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Abstract 

Statistical models for the calibration of both independent and related groups of 

radiocarbon determinations are now well established and there exists a number of 

software packages such as BCal, OxCal and CALIB that can perform the necessary 

calculations to implement them. When devising new statistical models it is important 

to understand the motivations and needs of the archaeologists. When researchers select 

samples for radiocarbon dating, they are often not interested in when a specific plant or 

animal died. Instead, they want to use the radiocarbon evidence to help them to learn 

about the dates of other events, which cannot be dated directly but which are of greater 

historical or archaeological significance (e.g. the founding of a site). 

Our initial research focuses on formulating prior distributions that reliably represent 

a priori information relating to the rate of deposition of dateable material within an 

archaeological time period or phase. In archaeology, a phase is defined to be a collection 

of excavated material (context or layers) bounded early and late by events that are of 

archaeological importance. Current software for estimating boundary dates only allows 

for one possible type of a priori distribution, which assumes that material suitable for 

dating was deposited at a uniform rate between the start and end points of the phase. 

Although this model has been useful for many real problems, researchers have become 

increasingly aware of its limitations. We therefore propose a family of alternative prior 

models (with properties tailored to particular problems within archaeological research) 

which includes the uniform as a special case and allows for more realistic and robust 

modelling of the deposition process. We illustrate, via two case studies, the difference in 

archaeological conclusions drawn from the data when implementing both uniform and 
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non-uniform prior deposition models. 

The second area of research, that we take the first steps towards tackling, is spatio­

temporal modelling of archaeological calibration problems. This area of research is 

of particular interest to those studying the response of plants and animals, including 

humans, to climate change. In archaeological problems our temporal information 

typically arises from radiocarbon dating, which leads to estimated rather than exactly 

known calendar dates. Many of these problems have some form of spatial structure yet 

it is very rare that the spatial structure is formally accounted for. The combination of 

temporal uncertainty and spatial structure means that we cannot use standard models 

to tackle archaeological problems of this kind. Alongside this, our knowledge of past 

landscapes is generally very poor as they were often very different from modern ones; 

this limits the amount of spatial detail that can be included in the modelling. 

In this thesis we aim to make reliable inferences in spatio-temporal problems by carefully 

devising a model that takes account of the temporal uncertainty as well as incorporating 

spatial structure, to provide probabilistic solutions to the questions posed. We illustrate 

the properties of both the conventional models and the spatio-temporal models using a 

case study relating to the radiocarbon evidence for the Late glacial reoccupation of NW 

Europe. 
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Chapter 1 

Introduction 

The problem of interest throughout this thesis is to develop a more coherent and 

robust framework when modelling radiocarbon calibration problems. This is achieved 

by extending existing models to allow for a wider range of a priori information to be 

incorporated. 

The content of this thesis falls broadly into two areas of research, these being 

• modelling the deposition of datable material within an archaeological phase l , and 

• Spatio-temporal modelling of radiocarbon calibration problems. 

The motivation for this thesis was driven by English Heritage, the industrial sponsor, 

which has commissioned radiocarbon dates on archaeological material from over 150 sites 

in the last eight years. The English Heritage Scientific Dating Coordinator, Alex Bayliss, 

routinely uses Bayesian methods to provide the core of the interpretative process. As 

one of the earliest routine users of the Bayesian chronology building framework, Bayliss 

has become increasingly aware of the limitations of the methodology that is currently 

implemented in software packages such as OxCal and BCa!. 

lA phase is defined to be a collection of excavated material (context or layers) bounded early and 
late by events that are of archaeological importance. 
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These packages perform the necessary calculations for the calibration of both independent 

and related groups ofradiocarbon determinations. However, there are limitations to the 

type of a priori information that can be incorporated. These techniques only allow 

for one possible type of a priori distribution when modelling the relationship between 

observed radiocarbon determinations and successive start and end dates of phases of 

activity. The convention is to assume that the material suitable for radiocarbon dating 

was uniformly distributed between the start and end dates of the phase of activity, and 

that the start and end dates are themselves unknown. It was initially assumed that such 

models constituted suitably vague priors and they may be the easiest way to represent 

prior ignorance, when little is known a priori about the deposition rate. 

Applied researchers, such as those at English Heritage, are increasingly concerned about 

how the assumption of uniform deposition rates will affect the inferences they make 

and are keen to explore alternatives allowing a more realistic and robust modelling of 

the deposition processes. It is felt that alternative models for the deposition of datable 

material could make an enormous impact on their day-to-day work. 

In addition, there have been increasing numbers of case studies in the applied literature 

(e.g. Housley et al., 1997 and Van Strydonck et al., 2004) in which the authors 

believe that the rate of deposition/manufacture is not uniform over the proposed range. 

Suggestions have been made in Naylor and Smith (1988) , Nicholls and Jones (2001) and 

Blackwell and Buck (2003) to look at alternatives to the conventional uniform model , 

but to date only one alternative has been implemented, see Section 2.6. 

It is therefore our aim to seek alternatives to the conventional uniform model and thus 

build a more flexible range of a priori distributions that reliably represent information 

arising from archaeological research. 

The second area of research covered in this thesis is that of spatio-temporal modelling. 

There are an increasing number of archaeological calibration problems that are concerned 

with studying the colonisation or recolonisation of past landscapes. Problems of this kind 

typically consist of multiple phases which are currently tackled by making use of the 
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existing temporal tools, i. e. assuming each phase is independent of the others. Although 

this allows us to calculate probabilistic answers to chronological questions of interest, e.g. 

to determine the order in which the phases were colonised, there are no formal methods 

for tackling such problems within a fully spatio-temporal framework. 

We therefore propose a model which builds upon the existing models in Chapter 2, 

which takes account of both the spatial and temporal information that arises from 

archaeological excavations. This allows us to tackle problems within a fully spatio­

temporal framework and hence combine data from related phases. There are also a 

number of other archaeological applications such as changes in culture, technologies 

etc. that all spread spatially and consequently could be tackled using the approach we 

suggested for incorporating spatial structure. 

The aim of the material that follows in this chapter is to present both the motivation 

and the background needed to be able to fully understand the problems at hand, as well 

as presenting an outline of the chapters to come. 

1.1 Background 

This section provides a background to the project and, in particular, discuss the physical 

basis of radiocarbon dating and the cause of complications that arise in its use. The 

technical content of what follows has been obtained from two sources, Bowman (1990) 

and Aitken (1990). 

1.1.1 Radiocarbon dating 

The radiocarbon dating method, developed by a team of scientists led by Libby 

(who in 1960 was awarded the Nobel Prize in chemistry for his pioneering work in 

the development of the method), is now the most commonly used 'absolute dating 

3 



technique,2. 

The method has been a great contribution to the development of archaeology. 

Archaeologists grasped the importance of the technique as it provides a means to test the 

accuracy of the 'relative dating methods'3. By the mid 1950s a number of laboratories 

in Europe and the USA were producing radiocarbon measurements; today there are 

over 130 radiocarbon dating laboratories around the world. The radiocarbon dating 

technique has been, and continues to be, used in a number of different applications such 

as archaeology, geology, climatology and oceanography. 

Basic principles 

Radiocarbon dating is based on the carbon cycle and the radioactive properties of the 

isotope 14C. Carbon occurs naturally in the form of three isotopes, carbon-12 , carbon-

13 and carbon-14 (denoted as 12C, 13C and 14C respectively), which are all chemically 

identical; but differ as atoms of different isotopes have different numbers of neutrons in 

their nuclei. 

Modern carbon consists of approximately 99% 12C, 1 % 13C, but only about one part 

per million million of 14C. 14C is the only unstable and, therefore, radioactive carbon 

isotope. Radiocarbon (l4C) is continually being formed in the upper atmosphere due 

to the interaction of cosmic-ray neutrons with Nitrogen-14 e4N). After formation, 

the 14C atoms quickly combine with oxygen to form 'heavy' carbon dioxide (which is 

chemically indistinguishable from carbon dioxide containing either of the other carbon 

isotopes). This mixes with the ordinary carbon dioxide in the atmosphere and then via 

the photosynthesis process and the food chain, enters all plants and animal life. The 

carbon dioxide also enters the oceans as dissolved carbonate, so this too contains 14C and 

consequently so do any shells and deposits formed from it. This collection of atmosphere, 

2Definition from http: / /www.stafT.ncl.a.c.uk/kevin .greene/wintro/ keyword.htm: Absolute da.ting: 
dates determined by methods whose accuracy is based on radioactive decay or regular natural phenomena 
such as tree rings. 

3Definition from http://www.staff.ncl.ac.uk/kevin.greene/wintro/keyword.htm: Relative dating: 
relative ages cannot be used on tbeir own but must be related to an absolute technique such as radiocarbon 
dating. Sequences of contexts establisbed by the stratification of archaeological s ites, or artefacts arranged 
into order by typology, are relative. 
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biosphere and oceans are commonly referred to as the carbon exchange reservoir. 

Plants and animals, during their lifetime, constantly exchange carbon with the reservoir, 

so that the concentration ratio between 140 and the non-radioactive isotopes is constantly 

maintained. Upon death, organisms cease to participate in carbon exchange with the 

atmosphere and there is loss of 140 atoms by radioactive decay. The rate at which the 

atoms decay is determined by the law of radioactive decay, which is dependent upon 

the decay rate and the remaining proportion of 140 in the sample. Each isotope has a 

specific decay rate; for 140 this rate is 1 % per 83 years, which is equivalent to a half-life4 

of 5730 years. The half-life of a radioactive isotope describes how long it takes for half 

of the atoms in a given mass to decay. 

The law of radioactive decay is given by the following equation: 

(1.1) 

where A is the amount of remaining radioactive material e40) after time t, AD is the 

initial amount of radioactive material at time 0 and A is the decay rate. The decay rate 

represents the amount of time it takes for the radioactive material to disintegrate and is 

related to the half-life, t(1/2), by 

Another value of importance in the law of radioactive decay is the mean life, T, which is 

simply the reciprocal of the decay rate. 

Provided that we can estimate A relative to a standard AD, the time elapsed (t) since 

the material died can be estimated by rearranging Equation 1.1 to give 

t = T In (A/AD)' (1.2) 

4At the time that radiocarbon dating was been developed, Libby estimated the half-life of radiocarbon 
to be 5568 years, this value is known as the conventional or Libby's half-life. In later years the half-life of 
ra.diocarbon was revised by three independent laboratories and it was found that a more accurate value 
of the half-life was 5730 years. However, it is convention is to use the Libby's half-life in the calculation 
of radiocarbon results to avoid confusion. 
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So given, Equation 1.2, what types of material can be dated using radiocarbon? Basically 

materials which are composed of carbon and are, hence, organic. In the British Isles the 

most commonly preserved sample types are bone, shell and charcoal. However wood, 

peat, soil, pollen, textiles and fabrics are examples of the other types of materials that 

are commonly radiocarbon dated (See Bowman, 1990, pages 12-13 for further details). 

1.1.2 Assumptions of the radiocarbon dating method 

From above, it is seen that Equation 1.2 is the basis for the radiocarbon dating method 

and in particular, that the method is only useful if the two quantities A and Ao are 

known or measurable. There are numerous assumptions necessary for the technique to 

work, which are summarized as follows. 

• Assumption 1: the concentration of radiocarbon in each carbon reservoir 

(atmosphere, biosphere and oceans) has remained constant over time. 

• Assumption 2: there has been rapid and complete mixing of 14e within each 

carbon reservoir. 

• Assumption 3: the half life of He is accurately known. 

• Assumption 4: after decay of an organism, the 14e concentration in relation to 

12e and 13C has not altered except by radioactive decay. 

From the beginning of the development of radiocarbon dating these assumptions were 

believed to be correct given the techniques then available to check them. For example, 

James Arnold and William Libby published a 'curve of knowns' using the known age of 

samples ranging from approximately 900 to 4900 years ago. Using the best techniques 

then available, they were able to concluded that there was a good agreement between 

the theoretical and measured 14C activities versus known age. 

It was not until the late 1950s, when the technique had developed further, that 

discrepancies far from insignificant began to emerge. In some cases radiocarbon results 
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were found to be several centuries too young. Thus highlighting a problem with the 

technique, and the most likely explanation was the violation of one or all of the four 

assumptions above. The foHowing sections discuss a number of issues that are now 

known to contribute to the violation of these assumptions. 

Atmospheric 14C variations 

The most serious problem concerns Assumption 1, that the concentration of the 

radioactive isotope 14C has remained constant over time. To help assess the problems 

concerning this assumption, timber samples already dated using dendrochronology5 

were radiocarbon dated. In the 1960s, a continuous tree-ring sequence stretching back 

approximately 8000 years was established and Hans Suess published the first calibration 

curve (Suess, 1970) using this data. This curve was referred to as Suess's curve and 

helped verify the discrepancies between the radiocarbon and calendar years and as a 

result confirmed that the 14C equilibrium levels fluctuate slightly from year to year. 

It became apparent from Suess's curve that there were two trends in atmospheric 14C 

levels. The first trend is long-term and has been described as a sine wave with a period 

of approximately 9000 years. The second feature noticeable is superimposed onto the 

sine wave and takes the form of 'wiggles'. These wiggles, although only of a few decades 

on the calendar scale can have an amplitude of a several centuries on the radiocarbon 

axis. 

A brief description of the geophysical causes of the fluctuations in the natural production 

rate of 14C will be given (for further details see Bowman, 1990, pages 18-20) , along with 

the effect of human activity on the atmospheric levels, such as the burning of fossil fuels. 

The long term variation in atmospheric 14C levels is seen to correlate well with 

fluctuations in the strength of the Earth's magnetic field. Cosmic rays are charged 

~Dendrochronology is the dating of past events through the study of tree ring growth. Trees grow 
by the addition of an annual ring, yet the width of the rings vary from year to year depending upon 
climatic conditions. As a result patterns of greater and lesser growth from the same species of trees can 
be compared with the aim of creating tree ring chronologies spanning back several millennia. 
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particles which are deflected by the Earth's magnetic field. If the strength of the 

magnetic field becomes weaker, less cosmic rays will be deflected away from the Earth 

and production of 14C will rise, and vice versa. 

Short term variations in the atmospheric 14C levels can be caused by 'sunspot activity,6. 

During periods of high sunspot activity the magnetic field increases, resulting in a higher 

number of cosmic rays being deflected and hence 14C production decreasing. Records on 

sunspot activity over the past few centuries have shown that there tend to be cycles of 

two lengths. There is a cycle of a period of about 200 years which is superimposed by a 

cycle of 11 years. The effect of the 11 year cycle is unlikely to cause more than about 20 

years variation in age. However the effect of the 200 year cycle is much more significant. 

The wiggles associated with this cycle represent changes in the radiocarbon age of a 

century or two, however, the corresponding calendar age changes by only a few decades. 

It is believed that it is these wiggles that cause the need for calibration of radiocarbon 

years to calendar years. 

As well as the natural variations in the 14C equilibrium levels in the atmosphere, humans 

have also had an effect on the global level of 14C through the burning of fossil fuels and the 

effect of atomic bombs. The burning of fossil fuels 7 (such as coal, oil and natural gases) 

started in the last century and when burnt in large quantities the 'old' carbon released 

dilutes the 14C concentration relative to 12C and 13C in the atmosphere. This results 

in a change in both size and isotopic composition of the atmospheric carbon reservoir, 

which in turn results in a lower than expected 14C content in relatively modern samples. 

A more dramatic effect in the variation of the 14C equilibrium level, arises from nuclear-

weapon testing. It was seen, as a result of the testing carried out in the 1950s and 1960s, 

that the 14C content measured in the atmosphere had approximately doubled in 1965 in 

comparison to the theoretical 1950 level. Atmospheric testing was quickly banned, and 

due to the gradual mixing of 14C through the carbon exchange, by the 1990s the 14C 

6 A sunspot is a region on the Sun's surface that is marked by a lower temperature than its 
surroundings, and intense magnetic activity. 

7Naturally occurring fuels formed over millions of years from organic material (hence their 14C has 
long since decayed). 
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levels had decreased to about 20% higher than the theoretical 1950 level. 

Alteration and contamination effects 

One assumption, Assumption 4, of radiocarbon dating method is that the ratio of 14C to 

12C and 13C has only altered through radioactive decay. However, there are two processes 

which may alter the 14C content in the organism, these are referred to as alteration and 

contamination. 

Alteration results in the 14C content of a sample being different to that in the atmosphere 

or to the value expected from radioactive decay alone. There are a number of processes 

that cause this effect, these involve isotopic fractionation, recrystallization of shell 

carbonate and in situ production. In all cases the 14C content is modified without 

the addition of extra sources of carbon. 

The most important of these processes is isotopic fractionation. This involves a change 

in the ratios of the different isotopes of carbon in the samples, through processes such as 

photosynthesis. In any organisms, there is a tendency for lighter isotopes to be taken-up 

in preference to heavier isotopes. Therefore, growing plants and animals may have a 

lower 14C level than that of the atmosphere in which they metabolize. There may well 

be small variations from species to species and therefore it is now common practise to 

evaluate the effect of alteration in each sample to be dated. 

Contamination occurs when the 14C content of a sample is altered through the addition 

of material containing carbon that has a different 14C content. There are a number of 

ways in which this occurs, for example, calcium carbonate (e.g. limestone) dissolved in 

the ground water can be transferred into buried samples, thus greatly increasing their 

apparent age. Contamination can also occur from humic acids (partially decomposed 

organic material), these can either increase or decrease the apparent age of samples 

depending upon their origin. Due to the possibility of contamination it is important 

that all samples selected for radiocarbon dating are firstly pretreated. Such pretreatment 
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removes any additional sources of carbon which may have contaminated the sample so 

that the 14C content will only reflect that of the original sample material and no other 

source (for further details see Bowman, 1990, Chapter 2). 

Mixing rates of 14C 

Northem-to-Southem hemisphere effect 

The 14C mixing rate in most terrestrial carbon reservoirs is thought to be sufficiently 

rapid for dating purposes (Assumption 2). However, while there is good mixing within 

the Southern and Northern hemispheres, mixing between them is poor. This results 

from them having separate atmospheric circulation systems, hence their prevailing winds 

blow in opposite directions along the equator. As a result, the 14C concentration 

in the Southern hemisphere is, on average, below that of the Northern hemisphere. 

Consequently samples from the Southern hemisphere are approximately 55-58 calendar 

years older than those in the Northern hemisphere, with uncertainties increasing from 

±7.9 at 1000 cal BP to ±25 at 11000 cal BP (McCormac et al., 2004). It is believed 

that the cause of this difference is due to the fact that the Southern hemisphere has a 

greater ocean surface area. 

Manne mixing effects 

Mixing rates in the deep oceans are known to be slow in comparison to those in the 

atmosphere and biosphere. The mixing of l4C in the oceans is known to be complicated 

by phenomena such as upwelling (the upward movement of the deep waters; which 

is latitude dependent). In areas where upwelling occurs, material from the surface 

water measures on average about 400 radiocarbon years too 'old' compared to those 

of terrestrial samples and we refer to this as the marine effect. There are generalized 

measurements for the marine effect in broad oceanographic regions, however local effects 

can vary over relatively short distances and these can outweigh the regional effects. As 

a result, the marine reservoir effect is an additional source of uncertainty when dating 
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samples of marine origin (for further details see Bowman, 1990, pages 24- 25). 

1.1.3 Measurement of radiocarbon 

In the previous section the basic principles of radiocarbon dating were discussed and the 

need for calibration was established. This section moves on to discuss briefly the two 

laboratory methods used to detect 14C. 

There are currently two methods that are routinely used to estimate radiocarbon ages 

of organic samples, these are known as the conventional radiocarbon dating method 

(or indirect method) and the AMS (accelerator mass spectrometry) method. A brief 

overview of the two methods will be given but more details of the techniques can be 

found in Chapter 3 of Bowman, 1990. 

The conventional method relies on the detection of beta-particles8 emitted (these are 

fairly easily detected as they are electrically charged) when 14C decays to 14N. The 

amount of beta-particles detected will reBect the amount of remaining 14C in the 

sample and therefore the amount of decay that has occurred. Since the development of 

radiocarbon dating the counting of beta-particles has formed the basis of the technique. 

The two main methods used to count the beta-particles are gas proportional counting 

and liquid scintillation counting, for details see Bowman, 1990, pages 31-32. 

AMS is a much more recent technique and became commercial in the 19805. The basic 

principle of AMS is to separate the specific elements by their atomic weights through mass 

spectrometry. This enables a direct measurement of the proportion of 14C atoms relative 

to 12C and 13C in the sample. One advantage of AMS is that the size of the samples 

required for dating are much smaller than those required by the conventional dating 

technique. This enables not only the dating of samples such as individual seeds but also 

the dating of valuable artefacts with minimum destruction. Although the conventional 

method and AMS are based on different principles it is assumed that the radiocarbon 

8 A beta particle is the name given to an electron resulting from the radioactive decay of a nucleus 
(Bowman, 1990, page 31) . 
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results can be interpreted in the same way (Bowman, 1990, page 31). 

When selecting samples for radiocarbon dating archaeologists take considerable care and 

thought in maximizing the information that may be returned from a sample. It is crucial 

to demonstrate that there is a meaningful relationship between the sample dated and 

the archaeological event of interest, as the radiocarbon technique is expensive and (in 

the case of the conventional method) is a lengthy procedure. 

The resulting product from the radiocarbon dating technique is what we refer to as a 

'radiocarbon determination'. This consists of an estimated 'radiocarbon age' x and a 

standard error (J, reflecting the uncertainty in the dating process. Throughout the thesis 

a radiocarbon determination will be written in the form X±(J. All ages will be expressed, 

as is conventional in the radiocarbon community, in 'years before present' (BP). For the 

purpose of radiocarbon dating, present is taken as 1950AD. 

In any experimental process there is always inherent experimental error. Usually 

experimental error is evaluated through the replication of the measurement process. 

However, in radiocarbon dating, this is not feasible for a number of reasons, mainly the 

time, cost and (in the case of the conventional method) the size of the sample needed to 

be able to produce a radiocarbon determination. Therefore the convention is to estimate 

the error term, (J, and then treat it as if it were known. 

Currently there is no convention regarding how a laboratory should evaluate their total 

error. However, all laboratories do include a contribution to the error term from counting 

the number of decaying atoms in a period of time. Although there are other errors that 

occur in the radiocarbon dating process (see Section 2.5.3) the laboratories feel that this 

is the only error that they can accurately measure. 

One obvious concern to the buyers of radiocarbon determinations is: if they sent the 

same sample to two different radiocarbon laboratories, would there be variability between 

the two laboratories and how great would this variability be? Since the 1980s Marion 

Scott has been involved in the design and analysis of Inter-lab comparisons, with the 
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primary goal of investigating the comparability of results produced under quite different 

laboratory protocols. The details of the latest of these studies, the Fourth International 

Radiocar bon Intercomparison (FIR!), can be found in the specialized issue of Radiocarbon 

45(2). 

1.1.4 Modelling the relationship between calendar and radiocarbon 

years 

Following the early work of Hans Suess, who published the first calibration curve (Suess, 

1970) to help verify the discrepancies between radiocarbon and calendar years, the need 

to calibrate was recognized worldwide by the radiocarbon community. This resulted in 

internationally agreed high-precision calibration data sets with the first being published 

in 1986 (Stuiver and Pearson 1986, Pearson and Stuiver 1986, Pearson et at. 1986). These 

were derived by radiocarbon dating timber samples that had already been dated on the 

calendar time-scale using dendrochronology. 

As calibration became routine in the radiocarbon community, improving the calibration 

process became an important issue. As a result, the journal Radiocarbon has published 

4 special issues on calibration. IntCal98 (Stuiver et at., 1998) is the name given to the 

internationally agreed curve published in the third of these special issues. It updates 

and extends two previous estimates of the curve (28(2B), 1986 and 35(1),1993). For the 

first two years of my PhD, IntCal98 was the most up to date version of the calibration 

curve. However, in my final year IntCal98 was again updated and IntCa104 (Reimer et 

at., 2004) was ratified and published. As a result the following material will discuss both 

IntCal98 and IntCa104, as well as the main differences between the two. 

The primary aim of the IntCal working group when constructing IntCal98 was to collect 

high quality data. However, when it came to the curve construction, relatively simple 

data averaging methods were used. The calibration curve (generated at intervals of 10yr 

for the range 0-15585 cal BP and 1000yr for 16000-24000 cal BP) was constructed by 

taking a weighted average of all the data within a lOyr window and assigning the midpoint 
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of the decade as the calendar age. In some cases the available 14C measurement were 

on blocks of timber whose rings covered twenty rather than ten years. In these cases 

the data were handled as if been two separate decadal measurements. As a result of the 

methods used to construct the curve it was realized that important uncertainties had 

been ignored, for example the uncertainty in the calendar age of the varved sediments9 

and U /Th-dated corals. 

IntCa104 was constructed and ratified at the 18th International Radiocarbon Conference 

held in New Zealand and extends the possible time period of calibration by an additional 

2000 years (0 to 26000 cal BP). Although it does not greatly extend the time period of 

calibration the curve is estimated with a much higher resolution beyond 11400 cal BP 

than IntCal98. Dendrochronologically-dated tree-ring samples now cover the period 0-

12400 cal BP and marine data, with site specific marine reservoir corrections, cover the 

period 12400-26000 cal BP. Where as, in the past, one of the primary aims of the IntCal 

working group was to collect high quality data, it has now been acknowledged that the 

methods used to construct the curve from the raw data are of equal importance. As 

a result, IntCa104 has been constructed using a coherent statistical method (Buck and 

Blackwell, 2004) which takes into account the uncertainties in both the calendar age and 

the 14C age. 

The following will outline the underlying model for the construction of IntCa104, which 

takes the form of a random walk. However, only the simplest case (a single radiocarbon 

determination) will be discussed here, for further details see Buck and Blackwell (2004). 

Given a single 14C determination, X, with the known calendar date () it is usually 

assumed that X is given by the true value of the calibration curve at date (}, written as 

J1.((}), plus an error term, €. Thus, X can be represented as X = J1.(8) + €, where 

(1.3) 

9Definition taken from http://www.thefreedictionary.com: A layer or series of sediment deposited in 
a body of still water in one year. 
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If interest lies in learning about the curve at a particular point, e*, then it is believed 

that for any () near ()*, knowing fL(O) would help learn about fL(e*). Prior beliefs about 

the relationships between different points of the curve can be expressed in terms of a 

random walle Hence, prior beliefs about the changes in the calibration curve from one 

year to the next may be represented by a normal distribution with a mean of /3 and a 

variance (per year) of r2, which gives the following: 

(1.4) 

where 

(1.5) 

or 

(1.6) 

Buck and Blackwell (2004), assumed that a natural choice for the value of /3 would be 1, as 

it seems reasonable to assume that the calibration curve would change by approximately 

1 radiocarbon year per calendar year. However, a sensible value for the parameter r, 

a priori, was not so clear. Sensitivity tests were carried out, initially using single year 

tree-ring data for the model and then using decadal measurements from the tree ring 

data set. The tests revealed that the value of the parameter r under both cases was 

essentially the same and on this basis a value of 8 was assigned. 

In practice, there are usually many observation relevant to the estimated 14C age for a 

given calendar year, not just a single observation. Buck and Blackwell (2004) choose to 

carry out the calculations by treating each point on the curve separately, as this enables 

them to limit the observations that have to be considered in anyone calculation. For 

each point on the curve they choose a suitable window, of at least 100 observations, of 

data points to use, so that the effect of excluding the remaining points is negligible. 

The IntCa104 radiocarbon calibration curve is generated by the model outlined above 

at intervals of 5yr for for the range 0-12400 cal BP, lOyr for 12400-15000 cal BP and 
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20yr for 15000-26000 cal BP. Figures 1.1 (a) and (b) illustrate the difference between 

the two curves, IntCa198 and IntCa104. Figure (a) shows the period 0 to 500 cal BP, in 

which only a slight difference between the two curves is apparent. However, Figure (b) 

shows the two curves for the period 12500 to 14500 cal BP, in which there is a distinct 

difference between the two. IntCa104, which is estimated with a much higher resolution, 

has a much smaller I-standard deviation envelope and is a much smoother curve. Clearly 

this could make a huge difference to interpretations when working in the latter part of 

the calibration period, this is illustrated in Section 4.3.3. 
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Figure 1.1: (a) IntCal98 (blue lines) and IntCal04 (red lines) terrestrial calibration curves 
both with a I-standard deviation envelope for 0-500 cal BP (b) IntCal98 (blue lines) 
and IntCa104 (red lines) terrestrial calibration curves both with a 1-standard deviation 
envelope for 12500-14500 cal BP. 

AB well as IntCa104 two other calibration curves, SHCal04 and Marine04, were also 

constructed and ratified at the 18th International Radiocarbon Conference. A brief 

description of both will be given, but more details can be found in McCormac et al. 

(2004) and Hughen et al. (2004), respectively. 

SHCalO4: Southern hemisphere calibration, 0-11000 cal BP 

AB discussed on page 10, there is an offset between the 14C concentration in the Northern 

and Southern hemisphere, resulting in samples from the Southern hemisphere being 
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'older' than those in the Northern hemisphere. As this is the case, there is clear need 

for two calibration curves, each constructed with calibration data obtained from the 

corresponding hemisphere. IntCalO4 is the internationally agreed calibration curve for 

the calibration of terrestrial Northern hemisphere samples. 

SHCa104 is the internationally agreed calibration curve for the terrestrial samples that 

originated form the Southern hemisphere. The data available for the construction of 

the Southern hemisphere calibration curve (McCormac et al., 2004) are limited and 

only cover the period 50 to 990 cal BP. In order to extend the calibration curve back 

beyond 990 cal BP, the offset between SHCa104 and IntCa104 needs to be understood. 

By considering IntCa104 and SHCa104 separately, back to 990 cal BP, it is seen that the 

offset between them varies gradually over time but the direction and magnitude of the 

offset is fairly consistent. A random effects component is added to the random walk 

model (Buck and Blackwell, 2004) to allow for the offset to vary slowly over time. The 

offset is based on the variability of the offset found between 50-990 cal BP, which was 

55-58 years, with an uncertainty that increases from ±7.9 at 1000 cal BP to ±25 at 

11000 cal BP. Further details of the construction of SHCa104 can be found in Buck and 

Blackwell (2004). 

Marine04: Marine radiocarbon age calibration, 0-26000 cal BP 

So far only the calibration of terrestrial samples has been discussed. As seen on page 10 

not only is there an offset between the concentration of 14C in the Northern and Southern 

hemisphere over time but there also exists an offset between the concentration of 14C 

in the oceans and on land. This results in the need to allow for additional sources of 

uncertainty when dating samples of marine origin. As a result a separate calibration 

curve, Marine04, has been constructed for the calibration of marine samples. 

The Marine04 calibration curve is constructed in two parts using a combination of the 

tree-ring data and marine data sets. The first section of Marine04, from 0-10500 cal 

BP, is constructed using the dendrochronology based curve of IntCa104. The curve 

is converted using an ocean atmospheric box diffusion model (Hughen et al. 2004) to 
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provide 'global' ocean mixed layer 14C ages. Th construct the curve beyond 10500 cal 

BP, 14C measurements are available from foraminifera10 in varved sediment and U-series 

dated corals. The individual marine data sets were corrected, by subtracting ~R (the 

difference between the regional surface ocean 14C ages and the 'global' mixed layer 

14C ages). The output from both the ocean atmospheric box diffusion model and the 

corrected foraminifera and coral 14C data are then combined using the random walk 

model (as detailed on page 15) to estimate the underlying Marine04 calibration curve. 

The Marine04 calibration curve is generated at intervals of 5yr for the range 0-10000 cal 

BP, IOyr for 10000-15000 cal BP and 50yr for 15000-26000 cal BP. Full details of the 

Marine04 calibration curve can be found in Hughen et al. (2(04). 

NotCalO4: Comparison/calibration 14C records 26000-50000 cal BP 

IntCa104 has extended the time period of calibration back to 26000 cal BP. However, there 

are a number of case studies and situations in which we may want to calibrate radiocarbon 

determinations beyond the scope of IntCa104. Currently there is no internationally 

agreed curve that extends further, although there exist various potentially suitable data 

sets from individual research projects extending back as far as 50000 cal BP (van der 

Plicht et al., 2004). One reason why these individual data sets cannot be recommended 

for construction of a calibration curve, in this period of time, is that they deviate too 

much from one another. Nevertheless, the data contains important information with 

regard to the natural 14C variations prior to 26000 cal BP. As a result the IntCal 

working team has spent time trying to understand the underlying properties of the 

calibration curve for this period. They believe that each data set can be used to build a 

'comparison curve', which would have its own offset from the true underlying calibration 

curve. To construct the curve, for the period 26000-50000 cal BP, each individual data 

set is used in a random effects extension to the random walk model (used for construction 

of IntCa104). This model allows for the possibility of offsets and for the possibility that 

lODefinition taken from http://www.bartleby.com/ll/104.html: A class of animals of very low 
organisation, and generally of small size, having a jelly-like body, from the surface of which delicate 
filaments can be given off and retracted for the prehension of external objects, and having a calcareous 
or sandy shell. 
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the offsets might vary over time, between comparison curves and the true calibration 

curve. Further details of the NotCal04 can be found in van der Plicht et al. (2004). 
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1.2 Outline of the thesis 

This section offers a summary of the contents in the following chapters of this thesis. 

Chapter 2, titled Statistics in radiocarbon dating, begins by introducing the concepts of 

Bayesian inference (yet methods for its implementation are discussed later in Chapter 

3). This is followed by a review of the most important publications relating to the 

interpretation of radiocarbon determinations. The early research carried out in this 

area, such as Ottaway (1973) and Ward and Wilson (1978), focused their interpretations 

using a purely classical approach, while researchers during the late 1980s and 1990s 

utilized a Bayesian framework so they could take account of the various uncertainties 

involved, when interpreting a set of radiocarbon determinations. 

The first half of Chapter 3 discusses methods for Bayesian implementation. A range 

of methods are considered, but the main attention focuses on the use and practical 

considerations of MCMC. The second half of this chapter, introduces the first of the new 

ideas, in particular, the introduction of a trapezium or sigmoidal prior for modelling the 

rate at which datable material was deposited/manufactured between the start and end 

of an archaeological phase. 

Chapter 4 presents two case studies, in which the authors believe that the rate of 

deposition/manufacture was not uniform over the proposed range. The aim of the 

chapter is illustrate the difference in the archaeological interpretations, drawn from the 

data, when assuming both uniform and non-uniform rates of deposition/manufacture. 

Chapter 5 initially recaps the types of a priori information that may arise during an 

archaeological calibration problem, as well as discussing how it is integrated into the 

existing models. This chapter then focuses on incorporating a priori information about 

the relations between phase boundary dates, in the form of joint prior distributions. 

