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Summary 

SUMMARY 

The objective of this work was to examine the impact of unsteady flows on the erosion and 

movement of mixed grain size sediment. Time varying flows were examined as flowrates in 

natural rivers are rarely constant. There are very few reported studies on the movement of 

sediment in unsteady open channel flow and most of those used single sized sediment. River 

reach has its own sedimentological character and non-uniform beds exhibit very different 

behaviour from that of single sized material. Therefore it was thought important to examine the 

impact of time varying flow on the stability of water worked mixed grain size sediment beds. 

The thesis reports on a series of laboratory experiments in which a bimodal sediment bed was 

exposed to different flow hydrographs. The flow hydrographs consisted of constant flowrate 

with different duration and time varying flows with different rising and falling limb but had the 

same peak flowrate. Each experiment was followed by a stability test in which a standard 

"triangular shaped hydro graph" was used to assess the stability of each water worked deposit. 

The stability observation demonstrated that grain size fractions have different thresholds of 

motion when beds are formed by different antecedent flow patterns. The bed stability increased 

as the antecedent constant flow hydrograph progressed. The rising and falling limbs of the 

flowrate hydrographs were found to have a significant effect on the bed stabilisation process. It 

revealed that the shortest rising limb of flow hydro graph formed the weakest bed while the 

longest recession limb of flow hydro graph formed the most stable bed. It is believed that the 

short period of flowrate acceleration did not allow the coarse grains to stabilise with numerous 

exposed large grains spread on the bed. In a longer duration of recession limb of hydrograph, 

the coarse grains moved and eventually deposited over a length of time. As the flowrate 

declined the finer grains also rolled and then deposited forming a strong bond with the coarse 

grams. 

These experiments also provided important information on the flow structures and the changes 

in the bed topography as the tests progressed. There is strong evidence that only upward 

interactions (ejections) with high momentum magnitude were able to transport coarser grains. 

The lack of change in the distribution of downward looking-bed interactions (sweeps) in all 

tests indicated that these features are not important in determining transport. Changes in bed 

topography were also measured and characteristics of the distribution of bed surface elevation 

were linked to the observed changes in bed stability. 
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Chapter I : Introduction 

I. INTRODUCTION 

1.1. BACKGROUND 

Natural rivers are rarely free of sediment. Although at low discharges sediment 

movement is rare, most rivers are regularly subjected to sediment-transporting flows. In 

nature it is rare for a river to contain only one type of sedimentary material, as its 

morphology is the result of continuing processes of erosion along reachs with numerous 

different sediment sources. Factors, such as the characteristics of the catchment, its 

topography, land use practices and river characteristics, such as bank materials, grain 

size distributions and the structure and topography of the bed, control the supply, 

transport and storage of water and sediment into and through a river reach. Sediment 

transport in natural streams can vary continuously over time and in space even within 

small catchment areas. The short term variability in the rate and composition of 

transported sediment makes a significant contribution to the long-term channel 

evolution. The variation in sediment transport is controlled by the rate of sediment 

entrainment for each size fraction, the amount of sediment available for transport in a 

reach and by the transport length of individual particles. Particularly troublesome as 

regards prediction are streams with sediment size distributions that are bimodal mixtures 

of sand and gravel where the median D50 of the overall distribution may be virtually 

absent from the bed (Sear, 1996). 

Early research on gravel-bed rivers was concerned with stable or regime channels. It is 

understandable that this approach was taken, as the basic knowledge of the flow and 

sediment transport processes was poor. Many research studies focused on predicting 

sediment response to steady flows. However, in order to develop appropriate modelling 

techniques to forecast river response to changing environmental conditions at different 

space and time scales, it is vital to understand the dynamic adjustment of the gravel-bed 

rivers as most of these rivers are inherently unstable. Parker (1991) noted that a major 

change of thinking concerning sediment transport in rivers began in the decade of the 

1980's. The decade was the starting point of research on sediment mixtures. Until then, 

research tended to be focused on single size material and the published sediment 

Y. Saadi 



Chapter I : Introduction 

transport rate relationships were developed using a "uniform" grain size. This was done 

so that the effects of the 'average' sediment size on transport rates could be determined. 

The obvious fact is that each reach of a single river has its own sedimentological 

character and that reliable predictions in such systems cannot be made with such 

sweeping assumptions. Most natural channels are also subject to a range of time varying 

flows. It is during periods of large changes in flowrate that most sediment movement 

occurs. However, engineering predictive techniques have traditionally been developed 

by simplifying such systems as to contain single sized sediment and being at a series of 

steady flow discharges for long enough to assume the system is in "quasi equilibrium". 

Whilst this may be the case for the hydraulic conditions in rivers due to the time scale of 

river floods, it is unlikely that the grain sorting processes active during the mobilisation 

of gravel beds would reach "equilibrium" in the short times available during typical 

storm flows. 

1.2. PREVIOUS EXPERIMENTS 

There are very few reported studies on the movement of sediment in unsteady open 

channel flows. Those studies that have been reported have all used single sized sediment 

despite growing evidence that grain size mixtures and single sized material do not move 

in the same fashion. Although unsteady flows are expected to have high levels of 

acceleration, and thus generate a hysteresis type pattern in the relation between water 

surface slope, and flow depth when discharge is unsteady, the water surface slope is 

almost never treated as a variable even in sophisticated research projects (Meirovich et 

aI., 1998). This has occurred because of the difficulty in obtaining this data in the field, 

especially during flood flows. However the degree of variability in sediment movement 

during the course of a flood-wave in some cases has been shown to be considerable 

(Reid et aI., 1985). Most of the existing sediment transport relations only predict the 

total sediment discharge and, therefore, are not suitable for predicting changes in the 

size distribution of bed materials in riverbeds undergoing degradation or aggradation 

(Karim, 1998). In addition, the relationships developed are empirical and site-specific 

and thus they are not suitable for general application to the different streams. Temporal 

flow changes, variations of cross-section, and changes in the bed composition and 

texture almost always produce conditions in which the sediment input to a particular 
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reach is not in equilibrium with the transporting capacity of that reach. Little work has 

been carried out to examine the grain sorting behaviour during unsteady flows. One of 

those works (e.g. Graf and Suszka, 1985), indicated that time varying flows did 

influence the amount and rate of sediment transport. However, their tests were 

conducted with uniformly sized grains so that no investigation was possible of the 

impact of time varying flows on grain sorting. 

In the last two decades many researchers (e.g. Klingeman and Emmet, 1982 ; Misri et 

aI., 1984 ; Reid and Frostick, 1987 ; Wilcock and Southard, 1989 ; Barta et aI., 1994 ; 

Molinas and Wu, 1998; Karim, 1998 ; Shvidchenko and Kopaliani, 1998) carried out 

experiments involving measurement of the bed load transport rates of different size 

fractions in a mixture. Renewed interest in the transport of mixed size sediment has 

produced important new empirical and theoretical results. Discussion of the interaction 

between the grain size population of the bed and the fractional transport rates have been 

included in some of the past works (e.g. Parker and Klingeman, 1982 ; Andrews and 

Parker, 1987 ; Iseya and Ikeda, 1987 ; Sutherland, 1987). However a consensus on the 

most suitable method of prediction has not been obtained. An example of this, is the 

discussions in the use of the particle size distribution of surface sample or volumetric 

samples of the transported material to scale overall bedload transport (Wilcock and 

Southard, 1988). 

1.3. OBJECTIVES OF THIS STUDY 

The objective of this study was to examine the impact of time varying antecedent flows 

on the stability of mixed grain size sediment and to characterise the gravel bed surface 

by grain size distribution analysis and bed texture measurements. The grain sorting and 

the development of armoured bed surface during different time varying flow patterns 

were investigated. This was intended to examine the impact of time varying flows on the 

development of bed stability which would be very important in determining the 

behaviour of a riverbed in a subsequent floods. 

In order to investigate the links between time varying flows and sediment transport rates 

for a variety of conditions, experiments with simultaneous measurements of near-bed 
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flow and transported sediment at relatively high frequency were conducted. Experiments 

were divided into three groups consisting of ten different combinations of hydrographs. 

The first group was steady flow experiments with different time lengths of constant 

discharge. The aim of these experiments was to quantify the changes in stability caused 

by an increase in the length of time as a mixed grain sediment bed was exposed to a 

uniform flowrate. The second group was the combination of steady flow and unsteady 

flow with different time lengths of decreasing discharge. The aim was to assess the 

impact that different rates of decline in flood hydrographs have on sorting and stability. 

The third group was unsteady flow where three different hydro graphs with different 

rising limb but the same peak discharge and the same recession limb were applied. The 

aim of this series of tests was to examine the effect that different rate of increase of flow 

discharge has on the stability of a water-worked sediment bed. Bed topography 

measurements in a selected area were also carried out in all experiments to examine the 

impact of different hydro graph and flow duration to the changes in the bed surface 

structure. 
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II. LITERATURE REVIEW 

2.1. INTRODUCTION 

Sediment transport within a river reach varies spatially and with time in response to 

changes in the imposed flow discharge and upstream sediment input. Transport is 

controlled by the rate of sediment entrainment, the amount of sediment available for 

entrainment in a reach and by the transport length of individual particles (Sear, 1996). 

Transport of sediment by the river flows occurs in two modes : a contact mode, where 

the particle rolls or slides along in contact with the rough bed, and a non-contact mode, 

where the particle is suspended in the moving fluid supported by fluid turbulence 

(Kelsey et aI, 1994) or a combination of the two ways where sediment leaps into the 

flow and then rests on the bed (Gyr, 1983). The mode of transport of the material 

depends on the sediment characteristic such as its size and shape, density of particle and 

the prevailing flow condition (Featherstone and Nalluri, 1988). 

The erosion and transport processes of non-uniform sediment are much more complex 

than those of uniform sediments. Both types of sediment respond very differently to the 

imposed fluid forces (Raudkivi, 1993). Since the pioneering work of Einstein (1950), it 

has been recognised that calculating sediment transport rates of highly nonuniform 

sediments using a single representative size of the bed material is not appropriate 

(Ranga Raju et aI., 1991). Therefore, in order to predict the response of mixed size 

sediment to flow, it has been thought necessary to predict the transport rates of 

individual grain size fraction in the mixture and then sum them up to get the total 

transport rate. 

According to Di Silvio (1992), all existing experimental formulae show that for a given 

hydraulic condition the transport rate of a uniform material increases if its grain size 

increase. As there is no significant changes in bed roughness, it can be assumed that the 

movement of each particle of the sediment bed compose of the finer grains is not greatly 

affected by the presence of the others. In the coarser bed, the erodibility of the grain is 

expected to be increased due to the grain relative projection above the mean bed and the 

5 Y. Saadl 



Chapter 2 : Literature Review 

exposure relative to the upstream grain. In a mixture the mobility of different grain sizes 

is strongly equalised by the fact that finer particles are protected by the coarser ones and, 

therefore, are less subjected to the hydraulic forces than in a unifonn-size bed, and that 

the coarser ones suffer an enhanced exposure to the flow, in comparison to a unifonnly 

sized deposit. 

2.2. CHARACTERISING NATURAL SEDIMENTS 

Most natural river reaches contain sediment beds with a continuous gram size 

distribution depending on the characteristics of the river channel and catchment. Rivers 

are often considered to have either cohesive, sand, gravel, cobble or boulder beds. 

Broadly speaking, rivers can be subdivided into gravel bed and sand bed rivers (Simons 

and Simons, 1987). The traditional method of particle size analysis divided material 

into six categories : clay, silt, sand, gravel, cobbles and boulders. Very similar 

classifications were proposed by British Standard BS 1377 and by the Subcommittee on 

Sediment Tenninology of the American Geophysical Union (Raudkivi, 1991). Einstein 

(1971) claimed that the grain size has probably the greatest influence on the ability of a 

flow to move sediment. The transport of sediment by water flow is frequently divided 

into bed load and suspended load, but for practical reasons (Einstein, 1971), the tenn 

wash load for the very fine part of sediment load have also been introduced by 

engineers. 

Natural sediments nonnally consist of distributions of particle sizes. The "Udden­

Wentworth" grain size scale is widely accepted and used as the practical standard for 

objective and detailed description of grain size needed for communicating observations 

about sediment grain size distributions. This scale recognises three fractions, gravel, 

sand, and mud. However the scale is most detailed in the sand and mud fractions, and 

inadequately covers gravel, the dominant fractions in many fluvial environments (Blair 

and McPherson, 1999). Textural classification of sediment and sedimentary rocks that is 

widely used because of its objectivity and practicality is suggested by Folk (1974). This 

classification is a flexible polynomial scheme in which various sediments attributes are 

systematically listed. Folk et al (1970) also offered a field method for estimating the 

sorting class of sediment without the benefit of quantitative size analysis (Blair and 
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McPherson, 1999). 

A better focus on gravelly sediment has developed because of an expanded interest in 

the deposits of rivers. According to Blair and McPherson (1999), Udden (1914) devised 

more detailed subclasses called "grades", with boundaries defined by a logarithmic scale 

using 1 rom as the starting point. Coarser grade boundaries were established by 

progressive mUltiples of 2, and finer ones by progressive mUltiples of 0.5. The use of 

sieves for size analysis dictates that the intermediate axial length (d,) of a grain is the 

one that detennines classification. Krumbein (1934, 1938) also devised the phi scale (¢) 

to convert the sediment grade boundary values from fractional numbers to more simple 

whole numbers (Blair and McPherson, 1999). 

The phi-index scale that divides the sediment into arbitrary class intervals is defined as 

¢ = - log2 d, (mm) = - log d,/log 2 (2.1) 

d, = 2-~ 

where: 

¢ = phi values 

d, = intennediate axial length of the grain (grain diameter) 

The negative SIgn In the equation causes an unnecessarily complicated inverse 

relationship between ¢ and d" rather than a direct one (Blair and McPherson, 1999). It 

was added so that phi values in most of the sand fraction are positive, exemplifying the 

historical emphasis on sand and the limited consideration of gravel. As the result of this 

emphasis, five divisions for the small size range covered by sand shows more fonnal 

division than four divisions that have been established for the gravel fraction (granule, 

pebble, cobble and boulder). Table 2.1. shows the sedimentary grain size scale that is 

widely used as the practical standard in engineering practice. It is similar to the 

classification used by British Standard (BS 1377) and American Geophysical Union 

(AGU) on the basis of particle size. 

Sediment of unifonn grain size responds differently from one with a broad grain size 

distribution. It has been recognised that calculation of sediment transport rates of highly 

nonunifonn sediments using a single representative size of the bed material is not 
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appropriate. Samaga et al (1985) have shown that large errors can result in the computed 

transport rates if a single representative size like the median size of the bed material is 

used in several of the standard methods available. Therefore, it is necessary to divide the 

bed material into different fractions and compute the fractional transport to get the total 

transport rate. From a hydraulic point of view, two simple criteria have been used to 

determine that a sediment mixture is uniform. Those criteria are the ratio of ninety five 

percent finer (d9s) and five percent finer (ds), and the geometric standard deviation (erg), 

which is the square-root of the ratio of eighty four percent finer (d84 ) and sixteen 

percent finer (d I6). The mixture can be categorised as uniform if the value of d95/d5 is 

less than 4 and a = ~(dd84) < 1.35 (Raudkivi, 1993). 
g 16 

Table 2.1. Sedimentary grain size scale (after Udden, 1914; Folk, 1954,1974; Folk et 

aI., 1970 ; and Blair and McPherson, 1999) 

Grain size Grade Class Fraction 

d1 (mm) rjJ Unlithified Lithified 

4096 -12 
large and very large Boulder 

1024 -10 
small and medium 

256 -8 small and large Cobble 
Conglome-

64 -6 coarse and very coarse Gravel rate 
fine and medium Pebble 

16 -4 

-2 
very fine Granule 

4 
very coarse 

2 -1 coarse 

1 0 medium 
fine Sand Sand Sandstone 

0.500 1 
very fine 

0.250 2 coarse 
0.125 3 medium 

fine Silt 
0.063 4 Mudstone very fine 
0.031 5 coarse or Shale 
0.016 6 medium Mud 
0.008 7 fine 

very fine Clay 
0.004 8 

0.002 9 
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Chapter 2 : Literature Review 

Most of the existing sediment transport relations only predict the total sediment 

discharge and, therefore, are not suitable for predicting changes in the size distribution 

of bed materials in riverbeds undergoing degradation or aggradation (Karim, 1998). 

Many investigators have proposed several empirical equations calibrated from different 

laboratory flume data sets with the assumptions that the sediment is homogeneous and 

noncohesive (Yang, 1973 ; Ackers and White, 1973 ; van Rijn, 1984). The prediction 

methods of many existing published sediment transport rate relationships have therefore 

been developed using data from "uniform" sized sediment. This was done so that the 

effects of the 'average' or 'representative' sediment size on transport rates could be 

determined. 

Experiments involving measurement of the bed load transport rates of different fractions 

in a mixture and the effect of size gradation have been carried out by several researchers 

(e.g. Klingeman and Emmet, 1982 ; Misri et aI., 1984 ; Reid and Frostick, 1987 ; 

Wilcock and Southard, 1989 ; Barta et aI., 1994 ; Molinas and Wu, 1998; Karim, 1998 ; 

Shvidchenko and Kopaliani, 1998). Since the experiments were mostly based on 

specific conditions, such as the original grain size distribution, and the rate and 

composition of the incoming sediment, it has proved difficult to apply the developed 

relationships to different streams in the field. It is therefore apparent given the lack of 

generality of many of the existing transport rate relationships, that have either been 

modified for mixed grain transport, or developed from mixed grain data sets, that 

understanding of some of the principle variables is missing. The problem of finding a 

universal bedload transport equation therefore lies in improving understanding of the 

dominant physical factors that control particle movement in natural channels. 

Some authors (Yang, 1973 ; Ackers and White, 1973) believed that the unit stream 

power is the dominant physical factor in determination of total sediment concentration. 

Water discharge, average velocity, energy slope and shear stress have all been taken to 

be the dominant independent variables in sediment transport equations. As the rate of 

transport is very sensitive, the use of available predictive equations may result in very 

different answers and some are complicated to apply (Ackers and White, 1973). Those 
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existing equations are mostly derived under the assumption that there is always a 

determinate relationship between sediment discharge and a dominant independent 

variable (Yang, 1973). Molinas and Wu (1998) proposed that the transport rate 

functions of Engelund and Hansen (1967), Ackers and White (1973) and Yang (1973) 

can be used to demonstrate the effect of grain size on the transport of sediment. They 

claimed that these functions represent the transport phenomenon adequately. However, 

for a given flow condition and a range of sediment sizes, considerable scatter exists 

around the regression equation proposed by Molinas and Wu (1998). The presence of a 

range of grain sizes introduced many effects into sediment transport processes. The 

effects that are of particular importance in the mixed grain size beds occur when a 

coarse surface layers develop. The development of these coarser surface layers, normally 

termed "armouring", alters both the surface grain size distribution and the grain surface 

geometry. Attempts have been made to account for the development of coarse armour 

layer using empirical devices called 'hiding functions' (Sutherland, 1991). Hiding 

functions have been empirically determined under a number of different experimental 

and field conditions and have been used to numerically adjust the predicted threshold 

conditions or predicted transport rates. The original predictions having been made using 

traditional single-sized threshold of motion of transport rate relationships. The 

effectiveness of hiding functions has been demonstrated by Proffitt and Sutherland 

(1983) who obtained the improvement in the size distributions of the transported 

sediment (Sutherland, 1991). However, these functions are site-specific and do not 

attempt to simulate individual physical processes (sheltering, protrusion and grain 

arrangement) caused by the interaction between different grain size fractions when a 

mixed grain size is mobilised. Generally their successful application requires knowledge 

of the result so that the most appropriate "hiding function" can be selected. 

The supply of transportable sediment during high flows might not be uniformly 

distributed across and along the channel, but will probably be concentrated in local 

areas. In boulder-bed streams, gravel is typically found in isolated pockets protected by 

local flow obstructions (Barta et aI., 1994) and its deposition and entrainment is depend 

strongly on the local geometry of boulders and banks. Cao (1997) proposed that the 

proportion of the bed exposed to vigorous turbulent bursts may be a significant factor in 

determining transport. According to Hubbell (1987), observations of laboratory and 
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field measurements of sand and gravel transport demonstrate that, even at constant-flow 

conditions, transport rates at a point vary with time from zero (or near zero) to 

approximately four times the mean rate. It is therefore very important in field 

investigation or laboratory experiments to measure bedload transport rate at the same 

position over a sufficiently long sampling period in order to cover a distribution of 

"instantaneous" transport rate which may occur during a short period of observation. 

2.3.2. Sediment Transport under Unsteady Flow Conditions 

Unlike steady flows where it is believed that the level of turbulence can be scaled and 

thus characterised by the bed shear stress, in unsteady flows the turbulent fluctuation 

even close to the bed do not necessarily scale with the local average bed shear stress 

(Nelson et aI, 1995). It is therefore necessary to define an unsteadiness parameter that 

can reasonably characterise the effect on velocity profiles and turbulence in flood flows 

(Nezu, et aI., 1993). Graf and Suszka (1985) proposed that the overall characteristic of 

hydrograph should be expressed by an unsteadiness parameter, r HG, in the form of 

r = ~ Ilh (2.2) 
HG u. IlT 

where: 

u. = base flow friction velocity (= ~ ghbSo ) 

L1h = depth variation (difference between maximum flow depth and the base 

flow depth 

L1T= total time duration of the hydro graph 

hb = base flow depth 

So = bed slope 

Song and Graf (1996) noted that from the definition of the unsteadiness parameter, r HG , 

for a certain base flow, the larger the r HG value, the more unsteady the flow. The value 

of rHG also depends on the base flow variables describing the hydraulic conditions 

before any increase in discharge. 

Referring to Graf and Suszka (1985), for a given cross sectional shape, the sediment 

discharge for steady uniform flow, Qso, can be given as a function of flow depth while 
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the sediment discharge for an unsteady flow (a hydrograph), Qs, is given as a function of 

the instantaneous flow depth and of the depth variation, 

Qso = f (h) and Qs = f(h,iJ'Yat) (2.3) 

the relationship between steady flow sediment transport and unsteady flow sediment 

transport becomes 

Qs - J;(Oh 1 J 
Q

so 
- I at·;: 

the relative error of the sediment discharge 

where: 

Qso = calculated sediment discharge (steady unifonn flow) 

Qs = measured sediment discharge (unsteady flow) 

= depth variation 

u. = base flow friction velocity 

(2.4) 

(2.5) 

Graf and Suszka (1985) obtained a hydrograph with a certain base flow depth upon 

which the unsteady part of the hydrograph's wave was superimposed having a peak 

depth. This hydro graph was characterised by a base flow parameter and ratio of the rise 

and fall of the water depth, compared to the hydrograph's wave period. They found that 

during the passage of the hydrographs, the measured sediment discharge, Qs, and 

calculated sediment discharge, Qso. were different. The measured sediment discharge 

being always larger than the calculated one for the rising branch of the flow hydrograph, 

whereas for the descending branch, the measured sediment discharge was not always 

larger but sometimes equal to that of the calculated sediment discharge. These results 

may be explained by the shear stress measurements made by Tu and Graf (1992) and 

Nezu et al (1993) in laboratory channels with fixed rough boundaries. Tu and Graf 

(1992) found that the shear stress in the rising branch can be considerably larger than the 

one in the falling branch at the same water height, where the vertical shear stress 

profiles for the rising branch were concave, implying accelerating flows, and for the 
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falling branch were convex, implying deceleration flows. Nezu et al (1993) compared 

the observation and theoretical values of shear stress. Their observed values were in a 

good agreement with the theoretical ones and the shear stress increased in the rising 

stage, whereas it decreased in the falling one. 

More interestingly, Graf and Suszka (1985) pointed out that an increase of the 

(tJ.%r)ju. values which implies a steeper hydrograph, was considerably more evident in 

the rising than in the descending branch which lead to an important consequence that the 

rising branch of the hydrographs bears all the important information no matter what the 

slope of the descending branch. The limitation of this study is that the experiment was 

conducted for uniform sediment. Although Graf and Suszka (1985) presented two real 

cases that coincide with their study, the cases were very specific where the observation 

was done during flushing operations at a river diversion for a power station and during a 

flash flood with a very short duration hydrograph. 

2.3.3. Sediment Sampling Techniques 

Different procedures have been developed for sampling and analysing bed material. 

Traditionally this has been directly measured by sampling small incremental river 

widths using some type of bucket or similar equipment. This technique provides bulk 

material samples. Traditionally, bulk sieve analysis has been considered as the standard 

sampling procedure. Standards for sieving mineral aggregates samples have also been 

established by several organisations (e.g. ASTM, ISO, BS). When the grain size 

distribution of bed surfaces are required, other techniques such as areal, grid, or transcet 

sampling and volumetric sampling are used (Church et aI, 1987 ; Diplas and Sutherland, 

1988). These surface sampling techniques produce samples that are unique and, thus, 

results from the different sampling methods are not directly comparable (Dip las and 

Fripp, 1992). Estimates of the grain size distribution of a bed surface are required for 

investigations of flow resistance and the initiation of bed material movement, while bulk 

samples that include the underlying sediment are required for investigations of bed load 

transport (Hey and Thome, 1983). 

A meaningful sample must be drawn from a homogeneous body of sediment. The 
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sampling time and its interval that elapses between consecutive samples are temporal 

elements involved in bed load sampling as well as the period of sampling (Gomez, 

1991). Some studies (e.g. Hubbel, 1987) found that errors can be great in cross-sections 

where the lateral distribution of mean transport rates is extremely non-uniform, whereas 

errors are relatively moderate where high and low mean transport rates occupy similar 

proportions of the width or where most of the width has transport rates higher than the 

mean rate for the entire cross-section. In order to minimise errors, sampled rates 

obtained with all tested samplers may require some degree of adjustment and if possible 

it is advisable to do repetitive sampling. It is also considered that more reliable results 

can be obtained by long sampling times than that of short sampling times. 

2.4. STABILITY OF MIXED GRAIN SIZE SEDIMENT 

2.4.1. Introduction 

Accurate estimation of incipient motion of grains is still a significant problem in 

sediment transport studies. For a long time this problem has been considered using only 

the mean grain size of the sediment bed. Shields (1936) introduced the best-known 

treatise on initial bed grain instability. He linked incipient motion with the mean 

boundary shear stress and mean grain diameter. The relationship he proposed was 

mainly based on experiments carried out in laboratory flumes with fully developed two­

dimensional turbulent flows over flat beds of single sized sediment. He non­

dimensionalised his data with respect to a grain Reynolds number and a umque 

relationship was proposed to describe the threshold of sediment entrainment. However, 

the approach is unable to explain the great scatter of experimental data since it does not 

provide an insight into the mechanism that determine bed instability (Dittrich et aI., 

1996). Hence the application is only satisfactory for problems which have similar 

boundary conditions. Later study by Shvidchenko et al (2001) indicated a further finding 

on the application of mean grain size. They suggested that the shear stress at incipient 

motion of median sized grains in mixtures was found to be the same as for uniform 

sediment of this size and was consistent with available flume and field data. 

A range of friction angles demonstrating that grains within a size fraction can generate a 

range of resisting forces. This variability was at its greatest with the finer size fractions 
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and when the sediment beds were water worked, with no upstream sediment supply 

rather than on mechanically scrapped flat beds. In mixed grain size deposits, the 

initiation of motion of a given size of sediment of various grain size fractions is affected 

by the presence of the other sizes. This adjusts the entrainment thresholds and thus the 

transport of sediment mixtures in open channels. In summary, the finer fractions are 

sheltered by the coarse fractions, and the coarser particles, in tum, are exposed more to 

the action of flow past them due to their more exposed position (Samaga et aI, 1986). 

Determining the threshold of sediment movement is particularly important. Incipient 

motion studies have been carried out for over eight decades by previous researchers. 

Their works have been systematically analysed by Buffington and Montgomery (1997). 

Although their reanalysis and stratification of incipient motion values reveal systematic 

methodological biases and highlight fundamental differences of median grain size type 

and the associated values of dimensionless critical shear stress, the list of non­

dimensional critical shear stress for different grains with the explanation on 

experimental conditions applied to each experiment are very useful for the present 

researcher who intends to investigate this further. 

Current prediction methodologies rely on the calculation of time-averaged quantities of 

flow in order to predict sediment movement. It is believed that the incipient motion of 

sediment particles is sensitive to the fluctuating fluid forces. Modem equipment used for 

flow velocity measurement now allow researchers to investigate near bed turbulence 

over sediment deposits and to link these more detailed measurement with the movement 

of individual sediment fractions. However, the problem of defining critical flow 

conditions associated with the initial instability and entrainment of bed sediment 

particles is not as simple as thought. It has long been realised that different threshold 

methods give different values of the critical shear stress for initiation of grain motion. 

This has mainly been due to the different methods of defining the threshold of 

movement (Wilcock, 1988). Even in the relatively simple case of sediments that are 

nearly uniform in size variations in the fluid shear stress grains have been observed 

(Grass, 1971). Wiberg and Smith (1987) discussed that particles at the surface of a 

poorly sorted bed can have critical shear stresses that differ significantly from the 

critical shear stress associated with that particle when placed on a well sorted bed of the 

same size. The difference is primarily due to the relative protrusion of the particle into 
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the flow along with differences in the particle angle of repose or bed pocket geometry, 

that results from having a mixture of grain sizes on the bed. This work was confirmed 

by Kirchner et al (1990). In this study, friction angles for a range of individual grains 

from different size fractions was estimated. Their observations indicated that for a given 

grain size on a given bed the critical shear stress is a wide distribution rather than a 

single value. A more fundamental problem is that the bed shear stress is a fluctuating 

quantity, and one cannot precisely define a value below which there is no motion 

(Wilcock, 1988). Therefore, the criterion of initial motion needs to be defined so that 

determinations of the critical shear stress for different fraction of sediment mixture are 

comparable. 

The prediction of bed instability concerns a definition of the boundary condition 

between single phase fluid flow and the complex two-phase interaction process 

involving both the fluid flow and the sediment motion (Grass, 1970). Fluctuations with 

high magnitudes and low frequencies are important in the entrainment and movement of 

sediment, but not to the degree that those with higher frequencies can be neglected. 

When the velocity of the fluid increased sufficiently, individual particles on the bed 

begin to move in an intermittent and random fashion. According to Grass (1970) the 

initial bed instability is the result of an interaction between two statistically distributed 

random variables. The first variable is that for a particular fluid density and viscosity, 

every grain on the bed surface can be assumed to be potentially susceptible to a local 

instantaneous critical bed shear stress which cause the grain to become unstable while 

the second variable is a result of flow turbulence close to boundary, which produces 

randomly varying local instantaneous bed shear stresses (Grass, 1970). The resisting 

shear stresses that the bed can generate has a probability distribution because of the 

random shape, weight and placement of individual grains, and flow boundary conditions 

also have a distribution of instantaneous shear stresses. The initial movement 

characteristics of the bed material can be defined if the distributions can be measured. 

In mixed size sediment, there are two general methods for determining the critical shear 

stress~ the largest grain method and reference transport method (Wilcock, 1988). The 

first one associates the critical shear stress with the largest grain in the mixture that can 

be moved by a given flow. This method has a disadvantage in that the grain coarser than 
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the largest transported grains must be available in the bed, a condition often not met in 

the limited observation area. The latter approximates the critical shear stress that 

produces a fixed small value of transport rate for each fraction. Unfortunately different 

researchers have used different fixed values to define the threshold of motion. 

