the initial template concentration, number of peR cycles, 

choice of Taq polymerase, annealing temperature, restriction enzyme concentration, 

injection time and 168 rRNA primer sequences. The outcome of which is a highly 

optimised procedure which should provide reliable, reproducible results. 

Using sequence information it is also possible to design a multitude of primers for 

specific phyla, genera or species and to analyse communities using genes other than 168 

rRNA, such as those involved with degradation or a particular kind of metabolism. For 

example, Bruce (1997) used mer genes in order to analyse community diversity in terms 

of mercury resistance, whilst more recently Castro et al (2005) used dsr A genes to study 

the distribution of sulphate-reducing organisms in nutrient-impacted regions. 

The procedure has several advantages over other molecular community. analysis 

techniques such as denaturing gradient gel electrophoresis (DOGE) and other 

electrophoretic separation methods in that it is highly sensitive, reliable and rapid 

(Marsh 1999). A greater resolution can be obtained using T -RFLP than DOGE, 

temperature gradient gel electrophoreis (TGGE) or single strand conformational 

polymorphism (S8CP) with the added benefit that the output is digital. Combining this 

technique with the large amount of sequence information available in sequence 

databases it is possible to infer vhylogeny of T -RFs since the position of the restriction 

site is not random but has a phylogenetic component; however unlike DOGE it is not 

possible to identify the organism responsible for each T-RF. 

T-RFLP analysis has been successfully employed on a variety of samples including 

fungal communities in soils (Edel-Hermann et al. 2004), monitoring nutrient impact on 

contaminated soils (Mills et al. 2003), community structure in marine sediments (Braker 

et al. 2001), solar salterns (Cassamayor et al. 2002) and bioreactor sludge (Liu et al. 
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1997). Of particular relevance to this study is the analysis of microbial diversity in a 

macroscopic streamer growth from acidic, metal-rich mine waters in North Wales which 

revealed a very simple community of microorganisms (Hallberg et al. 2006). The study 

found that the community composition was remarkably different to the microbial 

communities found in similar acidic environments at Iron Mountain, California and the 

Rio Tinto, a river, in Spain. 

T -RFLP could be used to monitor changes in microbial community diversity at different 

time points or under different conditions easily, since the process is very rapid and 

relatively inexpensive. However, it would not be possible to identify changes in any 

particular species of microorganism present. It is easily possible to analyse multiple 

samples concurrently, regardless of when the samples were acquired as well as to infer 

the abundance of the microorganisms responsible for each T -RF based on the 

fluorescence intensity. 

Recently, web based analysis programmes such as PAT (Kent et al. 2003) and TAP 

(Marsh et al. 2000) have been developed which generate phylogenetic assignments 

based on predicted T-RFs from 16S rRNA sequences in various databases, for example 

T-RFLP APLAUS+ which creates a specific database of in silico analyses to cross 

reference against based on the users selection of restriction enzymes and primer 

sequences (Shyu et al. 2007). PAT is a particularly useful tool since the T -RFs 

generated from mUltiple, single restriction digests can be analysed concurrently which 

serves to minimise the potential possible phylogenetic affiliation of each T -RF. T -align 

software is also available which allows comparison of replicate data to be collated and 

analysed in preparation for further statistical analyses (Smith et al. 2005). 

As with all PCR-based approaches an inherent bias is introduced as a result of several 

factors including the preferential binding of primers to certain species and varying copy 

number of 16S rRNA genes between species (Suzuki and Giovannoni 1996). However, 

this bias applies to all PCR-based approaches including T-RFLP, DGGErrOOE and 

amplified rDNA restriction analysis (ARDRA) and has been discussed in more detail 

with respect to 16S rRNA and microbial diversity analysis studies by Wintzingerode et 

al. (1997). 
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1.2.2: Denaturing Gradient Gel Electrophoresis (DGGE) 

Denaturing Gradient Gel Electrophoresis (DOGE) is an increasingly popular and 

commonly used technique for resolving microbial populations. The technique exploits 

the differences in melting temperature of different DNA sequences (Muyzer et al. 

1993). Usually, genomic DNA is extracted from a sample and short, hypervariable 

fragments of the 168 rRNA gene are amplified by polymerase chain reaction (PCR) 

using universal primers. The sample is then loaded on a vertical polyacrylamide gel and 

run at a constant temperature, along an increasing gradient of denaturant such as 

formamide or urea. At a position specific to the sequence of the DNA migrating, the 

DNA duplex begins to uncoil and is then trapped in the gel. 

TOGE is an almost identical procedure to DGGE with the exception that instead of 

applying a denaturing gradient to the vertical polyacrylamide gel, there is instead a 

linear temperature gradient which separates the two strands of the DNA. It is usually 

possible to detect 50 % of sequence variants in DNA fragments up to 500 bp long, 

however if a GC clamp is added to the 5' end of one of the primers this can be increased 

to almost 100 %. The GC clamp is a GC-rich sequence, usually between 30 and 50 

nucleotides in length, fonning a high melting point domain which prevents complete 

separation of the two strands of DNA. Chemical clamps are sometimes used as an 

alternative to GC clamps which can be expensive to produce, however chemical clamps 

are covalently attached, thus bands extracted from the DOGE gel cannot be re-amplified 

directly. 

DGGE and TGGE have been used successfully to study community complexity, 

changes in microbial communities and to monitor enrichment and isolation of bacteria. 

Muyzer et al (1993) applied DOGE to PeR-amplified 168 rRNA gene fragments from a 

biofilm in order to profile community complexity. PCR was carried out on genomic 

DNA preparations using primers designed to amplify the V3 region of 168 rRNA gene 

from sulphate-reducing bacteria and the resulting PCR products analysed by DOGE. 

This study showed the presence of up to 10 different 168 rRNA gene fragments, as well 

as identifying the presence of microorganisms which constituted less than 1 % of the 

total microbial population. Hybridisation analysis using group specific radioactively

labelled probes yielded further information about the species present in the biofilm, with 

further information obtained when DNA fragments were excised from the gel and 

sequenced (Muyzer et al. 1993). 
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DGGE has become an increasingly popular tool to study community diversity, and has 

been applied to a variety of ecosystems and environments including microbial mat 

communities in hot springs (Ferris et al. 1996a), hydrothermal vents (Muyzer et al. 

1995), seawater (Diez et al. 2001; Schauer et al. 2000), contaminated soils (Andreoni et 

al. 2004), industrial sites (Zocca et al. 2004) and the Tinto River (Gonzalez-Toril et al. 

2003). The surveys carried out on contaminated soils and on the Tinto River are 

particularly relevant to the present study. The Tinto River has a mean pH of 2.4 and 

thus bears relevance to the samples from Hoole Bank, which has an average pH of 

approximately 2.6. In total, 57 of the 80 bands excised from the DGGE gel yielded 

identifiable sequences from the Tinto river samples, with 30 of these sequences having 

greater than 98 % similarity to the closest relative microorganism (Oonzalez-Toril et al. 

2003). 

DOGE is an ideal tool for studying changes in a variety of communities and 

environments (Schafer et al. 2001; Van Der Oucht et al. 2001) with the same 

advantages of T-RFLP in that samples can be analysed simultaneously, regardless of 

when or where they were acquired. Furthermore, an estimate of the number of species 

present can be made simply by looking at the banding pattern, and thus the presence or 

absence of bands on two related samples can be compared easily. The intensity of the 

bands can also be used as an estimate of abundance of a specific organism (Nubel et al. 

1999). 

1.2.3: Amplified 16S Ribosomal DNA Restriction Analysis (ARDRA) 

Amplified 16S Ribosomal DNA Restriction Analysis (ARDRA) involves digestion of a 

peR amplified gene, usually 168 rRNA, with one or more restriction enzymes. This 

produces fragments of varying lengths which can be separated on polyacrylamide gels, 

producing a unique banding pattern which can be compared visually in a similar way to 

the results of DOGE. In contrast to T -RFLP, no fluorescent primers are used in 

ARDRA and the banding patterns are simply compared visually as opposed to 

measuring the restriction fragments using a sequencing gel. If the gene sequence is 

known it is possible to predict the number and size of fragments obtained from a 

particular restriction enzyme digest, or combination of enzymes and thus the ARDRA 

pattern of unknown organisms can be compared to known standards. In a similar way 

to DOGE, ARDRA can be carried out and the banding pattern of different environments 

20 



compared, thus it is useful in detecting changes in a population or differences in 

communities in different environments (Smit et al. 1997). 

1.2.4: Gene libraries and metagenomics 

Gene libraries such as fosmid and Bacterial Artificial Chromosome (BAC) libraries 

allow large genome fragments recovered directly from the environment to be analysed 

and allow characterisation of unknown species more thoroughly than by 16S rRNA 

analysis. Genomic DNA is usually prepared by direct lysis and partially digested with 

restriction enzymes to create smaller fragments of DNA which can be ligated into BACs 

or other vectors. Recombinant strains are then screened for a particular feature, such as 

ability to utilise a specific substrate (Henne et al. 1999) or to assess diversity (Beja et al. 

20oo). 

Following screening, colonies of interest are sequenced to analyse the insert in more 

detail. One study, concerned with diversity, was able to sequence an insert from an 

uncultivated organism and identify novel open reading frames (ORFs), which could 

indicate a novel function (Beja et al. 2000). Quaiser et al (2002) utilised a gene library 

approach to isolate DNA from archaea present in soil, by carrying out genomic DNA 

extraction and peR using archaeal specific 168 rRNA primers. One particular isolate 

found contained a complete 168/238 operon as well as 17 genes thought to encode 

proteins. Analysis of the sequence showed the insert to be affiliated with the 

crenarchaeota, but also showed significant differences between archaeal DNA isolated 

from marine environments (Quaiser et al. 2002). 

Voget et al (2003) utilised this technique to produce a cosmid library for which to 

screen for novel biocatalysts. Functional screens along with cosmid sequencing 

identified 12 putative agarase genes from 4 clones, and a further 7 other biocatalyst 

encoding genes. Thus, creation and analysis of gene libraries can provide further 

insight into the genomic potential residing in the environment, particularly regarding 

uncultured species. 

Metagenomics, the study of the collective genomes from a particular environmental 

sample (Handelsman et al. 1998), uses cloning vectors to create large gene libraries of 

environmental DNA. Metagenomics has been carried out in a number of environments 
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of increasing community complexity ranging from acid mine drainage communities at 

Iron Mountain, California (Tyson et al. 2004) to the Sargasso Sea (Venter et al. 2004). 

Metagenomic libraries are usually screened using functional-driven analysis or 

sequence-driven analysis (Handelsman 2004). Functional analysis identifies clones 

expressing a particular function and has led to the identification of novel antibiotics, 

antibiotic resistance genes, degradative genes and catalytic genes (V oget et al. 2003). 

The main disadvantage of function-driven analysis is that it relies upon heterologous 

expression. Whilst DNA from several organisms has been successfully expressed in E. 

coli, one of the most commonly used host species. it is unlikely that most genes will be 

successfully expressed. This is especially likely given that most screens are trying to 

identify novel genes or motifs. most probably from unusual microorganisms. and yet the 

host used is a very common bacterium. Development of high-throughput methods and 

appropriate screening techniques is necessary in order to further optimise the 

identification of novel genes. especially when the frequency of active clones is so low 

(Rondon et al. 2000). New methods are continually being developed in order to screen 

metagenomic libraries (Uchiyama et al. 2005) as the potential for biotechnological 

application is significant. 

Sequence-based analysis utilises phylogenetic anchors which indicate phylogenetic 

groups in order to identify the most likely source of the inserted fragment. 

Alternatively, random sequencing is conducted and the phylogenetic anchor identified 

in the flanking sequence of any interesting genes identified. A promising application of 

sequence-based analysis is that in simple communities it is possible to assemble whole 

genomes from both cultured and uncultured organisms, something which has been 

applied to Iron Mountain samples and has led to two near...complete genome sequences 

and three partial genome sequences (Tyson et al. 2004). Large scale sequencing 

projects using metagenomic libraries have begun in recent years beginning with samples 

from the Sargasso Sea (Venter et al. 2004) which individually generated more than 1 

million base pairs of sequence data. Further shotgun sequencing has been carried out in 

other environments resulting in an overwhelming amount of data generated already. 

The capacity of metagenomics to yield vast amounts of data about many aspects of 

microorganisms is clearly huge and is an extremely promising area of research which 

can only expand our understanding of microbial life. 
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1.2.5: Fluorescence In Situ Hybridisation (FISH) 

Whole cell hybridisation is a method which can be used to identify the presence, or 

absence, of a specific organism or phylum. Fluorescently labelled probes bind to 

specific target sequences within the cell and can then be visualised by microscopic 

techniques. The most commonly used probe for both whole cell and in situ 

hybridisation is a fluorescently labelled sequence targeted to 16S rRNA. Probes can be 

designed to detect a specific species, genus or domain. A major advantage of FISH is 

that it can be carried out in situ, therefore no bias is introduced as a result of DNA 

preparation method or peR. FISH can also be semi-quantitative, if the number of cells 

which fluoresce from a specific probe is compared to the total number of cells stained 

by DAPI (4',6-diamidino-2-phenylindole). It is also possible to detect organisms which 

comprise a very low percentage of a microbial population if the probe is well designed 

or chosen carefully. FISH has been applied to many environmental samples including 

acidic environments such as the Rio Tinto (Garcia-Moyano et al. 2007) and acid mine 

drainage in North Wales (Hallberg et al. 2006) and Iron Mountain, California (Baker et 

01.2004). 

1.2.6: Future prospects 

Improvements in culturing methods have increased the number of species which have 

been isolated in pure culture, and will continue to do so in the future. At present 

molecular methods allow us to identify the closest related genetic ancestor to a 

particular microorganism, but little more. Perhaps with a greater understanding of 

genomics it may be possible to deduce what conditions we could provide which may 

allow us to culture the organism and thus learn more directly. This has already proven 

at least partially successful since Teske et al (1996) used DGGE analysis to identify the 

nature of two organisms present in co-culture and went on to improve the culturing 

conditions in order to isolate both organisms in pure culture (Teske et al. 1996). In the 

future it may be possible to successfully predict characteristics such as substrate 

utilisation, biochemical pathways or other cellular features such as biodegradative 

enzymes. The vast amounts of genetic information generated by large scale sequencing 

projects and the increasing number of environments subject to metagenomic analysis 

will provide a greater understanding of many facets of microbial life. 
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1.3: Acidic Environments 

In the past many environments were considered far too harsh to harbour any life, 

however in recent years we have realised that "where there is liquid water on Earth, 

virtually no matter what the physical conditions, there is life." (Rothschild and 

Manicinelli 2001). Extremes of temperature, salinity, pH and pressure are commonly 

regarded as extreme environments, but other less typical environments such as those 

contaminated by heavy metals or other pollutants are also extreme. Most extreme 

environments are dominated by prokaryotes, both bacteria and archaea, but some 

extremophilic eukaryotes are known. Extreme environments of particular relevance to 

this research include acid mine drainage (AMD) and of most relevance, other acid tar 

lagoons found in various locations around the world. 

1.3 .1: Acid mine drainage (AMD) 

Acid mine drainage refers to the waters which are discharged from abandoned metal 

and coal mines and is an increasing problem in many areas of the world. It is likely to 

continue to be a problem for many years to come as water continues to leach from 

abandoned mines. These waters are usually high in soluble iron and sulphate as a result 

of oxidative dissolution of sulphidic minerals, most prevalently pyrite (FeS2) (Hallberg 

and Johnson 2003). AMD has several major effects on the environment including 

sedimentation of ferric iron (Figure 1.4), metal toxicity, salinisation and acidity; all of 

which lead to the death of fish and plants sensitive to the acid produced (Leduc et al. 

2002). 

Figure 1.4: An acidic iron-rich stream within an abandoned mme. Figure from 

Johnson (1998) 
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The overall equation for the chemical processes occurring as a result of water leaching 

from coal or metal mines is as follows (Johnson and Hallberg 2005): 

4FeS2 + 1502 + 14H20 -+ 4Fe(OH)3 + 8S0/-+ 16W 

However, the four step process which results in the above overall equation begins with 

oxidation of pyrite by ferric iron (Equation 1), and not molecular oxygen as the above 

equation might suggest. The second reaction in the series (Equation 2) also occurs in 

the absence of oxygen. Meanwhile, both reactions 3 and 4 (Equations 3 and 4) require 

molecular oxygen (Hallberg and lohnson 2003). 

(1) FeS2 + 6Fe3+ + 3H20 -+ 7Fe2
+ + s20l- + 6W 

(2) Fe3+ + 3H20 -+ Fe(OH)3 + 3W 
(3) 2Fe2+ + 0.502 +2W -+ 2Fe3

+ + H20 

(4) S20l" + 202 + H20 -+ 2S0/- + 2W 

A key step in this cycle is the regeneration of ferric iron, which reacts with pyrite and is 

reduced to ferrous, which allows propagation and continuation of oxidation of the 

sulphide mineral. This reaction can be chemically or biologically catalysed at pH > 4, 

however, it is primarily biological at pH levels < 4 (lohnson and Hallberg 2003; 

Savage and Tyrrel 2005). 

Acidity is generated by the oxidation of reduced inorganic sulphur compounds 

(Equations 1 and 4) and from hydrolysis of ferric iron (Equation 2), thus the presence of 

molecular oxygen effects the proton acidity of the water leached from mines (Hallberg 

and Johnson 2003). Net acidity is comprised of both proton acidity and mineral acidity, 

where mineral acidity is the concentration of soluble metals including manganese and 

aluminium. Biological processes such as ammonification, denitrification and 

methanogenesis along with the fonnation of bicarbonate from the dissolution of basic 

minerals offsets net acidity and can increase alkalinity in drainage streams (Johnson and 

Hallberg 2005). Initially it was thought that the microorganisms involved in oxidation 

were limited to Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans, 

however it has been shown that a collection of organisms are involved (Leduc et al. 

2002). 
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1.3.2: Acid tar lagoons 

Acid tar is a waste residue of coal and petrochemical processing technologies 

originating from the end of the 19th Century (Milne et al. 1986), which have now been 

abandoned. Acid tar production is a result of three chemical processes; benzoIe 

refining, white oil production and oil re-refming (Nancarrow et al. 2001). All of the 

processes use concentrated sulphuric acid as a washing liquid to purify organic material, 

resulting in a residual tar which contains a high proportion of sulphuric acid. 

Historically, this waste was simply disposed to landfill, existing holes or lined lagoons, 

usually in close proximity to chemical plants. 

Generally, acid tars are "dark-coloured liquid with a strong acrid odour" (Milne et al. 

1986) with a varying odour between each type of acid tar production. However, all tars 

produce a persistent, penetrating and noxious odour; initially it is a very acrid smell due 

to the release of large amounts of sulphur dioxide. Sulphur dioxide release decreases 

after time resulting in different odours according to the method of tar production with 

benzole refinery acid tars possessing a strongly aromatic smell. In 1972, the "Disposal 

of Poisonous Wastes Act" (DPWA) was introduced which led to more regulated 

treatment and control of acid tar waste, however the scale of acid tar treatment and 

disposal prior to this legislation is unclear. Furthermore, whilst the introduction of 

DPW A greatly improved the waste disposal situation, the treatment and disposal of acid 

tar waste still followed a disorganised route, with a number of unsuccessful methods 

used for technical and economical reasons. 

Attempts to treat acid tar waste varied according to the method of production; with the 

benzole refinery industry preferring to mix the tar with water or steam in an attempt to 

remove or dilute sulphuric acid resulting in a less acidic, tarry substance which was 

usually tipped on-site or in close proximity. Several other methods were used in an 

attempt to treat the acid tar waste however there are strong indications that none of these 

methods were successful, ultimately resulting in the disposal of potentially dangerous 

waste to an unknown number of contaminated sites. In some cases in South Yorkshire 

the contaminated area was covered in order to mask the disposal site; however this 

caused further problems in the future. Ground movements, heat and the weight of the 

overlying material caused the waste to begin to appear at the surface of the site, causing 

a danger to local residents and animals who may come into contact with the waste 

(Milne et al. 1986). 
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Since legislation was introduced there have been three main types of treatments; 

stabilisation, "pseudo-Iandfill" and incineration. Stabilisation methods include the use 

of organic and inorganic materials whilst "pseudo-landfiU" methods are based on older 

methods which attempt to remove components of the waste before the residue is tipped 

into landfill sites. Consequently, almost all of the UKs acid tar waste is being handled 

by a waste disposal company in the West Midlands which removes the sulphuric acid 

from the waste and disposes of the residue in landfill. Disposal of aid tar waste via 

incineration using fluidised bed incineration and cement kilns is common in EW'Opean 

countries, with cement kilns proving to be of economical advantage to both the cement 

industry and the producers of the acid tar waste. 

The condition of disposal sites for acid tar waste and nature of the waste material itself 

varied greatly; therefore the environmental impact of acid tar lagoons is highly variable. 

There are more than 150 registered sites within UK and many unregistered ones (Smith 

et al. 2004) which are of concern due to the physical mobility of the tar and the 

hazardous nature of certain tar components such as polycyclic aromatic hydrocarbons 

(PAHs), BTEX (Benzen~ Toluene, Ethylbenzene and Xylene) and sulphuric acid. 

Table 1.1 lists some of the acid tar lagoons in the public domain across the UK, Europe 

and the United States of America. 

Name Location Status Volume Depth 
. (1'oDnes) (m) 

Hoole Bank 
Near Chester, 

Unremediated 62000 11-14 Cheshsire 
Near 94000 + Llwyneinion Wrexham, Unremediated 

7500 -10 
Wales 

Cinderhills 
Near Belper, 

Unremediated 
63600 (in 7 

9-10 Derbyshire pits) 

Rieme Belgium Undergoing remediation 200000 nla 

Neukirchen, 
RemediatedlUndergoing 

Mittelbach Mittelbach, > 100000 nla 
Germany remediation 

Sand Oklahoma 
Remediated 

135000 nla Springs State, USA cubic yards 

Table 1.1: A brief description of some acid tar lagoons in the public domain. Data 

taken from http://www.acidtarlagoons.org.ukJ. 
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There is a great deal of heterogeneity within each acid tar lagoon and between each acid 

tar lagoon. The acid tar is not homogeneous, with each particular acid tar characteristics 

highly dependent on its production process, age, disposal environment and the presence 

of any co-disposed material. Most acid tars are quite viscous, and are able to migrate on 

the surface, through fissures and in the sub-surface. This allows acid tar to seep and 

leak from the lagoon and further contaminate the immediate environment. Due to the 

relatively high density of acid tar, water will always pool on top of tars which can cause 

further problems since attempts to cap several lagoons have been unsuccessful due to 

instability problems. The heavier capping layer pressurises the lighter tar causing it to 

migrate through fissures wherever possible and in acid tar lagoons which have been 

capped this has been shown to be one of the biggest factors for tar migration. 

Acid tar lagoons which are in the public domain in the UK include Cinderhills 

(Derbyshire), Llwyneinion (North Wales) and Hoole Bank (Cheshire), the site at the 

centre of this research. Llwyneinion Lagoon (Figure 1.5) is considered the most serious 

tar waste disposal problem in North Wales, with estimates ofremediation costs at more 

than £ 100 million. This acid tar lagoon is the sister site to Hoole Bank acid tar lagoon, 

with acid tar waste from the same chemical plant disposed at both sites, and as such is 

probably the most similar acid tar lagoon to Hoole Bank acid tar lagoon. 

The site is divided into three tipping locations, containing a total of 94000 tonnes of 

liquid acid tar, covered by ponded rainwater. Within the tar body is distributed an 

unknown number of steel drums containing unidentified chemical waste material. The 

Llwyneinion site also has a long history of industrial use, including mining of a coal 

seam known to outcrop beneath the present location of the waste lagoon. Records 

indicate the presence of potentially uncapped, unfilled disused mine shafts beneath the 

lagoon floor. 

In 1980 planning for site remediation began, following a major fire at the lagoon which 

burned on the surface of the lagoon for two days. It is thought that the fire began when 

a drum containing a sodium product decayed, causing the sodium to ignite when it came 

into contact with water. This caused the 75 mm layer of volatile hydrocarbons which 

floated on the 0.5 m of rainwater to ignite and burn (Reynolds 2002). The fire burnt off 

the volatile hydrocarbon, which also resulted in the evaporation of the acid water due to 

the heat of the fire eventually leading to the acid tar beneath the rainwater setting on 
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fire. Since the fire the Llwyneinion Lagoon has been covered by approximately 0.5 m 

of rainwater except in unusually hot dry weather when this evaporated allowing 

hydrocarbon fumes to be produced, causing a health risk to local residents and an odour 

nuisance. The seepage of volatile hydrocarbons up through the acid tar is shown in 

Figure 1.6 where the hydrocarbons have caused snow-covered ice to melt in certain 

areas of the lagoon. 
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Figure 1.5: Llwyneinion Lagoon, Wrexham. Figure from Reynolds (2002). 

Figure 1.6: Areas of snow-covered ice melt out due to uprising gas bubbles and 

hydrocarbons at Llwyneinion Lagoon. Figure from Reynolds (2002) 
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1.3.3: Hoole Bank acid tar lagoon. Cheshire. UK 

Hoole Bank acid tar lagoon (Figures 1.7 and 1.8) is a 3.5 ha area located at National 

Grid Reference SJ 433692, approximately 0.5 km east of the MS3 motorway and 4 km 

northeast of Chester. The site is a former brickworks factory set in a rural area with 

residential, agricultural and commercial properties in the vicinity and surroundings. 

The lagoon arose as a result of over 62000 tonnes of liquid acid tar waste from benzole 

refining being poured into an excavated clay pit until 1967. The waste was produced by 

a company called Lobitos, which was taken over by Burmah-Castrol Company, now 

part of BP Anaco. The sludge deposited into the pit consisted of a mixture of tar-like 

hydrocarbons. which included spent bentonite and absorbed heavy oil, sulphuric acid 

and other oily substances. The acid tar waste arrived warm and in a semi-fluid state, 

and therefore was simply poured into the pit. In addition to the acid tar waste, several 

chemical drums were also fly tipped into the sludge. However, nothing is known about 

the origins, contents or amounts contained within these drums. 

Most of the tar waste remains viscous and mobile, however, some semi-solid tar layers 

have developed. The tar is described as "black, acrid-smelling, corrosive and toxic." 

(NichoI2000). It is difficult to define the chemical properties of the lagoon, given the 

heterogeneity of the tar both in terms of its distribution and mixture, however an 

average breakdown reveals its composition to be 44 % sulphuric acid, 42 % oil residues, 

8 % sulphated oil residues and 6 % water (Nichol 2000). 

The 1.1 ha unlined lagoon is up to 9 m deep in certain places with most of the surface 

covered by less than 1 m of rain water, with the western side of the lagoon filled with 

water seasonally and after long periods of wet weather, whereas the eastern part of the 

lagoon is water filled continuously. The site is surrounded by farmland, a disused 

domestic waste disposal site and commercial business. However there are some 

residential properties in close proximity to the site. A report commissioned by the UK 

Environment Agency in 1999 (Unpublished) concluded that the site must be secured 

against unauthorised access and as such the site was fenced off (Figure 1.9). The report 

also noted that run-off water needed to be treated and that some outcrops of tar should 

be moved to within the lagoon. 
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Figure 1.7: Image of Hoole Bank acid tar lagoon, Cheshire, U.K. 

Figure 1.8: Aerial schematic of the Hoole Bank acid tar lagoon site, Cheshire. Diagram 

taken from Cheshire City Council Contaminated Land Strategy report (2006). 
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During cleaning of the drain ditch area it was noted that oil was actively seeping 

through the retaining bund surrounding the lagoon and into the ditch. Temporary 

measures were put in place but as yet no lasting solution to this problem has been found. 

It is expected that the bund surrounding the lagoon will need strengthening and the oil 

seeping from the bund will need to be contained (Chester City Council, 2006). An oil 

interceptor had been put in place at the head ofthe drainage ditch to collect and retain 

oil after it has seeped through the bund to prevent further pollution ofthe ditch. 

However, it is clearly visible upon inspection of the site and the interceptor that it is no 

longer functioning properly and has reached its capacity as it is clearly overflowing, 

causing the ditch to become contaminated once more (Figure 1.10). Figure 1.9 also 

highlights other areas of the lagoon where tar is migrating and seeping up to the surface, 

in this case outside of the lagoon fence boundary put in place by the Environmental 

Protection Team. 
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Figure 1.9: Fencing around the edge of Hoole Bank acid tar lagoon. Tar seepage is 

clearly visible outside the fence boundary as a result of tar migration. 

Figure 1.10: An image of the overflow of acid tar from the oil interceptor and into the 

ditch at Hoole Bank acid tar lagoon. 
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1.3.4: Remediation of acid tar lagoons 

In recent years attempts to remediate acid tar lagoons have been carried out in Belgium 

and the D.S.A. The acid tar lagoons in Belgium contain more than 200 000 tonnes of 

acid tar material in totalt which will be remediated by treating the material with various 

additives after it has been excavated (Pensaert 2005). Full scale remediation work 

began in March 2005 and was expected to finish in early 2007 and should result in a 

neutralised, solidified product. As yet there has been no update as to the success of this 

work however preliminary small scale experiments were encouraging. 