When working with multiple phases there are two forms in which data may occur; 

temporal and spatio-temporal. This chapter concentrates on temporal data, typically 

arising from multiple phases within the same archaeological site. 
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The final area of research that we aim to tackle is spatio-temporal modelling. Throughout 

the thesis, all research so far has been based on the interpretation of temporal data 

alone. Chapter 6 presents the first steps for incorporating any spatial structure as well 

as temporal information, that arises from excavations, in order to combine data from 

related sites and to be able to make more coherent and satisfactory interpretations of 

the data. In Chapter 7 we revisit the human reoccupation of NW Europe case study this 

time to illustrate the difference in archaeological interpretations, drawn from the data, 

when implementing both non-spatio-temporal and spatio-temporal models. 

The final chapter, Chapter 8, gives conclusions from the analysis carried out within this 

thesis and discusses further improvements and developments which could be undertaken. 
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Chapter 2 

Statistics in radiocarbon dating 

2.1 Introduction 

The interpretation of radiocarbon data has received increasing interest from the 

statistical community in the last few decades. Such work includes Naylor and Smith 

(1988) who were among the first to develop tools for chronology building within a 

Bayesian framework. Initial attention focused upon the calibration and interpretation of 

radiocarbon data, quickly moving to incorporate chronological information from a range 

of different sources, including stratigraphic sequences, historic evidence, etc. (Litton and 

Lesse 1991, Buck et al. 1991, 1992). 

During the late 1980s and early 1990s researchers adopted an inference scheme, based on 

Markov chain Monte Carlo (MCMC) simulation. Christen (1994b) has given an outlier 

analysis, within the same Bayesian framework and Christen et al. (1995) and Christen 

and Litton (1995) suggested and implemented a Bayesian approach to include a priori 

information about the rate at which samples within a sequence were deposited. Software 

packages like OxCal, described in Ramsey (2005), and BCal, described in Buck et al. 

(1999), implement some of the methods presented. Buck et al. (1996) and Litton and 

Buck (1996) review the field in more detail. More recent work has been carried out by 

Nicholls and Jones (2001), who propose an alternative formulation for non-informative 

22 



priors and also suggest using Bayes factors to help select between competing models for 

chronology building when based on radiocarbon data. 

What follows is intended to give an overview of some of the research carried out 

in this area and all of the above will be reviewed in more detail. However, before 

doing so the probability notation used throughout the thesis will be set up as well as 

briefly introducing the concept of Bayesian inference and the use of prior probability 

distributions. The reason for this is that a large majority of methods discussed in this 

chapter utilizes the Bayesian framework. 

2.2 Bayesian inference 

Probability notation 

Firstly, the notation used throughout the thesis is defined. p(.j.) denotes a conditional 

probability distribution and similarly p(.) denotes a marginal distribution. The same 

notation is used for continuous density functions and discrete probability mass functions. 

Capital letters are used to denote random variables, such as X, and lowercase letters 

are used to represent realized values of the random variables, such as x. Also the use of 

boldface is to distinguish vectors such as x = {Xl, ... , Xn} from a scalar variable x. 

If X and Y are two random variables, defined on the same sample space then p(x, y) 

defines the joint probability density function of X and Y. Similarly p(x) denotes the 

marginal distribution of X and p(y) denotes the marginal distribution of Y. 

Bayesian inference is a form of statistical inference in which parameters are considered 

as random variables having a probability distribution reflecting the current state of 

knowledge. The Bayesian approach takes a subjective view of probability which can 

be used to express uncertainty about an event; as a consequence it is possible to make 

probability statements about parameters. Hence, prior to observing the outcome of 

an event, the experimenters can express their uncertainty about the parameter (or 

parameters) ¢ in terms of a probability distribution. This distribution is called the 
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prior distribution of l/J, written as p( l/J). A probability model for the data, x, given 

the parameter, which describes their relation, can be summarized as a likelihood and 

denoted by p(xll/J). 

Inference for l/J is then made by combining p( l/J) and p( x Il/J) using Bayes' Theorem, which 

states that 

(l/Jlx) = p(l/J)p(xll/J) 
p p(x) (2.1) 

where p( l/Jlx) is the conditional distribution of l/J given x, known as the posterior 

distribution and p(x) = J p(l/J)p(xll/J)dl/J and is referred to as the normalizing constant, 

which is denoted by k for the remainder of this thesis. Note that the integral is over the 

whole range of l/J and would be written as the summation in a case of l/J being discrete. 

An equivalent form of Equation 2.1 omits the factor pCx), which does not depend upon 

l/J, and can be considered as a constant, resulting in the unnormalised posterior density, 

p( l/Jlx) ex: p( l/J )p(xll/J)· (2.2) 

This simple expression captures the core of Bayesian inference. 

2.2.1 Prior probability distributions 

There are a number of different types of a priori distributions used within the Bayesian 

framework, the following material will discuss some of the most common types of priors 

that arise throughout the thesis. 

Informative prior: An informative prior expresses specific and definite information 

regarding a parameter of interest. In most cases informative priors arise from an expert's 

opinion or from a previous study of a similar nature. 

Non-informative prior: A non-informative prior, also referred to as a vague prior, occurs 

when there is relatively little information concerning a parameter. A uniform prior 

(over a range of parameter values) is often used to represent situations where little or 
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no a priori information is available. When using a non-informative prior the posterior 

distribution is wholly determined by the information contained within the data. 

When asked to express a prior, different priors may be expressed depending upon the 

person. It may well be necessary to have a conventional prior that is accepted by all 

parties that is non-informative and we refer to this as a reference prior. There are various 

theoretical approaches to defining reference priors; non of them is universally accepted, 

except in very simple problems. 

Improper prior: An improper prior is when a probability mass function does not sum to 1 

for a discrete distribution and the probability density function does not integrate to 1 for 

a continuous distribution. For example, an unbounded uniform prior would be classed as 

an improper prior and some statisticians use improper priors as non-informative priors. 

The main reason for discussing the different types of priors that arise, so early on in 

the thesis, is that when interpreting radiocarbon data, archaeologists are becoming 

increasingly aware of making use of their a priori knowledge. Their prior knowledge 

might arise from either past excavations or from experts within the subject field. In the 

applied literature reviewed (see Sections 2.3, 2.4 and 2.5) there are a number of cases 

where the archaeologists have quite specific prior knowledge, for example 

• the rate at which material is deposited within an archaeological phase 

• the ordering of e's or phases from stratigraphic information 

• the likely time elapsed between the deposits of each sample in a sequence of 
radiocarbon determinations. 

2.3 Interpreting radiocarbon data 

The material in this section firstly looks at how a single radiocarbon determination can 

be calibrated to transform the radiocarbon age into calendar years, before moving on to 

look at how to interpret a group of related radiocarbon determinations which belong to 

an archaeological phase. 
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2.3.1 Basic model and calibration 

Suppose that we are interested in dating some event, and that we have a suitable sample 

of organic material that ceased metabolizing at the moment of that event. Before the 

sample is dated, the calendar age 8 (measured in years cal BP, where the prefix cal 

denotes the result of radiocarbon calibration) in which it ceased metabolizing is unknown. 

As well as the unknown calendar age, this sample will also have a unique radiocarbon 

age, which relates to the amount of 14C currently contained within the sample. The 

radiocarbon age is conventionally denoted by J..t(9). Due to the nature of the samples 

available for radiocarbon dating and the experimental error associated with the dating 

process, the radiocarbon laboratories do not provide J..t(9) accurately. What they do 

provide is an estimate of J1.(9), referred to as x, which is a realization of the random 

variable X (i. e. if the sample was dated a number of times, the values given for x would 

vary, each time). Thus, X can be represented as X=J1.(9) + €, where 

(2.3) 

Since it is assumed that (7 is known (and provided by the radiocarbon laboratory), X 

is only conditioned upon the unknown parameter 9. X is therefore modelled using a 

Normal distribution with mean J..t(9) and variance (72, 

(2.4) 

where J..t(9) represents the calibration curve and is usually expressed in a piece-wise linear 

form 

ao + boO (0 ~ to) 

J1.(0) = at + b,9 (t,-1 ~ 0 ~ t" 1 = 1,2, ... , L) (2.5) 

aL + bL9 (8 ~ tL) 

where tt are referred to as the knots of the calibration curve, L + 1 is the number of 

knots and al and bl are assumed to be known constants which ensure continuity at the 
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knots. 

This assumption of normality is the most common and widely accepted assumption in 

the statistical analysis of radiocarbon data. The assumption is made by the vast majority 

of researchers in the field (see Ward and Wilson, 1978) and is derived from the fact that 

conventional radiocarbon determinations arise from counting the number of 14C atoms 

decaying in a period of time. These counts have a Poisson distribution which can be 

approximated by the Normal distribution. 

The assumption of normality is a difficult assumption to test, this has not been pursued 

here and it does not appear to be widely discussed in the literature, however there could 

be arguments for relaxing the assumption or even assuming specifically a distributional 

model with heavier tails. 

Consider a radiocarbon determination from a single organic sample. We would like to 

use this, to help learn about its calendar age. Using the Bayesian framework, we can 

learn about the calendar age, by formalizing a likelihood, which relates () to x, a and 

J.L(O). The appropriate likelihood, based on Equation 2.4, can be written as: 

{
(x - J.L(()»2} 

p(xl(}) ex: exp 2a2 • (2.6) 

In absence of informative prior information, the convention is to assume that the prior 

value for 0 is equally likely to lie anywhere over the range of the calibration data. This 

is usually represented using a uniform, vague prior for 0, i.e. p(O) ex: 1, for 0 < (). This 

implies that the posterior density of (), p(Olx), is essentially equivalent to the likelihood. 

Due to the wiggly nature of the calibration curve (see Figure 1.1), the posterior density 

can often be non-symmetric and multimodal, which can make interpretations difficult, 

as illustrated in Figure 2.1. 

In the following sections, a number of the relevant publications related to interpretation 

of radiocarbon determinations are discussed. In doing so a wide variety of problems will 

be considered which use a range of statistical techniques. The review is presented in 
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Figure 2.1: Calibrated date, illustrating non-symmetry and multimodality, for the 
radiocarbon determination 1630±60, when using the internationally agreed radiocarbon 
calibration curve, IntCal04. 

approximate chronological order, as techniques have developed over several decades. 

2.3.2 Interpreting groups of related radiocarbon detenninations 

Probably one of the most widely quoted works on the statistical analysis of sets of 

radiocarbon determinations is that of Ward and Wilson (1978). The paper is concerned 

with techniques for comparing and combining a set of radiocarbon determinations. In 

doing so the authors consider two separate cases, 

• Case I: When two or more radiocarbon determinations are made on the same 
object. 

• Case II: When one radiocarbon determination is made on two or more samples 
that are not known to be from the same object. 

The notation used, extends that of Section 2.3.1, where n represents the number of 

radiocarbon determinations of the form Xl ± 0"1, •.. , Xn ± O"n and each Xi is a realization 
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of the random variable Xi. [Note, Ward and Wilson do not make use of a calibration 

data set and therefore no calibration procedure is used. This is no surprise since at the 

time the paper was written calibration was not routine.] 

Case I, is used when all the radiocarbon determinations under consideration are known 

to be replicated from the same object, hence all have the same true (unknown) mean, 

1". It is assumed that any differences found between the radiocarbon determinations will 

have resulted from errors in the dating process, ti, as given in Equation 2.3. Therefore 

a radiocarbon determination is modelled as 

(2.7) 

The authors are interested in testing the null hypothesis, 

Ho : Xi = I" for i = 1, ... , n. 

That is to say, that a set of radiocarbon determination are consistent (i. e. all have the 

same true radiocarbon age) by using the following test statistic, 

(2.8) 

where xp is the pooled mean of the radiocarbon determinations and is given by 

(2.9) 

The test statistic, T, has a Chi-square distribution with n - 1 degrees of freedom. If 

the null hypothesis is not rejected, hence the radiocarbon determinations are judged not 

to be significantly different then they can be combined to give a pooled age, xp , and a 

corresponding variance, 

(2.10) 
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If the null hypothesis is rejected, hence the radiocarbon determinations are found to be 

significantly different, then they should not be combined. 

Case II, is used when one does not know whether the set of radiocarbon determinations 

are estimating the same calendar age, or effectively indistinguishably different ages. For 

this reason, it cannot be assumed that each Xi has the same true mean, i.e. each Xi has 

its own mean lJi for i = 1, ... ,n. 

Unlike Case I, where the only source of error considered is from the dating process, 

additional error terms are introduced. The authors feel there is a need to account for 

the "error factor in the calibration curve", Ii, for each radiocarbon determination and 

assumes that Ii is independent of h(i f. j). The authors also include an additional error 

term, 9i, to allow for the effect of 'sunspot activity' (see page 8). Both error terms, 

Ii and 9i, are assumed to be normally distributed with a mean of zero and a standard 

deviation U f and U g, respectively. 

In Case II, taking account of the additional error terms, a radiocarbon determination 

can now modelled as 

(2.11) 

where s? = u? + u2 + u2 
~ t f g. 

The authors are now interested in testing the null hypothesis, 

Ho : 1-£1 = 1-£2, •.• ,I-£n· 

The test statistic, T, as given in Equation 2.8 is used replacing ul with s~. If the null 

hypothesis is not rejected, and from an archaeological consideration it seems appropriate, 

the radiocarbon determinations can be combined. The pooled radiocarbon age is given 

as in Equation 2.9 and the variance of the pooled age as in Equation 2.10 (in both cases 

replacing u1 with sl). 
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The techniques suggested in Ward and Wilson (1978) are still widely used and also 

implemented in calibration software such as OxCal (Ramsey, 2005). Given the 

availability of the high precision calibration data, which gives rise to a non-monotonic 

calibration curve, it is clear that there is not a one-to-one relationship between 

radiocarbon and calendar years. This means that calendar age estimates are typically 

multimodal. Using Figure 1.1a, for example, consider what will happen if we obtain 

a radiocarbon determination with a mean radiocarbon age of 150 years BP. Even if we 

obtain this value with zero uncertainty, it could relate to anyone of three calendar years. 

This suggests that a statistical model based on calibration should be used, and that any 

consistency checking should be undertaken on the calendar rather than the radiocarbon 

timescale. 

In a series of papers, Ottaway and her colleagues discuss the desire to summaries sets 

of radiocarbon determinations. The first paper, Ottaway (1973), proposes a technique 

for summarizing sets of radiocarbon determinations diagrammatically, referred to as 

the 'inter-quartile range' or 'dispersion diagrams'. Ottaway constructed the dispersion 

diagrams by ordering the Xi'S along the radiocarbon timescale and then calculated the 

lower quartile, median and upper quartile, see Figure 2.2. Ottaway then defines the 

period of time between the lower and upper quartile as the 'flourit,l of a culture. 

Ottaway later proposes a method for "correcting" dispersion diagrams to the calendar 

time scale by using Suess's calibration curve, Suess (1970). As a result of the calibration 

curve being non-linear and non-monotonic, some of the Xi'S correspond to more than 

one possible date on the calendar time scale. To overcome this problem Ottaway gave 

fractional weights, 1/(no. of possible corrected dates), to each of the ambiguous dates. 

The dispersion diagrams were then produced, as before, but now on the calendar time 

scale and with the fractional weights taken into account when calculating the quartiles. 

There are several concerns with the approach presented by Ottaway. Firstly, only the 

xi's are taken into consideration the standard deviations, ai's, are ignored. The second 

IThe ftourit of a culture can be thought of 88 the most prolific period. 
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Figure 2.2: Construction of a dispersion diagram for a collection of 10 radiocarbon 
determinations, where. represents the radiocarbon ages, xi's. 

concern, relates to the definition of the the fiourit as being the period of time between 

the lower and upper quartiles. Ottaway suggests that the inter-quartile range may be 

"too cautious an estimate for the 'flourit' of a culture and that an expansion to include 

2/3 or 3/4 of the data may give a more meaningful result". 

The next paper in the series is Aitchison et al. (1990). The authors are interested in 

estimating the duration of an archaeological phenomenon, such as the occupation of a 

settlement. To do so the authors consider the suggestion proposed in Ottaway (1973). 

However, the authors point out that the lower and upper quartiles as calculated in 

Ottaway (1973) are just point estimates of the population quartiles, and that there is no 

measure of uncertainty accounted for in these estimates. 

As a result, Aitchison et al. (1990) suggest a simple ad hoc extension to the method 

proposed in Ottaway (1973), in order to take account of uncertainty when estimating 

the flourit of a culture. The method they propose is referred to as the 'Extended quartile 

interval', which is calculated by constructing two series. The first series is calculated by 
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Xi - O.67ai and the second series by Xi + O.67ai. Using the two series and evaluating 

the lower quartile from the first series and the upper quartile from the second series, the 

extended quartile interval is defined to be the difference between the two. Clearly, this 

method will extend the length of the fiourit of a culture relative to that obtained using 

the conventional inter-quartile range. 

The final issue addressed in Aitchison et al. (1990), is whether the individual radiocarbon 

determinations should first be calibrated before the fiourit is calculated or whether it 

is sufficient to calibrate the lower and upper quartiles and use the resulting calibrated 

dates to calculate the fiourit. To investigate, the authors chose not to work with the 

extended quartile interval, but to take the simplified definition of a fiourit of culture, as 

defined in Ottaway (1973). As discussed in the review of Ottaway (1973) some of the 

Xi'S correspond to more than one possible date on the calendar timescale, as a result of 

the wiggles in the radiocarbon calibration curve. Hence, there are multiple intercepts 

of Xi with JJ(9). This results in a series of 9i ,/s where i = 1, ... , n (n is the number 

of radiocarbon determinations) and j = 1, ... , ki where ~ represents the number of 

intercepts of Xi with JJ(9). 

To overcome this problem the authors considered two possible approaches. The first 

approach takes the average of the Oi,j'S, to arrive at a single date on the calendar time 

scale, for each Xi. The second approach applies the fractional weighting scheme as 

described in the review of Ottaway (1973). 

The authors calculate the fiourit, before and after calibration, using the above 

two approaches for a number of case studies, with varying numbers of radiocarbon 

determinations. The authors conclude that when using the first approach the fiourit, 

whether calculated before or after calibration, is virtually the same. However, when using 

the second approach, differences did occur depending upon whether the calculations were 

carried out before or after calibration. The magnitude of the difference depends largely 

on where on the calibration curve a given data set falls. 

33 



However, it is felt that calibrating the individual radiocarbon determinations before 

calculating the flourit seems a much more sensible suggestion than calibrating the lower 

and upper quartiles and using these dates to calculate the flourit. As clearly, depending 

upon the part of the calibration curve under consideration, multiple dates on the calendar 

time scale might arise for the lower or upper quartile which could cause complications 

when calculating the flourit. 

In the extension of the work of Ottaway (1973) and Aitchison et al. (1990) the next paper 

in the series is Aitchison et ai. (1991). In this paper the authors develop a technique 

for summarizing sets of radiocarbon determinations on the calendar time scale with the 

inclusion of u's. The authors aim to define and provide a sound statistical solution 

to rectify the problems of dispersion diagrams as defined in both Ottaway (1973) and 

Aitchison et al. (1990). 

Their method is based on two assumptions 

• "There exists a frequency distribution, p(9), (with respect to the calendar time 

scale) of all possible artefacts or material from the phenomenon which might be 

sampled" . 

• "The actual artefacts or material sampled by the archaeologists are, as far as is 

possible, a reasonable representative sample from this frequency distribution" . 

The authors are interested in estimating the frequency distribution, p(B), and then 

estimating the lower and upper quartiles in order to give an estimate of the flourit. 

Given a set of n radiocarbon determinations, of the form Xl ± U1,"" Xn ± Un, they 

proceed as follows 

1. Solve the equation 

Xi = f..t(8). 

Clearly, (as a result ofthe calibration curve, Pearson et al. (1986), being non-linear 

and non-monotonic) some of the Xi'S may correspond to multiple dates, O/s, on 

34 



the calendar time scale. Hence, this results in a series of (J. ·'s where'; = 1 n 
"') , ", ... , 

and j = 1, ... , ki where ~ represents the number of intercepts of Xi with ",,((J). 

2. The second step is to provide an approximation of the standard error, ie((Ji,j), for 

each of the (Ji,j'S by taking account of three factors 

(i) the (Ji'S 

(ii) the errors, (Jc((Ji,j), from the calibration curve at the point fhj 

(iii) the slope or steepness, I dt,j I, of the curve at point Oi,j' 

These three factors are combined to give an estimate 

3. The third step is to provide an estimate of the frequency distribution, p(9), by 

combining the data (Ji,j as found in Step 1 with their estimated standard errors 

found in Step 2 using a non-parametric density estimation technique. 

4. The final step is to provide an estimate of the fiourit, by obtaining the cumulative 

distribution function, F(9), and then estimating its lower and upper quartiles. 

One main concern with the method used in Aitchison et al. (1991) is the violation of one 

of the assumptions relating to non-parametric density estimation. That is, the sample 

values, here the (h,j's, are assumed to be independent. Clearly, in the method outlined 

above, given (JI,1 then Xl can be calculated and if Xl is known then the rest of the (Jl,j'S 

are known, hence the (JI,j'S are not independent. 

The authors also use the definition of a flourit as "the period of time when the middle 

50% of artefacts from the culture were produced, i.e. the lower and upper quartiles of 

the distribution", when it is clear from Ottaway (1973) that this definition may well be 

"too cautious an estimate". 
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All three of the papers discussed, Ottaway (1973), Aitchison et al. (1990) and Aitchison 

et al. (1991), realize the importance of estimating the duration of an archaeological 

phenomenon. Although not directly discussed, the following section sets up a novel 

approach to this problem. Bayesian methods are introduced to estimate the start and 

end dates of an archaeological phenomenon. Clearly, by knowing these two dates it 

would be possible to calculate the difference between the two, i.e. the duration of an 

archaeological phenomenon. 

2.3.3 The first use of Bayesian statistics 

Naylor and Smith (1988) offered a major contribution to the interpretation of 

radiocarbon determinations, by developing a model which takes account of the various 

uncertainties involved in relating observed radiocarbon determinations of artefacts to 

successive chronological start and end dates for significant phases or periods of activity. 

Just to recap, a phase is defined as collection of dateable material bounded early and 

late by events that are of archaeological importance. 

The archaeological problem studied in Naylor and Smith (1988) relates to the Iron 

Age hillfort at Danebury. From this archaeological site it became apparent that there 

were four phases of pottery production. There was also a total of 65 radiocarbon 

determinations, each associated with a pottery fragment. On the basis of stylistic 

considerations, each pottery fragment was assigned to one of four ceramic phases by 

an expert in the subject field. Before moving on to discuss the detail of the Naylor and 

Smith (1988) paper, Figure 2.3 is intended to set up the basic notation used. 

Consider a single vertical series of J abutting phases, with J + 1 phase boundaries, 

in which the (unknown) calendar dates of the phase boundaries are represented by 

aI, a2, ... ,aJ+I· Phase 1, with boundary dates al and a2 represents the deepest 

phase (containing the oldest material) and Phase J, with boundary dates aJ and aJ+I 

represents the most recent phase (containing the youngest material). Within each phase 
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Phase 1 time 

Figure 2.3: Schematic representation of abutting phases. 

there are nj organic samples suitable for radiocarbon dating and Xi,j is used to denote 

the ith radiocarbon age in the jth phase with associated standard error l1i,j. Each Xi,j 

is associated with a true unknown calendar date Oi,j. 

The authors are interested in making inferences, on the calendar time scale, about the 

dates of the four phases of pottery production. In particular, they would like to learn 

about the 5 unknown chronological dates, aI, a2, ... , a5, which represent the beginning 

of Phase 1, the end of Phase 1, the beginning of Phase 2 and so on. As the phases 

are regarded as abutting, this implies that the end of Phase 1, is the same event as the 

beginning of Phase 2. They use Q= (aI, a2, a3, a4, (5) to represent the start and end 

dates for each of the four phases with the assumption that al > a2 > a3 > a4 > a5. 

Having set up the problem in this hierarchical framework, the authors discuss their a 

priori beliefs about the rate of pottery production within the ceramic phases. They felt 

that representing the production rate within a ceramic phase as a Uniform distribution 

was an appropriate assumption to make, giving 

otherwise. 
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Naylor and Smith (1988) clearly state that "this uniform assumption could be replaced 

by say, a beta distribution over each interval, reflecting a gradual increase in production 

followed by a tailing off towards the end of the phase". However, it was not the intention 

of the paper to explore a range of possible models but to present a methodology for 

representing and analyzing a particular model. 

The data consist of the 65 radiocarbon determinations in the form Xi,; ± (Ti,; and from 

Equation 2.4 we know that 

where J.L(O) represents the piece-wise linear calibration curve discussed in Section 2.3.1. 

All that remains now is to model the p(a). Naylor and Smith (1988) used a particularly 

simple form of prior, to represent a minimal state of prior knowledge, which can be 

expressed as follows 

p(a) = { 
1 for al > a2 > a3 > a4 > a5 > 0 

o otherwise. 

To calculate the posterior distributions of Ct, Naylor and Smith (1988) used numerical 

integration techniques (see Section 3.2.1), implemented using their own computer 

software. The authors also discuss briefly some specific posterior predictive functions 

that answer a variety of possible questions that may be of interest to archaeologists. For 

example, if we have a radiocarbon determination with an associated standard deviation 

what is the posterior predictive probability that the radiocarbon determination is from 

ceramic Phase j? 

Although Naylor and Smith (1988) was a major contribution to the interpretation of 

radiocarbon determinations it contains two technical errors: The first being that they 

consider the year 0 BP as 1983 AD (as this was the year the data were obtained), where 

the current convention in the radiocarbon and archaeological community is to take 0 BP 
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as 1950 AD. The second error they made was to do with the use of the calibration curve. 

They used an old calibration data set, instead of the high-precision calibration data set 

which was published in 1986. 

2.4 Some case studies and simple extensions 

Litton and Lesse (1991) follows on from Naylor and Smith (1988) (written for a statistical 

audience) with the intention to review the basic modelling ideas of Naylor and Smith 

(1988) in an archaeological framework. In the hope that archaeologists would appreciate 

its significance. The authors see the work of Naylor and Smith (1988) as composed of 

five different stages, which they believe to be common to many archaeological calibration 

problems. 

1. Defining the archaeological problem; 

2. expressing the statistical model in terms of the question posed; 

3. specifying the a priori information; 

4. using statistical inference procedures; 

5. interpreting the results. 

They discuss each of the five aspects in a langauge and style better suited to the 

archaeological community. They also note that some archaeologists may be unhappy 

with some of the modelling assumptions made by Naylor and Smith (1988), such as: 

why are the phases non-overlapping?, why should the pottery fragments be uniformly 

distributed over a phase? but explain that the model can readily be adapted to allow 

for other complexities; while the overall Bayesian methodology will remain the same. 

The combination of Naylor and Smith (1988) and Litton and Lesse (1991) leads to 

a new approach to the statistical analysis and interpretation of sets of radiocarbon 
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determinations that is based on the Bayesian framework. This new approach is followed 

up by Buck et al. (1991) and Buck et al. (1992). 

Buck et at. (1991) seek further to bridge the gap between statistics and archaeology. They 

aim to explain Bayesian statistics to the archaeological community and to illustrate the 

approach taken by Bayesian statisticians when interpreting data. 

A new case study is used to illustrate the methodology; a two-phase Neolithic village at 

Skara Brae, Orkney which preserves 3.5 meters of stratigraphy. The main part of the site 

has two occupation phases, Village 1 and Village 2, which are both preceded by a thin 

basal layer, separated from Village 1 by a thin sand layer. Both phases of occupation 

are associated with midden deposits2• Midden deposits of approximately 1m can be 

associated with the occupation of Village 1 and approximately 2m can be associated 

with Village 2. There is also a clear horizon (sand layer) between the two villages. 

Since many factors affect midden accumulation rates, it is not possible to estimate the 

length of occupation from stratigraphy alone. Nor is it clear how to estimate the length 

of time elapsed between the end of Village 1 and the beginning of Village 2 (as a whole 

site can be immersed in sand in a single sand-storm or over an extended period of time). 

This suggests that a non-stratigraphic dating method is required to estimate the calendar 

dates of the start and end of the two villages and also the length of time elapsed between 

the two. 

This is an unusual case study, in the sense that there are well marked phase horizons 

and a reasonable number of radiocarbon determinations associated with each. Rather 

than adopting the method used in Naylor and Smith (1988), at Skara Brae, the 

start and end dates of the two villages can be directly dated using the radiocarbon 

determinations available from the midden deposits. These four events are represented 

by the calendar years fh,fh83 and 84 and (from the stratigraphic information) it is 

known that 81 > 82 ~ 83 > 84. 

2Midden deposits are deposits of waste material and are commonly composed of domestic and food 
waste. 
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There are 14 radiocarbon determinations available, of the form Xi ± (Ti, in which 1-

4 provide information about the calendar date fit, 5-7 provide information about (h, 

8-10 provide information about 03 and 11-14 about 84• This information is then 

explicitly introduced into the analysis and the marginal posterior distributions p(Oi/X) 

are calculated. Full details of the calculations can be found in the Appendix of Buck et 

al. (1991). 

2.5 The MCMC revolution 

Buck et al. (1992) is slightly more technical than those immediately proceeding it and 

is aimed mainly at statisticians and archaeological scientists. This paper builds on the 

modelling ideas of Naylor and Smith (1988) and outlines the principles of Bayesian 

statistics, but also explains the technical difficulties that arise in the calculation of 

marginal densities for events, such as the start of a phase, on the basis of large 

number of radiocarbon determinations. Instead of adopting the numerical approximation 

techniques previously used, Buck et al. (1992) introduce the method of Gibbs sampling 

(see Section 3.2.2) to evaluate posterior densities. The methodology is illustrated through 

two case studies one of which will be discussed here, i.e. a reanalysis ofthe Danebury data 

used in the Naylor and Smith (1988) paper. There were two main reasons to reanalyze 

the data, firstly the two technical errors made by Naylor and Smith (1988) and secondly 

the recent innovations in statistical methods based on the Gibbs sampler. Initially the 

same basic model was adopted for the interpretation of the Danebury data. 

Buck et al. (1992) felt that there was one major archaeological criticism of the model 

and this was the assumption of abutting phases. Therefore the problem was remodelled 

without this assumption so that the authors could test whether or not the phases are 

likely to be abutting. 

The model for the Danebury data was reformalized as follows. Again, primary interest 

lies in estimating the start and end dates for each of the phases. So, let a j and f3j 
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represent the start and end dates (cal BP) of phase j (for j=1,2,3,4). Due to the absence 

of any a priori information, it is conventionally assumed that OJ and /3j lie anywhere in 

the range of the calibration curve, subject to the constraint OJ> /3j, as the dates are 

measured in years cal BP. No assumption on the ordering of the phases was made. 

Now let nj be the number of samples assigned to the jth phase and, using the previously 

notation, (h,j represents the calendar date of the ith radiocarbon determination in the 

jth phase. In the absence of any other a priori information about Oi,j, the rate of pottery 

production within any phase is still assumed to be uniform. It was also assumed that 

the phases are independent of each other and therefore, 

where 

and Cj is a constant. 

4 

p( 01, /31. 02, /32, 03, /33,04, (34) = 11 p( OJ, /3j) 
j=l 

for OJ > /3j 

otherwise 

So, the clear difference between the two models is the assumption of the relations between 

the phases. After the reanalysis of the data using the second model, the authors made 

the following assessment of the relations between phases. They do not believe that the 

ceramic phases are abutting in time. In fact, the suggestion is that although the phases 

show a clear progression through time there is considerable overlap in pottery production 

from the different ceramic phases. 

With the basic models devised, illustrated and implemented using both numerical 

integration and MCMC, a basic chronology building framework was in place and (with 

enthusiasm building among the user community) extensions to the basic models soon 

began to be developed. The following section reviews a selection of the papers that 

reported on the most important of these extensions. 
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2.5.1 Prior information about time elapsed between deposits 

Archaeologist sometimes have information about the likely time elapsed between the 

deposits of each sample in a sequence of radiocarbon determinations. This is particulary 

common when several radiocarbon measurements have been made on a piece of wood so 

that the time elapsed between the rings or layers can be estimated. In such situations 

tree-ring dating prior to radiocarbon dating may be used as a priori information about 

the time elapsed between successive radiocarbon determinations. Wiggle matching is 

(a) (b) 
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Figure 2.4: An example of a floating chronology with a gap of (a) 20 years (b) 40 years, 
between radiocarbon determinations, example reproduced from Christen et ai. (1995). 

the name given to the technique in which a sequence of related samples are dated using 

the high-precision radiocarbon calibration curve. The original technique used was to 

order the radiocarbon determinations according to the archaeological chronology i.e. the 

object dated by determination Xi ± (jj is known to be earlier than the object dated by 

determination XHI ±(jHl. Then the values Xi - (ji, Xi, Xi + (ji were plotted along evenly 

spaced vertical lines where the gap between the lines is n calendar years. This can be 

referred to as a 'floating curve' which is subsequently compared with the high-precision 

calibration curve. The above step is repeated with different gaps of size n calendar 

years until a 'satisfactory' match is found. This match then provides an estimate for the 

calendar age for each of the dated objects, see Figure 2.4. It is clear that there is no 
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common approach to carrying out the necessary comparisons. Some work (Weninger, 

1986) use highly subjective visual matching of graphs, which results in problems, such as 

what measure should we use to compare one wiggle match to another. While others use 

statistical methods based on least squares (Pearson, 1986), however this technique can 

only be used when the time elapsed gaps between related samples is known. This led 

Christen to propose a more general approach to archaeological wiggle matching which 

utilized the Bayesian framework, a detailed description of his work can be found in the 

following subsection. 

Bayesian approach to wiggle matching 

Given a set of radiocarbon determinations, with corresponding unknown calendar dates 

(h, ... ,8n , when there is a priori information about the relative dates 8i - 8i-l (for 

i = 2,3, ... , n) it is referred to as a 'floating chronology'. There are two common 

examples that arise in archaeology. Firstly, it occurs when constructing a 'tree-ring 

chronology', when we radiocarbon date tree rings and the number of rings between 

samples is known. In this case it is assumed that 8i - 8i-l = 'Yi > 0 hi is the time 

interval between successive events) for i = 2, 3, ... ,n. Secondly, it occurs when samples 

are known to have 'stratigraphic ordering' and we also have knowledge about the relative 

dates 8i -8i-l. (Further a priori information about the relative dates 8i-8i-l might also 

be available, such as maximum and minimum time spans.) In both cases it is assumed 

that On > 8n-l > ... > 82 > 81, clearly this is an extension of the type of problem 

illustrated in Section 2.4. 

Christen (1994a) and Christen and Litton (1995) suggested and implemented a general 

Bayesian approach to wiggle matching and implemented the method for a case study in 

which the 'Yi'S are unknown. 