Knowledge of the proportion of each grain size available on the bed surface is also 

required. Direct comparison of the two methods is prevented by the problem that both 

are typically applied to very different portions of a transported sample. Estimation of 

critical shear stress by the largest grain method uses only a single grain per sample 

whilst the reference transport method, estimation incorporates the transport rate of all 

grains available in a sample (Wilcock, 1988). 

2.4.2. Stability Criteria for Mixed Grain Size 

In hydraulic engineering, determining the critical condition for sediment incipient 

motion and the sediment transport rate is very important. Natural river sediments are 

generally non-uniform and the bedload movement in such case is quite complex. In this 

condition, the coarse particles on the bed are easier to be entrained than the uniform 

sediment of equivalent sizes, because they have higher chance of exposure to the flow 

and experience larger fluid dynamic forces than they would if they were in a uniform 

sediment bed. The situation is reversed for the fine particles that transport of a particular 

size of smaller particles will be less than that if the bed were composed of uniform 

sediments of the same size. This condition is likely to occur due to the fact that the finer 

particles are more likely sheltered and entrapped behind or below coarser particles. The 

smaller particles remain immobile for certain period of time until set in motion by 

turbulent burst or dislodgement of sheltering particles (Misri et aI, 1984 ; Karim, 1998 ; 

Wu et aI, 2000). Therefore, the effect of the presence of one size on the transport rate of 

another in case of non-uniform sediment must be very carefully taken in the modelling 

of non-uniform sediment transport. 

Until recently, most of the studies on the non-uniform sediment transport are based on 

introducing some kind of correction factors to modify the existing formulas of uniform 

sediment transport. However, the state-of-art for estimating the non-uniform sediment 

transport is still inadequate. Karim (1998) categorised the past investigations on 
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fractional sediment transport into two groups : the modification of critical or applied 

bed-shear stress for each size fraction through a correction factor, and the application of 

a correction factor directly to uniform-size sediment discharge equation used for a 

representative size fraction. Early research that fractionally calculates the non-uniform 

bedload transport was attributed to Einstein (1950). It was followed by Egiazarrof 

(1965), Ashida and Michiue (1971), Hayashi et al (1980), Misri et al (1984), Samaga 

(1986), Parker (1990), Parker and Sutherland (1990) and Wilcock (1993) who all 

developed several formulas to determine the incipient motion or transport rate of non­

uniform sediment mixtures (Wu et ai, 2000). 

The used of correction factors was first introduced by Einstein (1950) who proposed a 

function to adjust the shear stress at the threshold of motion for different grain fractions. 

However checks on his method using data for non-uniform sediment, subsequent to the 

publication of his paper, have shown that the agreement between the measured and 

computed total bedload is not satisfactory (Misri, et aI, 1984). Einstein (1950) 

overestimated the stability of fine grains and underestimated the stability of coarse 

grains. Later investigations were carried out with the object of evolving a method of 

computing the bedload transport of a sediment mixture. Misri et al (1984) developed a 

correction factor expressed as a function of the grain shear stress for individual grain 

sizes, with respect to the critical shear stress for the mean sediment size. Their study 

reported good agreement for flume data but poor agreement for river data except at 

intermediate shear stresses (Karim, 1998). Wiberg and Smith (1987) developed an 

equation for the critical shear stress non-cohesive sediment that is derived from the 

balance of forces of individual particles on the surface of a bed. This equation agrees 

well with data for beds composed both of uniform and of heterogeneous sediment. They 

suggested that the particle angle of repose, one of two factors in the initial motion 

problem in mixed grain size bed other than the relative protrusion of the grains into the 

flow, decreased when the diameter of moving grain, D, was larger than the length scale 

of the bed roughness, ks. From the experimental and the calculated results, the critical 

shear stress for a particle on a poorly sorted bed can differ significantly from that 

appropriate for a well sorted bed. 

Similar approach as developed by Misri et al (1984) was utilised by Samaga et al (1986) 
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but they modified their correction factor through a graphical procedure for application to 

a wide range of flows. Samaga et al (1986) proposed the procedure for the calculation of 

bed load by dividing the bed material into various size fractions to find the fraction by 

weight of each size in the bed mixture. The critical shear stress for each size was 

calculated on the basis of Shields' criterion and the mUltiplying correction factors based 

on the index of the non-uniformity of the original bed mixture. The total transport rate is 

the sum of the transport rates of individual fractions. They claimed that the observation 

have confirmed the findings of Misri et al (1984) about the limitations of Einstein's 

method in calculating the transportation rates of sediment mixtures as well as the 

suggestion that all relevant parameters must be taken into account to reduce the 

inadequacies of the correction factor proposed by Proffitt and Sutherland (1983). 

Karim (1988) introduced a "partial transport" factor in the case that the bed of non­

uniform sediments was partially armoured by immobile particles. The factor represents 

the fraction of bed area not armoured. The interaction between different fraction was 

taken into account through the formulation of a weighing function for each fraction, 

consisting of two components : areal fraction of each grain size on bed, and sheltering 

factor. The accuracy of this method in estimating sediment discharge for each size 

fraction, had been evaluated by applying it to four sets of field data and one set of 

laboratory data. A careful examination of the results for the data sets indicates that, of 

the two correction factors in the weighting function for each size fraction, the areal 

fraction factor had a bigger effect in adjusting the size distribution of transported 

materials, whereas the sheltering factor influenced the adjustment of size distribution as 

well as the total sediment discharge. However, Karim (1988) pointed out that although a 

good agreement was found between computed and observed values for both total 

sediment discharge and the size distribution of transported sediment, in application to 

the field and laboratory data sets, prediction was less accurate for flows with a partially 

armoured bed surface, indicating the need for further research of such flows. It also 

remains to be seen whether the relative influence of the correction factors indicates a 

general trend or will be different for other data sets with different flow and sediment 

characteristics (Karim, 1988). 
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2.4.3. Critical Shear Stress of Sediment Mixtures 

The critical shear stress or the initiation of sediment motion at which individual size 

fractions in mixed-size sediments begin to move has been investigated by a number of 

researchers. In recent years much effort has been devoted to investigate the critical shear 

stress both for well-sorted and poorly sorted sediment. These effort has also been 

motivated by the realisation, supported by a growing body of data, that the critical shear 

of individual fractions in mixed-size sediment is considerably different from that of 

unisize sediments and from many earlier attempts to model it (Wilcock and Southard, 

1988). Miller et al (1977) provide a comprehensive review and critique of the various 

initial motion studies (Wiberg and Smith, 1987) while Buffington and Montgomery 

(1997) produce a systematic analysis of incipient motion studies with special reference 

to gravel-bedded rivers. Although Buffington and Montgomery (1997) calculate 

dimensionless critical shear stress values of the median grain size, Te· ,the analysis that 
so 

resulted from the compilation of eight decades of incipient motion studies in a common 

fonnat is useful. The authors provided some recommendation on the reliability of 

different data sets. They pointed out that numerous additions, revisions, and 

modifications of the Shields' curve since its original publication have been done using 

sufficient data sets which are grouped into the four most common methods of estimating 

the treshold of motion. First method is the extrapolation of bed load transport rates to 

either a zero or low reference value (e.g. Shields, 1936 ; Day, 1980 ; Parker and 

Klingeman, 1982). This method detennines dimensionless critical shear stresses based 

on critical shear stresses associated with either zero or low reference transport rate 

extrapolated from paired shear stress and bedload transport measurements. The second 

method is visual observation that is direct but can be subjective depending on definition 

of how much movement constitutes initial motion (e.g. Gilbert, 1914; Kramer, 1935 ; 

Neill and Yalin, 1969 ; Yalin and Karahan, 1979 ; Wilcock, 1988). The third method is 

the development of competence functions that relate shear stress to the largest mobile 

grain size, from which one can establish the critical shear stress for a given size of 

interest. The competence function, used in this method, are sensitive to the size and 

efficiency of the sediment trap, sample size, sampling strategy, availability of coarse 

grain sizes, and curve-fitting technique (e.g. Andrews, 1983 ; Carling, 1983 ; Komar, 

1987 ; Wilcock, 1992 ; Wathen et aI., 1995). And the last group is theoretical 

calculation that utilise simple force balance arguments to predict initial motion 
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thresholds and is sensitive to model parameters such as grain protrusion, packing, and 

friction angle (e.g. White, 1940 ; Wiberg and Smith, 1987 ; Jiang and Haff, 1993). In 

compilation of Buffington and Montgomery (1997), the median grain size dimensionless 

critical shear stress values, ';so' corresponding to these four methods of measuring 

incipient motion are symbolised as ,; for the first method (reference), " for the 
"50 CI'~O 

second method (visual), ,; for the third method (competence), and r' for the fourth 
q~O (, so 

method (theoretical). The dimensionless critical shear stress or Shields parameters of 

grain sizes other than median grain size will vary as a function of size-specific friction 

angle, grain protrusion, and mobility of neighbouring grains (Buffington and 

Montgomery, 1997). 

The initial motion threshold, or critical shear stress for incipient motion of individual 

fractions teri is estimated by producing a least square trend of teri which is fitted to the 

estimated reference shear stress line. The reference transport method requires 

nominating the value of a transport rate parameter and fitting lines to data from each 

size fraction to determine the corresponding dimensionless critical shear stress tcri*. The 

di I (coarse) 

* :i 
din (fine) 

reference transport rate 

Dimensionless shear stress Li* 

Figure 2.1. Fractional transport rate as function of shear stress (after Sutherland, 1991) 
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values of 'tcri* should be decreased for the larger fractions and increased for the smaller 

fraction with respect to values appropriate for the size being considered in a 

homogenous bed (Sutherland, 1991). This method that has been used to estimate 

incipient conditions for a variety mixed-size sediments (Parker et aI., 1982 ; Wilcock, 

1992), has the advantages that it may be measured for all fractions in a mixture 

regardless of the distribution of tcri within the mixture. It does not depend on sampling 

individual, rare, large grains in transport and because it is based on a transport rate, it is 

on a consistent basis with the threshold between partial transport and fully mobile 

transport (Wilcock and McArdell, 1993). 

There are different reference transport criteria have been previously used (Parker et aI., 

1982 ; Day, 1980). The first author define the reference transport rate in terms of a 

constant value of the fractional transport parameter Wri* (Wilcock, 1988 ; Wilcock and 

Southard, 1988). The value of W ri* is arbitrarily chosen to be equal to 0.002 and was 

formalised by the use of least-squares log-log regression to fit each dimensionless 

bedload parameter, W ri*, and Shield stress correlation, 'tri* (Parker et aI., 1982). Other 

reference transport rate was formulated by Day (1980) who defines it using the Ackers 

and White (1973) transport model. The Ackers and White reference transport rate, Ggr, 

is equal to 104 (Wilcock, 1988 ; Wilcock and Southard, 1988). 

2.4.4. Modification of Thresholds of Motion using Hiding Functions 

Hiding functions are an empirical device to account for the many effects introduced into 

sediment transport processes by the presence of a range of grain size (Sutherland, 1991). 

Hiding functions modify the mobility of size fractions with respect to their single size 

mobilities as determined by the Shields curve to values more appropriate to mixed grain 

size beds. Unlike Shields' entrainment function that applies strictly to uniform sediment, 

a hiding functions is used to define threshold conditions for a sediment mixture as a 

whole by substituting the median size for other representative size. A "reduced" hiding 

function, expressed as a function of the ratio of individual grain size to the median size 

of surface based-bed sediments was developed by Parker (1990) and Parker and 

Sutherland (1990). Their works notes that surface grains are subject to selective 

transport, which may lead to a coarse surface layer and fom1ation of mobile armour 
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layer, or static armour layer in the limiting case of zero transport rate. 

According to Armanini (1992), it is desirable to introduce a proper hiding factor in order 

to account for possible hiding effects. This factor reduces the transport capacity of the 

finer fraction of the mixture and increases the transport capacity of the coarser fraction. 

In the literature (Egiazaroff, 1965 ; Day, 1980 ; Andrews, 1983 ; Ranga Raju et aI, 1991; 

Andrews and Parker, 1987 ; Ferguson et aI., 1989 ; Pender and Li, 1995) different 

expressions for the hiding factor have been proposed to be applied to different kind of 

sediment transport formulas but in general it is a function of the ratio between the 

diameter of interest and the scaling size. 

A hiding function can be defined as 

,;; (d; ]-b 
8·=-= -

, • d 
'eu u 

where: 

bI = hiding function (empirical adjustment factor) 

'ci * = Shields' number for size fraction i in a mixture 

'cu * = Shields' number for a size fraction in a uniform sediment (Shields' 

values) 

di = grain size fraction i in a mixture 

du = scaling grain size fraction in a mixture 

b = empirical coefficient 

(2.6) 

(2.7) 

The median size of mixture d50 has been applied as scaling size du by Wilcock and 

Southard (1988) and Ashida and Michiue (1971) in order to determine the hiding 

function for non-uniform sediment whilst others studies have reported that it is variable 

in static armouring experiments (Proffitt and Sutherland, 1983). Many researchers used 

different scaling size as the representative size. A scaling size of du = 0.77d65 was used 

by Einstein (1950) and Shen and Lu (1983) with the consideration that larger grains 

would be unaffected by hiding and placed the upper limit for hiding at d/du = 0.5. 

Komar and Li (1988) used a function of d/d50 to obtain rei * while Wiberg and Smith 
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(1987) detennined rei * by adopting the scaling size of roughness length representative 

of the bed (d/ks). 

2.5. BED ARRANGEMENT 

2.5.1. Particle Size Distributions 

The particle size distribution of the bed material found in gravel streams is usually 

highly variable, so that it is very difficult to provide a representative description of the 

materials as they exhibit large spatial variation in the size distribution, both in the 

horizontal as well as in the vertical direction (Diplas, 1987). White and Day (1982), 

plotted several grain size distributions for both sand-bed and gravel-bed stream in terms 

of Dso (Parker, 1991). The size distributions of sand-bed stream, with Dso ranging from 

0.2 to 0.9 mm, are symmetric S-curves with relatively low spreads, suggesting that they 

might be approximately log-normal whilst the curves of gravel-bed streams, with Dso 

ranging from 30 to 70 mm, are essentially concave upward except near the coarsest tail, 

and are thus strongly asymmetric, deviating substantially from log-normal (Parker, 

1991). More extensively, Shaw and Kellerhals (1982) produced 174 grain size 

distributions to characterise the downstream variation in grain size in twelve rivers in 

Alberta, Canada (Parker, 1991). The gravel-bed and sand-bed reaches are easily 

distinguished according to their grain size distribution where the sand-bed reaches 

contain little material coarser than 1 mm. The gravel bed reaches may contain 

substantial amounts of sand, but the relative paucity of material in the range from 1 to 

10 mm is evidenced by the plateau in the size distribution, indicating bimodality 

(Parker, 1991). Based on the observation by White and Day (1982) and Shaw and 

Kellerhals (1982), an important point raised by Parker (1991) that although various 

hypotheses have been proposed, the cause of the deficiency of grains in the granule (1 to 

10 mm) remains incompletely understood and so that, it is about time that researchers 

try to solve it, or at least it serves to illustrate that the problem of grain sorting can have 

significant morphological implications. 

The availability of material on the bed strongly influences the composition transported 

sediment. It is believed that the transported bedload size distributions are identical to 

that of the material available for transport. This means no systematic change in the 
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composition between the bed material available for transport and the transported 

sediment. Sutherland and Williman (1977) observed the development of annoured 

surfaces in alluvial channels. They observed that the size distribution curves of eroded 

material being very similar to the original material size distribution although the rapid 

erosion occurred and particles of all sizes were in motion. Suzuki and Hano (1991) 

investigated grain size change of the surface layer of a riverbed with gravel and sand 

mixture. The laboratory experiment for this purpose was carried out through the flume 

with equilibrium conditions of sediment discharge. They found that although in certain 

condition bedload transport governed by hydraulic conditions rather than availability, 

the grain size composition of the transported sediment should be the same as that of 

input sediment even if the volume of the transported sediment changes largely. 

Leopold (1992) in his studies of 12 gravel-bar streams in the mountains of Colorado and 

Wyoming showed that the bulk or largest volume of bedload is of smaller size sand the 

size seen in the bed materials and on the bars. This means the difference between 

transported sediment and the bed material is in the size classes larger than the median. 

However, distribution analysis of material finer than 50 % by weight portion is nearly 

the same for the transported sediment and the bed material. 

2.5.2. Hydraulic Roughness 

An important aspect of any streambed surface is its roughness. The roughness may be 

expressed using the D arc y-Weisbach friction factor or an equivalent sand grain 

roughness (Sutherland and Williman, 1977). In open channel flow computations, the 

Manning equation, which was derived from the Chezy equation, is widely used in 

addition to the Darcy-Weisbach equation (Featherstone and Nalluri, 1986). As the 

roughness of a streambed may varies from place to place within a given channel reach, 

the equivalent values must be determined in the application of Manning formula to the 

whole section of a stream (Chow, 1959). However, no reliable methods exist by which 

one could calculate the roughness from direct measurement of either grain size or bed 

topography. In a small number of armouring experiments, Tait and Willetts (1991) 

observed that the rise in the calculated hydraulic roughness did not coincide with the 

increased coarseness of the bed surface. In an alluvial channel, the roughness varies with 
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flow and is only indirectly related to the grain size and grain size distribution of the 

boundary material. On gravel, cobble and boulder-bed rivers, bed elevation changes can 

be significant, but they are not usually as dramatic, or as large as in sand-bed rivers 

(Simons and Simons, 1987). 

In the turbulent-rough-flow range the resistance to flow depends primarily upon the size, 

shape and arrangement of the granular material making up the boundary. The transport 

of mixed-size sediments by running water leads to the development of a bed surface that 

has a different grain size distribution than the original sediment bed. Studies have 

indicated that it is the grain arrangement on the bed that can have a significant impact on 

the stability exhibited by mixed grain sediment bed (Kirchner et ai, 1990). Kirchner et 

aI., 1990 pointed out that among other factors, the erodibility of a grain on a rough bed 

is controlled by its relative projection above the mean bed, its exposure relative to 

upstream grains, and its friction angle. In particular, they analysed how the surface 

topography is controlled by grain packing on poorly sorted beds, and how that surface 

shapes the near-bed flow over individual grains. They found that the distribution of bed 

elevations in water-worked gravel bed was fairly close to normal. This agrees with 

Nikora et al (1998) who found the bed elevation distribution for natural beds was 

skewed positively, while that for manually created gravel beds was skewed negatively 

and both types of bed elevation distribution were close to Gaussian. This agreement 

suggested that the shape of the bed elevation distribution might be a statistical measure 

of bed particle arrangements. However, additional studies of both particle arrangements 

and bed elevation distribution are required to develop this hypothesis properly (Nikora 

et aI, 1998). 

2.5.3. Armouring of Non-Uniform Sediment 

Under a wide range of flow conditions, the transport of heterogeneous sediment leads to 

the development of a bed surface that is coarser than the subsurface bed material. This 

coarse surface layer is normally called a bed armour surface. The prevalence of bed 

armour in gravel bed rivers has led to interest in the evolution of stable armours (Parker 

and Sutherland, 1990). Regarding the stable armours evolution, Gomez (1994) found 

that the development of a stable armour is normally associated with the winnowing of 

fine grain sizes from the bed. Armour layers also form under conditions of partial 
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bedload transport, in which the composition of transported fraction is not the same as the 

bed surface composition. 

The bed is said to be armoured if the concentration of immobile material is dense enough 

to stabilise the bed surface and prevent the further removal of any of the finer underlying 

material (Bray and Church, 1980) or in some circumstances the transport rate is reduced 

to zero (Tait et aI, 1992). Armouring process is possibly occurred at sufficiently low 

shear stress where only part of the smaller grain sizes has been removed. As the result of 

this removal, coarser material will accumulate in the surface layer, which is protected 

from further erosion at the prevailing flow condition. At this point the bed has developed 

a stable armour coat. The stable grain can not be found in the condition that the critical 

shear stress higher than the critical value is applied to the bed, e.g. during flood in natural 

rivers. The erosion process will continue until for some reason the shear stress is 

reduced. If the constant discharge is applied to the laboratory flume, the erosion will 

eventually lead to a reduction of the bed slope (Gessler, 1991). As the consequences the 

bed shear stress will drop to some extent allowing the stabilisation process become 

possible. 

In the early period of the formation of knowledge on sediment transport studies it was 

assumed (Du Boys, 1879) that the transport of granular material occurs in "carpet like" 

form (Yalin, 1977). When the shear stress exceeds its critical values (To > Ter) the flow 

drags one grain diameter thick (top grain carpet) induces the motion of the grain in the 

second layer (second grain carpet). Subsequently the motion of grain carpet makes the 

next layer move. It was even suggested that the velocity of the top carpet was higher and 

decrease according to the linear relation (Yalin, 1977). 
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Figure 2.2. "Carpet like" form of material transport processes as described 

by Du Boys,1879 (after Yalin, 1977). 
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Later investigation found that the actual motion of the grains has nothing in common 

with form described by Du Boys. According to Velikanov (1955) it was apparently Krey 

in 1910 who first observed and disagreed with the "mechanical model" of Du Boys. 

Krey and many others (Bettes and White, 1981 ~ Willetts et al., 1987~ Gessler, 1991) 

revealed that it is only the grain forming the uppermost layer which can be brought into 

motion by the flow and contributes to the transported sediment. Bettes and White (1981) 

made the active layer thickness proportional to the hydraulic roughness height, and thus 

sensitive to bed forms as well as to grain size. Willetts et al (1987) adopted two-layer 

active depth based on the present of largest grain d lOO where each layer equal in thickness 

to half of the largest grain (see Figure 2.3). In terms of armouring various definitions of 

armour coat have been proposed mostly motivated by practical consideration but Gessler 

(1991) claimed that it has been documented many times that the armour coat is "one 

grain thick". Other researchers made the active layer thickness equal to a multiple of a 

representative grain size which become larger for more vigorous flow regime (Borah et 

aI, 1982), so that the active layer thickens with increased flow (Willetts et al, 1987). 

Layer 1 
'-----------f -

- dJOo 

Layer 2 

Figure 2.3. Active layers (after Willetts et aI ., 1987) 

Di Silvio (1992) introduced the four-layer conceptual model for the transport of non­

uniform material with the thickness of the bed layer and the mixing layer are related to 

the average of bed disturbances (the representative height of the bed forms), or to a 

representative grain size for a plane bed. The first layer is water stream containing 

particles exclusively transported in suspension. Particles that are transported as bedload 
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exist in the second layer called bed layer. The third layer is mixing layer, containing 

particles that are presently not in movement, but are liable to frequent vertical 

movements into the moving bed layer. Below the third layer is the intrusion layer. This 

layer containing particles liable to occasional vertical movements to and from the upper 

' 'transport'' layer. Unfortunately the relationships used to control the vertical movement 

of sediment are theoretical and no attempt have been made to verify these relationships 

with observation. The particles below the intrusion layer are never disturbed, unless 

degradation processes take place. The four layer conceptual model by Di Silvio IS 

presented in Figure 2.4. 

Water stream 

Bed surface 

Mixing layer 
fJ?~~'!'.~,!f} ____ _____ _ 

Intrusion layer 
(subpavement) 

Undisturbed 
material 

o 

Figure 2.4. Four-layer conceptual model for the transport of non-uniform material 

(after Di Silvio, 1992) 

2.5.4. Bed Topography 

Changes in bed topography are subjected to the erosIOn and sediment transport 

processes. The evolution of a streambed, both in composition by size fraction and 

variation in elevation with time, is determined not only by the magnitude of the total 

sediment discharge, but also by how much sediment in each size fraction is transported 

by the flow (Karim, 1988). In order to fully characterise a gravel bed surface, some 

researchers have claimed that the measurement of bed texture is necessary as well as a 

grain size distribution analysis . However, it appears unlikely that the grain size 

distribution of the bed surface can be linked directly to its surface topography as the bed 

topography of a surface will also be dependant on the flow history and the type and 

amount of sediment moved over it (Tait and Willetts, 1991). Natural streams exploit 
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widely graded materials to create critically stable conditions at the bed, but the condition 

is not simply maintained because of the fluctuating flows (Church et aI., 1998). It is 

believed that the degree of structural development depends on the history of recent 

flows. Therefore the effect of flow history may be important on the behaviour of bed 

material transport in natural rivers. The grain size distribution of surfaces gives indirect 

indications of the relative proportions of sheltered to sheltering grains. Topographical 

measurements will hopefully indicate the potential for nearbed flow adjustment and the 

degree of efficiency ofthe sheltering bed features. 

Many attempts have been carried out to formulate direct measurement and quantitative 

characterisation of bed surface topography (among others are Furbish, 1987 and 

Kirchner et aI, 1990). Parker (1996) published a set of speculations concerning the 

relation between flow mechanics and river channel morphology in the hope of 

encouraging research on this subject. Muller and Gyr (1996) tried to investigate the 

interaction between flow, bedforms and sediment transport by a feedback loop, where 

the flow changes the bedforms by means of sediment transport, and bedforms represent 

a boundary condition for the flow with its coherent structures. According to Church et 

al. (1998), Shields (1936) controlled the effect of surface structure by creating a unifonn 

particle arrangement prior to taking each set of measurements by using narrowly graded 

materials and by following the same starting procedure for each run. If particle 

arrangement is held constant, bed strength is a reliable function of particle weight, and if 

it is not, the development of an interlocked structure dominates the bed strength in 

mixed size sediments. Some new techniques have been evaluated by De Jong (1992) 

for measuring micro and macro-roughness over mobile gravel-bed boundaries both 

before, during and after flood flows. Observation by Church et al (1998) suggested that 

stable and reticulate stone cells developed on the bed surface in cobble-gravel streams 

with relatively widely graded sediments. These structures promoted streambed, and 

therefore channel stability by dramatically reducing the transport of bed material. 

However, a range of material sizes is obviously necessary for recognisable structures to 

develop. 

The development of surface structure is a self-organised, critical phenomenon, the 

emergent product of stochastic encounters among many individual grains. The timescale 
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for the development of surface structures, which occurs at relatively low rates of 

sediment transport, is long in comparison with typical fluctuations in water discharge. 

Most of the time, conditions are either subcritical, in the sense that the flow is 

insufficient to disturb the bed significantly, or the stresses applied by the flow create a 

transient situation in which the bed is adjusting toward a new critical state. A 

consequence is that most gravel bed streams are probably not in equilibrium with 

imposed flows of typically limited competence (Church et aI., 1998). It is hoped that 

further study of the phenomena associated with the development of bed structures will 

reveal a satisfactorily parameterisation of this aspect of the sediment transport problem. 

There is a lot more work to be done on the subject of water-sediment interaction and 

resulting morphology. 

2.6. TURBULENT FLOW 

2.6.1. Background 

An understanding of the turbulence characteristics of open channel flow is needed to 

explain the natural phenomenon of sediment erosion and transport processes. Field 

studies show that during the passage of a flood, the bed load movement and the 

suspended load distribution as well as the river processes are different from those in 

steady flow. Turbulent flow is the key role to the entrainment process that determines 

the variation of bed configuration. Previous studies in this area included detailed 

measurement of turbulent velocity fluctuation characteristics close to rigid boundaries of 

varying roughness in two dimensional water channel flows. Grass (1971) and Kim et al. 

(1971) investigated the production of turbulence near a smooth wall in turbulent 

boundary layers. Other studies of the structure of turbulent flow, mainly over fixed 

rough boundaries, have been conducted by Nowell and Church (1979), Nezu and 

Nakagawa (1993), and Nikora and Goring (1999b), who studied the characteristic of 

turbulence structure in quasi 2-D flows with static and weakly mobile bed in an 

irrigation canal. An important point indicated by these studies is that the vertical 

distribution of turbulence characteristics is split into three main layers in the flow depth: 

a near water surface region, an intermediate flow region and a near bed layer. 

It has been recognised that in the turbulent boundary layer over smooth beds or entirely 

flat-bed boundaries, the majority of the turbulent energy is generated in the near-bed 
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region where bursting processes generate intennittent high shear stress events (Nowell 

and Church, 1979 ; Roy et aI, 1996 ; Garcia et aI, 1996). Nowell and Church (1979) in 

their study of turbulent flow in a depth-limited boundary examined the influence of 

roughness density on turbulent characteristic particularly in the near bed layer. Bed 

roughness density was defined as nA~" the ratio of the plan area of n roughness 

elements of individual area, Ae, to the total bed area of the flume, At. They noted that 

roughness density clearly had an influence on the streamwise turbulent kinetic energy 

production and on the rate of turbulent energy dissipation particularly in the nearbed 

flow region. They found variations of turbulence intensity, which is the square root of 

streamwise turbulent kinetic energy in three regions: y/D > 0.35, 0.35 > y/D > 0.20 

and y/D < 0.20 where y is the distance from the bed to measurement position and D is 

the total flow depth. In the first region, comprising most of the outer flow region, 

identified by the velocity profiles, turbulent intensity decreased steadily and 

approximately linearly toward the surface. In the second region, corresponding to the 

transition region of the mean velocity profiles, turbulent intensities were approximately 

constant near u' / u. ::::: 2 where u' is streamwise velocity fluctuation and u. is friction or 

shear velocity. In the third region (sometimes called the roughness sub layer), turbulent 

intensity was a maximum near y/D = 0.25 and then decreased toward the bed. This 

agrees with Song and Graf (1996) who found that turbulent intensity decreases with an 

increase of y and the maximum value is just above the bed. The work of Nowell and 

Church (1979) also clearly demonstrated that the value of turbulence intensity scaled 

with shear velocity varied depending on the roughness density within the roughness 

sublayer. The largest values were seen when the roughness density was equal to t. For 

values below or above t, the levels of turbulence reduce. This clearly showed that the 

bed surface arrangement could influence the near bed turbulence. 

2.6.2. Bursting Events 

Over the last three decades, experimental work has identified a quasi-ordered coherent 

structure in turbulent wall-layer flow, which is characterised by the bursting process. 

This consists of a sequence of repeatable and cyclic fluid motions referred to as ejection 

and sweep events (Cao, 1997). These organised features are called coherent structures. 
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According to Robinson (1991) the meaning of coherent structures is a three-dimensional 

region of the flow over which at least one fundamental flow variable exhibits significant 

correlation with itself or with another variable over a range of space and or time that is 

significantly larger than the smallest local scales of the flow (Garcia et aI., 1996). 

Alfredsson and Johansson (1984) described the cycle of bursting event, which is caused 

by the interaction between the outer and inner regions of the flow. This cycle of events 

was originally proposed by Offen and Kline (1974). The bursting process as a cyclic 

downstream flow pattern occurs near the wall irrespective of the roughness although its 

exact dimension and frequency may be modified by the wall roughness. 