Acid tar sludge at a Superfund site in the D.S.A was successfully remediated ahead of 

schedule and below the expected costs in the mid-1990s using a process known as 

~ispersion by Chemical Reaction (OCR) (Grajczak 1995). OCR is a patented 

stabilisation process for waste treatment originally developed by Professor Friedrich R 

Boelsing in Germany. Hydrophobised CaO is used in the OCR process to remediate 

organic-contaminated materials. Calcium oxide, in its pure state, is hydrophilic 

therefore hydrophobic and oleophilic lime is prepared by treating CaO with natural fatty 

acids. This process delays the hydration step and allows the fatty acid-coated CaO 

reagent to preferentially adsorb oils during a mixing step. The delayed hydration then 

produces calcium hydroxide Ca(OHh, which is fractured into submicron sized particles 

(Equation 1). This hydration reaction is highly exothermic. Hydrate particles are 

homogeneously charged throughout their internal and external cavities with the oil 

phase. The finely dispersed Ca(OH)2 then slowly reacts with natural C02 to generate 

relatively insoluble CaC03 (Equation 2) (Boelsing 1995): 

1. CaO + H20 -+ Ca(OHh + energy 

2. Ca(OHh + C02 -+ CaC03 + H20 

Thus, the oil components are immobilised in a CaC03 matrix which is safe enough to 

handle and can be treated like ordinary soil. 

These examples of remediation of ~id tar lagoons and acid tar contaminated soils prove 

that it is possible to clean acid tar contaminated sites if the appropriate technology is 

applied and used correctly. The choice of remediation method used is very important 

and will need to be chosen carefully for each acid tar lagoon following detailed analysis 

of the lagoon and the properties of the acid tar at each site in order to achieve the best 
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possible results. The remediation of such large, contaminated sites is time consuming 

and may not be possible in all cases, given the differences and complexities of each acid 

tar lagoon. Therefore, further remediation methods. such as bioremediation or the 

production of activated charcoal from acid tar waste provide alternative avenues for 

further research. Research into bioremediation of acidic environments has been carried 

out for several years, with the main focus of research on acid mine drainage (Johnson 

and Hallberg 2005) however more recently some research on bioremediation of acidic, 

hydrocarbon polluted environments has been carried out (GemmeU and Knowles 2000; 

Hallberg et al. 1999) 

1.4: Survival of Microorganisms in Acidic Environments 

The survival of microorganisms in acidic environments is a highly complex process 

which varies from species to species. Intracellular pH homeostasis is one of the most 

important factors to the survival of any cell, regardless of the external pH, therefore 

growth of acidophilic microorganisms in external pH as low as - 0.7 requires stringent 

control and regulation of internal pH in order for the cell to function. In most cases, 

acidophiles must maintain a near-neutral intracellular pH, which can be several pH units 

higher than the pH of the external environment (Matin 1990). 

Proton motive force (PMF) is a key factor in energy generation and pH homeostasis for 

all microorganisms. The PMF describes the energised state of the cell membrane, and 

is composed of membrane potential, AV, which is the difference in charge separation 

between the membrane and the external medium, and A pH, the difference in pH 

between the internal (cytoplasm) and external environment (A pH = pH in - pHout). 

PMF is calculated as follows: PMF (m V) = A\jI - 60A pH (at 25 OC) 

In most neutraIophiles, PMF is approximately - 200 m V (inside negative), which results 

from a slightly negative A pH, in the approximate range -0.1 to -1.5 for most 

microorganisms, and a AV around 100 mV. However, acidophiles have a much greater 

A pH. This could be seen as advantageous as it allows the formation of a larger PMF 

and therefore for a greater proton influx though FoFt-ATPases and consequently 

increased A TP generation. However, uncontrolled influx of protons into a cell can be 

extremely harmful, potentially leading to cell death. An increased proton concentration 

within the cell inhibits protein function and stability of nucleic acids, impedes 

enzymatic activity, protein synthesis and transcription of DNA, ultimately resulting in 
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the complete dissipation of ~ pH which would result in a much decreased PMF 

incapable of meeting the cells energy requirements (Baker-Austin and Dopson 2007). 

There are several known mechanisms by which acidophiles can minimise or prevent 

proton influx into the cell, as well as other mechanisms which allow the cell to tolerate 

and survive a small influx of protons into the cell. Mechanisms which inhibit or prevent 

proton influx into the cell include reversing the membrane potential (i\'I'), possessing a 

highly impermeable cell membrane and proton pumping. Meanwhile, cytoplasmic 

buffering, along with the presence of chemicals and enzymes which sequester protons 

within the cell and an increased number of secondary transporters help the cell to cope 

with proton influx (Matin 1990). 

One of the most commonly observed adaptations in acidophiles is a reversal of 

membrane potential. All neutralophilic microorganisms have an inside negative i\'I' 

whereas most acidophiles possess an inside positive i\'I', a reversal of the normal 

membrane potential (Figure 1.11). A reversed membrane potential is a mechanism for 

decreasing proton influx into the cell as it forms a chemiosmotic barrier which deflects 

positively charged protons, preventing them from entering the cell. It is thought that the 

reversed i\'I' is generated by a Donnan potential (Donnan 1924) of positively charged 

molecules, particularly accumulation of K+ ions. The creation of a reversed L\'I' by an 

accumulation of K+ ions is supported by evidence that there is an increased number of 

potassium-transporting ATPases found in acidophile genomes (Futterer et al. 2004; 

Tyson et al. 2004). Reversal of L\'I' results in a decrease in the overall proton motive 

force; however the reversed i\'I' detracts from such a large A pH that the flnal PMF is 

large enough to meet the cells energy demands. 

Further difficulties are encountered as a result of the reversed membrane potential. 

When the cell is in a reenergised state, such as in acidic media, the positive inside 

membrane potential results in the exclusion of permeant cations and the accumulation of 

penneant anions, which can begin to poison the cell. Whilst this is true there is one 

exception, sol- , the most common anion in acidic environments. Acidophiles are able 

to tolerate higher levels of sol- than other anions for two reasons. The flrst reason is 

that acidophiles have adapted systems to remove S042-from inside the cell, whilst the 
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Figure 1.11: Diagrammatic representation of commonly occurring adaptations to low pH observed in acidophilic microorganisms. The 

~ green circles highlight several adaptations including (From top left, clockwise) reversed membrane potential, increased K+ ion accumulation, 

impermeable cytoplasmic membrane, proton pumping, increased number of secondary transporters, cytoplasmic buffering, DNA and protein 
repair mechanisms and weak: acid degradation pathways. Diagram adapted from Baker-Austin and Dopson (2007). 



second is that sol- is less membrane penneable than other anions since it has additional 

polarity and carries a double charge (Johnson 2006). 

Research into the cytoplasmic membranes of some acidophiles has revealed a 

cytoplasmic membrane which is highly impenneable to proton entry, particularly in 

archaeal species which possess tetraether lipids (V ossenberg et al. 1998) (Figure 1.11). 

A delicate balance of membrane proton permeability is required, since the need to 

minimise proton influx is offset by the cells need to transport other ions and nutrients 

into the cell and pump protons out of the cell. This balance will determine if a cell can 

cope with a particular PMF. In silico shotgun sequencing of several acidophilic 

bacterial species' genomes from a biofilm revealed a large and varied set of genes for 

cell membrane biosynthesis (Tyson et al. 2004). This data implies that a complex 

structure, with an as yet unknown function, may be fonned and could be an intrinsic 

component in acid tolerance. 

Inevitably the cell cannot exclude all protons from the cytoplasm, therefore active 

proton pumping may be utilised in order to maintain a near-neutral intracellular pH 

(Michels and Bakker 1985) (Figure 1.11). However, there is no definitive evidence 

which shows induced or increased expression of systems which exclude protons from 

the cytoplasm as yet. Putative proton eftlux systems have been identified in all of the 

acidophilic genomes sequenced to date (Baker-Austin and Dopson 2007) including the 

Leptospirillum species in the biofilm present in acid mine drainage at Iron Mountain, 

California (Tyson et al. 2004). An increased number of secondary transporters has also 

been noted in the genomes of some acidophiles, which is thought to be a further 

adaptation to growth in extremely low pH. since cells will utilise the PMF generated for 

metabolic purposes (Figure 1.11). 

The ability of the cytoplasm to buffer the intracellular pH of the cell has been observed 

and shown to be involved in maintaining a near-neutral intracellular pH in acidic 

conditions. All cells have the ability to buffer the cytoplasm, either releasing or 

sequestering protons as appropriate using basic amino acids such as lysine, arginine and 

histidine. The buffering capacity of respiration inhibited cells of Thiobacillus 

acidophilus and Acidithiobacillus facile were measured and compared to the buffering 

capacity of growth medium containing Tris buffer. The buffering capacity of the 

microorganisms was shown to be approximately 100 nmol W mg protein ·1 pH unit -I 
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(Matin 1990), showing a much smaller decrease in cytoplasmic acidification than would 

be expected given the net W influx into the cells compared to the butTered medium. 

Comparisons of the butTering capacity between E. coli and Acidithiobacillus 

acidophilum were also carried out, with buffering capacities of 85 nmol It mg protein -

I and 97 nmol H+ mg protein -I respectively (Zychlinsky and Matin 1983) (Figure 1.11). 

Of particular concern to acidophiles is the uptake of weak acids (HA) as they function 

as uncouplers of the respiratory chain, which shuttle the net uniport of protons and 

'uncouple' proton transport from cellular processes (Ciaramella et al. 2005). These 

compounds can cross the cell wall in their undissociated form as they are uncharged at 

acidic pH (the external pH) but once they enter the cell, near-neutral pH, they become 

undissociated (It and K) and can no longer leave the cell in their charged form. 

Accumulation of weak acids by this process is problematic for cells, as protonation of 

the cytoplasm can occur quickly, therefore some acidophiles have developed active 

mechanisms of weak acid degradation in order to overcome this problem (Ciaramella et 

al. 2005) (Figure 1.11). 

Other mechanisms involved in pH homeostasis include the use of DNA and protein 

repair chaperones and the use of iron to stabilise enzymes and enzyme complexes 

(Baker-Austin and Dopson 2007). However, after comparisons of the genomes of 

several acidophilic microorganisms there appears to be no definitive individual 

adaptation or set of adaptations present in every acidophile which enables growth in low 

pH environments. 

1.5: AcidopbiJes 

Acidophiles are most commonly defined as organisms with an optimum growth at pH 3 

or below, however organisms which can grow sub-optimally at pH 4 or below may be 

considered moderate acidophiles. Acidic environments capable of sustaining life are 

usually dominated by sulphate anions, and there is usually only a low concentration of 

dissolved organic matter, with as little as 20 mg I -I dissolved carbon in some 

environments (Johnson 1998). Thus, the most commonly found organisms are 

chemolithotrophic bacteria and archaea, however some heterotrophic acidophiles can be 

supported from organic matter fixed by chemolithotrophic organisms. Acidophiles are 

most commonly grouped according to their carbon source and method of energy 

generation and further subdivided based on their optimum temperature for growth 



(Table 1.2). The following discussion includes several subdivisions of acidophiles since 

it is likely that any microorganisms isolated from Hoole Bank: acid tar lagoon samples 

will be acidophiles. 

1.5.1: Iron oxidising prokaryotes 

One of the best studied and well characterised acidophilic microorganisms is the 

chemolithotroph Acidithiobacillus ferrooxidans (formerly known as Thiobacillus 

ferrooxidans). Acidithiobacillus ferrooxidans is a mesophilic non-motile, iron oxidising 

rod which attacks pyrite by oxidising Fe2
+ to Fe3

+ and has an optimum growth pH 

between 1.8 and 2.5 (Rawlings et al. 1999). Acidithiobacillusferrooxidans, affiliated to 

the P/r-proteobacteria, was one of the first acidophiJes to be discovered and thus has 

been the subject of much study, however data suggests that it is not actually the most 

dominant organism in some acidic environments (Rawlings et at. 1999). 

Mesophilic organisms belonging to the phyla Nitrospira and Thermoplasmales compose 

a significant majority of the iron oxidising bacteria. Leptospirillum species are 

prominent within this group of acidophiJes, notably including L. ferrooxidans, a 

particularly acid tolerant organism capable of growth at pH 1.2 which uses Fe2+ as its 

sole electron donor (Johnson 1998; Rawlings et al. 1999). Leptospirillum ferrooxidans 

has a higher affinity for Fe2+ than other bacteria, which may explain why it is more 

dominant in environments with lower iron concentrations. 

Ferroplasma isolates are also part of this group and include an organism of particular 

interest, "Ferroplasma acidarmanus". Ferroplasma acidarmanus is a facultatively 

anaerobic acidophilic archaeon which is able to grow between pH 0 and 1.5, but most 

interestingly it grows chemoorganotrophically, combining oxidation of yeast extract to 

iron (III) reduction (Dopson et al. 2004). There are also some extremely thermophilic 

iron oxidising prokaryotes including the obligate aerobe Su/folobacil/us yellowstonii 

and the facultative anaerobe Acidianus brierleyi (Table 1.2). 

1.5.2: Sulphur oxidisers 

Several sulphur oxidising prokaryotes are moderately or extremely thermophilic, with 

optimum growth temperatures above 40 °C and 60 °C respectively. Acidithiobacillus 

caldus is an aerobic moderate thermophile capable of growth up to 55 °C, known to be 

found in hot springs in Iceland, New Zealand and the United States and has recently 
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been isolated from hot springs in Monsterrat (Button and Norris 2000). Extreme 

thermophiles utilising sulphur oxidation include the autotroph Sulfolohus metallicus and 

the mixotrophic S. halwnesis, both of which belong to the order Sulfolohales within the 

crenarchaeotal branch of the domain archaea. 

Acidithiohacillus ferrooxidans is also capable of oxidising sulphur, along with other 

mesophilic sulphur oxidisers such as the mixotroph Thiobacillus acidophilus, also a 

member of the pty-proteobacteria. However, with a maximum growth temperature of 

70 °C, Hydrogenohacter acidophlius, a sulphur oxidising bacterium, has the highest 

known growth temperature of any sulphur oxidising acidophile. 

1.5.3: Heterotrophic organisms 

Heterotrophic organisms are important to the ecology of acidic environments, as some 

species contribute to mineral dissolution both directly and indirectly. Acidiphilium spp. 

is an Fe3
+ reducer which increases the rate of iron dissolution in geothite and jarosite. 

Heterotrophs such as Thermoplasma and Acidocella may utilise the natural organic 

compounds produced by chemolithotrophic iron- and sulphur- oxidising organisms 

thereby detoxitying the environment of inhibitory substances such as organic acids 

which would otherwise prevent growth of organisms sensitive to such compounds 

(Johnson and Hallberg 2003). 

Many acidophilic heterotrophs are archaea, including the moderate thermophiles 

Picrophilus torrid us and P. oshimae, both of which are strict anaerobes but most 

importantly, they have the lowest recorded pH optimum of any acidophile at pH 0.7. 

(Schleper et al. 1995). As of January 2003, there was only one fully documented 

strictly heterotrophic thermophilic acidophile, Alicylc/obacillus sp (Johnson et al. 

2003). 
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Table 1.2: Acidophilic prokaryotic microorganisms 

Taken from Johnson et al. (2003) 
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1.5.4: Acidophilic eukaryotes 

Surviving at low pH is arguably more difficult for eukaryotic cells than prokaryotic 

cells since the problems encountered by prokaryotic acidophiles (as discussed in Section 

1.4) are equally applicable to eukaryotes, yet the cellular processes of a eukaryote are 

considerably more complex. For example, eukaryotes must cope with acid conditions 

on the surface of the plasma membrane. Ion channels and transporters are in contact 

with the low pH of the external environment, which would minimally require molecular 

modifications compared to the equivalent proteins of neutralophilic organisms (Messerli 

et al. 2005). Nevertheless, several algal, yeast and fungal species thrive in acidic 

environments, often playing key roles in the microbial communities present in these 

environments, particularly when biofilms are present. 

A high degree of eukaryotic diversity has been reported in the Rio Tinto, Spain, with 

eukaryotic organisms forming up to 60 % ofthe biomass in some cases (Lopez-Archilla 

et al. 1993). Lineages previously undetected in the Rio Tinto such as ciliates, 

cercomonads, vahlkampfiid, amoebae, stramenopiles and fungi were identified by 

Zettler et al (2002), alongside the discovery of taxa never previously found in extreme 

habitats before. Eukaryotic organisms have also been implicated in the development 

and structure of biolftms present in the Rio Tinto, with 14 taxa identified from Rio 

Tinto biofilms in total. Algal species belonging to the genera Dunaliella and 

Cyanidium were found to dominate during biofilm formation (Aguilera et al. 2007) 

whilst other algal genera present in the biofilms throughout their development include 

Zygnemopsis, Klebsormidium (filamentous algae), Chlamydomonas, Euglena 

(flagellated algae) and Chlorella (sessile algae). Other eukaryotic organisms detected in 

the biofilms also included amoebae, diatoms, and several fungi (Aguilera et al. 2007). 

Nixdorf et a/ (200 I) report at least six classes of algae with acidophilic representatives 

found in acidic mining lakes, and their closest neutralophilic relatives (Table 1.3). The 

diversity of diatoms in acidic environments has also been reviewed (DeNicola 2000). 

At least 124 different taxa detected in acidic environments, of which 19 have been 

found in more than one environment and are considered abundant. However, this 

includes taxa detected between pH 4.5 and 5.0, whilst reports suggest that diatom 

diversity is significantly decreased at pH ~ 3.5 (DeNicola 2000). Some of the abundant 

diatom taxa identified in the DeNicola (2000) review include Achnanthes minutissima, 

Eunotia pectinalis, Frustulia rhomboides, Nitzschia communis and Pinnuiaria. 
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Table 1.3: Typical algal colonisers of acidic mining lakes and their neutralophilic 

wetland colonising counterparts. Table from Nixdorf et al (2001) 

Baker et al (2004) studied the eukaryotic diversity present at the Iron Mountain acid 

mine drainage site in California, revealing a lineage of the red algae Rhodophyta, 

members of the family Vahllw.mpflidae and three fungal isolates putatively named 

"Acidomyces richmondensis" which are most closely related to the fungal class 

Dothideomycetes based on 18S rRNA sequences. 

1.6: Aims of the Projeet 

A number of samples were collected from Hoote Bank acid tar lagoon in February 

2003. A range of techniques, both classical microbiology and molecular biology 

techniques, were used to characterise the microbial diversity found in Hoole Bank acid 

tar lagoon (Chapter 3). 

Two specific microorganisms isolated from the Hoole Bank acid tar lagoon were chosen 

for further study. In Chapter 4 the eukaryotic alga, Euglena gracilis 046, is discussed 

in detail and in the final results chapter (Chapter S) the prokaryotic bacterium, 

Acidocella, is further characterised. The results in Chapter 4 and 5 help to explain the 

mechanisms used by microorganisms to survive and grow in Hoole Bank acid tar 

lagoon. 
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Chapter Two: Materials and Methods 

All chemicals were purchased from Sigma (Appendix B) unless otherwise stated. 

2.1: Isolation of Microorganisms 

2.1.1: Sample collection 

Various samples were collected from around Hoole Bank acid tar lagoon into sterile 500 

ml Nalgene bottles or sterile 50 ml Falcon tubes. Each sample was labelled at the time 

and a photograph taken at each sampling location. The pH of samples was measured 

using a Mettler Toledo MP225 pH meter. Samples were stored at 4 °c until required. 

2.1.2: Growth media 

Y2 Buffered Luria Broth (BLB) plates were prepared by adding 5 g yeast extract (Oxoid 

L21), 2.5 g tryptone (Oxoid, LP0042) and 1.5 g NaCt to 500 mt of disti11ed water, 

adjusting the pH to 3.0 with 1 M H2S04 and autoclaving. A separate gelling solution 

was prepared by adding 10 g of agar no. 1 (Oxoid, LPOOll) to 500 ml of distilled water 

and autoclaving at 121°C for 20 minutes. After autoclaving, both solutions were 

allowed to cool to approximately 50°C, combined aseptically and gently inverted to 

mix before being poured into sterile plastic Petri dishes and left to set. 

Acidiphilium medium (AC) plates were prepared by adding the following chemicals to 

500 ml of distilled water: 0.5 g MgS04.7H20, 0.1 g (N14)2S04, 50 mg KH2P04, 50 mg 

KCI, 14.4 mg Ca(N03)2.2H20, 1.0 g mannitol, 0.1 g tryptone soy broth. The pH was 

adjusted to pH 3.0 with 1 M H2S04 and the solution autoclaved at 121°C for 20 

minutes. A separate gelling solution was prepared by adding 109 of agar no. 1 to 500 

ml distilled water and autoclaving at 121 OC for 20 minutes. After autoclaving, 

solutions were cooled to approximately 50°C, combined aseptically and inverted gently 

to mix. poured into sterile plastic Petri dishes and left to set. Liquid media was 

prepared simply by dissolving all the reagents except agar in 1 litre of distilled water 

and autoclaving at 121°C for 20 minutes. The pH value of liquid media was checked 

after autoclaving and shown not to alter 'by more than 0.05 pH units. 

During initial isolation of microorganisms from environmental samples, nystatin was 

added to all AC and Y2 BLB media at 100 J.l8 mrl in order to inhibit fungal growth. 
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M6 medium consisted of 1 g CH3COONa.2H20, 2 g yeast extract, 2 g of tryptone 

(Oxoid, UK) and 10 ml of CaCh stock solution (1 g CaCh in 1 litre of distilled water) in 

1 litre of distilled water. The pH was adjusted as necessary with 1 M H2S04 or 1 M 

NaOH prior to autoclaving at 121 OC for 20 minutes. Solid medium was produced by 

adding 109 agar no 1 directly to the pH 7 medium. whilst pH 3 plates were made by 

making a separate gelling solution and a 2X concentrate of the medium and mixing after 

autoclaving as described above for AC and Y2 BLB solid media. 

Luria-Bertani (LB) medium consisted of 5 g yeast extract, 10 g tryptone, 5 g NaCI and 

109 Oxoid Agar No 1 in 1 litre of distilled water to produce solid medium. Liquid 

medium consisted of 5 g yeast extract, 109 tryptone and 5 g NaCI per litre. Ampicillin 

was also added to LB in some cases, either at 100 f.18 ml-1 in solid medium or 50 IJ.g ml-1 

in liquid medium. 

M9 minimal media were prepared by dissolving 109 M9 minimal salts in 1 litre 

distilled water and adjusting the pH as necessary with 1 M H2S04 or I M NaOH. 

Phosphate-free minimal medium was prepared as follows: 5 g NaCI, 5 g (N~)2S04' 5 

g KCI and 6 g Trizma base in 1 litre of water. The pH was adjusted to pH 3 or pH 7 

with 1 M H2S04 or 1 M NaOH as necessary. 

2.1.3: Initial isolation of microorganisms using spread plating 

Approximately 200 IJ.l of raw environmental sample was spread plated onto both AC 

and Y2 BLB plates. Each plate was labelled, sealed and incubated at 25°C. Growth was 

monitored daily for 14 days and any colonies arising were streaked onto fresh plates in 

order to isolate pure cultures. After the third generation of plate growth, a single colony 

from each isolate was inoculated into approximately 10 ml of the appropriate liquid 

medium and sub-cultured into 250 ml flasks, containing 50 ml of medium, and shaken 

at 250 rpm at 26 OC. 

2.1.4: Initial isolation of microorganisms using chemostat culture 

A chemostat with a working volume of I litre was used to isolate microorganisms from 

environmental samples. Temperature was maintained at 25°C with an aeration rate of 

500 ml minute .1. Samples were taken on a daily basis over the 7 - 10 day incubation 

period. 
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2.2: Growth conditions 

2.2.1: Euglena gracilis Z and 046 

Wild-type Euglena gracilis Z (CCAP 1224/SZ) and E. gracilis 046 (CCAP 1224/46) 

were routinely grown in M6 medium, at pH 7 and pH 3 respectively. Both organisms 

were grown under 8 hours light and 16 hours darkness at approximately 27 ± 2 OC. 

2.2.2: Acidocella sO. (29) 

Acidocella 29 was routinely grown in batch culture in AC medium at pH 3 (Section 

2.1.1) at 26 °C and shaken at 250 rpm. 

2.3: Chloropbyll Content 

Chlorophyll content of algal cultures was determined by centrifuging a 5 ml sample at 

3000 g for 10 minutes. Following centrifugation, the supematant was removed and the 

pellet resuspended in 80 % acetone (Fisher Scientific) for 5 minutes. The sample was 

then centrifuged again for 10 minutes at 3000 g and the absorbance of the resulting 

supernatant measured against an 80 % acetone blank at 645 and 663 nm (Bruinsma 

1961). 

The chlorophyll concentration was then calculated as follows: 

(Absoroance at 645 om x 202) + (Absorbance at 663 om x 80.2) = ~ chlorophyll mrl 

5 

2.4: Protein Determination 

Determination of the amount of protein in a sample was measured using the Bradford 

Assay (Bradford 1976). 0.1 ml of the sample was placed into a test tube and 0.9 ml of 1 

M NaOH added. The sample was then vortexed and heated at 90 °C for 10 minutes. 

The test tube was cooled on ice for 5 minutes prior to centrifugation at 3000 g for 10 

minutes. 0.1 ml of the resulting supernatant was added to 3 ml of Bradford's reagent, 

vortexed and the optical density measured in the Unicam Helios« spectrophotometer 

against 0.1 ml water plus 3 ml Bradford's reagent blank at 595 nm after a minimum of 5 

minutes incubation. 
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2.5: Photosynthesis and Respiration Measurements 

2.5.1: Oxygen electrode preparation 

A modified Clark-type oxygen electrode (Hansatech Instruments Ltd, Norfolk, UK) was 

prepared for use by adding a few drops of 2.3 M KCI to the electrode disk before an 

approximately I inch square piece of cigarette paper was placed on top of the centre of 

the disk. The electrode Teflon membrane was placed on top of this and forced tightly 

onto the electrode disc using a membrane applicator and held in place by an O-ring 

(Figure 2.1). The disc was then placed into the chamber and connected to the control 

box. Oxygen was removed from the chamber by adding sodium dithionite to allow 

calibration of the electrode. 

Locking ring 

'0' ring 
WIder out

IetwHh 

Figure 2.1: Schematic diagram illustrating the key components of an oxygen electrode. 

Figure from http://www.rankbrothers.co.ukiprodlexp.htm. 

The reaction chamber, working volume 2 ml, was maintained at a constant 30°C by 

circulating water from a temperature controlled water bath. A 12 V, 100 W tungsten

halogen lamp was used to illuminate the chamber when required. approximate output 

intensity 1800 J.lmol m ·2 s .1. 
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2.5.2: Algal pH shock experiments 

Rates of oxygen evolution and uptake were measured in E. gracilis 046 cells grown in 

M6 medium at pH 3 and in E. gracilis Z cells grown in M6 medium at pH 7 using the 

oxygen electrode. Rates of oxygen evolution and uptake were also measured after pH 

shock experiments in which cells were resuspended in medium of a different pH to the 

growth medium. In steady state experiments cells were resuspended in fresh medium of 

the same pH as that of the growth medium. In shock experiments, cells were 

resuspended in different pH media ranging from pH 2 to pH 9 and rates of oxygen 

evolution and uptake were measured immediately. In all cases chlorophyll content of 

the cells was determined (Section 2.3) and samples adjusted to 30 ~g chlorophyll ml,t. 

In all cases, 2 ml of the concentrated cells were pipetted into the chamber and left in the 

dark for 2 minutes. After the 2 minutes acclimatisation the samples were illuminated 

for approximately 2 minutes until oxygen evolution was linear, followed by 

approximately 2 minutes in the dark until oxygen uptake was linear. At the end of each 

experiment, the sample was carefully removed using a plastic pasteur pipette and the 

chamber rinsed several times with distilled water before the next sample was applied. 

Each sample was repeated in triplicate. 

The rate of oxygen evolution or uptake was calculated as follows: 

Respiration rate = standard x 

range 

number of units 

time 

x 

mg chlorophyll per sample 

Standard: Oxygen solubility (0.406 ~oles <h ml ,I at 30 °C) 

Range: Units taken from calibration 

Number of units: Number of units covered in a certain period time, either with or 

without light 

Time: The length of time in minutes for which the sample was measured 

60: This converts the time from minutes to hours 

mg chlorophyll present in sample: This relates to the chlorophyll content of the sample 

for example 30 ~g chlorophyll ml,t = 0.060 mg 

The rate of respiration was taken as being the rate of oxygen uptake in the dark. To 

calculate the rate of photosynthesis it was assumed that the rate of respiration in the 
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light was equal to dark respiration. Therefore, the rate of photosynthesis was equal to 

oxygen evolution in the light plus oxygen uptake in the dark. This assumption is 

unlikely to be completely valid, however since the rate of respiration is generaJly a 
smaJl proportion of the photosynthetic rate the error involved is likely to be smaJl 

(Jackson and Volk 1970). 