The key point in this problem is that there is a priori information about the relative dates 

(h - 8i-I. which is included in the analysis through p(8i I8i-I. 8Hl ) and it is assumed, a 

priori, that the relative dates Oi -Oi-l are independent. Given this, the prior information 
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about Oi - Oi-l is then defined by the density function gi, giving 

Then using Equation 2.4 and assuming independence 

n 

p(xI8) = TIp(xiIOi). 
i=l 

The full conditionals can then be written as, 

For different cases of floating chronologies, the prior information about 0i - Oi-l may be 

modelled using different functions gi. For example, in Christen (1994a) an example of a 

'tree-ring chronology' is given in which the "n's are known (Oi - (h-l = 'Yi). As a result, 

the function gi is simply defined as 

if x = 'Yi, 

if x ¥ 'Yi. 

In this particular case it is only necessary to calculate the distribution of 01 as the rest 

of the (h's can be calculated from it via 

i 

(Ji = (Jl + L 'Yj, 
j=2 

and the posterior distribution of (h can be given by 

(2.12) 

where the form of (Ji is given as in Equation 2.12. In Christen (1994a), numerical 

integration procedures were used to calculate the posterior distribution of (Jl for a fairly 
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simple case study, but these kinds of models can also be implemented more generally 

using MCMC and are now available in software packages such 88 OxCal (Ramsey, 2005) 

and Bwigg (Christen, 2003). 

2.5.2 Prior information about the rate of deposition 

Christen and colleagues have also developed methods that allow the inclusion of a priori 

knowledge about the rate of deposition. In particular Christen et al. (1995) and Christen 

(1994a), discuss work in which they include a priori information about the rate of 

deposition of dry mass in lower levels (catotelm) of peat bogs. 

Mathematical models of the growth of the catotelm have been proposed which relate 

the cumulative mass of peat above a particular depth to the calendar age of peat at 

that depth. Christen demonstrates how radiocarbon dating and the use of Bayesian 

statistics can be used to make inferences about the relationship between calendar age 

and cumulative mass, and to estimate the accumulation and decay rates. 

Christen suggests that the problem should be modelled as follows. Consider an arbitrary 

fixed datum at depth do (below which all other samples will lie). Then eo represents the 

unknown age (in cal BP) of the peat at depth do. Now consider peat at depth d (d > do), 

let its calendar age be () «() > ()o) cal BP. Let M represent the cumulative dry mass (in 

g cm-2) of material deposited between do and d. Let p be the rate at which dry mass is 

added to the peat, and let a be proportional to the rate of decay of peat after deposition 

(a is assumed constant over the entire depth of peat). 

Adapting earlier work carried out by one of the co-authors (Clymo), Christen et al. 

(1995) makes several suggestions for modelling peat deposition, one of which is 

M = ~(1 - exp-a(O-OQ»). (2.13) 

There are two components to such a model: the first relates the cumulative mass to 
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the calendar age and the second relates the calendar age to the radiocarbon age. The 

second has been discussed in detail in Section 2.3.1. The first will be discussed here. 

Suppose there is a series of n radiocarbon determinations Xl ± 0"1, X2 ± 0"2, •.• , Xn ± O"n 

from peat samples taken at successive depths d 1 < d2 < '" < dn corresponding to 

calendar years (h, (h, ... ,On' Since peat age increases with depth, it implies that the (J's 

must be ordered, hence 01 < (h < ... < On. 

The authors then defines mi, the cumulative dry mass at depth di , in accordance with 

Equation 2.13, 

Rearranging the above equation in terms of Oi gives 

(2.14) 

This results in the calendar age (Ji been expressed in terms of the unknown parameters 

'" = (Oo,p, a) which we wish to learn about. Thus, the likelihood can then be written as 

(2.15) 

where (Ji is given by Equation 2.14. 

The authors then use the likelihood as defined in Equation 2.15 and assume informative 

priors for the two parameters, p and a. In applying the above method to data arising from 

specific peat formations, the authors demonstrate that incorporating a priori information 

and other known sources of error can elegantly be accounted for. 

2.5.3 Outlier detection 

Outliers in radiocarbon dating are thought to be relatively common, since there are a 

number of factors that affect the quality of radiocarbon dating and which could lead to 

the production of an outlying age estimate. Such factors include the following 
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1. Contamination with older or younger material (see Bowman 1990, page 27). 

2. The quality of sample handling and preparation in the laboratory to ensure samples 

undergo the appropriate pretreatment (see Bowman 1990, pages 28-30). 

3. The quality of care taken to ensure that samples can realistically provide calendar 

date estimates for the events we wish to learn about (see Bowman 1990, Chapter 

5). 

Radiocarbon laboratories only have control over the second factor and no control over 

the other two factors. This implies that radiocarbon laboratories can be producing top 

quality radiocarbon determinations, which may still contain outliers in relation to the 

event of interest. It is therefore important that any statistical methods used with a 

set of radiocarbon determinations should be robust to outliers. Christen (1994a, b) 

implemented a Bayesian approach for modelling and identification of outliers in groups 

of related radiocarbon determinations. 

The approach taken is as follows. The problem is simplified by taking only a single phase 

and using the same notation as in Buck et al. (1991). Let a represent the start of the 

phase and /3 represent the end of the phase. It is assumed that there are n radiocarbon 

determinations within the phase and it is assumed that they are uniformly distributed 

over the interval a to /3. 

Christen suggested that if Xi needs to be shifted by 6i (radiocarbon years) in order for 

it to be consistent with the rest of the samples in the same phase then it is said to be 

an outlier. This is formulated as 

where 

¢, = { 
1 if Xi needs a shift 

o otherwise. 
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So essentially the phrase 'needs a shift' can be interpreted as 'is an outlier'. The prior 

uncertainty concerning whether or not a shift is needed is measured by P( ¢i = 1) and 

P(¢i = 0), respectively. It is assumed in Christen (1994a, b) that whether or not the ith 

radiocarbon determination needs a shift is independent of other dates and also of 0: and 

[3. As a result of this, the likelihood derived can be expressed as 

n 

p(x!8, 6, l/J, a, [3) = II P(Xi!Oi, 8i, ¢i) p(Oi!a, [3). 
i=l 

As seen previously p(Oila, f3) '" U([3, a) for f3 < ()i < a and as a result of this 

As in previous models, a priori information about the boundary dates are typically 

vague, p( a, [3) ex: 1 for [3 < a. Since there is no a priori knowledge about the size of any 

shifts, it is also reasonable to assume a vague prior for di. Typically, however, the prior 

belief about the probability that a sample is an outlier is more informative. The prior 

probability that the ith sample is an outlier is represented by qi. That is P(¢i = 1) = qi 

and the prior probability that the ith sample is not an outlier is P( ¢i = 0) = 1 - qi. 

Christen (1994a, b) suggested that unless there is case specific expert knowledge then 

taking qi = 0.1 represents a sensible vague prior. 

The method devised in Christen (1994a,b) for detecting outliers has been implemented 

using MCMe and is readily available in the software BCal (Buck et al., 1999). 

2.5.4 Remodelling the calibration curve 

Christen (1994a) suggests remodelling the radiocarbon calibration curve, within the 

Bayesian framework, in order to take account of the uncertainties in the calibration data. 

This suggestion arose as a consequence of the radiocarbon dating technique improving 

and hence producing high-precision radiocarbon determinations. 
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The suggestion made in Christen (1994a) is that X should be modelled as being normally 

distributed with a mean 1-'(8) and a variance given by w2 (8), 

(2.17) 

The first term of w2 (8) represents the reported standard deviation from the radiocarbon 

laboratory and the second term reflects the uncertainty in the calibration data. 

Christen shows that a reasonable estimate of (12(8) can be given as 

(2.18) 

where tk is the calendar date of the kth knot and (1k is the standard deviation of the 

calibration curve at the kth knot. The term A in Equation 2.18 is used to account for the 

short term variability in the atmospheric l4C levels, estimated as 20, based on a sample 

from published experimental data. 

Thus the likelihood, p(xI8), as seen in Equation 2.6 is now corrected with the addition 

of the variance (12(8). Hence, assuming a vague prior for 8, the posterior density is 

essentially equivalent to the likelihood and is given by 

1 {(x -1-'(8»2} 
p(8Ix) ex w(8) exp - 2w2(O) . (2.19) 

2.6 Alternative prior specification 

Nicholls and Jones (2001) discuss the prior, p(a), currently used in the literature (i.e. 

Buck et al., 1992) which was intended to be reasonably non-informative. The authors are 

particulary concerned with modelling groups of related radiocarbon determinations and 

the inferences on the calendar dates of phase boundary parameters that are made when 
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the conventional prior is used. The authors believe that when using the conventional 

prior and when the duration of an archaeological phenomenon (such as the occupation 

of settlement) is over a relatively small timescale in comparison to the precision of the 

radiocarbon determinations, that the non-informative priors generate a bias towards 

wider date ranges of the archaeological phenomenon, which does not reflect substantial 

prior knowledge. 

This prompted the authors to propose an alternative formulation for a non-informative 

prior, in which the distribution of the difference between the earliest and latest dates 

has a uniform distribution. The following material discusses both the properties and 

motivation behind their alternative prior, as well as demonstrating how it is derived 

from a simple physical model of deposition. 

Building on the notation used by Naylor and Smith (1988), there are J abutting phases 

and J + 1 phase boundaries (i.e. Phase 1, with boundaries al and a2, represents 

the deepest phase containing the oldest material). Within each phase there are nj 

radiocarbon determinations. The only difference in notation is that Nicholls and Jones 

(2001) define a sequence of data to be modelled as lying in a finite interval (P, A) of 

length R, where the P stands for terminus post quem - "date after which" and A stands 

for terminus ante quem - "date before which". (In Nicholls and Jones (2001) all dates 

are given in years AD, where the convention throughout this thesis is to give dates 

in calendar years BP. Thus, this review will differ slightly from the notation given in 

Nicholls and Jones, 2001). 

The main interest lies in the distribution of p(8,0.) which summarizes the a priori 

knowledge before the radiocarbon determinations are available. As in Naylor and Smith 

(1988) and Buck et al. (1992) it seems natural to model (j conditionally on the layer 

boundary dates, 0., so p(B, 0.) is split into two components 

p(8, 0.) = p(810.)p(0.)· 
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In the absence of radiocarbon data, the parameter ()i,j might take any value between aj 

and aj+ 1 with equal probability, 

J 

p{9Ia) = II (aj - aj+1)-nj
, 

j=l 

(2.20) 

this is the conventional prior used by previous researchers e.g. Naylor and Smith (1988) 

and Buck et al. (1992). 

The main question of interest raised in Nicholls and Jones (2001), is what prior density 

should be used for the set of phase boundary dates, pea). One natural choice of prior 

is to assume that any legal set of dates is equally likely, hence a uniform prior density 

(Nicholls and Jones refer to this as the constant prior density). This is the prior found 

in the earlier work by Buck et al. (1992) which Nicholls and Jones believes weights the 

prior in favour of more widely spread sets of dates. They suggest an alternative prior 

density, 
( ) l-J 

_() s a p a = ---'--'---
R - sea) 

(2.21) 

which they believe is a more suitable non-informative prior for a, since it gives a uniform 

marginal prior for the span. One drawback to their non-informative prior is that the 

marginal prior densities for the a j'S do not have an intuitive archaeological interpretation. 

Modelling the deposition process 

This section looks at how the authors motivate their alternative prior density, pea), 

which has the property that the marginal prior density of the span is uniform and is 

derived from a simple physical model of the deposition process, based on properties of 

Poisson processes . 

• The parameters a1 and aJ+l represent the start (ad and the end (aJ+l) of the 

phases of activity. 

• The dateable material is assumed to be generated according to a Poisson process 

P), with a piece-wise constant rate A(t), for times t in the interval [aJ+l, alJ. 
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• The parameters a2,·.·, aJ mark the change-points in A(t). These are themselves 

a realization of Poisson process PA of constant intensity in the interval [aJ+1' a1]. 

• The datable material (generated by P>.) are randomly thinned (in archaeology this 

occurs naturally, by samples decaying or not being found in the excavation process) 

and a Poisson process thinned in this way remains a Poisson process3. 

Now the density pea:, B) can be expressed as conditional components of the values 

generated by the above processes 

The authors then condition on nj and as a result it can easily be shown that the density 

is uniform over the interval in which they are generated4 , since the events are Poisson. 

J 

p(Bla:) = n (aj - aj+d-nj
• 

j=l 

It is then assumed that all change points generated by PA are recorded. As a result of this 

assumption, and conditioning on the number of events generated by PA, the a2, ... , aJ 

are again uniform, 

So far, the above process model has been used to determine the prior density for all 

unknowns except a1 and a1+ 1. Nicholls and Jones (2001) do not attempt to model 

the process which determines the density peal, a1+1). Instead they impose a weak bias 

3Given a Poisson process with rate ~, each occurrence has a constant probability p of being recorded 
and the recording of an occurrence is independent of that of each other occurrence. Then if N'(t) is the 
number of occurrences recorded in an interval of length t then N'(t) has a poisson process of rate ~p. 
This particular type of thinning is referred to as geometric thinning. 

41n the interval (0, t) given that the number of OCCurrenCeS is N(t) = n , then the times of these n 
occurrences are independent and uniformly distributed in the interval. 
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towards a shorter interval with 

(2.22) 

Another alternative non-informative choice is peal, aJ+l) = 1, which would lead to a 

marginal prior span density being proportional to R - S. However, the authors slightly 

favour Equation 2.22, as it gives a uniform prior span, which they believe is a convenient 

property, hence it is non-informative in respect to the span. 

Non-abutting phases 

The authors also briefly discuss multiple phase models (Buck et al., 1992), where the 

phases are not abutting, but may in fact overlap. So from Buck et al. (1992), aj and /3j 

represent the beginning and ending of the phases j, where (j = 1, ... , J). 

The main difference with phases that may well overlap are the constraints of the phase 

boundaries. For example, depending upon the prior constraints, a1 and /3J may not 

represent the latest and earliest dates. Hence, the authors suggest calculating the span 

as 

8(a,/3) = max(o) - min(,8). 

Summary 

This subsection offers both a summary and a critical evaluation of Nicholls and Jones 

(2001). The motivation behind this paper arose as the authors believed that the 

conventional uniform prior distribution, first discussed in Naylor And Smith (1988), 

is more informative than first though with respect to intervals or spans of time (i. e. 

aj - O'j+t). In particular, it is biased towards longer time spans which is undesirable for 

at least some real applications. This led Nicholls and Jones to propose an alternative 

prior distribution, derived from a simple physical model of the deposition process, which 

they believe leads to a more suitable non-informative prior for 0, as it gives the property 

of a uniform marginal prior for the span. However there is a drawback to their choice 
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of prior. It leads to very informative marginal priors for 0::1 and O::J+l that do not have 

intuitive archaeological interpretations. 

2.7 Model comparison 

In the Bayesian context, the most widespread model choice criterion is the Bayes factor, 

defined as the ratio of the marginal likelihoods for a pair of models, which represents the 

evidence provided by the data in favour of a certain model. 

To explain the idea behind Bayes factors it is assumed that there are only two models 

of interest, M1 and M2, and interest lies in the relative probabilities of the two models 

given the data x. 

The data are assumed to have arisen from Model 1 with a probability density p(xIMl) 

or from Model 2 with a probability density p(xIM2). Given prior probabilities p(M1) 

and p(M2), the data produce posterior probabilities p(Mtlx) and p(M2Ix). Then using 

Bayes theorem it can be seen that, 

(2.23) 

where i = 1,2. The posterior odds in favour of model Ml over the alternative model M2 

can then be rewritten as, 

Posterior odds = Bayes factors x Prior odds. 

However, under the non-informative choice that p(Md = p(M2), hence both models are 

equally likely, the ratio of the prior odds equal!, implying that the posterior odds equal 

the Bayes factor 
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Essentially the Bayes factor is the ratio of the marginal likelihoods. The densities p(zIMi ) 

for i = 1,2 are obtained by integrating over the parameter space, 80 that 

So the Bayes factor is a summary of the evidence provided by the data in favour of one 

model over another. 

Agreement indices 

The calibration software OxCal (Ramsey, 2(05) offers a tool that it calls the agreement 

index, A, to allow users to test for outliers or unreliable chronological models, i.e. the 

user community use it as a tool for model comparison. Checks can be made on both 

individual dated items and on the model as a whole to ensure a reasonable level of 

consistency between dating evidence and other information. For each dated item the 

agreement index is calculated by, in Ramsey's notation, 

J p(t)p'(t)dt 
A = J p(t)p(t)dt . (2.24) 

Here p(t) represents the probability distribution before a chronological model has been 

taken into account. As seen in Section 2.3.1 we refer to this case as the basic model and as 

a result p(t) is essentially equivalent to the likelihood i.e. p(t) = P(8Ix, Mo) ~ p{xI8). The 

probability distribution p' (t) represents the posterior distribution given a chronological 

model, therefore we could rewrite p'(t) as p{8Ix, Md. By SUbstituting p(xI8) for p(t) and 

p(Olx, Md for p(t) in Equation 2.24, we get 

A _ J p(xI8)p(8Ix, Mt}d8 
- J p(xI8)p{xI8)d8 

(2.25) 

An overall agreement index, AOIJerall, is also calculated for the model as a whole which 
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is given by 

[ 

n ]1/.Jii 
Aoverall = n Ai 

t=1 

(2.26) 

Ramsey (2005) refers to the overall agreement index as a pseudo-Bayes-factor, with the 

exception of the power term, and refers the readers to Gilks et al. (1996), Chapter 9 for 

details. However, after careful manipulation of A, and the use of Gilks et al. (1996), it 

appears that Aoverau is in fact the ratio of marginal posterior predictive densities (with 

exception of the power term) rather than a pseudo-Bayes factor; the proof of this is given 

below. 

Using the definition of a marginal posterior predictive density from Gilks et al. (1996), 

page 151, Equation 9.4, which states that 

(2.27) 

We can rewrite Equation 2.27 in terms of the above two models of interest Mo (the basic 

model) and M1 (which represents any realistic chronological model). 

For Mo the marginal posterior predictive densities can be written as follows 

p(Xi!X, Mo) = J p(xi/Odp(Oi/Xi)dOi 

= J p(Xi/Oi)P(Xi/Oi)P(Oi)dOi 

= J p(Xi/Oi)p(XijOi)dOi. 

(2.28) 

(2.29) 

(2.30) 

Note the form of Equation 2.28 arises as we are only concerned with basic model, i.e. 

each Xi is independent. Also, from Section 2.3.1, we assume a vague prior for () i.e 

p( ();,) ex: 1 for 0 < OJ. For this reason Equation 2.29 simplifies to Equation 2.30. 

For M1 we can write the marginal posterior predictive density as 

(2.31) 
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If we now write Ai in terms of the marginal posterior predictive density, given in 

Equation 2.30 and Equation 2.31, we get 

Ai = J p(xiI8i)p(Oil x , MddOi 

J p(xiI8i )p(XiI8t)d8i 
(2.32) 

Clearly, Equation 2.32 takes the same form as Equation 2.25, hence Aoverall is in fact 

the ratio of the posterior predictive densities. 

When interested in learning about chronological models through the use of radiocarbon 

data, model comparison becomes an important issue. OxCal is currently the only 

calibration software which offers the users some form of model comparison. Although 

model comparison is not an area of research that we choose to tackle within the thesis, a 

more detailed discussion on ideas for alternative methods can be found in Section 8.2.1. 

2.8 Implementation of methods discussed within the 

chapter 

Many of the techniques for interpreting radiocarbon determinations (described in this 

chapter) are not readily available to the archaeological community because they have 

not been implemented in suitable software. However, there are exceptions, such as 

BCal (http://bcal.shef.ac.uk), OxCal (http://www.rlaha.ox.ac.uk/orau/oxcal.html) and 

CALIB (http://radiocarbon.pa.qub.ac.uk), which were written for this purpose. 

There are other software packages such as WinBugs, for constructing Bayesian statistical 

models using Markov chain Monte Carlo methods (see Section 3.2.2), which can be 

used for implementing many of the Bayesian methods for interpreting radiocarbon data. 

However, WinBugs is only really suitable for use by those who have some understanding 

of the mathematics behind the modelling and some knowledge about MCMC, to check 

that the output is reliable. 

Andrew Millard of Durham University has written WinBugs code for the implementation 
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of archaeological problems, many of which are taken from Buck et al. (1996), 

where he aims at providing a step forward on the kind of problems that can be 

tackled. The WinBugs code for all examples implemented (which include simple 

radiocarbon calibration, incorporating stratigraphic information, archaeological phase 

models assuming a uniform deposition rate, and many more) can be found on his web 

page: http://www.dur.ac.uk/a.r.millard/. 
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Chapter 3 

Modelling the deposition process 

3.1 Introduction 

This chapter will initially discuss a number of methods for Bayesian implementation, 

and in particular MCMC, before moving on to look at a range of alternative prior 

distributions for modelling the deposition rate of the dateable material within a phase 

of archaeological activity, all of which have a meaningful archaeological interpretation. 

However, two of these alternative priors are believed to have a much wider range of uses 

and therefore will be discussed in greater detail. This will include their motivation, their 

parametrization and the methods used for their implementation. 

3.2 Methods for general Bayesian inference 

This section of the chapter is intended to give a background to some of the statistical 

methods used in Sections 2.3 - 2.6 and is also intended to discuss the methods adopted 

throughout the rest of the thesis. 

The aim in Bayesian statistics is to devise a suitable statistical model p(xlcp), formulate 

the prior knowledge p( cp) and perform the necessary calculations to summarize the 
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posterior distribution, p(tI>lx), as given in Equation 2.1. In Bayesian statistics we are 

often faced with the problem that we cannot derive the posterior distribution analytically, 

as the evaluation of the normalizing constant, k, is often difficult. 

There are situations in which the posterior can be derived analytically, e.g. when using 

a conjugate priorI. However in practice the prior distribution must reflect accurately 

the available prior information, which may lead to complex modelling, in which case the 

use of conjugate priors is not applicable. Other methods, such as numerical integration, 

can be used to approximate the integral k. For completeness, the following sub-section 

discusses the concept of numerical integration, however, those interested only in the 

techniques used within the thesis may skip to Section 3.2.2. 

3.2.1 Numerical integration 

In Bayesian inference numerical integration, also referred to as quadrature, can be used 

to evaluate the normalizing constant, k, when analytical solutions fail. Consider a general 

one-dimensional problem, in which we want to approximate the integral 

1== lb f(x)dx. (3.1) 

The integral I is approximated by evaluating f at a number of points Xl, X2,···, Xn. The 

simplest solution is given by the weighted average 

n 

j = LWi/(Xi) 

i==l 

where Wi (for i = 1, ... , n) are known as the weights. 

Different quadrature methods are characterized by using different points of evaluation 

XI,X2, ... ,Xn E [a,b] and/or different corresponding weights, WI,W2,···,Wn· 

lChoOBe a prior with a suitable form 80 the posterior belongs to the same functional family as the 
prior. The choice of the functional family depend upon the likelihood and choosing a prior in this way is 
said to be conjugate. For example, given a normal likelihood and choosing a normal prior, the posterior 

is still normal. 
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Classical Newton-Cotes formulae 

There are two distinct approaches to numerical integration. The first method, referred 

to as the Newton-Cotes formula, is when f(x) is evaluated at regularly spaced points. 

The simplest of all quadrature rules is the midpoint role. This rule divides the interval 

[a,b] into n subintervals, the function f(x) is then evaluated at the midpoint of each 

subinterval and equal weights are then applied. In this case 

n 

iMP = h L f(a + (2i - 1)h/2» 
i=l 

where h = (b - a) / n. This method basically approximates the integral I by summing 

the areas of rectangles (the rectangles have an equal base (b - a)/n). 

There are slight variations within the Newton-Cotes formulae, such as the trapezoidal 

role, this method uses unit weights except at the extremes of the interval. The trapezoidal 

rule gives the approximation 

iT = h [f~a) + Ef(a + (2; -1)h/2» + f~)] . 
Another variation is given by the Simpson's rule. In this case weights alternating between 

4/3 and 2/3 are used except in the extremes of the interval where a value of 1/3 is used. 

In this case the integral is approximated by 

h [n/2 n/2 ] 
is ="3 f(a) + 4 ~ f(a + (4i + 1)h/2» + 2 tt f(a + (4i + 3)h/2» + feb) . 

Gaussian quadrature 

The second approach to numerical integration is the idea of Gaussian quadrature, where 

the evaluation points are no longer restricted to be equally spaced, and that they can 

be chosen to give higher accuracy. Gaussian quadrature is constructed to yield exact 

results for polynomials of order 2n -1 (or less), by a suitable choice of evaluation points 

and weights. 
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There are a number of Gaussian quadrature methods, which evaluate f(x) over a finite 

or infinite range. The problem is to evaluate 

1= lb w(x)f(x)dx. (3.2) 

Depending upon the choice of a, band w, will result in different Gaussian quadrature 

rules, some of the most common rules are given below in Table 3.1. 

Interval 
[-l,lJ 
[-l,lJ 
[0,00) 

(-00,00) 

w(x) 
1 

1/( VI - x2) 
e-x 

e-x2 

Integration rules 
Gauss-Legendre quadrature 
Gauss-Chebshev quadrature 
Gauss-Laguerre quadrature 
Gauss-Hermite quadrature 

Table 3.1: Rules of Gaussian quadrature 

Naylor and Smith (1988), one of the first to model radiocarbon determinations 

in a Bayesian framework, used numerical integration techniques to summarize the 

posterior distributions of interest. The particular method they used was Gauss-Hermite 

quadrature, for further details of this methods see O'Hagan (1994). 

The one-dimensional quadrature rules discussed above can be directly generalized to 

higher dimensions, see O'Hagan (1994). However, one drawback to methods of numerical 

integration is that, for problems involving a large numbers of dimensions (e.g. a Bayesian 

inference problem with a large number of parameters), using such approaches becomes 

computationally intense. 

3.2.2 Simulation methods 

As seen in Equation 2.2 we can express the posterior distribution up to a constant of 

proportionality. As a result, we can generate random samples from the distribution of 

interest, which in this case is the posterior distribution. In general the dimensionality of ¢ 

will be too high to use methods such as rejection sampling. However, simulation methods 

based on Markov chains are available, these methods are better known as Markov chain 
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Monte Carlo (MCMC) methods. 

Markov chains 

Markov chains are sequences of random variables Xl,X2, ... such that, for t 2: 0, 

P(Xt+IIX I, ... , Xt) = P(Xt+lIXt), hence Xt+l only depends upon the previous state 

Xt. P(.I.) can be referred to as the transition kernel and describes how we move from 

X t to Xt+l. 

Let pt(XtIXo) denote the distribution of Xt, where Xo represents the starting state 

of the Markov chain. It can be shown that as t - 00, pt(XtIXo) will converge to 

the stationary distribution, 1/J(X), which does not depend upon t or Xo, given that the 

Markov chain is irreducible, aperiodic and positive recurrent. If the Markov chain has 

reached equilibrium by time T, then we can say that XT+l, ... , XT+n is a sample from 

the density function 1/J(X). 

Markov chain Monte Carlo methods 

Markov chain Monte Carlo (MCMC) methods essentially construct a Markov chain 

for the parameters cp whose stationary distribution, 1/J(cfJ) , is equal to the posterior 

distribution p(cfJlx). MCMC is now one of the most popular approaches when dealing 

with complicated models in which it is rare that samples from the posterior distribution 

can be obtained directly. There are two main methods used. The first is the Gibbs 

sampler which is used when it is possible to sample from each of the I-dimensional full 

conditional distributions, p(¢ilx,¢l, ... ,¢i-J,(jJi+l, ... ,¢n). The second method is the 

Metropolis-Hastings algorithm, this is used when it is not possible to sample from the 

conditional distributions of interest. 

Gibbs sampler 

The Gibbs sampler is a Markov chain algorithm that is particularly useful in high­

dimensional problems, when it is possible to sample from each of the one dimensional 

conditional distributions. Suppose that there are k parameters ¢1,.·., tPk of interest, 
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denoted by 4>, and we wish to make inferences about their joint posterior distribution, 

p( 4>lx), as well as their marginal posterior distributions p( <Pi Ix). Then the Gibbs sampler 

can be used to sample from the conditional distributions in the following way. 

1. Choose arbitrary starting values 4>(0) = (<p~0), <p~0), ... , <p~0» 

2. Generate a series of random values 4>(1), rp(2) ... </J(t) in the following way: 

(1) ( (0) (0) 
• draw <PI from P 4>1 lx, <P2 , ... , <Pk ), 

(1) (/ (1) (0) (0) 
• draw 4>2 from P <P2 x, <PI '¢3 , ... , ¢k ), 

(1) (1) (1) (0) (0) 
• draw ¢3 from P(¢3/ X , ¢1 '¢2 '¢4 , ... , 4>k ), 

• 

• 
(1) (1) (1) (1) ) 

• draw <Pk from P(4)3/X , ¢1 , ¢2 , ... , ¢k-l . 

This completes one iteration of the algorithm. 

3. Repeat step 2 for t iterations. 

The idea behind the Gibbs sampler is to draw samples from the posterior distributions 

p(<Pilx ) using Markov chains which have the stationary distribution, 1/J(<Pi)= p(<pilx). In 

particular, as t -+ 00, ¢~t) tends to a random quantity whose density is p(¢ilx). Thus for 

large t, the values (¢~t), ... , ¢it» are approximately a random sample fromp(</Jlx). There 

are two different methods of the Gibbs sampler, the 'deterministic-scan Gibbs sampler', 

which updates <Pi, in order. The second type is the 'random-scan Gibbs sampler', where 

the <Pi to be updated is chosen randomly. 

The Gibbs sampler was first introduced into archaeological problems by Buck et al. 

(1992), see Section 2.5, and is used in both OxCal and BCal to implement chronological 

models. 
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Metropolis-Hastings algorithm 

The Metropolis-Hastings algorithm is a general term for a family of Markov chain 

simulation methods, used to draw samples from the posterior distribution, when it 

is not possible to sample from the full conditional distributions of the parameters. 

The Metropolis-Hastings algorithm was described by Hastings (1970), generalizing the 

algorithm of Metropolis et al. (1953). The Gibbs sampler, as discussed above, can be 

viewed as a special case of Metropolis Hastings. This section will present the Metropolis­

Hastings algorithm and discuss several implementation issues. 

Suppose that 'l/J( ep) is the density of interest, hence the stationary distribution of the 

Markov chain. Suppose further that we have some (arbitrary) proposal distribution 

q( ep'/ept) which is easy to simulate from, but does not necessarily define a Markov chain 

having 'l/J( ep) as its stationary distribution. Consider the following algorithm: 

1. Generate proposed values ep' using the proposal distribution q( ep' / ept) 

2. Evaluate the acceptance probability p(ep', ept) of the proposed move, where 

(3.3) 

3. Put cpHl = ep' with probability p(ep',ept), and put cpt+l = ept otherwise. 

In other words, at each stage, a new value is generated from the proposal distribution. 

This is either accepted, in which case the chain moves, or rejected, in which case the chain 

stays where it is. Whether the move is accepted or rejected depends on an acceptance 

probability which itself depends on the relationship between the density of interest and 

the proposal distribution. 

3.2.3 Practical considerations in MCMC 

There are several issues which arise when implementing MCMC methods. These include 

the choice of the proposal distribution and its corresponding standard deviation, choosing 
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suitable starting values for parameters 4> and also how to judge when the Markov chain 

has reached equilibrium. Each of these issues will be discussed in turn below. 

Choice of proposal distribution 

The first consideration to take account of is the choice of proposal distribution, q(4)'I4>t). 

• The Metropolis Algorithm considers only symmetric proposal distributions, having 

the form q( 4>t 1 ¢I') = q( ¢I'I¢lt) V <jJt and ¢I'. Here the acceptance probability simplifies 

to 

(3.4) 

A special case of the Metropolis algorithm is the random-walk Metropolis, in this 

case the proposed value 4>' at each stage is the parameter value from the previous 

iteration adjusted by adding a displacement, from some symmetric distribution. 

For example q(¢'I¢lt),...., U(4)t _l,<jJt + 1). 

• The independence sampler is the Metropolis-Hastings algorithm where q(4)', ¢It) 

= q(4)'), does not depend on ¢It. The proposal distribution needs to be a good 

approximation of (and heavier tailed than) the stationary distribution, for this 

method to work well . 

• Instead of updating the whole of 4>=(¢1,"" ¢n), it is often more convenient and 

computationally efficient to update components one by one and this method is 

known as the single component Metropolis-Hastings algorithm. Gibbs Sampling 

is a special case of the single component Metropolis -Hastings algorithm in which 

the proposal distribution for each component is its full conditional distribution. In 

this case the acceptance probability is always 1, hence a proposed value is always 

accepted. 

Care is also need when choosing values for the corresponding standard deviations of 

the proposal distributions. One method is to monitor the acceptance probability and 

then it is possible to adjust the standard deviations accordingly. A cautious proposal 
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distribution, generating small steps, is the consequence of a proposal distribution with 

a too low standard deviation and will generally have a high acceptance rate, but will 

nevertheless move slowly around the parameter space. A bold proposal distribution 

generating large steps will often propose moves from the body to the tail of the posterior 

distribution, as a consequence of a too large standard deviation. Such a chain will 

frequently not move, giving a low acceptance rate and resulting in slow exploration 

of the posterior distribution. Ideally the overall proportion of accepted moves should 

be around 25% and it is therefore possible to experiment with values of the standard 

deviation to get an overall acceptance rate around this level. 

Choice of starting values 

In theory, since we are only interested in values once the Markov chain has reached 

equilibrium, the choice of starting values should be irrelevant. In practise, it is important 

to choose starting values for the parameters, (j), carefully as a poor choice of starting 

value may result in the Markov chain taking longer to converge. In addition, the choice 

of starting values can help check the behaviour of the algorithm is correct. One way to 

choose starting values is to experiment with a number of different starting values and 

see if they converge to similar distributions, as they should. 

Convergence of the Markov chain 

One of the most difficult assessments to make regarding MCMC output, is how to identify 

when a Markov chain has reached equilibrium. MCMC methods can vary considerably, 

sometimes they can be quite slow to converge, requiring long runs, while other times 

runs of a much shorter length are adequate. So in order to check the stationarity of an 

MCMC chain, convergence diagnostics are commonly used. 

Bayesian Output Analysis (BOA), available from www.public-health.uiowa.edu/boa 

(Smith, 2005), offers four of the most commonly used methods to check convergence 

of MCMC output, these being Brooks, Gelman & Rubin, Geweke, Heidelberg & Welch 

and Rafferty & Lewis, as well a visual methods such as time series plot of parameter 
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values against iteration numbers, and autocorrelation plots. When checking convergence 

of MCMC output it is suggested that no one method should be thought of as superior, 

but a combination of diagnostics are used rather than anyone single diagnostic. During 

the course of this project the two diagnostics Geweke and Heidelberg & Welch were 

commonly used as well as a number of visual methods. The section below will outline 

these two diagnostics in more detail. 