According to Smith (1996) a burst is conceptualised as the local breakdown and the 

ejection into the outer region of wall-layer fluid in proximity to a low-speed streak 

followed by a sweep which is the three-dimensional inflow of high-speed fluid from the 

outer region due to the formation and presence of hairpin-like vortices. Despite the 

importance of bursting processes for initiating particle motion and sediment transport 

(Drake et aI., 1988), the characteristic and structure of turbulence above natural gravel 

beds remain poorly quantified and understood (Roy et aI., 1996). The existence of 

turbulent coherent structures similar to those present in the turbulent boundary layer 

over a smooth boundary, was first observed over a rough bed by Grass (1971). The 

presence of structural features over a rough beds was confirmed by observation from 

several other researchers (Grass et aI., 1991 ; Defina, 1996 ; Grass and Mansour­

Tehrani, 1996; Tait et aI., 1996). These intermittent events were similar in nature to the 

ejections and sweeps present over smooth beds of homogeneous roughness and over 

rough walls in that the production of turbulence in the near wall region was dominated 

by quasi-periodic bursts events consisting of violent outward ejections of low speed 

fluid and then inrushes of high speed fluid towards the boundary (Garcia et aI., 1996). 

Sweeps event (u' > 0, v' < 0) occurred when high speed fluid from the outer region of 

the boundary layer moves toward the wall and penetrate the wall layer. At the initial 

stage, the wall layer is very thin, and then it continuously becomes thicker due to 

viscous diffusion during a relatively long quiescent period. This quiescent state ends in 

the bursting process, which is normally related to a wall-layer streak. To start with, the 

low-speed streak lifts away from the wall, and oscillations in both the spanwise and 
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nonnal directions appear. A break down occurs in the fonn of a violent and chaotic 

upward eruption of the low-speed fluid in the wall-layer into the outer layer tenned as 

the "ejection" (u' < 0, v' > 0), after the oscillations have increased in amplitude and scale 

to a certain limit. A sweep soon follows the ejection, in which process the chaotic 

motion is swept away, the wall-layer streaks reappear at different spanwise locations, 

and a new quiescent period begins (Nelson et aI., 1995). 

The occurrence of bursting events are regarded as an important class of coherent 

structures in open channel flows and detennine momentum and energy transfer between 

the near bed region and the outer flow (Nikora and Goring, 1999b). Flow visualisations 

have shown the existence of diverse vortical structures, with inclined 'horseshoes' or 

'hairpins', although more recently a funnel shape has also been proposed (Kaftori et aI., 

1994), whilst numerical data bases (e.g., Jimenez et aI., 1988 ; Guezennec et aI., 1989) 

as well as particle image velocimetry (e.g., Liu et aI., 1991 ; Urushihara et aI., 1993) 

reveal the existence of inclined, thin shear layers of concentrated spanwise vorticity 

(Garcia et aI., 1996). 

Limited experimental observations of sediment particle motions within the nearbed 

roughness layer have suggested a close association between movement and the turbulent 

bursting cycle (Gyr and Muller, 1996). It has now been suggested that the intennittent 

bursting process could playa key role in sediment transport (Cao, 1997). Since the 

discovery of bursting events and their importance for the turbulence production, much 

effort has been spent to elucidate the underlying mechanism and find a scaling law for 

their frequency of occurrence (Alfredsson and Johansson, 1984). Although Jimenez and 

Pinelli (1997) have confinned that wall turbulence is maintained by a cycle in which 

streamwise vortices extract energy from the mean flow to create alternating streaks of 

longitudinal velocity, and that the streaks in turn give rise to the vortices, presumably by 

inflectional instabilities, the work on this mechanism has been hindered by the 

difficulty in experimentally detecting these flow structures. 

2.6.3. Detection of Bursting Events 

A major problem has been the non-availability of velocity measurements collected 
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simultaneously over a 3-D space to identify the flow structures. Generally only time 

series of flow velocity measurements, either of 1, 2 or 3 directional components made at 

a single position in space are available. The methods used to detect ejections and sweeps 

have been developed to use these limited data sets. Among those methods are the 

variable-interval time-averaging (VITA) technique proposed by Alfredsson and 

Johansson (1984) and quadrant method used by many researchers (e.g. Lu and 

Willmarth, 1973 ; Alfredsson and Johansson, 1984 ; Luchik and Tiederman, 1987 ; 

Nezu and Nakagawa, 1993 ; Nelson et al., 1995; Nikora and Goring, 1999b). The 

VIT A technique can be used to detect the frequency of occurrence as well as duration of 

the events whereas the quadrant method, which is said to be one of the most effective 

methods (Nikora and Goring, 1999b), is used to detect bursting event characteristics. 

This method gives the best agreement with visual detection of a burst. However, it is 

now often used in several environments far removed from the near-wall region of the 

turbulent boundary layer (Biron et al., 1993). In the uv-quadrant method the amplitude 

of the uv-signal is used to determine the occurrence of these events, which consequently 

must be associated with considerable contributions to the time average Reynolds stress 

(Alfredsson and Johansson, 1984). 

According to Alfredsson and Johansson (1984) the conditional averages obtained by 

VITA technique and the method of Willmarth and Lu (1972) show strong uv-activity 

close to detection times, giving confidence in their ability to detect turbulent-producing 

coherent flow structures. They suggested that consideration to determine the relevance 

of the various methods may be judged from their ability to detect events associated with 

large contributions to the Reynolds stress. More importantly, they recognised that when 

comparing results from different studies on the bursting frequency, one should bear in 

mind that most detection methods employ some kind of threshold, the value of which 

affects the measured frequency of occurrence of detected events. 

Roy et al. (1996) gives an example of the results of using different burst detection 

techniques to characterise the scales of turbulent structures. Those techniques, i.e. the 

Quadrant, U-Level, VITA and VITA with slope, are used to identify the presence of an 

ejection if the velocity signals respond to specific conditions (Figure 2.5). Roy et al. 

(1996) suggested that although the burst frequency differs from one detection technique 
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to another and decreases with sensor size, average frequency is not significantly 

different between the measurements in near-bed and the outer region. In the near-bed 

region, shear stress production appears to be dominated by strong sweep-like motions 

while the outer region is dominated by ejection events. 
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Figure 2.5. Identification of ejections by four detection techniques on a typical set of 

streamwise and vertical velocity measurement (after Roy et aI., 1996) 

According to Roy et al. (1996) the strongest events are generally picked up by all 

techniques although the duration of the event may vary while the smaller events can 

pass undetected, especially with the VII A technique. In the estimation of burst 

frequency, quadrant analysis appears very consistent and reliable. Quadrant analysis 

showed a clear dominance of the ejection (quadrant-2) and sweep (quadrant-4) events in 

both the near-bed and outer regions (Roy et aI., 1996). As observed by Nakagawa and 

Nezu (1977) who documented in detail the changes in the structural features of 

turbulence when the bed surface roughness is gradually increased, Roy et al. (1996) 

suggested that shear stress production in the near-bed region is clearly sweep dominated 

although ejection motion appears to dominate in terms of the percentage of time spent in 

each quadrant. Krogstad et al (1992) has also shown ejections and sweeps dominate 

shear stress production in a laboratory flume with rough and smooth bed, but events are 

stronger and more frequent over rough beds where sweeps tend to dominate shear stress 
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production (Roy et aI., 1996). 

2.6.4. Scaling of Turbulent Flow Features 

Grass and Mansour-Tehrani (1996) estimated the mean transverse spacing or spanwise 

wavelength, A, between the low-speed streaks from images of hydrogen bubble traces 

taken during laboratory experiments. Following the hypothesis of Grass (1971) that 'A 

should scale with the roughness dimension, k, it was seen that the ratio of 'A/k is constant 

for geometrically similar roughness elements. This is confinned with measured 'Alk 

values of 3.25 for 6 mm spheres and 'A/k values of 3.18 for 12 mm spheres derived 

from figures produced by Grass et al (1991). For the pebble roughness the dominant 

spanwise wavelength produced a corresponding 'Alk ratio of 3.11 which is in close 

agreement with the corresponding values for the spherical roughness element. The 

measurement of the mean spacing between the low-speed streaks fonned over a bed 

comprised of spherical roughness elements with an average diameter of 10 mm 

measured by Grass and Mansour-Tehrani (1996) is also in remarkably good agreement 

with measurements by Defina (1992) where 'Alk = 3.4 was observed. 

The transverse spacing between low-speed streak is also fonnulated by Defina (1996) 

based on the equivalent sand roughness height of 6.7 mm where ksiD = 0.67 for grain 

diameter of 10 mm. Under fully rough wall conditions Defina (1996) found that the 

mean streaks spacing, A, scaled with the size of the wall roughness, ks, similar to what 

previously suggested by Grass (1971) where 'A/ks, :::: 4.5. 

Dimensionless transverse spacing between low-speed streaks as proposed by Defina 

(1996) is defined as follows 

ks+ = ksu.1 v 

ks + = roughness Reynolds number 

u. = bed shear velocity =....J(,r/p) 

ks = equivalent sand roughness height (= 6.7 mm) 

(2.11) 

The non-dimensional mean streak spacing, A +, fonnulated by Grass and Mansour-
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(2.10) 

A + = dimensionless transverse spacing between low-speed streaks 

A = mean transverse spacing between low-speed streaks (spanwise wavelength) 

Ur = bed shear velocity =-Y-c/p 

v = fluid kinematic viscosity 

In the case of smooth wall flow, they observed').. + values of 101 is in good agreement 

with previous measurement by Kline et aI. (1967) and Smith and Metzler (1983). 

However their measurements of streak spacing for rough beds indicated a range of A + 

values from A to B. Grass (1992) and Grass and Mansour-Tehrani (1996) proposed a 

universal scaling length as the ratio between a local 'effective eddy viscosity', VI> and 

bed shear velocity U., such that ')..=1 00 Uti u. irrespective of the wall roughness condition 

(Defina, 1996). 

Smith (1996) also noted that sediment streaks are subject to varying spacing depending 

on the sediment grain size (i.e. smaller grain sizes form more closely-spaced streaks). At 

flow rates, the flow-dominated sediment flows generally undergo a metamorphosis to a 

sediment-dominated flow, wherein the sediment collects into larger ridges of transverse 

extent (Williams and Kemp, 1971) or the sediment is of significantly large dimension 

(Grass et aI., 1991; Kirkbride, 1993) such that the vertical turbulence scale of these 

sediment irregularities exceeds k + = utklu > 50 - 90 (where k + is roughness Reynolds 

number and k is roughness height or the sediment size), which classifies the wall as 

fully rough (Smith, 1996). Several researchers (Grass, 1992 ; Weedman and Slingerland, 

1985 ; Best 1992) have illustrated that the wall-region vortex interaction can give rise to 

the formation of sediment 'streaks' along a flat wall. Grass et al. (1991) and Grass and 

Mansour-Tehrani (1996) show that the region above fixed roughness elements displays 

a somewhat organised spanwise pattern akin to streaks, but with a spanwise spacing 

scaling on the roughness dimension (roughly three times k), which suggests that the 

spaanwise spacing of the flow patterns scales with the roughness size (Smith, 1996). It 

is well known (Ligrani, 1989) that the flow above a fully-rough wall still displays a mean 
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velocity profile with a characteristic logarithmic scaling and the turbulence Reynolds 

stress distribution in the outer region undergoes only minor variations (Smith, 1996). 

The criteria used by Nikora and Goring (l999b) to classify bursting events was also 

used in most previous studies of bursting phenomena which is based on the dispersion 

of instantaneous streamwise and vertical velocity in the form of 

lu'v'l ~ H,aUay 

where: 

u' = the streamwise velocity fluctuation from the mean 

y' = the vertical velocity fluctuation from the mean 

HI = the threshold value 

au = the standard deviation ofthe instantaneous streamwise velocity 

O"v = the standard deviation of the instantaneous vertical velocity 

(2.12) 

Nikora and Goring (I 999b ) underlined that two threshold values of 0 and 1.2 have been 

selected on the basis of the first value used to make their data comparable with a number 

of previous studies using similar value and the second value was used as suggested by 

Luchik and Tiederman (1987) gives the best agreement with visually detected events. 

An event is recognised if the product of the velocity fluctuations exceeds HIO"lIay , 

otherwise it is discarded as noise. The threshold value of 1.2 is also applied by Roy et al. 

(1996) for quadrant analysis. 

A study by Nikora and Goring (1999a), which was concentrated on the effects of bed 

mobility on turbulence properties and flow resistance in a gravel bed irrigation canal, 

also found several important features in which their study differs from fixed-bed flows. 

They revealed that the normalised frequency of bursting event (Yrr.Uru,,)' where H is cross 

sectional depth, T£ is the mean time between ejection and U ma, is the maximum mean 

velocity, detected by quadrant method were appreciably less than those for fixed-bed 

flows. For weakly mobile bed the values of the normalised frequency were 0.25 ± 0.006 

whereas for fixed-bed were ranging from 0.33 to 0.66. This suggests that the bed 

particle motion modify the parameters of bursting events. Their analysis also shows that 
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the relative turbulence intensity KO.s / Ii, where K is the turbulence energy and ~ is the 

mean velocity, was lower than that for flows over fixed gravel beds. These results 

indicated a greater variation in burst frequency for stable beds exhibiting different 

roughness. 

2.6.5. Impact of Turbulent Flow on Sediment Transport 

Motivated by the observations of Vanoni (1964), Sutherland (1967) speculated that the 

mechanism for entraining sediment grains into suspension would involve interactions 

between turbulent vortices and particles in the near-bed region of the flow (Garcia et aI., 

1996). Although the details of his concept of such interactions, revisited by Wells 

(1992), are not totally correct in the light of present knowledge of turbulence structure in 

the near-bed region of boundary layer flows, his hypothesis delineates the basic 

mechanics of such phenomena which has been verified more recently by a number of 

experimental studies (Garcia et aI., 1996). 

It was believed that one of the factors which may control the grain entrainment rate is 

the temporal and spatial distribution of the flow structures close to the bed (Tait et aI., 

1996). Several studies (e.g. Sumer and Oguz, 1978 ; Sumer and Deigaard, 1981 ; Ashida 

and Fujita, 1986), with the application of different experimental techniques, have 

investigated the implication of the bursting phenomenon on the mechanics of particle 

transport in the near-bed region of boundary layers. Garcia et aI. (1996) visualised 

~nt.FIOW ;u e,aiDmen, 

Shed eddy 
or vortex 

Figure 2.6. Conceptual model of turbulence generation in the presence of 

a fully-rough wall (after Smith, 1996) 
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particle motion in the near-bed region of the smooth flows. It showed that particles tend 

to be picked up from low-speed streaks, lifted away from the bed by some kind of 

ejection mechanism, and deposited back to the bed along the high speed-streaks. In the 

case of the transitionally rough flows, they found that the particles did not tend to sort 

along bed streaks although they were observed to be entrained by a similar ejection 

mechanism as in the case of smooth flows. 

According to Garcia et aI. (1996), both the present work and much of past research, 

primarily based on experimental evidence, suggests a consensus on the mechanism that 

causes ejection of particles away from the bed. Such particle ejections are related to 

interactions between particles and intermittent flow events associated with turbulent 

bursting during which low-momentum fluid is ejected towards the outer regions. 

Kirkbride (1993) pointed out that for large roughness flows comprised of large sediment 

(clasts) of fully rough scale, the low-speed streaks of a smooth wall essentially disappear 

and are replaced by wakes shed by the clasts (Smith, 1996). The scale of the initial 

hairpin-like vortices for a fully-rough wall as shown in Figure 2.6, will increase 

proportionally with the roughness scale, and an increase in wall roughness will elevate 

the wall drag and overall momentum exchange process (Smith, 1996). Grass (1971) 

demonstrated that the presence of roughness accentuates the amplitude of sweeps and 

ejections in proximity to the rough surface, which clearly reflect an increased level of 

momentum exchange (Smith, 1996). 

Nelson et aI. (1995) claimed that sweeps collectively move more sediment than outward 

interactions, primarily because they are much more common, not because they are 

individually more effective. In fact, the efficacy of either sweeps or outward interactions 

is easily argued. They argued that strong correlation with large fluctuation of streamwise 

velocity can be expected because the particle motions are dominated by lift, drag, and 

gravity and both upward lift and downstream drag are dominantly function of 

streamwise velocity (e.g., Wiberg and Smith, 1985). During sweeps, downward flow 

enhances transport by advecting fluid with higher streamwise velocities toward the bed, 

and during outward interactions, upward flow tends to move particles away from the 

bed into regions of higher streamwise velocity, thereby increasing their speed and hence 

the transport rate (Nelson et aI., 1995). 
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2.7. SUMMARY OF LITERATURE REVIEW 

Although the experiments involving measurement of the bedload transport rates and the 

entrainment thresholds of different fractions in a mixture have been carried out for a 

number of years, little work has examined the behaviour of mixed grain size sediment 

beds. The effect of size gradation and the understanding of the basic physical processes 

associated with unsteady flow sediment transport over mixed grain bed is still of 

particular importance to explore. The factors that control particle movement in natural 

channels has been a major issue in this field particularly in the problem of finding a 

universal bedload transport equation. It was widely recognised that the previous 

experiment mostly conducted in a certain condition so that the effects of complexity can 

be simplified. Although there are some encouraging results in partial sediment transport 

investigation, that under some condition the grains size distribution of bedload can be 

predicted, the amount of sediment transport per unit time remains unsolved. The result 

of these studies which was often ambiguous and contradictory, are not suitable for 

general application to the different streams, and then emphasising the need for further 

studies. 

Steady flow experiments have identified the physical processes such as adjustment of 

the nearbed flow, size selective sorting of surface grain sizes and the rearrangement of 

the surface grain positions relative to each other, as significant in the development of 

deposit stability, particularly in situations of low upstream sediment supply. Existing 

work has indicated that the timescale for each physical process is different and that these 

timescale are different from the variation of flowrates observed in rivers in flood. 

Sediment movement in most natural rivers is intermittent and occurs infrequently, 

generally at high flowrates during unsteady flows. Therefore it is important to discover 

the way in which the highlighted physical processes, nearbed flow adjustment, size 

selective sorting and surface grain position operate under unsteady flows. This is 

necessary as the different time scales associated with each process to reach an 

equilibrium state. Given the evidence available in the literature it was decided to 

develop a program of laboratory test to examine the aspects of mixed grain sediment 

transport under unsteady flows. 
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III. EXPERIMENTAL APPARATUS AND PROCEDURES 

3.1. INTRODUCTION 

Work over the last two decades has attempted to examine the influence of mixed grain 

sizes on sediment transport. There have been several investigations of the phenomenon 

of bed annouring and its consequences. However there are few studies which have 

examined the underlying processes in detail when a mixed grain sediment bed is 

exposed to a mobilising flow. Engineering predictive techniques have been developed 

by simplifying the complexity of natural channels system by assuming that they contain 

mainly single sized sediments, and are at steady flow discharges for long enough time 

periods to assume a system in "quasi-equilibrium". Several studies have indicated that 

there are significant differences in the way in which mixed grain size sediment and 

uniformly sized sediment behave even ifthe average grain size is similar. 

Little work has been carried out to examine the grain sorting behaviour during periods 

of time varying flows. Previous investigations with mixed grain size investigating 

dynamic armour formation have been conducted at a short time scale. Longer tests have 

been conducted to examine the formation of a static armour layer. However these tests 

have always had a duration of mobilising steady flows much longer than would be 

observed in a natural river. 

The aim of this study was to examine the impact of different patterns of 'short term' 

time varying flows on the grain sorting and movement of mixed grain size sediment. To 

meet these objectives a series of laboratory tests was conducted. Each test was split into 

two parts. In the first part a sediment deposit was subjected to an initial 'flood event', 

afterwards the water worked surface was exposed to a larger flood in order to examine 

sediment stability that had developed. The bedload transport rate, its composition, the 

near bed flow velocity and the local bed surface topography were all monitored. These 

data were collected in order to describe the grain sorting experienced during different 

patterns of flow hydrograph and to quantify the adjustment in the critical entrainment 

conditions for different grain size fractions after being subjected to the different flows in 
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the initial 'storm events'. 

3.2. EXPERIMENTAL APPARATUS 

3.2.1. Laboratory Flume 

The laboratory experiments were carried out in the Sediment Transport Laboratory at 

the University of Sheffield. A re-circulating glass sided tilting flume which was 18.4 

metres long, 0.5 metres wide and 0.5 metres deep was used (Figure 3.1). The first 2.5 Tn 

of the flume bed was composed of coarse gravel particles (dso ::::: 20 mm) glued to the 

flume base in order to provide repeatable and uniform turbulent flow conditions at the 

upstream edge of the mobile bed section. Downstream of the static bed section, a 12.5 m 

length of mobile bed was placed in the flume. The gradient of the flume was altered by 

the use of hydraulic jack and flowrates were controlled by use of a computer-controlled 

pneumatic valve located in the inlet pipe flume. An adjustable gate at the downstream 

end of the flume acted as a control of the flow depth allowing the gradient of the water 

surface to be altered. 

Manometer 
Reservoir 

...... 
Computer controlled valve 

Centrifugal pump 

Figure 3.1. Sketch of the experimental layout 

Different flowrates were obtained based on a correlation between discharge and the 

percentage of valve opening. This correlation was found in preliminary tests using a 

manometer and a pre-calibrated orifice plate in the inlet pipe. The same volume of water 

was used for each test so that this relationship would remain the same. The discharge of 

0.0338 m3/s was selected as the highest discharge applied in all the antecedent flow 
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tests. It was achieved by setting the valve at 75 % opening. For the unsteady antecedent 

flow hydro graphs the increasing and decreasing discharges were achieved by employing a 

computer program to control the valve opening with time. The different level of valve 

opening creates different flow discharges up to the 100 % of valve opening during which 

the maximum discharge of 0.0375 m3/s was provided. During the operation of valve, the 

downstream control was fixed so that similar floodwave was observed, providing the 

time variation in discharge was the same. 

3.2.2. Bedload Trap 

A slot type sediment trap located 12.7 m from the flume inlet was provided to collect the 

material being transported as bedload. It was positioned in the centre of the flume with 

the size of 420 mm in lateral direction and 70 mm in the streamwise direction. The 

bedload trap was originally split into three lateral sections (Figure 3.2 and Figure 3.3). It 

was equipped with two valves and interchangeable collection boxes to allow an 

interrupted collection of bedload samples but only the middle section of 190 mm width 

was used to trap the moving bedload. This allowed a continuous record of the transport 

rate and bedload composition being obtained at discrete time intervals continually 

throughout each test as a function of time. During the experiments it was observed that 

Figure 3.2. Photograph of sediment collection box 
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Figure 3.3. Sketch of bedload trap attached to the flume, a) . plan view, 

b). cross section A - A 

the movement of the bedload was not affected by the operation of the trap so that the 

pattern of transported bedload was believed to strongly reflects the actual pattern of 

transport phenomenon in the central section of the flume. 

A section of uniformly sized fixed sediment grains was located downstream of the trap 

(see Figure 3.3). Examination of this area at the end of tests indicated no grains that 

could have come from the mobile sediment bed. It was therefore concluded that the trap 
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was highly efficient at collecting all the gram slZes tn motion. These observations 

suggested that the dimension of the trap used is suitable to reliably collect the moving 

bed materiaL Preliminary experiments showed that the movement of particles was 

concentrated in a zone centred along the centreline of the flume. This was reflected by 

the existence of valley-formed bed along the centreline of the flume as shown in Figure 

3.4. The average width of the valleys formed on the bed matched the width of the 

bedload trap. It was also matched the width of measurement grid for the velocity and bed 

surface measurements (180 rrun) . 

Figure 3.4 a) . Valleys formed along the centreline of the flume, and 

b). the width of the valley as indicated by the ruler 

The mode of sediment supply is one of the most important controls that can be exercised 

in mixed grain size sediment transport experiments. Parker and Wilcock (1993) outlined 

the fundamental difference between operating a flume in a sediment feed or a re­

circulating mode. Operating a flume in re-circulating mode is useful for examining the 

transport capacity of different grain size fractions at a particular hydraulic condition. 

However, there is effectively no grain size sorting with time when the flume is run in 
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this mode. When a flume is run with an imposed feed rate and size distribution, the final 

conditions are heavily dependent on the feedrate and size distribution selected. This 

system does take time to attain the final equiblirium conditions. It was the intention of 

this work to examine how time varying flowrates at a time scale commonly found in 

rivers, would affect the way in which such a system attains a final equilibrium, and to 

examine if these are significant differences in the final equilibrium state even though the 

sediment feed conditions were not changed. The simplest feed system was selected, that 

of a zero feed. This type of operation develops static armour rather than the dynamic 

armour formed in re-circulating or feed systems with a non zero feed. This mode of 

operation does however have a time in which the system tends to a final equilibrium in a 

manner similar to a non-zero sediment feed experiment. In all the tests performed, no 

sediment was feed into the flume at the upstream boundary. 

3.2.3. Acoustic Doppler Velocimeter and Mounting Arrangement 

It has been recognised that the near bed flow environment can be significant in the 

entrainment and movement of sediment particles (Grass, 1971). In order to quantify the 

pattern of near-bed flow and to investigate the variation in time-averaged shear stress, 

an Acoustic Doppler Velocimeter (ADV-SonTek) was used to carry out a series of near­

bed flow velocity point measurements. The ADV probe is a versatile, high-precision 

instrument that measures three flow velocity components of streamwise, lateral and 

vertical direction. The ADV probe measured the flow in these three directions by 

measuring the Doppler shift of acoustic signals transmitted from the probe and reflected 

back to the probe receivers off scatters in the flow. The probe periodically emits a short 

acoustic signal, and three receivers measure the changes in frequency of the echo by 

Doppler effect. The ADV has been used to estimate the near-bed shear stress in open 

channel (Kim et aI., 2000) as well as measurement in combined sewer (Ahyerre et aI., 

200 I) with reasonable success. Analysis by Voulgaris and Trowbridge (1998) indicated 

that the ADV sensor could measure mean velocity and Reynolds stress within 1 % of the 

estimated true value. Snyder and Castro (1999) run the test in the stratified tank to verify 

the usability of the ADV. As suggested by Kraus et al (1994) the accuracy of the probe 

to horizontal flow fields was generally within the range of ± 0.25 % ± 0.25 cm/s. Note 

that the first figure (0.25 %) is a relative accuracy, being a percentage of the value 
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indicated, and the second (0.25 cm/s) is an absolute accuracy, providing a lower limit or 

minimum resolution related to the inherent Doppler noise. 

The ADV probe consists of three acoustic receivers and a transmitter at the base of the 

probe, which all must be fully submerged to ensure proper operation (Figure 3.5.) . The 

red receiver arm on the 3-D down-looking probe is aligned in the direction of the x-axis 

and the value for velocity Vx in the software refers to the velocity along this axis. The 

directions of y-axis and z-axis are based on the definitions of a right-handed co-ordinate 

system (SonTek, 1995). An important advantage of the ADV is that it measures the 

flow in a small sampling volume of approximately 0.25 cm3 or approximately 5 cm away 

from the sensing elements (Nikora and Goring, 1998). 

Figure 3.5. 3-D down-looking Acoustic Doppler Velocimeter SonTek 

One advantage of the ADV probe is that it measures the flow at a distance from the 

sensing elements. It has a small sampling volume, a cylinder with 3 to 9 mm length and 6 

mm diameter, allowing the ADV to be less affected by severe attenuation in the variance 

of vertical velocities. In this experiment, the distance from the sensor head to the 

sampling volume was approximately 50 mm. The manufacturer advised that in most flow 

regimes, this distance is sufficient to avoid interference from the probe in the flow 

(SonTek, 1994). The requirement that the probe always be submerged, and that the 
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measurement volume was 50 mm from the transmitter head meant that a minimum flow 

depth was required. This was set at 60 rnm. This constrained the hydraulic conditions 

that were possible during the testing program. 

Before data collection was started, the velocity range and the sampling rate were set. As 

a general rule, the velocity range should always be set as small as possible. It was 

observed that the maximum discharge applied in the experiments produced maximum 

velocity that was slightly above 60 cm/s. This velocity occurred when the flowrate was 

approaching its peak during the stability test. In this case, the velocity range of ± 100 

cm/s was a reasonable choice. The reason for this was that the noise in the data increases 

with increasing velocity range. If the velocity range is set higher than 100 cmls and the 

actual velocity is only 60 cm/s the data will appear excessively noisy and resulting in a 

loss of precision at high sampling rates . 

In this experiment the ADV probe was clamped on a trolley with adjustable movement in 

the streamwise, lateral and vertical directions (Figure 3.6). This arrangement allowed the 

ADV measurement volume to be moved accurately and remotely once its initial 

Figure 3.6. Clamping arrangement over the measurement grid 
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position had been established. All measurements were carried out at sampling rate of 25 

Hz. This sampling rate was selected in order to examine the structure and variation in 

turbulence over rough water worked gravel beds. Previous flow visualisation work by 

Tait et al (1996) and measurement in the field by Nikora and Goring (1998b) and Smart 

(1999) have indicated that the coherent flow structures observed over gravel beds 

appeared to have a frequency of occurrence of around 2 -3 Hz. A sampling frequency 

with higher magnitude would be able not only to identify such structures but also give 

some insight into their development. 

3.2.4. Laser Displacement Meter and Movement Frame 

The changes of bed surface structure will be observed by measuring the elevation of the 

bed surface at a large number of points organised on an orthogonal grid. These 

measurements took place at the beginning and end of the initial part of each test and also 

after the ' stability test' . The laser displacement meter used for this purpose was attached 

to a computer controlled motion frame that could be programmed with a certain 

movement pattern. The displacement sensor traversed the sample area of 280 by 180 mm 

Figure 3.7. Laser Displacement Meter (LDM) in use 
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at intervals of 1.0 mm in both streamwise and lateral directions (Figure 3.7). A single bed 

position reading was taken at each grid point. A grid interval of 1.0 nun was determined 

in order to cover the close range of variations in the bed elevation. Although the mixture 

was also composed of sand with grain size less than 1.0 mm, this fraction made up only a 

small proportion of the bed. After the test, as the finer grains were transported and the 

bed become more coarser, the l.0 nun grid interval ofLDM movement is still sufficient 

to pick the variation of elevation with the assumption that it would be able to pick at 

least five information points on grains of the average grains dso = 5.19 mm. Due to the 

long operation time (12 hours and 55 minutes) to cover the large number of steps (50400 

rows of data for each experiment), the sensor was left to run overnight unattended. 

The laser displacement sensor was a model LC 2400 manufactured by Keyence. It has a 

measurement range of ± 9 mm with the zero datum position being located at fixed 

distance 50 mm from the sensor head. The sensor had a measurement spot diameter of 

45 x 20 ~m and had a stated vertical resolution of 0.5 ~m. Given this level of vertical 

accuracy, and spatial precision coupled with its measurement range in comparison to the 

typical grain size, it was believed that this sensor would be suitable to obtain detailed 

information on grain arrangement as the water worked sediment beds developed. 

Figure 3.8. Laser Displacement Meter Keyence 2400 
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The vertical position of the sensor was adjusted at the start of each test to a reasonable 

height above the bed surface with the consideration of the measurement range of the 

sensor, so that it would pick up maximum detail of the variation in bed surface level 

within the measurement area. Grid points within sample area were marked on the 

measurement rails so that the bed topography measurements could be related to measu­

rement locations used by the ADV probe. The bed topography frame had been designed 

in such a way that ADV probe can be moved easily in the selected area. All data values 

are recorded by a computer to allow the bed structures to be analysed at a later stage. 