2.5.3: Bacterial pH shock experiments 

5 to 10 ml of overnight Acidocella 29 culture were concentrated and resuspended in 2 

ml M9 minimal medium at various pH values over the range pH 2 - 7. 2 ml samples 

were placed in the electrode chamber and the rate of respiration measured for 5 minutes 

after a linear decrease in oxygen was recorded. The electrode chamber was rinsed 

thoroughly with distilled water between samples. The rate of respiration was calculated 

using the equations in Section 2.5.2, with the exception that "mg chlorophyJl present in 

the sample" is replaced by "J.lg of protein present in the sample", which was measured 

using the Bradford assay as described in Section 2.4. 

2.5.4: Sodium orthovanadate inhibition of proton eftlux in E. gracilis 

Sodium orthovanadate, Na3V04, was used as an inhibitor of Non-F,Fo ATP-ases in 

order to inhibit active proton eftlux. Sodium orthovanadate was prepared in 100 mM 

stocks and used at 1 mM concentrations (20 J.lI of 100 mM stock added to 2 ml 

samples). E. gracilis 046 and E. gracilis Z were prepared by measuring chlorophyll 

concentration (Section 2.3) and concentrating the cells to 30 J.Lg chlorophyll mr'. 

Concentrated cells were resuspended in pH 3 and pH 7 phosphate-free minimal media 

(Section 2.1.2) and the rate of respiration was measured immediately. After 5 minutes 

of a linear respiration rate, 20 J.Ll of 100 mM sodium vanadate was added and the 

respiration rate recorded for a further 5 minutes after a linear rate was achieved. This 

was carried out for both pH 3 and pH 7 resuspended cells. A further two sets of 

duplicate samples were also prepared; incubating the cells in phosphate-free minimal 

medium for 60 minutes with and without 1 mM sodium vanadate, both at pH 3 and pH 

7, and the rates of respiration measured as previously described. 

2.5.5: Sodium orthovanadate inhibition of proton eftlux in Acidocella 29 

15 - 25 ml samples of overnight Acidocella 29 culture were centrifuged at 3000 g in the 

bench centrifuge for 10 minutes. Concentrated cells were re suspended in pH 3 and pH 

51 



7 phosphate-free minimal media (Section 2.1.2) and the rate of respiration measured 

after immediate resuspension. After 5 minutes of a linear respiration rate 20 1.11 of 100 

mM sodium vanadate was added and the respiration rate recorded for a further 5 

minutes after a linear rate was achieved. This was carried out for both pH 3 and pH 7 

resuspended cells. A further two sets of duplicate samples were also prepared; 

incubating the cells in phosphate-free minimal medium for 60 minutes with and without 

1 mM sodium vanadate, both at pH 3 and pH 7, and the rates of respiration measured as 

previously described. At least 1 mt of Acidocella 29 culture was retained for protein 

determination as described in Section 2.4. Rates of respiration were calculated as 

described in Section 2.5.2. 

2.6: Cell separation using the silicone oil technique 

Centrifugation through silicone oil was used to completely separate cells from the 

medium. A range of Dow Coming silicone oils (Fisher Scientific, UK) were used to 

obtain a range of different density oils by mixing individual oils in specific ratios. In 

order to determine the density of silicone oil required, cell samples of the desired 

chlorophyll or protein content as appropriate, were applied to the oil and centrifuged. E. 

gracilis samples were concentrated to 30 ~g chlorophyll ml -I, whilst Acidocella 29 

samples were adjusted to an OD595 of 0.5. Oil of the correct density produced a pellet 

separated from the medium by a layer of oil with a non-inverted meniscus (Figure 2.2). 

Both E. gracilis G46 and Acidocefla 29 required a 3:1 mix of 550 and 200 oils 

respectively to separate cells. 

2.6.1: Determination of cell volume 

Chlorophyll content of the cells was measured according to Section 2.3. Cells were 

then adjusted to 30 J.tg chlorophyll mrl. 5 J.tl of 14C-dextran (1.85 MBq mr!) (MW = 

70000 Da) was added to a 1 mt sample of concentrated cells and 10 J.tl of 3H20 (1.85 

MBq ml -I) added to a further 1 ml sample before both samples were vortexed 

thoroughly. After 5 minutes the microcentrifuge tubes were vortexed again. 300 J.tlof 

cell suspension were then layered onto 300 J.tl of 3: 1 550:200 silicone oil in 

microcentrifuge tubes, and this process repeated twice to result in triplicate samples 

from each initial 1 ml sample. 
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Supernatant 

Silicone oil 

Pellet 

Meniscus 

a) Oil is too dense 

Silicone oil 

Pellet 

Supernatant 
Inverted meniscus 

b) Oil is not dense enough 

Supernatant 

Pellet 
Silicone oil 

Meniscus 

c) Correct density oil 

Figure 2.2: Diagram highlighting the possible and desired results when attempting to 

acquire the correct density silicone oil required to separate cells from their growth 

media 

The microcentrifuge tubes were then centrifuged at 11400 g for I minute. 1 00 ~I 

samples of supematant were carefully removed from each microcentrifuge tube and 

placed into separate scintillation vials each containing 5 ml of FluoranSafe scintillation 

fluid (VWR) and labelled appropriately. The lower half of each microcentrifuge tube, 

containing the cell pellet, was carefully cut off using a razor blade and placed upside 

down into a microcentrifuge tube containing 300 ~ of distilled water. The 

microcentrifuge tubes were centrifuged for approximately 15 seconds at 11400 g in 

order to dislodge the pellet from the rnicrocentrifuge tube into the distilled water. 

After the pellets were dislodged the microcentrifuge tip was removed and discarded 

before the entire pellet was resuspended in the water. All 300 ~l of cell suspension was 

pipetted into a scintillation vial containing 5 ml of FluoranSafe scintillation fluid and 

labelled appropriately. All the vials were placed in racks and counted for 5 minutes per 

vial in a Beckman LS 1801 Liquid Scintillation Counter. 

The 3H20 was evenly distributed throughout the pellet, whereas the 14C-dextran was 

only found in the spaces between the cells and the pellet due to its high molecular 

weight (Figure 2.3). 

53 



Figure 2.3: Diagrammatic representation of the exclusion of the large MW dextran to 

the external environment and inclusion of water within and around the cells. 

The pellet volume (PV) and the extracellular volume (ECV) were calculated from the 

ratio of ~20 and l4C-dextran in the pellet and supematant fractions respectively using 

the following equations (Hard and Gilmour 1996): 

Pellet volume (PV) (~) = ~O DPM in pellet x 300 

~20 DPM in supernatant x 3 

Extracellular volume (ECV) (~) = l4C-dextran DPM in pellet x 300 

l4C-dextran DPM in supernatant x 3 

Intracellular volume (ICV) was calculated by subtracting the ECV from the total PV 

(Rottenberg 1979). 

2.6.2: Determination of intracellular pH 

The internal pH of the cells was measured using a weak acid (Rottenberg 1979). l4C_ 

benzoic acid was used when the external pH was lower than pH 7.0 in order to obtain a 

measurable accumulation of the isotope. The silicone oil method employed was 

identical to that described in Section 2.6.1, except that 10 III of 14C-benzoic acid (3 .7 

MBq mrl) was added to a 1 ml sample of cells. 

In order to calculate the intracellular pH the following equations were used: 

1. DPM 14C-benzoic acid supernatant = DPM 14C-benzoic acid in 1 III = A 

100 
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2. Multiply A by ECV = DPM 14C-benzoic acid within the pellet, outside the cells = B 

3. Subtract B from the DPM 14C-benzoic acid pellet and divide by ICV = DPM J11 -I 

cell volume = C 

4. Ratio of CIA = Concentration of 14C-benzoic acid inside the cell (ail 

Concentration of 14C-Benzoic acid outside the cells ("0) 

If the pKa of the probe (weak acid) is more than 1.5 units below the external pH then: 

ApH = -log (a/80) 

If the pKa of the probe (weak acid) is less than 1.5 units below the external pH then: 

pHi = -log [a/80(I()pK - lOP",) - lO-PK] 

2.6.3: Killed controls 

Intracellular pH was also measured using killed E. gracilis G46 and E. gracilis Z as 

further controls. In these instances, 50 J11 of Grams iodine was added per ml of sample 

and the procedure carried out as previously described (Section 2.6.2). 

2.6.4: Measurement of isotope uptake over time 

In order to determine uptake of any isotope by E. gracilis G46 cells. a time course 

experiment was carried out. Essentially the silicone oil method (Section 2.6.1) was 

carried out using only one isotope. An appropriate volume of isotope was added to 

seven 1 ml samples of cells and the silicone oil procedure carried out at 5, 15, 30, 60, 

120, 180 and 240 minute intervals_ The vials were placed in racks and counted for 5 

minutes per vial in a Beckman LS 1801 Liquid Scintillation Counter. The average dpm 

for the pellet and supernatant triplicates per time point were calculated and plotted 

against time. 

2.6.5: Measurement of membrane potential 

The silicone oil procedure was carried out as described previously (Section 2.6.1), with 

the exception that 5 J.1l of 3H_TPp+ (tetraphenylphosphonium) (1.85 MOq mrl) was 

added to a 1 ml aliquot of cells. Membrane potential (A",) was then calculated as 

follows: 
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1. DPM 3H_ TPP+ Supernatant = DPM 3H_ TPP+ in 1 ~l = A 

100 

2. Multiply A by ECV (calculated from parallel samples treated with 3H20 and 

14C-dextran as in Section 2.6.1) = 3H_ TPP+ within the pellet, but outside the cells 

=B 

3. DPM 3H_ TPP+ in the pellet minus B and divide by ICV (calculated from parallel 

samples treated with 3H20 and 14C-dextran as in Section 2.6.1) = DPM ~rl cell 

volume=C 

4. Ratio of CIA = Concentration of TPP+ inside the cell (ail 

Concentration ofTPP+ outside the cells (ao) 

Using the Nemst equation, where: 

R = 8.3143 Joules mort K- t 

T = 296 K (23 QC) 

F = 96.487 Joules ml- t m V-t 

Z = 1 (charge on ionic species) 

At 23 QC and converting from In to log (x2.303): 

6", (mV) = -58.8 x log (a/80) 

2.6.6: Measurement of the effect of valinomycin and gramicidin on membrane potential 

A 10 mg ml-} stock solution of valinomycin was prepared in 95 % ethanol and diluted 1 

in 10. 3 ~ of this dilution was added to a 1 ml sample of E. gracilis G46 or E. gracilis 

Z, resulting in a final concentration of 3 ~g ml-t valinomycin, and incubated for 10 

minutes prior to a further 5 minute incubation after 5 ~l of 3H_ TPP+ was added. The 

silicone oil procedure was carried out as previously described and the membrane 

potential calculated according to Section 2.6.5. The same procedure was used to 

measure the effect of gramicidin, with the exception that a 20 mg ml-t stock solution 

was made initially resulting in a final concentration of 6 J1g ml- t gramicidin. Two 

controls were carried out; one using 3H_ TPP+ alone, in order to measure the typical 

membrane potential for comparison, and the other with the addition of 3 ~ of 95 % 

ethanol for 10 minutes prior to adding the 3H_ TPP+ in order to ascertain if the solvent 
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used to dissolve both the valinomycin and gramicidin had an effect on membrane 

potential. 

2.7 : Fluorescence Activated Cell Sorting (FACS) 

The basis of the flow cytometric method lies in the cell sample being passed through a 

beam of light of a defined wavelength. The sample is loaded into a flow cell which 

delivers the sample into a stream of mild saline solution. This mixture is then pushed 

through a narrow channel which forces the liquid in the centre to form a fast moving 

laminar flow of liquid. This process forces the particles in the centre of the flow into 

single file resulting in the particles passing across the beam of light which transects the 

laminar flow once only. This is the principle of hydrodynamic focusing (Figure 2.4). 

FLl .. ~~ .......••.•••...........••...... 

, , , 

"·1 FL2 

Laser source 

SSC- Side Scatter 
Channel photo 
multiplier tube 

FSC- Forward 
Scatter Channel 

Sample located within laminar flow 

Figure 2.4: A diagrammatic representation of the photon detectors within the F ACSort 

apparatus. The laser beam transects the laminar flow. The FSC detector picks up 

photons which pass directly through the sample, whereas the SSC is located at 90 0 to 

the source. The FLI and FL2 (and indeed FL3) detectors are located downstream of the 

SSc. The grey boxes represent filters which aid the detectors located behind them. 

The wavelength of the beam of light which transects the laminar flow can be tailored to 

obtain specific information from the sample. Detectors located on the other side of the 

laminar flow can receive information about the degree of side and forward scatter of the 
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light beam by the particles within the core of the laminar flow. The OiOC2 stain 

component of the BacLight kit exhibits green fluorescence in all bacterial cells, but the 

fluorescence shifts towards red emission as the dye molecules self associate at higher 

cytosolic concentrations caused by larger membrane potentials ("Molecular Probes 

Product Infonnation Sheet MP34950"). 

2.7.1: Measurement of &'1' in Acidocella 29 using F ACS 

The BacLight Bacterial Membrane potential kit (Molecular Probes, Invitrogen) was 

used in order to detennine the effect of various reagents on A'I', using a F ACSort 

machine in order to determine the ratio of red:green fluorescence. An appropriate 

volume of cells were centrifuged and resuspended in 18 ml of filter sterilised pH 3.0 

phosphate buffered saline (PBS) (Sambrook and Russell 200 I) to produce a final 00595 

of approximately 0.5. Samples were prepared with 1 ml of cell suspension in each flow 

cytometry tube, to which 10 J.1l of 3 mM DiOC2 solution was added to all tubes except 

for the three unstained controls. 

To the remaining samples containing DiOC2 stain triplicate repeats of the following 

treatments were also prepared: 10 pJ 500 J.1M CCCP (Carbonyl cyanide 3-

chlorophenylhydrazone); 3 JLI 100 % ethanol, 3 ,.d 10 mM valinomycin and 3 J.1l 20 mM 

gramicidin. Samples were incubated for 15 minutes before measurements were made. 

A 1 ml sample of filter sterilised PBS was mounted onto the F ACSort machine and 

compared to 1 ml samples of unstained and stained cells, with the fluorescence of cells 

in both the FLl-H and FL2-H axes confinning the position of cells. The cell event 

count region, known as "RI", was located to reduce background event counts and to 

contain as much of the cell population as possible before a significant error was 

incurred. 

Instrument settings were adjusted such that the unstained samples produced 

approximately equivalent FL I-H and FL2-H median values. Samples were then 

stabilised for approximately 30 seconds before the three repeats, following which 20000 

events in the RI region were counted. The ratio of red:green fluorescence was then 

calculated using the median FL2-H value divided by the median FL I-H value for each 

sample. 
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2.7.2: Measuring intracellular pH in Acidocella 29 using FACS 

The fluorescent probe LysoSensor Green DND-189 (Molecular Probes, Invitrogen) was 

employed as an alternative method to NMR for determination of intracellular pH in 

Acidocella 29. Cells were adjusted to an OD595 of 0.5 log, resuspending the pellets in 

AC pH 3 medium containing 1 J.lM LysoSensor Green DND-189 before returning cell 

samples to their normal growth conditions for 2 hours. After 2 hours cells were pelleted 

and the supernatant removed completely before resuspending in fresh filter sterilised 

AC pH 3 medium without any probe immediately prior to F ACS. 

1 ml samples of cells were mounted onto the F ACSort and a gated popUlation of cells 

assigned based on comparisons between filter sterilised AC pH 3 and stained cells as 

described in Section 2.7. E. coli were used as a negative control, in order to ensure that 

any fluorescence observed, was not due to aberrant binding of the probe. Intracellular 

pH was measured as a function of the median FL I-H. 

2.8: Nuclear Magnetic Resonance (NMR) 

2.8.1: E. gracilis 

100 ml of7 day old (approximately 25 - 35 ~g chi mr') E. gracilis G46 or E. gracilis Z 

culture were centrifuged at 3000 g for 10 minutes and the pellet resuspended in 2 ml of 

10 mM Tris pH 3 or pH 7 for Jlp_NMR experiments. Cells were then added to 5 mm 

NMR tubes (WilmadlLab glass, Buena, NJ.) and deuterium oxide added to a final 

concentration of 10 % v/v before being pelleted further in a hand centrifuge. NMR 

measurements were recorded in a Bruker Avance DRX-500 (11.7 T) at 202.45 MHz 

with a 10 J.IS pulse (90 0) with an acquisition time of 0.68 s and a relaxation delay of 1 s, 

typically using 128 transients, giving a total time per measurement of 4 minutes. 

Spectra were processed by Fourier Transformation using a 5 Hz exponential broadening 

using FELIX (Accelrys Inc, San Diego, CA). Chemical shifts are reported relative to 1 

M phosphoric acid in ppm. Calibration samples of 50 mM sodium phosphate were 

prepared at pH values 2.91, 3.64,4.03, 4.54,4.96, 5.52, 5.99,6.53 and 8.3. The pH of 

test samples was determined by interpolation. 

2.8.2: Acidocella 29 

100 rnl of Acidocella 29, OD595 = 0.5, were centrifuged and resuspended in ] rnl of ] 0 

mM Tris pH 3 or pH 7. 31p_NMR experiments were carried out exactly as described 

above (Section 2.9.1) with the exception that 4096 transients were recorded. 
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IH NMR measurements were carried out in a Broker Avance DRX-500 (11-.7 T) at 500 

MHz using a 90 0 pulse approximately 12 ~ calibrated for each sample with an 

acquisition time of 0.7 s and a relaxation delay of 1.5 s, during which time the water 

signal was suppressed by saturation. Spectra were typically acquired using 200 

transients. Chemical shifts are reported relative to DSS (2,2-Dimethyl-2-silapentane- 5-

sulfonate sodium salt) in ppm. Calibration samples of 50 mM lactic acid in 50 mM 

sodium phosphate were prepared at pH values: 8.3, 6.53, 5.99, 5.52, 4.96, 4.54, 4.03, 

3.64,2.91 and 2.27. The pH of test samples was determined by interpolation. 

2.9: Malate Dehydrogenase Activity 

2.9.1: Preparation of E. gracilis cell free extract 

E. gracilis G46 and E. gracilis Z were grown in batch culture (Section 2.2.1) and the 

chlorophyll content of the cells determined (Section 2.3). E. gracilis G46 and E. 

gracilis Z cells were harvested by centrifugation at 3000 g for 10 minutes and 

resuspended in pH 7 M9 minimal medium. Cells were disrupted using a French 

Pressure Cell Press (Simoamico, SLM Instruments, INC). The crude extract was then 

centrifuged in 1 m1 samples in a microcentrifuge at 11400 g for 1 minute and the 

resulting supernatant removed into a fresh microcentrifuge tube and kept on ice. 

2.9.2: Enzyme activity determination 

Malate dehydrogenase is an enzyme found in the tricarboxylic acid (TCA) cycle which 

catalyses the following reaction: 

L- Malate + NAD+ +-+ Oxaloacetate + NADH + It" 

The assay mixture contained: 

2.0 m1 M9 (minimal salts medium) 

0.3 ml 1.5 mM NADH 

0.2 m17.5 mM oxaloacetate, pH 7.5 

0.1 m1 cell free extract 

0.4 ml distilled water 

Absorbance was measured in a Heliosa Spectrophotometer at room temperature (-20-

25 OC) in 4.0 m1 cuvettes with a 1 cm light path in all cases. All reagents, with the 

exception of oxaloacetate, were added to the cuvette and the background rate of reaction 
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measured at 340 nm for 1 minute. Positive rates were reduced to zero, whilst any 

negative background rate was recorded and subtracted from the final rate. The reaction 

was started by the addition of oxaloacetate and the decrease in absorbance at 340 nrn 

measured for 1 minute against a water blank. Enzyme activity is expressed as J.Ulloles 

NADH oxidised min-t mg-t of protein. 

Enzyme assays were carried out as both shock experiments, where cell free extract was 

added into the cuvette and the rate of reaction measured immediately, and incubated 

experiments where the rate of reaction was measured after 120 minutes incubation of 

the cell-free extract in M9 minimal medium at the appropriate pH at room temperature. 

Oxaloacetate and NADH solutions were prepared fresh daily due to their instability. 

The extinction coefficient ofNADH at 340 nm is 6.22 x 103 litre mole-\ cm-I. 

2.10: Agarose Gel Electrophoresis 

All DNA samples were analysed by electrophoresis using 0.8 - 1.3 % T AE gels. These 

comprised 0.8 -1.3 g low melting point agarose (Roche), 2 mlSOX TAB (Appendix D) 

and distilled water to 100 ml. This solution was then heated in a microwave until the 

agarose had melted, after which it was allowed to cool whilst being stirred, and 5 J.Ll of 

ethidium bromide (Biorad #161-0433) was added prior to pouring into a Biorad Subcell 

GT electrophoretic tank with a 14, 20 or 30 well comb. Once the gel had set, it was 

covered with IX TAE buffer (Appendix D) and run at 90 - 120 V using a Biorad 

PowerPack 300. Gels were visualised using the Uvitec "Uvidoc" mounted camera 

system. 

2.11: Genomic DNA Extraction 

2.11.1: Environmental samples 

Direct extraction of total community genomic DNA was carried out using the 

commercially available PowerSoil kit (Mo Bio Laboratories Inc, California) following 

the manufacturers guidelines with the following exceptions: 500 ~l of each sample was 

used instead of 0.25 g and an additional 5 minute incubation at 70 OC was carried out 

after the addition of solution Cl and prior to the 10 minute vortex, as suggested by the 

protocol in order to increase cell lysis. Successful extraction of genomic DNA was 

verified by resolving a 2 ~l sample of the eluate by gel electrophoresis (Section 2.10) 

against 1 J.Ll of GeneRuler 1 kb ladder (Fermentas International Inc, Canada). Samples 

containing conununity genomic DNA were labelled and stored at - 20°C until required. 
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2.11.2: E. gracilis 046 

The method used for genomic DNA extraction from E. gracilis 046 was adapted from 

Chen et al (2001). Cells were grown in M6 medium, initially at pH 3, for 7 days before 

four 1 ml samples were centrifuged at 11400 g for 10 minutes. The supernatant was 

poured off immediately and each pellet resuspended in 250 J!l of 

cetyltrimethylammonium bromide (CTAB) solution (2% CTAB w/v, 0.1 M Tris-HCl 

pH 8.0, 1.4 M NaCI, 20 mM EDTA). 

The samples were then combined into two microcentrifuge tubes, each containing 500 

J.1l, and incubated at 65°C for 60 minutes. DNA was recovered using phenol

chloroform isoamylalcohol and ethanol precipitation (Sambrook and Russell 2001) 

before resuspending air-dried DNA pellets in 50 III of MilliQ water. 

2.11.3: Unknown microorganisms 

Oenomic DNA was extracted from cells using the commercially available QIAgen 

genomic Tip 20/0 kit following the manufacturer's protocol. Genomic DNA was 

resuspended at 55°C for 2 hours before a 2 J,11 sample was resolved by agarose gel 

electrophoresis (Section 2.10) against 1 III of GeneRuler 1 kb ladder (Fennentas 

International Inc, Canada). 

2.12: Phylogenetic Identification of Unknown Organisms 

2.12.1: 16S rRNA PCR 

Following extraction of genomic DNA from a particular microorganism, polymerase 

chain reaction (PCR) was carried out in order to amplify the 16S rRNA gene. The 

primers used to amplify the 16S rRNA gene were 27F and 1492R (Lane 1991) 

(Appendix C). The reaction mixture contained the following reagents in a 0.2 m1 thin 

walled PCR tube: 39 J,11 Distilled Water,S J.1l10X Buffer, 2.5 J.1l 50 mM MgCh, 0.5 J.1l 

Forward Primer, 0.5 J.1l Reverse Primer, 1 11125 mM dNTPs, IJ.1l genomic DNA and 0.5 

J.1l Taq polymerase (Bioline). 

Amplifications were carried out in a MyCycler thermocycler (BioRad) and began with 

an initial denaturation step consisting of 94 °C for 3 minutes followed by 30 cycles 

consisting of 1 minute at 94 °C, 1 minute at 50°C, and 2 minutes at 72 °C followed by a 

final extension at 72 DC for 5 minutes. 
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2111 ofthe peR reaction was added to 2 J.l1 of Orange G loading dye and analysed on a 1 

% agarose gel against 1 J.lI of 1 kb GeneRuler ladder (Fermentas) to confirm the correct 

sized product had been amplified. PCR reactions were then cleaned up using QIAgen 

PCR purification kit as per the manufacturer's protocol. 

2.12.2: 18S rRNA PeR 

The algal 18S rRNA gene was amplified using primers 18SF and 18SR (Sittenfeld et al. 

2002) in a MyCycler Thermocycler (BioRad) using the following programme: 4 

minutes at 94 QC, followed by 25 cycles of 30 seconds at 94 QC, 30 seconds at 50 QC 

and 6 minutes at 72 QC, with a single 15 minute extension at 72 QC. The reaction 

mixture contained the following reagents: 39 J.lI Distilled Water, 5 III 10X Buffer, 2.5 J.lI 

50 mM MgCh, 0.5 J.lI Forward Primer, 0.5 J.lI Reverse Primer, 1 J.lI 25 mM dNTPs, 1 III 

genomic DNA and 0.5 JlI Taq polymerase (Bioline). 

The yeast 18S rRNA gene was amplified using NS I (White 1990) and 18L (Ham by and 

Zimmer 1991) primers. The reaction mixture contained 39 III Distilled Water, 5 J.lI 10X 

Buffer, 2.5 JlI 50 mM MgCh, 0.5 III Forward Primer, 0.5 .u Reverse Primer, 1 J.Ll25 mM 

dNTPs, I JlI genomic DNA and 0.5 III Taq polymerase (Bioline). Amplification was 

carried out using an initial denaturation at 94°C for 3 minutes followed by 30 cycles of 

94 °C for 1 minute, 50°C for 1 minute and 72 °C for 2 minutes, with a final extension at 

72 °C for 5 minutes. 

Amplification products were purified with a QIAquick-spin kit (Qiagen, Germany) and 

their expected size verified by agarose gel electrophoresis (Section 2.10). 

2.13: Ribulose-l,S-bisphosphate Carboxylase/oxygenase PCR 

Amplification of ex on 5 of the large subunit ofthe Ribulose-l,5-bisphosphate 

carboxylase/oxygenase gene (363 bp) from E. gracilis G46 was carried out using 

RbcL5F and RbcL5R primers (Appendix C). The reaction mixture contained the 

following reagents in a 0.2 mt thin walled PeR tube: 39 .u Distilled Water, 5 J.Lll OX 

Buffer, 2.5 JlI 50 mM MgCh, 0.5 J1I Forward Primer, 0.5 J1I Reverse Primer, 1 .u 25 mM 

dNTPs, IJ.Ll genomic DNA and 0.5 J.Ll Taq polymerase (Bioline). 

Amplifications were carried out in a MyCycler thermocycler (BioRad) and began with 

an initial denaturation step consisting of94 °C for 3 minutes followed by 30 cycles 
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consisting of 1 minute at 94°C, 1 minute at 58 QC, and 2 minute at 72 °C followed by a 

final extension at 72 °C for 5 minutes. Successful amplification was verified by agarose 

gel electrohoresis (Section 2.10) and sequenced externally by Cogenics (Appendix B). 

2.14: Denatnring Gradient Gel Electrophoresis (DGGE) 

2.14.1: PCR 

Following direct extraction of community DNA from environmental samples PCR was 

carried out to amplify short, highly variable fragments of the 16S rRNA gene in order to 

assess the microbial diversity present at the lagoon using Denaturing Gradient Gel 

Electrophoresis (DGGE). Two different primer sets were used; primers P2 and P3 

amplify the 202 bp hypervariable V3 region of the bacterial 16S rRNA gene from 

position 341 to 543 on the E. coli 16S rRNA gene (Muyzer et al. 1993) and a second 

pair of primers, 1055F and 1406R, amplify a 323 bp region of the bacterial 16S rRNA 

gene which incorporates the hypervariable V9 region from position 1070 to 1392 of the 

E. coli 16S rRNA gene (Ferris et al. 1996a). 

PCR conditions for P2 and P3 primers were as follows: 37.5 III of distilled water, 5 III 

10X reaction buffer, 2.5 ,.d 50 mM MgCh, 1 ~I 25 mM dNTPs, 1 ~ forward primer, 1 

~I reverse primer, 0.5 ~I lOng ~rl BSA, 1 ~ community DNA and 0.5 ~l Taq 

polymerase (Bioline). Touchdown PCR began with an initial denaturation step of94 °C 

for 2 minutes followed by cycles of denaturation at 94°C for 1 minute, an annealing 

temperature of 65 °C for 1 minute, which was decreased by 0.5 OC per cycle until 

touchdown at 55 OC was reached, and extension at 72 °C for 30 seconds. This cycle was 

then repeated a further 5 times with a constant annealing temperature of 55 OC. A final 

extension at 72 °C for 3 minutes completed the reaction. 