Geweke 

This diagnostic was devised by Geweke in 1992 and requires a single MCMC chain. The 

method is based on a standard time series method and for each parameter the chain 

is divided into two windows, one containing the first x% and the other containing y% 

of the iterations. In both windows the sample mean and the asymptotic variance are 

calculated. A Z-statistic is then produced, by calculating the difference between the two 

means divided by the asymptotic standard error of their difference. As the number of 

iterations increases the distribution of the Z-statistic approaches the standard normal. 

Therefore, large values of Z i.e. which fall in the extreme tails of N(O, 1) suggest that 

the chain has not fully converged and a longer run is needed. 

Heidelberger & Welch 

This convergence diagnostic is a two-stage test for a single chain (devised in 1983), the 

first being the 'stationarity test' and the second called the 'interval half-width test'. The 

first test is based on the Cramer-von-Mises statistic, to test the null hypothesis that 

the sampled values come from a stationary distribution. Initially the test is applied to 

the whole chain, if the null hypothesis is rejected, then the test is repeated with the 

first 10% of the iterations discarded. This is repeated until either more than 50% of the 

chain has been discarded or the test has passed. If the test fails then a longer MCMC 

run is needed. However, if the stationarity test is passed then the portion of iterations 

that passed the test are subject to the half-width test. This test calculates the standard 

error of the mean for the portion of iterations that passed the stationarity test and the 

half-width of the associated 95% confidence interval for the mean (i.e. 1.96xstandard 
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error). If the half-width is less than f times the sample mean of the retained iterations 

then the half-width test is passed. If the half-width test fails this suggests that there is 

evidence against convergence and a longer chain is needed. 

While the above two convergence diagnostics are routinely used, visual methods are also 

very useful. For example a calibrated date, as seen in Figure 2.1, is typically multi­

modal and non-symmetric. Depending upon the part of the calibration curve under 

consideration, the calibrated date might be clearly bimodal but the chain may become 

stuck in one of the modes. In this case, although convergence diagnostics may indicate 

that the chain has converged, the chain is not fully representing the posterior distribution 

of interest. When this occurs, one solution may be to run multiple chains each with 

diverse starting values and then compare within and between chain properties. 

3.3 Devising alternative deposition models 

This section of the chapter is concerned with the modelling of the deposition rate of the 

datable material within a phase of archaeological activity. As previously discussed, the 

current convention is to assume that the material suitable for dating was deposited at 

a uniform rate (see Section 2.3.3) between the start and end dates of unknown calendar 

age. Initially it was assumed that such models constituted vague priors and that they 

were suitable for use in a wide range of applications. This has proven to be the case for 

a great number of real problems and may also be the simplest way to represent prior 

ignorance, when little is known a priori about the rate of deposition. 

However, there have been an increasing number of cases in the applied literature (Housley 

et al., 1997 and Van Strydonck et al., 2004) in which the authors discuss the rate at which 

material is deposited or the rate at which material is manufactured within a period of 

time. In these cases the authors believe that the rate of deposition or manufacture is 

not uniform over the proposed range. However, the majority of archeologists have very 

little mathematical background and they rely wholly on the software available to them 
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to interpret their data, often resulting in them contradicting their own prior beliefs. 

So the aim here is to seek alternatives to the conventional uniform deposition model 

and thus build a more flexible range of prior distributions, that reliably represent the 

archaeologist's a priori information. 

It might be assumed that the first obvious step to progress from the uniform prior for the 

rate of deposition, would be a triangular prior. Clearly a triangular prior could be defined 

in a number of different ways, see Figures 3.1(b) & (c). These priors represent situations 

where there has been no period of established activity. For example, Figure 3.1(b) could 

be useful in situations where we know a process slowly started but suddenly came to an 

end; this might represent a settlement building phase which was ended abruptly by fire 

or during a battle. However, triangular priors are not perceived to be particularly useful 

in many other situations. 

(a) (b) (c) 

Calendar yean; (cal BP) Calendar years (cal BP) Calendar years (cal BP) 

(d) (e) 

Calendar years (cal BP) Calendar years (cal BP) 

Figure 3.1: Schematic representations of prior deposition models (a) conventional 
uniform (b) right-angled triangle (c) general triangle (d) trapezium and (e) sigmoidal. 

Figures 3.1(d) & (e) however, which we refer to as the trapezium and sigmoidal priors, 

their names reflecting their shapes. In both cases it is believed that they can be seen 

as formalizations of a well accepted archaeological model, for the use of sites or whole 
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regions and also for the development of technologies and fashions. The reason is, that 

rather than there being a sudden increase from zero to the maximum rate of deposition, 

as in the uniform case (see Figure 3.1(a», there would be a gradual increase, followed 

by a period of constant deposition, followed by a gradual decrease in the deposition 

rate. For this reason it seems likely that both prior distributions will have a range of 

general uses and reflect more accurately the uncertainties in such processes i.e. sites or 

landscapes being established over a finite period of time, rather than instantaneously. 

Note that the shape of Figure 3.1(d) & (e) need not be symmetric. Also, Figures 3.1(a) 

- (c) can all be thought of as special cases of the trapezium prior (this will be discussed 

in more detail in the next section). 

So far throughout this thesis we have talked about modelling the rate of deposition of 

datable material within an archaeological phase. As seen from Figure 3.1, a number 

of alternative deposition rates are plausible and we can think of these plots as possible 

intensity functions. However, to use such intensity functions as prior distributions it 

must initially be assumed that an individual sample is randomly chosen from the material 

suitable for dating. Then the intensity function needs to be normalized to enable us to 

use it as a probability distribution. 

There are a number of case studies from the applied literature which motivate the use of 

non-uniform priors. Two in particular will he used in Chapter 4 to illustrate the difference 

in inferences when adopting the conventional uniform prior and alternative non-uniform 

priors, these being Van Strydonck et al. (2004) and Housley et ai. (1997). In both 

papers the authors are interested in using radiocarbon dating as a means of answering 

chronological questions posed. Both authors adopt ad hoc statistical methods which do 

not really answer the questions posed and are not statistically sound (full details of their 

methodology can be found in Sections 4.2 & 4.3). However, the authors do state their 

a priori beliefs about the rate at which the material dated was deposited/manufactured 

within the phase of interest. For example, in Van Strydonck et ai. (2004) the authors state 

"... the manufacturing dates of related textiles are not uniformly distributed over the 
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proposed range, but there exists an introduction phase, a blooming period and a period 

of decline". From this statement it is clear that there is a need to develop the existing 

models further to allow for a more robust and realistic modelling of the deposition rate. 

This subsection is concerned with modelling the deposition rate of datable material and 

in particular devising a range of alternative non-uniform a priori distributions. In the 

majority of archaeological calibration problems there will typically be some form of a 

priori knowledge. Whether this relates to the time period of interest or the rate at which 

the material is deposited/manufactured within an archaeological phase. 

We did not elicit a priori information regarding the rate of deposition/manufacture 

within a period of time from experts directly (e.g. archaeologists) as many have very 

little mathematical/statistical background which may make it difficult for them to 

translate their beliefs into a suitable/realistic statistical distribution. Although, this 

is not always the case as Alex Bayliss of English Heritage was very keen to be involved 

in the development of the alternative distributions and on many occasions we discussed 

typical manufacture/deposition rates for a range of archaeological calibration problems. 

The main approach we adopted was to devise alternative distributions based on a priori 

knowledge stated in cases studies found in the applied literature. In many cases the 

authors would state their a priori beliefs about the rate of deposition/manufacture within 

a period of time as being non-uniform, see Sections 4.2.3 and 4.3.2. 

3.4 Set-up of the trapezium and sigmoidal priors for 

the deposition rate of datable material within an 

archaeological phase 

In the sections to follow, the modelling of both the trapezium and sigmoidal priors will 

be discussed. Initially, we describe the parametrization of the two prior distributions 

before going on to talk about the set-up of the models for a single phase of activity as 
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well as multiple phases of activity. 

3.4.1 Trapezium prior 

The first alternative prior distribution considered is the trapezium prior distribution 

as seen in Figure 3.2. The same parameters, a and [3, are used to represent the start 

and end dates (cal BP) of the phase of activity, to be consistent with the conventional 

parameterization of the uniform prior. Now we also have two extra parameters in the 

case of the trapezium prior. Firstly, , which represents the beginning of the period of 

constant deposition and, secondly, 8 which represents the end of the period of constant 

deposition (see Figure 3.2). The trapezium can be explicitly defined as 

o 
h(x-[3)/(a - [3) 

for x < [3 

for[3<x<a 

X", Trap(a", 6, [3) <=> p(xJa", 8, [3) = h for 8 < x < , (3.5) 

h(a - x)/{a - ,) for, < x < a 

o forx>a 

where h is a constant, whose value is determined by the values of a, " a and [3. 

Notice that the trapezium prior is a generalization of uniform prior, in the sense that the 

uniform is a special case of the trapezium when a = , and [3 = 8. It is also seen that if 

, = 8 then this represents Figure 3.l(c) and if, = 8 = [3 this represents Figure 3.1(b). 

3.4.2 Sigmoidal prior 

The second alternative prior implemented is the sigmoidal prior suggested by Blackwell 

and Buck (2003), illustrated in Figure 3.3. The sigmoidal prior again has four parameters. 

Again, to be consistent, a and [3 are used to represent the start and end dates (cal BP) 

of the phase of activity and, and 6 represent the internal parameters. 

This prior is similar to the trapezium prior, but the main difference lies in the tails of the 
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a, 6 
Calendar years (cal BP) 

Figure 3.2: Schematic representation of trapezium prior for the deposition rate. 

distribution. Hence the constant part on (8, ')') is the same, but the linear interpolation 

in (')', a) and ((3,8) in the trapezium prior is replaced by something much smoother, e.g. 

some sort of sigmoid, such that 

o for x < (3 

hg(x - (3)/(8 - (3» for (3 < x < 8 

X", Sig(a, ')', 8,(3) ~ p(xla,,),,8,(3) = h for 8 < x < ')' (3.6) 

hg(a - x)/(a - ')'» for,), < x < a 

o for x > a 

where g(.) : [0,1] -+ [0,1] is some known monotonic function. The monotonic function 

g(.) used in the implementation here is defined as 
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'Y d 
Calendar years (cal BP) 

Figure 3.3: Schematic representation of the sigmoidal prior for the deposition rate as 
suggested in Blackwell and Buck (2003). 

3.4.3 Single phase of activity 

When modelling a single phase of activity, with respect to the trapezium or sigmoidal 

prior, interest lies in estimating the calendar dates of the phase boundaries, a, -y, 6 and {3. 

Within the phase, there are n samples suitable for radiocarbon dating. For i = 1, ... , n 

Xi±O'i represents the ith radiocarbon determination each associated with a true unknown 

calendar date (Ji. Using Equation 2.17, the likelihood can be written as 

(3.7) 

where w;((h) = 0'; + O'~(l)i). This follows the suggestion in Christen (1994a) i.e. to take 

account of the uncertainties in the calibration data. 

In the absence of any prior knowledge, it is assumed that a, -y, 8 and {3 lie anywhere in 

the finite interval (P, A) of length R, where the P stands for terminus post quem ("date 

after which") and A stands for terminus ante quem ("date before which"). Note that, as 

the dates are measured in years BP (before present) they are subject to the constraint 

that A > a ~ -y ~ 8 ~ {3 > P. A particularly simple form of joint prior, pea, -y, 6, {3), 
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is used to represent a minimal state of prior knowledge, which can be represented as 

follows, as 

where 

pea, -y, 6, (3) ex Ie(a, -y, 6,(3) 

{

I if(a,-y,t5,(3)€C 
Ie( a, " 6, (3) = 

o otherwise 

and C is the set of a, -y, 8 and (3 that satisfy the above constraints i. e. A > a ~ , ~ 15 ~ 

(3 > P. 

Our main interest lies in the form of p(Oila, -y, 8, (3). This represents the prior knowledge 

about the rate at which datable material is deposited within an archaeological phase. 

The conventional method, as discussed in Section 2.3.3, is to assume that 

Oila, (3 f'V U(a, (3) for i = 1, ... , n. 

However, p(Oila, -y, 8, (3) can now take two alternative forms, these are 

PTrap«(}ila, " 15,(3) f'V Trap (a,-y, 6, (3) 

PSig ((}i la, -y, 8, (3) f'V Sig (a", 6, (3) 

(3.8) 

(3.9) 

as defined in Equations 3.5 and 3.6. As a result, p(B/a, -y, 8, (3) can either be written 

n 

p(B/a,-y,8,(3) ex ID(B) IIPTr&P«(}ila ",t5,(3) 
i=l 

when implementing the trapezium prior or 

n 

p(B/a, -y, 6, (3) ex ID(B) IT PSig«(}i/a, -y, 6, (3) 
i=l 
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when implementing the sigmoidal prior where 

{ 

1 if8~D 
ID(8) = 

o otherwise 

and D is the set of values of 8 that satisfy some constraints. For example there might 

be stratigraphic ordering between some of the INs. 

Consequently, the joint posterior density of 8, a, ,,(, & and /3 is given by 

pea, ,)" &, /3, 91z) ex: p(xI9)p(9Ia, ,,(, 6, (3)p(a, ,,(, 6, (3). 

It is not possible to write down explicitly the conditional distributions of interest, e.g. 

p(aI9, x, (3) due to the form of p(9Ia, ,),,8, /3). We are therefore unable to use the Gibbs 

sampler, consequently we use a Metropolis-Hastings algorithm to evaluate p( a, ,,(,6, /3, 9); 

details of the algorithm used can be found in Section 3.5. 

3.4.4 Multiple phases of activity 

This section sets up both the trapezium and sigmoidal prior deposition models within 

a multiple phase framework. The ideas are very closely linked to those in the previous 

section. 

There are now m phases of activity that have been identified by archaeologists. In 

this case we let a j, ')'j, OJ and /3j represent the four parameters, of the trapezium 

or sigmoidal prior, for phase j (j = 1, ... , m). That is to say, al represents the 

beginning of Phase 1 and /31 represents the end of Phase 1. As seen in Section 3.4.3, 

as we are working in calendar years BP, the parameters are subject to the constraint 

A> a' > "Y' > o· > ~. > P 3 - 13 - 3 - fJ) • 

As we are now working with multiple phases, a priori information with regard to the 

phase boundary parameters may arise e.g. al > a2, /31 = a2, a2 > /31, Again a 

particularly simple form of joint prior, p(a,-y,6,/3), is used, which assumes that all 
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values of aj, "Ij, 8j and {3j are equally likely. That is 

where 

p( a, 1', 0, {3) ex: Ie( 0, 1', 0, {3) 

{

I if (o,"Y, o, {3) (. C 
Io(a, "Y, 0, {3) = 

o otherwise 

where C is the set of values of a = (a!, ... , am), "Y = ("fl, ... , "1m), 0 = (81, ... , 8m) 

and {3 = ({3l, ... , /3m) which satisfy some given constraints, such as the ordering of 

parameters. 

Let nj represent the number of samples assigned to the jth phase. The ith radiocarbon 

determination in the jth phase is represented by Xi,j ± CTi,j, associated with Oi,j, 

the corresponding calendar date (cal BP). By adapting Equation 3.7, the likelihood 

p(xi,jIOi,j) can be written as 

(3.10) 

Again our main interest lies in the form ofp(Oi,jlaj,"Ij,8j ,/3j). This represents the prior 

knowledge about the rate at which datable material is deposited within the jth phase. 

The conventional method, as discussed in Section 2.3.3, is to assume that 

Oi,jlaj, {3j '" U(aj, {3j) for i = 1, ... , nand j = 1, ... ,8. 

However, p(f:)i,jlaj, '''1j, 8j, /3j) can now take two alternative forms, these are 

PTrap (Oi,j laj, "Ij, 8j , /3j) ""' Trap (aj, "I;, 8j , f3j) 

PSig(f:)i,j laj, 1'j, 8j , {3j) ""' Sig( OJ, "Ij, c5j, /3j) 

(3.11) 

(3.12) 

as defined in Equations 3.5 and 3.6. As a result, p(Ojla, "I, 8, /3) [note OJ represents the 
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set of fJ's belonging to the jth phase] can either be written 

nj 

p( 8jlaj, "/j, 6j, (3j) ex IDj (8j) IT Pn-&p(fJi,j laj, "/i, 6j, (3j) 
i=l 

when implementing the trapezium prior or 

nj 

p(8jlaj,"/j,6j,{3j) ex IDj (8j ) IIPSig(fJiJ laj,"/j,6j ,{3j) 
i=l 

when implementing the sigmoidal prior where 

{

I if 8j f Dj 
ID.(8J·) = 

J • o otherwISe 

but now Dj is used to represent the set of values that 8j can take within phase j. 

So if we wish to estimate the calendar dates of the phase boundaries, 0I.,'1,6,{3 and 8, 

e.g. 01. = (ar, ... , am), the joint posterior distribution can be written as 

p( 01., '1,6, /3, 81:.:) ex p( :.:18)p( 8101., '1, 6, {3)p( 01., '1, 6, (3). 

The remainder of this chapter will concentrate on the methods used to implement both 

the trapezium and the sigmoidal prior deposition models, as well as discussing the 

problems encountered along the way. 

3.5 Implementing the trapezium and sigmoidal prior 

distributions using a Metropolis-Hastings algorithm 

As discussed in Section 3.4.3 it is not possible to sample from the conditional distributions 

of the parameters, 8, a, ,,/, 6 and {3. As a result a Metropolis-Hastings algorithm, as 

described in Section 3.2.2, has been implemented in the programming language C, in 

order to sample values from the posterior distribution p(8, a, "/, 6, (3lx). Only details of 
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the algorithm used for a single phases of activity are given here, but using the extensions 

in the previous section the algorithm can easily be generalized to multiple phases. The 

particular type of algorithm used is a single-component Metropolis~H8Stings algorithm. 

Let cp = {a, "Y, 8, /3, (h, ... ,On}. Instead of updating the whole of cp at once it is more 

convenient to update the parameters 9, a, "Y, 8 and /3 separately. As a result, an iteration 

of the single component Metropolis-Hastings comprises of h updating steps (where 

h = n + 4 and n represents the number of radiocarbon determinations). Although 

it is not necessary, a fixed updating order for the parameters is assumed. The parameter 

j3 is updated first, followed by 8, "Y, a and then 01."" On. [Note, as a result of using 

a single-component algorithm, the ith update of cp at iteration t may depend on the 

t 1 f f th t f .l,.· .l,.t - {-I.t -I.t -I.t--l -i,t---l} curren va ues 0 any 0 e componen s 0 'I' z.e. 'I'(i) - 'PI"" 'Pi~I' 'PHI"'" 'Ph ' 

where CP(i) denotes all t/J except the ith element]. 

Updating /3,8, "Y and a 

Although a single-component algorithm is used which means that each of the four 

parameters {3, 8, "Y and a are updated separately, each is updated in the same way. For 

this reason only the steps for updating {3 will be outlined below. 

At each iteration t, the next state j3t+ 1 is chosen by sampling a candidate point (3' from a 

proposal distribution q(j3'/j3t). A convenient choice of proposal distribution is a truncated 

Normal distribution, as {3 is constrained to lie between P and 6, see Section 3.4.3. 

Truncated Normal distribution 

A truncated Normal distribution is a Normal distribution that is restricted to lie within 

a finite (or semi infinite) range, by truncating the tails of the distribution. The truncated 

Normal distribution is expressed in terms of the Normal distribution as follows 

otherwise, 

where cPL,U(X/J-l, 0') denotes the density of a normal random variable truncated at [L, UJ 
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and </J and <P are the probability density and the cumulative distribution function 

respectively for the standard Normal distribution. 

As a result the proposal distribution, Q(,8'I,8t), can be expressed as 

with mean,8t and corresponding standard deviations 0'f3 and with the left tail truncated 

at P and the right tail truncated at the minimum of 6 and min(9). 

The candidate point ,8' is then accepted with probability 

p(,8t {3') = min (1 p(a, 'Y, 6, ,8')p(9Ia, 'Y, 6, ,8')q({3tl.8')) 
, 'p(a,'Y,6,,8t)p(8Ia,'Y,6,,Bt)q(,8'I,Bt) . 

As the algorithm used is a single-component Metropolis-Hastings algorithm, the term 

p(xI8) does not contribute to the updating of,8 and thus can be treated as a constant. 

Clearly, p(8Ia, 'Y, 6,,8) will differ depending on whether a trapezium or sigmoidal prior is 

being implemented. 

Updating 8 

Each 8i is updated separately yet the method for updating the individual (J's is the same. 

Hence, a general methodology for updating (Ji is given below. 

A proposal distribution, q«(J~I(Jf), is needed to generate the next value, (J!+l, in the 

Markov chain given the current value of ef. Again, a convenient choice is the truncated 

Normal distribution as 8 is constrained to lie between ,8 and a, see Section 3.4.3. This 

is represented as 

The candidate point e; is then accepted with probability 
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As a result of using a single-component Metropolis-Hastings algorithm the term 

p(a, 'Y, 6, 13) does not contribute when updating ()i and thus can be treated as a constant. 

Also the term p(8/a, 'Y, 6, (3) can be simplified to P(Oi/a, 'Y, 6, (3) as only 0i is being updated 

and therefore 8 i stays the same. Again, the form of p(8i/a, 'Y, 6, (3) will differ depending 

on whether a trapezium or sigmoidal prior is being implemented. 

This section was intended briefly to explain the algorithm used to estimate the calendar 

dates of 8, a, 'Y, 6 and (3. However, full details of the algorithms can be found in the C 

code in Appendix A. 

3.6 Coding the MCMC: problems encountered 

As discussed, in Section 2.8, WinBugs code for implementing archaeological phase models 

(assuming a uniform deposition rate) is available via Andrew Millard's web page. As 

a result, it was initially decided to work in WinBugs and extend the existing code to 

incorporate a range of alternative a priori deposition rates. 

Clearly, the trapezium distribution is not a standard distribution, however, WinBugs 

offers an option to use sampling distributions that are not included in their list of 

standard distributions by using, what they call the 'zeros trick' or alternatively the 

'ones trick' (see the WinBugs manual found at http://www.mrc-bsu.cam.ac.uk/bugs for 

details). While trying to adopt these tricks, a number of problems were encountered 

as well as peculiarities in the output. The main peculiarity was that the overall span 

(the difference between a and j3) when using the trapezium prior was smaller than the 

overall span when using the uniform prior. This caused concern, as it was felt that the 

trapezium prior would allow for more uncertainty in the tails of a and (3 consequently 

resulting in the difference between the two being greater under the trapezium prior. After 

correspondence with Andrew Thomas (WinBugs technical queries), it became apparent 

that it was not possible to define a new sampling distribution using one of their 'tricks' 

when the parameters of the distribution are ordered i.e. in our case a ~ 'Y ~ t5 ~ ;3. 
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As using WinBugs for extending the existing models was clearly not an option, it was 

felt that the best alternative was to write our own MCMC algorithms in R. Although R 

has many advantages, e.g. we have more control over the algorithms used, there is one 

main disadvantage of using R. R is very intense in terms of computer memory and each 

iteration is expensive in terms of computer time. Nonetheless, for a while, because of 

advantages associated with speed of coding we used R programs, running them as batch 

jobs, carrying out a smaller number of iterations each time to avoid potential memory 

problems, which decreased the total computer time needed. 

However, as my research progressed and the case studies became more complicated, (in 

the sense of having multiple phases and larger numbers of radiocarbon determinations) 

memory problems occurred and the total amount of computer time needed increased 

greatly. For example, the reoccupation case study (see Section 4.3) consists of eight 

regions with a total of 133 radiocarbon determinations. The Upper Rhine only contains a 

small number of radiocarbon determinations (eight) and consequently results in problems 

with convergence. As a result the case study was run for approximately 1 million 

iterations to ensure all parameters in each region had reached convergence, this took 

around six days to run in R as a batch job. It was felt that this case study still had 

a relatively small number of radiocarbon determinations and that, if we were to tackle 

more complex problems in the future an alternative to R was needed. Thus it seemed 

sensible to invest time in learning the programming language C. 

Due to my lack of experience in programming, this was not a straight forward task 

and it took several months to be able to write, implement and check code for both 

the conventional uniform and trapezium prior for multiple phases. Careful checking of 

the output from the C code against that from my own R code and BCal ensured that 

estimates being produced by my new C Code were robust. Although this has taken a 

great deal of time it has been beneficial as case studies such as the reoccupation case 

study can now be solved in a few hours rather than many days. 

Consequently, all case studies for this thesis have been implemented in C and the 
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algorithms used can be found in Appendix A. 

3.6.1 Computing aspects of the case studies within Chapter 4 

This subsection briefly discusses the computational aspects of the case studies in Chapter 

4. In both cases studies we monitor the main parameters (a, ,,(, 8 and (3) which are 

exported into R enabling us to use BOA to determine the length of burn-in and assess 

convergence. To assess the length of burn-in two alternative methods were used visual 

inspection of traces of output for each parameter in the MCMO chain and a more formal 

method developed Hiedelberger & Welch (1983) and implemented within BOA. 

For the Coptic Textiles case study (Section 4.2) a burn-in length of approximately 

1000 iterations was required. While a much longer burn-in length was required for 

the reoccupation case study (Section 4.3), all regions except the Upper Rhine required 

a burn-in length of approximately 10000 iteration, where as the Upper Rhine required a 

longer burn-in of approximately 20000 iterations. 

Formal convergence diagnostics were carried out on all parameter chains once the burn­

in lengths had been determined. The two diagnostics Geweke (1992) and Hielderger & 

Welch (1983) were used to assess convergence of each chain. In Section 4.2.5 we draw 

inferences for the Coptic textile case study, which are based on an MCMC sample of 

200000 iterations. In Section 4.3.5 we draw inference for the reoccupation case study. 

The data available for the reoccupation case study stretch over approximately 4000 years 

on the radiocarbon time scale, and some individual regions (e.g. the Upper Rhine) have 

radiocarbon determinations spanning some 2500 years. As a result of this and as a result 

of the algorithms adopted for implementing this case study, it was found that the MCMC 

chains needed to run for a total of 1 million iterations, in order for all parameter chains 

to reach convergence. 
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Chapter 4 

Case studies for the uniform, 

trapezium and sigmoidal models 

4.1 Introduction 

In this chapter, two case studies are presented to illustrate use of the alternative non­

uniform prior distributions developed in the previous chapter. In both case studies, the 

authors believe that the rate of deposition or manufacture was not uniform over the 

proposed range. Therefore, the aim of this chapter is to illustrate the difference in the 

archaeological conclusions drawn from the data when implementing both uniform and 

non-uniform prior deposition models. 

The first case study arises from Van Strydonck et al. (2004) where the authors' interest 

lies in comparing radiocarbon dating to art historic dating of both Roman and Coptic 

textiles. There are a number of groups of stylistically related textiles of interest, each 

treated as having its own phase of manufacture. However, only one of the groups 

of textiles will be used for illustration. This results in a simple, single phase, case 

study which contains a small number of radiocarbon determinations and no relative 

chronological a priori information. 
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The second case study arises from Housley et al. (1997). This case study is concerned 

with the human reoccupation of NW Europe after the last ice age. This is a much larger 

case study in which radiocarbon determinations are available from eight different regions 

within NW Europe. When moving to interpreting radiocarbon determinations which 

relate to several phases, questions arise about the relationships between the phases. For 

example: "do the phases overlap?", "do they abut?", "when did Phase A stop and when 

did phase B begin?", and so on. In this chapter we take the first step in modelling 

this problem by treating the calendar dates of phase boundaries as independent of 

one another. This allows us to calculate probabilistic answers to the above kind of 

questions. The next step, outlined in Chapter 5, will be to move on to incorporate a 

priori information about the relations between phase boundary dates, in the form of 

joint prior distributions. 

Note from this point forward we will refer to a 'uniform model' when a uniform prior 

for the rate of deposition of datable material has been implemented. Similarly, for a 

trapezium and sigmoidal model. 

4.2 Case study: Radiocarbon dating and art historic 

dating of Roman and Coptic textiles 

4.2.1 Introduction 

The first case study arises from Van Strydonck et al. (2004), briefly discussed in Chapter 3 

as an example from the applied literature which motivates my research. The case study 

is concerned with dating Roman and Coptic textiles from Egypt and, in particular, 

comparing the radiocarbon results with chronologies proposed by art historians. The 

majority of art historians base their chronologies on a comparison of stylistic features 

which may arise from a variety of media such as paintings, sculptures, mosaics and 

archaeological features. 
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The authors are essentially interested in learning about the chronologies of a variety of 

Roman and Coptic textiles through the use of radiocarbon dating. Particular interest 

lies in the length of time over which each type of textile was manufactured and estimates 

for the last date of manufacture. For the purpose of this case study only one of the 

stylistic groups of textiles, which consists of twelve woollen tunics, will be discussed; see 

Table 4.1. 

Sample id. Det. Sample id. Det. 
UtC-9431 1630±60 UtC-9049 1615±40 
UtC-9051 1590±40 KIA-10569 1585±30 
UtC-2612 1540±60 UtC-2619 1530±70 
UtC-9050 1485±40 KIA-10570 1470±35 
UtC-7253 1450±50 UtC-7240 1420±60 
UtC-9052 1380±40 UtC-2620 1350±70 

Table 4.1: Radiocarbon determinations associated with each of the 12 woolen tunics 
from Van Strydonck et ai. (2004). 

The method adopted by the authors, to summarize the radiocarbon determinations, was 

rather ad hoc as it neither appeared to answer the questions posed nor to be based 

on sound statistical arguments. This method is referred to as the 'summed probability 

distribution' method which has become increasingly popular over the last decade within 

the archaeological community, it is believed that the reason behind its selection is due 

to the following statement from the OxCal manual (Ramsey, 2005). 

"Combining probability distributions by summing is usually difficult to justify 

statistically but will generate a probability distribution which is a best estimate for 

the chronological distribution of the items dated." 

The summed probability distribution is calculated by calibrating the radiocarbon 

determination from each artefact separately to produce a posterior estimate of its 

calendar date. Then the posteriors for the individual calendar dates, which relate to the 

same stylistic group of textiles, are combined by summing. The result is then normalized 

to give a probability distribution. It is this reSUlting probability distribution that is 

referred to as the 'best estimate of the chronological distribution'. However, averaging 
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the posteriors for the individual calendar dates (which do not date the same event) does 

not estimate the form of the underlying distribution that is of interest. In fact, it is not 

clear what interpretation can legitimately be made from the distribution produced by 

this method, or what quantity has the distribution constructed in this way. However, 

the authors calculate an inter-quartile range and a 95% probability interval from this 

probability distribution, which they believe represents a proxy for the chronology of the 

woollen tunics. 

Note that the distributions being combined are posterior estimates of the calendar 

dates of the individual textiles. As a result, the combined distribution gives simply 

the posterior distribution of the date of an unknown sample selected at random from 

that set of textiles. It does not directly say anything about the process from which those 

samples might come. 

The summed probability distribution for the group of twelve woollen tunics has been 

reproduced (using IntCa104) for illustrative purposes, see Figure 4.1. While Figure 4.1 

may look appealing it is not at all clear that it relates to the chronology of the woollen 

tunics. The 95% HPD interval for the summed probability distribution is calculated 

as 350-710 AD, suggesting that the tunics are no older than the 8th century AD. As a 

result, Van Strydonck et al. (2004) concludes that it is very unlikely that the woollen 

tunics belong to the 11th or 12th century AD as suggested by some art historians. 

The problem tackled in Van Strydonck et al. (2004) is similar to that discussed in Buck 

et al. (1992), in that it can be thought of as a group of related textiles from a single phase 

of manufacture. The authors could therefore adopt a model-based Bayesian framework 

as detailed in Buck et at. (1992), summarized in Section 2.5, to estimate the start and 

end date of manufacture and then use these two dates to calculate the length of time 

over which the textiles were manufactured. 
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95% HPD interval: 340 - 710 cal AD 

o ~ D ~ ~ 0 ~ ~ ~ ~ l~ 

Calcndllf )'CW"H (cal AD) 

Figure 4.1: Summed probability distribution of the 12 radiocarbon dates (in Table 4.1) 
each associated with one of the woollen tunics. 

4.2.2 A simple temporal model 

As it is extremely unlikely that we will have access to samples that directly date 

the start and end dates of the manufacturing phase, the radiocarbon determinations, 

Xl ± o"}, • •• , X12 ± 0"12 each associated with a true unknown calendar dates (J" are used 

to learn indirectly about these dates of interest. Adopting the notation used in Buck et 

at. (1992) the earliest date for the manufacturing phase is labelled ° cal ADI and the 

latest date for the manufacturing phase is labelled j3 cal AD. 

In this case study we can use a priori information arising from the art historians 

concerning the period of time in which the manufacturing phase occurred. This results 

in the following prior distributions for ° '" U(OAD,,B) and ,B '" U(o,I600AD). Note 

that as we are now working in calendar years AD, ,B > o. By adopting the methods 

devised in Buck et al. (1992) we assume that the material suitable for dating were 

lTo be consistent with the original authors, all calibrated ages are given in terms of calendar years 
AD. This is to enable a direct comparison with the results we obtain, to those given in Van Strydonck 
et al. (2004). 
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manufactured uniformly between the start and end date of the manufacturing phase, i. e. 

Oila , 13 '" U(a,f3) for i = 1, ... ,12. 

4.2.3 Prior beliefs 

U sing the conventional uniform model would be one way to tackle the problem in Van 

Strydonck et al. (2004). However, my particular interest in that paper lies in the following 

statement " ... the manufacturing dates of related textiles are not uniformly distributed 

over the proposed range, but there exists an introduction phase, a blooming period 

and a period of decline". Clearly, if the methods devised in Buck et al. (1992) were 

implemented, which assume a uniform rate of manufacture throughout the whole phase, 

the authors would be contradicting their prior beliefs about the rate at which the textiles 

were manufactured. 

Ideally, we would like to be able to incorporate the authors' prior beliefs into the analysis 

to allow for a more realistic and robust modelling of the manufacturing process of the 

textiles. As seen in Section 3.4, both the trapezium and sigmoidal models would better 

reflect the reality of the manufacturing phase, over the conventional uniform model. The 

reason is that, rather than there being a sudden increase from zero to the maximum rate 

of manufacture, as in the uniform model (see Figure 3.l(a)), there would be a gradual 

increase in the rate of manufacture, followed by a period in which there is a constant 

rate of manufacture, followed by a gradual decrease in the manufacturing rate. After 

correspondence with Van Strydonck, it was agreed that a suitable prior distribution, 

to reliably represent his problem, would be a trapezium distribution, as discussed in 

Section 3.4.1. The three stages of the manufacturing phase are illustrated in Figure 4.2, 

in terms of the a priori beliefs stated in Van Strydonck et al. (2004). 
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Figure 4.2: Schematic representation of the trapezium prior for the manufacturing phase 
of the stylistically related textiles in terms of the prior beliefs stated in Van Strydonck 
et al. (2004). 