3.3. SELECTION OF SEDIMENT MIXTURES 

The primary requirement used to select the sediment for this experiment is that the 

mixture must have a range in grain sizes and must be similar in nature to the natural 

sediment mixtures that exists in many rivers. Unlike the uniform sediment that has been 

extensively investigated and where the transport mechanisms are reasonably well 

understood (Wu et aI, 2000) the transport processes in non-uniform sediment are much 

more complex. In a broad grain size distribution, sediment responds differently from 

one with uniform grain size and the critical shear stress of individual friction depends on 

mixture characteristics (Wilcock, 1993). Bimodal sediment have been used in this 

experiment as this form of grain size distribution has been found in many gravel-bed 

rivers (Shaw and Kellerhals, 1982) and has been used by other researchers, notably 

Wilcock (1993) in his work on the behaviour of bimodal mixtures in a recirculating 

laboratory flume. 

A sediment mixture was manufactured from three different gram SIze sediments 

supplied from quarries located on river floodplains in Nottinghamshire. There were 

mixed using a mechanical mixer to form a well mixed material that contained mixed 

sized sand (sediment A), a 6 mm fine gravel (sediment B) and a 10 mm coarse gravel 

(sediment C). This was called Mix 1 (0.33 A + 0.33 B + 0.33 C). This mix was initially 

tested in a series of simple experiments to examine its mobility. The mixtures were 

exposed to five different discharges that accommodate a range of discharges. This was 

intended to obtain information to ensure that the mix selected had a range of mobilities 

at the possible final test discharges. The bedload transport rate was measured for both a 
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freshly scrapped bed and an annoured bed, which was a deposit that had been exposed 

to the flowrate for at least three hours. The phi-index scale of 0.5 was used to divide the 

sediment sieve size into class intervals to adequately describe the bimodal sediment 

mixtures (Table 3.1). 

Table 3.1. The ~-index and the sediment class intervals 

No. Phi-index d Sieve size Remarks 
(II» (mm) (mm) 

1. 2.5 0.177 0.150 

2. 2.0 0.250 0.250 

3. 1.5 0.354 0.355 

4. 1.0 0.500 0.500 

5. 0.5 0.707 0.710 ~ = -IOg2 d 
6. 0.0 1.000 1.000 (d in mm) 
7. -0.5 1.414 1.400 

8. -1.0 2.000 2.000 

9. -1.5 2.828 2.800 

10. -2.0 4.000 4.000 

11. -2.5 5.657 5.600 

12. -3.0 8.000 8.000 

13. -3.5 11.314 10.000 

This mixture gave a good transport rate pattern during each run, with sufficient material 

being entrained and transported to ensure accurate transport rate measurement using the 

bedload trap. Table 3.2 confinns the common behaviour of the freshly laid sediment in 

that the larger the discharge applied to the bed the higher the amount of material being 

transported. All annoured beds transported significantly less than the corresponding 

freshly laid bed. An interesting feature presented by experiments with discharges Q4 and 

Q5. Both produced significantly different values in transport rate of the fresh sediment 

bed but transported almost similar amounts from the annoured bed. This led to the 

hypotheses that Q4 was capable to progressively disrupt the bed and accommodate the 

similar level of annouring as displayed by the maximum discharge. It was then decided 

to apply Q4 with discharge of 0.0338 m3 Is to all antecedent flow experiment and the 

maximum discharge of 0.0375 m3/s was applied to the second stability experiments. 

These values of flow gave a measurable range of bedload transport rates on both freshly 

laid and annoured bed. 
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Table 3.2. Average sediment transportation rate of Mix 1 

No. Valve opening Discharge Average transportation rate (gr/s per m) 

Fresh bed Armoured bed 

l. 30 QI = 0.0123 0.1542 0.1742 

2. 45 Q2 = 0.0220 0.4590 0.0574 

3. 60 Q3 = 0.0305 0.4721 0.0732 

4. 75 Q4 = 0.0338 0.6621 0.0905 

5. 100 Q~ = 0.0375 1.2826 0.0932 

Unfortunately, due to the limited stock and to ensure sufficient sediment was available 

for all the main tests, a new batch of sediment was purchased. A new mixture of material 

from Langford quarry was then selected to replace the existing one. The mixture 

composition was designed to match Mix 1. Using similar cJ>-index applied for Mix 1, both 

the grain size distributions and sorting coefficients were obtained by sieving analysis and 

the data of typical grading curve of new materials for each composition was examined 

and compared to get the closest to grading curve for Mix 1. 

e. 
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Figure 3. 10 presents SIX different composition obtained using the sediment from 

Langford closest to the existing mixture. The grading curve of mixture Langford-f 
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with composition of 35 % sand, 54 % 6 mm gravel and 10 % 10 mm gravel (0.35 A + 

0.55 B + 0.10 C) seems to be the closest to the existing material when examining the 

average grain size. But further examination of the entire grain size distribution led to the 

decision that mixture Langford-c has a closest grain size distribution compare to 

Langford-f (see Figure 3.10). Mixture Langford-c (0.30 A + 0.50 B + 0.20 C) was then 

selected to be used for all the main experiments (see Figure 3.11). This mixture has two 

modes with finer mode and coarse mode being at approximately 0.355 mm and 5.60 mm 

with d16 = 0.65 mm, dso = 5.19 mm and dS4 = 7.61 mm. The geometric standard 

deviation, O"g = 3.42. 
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composition designs proposed for experiments 

10 0 

90 Grad ing Curve 

-6-- Accum ulation Curve 
80 

70 

~ 60 
c 

0;::: 
50 1: 

C/ 
~ 40 
C/ a. 

30 

20 

10 

0 

0 10 

G rain size (mm) 

Figure 3. 11 . Grading curve and cumulative distributions of mixture Langford-c 

(0.30 A + 0.50 B + 0.20 C) 

56 Y. asdi 



Chapter 3 : Experimental Apparatus and Procedures 

In all tests no sediment was input at the upstream inlet to the flume. The concept was to 

carefully place the mixture that was fully mixed using the electric mixer. The mixing 

time length was long enough to produce a well-mixed sediment bed. One mixing 

contained 18 kg of sediment A, 30 kg of sediment B and 12 kg of sediment C. The 

mixing process was repeated until the amount of mixture was sufficient enough to fill 

the 12.5 m length of mobile bed section in the flume. The total mass of sediment used 

for each experiment was approximately 310 kg. The sediment bed was scrapped flat 

using a metal scrapper, which ran on two parallel measurement rails to give a bed 

surface with the same slope of the flume, i.e. 1 in 250. This was done before the bed was 

exposed to a flow hydrograph. The first 2.5 m of the flume bed was composed of coarse 

gravel particles (d5o ::::::: 20 mm) glued to the flume base in order to provide repeatable and 

uniform turbulent flow conditions at the upstream edge of the mobile bed section. 

3.4. SELECTION OF HYDROGRAPH 

3.4.1. Introduction 

Different flow hydrographs were applied in antecedent flow experiments. The stability 

of the beds were observed by the application of identical stability hydrograph following 

each antecedent flow test. Different flow hydro graphs were produced by a computer 

controlled pneumatic valve whose position was varied to create different flowrates. The 

length of steady flow experiment was divided into four different duration while time 

varying flow with or without steady flow was separated into three different duration as 

indicated by the number given in the name of experiment. 

In details the experimental work was characterised by three groups of hydrographs : 

1. Steady flow experiments SF I in which the discharge was held at a steady value 

throughout the test. Four different durations were applied, namely Experiment 

SF 1-3 (3 hours), Experiment SF 1-6 (6 hours), Experiment SF 1-9 (9 hours) and 

Experiment SF 1-12 ( 12 hours) respectively. 

2. Steady flow with time varying flow experiments UF II in which the flowrate was 

initially held at a steady flowrate for three hours followed by a period of linear 

decline in flow discharge. Three selected different durations of declining flow 

were identified as Experiment UF 2-6 (3 hours steady and 3 hours declining 
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flow), Experiment UF 2-9 (3 hours steady and 6 hours declining flow) and 

Experiment UF 2-12 (3 hours steady and 9 hours declining flow). 

3. Time varying flow experiments UF ill with a different duration of increasing 

discharge but similar 3-hour duration of decline in flow discharge. Those were 

identified as Experiment UP 3-6 for 3 hours increasing and 3 hours declining 

flow, Experiment UF 3-9 for 6 hours increasing and 3 hours declining flow, and 

Experiment UF 3-12 for 9 hours increasing and 3 hours declining flow. 

3.4.2. Steady Flow Experiments SF I 

The aim of these experiments was to examine how the armour bed developed and also 

to quantify the additional stability caused by an increase in the length of time as a mixed 

grain sediment bed was exposed to a uniform flowrate. The gate at downstream end of 

the flume was adjusted during the initial stage of all the steady flow experiments so that 

experiment was started with a uniform flow depth and a uniform average shear stress 

was applied to the bed. A flowrate of 0.0338 m3/s was applied to four different run 

times ofthree, six, nine and twelve hours respectively (see Figure 3.12). 
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Figure 3.12. Schematic of antecedent flow hydro graph for steady flow Experiments SF I 

The stability of the water worked beds fonned during the steady flow experiments need 

to be estimated to study the processes that control the development of stability in gravel 
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bed rivers. The stability of the water worked deposits was examined by applying a 

relatively short hydro graph (Figure 3.13). This hydro graph was the same in each test. 

The flowrate increased from base flow of 0.0075 m3/s to a peak flowrate of 0.0375 in a 

time of 60 minutes. It then took a further 60 minutes to return to the base flowrate. The 

level of bed stability was assesed by examining the temporal pattern of the eroded 

sediment at 10 minutes intervals. 
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Figure 3.13 . Schematic of the stability test hydro graph for all experiments 

3.4.3. Unsteady Flow Experiments UF II and UF III 

The second stage of the laboratory testing involved experiments with time varying flow. 

It is divided into two parts. Part I investigated the impact of the declining limb of a 

flow hydro graph on the development of an armour layer and on bed stability and 

subsequent sediment transport (Experiment UF II). Part 2 examined the impact of 

different flowrate changes in the rising limb of the hydro graph (Experiment UF III). 

3.4.3.1. The Impact of Different Duration of Falling Limbs 

The aim of the experiments was to assess the impact that different rates of decline in 

flood hydro graphs have on grain sorting and bed stability. Three antecedent flow 

experiments had an identical initial section of constant flowrate followed by a decline in 

flow discharge with different duration (Figure 3.14.). 
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Figure 3.14. Schematic of hydro graph with similar constant discharge 

but different falling limbs Experiment UP II 

As with the steady flow test three different types of experimental measurements were 

made. These were velocity measurements, transport rate and composition measurements 

and bed surface measurements. In the constant flowrate section, the nearbed streamwise 

velocity measurements were measured at a single point in the centreline of the flume 

with an interval 10 minutes and also at different points in the measurement grid. During 

the decelerating flowrate, measurements were taken at a single point 10 mm from bed so 

that the near bed flow environment at the same point can be compared as the discharge 

declines. 

The flow was stopped at the end of the test and the flume slowly drained. The bed 

surface over a 280 mm by 180 mm was measured using the bed topography frame. 

Photographs were taken to visually observe the bed changes between the start and the 

end of the tests. The second stability hydro graph as applied to the steady antecedent 

flow experiments (Figure 3.13) was introduced to the armoured bed after each run to 

quantify its stability by measuring the resulting transport rates at 10 minutes intervals. 

This allows the stability of the armoured beds formed by the different hydrographs of 

UF 2-6, UF 2-9 and UF 2-12 to be quantified. 
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3.4.3.2. The Impact of Different Duration of Rising Limbs 

The aim of this series of tests was to examine the effect that different rates of increase of 

flow discharge has on the stability of a water worked sediment bed. It was believed that 

a different level of disruption during the initial phase may have a significant impact on 

bed stability. In order to accomplish this, three different hydro graphs were applied, each 

had a different rising limb with the duration of 3, 6 and 9 hours but the same peak 

discharge and the same duration of recession limb (Figure 3.15). 
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Figure 3.15. Schematic of hydro graphs with different rising limb but similar falling 

limbs (Experiment UF III) 

Similar to the other two series of tests, measurements made during these experiments 

were divided into three different activities; near bed flow velocity measurement at the 

central point of the measurement grid (10 mm above the bed), transport rate and 

composition measurement, and bed surface measurement. The flow was stopped at the 

end of the test and the bed surface profile of 280 mm by 180 mm was measured using 

the bed topography frame. Again, the second stability hydro graph with the higher 

maximum discharge of 0.0375 m3/s (Figure 3.13) was introduced to the armoured bed 

after each run to quantify its stability by measuring the resulting transport rates at 10 

minutes intervals. This allows the stability of the armoured beds formed by the different 

antecedent flow hydrographs ofUF 3-6, UF 3-9 and UF 3-12 to be quantified. 
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Statistical analysis provides methods of treating data so that the maximum information 

can be obtained with a predetermined risk of drawing false conclusions. It can be said 

that no method, including statistic, can draw conclusion from experimental data with 

zero risk of error. According to Holscher (1971) the sources of error which are universal 

to almost all experimentation may be summarised into three factors: the variability of 

the material or sample used, the uncontrolled conditions of the testing, and the 

measurement errors of instruments and people. Sources of variability are always exists 

and the same result does not expect each time, even in the most careful experiments 

(Moore and McCabe, 1999). However, the variations should form a random sequence. 

Randomness in a series of results is a very troublesome concept to define. In a general 

sort of way, it implies the absence of a pattern, which could be used to predict what the 

next point is going to be. The successive values may be very nearly the same in a very 

precise experiment, or they may scatter widely in an experiment of low precision 

(Holscher, 1971). Certain atmosphere or realm can contribute to an experiment but the 

whole contributing conditions may not be recognised. Working with material things, 

rather than human relationships, the effects of all things entering the experiment can be 

at least partially controlled and measured. It is a controlled experiment when treatments 

are imposed on experimental units in order to observe responses. The goal of every 

controlled experiment is to establish a cause-and-effect relationship between treatments 

and outcomes specified by the response variable (Petruccelli et aI., 1999). In fact, only a 

properly designed and conducted controlled experiment can establish a cause-and-effect 

relationship. The problem in developing an experiment under control is that it mayor 

may not be economically feasible (Holscher, 1971). However it should always be done 

ifthere is a strong tendency that it is feasible. 

3.5.2. Random and Discrete Variables 

A random variable, or a variate if its distribution is known, is a variable whose value is 

uncertain or unpredictable or non-deterministic (Kottegoda and Rosso, 199i). It is a 

phenomenon that usually encountered because of its inherent randomness and 

consequent unpredictability. A random phenomenon is an occurrence that results in one 
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of a known set of definite, identifiable outcomes, but whose actual outcome can not be 

predicted with certainty in advance (Petruccelli et aI., 1999). Hence, the effects caused 

by unexpected and unpredicted variable enter in an experiment must be carefully 

checked. Randomness of experimental order is a fundamental procedure for good 

results. It prevents some overlooked effect from becoming identified with an 

experimental factor and also ensures that any small overlooked effects are impartially 

distributed among the comparisons (Holscher, 1971). Random variables may assume 

some value, the magnitude of which depends on a particular occurrence or outcome of 

an experiment. A random variable can be statistically specified by its distribution or 

probability law using a mathematical function where the variable can be the discrete or 

continuous type. Continuous variables can take any value in a given range while discrete 

variables can take only certain distinct values or isolated values such as integers in a 

given range so that both distribution are necessarily different. 

3.5.3. Probability Distributions and Bin Size 

Over the years, statisticians and scientists have noticed that certain data distribution 

patterns occur repeatedly in nature. These pattern has arisen the idea of theoretical 

distributions : mathematical curve that serve as models for these observed data 

distribution patterns (Petruccelli, 1999). One of the great advantages of mathematics is 

that the essential features of quite different phenomena can be described by the same 

mathematical model. Mathematical model is a form of probability theory to describe 

events in the real word. Probability or a measure of uncertainty can be defined as the 

extent to which an event is likely to occur, measured by ratio of the favourable cases to 

the whole number of cases possible (Rees, 2001). Therefore, the possibility of the 

occurrence of events that may influence experimental outcomes and estimate their 

likelihood must be considered. The application of probability models is often necessity 

since the solutions of physical problems in engineering are associated with random 

factors that can greatly influence outcomes. The models are classified separately 

according to whether the variables are continuous or discrete. The parameters of the 

model vary from one case to another. 

A data distribution is a summary of the variation in a set of data, which lists each data 

value and its frequency. A mean for a data distribution translates into the mean of a 
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distribution model which may be represented graphically by a probability histogram, a 

standard tool for displaying the variation in numerical data (Petruccelli et aI., 1999). 

Construction of a histogram begins by breaking the range of data values into a number 

of intervals or classes and counting the frequencies of observations in each interval. 

The number of the classes can be determined by method as suggested by Freedman and 

Diaconis (1981) as follows (Kottegoda and Rosso, 199i) : 

! 
rn3 

n =-
c 2. 

lqr 

(3.1 ) 

The number of classes is then used to determine the width of the classes or recognised 

as the bin size, which is the difference between the largest and smallest value per 

number of cells: 

b
.. r 
znslze =- (3.2) 

nc 

where: 

nc = the number of classes 

r = range of the observation (the difference between maXvalues and minvalues) 

n = number of data 

iqr = interquartile range = Q3 - QI 

QI = the median of the lower half of the data 

Q 3 = the median of the upper half of the data 

The interquartile range is a measure of variability that is resistant to the effect of 

outliers, an individual value that falls outside the overall pattern. It is based on 

quantities called quartiles that are obtained by dividing the number of observations into 

a lower half and an upper half. The lower quartiles separate the bottom 25 % of the data 

set from the upper 75 % and the upper quartile separates the top 25 % from the bottom 

75 % (Figure 3.16). The middle of quartile is the median, which is included in both 

halves if the number of observation is odd. The quartiles together with the median give 

some indication of the centre, spread, and shape of a distribution. 
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Lower quartile median upper quartile 

Figure 3.16. The quartiles for a smoothed histogram 

The quartiles and the interquartile range are not affected by changes in either tail of the 

distribution. The resistant nature of the interquartile range follows from the fact that up 

to 25% of the smallest sample observation and up to 25% of the largest can be made 

more extreme without affecting its value, changes in a few data points have no further 

effect once the points move outside the quartiles (Devore and Peck, 1994 ; Moore and 

McCabe,1999). The relationship between the interquartile range and the standard 

deviations is roughly a = iqrll.35 if a histogram of the observation data can be 

reasonably well approximated by a normal curve. The larger values of a suggest that the 

histogram have a longer tails or heavier than a normal curve (Devore and Peck, 1994). 

In a particular case, the shape of the distribution is considered before deciding whether 

to apply mean, median or mode (Rees, 2001). If the shape of the distribution is roughly 

symmetrical about a vertical centre line, the mean is the preferred average. If the shape 

of the distribution is not symmetrical, there will be a small number of extremely high 

values (positive skewness) or low values (negative skewness), which are not balanced 

by values on the other said of the distribution. These extreme values influence the mean 

more than the median so that the median is preferred in this case. The mode is rarely 

used for either continuous or discrete data, since it may not exist at all. It is useful only 

for categorical data (nonnumerical). 

3.5.4. Standard Deviations, Skewness and Kurtosis 

A standard deviation may be informally interpreted as the size of a "typical" deviation 
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from the mean. It is a measure of how widely values are dispersed from the average 

value. The value of standard deviation can be greatly affected by the presence of even 

single unusually small or large observation. The standard way to prevent negative and 

positive deviations from counteracting one another is to square all data before 

combining them. This method allows the deviations with opposite signs but the same 

magnitude to make identical contributions to variability. 

Standard deviation can be determined using the following equation 

a= (3.3) 

where: 

n = number of data, 

x = individual data value 

Skewness characterizes the degree of asymetry of a distribution around its mean. 

Positive skewness indicates a distribution with an asymmetric tail extending toward 

more positive values while negative skewness indicates a distribution with an 

asymmetric tail extending toward more negative values. The mean exceeds the median 

in positive skewness, while the mean is less than the median for negatively skew data. If 

the measure of skewness lies between -1 and + 1, the distribution can be said to be 

roughly symmetrical. Kurtosis characterizes the relative peakedness or flatness of a 

distribution compared with the normal distribution. Positive kurtosis indicates a 

relatively flat distribution. 

Skewness and kurtosis can be determined using the equation as follows: 

~ n ~-x ( 
_J3 

ew = (n -lXn _2)I SD 
(3.4) 

Kurt - [ n{n + 1) I(_Xi -XJ4] _....,....--3-,--:-{n -...,.......:-1)-..,. 
- (n-IXn-2Xn-3) SD (n-2Xn-3) 

(3.5) 

where: 

n = number of data 

Xi = individual data value 
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x = average of data 

SD = standard deviation 

3.6. NEARBED FLOW VELOCITY MEASUREMENT 

3.6.1. Selected Location and Type of Measurement 

One of the major aims of this experiment was to study the influence of the near-bed 

flow velocity and the bed shear stress variations caused by turbulent fluctuations and 

their influence on the movement of different size fractions. Therefore nearbed flow 

velocity measurements weremade to discover the pattern of near-bed flow so that 

changes in the fluid force distribution on a mixed grain size bed as it armours could be 

estimated. 

All nearbed flow velocity measurements were taken usmg the ADV probe over a 

relatively small area of280 mm x 180 mm (Figure 3.17) located 9.14 m from the flume 

inlet. The first type of measurement was single point velocity measurements. These 

measurements were conducted at the centreline of the flume (point E3) 10 mm above 

the bed with measurement interval of 10 minutes. This resulted in 278 velocity time 

series data being available for analysis (Table 3.3). The second type of measurement 

was nearbed flow velocity measurements at different points within the selected area. 

These measurements were carried out only during constant flowrate so that no 

measurement was conducted during the antecedent flow experiment UF III. All velocity 

measurements were made at the centreline of the flume (row 3) and another two 

adjacent rows (row 1 and row 5). Row 1 and row 5 were relatively close to the centre 

line to minimise side-wall effects (Figure 3.17). The probe was positioned at 10 mm 

above the average bed surface and moved in a grid pattern of three streamwise rows 60 

mm apart (row 1, row 3 and row 5). Each row had three measurement position 120 mm 

apart (line A, line E and line J). These velocity time series were used to investigate the 

variation in time averaged and instantaneous shear stress over the 280 mm x 180 mm 

measurement area and to deduce if there is any link between the pattern of shear stress 

and changes in bed surface arrangement. Details of the number of measurements made 

in each experiment are presented in Table 3.3. 
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glass sided wall 

30mm 

60 mm 

500 nun 

60mm 

30mm 

120 mm 20 mm 

Figure 3.17. Grid spacing and location of near bed flow velocity measurement 

Table 3.3. Summary of near bed flow velocity measurements for all experiments 

Experiment 
Measurement at a single point Measurement of grid points 

Antecedent flow test Stability test during antecedent flow 
No. 

R C F T R F T 151 2nd 3rd T 

SF 1-3 - 3 - 3 5 5 10 9 7 - 16 

SF 1-6 - 17 - 17 5 5 10 9 9 - 18 

SF 1-9 - 32 - 32 5 5 10 9 9 - 18 

SF 1-12 - 41 - 41 5 5 10 9 9 9 27 

UF 2-6 - 3 12 15 5 5 10 9 9 - 18 

UF2-9 - 3 25 28 5 5 10 9 9 - 18 

UF 2-12 - 3 39 42 5 5 10 9 9 - 18 

UF 3-6 10 - 11 21 5 5 10 - - - -
UF 3-9 23 - 12 35 5 5 10 - - - -
UF 3-12 33 - 11 44 5 5 10 - - - -
Tot a I 278 100 133 

. . 
Note: R = nsmg hmb sectlon, C = constant flowrate sectlon, F = faJImg hmb sectIon, T= total number of 

measurement, 151 = first measurement, 2nd = second measurement, 3rd 
= third measurement 

3.6.2. Estimation of Instantaneous and Time-Averaged Shear Stress 

The most common flow encountered in engineering practice is turbulent flow. In this 

flow, the motion of fluid particles is complex and erratic causing instantaneous 
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fluctuations in the velocity components (Chadwick and Morfett, 1993 ; Featherstone and 

Nalluri, 1988). The turbulent fluctuations cause an exchange of fluid momentum setting 

up internal shear stresses within the fluid. 

In two-dimensional flow the velocity component in streamwise direction, u, and vertical 

direction, v, are present (Figure 3.18). 

qru 
v 

Figure 3.18. The movement of particle of fluid in two-dimensional flow field 

Considering a turbulent boundary layer in which a small particle moves in vertical 

direction through a small horizontal element of area 8A in a short time 8t, the mass 8m 

moving through the area is given by 

5m = - v x p x 5A x 51 (3.6) 

the momentum 8M is 

8M = 8m x U = -vp5A8lu (3.7) 

The existence of momentum implies the existence of a corresponding force within the 

fluid 

8M 
8F = - = -vp8Au 

8f 
(3.8) 

The instantaneous shear stress r' is equal to the force over the area 

of , 
-=r =-puv oA (3.9) 

The fluctuating components recognised in turbulent flow are u' in streamwise direction, 

and v' in vertical direction. From Figure 3.18 the mass has an instantaneous streamwise 

69 Y. Saadi 



Chapter 3 : Experimental Apparatus and Procedures 

velocity u + u' and an instantaneous vertical velocity v + v' , the momentum 8M IS 

given by 

8M = -(v + v')8A&(u + u') 

= -vup8A8t - vu'p8A& + v'up8A& + v'u'p8A8t (3.10) 

The average values of u' and v' are u' and v' in two-dimensional random turbulent. 

Therefore, the momentum equation can be rewritten as 

8M = -vup8A& -vu'p8A&+ vup8A& + vu'p8A& (3.11 ) 

Nonnally, when momentum transfer due to turbulence is considered over a long time 

period, u' and v', must both be zero but the product u'v' may not be zero. In two­

dimensional flow, net movement of average velocity in vertical direction, v, is also 

zero. Therefore 8M can reduce to 

8M = v'u'p8A8t (3.12) 

The existence of momentum implies the existence of a corresponding force within the 

fluid 

s: 8M -,-, s: A dF = - = pu V un 
8t 

(3.13) 

Since the stress is equal to the force over the area, the time averaged shear stress ,", 

which is the derivation of the Reynold's shear stress, becomes 

,,8F " , =-=puv 
8A 

(3.14) 

Another equation was applied to calculate the time averaged shear stress (;) in an 

attempt to avoid using the 'random' turbulence assumption that u', v' and v are zero. 

The value of time-averaged shear stress was then calculated by averaging the large 

number of values of calculated "instantaneous" shear stress at each measurement point. 

~ n " , =L-
i=1 n 

(3.15) 
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(3.16) 

where: 

n = large number of measurement 

3.6.3. Determination of the Number of Velocity Data Required 

The data used for analysis were time series of instantaneous streamwise, lateral and 

vertical velocities that have been collected with a sampling rate of 25 Hz. Two measure­

ments at the same point were taken with an interval between measurement in order to 

observe the consistency of streamwise velocity distribution. 

Initially, the distributions of streamwise velocity were recorded for two short durations 

of forty seconds. Each record gave 1000 samples of velocity in three different directions. 

The length of each time series was then extended by increasing the sampling time to 

three minutes. This increased the number of data to 5000 instantaneous streamwise 

velocity values. The probability distribution of different number of sample was observed 

to obtain the number applied for all experiments to provide a representative sample of 

the turbulence. The inspection of the "instantaneous" velocity distributions showed that 

the distributions predicted from 1000 data values was significantly different than that of 

2000, 3000 or the larger number of data (Saadi, 2000). By examining the data from two 

measurement at same point but in different time elapsed of the experiment, it was seen 

that there was a tendency that the larger the number of data the more likely the 

probability distributions were similar. The differences between distribution reflect the 

effect of sampling for only short time periods. The curve obtained from 4000 data 

values was very similar to those of the larger number. It suggested that the data numbers 

larger than 4000 produced similar distribution curves indicating sufficient data to 

adequately represent the overall population of fluid velocities. By comparing the 

differences in probability distribution for 3000, 4000 and 5000 samples, it was 

observed that a record of 3 minutes, that contains 5000 values of instantaneous 

streamwise velocity was likely to give sufficient data so that probability of a particular 

value of streamwise velocity could be predicted with a resolution of ± 1 % even at the 

tails of the probability distributions. 
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Similar observation was carried out to "instantaneous" shear stress (Saadi, 2000). This 

observation strengthen the conclusion that the larger the number of data, the smaller the 

difference in instantaneous shear stress distribution. As a result, 5000 data values were 

chosen as the standard number of data points in any velocity time series. 

3.6.4. Determination of Class Interval of Data 

The number and the width of the classes of the streamwise velocity and the 

instantaneous shear stress were determined using Equation 3.1 and Equation 3.2. The 

range of observation was obtained from the difference between the largest and the 

smallest values. Several data measurements from four experiments were sampled to 

obtain the class width or bin size used for experiments (see Table 3.4). It can he seen 

that the variation of bin size for instantaneous nearbed streamwise velocity is less than 

0.2 mls while the variation in bin size for the instantaneous bed shear stress is slightly 

larger. For uniformity, the bin size of 1.5 mls for instantaneous nearbed streamwise 

velocity and 2.5 N/m2 for instantaneous bed shear stress were applied in all experiments. 

Table 3.4. Summary of statistical parameters used to estimate bin size of instantaneous 

nearbed streamwise velocity and instantaneous bed shear stress 

Test Interquartile Range of Number of Width of the Time 

No. range observations classes or cells class (bin size) elapsed 

Vx(mls) " (N/ml) Vx " (N/m
2
) Vx " Vx (mls) " (N/ml) 

(mins) 

13.600 22.774 60.540 140.639 38.060 52.800 1.591 2.664 10 
M , 

14.180 22.720 59.340 150.250 35.779 56.541 1.659 2.657 80 -~ 
CZl 

13.505 23.230 61.740 150.525 39.087 55.402 1.580 2.717 180 

13.315 23.718 65.930 133.175 42.335 48.006 1.557 2.774 10 
\0 , 

14.930 22.310 68.210 158.070 39.061 60.577 1.746 2.609 120 -~ 
CZl 

13.320 20.857 57.420 152.617 36.857 62.563 1.558 2.439 80 

13.290 25.666 53.820 159.759 34.624 53.220 1.554 3.002 160 
0'1 , 

13.880 23.117 77.150 145.807 47.523 53.928 1.623 2.704 250 -~ 
CZl 

13.265 21.756 59.500 111.398 38.350 43.778 1.551 2.545 400 

13.730 23.215 63.090 162.227 39.287 59.746 1.606 2.715 170 

N 14.230 23.189 64.100 143.536 38.514 52.923 1.664 2.712 200 -, -~ 14.730 23.129 80.400 117.160 46.667 43.309 1.723 2.705 300 
CZl 

14.790 23.644 62.450 142.315 36.101 51.462 1.730 2.765 680 
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3.7. BED TOPOGRAPHY MEASUREMENTS 

3.7.1. Laser Displacement Meter 

The laser displacement meter reads the variation in height of the bed surface, in relation 

to the pre-set datum, and returns it as a voltage via an ND board. The voltage value was 

converted to a height value once the sensor has been calibrated. Figure 3.19 gives the 

correlation between the voltage values and height values. The sensor was set to zero at a 

reasonable datum height within the bed surface and the readings obtained were positive 

or negative differences from this original pre-set datum. 
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Figure 3.19. Correlation between voltage measurement (VD in volt) 

and real measurement (LDM in mm) 

3.6.2. Bed Topography Data Format 

A small area of280 mm by 180 mm was selected to be measured by laser displacement 

meter. This area was located 9.14 m from upstream end of the flume. The displacement 

meter traversed the sample area and took readings at grid intervals of 1 mm in both the 

streamwise and lateral directions. The data set is arranged such that the starting point is 

at the upstream left end of the grid. To reduce the possible error during operation, the 

program was created in such a way that the displacement meter would return to a 
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defined starting point every ten rows of operation completed. This allowed for the 

quality of the data to be checked periodically during the measurement of a grid. The 

streamwise co-ordinate is known as x and ranges from 0 to 280 mm. The lateral co­

ordinate is y and ranges from 0 to 180 mm. This generates a matrix with 280 columns 

and 180 rows as described in Figure 3.20. 

starting point 280 columns 

•••••••••••••• ••••• 
]] •••• CIl 

§ ••• ~ 
0 •• I-< 

0 0 
00 • 00 - -• • Streamwise 

• • • 
280mm 

Sample Area • Matrix 180 x 280 

Figure 3.20. Diagram of measurement for bed topography data 

Difficulties were experienced in that incomplete data was collected for the topographical 

sample areas. It was expected that each measurement of 280 by 180 mm grid would give 

50400 data points. In fact, from closer inspection of the data obtained for each 

experiment, it was noticed that some of the z values were not within the expected range 

of ± 9 mm. It was suspected that when the sensor was unable to take reading, i.e. the 

bed surface was out of range, the statement too far/too near appeared and no values 

recorded. In this case, the recorded number of data points are less than 50400 and the 

structure of the matrix can not be maintained by keeping all columns and rows at length 

of 280 and 180 data. 