The temperature cycle for V9 PCR was 5 minutes of denaturation at 94 OC, followed by 

10 cycles of denaturation at 94 OC for 1 minute, 1 minute of annealing at 53 OC, with a 

decrease in annealing temperature of 1 °C per cycle, and extension at 72 °C for 3 

minutes. This was followed by 20 cycles of 94 OC for 1 minute, 43°C for I minute, 72 

OC for 3 minutes and a final extension at 72 OC for 10 minutes. Agarose gel 

electrophoresis against 1 ~l of Fermentas 100 bp GeneRuler ladder was carried out in 

order to verify the correct size product was amplified in each instance. 
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2.14.2: Preparation of solutions 

For a 10 % polyacrylamide gel, denaturing solutions were prepared in a volumetric 

flask as follows: 

% Denaturant 30 40 60 70 

40 % Acrylamide 25ml 25ml 25 ml 25 ml 

50X T AE buffer 2ml 2ml 2ml 2ml 

Formamide 12ml 16ml 24ml 28ml 

Urea 12.6 g 16.8 g 25.2 g 29.4g 

Distilled Water Up to 100ml Up to 100ml Up to 100ml Up to 100ml 

Solutions were decanted into a 100 ml Duran bottle, covered with aluminium foil and 

kept at 4°C. 

2.14.3: Casting a gel 

Glass plates were cleaned with acetone and any tissue from the cleaning process 

removed prior to use to ensure that an even gradient was formed. The plastic spacers 

and comb were also cleaned with acetone and any excess tissue also removed. The 

spacers were placed onto the clean side of the large glass plate and the clean side of the 

small glass plate placed faced down onto the spacers. The clamps were placed on each 

side of the glass plates and loosely tightened. The cardboard spacer was inserted and 

the clamped plates were gently tapped downwards to ensure that both plates were flush 

at the bottom and the clamps tightened further. The grey foam strip was placed along 

the bottom of the casting stand and the plates inserted onto the casting stand with the 

small plate at the back. This was then clamped in place by turning the small levers at 

the side of the casting stand. 

15 ml of30 % and 60 % denaturant solution were pipetted into separate universal tubes 

and 120 tll of 10 % ammonium persulphate (APS) (made freshly) and 6 tllofTEMED 

added to both universal tubes. The tubes were gently inverted to mix. Each solution 

was drawn up into a syringe, which had been rinsed thoroughly with water prior to use, 

and pressure applied to the syringe until the solution was approximately half way along 

the tube. The syringes were attached to the gradient forming wheel, with the low 

denaturing solution on the left hand side for bottom pouring gels and the high 

denaturing solution on the right hand side. The T -piece and needle were then carefully 

65 



attached to both syringe tubes and the needle placed between the two glass plates in the 

centre. The gradient wheel was then very gently pushed to pour the gel. Once the gel 

was full the comb was eased in between the two plates and left to set for approximately 

60 minutes. 

Whilst the gel was setting 7 litres of 1 X T AE Was prepared and poured into the gel tank. 

The core was added to the tank and set to heat to 65°C. Once the gel was set the comb 

was carefully removed and the wells very gently rinsed with IX TAE to remove any 

excess material. The gel plates were then clamped into the core, inserted into the tank, 

the temperature decreased to 60°C and T AE added to the top buffer reservoir. Samples 

were prepared by adding 2 ,.u of loading buffer II (Appendix D) to 8 ,.u of PCR product 

and all 10 J.l.1 of each sample loaded onto the geL Electrophoresis was carried out at 80 

V for 16 hours at 60°C. After electrophoresis the gel was removed from the tank and 

stained with a solution containing 2 J.lI of SYBR Gold (Invitrogen) in 20 ml of IX T AE 

for 20 minutes under aluminium foil. After 20 minutes the stain was gently rinsed from 

the gel using distilled water and the gel placed into the UV transilluminator for 

visualisation using Lab Works Image Analysis Software (UVP Inc, California). 

2.14.4: Identification of bands 

Small fragments of individual bands were excised by pressing a cut-off 200 J.ll pipette 

tip onto the band and placing this into a microcentrifuge tube. 10 J.ll of ultrapure

DNAse, RNAse-free water was added and the sample incubated at 4 °C overnight to 

allow DNA to diffuse from the gel fragment. 5 J.lI of this solution was then used as a 

template for PCR using the appropriate primers and PCR programme for the sample 

(Section 2.14.1). Successful amplification products were gel excised using a QIAgen 

gel extraction kit followed by a further PCR step using only dA TP to add a Poly-A tail 

to the fragment and finally purified using a QIAgen kit as per the manufacturer's 

protocol. Excised fragments were then ligated into the cloning vector pCR2.1 (Figure 

2.5) (Invitrogen) using the following conditions: 4.5 J.lI insert, 1 ,.u pCR2.1 (0.025 ng J.lI 

-I), 1 J.lI T4 DNA ligase (Roche) , IJ.lI ligase buffer and 2.5 J11 ultrapure water. The 

ligation reaction was incubated at 4 °C overnight and used to transform competent E. 

coli strain DH5a cells. 
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Figure 2.5: Cloning vector pCR2.1 (Invitrogen) 

100 J.11 aliquots of competent E. coli DHSa cells (Appendix A) were defrosted on ice for 

5 minutes before all 10 J.11 of the ligation reaction was carefully pipetted on top of the 

cells and very gently mixed. The cells were then incubated on ice for 30 minutes prior 

to a 90 second heat shock at 42 CC followed by a S minute recovery period on ice. 100 

J.1l of SOC (Appendix D) was added to the cells prior to incubation at 37 CC for 30 - 60 

minutes. 80 J.11 of 100 mM X-gal (S-bromo-4-chloro-3-indolyl-P-D-galactopyranoside) 

and 40 J.11 of 100 mM IPTG (Isopropyl P-D-l-thiogalactopyranoside) were added to the 

cells before plating onto LB ampicillin plates (100 J.1g ml-l
) and incubating at 37°C 

overnight. 

Individual white colonies were stabbed with sterile pipette tips and used to inoculate 4 

ml ofLB ampicillin (50 J.1g mrl). Cultures were shaken at 250 rpm at 37 CC overnight 

and plasmids extracted using QIAgen spinprep kit as per the manufacturer's protocol. 

Restriction digests were carried out for 2 hours at 37°C in order to verify the correct 

sized insert using: 2 J.1l of spinprep, 1 J.1l of EcoRl (Promeg&, 12 U J.1l-I), 1 J.11 of 10X 

reaction buffer B (Promega) and 6 J.1l of ultrapure water. All 10 J.1l of the reaction were 

analysed by gel electrophoresis against 1 J.11 of both 1 kb and 100 bp Gene Ruler ladder 

(Fennentas). Plasmid preparations containing the correct sized insert were sequenced 

using M13 forward and reverse primers by Cogenics (UK). 

2.1S: T -RFLP 

2.15.1: peR 

Forward primer 63F and reverse primer 1389R (E.coli numbering) were labelled with 

the fluorescent phosophoramidite dyes, 6-F AM and HEX respectively (Figure 2.6), in 

order to amplify the near-full length 16S rRNA gene with fluorescent labels (Osbom et 

al. 2000). Amplification was carried out using an initial denaturation of 2 minutes at 94 
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GC, followed by 30 cycles of 94°C for 1 minute, 55°C for 1 minute and 72 °C for 2 

minute followed by a 10 minute final extension at 72°C. Each reaction contained 

38.5~ of distilled water, 5 III 10X buffer, 2.5 III 50 mM MgCh, 1 III 25 mM dNTPs, 1 

III forward primer, 1 ~ reverse primer (MWG Biotech, Gennany), 0.5 III 10 ng Ilrl 

BSA, 1 J.Ll community DNA and 1 III of Taq polymerase. Amplification' products were 

verified by agarose gel electrophoresis (Section 2.10) and purified using QIAquick 

columns (QIAgen), eluting in a final volume of 50 J.Ll of MilliQ ultrapure water. 

Cl Cl 

HO o 
HO 

Cl 

HO &: 
~fAM ~HEX 

MW. 273.39; Abs. 496; Em. SI6 MW. 680.07; Abs. S33; Em. SSO 

Figure 2.6: Structure of phosophoramadite dyes, 6-Fam and 6-Hex. 

2.15.2: Restriction digest 

10,.ll ofPCR product was digested with 20 units of either HhaI or AluI (Promega) at 37 

°C for 3 hours. A mastermix of enzyme, 10X reaction buffer (Promega buffer C or B 

respectively) and distilled water was prepared and added to each 10 ~ peR product 

separately to give a total volume of 15 III per sample. Samples were frozen immediately 

after 3 hours incubation to stop any further digestion prior to the next stage of the 

procedure. 

2.15.3: Fragment analysis 

5 J.Ll of PRISM GeneScan-500 ROX size standard (Applied Biosystems) was added to 1 

ml of Hi-Di fonnamide and 9.5 ~ of this mix added to 48 wells of a 96-well ABI

compatible plate, using only the odd lines. The GeneScan-500 ROX size standard 

contains labelled markers of 35, 50, 75, 100, 139, 150, 160, 200, 250, 300, 340, 350, 

400, 450, 490 and 500 bp which allow T -RF size to be determined during analysis in 

much the same way as a molecular weight ladder in an agarose gel. The 35, 50, 250 and 
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340 bp markers are excluded when assigning the size markers due to their inconsistent 

migration. 

0.5 III of sample was added into each well, with unused wells made up to 10 III with 

ultrapure water. The plate was then covered with a grey septa and checked for air 

bubbles. If any air bubbles were present the plate was spun to remove these. The 

samples were then denatured for 3 minutes at 94 °C using a thermocycler and placed 

into the black and white clips before being put into the input stack of the ABI3730 48-

well capillary sequencer. A 10 second injection time was used. The laboratory work 

was assisted by protocols provided by the Sheffield Molecular Genetics Facility which 

is funded by the Natural Environment Research Council, VK. 

Samples were analysed using GeneMapper v 4.0 software (Applied Biosystems) using a 

standard protocol prepared by the Sheffield Molecular Genetics Facility. This involves 

importing sample data into the GeneMapper programme and choosing the "AFLP" 

analysis protocol. The raw data from several samples was viewed in order to determine 

the position of the primer flare; for Hoole Bank acid tar lagoon samples the average 

position was approximately 1650 bp therefore this was input into the analysis 

parameters. Green, Red and Blue dyes were selected in order to analyse forward and 

reverse terminal restriction fragments (T-RFs) and in order to include the ROX size 

markers. The analysis range was set from 50-500 bp; although some samples contained 

T -RFs larger than 500 bp the largest ROX size standard is 500 bp therefore this sets the 

cut off point. Once the analysis parameters were set, the analysis method was applied to 

the raw sample data and both blue (Forward) and green (Reverse) T-RF profiles 

generated for each sample. 

The GeneMapper programme then generated a bin set based on the analysis parameters. 

However, the generated bin set was deleted and replaced by manually scanning each 

sample and adding bins appropriately. This was carried out for each dye with each 

digest, generating four separate panel and bin sets per sample. The panel and bin sets 

were saved and added into the initial anlaysis settings in order to generate a table of T

RFs, including size (in bp), peak height and peak intensity. This data was then exported 

into an Excel workbook and analysed using T -align (Smith et al. 2005) for further 

statistical analysis using the software package MVSP. SigmaPlot was used to draw 

graphs. 

69 



2.16: Phylogenetic Tree Construction 

Phylogenetic trees were constructed in several stages. Initially the query sequence was 

subjected to BlastN comparison provided by NCBI (Altschul et al. 1990) and the 

sequences from the highest identity matches obtained from the NCBI database for 

further comparison. The sequences were then aligned using ClustalW (1.83) (Chenna et 

al. 2003) with all parameters set at their default values. 

2.17: Photosystem 11 Fluorescence Measurements 

Chlorophyll content of E. gracilis G46 and E. gracilis Z cultures was measured 

according to Section 2.3 and adjusted to 15 ~ chlorophyll mrl, resuspending the pellets 

in M6 medium at pH 3 or 7 as appropriate. A Walz Fluorometer was used to measure 

the fluorescence produced from photosystem II (PSII) using WPI Duo 18 software. 

Cells were placed into a quartz cuvette and dark adapted for 1 minute before the 

measuring beam was switched on (300 J.U1loles m-2 
S-I) which determined Fo. 30 

seconds later a high intensity flash of light determined the Fm value. A further 30 

seconds later the actinic light was switched on (450 J.UTIoles m-2 
S-I) and the fluorescence 

trace followed for 4 minutes. During this time the high intensity pulse was switched on 

every 60 seconds. After switching off the actinic light the high intensity pulse was used 

to measure Fm for a further 3 minutes at 60 second intervals. 

2.18: Characterisation of Acidocella 

Characterisation of Acidocel/a 29 was carried out using the API 20 NE kit from 

bioMerieux (NC, USA) as directed in the manufacturer's protocol. Carbon source 

utilisation was determined by inoculating a 96-well microtitre plate containing 197.5 J.1l 

of pH 3 M9 minimal media plus 2.5 Jd of 1 M carbon source in each well with 50 J.1l of 

Acidocella 29. Each carbon source was tested in triplicate. The 96-well plate was 

incubated at 26°C for 7 days to allow any growth which may occur to be detected. The 

plate was read using a plate reader at 600 nm and growth in each well recorded as 

present (+) or absent (-). 

The effect of aluminium, cadmium, copper, nickel and zinc sulphates on the growth of 

Acidocella 29 was also tested. 175 Jil ofM9 minimal media was pipetted into each well 

of a 96 well micro titre plate, to which 4 wells out of each row of eight, 2.5 J.1l of 1 M 

stock solution of metal sulphate was added, whilst 25 Jil of the same 1 M stock solution 

was added into the remaining four wells. 50 Jil of Acidocella 29 was added to three out 
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of four wells for both 10 mM and 100 mM metal concentrations, with the remaining 

well acting as a control for metal precipitation. An extra 22.5 ~l of M9 minimal media 

was then added to the wells in which only 2.5 ~l of metal solution was added. 

Utilisation of volatile hydrocarbons was tested by preparing 1 %. 0.1 % and 0.01 % 

(v/v) solutions of benzene. toluene, ethylbenzene. xylene, decane, and hexadecane. 100 

JA.l of Acidocella 29 was added to 1 ml samples of each solution in a microcentrifuge 

tube and sealed with parafilm. 100 III of AcidocelJa 29 was also added to a 1 ml sample 

of M9 minimal media and a 1 ml sample of AC29 media, as negative and positive 

controls respectively. Sealed microcentrifuge tubes were then placed in a sealed jar to 

ensure no volatile hydrocarbons escaped in order to protect other cultures from harm. 

2.19: LysoSensor Imaging of E. gracUis 

The LysoSensor YellowlBlue DND-160 probe (Molecular Probes, Invitrogen) was 

employed to visualise E. gracilis G46 cells. The probe fluoresces at different 

wavelengths dependent on its pH; therefore it can be used to detennine intracellular pH. 

However, it was used in this instance simply to visualise the compartmentalisation of 

eukaryotic cells and to identify if different compartments of the cell had different pH 

values. 

1 Jil of the probe was added to 1 ml aliquots of M6 medium at pH 3 and pH 7 and this 

media incubated at 37 OC for 1 hour. 2 ml of E. gracilis 046 or E. gracilis Z were 

centrifuged at 11400 g for 10 minutes and the resulting pellets resuspended in 1 m1 of 

the probe containing medium. Cells were then incubated under normal growth 

conditions for 3 hours before being centrifuged at 11400 g for 10 minutes. Pellets were 

then resuspended in 1 ml of M6 medium pH 3 or 7 as appropriate. One drop of the 

sample was placed onto a glass slide using a pasteur pipette and covered with a cover 

slip for visualisation using a CCMI Deltavision Deconvolution Microscope. 
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Chapter Three: Characterisation of Microbial Diversity in Hoole 

Bank Acid Tar Lagoon 

3.t: Introduction 

The aims of this work were to analyse the microbial diversity present in samples from 

Hoole Bank acid tar lagoon in order both to compare the results of classical and 

molecular techniques and to further our knowledge of the microbial community present 

in this environment. The work was carried out in two distinct branches; classical 

microbiology analysis using batch and continuous culture techniques and molecular 

microbial analysis using Terminal Restriction Fragment Length Polymorphism (T

RFLP) and Denaturing Gradient Gel Electrophoresis (DOGE), as discussed in Sections 

1.2.1, 1.2.2, 2.14 and 2.15. Classical culture methods used to isolate microorganisms 

for further study were chosen such that microorganisms which were isolated could be 

grown readily. 

3.2: Results 

3.2.1: Sample collection 

A total of 21 samples were collected from Hoole Bank acid tar lagoon. Samples were 

numbered according to their corresponding photograph taken during sampling at the 

lagoon. The pH of samples was measured upon returning to the laboratory and not on 

site. Samples were also categorised into 4 groups based on the sample type. The 

sample groups were (Figures 3.1a-d respectively): 

• Group 1 - Thick Sludge external to Lagoon 

• Group 2 - Lagoon edge 

• Group 3 - Green Biofilm 

• Group 4 - Surface water 

Table 3.1 gives further details of each of the samples. 
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-...I 
W Figure 3.1a-d (From Top Left, clockwise): Group 1 - Thick Sludge external to Lagoon; Group 2 -

Lagoon edge; Group 3 - Green biofilm; Group 4 - Water 



Sample Description Group pH 

27 Entrance path near treatment plant 1 5.2 

28 Lagoon edge 2 2.17 

28A Lagoon edge along from 28 - dug from bank 2 3.92 

29 Green biofilm 3 3.40 

30 Mud/Sludge from lagoon edge 1 2.98 

33 Water near island 4 2.57 

35 Fully crusted side pond along from islands 1 2.62 

37 Standing water near surface tar deposits 4 4.15 

38 Sludge near to sample 37 1 4.6 

41 Water near surface tar deposits 4 4.4 

43 Water coming up through surface tar deposits 4 1.8 

44 Pond near entrance path with deposits 1 3.45 

4S Green Biofilm and water 3 2.88 

46 Green Biofilm at lagoon edge 3 3.07 

47 Fully crusted lagoon edge 2 3.30 

49 Lagoon edge, some crust 2 3.06 

50 Lagoon edge, some crust 2 2.69 

53 Lagoon edge 2 2.50 

54 Entrance path near treatment plant 1 2.39 

55 Weathered tar scrapings from surface tar deposits N/A 4.09 

58 Water at lagoon edge 4 2.79 

Table 3.1: Details of the samples collected from Hoole Bank acid tar lagoon, including 

the corresponding photograph number, sample description, pH and grouping. Group 1 -

Thick Sludge external to Lagoon; Group 2 - Lagoon edge; Group 3 - Green Biofilm; 

Group 4 - Surface water. N/A = Not applicable. 
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3.2.2: Classical microbiology analysis of microbial diversity 

In order to detect and asse"ss microbial diversity in Hoole Bank acid tar lagoon, agar 

plates were prepared as described in Section 2.1.2 and approximately 200 .... 1 of each 

sample collected from Hoole Bank acid tar lagoon was plated onto each of the media 

(Section 2.1.2). Plates were incubated at 25°C and growth monitored daily. Initially 

fungal growth out-competed other microbial growth therefore nystatin was added to 

plates and the procedure repeated. 

Four organisms were isolated using this direct plating technique and identified 

following growth of pure cultures, extraction of genomic DNA and amplification of the 

16S rRNA gene. Continuous culture methods were also employed and led to the 

isolation of one organism (Burkholderia). Several other organisms which have not been 

identified were cultured directly from other lagoon samples however it was either not 

possible to obtain pure cultures of these organisms or to subculture them for more than 

1 generation. Table 3.2 gives details of the organisms isolated. 

0/'0 Isolation Sample Sample 
Organism Class Sample 

Identity media pH type 

Euglena 3-
97% Euglenales (Order) YlBLB 46 3.07 

gracilis G46 Biofilm 

Acidocella 3-
97% a-proteobacteria AC 29 3.40 

29 Biofilm 

1 -
Burkholderia 

97% p-proteobacteria YlBLB 35 2.62 Thick 
sp 

sludge 

1 -

Gordonia sp. 99% Actinobacteria YlBLB 30 2.97 Thick 

sludge 

1 -
Rhodotorula Microbotryomycetes 

Thick 98% YlBLB 54 2.39 
sp. (Subclass) 

sludge 

Table 3.2: Organisms isolated from Hoole Bank acid tar lagoon samples 

A limited number of organisms were isolated from direct plating, with one organism 

isolated from continuous culture experiments, Burkholderia sp. 
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Although Burkholderia is involved in medical problems and is commonly thought of as 

a clinical isolate, the isolation of a Burkholderia species from Hoole Bank acid tar 

lagoon was not entirely surprising. This genus has been isolated or identified in clone 

libraries from several other environmental samples including several isolates from soil 

(Witzig et al. 2007), permafrost (Hansen et al. 2007), 300 year old volcanic deposits 

(NeBI accession number DQ490294), and soil exposed to phenanthrene (Bodour et al. 

2003) amongst other environments. 

The isolation of Gordonia sp. from the acid tar lagoon samples is slightly more unusual 

as Gordonia species are often clinical isolate. However, the Gordonia genus has been 

isolated from various environmental samples including activated sludge foam (NCBI 

accession number AFI50493), aerobic sludge for oilfield produced water treatment 

(Gordonia sp. SeNU1; NeBT accession number DQ256752) and from a biofitter shown 

to degrade hexane. Figure 3.2 shows the phylogenetic position of the Gordonia sp. 

isolate from Hoole Bank acid tar lagoon, and the closest phylogenetic species, which is 

Gordonia sp. SCNUI, which was isolated from aerobic sludge. 

Rhodotorula is a basidiomycetous yeast, commonly isolated from the environment, 

which has been found in extremely acidic environments previously (de Siloniz et al. 

2002; Gadanho et al. 2006; Kawai et al. 2000). It is a partiCUlarly acidophilic species of 

yeast capable of growth at low pH (Nguyen et al. 2001) therefore the isolation of this 

species from Hoole Bank acid tar lagoon is not unexpected. Euglena gracilis G46 and 

Acidocella 29 were further characterised in Chapters 4 and 5 respectively. 

The results from these attempts to isolate microorganisms from Hoole Bank acid tar 

lagoon show only a very limited number of organisms were isolated. However this was 

expected for many reasons, most of which are discussed in more detail in Section 1.1. 

[n particular, the media used for isolation of organisms was deliberately chosen to 

ensure that any organisms successfully cultured could be grown routinely and relatively 

quickly in order to aid further study of these organisms. It is likely that many more 

organisms would have been isolated if alternative media, and alternative techniques 

such as the overlay method of Johnson et al (1987), were used to isolate organisms. 

The overlay method employed by Johnson et al involves the preparation of solid 

medium which has a heterotrophic organism contained within the bottom layer of agar. 

This functions to detoxify the upper layer of agar, which can contain organic 
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contaminants from agarose, such as pyruvic acid, which are inhibitory to the growth of 

most acidophilic organisms. 

o 

I 

.-------9 

I !t1:;ordoniiSpufi 

----~ 

- Gordoniil. spufi 

• Gordoniuputi 

o 
• Gordonia spufi 

~ Gordonia spufi 

I -t~ .,.", .. ". ",no 

r-------- ... Gordoniil.j~obil.U 
~ 'tr---- • ..-.known ... 

- Gordoniasp. 5CNUl 

-0 Gordoni& iichiensis 

'----- ~ 

~ 

l · Gordoniil. otitidis 

- 0 

• uordonia o1ifidis 

L __ _ 
cO Gordoniil. aichiensis 

.... Gordonii. SP. CDC W460. 

-0 Gordoniil. SPQfi 

Figure 3.2: Neighbour joining phylogenetic tree of the 16S rRNA gene, with a 

maximum sequence difference of 0.05. "Unknown" (highlighted in yellow) represents 

the Hoole Bank Gordonia isolate, with Gordonia sp. SCNU1, an isolate from aerobic 

sludge the closest known relative. 

Overall the conditions used to isolate organisms were probably far from favourable for 

the majority of organisms present in lagoon samples and therefore it follows that a 

significant percentage of the culturable proportion of organisms present in lagoon 

samples was not successfully cultured. There are many factors which will have affected 

the growth and isolation of microorganisms from Hoole Bank lagoon samples, as 

discussed in Section 1.1. For example, the addition of nystatin to inhibit fungal growth 

is likely to have altered the normal growth conditions for many organisms. The use of 
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aerobic conditions in all attempts to isolate organisms would immediately preclude the 

growth of any anaerobes and some, if not all, microaerobic organisms. Also the lack of 

alternate electron acceptors such as sol and Fe3
+ amongst other factors would have 

further reduced the number of organisms isolated. 

3.2.3: Microbial community analysis using Tenninal Restriction Fragment Length 

Polymorphism (T -RFLP) 

Molecular analysis of microbial diversity in Hoole Bank acid tar lagoon was carried out 

using Terminal Restriction Fragment Length Polymorphism (T-RFLP) and Denaturing 

Gradient Gel Electrophoresis (DOGE). 

T·RFLP analysis provides an overall assessment of microbial diversity, from which a 

multitude of statistical approaches can be applied to further analyse and compare 

diversity between samples. Although no direct sequencing information can be obtained 

from T -RFLP it is possible to infer phylogeny based on T -RF sizes as well as to 

compare T -RFLP profiles to theoretical profiles generated using web based resources in 

combination with sequence databases (Kent et aJ. 2003). 

T ·RFLP analysis of lagoon samples was carried out with two separate restriction digests 

of dual labelled peR product, resulting in a green and blue profile for each restriction 

digest of each sample (Figure 3.3). The HEX (blue) and FAM (green) dyes (Section 

2.15.1) are covalently attached to the peR primer such that they are incorporated at the 

5' ends of both strands of amplified DNA. Thus, only the terminal fragments are 

labelled with either dye following restriction digestion. The presence of either the F AM 

or HEX dye allows the size of the fragment to be determined, with gree~ blue and red 

(size standard) channels measured on the capillary sequencer. 

Selection of primers and restriction endonucleases was based on the evidence presented 

by Osborn et al (2000), resulting in the use of the enzymes AluI and HhaI, (also known 

as Clol), in combination with the primers 63F and 1389R. 

78 



~-- --- . 

J lJ l J 
. - -- - -

Figure 3.3: Screenshots from GeneMapper of forward (Top) and reverse (Bottom) T

RF profiles_ The horizontal axis represents the size of the T -RF in bp, whilst the 

vertical axis represents the fluorescence intensity, which is an indicator of the 

abundance ofa T-RF_ 

This primer pair was chosen for several reasons_ Firstly, almost the entire 16S rRNA 

gene is amplified using these primers, with the exception of one hypervariable region_ 

Secondly, these primers are internal to the most commonly used 16S rRNA gene 

primers, 27F and 1492R, which facilitates in silico prediction of T -RF sizes for most 

16S rRNA genes in databases and finally because this pair has been shown to be more 

useful in bacterial ecological studies than other primer pairs (Marchesi et aL 1998)_ 

The choice of restriction enzymes used were the same as Osborn et al (2000), based on 

the predictions that Alul and Hhal give the most discrimination, in terms of the number 

of different predicted T -RFs that would be produced from different species_ Osborn et 

al also report that ThaI gives equally good discrimination, however Alul and Hhal were 

chosen for this work on the basis of cost Based on these restriction digests the 

following four profiles were generated for each sample: 

• Alu Blue (Forward) 

• Alu Green (Reverse) 

• Hha Blue (Forward) 

• Hha Green (Reverse) 
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Samples were analysed using GeneMapper software in order to create individual "bins" 

for each T-RF present in each restriction digest and dye combination. The dataset 

produced from applying the appropriate panel and bin set (Figure 3.4) was then 

exported and analysed using T-align (Smith et al. 2005). Amongst other features, the T

align software produces a list showing whether a terminal restriction fragment (T -RF) is 

present in a particular sample and its relative fluorescence intensity. Both the interstitial 

(binary) and percent peak area data were used as input data into a computational 

statistics package, MVSP, in order for principal component analysis (PCA) to be carried 

out, in order to identify any statistical similarities between different samples (Dollhopf 

et al. 2001). 

,-,j,,8'·, .. 
-- ------_ ..... 

,_ Name Dye SIze' Sb:e2 ~ sae . S ze5 SIze 6 SIze 7 SIze. sae . Stte1 0 Size 11 Size 12 

~r-u'_"""_-""'I35H B 52.17 53.5 SS.S7 57.5 61 .83 64.5 66.33 
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~ s B07 _37H_064-----zi1" 37H B - r-
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17 009_ 49H_064231 49H B -:8 809_ 49H_064231 49H G 61 .1 3 
-- -:. COS_27H_064231 27H B 53.48 55.46 

~ ~ f==:~:: 
27H G SO.66 60.93 

38H B SO.82 53." 54.77 57 .• 59.54 

12 tC07 _381"'C064231 38H - fG SO.82 '---' 52.« 54.93 61 .02 62.17 

/13 , C09_SOH_064231 SOH B 53.5 6'.83 64.33 66.33 

". C09_SCl"'U164 231 SiiH G SO.5 61 .17 

005..;28h_064231, :>eh - B 
r--- ... 