4.2.4 The trapezium model 

When modelling the manufacturing phase in terms of the trapezium model the same 

parameters, 0 and (3, are used to represent the start and end dates (cal AD) of the 

manufacturing phase. However, there are now two extra parameters, firstly, "( which 

represents the beginning of the 'blooming period' and secondly, 6 which represents the 

end of the 'blooming period' (see Figure 4.2). Again, the chronologies proposed by the 

art historians are regarded as a priori information about the period of time over which 

the woollen tunics were manufactured. Therefore, prior distributions for 0, ,,(, 6 and /3 

defined by the following relationships are used 

and as we are working in calendar years AD /3 ~ 6 ~ "( ~ o. When implementing the 

trapezium model, samples suitable for dating are assumed to be manufactured with a 
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trapezium rate of manufacture through the period a to (3, 

Oi/a , I, 6, (3 rv Trap(a, I, 6, (3) for i = 1, ... \ 12. 

4.2.5 Dating Coptic textiles 

This next section offers a reanalysis of the twelve stylistically related woollen tunics to 

illustrate the difference in inferences incurred when the conventional uniform model and 

the alternative trapezium prior model are implemented. To evaluate the posterior date 

estimates, under both models, the Metropolis-Hastings algorithm detailed in Section 3.5 

has been implemented. In this case study the relevant internationally agreed calibration 

curve is IntCa104 (Reimer et al., 2004). 

Last date of manufacture 

Van Strydonck et al. (2004) are primarily interested in comparing their results to those 

obtained by the art historians, as there are many discrepancies between art historians 

as to when the woollen tunics were last manufactured. Initial interest focuses on the 

estimates of the last date of manufacture, (3, under the two alternative prior models. 

Using the results provided under both the uniform and trapezium models should help 

clarify whether the textiles were likely to be manufactured as late as some art historians 

believe. 

The estimates of the last date of manufacture, (3, (based on an MCMC sample of 

200000 iterations) were found to be unimodal but not all symmetric. The date estimates 

obtained are summarized by their modal values and their 95% highest posterior density 

(HPD) regions (in Table 4.2). HPD regions define the shortest interval within which 

95% of the posterior probability occurs. 

Using Table 4.2, we can make the following interpretations. Under the uniform model, 
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95% HPD interval for the start and end dates of manufacture (cal AD) 
Model a f3 

Uniform 350 - 520 610 - 765 
Trapezium 190 - 500 620 - 900 

Table 4.2: The 95% HPD intervals for the start and end date of the manufacturing phase 
under the conventional uniform and trapezium models. 

'0 

or-------------------------------------~ o 

o 

cnll'orm rate of lDAIl.lfMhttc 
115% lIl'O .... .-val, 610 - 7!lO raj AD 

o~----__________ ----~--____ ----__ ----~ 
500 600 700 800 900 1000 1100 

Calendar yCAI'11 (cal AD) 

'0 

o.-------------------------------------~ o 

500 000 700 800 

Trapezium rate of manufacture 
115% HI'O .... 'vaI, 620 - IlOO <&I AD 

900 1000 1100 
Calendar yC8l'f1 (0.&1 AD) 

Figure 4.3: Marginal posterior distributions for the end date of the manufacturing phase 
under the two alternative models. 

the HPD interval for the estimate of the last date manufacture is 610-750 cal AD, while 

under the trapezium model, the interval is 620-905 cal AD. Clearly, under the trapezium 

model the HPD interval is much wider, resulting from the posterior distribution being 

right-skewed, as shown in Figure 4.3. This suggests that the trapezium model allows for 

more uncertainty in the estimate of this date. However, the modal values under the two 

alternative models are relatively similar. Under the uniform model the modal value is 

664 cal AD and under the trapezium prior model the modal value is 678 cal AD. 

Duration of manufacture 

Additional interest lies in the total length of time over which the textiles were 

manufactured. We define the duration of manufacture as the distribution of the difference 
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Figure 4.4: The marginal posterior distributions for the duration of m8Jlufacture under 
the uniform and trapezium models. 

between a and f3 and summarize it by its modal value and 95% highest posterior density 

(HPD) regions, see Table 4.3. Using these values, along with Figure 4.4 the following 

interpretations can be made. Under the uniform model the 95% HPD interval is 120-380 

years while under the trapezium model the 95% HPD interval is 170-660 years. Again, 

under the trapezium model the HPD interval is much wider, resulting from the posterior 

distribution being right-skewed. However, the modal values under the two models differ. 

Under the uniform model the modal value for the duration of manufacture is 225 years 

while under the trapezium model the corresponding value is 330 years. 

Model 95% HPD interval for the length of m8Jlufacture 
Uniform 120 - 380 years 

Trapezium 170 - 660 years 
-~ 

Table 4.3: The 95% HPD regions for the duration of manufacture under the uniform and 
trapezium models. 

Conculsions 

The aim of the paper Van Strydonck et al. (2004) was to compare the radiocarbon results 

of Roman and CoptiC textiles with the chronologies proposed by the art historians. It 
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is hard to make any direct comparisons with the results obtained from the summed 

probability distribution method, used by Van Strydonck et al. (2004), to those presented 

by the art historians, due to our concerns stated in Section 4.2.1. However, as illustrated, 

by adopting a model-based Bayesian approach we can obtain estimates for the last date 

that a particular type of textile was manufactured. This allows us to make a direct 

comparison to the dates estimated by the art historians. 

The chronology proposed by art historians, for the woolen tunics, varies somewhat. Some 

historians date the tunics as late as the 11th or 12th century AD, while others date them 

no older than the 6th to 9th century AD. When implementing the conventional uniform 

model, there is no evidence to support the suggestion that the woollen tunics are older 

than the 8th century AD, while under the trapezium model the woollen tunics can be 

thought to be as late as the 9th to 10th century AD. So the evidence from the radiocarbon 

dating appears to rule out the later dates proposed on the basis of art-historical evidence. 

The conventional uniform model offers a considerably different date estimate, from the 

trapezium model, for the last date of manufacture. However, we feel that the trapezium 

model better reflects the prior beliefs stated in Van Strydonck et aI. (2004) and has 

considerably more intuitive archaeological interpretation than the uniform model in this 

particular case. 

4.3 Case study: Human reoccupation of NW Europe after 

the last Ice Age 

4.3.1 Introduction 

This case study is motivated by three papers, Housley et al. (1997), Blockley et aI. 

(2000) and Blackwell and Buck (2003), all of which aim to interpret a large collection 

of radiocarbon determinations which relate to the human reoccupation of NW Europe 

as the climate improved at the end of the last Ice Age. Radiocarbon determinations are 
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available from eight different regions within NW Europe and it is of interest to know 

the earliest date for which there is evidence for reoccupation and the order in which the 

regions were reoccupied. 

The first attempt to address these issues was Housley et al. (1997). In this paper the 

authors treated the radiocarbon determinations in one region as being independent from 

the radiocarbon determinations in other regions. Then within each region, in order to 

answer questions concerning the timing of the reoccupation process, the authors compute 

a 'moving sum' of the 10" ranges for all radiocarbon determinations associated with each 

region. This method produces a series of histograms, one for each of the eight regions, 

where the 'bin widths' of the histograms were chosen to be roughly the same as the 

average 10" ranges (which essentially allows the radiocarbon determinations to be treated 

as point estimates in the reoccupation process). These histograms were then interpreted 

as "supporting a model of population movement", in which the earliest non-zero bin 

in each histogram was taken as identifying the start of reoccupation ('pioneer phase') 

and the modal bin in each histogram was interpreted as a 'residential phase' i.e. when 

the population was fully established. Figure 4.5 is given to illustrate the 'moving sum' 

methodology adopted in Housley et al. (1997) for the set of radiocarbon determinations 

available from the Upper Rhine region. 

Residential phase 

I 

14500 141 00 13700 12100 11700 

RMioearbon years BP 

Figure 4.5: The moving sum distribution of the radiocarbon determinations available 
from the Upper Rhine region. 

The second attempt to address these issues was Blockley et al. (2000). Initially, they 
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review Housley et al. (1997) and make two main criticisms: firstly that the authors only 

account for 10" on the uncalibrated dates and not 20' and, secondly, that they should 

have calibrated the radiocarbon determinations so that interpretations can be made on 

the calendar time scale. Blockley et al. (2000) then undertake a reanalysis of the same 

data, seeking to address these weaknesses. They start by calibrating each radiocarbon 

determination within the region onto the calendar time scale and then adopt the same 

"summed probability distribution" method as Van Strydonck et al. (2004). Blockley et 

al. (2000) believe that this method gives 'a best estimate of the chronological distribution 

of events'. However, they conclude that there is no clear evidence for a pioneer or 

residential phase from the summed probability plots for each region. 

These two papers motivated the third, Blackwell and Buck (2003), in which the 

authors suggest a model-based Bayesian approach. Blackwell and Buck implement the 

conventional uniform model as devised in Buck et al. (1992) to estimate the first date 

of reoccupation in each of the eight regions. Using these estimates, for the first date 

of reoccupation, and treating the eight regions as being independent of one another, 

Blackwell and Buck (2003) gave a probabilistic answer to the question "in which order 

were the regions reoccupied?". Full details of their approach is given in Section 4.3.5. 

4.3.2 Prior beliefs 

In the first paper (Housley et al., 1997) the authors discuss their prior beliefs about the 

mechanics of the reoccupation process and describe it as 

... a two stage process. There was an initial pioneer phase when only 

a few small hunting parties moved to explore and exploit the previously 

unpopulated area. It was followed by the establishment of larger, but possibly 

not permanent, occupation in each of the eight regions, termed the residential 

camp phase. 
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This led Blackwell and Buck (2003) to note that it might be worth exploring " ... 

models that reflect the likely sparseness of material for dating from the early stages of 

reoccupation in each region." This is thus another example in the applied literature 

in which there is a need to seek alternatives to the conventional uniform model. The 

sigmoidal prior, as described in Section 3.4.2, was the example illustrated in Blackwell 

and Buck (2003), although, it can argued that the trapezium prior would adequately 

represent the properties of the non-uniform prior that they describe. 

The following sub-sections provide a reanalysis of the collection of radiocarbon 

determinations from Housley et al. (1997). As discussed in Section 1.1.4, IntCa198, 

the internationally agreed calibration curve at the time Blackwell and Buck (2003) was 

written, has since been updated to IntCa104. For this reason, the first step taken in 

this reanalysis will be to compare the relevant sections of IntCal98 and IntCa104 to see 

whether it is likely that the interpretations made from the data using IntCa104 will differ 

greatly to those when IntCal98 was used. 

Then (in Section 4.3.5) we will look at the difference in interpretations when the uniform, 

trapezium and sigmoidal models are implemented. 

4.3.3 IntCal98 versus IntCal04: Will it make a difference to the 

archaeological interpretations? 

Figure 4.6 shows the radiocarbon ages (Xi/S) from Housley et al. (1997), for the eight 

different regions, against the relevant section of (a) IntCal98 and (b) IntCa104 [Table B.I, 

Appendix B, gives the full set of radiocarbon determinationsJ. There is a clear difference 

between the two sections of curves, with the main differences lying between 10000-13000 

(radiocarbon years BP). IntCa104 is much smoother, for the section under consideration, 

and it is therefore believed that the archaeological interpretations inferred from the data 

will differ considerably, depending upon which curve is used. 
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Figure 4.6: The radiocarbon ages (Xi,/S) from Housley et al. (1997) shown alongside 
the relevant sections of the calibration curves, (a) IntCal98 and (b) IntCa104, with the 
corresponding number of radiocarbon determinations in each region. 0= Upper Rhine 
(7), O=Middle Rhine (9), .0.=Southern Germany (10), +=Belgium (13), x=Thuringian 
Basin (23), O=Northern Germany (16), 'V=Paris (14) and ~=British Isles (41). 
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4.3.4 Setting up the mUltiple phase problem 

Conventional uniform model 

Each region is assumed to have its own phase of reoccupation, hence the dates of events 

in a given region are independent of the dates of events in other regions. The primary aim 

is to estimate the first date of human reoccupation in each region. The earliest boundary 

for the phase in each region, which marks the beginning of the 'Pioneer sub-phase', is 

labelled OJ cal BP (where j = 1,2, ... ,8 denoting the number of regions). The latest 

boundary for the phase in each region marks the end of the reoccupation phase and is 

labelled /3j cal BP. While it is OJ, the early boundary, that is of interest the reoccupation 

phase is seen as bounded in time, for practical and theoretical reasons. 

There are no samples that directly relate to the Cij or /3j within each region, therefore the 

radiocarbon determinations for events occurring in region j are used to learn indirectly 

about Cij and /3j. Since there is no a priori knowledge about the period of time in which 

the reoccupation phase occurred, it is assumed that OJ and /3j lie somewhere in the range 

of the calibration curve (with the constraint that OJ will aJways be greater than {3j as 

we are working on the cal BP time scale). It is also assumed that the samples suitable 

for dating in region j were deposited uniformly between the start and end date of the 

reoccupation phase. 

Trapezium and Sigmoidal models 

When implementing both the trapezium and sigmoidal models the same notation Cij and 

(3j cal BP (for j = 1, ... ,8) is used to represent the first and last date of the reoccupation 

phase, respectively. There are also two extra parameters to be considered, firstly 'Yj which 

in this case represents the beginning of the 'residential camp sub-phase' and secondly OJ 

which represents the end of the 'residential camp sub-phase'. 

As there is no a priori information relating to the period of time in which the 

reoccupation phase occurred, it is assumed that Cij, 'Yj, OJ and (3j lie somewhere in the 

range of the calibration curve (with the constraint A > Cij ~ 'Yj ~ OJ ~ (3j > P as we 
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are working on the cal BP timescale). 

When implementing the trapezium model the samples suitable for dating are assumed 

to be deposited with a trapezium rate of deposition through the period OJ to Pj, that 

is to say 8i,j/Oj,'Yj,l5j ,Pj '" Trap(oj,'Yj,Cj,Pj), where (Ji,j denotes the ith radiocarbon 

determination in the jth phase (for j = 1, ... ,8). 

Similarly, when implementing the sigmoidal model it is assumed that the material 

suitable for dating was deposited between OJ and Pj at a sigmoidal rate 

Full details of both these models, for a multiple phase problem, can be found in 

Section 3.4.4, along with the algorithms used to evaluate the posterior distributions 

of interest in Section 3.5. In this case study the latest version of the calibration curve, 

IntCa104, will be used. 

4.3.5 The human reoccupation of NW Europe 

First date of reoccupation 

The primary objective is to estimate the earliest date of reoccupation of each region 

under study. The first dates of reoccupation (OJ) under the uniform, trapezium and 

sigmoidal model are directly comparable. The estimates of these dates (based on a 

sample of a million iterations) are summarized by their 95% HPD regions (in Table 4.4) 

and visually by the marginal posterior distributions (in Figure 4.7). 

Using Table 4.4 it can be seen that the first dates of reoccupation for each region under 

the trapezium and sigmoidal models are similar to one another, but differ considerably 

from that obtained with the uniform model. 

Figure 4.7 shows the estimates of the marginal posterior distributions for the first date 

of reoccupation in each region under the conventional uniform (red lines), the trapezium 
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(blue lines) and the sigmoidal models (green lines). This confirms that the first dates 

of reoccupation, for each region, under the trapezium and sigmoidal models are similar 

to one another. In particular it is seen that the two models result in their estimates 

being earlier in time than those derived using the conventional uniform model. There 

are slight differences between the posterior estimates obtained when using the trapezium 

and sigmoidal models, as illustrated in Figure 4.7. The most noticeable differences occur 

in the estimates of the first dates of reoccupation of the British Isles and the Thuringian 

Basin. 

Region 95% HPD interval for the date of first reoccupation (cal BP) 
Uniform model 'frapezium model Sigmoidal model 

Upper Rhine 16500 - 19580 16740 - 23470 16770 - 23720 
Thuringian Basin 16350 - 17650 16620 - 18600 16740 - 19150 

Southern Germany 15300 - 16750 15440 - 18530 15470 - 18850 
Middle Rhine 15150 - 15770 15260 - 16580 15250 - 16680 

Belgium 15320 - 16900 15440 - 18690 15520 - 19480 
Paris Basin 15030 - 16010 15140 - 17010 15170 - 17330 

Northern Germany 14310 - 15440 14530 - 16320 14510 - 16530 
British Isles 14670 - 15180 14750 - 15530 14780 - 15750 

Table 4.4: The 95% HPD intervals for the first date of reoccupation of the eight regions 
under the conventional uniform, trapezium and sigmoidal models. 

The order in which reoccupation took place 

Blackwell and Buck (2003) used two summary methods to discuss the order in which 

reoccupation took place. The first gives probabilities that each region is temporally 

ranked one (earliest) through to eight (latest), the second calculates the probabilities of 

particular orderings, in which reoccupation occurred. 

The first summary method to be discussed is the probability that each region is 

temporally ranked one (earliest) through to eight (latest). Table 4.5(a) gives the 

corresponding probabilities when the conventional uniform model was been used, 

Table 4.5(b) when the trapezium model was been used and Table 4.5(c) when the 

sigmoidal model was been used. Under all three models the Upper Rhine was the first 
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Figure 4.7: Marginal posterior distributions for the first date of reoccupation in each 
region under conventional uniform (red), trapezium (blue) and sigmoidal (green) models. 
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region to be reoccupied (with probability of 0.75 when the conventional uniform model 

was used, 0.75 when the trapezium model was used and 0.69 when the sigmoidal model 

was used). The British Isles was the last region to be reoccupied, with a probability 

of 0.61 under the trapezium model and 0.58 under the sigmoidal model, but under the 

conventional uniform model the corresponding probability was only 0.39. Again it can 

be seen that the trapezium and sigmoidal models give similar results to one another, but 

that these differ from the results obtained when using the uniform model. 

The second summaries reported are the posterior probabilities of particular order in 

which reoccupation might have occurred. The ten most likely of those are given in 

Tables 4.6(a), (b) and (c) for the conventional uniform model, the trapezium model and 

the sigmOidal model, respectively. As there are eight regions of interest, there are a 

possible (8!) 40430 different orderings in which the regions could have been reoccupied. 

The most likely ordering differs between the three models. Under the uniform model the 

most likely order is the Upper Rhine, Thuringian Basin, Belgium, Southern Germany, 

Paris, Middle Rhine, British Isles and Northern Germany with a posterior probability of 

0.082. Under the trapezium model, the most likely order is the Upper Rhine, Thuringian 

Basin, Belgium, Southern Germany, Paris Basin, Middle Rhine, Northern Germany and 

the British Isles with a posterior probability of 0.0260. Under the sigmoidal model the 

most likely ordering is the Upper Rhine, Thuringian Basin, Belgium, Southern Germany, 

Paris Basin, Middle Rhine, Northern Germany and the British Isles with a posterior 

probability of 0.0237. The most likely order under the trapezium model and sigmoidal 

model is the same, under the uniform model the sequence differs in that the ordering of 

the the British Isles and Northern Germany is reversed. 

Under all three models it is clear that the ten most likely orderings account for only a 

small amount of the total posterior probability. Thus when trying to make inferences 

concerning the order of reoccupation, it is clear that there is a large amount of uncertainty 

to be taken into consideration. From Tables 4.6(a), (b) and (c), it is clear that there is 

more uncertainty in the order of reoccupation under the trapezium and sigmoidal models 
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a): Uniform model 

Region 1 2 3 4 5 6 7 8 
Upper Rhine 0.75 0.23 0.02 0.00 0.00 0.00 0.00 0.00 

Thuringian Basin 0.22 0.71 0.07 0.00 0.00 0.00 0.00 0.00 
Southern Germany 0.01 0.03 0.38 0.42 0.13 0.03 0.00 0.00 

Middle Rhine 0.00 0.00 0.02 0.08 0.37 0.49 0.04 0.00 
Belgium 0.02 0.04 0.46 0.35 0.10 0.03 0.00 0.00 

Paris Basin 0.00 0.00 0.06 0.13 0.37 0.39 0.05 0.00 
Northern Germany 0.00 0.00 0.00 0.00 0.02 0.05 0.32 0.61 

British Isles 0.00 0.00 0.00 0.00 0.00 0.01 0.60 0.39 

b): Thapezium model 

Region 1 2 3 4 5 6 7 8 
Upper Rhine 0.75 0.19 0.06 0.00 0.00 0.00 0.00 0.00 

Th uringian Basin 0.14 0.58 0.24 0.04 0.00 0.00 0.00 0.00 
Southern Germany 0.05 0.10 0.28 0.32 0.17 0.07 0.01 0.00 

Middle Rhine 0.00 0.01 0.04 0.11 0.29 0.40 0.14 0.01 
Belgium 0.06 0.12 0.29 0.30 0.16 0.06 0.01 0.00 

Paris Basin 0.00 0.01 0.08 0.17 0.30 0.30 0.12 0.02 
Northern Germany 0.00 0.00 0.02 0.04 0.08 0.14 0.35 0.37 

British Isles 0.00 0.00 0.00 0.00 0.00 0.04 0.35 0.61 

c): Sigmoidal model 

Region 1 2 3 4 5 6 7 8 
Upper Rhine 0.69 0.21 0.08 0.02 0.00 0.00 0.00 0.00 

Thuringian Basin 0.17 0.53 0.25 0.05 0.00 0.00 0.00 0.00 
Southern Germany 0.05 0.10 0.25 0.33 0.18 0.07 0.02 0.00 

Middle Rhine 0.00 0.00 0.03 0.10 0.25 0.41 0.19 0.02 
Belgium 0.09 0.14 0.29 0.27 0.14 0.06 0.01 0.00 

Paris Basin 0.00 0.02 0.08 0.19 0.31 0.25 0.13 0.02 
Northern Germany 0.00 0.00 0.02 0.05 0.10 0.15 0.32 0.37 

British Isles 0.00 0.00 0.00 0.00 0.01 0.06 0.35 0.58 

Table 4.5: The probability that each region is temporally ranked one (earliest) through 
to eight (latest) under a) the conventional uniform b) the trapezium and c) the sigmoidal 
models. 
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a): Uniform model 

Region Position in ordering 
Upper Rhine 1 1 1 1 1 1 1 1 1 

Thuringian Basin 2 2 2 2 2 2 2 2 2 
Southern Germany 4 4 3 3 4 4 3 3 5 

Middle Rhine 6 5 6 5 6 5 6 5 6 
Belgium 3 3 4 4 3 3 4 4 3 

Paris Basin 5 6 5 6 5 6 5 6 4 
Northern Germany 8 8 8 8 7 7 7 7 8 

British Isles 7 7 7 7 8 8 8 8 7 
Probability 0.082 0.078 0.069 0.065 0.044 0.040 0.037 0.033 0.026 

b): Trapezium model 

Region Position in ordering 
Upper Rhine 1 1 1 1 1 1 1 1 1 

Thuringian Basin 2 2 2 2 2 2 2 2 2 
Southern Germany 4 4 3 3 4 4 3 3 5 

Middle Rhine 6 6 6 6 5 5 5 5 6 
Belgium 3 3 4 4 3 3 4 4 3 

Paris Basin 5 5 5 5 6 6 6 6 4 
Northern Germany 7 8 7 8 8 7 8 7 7 

British Isles 8 7 8 7 7 8 7 8 8 
Probability 0.026 0.025 0.025 0.025 0.023 0.023 0.022 0.021 0.014 

c): Sigmoidal model 

Region Position in ordering 
Upper Rhine 1 1 1 1 1 1 1 1 

! 
1 

Thuringian Basin 2 2 2 2 2 2 2 2 2 
! 

Southern Germany 4 4 3 3 4 4 3 5 3 
Middle Rhine 6 6 6 6 5 5 5 6 5 

Belgium 3 3 4 4 3 3 4 3 3 
Paris Basin 5 5 5 5 6 6 6 4 6 

Northern Germany 7 8 8 7 8 7 8 8 7 
British Isles 8 7 7 8 7 8 7 7 8 
Probability 0.024 0.022 0.020 0.019 0.018 0.016 0.013 0.013 0.013 

Table 4.6: The ten most likely orders of the reoccupation of the eight regions under study 
(l=earliest, 8=latest) when implementing a) the conventional uniform b) the trapezium 

and c) the sigmoidal models. 
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than under the uniform model. 

4.3.6 Does the reoccupation process overlap in the eight regions? 

This next section offers a slightly different perspective by looking in more detail at how 

the reoccupation process spread across NW Europe. The aim here is to look at how 

different regions became reoccupied in relation to each other. For example, it might 

be expected that two regions close together spatially may well be reoccupied at similar 

times compared to two regions which are further apart. 

Two spatially close regions from the case study have been selected for illustrative 

purposes, these are the Thuringian Basin and Southern Germany. Interest lies in when 

Southern Germany was reoccupied in relation to the Thuringian Basin. It is questions 

of this kind that archaeologists are seeking solutions to. 

For the purpose of this illustration the Thuringian Basin will be referred to as Phase A 

and Southern Germany as Phase B. The parameters a A, 'r A, <5 A and {3 A belong to Phase 

A and aB,1'B,6B and (3B belong to Phase B. Also, only inferences for the trapezium 

model will be discussed. 

From Figure 4.7 it appears that the Thuringian Basin was reoccupied first and Southern 

Germany shortly afterwards and clearly there is overlap between the two phases. When 

implementing the trapezium model for example, there are several different types of 

overlap that may occur. In this particular case we are interested in the relation between 

the process of reoccupation in the two regions. 

1. What is the probability that the reoccupation process in the Thuringian Basin 

began before the reoccupation process in Southern Germany? "P(aA > aB)" 

2. What is the probability that the reoccupation process in Southern Germany stated 

within the Pioneer sub-phase of the Thuringian Basin? "P(aA > aB > 'rA)" 

3. What is the probability that the reoccupation process in Southern Germany stated 
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within the Residential camp sub-phase of the Thuringian Basin? 

"P( I'A > aB > dA)" 

These are relatively simple questions to calculate answers to, once the output from 

the MCMC chains is available. For example, to calculate the probability that the 

reoccupation process in the Thuringian Basin began before the reoccupation process 

in Southern Germany, the estimates of aA and aB are treated as being independent and 

ranked in ascending order. We can then count the number of times in which aA > aBo As 

a result, we can calculate that the posterior probability that the process of reoccupation 

of the Thuringian Basin started before the process of reoccupation of Southern Germany 

is 0.82. In the same way, we can calculate the posterior probabilities for questions 2 and 

3. 

Figures 4.8 and 4.9 provide graphical illustrations of the answers to question 2 and 3, 

above. The posterior probability that the process of reoccupation in Southern Germany 

started within the Pioneer sub-phase of the Thuringian Basin is 0.69, whereas the 

posterior probability that the process of reoccupation in Southern Germany started 

within the Residential camp sub-phase of the Thuringian Basin is 0.12. From this, 

it can be seen that the two phases appear to be reoccupied within a similar time period, 

but that the reoccupation process probably started earlier in the Thuringian Basin than 

it did in Southern Germany. 

4.4 Summary 

The aim of this chapter was to illustrate, via two case studies, the difference 

in archaeological interpretations of the data when we assuming different a priori 

information about the rate at which the material was deposited within a phase of 

archaeological activity. 

In the second case study, which relates to the human reoccupation of NW Europe, the 

trapezium and sigmoidal models led to very similar estimates for the dates of interest. By 
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Figure 4.8: The probability that reoccupation in Southern Germany started within the 
Pioneer sub-phase of the Thuringian Basin 
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Figure 4.9: The probability that reoccupation in Southern Germany started within the 
Residential camp sub-phase of the Thuringian Basin 
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contrast, the uniform model offers considerably different date estimates. The uniform 

model seems much less realistic since, as noted by Blackwell and Buck "the uniform 

model is most appropriate for short lived phases at single spatial locations and may not 

be so sensible in the case of reoccupation/colonisation of landscapes." 

As seen in Section 3.4.1 the uniform model is a special case of the trapezium model (when 

a = 'Y and !3 = 6). For this reason, we feel that the trapezium model has more intuitive 

archaeological interpretation than the sigmoidal model and in the following chapters we 

focus on the use of the trapezium model. 

In the second case study, although we have made inferences of both a temporal and 

spatial nature, the models we have used are purely temporal. This case study is a 

typical example of a spatil>-temporal problem that is currently (at best) tackled as if 

it were only a temporal problem. Any spatial information has been ignored in order 

to learn about temporal aspects of the reoccupation of the individual regions of NW 

Europe, rather than the reoccupation of NW Europe as a whole. It seems a sensible 

assumption that regions spatially closer together were more likely to be reoccupied at 

similar times than those regions further apart. If this is the case then we could use a 

joint prior distribution to express a priori information about relationships between the 

regions. 

Therefore the following chapters will discuss ideas to help us move towards tackling such 

problems in a fully spatial>-temporal framework. 
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Chapter 5 

First steps towards fully 

spatio-temporal modelling 

5.1 Introduction 

Initially, a brief review of the thesis so far is given. Chapter 3 is concerned with the 

modelling of the deposition rate of datable material within a phase of archaeological 

activity. Four alternative non-uniform prior deposition models have been discussed 

but only two in great detail, as they are believed to have a much wider use to the 

archaeological community. These are referred to as the trapezium and sigmoidal models. 

Chapter 4 then presents two case studies to illustrate the difference in archaeological 

conclusions drawn from the data when implementing both uniform and non-uniform 

prior deposition models. 

However, this is only the first step in developing a more robust statistical framework 

within which we can tackle a wider variety of archaeological problems. Now that a 

statistical framework is in place for modelling the deposition rate, within a phase of 

activity, in a more robust and coherent manner, the next step is to extend the existing 

models to allow for a wider range of a priori information to be incorporated. 
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As seen in the previous chapters, archaeological dating is a much wider problem than 

simply dating the individual objects. The reason for this is that only on rare occasions 

do the dates of individual objects allow us to answer directly the chronological question 

posed. It is our aim to develop a general framework within which we can tackle problems 

concerning chronology building, whether these relate to developments in fashions and 

technologies or to the understanding of how landscapes were colonised by humans, 

animals or plants. 

The next section is intended to review the types of a priori information that may 

arise during an archaeological calibration problem, as well as discussing how they are 

integrated into the existing models. 

5.2 Types of a priori information 

When faced with archaeological calibration problems, there are a number of different 

types of a priori information that may arise. 

1. We may have a priori information about the time period between successive events, 

see Section 2.5.1. 

2. Very often, we also have a priori information relating to the time period, e.g. the 

Bronze Age period. 

3. Most commonly, a priori information exists about the chronological orderings of 

events or phases. 

Such a priori information can easily be integrated into the existing models. Christen et 

aI. (1995) and Christen (1994a) discusses how prior information about the likely time 

elapsed between the deposits of each sample in a sequence of radiocarbon determinations 

may be incorporated, see Section 2.5.1. Prior information relating to the historical time 

period of interest can also be easily integrated, by choosing suitable values of P and A 

which correspond, for example, to the start and end dates of the Bronze age period. 
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Most commonly, we may want to incorporate a priori information relating to the 

chronological ordering of events or phases. As seen in Section 3.4.4, when working 

with problems which comprise of multiple phases of activity, a priori information may 

arise about the relations between phase boundary parameters. To incorporate such 

information we use a relatively simple form of joint prior, 

where 

p( 0, "Y, 8, (3) ex: Ie( a, "Y, 8, (3) 

{

I if(a,"Y,8,(3)fC 
Ie( 0, "Y, 8, (3) = 

o otherwise 

where C is some set of values of ° = (a1,.'" am),"Y = (1'1, .. " '1'm), 8 = (01, ... , 8m) 

and (3 = (131, ... ,13m). One constraint on the parameters which must always be satisfied 

(as we are working in calendar years BP) is A > OJ ~ '1'j ~ OJ ~ f3j > P. This form 

of joint prior allows us to incorporate a wide range of a priori information, whether it 

is in the form of sequence information (such as al > 02) or more specific information 

(such as 0 < a1 - 131 < 100). As well, as a priori information arising about the relations 

between phase boundary parameters, there is often stratigraphic information leading to 

prior information about the ordering of radiocarbon dates within a phase. As seen in 

Section 3.4.4 this is represented as 

1 if 8j f Dj 

o otherwise 

where Dj = (D1,"" Dm) represents the set of values that 8 j can take within each of 

the phases [note 8j represents the set of (J's belonging to the jth phase]. 

If this type of a priori information is easily integrated into the analysis of radiocarbon 

data, what else is it that we want to achieve? We want to be able to go one step 

further and be able to incorporate more complicated relations between phase boundary 

parameters, by introducing joint prior distributions. A simple example of the type of a 
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priori information that we may want to incorporate is given below. 

Example 

Suppose there is an archaeological excavation in which there appears to be two phases of 

activity. Firstly, there is a settlement inside an enclosure, then secondly there is evidence 

of a settlement outside of the enclosure. In such a case, interest may lie in whether the 

settlement inside the enclosure was contemporary or successive to that outside. In both 

settlements there is evidence of pottery that dates to the Late Bronze Agel (LBA). We 

label activity associated with the settlement inside the enclosure as Phase A and that 

outside the enclosure as Phase B. 

How could we incorporate this information into the analysis? The Late Bronze Age in 

the British Isles dates between approximately 1000BO to 600BO, a period of around 400 

years. As a result of there being evidence in both phases of only LBA pottery we may 

assume that the start of both phases occurred during the LBA period. This implies that 

the start of the two phases must be no greater than 400 years apart. However, we know 

nothing about the ordering of the phases, as this is the question we are interested in 

learning about. Taking this into account we could express this knowledge of the relation 

between the start date of the two phases, 0A and OB, as a joint prior distribution, 

Adopting the algorithms discussed in Section 3.5 the joint prior, p(Ol, (2), could be 

incorporated to enable us to arrive at more coherent and stratmcatory estimates of 

the phase boundary parameters al and 02. Given these estimate, we can calculate a 

probabilistic answer to the question "Is Phase A contemporary or successive to Phase 

B?". However, before this is possible we need to think about the types of joint prior 

distributions that may be appropriate. 

The next section will focus on ideas for defining joint (bivariate) distributions, which we 

feel have a wide range of uses when developing chronological models, rather than being 

) The Bronze age is characterized by the first use of copper or bronze and its chronology is strictly 
local, hence it started at different times in different parts of the world. 
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problem specific. We start by thinking about two-phase problems, i.e. defining bivariate 

distributions. 