In order to maintain the structure of the data matrix, these were distributed equally to all 

rows as there was no data set in which less than 0.5 % of data was missing. This resulted 

in a new matrix with the dimension of 279 columns by 179 rows. The total number of 

data values use for analysis was then 49941. Further analysis of this data is described in 

the next three chapters. 
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IV. EXPERIMENTAL RESULTS OF STEADY FLOW EXPERIMENTS SF I 

4.1. INTRODUCTION 

In this chapter, the results from four steady-antecedent flow experiments with different 

duration are reported along with their subsequent stability tests. The flow duration ranged 

from 3 hours to 12 hours with an identical flow discharge of 0.0338 m3 Is. The results of each 

experiment which have been identified as SF 1-3 (3 hours duration), SF 1-6 (6 hours 

duration), SF 1-9 (9 hours) and SF 1-12 (12 hours duration), are described and then discussed 

together with the observations made during the stability test. 

The aim of these experiments was to examine the influence flow duration has on developing 

bed stability in a mixed grain size sediment. This chapter is divided into four parts, each 

associated with a different type of observations. The first section is focused on stability 

analysis of the water worked sediment beds. It describes the results of the short duration of 

'standard' hydrograph applied to all experiments to assess the stability of water worked bed at 

the end of the steady antecedent flow. The standard "stability" hydrograph has a peak 

discharge larger than the constant discharge applied during antecedent flows. It rose from a 

base flow of 0.0075 m3/s to a peak flowrate of 0.0375 m3/s in a time of 60 minutes. The 

flowrate then declined to the base flowrate again in a time of 60 minutes. 

The second part describes the observations of bedload and composition made during each 

antecedent flow test. This part is also contains the investigation of momentum in bursting 

events. As each water worked bed developed the changes in the average "instantaneous" 

nearbed streamwise flow velocity and bed shear stress were analysed by comparing 

measurement results carried out at different time elapsed. To complete the second part, the 

bed topography analysis was included in each antecedent flow test observation. The third 

section describes the comparative results of all antecedent flow and the stability tests. The 

results of the two initial sections were linked in order to investigate the influence of the length 

of time to the sediment transport processes, the development of bed stability and the changes 

in bed configuration. The final part of this chapter is the summary of experiments where 
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conclusions are drawn as to the impact different duration of steady flow can have on the 

behaviour of river or actual events. 

4.2. STABILITY TESTS OBSERVATIONS SF I 

4.2.1. Transport Rate Measurement SF I 

Figure 4.1 shows the bedload transport rates measured during the stability tests carried out 

after all the steady antecedent flow tests. The observation of high transport rates throughout 

the stability test after antecedent flow tests SF 1-3 indicates that the bed fonned by the 

shortest duration of constant flowrate was the weakest. When the duration of antecedent flow 

increased to six hours (Experiment SF 1-6), the transport rate during the stability hydrograph 

was still moderately high but noticeably less than the shorter test. The transport rate reduced 

slightly for longer duration (Experiment SF 1-9) and a much lower level of transport was 

experienced in experiment SF 1-12. This suggests that the longer tests (with a constant 

discharge) established a more stable bed. However the increase in stability was not linear. 
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Figure 4.1. Bedload transport rate pattern during stability tests SF I 

Figure 4.1 also shows that although the four antecedent flow experiments produced different 

level of bed stability, only the higher discharges during the stability tests were able to 

destabilise the previously formed armoured bed. The transport rate during the stability tests 

-----------------------------------------------------------------------
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generally increased with increasing discharge. However at the peak discharges the peak value 

of transport rate was not attained. It was only when the discharge passed its peak, at time 

elapsed 60 minutes, that the transport rate was significantly increased. In stability test SF 1-3 

at the beginning of falling limb (time elapsed 60-70 minutes) the transport rate is 3.188 gls/m 

or more than 100 % higher from 1.576 gls/m observed during the similar level of discharge at 

the end of rising limb (time elapsed 50-60 minutes). 

The peak discharge of stability test after antecedent flow experiment SF 1-6 produced a 

maximum transport rate of 1.257 gls/m (time elapsed 60-70 minutes). This was 50 % above 

the transport rate shortly before the discharge attained its peak (0.833 gls/m at time elapsed 

50-60 minutes). The transport rates measured at the same level of discharges during the 

falling limb are always higher than those in the rising limb. Overall, the average transport rate 

during 60 minutes of the rising limb (time elapsed 0-60 minutes) is 0.180 gls/m and this 

increased to 0.319 g/s/m during the same period of falling limb (time elapsed 60-120 

minutes). 

The transport rate for stability test SF 1-9 when the discharge approaching its peak is 0.339 

gls/m. The rate increased more than three times to 1.068 g/s/m at 70 minutes, which was 10 

minutes after the peak discharge causes more disruption to the bed. As in the previous 

stability tests, the transport rate at the same discharge during falling limb is significantly 

higher than that of the rising limb. The average rate is 0.240 gls/m in falling limb compare to 

0.068 gls/m in the rising limb. 

The armoured bed or pavement formed by long antecedent flow of experiment SF 1-12 was 

also only weakened at the highest discharge of stability test (time elapsed 60 minutes). This 

was shown by an increase in transport rate in comparison between the similar period before 

and after peak discharge. During the last ten minutes of rising limb, or just before the peak 

discharge was reached (time elapsed 50-60 minutes), the transport rate was 0.214 gls/m. 

Within the same period at the beginning of falling limb, the bedload rate then increased to 

0.425 gls/m. The average bedload transport rate during falling limb (time elapsed 60-120 

minutes) increased more than 100 % than the rate of that during the rising limb at 
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corresponding discharges (time elapsed 0-60 minutes). The average bedload transport rate 

during the rising limb and the falling limb are 0.044 gls/m and 0.110 gls/m respectively. 

4.2.2. Grain Size Distribution of Transported Bedload SF I 

Observations of the grain size distribution of the transported bedload during all the stability 

tests were made and compared with the transport rate pattern described above. The stability 

test observations for SF 1-3 suggest that during the initial low discharges the flow eroded only 

the finer grains (Figure 4.2). Although there was coarse grains of 5.6 mm sieve size 

transported at time elapsed 30 minutes, the fluid forces during time elapsed 0 to 30 minutes in 

the rising limb were not sufficient to transport considerable amounts of grains in the coarser 

mode. The increasing percentage of coarser grains at time elapsed 40 minutes in Figure 4.2 is 

not the reflection of high transport in the coarser mode but solely because of the small amount 

of total bedload. When water discharge increased at time elapsed 50 minutes or 10 minutes 

before the peak discharge was reached, significantly more coarse particles on the bed moved. 

The coarse mode dominated the transported bedload until time elapsed 80 minutes. This 

suggests that the grains in the coarse mode start to move when the fluid forces are strong 

enough to transport them, therefore the transport was highly size selective. 

The removal of sheltered smaller grams continued as the flow strength increases. An 

increasing proportion of the grains in the fine mode was entrained into transport and the level 

of exposure of larger grains increased and becoming less stable and easy to remove. This can 

be explained by examining the pattern of transport during the increasing flowrates and 

declining flowrates. In the last 10 minutes of rising limb the proportion of transport in the 

finer mode to the total transport is 5.17 % (45.13 grams) and this increased to 7.710 % (67.28 

grams) in the first 10 minutes of falling limb. Within the same duration and at similar level of 

discharge, the proportion of grains in the coarse mode in transport increased significantly 

from 12.35 % (107.78 grams) in the last 10 minutes of rising limb to 28.07 % (244.92 grams) 

in the first 10 minutes of falling limb. Supporting this observation was the fact that the lower 

available fluid forces at time elapsed 80 minutes in the falling limb were able to move and 

transport more grains in the coarse mode than in the fine mode (see Figure 4.2). At time 

elapsed 90 minutes the proportion of grains transported in the coarse mode decreased to 
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almost similar level of grains in the fine mode. The proportion of coarser grains was gradually 

reduced within the next 30 minutes and transported bedload was then fine grains dominated 

until the stability hydrograph ended. It is worth noting that a decrease in the coarse fraction 

of transported bedload in the falling limb is believed to be solely due to the decreasing fluid 

forces rather than the changes in the availability of coarse grains on the bed surface. 
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It is apparent that during the stability test of Experiment SF 1-3 the larger grain is more 

important than finer grain. Although grains in the coarse mode (grain size 4, 5.6 and 8 mm) 

did not make a continues contribution to the bedload and they only started to move when the 

fluid forces had increased sufficiently, their contribution in the total amount of bedload is 

considerably higher than would be expected from their availability in the surface. This 

enhanced level of mobility of the coarser grains was thought to be due to their enhanced 

exposure. The level of exposure left by antecedent flow increased when the peak discharge of 

stability test removed the finer grain size around the coarse grains. This created a less stable 

formation of larger grains, and allowed the destabilisation process to be enhanced. This is 

strongly shown in Table 4.2 where a significant amount of coarser grains transported during 

this flow. Only 22 % of the total bedload is containing grains of fine mode (grain size 0.5, 

0.355 and 0.25 mm) in comparison to 63 % contribution by grains of coarse mode (Table 

4.1). This is similar to the proportion of coarse grains estimated to be in the surface layer. 

Table 4.1. Summary of the average fractional bedload composition produced by 

stability tests SF I 

Sieve size Fractional transported bedload (%) Estimated composition of surface layer (%) 

(mm) SF 1-3 SF 1-6 SF 1-9 SF 1-12 SF 1-3 SF 1-6 SF 1-9 SF 1-12 

10 0.158 0.000 0.759 0.000 1.774 1.772 1.758 1.766 

8 4.256 8.341 10.858 7.385 8.752 8.696 8.636 8.695 

5.6 37.594 46.027 46.357 52.482 34.835 34.857 34.846 34.901 

4 21.124 15.259 24.817 11.267 19.528 19.723 19.573 19.785 

2.8 5.290 2.838 3.045 1.025 6.908 6.964 6.929 6.961 

2 2.387 0.996 0.422 0.503 3.563 3.584 3.578 3.590 

1.4 1.855 1.031 0.413 0.399 2.526 2.535 2.543 2.547 

1 1.899 1.347 0.522 0.551 1.835 1.842 1.860 1.857 

0.71 2.731 2.569 1.110 1.538 2.652 2.626 2.662 2.635 

0.5 7.566 7.404 3.349 5.990 6.746 6.645 6.731 6.619 

0.355 9.875 9.346 4.824 10.878 7.241 7.139 7.245 7.065 

0.25 4.440 4.051 2.808 6.474 2.604 2.586 2.615 2.557 

0.15 0.755 0.732 0.669 1.357 0.937 0.931 0.925 0.921 

receiver 0.069 0.059 0.047 0.152 0.101 0.100 0.098 0.100 

Total 100 100 100 100 100 100 100 100 

Data form the stability test SF 1-6 suggests that the transport at the lowest flowrates (time 
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elapsed 10, 11 0 and 120 minutes) was again composed entirely of grains in a single fine 

mode. At time elapsed 20 minutes a small amount of grain size 4 mm was found in transport. 

The contribution of 4 mm is proportionally dominant only because of the overall amount of 

bedload transported at this time elapsed was very small (Figure 4.3). It is also shown that at 

time elapsed 30 and 40 minutes the coarse mode was represented only by grains of 5.6 mm in 

transport with the amount less than grains in the fine mode. It was at time elapsed 50 minutes 

when all grains in coarse mode appeared. The coarse mode started to dominate the transport. 

This occurred at a latter time than experienced in the stability test SF 1-3. Following the 

disruption by peak discharge (time elapsed 60 minutes) the contribution of coarse grains in 

bedload transport was immediately evident at time elapsed 70, 80 and 90 minutes 

respectively, and then diminished during the lower discharges (see Figure 4.3). 

The significant amount of increased in coarse mode is apparent as the flowrate approaching 

its peak. It was followed by the increased in the proportion to the total bedload transported in 

each time elapsed. At time elapsed 50 minutes the amount of grains in the coarse mode is 13.4 

grams (60 %) and subsequently increased to 69.11 grams (73 %) at time elapsed 60 minutes 

and 108.71 grams (76 %) at time elapsed 70 minutes. Although the amount of grains in the 

fine mode was also increased in the corresponding time elapsed, this grains was 

proportionally decreased. The amount of transported grains in the fine mode at time elapsed 

50 minutes is 6.85 grams (31 %) and increased to 18.37 grams (19 %) at time elapsed 60 

minutes. After the peak flowrates, a small increased is noticed when 21.70 grams (15 %) was 

transported at time elapsed 70 minutes. At the lower flowrates (time elapsed 80 minutes) the 

amount of grains in the coarse mode decreased to 33.75 grams (66 %). The amount of finer 

mode is also decreased (11.73 grams) but proportionally increased (23 %). Although the 

flowrates had similar level between time elapsed 50 and 80 minutes, the higher amount of 

transport at the latter time indicates the influence of destabilising process during the peak 

flowrates. In the last 30 minutes of the falling limb (time elapsed 90 to 120 minutes) the 

transported bedload was clearly finer mode dominated. 

In term of the total amount of bedload transported, Table 4.1 shows that the stability flow 

during Experiment SF 1-6 transported 70 % grains in the coarse mode in comparison to 21 % 
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of grains in the fine mode. This finding suggests that the stability flow was very efficient at 

moving the coarse material. It leads to the conclusion that during the stability flow of 

Experiment SF 1-6 coarser grains are more mobile than anticipated than finer grains. 
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In the stability test of Experiment SF 1-9, the grains in the coarse mode started to move at 

time elapsed 30 minutes. More erratic changes in the fine mode are noticed in the rising limb. 

Figure 4.4 shows that the lower discharges (time elapsed 10 and 20 minutes) carried grains in 
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the fine mode and also larger grains of 1 mm and 1.4 mm. Grains size 4 mm appeared at time 

elapsed 30 and 40 minutes but still less than the amount of grains in the fine mode. It was at 

time elapsed 50 minutes all grains in the coarse mode existed in transport with the proportion 

exceeded the grains in the fine mode. 

Again, the significant increase of grains in the coarse mode was occurred at time elapsed 60 

minutes. Within the course of 10 minutes after the peak flowrates was attained (time elapsed 

70 minutes), the contribution of the coarse mode in transport increased more than threefold to 

105.56 grams from 32.90 grams at time elapsed 60 minutes. In term of proportion, the coarse 

mode was clearly dominant with 85 % at time elapsed 60 minutes and 87 % at time elapsed 

70 minutes. The dominance of this mode continued until time elapsed 100 minutes even 

though the amount was significantly decreased from 19.97 grams at time elapsed 80 minutes 

to 0.65 grams at time elapsed 100 minutes. During the same period the amount of grains in 

the fine mode in transport was also decreased but proportionally increased. In the last 20 

minutes grains in the coarse mode was absent suggesting that the transport was dominated by 

finer grains. 

It is also noticed that the amount of grains both in the fine and the coarse mode which was 

transported in the falling limb are higher than that transported in the corresponding discharge 

in the rising limb. This increased was caused by the weakening processes of the bed by the 

peak flowrate. The influences of peak flowrate to the transport can also be seen from the 

transport pattern. Only 18 % grains in the coarse mode transported during the rising limb in 

comparison to 64 % during the falling limb while the contribution of grains in the fine mode 

is also increased but not in a similar fashion. During the rising limb, grains in the fine mode 

contributed only 3 % with an increased to 8 % during the falling limb. 

Table 4.1 shows the overall composition of each fraction in stability test Experiment SF 1-9. 

More than 80 % of the total transported bedload contain grains in the coarser mode (4 mm, 

5.6 mm and 8 mm) compare to the small amount of 10 % contribution of grains in the fine 

mode (0.25 mm, 0.355 mm and 0.5 mm). Although there is higher proportion of course grains 

moving, in terms of total mass they are still smaller than that transported during the stability 

test of Experiment SF 1-6. 
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The pattern of transported bedload during the stability test of experiment SF 1-12 is described 

in Figure 4.5. A very low transport rate of bedload was experienced throughout the stability 

test. The low transport rate suggests that both the finer and coarser grains were strongly 

bounded as the results of the long and constant antecedent flows. The increasing loss of finer 

grains during the rising limb, particularly when the discharge approaching its peak, caused the 
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level of instability associated with the larger grains to increase. This is why the domination of 

grains in the coarse mode in transport was initially seen at time elapsed 60 minutes which was 

10 minutes later than all previous stability tests. After this stage the grains in the coarse mode 

were less easily transported even at lower fluid forces (time elapsed 100 and 110 minutes) in 

the falling limb. 

At the lower discharges of rising limb (time elapsed 10, 20 and 30 minutes), the bedload 

consist entirely of grains in the fine mode but with small amounts. The appearance of coarse 

mode in transport was started at time elapsed 40 minutes. However for the next 10 minutes 

the proportion is still lower than the fine mode. This is different than the corresponding 

flowrates in the falling limb. At time elapsed 80 and 90 minutes both the fine and coarse 

mode contributed to the transport rate in noticeable amounts before it started to diminish at 

the lower discharges. The ability of low flowrates in the falling limb to transport grains was 

influenced by the peak flow at time elapsed 60 minutes. The strongest fluid forces destabilised 

the bed although not in the same level as the bed formed by shorter steady antecedent flow 

tests. At time elapsed 60 minutes the domination of grains in the coarse mode is apparent 

when 17.39 grams (72 %) was transported. The bed was strong enough that the flow was 

able to remove 37.60 grams (78 %) within just 10 minutes afterwards. The amount of grains 

in the fine mode transported during these times is proportionally higher compare to that found 

in the other stability tests. An increased in finer mode from 5.73 grams (24 %) at time 

elapsed 60 to 8.78 grams (18 %) at time elapsed 70 minutes, distinguished the stability test 

Experiment SF 1-12 from similar tests applied to the bed formed by shorter duration of steady 

antecedent flow tests. The proportion of grains of the fine mode in transport for the whole 

duration of stability test Experiment SF 1-12 is higher than those tests. 

When the fractional bedload transport for the whole duration of stability test is observed, it is 

found that the different pattern as mentioned earlier is apparently shown. The contribution of 

grains in the coarse mode, i.e. 4 mm, 5.6 mm and 8 mm is 71 % of total transported bedload 

whilst grains in the fine mode is 23 %. The increasing rate of grains in the fine mode is a 

strong indication that the more stable the formation of the bed is caused by more stable 

coarser grains. The fluid forces were only able to remove more grains in the fine mode rather 

than to increase the transport rate of grains in the coarse mode. 
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4.2.3. Fractional Threshold of Motion SF I 

It was clear in the previous section that the threshold of motion of individual gram SlZe 

fraction, particularly of the coarse mode fractions, is an important factor in determining 

whether a water worked deposit would remain stable. It was therefore decided to examine the 
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threshold of motion for individual grain size fractions for each test. Table 4.3 shows the 

results of measurement which cover different level of discharges during the stability flow. 

This was done to meet the primary requirement used to select the data to be examined that the 

fractional transport rates were well measured over a wide range, including very low transport 

rates near incipient motion. The sufficient sampling was also performed to account for 

variability of fractional transport rates over a variety of time elapsed with an interval of ten 

minutes. The critical shear stress for incipient motion of individual grain size fraction Lei is 

estimated from the shear stress parameter, Lri*, that produces a small, non-dimensional 

reference transport rate, Wri*. This method has been used by Parker et al (1982) ; Wilcock and 

Southard (1988) ; Kuhnle (1993) ; Wilcock and McArdell (1993) and Shvidchenko et al 

(2001) to estimate incipient motion conditions for a variety of mixed-size sediments. One of 

the advantages of this method is that because the proportion of available sediment is 

considered, it can be applied on a consistent basis for the estimation of threshold during both 

situations of partial transport and fully mobile transport. With the aid of appropriate data, a 

relation between the reference transport rate and the critical shear stress can be found for each 

grain size fraction. 

The non-dimensional reference transport rate Wri* and the shear stress parameter tri* are 

determined as follows 

q .(p, _It 
• bl p % 

~j = 3 
J;psV. 

where: 

qbi = fractional bedload transport rate for grain size fraction i (grls/m) 

ps = sediment density (kglm3
) 

p = fluid density (kglm3
) 

g = acceleration due to gravity (m/s2
) 

(4.1) 

(4.2) 

fi = proportion of grain size fraction i on the bed surface (estimated at the end of the 

antecedent flow tests) 

U. = bed shear velocity = (rr/p)!12 

87 Y. Saadi 



Chapter 4 : Experimental Results of SF I 

fo = average bed shear stress estimated from ADV velocity measurements (= -pu'v') 

(N/m2) 

Di = grain size fraction i (mm) 

This technique involves fitting a transport function to the sediment transport data for each 

fraction. Then the values of tri* is defined such that W ri* equals a low reference value of 

0.002 for each grain size fraction (see Figure 4.6, Figure 4.7, Figure 4.8 and Figure 4.9). The 

curve was fitted by eye as nonlinear least square fitting method did not always give the best 

visual match to the data because it was overly influenced by small errors in the shear stress 

term for points near initial motion, where the transport function is very steep (Wilcock and 

Southard, 1988). However, a conservative estimate of the error in the measured values of'tri* 

was necessary as the curve fitting was to some extent SUbjective. The error was estimated by 

using a similar method applied by Wilcock and Southard (1988). The reading of tri* values 

when the curved was placed as far as possible to the right and left of the measured tri* was 

used as the error bounds. This estimation is analogous to a confidence interval for an 

estimated intercept in that the true values of'tri* is highly likely to fall within the error bounds 

(Wilcock and Southard, 1988). Table 4.2 reports the values and error bounds for all size 

fractions in the stability tests SF 1, SF 1-6, SF 1-9 and SF 1-12. These values were obtained 

from Figure 4.6, Figure 4.7, Figure 4.8 and Figure 4.9. 
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Table 4.2. Non dimensional shear stress parameter, 'tri*, and the error bounds 

for grain size fractions of stability tests SF I 

SF 1-3 SF 1-6 SF 1-9 SF 1-12 

'tri* Error bounds 'tri* Error bounds 'tri* Error bounds tri* Error bounds 

- - - - - - - -
0.0054 0.0053 - 0.0057 0.0071 0.0068 - 0.0074 0.0105 0.0100 -0.0104 0.0120 0.0118 - 0.0121 

0.0100 0.0101 - 0.0105 0.0130 0.0128 - 0.0134 0.0130 0.0128 - 0.0131 0.0150 0.0138·0.0150 

0.0140 0.0132 - 0.0141 0.0160 0.0156 - 0.0170 0.0180 0.0180 - 0.0186 0.0220 0.0206 - 0.0220 

0.0210 0.0205 - 0.0217 0.0270 0.0260 - 0.0280 0.0280 0.0280 - 0.0300 0.0350 0.0344 - 0.0363 

0.0290 0.0280 - 0.0300 0.0380 0.0370 - 0.0408 0.0420 0.0420 - 0.0430 0.0530 0.0517 - 0.0530 

0.0400 0.0390 - 0.0410 0.0570 0.0570 - 0.0600 0.0620 0.0600 - 0.0620 0.0700 0.0700 - 0.0726 

0.0340 0.0330 - 0.0350 0.0510 0.0505 - 0.0520 0.0570 0.0570 - 0.0600 0.0620 0.0620 - 0.0635 

0.0670 0.0640 - 0.0707 0.0860 0.0830 - 0.0930 0.0930 0.0930 - 0.0970 0.1000 0.0937 - 0.1028 

0.0920 0.0900 - 0.0960 0.1160 0.1130-0.1201 0.1260 0.1250 - 0.0130 0.1270 0.1200 - 0.1300 

0.1220 0.1200 - 0.1250 0.1500 0.1430-0.1550 0.1880 0.1880 - 0.0190 0.1800 0.1800 - 0.1820 

0. 1600 0.1550 - 0.1700 0.2300 0.2228 - 0.2400 0.2500 0.2500 - 0.2560 0.2450 0.2430 - 0.2720 

0.3100 0.3067 - 0.3200 0.4200 0.4160 - 0.4340 0.4500 0.4330 - 0.4500 0.5050 0.4720 - 0.5205 

Table 4.3. Critical Shear Stress, tei , of grain size fractions for stability tests SF I 

Grain size SF 1-3 SF 1-6 SF 1-9 SF 1-12 
(mm) td (N/m2

) tei (N/m2
) 'tel (N/m2

) 'tel (N/m2
) 

10 - - - -
8 0.699 0.919 1.360 1.554 

5.6 0.906 1.178 1.178 1.360 

4 0.906 1.036 1.165 1.424 
2.8 0.952 1.224 1.269 1.586 
2 0.939 1.230 1.360 1.7] 6 

lA 0.906 1.292 lAOS ] .586 

1 0.583 0.826 0.923 1.004 

0.71 0.770 0.988 1.069 1.149 

0.5 0.745 0.971 1.052 1.052 
0.355 0.690 0.862 1.092 1.034 

0.25 0.647 0.931 1.012 1.012 
0.15 0.753 1.020 1.093 1.238 

The variation of critical shear stress t ci with grain size indicates that the individual gram 

fractions moves at different level of flow strength (Table 4.3) . As expected from the 

measurement of bedload transport rates (Figure 4.1) the stability test applied to antecedent 
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flow SF 1-3 indicated lower critical shear stresses for all grain sizes than that of stability test 

applied to the bed which previously formed by antecedent flow SF 1-6, SF 1-9 and SF 1-12 

respectively. 

The interesting features are shown in Figure 4.10. Grains in the fine mode for stability test of 

antecedent flow SF 1-6, SF 1-9 and SF 1-12 have a relatively consistent increase with very 

close values of the threshold of motion. A much lower threshold of motion for fine grains is 

presented by the curve of stability test SF 1-3 . It is suspected that the antecedent flow test 

with the duration of 3 hours still produced a bed with many unsheltered fine grains. Relatively 

stable and sheltered fine grains are only likely to be obtained with a duration longer than 3 

hours as the three other stability tests applied to three different duration of antecedent flow 

present a very close curve. 
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Figure 4.10. The critical shear stress, 'tei, for grain size fractions in terms of D, 

for the stability tests SF I 

The coarser grains produced a simple pattern in which the level of increase in the threshold of 

motion coincides with the increasing duration of antecedent flow test. Values of the critical 

shear stress for grains in the coarse mode for stability test SF 1-12 are at least two times 
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higher than the increase from SF 1-3 to SF 1-6. The increase in stability of the coarse grains 

also seems to be continuing whereas the increase in stability of finer grains stabilised 

between 3 and 6 hours. 

The data of the critical shear stress thresholds was used to plot hiding functions in a manner 

described by Sutherland (1992) as the following 

Tcj 
Cis = 

TiShields 

where 

(4.3) 

Tei = critical shear stress threshold for grain size i estimated from measured transport 

rate and shear stress data = r ri· (s -1 )pgDi (N/m2) 

riShields = critical shear stress for grain size i estimated using Shields relationship 

rri* = non dimensional shear stress parameter derived from a low reference 

transport rate value Wri* = 0.002 

e = Shields' entrainment function (= 0.056) 

P = fluid density (kg/m3
) 

g = acceleration due to gravity (m/s2
) 

Di = grain size fraction i (mm) 

s = specific density of sediment (= 2.65) 

Higher values of hiding functions, calculated using Equation 4.3, indicate that smaller grains 

on the bed were more hidden from the flow and also more impeded in their motions than 

coarser grains. This is supported by the transport pattern in the stability test that grains in the 

coarse mode were dominance in transport. Table 4.4 and Figure 4.11 show that the mobility 

of finer grains decreases while the mobility of coarser grains increases relative to homogenous 

single size bed. This suggests that the finer grains are sheltered and trapped below the larger 
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grains. The relative grain sizes of the finer grains to the coarser bed are very small and then 

even smaller as the bed coarsen after antecedent flow. As applied by Wilcock and Southard 

(1988), the size ratio of the fraction (D/D50) is one of variables used to describe the relative 

grain size. It has a central role in mixed size sediment transport because of the size of each 

grain relative to others in the mixture controls the variation from fraction to fraction of both 

the value of bed shear stress acting on individual grains and the resistance of those grains to 

movement. 

Table 4.4. Hiding Function eis of grains size fractions for stability tests SF I 

Grain size SF 1-3 SF 1-6 SF 1-9 SF 1-12 

(mm) Eis Eis Ejs Ell 

10 - - - -
8 0.096 0.127 0.188 0.214 

5.6 0.179 0.232 0.232 0.268 

4 0.250 0.286 0.321 0.393 

2.8 0.375 0.482 0.500 0.625 

2 0.518 0.679 0.750 0.946 

1.4 0.714 1.018 1.107 1.250 

1 0.643 0.911 1.018 1.107 

0.71 1.196 1.536 1.661 1.786 

0.5 l.643 2.143 2.321 2.321 

0.355 2.143 2.679 3.393 3.214 

0.25 2.857 4.107 4.464 4.464 

0.15 5.536 7.500 8.036 9.107 

It can be seen from Figure 4.11 that the hiding functions in the region D/D50 < 0.15 for SF 1-

6, SF 1-9 and SF 1-12 are similar. In the stability test SF 1-3 these grains are less stable than 

in the other three stability tests. The hiding function value reduces with time in the region 

0.25 < D/D50 < 1.6. All this data suggest that after 3 hours the finer grains have achieved their 

maximum stability. However the processes, which control the stability of the coarse grains, 

are much slower and are still active even after 12 hours of flow. 
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Figure 4.11. Hiding function, Eb, derived from fractional threshold conditions 

for stability tests SF I 

In order to explain why different stabilising behaviour were found in the fine and the coarse 

grain fractions, a detailed examination of the laboratory observations was made during the 

steady antecedent flow experiments. 