53.45 54 .93 57.57 1'5 
,'. OOS~_064231 1 :>eh la ~99 53.82 61 .02 

[17 D07_4 1 H_064231 41 H - B SOB' t-- ~ 55.03 57.31 59.25 

['8 007_4' H_064231 ~H - G SO.65 ", DO 62 .18 - 'e -f: 009_53H_0S4231 53H 5357 
009_S3H_064231 ,53H G -, 
~-~'~ B 60.86 65." ' 21 

[22 E07_43t U1S4 231143H - G SO .18 61 .02 

I" FOS .... ;291"'U1S4 231 , 29tt - B 51 .67 -1s4:a3 57.5 61 .83 64.5 86.33 

[24 ~_064231. 29H 
- er 5033 51T7 52.5 53.83 54.83 58.5 61 .0 63.0 64.63 66.5 

I~ tro7 _44H_0642311 44H " 
- r--

r,;;- { 07 _ 44H_06423',' ~4H - G 6iiB8 
~27 IGOS_3OH_064231 30H - B 51:82 53.31 54.97 57.45 61 .75 j64 .4 66.39 

Figure 3.4: Data table from GeneMapper software. The size ofT-RFs (in bp) present 

in each sample is shown. Also shown in the table (but not in this figure) is the peak 

height and peak intensity corresponding to each T-RP in each sample. 

The difference between the two analyses is that the interstitial data analysis provides a 

simple breakdown of T-RF data, only identifying if a particular T-RF is present or 

absent in each sample whilst the percent peak area analysis may allow the abundance of 

a particular T -RP to be inferred. Samples were plotted using PCA of both interstitial 

data and percent peak area. 

RO 



PCA is a mathematical transformation that changes the data to a new coordinate system 

such that the greatest variance by any projection of the data comes to lie on the first 

coordinate (called the firsf principal component), the second greatest variance on the 

second coordinate, and so on. Thus, the closer data points on PCA graphs cluster the 

less variance there is between the samples and conversely the greater the distance 

between data points, the greater the variance between them. Simply, PCA takes a 3D 

set of data points and rotates it such that the maximum variability is visible (Dollhopf et 

al. 2004; Dollhopf et al. 2001) 

The results of PC A on the interstitial analysis data are presented in Figures 3.5a-h whilst 

Figures 3.6a-h show the results of PCA on the percent peak area analysis data. Two 

plots are shown for each analysis, comparing Axis 1 with Axis 2 in the first instance and 

Axis 2 versus Axis 3 in the second instance. Each axis is labelled with the percentage 

variance to indicate the degree of similarity or variance along the axis, therefore the 

closer the grouping of data points the greater the degree of similarity. 

Dotted-lined circles, : .. ) , represent loosely grouped samples whilst solid-lined circles, 

o indicate more closely linked samples. Dashed-lined circles, C) , highlight a 

diversity pattern within Group 1 - Lagoon Edge samples observed in several analyses. 
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PCA Alu Green Interstitial Analysis 
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The results of the statistical analyses of T-RFLP data indicate that there are no clear 

diversity trends within each sampling group, with little tight clustering of samples on 

the basis of their sample type. Some analyses indicate that there are similarities in the 

diversity present between different samples, shown particularly strongly by the 

overlapping of data points in Figures 3.5h, 3.6d, 3.6g and 3.6h. Whilst samples could 

be colour coded and grouped based on sample pH, instead of by sample type, the 

distribution of data points would be identical and since there are very few tight clusters 

it is unlikely that this would highlight any further evidence linking microbial diversity 

to conditions within the lagoon. For example, the data points which cluster in Figure 

3.6g are samples 29, 35, 38, 46 and 47 which have pH values of 3.40, 2.62, 4.60, 3.07 

and 3.30 respectively. Given the wide ranging pH values of these samples it is unlikely 

that pH could be considered a determining factor in microbial diversity correlations. 

However, the clustering of certain data points such as those in Figures 3.Sh, 3.6d, 3.6g 

and 3.6h suggests that there may be some other, as yet unknown, factor which may 

correlate with microbial diversity such as oxygen levels, the concentration of a 

particular carbon source or the availability of a terminal electron acceptor for example. 

The T-RFLP data from Hoole Bank acid tar lagoon samples have also be represented 

using histograms in Figures 3.7a-d. This allows a more direct, visual comparison of the 

T-RFs within each group of sample types. In this instance the forward T-RFs from 

Hhal restriction digests have been chosen for comparison, however histograms for each 

restriction digest-dye combination could be created. The histograms show every T-RF 

in a particular sample, which allows direct visual comparison between samples to 

identify which T -RFs are present or absent and the relative abundance of a particular T

RF within a sample. For example, in this digest-dye combination, the T -RF at 170.00 

bp is not only present in many samples, but is obviously abundant in many of the 

samples since it has a large percentage peak area which can been seen easily in Figures 

3.7a-d. In addition to the histograms showing T-RF size and abundance for HhaI 

forward T-RF analyses, Table 3.3 lists some of the most abundant T-RF sizes for each 

dye-digest combination and the number of occurrences of these T-RFs. 
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A/ul Forward A/ul Reverse Hhal Forward Hhal Reverse 

Size T- Number of Size T- Number of Size T- Number of Size T- Number of 
RF (bp) T-RFs RF (bp) T-RFs RF (bp) T-RFs RF (bp) T-RFs 
89.58 9 58.78 11 53.45 10 61.01 10 
11222 13 67.82 13 157.56 10 113.15 10 
113.61 12 69.17 12 168.68 9 189.45 12 
129.6 10 126.44 10 170 14 293.07 9 
139.96 9 127.91 14 322.94 10 298.13 12 
142.42 10 130.07 12 487.24 10 300.42 9 
163.32 12 331 .69 13 
195.66 9 335.2 9 
238.83 12 

Table 3.3: Selected T -RFs from each digest/dye combination showing some of the 

most commonly occurring T -RFs in each combination and the number of occurrences of 

each T-RF. The two T-RFs in red indicate the two most commonly occurring sized 

forward T-RFs, with an incidence of these T-RFs in 13 AluI and 14 HhaI samples. 

The number of T -RFs present in each sample for each digest-dye combination was 

calculated using data produced from the T -align analysis (Smith et al. 2005) and the 

combined total of all digest-dye combinations calculated for comparison. Table 3.4 

shows the number of T-RFs present in each sample, with samples grouped into their 

appropriate sample group, whilst Table 3.5 shows the same data organised into 

increasing sample pH. 

Each T -RF should represent an individual bacterial species, therefore the presumption 

that increased numbers of T-RFs is equal to increased microbial diversity has been 

made. There appears to be very little correlation between sample type and microbial 

diversity in thick sludge, lagoon edge, or water samples. However, two of the three 

biofilm samples, 45 and 46, show a greater degree of correlation between sample type 

and microbial diversity than most other samples. These two samples are particularly 

geographically close therefore it is possible that there is a connecting factor such as 

presence/absence of a carbon compound or terminal electron acceptor, oxygen 

availability or another unknown factor linking the microbial diversity in these samples. 

The data in Table 3.5 also shows little correlation between microbial diversity and 

sample pH. Initial hypotheses would suggest that microbial diversity would increase 

with increasing pH yet this does not seem to be the case based on the T-RFLP data 

obtained in this study. 
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Alul Alul Hhal Hhal 
Blue Green Blue Green Total 

27 16 10 13 7 46 
30 31 29 34 25 119 

Thick 35 NO NO 42 43 85* 
Sludge 38 32 24 27 50 133 

44 9 11 7 9 36 
54 NO NO NO NO NO 
28 NO NO 18 11 29 
28A 37 27 NO NO 64* 

Lagoon 47 32 24 32 31 119 Edge 
49 3 3 4 3 13 
50 26 17 19 9 71 

Green 
29 NO NO 36 48 84* 

Biofilm 45 38 19 25 8 90 
46 29 15 19 21 84 
33 26 16 18 16 76 

Water 
37 20 28 4 6 58 
41 38 14 33 16 101 
43 12 16 30 30 88 

Table 3.4: Number ofT-RFs present in each sample, correlated by sample type 

ND = Not determined * = Total is not from all dye-digest combinations. 

Alul Alul Hhal Hhal 
pH Sample Blue Green Blue Green Total 
1.8 43 12 16 30 30 88 
2.17 28 NO NO 18 11 29* 
2.39 58 NO NO NO NO NO 
2.57 33 26 16 18 16 76 
2.62 35 NO NO 42 43 85* 
2.69 50 26 17 19 9 71 
2.88 45 38 19 25 8 90 
2.98 30 31 29 34 25 119 
3.06 49 3 3 4 3 13 
3.07 46 29 15 19 21 84 
3.3 47 32 24 32 31 119 
3.4 29 NO NO 36 48 84* 
3.45 44 9 11 7 9 36 
3.92 28A 37 27 NO NO 64* 
4.15 37 20 28 4 6 58 
4.4 41 38 14 33 16 101 
4.6 38 32 24 27 50 133 
5.2 27 16 10 13 7 46 

Table 3.5: Total number ofT-RFs in each sample, correlated by increasing sample pH 

NO = Not detennined. * = Total is not from all dye-digest combinations. 
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Further analysis of T -RFLP data was carried out using publicly available programmes 

on the world wide web, specifically Phylogenetic assignment tool (PAT) (Kent et al. 

2003). PAT is an online tool which can be used to assign or infer phylogeny to a 

particular sized T-RF. The advantage of PAT is that the programme employs the user 

uploaded T -RFLP data directly to produce a results table which includes all the 

potential microbial species (for which there are 168 rRNA gene sequences in public 

databases) which would generate a particular T-RF in one or more restriction digests. 

Thus, bothAlul and HhaI T-RFLP data are analysed concurrently, therefore only T-RFs 

present with corresponding sizes in both restriction digests are found, producing much 

fewer possibilities than considering both restriction enzymes separately. Table 3.6 lists 

some of the possible species which match the 170.00 bp Hhal forward T-RF and the 

112.22 bp AluI forward T-RF (the two most commonly occurring forward T-RFs). 

It was not possible to infer the phylogeny of every T -RF generated from the Hoole Bank 

T -RFLP data or to infer the phylogeny of a particular T -RF to less than five species in 

some instances using PAT. The phylogeny of T-RFs which were not identified using 

both HhaI and AluI data could be inferred more loosely using PAT with a single digest 

or using an alternative programme such as TAP. Whilst both these programmes are 

extremely useful tools, they also provide further challenges since the PAT analysis of T -

RFLP data from Hoole Bank acid tar lagoon produced several hundred potential 

phylogenetic assignments in total. 
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Species Details NCBI Reference 

Accession 

Acidovorax sp. OS-6 Activated sludge AB076844 
(Khan et al. 

2002) 

Anaerobic, 

Uncultured bacterium trichlorobenzene - (Wintzingerode 
AJ009457 

SJA-23 transfonning microbial et al. 1999) 

consortium 

Subsurface groundwater 

Uncultured bacterium during polylactate (DeSantis et al. 

clone BANW401 stimulated chromate 
DQ264407 

2007) 

bioremediation 

Alicycliphilus 
Cyclohexanol-degrading, 

(Mechichi et 
nitrate-reducing fJ- AJ418042 

denitrificans K60 I 
proteobacterium 

al. 2003) 

Poly(3-hydroxybutyrate )-

Diaphorobacter degrading denitrifying 
AB076856 

(Khan and 

nitroreducens KSP4. bacterium isolated from Hiraishi 2002) 

activated sludge 

Hydrogenophaga sp. Arsenite oxidizing biofilms 
AY168753 (Salmassi et al. 

YEDI-18 ATCC at Hot Creek 

BAA-306 
2006) 

Microbial fuel cell 
Uncultured bacterium AY49 I 593 (Phung et al. 

enriched with artificial 
oc52 2004) 

wastewater 

Uncultured bacterium Fracture-derived 

BE24FW032601 C 18 groundwater in a deep gold 
DQ088741 (Lin et al. 

WI7-3. mine of South Africa 
2006) 

Table 3.6: Microbial species which may be responsible for the HhaI 170.00 bp I AluI 

112.22 bp T-RFs in Hoole Bank acid tar lagoon. This data was generated using the 

PAT programme at http://T-RFlp.limnology.wisc.edulindex.jsp(Kentetal.2003),using 

the default dataset and creating an additional bin of size 50.0 bp with a tolerance of 1.0. 
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27 28 28 29 30 33 35 37 38 41 43 44 45 46 47 49 50 53 54 55 58 

Figure 3.8: A denaturing gradient gel of the peR amplified V9 hypervariable region of 

the 16S rRNA gene from Hoole Bank acid tar lagoon samples. The green numbers and 

letters refer to bands which were excised and sequenced, further details of which are 

shown in Table 3.7. 
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27 28 28A 29 30 33 35 37 38 41 43 44 45 46 47 49 50 53 

Figure 3.8: The bottom half of a denaturing gradient gel of the peR amplified V3 

hypervariable region of the 16S rRNA gene from Hoole Bank acid tar lagoon samples. 

The green numbers and letters refer to bands which were excised and sequenced, further 

details of which are shown in Table 3.7. 
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NeBI 
Band BLAST match Acceaalon Environment of match 

Number 

V9-C Uncultured Verrucomicrobia AY690115 Naturally acidic mountain 
bacterium clone BSR2LF12 stream sediment 

V9-F Uncultured eubacterium 00238 AJ292597 Polychlorinated blphenyl-
polluted soli 

V3-3 Uncultured bacterium clone GXOC-17 EU250231 Acid mine drainage 

V9-G Uncultured bacterium clone ERF-F6 OQ906078 Tinto River Rhizosphere 

V9-H 
Uncultured gamma proteobacterlum EU236255 Radionuclide contaminated 
clone A2-4c03 subsurface sediments 

V3-1 Uncultured epsilon proteobacterlum AY437423 MTBE contaminated shallow 
clone aquifer 

V3-2 
Euglena mutabilis strain SAG 1224- AY626044 N/A 
9b 

V3-4 Uncultured archaeon clone arq3_h8 EF446255 Macroscopic filaments from 
Rio Tinto 

V3-5 Bacterium ML2-86 DQ145977 Milk Lake, Taiwan. A sulphur 
lake. 

V3-6 
Uncultured bacterium clone biogas- Da419703 Blogas DI-b70 

V3-7 
Acidithiobaclllus ferrooxidans strain 

EU084696 N/A DBS 

V9-E AcJdocella sp. DM2 Da419948 Moderate acid mine drainage 

V3-W 
Uncultured Acidiphilium sp. clone K6- EF612396 Semi arid lead-zinc mine 
C83 tailings site 

V9-B Burkholderia sp. AFF EF506612 Phenanthrene soil 

V3-9 
Uncultured soil bacterium clone PAH- DQ123784 PAH-contaminated soil 
Feed-53 

V3-8 
Chryseobacterium gregarium Type Phyllosphere of grasses strain DSM 19109T AM773820 

V9-10 Uncultured bacterium clone Frasassi sulfidic cave stream 
FS0612_U6 EU101113 blofilm 

V9-12 Pseudomonas sp. BFSY-1 Oil contaminated soli from 011 
EU258737 refining plant 

V9-13 Uncultured Bacteroidetes bacterium Oxidized iron deposits 
clone GalB60 AY193184 

V9-16 Uncultured bacterium clone ERF-1A1 Metagenome of the Tlnto 
00906050 River rhizosDhere 

V9-19 Uncultured bacterium clone YSK16S- Acid mine drainage, Yinshan 
36 EF612999 Mine, China 

Table 3.7: Representative BLASTN matches of excised bands from denaturing 

gradient gels of V3 (Figure 3.9) and V9 (Figure 3.8) hypervariable regions of the 16S 

rRNA gene. NI A = Not applicable; the environment from which the sequence match 

was isolated/cloned from is not listed. 
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The results of BLASTN using the megablast algorithm on the NCBI website (Altschul 

et al. 1990) revealed a wide variety of microorganisms present in Hoole Bank acid tar 

lagoon samples. including a species of alga and an archaeaon. Each band produced 

many matches with percentage identities greater than 97 %. with most bands having 99 

% or 100 % identity over the 200-300 bp sequenced region to other sequences in the 

NCBI database. In several cases where the excised DOGE band sequence matched 

multiple sequences with equal identity the highest matching. most appropriate organism 

or clone was selected. For example. band V9-16 is listed in Table 3.7 as a sequence 

match with an uncultured bacterium clone from the Rio Tinto rhizosphere, yet this band 

also matched accession numbers AY683287 (clone from beech and spruce litter). 

EF221112 (vegetated soil from Antarctica). AY425773 (volcanic deposit) and 

DQ528761 (a novel Acidobacterium species) amongst several others with equal 

sequence identity. 

DGGE bands V9-E (Figure 3.8) and V9-B (Figure 3.8) are of particular interest as these 

bands were identified through BLASTN as Acidocella sp. DM2 and Burkholderia sp. 

AFF respectively (Table 3.7); both of which are very closely related species to 

microorganisms which were isolated using classical culture methods (Section 3.2.2 and 

Table 3.2). Furthermore, given the short region of the 168 rRNA gene used for 

identification it is extremely likely that the organisms isolated using classical culture 

techniques are the same microorganisms responsible for bands V9-E and V9-B 

respectively. 

Band 2 of the V3 gel (Figure 3.9) was identified as Euglena mutabilis strain SAG 1224-

9b using the megablast algorithm. Identification of a species of the genus Euglena is 

noteworthy since previous attempts to characterise eukaryotic diversity in the Rio Tinto 

failed to identify Euglena using 18S rRNA DOGE despite microscopic observations of 

this genus in the samples analysed (Aguilera et al. 2006). It is of further interest since 

Euglena mutabilis is well known to tolerate acidic conditions (Lane and Burris 1981; 

Olaveson and Nalewajko 2000) yet a closely related species, Euglena gracilis, was 

isolated from Hoole Bank acid tar lagoon samples using classical techniques. As has 

been mentioned previously, the reliability of 16S rRNA to distinguish between different 

species is not totally reliable, further proven by the remaining BLASTN matches to V3-

2 which included Euglena viridis, Euglena deses and Euglena stellata amongst other 

species of Euglena and other uncultured clones. 
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Therefore it remains a possibility that band V3-2 may be affiliated to Euglena gracilis, 

as opposed to Euglena mutabilis. In order to quantify this further, the V3-2 DGGE 

band sequence was aligned against the chloroplast 168 rRNA gene sequence obtained 

from the Hoole Bank Euglena gracilis isolate using the bl2seq alignment tool on the 

NCBI website (Tatusova and Madden 1999). The alignment was strong, with an 88 % 

identity over 171 residues which means that the possibility remains that the DGGE band 

is a result of the presence of Euglena gracilis in Hoole Bank acid tar lagoon samples. 

However, there also remains the possibility that both organisms are present in Hoole 

Bank acid tar lagoon samples, with one species isolated using classical culture 

techniques and the other species identified through molecular analyses. 

Of the two remaining cultured isolates it would not be possible to detect the eukaryotic 

yeast isolate Rhodotorula using 168 rRNA DGGE since it possesses no 168 rRNA. 

However, detection of the bacterial Gordonia species would be possible using 168 

rRNA DOGE, yet this organism was not detected on either V9 or V3 DOGE gels. The 

absence of a Gordonia species from either 168 rRNA DGGE may simply be that the 

band affiliated with this microbial species was not sufficiently visible for excision, as 

was the case for several bands which were visible in a closed UV transilluminator dark 

box but not using an open UV transilluminator. It is also possible that this species 

comprised such a small minority of the microbial population in Hoole Bank samples 

that PCR amplification was biased against this or that little or no genomic DNA was 

obtained from this organism irrelevant of its abundance within the microbial population. 

Acidithiohacillus je"ooxidans was also identified as present in Hoole Bank acid tar 

lagoon samples (V3-7; Figure 3.9). This is not unusual given that this organism is a 

known acidophile and has been identified in many acidic environments previously 

(Gonzalez-Toril et al. 2003; Johnson et al. 2001; Mabmoud et al. 2005). A. 

ferrooxidans is often readily cultured from acidic samples, despite not always being the 

dominant species (Rawlings et al. 1999), yet this organism was not detected using the 

classical culture techniques employed in this study. This is most likely because specific 

growth media and long incubation period is required to culture this species. 

3.3: General Discussion 

The results of microbial diversity analysis at Hoole Bank acid tar lagoon are in 

agreement with previous studies which reveal a much greater microbial diversity using 

104 



molecular techniques than classical culturing techniques (Amann et al. 1995). A total 

of five microorganisms were isolated and identified from 21 samples from Hoole Bank 

acid tar lagoon, which would indicate a very low level of microbial diversity present. It 

is important to consider that the classical culture techniques emplyed were chosen 

specifically to isolate microorganisms which could be cultured readily and using a very 

limited pH range. Therefore, the limited diversity which was cultured does not 

represent the likely culturable population. Furthermore, results from molecular 

microbial community analysis using T -RFLP and DOGE indicate a much higher level 

of diversity present in some of the samples that that found using classical culture 

techniques. 

There are several reasons for the discrepancy between the number of cultured organisms 

and the estimates of the number of species produced from T -RFLP and DOGE data, 

which were discussed earlier (Section 1.2.1 and 1.2.2). Underestimates of microbial 

diversity based on cultured organisms occur because many of the species present in 

environmental samples cannot be cultivated using the particular set of culture 

techniques employed. The lack or over abundance of certain nutrients, cofactors, 

terminal electron acceptors, synergies and levels of oxygen are just some ofthe reasons 

which may cause a particular organism to resist being cultured. 

Many microorganisms may rely on the presence of another organism in some way in 

order for them to grow and survive, yet this study prevented the growth of fungi since 

these organisms out-competed the growth of other microorganisms. It is highly likely 

that the inhibition of fungal growth from Hoole Bank acid tar lagoon samples reduced 

the number of other microorganisms isolated from the samples. Similarly, a very 

narrow range of growth media were used in attempts to isolate organisms therefore the 

proportion of organisms present in samples which could grow using the media provided 

was considerably reduced compared to the total microbial population. All attempts to 

culture microorganisms were carried out under aerobic conditions, thus excluding a 

further proportion of the microbial population which were micro-aerophilic or 

anaerobes. 

Of the five species of organisms isolated from Hoole Bank acid tar lagoon samples only 

one, Acidocella 29, would have been considered a likely candidate for isolation prior to 

CUlturing. Acidocella are known acidophiles and have been found in other acidic 
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environments previously (John son et al. 2001; Kimura et al. 2006), as well as exhibiting 

the potential to degrade a range of carbon compounds which are likely to be present at 

Hoole Bank acid tar lagoon (Dore et al. 2003; Roling et al. 2006). Of the remaining 

four isolates, Rhodotorula are known to be acidotolerant (Gadanho et al. 2006) whilst 

Burkholderia (TiIlmann et aI. 2005) and Gordonia (Chatterjee and Dutta 2003; Kim and 

Pagilla 2003) species have previously been found in environments similar to Hoole 

Bank acid tar lagoon. 

The isolation ofthese microbial species, as opposed to the type of acidophilic organisms 

discussed in Section 1.5 which are commonly isolated from similar environments would 

suggest that the culture regime employed to isolate organisms was not yielding the 

maximum number of culturable isolates. However, the methodology employed to 

isolate organisms was chosen such that any microorganisms which were cultured could 

be readily grown in order to aid further studies. 

A greater number of organisms could have been isolated from Hoole Bank acid tar 

lagoons relatively simply by using a greater number of growth media and conditions 

such as overlay plates (Johnson et al. 1987), minimal medium supplemented with 

carbon sources present in Hoole Bank acid tar lagoon samples, using a wider range of 

pH during media preparation and by using anaerobic growth conditions for example. 

Preparation of overlay plates (John son 1995), a commonly used technique for isolating 

microorganisms using the removal of toxic organic chemicals from the top. agar by an 

underlayer containing another microorganism, are time consuming in their preparation 

and do not produce colonies for approximately 7-14 days, therefore they were not used 

in this study due to time constraints. 

The isolation of a unicellular alga was not surprising since visibly green biofilms were 

present at Hoole Bank acid tar lagoon. However, it was surprising that the species 

apparently responsible for much of this biomass was Euglena gracilis, as opposed to the 

more acidophilic species Euglena mutabilis. It is thought that E. gracilis is in fact 

equally acid tolerant but is far less resistant to heavy metals, and since the presence of 

heavy metals is often found in highly acidic environments, E. mutabilis is the most 

commonly isolated euglenoid from acid environments (Olaveson and Nalewajko 2000). 

Isolation of E. gracilis is not that surprising since Hoole Bank acid tar lagoon does not 

contain high levels of heavy metals despite its acidity (Nichol 2000). 

106 



All of the organisms isolated were from different Hoole Bank acid tar lagoon samples, 

with pH ranging from 2.62 to 3.40. However three of the five isolates were from 

sample group 1, thick sludge external to the lagoon, and the remaining two isolates from 

sample group 3, green biofilm. However, it is important to mention at this point that 

several other organisms were cultured from Hoole Bank samples but could not be 

maintained for more than two generations and therefore could not be successfully 

identified. 

Of note is the isolation of two organisms from Group 3 samples, compared to the 

relatively low microbial diversity detected using DOGE in these samples' (Lanes 29, 45 

and 46, Figu~s 3.8 and 3.9). Initially the limited microbial diversity detected using 

DOGE was thought to be a result of inefficient genomic DNA extraction due to the 

biofilm structure. However, these samples produced a greater or comparable number of 

T-RFs when compared to water samples (Table 3.4) which would suggest that this is not 

the true reason for the limited diversity seen using DOGE. One possibility is that bands 

which comprised only a small proportion of the population in these samples were not 

detected using DGGE due to the limited sensitivity of staining and visualisation but 

were detected using T-RFLP. 

No microorganisms were isolated from sample 27, despite this sample having the 

highest pH, at 5.2. The most likely reason for the absence of cultured organisms from 

this sample and several others is that all the media used for isolation were adjusted to 

pH 3 in order to isolate acidophilic or acidotolerant species for further study. Based on 

V9-DGGE, sample 27 appears to have the highest level of microbial diversity compared 

to all the other samples (Figure 3.8). However, this considerably higher level of 

microbial diversity observed in V9 and V3 DOGE gels does not correspond with T

RFLP data which shows comparable levels of microbial diversity between sample 27 

and the remaining 20 samples. One possible explanation for this discrepancy is that T

RFLP data is simply much more sensitive. For example, Figures 3.7a-d show many T

RFs with very small percentage peak areas and only approximately four to six columns 

with high percentage areas, which more than likely represent species comprising only a 

minority of the microbial population and predominant, abundant species within the 

population respectively. Thus, the most prevalent and abundant species with large 

percentage peak areas seen in the histograms of Figures 3.7a-d are likely to be 

represented by the brightest bands visible in the DOGE gels, whilst the species which 
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comprise a minority of the microbial population may only produce faint bands or bands 

which are not visualised at all. 

The T -RFLP profiles generated from Hoole Bank acid tar lagoon samples did not show 

any strong correlation between sample grouping and microbial diversity, or pH and 

microbial diversity. Statistical analyses using principal component analysis of 

interstitial data (Figures 3.5a-h), peak area data (Figures 3.6a-h) and correspondence 

analysis of both interstitial and peak area data (data not shown) indicate few trends 

within sample groupings or sample pH. Certain samples cluster closely in Figures 3.5h, 

3.6d, 3.6g and 3.6h which may indicate some as yet unknown linking factor but this 

factor was not determined. 

There are advantages and disadvantages of both molecular methods, therefore using 

both methods has provided a broader picture of the microbial diversity present in Hoole 

Bank acid tar lagoon. Whilst T -RFLP is more sensitive and provides a greater insight 

into the number of probable microbial species present in the acid tar lagoon there is no 

defmitive sequence information obtained using this technique. Although in si/ico 

analyses such as PAT (Kent et al. 2003) and TAP (Marsh et al. 2000) allow the 

phylogeny of T -RFs to be inferred, the information obtained from these programmes is 

purely theoretical. A large number of results were obtained using the T -RFLP profiles 

from Hoole Bank acid tar lagoon llsing PAT. For example. sample 46 produced a total 

of 5600 potential phylogenetic affiliations. Whilst inference of phylogeny is useful, 

analysis of these data is time consuming given the large number of potential matches 

which arise as a result of the high number of matches for each T-RF combination, the 

number of different T -RF combinations which produce matches to species within the 

database used and the high number of repetitive sequence information contained within 

the databases. The latter point is particularly relevant to sequences from clone libraries 

and metagenomic libraries which produce vast amounts of sequence data which is added 

to the database which ultimately resulted in 20-40 matches to duplicate or slight variants 

of a clone insert from a particular clone or metagenomic library in some instances. 

DOGE is advantageous in this respect since bands can be excised and sequenced in 

order to determine the phylogeny of the organism responsible for a particular band; 

however the disadvantage is that staining and visualisation of the gels is less sensitive 

than T-RFLP, therefore the proportion of OOGE bands which can be identified is 
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always likely to be significantly less than 100 % of the microbial diversity present as the 

technique is not sufficiently sensitive. Furthermore, it is known that one band can 

consist of the 16S rRNA gene fragment from more than one organism (Gafan and Spratt 

200~), therefore the level of microbial diversity may also be underestimated using 

DGGE. Optimisation and alteration of the denaturing gradient may allow detection of 

species which are less abundant or allow the separation of two closely migrating 

species. 

The multitude of high percentage identity sequence matches using BLASTN highlights 

several potential pitfalls of molecular microbial diversity analysis using DGGE. Firstly, 

the phylogenetic identification of organisms present in environmental samples based on 

the short sequences (200-300 bp) obtained from excised DGGE bands is not definitive. 