5.3 Defining joint (bivariate) prior distributions 

The idea behind defining a joint prior distribution is to enable us to incorporate a priori 

information about the relationships between parameters, when nothing is known about 

specific values of individual parameters. When defining a joint prior distribution to 

represent such information it is important to see what marginal distributions are induced 

by the joint distributions we choose. Ideally, we want robust joint prior distributions 

that lead to marginal distributions which have an intuitive archaeological interpretation. 

In this section we discuss a range of plausible bivariate distributions, which are felt to 

have properties which would be of use in a number of archaeological problems. In the 

example given above, we are interested in defining a joint prior distribution, p(at,02), 

i.e. with respect to the start dates of the phases. However, depending upon the problem 

at hand there may be a wide range of joint prior distributions, with respect to the 

parameters of interest, that we may want to define. For this reason, in the following 

section we discuss a general framework that provides flexibility in defining a joint prior 

distribution for the parameters of interest. 

Notation 

For the rest of this chapter, X and Y represent random variables that both take values in 

[0,1] and are defined on the same sample space. In practice, both will usually represent 

(linearly transformed) calendar dates. 

If we think back to the example given on page 115, we know that lOA - OBI ~ 400 years. 

Figure 5.1 represents an example of a joint prior distribution that takes into account 

this information. In Figure 5.1, both the x-axis and y-axis range from 0 to 1. We define 

a parameter w to represent our prior knowledge about the maximum time between the 

two start dates e.g. Ill'A - ll'BI ~ w. The parameter w relates to the parameter u, seen 
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in Figure 5.1, by w = uJ2. 

R s T 

y 

o 
x 

Figure 5.1: An example of a joint prior distribution p(x, y) 

____ R S T 

000 

Figure 5.2: Cross sections of the jOint prior distribution from Figure 5.1, along the lines 
R, Sand T in the direction of early to late with respect to y. 

The probability density is uniform over the dark grey shaded region and the light grey 

shaded areas represent a probability density of zero. Figure 5.2 (intended to help visualize 

the shape of the joint distribution) shows the cross sections of the joint prior distribution 

along the lines R, Sand T in the direction 0 to 1, with respect to y. 

The probability density function for the joint prior distribution, p(x, y), as seen in 

Figure 5.1, can be written in a general form as 

if Ix - yl ~ uV2 
(5.1) 

otherwise, 

where c is just a normalizing constant. However, p(x, y) can be written more explicitly, 

in three parts corresponding to the cross-sections in Figure 5.2. 
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When x < uV2 
ifO~y~x+uv'2 

otherwise. 

When uV2 ~ x ~ 1- uv'2 

When x > 1 - u V2 

o if y < x - uv'2 

p(x, y) = c if x - uv2 ~ y ~ x + uV'2 

o if y > x + uv2. 

{
o if y < x - uV2 

p(x,y) = 
c if x - uV2 ~ y ~ 1. 

We are only interested in using joint prior distributions that lead to marginal 

distributions, p(x) and p(y), which have an intuitive archaeological interpretation. 

For this reason we are interested to see what marginal distributions are induced by 

Equation 5.1. As p(x, y) is a symmetric distribution the marginal distributions, p(x) 

and p(y), will take the same form and can be calculated as follows, 

p(x) = J p(x, y)dy and p(y) = J p(x, y)dx. (5.2) 

Using Equation 5.2, the normalized marginal probability density function, p(x), is given 

as 

(x + uV2)/(2uV2 + 2u2) if 0 ~ x < uv'2 

p(x) = (2uV2)/(2uV2 + 2u2) if u/2 ::; x ::; 1 - uV2 (5.3) 

(1 - x + uv'2)/(2uV2 + 2u2
) if 1 - uV2 < x ~ 1. 

Clearly, Equation 5.3 will differ depending upon the value of the uv'2. However, it is 

unlikely that we would wish to use a joint distribution where the value of uv'2 ~ 0.5. 

Using Equation 5.3, we can draw from p(x) to visualize the marginal prior distribution. 
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Figure 5.3 represents p(x) for the case u = 0.1, in which we see the marginal prior p(x) 

is essentially uniform over the region [0,1]' except at the end of the region. 

O~ ______ ~ ____ ~ ______ ~ ______ ~ ____ -r-

o 0.2 0.4 0.6 0.8 1.0 

x 

Figure 5.3: The marginal prior distribution p(x) given in Equation 5.3, where u = 0.1 

Implementing this form of joint prior would be relatively simple. One way to achieve 

this, would involve generating a new value for etA using a truncated normal proposal 

distribution, as described in Section 3.5, where L takes the value eta - uJ2 and U takes 

the value of etB + uJ2, likewise for generating new values of etB. These bounds would 

need to be modified slightly to take account of the edge effect, i. e. when 0 ~ x < u J2 

and 1 - uv'2 < x ~ 1. However, when working with archaeological calibration problems 

U - L may be relatively small in comparison to A - P, if this is the case then we would 

only in theory be interested in the region uV2 ~ x ~ 1 - uv'2. However, this is not 

always the case. 

A range of distributions will be needed since, for specific case studies, our a priori 

information about w will vary. As well as the value of w varying, the actual shape of the 

joint prior distribution may also vary, depending upon the case study and the type of a 

priori information we want to incorporate. Figure 5.4 shows an alternative joint prior 

distribution, again with cross sections of the joint prior distribution along the lines R, S 
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and T, to help visualize the shape of the distribution. 

R 
I 

1 
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o 1 0 

S 
I 

x 

T 
I 

I 
. 1 
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1 

Figure 5.4: An example of a joint prior distribution with corresponding cross sections 

The probability density function for the joint prior distribution, P(x,lI), as seen in 

Figure 5.4 can be written in a general form as 

{ 

1- (UV2)- llx - yl 
p(x, y) ex: 

o 
if Ix - yl $ u.j2 

otherwise. 

A typical example of a situation in which a joint prior distribution with the above 

properties might be used, is when the archaeologists believe they are dating the transition 

from one phase of activity to the next i.e. i3A and OB are essentially dating the same 

event. 

Figure 5.5 shows another alternative prior distribution, again with cross sections, this 

time along the lines R, S, T, V and W. The corresponding probability density function 

for the joint prior distribution, p(x, y), as seen in Figure 5.5 can be written in a general 

120 



R V S W T 
I I I I I ,x = lI 

y 

o 
x 

'--.L. __ R _->-_V 
o o 

W T 
o 0 

Figure 5.5: An example of an alternative joint prior distribution with corresponding 
cross sections 

form as 

1 if Ix - yl $ uv'2 

p(x, y) ex: 

o otherwise. 

This is slightly more complicated joint prior distribution, but still has a number of 

archaeological uses. 

So fax, this chapter has only discussed bivariate prior distributions i.e. a priori 

information axising from the relation between two parameters of interest, for example 

pellA, llB), P((3A, aB) or P((3A, (3B). However, a typicalaxchaeological calibration problem 

may consists of complex systems of phases based on artefact typologies and stratigraphy. 

As a result, the next step is to extend the joint prior distributions discussed in this 

section to multiple dimensions to allow us to incorporate a priori information arising 
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from mUltiple phases. 

An example of a multiple phase problem is the second case study, relating to the 

human reoccupation of NW Europe, discussed in detail in Section 4.3. In this case 

study, radiocarbon determinations were available from eight different regions within 

NW Europe. It seems a likely assumption that regions spatially close together were 

more likely to be reoccupied at similar times compared to those regions further apart. 

To be able to tackle such problems it is clear that there is a need to generalize the joint 

prior distributions to n-dimensions. 

One problem that may arise, when tackling multiple phase calibration problems, is how 

to elicit a priori information from the archaeologists. Most archaeologists are certainly 

not experts in probability or statistics and it may not be easy to express their beliefs in a 

probabilistic form. It may well be easiest to elicit pairwise priors, however, a great deal 

of care will be needed to ensure that the pairwise priors do not contradict one another. 

5.4 Generalizing to higher dimensions 

The idea behind the following sections is to be able to generalize the joint prior 

distributions in the previous section to higher dimensions. When working in ]R2 and ]R3 

we can visualize the form of the joint prior distribution that we would like to incorporate. 

However, beyond]R3 this is no longer possible. We propose an idea in Section 5.4.2 and 

briefly explain the reasons for choosing the methods that we adopted. 

5.4.1 Rewriting the two-dimensional case 

If we think back to Figure 5.1 we are essentially defining a set of points, S, as 

s = {(x, y) e]R2 : distance from a point (x, y) to the line x = y is at most u}. 
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Using a standard result, the distance from a point (r,8) to the line Ax + By + C = 0 is 

calculated, by the following equation 

d. IAr+B8+CI 
Istance = . 

JA2+B2 (5.4) 

Using Equation 5.4, we can calcwate the distance from a point (x, y)c S to the line x = y 

by substituting in the appropriate values 

distance = Ix ;/1 (5.5) 

and we require this distance to be at most u. 

This gives the exact form as shown in Equation 5.1, although this is clearly what we are 

trying to arrive at it is not so clear how we can generalize this to higher dimensions. The 

following section offers a non-standard way of arriving at the same information as in this 

sub-section, but at the same time allows us to setup a framework which we believe can 

easily be generalized to higher dimensions. 

5.4.2 Alternative formalization 

Using Figure 5.6, we wish to calculate the nearest point, Q(q, q), on the line x = y to 

the point P(x, y) i.e. the shortest distance from point P to the line. This distance will 

be measured along the perpendicular from P to the line i.e. the vector QP(x - q, y - q). 

Before we can calculate the length of the vector Q P we need to know q in terms of x 

and y. We know that we want QP to be orthogonal to (1,1) and we also know that two 

vectors are orthogonal if their dot product is equal to zero. As a result, we can calculate 

qas 

1 x (x - q) + 1 x (y - q) = 0 

x-q+y-q=O 
(5.6) 

x + y = 2q 

q = (x + y)/2. 
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?C=y 

x 

Figure 5.6: Illustration of the shortest distance from a point P to the line x = y. 

Hence, the nearest point to P on the line x = y is the point Q (X ; y, x ; Y). Next we 

need to calculate the length of the vector QP i.e. calculate the distance between the two 

points P and Q. We know that the length of a vector can be calculated (in JR2) using 

Pythagoras' Theorem, as 

length = ';x2 + y2. (5.7) 

Manipulating Equation 5.7 allows us to write the length of QP (or distance from Q to 

P), in a non-standard way, such as 

(5.8) 

where I represents the identity matrix. Equation 5.8 represents the length squared of 

the vector QP and simplifies to !(x - y)2. The main reason for writing the distance 

in this way is so that we can introduce the identity matrix. As we generalize to higher 

dimensions (e.g. JR3) we may have pairwise a priori information with regard to the time 

between parameters of interest such as Ix - yl ~ a, Ix - zl ~ band Iy - zl ~ c where 
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a /; b =I- c. The idea, is that by changing the diagonal elements of I we can scale our 

measure of distance according to the a priori information that arises. 

Figure 5.7 gives two visual representation of the prior defined by 

(5.9) 

with varying values of u. Both these figures are seen to represent the same distribution 

as that illustrated in Figure 5.1 

(a) (b) 
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Figure 5.7: The joint prior distribution resulting from Equation 5.9, with values (a) 
u2 = 0.15 and (b) u2 = 0.05. 

Given the ideas presented in this section, in the next section we discuss use of similar 

ideas to generalize to 1R3. In theory once the framework for a three-dimensional prior 

distribution is established it should be fairly easily to extend to IRn. 

5.4.3 Priors in IR3 

As discussed in Section 5.2 it is quite unlikely that we we will be able to elicit anything 

more than pairwise prior distributions for the parameters of interest, when working with 
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more than two archaeological phases of interest. The aim of this section is to look at 

extending the ideas proposed in the previous section while ensuring that the types of a 

priori information that may arise can easily be incorporated. 

If we think about the joint prior distribution in general terms, as we did in Section 5.4.2, 

we are essentially interested in defining a set of points, S, such that 

s = {(x, y, z) € 1R3 : distance from a point (x, y, z) to the line x = y = z is at most u}. 

If we consider the joint prior distribution p(x, y, z) and fix one of the parameters, x 

for example (as we are interested in incorporating pairwise prior information), we can 

visualize ways in which we could represent the joint prior distribution p(y, z). Figure 5.8 

shows two ways in which we could represent the joint prior distribution p(y, z). The 

centre represents the point (x, x), then given a fixed x we can think about how y and z 

could vary. The first way is represented by the dashed line, which defines a square about 

the centre, while the dotted lines defines a circle about the centre. We favour the idea of 

using a circle as we are not allowing z to be at its extreme while y is also at its extreme. 

By using the general equation of a circle, we are essentially interested in defining points 

of (y, z) such that (y - X)2 + (z - x)2 ~ u2; similarly for p(x, y) and p(x, z). 

By manipulating Equation 5.8 we can write the distance squared, from a point 

(x, y, z) € S to the line x = y = z, as 

{ (
x+y+z) }T { (x+y+z)} 2 (x, y, z) - 3 1 I (x, y, z) - 3 1 ~ u . (5.10) 

Expanding Equation 5.10 and multiplying through by ! gives 

2 2 2 3u2 

X - xy - xz + y - yz + z ~ 2' (5.11) 

which essentially defines a shape resembling a cylinder running around the line x = y = z. 

Figure 5.9(a) gives an illustration of Equation 5.11 when u = 0.4 while Figure 5.9(b) 

represents the same figure rotated so that we are looking along the line x = Y = z. 
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Figure 5.8: Cross-section through 1R3 with fixed x. 

Despite the symmetry in x, y and z the joint pairwise prior distributions will differ 

in shape from those derived in Section 5.4.2. We can derive the joint pairwise prior 

distribution p(y, z) by integrating with respect to x, which gives 

2 1 1 2 2222 2 
- - -z - -y - -yz + -z + -y < u . 
933333-

(5.12) 

Figure 5.10 gives visual representations of the joint pairwise distribution p(y, z) with 

varying values of u. As Equation 5.11 is symmetric (as a result of using 1) in x, y and z 

all pairwise distributions, p(x, y),p(x, z) and p(y, z) will take the same form. 

5.4.4 Asymmetric priors in lR3 

Clearly what we would like to be able to incorporate into the joint distribution, p(x, y, z), 

is a priori information with regard to the pairwise prior distributions e.g. Ix-yl < /x-z/. 

As briefly discussed in Section 5.4.2 the idea is to change the diagonal elements of I so 
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Figure 5.9: The joint prior distribution p(x, y, z) resulting frOID Equation 5.11, when 
u = 0.4. 

that we can scale u according to the a priori information that may arise e.g. 

200 

M= 0 1 0 

001 

By replacing I with M in Equation 5.11 we can see what affect that this has on the form 

of the pairwise distributions. Equation 5.11 becomes 

10 2 10 10 7 2 4 7 2 2 -x - -xy- -xz+ -y - -yz+ -z < u 
9 9 9999-' (5.13) 

Figure 5.11 is given to help visualize the three joint pairwise prior distributions, p(x, y), 

p(x, z) and p(y, z), that arise from Equation 5.13 i.e. when I is replaced with M in 

Equation 5.11. There are two noticeable differences. Firstly, the shape of the pairwise 

prior distributions, p(x, y) and p(x, z) are more elongated than p(y, z). Secondly, that 

p(x, y) is not symmetric about the line x = y; similarly for p(x, z). 
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Figure 5.10: The joint pairwise prior distribution, p(y, z) resulting from Equation 5.12, 
with varying values of u (a) u = 0.3 and (b) u = 0.4. 

Clearly, changing more than one of the diagonal elements of I will result in all three 

pairwise prior distributions differing. However, before we can consider using these 

ideas, we need to be able to understand how the changes we make in I relate to the 

a priori information that we wish to incorporate. For example if we wish to incorporate 

Ix - yl ~ 0.1, Ix - zl ~ 0.3 and Iy - zl ~ 0.2 what value of u do we use and what changes 

do we make to I? 

This is where the difficulties lie. In Section 5.4.3 we could clearly see that choosing 

different values of u and changing the diagonal elements of I would allow for a variety of 

pairwise prior distributions to be incorporated. Ideally, this is what we want to be able to 

do in higher dimensions too. Unfortunately, in higher dimensions it is very unclear how 

we can relate the changes we make to the elements of I to the a priori information that 

we want to incorporate. As a result, it seems difficult to use this approach in practice, 

and so pointless to extend the ideas in Sections 5.4.2 and 5.4.3 further to ]Rn. 
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Figure 5.11: The joint pairwise prior distributions p(x,y), p(x,z) and p(y,z) resulting 
from Equation 5.13, using a value of u = 0.4. 

5.5 Summary 

Although the ideas in this chapter seemed sensible, and may well be worth pursuing 

again in the future, for the purpose of this thesis none of the methods discussed in this 

chapter have been implemented. In Chapter 6, we tackle the same problem, but approach 

it from a different perspective. 
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Chapter 6 

Spatio-temporal modelling 

6.1 Introduction 

The general problem is to understand when, how and why plants and animals spread into 

regions and landscapes that were not previously occupied. Such problems are of interest 

to those studying the response of plants and animals to climate change, for example the 

human reoccupation of NW Europe case study discussed in Chapter 4. In that particular 

case study archaeologists are interested to learn about how quickly NW Europe became 

reoccupied as the ice sheets retreated after the last ice age and what routes people took 

during the process. 

When studying colonisation and recolonisation of past landscapes/environments, we 

often have a shortage of data points. For example in the reoccupation case study we 

have approximately 135 radiocarbon determinations, 41 of which are from the British 

Isles. As well as a lack of data points we also have a lack of archaeological information. 

However, on rare occasions we may find information preserved in lake beds, peat bogs 

or under the sea but as a result of towns being redeveloped, roads being built and sea 

levels changing we only have access to a sub-set of this information. 

As there are currently no formal methods for tackling problems in a fully spatio-temporal 
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framework researchers either calibrate the radiocarbon determinations individually and 

then draw isochron maps or divide the landscape into regions and use the earliest 

available date in each region to determine the order in which the regions were 

re(colonised) , as in Housley et al. (1997). In Chapter 4 we extended the latter idea 

by making use of the existing temporal tools, assuming that the eight regions were 

independent of one another, to allow us to calculate a probabilistic answer to the question 

"in which order were the regions reoccupied?" . 

In this chapter we aim to take the first steps towards fully spatio-temporal modelling 

by taking into account any spatial as well as the temporal information that arises from 

archaeological excavations, in order to combine data from related sites. We first revisit 

the human reoccupation of NW Europe case study, to discuss the type of a priori 

information that arises, before proposing a general spatia-temporal framework in which 

we can tackle such problems. 

6.2 Example of an archaeological spatio-temporal problem 

Initially we review the human reoccupation of NW Europe case, seen in Section 4.3. This 

represents a typical problem that is currently at best tackled as if it were a temporal 

problem but ideally we would like to tackle within a spatio-temporal framework. As 

seen in Section 4.3 this case study has been tackled a number of times in the published 

literature, each time aiming at interpreting the data in a more coherent manner than 

the previous, yet each time, ignoring any spatial information that we would ideally like 

to incorporate. The primary objective is to estimate the earliest date of reoccupation 

in each region under study and to calculate the probabilities of particular orderings in 

which reoccupation occurred. 

Our first attempt to tackle this problem (detailed in Section 4.3.5) made simple use of 

the temporal tools from which we could make inferences on the ordering of the regions. 

However, as seen in Section 4.3.5, the most likely ordering accounted for only a very 
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small proportion (approximately 2%) of the total posterior probability under both the 

trapezium and sigmodial models. As a result, it is very difficult to make any inferences 

on the movement of humans across NW Europe after the last glacial period. 

We believe that incorporating previously ignored spatial information into the analysis 

may make a huge difference to the archaeological interpretations that we can draw 

from the data. For example, "is there a pair of regions whose ordering is resolved 

by incorporating spatial information"? 

As seen in Section 4.3, Housley et al. (1997) divides NW Europe into 8 regions (see 

Figure 6.1 1.) It seems sensible to assume that those regions closer together (spatially) 

were more likely to be reoccupied at similar times compared to those regions further 

apart. Also, it seems sensible to assume that the first areas to be reoccupied were those 

furthest south. Unfortunately, for the human reoccupation of NW Europe case study, 

we do not have any quantitative spatial information, such as exact location of the sites, 

in terms of latitude and longitude readings or distances between sites. As a result, we 

use a similar approach to that adopted by Housley et al. (1997). Although, it is very 

crude, we use Figure 6.1 which indicates the eight different regions defined in Housley et 

ai. (1997) to measure the approximate Euclidean distances between the pairs of regions 

(in kms, see Section 7.3). Given these distances we need to think about how we can 

incorporate the spatial information into the modelling framework. 

In this section we have discussed an example that we would like to be able to tackle 

in a fully spatio-temporal framework. As a result, the following section presents our 

first thoughts for ways in which we could incorporate both the temporal and spatial 

information, that arises from the reoccupation case study. 

1 Note that the during the time period of interest the coastal line of Europe differed considerably from 
today's coastal line e.g. the British Isles was connected to the rest of Europe 
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Figure 6.1: The eight regions of Late glacial NW Europe (Figure taken from Housley et 
al., 1997), where the diagonal lines are taken to represent the individual regions. 

6.3 Incorporating spatio-temporal information 

In this section we propose a novel approach, which extends our basic model for chronology 

building (see Section 3.4.4), for tackling archaeological calibration problems in a fully 

spatio-temporal framework. 

We aim at constructing a general framework in which we can incorporate a range of 

spatial as well as temporal information into the a priori information in a structured way. 

For example, in the human reoccupation of NW Europe case study, we are primarily 

interested in the first date of reoccupation (a's) for each region, from which we can 
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derive the order in which the regions were reoccupied. As it seems sensible to assume 

that regions closer together spatially were more likely to be reoccupied at similar times, 

we seek to define a joint prior distribution p( a) which incorporates the spatial structure 

between the a 's. Note that the methodology proposed in the following section can be 

easily generalized i. e if we want to express the spatial structure between other parameters 

of interest such as (3. 

Our first thoughts for incorporating the spatial structure, in terms of the reoccupation 

case study, is to represent the prior for a = {aI, .. . ,ak} as being uniform over S, where 

we define S to be the set 

S = n{a ; raj -ak/ =:; Cj,k} 
j<k 

(6.1) 

and Cj,k is defined to be a measure of difficulty of spread between regions j and k (Cj,k 

may be 00 in some cases and there may also be occasions in which we wish to constrain 

An alternative way of writing this down, is to say 

p(a) ex: II 1{/aj - ak/ =:; Cj,k} 
j<k 

(6.2) 

where 10 represents an indicator function. If we were happy to assume a uniform ease 

of spread, then Cj,k could be proportional to Euclidean distance (dj,k) between regions j 

and k. 

The two following subsections look at both the marginal and conditional prior 

distributions induced from using the joint prior distributions, pea, {3) and pea, ",;, 0, {3), 

under both the conventional uniform and the trapezium models. We then move on to 

look at the corresponding distributions induced when using the joint prior distributions 

in which a spatial component is added into the model. 
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6.3.1 The prior distributions when no spatial dependence is 

incorporated 

Conventional uniform model 

When modelling multiple phases of activity with respect to the uniform model, the 

convention is to assume a particularly simple form of joint prior for p( a, {3). That is, 

all values of aj and {3j that satisfy a given set of constraints, C, are equally likely. The 

jOint prior for a and {3 is given by 

where 

p(o,{3) ex Ic(o,{3) 

{ 

1 if (a, {3) E C 
Ic(o,{3) = 

o otherwise 

(6.3) 

where C is the set of values of a = (al,"" am) and {3 = ({3l,"" 13m) which satisfy 

some given constraints e.g. the ordering of the parameters. 

If there is no prior ordering between regions, that is to say each region is assumed to be 

independent of the others, then the conditional prior distributions2 for aj and {3j can be 

written as 

where A represents the maximum outer limit and P the lower outer limit i.e. A < aj < 

{3j < P. 

Figure 6.2 is given to illustrate the properties of the marginal prior distributions p(aj) 

and p({3j) under the conventional uniform model, when no spatial dependence has been 

incorporated into the model. 

2We don't generally tend to write down the conditional priors explicitly, but 88 the conditional priors 
are of importance when incorporating the spatial structure, we introduce them here to enable us to make 
comparisons later in the chapter. 
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fJj (cal BP) OJ (cal BP) 

Figure 6.2: The marginal prior distributions, p(aj) and p(f3j), induced by Equation 6.3 
over the period [0,26000J cal BP. 

Trapezium model 

When modelling multiple phases of activity with respect to the trapezium model, we 

have two additional parameters 'Yj and 6j. However, we use a similar form of joint prior 

(as used for the conventional uniform model), that assumes that all values of aj, 'Yj, 6j 

and /3j are equally likely, given they satisfy the set of constraints C. That is 

where 

p(a,"'Y,b, (3) ex Ic(a,"'Y, 6, (3) 

{

I if (a,"'Y, 6, (3) E C 
Ie( a, "'Y, 6, (3) = 

o otherwise 

(6.4) 

where C is the set of values of a = (a1,"" am), "y = b1, ... , 'Ym), 6 = (61, ... , <5m) and 

(3 = (/31, ... ,f3m) which satisfy some given constraints e.g. the ordering of the parameters. 

If we again assume that there is no prior ordering between regions i.e. the chronology 

of each region is assumed to be independent of the others. Then the conditional prior 

distributions, induced from Equation 6.4, can be written as 
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Figure 6.3 represents the properties of the four marginal prior distributions p{aj), 

phj), p{Oj) and p{{3j) under the trapezium model when no spatial dependence has been 

incorporated into the model. 
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Figure 6.3: The marginal prior distributions, p(aj), phj), p(Oj) and p({3j), under the 
trapezium model for the period [0,26000] cal BP. 

6.3.2 The prior distributions when incorporating spatial dependence 

between regions 

In this section we look at the differences between p( 0., f3), p{ a j l{3j) and p{{3j 1 aj), under 

the uniform model when we incorporate a spatial structure between the a's as discussed 

in Section 6.3 and those in the previous section where no spatial dependence was 
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incorporated. Similar comparisons are also made for the trapezium model. 

When incorporating the spatial dependence we can use a similar form of jpint prior, 

p( a, (3), which we can write a:s 

where 

pea, (3) <X Ic(a,{3) 

Ic(a,{3) = {I if (a,{3) E C 

o otherwise 

where C={~, {3: a. f. S, (Jj< O!j 'V;"} and S = nj<k{a : 10j - O!kl $ Cj,k}. 

(6.5) 

As disc~~'on page 135, Cj,k is defined to be a measure of difficulty of spread between 

regions j and k~d if we assume auniform ease ofspread then Cj,k could be proportional 

to the Euclidean distances between regions j and k. 

Defining the joint prior distribution as in Equation 6.5, results in a change in the 

conditional prior distribution p(ajl,Bj) while the conditional distribution p(/3J 10j) remains 

unchanged. That is 

where 8 represents our 'minimum speed' parameter. We introduce the parameter 8 (in 

kms per year) so that we can represent the maximum length of time (in years) in which it 

will take the hunter gathers to move from one region to another, assuming a uniform ease 

of spread. Note we could extend the spatio-temporal models further by treating 8 as an 

unknown parameter, however, for simplicity we chose to treat 8 as a constant. Further 

discussion on extending the spatio-temporal models can be found in Section 8.2.2. 

One of the easiest ways to ensure that the conditional prior distributions have an intuitive 

archaeological meaning, with respect to the problem at hand, is visually. As a result we 
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Figure 6.4: The joint prior distribution p(aUR, aBI) for The Upper Rhine and the British 
Isles, top two plots, and the joint prior distribution p(apB, aB) for the Paris Basin and 
Belgium, bottom two plots. 

have simulated from the joint prior distribution p( a, (3) in order to see whether the joint 

priors p(aj, ak) and the conditional prior distributions have the desired properties. 

Figure 6.4 represents two examples of p(aj, ak), one in which the regions are known to be 

spatially close together, e.g the Paris Basin and Belgium, and one in which the regions 

are further apart, e.g the Upper Rhine and the British Isles. The lighter the shading, in 

Figure 6.4, the higher the probability density i.e. the black areas represents a probability 

density of zero. It is clear, from the top and bottom right plots which zoom in on these 

areas, that the spatial dependence between aj and ak behaves as we expected. 

However, as seen in the top and bottom left plots the lighter shaded areas only cover 

the region approximately 18000-26000 cal BP. This suggests, as a result of incorporating 
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a spatial dependence between the regions, that the a/s are being forced towards the 

upper limit A i.e. forcing the aj's towards being very old. 

Figure 6.5 illustrates the marginal prior distributions p(aj) and p((3j). If we compare 

these plots to Figure 6.2, we can see more clearly the impact of the spatial dependence 

and how it has forced the aj's towards A. The same property occurs for the trapezium 

model when we use a similar form of joint prior for p(a, ",(, 0, /3), see Figure 6.6. 

§ 
o 

o 
.0111,111111111111111111111111111111111111111111111 

I , 

2.5000 20000 15000 10000 5000 

(:Jj (cal BP) 

o 25000 20000 15000 10000 5000 0 

Clj (cal BP) 

Figure 6.5: The marginal prior distributions, p(aj) and p((3j), under the conventional 
uniform model when a spatial dependence between the a/s is incorporated, in the period 
[0,26000) cal BP where s = 1. 

Although the marginal distributions have an intuitive archaeological interpretation, we 

feel that they represent unrealistic dates for both the a/s and (3j's under the uniform 

model and similarly for the trapezium model. As a result we feel that incorporating the 

spatial dependence between the regions, as defined in Equation 6.5, is not acceptable, 

and therefore an alternative approach is required. 

The following section initially discusses why the marginal distributions induced by the 

joint prior, p(a,/3), represent unrealistic dates for both the a/s and (3j's, before moving 

on to look at alternative ways in which we can incorporate the spatial dependence 

between the a's. 
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Figure 6.6: The marginal prior distributions, p(O:j), phj), p(6j) and p(!3j), under the 
trapezium model when a spatial dependence between the o:j's is incorporated, in the 
period [0,26000J cal BP where 8 = 1. 

6.4 Alternative spatio-temporal priors 

As discussed in the previous subsection the joint prior, p( a, fJ), as defined in Equation 6.5 

induces unrealistic dates for the marginal prior distributions of interest, and in particular 

for p(ajl!3j). If we think about the trapezium model and take the extreme case in which 

all the O:j'S were known, we would effectively have eight different -r's, with one 0: forced 

to be older than all the -r's. Hence, on average that 0: would be very old. 

So, how can we develop a spatio-temporal framework, in which we can incorporate the 

spatial dependence between the o:'s without changing the marginal prior distributions 

too much? 
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6.4.1 First idea - constrain O'j - Ij ~ c years 

Our next thoughts were to constrain aj - Ii ~ c years, that is to constrain the length of 

time it takes froro a region first being reoccupied to becoming fully established. However, 

although this might appear to be sensible for a number of applications, after further 

thought it is probably not appropriate for the human reoccupation of NW Europe case 

study. In this case study a represents the first date of reoccupation, that is when a few 

small hunting parties have moved in to explore and exploit the previously unpopulated 

area. The T represents the establishment of a larger, but possibly not permanent, 

occupation. As the regions we are working with cover such a large geographical area it is 

believed that the transition from 'Pioneer phase' to 'Residential CBmp phase' would vary 

between the regions. For example the transition from Pioneer phase to the Residential 

camp phase may depend upon a number of factors, such as ease to reach the region, the 

resources in the region etc.By constraining aj - Ij ~ c years we are assuming that each 

region is being reoccupied in a similar way, which seems an unrealistic assumption to 

make. 

6.4.2 Second idea - define the prior differently 

A second possibility is to define the joint prior differently. In the human reoccupation 

case study we are primarily interested in the first date of reoccupation of NW Europe, 

within each region. As this is the case it seems sensible to incorporate the spatial 

dependence between the a's. So our initial thoughts were to define a joint prior, pea), 

which incorporates the spatial dependence, then define a prior for j3j conditionally on 

aj, i.e. p(j3jlaj}. So p(a,{3) is defined by pea) and p({3lo:), rather than implicity by 

p(al,B) and p(,Bla). 

Conventional uniform model 

We no longer define a joint prior, p( 0:, {3), as in the previous sections. We initially define 

143 



a prior for a which we can write as 

pea) ex Is(a) 

where 

I8(Q) = { 1 if a E S 

o otherwise 

Then secondly we define a prior for each {3j conditionally on OJ such as 

where 

{

I if (a,.8) E B 
IB(a,{3) = 

o otherwise 

and B = {a, {3 : a E S, P < {3j < OJ < A'Vj}. 

(6.7) 

(6.8) 

Defining the prior in two parts, as seen above, results in the following marginal prior for 

OJ and the conditional prior p({3jloj), 

OJ rv U(max(P, max ( Ok - d~k) k :F j), min(A, min( Ok + d~k) k :F j) (6.9) 

Comparing Equation 6.9 with Equation 6.6 we can see that the conditional prior p({3jlaj) 

remains unchanged, but the marginal prior for a differs as we no longer need to condition 

on {3j. If we compare Figure 6.7, which shows the marginal prior distributions for OJ 

and {3j, to Figure 5.3 from Chapter 5, we can see that they essentially represent the 

same distribution. That is the marginal prior distribution for OJ is essentially uniform 

over the region [0,26000J except at the end of the region. We believe the marginal priors 

induced from p( a) and the conditional priors p({3j /OJ) represent much more realistic dates 
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for the parameters of interest and at the same time have a meaningful a.rchaeological 

interpretation. 

o 
-_ ..... 1111111 

25000 20000 15000 10000 5000 

/jj (cal BP) 

o 25000 20000 15000 looon 5(J()O o 
oJ (ell.! DP) 

Figure 6.7: The marginal prior distributions for OJ and /lj, over the period [0,26000] cal 
BP (where s = 1), when assuming a uniform rate of deposition. 

Trapezium model 

Under the trapezium model we use the same form of prior as in previous section, that is 

we initially define the joint prior for a as 

p(a) ex: Is(a) (6.10) 

where 

[s(o) = { ~ if a E S 

otherwise 

and S = nj<k {a : )OJ - Ok I :5 cj,d. We then condition on OJ and define a joint 

conditional prior distribution as 

p(-y,6,/3/a) ex: 18(a,""I,6,/3) (6.11) 

where 

if (a, ""I, 6,/3) E B 

otherwise 
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and B = {a,,),,cS,,8: a E S,P < /3j $ c5j $ "Yj $ aj < A'v'j}. 

We can see from Figure 6.8, which represents the marginal prior distributions for aj, "Yj, OJ 

and [3j, that the distributions represent more realistic dates for the parameters than those 

shown in Figure 6.6. 