4.3. OBESERVA TIONS OF ANTECEDENT FLOW EXPERIMENTS SF I 

4.3.1. STEADY ANTECEDENT FLOW EXPERIMENT SF 1-3 

4.3.1.1. Bedload Transport Rate and Composition SF 1-3 

Bedload transport rates changes significantly during the initial hour of experiment SF 1-3 . 

Figure 4.12 shows the bed was highly mobile during the first 60 minutes with the average 

transport rate of 0.397 gls/m. This suggests that the transport processes involve sporadic 

release of material as bed adjustments take place. Within the early stage the bed rearranging 

themselves as the water flow disrupted them and led to the high initial transport rate. The 

movement of particles was very active reflecting the progressive development of bed surface 

caused by a high constant discharge. The average transport rate reduced to 0.179 gls/m during 

the second hour or more than half of the initial rate. As the armouring process continued the 

transport rate continued to decrease, but at a slower rate reflecting the diminishing supply of 

dislodgeable grains. This was indicated by the almost constant transport rate during the last 60 

minutes at 0.150 gls/m. 
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Figure 4.12. Time variation of bedload transport rate for antecedent flow Experiment SF 1-3 

During the antecedent flow experiment SF 1-3, the bedload composition shows systematic 

changes. Observations of grain distribution curve of the bedload indicate that the degradation 

phase occurred during initial stages of antecedent flow (Figure 4.13). In tenn of modal grain 

size the finer mode experience a similar pattern of transport throughout the 3 hours whilst the 

coarser mode shows variations. The grain size of 0.355 mm is dominant in the fine mode for 

the whole duration of the test. In the coarse mode, the grain size of 4 mm is dominant during 

the very first part of the test. These grains were thought to represent very loose or exposed 

grains, whose lack of stability had been caused by the mechanical scraper used to originally 

fonn the bed. Once these grains has largely been transported, larger grains of 5.6 mm in size 

becoming more exposed. The modal grain size in the coarse mode therefore increased. After 

about 30 minutes (time elapsed 90 minutes) the proportion of 5.6 mm grains with sufficient 

exposure declined so much that the modal grain size reduced to 4 mm. This remained constant 

until time elapsed 130 minutes when the coarse modal grain size varied from 5.6 mm to 4 mm 

periodically. The inconsistency in coarser mode was believe to indicate the increasing 

exposure of larger grains as the result of decreasing amounts of finer grains left on the bed. 

The active depth of bed has been found to less than half of the largest grain size present. After 

antecedent flow the average bed surface measured by the vernier depth gauge had reduced by 

4.3 mm. This decrease is approximately half the size of the largest grain size. A layer in the 

prediction of sediment available for transport was assumed usmg the two layer active depth 
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Figure 4.13 . Grains size distribution of transported bedload for antecedent flow SF 1-3 

available for transport in a mixing layer as suggested by Willetts et al. (1987). In this case the 

active depth based on the present of largest grain dlOo where each layer is equal in thickness to 

half of the largest grain is coincide with the actual decreasing bed surface level. By 

considering the bedload trap width, the mixing layer contains 40.9 kg sediment mixture 

available for transport. The composition of the total bedload transported was calculated from 

laboratory observations so that the bed surface composition at the end of the test could be 

estimated (Table 4.5). 
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Table 4.5. Summary of the average fractional bedload composition produced by 

antecedent flow Experiment SF 1-3 

Sieve size Original Fractional Estimated 
(mm) composition of transported composition of 

surface layer (%) bedload (%) surface layer (%) 
10 1.730 1.023 1.739 
8 8.570 1.634 8.655 

5.6 34.660 15.594 34.894 

4 19.600 22.676 19.562 

2.8 6.860 5.826 6.873 

2 3.530 2.925 3.537 
1.4 2.510 2.422 2.511 

1 1.850 2.975 1.836 

0.71 2.680 4.806 2.654 

0.5 6.840 13.022 6.764 

0.355 7.420 17.387 7.297 

0.25 2.710 8.084 2.644 

0.15 0.940 1.527 0.933 

receIver 0.100 0.099 0.100 

Total 100 100 100 

Looking at the overall of antecedent flow Experiment SF 1-3, 3 stages of activity has been 

identified. The first, which is relatively sort (10 - 40 minutes), was controlled by the initial 

artificial condition of the bed. The second stage (40 - 120 minutes) was characterised by 

increasing amounts of fine material being moved and the coarse modal grain size moving 

from 5.6 mm to 4 mm and then size of the coarse mode reducing. In the third phase, the fine 

grain proportion started to reduce. The proportion of coarse mode increased and its behaviour 

become more erratic, with the coarse modal grain size alternating between 5.6 mm and 4 mm. 

4.3.1.2. Variations of Average Nearbed Streamwise Velocity and Bed Shear Stress 

SF 1-3 

Observation to the time averaged nearbed streamwise velocity and the time averaged bed 

shear stress during the antecedent flow Experiment SF 1-3 confirm relatively unchanged 

values throughout the duration of experiment. This is satisfactorily conforms by a straight-line 

in Figure 4.14. Limited measurement of nearbed streamwise velocity was carried out due to 
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the short duration of experiment to allow sufficient time for another measurement on the grid. 

The similarity of both the average values of nearbed streamwise velocity and bed shear stress 

can be accepted as the same discharges were applied. However, the small changes possible in 

bed shear stress may not directly be used to claim that the bed surface roughness was not 

different during the erosion process because of the results are not representing a sufficient 

data of observation. However, the similarity or possibly a small variation in the bed shear 

stress supports the argument that sediment transport increases or decreases nonlinearly with 

bed shear stress and the sum of local transport rates across a section may be considerably 

different from the transport rate calculated from section-averaged parameters (Smart, 1999). 
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Figure 4.14. Variation of time averaged nearbed streamwise velocity and bed shear stress 

during antecedent flow of experiment SF 1-3 

Investigation of the changes in the average nearbed streamwise velocity at different locations 

on the measurement grid was observed by repeatedly measuring the streamwise nearbed flow 

velocity. For experiment SF 1-3 the duration required to complete each set of measurements 

was 30 minutes. This short period was required to allow a sufficient time allocation for the 

measurement of vertical flow distribution and measurement of nearbed flow velocity at each 

grid point. However, due to time constraints not all of the measurements at selected grid 

points could be measured with the last two points I3 and IS were measured once only at the 

beginning of the run (Table 4.6). The elapsed time for the first and second set of 

measurements was 60 minutes and 150 minutes. 
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Table 4.6. Variations of the average nearbed streamwise flow velocity and 

the standard deviation in antecedent flow Experiment SF 1-3 

First measurement Second measurement Changes of 
Points (time elapsed 60 minutes) (time elapsed 150 minutes) Vx 

Vx (m/s) cr (m/s) V .. (m/s) cr (m/s) (%) 

Al 0.568 0.097 0.568 0.097 0 

A3 0.562 0.094 0.564 0.099 0.356 (+) 

AS 0.498 0.086 0.495 0.090 0.602 (-) 

El 0.551 0.102 0.571 0.092 3.630 (+) 

E3 0.550 0.099 0.553 0.095 0.545 (+) 

E5 0.458 0.094 0.472 0.093 3.057 (+) 
Il 0.530 0.102 0.552 0.106 4.151 (+) 

13 0.540 0.103 nla nla nla 
15 0.455 0.094 nla nla nla 

Average 0.524 0.097 0.539 0.096 -

The results of average streamwise nearbed flow velocity at each grid point presented in Table 

4.6 and Figure 4.15 show that the average values measured at different grid points with short 

time intervals between measurement are relatively similar. The changes in velocity at the 

same grid point are very small with the range of variations from -0.6 % to +4 % between the 

two measurement times. At most measurement points the velocity increased while at point A5 

velocity decreased slightly. The standard deviations of average nearbed streamwise velocity 

in Table 4.6 show the presence of relatively similar level of fluctuations . It can be said that the 

nearbed streamwise nearbed flow velocities at different points with the same depth from the 

boundary are quite similar. The individual values were not widely dispersed from the mean. 

A+- 120mm 4E+- 120mm -'1 

1 ------~ '""""0== ~ 

60mm 
0.568(0.568) 0.551 (0.5 71) 0.530(0.552) '" 

'" 3 --------- .. "'"'-0== -'" 0.562(0.564) 0.550(0.553) --- 0.540( .. .) 
60mm -------~--~no--------~-no---------'" 5 

0.498(0.495) 0.458(0.472) 0.455( ... ) 

Figure 4.15 . Distribution of average nearbed streamwise velocity (mls) in antecedent flow 

Experiment SF 1-3 (first measurement in bold, second measurement in brackets) 
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A different pattern of variation to the average nearbed streamwise velocity is experienced by 

the average bed shear stress, r' , This is the estimation of the average instantaneous bed shear 

stress over the small area, which was averaged over the time of measurement (see Equations 

3,9 and 3.15). The average values of bed shear stress showed significant change from 

location to location (Table 4,7 and Figure 4.16). Some points indicate very high values of 

shear stress and significant temporal variation. The different patterns of vertical flow 

fluctuations at the differ~nt grid points are thought to contribute to these changes. This is 

indicated by the results that they do not follow the changes in average nearbed stream wise 

velocity. In the condition that the average nearbed streamwise velocities increased, the 

average bed shear stresses may increased (points A3 and E 1) but the other points show a 

decreasing value (points E3, E5 and II). Decreasing value of average bed shear stress is likely 

the indication that the vertical velocity component was being increasingly dominated by the 

upward direction. The variation between the two measurement (time interval 90 minutes) 

ranges from a 76 % decrease to almost 94 % increase with almost all grid points experiencing 

a significant variation. 

Table 4.7. Variations of the average bed shear stress and the standard deviation 

in antecedent flow Experiment SF 1-3 

First measurement Second measurement Changes of 
Points (time elapsed 60 minutes) (time elapsed 150 minutesl r 

r' (N/m2) cr (N/m2
) r' (N/m2) cr (N/m2) (%) 

Al 2.757 16.366 3.916 17.483 42.038 (+) 

A3 2.673 16.756 5.185 17.988 93.977 (+) 

A5 4.087 14.514 0.975 14.879 76.144 (- ) 

El 7.396 18.631 7.513 18.452 1.582 (- ) 

E3 9.356 17.310 6.686 17.688 28.538 (- ) 

E5 1.565 14.144 1.324 15.245 12.665 (- ) 

II 1.418 17.465 1,245 19.018 12.200 (- ) 

I3 8.039 17.677 nla n/a n/a 

15 -0.518 13.600 nla nla n/a 

Average 4.086 16.274 3.835 17.250 -

Closer examination of the distribution of average nearbed streamwise velocity at various grid 

points has shown that there is no systematic pattern in the way the average nearbed stream-
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Figure 4.16. Distribution of average bed shear stress, T' , (N/m2
) in antecedent flow 

Experiment SF 1-3 (first measurement in bold, second measurement in brackets) 

wise velocity changes with regard to the average bed shear stress distribution. For example, 

two grid points that have demonstrated small decreases and increases in average nearbed 

streamwise velocity with very small variation in their standard deviations are examined 

(Table 4.7). Distribution of measured nearbed streamwise velocity and calculated bed shear 

stresses are shown in Figure 4.17 and Figure 4.18. Point A3 produced a difference in which 

the distribution of "instantaneous" bed shear stress in the second measurement is shifted to 

the right particularly for larger values as shown in the tail section of the distribution curve in 

Figure 4.17. This means the second measurement at 150 minutes produced larger number of 

"instantaneous" nearbed streamwise velocity that result in the range of observation of the first 

measurement (rl) is smaller than the second measurement (r2) as the djfference between the 

largest and the smallest value during trus run is rugher. This also produces the rugher inter­

quartile range (iqr) during the second experiment. Meanwhile, point AS shows a consistent 

pattern of "instantaneous" nearbed streamwise velocity at both measurement times. Although 

the range of observation (rl) < (r2) and inter-quartile range (iqrl) < (iqr2) as experienced by 

point A3, there is a strong similarity in the distribution of "instantaneous" nearbed streamwise 

flow velocity as shown in Figure 4.17. 
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Figure 4.17. Variation of "instantaneous" nearbed strearnwise velocity and "instantaneous" 

bed shear stress at Point A3 (the first and the second measurement indicated by "(" and "-" ) 

Different patterns are presented by the distribution of "instantaneous" bed shear stress. Point 

A3 exhibits variation in which the second measurement produced more higher values as 

indicated by a big difference in its range of observation (rl > r2). The distribution curve and 

the cumulative distribution of "instantaneous" bed shear stress of the second measurement are 

then shifted to the right. Point AS experienced different pattern. As the range of observation 

of the second measurement is larger than the first measurement (r2 > rl) the distribution curve 
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Figure 4.18 . Variation of "instantaneous" nearbed streamwise velocity and "instantaneous" 

bed shear stress at Point AS (the first and the second measurement indicated by "(" and "-") 

and cumulative distribution are skewed to the left (see Figure 4.18) although the inter-quartile 

range of both points were increased at different level (iqrl < iqa). 

4.3.1.3. Bursting Events and Flow Momentum SF 1-3 

The reducing transport rate in antecedent flow Experiment SF 1-3 is assumed to be primarily 

caused by the changes in the bed formation, which become stronger after certain time exposed 

~-------------------------------------------------------------
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to the flow. However it is very important to remember that the bedload transport rate 

observation cannot be separated from turbulent flow, which has a key role in the grain 

entrainment process. The temporal and spatial distribution of the flow structure close to the 

bed is believed to be one of factors that control the grain entrainment rate. The majority of the 

turbulent energy is generated in the near-bed region where bursting processes generate 

intermittent high shear stress events. 

Observation of the bursting events during experiment SF 1-3 found that the occurrences of 

ejections and sweeps are relatively balance with the proportion of ejections is 49.6 % in 

comparison to 50.4 % sweeps. In this observations events are recognised if the threshold 

values of 1.2 crucrv was exceeded. It is distinguished into ejections (u'<O ; v'>O) and sweeps 

(u'>O ; v'<O). The threshold values of observed time elapsed ranging from 0.0070 to 0.0074 

show that the dispersion of streamwise and vertical velocity were sensibly constant reflecting 

the steady uniform flow during the experiment. In Table 4.8 two observed time elapsed are 

presented. The results was obtained by the application of a Matlab program called 

Momentum.m, which can be seen more detail in the Appendix. 

The observation from limited time elapsed in Table 4.8 shows that the frequency of both 

ejections and sweeps are not stable. At the start of the test (time elapsed 10 minutes) the 

frequency of ejections and sweeps is similar. However, the average duration of ejections is 

slightly less than the average duration of sweeps. This is caused by different number of 

observation of both events during this time elapsed. Less events exceeding the threshold 

values in the upward interactions was observed while the events exceeding the threshold 

values in the downward-looking bed interactions was slightly more frequent. At time elapsed 

110 minutes sweeps was more frequent than ejections but the average duration is shorter than 

the average duration of ejections. 

As only general information on the bursting events is provided in Table 4.8, the strength of 

either ejections and sweeps are not known. Therefore the magnitude of momentum caused by 

the upward and downward-looking bed interactions was then observed. The momentum was 

calculated using Equation 3.7 applied in Momentum.m. It can be seen from Figure 4.19 that 

the magnitude of momentum per unit area (dM/dA) produced by ejections ranging from a low 
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Table 4.8. Summary of bursting events at selected time elapsed in antecedent flow 

Experiment SF 1-3 

Parameter descriptions Time elapsed (minutes) 

10 110 
Threshold values (m2/s2

) 0.0074 0.0070 
Number of ejections 206 195 

Number of sweeps 206 202 

Frequency of ejections (Hz) 1.0300 0.9750 

Frequency of sweeps (Hz) 1.0300 1.0100 

Average duration of ejections (s) 0.0522 0.0529 
Average duration ofsweps (s) 0.0530 0.0509 

value to high value in comparison to the magnitude of momentum during the sweeps. But the 

similar number of ejections and sweeps lead to the conclusion that the high momentum 

produced by ejections in Figure 4.20 is also caused by the distribution of high values of 

streamwise and vertical velocities at the times of measurement. 
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Figure 4.19. The sequence of mom en turn per unit area and its magnitude at time elapsed 

10 and 110m inutes antecedent flow Experiment SF 1-3 
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In order to obtain further information the probability distribution of ejections and sweeps for 

selected time elapsed were observed (Figure 4.20). The most frequent momentum of ejections 

is the magnitude in the range between 1 and 5 kg/ms whereas the sweeps produced fairly 

densely populated distribution between -5 to -1 kg/ms. The occurrences of outward 

interactions and downward looking bed interactions at time elapsed 10 minutes, which is 

more frequent than time elapsed 110 minutes is likely the reason in the difference of 

transported bedload grains size distribution at both time elapses. These flow momentum are 

strong enough to transport more coarser grains which dominated the transported bedload at 

time elapsed 10 minutes whereas time elapsed 110 minutes produced a fairly similar 

proportion in finer and coarser mode (see Figure 4.13). 
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Figure 4.20. Probability distribution of momentum per unit area at time elapsed 10 and 110 

minutes antecedent flow Experiment SF 1-3 (ejections are positive and sweeps are negative) 

4.3.1.4. Bed Topography F 1-3 

In order to examine the changes in the bed surface structure the bed elevation data obtain 

from the series of measurement were analysed. The topography of the bed surface of the 
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velocity measurement grid was measured before and after the flow applied to the bed. The 

changes were investigated by employing the software package of Matlab. The output of the 

program shows the changes of bed topography in the measurement grid from original bed 

condition to the final form in Experiment SF 1-3. The patterns of changes can easily be 

recognised by looking at the represented plot of bed surface for each stage of Experiment SF 

1-3 (see Figure 4.21, Figure 4.22 and Figure 4.23). 

The bed surface seen in Figure 4.21 shows little valley formed bed formation. This is because 

of the initial mechanical scrapping of the surface was done so that the surface would be 

relatively flat. However, the size composition of sediment mixture on the bed left some pore 

spaces, which the initial scrapping process did not completely fill. The spacing measurement 

of 1 mrn also allowed more details in bed surface elevation to be plotted so that small 

differences in the bed surface are visible. The average bed surface level of original bed of 

experiment SF 1-3 is 1.923 mm above the arbitrary zero datum. 

It is clear in Figure 4.22 that the original bed has eroded and the bed surface structure has 

changed significantly during antecedent flow. The average bed surface elevation is 0.869 mm 

below the zero datum, which means that the average bed surface level has reduce by almost 

2.8 mm from the average original bed level. Figure 4.22 also shows the irregularity in the 

erosion processes with some small areas of higher elevation indicating the presence of several 

isolated larger grains. Further erosion continued during the stability test. A valley formed on 

the bed surface after antecedent flow in the area of 125 to 200 mm in streamwise direction (x­

direction) and 50 to 75 mm in lateral direction (y-direction). As the result of erosion process 

during the stability test, lower bed surface elevations were found over the area of existing 

valley (Figure 4.23). It is also noticed that highly exposed areas that were appear on the bed 

formed by antecedent flow test, e.g. at point (100,150) and (200,125) in Figure 4.22, are 

removed and no longer exist after stability test (Figure 4.23). The higher flow rates during 

stability test not only removed high exposed grains but also produced exposed areas at 

different points within the measurement grid. However, it is very clear from all figures that 

the level of erosion during antecedent flow test was different than that during stability test. 

Three hours of antecedent flow armoured the bed to some extent so that the stability test could 

not eroded and changed the bed surface topography to the same extent as the antecedent flow 
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Figure 4.21 . Original bed surface topography of the measurement grid Experiment SF 1-3 

275 

&1 .. 
l ., 
"" 
t'l .. 
1 
g' 
'" g 
r 
~ 
Q .... .., 



..... ..... 
tv 

:< 

= e: 

Experiment SF 1-3 : Bed Surface after Antecedent Flow Test 

.1· 

--E 
E 10 --c 0 0 

i -10 --J 

l 1':- .". :: ; J,·;\::;;Y/f 
_ ",_ ,·'ll\,.',~_tl' ,"{ .•.. { .. \ 

, ::' t.;,;:~f:;:'::J:.~~:::;,.;fJ1F{; ";:':' ",,;,t' 
"~I " 

'.' 

> . , 
" "I-' 

c» 
c» 
'C 
c» 
m 

Lateral direction (mm) 175 

-8 -6 -4 ·2 2 

[i 

" ,. 
. ,t,,' ,t'; I'. 

,', 

·i l 

", 
H"~: 

"~I 

j" . 

. . 

,;~??",; I 
" ~ I \' 

" ~ .. 

," 

,,.,-

.' , ,";'''': 0:"" .:~,;'::·f:r ", " :.:"" IU\';': . 
• I·f ,1" -, I ' ,' ~ r , .. ~ '. 10" 

".,1 ".'",' ,.,,1" ,'~ .,;, I·.:,', I :,"'" " .. ;':":'f';;: .. ;::';::;<':\~~,:,; 
l\~,' . . I·::~:~:':';·II 

.. ," 1,1' 

l:~.: ,,':. • ,\,,11' ", 1',111'., . j\" ..... ,: .. : " ; :t., II' 

, .'; >"",' ." .;:i' " ,;~;::l~!~;r:;;?:~;;!'7;":, ",it I 

,.. 

-"":\4 
• 'li'~;~'I' " ~.~. 
, I ',;,. ,' 
\, . 

;' J' I .', II , •••• :;.'\ . " . ,.:) .. , . ,,', ~ . . /'<: I" 

Slreamwlse direction (mm) 

Figure 4.22 . Bed surface topography of the measurement grid after antecedent flow Experiment SF 1-3 
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Figure 4.23 . Bed surface topography of the measurement grid after stability test Experiment SF 1-3 
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Chapter 4 : Experimental Results of SF I 

test have had to the original bed. The average bed surface level of the fmal bed is 1.999 mm 

below the zero datum, which means the average bed level decreased 0.331 mm during the 

stability test. 

Given that limited information available from visual examination to the figures of the bed 

topography, a probability distribution analysis of the bed surface elevations was then carried 

out in order to estimate the level of grain exposure and the variations in bed surface level. 

Figure 4.24 shows the bed surface level evolution during the Experiment SF 1-3. It is realised 

that a shortcoming of this method arises from difficulties in comparing the level of variation 
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Figure 4.24. Probability distribution of bed surface elevation about zero and mean level 

for Experiment SF 1-3 

of the bed surface between different time. This plot indicates the level of degradation with 

zero as the datum for all distributions. Another method is then applied by examining the 

distribution of deviation of bed elevations from the mean bed surface with the mean level 

114 Y_ aaeli 



Chapter 4 : Experimental Results of SF I 

being taken as the zero datum at each time. However, the use of this reference level which has 

no major physical significance may cause all grains within a particular area of the bed to be 

positioned above or below the mean bed surface even though when examined in detail they 

may occupy very similar topographic positions in relation to their immediate neighbours. 

However this method still allows the differences in the bed surface arrangement to be 

examined by comparing the shape of distribution for different stages of the experiment. 

The bed elevation distribution curve of the original bed is not symmetrical (Figure 4.24). The 

distribution skews to the right indicating the domination of positive bed elevation. After the 

bed exposed to three hours of antecedent flow the shape of distribution changes. It skews 

dramatically to the left. A substantial amount of bed material has been transported during 

antecedent flow test. The distribution is now quite symmetrical in shape. However there is a 

large tail on the positive side started about 4 mm above the mean level. This tail indicates the 

presence of a number of isolated larger grains resting on the bed surface. 

At the end of stability test, the bed surface elevation distribution indicates that further and 

probably different degradational processes occurred. The number of both large positive and 

negative bed elevations from the mean increases. An increase in exposure of large grains was 

continued during stability test for antecedent flow SF 1-3. However, the level of increase is 

relatively small in comparison to antecedent flow test. This is caused by the degradation 

processes that was continued but without any replacement of fine material to fill the gaps. 

This phenomenon is reflected by the changes in the negative tail which is evident at the end 

of stability test. In the previous antecedent flow the changes are very small indicating that 

there were many fine grains filling gaps on the bed surface. 

4.3.2. STEADY ANTECEDENT FLOW EXPERIMENT SF 1-6 

4.3.2.1. Bedload Transport Rate and Composition SF 1-6 

There was a significant change in bedload transport rate during the initial stages of antecedent 

flow. The bedload drops rapidly within the course of one hour to a rate of about 0.2 gls/m. In 

the next hour the rate fluctuated but still very closed to this value with a range of ± 0.05 gls/m. 
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Another rapid drop took place again in the third hour of the test. At this stage the bedload 

transport rate decreased to approximately half of the previous hour to 0.1 gls/m. Figure 4.25 

shows that after this period the bedload transport rate was low and almost constant during the 

remaining hours. This pattern of transport suggests that bed was highly mobile during the 

first 180 minutes involving significant release of material from bed during the first 60 minutes 

of time elapsed. Re-arrangement of the bed is the result of sediment movement As the 

arrnouring process continued the transport rate continued to decrease. It is believed that after 

180 minutes, the bed started to develop differently. This is reflected in the slower and almost 

constant rate of bedload transportation. 
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Figure 4.25. Time variation of transport rate for antecedent flow Experiment SF 1-6 

The composition of the transported bedload during initial stage of antecedent flow was 

dominated by finer mode. As can be seen from Figure 4.26, throughout antecedent flow 

Experiment SF 1-6, more sediment was transported in the finer mode than in the coarse mode. 

In the last hour the rate of this mode reduced as the consequences of the availability of this 

material left on the bed becoming less. However, the contribution of this mode was still 

higher than the coarse mode. The finer mode also shows a similar pattern of grain size 

distribution with the modal size of finer grains was 0.355 for the whole duration of the test. 

More interesting features are shown by the changes in the coarse mode. As the test progresses 

the modal size of coarse grain shifts to the right from a grain size of 5.6 mm to the larger grain 
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sizes. This suggests that the level of exposure of the larger grains increases with time. This 

leads to the flow being able to transport the larger grains. Although the percentage of finer 

grain transported during the test was dominant, this is not an indication that the coarser mode 

was more stable. It is the reflection of the ability of the flow to continuously remove the finer 

grain for the whole duration of the test. 
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The surface grain size distribution was estimated in a similar manner as in Experiment SF 1-3. 

From the original mixing layer available for transport, 640 grams or 1.6 % was transported. 

Table 4.13 shows that grains in the fine mode contributed more than grains in the coarse mode 

in transport rate as suggested by the distribution curve in Figure 4.28. In summary there 

appears that after 40 minutes the proportion of finer mode was relatively stable whereas the 

modal grain size of the coarse mode started to fluctuate. Overall the bedload is finer than the 

original bed material so the bed surface has coarsened during the antecedent flow test. 

Table 4.9. Summary of the average fractional bedload composition produced by 

antecedent flow Experiment SF 1-6 

Sieve size Original Fractional Estimated 
(mm) composition of transported composition of 

surface layer (%) bedload (%) surface layer (%) 

10 1.730 0.000 1.757 

8 8.570 0.830 8.693 

5.6 34.660 16.212 34.952 

4 19.600 14.238 19.685 
2.8 6.860 2.518 6.929 
2 3.530 1.489 3.562 

1.4 2.510 1.728 2.522 
1 1.850 2.628 1.838 

0.71 2.680 6.098 2.626 
0.5 6.840 18.743 6.652 

0.355 7.420 23.991 7.158 
0.25 2.710 9.780 2.598 
0.15 0.940 1.612 0.929 

receiver 0.100 0.132 0.099 

Total 100 100 100 

4.3.2.2. Variations of Average Nearbed Streamwise Velocity and Bed Shear Stress 

SF 1-6 

Longer duration of the antecedent flow Experiment SF 1-6 allowed more measurements of 

nearbed streamwise velocity to be collected. These measurement were carried out by ADV 

probe at central point of the measurement grid. No data available at time elapsed when the 

measurement was replaced by observation to each point of the grid, i.e. at times between 10 -
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90 minutes and 270 - 340 minutes, so that only the results of measurement available for 

central point are presented. 

It can be seen in Figure 4.27 that the average nearbed streamwise velocities are sensibly 

constant. A small variations in the individual values of both streamwise velocity (u) and 

vertical velocity (v) produced fluctuation in the average bed shear stresses with the range of 

20 % from the average value over the whole test. However, this variation cannot be used to 

claim as the important factor in the variation of transport rate. In order to obtain the 

characteristic of the flow in regard to the contribution in grain entrainment process, the 

turbulent energy near the bed was observed. 
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Figure 4.27. Variation oftime averaged nearbed streamwise velocity and bed shear stress 

during antecedent flow of Experiment SF 1-6 

A longer time interval of 255 minutes between two measurement of the streamwise nearbed 

flow velocity on the measurement grid was applied in experiment SF 1-6. It was done in an 

attempt to observe the differences of the average streamwise velocity of the grid, which may 

occur during a longer time than in experiment SF 1-3. Table 4.10 shows that the average 

streamwise flow velocity measured at different time elapsed with longer interval between 

measurement are more fluctuated. The variations of changes are slightly wider with the range 

from 4.7 % decrease to 4.6 % increase except at Point A5. This point experience a big 
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difference with the value reduces to 17.6 %. It can be seen that the standard deviation of the 

second measurement at Point A5 is very high compare to the other points. 

The velocity decreased at the majority of the measurement points while points AI, El and II 

show an increase. This is interesting, as these points (A 1, Eland II) were located in the same 

line in the streamwise direction (Figure 4.28). In line 3, a different pattern of change occurred 

with decreasing values of average streamwise velocity found in the second measurement, 

while in the rest of the area (line 5), the upstream point A5 experienced a decrease in average 

streamwise velocity as well as the next point E5. The furthest downstream point (15) has a 

constant value of average velocity. These patterns indicate that there is a possibility that 

variations in nearbed velocities occur over a relatively small area. As flow discharge was kept 

constant, it is suspected that variations in average streamwise were due to the changes in the 

bed surface structure caused by the variation in sediment transport. The integrated effects of 

the pattern of instantaneous fluid velocities over and around grains destabilise the sediment 

and produced movement to form different bed surface with time. 