The results also highlight the limits of the 16S rRNA gene as a phylogenetic marker, 

since the regions of the 16S rRNA gene used in these experiments were both 

hypervariable regions yet sequences from excised DGGE bands matched several species 

of microorganisms. Limitations in our current knowledge and data also affect the 

results obtained, since it is not possible to match a query sequence to any sequences 

from organisms or clone libraries which have not been entered into the NCBI, or any 

other database, being used for cross-referencing. Finally, as demonstrated in the 

example above, the results are also open to user bias and selectivity, particularly when 

there are multiple equal identity matches. Although, in some circumstances it may be 

argued that selection of the most appropriate sequence match may be justified. 
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Chapter Four: Characterisation of "Green 46" - Euglena gracilis G46 

4.1: Introduction 

The following chapter describes some the effects of low pH on an organism which grew 

on Yz BLB pH 3 medium following inoculation with sample number 46 from Hoole 

Bank acid tar lagoon. This organism has been deposited in the Culture Collection of 

Algae and Protozoa (CCAP) under strain number E. gracilis G46 1224/46. Sample 46 

was from a biofilm present in shallow lagoon water, approximately 20 - 30 cm deep, 

close to the edge of the lagoon with a pH of 3.07 (Figure 3.1c). This organism was 

chosen for further study since the biofilm was visibly abundant within several areas of 

the lagoon and thought to constitute a significant feature of the microbial community 

present at Hoole Bank acid tar lagoon. 

4.2: Results 

4.2.1: Identification of "Green 46" 

A unicellular alga was cultured from lagoon sample 46, initially on solid Y2 BLB 

medium. Initial microscopic observations showed cells to be approximately 40 J.lffi in 

length by 6 J.lffi wide. Liquid cultures of this organism were grown at approximately 27 

±2 °C in diurnal conditions prior to phylogenetic identification (Section 2.12.2). 

Genomic DNA preparations were made from liquid cultures and both 16S and 18S 

rRNA genes amplified by PCR and sequenced for phylogenetic identification of the 

organism. Phylogenetic analysis of the "Green 46" chloroplast 16S rRNA gene (NCBI 

accession number EU263908) using the BlastN algorithm at NCBI showed a 95 % 

identity to Euglena gracilis chloroplast genes, whilst BlastN comparison of the "Green 

46" 18S rRNA gene (NCBI accession number EU263909) revealed a 97 % identity to 

Euglena gracilis small subunit rRNA (Figures 4.1 and 4.2). 

Stackebrandt and Goebel (1994) suggested that> 97 % homology between 16S rRNA 

genes is a strong indication that two organisms are the same species, therefore the 97 % 

sequence identity between the "Green 46" 18S rRNA gene and the E. gracilis 18S 

rRNA gene would suggest that "Green 46" is Euglena gracilis. Therefore, from this 

point onwards "Green 46" will be referred to as E. gracilis G46. Following the 

identification of E. gracilis 046 using BlastN, the type strain Euglena gracilis Z (CCAP 

1224/5Z) was used as a control organism for most experiments involving E. gracilis 

G46. Initially growth was monitored over a range of pH using chlorophyll content as a 
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measure of cell biomass. E. gracilis G46 grew in liquid media at pH 2 whereas the type 

strain E. gracilis Z showed no growth at this pH over a ) 2 day period (Figures 4.3a and 

4.3b). 

• 9 

I 

or 
1_ 

l 

~ 

• E,'l1eN. 5p. 111132 

• Eugltni. ~niculi.1a. 

<) ..o Eugleni. viridi5 

• Eug1en. _oc\AindBCu 

• EU'l1eni. 'lenic,Ii.1a. 

• Eugleni.5p. 1111858 

4 EugltnUP. SAG 122+ 12b 

• EU'l1eni.liCinii.1a. 

-0 EU'l1eni. pol~lPtu. 

• Eu9!tnUi.n'luinti. 

• Eugltnu.'li~5 

• EU9leno. .gili. 

4 EU9ltno. pi5cifonni5 

r-----------------------O 

1 
• Tl'i.Clulomon;15 tllip50idili5 

I 

• EIgltni. ini.bMno. 

r--------------------------------------. [ .~~ 
o ,e Eugltni.UTEX36. 

I .. 

Ll 
I 

r • 
- 0 

I 

0 ... Eug!tni. gmili5 Vif. biCil~5 
o 'I Eug1tni. 'l1'iC~i5 Vif. biCillari. 

~Igltno. gBCili. 

• Eugltni. 'l1'iCili5 -Q. Eugleno.sp. 1111856 

• Eugltni. chliNIWdophori. 

• -0 EU91eni. hitmili • 
• Eugltno. gmili • 

~ Euglenup. 8APS ~2000 

~ • EIgltni. gBCili. 
• Eugltni.5jl. MPS 2-2000 

• Eugleni. inftnnedii. Vif. iCidophili. 

~ r - .... Eugltni.longi. 
L..-~--------O -- Eugltno.long;t. 

L-

Figure 4.1: Neighbour joining phylogenetic tree showing the position of E. gracilis 

G46 (unknown) in relation to other Euglenoid species. Pairwise alignment with 

maximum sequence difference of 0.1 produced using BLASTN at NCBl. 
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r 
> gbIM12677.1IEGRRGSS Euglena gracilis small subunit rRNA, complete 
Length=2305 

Score ~ 1849 bits (1001), Expect = 0.0 
Identities = 1025/1036 (98%), Gaps - 3/1036 (0%) 
Strand-Plus/Plus 

Query 24 

Sbjct 1 

Query 83 

Sbjct 61 

AAT-TGGTTGATCCTGCCAGCAGTCATATGCTTTGTTCAAGGGCTAAGCCATGCACGTCT 82 
I I I 11 I I 11 I I I I 11 I I I I I I I " I I I I I 11 I 11 I 11 I I I I I I I 11 I I 11 I I I I 11 I 11 
AATCTGGTTGATCCTGCCAGCAGTCATATGCTTTGTTCAAGGGCTAAGCCATGCACGTCT 60 

CAGCGCAAACGGAGTGACAGTGGATCTGTGAATGGCTCCTTACATCAGCAGTCATCTACG 142 
111111111111111111111111111111111111111111111111111111111111 
CAGCGCAAACGGAGTGACAGTGGATCTGTGAATGGCTCCTTACATCAGCAGTCATCTACG 120 

Query 143 TGATAGAGTGTGCTCGGTCCACCTGCAAGGACCCCATTGGACATCCACCAAAACCTTGTG 202 
I I I I 11 I I " 11 1 I " I I I 1 I I I 1 I I 11 I I I I I I I I 11 I I I 1 11 11 I I I I I 11 I I 11 I I I 

Sbjct 121 TGATAGAGTGTGCTCGGTCCACCTGCAAGGACCCCATTGGACATCCACCAAAACCTTGTG 180 

Query 203 GCTAATACACGTTCGACCCAGTCAGCCATGCAACACTCGGCAGGGATCCTGTCTCCGGAC 262 
111111111111111111111111111111111111111111111111111111111111 

Sbjct 181 GCTAATACACGTTCGACCCAGTCAGCCATGCAACACTCGGCAGGGATCCTGTCTCCGGAC 240 

Query 263 AGTCCCTTCACCGGTGGTGGCGGATGTATGCCCAGCTGATACGAAGACCAGCGGCCGCAA 322 
111111111111111111111111111111111111111111111111111111111111 

Sbjct 241 AGTCCCTTCACCGGTGGTGGCGGATGTATGCCCAGCTGATACGAAGACCAGCGGCCGCAA 300 

Query 323 GGCCAGTGTGTTGGCATGGTTGACTCAGGCTGGCCCTCCGTGGCCGCAGTGCTGGTGGAT 382 
111111111111111111111111111111111111111111111111111111111111 

Sbjct 301 GGCCAGTGTGTTGGCATGGTTGACTCAGGCTGGCCCTCCGTGGCCGCAGTGCTGGTGGAT 360 

Query 383 TTCGTGCATGCCTCGTGCATGCCCCACTTGATCGCAAGAGCTTCTGACCTATCAGCTTGA 442 
111111111111111111111111111111111111111111111111111111111111 

Sbjct 361 TTCGTGCATGCCTCGTGCATGCCCCACTTGATCGCAAGAGCTTCTGACCTATCAGCTTGA 420 

Query 443 CTGTGGTGTATCGGACCACAGTGGCCTTGACGGGTAACGGAGAATCAGGGTTCGATTCCG 502 
I " 11 I I I I I 11 11 I I I I I 11 I 11 I I I I I 11 I 11 I 11 I 11 I I I I 1 I I I I I 11 I I 11 I I I I 

Sbjct 421 CTGTGGTGTATCGGACCACAGTGGCCTTGACGGGTAACGGAGAATCAGGGTTCGATTCCG 480 

Query 503 GAGAGGGAGCCTGAGAGACGGCTACCACTACCAAGGTGGGCAGCAGGCACGCAAATTGCC 562 
I 11 11 I I 11 I I I I 11 I 11 I I I I 11 I I 11 I I I I 11 \I I I I I I 11 I 11 I 11 I 11 11 11 11 I I 

Sbjct 481 GAGAGGGAGCCTGAGAGACGGCTACCACTACCAAGGTGGGCAGCAGGCACGCAAATTGCC 540 

Query 563 CCATGCAAAGACAGTCTGTGAGGCAGCGACGAACAGTAGCAACCCCGTCGGCCCTACGTG 622 
11 I 11 I I " 11 I I I I I 11 I \I I 11 I 11 " 11 11 I I 11 I I 11 I " 11 I I I I 11 I "" I I 

Sbjct 541 CCATGCAAAGACAGTCTGTGAGGCAGCGACGAACAGTAGCAACCCCGTCGGCCTTACGTG 600 

Query 623 CCGATGGGGCTTGGAATGGACGCTATCCAAAGACAGCCGTAAGTATCAACCGGAGGGCAA 682 
I 11 I f I I I I 11 I I 11 I f 11 f f I I I I 11 I filII I I 11 I I I 1\ I 11 " I 11 I I I I I 11 I I 

Sbjct 601 CCGATGGGGCTTGGAATGGACGCTATCCAAAGACAGCCGTGAGTATCAACCGGAGGGCAA 660 

Query 683 GTCTGGTGCCAGCAGCTGCGGTAATTCCGGCTCCGAGGGCGTATACTAACATTGCTGCTG 742 
11 I I I I 11 I 11 I I 11 11 I I I 11 I 11 "I I 11 I 1\ " \I I 1\ I " 11 11 I 11 I " I 1\ 1 1 

Sbjct 661 GTCTGGTGCCAGCAGCTGCGGTAATTCCAGCTCCGAGGGCGTATACTAACATTGCTGCTG 720 

Query 743 TTAAAACACTTGTAGTCTGCCTACGGGCTGCAGGTCTGCTGGGTGGCCGGTTTGTTGTTT 802 
111111111111111111111111111111111111 fill f I11 I 111111111111111 

Sbjct 721 TTAAAACACTTGTAGTCTGCCTACGGGCTGCAGGTCTGCTGGGTGGCCGGTTTGTTGTTT 780 

Query 803 CTCTGGCCAGGGAAGGACCTCGGTTCGACCCTGTGTTGGGCTGCAACGGCTGGACTCAAC 862 
11 I 11 I I I 1111111111 I 111I1111111111111111111 f 11111111111111111 

Sbjct 781 CTCTGGCCAGGGAAGGACCTCGGTTCGACCCTGTGTTGGGCTGCAACGGCTGGACTCAAC 840 

Query 863 CCCCAGTGGTACGTCCCTGCGCCCACCTCTCAGTCGATGGTGAGATCTGCTCCTGCCAAA 922 
I I I f fill I I I I I " I I I 11 I 1 I " I I I I I 1 I I I11 I " I 1 I I I I I I I1 I I 1 I 11 I I I I I 

Sbjct 841 CCCCAGTGGTACGTCCCTGCGCCCACCTCTCAGTCGATGGTGAGATCTGCTCCTGCCAAA 900 

Query 923 A-TCTGCTTCACTGCAGGCCAAAGCGGTTTATGCCTCCCGCACTGGCAACGGACACCAAC 981 
I I I I I 1 I 1 I I 1 I I I 1 I I I I I 11 I I I I I 11 I I I I 11 I I I I I I I 11 I I I I I I I I I I I I I I I 

Sbjct 901 AGTCTGCTTCACTGCAGGCCAAAGCGGTTTATGCCTCCCGCACTGGCAACGGACACCAAC 960 

Query 982 AGGGGACCAAGCCTCGATCTGGGTAGTCTACCTCTGGTCCAC-ACCGGAACCCACCGTTT 1040 
1111111111111111 1111111"11111""""" 111111 11111111 I 

Sbjct 961 AGGGGACCCAGCCTCGAGCTGGGTAGTCTACCTCTGGTCCACCACCGGAGCCCACCGTCT 1020 

Query 1041 TCAACACCCTGGAAAA 1056 
11 1111111111111 

Sbjct 1021 TCGACACCCTGGAAAA 1036 
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Figure 4.3a: Effect of pH on the growth of E. gracilis G46. Data points are the mean 

of three replicates and the error bars represent one standard error. 
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Figure 4.3b: Effect of pH on the growth of E. gracilis Z. Data points are the mean of 

three replicates and the error bars represent one standard error. 
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4.2.2: Intracellular pH 

Most acidophiles maintain a near-neutral cytoplasmic pH in order for pH-sensitive 

cellular functions to be maintained; therefore the intracellular pH of E. gracilis 046 was 

measured in order to deduce how this organism was surviving in the acidic conditions 

of the lagoon. Initially, the silicone oil method of Rottenberg (1979) was employed, 

calculating the intracellular pH (PHi) based on the distribution of radioisotopes between 

the cells and the extracellular environment. The basis of this method is that the tritiated 

water is a small molecule and as such is able to pass into the cells, whilst the large 

molecular weight (70000 Da) of the 14C_dextran prevents passage into the cell, thus 

creating measurable intracellular and extracellular volumes. The distribution of a 

further radioisotope probe such as benzoic acid is then used to determine pHi, since the 

amount of benzoic acid which accumulates inside the cell can be correlated to 

intracellular pH using the calculations shown in Sections 2.6.1 and 2.6.2. 

In order to measure pHi based on the distribution of isotopes, control timecourse 

experiments were carried out in order to ensure no erroneous uptake or eftlux of any of 

the isotopes was occurring. Three hour time course experiments to measure uptake or 

effiux of isotopes from the cells showed linear levels of 14C-dextran, 3H20 and 14C_ 

TPP+. However, over the three hour time period the amount of 14C_benzoic acid in the 

pellet decreased by > 50 %, which may suggest that the cells were actively pumping 

14C_benzoic acid out of the cells or metabolically degrading the 14C_benzoic acid 

(Figure 4.4). 

It is quite likely that the benzoic acid is metabolised or actively removed from the cell 

since weak acids act as uncouplers in acidophiles (Ciaramella et al. 2005) and can cause 

a reduction in cytoplasmic pH which the cell cannot cope with. However, the minimal 

amount of benzoic acid added, 0.075 mM, is barely at a high enough concentration to 

act as an uncoupler. The effect of benzoic acid on respiration of E. gracilis 046 was 

measured using the oxygen electrode and was shown to have no effect on the respiration 

when used at the same concentrations as the silicone oil procedure (data not shown) 

which would indicate that the benzoic acid was having no uncoupling effects. 

Therefore, a five minute incu~tion time was deemed acceptable since there was little, if 

any. uncoupling effect of benzoic acid at the concentration used over such a brief period 

of time. 
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14C-Benzoic acid in the pellet fraction of E.gracilis G.f.6 
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Figure 4.4: 14C_benzoic acid in the pellet fraction of E. gracilis G46. The distribution 

of benzoic acid between the pellet and supernatant is used to calibrate the internal pH 

and it should not vary after the initial accumulation. Values are the mean of three 

repeats ± one standard error. 

Following the timecourse controls the silicone oil procedure was carried out in full 

using five minute incubations for each isotope in order to determine the pHi of E. 

gracilis G46, and E. graciliS Z as a comparison. Further control experiments were 

carried out using E. gracilis G46 resuspended in M6 pH 7 medium and E. gracilis Z 

resuspended in pH 3 M6 medium, as well as controls using iodine-killed E. gracilis G46 

and E. gracilis Z (Table 4.1). The silicone oil method produced a mean intracellular pH 

of 5.47 ± 0.36 (n=16) for E. gracilisG46 (Table 4.1). 

There is a slight difference in the pHj of the two strains of Euglena, with E. gracilis Z 

having a slightly lower pl\ when measured in M6 pH 3. This is not unexpected after a 

significant shock in external pH. Since E. gracilis Z is routinely grown in pH 7 media it 

is possible that resuspension in pH 3 media may have temporarily reduced the pHi and 

due to the short time period in this experiment it is unlikely that any pH homeostasis 

mechanisms would have begun. E. gracilis Z cells resuspended in pH 7 M6 have a 

much higher pHi of 6.52 which would suggest that the pHi measured in cells 

resuspended in pH 3 M6 is lower than their usual pHi during growth, whereas the lower 

pHi measured in E. gracilis G46 is likely to be much closer to the normal intracellular 

pH during growth of E. gracilis G46 in the acid tar lagoon. 
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Resuspension 
M6pH3 M6pH7 

M6 pH 3 plus M6 pH 7 plus 

Conditions iodine iodine 

E. gracilis G46 
pH 5.47 ± 0.36 

Negative ICV 
pH 5.42 ± 0.19 

Negative ICV 
(n=16) (n=5) 

Not 
E. gracilis Z pH 5.35 ± 0.14 pH 6.52 ± 0.64 

determined 
pH 6.9±0.20 

Table 4.1: Summary of mean intracellular pH measurements using the silicone oil 

method. The values represented are the mean of three replicates ± one standard error 

unless otherwise stated. Where applicable 50 J.lI of Gram's Iodine was added to the 

cells to kill them. Negative ICV = Attempts were made to measure pHj but a negative 

intracellular volume was obtained therefore it was not possible to determine pHi. 

The purpose of killed controls using iodine was to determine if pHi was actively 

maintained at low external pH. There is almost no difference between the pHi of live 

and killed E. gracilis G46 resuspended in pH 3 M6 media. If active mechanisms were 

involved in pH homeostasis it would be expected that there would be a reduction in the 

pHj of killed cells yet there is almost no difference. One possible explanation for this 

observation is that E. gracilis G46 may possess a highly impermeable cell membrane, a 

common adaptation in acidophilic organisms, which reduces proton influx into the cells. 

Active maintenance of pHi by E. gracilis G46 is supported by data in Table 4.1, since 

the pHi of killed control cells is significantly higher (PH 6.9) than the living cells at pH 

7 (pH 6.52), 

Since the intracellular pH of both E. gracilis G46 and E. gracilis Z measured using the 

silicone oil technique was lower than normal and given the slight abnormalities in the 

benzoic acid timecourse, 31p NMR was used as an alternative method to measure the 

intracellular pH of E. gracilis G46. Using the shift of intracellular phosphate this 

method gave a pHi of 6.6 for E. gracilis G46 grown at pH 3 and 6.7 for type strain E. 

gracilis Z grown at pH 7 (Figure 4.5). The difference in the measured pHi between the 

silicone oil method and NMR may be caused by several factors. Firstly, cells were 

highly concentrated for NMR experiments and it is likely that they became anaerobic 

quickly and remained anaerobic for the duration of the measurements. Cells were also 

resuspended in Tris buffer for NMR experiments as opposed to growth media which 

may also have some effect on the pHi. 
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Figure 4.5: Comparison of phosphate shift of E. gracilis G46 and E. gracilis Z with 

titrated phosphate solutions ranging from pH 5.99 to pH 8.3. The cell pH was 

detennined by interpolation to be pH 6.6 for E. gracilis G46 cells grown at pH 3 and pH 

6.7 for E. gracilis Z cells grown at pH 7. 
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Experiments using the LysoSensor Yellow/Blue DND-160 probe highlight the 

compartmentalisation of these eukaryotic cells which may also be a reason for the 

discrepancy between the two methods (Figure 4.6). It is possible that the benzoic acid 

may have entered the cell and remained in the cytoplasm, thus the pH measured by the 

silicone oil method would be the average pH of the cytoplasm. However, some or all of 

the benzoic acid may have entered one or more of the organelles such as the 

mitochondria, chloroplasts, eye spot, vesicles, vacuoles or the flagellum reservoir. It is 

not possible to identify where the benzoic acid distributes within the cell. 

Both pH measurements are strongly indicative of a near-neutral intracellular pH. The 

silicone oil measurement of pHi is slightly lower than normal but still well within the 

expected range for an acidophile, particularly when considering that the extreme 

acidophile Ferroplasma spp. has an intracellular pH of 4.2 (Macalady et af. 2004). 

Figure 4.6: (Main) False colour fluorescence microscope image of E. gracilis G46 

after incubation with LysoSensor Yellow/Blue DND-160 fluorescent probe. (Inset) E. 

gracilis Z control cells show the same pattern of probe distribution and fluorescence 

emission as E. gracilis G46. This would indicate that there is little, if any, difference in 

intracellular pH between the two organisms. Magnification: loOX. 
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4.2.3: Rubisco analysis 

In order to further verify the pHi measurement, exons from the gene coding for the large 

subunit of ribulose-l,5-bisphosphate carboxylase/oxygenase (RuBisCO), RbcL, were 

amplified by PCR and sequenced. RuBisCO is one of the most abundant proteins on 

the planet (Dhingra et al. 2004) and is extremely important in photosynthesis; therefore 

it would be expected that any adaptation to low pH within the cell would be observed in 

the gene sequence of this protein. In order for the cell to function properly every 

protein is specialised to function in the specific intracellular conditions of its particular 

environment. Therefore a particularly low intracellular pH is likely to result in amino 

acid alterations in peptides and proteins in order to confer acid stability and in order for 

the protein to function properly in acidic conditions. 

Primers designed to amplify the largest and second largest exons of the gene, exons 8 

and 5 respectively, were designed based on other RuBisCO sequences in the NCBI 

database (http://www.ncbLnlm.nih.gov/). The 363 bp fragment of exon 5 was 

successfully amplified and sequenced. Sequence analysis showed a highly conserved 

sequence between E. gracilis 046 and other Euglenoids (Figures 4.7 and 4.8). 

L---------c:====~~ 
~-------------------------------~mmB 
,.--------E. ..... 
'--------------E ....... 
~-------------------E~ 

Figure 4.7: Phylogram generated by ClustalW (1.83) (Chenna et al. 2003) multiple 

sequence alignment tool service at the European Bioinformatics Institute 

(http://www.ebi.ac.ukJclustalw) comparing the DNA sequence of exon 5 from E. 

gracilis 046 (046) with other Euglenoid DNA sequences. 
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Figure 4.8: KAlign multiple sequence analysis of translated E. gracilis G46 RbcL exon 5 against the amino acid sequences 

of the highest matching TBlastN results. 



4.2.4: Malate dehydrogenase acitivity 

Measurement of enzyme activity over a range of pH was also carried out. Crude celI

free extract was prepared and the rate of reaction of malate dehydrogenase CL-malate

NAD+ oxidoreductase~ EC 1.1.1.37~ MDH) measured over the pH range 3-9, 

immediately and after a one hour incubation. E. gracilis G46 malate dehydrogenase 

had an optimum rate at pH 9 for both shock and incubation experiments, as did E. 

graCilis Z (Figure 4.9). E. gracilis G46 malate dehydrogenase was able to catalyse the 

reaction at pH 3 after initial resuspension and had almost laX the specific activity of E. 

gracilis Z at this pH. However, at other acidic pH values (4, 5 and 6), the specific 

activity of the E. gracilis Z enzyme was higher in each case. 
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Figure 4.9: Effect of pH on malate dehydrogenase activity in E. gracilis G46 and 

E. gracilis Z. Data are an average of two triplicate experiments with error bars 

representing one standard error. Shock = immediate measurement after resuspension in 

new pH. Inoculation = Measurement after one hour after resuspension in new pH. 

Malate dehydrogenase from neutralophilic organisms has a relatively high optimum pH 

ranging from pH 7.5 to pH 10 in some cases (Eprintsev et al. 2003). Therefore the 

optimum pH of E. gracilis G46 is in agreement with neutralophilic organisms which 

further suggests that these cells have a near-neutral intracellular pH. E. gracilis Z has 
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been shown to possess 3 isoenzymes of malate dehydrogenase~ mitochondrial, 

supematant and peroxisomal, all having optimum pH > 7 (Davis and Merrett 1973). 

Combining all this evidence together it is reasonable to conclude that the intracellular 

pH of E. gracilis G46 isolated from Hoole Bank acid tar lagoon is near neutral. 

4.2.5: Maintenance of intracellular pH 

Many mechanisms have been suggested by which acidophiles may maintain near

neutral intracellular pH (Figure 4.10) including efflux of protons from the cell, storage 

of protons within intracellular compartments separate from all other metabolically 

active parts of the cell, degradation of weak acids, restricting proton entry into the cells, 

reducing pore size in membrane channels, maintaining a chemiosmotic gradient to 

further inhibit proton influx and buffering by components within the cytoplasm (Baker

Austin and Dopson 2007). This is discussed in more detail in Section 1.4. 

Reversed 
membrane potential 
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HCOC>< H" Enzymes/chemicals 
Increased number of DNA sequester H+ 
and protein repair systems 

Figure 4.10: Mechanisms of pH homeostasis in acidophiles. Figure adapted from 

Baker-Austin and Dopson (2007). 

4.2.5.1: Proton efflux inhibition 

Sodium orthovanadate, Na3 V04, is a phosphate analogue which inhibits non-F IFo 

ATPases, which was employed to inhibit active proton transport from E. gracilis G46 in 

order to determine what contribution, if any, proton pumping from E. gracilis G46 has 

in maintaining a near-neutral intracellular pH. Cells were resuspended in phosphate

free minimal media in order to maximise any effects of the sodium orthovanadate, since 
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the proposed mechanism for inhibition is the irreversible binding of vol-to the active 

site of tyrosine phosphatases. 

At 1 mM concentrations of sodium orthovanadate a 13 % reduction in respiration was 

observed immediately after addition of sodium orthovanadate and a 22 % increase after 

a 60 minute incubation with ImM sodium orthovanadate in phosphate-free minimal 

media at pH 3. Cells resuspended in pH 7 phosphate-free minimal media had an 11 % 

reduction in respiration immediately after the addition of 1 mM sodium orthovanadate, 

and a 10 % increase in respiration after a 60 minute incubation with 1 mM sodium 

orthovanadate (Figure 4.11). 
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Figure 4.11: The effect of sodium orthovanadate on E. gracilis G46. Data are an · 

average of two triplicate experiments with error bars representing one standard error. 

Shock = Measurement of respiration rate immediately after addition of orthovanadate. 

Immediate = Measurement of respiration rate 60 minutes after addition of 

orthovanadate. 

If non-F IFo ATPases are heavily involved in pH homeostasis there would be a 

significant reduction in the respiration levels of cells incubated with sodium 

orthovanadate at pH 3 in particular. Therefore, the minimal effect of sodium 
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orthovanadate at both pH suggests that either E. gracilis G46 does not rely heavily upon 

active proton transport to maintain intracellular pH or that an alternative mechanism of 

pH homeostasis is induced upon the addition of sodium orthovanadate in order to 

compensate for the reduction of proton efflux. If the latter is true this could account for 

the initial decrease in respiration since any alternative mechanism would have little or 

no time to take effect and the increase in respiration observed after incubation with 

sodium orthovanadate may occur as a result of increased cellular activity in order to 

compensate for the loss of proton export via non-F 1 F 0 ATPases. 

4.2.5.2: Reversed transmembrane potential 

The membrane potential of E. gracilis 046 and E. gracilis Z was measured using 3H_ 

TPP+. Membrane potential is an essential component of the proton motive force and is 

usually inside negative in bacteria and algae. Table 4.2 shows the membrane potential 

of E. gracilis G46 at pH 3 and E. gracilis Z at pH 7. 

The results very clearly indicate that E. gracilis G46 has a reversed membrane potential 

at pH 3. A reversed membrane potential (see Figure 4.10) is common in acidophiles in 

order to restrict proton entry into the cells. The chemiosmotic barrier generated by the 

inside positive A'V inhibits proton influx. The A'V is generated by a Donnan potential of 

positively charged molecules and may be produced by a greater potassium ion influx 

than proton eftlux (Donnan 1924). 

4.2.5.3: Effect of valinomycin and gramicidin on transmembrane potential 

After measuring A'II the effects of valinomycin and gramicidin on AV were measured as 

described in Section 2.6.6, the results of which are shown in Table 4.2. Valinomycin is 

a potassium specific ionophore, whilst gramicidin increases the permeability of the cell 

membrane allowing inorganic cations to travel through unrestricted, thereby destroying 

the ion gradient between the cytoplasm and the extracellular environment. 