As a result, in the following sections we will discuss, for both the uniform and trapezium 

models, the full details for modelling archaeological calibration problems as fully spatio­

temporal problems, as well as discussing how we can implement them by extending the 

Metropolis-Hastings algorithm discussed in Section 3.5. 

Q Q 
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Figure 6.8: The marginal prior distributions for aj, "Yj, OJ and [3j when assuming a 
trapezium rate of deposition and a spatial dependence between the a/s is incorporated, 
for the period [0,26000] cal BP, where s = 1. 
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6.5 Fully spatio-temporaI modelling 

This section of the chapter is split into two sub-sections. The first subsection sets up 

the spatia-temporal model (using the ideas presented in Section 6.4.2), when assuming a 

uniform prior distribution for the deposition rate of datable material, within a multiple 

phase framework. We also discuss the changes we need to make to the Metropolis­

Hastings algorithm (detailed in Section 3.5) as a result of incorporating the spatial 

dependence between the regions. The second subsection follows the same format, yet 

discusses the case in which we assume a trapezium prior distribution for the deposition 

rate of datable material within an archaeological phase. 

6.5.1 Uniform spatio-temporal model 

The ideas in this section are very closely linked to those in Section 3.4.4. 

Let nj represent the number of sample assigned to the jth phase. The ith radiocarbon 

determination in the jth phase is represented by Xi,j ± ffi,j each associated with Bi .j , the 

corresponding calendar date (cal BP). From Section 3.4.4, the likelihood p(xiJIBiJ) can 

be written as 

(6.12) 

We define m to represent the number of phases of activity identified by archaeologists. 

Consequently we can define OJ and {3j to represent the beginning and end of phase j 

for j = 1, ... , m. As seen in Section 3.4.3, as we are working in calendar years DP, the 

parameters are subject to the constraint A > OJ > (3j > P. 

We assume that the material suitable for dating within phase j was deposited uniformly 

between the start and the end of phase, that is to say 

(6.13) 
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As a result, p(Ojla,m, where OJ represents the set oUJ's belonging to the jth phase, can 

be written as 

where 

nj 

p(Ojlaj,!3j) ex ID/Oj) IIp((}iJlaj,!3j) 
i=l 

{

I if OJ e Dj 
IDj(Oj) = 

o otherwise 

and D j represents the set of values that OJ can take within phase j such as stratigraphic 

ordering between the e's. 

The spatial component is incorporated by defining a joint prior for a and then defining 

the conditional prior p(!3jlaj), independently for each j. That is 

where 

p(a) ex 18(a) 

{

I ifa E S 
18(0:) = 

o otherwise 

(6.14) 

and S = nj<k{a : laj - akl ~ Cj,k}. By assuming a uniform ease of spread (Cj,k ex 

dj,k - the approximate Euclidean distances between regions) we can rewrite S as 

S = nj<k{ a : laj - akl ~ d~k}. As a result p(a) represents the maximum length 

of time it would take the Late glacial hunters to travel between pairwise regions. 

We then define !3j conditionally on aj by 

where 

{

I if (0:,{3) E B 
IB(a, f3) = 

o otherwise 

and B = {a,{3: a E S,P <!3j < aj < A Vj}. 
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Evaluating the posterior distribution p(ajl,8j, OJ) 

As discussed in Section 3.5 we are using a single component Metropolis-Hastings 

algorithm to evaluate the posterior distributions of interest. Consequently the updating 

of all parameters except a remains as in Section 3.5. This section discusses the changes 

that need to be made to the algorithm for updating aj in order to implement a fully 

spatio-temporal model. 

If we think back to the conventional uniform model, when updating 0' j we are essentially 

evaluating the posterior 

(6.16) 

The first term is the likelihood for the O's (as seen in Equation 6.13) and the second 

term is uniform on (,8j, A), hence it does not directly affect the updating of O'j and can 

therefore be treated as a constant. 

As a result, we update O'j as 

where nj represents the number of radiocarbon determinations in the jth phase. 

So how does the updating of aj change when we incorporate the spatial dependence into 

pea)? Equation 6.16 becomes 

(6.17) 
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Again, the first term is the likelihood for the fJ's (as seen in Equation 6.13), and the 

second term is uniform on (P, A), hence it does not directly affect the updating on aj 

and thus can be treated as constant. However, the third term is the conditional prior 

for ,8jlaj, which we do not normally write down explicitly. 

Conditional on aj, the parameter ,8j is distributed uniformly on (P, aj) and the density 

is therefore 

_{ (aj-p)-l forP<,8j<aj 
p(,8jlaj) -

o otherwise. 

Therefore, when incorporating spatial dependence, we update aj as 

Implementing the uniform spatio-temporal model using a Metropolis-Hastings algorithm 

In Section 3.5 we discussed how we implemented the trapezium model using a single 

component Metropolis-Hastings algorithm. In this section we extend the ideas in 

Section 3.5 by discussing the changes that we need to make to the algorithm so that 

the spatial component can be incorporated. No changes to the algorithm are required 

for ,8j and 8, so they remain as in Section 3.5. However, we do need to make changes to 

the updating algorithm for aj. 

At each iteration t, the next state a}+l is chosen by sampling a candidate point aj from 

a proposal distribution q(ajla~). Again, a convenient choice of proposal distribution is 

a truncated Normal distribution, with the left tail truncated at the lower outer limit P 

and the right tail truncated at the upper outer limit A. We can express the proposal 

distribution as 

where L = max ( max(8j), max ( ak - ¥) for j i k) and U = min( A, min( ak + ¥) 
for j i k) and with mean a} and standard deviation (7 OJ' 
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The cBIldidate point aj is then accepted with probability 

p(a~ a'.) = min (1 p(aj)p({3j/aj)p(8/aj/3j)p(X/8)Q(aj/aj») 
J' 3 'p(aj)p(/3j/aj)p(8/aj,{3j)p(x/8)q(aj/aj) . (6.1H) 

As the algorithm used is a single component Metropolis-Hastings algorithm, the term 

p(x/8) does not contribute to the updating of aj and thus CBIl be treated as a constant. 

6.5.2 Trapezium model 

The ideas in this section are linked to those in the previous section, with the main 

difference being the choice of prior distribution used to represent the a priori information 

arising about the rate at which the material was deposited within an archaeological phase. 

As in Section 6.5.1, nj represents the number of samples assigned to the jth phase and 

Xi,j ± O"iJ represents the ith radiocarbon determination in the jth phase, associated with 

the corresponding calendar date f)iJ (cal BP). The form of the likelihood P(Xi,j/Oi,j) 

remains unchBIlged and is given in Equation 6.13. 

There are m phases of activity identified by archaeologists. In this model we define 

aj, 'Yj, OJ and /3j to represent the four parameters of the trapezium prior (sec Section 3.4.1) 

for phase j (j = 1, ... , m) subject to the constraint A > aj ~ 'Yj ~ 6j ~ /3j > P, as we 

are working in calendar years BP. 

We represent the prior knowledge about the rate at which datable material is deposited 

within the jth phase by 

(6. H) 

as defined in Equations 3.5. Consequently p(8j/a, 'Y, 6, f3) [note OJ represents the set of 
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O's belonging to the jth phase] can be written as 

where 

nj 

p( 8jlaj, 'Yj, lSj, /3j) ex: IDj(8j ) II PTr&p(Oi,j laj, 'Yj, 6j, /3j) 
i=l 

{

I if 8j (Dj 
IDj(8j) = 

o otherwise 

but now Dj is used to represent the set of values that 8 j can take within phase j. 

To incorporate the spatial component into the model we define a joint prior for a and 

then a joint conditional prior Ph', 0, ,8la). 

where 

p(a) ex: Is(a) 

{

I ifaES 
Is(a) = 

o otherwise 

(6.20) 

and S = nj<k{a : laj - akl ~ Cj,k}' Again, we assume a uniform ease of spread, so 

that we can assume that Cj,k is proportional to dj,k (the Euclidean distances between 

regions). 

We then define 'Yj, lSj and /3j conditionally on aj as 

where 

p(-y,o,,8la) ex: IB(a,-y,o,,8) 

{

I if (a,-y,o,,8) E B 
IB(a,-y,o,,8) = 

o otherwise 

and B = {a,-y,o,,8: a E S,P < /3j ~ lSj ~ 'Yj ~ aj < A \lj}. 
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Evaluating the posterior distribution lor a j 

Again, as a result of incorporating a spatial component into the model we need to make 

changes to the Metropolis-Hastings algorithm (see Section 3.5) for the updating of aj. 

If we think about the trapezium model, in which there is no spatial component, when 

updating aj we are evaluating 

(6.22) 

The first term is the likelihood for the O's under the trapezium model (see Equation 6.19). 

The second term is uniform on (fj, aj), hence it does not directly affect the updating 011 

aj and thus can be treated as constant. 

So how does the updating of aj under the trapezium spatia-temporal model differ to the 

above? As seen in Section 6.4.2 we initially define pea) and then condition on aj, to get 

the joint conditional distribution ph, 0, ,9la). Consequently we can write the posterior 

distribution for O:j as 

(6.23) 

The first term is again the likelihood for the e's, the second term is uniform on (P, A) 

hence it does not affect the updating on aj and thus can be treated as a constant. 

However, the third term is a bit more tricky, as we do not normally write the joint 

conditional prior for 1'j, I5j ,{3j laj explicitly. Conditional on aj, the parameters 1'j' dj and 

(3j could be generated directly by generating 3 independent uniforms on (P, A) and then 

ordering them and calling the smallest (3j, the middle one OJ and the largest one 1'j. 

However, we must note as a result of generating the parameters by this method, that 

there are actually 6 = 3! possible orderings that get mapped to the same values 1'j, 8j 
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and f3j. As a result the density is written as 

otherwise. 

The 6 does not directly affect the updating, since it is constant, but the (OJ - p)-3 is 

important. 

Implementing the trapezium spatio-temporal model using a Metropolis-Hastings algorithm 

This section links closely to Section 6.5.1 by discussing the changes that we need to make 

to the Metropolis-Hastings algorithm in Section 3.5 to allow for the spatial component 

to be incorporated. Again, no changes to the algorithm are required for 'Yj, OJ, f3j and 8, 

they remain as in Section 3.5. Changes to the algorithm are required for the updating 

of OJ. Therefore, this section focuses on the details of the algorithm used for updating 

OJ under the trapezium spatio-temporal model. 

The proposal distribution, q(ojlo}), is needed to generate the next value, o~+l, in the 

Markov chain given the current value of O}. k3 seen in Section 6.5.1 a convenient choice 

of proposal distribution is the truncated Normal distribution as OJ is constrained to lie 

between P and A. We can express the proposal distribution as 

where L = max(max(8j),'Yj,max( Ok-¥) for j =J k) and U = min(A,min( Ok+¥) 
for j =J k) with mean oj and standard deviation uQr 

The candidate point oj is then accepted with probability 

(6.24) 
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As the algorithm used is a single component Metropolis-Hastings algorithm, again the 

term p(xj9) does not contribute to the updating of O:j and thus can be treated as a 

constant. Full details of the algorithm can be found in the C code in Appendix A. 

6.6 Summary 

The aim of this chapter was to present the first steps for modelling archaeological 

calibration problems within a fully spatia-temporal framework. The model proposed 

builds on the existing models (as detailed in Chapters 2 & 3) for archaeological chronology 

building. 

In this chapter the model proposed is based around the human reoccupation of NW 

Europe case study. However, the model can easily be generalized, for example if we 

want to incorporate the spatial dependence between the j3's rather than the o:'s. 

As we now have a framework in which we can incorporate a spatial structure between 

regions, our next aim is to implement both the uniform and trapezium spatia-temporal 

model and to illustrate, via the human reoccupation of NW Europe case study, 

the difference in archaeological interpretations drawn from the data when a spatial 

component is incorporated. 
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Chapter 7 

Spatio-temporal case study: 

human reoccupation of NW 

Europe 

1.1 Introduction 

In this chapter the case study data relating to the human reoccupation of North Western 

Europe at the end of the last Ice Age are revisited in order to illustrate the use of the 

spatio-temporal models developed in the previous chapter. Although we believe that the 

conventional uniform model is not a suitable approach for tackling problems concerning 

colonisationjrecolonisation of landscapes, there are a number of applied researchers who 

would disagree. Thus for completeness, we implement two spatio-temporal models with 

differing a priori distributions for the rate at which material is deposited within the 

phase: the conventional uniform prior and the trapezium prior. 

From this point forward, we will refer to a 'uniform spatio-temporal model' when a 

uniform prior on the rate of deposition of datable material has been implemented. 

Equivalently we will refer to a 'trapezium spatio-temporal model' when using a trapezium 
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prior. 

7.2 Recapping the inferences obtained from the human 

reoccupation case study in Chapter 4 

In this section we recap the inferences obtained when we investigated the human 

reoccupation case study in Chapter 4, before moving on to discuss ways in which we 

can tackle this case study within a spatio-temporal framework in Sections 7.3 & 7.4. 

Our first approach to this case study took into account the main concern raised 

in Blackwell and Buck (2003). This being, that although the conventional uniform 

model is useful in many situations, i. e. short lived phases at single spatial locations, 

it is not believed to be the most sensible approach for problems concerning 

colonisationjrecolonisation of past landscapes i. e. multiple phases at different spatial 

locations. This led Blackwell and Buck (2003) to suggest an alternative to the 

conventional uniform model, which we refer to as the sigmoidal prior (see Section 3.4.2), 

that allows landscapes to be established over a finite period of time, rather than 

instantaneously. 

This suggestion indicated to us that there was a need to seek alternatives to the 

conventional uniform model in order for archaeologists to reliably represent their a priori 

information. Subsequently we proposed a range of alternative non-uniform a priori 

distributions, two of which (the trapezium and sigmoidal) would adequately represent 

the a priori beliefs with regard to the mechanics of the reoccupation process as described 

in Housley et al. (1997); see Section 4.3.2. 

It became apparent from the work carried out in Chapter 4 that the trapezium and 

sigmoidal models led to very similar date estimates for the first date of reoccupation 

within each region. However, these differed considerably from those derived under the 

uniform model. In particular the trapezium and sigmoidal models resulted in earlier 

date estimates than those obtained under the conventional uniform model. Another 
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conclusion arising from Chapter 4 is that, given the similarities in date estimates obtained 

from the trapezium and sigmoidal models, it seems unnecessary to implement both 

models. We slightly favour the trapezium model over the sigmoidal model, as we believe 

it has a more intuitive archaeological interpretation (see Section 3.4). 

Although we made inferences in Chapter 4 of both a temporal nature (e.g. the first 

date of reoccupation) and spatial nature (e.g. the order in which the regions may have 

been reoccupied) by utilizing relatively simple temporal models, we ignored any spatial 

information that was available. As a result, our next aim is to use the spatio-temporal 

model developed in the previous chapter to incorporate a spatial structure between 

the regions and illustrate, via the human reoccupation of NW Europe case study, the 

difference in results when adopting fully spatio-temporal models as opposed to purely 

temporal models. 

7.3 Spatial information arising from the reoccupation case 

study 

Housley et al. (1997) defines NW Europe as southern Scandinavia, Germany, the 

Netherlands, Belgium, Northern France and the British Isles (see Figure 6.1). It 

is believed that NW Europe was mostly unoccupied by humans during the glacial 

period (approximately 18,000 years ago). The questions of greatest interest to many 

archaeologists are: 'how long did this period of abandonment last?' and 'when did it 

begin and end?' 

An additional interest, in Housley et al. (1997), was to approximate the rate of human 

expansion across NW Europe (in km/yr) after the ice sheets had retreated. The authors 

approached this question by assuming that the Upper Rhine was the point of origin and 

then approximated the distances (in kms) from the Upper Rhine to the other regions, 

using Figure 6.1. The authors then used these distances, along with their estimates for 

the first date of reoccupation in each region (see Section 4.3), to calculate the rate of 
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human expansion between the Upper Rhine and the other seven regions. 

As we have previously discussed, it seems likely (a priori) that regions spatially close 

together (e.g. Paris Basin and Meuse Basin) are more likely to be reoccupied at similar 

times compared to those regions further apart (e.g. The Upper Rhine and the British 

Isles). Also, it seems sensible to assume that the first areas to be reoccupied, after the ice 

sheets had retreated, were those furthest south (e.g. The Upper Rhine). Unfortunately, 

as discussed in Chapter 6, there is no quantitative spatial information available for this 

case study. This led us to adopt a similar approach to that used by Housley et al. (1997). 

Figure 6.1 illustrates the eight regions of NW Europe, where the diagonal lines represent 

the approximate regional areas. As a result we measure the approximate Euclidean 

distances between the centroids of pairs of regions (in kms). Given these distances 

(see Table 7.1) the next step is to contemplate ways in which we can incorporate this 

information into the existing modelling framework. However, before this is possible we 

also need some indication of the ease of spread between the regions of NW Europe. 

Region URhine Thuringian SGermany MRhine Belgium Paris NGermany 
URhine 460 270 330 360 400 750 

Thuringian 270 270 420 620 380 
SGermany 300 430 590 620 

MRhine 140 350 460 
Belgium 230 520 

Paris 780 
NGermany 

BIsles 

Table 7.1: Euclidean distances (to the nearest 10 kms) between the centroids of pairs of 
regions measured from Figure 6.1. 

In order to determine the ease of spread from one region to another in a coherent manner, 

one would need to know about the topography of NW Europe during the Late glacial 

period. For example, knowing the locations of river networks, mountain ranges and 

dense forests would make a huge impact on possible routes of migration i.e. the closest 

region may not necessarily be the easiest or quickest region to reach. Unfortunately we 

do not (currently) have access to such information and consequently rely on eliciting, 
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from either archaeologists or the applied literature, as much detail as possible of past 

landscapes. 

In Housley et al. (1997) the authors make reference to the paper by Ammerman and 

Cavelli-Sforza (1973) in which the authors discuss the movement of European farmers 

across northern Europe. In this paper the authors estimated a lkm per year advance 

through northern Europe, based on the assumption that individuals disperse randomly 

in all directions. Housley et al. (1997) assume that the rate of expansion of the Late 

glacial hunters into NW Europe, after the ice sheets had retreated, would be similar to 

the movement of the European farmers (assuming that the Upper Rhine was the point 

of origin). Given the assumption of a lkm per year advance in all directions, we are 

essentially saying that we can assume a uniform ease of spread between the regions of 

NW Europe. As a result of this assumption we can say that Cj,k (the measure of difficulty 

of spread between regions) is proportional to the approximate Euclidean distance, dj,k 

between the regions. We can then incorporate this spatial information into the modelling 

framework as detailed in Section 6.4.2. 

The aim of the remainder of the chapter is to illustrate the difference in archaeological 

conclusions drawn from the data when implementing spatio-temporal models compared 

to those previously obtained. Namely, we will look at the difference in interpretations 

between 

1. the conventional uniform model versus the uniform spatio-temporal model, and 

2. the trapezium model versus the trapezium spatio-temporal model. 

7.4 Setting up the spatio-temporal models 

In this section we initially review the material presented in Section 3.5 which discusses 

the set up the reoccupation case study (within a multiple phase framework) for both 

the conventional uniform and trapezium model. We also discuss how to incorporate the 
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spatial information arising from the case study (detailed in Section 7.3). Full details 

of the set up of both spatio-temporal models can be found in Section 6.5, along with 

a discussion of the MCMC algorithms used to evaluate the posterior distributions of 

interest. Here we present a shorter explanation of how to incorporate the spatial structure 

into the modelling framework. 

The uniform model 

Each region is assumed to have its own phase of human reoccupation; the dates of these 

phases were taken to be independent in Section 3.5, but we will modify this in the spatio­

temporal case. The earliest date (which we refer to as the beginning of the 'pioneer sub­

phase') for the reoccupation phase in region j is represented by O:j cal BP (j = 1, ... ,8 

denoting the number of regions). Similarly, the last date for the reoccupation phase in 

each region is labelled (3j cal BP. Under the uniform spatia-temporal model it is assumed 

that the samples suitable for radiocarbon dating within region j were deposited uniformly 

between the start (O:j) and the end ((3j) date of the reoccupation phase. Individual events 

are taken to be independent within and between phases, given the dates of the phases; 

this assumption remains unchanged in the spatia-temporal case. 

The trapezium model 

When implementing the trapezium spatia-temporal model we use the same notation 

as in the uniform spatio-temporal model, O:j and (3j cal BP, to represent the first and 

last date of the reoccupation phase within each region, respectively. There are also 

two extra parameters, "Ij which represents the beginning of the 'residential camp sub­

phase' and 8j which represents the end of the 'residential camp sub-phase'. When 

implementing the trapezium spatio-temporal model it is assumed that the material 

suitable for dating was deposited between O:j and /3j at a trapezoidal rate, that is to 

say Oi,jIO:j,"Ij,6j,/3j '" Trap(aj,"Ij,6j,/3j); see Section 3.4.1. 

Incorporating the spatial aspect 

As seen in both Sections 6.5.1 and 6.5.2 the general framework for modelling 
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archaeological calibration problems follows a similar format to Section 3.4.4, the main 

difference that occurs is that we no longer define a joint prior p( 0:, /3). In order to 

incorporate the spatial structure arising from the case study we initially define a joint 

prior for 0: as 

p( 0:) oc 18(0:) (7.1) 

where 

{

lifo: E S 
18(0:) = 

o otherwise 

and S = nj<d 0: : letj - etkl :5 Cj,k}' We then define a conditional prior p(,8jlaj), 

independently for each j. 

where 

{

I if (o:,fj) E B 
1B(0:,/3) = 

o otherwise 

and B = {0:,/3: 0: E S,P <,8j < aj < A'Vj}. 

(7.2) 

This clearly represents the uniform spatio-temporal model. When assuming a trapezium 

rate of deposition we firstly define a joint prior for 0: as in Equation 7.1 and then define 

a joint conditional prior p{,8j, OJ, 'Yjlaj) independently for each j. 

As discussed in the previous subsection Housley et al. (1997) assumes a lkm per year 

advance, based on the assumption that individuals disperse randomly in all directions 

(as well as assuming that the Upper Rhine was the point of origin). Consequently, on 

the basis of this assumption we assume a uniform ease of spread across NW Europe i.e. 

we can now think of Cj,k (measure of difficulty of spread) as being proportional to the 

approximate Euclidean distances (dj,k) between the regions (see Table 7.1). We define 
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the set S 

s = n { Q : Ia:j - a:kl $ dj'k} 
j<k 8 

in order to represent the maximum length in terms of time in which the hunter gathers 

would travel between regions. We define the parameter 8 to be 1 i. e. to represent the 

lkm per year advance as suggested in Housley et al. (1997). However as s represents the 

'minimum speed' parameter by defining s = 1 it also covers all speeds greater than lkm 

per year. 

Although Housley et al. (1997) assumes that the Upper Rhine was the point of origin, 

and we agree that this seems a sensible assumption to make, we do not necessarily know 

whether this is true. Therefore we decided not to implement this assumption into our 

modeling framework. However, given the MOMO output we can calculate the posterior 

probability of the Upper Rhine being the first region to be reoccupied, which allows us 

to test their assumption. 

7.5 Results: Conventional uniform model versus the 

uniform spatio-temporal model 

We use a similar format to that of Section 4.3.5 to discuss the reinterpretation of the 

reoccupation data. That is, we initially discuss the first date of reoccupation of each 

region under the non-spatial and spatio-temporal models, before discussing the order in 

which the regions may have been reoccupied. An additional question that we investigate 

(in Section 7.6.1) is, 'given the order in which the regions were reoccupied, what can we 

learn about the routes of migration through NW Europe?'. 

First date of reoccupation 

As seen in Section 4.3 the primary objective is to estimate the earliest date of 

reoccupation of each region under study. We summarise these estimates by their 95% 

HPD regions (in Table 7.2) and visually by their marginal posterior distributions (in 
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Figure 7.1). Our main interest lies in comparing the estimates obtained from the uniform 

spati<rtemporal model to those obtained in Section 4.3.5 (i.e. using the conventional 

uniform model). 

Region 95% HPD interval for the date of first reoccupation (cal BP) 
no spatial info 1 km per year 

Upper Rhine 16500 - 19580 16160 - 16520 
Thuringian Basin 16350 - 17650 16020 - 16390 

Southern Germany 15300 - 16750 15940 - 16420 
Middle Rhine 15150 - 15770 15880 - 16260 

Belgium 15320 - 16900 15720 - 16100 
Paris Basin 15030 - 16010 15720 - 16110 

Northern Germany 14310 - 15440 15580 - 16030 
British Isles 14670 - 15180 15260 - 15680 

Table 7.2: The 95% HPD intervals for the first date of reoccupation of the eight regions 
under the conventional uniform when incorporating no spatial dependence (conventional 
uniform model) and the uniform spati<rtemporal model when assuming a minimum of a 
lkm per year rate of expansion. 

From Table 7.2 we can see that the HPD regions are much narrower under the spati<r 

temporal model compared to those under the conventional uniform model. The most 

noticeable difference occurs in the estimates for the Upper Rhine. Under the conventional 

uniform model the 95% HPD region is 16500-19580 cal BP which compares with 16160-

16520 cal BP under the uniform spati<rtemporal model, i.e. the spati<rtemporal model 

results in the Upper Rhine being reoccupied later in time. Similarly, the estimates 

for the first date of reoccupation of the British Isles differs between the two models. 

Again, the 95% HPD region under the spati<rtemporal model is narrower than under 

the conventional uniform model, yet this time the first date is estimated to be earlier in 

time. 

Figure 7.1 shows the estimates for the marginal posterior distributions for the first 

dates of reoccupation in each region under the conventional uniform (red lines) and 

uniform spati<rtemporal models (blue lines). From Figure 7.1 we can see as a result of 

incorporating the spatial dependence between the a j 's that the estimates for the first 

date of reoccupation are being pulled closer together. 
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The order in which reoccupation took place 

As the chronological ordering is not clearly defined by looking at the HPD regions and 

marginal posterior plots from Figure 7.1 we use the two summary methods as detailed 

in Section 4.3.5, to discuss the order in which the regions were reoccupied. Table 7.3 

gives the probabilities that each region is temporally ranked 1 (earliest) through to eight 

(latest) for both the conventional uniform and uniform spatio-temporal models. The 

numbers highlighted (in light grey for the conventional uniform model and dark grey for 

the spatio-temporal model) represent the most probable order in which the regions were 

reoccupied. Under both the conventional uniform and spatio-temporal model the Upper 

Rhine was the first region to be reoccupied with corresponding posterior probabilities of 

0.75 and 0.90. The British Isles was the last region to be reoccupied, with a probability of 

1.00 under the spatio-temporal model but the corresponding posterior probability under 

the conventional uniform model was only 0.39. Consequently, there is less uncertainty 

associated with the order in which the regions were reoccupied when the spatial structure 

has been imposed. 

The second summary we use reports the posterior probability of particular orderings in 

which reoccupation might have occurred. Table C.l, in Appendix C, represents the 

ten most likely orderings of the eight regions. We summarize these by giving the 

most likely order in which reoccupation may have occurred under the two differing 

models. Under the conventional uniform model the most likely order is the Upper Rhine, 

Thuringian Basin, Belgium, Southern Germany, Paris, Middle Rhine, British Isles and 

Northern Germany with a posterior probability of 0.082, while under the spatio-temporal 

model the most likely order is the Upper Rhine, Thuringian basin, Southern Germany, 

Middle Rhine, Paris, Belgium, Northern Germany and the British Isles with a posterior 

probability of 0.19. It is clear that by implementing a spatio-temporal model the order 

in which some regions were reoccupied (such as northern Germany and the British Isles) 
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Figure 7.1: Marginal posterior distributions for the first date of reoccupation in each 
region under conventional uniform model (red) and the uniform spatio-temporal model 
(blue), assuming a minimum of a lkm per year expansion rate. 
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Region 1 2 3 4 5 6 7 8 
Upper Rhine 0.75 0.23 0.02 0.00 0.00 0.00 0.00 0.00 

0.09 0.01 0.00 0.00 0.00 0.00 0.00 

Thuringian Basin 0.22 0.71 0.07 0.00 0.00 0.00 0.00 0.00 
0.03 0.40 0.02 0.00 0.00 0.00 0.00 

Southern Germany 0.01 0.03 0.38 0.42 0.13 0.03 0.00 0.00 
0.06 0.36 0.16 0.00 0.00 0.00 0.00 

Middle Rhine 0.00 0.00 0.02 0.08 0.37 0.49 0.04 0.00 
0.00 0.01 0.17 0.04 0.02 0.00 0.00 

Belgium 0.02 0.04 0.46 0.35 0.10 0.03 0.00 0.00 
0.00 0.00 0.00 0.02 0.40 0.07 0.00 

Paris Basin 0.00 0.00 0.06 0.13 0.37 0.39 0.05 0.00 
0.00 0.00 0.00 0.04 0.36 0.11 0.00 

Northern Germany 0.00 0.00 0.00 0.00 0.02 0.05 0.32 0.61 
0.00 0.00 0.00 0.00 0.08 0.10 0.00 

British Isles 0.00 0.00 0.00 0.00 0.00 0.01 0.60 0.39 
0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Table 7.3: The probability that each region is temporally ranked one (earliest) through to 
eight (latest) under the conventional uniform model (light grey) and the spatio-temporal 
model (dark grey), assuming a minimum of a 1km per year expansion rate 
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can be resolved. 

Note that when using the conventional uniform model the ten most likely orderings 

accounted for approximately 50% of the total posterior probability. However, this rose 

to approximately 75% of the total posterior probability under the spatio-temporal model. 

Conclusions 

We conclude, as a result of incorporating a spatial structure between the regions that 

there appears to be a more clearly defined order in which the regions were reoccupied. 

We also believe that the Upper Rhine was most probably the point of origin, as assumed 

by Housley et al. (1997), as the posterior probability of the Upper Rhine being the first 

region to be reoccupied is 0.90 (see Table 7.3). In addition we also believe that there may 

have been two points of origin, as previously discussed one from the south (the Upper 

Rhine) and one from the east (the Thuringian Basin). We draw this conclusion on the 

basis of Table 7.3 and Figure 6.1. From Table 7.3 we see that the Thuringian Basin was 

most likely to be reoccupied second (with a posterior probability of 0.55). Using this 

conclusion and looking at Figure 6.1 it seems very unlikely that the hunter gathers would 

travel directly from the Upper Rhine to the Thuringian Basin without passing through 

Southern Germany. However, without the use of topography we cannot draw any firm 

conclusions. For further discussion on possible routes of migration through NW Europe 

after the last Glacial period see Section 7.6.1. 

7.6 Results: Trapezium model versus the trapezium 

spatio-temporal model 

In this section we make a comparative interpretation of the data, under the trapezium 

and trapezium spatio-temporal models. Again, discussing the first dates of reoccupation 

in each of regions, as well as the order in which the regions were reoccupied. 

First date of reoccupation 
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The estimates for the first dates of reoccupation under the trapezium and trapezium 

spatio-temporal models are summarized in Table 7.4 by their 95% HPD regions and 

in Figure 7.2 by their marginal posterior distributions. We see the same affect on the 

length of the HPD regions as we saw in Section 7.5. That is, under the spatio-temporal 

model the HPD regions for the first date of reoccupation are much narrower e.g. under 

the trapezium model the 95% HPD region for the Upper Rhine is 16740-23470 cal SP 

compared to 16390-16940 cal BP under the trapezium spatio-temporal model. The same 

is true of the other seven regions. 

Region 

Upper Rhine 
Thuringian Basin 

Southern Germany 
Middle Rhine 

Belgium 
Paris Basin 

Northern Germany 
British Isles 

I 95% HPD interval for the date of first reoccupation (cal SP) 
I No spatial info 1 km per year 

16740 - 23470 16390 - 16940 --
16620 - 18600 16230 - 16810 
15440 - 18530 16210 - 16850 
15260 - 16580 16210 - 16720 
15440 - 18690 16000 - 16610 
15140 - 17010 16000 - 16620 
14530 - 16320 15850 - 16550 

147500 - 15530 15570 - 16280 

Table 7.4: The 95% HPD intervals for the first date of reoccupation of the eight 
regions under the trapezium model when incorporating no spatial dependence and when 
assuming a minimum expansion rate of lkm per year. 

From Figure 7.2, which shows the estimates for the marginal posterior distributions 

of the first dates of reoccupation in each region under the trapezium model (red 

lines) and trapezium spatio-temporal (blue lines), we can see that the estimates 

under the trapezium model have more uncertainty associated with them than the 

estimates obtained from the spatio-temporal model, which makes a huge difference to 

the archaeological interpretations drawn from the data under the two models. 

The order in which reoccupation took place 

Using Figure 7.2 it appears that the Upper Rhine was the first region to be reoccupied and 

the British Isles the last, however, the chronological ordering of the regions in between 
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Figure 7.2: Marginal posterior distributions for the first date of reoccupation in each 
region under trapezium model (red) and the trapezium spatia-temporal model (blue), 
assuming a minimum expansion rate of 1km per year. 
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Region 1 2 3 4 5 6 7 8 
Upper Rhine 0.75 0.19 0.06 0.00 0.00 0.00 0.00 0.00 

0.15 0.04 0.01 0.00 0.00 0.00 0.00 

Thuringian Basin 0.14 0.58 0.24 0.04 0.00 0.00 0.00 0.00 
0.08 0.37 0.09 0.03 0.02 0.00 0.00 

Southern Germany 0.05 0.10 0.28 0.32 0.17 0.07 0.01 0.00 
0.12 0.27 0.14 0.03 0.02 0.00 0.00 

Middle Rhine 0.00 0.01 0.04 0.11 0.29 0.40 0.14 0.01 
0.00 0.04 0.21 0.09 0.08 0.02 0.00 

Belgium 0.06 0.12 0.29 0.30 0.16 0.06 0.01 0.00 
0.08 0.10 0.37 0.08 0.03 0.00 0.00 

Paris Basin 0.00 0.01 0.08 0.17 0.30 0.30 0.12 0.02 
0.00 0.01 0.03 0.09 0.35 0.15 0.00 

Northern Germany 0.00 0.00 0.02 0.04 0.08 0.14 0.35 0.37 
0.00 0.01 0.01 0.03 0.11 0.11 0.04 

British Isles 0.00 0.00 0.00 0.00 0.00 0.04 0.35 0.61 
0.00 0.00 0.00 0.00 0.00 0.01 0.04 ( 0'.15 ] 

Table 7.5: The probability that each region is temporally ranked one (earliest) through to 
eight (latest) under the conventional uniform model (light grey) and the spatio-temporal 
model (dark grey), assuming a. minimum expansion rate of 1km per year. 

is not clear. Again, we summarize the order in which reoccupation occurred by giving 

the probabilities that each region is temporally ranked 1 (earliest) through to 8 (latest) 

for both the trapezium and spatio-temporal models, see Table 7.5. Again, we highlight 

the most probable order of a region being reoccupied in light grey for the trapezium 

model and dark grey for the spatio-temporal model. Under both models the Upper 

Rhine was the most probable region to be reoccupied first, with a posterior probability 

of 0.75 under the trapezium model and 0.80 under the spatio-temporal model. If we are 

interested in the most probable rank of Northern Germany (under the trapezium model) 

we see that the posterior probability of it being reoccupied seventh is 0.35 and being 

recolonized last as 0.37. As there is very little difference between the two probabilities it is 
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difficult to make any inferences on the order in which Xorthern Germany was rooccupied. 