Table 4.10. Variations of the average near bed streamwise flow velocity and 

the standard deviation in antecedent flow Experiment SF 1-6 

First measurement Second measurement Changes of 
Points (time elapsed 60 minutes) (time elapsed 313 minutes) Yx 

Y x (m1s) cr (m1s) Y x (m1s) cr (m1s) (%) 

Al 0.542 0.098 0.551 0.102 1.661 (+) 
A3 0.502 0.104 0.490 0.105 2.390 (- ) 

AS 0.490 0.102 0.404 0.249 17.551 (- ) 

El 0.523 0.100 0.547 0.095 4.589 (+) 
E3 0.511 0.104 0.487 0.100 4.697 (- ) 

E5 0.498 0.100 0.489 0.094 1.807 (- ) 

II 0.521 0.101 0.533 0.099 2.303 (+) 
13 0.532 0.104 0.523 0.106 1.692 (- ) 

IS 0.487 0.102 0.487 0.092 0 

Average 0.512 0.102 0.500 0.116 -
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Figure 4.28. Distribution of average nearbed streamwlse flow velocity (mls) in antecedent 

flow Experiment SF 1-6 (first measurement in bold, second measurement in brackets) 

Table 4.11. Variations ofthe average bed shear stress and the standard deviation 

in antecedent flow Experiment SF 1-6 

First measurement Second measurement Changes of 
Points (time elapsed 60 minute~ {time elapsed 313 minutes) -; , 

i (N/m2
) cr (N/m2

) i (N/m2
) cr (N/m2

) (%) 

Al 2.152 17.194 4.746 18.274 120.539 (+) 

A3 -2.260 15.716 0.826 16.336 136.549 (+) 

A5 5.084 16.301 2.704 16.142 46.814 (- ) 

El 10.221 17.732 7.907 18.073 22.6401-1 

E3 9.698 18.297 5.027 15.664 48.165 (-1 
E5 2.555 17.302 4.779 16.585 87.045 (+) 

II 4.574 18.252 -0.359 17.539 107.8491-} 
I3 2.010 17.040 0.956 17.086 52.4381-1 

15 l.815 15.167 -1.059 15.304 158.347(-) 

Average 3.983 17.000 3.661 16.778 -

Table 4.11 and Figure 4.29 show that the patterns of bed shear stress calculated using Equation 

3.10 do not automatically follow the pattern in streamwise velocity. These variations appear 

to have no systematic pattern. The wide variation is caused by the variation in vertical 

velocity. The level of fluctuation influenced the level of bed shear stress and produced 

inconsistency in the spread of bed shear stress over the observation area. It is very clear that 

the scattered values of bed shear stress in Table 4.11 is an indication of the continuous 

fluctuation of flow velocity in vertical direction. It is then assumed that the variation of bed 
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shear stress for antecedent flow Experiment SF 1-6 which ranging from a 158.3 % decrease to 

a 136.5 % increase between the measurements are primarily caused by adjustment in vertical 

velocity distribution. 

1 
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-
10.221 (7. 907 60mm 
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Figure 4.29. Distribution of average bed shear stress (N/m2
) in antecedent flow 

Experiment SF 1-6 (first measurement in bold, second measurement in brackets) 

4.3.2.3. Bursting Events and Flow Momentum SF 1-6 

). 

The effect of the number and size of near bed bursting events was also examined using data 

collected in SF 1-6. The observation shows that the occurrences of ejections were more often 

than sweeps. The average frequency of ejections throughout the test is 0.9867 Hz while the 

average frequency of sweeps is 0.8800 Hz. This suggests that almost 53 % of events is 

containing the ejections while the sweeps is about 47 %. This finding opposes the point 

stated by Nelson (1995), who claimed that sweeps are more common although he underlined 

that sweeps are not individually more effective in moving the sediment. The dominance of 

ejections and their longer duration is thought likely to contribute more to the bed shear stress 

production rather than sweeps. These measurements do not agree with the early findings and 

assumption by Roy et al (1996) that the shear stress production in the near-bed region is 

clearly sweeps dominated. 

In antecedent flow Experiment SF 1-6 it is also observed that the average duration of ejections 

is 0.0582 seconds. This is longer than the average duration of sweeps, which has 0.0500 

seconds. In Table 4.12 four different times elapsed are selected to observe the pattern. of 
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momentum transfer by ejections and sweeps in relation to the change in the grain size 

distribution of transported bedload. Although at time elapsed 10 and 180 minutes the bedload 

has similar modal grain sizes (Figure 4.30), there is different pattern in which more coarser 

bedload is transported at time elapsed 10 minutes while finer grains were more dominant 

during time elapsed 180 minutes. It is suspected that the outward and downward-looking bed 

interactions characterise this. If there are more ejections than sweeps as at time elapsed 10 

minutes the more coarse grains seem to move. During time elapsed 180 minutes sweeps or the 

downward-looking bed interactions were only able to remove the finer grains. The coarse 

mode changed during time elapsed 110 and 190 minutes where the larger grains than those in 

time elapsed 10 and 180 minutes were transported. The fine mode was stable but the coarse 

mode has changed with much larger grains dominating the coarse mode. This was due to the 

more ejection in comparison to the sweeps event. It seems that the grain size distribution of 

bedload have a correlation with the bursting event. Time elapsed 110 and 190 minutes had 

been dominated by ej ections with the proportion higher than that of time elapsed 10 and 180 

minutes. The more frequent ejections allowed for the removal and transportation of larger 

coarse grains. 

Table 4.12. Summary of bursting events at selected time elapsed 

in antecedent flow Experiment SF 1-6 

Parameter descriptions Time elapsed (minutes) 

10 110 180 190 
Threshold values (m2/s2

) 0.0082 0.0091 0.0075 0.0081 

Number of ejections 192 203 200 212 

Number of sweeps 187 196 206 171 

Frequency of ejections (Hz) 0.9600 1.0150 1.0000 1.0600 

Frequency of sweeps (Hz) 0.9350 0.9800 1.0300 0.8550 

Average duration of ejections (s) 0.0542 0.0520 0.0530 0.0521 

Average duration of sweps (s) 0.0537 0.0498 0.0493 0.0503 

It is suspected that the high level of turbulence that is resulted from fluctuation in vertical 

velocity transported not only finer grains but also removed the considerable amount of larger 

grains. High fluctuations in vertical velocity produce outward interaction and lead to positive 

momentum in the flow. The examples of momentum distribution during both of ejections and 
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Figure 4.30. Grain size distribution of transported bedload at selected time elapsed 

in antecedent flow Experiment SF 1-6 

sweeps are presented in Figure 4.30. It shows that the bursting events during Experiment SF 

1-6 are clearly dominated by ejections. The low magnitude of momentum of downward­

looking bed interaction is also noticeable from Figure 4.31 . 

Further investigation shows that the probability distribution of momentum magnitudes of the 

ejections and sweeps (Figure 4.32) have a much stronger correlation with the bedload pattern 

mentioned above. There is no significant difference in the distribution of sweeps with low 

values of momentum in the range of up to 5 kglms dominates the events in all observed time 

elapsed. Major differences are observed in the probability distribution of ejections in the 

range between 5 to 25 kglms. 

The grain size distribution curves that show the consistent mode of finer grains indicates that 

momentum available during experiment were sufficient enough to transport these grains. 

However, the higher values are recognised to be responsible for removal of larger grains. This 

is indicated by the changes in the coarse modal grain size at time elapsed 110 and 190 minutes 

during which the larger magnitudes of momentum per unit area took place. Time elapsed 110 

has more momentum around 20 kglms while time elapsed 190 containing more momentum 

with the magnitude of around 22 kg/ms. The probability density of a relatively high 
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Figure 4.31 . The sequence of momentum per unit area and its magnitude 

at selected time elapsed in antecedent flow Experiment SF 1-6 
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momentum (13 - 21 kg/ms) at time elapsed 10 minutes is more than that of time elapsed 180 

minutes. This corresponds with a higher proportion of coarse grains moving at time elapsed 

10 minutes. The higher proportion of momentum with the lower magnitude (9 - 13 kg/ms) can 

only be able to increase the proportion of transported grain in finer modes at time elapsed 180 

minutes. It is clear that the probability distribution of the large ejections appear to have an 

impact on the proportion and modal grain size of the coarse sediment. 
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Figure 4.32. Probability distribution of momentum per unit area at selected time elapsed 

in antecedent flow Experiment SF 1-6 (ejections are positive and sweeps are negative) 

4.3.2.4. Bed Topography SF 1-6 

Observation of the changes in bed topography for experiment SF 1-6 has been affected by an 

incomplete data set of the original bed surface level recorded by computer and Laser 

Displacement Meter. Only 16182 data were recorded instead of the expected 49941 data. As 

the result of this problem, only the bed surfaces after antecedent flow and final bed after 

stability test were plotted. 
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Figure 4.33 . Bed surface topography of the measurement grid after antecedent flow Experiment SF 1-6 
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Chapter 4 : E perimental Results of SF I 

As shown in Figure 4.33 and Figure 4.34 a relatively similar pattern in bed surface 

topography formed by the 6 hours antecedent flow and stability test have been found. The 

average bed surface elevation decreased from 2.032 mm to 2.054 mm below the zero datum. 

This indicates that there was a small amount of further degradation occurred during the 

stability test with the increasing darker spots covering some areas. However, some peaks with 

high exposure, e.g. at points (30,70), (50,15), (60,100), (135,90), (210,90) and (220,50), show 

permanent appearances in both stages. The similar levels of valley-formed structures in some 

areas before and after stability test are also found in this experiment. The resistances of these 

features indicate that the 6 hours antecedent flow had formed a more stable bed than the bed 

exposed to the 3 hours antecedent flow test. 
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Figure 4.35 . Probability distribution of bed surface elevation about zero and mean level 

for Experiment SF 1-6 

The level of grain exposure was investigated by examining the probability distribution curve 

of bed elevations (Figure 4.35). The original bed distribution could be adequately described 
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by the available 16182 data because of the relatively homogeneous nature of the bed surface. 

Figure 4.35 shows that the level of exposure either about zero level and average bed level 

before and after stability test produced almost identical curves. However it is not very difficult 

to distinguish between them. A small variation about the zero value describes the small range 

in the bed elevation. This coincides with a relatively similar pattern mentioned earlier in 

relation to those appears in Figure 4.34. Figure 4.35 indicates that there is an increase in both 

negative and positive tail. Although these increases are less than those in stability test SF 1-3 

(see Figure 4.24), the negative tail indicates that to some extent the degradation phase was 

taking place during the stability test SF 1-6. A number of isolated grains also exist on the bed. 

4.3.3. STEADY ANTECEDENT FLOW EXPERIMENT SF 1-9 

4.3.3.1. Bedload Transport Rate and Composition SF 1-9 

Bedload transport rates variation in experiment SF 1-9 indicated a more complex pattern 

during the initial stage of the antecedent flow. It started with a low transport rate of 0.057 

gls/m and increased quickly to almost four times within 80 minutes (Figure 4.36). This was 

the time elapsed when the bedload transport reached its peak rate of 0.227 g/s/m. The 

transport then started to decline, which continued until very low transport rates of 0.019 gls/m 

were measured at time elapsed 540 minutes. These transport rates were 8 % of the peak 

value. 
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Figure 4.36. Time variation of transport rate for antecedent flow Experiment SF 1-9 
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In term of grain size, grains in both the fine and the coarse mode give similar contributions in 

the transported bedload during the high transport rate (time elapsed 50 - 100 minutes) as 

shown in Figure 4.37. However, the finer grains were dominant in the very initial stage of 

antecedent flow. Figure 4.39 shows that during the first 40 minutes oftime, grain sizes of 0.25 

mm and 0.15 mm contributed significantly to the transported bedload compared to the latter 

time in the test. In the next stage the finer mode was constant with the highest contribution 

from 0.355 mm grain size. Grains in the coarse mode present different pattern. Grain of size 

4.0 mm gave maximum contribution for certain times elapsed but the modal grain size in the 
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Figure 4.37. Grain size distribution of transported bedload for antecedent flow 
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coarse mode changed at different time elapsed. This leads to the conclusion that the larger 

grains experienced phases of increasing exposure making them less stable so that their 

mobility increases and decreases periodically in the later stages of this test. 

Table 4.13. Summary of the average fractional bedload composition produced by 

antecedent flow Experiment SF 1-9 

Sieve size Original Fractional Estimated 
(mm) composition of transported composition of 

surface layer (%) bedload (%) surface layer (%) 

10 1.730 0.000 1.753 

8 8.570 2.642 8.648 

5.6 34.660 15.931 34.906 

4 19.600 19.583 19.600 

2.8 6.860 3.160 6.909 

2 3.530 1.126 3.562 

1.4 2.510 0.821 2.532 

1 1.850 1.651 1.853 

0.71 2.680 4.695 2.653 

0.5 6.840 16.454 6.714 

0.355 7.420 21.672 7.233 

0.25 2.710 9.868 2.616 

0.15 0.940 2.154 0.924 

receiver 0.100 0.243 0.098 

Total 100 100 100 

Overall, the finer mode contributed more than coarser mode in transported bedload leaving 

the bed generally. The consistency of the finer mode is also evident in Table 4.13. The grain 

size of 0.355 mm produced the highest contribution to the transported bedload compared to 

the nearest grain sizes of 0.5 mm and 0.25 mm respectively. More than 20 % of transported 

bedload containing 0.355 mm grains. This is clearly presented by the curve in Figure 4.37. 

Different features are described by grains in the coarse mode. The grain size of 4 mm is the 

dominant among the coarser grains. It contributes to almost 20 % of total transported bedload. 

However a moderately high contribution by the coarser mode of 5.6 mm grain size indicates 

that the level of exposure established during antecedent flow demonstrated that the flow was 

sufficient enough to move these larger grains. 
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4.3.3.2. Variations of Average Nearbed Streamwise Velocity and Bed Shear Stress 

SF 1-9 

Similar to that applied in the previous two test, the nearbed strearnwise velocities measured in 

antecedent flow Experiment SF 1-9 were also observed (Figure 4.38). Again, these 

measurement were carried out by ADV probe at central point of the measurement grid so that 

no data was represented by trrne elapsed where different type of measurement was carried out. 

It can be seen in Figure 4.38 that the average nearbed strearnwise velocities in antecedent 

flow Experiment SF 1-9 are relatively constant throughout the test. The variations of the 

average nearbed streamwise velocity values of each time elapsed to the average nearbed 

streamwise velocity for the whole observations is very small with the range from - 5 % to + 4 

%. However, in the average values of the bed shear stress of each time elapsed, the range of 

variation to the average values of the whole observation is wider. The lowest average values 

of time elapsed is -14 % from the average values of the whole observation while the highest 

values is + 19 % more. A small variation in the individual values of nearbed streamwise 

velocity caused the variation in the average values. The variation in vertical velocity also 

produced fluctuation, which leads to the higher variation in the average bed shear stress. 
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Figure 4.38. Variation oftime averaged nearbed streamwise velocity and bed shear stress 

during antecedent flow Experiment SF 1-9 

In antecedent flow Experiment SF 1-9 the average nearbed streamwise velocities were 

measured over the measurement grid point with a time interval between two series of 
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measurement was 420 minutes. The changes in the time-averaged values of streamwise 

nearbed velocity are very small with the range of variations from a 6.1 % decrease to 3.8 % 

increase. Although the difference in standard deviation presented in Table 4.14 are very 

small, it shows that during the first measurement period the nearbed streamwise velocities 

were more widely dispersed. This suggests that there were disturbances that contributed to the 

fluctuated velocity. The disturbances may be caused by rigorous disruption of the bed at 

initial stage of experiment. The level of disturbances decreased during the second 

measurement taken 420 minutes after the first measurement. 

1 
" 

Table 4.14. Variations ofthe average nearbed streamwise flow velocity and 

the standard deviation in antecedent flow Experiment SF 1-9 

First measurement Second measurement Changes of 
Points (time elapsed 64 minutes) (time elapsed 484 minutes) Vx 

Vx (m/s2 cr (m/s) Vx (m/s) cr (m/s) (%) 

Al 0.556 0.098 0.574 0.088 3.237 (+) 

A3 0.532 0.104 0.539 0.095 1.316 (+) 

A5 0.522 0.102 0.532 0.096 1.916 (+) 

E1 0.546 0.100 0.563 0.093 3.114 (+) 

E3 0.559 0.104 0.525 0.095 6.082 (-) 

E5 0.530 0.103 0.550 0.091 3.774 (+) 

11 0.561 0.095 0.549 0.096 2.139 (-) 

13 0.558 0.096 0.525 0.097 5.914 (-) 

15 0.523 0.104 0.526 0.093 0.574 (+) 

Average 0.543 0.101 0.547 0.094 

A+- 120 mm --'E'- 120 mm 41 

------------~~ --------~ 
60mm 

0.556(0.574) 0.546(0.563) 0.561 (0.549) --" 3 ------~ aoooO=== """"0== .. 
" 0.532(0.539) 0.559(0.515) 0.558(0.515) 
60mm ---" 5 - -0 li&ooia!() li&ooia!() 

0.522(0.531) 0.530(0.5501 0.523(0.526) 

~ 

Figure 4.39. Distribution of average nearbed streamwise velocity (m/s) in antecedent flow 

Experiment SF 1-9 (first measurement in bold, second measurement in brackets) 
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The pattern of variation of time average bed shear stress calculated by summation of the bed 

shear stress at different points over the measurement area (see Equation 3.9 and Equation 

3.15), are presented in Table 4.15 and Figure 4.40. Although the data show increasing values 

of average shear stress, no systematic pattern was found as the changes are inconsistently 

different from point to point. Rather unexpectedly, it is found that the first measurement of 

point E 1 has a negative value. This condition may raise a question that there was a mistake in 

the measurement or it may be the ADV probe did not perfonn properly. Investigation on this 

problem suggested that such problem did not exist. Examination of the nearbed velocity both 

in streamwise and vertical direction found that the probability distributions both for 
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Table 4.15 . Variations of the average bed shear stress and 

the standard deviation in antecedent flow Experiment SF 1-9 

First measurement Second measurement Changes of 
(time elapsed 64 minutes) (time elapsed 484 minutes) -; 

r 

i (N/m2
) cr (N/m2

) ,'{Nlm2) cr (N/m2) (%) 
4.983 17.808 4.892 18.734 1.826 c-) 
2.891 17.981 5.715 17.356 97. 682 (+) 

2.408 17.893 6.873 18.25 1 185.424 C+) 

-1.752 17.487 6.143 17.678 492.295 C+) 

9.436 19.422 4.492 16.469 52.395 C- ) 

2.233 18.647 4.039 18.625 80.878 (+) 

9.036 19.030 9.868 18.578 42.408 C+) 

3.670 18.479 7.279 17.773 98.338 (+) 

1.892 17.483 1.677 17.574 11.364 C- ) 

0.543 18.248 0.547 17.893 

A"- 120 mm -. E +- 120 mm -.. I 

------------~~~---------, 
60mm - 4.983(4.892) - -1.752(6.143) 9.036(9.868) 

, --3 -, 
2.891 (5. 715) 9.436(4.492) 3.670(7.279) 

60mm , 
5 -

2.408(6.873) 2.233(4.039) 1.892(1.677) 

Figure 4.40. Distribution of average bed shear stress (N/m2
) in antecedent flow 

Experiment SF 1-9 (first measurement in bold, second measurement in brackets) 
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streamwise and vertical velocity are normal distributions as expected (Saadi, 2000). The 

calculation of average vertical velocity indicated that the upward direction was dominant at 

this point and thus produced negative values of shear stress. 

4.3.3.3. Bursting Events and Flow Momentum SF 1-9 

It is not very clear whether the variation in the average nearbed streamwise velocity and 

nearbed shear stress contribute to the variation in transport rate during the test. It is therefore 

underlines the important to explore the role of bursting events. Although at certain times the 

number of sweeps exceeds ejections during experiment SF 1-9, it is generally upward 

interactions (ejections) that are more common in bursting events. This is in agreement with 

the findings in experiments SF 1-3 and SF 1-6. Observation of 27 times during this test 

indicated that the outward interactions are 54.4 % of bursting events compared to 45.6 % for 

sweeps. This means that the probability of ejections taking place is almost 10 % higher than. 

sweeps. 

Table 4.16. Summary of bursting events at selected time elapsed 

in antecedent flow Experiment SF 1-9 

Parameter descriptions 
Time elapsed (minutes) 

10 110 190 320 

Threshold values (m2/s2
) 0.0075 0.0079 0.0081 0.0080 

Number of ejections 205 196 220 219 

Number of sweeps 210 206 197 201 

Frequency of eiections (Hz) 1.0250 0.9800 1.1000 1.0950 

Frequency of sweeps (Hz) 1.0500 1.0300 0.9850 1.0050 

Average duration of ejections (s) 0.0535 0.0567 0.0502 0.0586 

Average duration of sweps (s) 0.0551 0.0524 0.0542 0.0523 

420 

0.0076 

208 
210 

1.0400 

1.0500 

0.0583 

0.0520 

The burst data at 110 and 190 minutes, which have a different pattern in the occurrence of 

ejections and sweeps have been compared with the bedload data. Both time elapsed have a 

similar pattern of the fractional contribution in transported bedload (Figure 4.41). The 

difference between the two is that the overall transported bedload at time elapsed 110 minutes 

was dominated by fmer grains whilst the coarse grains were most transported at time elapsed 
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190 minutes. It is believed that this pattern was caused by the ability of the outward 

interactions of the flow to remove the larger grains. Although the average duration of both 

ejections and sweeps at 190 minutes are slightly shorter than at 10 minutes, the ejections are 

more frequent at 190 minutes, most notably in the range of momentum between 9 and 15 

kg/ms (Figure 4.43). This suggests that ejections frequency can have an impact on the 

entrainment of coarse grains. More observations of other selected times strengthen this 

conclusion. Examination of the data at 320 and 420 minutes show a similar pattern. At 320 

minutes larger coarse grains are in motion than at 420 minutes. At 420 minutes the frequency 

of ejections and sweeps are the same. However at 320 minutes there are more ejections than 

sweeps. This demonstrates that when the ejections are more frequent, the fluid forces seem to 

be able to move even larger grains (grain size 8 mm at 320 minutes time elapsed) although the 

average duration of ejections and sweeps at both time elapsed are similar. 
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Figure 4.41. Grain size distribution of transported bedload at selected time elapsed 

antecedent flow Experiment SF 1-9 

Figure 4.42 shows the sequence of momentum per unit area at selected time elapsed, which 

have different pattern in transported bedload. It has clearly been shown that the higher number 

and also size of ejections are more evident at time elapsed 320 minutes compared to time 

elapsed 110 minutes. During this time, the available fluid forces were sufficiently strong to 

remove the larger grains, which dominated the transported bedload at 320 minutes in 

comparison to the bedload at 110 minutes. 
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Figure 4.42. The sequence of momentum per unit area and its magnitude 

at selected time elapsed in antecedent flow Experiment SF 1-9 
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There is a higher proportion of ejections with a magnitude of momentum in the range of 9 -

15 kg/ms at time elapsed 320 minutes than at time elapsed 110 minutes, particularly in the 

range between 13 and 15 kg/ms (Figure 4.43). Thus, the outward interactions of fluid forces 

with high proportions of larger momentum ejections are more capable and likely to entrain the 

larger grains. At time elapsed 320 minutes, both fine and coarse material were transported 

with the proportion of larger grains increased as the neighbouring larger grains (8 mm) are 

also transported (Figure 4.41). The significantly higher proportion of the ejections momentum 

in the range between 13 - 15 kg/ms is believed to be responsible in transporting 8 mm grains. 
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Figure 4.43 . Probability distribution of momentum per unit area at selected time elapsed 

in antecedent flow Experiment SF 1-9 (ejections are positive and sweeps are negative) 

In all the proceeding analysis, the role of sweeps is believed to be less important. The 

frequency and momentum magnitude of sweeps (Figure 4.43) appear to remain consistent 

through the rest even though significant changes in the bedload transport and composition 

were observed (Figure 4.41). The analysis also demonstrates the important of the frequency of 
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ejections and the magnitude of momentum caused by these events. The more frequent the 

ejections with the high magnitude of outward interactions the more larger grains transported 

irrespective of the average duration of both ejections and sweeps at observed time elapsed. 

4.3.3.4. Bed Topography SF 1-9 

The original bed shown in Figure 4.44 indicates the influence of the scrapping process. A 

relatively flat surface is shown with streamwise lines on top of the bed. It is also noticed that 

this flat surface formed at a slightly higher elevation than the scrapped beds for experiment SF 

1-3 and SF 1-6. The average bed surface elevation of this original bed is 2.396 mm. 

The application of 9 hours antecedent flow to the original bed produced diagonal patch of 

valley in the bed surface (Figure 4.45). Areas of high elevation are also produced as well as 

few very high isolated large grains resting on top of the bed. The plot shows that the reduction 

in the bed surface elevation covered most of the surface area. This was a result of 

destabilisation and dislodgement of grains during the antecedent flow test. After 9 hours of 

flow the average bed level decreased almost 2.5 mm to 0.080 mm below the zero datum. 

An interesting feature is shown by comparing Figure 4.45 and Figure 4.46. The armoured bed 

formed by 9 hours antecedent flow was stable and the patchiness is not destroyed by stability 

test. The patches are now moved upstream and are more organised. This can be explained as 

the following. The valley formed in the bed reduced the resistance of the grains at upstream 

edges and they move forward during the stability test. Even at the peak flowrates in the 

stability test the flow was not able to entrain these grains and transport them far downstream. 

This is because of the sufficient level of stability formed by long antecedent flow test. The 

fluid forces only removed the grains in a rolling fashion over short distances. The grains only 

rolled a short distance downstream either to fill the lower levels or to increase the level of bed 

surface. These movement made the patches (valleys) to move progressively upstream. The 

average bed surface level after stability test indicates almost no difference than the average 

bed surface before stability test. It changes to 0.111 mm below the zero datum, a decrease of 

only 0.031 mm. 
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The original bed elevation distributions of Experiment SF 1-9 shows a different pattern from 

the original bed elevation distribution in SF 1-3 and SF 1-6. In this bed surface there is a high 

proportion of elevations in the range from the zero datum. This unusual concentration of 5 

mm elevation is thought to be due to the variability of the bed placing process. During 9 hours 

of antecedent flow the erosion processes rearranging the bed surface. The curve of elevation 

distribution becomes more symmetrical. The bed surface elevations are relatively balanced in 

which the elevations below and above the average bed surface are quite similar. However it is 

thought that the high proportion of 5 mm was not physically disappeared . In this case the fluid 

forces of antecedent flow were only able to lower the level during the readjustment processes 

of the bed surface rather than transported them downstream. 
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for Experiment SF 1-9 
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It was when the higher flowrates above 0.0338 m3/s during the stability test that the influence 

of the irregularities fonned by the original bed surface distribution can be seen. The "over 

proportion" of elevation with 5 mm height from zero datum in the original bed surface 

distribution have significant impacts to the distribution curve of stability flow. Following the 

removal of finer grains during the low flowrates at initial stage of stability test, these grains 

more exposed. The stronger fluid forces about the peak hydrograph of stability test with 

flowrates higher than the constant flow rate during antecedent flow test, completely removed 

the exposed grains which was initially 5 mm height in the original bed but lowered after 

antecedent flow test. This transfonnation is evident in Figure 4.47. The bed surface elevation 

distribution after stability tests shows the irregular fonn similar to the distribution curve of 

original bed surface. This time is in the left hand side of the peak distribution curve indicating 

the level of decrease of about -5 mm with similar proportion to + 5 mm height in the original 

bed. 

Apart from the considerable amount of 5 mm deep valley-fonned by the stability test, the 

changes of the shape of the elevation distribution from post-antecedent flow to the end of the 

subsequent stability test are generally very small. This indicates a more stable bed than in 

experiment SF 1-3 and SF 1-6 is obtained in experiment SF 1-9 with no substantial amount of 

bedload transported during the observation stability test. It is very clear from the distribution 

of bed surface elevation that a generally very small degradational process took place during 

the stability test. The hump in the final distribution curve is created by the similar fonn in the 

original bed surface, which was temporarily "hidden" and adjusted by the available fluid 

forces during the antecedent flow test. Only the higher flowrates during the stability test could 

destabilise and then transported this structure. 

4.3.4. STEADY ANTECEDENT FLOW EXPERIMENT SF 1-12 

4.3.4.1. Bedload Transport Rate and Composition SF 1-12 

Bedload transport rates variation with time in experiment SF 1-12 indicated a similar pattern 

with the transport rate variations produced by experiment SF 1-3 and SF 1-6. Initially the 

transport rate was high and then declined significantly with a sharp decrease occurred in the 

early stage of the test (Figure 4.48). In the first 10 minutes the transport rate was 0.355 g/s/m 
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indicating the ability of water flows to destabilise, entrain and transport the sediment bed. 

Within 80 minutes the rate drops to 0.124 gls/m and then fluctuated with the tendency to 

transport lower amount of sediment. During the third and fourth hours, the average transport 

rate was 0.103 gls/m. The fluctuation continued during the next two hours with slightly 

higher transport rate at 240 and 270 minutes of time elapsed. The average transport rate 

within this period indicates a lower average rate of 0.071 gls/m or decreased more than 30 % 

from the rate of the previous two hours. The average transport rate continued to decrease 

every 2 hours to 0.068 gls/m, 0.050 gls/m and 0.034 gls/m respectively. There was a 

noticeable increase in transport at time elapsed 680 minutes, whjch leads to the slight 

increased in the average transport rate within the last two hours from 0.026 g/s/m to 0.043 

gls/m in the last hour of the test. 
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Figure 4.48. Time variation of transport rate for antecedent flow Experiment SF 1-12 

The importance of fIner grains that was transported during initial high transport rate is shown 

in Figure 4.49. It is very clear that the finer grains were dominant from the start until time 

elapsed 270 minutes. The distribution curve of the finer mode is constant with the modal 

grains size of 0.355 rnm. Different pattern is shown by grains in the coarse mode. After 150 

minutes the modal grain size of coarse grains changed from 5.6 mm to 4 mm. The coarse 

modal grain size increase again to 5.6 mm until time elapsed 300 minutes. In Figure 4.49 it is 

apparent that grains size of 8 mm are rarely seen in transport. This grain size appear in 

transport at the early stage of the experiment (10 - 40 minutes) and also at time elapsed 350 -
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460 minutes. There is an inconsistency between time elapsed 310 to 410 minutes where the 

modal grains size of the coarse mode changed erratically. After 2 hours constant with 5.6 mm, 

the coarse modal grain size decrease to 4 mm again at time elapsed 310 - 340 minutes. At 

time elapsed 350 - 400 minutes the modal size of the coarse grains even larger with 8 mm. 

This is the only times when the contribution of 8 mm dominates the coarse mode in transport. 

At the following times the coarse modal grain size decrease and constant at 5.6 mm until the 

end of the antecedent flow Experiment SF 1-12. 
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It is very clear from Table 4.17 that the finer mode is more important than the coarser mode. 

More than half of the transported sediment contained the grains in the fine mode (56 %) 

whilst the grains in the coarse mode contributed only 31 % of the total transported bedload. 

Transported material was always much finer than the bed which tended to coarsen throughout 

the test. The absence of the larger coarse grains of 8 mm for in the majority of the observation 

suggest that this grains were relatively resistance to the fluid forces during the antecedent 

flow Experiment SF 1-12. It is thought that the appearances of these grains in transport were 

due to the exposure level of these grains at the beginning and at time elapsed 350 - 460 

minutes. The level of exposure between 350 and 460 minutes was supported by the erosion 

process of finer grains, which transformed the bed into the coarser surface condition in 

comparison to the original bed surface. 

Table 4.17. Summary of the average fractional bedload composition 

produced by antecedent flow Experiment SF 1-12 

Sieve size Original Fractional Estimated 
(mm) composition of transported composition of 

surfacelayer(~) bedload (~) surface layer (%) 

10 1.730 0.000 1.762 

8 8.570 1.894 8.692 

5.6 34.660 18.885 34.947 

4 19.600 10.667 19.763 

2.8 6.860 2.190 6.945 

2 3.530 0.676 3.582 

1.4 2.510 0.771 2.542 

1 1.850 1.648 1.854 

0.71 2.680 5.330 2.632 

0.5 6.840 19.071 6.617 

0.355 7.420 26.328 7.075 

0.25 2.710 10.550 2.567 

0.15 0.940 1.920 0.922 

receIver 0.100 0.071 0.101 

Total 100 100 100 

4.3.4.2. Variations of Average Nearbed Streamwise Velocity and Bed Shear Stress 

SF 1-12 

As experienced in the shorter steady antecedent flow tests, a relatively constant values of the 
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average nearbed streamwise velocity was found in steady antecedent flow Experiment SF 1-

12 (Figure 4.50). The highest range of variation is found at time elapsed 10 minutes. At this 

time elapsed the average values of nearbed streamwise velocity is 9 % more than the average 

values for the whole observation. The lowest average velocity is found at time elapsed 590 

minutes where the values is 3.5 % lower than the average values of the whole observation. A 

wider range of variation was experienced by the average bed shear stress. During the constant 

flowrates, the highest value of average bed shear stress, estimated using Equation 3.16, is 11 

% more than the average value for the whole observation. This is at 220 minutes time elapsed. 