The effect of Valinomycin on E. gracilis Z is negligible, with only a slight decrease in 

membrane potential after treatment which would suggest that the contribution of 

potassium ions to A'II in E. gracilis Z is minimal. The effect of gramicidin is also very 

minimal which may be because Eug/ena lack a cell wall and instead have a flexible 

pellicle covering their cell membrane thus the usual target of gramicidin is not present. 
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Resting Membrane 

Cells potential (A.) (m V) + Valinomycin + Gramicidin 

E. gracilis G46 (PH 3) +10± 16.7 (n=6) -9.1 ± 7.7 -4.0±4.0 
E. gracilis Z (PH 7) -109 ± 6.2 (n=6) -101.2 ± 12.5 -103.0 ± 13.6 

Table 4.2: Membrane potential measurements from E. gracilis 046 and E. gracilis Z 

cells treated with valinomycin and gramicidin. The values represented are the mean of 

triplicate experiments ± one standard error. 

The effects of valinomycin and gramicidin on the membrane potential of E. gracilis 

G46 are much more pronounced, with a significant reversal of membrane potential from 

- 10 m V to +9 m V when the cells were treated with valinomycin. This evidence is in 

accordance with the hypothesis that potassium ion accumulation is used to maintain a 

reversed membrane potential. Similarly, the effect of gramicidin on E. gracilis 046 is 

more significant than in E. gracilis Z, which may also be in part due to some potassium 

efflux from the cells since gramicidin is not selective. 

4.2.6: Effect of pH on photosynthesis and remiration 

The effect of pH on the rate of photosynthesis and respiration was measured using an 

oxygen electrode. Interestingly, no oxygen is evolved from photosynthesis at pH 3 by 

E. gracilis 046 cells yet cultures grown at this pH produce nonnal amounts of 

chlorophyll. The maximum rate of photosynthesis in E. gracilis 046 occurred at pH 7, 

whilst the maximum rate of respiration occurred at pH 6. E. gracilis Z controls showed 

maximal rates of photosynthesis and respiration at pH 5 (Figures 4.12 and 4.13 

respectively). 

At pH 2. the rate of photosynthesis is negative for both strains of E. gracilis. Initial 

assumptions were that the cells resuspended in the low pH solution would have an 

increased rate of respiration due to high level of cell stress, with cells consuming a 

much greater amount of oxygen that that produced by photosynthesis. However, the 

rate of respiration at pH 2 is the lowest recorded, as shown in Figure 4.13, which would 

indicate that both strains are functioning very minimally at pH 2, with both E. gracilis 

046 and E. gracilis Z showing almost identical responses. 
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Effect of pH on photosythesis in E. gracilis G46 and E. 
gracilis Z 
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Figure 4.12: Effect of pH on photosynthesis in E. gracilis G46 and E. gracilis Z. 

Photosynthesis was calculated as light induced oxygen uptake plus oxygen consumption 

in the dark. Values represented are the mean of three triplicate experiments ± one 

standard error. 

Effect of pH on respiration in E. gracilis G46 and E. 
gracilis Z 
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Figure 4.13: Effect of pH on respiration in E. gracilis G46 and E. gracilis Z. 

Respiration was measured as oxygen consumption in the dark. Values represented are 

the mean of three triplicate experiments ± one standard error. 
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Photosynthesis in E. gracilis G46 was significantly reduced at all pH values compared 

to E. gracilis Z, with no photosynthesis occurring at pH 9 even though E. gracilis Z is 

still able to photosynthesise at this pH. The overall reduction in photosynthesis in E. 

gracilis G46 may be due to damage of the photosystems as a result of growth at low pH. 

Conversely, respiration rates are slightly higher in E. gracilis G46 compared to E. 

gracilis Z at pH values > 6. The increased respiration rates may indicate that E. gracilis 

G46 cells are more stressed at these higher pH values (Figure 4.13). 

4.2.7: Photosynthetic efficiency measurements 

The lack of oxygen evolution under light conditions at pH 3 combined with the nonnal 

amounts of chlorophyll production may suggest that E. gracilis G46 utilises cyclic 

photophosphorylation (Alien 2003). This process could be employed by E. gracilis 

G46 to generate energy at a low pH when it may not be possible for the cells to generate 

energy using the fun Z scheme and normal electron transport systems (Figure 4.14). 

Cyclic photophosphorylation operates around PSI only and no oxygen is evolved. 

-> -:i c 
i 

+1 .6 

Figure 4.14: Z scheme of photosynthesis. The blue arrow indicates the flow of 

electrons which occurs when cyclic photophosphorylation takes place. The red arrow 

indicates where DCMU inhibits photosynthesis. 
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Following on from the oxygen electrode results which showed that E. gracilis G46 

evolved no oxygen at pH 3, experiments were designed to measure the efficiency of 

photo system IT (pSIT). The hypothesis being that E. gracilis G46 would show a reduced 

yield with respect to PSII at pH 3. Chlorophyll fluorescence was measured using a 

pulse modulated fluorescence system with saturating flashes of light from a fibre optic 

source. This system allows a wide range of parameters to be measured, however in this 

instance the most applicable is the maximum efficiency of photosystem IT (pSII), 

described by FvIFm (Rees et al. 1992). This parameter has been widely used as an 

indicator of photosynthetic efficiency in several algae under stressed conditions, 

including E. gracilis (Doege et al. 2000) and Dunaliella (Gordillo et al. 2001). Results 

from E. gracilis G46 showed a very slightly reduced FvIFm at pH 3 compared to pH 7 

(Figure 4.15), however both values were between 0.5 and 0.6 which is well within the 

normal range, suggesting that PSIT is present and functioning normaJly. 

PSII efficiency in E.gracilis Z and E.graci/is G46 

0.7 
0.6 
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'> 0.3 u. 
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0.1 
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pH3 pH7 
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• E.gracilis G46 

• E.gracilis Z 

Figure 4.15: Measurements of photo system II efficiency in E. gracilis Z and E. 

gracilis G46. Values represented are the mean of two triplicates plus one standard 

error. Normal actinic light intensity = 450 J.lllloles m-2 
S-l . High light intensity = 1500 

I -2 -1 
~mo es m s . 

4.2.8: Photosystem IT inhibition 

3-(3,4-dichlorophenyl)-1 ,1-dimethylurea (DCMU) is an inhibitor of PSIT which was 

also used in a further attempt to deduce if E. gracilis G46 was using cyclic 
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photophosphorylation. If E. gracilis G46 uses cyclic photophosphorylation DCMU 

would have no effect on photosynthesis when measured using the oxygen electrode (see 

Figure 4.14). However, DCMU must be dissolved in ethanol therefore control 

experiments were needed to ensure that ethanol alone had no effect on photosynthesis. 

Unfortunately, respiration rates were dramatically increased in the presence of ethanol, 

presumably as the ce1ls used this as a carbon source. High respiration rates also 

correlated with severe repression of photosynthesis therefore this experiment had to be 

abandoned. 

4.3: General Discussion 

Isolation of an alga from Hoole Bank acid tar lagoon was not unexpected after initial 

sampling revealed a visibly abundant photosynthetic biofilm present in several areas 

around the lagoon (Figure 4.16). Initial microscopic observations of colonies grown on 

'l1 BLB plates revealed large, motile photosynthetic organisms. From these 

observations it was thought that this organism was most probably a member of the 

genus Euglena. Following 16S and 18S rRNA gene sequencing the organism was 

identified as E. gracilis based on the highest percentage identity match using BlastN 

algorithm NCBI (Figure 4.1). 

Figure 4.16: A visibly abundant biofilm was present at Hoole Bank acid tar lagoon. 

Euglena gracilis has been isolated from acidic environments previously (Hallberg et al. 

2006; Nixdorf et al. 2001) therefore it is not entirely unusual to have isolated this 

organism from the Hoole Bank lagoon samples. However, it is more common to 
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isolate Euglena mutabilis from acidic environments since it is much more tolerant to 

metal ions than Euglena gracilis (Olaveson and Nalewajko 2000) and many acidic 

environments such as acid mine drainage and the Rio Tinto, are extremely rich in metal 

ions, such as iron and copper. Chemical analysis of Hoole Bank acid tar lagoon 

samples (Nichol 2000) revealed relatively low concentrations of various metal ions 

which may explain why the acidotolerant E. gracilis was isolated from the lagoon as 

opposed to the more acidophilic E. mutabilis. 

Phylogenetic analysis by comparison of the 16S and 18S rRNA gene sequences from E. 

gracilis 046 to other sequences in the NCBI database revealed the highest percentage 

identity match to E. gracilis species in both instances. The resulting pair-wise 

alignment at NCBI generates a phylogenetic tree which clusters E. gracilis 046 with 

other Eug/ena gracilis (Figure 4.1) species yet ClustalW analysis using several Euglena 

species for comparison places E. gracilis 046 closest to E. mutabilis in neighbour 

joining phylogenetic trees. However, BlastN analysis of the E. gracilis 046 18S rRNA 

gene sequence specifically against Euglena mutabilis sequences in the database 

produces only approximately 350 bp of homologous sequence. Therefore based on this 

further evidence the phylogenetic assignment of E. gracilis 046 to the species gracilis 

is more than likely correct. 

Eug/ena gracilis is phylogenetically widespread, as can be seen by the position of 

several E. gracilis organisms in distinct branches of the 188 rRNA phylogenetic tree 

(Figure 4.17). This is also supported by the fact that the genus Euglena is a 

polyphyletic genus with a recent study dividing Euglena into four independent clades 

(Marin et al. 2003). In order to optimise phylogenetic tree construction a greater 

number of input sequences could be used as well as obtaining the full length 188 rRNA 

gene sequence from E. gracilis 046, since only approximately 1400 bp of sequence was 

obtained. 

E. gracilis has been shown to grow at acidic pH values previously (Cook 1971; 

Olaveson and Nalewajko 2000) yet the mechanisms of tolerance to low pH in algae 

have been studied very little. Colman and Balkos (2005) measured the intracellular pH 

of E. gracilis Klebs over the external pH range 3.5 - 7.S essentially using the silicone oil 

method as detailed in Section 2.6 with the exception that 14C_DMO was used as a probe 

at pH > 5.5. The near-neutral pHi of E. gracilis 046 measured by NMR at an external 
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pH of3 .0 is in agreement with the measurements of pH made by Colman of E. gracilis 

Klebs which was also shown to maintain a near-neutral intracellular pH over the 

external pH range 3.5-7.5 (Colman and Balkos 2005). 
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Figure 4.17: Phylogenetic tree based on 18S rRNA with organisms representing E. 

gracilis highlighted by red circles. ' 'Unknown" highlighted in yellow represents E. 

gracilis G46. 

Other algal specIes have been isolated from acidic environments including a new 

species of Euglena isolated from an acidic hot mud pool from a volcanic area (Sittenfeld 

et al. 2002). The Rio Tinto has abundant photosynthetic biofilms which contain E. 

gracilis amongst other algal species including Dunaliella, Cyanidium, Zygnemopsis, 

Chlamydomonas, Chlorella and Klebsormidium (Aguilera et al. 2007; Amaral Zettler et 

al. 2(02). The presence ofbiofilms is also very common in acid mine drainage systems 

where the growth of algae has been shown to support growth of other microorganisms 

(Rowe et al. 2007). 
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The effects of intracellular compartmentalisation on measured pHi of E. gracilis G46 

have already been discussed briefly in Section 4.5.2. However, it is of note that 

.Euglena gracilis possess a contractile vacuole which is usually used to prevent the cells 

from bursting in osmotically stressful conditions (Kivic and Vesk 1974). However it 

may be possible that in E. gracilis G46 this vacuole is used to store excess protons 

within the cell without causing harmful effects to other cellular compartments or on 

their functions, as has been suggested previously as an adaptation of acidophilic algae 

(Nixdorf et al. 200 I). Although Eug/ena do not have a cell wall, protection against 

proton influx may be provided by the extracellular matrix produced by the cells and also 

by the pellicle which surrounds the cell membrane. 

There were some difficulties measuring pHi both with radioisotope distribution and 

NMR, and there are also disadvantages associated with both of these methods. For 

example, the decrease in benzoic acid level in the pellet over time and the inabiJity to 

aerate cells whilst they are in NMR tubes. Alternative methods which can be used to 

measure intracellular pH include the use of microelectrodes and pH sensitive 

fluorescent indicators. The main advantage of microelectrode measurement is that the 

intracellular pH can be measured directly, without disturbing or affecting the 

intracellular pH in any way, whilst the disadvantages include the high cost of the 

electrodes and that penetration of the electrodes into the cell can cause cell death. 

Fluorescent indicators such as carboxyfluorescein and its derivatives, including SNARF 

and BCECF, can be used to measure pH over the physiological pH range using dual

emission or dual-excitation ratiometric techniques (Bassnett et al. 1990; Rottenberg 

1979). The use of fluorescent indicators requires a fluorescence spectrophotometer or 

flow cytometer as well as approximate knowledge of the pH being measured in order to 

choose the most suitable indicator. Difficulties may also arise as a result of the natural 

fluorescence from chloroplasts. 

The cell membrane potential of E. gracilis G46 measured at pH 3 and was found to be + 

10 mY compared to -109 mY in E. gracilis Z at pH 7. Again, intracellular 

compartmentalisation may have some effect on the measurement of ~'I' in E. gracilis as 

the 3H_TPP+ may distribute across some cellular compartments including the 

mitochondria and chloroplasts. However, any intracellular compartmentalisation is 

highly likely to be the same in both strains of Euglena, therefore the contrasting .1'1' 
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measurements is certainly significant. The reversed membrane potential is a common 

adaptation in acidophiles in order to reduce proton influx into the cell (Konings et al. 

2002). One hypothesis regarding the genesis of the inside positive membrane potential 

is the accumulation of potassium ions within the cell (Baker-Austin and Dopson 2007). 

The genome sequences of several extreme acidophiles have revealed an increased 

number of membrane bound cation transporters which further supports this theory 

(Futterer et al. 2004; Tyson et al. 2004). 

The reversal of membrane potential in E. gracilis G46 after treatment with valinomycin 

also supports this hypothesis. If the accumulation of potassium ions was not involved in 

maintenance of the reversed membrane potential (inside positive) in E. gracilis G46 it 

would be predicted that valinomycin would have no effect on the membrane potential 

yet the membrane potential is flipped from + 10 m V to - 9 m V after treatment with 

valinomycin. Gramicidin also has some effect on membrane potential in E. gracilis 

G46 which may also be due to potassium efflux from the cells through the channels 

created by gramicidin activity. 

Exon 5 of RuBisCO from E. gracilis G46 shows a high degree of conservation with 

other Euglenoid species, which again concurs with the evidence for a near-neutral 

intracellular pH as there are no obvious adaptations to acidic conditions. Malate 

dehydrogenase from E. gracilis G46 showed a high optimum pH in agreement with 

previous studies from Euglena and with other neutralophilic bacteria further confirming 

the measurement of intracellular pH. Also noticeable was a comparatively reduced 

activity over the pH range 3 to 7 in E. gracilis G46 compared to E. gracilis Z. 

Interestingly, the specific activity of malate dehydrogenase from E. gracilis G46 at pH 3 

was 10 times higher than malate dehydrogenase from E. gracilis Z under shock 

conditions. This may imply that E. gracilis G46 is able to stabilise intracellular proteins 

for a short time at low pH. At slightly less acidic pH values there is an indication that 

malate dehydrogenase from E. gracilis Z is more active than malate dehydrogenase 

from E. gracilis G46 at the slightly less acidic values. 

The overall effect of pH on photosynthesis and respiration is a much reduced rate in E. 

gracilis G46 when compared to the wild-type strain E. gracilis Z, with no oxygen 

evolution from E. gracilis G46 during light conditions at pH 3. The reduced rates of 

photosynthesis and respiration may be due to cell stress, however there is no indication 
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of a reduction in growth at this pH; in fact growth of E. gracilis G46 at pH 3 is 

comparable to the growth of E. gracilis Z at pH 7. Therefore, it is possible that the 

reduced rates of respiration and photosynthesis may intimate the use of cyclic 

photophosphorylation alongside non-cyclic photophosphorylation. This would mean 

cells were generating some A TP without producing oxygen through cyclic 

photophosphorylation which may also lead to a reduction in normal respiration via the 

electron transport chain and thus a low oxygen uptake (Figure 4.14). 

Clearly, cyclic photophosphorylation and "classical" respiration are still occurring in E. 

gracilis G46 under most conditions since oxygen levels within the oxygen electrode 

decrease under dark conditions and at pH > 3 oxygen is evolved under light conditions. 

Cyclic photophosphorylation generates ATP without consuming oxygen however non

cyclic photophosphorylation is necessary in order to generate NADPW therefore this is 

some explanation for the compromise between the two photosynthetic pathways 

occurring at pH > 3. However, there is a clear switch at pH 3 when non-cyclic 

photophosphorylation is completely switched off. This observation led to the 

measurement of photosystem II (PSII) efficiency using a pulse modulated fluorescence 

system since PSII is not required during cyclic photophosphorylation. The hypothesis 

being that proteins or other components involved in photosystem n may be damaged by 

the low external pH. 

The maximum photosynthetic efficiency, Fv/Fm, measured in E. gracilis G46 and E. 

gracilis Z were within the normal expected range for healthy cells (Doege et al. 2000), 

and only show a slight decrease when exposed to high light intensity conditions. The 

normal values for Fv/Fm indicate that E. gracilis G46 do not utilise cyclic 

photophosphorylation out of necessity since PSlI is present and functional. However, 

the data does not provide sufficient evidence to unequivocally determine if cyclic 

photophosphorylation is occurring or not. 

The lack of oxygen evolution under light conditions at pH 3 may also be explained by 

increased respiration at this pH due to the slight pH shock after resuspension in fresh 

media. The pH of cultures was measured regularly and found to be approximately pH 

4.0 after 7 days of growth. Although the increase in the pH of the culture medium may 

be a deliberate or an accidental effect of metabolism, it does mean that cells 

resuspended in fresh culture medium will be exposed to some pH shock which could 
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cause an increase in respiration greater than that caused by resuspension in culture 

medium of a higher pH. 

Attempts to inhibit PSII in order to ascertain more information on the effect of low pH 

on respiration and photosynthesis were unsuccessful due to the lack of suitable solvent 

for the inhibitor DCMU. Therefore, the exact mechanisms behind the lack of oxygen 

evolution at pH 3 remain unclear. 
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Chapter Five: Characterisation of Acidocella 29 

5.1: Introduction 

This chapter describes some ofthe effects of low pH on an organism which grew on AC 

pH 3 medium following inoculation with sample number 29 from Hoole Bank acid tar 

lagoon. Sample 29 was from a predominantly green biofilm present in shallow lagoon 

water close to the edge of the lagoon with a pH of3.4, and was chosen for further study 

based on the predominance of the biofilm at Hoole Bank acid tar lagoon (Figure 5.1). 

Figure 5.1: Sample 29 at Hoole Bank acid tar lagoon 

5.2: Results 

5.2.1: Identification of Acidocella 29 

Following genomic DNA extraction and amplification of the 16S rRNA gene, the Gram 

negative isolate which grew on acidiphilium media from sample 29, AC29, was 

identified through BlastN as an Acidocella species (Figure 5.2). Acidocella are 

obligately aerobic chemoorganotrophs, and are commonly found in extremely acidic 

mineml environments (Kishimoto 1995). Some species have also been found to be. 

capable of degrading some aromatic compounds (Do re et al. 2003; Hallberg et al. 

1999). Acidocella 29 was shown to be capable of growth over the pH range 2.5 - 6.0 

however no growth was observed at pH :s 2.4 and ~ 6.1. The growth rate of Acidocella 

29 was faster at pH 5 than at pH 3, with no growth at pH 7 as expected (Figure 5.3). 
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Figure S.2: Neighbour joining phylogenetic tree constructed using ClustalW (1.83) 

based on the highest percentage identity matches from BlastN at NCBI. Accession 

numbers used refer to sequences deposited with NCBI. The Acidocella 29 16S rRNA 

gene sequence is deposited in the NCBI database under accession number EU26391 O. 

DQ45800S uncultured bacterium clone from Dexing Copper Mine, China; 

AF531477 Acidocella sp. ISI0; X91797 Acidocella sp; D30771 Acidocella aminolytica; 

AF2S3412 Acidocel/a sp. WJB-3 (Hallberg et al. 1999); 

AF253413 Acidocella sp. LOS-3 (Hallberg et al. 1999); DQ906OSO uncultured clone 

from Tinto River Rhizosphere; DQ419948 Acidocella sp. OM2; AY765998 Acidocella 

Sp. MZ1 (Hallberg et al. 2006); AY766001 Acidocella sp. CCW30 (Hallberg et al. 

2006); AF376021 Acidocella sp. NO-12 (Johnson et al. 2001); 

AJ292597 uncultured eubacterium WD238 (Nogales et al. 2001); AJ292606 uncultured 

eubacterium WD295 from polychlorinated biphenyl-polluted soil (Nogales et al. 2001); 

DQ659235 uncultured bacterium clone OBS from acid mine drainage in China; D86S10 

Acidocella sp; DQ419958 Acidocella Sp. OM4 from moderate acid mine drainage; 

DQ419949 Acidocella sp. OM3 from moderate acid mine drainage; D30774 Acidocella 

facilis (Kishimoto 1995). 
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Figure 5.3: Growth curve of Acidocella 29. Values shown are the mean of three 

triplicates plus one standard error of the mean. 

5.2.2: Biochemical characterisation 

Biochemical characterisation of Acidocella 29 was carried out using an API 20NE 

Biochemical Identification Kit. Acidocella 29 was shown to be oxidase negative, 

catalase positive and esculin was not hydrolysed (Table 5.1). In order to further 

compare Acidocella 29 to other Acidocella species, Acidocella 29 was grown on M9 

minimal media supplemented with various carbon sources to determine which carbon 

substrates could support growth ofAcidocella 29 (Table 5.1). 

The results shown in Table 5.1 indicate that Acidocella 29 is biochemically similar to A. 

faciUs and A. aminoiytica in all key traits. There is more diversity in the pattern of 

carbon source utilisation in the three species of Acidocella. Since other strains of 

Acidocella have been shown to degrade hydrocarbons and use these as carbon sources 

(Dore et al. 2003), the ability of Acidocella 29 to utilise several hydrocarbons including 

benzene, toluene, xylene, ethylene, decane, and hexadecane was tested (Table 5.2). 

Although the results of this experiment showed no growth on these substrates at any of 

the three concentrations (1 %,0.1 % and 0.01 %) tested, there is a strong possibility that 

the growth environment was anaerobic. Sealing the cultures was necessary to prevent 

toxic hydrocarbons escaping, which may have prevented growth of the obligately 

aerobic AcidoceIla 29 (Section 2.18). 
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Characteristic Acidocella 29 AcidocellajacUis AcidoceUa 
aminolytica 

Cell width, pm 0.5-0.7 0.6 -0.8 0.5-0.8 

Motility by flagella + + + 
Pigmentation - - -
pH range for growth 

2.5-6.0 3.0-6.0 3.0-6.0 

Growth at 37°C + + + 
Chemolithotrophic growth with 
Fe1+ or SO . - - -
Hydrolysis of esculin - - -
Oxidase - d -
Catalase + + + 
Carbon source utilisation: 

+ + -
Lactose, ethanol 

Sorbitol, inositol, alanine, 
+ + lysine, spermine -

Glycerol - + d 
Creatine nd - d 

L -Arabinose, D-xylose, D-
ribose,D-glucose, D-galactose, 
D-fructose, arabitol, mannitol, 
succinate, diaminobutane,DL-4- + + + 
aminobutyrate, DL-S-
aminovalerate, arginine 

L-Rhamnose, maltose, 
cellobiose, starch, methanol, - - -formate, acetate, lactate, 
idutamate, glycine 

Pyruvate - d nd 
Citrate, cis-aconitate, CI-

ketoglutarate, fumarate, malate + + nd 

Gluconate + nd + 
Casamino acids, peptone, 

yeast extract + + + 

Table 5.1: Comparison of Acidocella 29 with other Acidocella species adapted from 

Bergey's Manual of Systematic Bacteriology (Hiraishi 2005). 

For A. amnolytica and A. facilis: + 90% or more of the strains are positive; d 11-89% 

of the strains are positive; nd not detennined. For Acidocella 29: + all four replicates 

are positive; +/- = one or more replicate negative; nd not detennined. 
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Carbon source ~ 0.01 % 0.1 % 1.0 GA. 

AC pH 3 (+ve control) - - -
M9 pH 3 (-ve control) - - -
Benzene - - -
Toluene . - -
Xylene - - -
Ethylene - - -
Decane - - -
Hexadecane - - -

Table S.2: Table showing the hydrocarbon utilisation of Acidocella 29 at increasing 

hydrocarbon concentrations. Cultures were sealed with parafilm and placed in a sealed 

jar to prevent toxic hydrocarbons escaping which may have prevented growth since 

Acidocella are obligate aerobes. 

Since there is evidence that 100 mM A13
+ increases the growth yield of Acidocella 

(Hiraishi 2005) and some species of Acidocella are known to be resistant to certain 

heavy metals (Ghosh et al. 1997), the effect of aluminium, copper, nickel, cadmium and 

zinc on the growth of Acidocella 29 was tested. Acidocella 29 was grown in AC pH 3 

medium in the presence of each metal sulphate at 10 mM and 100 mM concentrations. 

The qualitative effects of these metals on the growth of Acidocella 29 are shown in 

Table 5.3. 

Metal sulphate 10 mM 100 mM 

Aluminium + ++ 

Zinc - -
Nickel - -
Cadmium - -
Copper + -

Table 5.3: Effects of metal sulphates on the growth of Acidocella 29. 

- no growth; + growth unaffected; ++ growth increased 

The addition of 100 mM Al3+ increased the growth of Acidocella 29 as suggested by 

other literature (Hiraishi 2005), whilst at 10 mM concentrations of both aluminium and 
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copper sulphate the growth of Acidocella 29 was unaffected. The presence of the heavy 

metals zinc, nickel and cadmium were shown to inhibit growth suggesting that 

Acidocella 29 does not possess any genes which confer resistance to heavy metal ions. 

5.2.3: Intracel1ular pH of Acidocella 29 

Determination of intracellular pH was attempted usmg the silicone oil method 

(Section 2.6) to separate cell pellets from their external media al10wing the 

measurement of intra- and extracellular volumes. The distributions of a small labelled 

molecule, in this case tritiated water, present in both internal and external volumes and a 

large membrane impermeable molecule, 14C labelled dextran, are used to calculate intra

and extracellular volumes (Section 2.6.1). This information combined with the 

distribution of a weak acid probe, l4C-benzoic acid in this instance, is used to determine 

pH; using the equations shown in Section 2.6.2. 

Time course experiments were carried out using 14C-dextran, 3H20 and 14C-benzoic acid 

in order to ensure there was no active uptake or efflux of the isotopes after the initial 

distribution between cells and medium (Figure 5.4 - 5.6). No detectable uptake or 

efflux of any of the isotopes was observed over a one hour time period. 

Timecourse of 14C-Dextran in Acidocel/a 29 
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Figure 5.4: Timecourse of 14C-dextran in Acidocella 29. No obvious uptake or efflux 

of 14C-dextran was detected after 1 hour. 
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Timecourse of 3H20 in Acidocella 29 
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Figure 5.5: Timecourse of 3H20 in Acidocella 29. No obvious uptake or efflux of 

3H20 was detected after two hours. 

Timecourse of 14C-Benzoic acid in Acidoce//a 29 
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Figure 5.6: Timecourse of 14C-benzoic acid in Acidocella 29. No obvious uptake or 

efflux of 14C-benzoic acid was detected after one hour. 
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Several attempts were made to measure the intracellular pH of Acidocella 29 using 

variations of the silicone oil method however it was not possible to produce a positive 

intracellular volume using 14C-dextran and 3H20, either by separation using silicone oil 

or filters. Negative intracellular volumes were obtained in almost all cases, with only 

two attempts producing positive intracellular volumes which gave intracellular pH 

measurements of 4.21 and 4.10 respectively. It is postulated that the 14C-dextran bound 

to the cell immediately and thus artificially increased the extracellular volume. 

Attempts were made to wash the pellets with fresh medium containing no isotope 

however this was unsuccessful (Figure 5.7). 

The silicone oil procedure was carried out as normal (Section 2.6), with the exception 

that the cell pellets produced following centrifugation through the silicone oil were 

resuspended in fresh medium which contained no 14 C-dextran. These cell pellets were 

incubated in the fresh medium for one, five and ten minutes in an attempt to remove 

excess 14C-dextran from the cells. Following the incubation in 14C-dextran free 

mediu~ the cells were centrifuged and the cell pellet placed in scintillation vials for 

scintillation counting as per Section 2.6. 14C_PEG (polyethylene glycol) was used as an 

alternative to dextran; unfortunately this was also unsuccessful, again producing a 

negative intracellular volume. 

14C-Dextran wash 
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Figure 5.7: Dextran wash. No significant removal of 14C-dextran was observed after 

washing the pellets in dextran-free media. If the labelled dextran was washed from the 

cells a significant decrease in the pellet DPM would be expected, however there is a 

slight increase which indicates that the procedure was unsuccessful. 
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Therefore, the intracellular pH of Acidocella 29 was measured using both 31 p and IH 

NMR (Section 2.8) and determined to be approximately 4.0 (Figures 5.8 and 5.9). The 

intracellular pH was also measured in cells resuspended in pH 7 buffer in order to 

eliminate the possibility that the signal observed was not due to cells which have lysed 

or become leaky. Figure 5.8 clearly shows the phosphate peak at the same shift in both 

instances, which also infers that intracellular pH is maintained at approximately pH 4.0 

during higher external pH. Following NMR experiments the respiration of cells was 

measured in an oxygen electrode to ensure their viability and was shown to be normal. 