However, under the spatio-temporal model the most probable order of !\orthern Germany 

being reoccupied is seventh with a posterior probability of 0.69. Hence as a result of 

incorporating a spatial structure we obtain more definite (higher posterior probabilities, 

less uncertain) orderings of the eight regions. 

In Appendix C, Table C.2, reports the ten most likely orderings under both the trapezium 

and spatio-temporal models, respectively. Here we just report the most likely order under 

the two models. Under the trapezium model the most likely order is the Cpper Rhine. 

Thuringian Basin, Belgium, Southern Germany, Paris Basin, Middle Rhine, ~orthern 

Germany and the British Isles with a posterior probability of 0.03. While under the 

spatio-temporai model the most likely order is the t:pper Rhine, Southern Germany, 

Thuringian Basin, Middle Rhine, Paris Basin, Belgium, !\orthern Germany and the 

British Isles with a posterior probability of 0.10. Although this probability is still 

relatively small under the spatio-temporal model it has tripled in comparison to the 

corresponding probability under the trapezium model. It is clear that there is still a 

large amount of uncertainty to be taken into consideration when trying to make inferences 

concerning the order of reoccupation. We see from Table C.2 that under the trapezium 

model the ten most likely orderings account for approximately 22% of the total posterior 

probability, while under the spatio-temporal model the ten most likely orderings account 

for 45% of the total posterior probability. 

7.6.1 Possible routes of migration through NW Europe 

The primary objective of our work on the reoccupation case study was to estimate 

the earliest date of reoccupation of each region under study, from which we can derive 

the most likely order in which the regions may have been rooccupied. An additional 

interest to applied researchers, which follows on naturally from the most likely order, is 

the question 'what routes did people take through ~w Europe during the reoccupation 

process?'. 
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Thus. the final topic that we discuss (with regard to this case study) is possible routes of 

human migration through l';'W Europe at the end of the Late glacial period. We cannot 

reach any definite conclusions about such routes with the tools developed in this thesis, 

but we can begin to discuss methods that might lead us to them. 

Our starting point in discussing possible routes of migration are the inferences obtained 

in Section 7.5. in particular, those relating to the most likely ordering ofreoccupation (see 

Table C.1). Alongside this, we need to refer to Figure 7.3 which defines the eight regions 

of l\'\V Europe and indicated the most likely order of each region in bold typeface. Note 

that. in what follows here, only inferences obtained from the uniform spatia-temporal 

model will be discussed. 

In Housley et aI. (1997) the authors assumed a single point of origin for humans returning 

to NW Europe as the ice sheets retreated; namely the Upper Rhine. However on page 168 

we discussed the idea of there being two points of origin one from the South (the Upper 

Rhine) and one from the East (the Thuringian Basin). We based these assumptions on 

the posterior probabilities reported in Table 7.3 and Figure 6.1. From Table 7.3 we see 

that the C'pper Rhine was the most likely region to be reoccupied first with a posterior 

probability of 0.90 and that the Thuringian Basin was the second most likely region to be 

reoccupied with a corresponding probability of 0.55. Using this information along with 

Figure 7.3 it seems very unlikely that the hunter gathers would travel directly from the 

Upper Rhine to the Thuringian Basin without travelling through Southern Germany. 

Although we can calculate the probability of a particular order in which the regions may 

have been reoccupied using our MCMC samples, it is not possible to use them to draw 

any firm conclusions concerning possible routes of migration. This is particularly true 

if we allow for the possibility of two points of origin. For example, we found that the 

Middle Rhine is most likely to have been the fourth region to be reoccupied. Given which 

areas are likely to have been reoccupied before this, the Middle Rhine may have been 

colonised by prople travelling from the Thuringian Basin, Southern Germany or even 

possibly the Upper Rhine. Given the most likely posterior ordering and the possibility 
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Figure 7.3: NW Europe after the last Glacial period assuming that regions were 
reoccupied in the order, the Upper Rhine, Thuringian basin, Southern Germany, Middle 
Rhine, Paris Basin, Belgium, Northern Germany and the British Isles. 

of two points of initial origin, it is also possible that the Middle Rhine may have been 

reoccupied by people travelling in from two different directions simultaneously e.g. north 

from the Upper Rhine and west from the Thuringian Basin. 

Thus, the results of this thesis do not lead to clear-cut conclusions about likely routes 

of migration. This may, in part, be because we have not accounted for topography in 

our models. It may be possible to eliminate some routes of migration if we take account 

of the topography of NW Europe during the Late glacial period e.g. the locations of 

geographic features such as river networks, mountain ranges and dense forests. To do 

this, extensions to the fully spatio-temporal models that we developed in Chapter 6 will 

be needed. Information about current and past landscapes can be now readily managed 

and plotted using geographical information systems (GIS). Incorporating information 

derived from such tools into our modelling framework (perhaps in the form of cost 
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surfaces) may be a sensible next step to take if we really want to begin to tackle issues 

relating to routes of migration/reoccupation, see Section 8.2.2 for further details. 

7.7 Summary 

In this chapter we implemented the spatio-temporal models developed in Chapter 6, 

with the aim of looking at any differences in the archaeological conclusions drawn from 

the human reoccupation case study when implementing non-spatial-temporal and spatio­

temporal models. 

As discussed in Section 7.3 the spatial information available, and thus incorporated in 

this case study was rather crude. However, it is clear that incorporating such information 

has made a huge difference to the archaeological conclusions drawn from the data, in 

particular, to the order of the regions in which reoccupation may have occurred. Hence 

the most likely order of reoccupation under both spatio-temporal models accounts for a 

higher proportion of the total posterior probability than under the non-spatio-temporal 

models. As well as this, a difference in the estimates for the first dates of reoccupation 

within each region is seen. Under the spatio-temporal model the HPD regions tend 

to be narrower than those obtained under the non-spatial models, which results in the 

conclusion that some regions were reoccupied earlier in time and others later in time i.e. 

hence the estimates under the spatio-temporal models are pulled closer to one another. 
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Chapter 8 

Conclusions and further work 

The aim of this thesis was to develop a more flexible statistical framework for the formal 

modelling of radiocarbon calibration problems by allowing a wider range of a priori 

information to be incorporated. Including this information allows us to obtain a more 

coherent and satisfactory interpretation of the data. As described in Chapter 1, the 

contents of this thesis may be broadly divided into two areas of research, namely 

1. modelling the deposition of datable material within an archaeological phase 

2. spatia-temporal modelling. 

Below we offer detailed conclusions on both areas of research as well as some final 

thoughts and suggestions for future work on the material covered within this thesis. 

8.1 Conclusions 

The first of the new material is presented in Chapter 3. In this chapter we investigate 

alternative priors to the conventional uniform model currently used, and although these 

ideas have been suggested by a number of authors in the applied literature, we are among 

the first to study these suggestions in depth. Two case studies were briefly discussed 
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which motivate the use of non-uniform a priori distributions. As a result, we proposed 

a range of non-uniform distributions (see Section 3.4), all of which have an intuitive 

archaeological interpretation. Two of these priors, the trapezium and sigmoidal priors, 

are thought to have a wide range of uses (such as to describe the occupation of sites or 

whole regions as well as for the development of technologies and fashions) and formalise 

well-accepted heuristic representations of archaeological models. 

The aim of Chapter 4 was to illustrate any differences in inferences drawn from the data. 

Two case studies were implemented using different a priori distributions for the rate at 

which material was deposited/manufactured within a phase of activity. The reason for 

choosing these two particular case studies is that both authors of the papers in which 

they originally appeared state (indirectly) their a priori beliefs about the rate at which 

the material dated was deposited/manufactured within the phase of interest. In both 

cases they are believed to be non-uniform. 

In the original work on the first case study (Van Strydonck et al., 2004) the authors were 

keen to explore formal Bayesian chronology-building tools, such as those available in 

OxCal, to compare their radiocarbon results with chronologies proposed by art historians. 

However, due to their lack of statistical knowledge they chose to implement a method 

commonly referred to as the 'summed probability distribution' method. In Section 4.2.1 

we discussed our concerns with regard to implementing this method and our doubts that 

any meaningful interpretations can be drawn from the distributions produced. 

Instead we suggest an alternative more logical way in which the authors could tackle 

this problem by implementing a simple temporal model as detailed in Buck et al. 

(1992). However, this approach did not account for the a priori beliefs that the authors 

state in their paper with regard to the rate at which the textiles are believed to have 

been manufactured over the proposed range. As a result we implemented both the 

conventional uniform model and the trapezium model for a single phase of textiles (12 

stylistically related woollen tunics). Our main interest focused on the archaeological 

interpretations drawn from the data relating to the last date of manufacture of the 
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textile when assuming different a priori distributions. 

Considerably different date estimates were derived for the last date of manufacture under 

the two models, both of which ruled out the later dates proposed by some art historians 

for these particular tunics. Under the uniform model there was no evidence to suggest 

that the tunics were older than the 8th century AD, while the trapezium model suggests 

that these tunics could be as old as the 9-lOth century AD. Due to the a priori beliefs 

stated in Van Strydonck et al. (2004), we are inclined to believe the estimates produced 

under the trapezium model. 

The second case study used in Chapter 4 is the human reoccupation of NW Europe case 

study, which has been utilized a number of times throughout the thesis. This case study 

has been analysed several times within the applied literature and has great importance 

in understanding the Late glacial period. This case study was chosen due to the a 

priori information by the original authors, relating to the mechanics of the reoccupation 

process. 

Again, we use this case study as an illustrative example for implementing a range of 

models with differing a priori distributions for the rate at which the material available 

was deposited (within each of the regions). Blackwell and Buck (2003) suggested an 

alternative to the conventional uniform model; this being the sigmoidal prior. As a result 

we implemented three different models: the conventional uniform model, the trapezium 

model and the sigmoidal model. 

Our primary interest was to estimate the first date of reoccupation within each region. 

The trapezium and sigmoidal models gave very similar date estimates, which differed 

considerably from those inferences obtained under the conventional uniform prior model. 

The trapezium and sigmoidal models allowed more uncertainty in the date estimates for 

the first dates of reoccupation, and in particular resulted in them being earlier in time 

than those derived under the conventional uniform model. In addition, the trapezium 

and sigmoidal models produced the same sequence for the most likely order in which the 

regions were reoccupied, again differing from the sequence derived under the conventional 
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uniform model. 

From Chapter 4 it became clear that there are huge differences in the archaeological 

conclusions drawn from the data depending upon the a priori distribution used to model 

the rate at which material was deposited/manufactured within the phase of activity. The 

difference between the conclusions drawn under the trapezium and sigmoidal models 

are less dramatic than those between either of these and the uniform prior. For this 

reason we feel that it is not always necessary to implement both the trapezium and 

sigmoidal models. We slightly favour the use of a trapezium a priori distribution over 

the sigmoidal for a number of reasons. In particular the conventional uniform prior is 

a special case of the trapezium prior (when a = 'Y and ~ = ;3). For this reason, we feel 

that the trapezium prior has a more intuitive archaeological interpretation than that of 

the sigmoidal prior. We also feel that for those with a non-statistical background the 

properties of the trapezium prior have an easier and more meaningful interpretation. 

Although we were satisfied that we had made advances in modelling the reoccupation 

process within each individual region more coherently, there were still a number of aspects 

that we felt had been ignored. Consequently, this lead us to the final area of research, 

attempting to tackle this problem using a spatio-temporal model. 

Our first suggestions for spatio-temporal models were outlined in Chapter 5. The idea 

of this Chapter was to use joint a priori distributions to capture information between 

pairwise parameters of interest. As explained these ideas proved unsatisfactory when we 

failed to make a connection with the a priori distributions proposed and ways in which 

to adequately represent the a priori information arising from archaeological research. 

Subsequently, we decided to take a different approach to the same problem, which led 

to the development detailed in Chapter 6. 

Chapter 6 offers what we believe to be the first advance towards tackling archaeological 

calibration problems within a fully spatio-temporal framework. It is by no means 

complete, but is aimed to give the basic groundwork for those wishing to pursue this line 

of research in the future. 
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The idea behind Chapter 6 was to find ways in which to incorporate spatial as well 

as temporal information into the modelling framework. It is believed that many 

archaeological problems such as colonisation/recolonisation of past landscapes are not 

purely temporal and thus including spatial information in the modelling framework is 

necessary and we would expect it to affect the interpretations drawn from the data 

greatly. 

As our first approach in Chapter 5 failed we decided to tackle this problem from a 

purely practical perspective, i. e. with the human reoccupation case study in mind. 

The spatial information available from this case study consisted of (crudely measured) 

Euclidean distances between pairs of regions. We found no good way to use this kind of 

information under the framework outlined in Chapter 5. However, this form of spatial 

information is available for many case studies relating to the spread of plants and animals 

into regions/landscapes that were not previously occupied and so it seems sensible to 

approach the problem with this form of spatial information initially in mind. 

Our approach in Chapter 6 was to extend the existing chronology building models, 

detailed in Chapters 2 & 3, with the aim of constructing a general framework in which 

both temporal and spatial information can be incorporated in a structured way. As our 

primary interest, with regard to the reoccupation case study, is to estimate the first date 

of reoccupation within each region it seemed sensible to seek a joint a priori distribution 

which incorporates the spatial structure between the o's. 

In Housley et al. (1997) the authors assumed that the movement of the Late glacial 

hunters across NW Europe would follow a similar behaviour to those of European 

farmers. Subsequently, the authors assumed a lkm per year advance through NW Europe 

given the assumption that individuals disperse randomly in all directions. As a result 

we assumed a uniform ease of spread between the regions of NW Europe. 

As seen in Chapters 2-4, when modelling archaeological calibration problems the 

convention is to assume a particularly simple form of joint prior for p( a, (3) in which all 

values of OJ and (3j that satisfy a given set of constraints, C, are equally likely. When 
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incorporating the spatial dependence we define a similar form of joint prior distribution, 

which incorporates the Euclidean distances and the ease of spread between pairwise a's. 

This allows us to represent the maximum length of time we believe it would take the 

Late glacial hunters to move between the regions. 

When incorporating the spatial structure in this manner it quickly became apparent that 

this joint prior induces unrealistic dates for the marginal prior distributions of interest. 

In particular, the a's were forced to be much older. To combat this problem we developed 

an alternative definition of the joint prior. 

Our next thoughts were to incorporate the spatial structure between the a's in the form of 

a joint prior, pea), and then define a prior for /3j conditionally on aj, i.e. p(!3j!aj) in the 

case of the uniform model. This idea led to much more realistic dates for the marginal 

priors induced from pea) and the conditional priors p(,Bjjaj) as well the parameters 

having meaningful archaeological interpretations. As a result, we incorporated the spatial 

structure for the trapezium model using the same approach. 

The aim of Chapter 7 was to implement the fully spatio-temporal models and illustrate 

any differences in archaeological conclusions drawn from the data for the human 

reoccupation case study when implementing fully spatio-temporal models as opposed 

to purely temporal models. We implemented two spatio-temporal models with different 

a priori distributions for the rate at which material is deposited within the phase, to 

enable us to make direct comparisons with the inferences drawn in Chapter 4. 

From Chapter 7 it became clear that incorporating spatial structure into the modelling 

framework, regardless of the a priori distributions used to model the deposition rate, 

made a huge difference to the archaeological conclusions drawn from the data. One of 

the most noticeable differences relates to the most likely order in which the regions were 

reoccupied. For example (when assuming a uniform prior on the deposition rate) the 

most likely order of reoccupation under the spatio-temporal model accounted for 1/5 of 

the total posterior probability, which was double the corresponding probability under the 

non-spatial model. Hence, by incorporating a spatial structure between the regions, we 
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are able more clearly to define the order in which the regions were reoccupied. Another 

difference that arose was our inferences about the first date of reoccupation. The HPD 

regions for these dates under the spatio-temporal models are much narrower than those 

under the non-spatial models. In particular, the first date is estimated to be earlier in 

time for some regions (e.g. The British Isles) and later in time for others (e.g. The Upper 

Rhine) thus moving the date estimates closer to one another. 

This section has summarized the main findings within this thesis. The following section 

will discuss some final thoughts on the material covered in the thesis as well as some 

ideas for extending the work further. 

8.2 Further work 

We feel that we have developed a more flexible and coherent statistical framework in 

which to incorporate a wider range of a priori information, arising from either experts 

within the field or archaeological research. Using our framework we have been successful 

in tackling a number of archaeological calibration problems. Our greatest advance is 

being able to tackle problems within a spatio-temporal framework which were in the 

past tackled using a range of ad hoc methods. However there are still several further 

issues that need to be addressed, some of which are outlined below 

• model choice 

• extending spatia-temporal models 

• outlier detection. 

8.2.1 Model choice 

One area of research that we did not tackle but is of great importance to the models 

developed within the thesis is that of model choice. Within the thesis we have proposed 

a range of models with differing a priori distributions for the rate at which material was 
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deposited/manufactured within a phase. So how do applied researchers choose between 

competing models? There are situations in which we can make model choices on the basis 

of the archaeological information (such as the case study arising from Van Strydonck et 

al. (2004), however there are equally as many cases in which this is not the true. Although 

we did not attempt to tackle this problem, we give our thoughts on ways in which to 

proceed. 

As there is uncertainty regarding the model, interest lies in comparing models (in our 

case) whieh have different sets of parameters, with varying dimensions. One way to 

tackle this problem would be to use a reversible jump MCMC algorithm. This allows 

us to construct a Markov chain whose state can be of different dimensions, yet has the 

correct stationary distribution. 

The reversible jump MCMC algorithm extends from the Gibbs sampler and Metropolis­

Hastings algorithm by allowing for moves between models with varying dimensions. The 

algorithm updates the parameters, given the model, using standard MCMC algorithms 

then updates the model using the reversible jump procedure. In summary, the algorithm 

constructs a Markov chain whose stationary distribution is the joint posterior distribution 

of the models and parameters. 

By using the reversible jump algorithm to move between different models, the algorithm 

can be used to estimate the proportion of time that the Markov chain spent in each 

model, referred to as posterior model probabilities. Thus enabling us to say which 

model is preferred. Further details on the reversible jump algorithm can be found in 

Givens and Hoeting (2005). 

An alternative approach to using the reversible jump MCMC is to calculate Bayes factors 

for the different models, this being the most widespread model choice criteria. We 

discussed the ideas behind Bayes factors in Section 8.2.1. 

One of our main interests would be to choose between competing models such as the 

conventional uniform model and the trapezium model. Consequently we want to compare 
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nested models l , for details on how to calculate Bayes Factors see O'Hagan (1994). 

8.2.2 Extending Spatio-temporal models 

In Chapter 6 we took the first steps towards modelling colonisation/recolonisation 

problems in a spatio-temporal framework, yet there are a number of aspects that could 

be extended further. 

As seen in Chapters 6 & Chapter 7 we assumed, given the a priori beliefs stated in 

Housley et al. (1997), that there was a uniform ease of spread between the regions of 

NW Europe. We defined the measure of difficulty of spread between regions (Cj,k) to be 

proportional to the Euclidean distance (dj,k) between regions. Next we introduced 8 to 

represent the minimum speed parameter (kms per year) which allowed us to represent the 

maximum length of time in which the Late glacial hunters would move between regions. 

We chose 8 to be a constant for simplicity, however we could alternatively treat 8 as an 

unknown parameter. Another difficulty that may arise is that we are still assuming that 

the ease of spread between each region is similar. Clearly, this assumption is unrealistic, 

as is the assumption of a uniform ease of spread between regions. 

Before the models can be developed further it is important to understand what 

information, in terms of the topography of the landscapes, is available. By incorporating 

such information (e.g river networks, mountain ranges, dense forests) may make a 

huge difference to the archaeological conclusions drawn from the data. Information of 

current landscapes is available through the use of GIS (geographical information systems) 

which can provides locational data (grid reference or latitude and longitude) along with 

information about the topography. Although the landscapes of interest will have changed 

over the thousands of years that have elapsed the main features will have remained 

similar (e.g. mountain ranges). We feel that incorporating the GIS information could 

help advance the spatio-temporal modelling framework and help us to arrive at more 

INested models arise when one of our proposed models is a spacial case of the other and, in many 
cases, may be expressed using fewer parameters 
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coherent interpretations of the data. In addition it may add to the level of sophistication 

of the interpretations that can be drawn from the data so that, not only would we be 

able to provide sequences for the ordering in which reoccupation occurred, we would also 

be able to make more coherent statements about possible routes of migration. 

As discussed in Chapter 6 there was no quantitative spatial information (available to us 

at the time we carried out the research) for the human reoccupation case study, as a result 

we used crudely measured Euclidean distances. There are, however, a number of case 

studies arising (concerning similar recolonisation problems) such as Gamble et ai. (2004) 

who make use of the S2Age database (consisting of over 2000 radiocarbon determinations 

across Western Europe, each associated with Latitude and Longitudinal readings). It 

would therefore be sensible, within each phase, to incorporate a spatial dependence 

between archaeological sites (each with their own radiocarbon determinations). From 

Figure 6.1 it is clear that the regions in NW Europe each cover a large area and even 

though we can estimate when they first became reoccupied we are unclear as to the 

exact location of reoccupation and the directional movement through the region. By 

incorporating a spatial dependence between sites (within a region) it might be possible 

to shed light on a number of archaeological queries that are currently not tackled using 

formal statistical models. 

8.2.3 Outlier detection 

One final area of research that we would like to discuss briefly is outlier detection. 

As we saw in Section 2.5.3 outliers in radiocarbon dating are relatively common and 

Christen (1994a,b) proposed a Bayesian approach for modelling and identifying outliers 

in groups of related radiocarbon determinations. We did not extend the ideas in Christen 

(1994a,b) to account for outlier detection when implementing non-uniform a priori 

distributions, however we feel that this would not require a huge amount of additional 

work, consequently incorporating outlier detection into the analysis would be a useful 

next step. 
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As the trapezium a priori distribution accounts for uncertainty in the tails of the 

distribution, it is quite likely that a date which is referred to as an outlier under the 

uniform model will not necessary be an outlier under the trapezium model. This suggests 

that caution will be needed in helping the archeologists interpret data and understand 

why different models may results in different outliers. 
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Appendix A 

C code 

The attached CD Rom is divided into a three subdirectories. Each subdirectory is of the 

same structure. The first subdirectory contains the programs written in C to implement 

the single phase Coptic textiles case study (see Section 4.2) assuming a trapezium 

prior distribution for the rate at which the textiles were manufactured. The second 

subdirectory contains the programs needed to implement the human reoccupation case 

(multiple phases) of NW Europe when assuming a sigmoidal prior for the deposition ratc. 

The final subdirectory contains the programs needed to implement the reoccupation case 

study in a fully spatio-temporal framework. 

Each subdirectory contains one folder and 7 files. The folder called 'input' contains 

the archaeological information for each case study (i.e. radiocarbon determinations, thc 

starting values to be used, the data need to use IntCa104 etc.). The three files random. h, 

random.c and drand48.c are common to all subdirectories, these enable us to generate 

from standard probability distributions (files obtained from Marc Kennedy). 

Each subdirectory also contains a DEV C++ project file which links the two header 

and four source files to one another. Note that header files (.h) contain small parts of 

program code which contains the variable definitions along with the function prototypes. 

The source files (.c) are the files containing the text (the main code) and commonly 
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referred to as the program. 

The two files functions.h and functions.c are also common to all subdirectories, containing 

written mathematical functions which are not standard in C. Each of these file varies 

between the subdirectories as a result of which model is being implemented. 

1. Trapezium model - single phase 

• DEV C++ project file: 'Coptic_trapezium' 

• Main source file: 'Coptic_trap' (code annotated) 

• Secondary source files: random.c, drand48.c and functions.c 

• Header files: random.h and functions.h 

2. Sigmoidal model - mUltiple phase 

• DEV C++ project file: 'recol...sigmoidal' 

• Main source file: 'recol...sig' (code annotated) 

• Secondary source files: random.c, drand48.c and functions.c 

• Header files: random.h and functions.h 

3. Uniform spatia-temporal model 

• DEV C++ project file: 'uniform...spatiotemporal' 

• Main source file: 'uniform...spatio' (code annotated) 

• Secondary source files: random.c, drand48.c and functions.c 

• Header files: random.h and functions.h 
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Appendix B 

Archaeological data 

This Appendix contains a simplified version of Table 1 from Housley et al. (1997) which 

contains the data available for the Human reoccupation of NW Europe case study. Each 

radiocarbon determination is given with its corresponding lab code as well as indicating 

which of the eight regions it belongs to. 
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Table B.1: Radiocarbon determinations associated with each of the 8 regions from 
Housley et al. (1997). 

Laboratory identifier Determination BP Phase 
OxA5750 13670±100 Upper Rhine 
OxA5749 14150±100 Upper Rhine 
OxA5745 13940±100 Upper Rhine 
OxA5747 13430±100 Upper Rhine 
OxA5746 13120±90 Upper Rhine 
OxA5748 12770±90 Upper Rhine 
OxA5744 11780±90 Upper Rhine 
OxA1126 12890±140 Middle Rhine 
OxA1128 13200±140 Middle Rhine 
OxA1129 13090±130 Middle Rhine 
OxA1130 12950±140 Middle Rhine 
OxA1125 12930±180 Middle Rhine 
OxA1l27 12820±130 Middle Rhine 
OxA1130 12790±120 Middle Rhine 
OxA1129 1291O±130 Middle Rhine 
OxA1128 12730±130 Middle Rhine 
OxA4854 13230±130 Southern Germany 
OxA5756 11590±90 Southern Germany 
OxA5755 12060±90 Southern Germany 
OxA5751 1261O±90 Southern Germany 
OxA5754 12680±100 Southern Germany 
OxA5753 12740±90 Southern Germany 
OxA5752 1241O±90 Southern Germany 
OxA5720 12440±140 Southern Germany 
OxA5719 12350±130 Southern Germany 
OxA5718 13160±130 Southern Germany 
OxA3635 12870±95 Belgium 
OxA4191 10800±110 Belgium 
OxA4190 10330±110 Belgium 
OxA3634 10320±80 Belgium 
OxA4200 13330±160 Belgium 
OxA4014 12870±110 Belgium 
OxA4197 12800±130 Belgium 
OxA3633 12880±100 Belgium 
OxA4192 12860±140 Belgium 
OxA3632 12790±100 Belgium 
OxA4198 12660±140 Belgium 
OxA4195 12630±140 Belgium 
OxA4199 12240±130 Belgium 
OxAl77 12300±220 Paris Basin 
OxA467 12250±160 Paris Basin 
OxA176 12000±220 Paris Basin 
OxA391 11870±130 Paris Basin 
OxA175 12900±220 Paris Basin 
OxA173 12800±220 Paris Basin 
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Laboratory identifier Determination BP Phase 

OxA149 12400±200 Paris Basin 

OxA148 12600±200 Paris Basin 

OxA138 12900±300 Paris Basin 

OxA139 13000±130 Paris Basin 

OxA740 12120±200 Paris Basin 

OxA178 11600±200 Paris Basin 

OxA731 12240±160 Paris Basin 

OxA730 12300±160 Paris Basin 

H38121A 12300±300 Northern Germany 

AAR1036 12140±11O Northern Germany 

H38121B 12300±2OO Northern Germany 

W281 11870±200 Northern Germany 

W264 11790±200 Northern Germany 

W271 11750±2OO Northern Germany 

W261 12450±200 Northern Germany 

K4261 12190±125 Northern Germany 

AAR906 12520±190 Northern Germany 

H136116 12980±370 Northern Germany 

H3167 13050±270 Northern Germany 

K4577 12440±115 Northern Germany 

K4332 12570±115 Northern Germany 

K4331 12440±115 Northern Germany 

K4329 12360±110 Northern Germany 

K4328 12180±130 Northern Germany 

OxA5726 12640±130 Thuringian Basin 

OxA5725 12990±130 Thuringian Basin 

OxA5724 12940±140 Thuringian Basin 

OxA5723 13080±140 Thuringian Basin 

OxA5722 12860±130 Thuringian Basin 

OxA5717 12670±110 Thuringian Basin 

OxA5716 12790±110 Thuringian Basin 

OxA5715 1181O±110 Thuringian Basin 

OxA5714 12620±120 Thuringian Basin 

OxA5713 12740±120 Thuringian Basin 

OxA5712 12270±110 Thuringian Basin 

OxA5711 12050±110 Thuringian Basin 

OxA5710 12080±1l0 Thuringian Basin 

OxA5709 12270±120 Thuringian Basin 

OxA4853 13090±130 Thuringian Basin 

OxA4852 13520±130 Thuringian Basin 

OxA4851 14470±140 Thuringian Basin 

OxA4850 13160±140 Thuringian Basin 

OxA4849 13130±120 Thuringian Basin 

OxA4848 13150±130 Thuringian Basin 

OxA4846 13190±130 Thuringian Basin 

OxA4845 13120±130 Thuringian Basin 

OxA4832 13310±110 Thuringian Basin 
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Laboratory identifier Determination BP Phase 
OxA3413 12940±140 British Isles 
OxA4106 12670±120 British Isles 
OxA3411 12650±120 British Isles 
OxA3416 12580±110 British Isles 
OxA4107 12550±130 British Isles 
OxA4102 12540±140 British Isles 
OxA3404 12540±110 British Isles 
OxA3412 12490±120 British Isles 
OxA3452 12400±110 British Isles 
OxA4109 12370±120 British Isles 
OxA3415 12340±120 British Isles 
OxA3400 12340±110 British Isles 
OxA3398 12280±110 British Isles 
OxA735 12240±150 British Isles 

OxA41 10 12110±120 British Isles 
OxA4108 12110±120 British Isles 
OxA1493 11970±120 British Isles 
OxA1950 11740±150 British Isles 
OxA150 12400±300 British Isles 

OxA1467 12350±120 British Isles 
OxA1616 12600±170 British Isles 
OxA1618 12480±170 British Isles 
OxA1619 12450±150 British Isles 
OxA1617 12420±200 British Isles 
OxA1670 12290±120 British Isles 
OxA3718 12250±90 British Isles 
OxA3717 12020±100 British Isles 
OxA1494 12000±120 British Isles 
OxA1500 12350±160 British Isles 
OxA1789 12320±130 British Isles 
OxA466 12800±170 British Isles 

OxA3414 12570±120 British Isles 
OxA464 12470±160 British Isles 
OxA590 12370±150 British Isles 
OxA465 12360±170 British Isles 
OxA589 12340±150 British Isles 

OxAlO71 12300±180 British Isles 
OxA1890 12170±130 British Isles 
OxA587 12530±150 British Isles 
OxA1121 12380±130 British Isles 
OxA535 1221O±160 British Isles 
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Appendix C 

Spatio-temporal modelling: 

results 

This Appendix contains two sets of tables, arising from the human reoccupation of NW 

Europe case study in Chapter 7. The first set of tables makes a comparison between 

the most likely orders of the reoccupation (for the eight regions under study) for the 

conventional uniform and uniform spatio-temporal models. While the second set of 

tables makes the same comparisons but between the trapezium model and trapezium 

spatio-temporal models. 
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Table C.1: The ten most likely orders of the reoccupation of the eight regions under 
study (l=earliest, 8=latest) when implementing a) the conventional uniform model and 
b) the uniform spati<rtemporal model. 

a) : Uniform model 

Region Position in ordering 
Upper Rhine 1 1 1 1 1 1 1 1 1 

Thuringian Basin 2 2 2 2 2 2 2 2 2 
Southern Germany 4 4 3 3 4 4 3 3 5 

Middle Rhine 6 5 6 5 6 5 6 5 6 
Belgium 3 3 4 4 3 3 4 4 3 

Paris Basin 5 6 5 6 5 6 5 6 4 
Northern Germany 8 8 8 8 7 7 7 7 8 

British Isles 7 7 7 7 8 8 8 8 7 

2 
1 
4 
6 
3 
5 
8 
7 

Probability 0.082 0.078 0.069 0.065 0.044 0.040 0.037 0.033 0.026 0.025 

b): Uniform spatia-temporal model 

Region Position in ordering 
Upper Rhine 1 1 1 1 1 1 2 2 1 1 

Thuringian Basin 2 3 2 3 2 2 3 3 2 2 
Southern Germany 3 2 3 2 4 4 1 1 3 3 

Middle Rhine 4 4 4 4 3 3 4 4 4 4 
Belgium 6 6 5 5 6 5 6 5 5 7 

Paris Basin 5 5 6 6 5 6 5 6 7 5 
Northern Germany 7 7 7 7 7 7 7 7 6 6 

British Isles 8 8 8 8 8 8 8 8 8 8 
Probability 0.19 0.15 0.13 0.10 0.054 0.049 0.022 0.020 0.019 0.018 
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Table C.2: The ten most likely orders of the reoccupation of the eight regions under study 
(l=earliest, 8=latest) when implementing a) the trapezium model and b) the trapezium 
spatio-temporal model. 

a): Trapezium model 
Region Position in ordering 

Upper Rhine 1 1 1 1 1 1 1 1 1 1 
Thuringian Basin 2 2 2 2 2 2 2 2 2 2 

Southern Germany 4 4 3 3 4 4 3 3 5 5 
Middle Rhine 6 6 6 6 5 5 5 5 6 6 

Belgium 3 3 4 4 3 3 4 4 :J :J 
Paris Basin 5 5 5 5 6 6 6 6 4 4 

Northern Germany 7 8 7 8 8 7 8 7 7 8 
British Isles 8 7 8 7 7 8 7 8 8 7 
Probability 0.026 0.025 0.025 0.025 0.023 0.023 0.022 0.021 0.011\ 0.013 

b): Trapezium spatio-temporal model 

Region Position in ordering 
Upper Rhine 1 1 1 1 1 1 2 2 1 1 

Thuringian Basin 3 3 2 2 2 2 3 3 3 4 
Southern Germany 2 2 3 3 4 4 1 1 2 2 

Middle Rhine 4 4 4 4 3 3 4 4 5 :J 
Belgium 6 5 6 5 5 6 6 5 6 6 

Paris Basin 5 6 5 6 6 5 5 6 -1 5 
Northern Germany 7 7 7 7 7 7 7 7 7 7 

British Isles 8 8 8 8 8 8 8 8 8 8 
Probability 0.097 0.078 0.074 0.061 0.030 0.029 0.024 0.023 0.020 0.017 
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