In order to validate or contradict this evidence a further measurement of intracellular pH 

was attempted using a fluorescent probe in combination with flow cytometry (discussed 

in more detail in Section 2.7). Although not specificaJly designed to measure 

intracellular pH the probe chosen was the LysoSensor Green DND-189 since this was 

suitable for use with a F ACSort machine as it is excited at 490 nm and because it had a 

relatively low pKa at 5.2. Since this stain is almost non-fluorescent except when inside 

acidic compartments and should not fluoresce at pH ~ 5, E. coli were used as a negative 

control. However, negative control samples had a greater median fluorescence than the 

stained AcidocelJa 29 samples at pH 3, 5 and 7, therefore it was not possible to 

determine a pH; for Acidocella 29 using this method (Figure 5.10). 
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Figure 5.10: Screenshots from Cell Quest Pro acquisition software used with F ACSort 

showing fluorescence with the negative E. coli control stained with LysoSensor Green 

DND-189 

5.2.4: Measurement of membrane potential of Acidocella 29 

It was not possible to determine a value for 6'1' in Acidocella 29 using the silicone oil 

method since a positive intracellular volume could not be determined, as discussed 

earlier in Section 5.2.3. Therefore fluorescence activated cell sorting (FACS) was used 

in combination with the BacLight membrane potential kit in order to provide an 

indication of the membrane potential. 

Although the BacLight kit (DiOC2 stain) is designed to determine membrane potential, 

the fluorescence intensity response does not appear to be proportional to proton gradient 

density in Gram-negative organisms ("Molecular Probes Product Information Sheet 

MP34950"), E. coli were used as a control organism in order to compare the responses 

of Acidocella 29 to another Gram negative organism. Stained cells were compared to 

stained cells treated with CCCP, which abolishes the membrane potential by eliminating 

any proton gradient (Figure 5.11). 
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Figure 5.11: Membrane potential of Acidocella 29 and E. coli when subjected to 

various conditions. Values shown are the mean of three triplicate experiments plus one 

standard error. 

The addition of DiOC2 stain results in a significant shift and a decrease in the 

fluorescence ratio compared to unstained cells (Figures 5.11 and 5.12). This effect may 

be due to the solvent, DMSO, used with the stain as the DMSO may have an 

independent effect on Acidocella 29. Alternatively, it may be possible that the DiOC2 is 

exerting an effect on the membrane potential of the cells in some way. 

CCCP is a lipid soluble weak acid which is able to diffuse freely into the cell. Once in 

the cell CCCP enters the mitochondria in its protonated form and leaves in its anionic 

form thus destroying any 8",. Acidocella 29 exhibit a much smaller decrease in 

fluorescence ratio upon addition of CCCP compared to E. coli. This may suggest that 

the membrane potential in Acidocella 29 is close to zero or reversed. The contrasting 

effect seen upon addition of the stain between Acidocella 29 and E. coli may also 

indicate a reversed membrane potential in Acidocella 29, since the fluorescence ratio 

decreases considerably in Acidocella 29 compared to the considerable increase in E. coli 

after stain is added to the cells (Figure 5.12). 

Valinomycin functions as a potassium-specific transporter and facilitates the movement 

of potassium ions through lipid membranes across an electrochemical potential gradient, 

suggesting that a potassium gradient may also be involved in the composition of 8", in 

Acidocella 29. Attempts were made to calibrate the membrane potential of Acidocella . 
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29 and E. coli to the potassium concentration in order to quantify the membrane 

potential measurements further. 

The fluorescence ratio of stained cells resuspended in pH 3.0 PBS was compared to the 

fluorescence ratio of stained cells treated with valinomycin and resuspended in pH 3.0 

Tris with potassium concentrations over the range 0 - 60 mM. In theory, the addition of 

valinomycin should abolish ~'" therefore the potassium concentration which has the 

same fluorescence ratio as unstained cells can be used to correlate the membrane 

potential. However, no significant change in fluorescence ratio was detected over the 

range of potassium concentrations tested for Acidocella 29 or E. coli therefore it was not 

possible to quantify the membrane potential of Acidocella 29 (Figure 5.13). 

Gramicidin increases the permeability of the bacterial cell wall in some 

microorganisms, allowing inorganic cations to travel through unrestricted, thereby 

destroying the ion gradient between the cytoplasm and the extracellular environment. 

The effects of valinomycin and gramicidin on Acidocella 29 are similar, with a 10 % 

decrease in fluorescence ratio in cells treated with valinomycin and an 8 % decrease in 

the fluorescence ratio in cells treated with gramicidin (Figure 5.11). More significantly, 

valinomycin caused a greater decrease in the fluorescence ratio than CCCP, which may 

suggest that a proton gradient is not the only component of the membrane potential in 

Acidocella 29. The reduction in the fluorescence ratio in cells treated with gramicidin is 

approximately equal to cells treated'with CCCP. 

5.2.5: Effect of pH on respiration in Acidocella 29 

The effect of pH on respiration in Acidocella 29 was tested using a Clark type oxygen 

electrode. Respiration rate was highest at pH 4, close to the optimum pH for growth 

(PH 5) of Acidocella 29 (See Figure 5.3). Respiration rates at pH 2 and 3 were also 

relatively high, which is in agreement with the growth data at these pH values whilst 

there was a significant decrease in respiration rate at pH > 5 which is in agreement with 

the lack of growth which occurs at pH > 6 (Figure 5.14). In some samples, no 

respiration occurred after resuspension in pH 7 AC media, further evidence for the lack 

of viability of Acidocella 29 at pH > 6.0. The reduced rates of respiration above pH 5 

may suggest that cells quickly become inviable and die, therefore the decrease in 

respiration may be due to cell death at higher pH. 
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unstained Acidocella 29 

149 



1.6 

o 1.4 

~ _ 1.2 
c 

Cl) Cl) 1 (,) e c 
Cl) Cl 0.8 
(,)-
11)'0 
! &. 0.6 
g - 0.4 

u.. 0 .2 

o 

Quantification of Membrane Potential 

Stained 0 10 20 30 40 50 60 

mMKCI 

• Acidocella 29 

. E.coli 

Figure 5.13: Calibration of membrane potential to potassium concentration In 

Acidocella 29 and E. coli. Values shown are the mean of two triplicate experiments 

plus one standard error. 

.- 30 
III ... 

~ ~ 
O.c 
E ... 
.:..~ 
E.: 20 
+IS c.o 
E Q. 
; t» 

8 : 10 
c: 8-
Cl) c: 
t»CI) 
~t» 
o~ 

o 0 

Effect of pH on respiration in Acidoce//a 29 

2 3 4 5 6 7 

pH 

Figure 5.14: Effect of pH on respiration in Acidocella 29. Values represented are the 

mean of three triplicate experiments plus one standard error. 

150 



5.2.6: Effect of sodium orthovanadate on respiration 

Sodium orthovanadate, Na3 V04 , is a phosphate analogue which inhibits non-F I Fo 

ATPases, which was employed to inhibit active proton transport from Acidocella 29 

cells in order to determine if any proton pumping occurs. Cells were resuspended in 

phosphate-free minimal medium in order to maximise any effects of the sodium 

orthovanadate, since the proposed mechanism for inhibition is the irreversible binding 

ofvOl- tothe active site of the tyrosine phosphatases. 

Respiration decreased in all cases upon addition of sodium orthovanadate, however the 

decrease in respiration of cells resuspended at pH 7 was very slight compared to the 

decrease in respiration rate of cells resuspended in pH 3 (Figure 5.15). The decrease in 

respiration rate of pH 3 resuspended cells following the addition of sodium 

orthovanadate would indicate that proton pumping is inhibited and therefore is involved 

to some extent in proton pumping and possibly pH homeostasis. 

Effect of sodium vanadate on respiration in Acidocella 29 
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Figure 5.15: Effect of sodium vanadate on the respiration of Acidocella 29. Values 

represented are the mean of three triplicate experiments plus one standard error. Shock 

= Measurement of respiration rate immediately after addition of orthovanadate. 

Immediate = Measurement of respiration rate 60 minutes after addition of 

orthovanadate. 
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5.3: General Discussion 

The isolation of a species of AcidocelJa from Hoole Bank acid tar lagoon is not 

surprising given that Acidocella have been found in several moderately acidic 

environments previously including acidic drainage waters from copper mines (Johnson 

et al. 2001), coal storage piles (DoTe et al. 2003), natural petroleum seeps (Roling et al. 

2006) and acidic sediment (Kimura et al. 2006). In this instance Acidocella 29 was 

isolated from an abundant green biofilm present in several shallow areas around the 

edge of the acid tar lagoon. 

Acidocella 29 isolated from Hoole Bank acid tar lagoon appears to be characteristic of 

the genus, showing very similar morphological and biochemical characteristics and 

growth requirements to other characterised species (Table 5.1). Acidocella 29 can 

tolerate a lower pH than A. aminolytica and A. facilis but does not appear to show any 

further unique characteristics. 

Unlike some other species of Acidocella isolated from hydrocarbon containing. 

environments such as Acidocella PFBC and "Acidocella aromaticd' (Hallberg et al. 

1999), Acidocella 29 did not use any of the hydrocarbons tested as a carbon source. It 

is not surprising that Acidocella 29 did not utilise any of the hydrocarbons tested since 

the concentration of the compounds used was most probably significantly lower within 

the lagoon than the concentrations tested. Therefore, the possibility remains that 

Acidocella 29 may utilise certain hydrocarbons, which is further emphasises by the 

nutritional versatility of the Acidocella genus and evidence that other Acidocella isolates 

have been shown to degrade some of these hydrocarbons (Hallberg et al. 1999) 

The most likely initial explanation for this is that the experimental method used was not 

suitable. The need to prevent other cultures from exposure to volatile hydrocarbons 

meant that cultures of Acidocella 29 were incubated with the hydrocarbons in sealed 

microcentrifuge tubes in an anaerobic jar. Although the jar was flooded with oxygen, it 

is highly likely that the cultures were anaerobic since the microcentrifuge tubes were 

sealed with parafilm. It is also possible that the abundance of such hydrocarbons is 

limited in the biofilm from which this species of Acidocella was isolated. Alternatively, 

these hydrocarbon compounds may undergo chemical transformation within the lagoon 

or the biofilm specifically and Acidocella 29 may be adapted to utilise these 

transformed hydrocarbons. 
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The growth yield of Acidocella 29 was higher in the presence of 100 mM Ae+ in 

agreement with studies on other Acidocella species (Hiraishi 2005); however Acidocella 

29 appears to have little or no resistance to heavy metal ions. Heavy metal resistance is 

thought to be mediated through one or more plasmids (Ghosh et al. 1997; Ghosh et al. 

2005), therefore the evidence presented would suggest that Acidocella 29 does not 

possess any of these plasmids. Measurements of the levels of various metal species 

from Hoole Bank acid tar lagoon are within normal limits therefore the absence of metal 

ion resistance is not unexpected. Maintenance of plasmids is energetically costly 

therefore it is highly unlikely that Acidocella 29 would maintain a plasmid which did 

not confer any benefits. Despite the fact that Acidocella 29 does not appear to require 

heavy metal resistance, it is obvious that the cell needs to survive in a low pH 

environment. 

Survival in a low pH environment most commonly requires maintenance of a neutral 

intracellular pH in order for cell machinery to function properly. Maintenance of pHi is 

thought to occur through several mechanisms which have been discussed previously 

(Section 1.4). Although maintenance of a near neutral pHi is the most common way to 

survive in acidic conditions, it is not the only way, with some acidophiles adapting their 

intracellular components in order to function at a low pH (Dopson et al. 2004). 

Therefore the intracellular pH of Acidocella 29 was measured in order to determine if 

Acidocella 29 actively maintained a near neutral pHi or had adapted its intracellular 

components to function at a low pH. 

Initial attempts to measure pHi using the distribution of radioisotopes with the silicone 

oil method for separation were unsuccessful. Negative intracellular volumes were 

obtained in almost all cases, with only two attempts producing positive intracellular 

volumes which gave intracellular pH measurements of 4.21 and 4.10 respectively. 

Attempts to overcome this problem using alternative isotopes, washing steps and tilters 

instead of separation through silicone oil, were all unsuccessful. Various alternative 

methods were considered in order to try to obtain the intracellular and extracellular 

volumes. These included measuring the volume of the cells by observing the cells by 

eye through a microscope and measuring cell dimensions using a haemocytometer, 

using a cytocrit tube to determine the volume of a specific number of cells and calculate 

the volume of a single cell, measuring the dry weight of a known number of cells and 

calculating the intracellular volume based on known weight assumptions and finally 
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using an alternative organism of similar size and shape with the silicone oil method in 

order to produce values for the ICV and ECV. Unfortunately. only the last method 

described would provide an extracellular volume and although it was the most feasible 

option no suitable organism was available at the time therefore 31p and IH NMR were 

employed as an alternative method. 

The intracellular pH measured with 31p NMR was estimated to be below pH 4.0, 

therefore 1 H NMR was carried out as the shift in lactate peak is more accurate in this 

range of pH than the shift in the phosphate peak in 31p NMR since the PlC. of lactate is 

much lower than that of phosphate. Measurements with IH NMR. were in agreement 

with the 31p NMR, estimating the intracellular pH at approximately 4.0 (Figures 5.8 and 

5.9). This is highly unusual, therefore the respiration rate of the cells was monitored 

following NMR to ensure that cells were viable and had not lysed. The results of 

oxygen electrode experiments showed normal respiration for AcidoceIJa 29. The 

intracellular pH of further samples resuspended in pH 7 buffer was measured using 31 P 

NMR to demonstrate that the shift in the phosphate peak was not a result. of cell lysis or 

leakage. 

Because the pHi estimated by NMR was unusually low further efforts were made to 

measure intracellular pH using another method to ensure the measurement made was 

indeed true. Fluorescent probes can be used as indicators of pH. however these are 

usually designed to function over a "normal" pH range, between pH 6.0 and 8.0. 

Therefore. a probe used to measUJ'e the pH of lysosomes was chosen due to its low pK. 

of 5.2. Unfortunately the LysoSensor Green DND-189 was not suitable for pHi 

measurements in Acidocella 29 since it fluoresced in negative control samples therefore 

the only measurement of intracellular pH in Acidocella 29 is from NMR measurements. 

Although Acidocella species have been the subject of some investigation there are 

currently no records of intracellular pH measurement in this genus. The lowest 

recorded intracellular pH to date is that of the thermoacidophilic archaea Picrophilus 

to"idus and P. oshimae. with an intracellular pH of 4.6 (Vossenberg et al. 1998) which 

was measured using the distribution of radioisotopes in a similar technique to the 

silicone oil method (Section 2.6). The intracellular pH of Acidiphilium acidophilum 

(formerly Thiobacillw acidophilus), a species of the most closely related genus to 

154 



Acidocel/a, has been measured. A. acidophilum is reported to have a pHi of 6.0 (Bond 

and Banfield 2001). 

NMR has been used to measure the intracellular pH of several organisms including 

Ferroplasma spp. which has an estimated pHi of 5.6 (Macalady et al. 2004). the 

acidophiJic alga Cyanidium caldarium (Enami et al. 1986), and Saccharomyces 

cerevisiae (Gillies et al. 1981). The method used in this work was very similar to the 

method used by Macalady et al., therefore the pHi of Acidocella 29 may simply be as 

low as measured. There is almost no shift in the phosphate peak between cells 

resuspended in pH 3 buffer and cells resuspended in pH 7 buffer which confirms that 

the phosphate peak observed in initial 31p experiments is intracellular phosphate and 

that the cells have not lysed. Although the results from 'H NMR are slightly less 

conclusive given the high noise level of the signal the lactate peaks are distinguishable 

following computational adjustments and are in agreement with the pHi measurements 

from 31p NMR (Figures 5.8 and 5.9). 

Microorganisms which have been shown to have a low intracellular pH as opposed to 

those which maintain a near-neutral intracellular pH are often inviable above a certain 

pH and have been shown to lyse. The reduction in respiration rate of Acidocella 29 

above pH 5 may be caused as a result of cell lysis at these higher pH values or because 

the higher external pH is damaging the intracellular components which are adapted to 

low pH (Figure 5.14). This evidence combined with the inability of cells to grow above 

pH 6 provides further supportive evidence for the low intracellular pH of Acidocella 29. 

The effect of sodium vanadate on Acidocella 29 suggests that it may utilise proton 

pumping at pH 3 since the decrease in respiration after treatment with sodium 

orthovanadate is significantly greater at pH 3 at than at pH 7. There is also a greater 

percentage reduction in respiration at pH 3 following incubation with sodium 

orthovanadate than the shock experiments at the same pH which is indicative of 

continued and increased proton pumping inhibition. There is a very slight decrease in 

respiration rate at pH 7 when cells are treated with sodium orthovanadate, however the 

decrease is extremely small and almost identical in shock treated cells and cells 

incubated with sodium orthovanadate which would infer that the sodium orthovanadate 

has little if any effect on proton pumping at pH 7. This further supports the use of 
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proton pumping in pH homeostasis in Acidocella 29 since little, or no, effect of sodium 

orthovanadate is expected at higher pH values. 

The evidence from sodium orthovanadate experiments which suggests that proton 

pumping has a' role within Acidocella 29 may conflict with the intracellular pH 

measurements of Acidocella 29 since it is less likely that intracellular pH mechanisms 

are utilised in an organism with a pHi of approximately 4.0. However, Acidocella 29 is 

routinely grown in pH 3 medium yet the pHi of Acidocella 29 is not pH 3, which is what 

would be expected if no pH homeostasis occurred. Therefore it is possible that removal 

of protons from the cell by proton pumping is one of the few pH homeostasis 

mechanisms utilised by Acidocella 29. 
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Chapter Six: Conclusions and Future Work 

Characterisation of the microbial diversity present at Hoole Bank acid tar lagoon 

represents the first work of its kind in this particular environment. Whilst the microbial 

diversity of similar environments such as acid mine drainage, the Rio Tinto and 

hydrocarbon-polluted sites have been studied previously there is a distinct difference 

between these sites and Hoole Bank acid tar lagoon. Hoole Bank acid tar lagoon 

comprises extremes of low pH and high hydrocarbon content, compared to the single 

extreme of either acidity or hydrocarbon pollution of other environments. 

As expected, the microbial diversity present at Hoole Bank acid tar lagoon was shown 

to be much higher when measured with the molecular techniques ofT-RFLP (Table 3.4) 

and DOGE (Figures 3.8 and 3.9) than the classical culturing methods employed which 

isolated only five microorganisms from 21 samples (Table 3.2). Yet, this is a somewhat 

unfair comparison between the methods since the classical culture techniques employed 

in this study were far from extensive. A wide range of alterations and improvements 

can be made to the isolation process in order to increase the number of microorganisms 

cultured from Hoole Bank acid tar lagoon samples. Using a wider range of solid media 

such as overlay plates and medium supplemented with appropriate carbon sources 

present at Hoole Bank acid tar lagoon are likely to improve the culture efficiency. 

Overlay plates contain an acidophilic heterotroph within their bottom layer which 

removes compounds which are toxic to oligotrophic acidophiles from the top layer of 

the agar (Johnson 1995). Similarly, supplementing growth media with a greater range 

of carbon sources such as volatile hydrocarbons including toluene, benzene, 

ethylbenzene and xylene and CWC30 hydrocarbons may facilitate the growth of 

organisms adapted to utilise the carbon sources present in Hoole Bank acid tar lagoon. 

Increasing the pH of growth media used to include solid medium at pH 4 and pH 5 may 

also increase the number of isolates from Hoole Bank acid tar lagoon samples, since 

several lagoon samples had pH values ~ 3. 

An increased number of organisms may have been isolated from Hoole Bank acid tar 

lagoon samples by using micro-aerophilic and anaerobic growth conditions in order to 

isolate organisms with different requirements for oxygen. Changing the growth 

medium and conditions used to specifically isolate sulphate reducing organisms is also 

likely to lead to an increased number of cultured microorganisms from Hoole Bank acid 
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tar lagoon samples given the high sulphur content and anaerobic conditions found 

within the lagoon. 

Denaturing gradient gel electrophoresis (DGGE) enabled the identification of a number 

of microorganisms present within Hoole Bank acid tar lagoon which were not cultured, 

along with further confirmation of the presence of some organisms which were isolated 

using culturing techniques (Table 3.7). Indeed, this is the first identification of the 

genus Euglena using either 18S or 16S rRNA DOGE, which represents a step forward 

in molecular microbial diversity analysis and also provides an alternative route for 

molecular microbial analysis of algal populations using 16S rRNA from chloroplasts as 

opposed to 18S rRNA. Previous attempts to use DGGE to assess the algal community 

present in the Rio Tinto where species of Euglena were identified using microscopy 

failed to reveal the presence of Euglena using 18S rRNA DOGE (Aguilera et al. 2006). 

The identification of organisms from excised DOGE bands also allows CUlturing 

techniques to be designed specifically to isolate organisms known to be present at Hoole 

Bank acid tar lagoon such as Acidithiobacillusferrooxidans. 

DOGE estimates of microbial diversity were lower than those produced using Terminal

Restriction Fragment Length Polymorphism (T -RFLP) and could be improved further 

by optimising the denaturing gradient and gel conditions further. UnfQrtunately it was 

not possible to visualise as many bands on the DOGE gels using an open 

transilluminator and the naked eye as it was to visualise bands in a closed 

transilluminator system and a digital camera due to limitations of the equipment used. 

This meant that many ofthe bands present on OOGE gels were not excised and thus not 

identified. Therefore, further optimisation of this process, including the narrowing the 

denaturing gradient used or utilising different PCR primers for specific microorganisms 

such as nitrate reducers, would yield a greater amount of information, particularly 

regarding microbial species which are likely to represent a smaller proportion of the 

microbial population. 

Whilst comparisons between Hoole Bank acid tar lagoon and other acidic environments 

such as acid mine drainage and the Rio Tinto have been made previously, the microbial 

community at Hoole Bank acid tar lagoon was shown to comprise a much greater 

number of bacterial species than other acidic environments, using both DOGE and T

RFLP. 
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T -RFLP provided the most detailed understanding of the total number of microbial 

species present within each Hoole Bank acid tar lagoon sample. The abundance and 

proportion of each microorganism within the total microbial community was also 

inferred based on the data directly obtained from T-RFLP (FigUres 3.7a-d). However, 

no phylogenetic information can be determined directly from T -RFLP data. The 

number ofT-RFs in each sample according to T-RFLP varied from as little as 4 to 50 in 

samples 49 and 50 respectively (Table 3.4). Two methods were used to analyse T

RFLP data in order to statistically compare microbial diversity present within Hoole 

Bank acid tar lagoon. T -align (Smith et al. 2005) was followed by principal component 

analysis (PCA) and correspondence analysis in order to reveal any patterns in microbial 

diversity which could be displayed in a visual format. PeA of both interstitial and 

percentage area data indicated very little correlation between sample groups and 

microbial diversity or sample pH and microbial diversity as shown in Figures 3.5a-h 

and Figures 3.6a-h. However, certain samples do group more tightly in certain figures 

(Figures 3.5h, 3.6d, 3.6g and 3.6h) which may indicate a linking factor between these 

samples. Further analysis of the samples obtained from Hoole Bank acid tar lagoon, 

including analysis of the chemicals and metals present and their concentration, may 

provide further information which may suggest a relationship between the microbial 

diversity present in these samples and a common component present in these sampling 

locations at Hoole Bank acid tar lagoon. 

The phylogeny of one particularly abundant T-RF (170.00 bp forward HhaI) was 

inferred using the phylogenetic assignment tool (PAT) (Kent et al. 2003) based on the 

combination of that T -RF with the 112.22 bp fragment produced from AluI forward 

digest as this was equally abundant, both in terms of percentage peak area and number 

of occurrences. Several possible phylogenetic affiliations were made based on in silico 

analysis of the 16S rRNA gene sequences in the database and included Acidovorax sp. 

OS-6, Alicyc/iphilus denitrificans and Diaphorobacter nitroreducens KSP4 (Table 3.6). 

Although this information is useful as it may allow future culture techniques to be 

tailored in order to try and isolate these organisms, the vast amount of information 

produced by PAT is time consuming to analyse and does not provide defmitive 

confirmation of phylogenetic assignment in most cases. Improvements to the T-RFLP 

data obtained could be made by carrying out a greater number of repeats in order to 

provide a greater amount of data for T -align and peA which would allow improved 
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statistical analysis. A third restriction digest would also significantly improve the 

ability to reduce the number of possible phylogenetic affiliations generated by PAT. 

A clone library of 16S rRNA genes or a metagenomic library of total genomic DNA 

obtained from Hoole Bank acid tar lagoon would provide a great deal more information 

than T -RFLP or DOGE. Whilst phylogeny cannot be assigned directly from T -RFLP 

and only bands which are visible for excision can be identified with DOGE, a 16S 

rRNA clone library would provide a greater insight into the phylogeny of all 

microorganisms present at Hoole Bank acid tar lagoon. This could also be extended to 

include 18S rRNA genes such that eukaryotic diversity including yeasts, algae and fungi 

could be assessed. Similarly, a metagenomic library of genomic DNA from Hoole 

Bank acid tar lagoon could be screened for functionality such as degradation of a 

specific compound. Fluorescence in situ hybridisation would also be useful to identify 

samples which contain specific organisms, such as those already isolated, in order to 

ascertain interactions of particular species with other organisms. This would be 

especially useful in the biofilms, where more complex interactions may be occurring. 

Of the five microorganisms which were isolated from Hoole Bank acid tar lagoon, the 

unicellular alga Euglena gracilis G46 was chosen for further study due to the 

predominance of the visibly green biofilms from which this organism was isolated at 

Hoole Bank acid tar lagoon. Unlike the type strain of E. gracilis Z which was used as a 

control. E. gracilis G46 was capable of growth at pH 2 (Figure 4.3a) and possessed a 

lower optimum pH for growth (Figure 4.3a). The effect of pH on photosynthesis and 

respiration was measured (Figures 4.12 and 4.13 respectively), with E. gracilis 046 

showing significantly decreased levels of photosynthesis compared to the wild type 

organism at pH values ~ 3. 

The intracellular pH of E. gracilis G46 was measured and compared to the wild type 

strain, E. gracilis Z, in order to determine how E. gracilis 046 survives in such acidic 

conditions. The pHi measured using the distribution of radioisotopes with the silicone 

oi I technique was estimated at pH 5.47 at an external pH of 3 (Table 4. t), whilst NMR 

estimated the intracellular pH of E. gracilis 046 at pH 6.6 (Figure 4.5). Although there 

is some discrepancy between these values, both methods indicate that E. gracilis 046 

actively maintains a near-neutral intracellular pH, as opposed to adapting its 

intracellular components to function in an acidic environment. This is further supported 
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by the conserved sequence of ribulose-l ,5-bisphosphate carboxylase/oxygenase (Figure 

4.8) which does not exhibit any adaptations to low pH. In order to further clarify the 

intracellular pH of E. gracilis G46 the use of microelectrodes which can be directly 

inserted into the cells would provide a value for pHi during normal cellular conditions. 

The use of a more advanced fluorimeter would also provide a greater insight into the 

effect of pH on photosynthesis of E. gracilis G46, particularly if the fluorescence of 

photosystem I was measurable, at cryogenic temperatures. . 

The second organism chosen for further study from the five organisms isolated from 

Hoole Bank acid tar lagoon was the acidophilic bacterium Acidocella 29, which like E. 

gracilis G46, was also isolated from a biolfiJm sample from Hoole Bank acid tar 

lagoon. Although Acidocella 29 exhibited similar traits to other Acidocella species 

(Table 5.1). attempts to demonstrate utilisation of various hydrocarbons present at 

Hoole Bank acid tar lagoon were negative (Table 5.2). Whilst it may be the case that 

Acidocella 29 does not utilise any of the hydrocarbons tested, limitations in the 

experimental set up may have influenced the outcome of this test. The outcome of this 

experiment may be different if repeats were carried out in an Therefore, repeats of this 

aerobic environment. 

Attempts to measure the intracellular pH of Acidocella were made using the silicone oil 

technique but were ultimately unsuccessful, continually producing negative intracellular 

volumes. Therefore, IH and 31p_NMR were used to measure pHi. producing an 

unexpectedly low pHi of 4.0 (Figures 5.8 and 5.9) in an external pH of 3.0. Further 

investigation into this is warranted given the unusually low intracellular pH, perhaps 

using alternative fluorescent dyes in combination with flow cytometry as attempted in 

the experiment reported in Figure 5.10. Attempts to measure the specific activity of 

malate dehydrogenase from Acidocella 29 were unsuccessful (data not included); 

however further investigation into the effect of pH on activity of intracellular enzymes 

such as malate dehydrogenase may provide more information about the internal pH of 

Acidocella 29. Similarly. DNA or amino acid sequence analysis of intracellular 

proteins may also allow some inference of intracellular pH based on the presence or 

absence of adaptations to an acidic environment. 
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