The lowest average value is at 180 minutes time elapsed with less than 9 % of the average 

bed shear stress measured throughout the antecedent flow experiment SF 1-12 (Figure 4.50). 

The difference in the range of variation between the average nearbed streamwise velocity and 

the average bed shear stress is likely caused by the variations in the vertical velocity as the 

straight line formed by the average nearbed streamwise flow velocity indicates that the flow 

in streamwise direction were relatively constant throughout the test. 
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Figure 4.50. Variation of time averaged nearbed stream wise velocity and bed shear stress 

during antecedent flow Experiment SF 1-12 

The longer duration of the antecedent flow experiment SF 1-12 made possible to carry three 

series of ADV measurement within the measurement grid. This allows the comparison of the 

changes in the near bed flow between a short and a long time interval in one experiment. 

Table 4.18 shows that the average values of nearbed streamwise velocity of all points are 
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decreased after almost 6 hours of the flow. In the third measurement, a further 5 hours later, 

the average nearbed streamwise velocity values continued to decrease at some points but 

increased slightly in other points. This indicates that there is no strong pattern in the nearbed 

streamwise velocity in correlation to the time. However when comparing the average values 

for a longer time interval, i.e. more than 10 hours between the first and the third measurement 

it is found that the average values of nenarbed streamwise velocity decreased in the majority 

of grid points. Although there is a slight increase in the average values of all points in the 

measurement grid from the second to the third measurement (+0.4 %), the average values of 

the final measurement was sti11lower than the average values of the first measurement (-5 %). 

Although similar values in the average standard deviation of the measurement grid indicate a 

relatively similar level of variation in the average nearbed streamwise velocity throughout the 

experiment, it can be suggested that the average flow velocity is reducing as it is difficult to 

expect the streamwise nearbed flow velocity would perform in a similar manner throughout 

the experiment. The mobile bed as it deforms would have different bed roughness at different 

observed time elapsed. 

Table 4.18. Variations of the average nearbed streamwise velocity and the standard deviation 

in antecedent flow Experiment SF 1-12 

First Second Third Changes ofVx 
Points measurement measurement measurement 

@62 minutes @358 minutes @675 minutes 
(%) 

Vx 0- Vx 0- Vx 0- 1 sl _ 2nd 2nd _ 3rd 1 sl _ 3rd 

(mls) (mls) (mls) (mls) (mls) (mls) 
Al 0.553 0.097 0.528 0.103 0.521 0.104 5.285 (- ) 1.326(-) 5.787 (- ) 

A3 0.549 0.093 0.499 0.098 0.509 0.095 9.107 (- ) 2.004 (+) 7.286(-) 

A5 0.479 0.095 0.472 0.094 0.467 0.092 1.461 (- ) 1.059 (-) 2.505 (-) 

E1 0.557 0.098 0.523 0.098 0.532 0.101 6.104 (- ) 1.721 (+) 4.488 (- ) 

E3 0.555 0.099 0.498 0.099 0.496 0.103 10.270(- ) 0.402 (- ) 10.631(- ) 

E5 0.458 0.097 0.449 0.096 0.472 0.097 1.965 (- ) 5.122 (+) 3.057 (+) 

11 0.563 0.091 0.526 0.105 0.525 0.101 6.572 (- ) 0.190 (- ) 6.750(-) 

13 0.532 0.098 0.504 0.098 0.482 0.101 5.263 (- ) 4.365 (- ) 9.398 (- ) 

15 0.483 0.096 0.473 0.092 0.492 0.098 2.070 (- ) 4.017 (+) 1.863 (+) 

Average 0.525 0.096 0.497 0.098 0.499 0.099 
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Figure 4.51. Distribution of average nearbed streamwise velocity (m/s) in antecedent flow 

Experiment SF 1-12 (first measurement in bold, third measurement in brackets) 

Table 4.19 shows the complexity in the changes of average bed shear stress calculated 

directly from the ADV data using Equation 3.15. Selected points have significantly lower or 

higher values than the others. Certain points exhibit relatively small variation of the average 

values throughout the observed times. Given that the changes in average nearbed strearnwise 

flow velocity are relatively small, it is suspected that the fluctuation of vertical velocity 

occurred and presence during the whole duration of antecedent flow experiment. It is believed 

Table 4.19. Variations of the average bed shear stress and the standard deviation 

in antecedent flow Experiment SF 1-12 

First Second Third 
Changes of i 

Points measurement measurement measurement 
@62 minutes @358 minutes @675 minutes (%) 

, (j r (j r (j 151 _ 2nd 2nd _ 3rd 151 _ 3 rd 

(Nlm 2
) 

(N/m2) (Nlro2) (N/m2
) (N/m 2

) (N/m2
) 

Al 2.936 18.582 5.197 17.873 5.004 18.007 77.010(+) 3.714 (-) 70.436(+) 

A3 4.182 17.385 2.245 16.307 2.998 15.917 46.318(- ) 33.541(+) 28 .312(+) 

AS 3.018 15.517 3.392 15.124 3.470 14.509 12.392(+) 2.299(+) 14.977(+) 

El 5.004 19.281 6.666 19.618 7.441 19.323 33 .213(+) 11.626(+) 48.701(+) 

E3 9.828 18.142 8.049 16.385 9.160 16.675 18.101(- ) 13.803(- ) 6.797(-) 

E5 2.678 16.551 4.533 15 .304 6.208 15 .961 69.268(+) 36.951(+) 131.815(+ 

11 6.539 19.640 6.030 19.703 7.517 19.093 7.784(- ) 24.660(+) 14.956(+) 

13 2.498 17.922 -0.411 16.712 -0.629 16.574 116.453(-) 53 .041(- ) 125 .180(-) 

15 -4.235 16.282 -2.625 14.749 -1.757 16.069 38.017(+) 0.331(+) 58.512(+} 

Average 3.605 17.700 3.675 16.864 5.971 16.903 
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Figure 4.52. Distribution of average bed shear stress (N/m2
) in antecedent flow 

Experiment SF 1-12 (first measurement in bold, third measurement in brackets) 

that different level of turbulence at different points caused by the variations of bed roughness 

even at a small adjacent area within the measurement grid. It is worth noting that the 

measurement was carried out at 10 rom from the bed surface so that the influence of either 

isolated exposed grains or valley-formed bed features would be rela6vely closed and would 

therefore be likely to affect the nearbed flow. Overall, the average values of the measurement 

grid increased with time while the average standard deviations is slightly decreased indicating 

the more fluctuated pattern in the vertical flow velocity. 

4.3.4.3. Bursting Events and Flow Momentum SF 1-12 

Information on bursting events (ejections and sweeps) was examined at 44 stages time elapsed 

during Experiment SF 1-12. Overall, the frequency of occurrence of ej ections is still higher 

(51 %) than that of sweeps (49 %). At this stage, it is too early to conclude whether fully 

armoured bed balances the frequency of outward and downward looking bed interactions. It is 

necessary to investigate if this sediment bed that had been exposed to flow over a 

considerably longer period, produced a more organised pattern of outward and downward­

looking bed flow turbulence structures. The data in Table 4.20 suggest that this may not be 

the case. It is seen that before 420 minutes the frequency of occurrence of the sweeps is not 

always higher than the frequency of occurrence of ejections. The frequency of ejections and 

sweeps do not correspond with time as well as the average duration of both events. 
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Table 4 .20. Summary of bursting events at selected time elapsed in antecedent flow 

Experiment SF 1-12 

Parameter descriptions 
Time elapsed (minutes) 

90 110 200 280 420 580 
Threshold values (m2/s2

) 0.0072 0.0072 0.0076 0.0076 0.0074 0.0072 
Number of ejections 206 215 192 216 222 217 
Number of sweeps 221 186 192 219 215 184 

Frequency of ejections (Hz) l.0300 l.0750 0.9600 l.0800 l.1100 l.0850 

Frequency of sweeps (Hz) l.1050 0.9300 0.9600 1.0950 l.0750 0.9200 

Average duration of ejections (s) 0.0561 0.0538 0.0544 0.0520 0.0562 0.0538 

A verage duration of sweps (s) 0.0538 0.0574 0.0508 0.0504 0.0501 0.0550 
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Figure 4.53 . Grain size distribution of transported bedload at selected time elapsed 

in antecedent flow Experiment SF 1-12 

To some extent the tendency found in shorter experiments is also observed in this test. At 

time elapsed 90 minutes the occurrence of ejections is lower than sweeps (Table 4 .20). During 

this time the bedload transport was dominated by the finer grains (Figure 4.53) and the 

transport rate was high. This is a similar pattern found in experiments SF 1-3, SF 1-6 and SF 

1-9 . As the bedload transport rate diminished, the bursting events were expected to alter, 

potentially in the frequency of occurrence ofthe bursting events and also their magnitudes. 
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At time elapsed 420 minutes, a different pattern in grain size distribution of transported 

bedload is observed (Figure 4.53). During this period the frequency of occurrence of the 

outward interactions was considerably higher than the downward-looking bed interaction 

compared to the time elapsed 280 minutes. As a result the grains are coarser and make a more 

dominant contribution to the transport bedload. A different pattern is shown at time elapsed 

580 minutes. Lower proportion of coarser grains than that at time elapsed 420 minutes was 

moving. However, the transported bedload during this time elapsed was still relatively high 

with the considerable amount of grains in the coarse mode. It can be seen from Figure 4.55 

that high magnitude of momentum ejections were occurring at time elapsed 420 minutes 

particularly in the range between 15 - 23 kg/ms. The overall proportion in the range between 

9 - 23 kg/ms at this time elapsed is higher than at time elapsed 580 minutes. This is believed 

to account for the increase in the proportion and the amount of coarse grains in transport. 

Similar sized contributions of fine and coarse grains have been found at times when the 

frequency of occurrence of ejections and sweeps were balanced, i.e. time elapsed 200 and 280 

minutes. However, time elapsed 110 minutes features a significantly high proportion of 

momentum ejections in the range between 13 and 15 kg/ms (Figure 4.55). Normally when the 

high momentum of ejections take place, coarser grains are expected to increase in transported 

bedload. During time elapsed 110 minutes the considerable amounts of finer grains were 

transported rather than coarser grains (Figure 4.53). Closer examination of the momentum 

distribution at this time indicates few structures with momentum greater than 15 kg/ms. This 

suggests that ejections, with momentum less than this threshold, appear to be less able to 

move coarse grams. 

Again, as in the other tests, the momentum distribution in the sweeps events shows low 

magnitude and little variation during the antecedent flow experiment (see Figure 4.54 and 

Figure 4.55). This indicates that it is the character of the ejections events, particularly in terms 

of momentum per unit area, that determines the ability of the fluid to measure grains 

movement. 
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Figure 4.54. The sequence of mom en turn per unit area and its magnitude at selected time 

elapsed in antecedent flow Experiment SF 1-12 
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Figure 4 .55 . Probability distribution of momentum per unit area at selected time elapsed in 

antecedent flow Experiment SF 1-12 (ejections are positive and sweeps are negative) 

4.3.4.4. Bed Topography SF 1-12 

As experienced in the experiment SF 1-9, the scrapping process applied to the original bed for 

antecedent flow test Experiment SF 1-12 also produced a relatively flat bed surface with few 

high peaks. In this test the average bed surface level is 2.583 mm from the zero datum. Figure 

4.56 shows that the valley-type areas of low bed elevation are also found less than in the 

original bed of Experiment SF 1-9. These areas concentrated on the right hand side of the 

measurement grid. 

Different bed surface formation found after the application of 12 hours antecedent flow to the 

original bed (Figure 4.57). Elongated valleys were established and covered most of the area 

particularly on the left-hand side of the measurement grid. The 12 hours steady antecedent 

flow reduced the average bed surface level to 1.245 mm below the zero datum or a reduction 

of 3.828 mm from the average level of original bed. The level of decreased is more than that 

caused by steady antecedent flow experiments SF 1-3, SF 1-6 and SF 1-9. Points with high 
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exposures before stability test were partially kept in existence after stability test (Figure 4.58). 

Although the valley-fonned area more spread, there are some indication that the stability test 

of Experiment SF 1-12 was only able to remove grains in similar fashion to those in stability 

test Experiment SF 1-9. For instance, the low level in the area of point x 100 to x125 and yO to 

y25 (Figure 4.57) was increased after stability test because of the movement of grains forward 

in rolling fashion. Further down to this area the level of the bed surfaces decreased, indicating 

the removal process took place. Similar patterns but in a smaller scale was found along the 

centreline of the measurement grid. Before the stability test applied, the relatively exposed 

areas in the downstream part of the measurement grid were slightly reduced after stability test 

and vice versa in the upstream part. 

It has been shown in Figure 4.1 that the most stable bed is fonned by 12 hours antecedent 

flow test. As in the previous experiment, the degradational stage can be seen when the 

antecedent flow test was applied to the original bed. The coarsening process caused the 

variation in the bed surface, most notably in the positive side from the mean. After 12 hours 

antecedent flow was run over the bed, the number of grains resting on the bed, with at least 4 

mm exposure from the mean level increased. It is also noticed that the proportion of bed 

surface level between 1 mm to about 4 mm height decreased suggesting that the number of 

grains with moderate exposure has reduced. The tail of the distribution with negative 

excursions from the mean bed has little variation from the original and annoured bed. 

However, as the annoured bed condition was achieved after sufficient time of antecedent flow 

only bed surface elevation around the mean level was changing during the stability test. In 

this test the bed surface elevation of higher values both above and below the average level did 

not deviate markedly from the mean (Figure 4.59). A stable bed configuration appears to be 

one in which there are few large negative and positive excursions from the mean bed. In a 

stable bed the number of moderate positive excursions is reduced. It appears that in stable bed 

there are a few well-sheltered and stable large grains. The other exposed medium or coarse 

grains have been moved into these larger structures. The negative excursions follow the 

pattern of the original bed suggesting that the fine grains have not filled the "holes" in the 

original bed but are somehow connected with the larger grain structures. 
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Figure 4.59. Probability distribution of bed surface elevation about zero and mean level 

for Experiment SF 1-12 

4.4. COMPARARATIVE RESULTS AND DISCUSSIONS OF SF I 

4.4.1. Transport Mode of Steady Antecedent Flow Experiments SF I 

The application of a relatively high constant discharge to freshly laid bimodal sediment beds 

has a different effect on the coarse and fine modes of transported sediment. Bedload collected 

at 10 minute intervals were sieved to show the changes in the amounts transported in each 

mode. It is evident that this sieving analysis applied to the transported bedload produced by 

steady antecedent flow tests SF 1-3, SF 1-6, SF 1-9 and SF 1-12 show a pattern of change. 

In the initial hour of each test, large amount of grains in both the fine mode and the coarse 

mode were transported. As regards composition a relatively consistent pattern was seen. 

Initially the proportion of grains in the fine mode was more dominant than grains in the coarse 
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mode. The first observation in Experiment SF 1-3 indicated that grains in the coarse mode 

were more transported than grains in the fine mode (Figure 4.60). This was believed to be due 

to the artificial nature of the initial bed. After about 360 minutes the proportion of grains in 

the coarse mode started to become larger than the amount of sediment in the finer mode. 

However this pattern was not consistent for the rest of these tests, with the fine mode 

dominating and then the coarse mode and vice versa. 
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Normally when a constant flow discharge is applied, the transport rate, with no upstream 

sediment feed, is a function of time. The transport rate is expected to decreased rapidly and 

then remained at a low value. In this case the amount of bedload may be higher for the longer 

duration of experiments but this is not as a result of any increase in the transport rate. This is 

because after a set time the bed had reached an armoured stable condition and very low 

transport rates existed. However, Table 4.21 suggests that after the period of 6 hours a 

slightly different behaviour was observed. It can be seen that the total amount of bedload 

transported during 9 hours of constant flowrates less than the amount of bedload transported 

during 6 hours with similar condition. 
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Table 4.21. Summary of bedload for steady antecedent flow Experiments SF I 

Experiment Bedload transport Mass and proportion of mode 

No. Mass Rate Fine mode Coarse mode 
(g) (g/s/m) (g) (%) (g) (%) 

SF 1-3 496.930 0.242 191.282 38.493 198.300 39.905 

SF 1-6 637.600 0.155 334.827 52.514 199.440 31.280 

SF 1-9 531.220 0.086 254.952 47.994 202.690 38.156 

SF 1-12 732.140 0.089 409.619 55.948 230.224 31.445 

Observation of the temporal pattern in transport rates suggested that the annoured stable bed 

condition was achieved between time elapsed 6 and 9 hours as the transport rate dropped 

dramatically after 6 hours of exposed to the flow. Therefore the last 3 hours of antecedent 

flow SF 1-9 would only have small bedload production. This assumption is not fully accepted 

as the longer duration of antecedent flow opposes it. Antecedent flow experiment SF 1-12 

indicates that the bed destabilisation is continued after 9 hours of flow exposure. During this 

time the low transport rate is expected as indicated by small transport rate in antecedent flow 

SF 1-12. Having observed this situation, two assumptions raised. The first one is that the 

antecedent flow SF 1-9 experienced different condition and hence the pattern of transport 

found in other antecedent flow experiments was not in existence in SF 1-9. This assumption is 

also supported by the fact that SF 1-9 features a contradict pattern in the proportion of mode 

of grains transported during the 9 hours of antecedent flow experiment (Table 4.21). 

The second assumption is that the stable annoured bed had been achieved between 6 and 9 

hours of flow exposure. The grains in the fine mode were better sheltered after 6 hours so that 

the rates dropped in the following hours. The grains in the coarse mode were also thought to 

have reached the stable condition. This is indicated by the relatively constant amount 

transported in 9 hours. Table 4.21 shows that only small increased found in three different 

duration of antecedent flow. However the application of relatively high flowrates of 0.0338 

m3/s continually imposed the bed after 9 hours. Further erosion took place and considerable 

amount of grains in the fine mode transported. If there is an increase in the amount of grains 

in the coarse mode transported at this stage, it was because of the transported finer grains 

changed the surface of "initial stable bed" and increased the exposure of larger grains to some 

extent. 
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4.4.2. Stability of the Antecedent Flow Beds and Mode of Transport SF I 

The different levels of transport rate during the identical stability tests SF I indicated the 

influence of flow duration in each antecedent flow test. It is found that the beds formed by a 

constant flowrate with the shortest duration is the weakest. It is very important to bear in mind 

that the level of bed stability established by all the four stability tests did not form a linear 

relationship with duration of antecedent flow tests. However, the stability tests show that after 

a certain duration of antecedent flow, the transport rate decreased in an almost regular 

fashion. The amount of bedload transported during stability test after 3 hours antecedent flow 

test is 872.58 grams (0.638 gls/m). Similar tests applied to the bed formed by 6 hours, 9 hours 

and 12 hours antecedent flow test eroded 341.43 grams (0.250 gls/m), 210.82 grams (0.154 

gls/m) and 105.35 grams (0.077 gls/m) respectively. Therefore it can be assumed that the bed 

exposed to the constant flow rate of 0.0338 m3/s needs at least 6 hours to form a relatively 

strong pavement. This is confirmed by the values of hiding functions of stability test SF 1-3, 

which had considerably lower values than the other stability tests. The hiding function values 

of grains size fractions increased in the stability test SF 1-6. The finer grains seemed to 

stabilise after 6 hours as indicated by a small increase in hiding function values for the longer 

experiments of SF 1-9 and SF 1-12. The finer grains gained their stable position after 6 hours 

while the stability of the coarser grains were continuing as the tests progressed. 

The grain size distribution curve also reveals the different mode of transport in stability test 

than the mode found in the antecedent flow tests. In stability test SF 1-3 grains in the coarse 

mode (grain sizes 5.6 mm and neighbouring 4 mm and 8 mm) started to dominate the 

transport at time elapsed 30 minutes whilst stability test SF 1-6 and SF 1-9 at the latter time 

elapsed. Both stability tests started to transport more grains in the coarse mode than in the fine 

mode (grain sizes 0.355 mm and neighbouring 0.25 mm and 0.5 mm) at time elapsed 50 

minutes. The most stable bed formed by 12 hours antecedent flow test is confirmed when the 

stability test applied to this bed could only transported more grains in the coarse mode at the 

end of rising limb. This means the coarser grains in the bed of antecedent flow SF 1-12 were 

destabilised only by higher flowrates. Generally, for all stability tests the fluid forces in the 

early stages of rising limb (time elapsed 0 to 20 minutes) transported only grains in the fine 

mode. Apart from the stability test SF 1-6, the introduction of grains of the coarse mode in 

transport was started at time elapsed 30 minutes with the very low amount and proportion. 
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The period of domination of the coarse mode lasted for about 40 - 50 minutes depending on 

the starting time elapsed of domination (Table 4.22). 

Table 4.22. Transport mode of the stability tests applied to antecedent flow-formed bed SF I 

Stability 
Time elapsed of Bedload proportion (%) Total (%) 

coarse gram Fine mode Coarse mode Fine Coarse Test domination 
(mins) Rising Falling Rising Falling mode mode 

SF 1-3 @30 - @80 9.37 12.51 27.22 35.76 21.88 62.97 

SF 1-6 @20 & @50 - @90 8.54 12.27 24.45 45.17 20.80 69.63 

SF 1-9 @50 - @100 3.19 7.79 17.98 64.05 10.98 82.03 

SF 1-12 @60 - @100 9.08 14.27 17.41 53.73 23.35 71.13 

Table 4.22 shows that the grains in the coarse mode dominated the bedload. The falling limb 

produced higher bedload than the rising limb. This is understandable as it reflects the 

influence of the peak flowrates of 0.0375 m3/s in destabilising the armoured bed structure 

formed by antecedent flow tests. However, there is a significant difference shown by the 

stability test SF 1-9. It is found that lower proportion of grains in the fine mode transported 

during the rising and falling limb of this stability test whilst a significant proportion of grains 

in the coarse mode were transported in the falling limb. This produces a significantly low 

proportion of grains in the fine mode transported throughout the stability test. It can also be 

seen that the proportion of grains in the coarse mode transported during the whole duration of 

stability test SF 1-9 is significantly higher than three other stability tests. 

As previously described in Section 4.4.1 the relatively stable bed after 9 hours exposed to the 

constant flowrates of 0.0338 m3/s still exhibit the transport in the last 3 hours of antecedent 

flow experiment SF 1-12. This means the application of flowrates higher than 0.0338 m3/s to 

the bed formed by 9 hours antecedent flow experiment caused further disruption to the bed, in 

particular the exposed larger grains resting on it. In Table 4.22 a significant increased of 

grains in the coarse mode transported after the peak discharge was attained in stability test 

applied to the bed formed by 9 hours steady antecedent flow test. These grains were weak so 

that their appearances in transport lasted longer and continued to dominate the transport until 
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time elapsed 90 minutes. No wonder that the proportion of grains in the coarse mode 

produced by stability test SF 1-9 is higher than in stability test SF 1-3, SF 1-6 and SF 1-12 

respectively. 

4.4.3. The Distribution of Average Nearbed Streamwise Flow Velocity and Average Bed 

Shear Stress SF I 

In all steady antecedent flow tests SF I, relatively constant values of the average nearbed 

streamwise velocity were found throughout each test (Figure 4.61). This suggests that no 

extreme disturbances in the nearbed flow during the experiments. The range of variations of 

the time averaged nearbed streamwise velocity from the average values of all observations in 

a test is less than 10 %. It is found that the range of variation for the shorter tests is lower 

than for the longer tests. The variation of the point averaged nearbed streamwise velocity 

from the average velocity in antecedent flow Experiment SF 1-3 is in the range of ± 2 % 

while in the experiments SF 1-6 and SF 1-9 the variation is wider but in the range between +7 

% and -5 %. The variation increased slightly during SF 1-12 with the range being between +9 

% and -4 %. It can be seen in Figure 4.61 that the time averaged nearbed stream wise 

velocities are generally decreased towards the end of each test. This suggests that the 

armoured beds become hydraulically rougher with time. 

A wider range of variation was found in the time averaged bed shear stresses (Figure 4.62). 

In antecedent flow SF 1-3 the variation of time averaged bed shear stress to the average value 

for the whole duratiuon of the test ranges from +3 % to -3 %. Wider variations are found in 

SF 1-6, SF 1-9 and SF 1-12. These observations indicate that the pattern of "constant" values 

of time averaged streamwise nearbed velocity is not followed by the average bed shear stress. 

This is thought to be due to the variation in the distribution of vertical velocity. It is suspected 

that the changes in the bed roughness have an influence on the vertical velocity distribution 

and as the bed roughness increases the vertical velocity distribution becomes more varied. As 

seen in Figure 4.62, although there is fluctuations in time averaged bed shear stresses, the 

values are generally decreased towards the end of the experiments. The decrease is not large 

enough to explain the reduction in transport rate. 
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Figure 4 _ 61 . Variation of time averaged nearbed streamwise velocity during the steady 

antecedent flow Experiments SF I 
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Figure 4.62. Variation oftime averaged bed shear stress during the steady antecedent flow 

Experiments SF I 
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The average nearbed streamwise flow velocity observed at different points In the 

measurement grid showed that there is always a spatial variation in velocity throughout each 

test (Figure 4.63). The standard deviations of the streamwise velocity are relatively stable 

with very low variation. However the changes in the average streamwise velocity indicate no 

direct link with regards to the change in the average bed shear stress. One point to note is that 

in longer duration of antecedent flow experiments, the spatial variation in the average nearbed 

streamwise velocity does appear to reduce (Figure 4.64) . 
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Figure 4.63 . Variation of average nearbed streamwise velocity in the measurement grid during 

the steady antecedent flow Experiments SF I 

As the measurements were carried out close to the boundary, it is reasonablee to assume that 

changes in the bed roughness are likely to influence the changes in the distribution of bed 

shear stress. Figure 4.64 shows that as the tests progressed, the spatial variation in bed shear 

stress reduced . In particular the areas of very high average shear stress reduced in number. 
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Figure 4.64 . Variation of average bed shear stress in the measurement grid during the steady 

antecedent flow Experiments SF I 

4.4.4. Bursting Events and Flow Momentum SF I 

In steady antecedent flow experiments it is found that the average duration of both ejections 

and sweeps are quite similar (Table 4.23). This suggests that the duration of the events is not 

determining the transport behaviour as each antecedent flow test has different pattern in 

transport rate. Closer examination to the flow momentum suggests that the proportion of 

occurrence of high magnitude of momentum must be considered as the most important factor 

in grain entrainment process, particularly the coarse grains. The lowest frequency of ejections 

is found in the antecedent flow experiment SF 1-9. It is believed that the upward interactions 

with the smallest occurrence of 0.838 Hz in this experiment caused the incapability of 

antecedent flow to transport more material than that produced by the antecedent flow with 

shorter duration, i.e. antecedent flow experiments SF 1-3 and SF 1-6. As seen in Table 4.21 

the irregularity in transport, where the transport rate is not as expected, is created by 

antecedent flow Experiment SF 1-9. It is also apparent in this test that the proportion of 

ejections in bursting events is the lowest among other tests (45 .6 %). This is underlines the 

important of turbulence bursting pattern in determining the transport rate. 
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Table 4.23. Summary of bursting events of steady antecedent flow Experiments SF I 

Parameter descriptions 
Steady antecedent flow experiments 

SF 1-3 SF 1-6 SF 1-9 SF 1-12 

Proportion (%) 49.567 52.857 45.602 50.486 

Ejections Frequency (Hz) 1.003 0.987 0.838 1.107 

Average duration (s) 0.053 0.058 0.055 0.051 

Proportion (%) 50.433 47.143 54.398 49.514 

Sweeps Frequency (Hz) 1.020 0.880 0.999 1.086 

Average duration (s) 0.052 0.050 0.052 0.051 

In all steady antecedent flow experiments, it has been found that the most popular magnitude 

of momentum is in the range between -5 to +7 kg/ms. The momentum of downward looking­

bed interactions with the low magnitude between -1 to -5 kg/ms was the most frequent. More 

than 35 % of downward looking-bed interactions at this strength is found in all steady 

antecedent flow experiments. The most common upward interactions are those with the 

magnitude of momentum less than 7 kg/ms. It is found that in all antecedent flow experiments 

the proportion of these ejections is in the range of 10 - 25 %. The existence of lower values in 

all antecedent flow experiments indicated that there is no coincidence with the different 

pattern of transport found in the same experiments. It is thought that the different pattern of 

momentum distribution in the higher magnitude determines the pattern of bedload transport. 

The observations show that the magnitude of momentum per unit area in the region above 7 

kg/ms removed grains in considerable amounts. The increasing proportion of momentum in 

the range between 9 and 21 kg/ms increased the entrainment of grains in the coarse mode. 

This was seen in all tests (Figure 4.20, 4.32, 4.43 and 4.55). It is also found that the higher 

proportion of high momentum caused the removal of the largest grains available in the bed. 

This is indicated by the changes in the modal grain size of the coarse mode. 

4.4.5. Bed Topography SF I 

The pattern of bed surface topography after steady antecedent flow test SF 1-3, SF 1-6 and SF 

1-9 tend to form diagonal patches. Different bed surface formation than that in the original 

bed becomes apparent, particularly elongated valleys and peaks are established in the 
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measurement area. Different patterns were produced by steady antecedent flow SF 1-12 with 

the concentration of eroded bed in certain areas and the patches are more elongated in the 

streamwise direction. However after the application of the stability test to this bed, a similar 

pattern with the other antecedent flow tests was observed in which diagonal patches are 

formed. Although the antecedent flow Experiment SF 1-12 had the most stable bed, the bed 

features were observed to be continually developing to some extent. The fluid forces in the 

stability test SF 1-12 were still able to remove grains with an increasing proportion in the fine 

mode. Some of these grains were transported downstream and trapped in the collection box 

whilst other grains, mainly coarse, moved in a roning fashion changed the surface of the 

adjacent area. 
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Figure 4.65. The comparison of the bed surface distribution about mean level after antecedent 

flow tests Experiments SF I 

Although the distribution curves of the original bed surface for each test were not exactly 

similar, the antecedent flow tests produced almost identical distribution curves. Looking at the 

distribution of bed surface about the mean (Figure 4.65) it can be seen that there are 

differences in the bed surface caused by slightly different original bed levels. The proportion 

of high exposed bed and the proportion of valleys are identical to each other although closer 

examination indicated that more stable bed of SF 1-9 and SF 1-12 have slightly more large 
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positive and negative excursions from the mean. They also have slightly fewer elevations 

close to the mean. It appears that the number of high positive and negative values is related to 

bed strength, however the pattern is subtle. 

The level of stability fonned by antecedent flow with different durations is also reflected by 

the distribution curves after stability test. The difference between the distribution curve before 

and after stability test was easily recognised in experiment SF 1-3 (see Figure 4.24). The 

differences between the two curves indicate the destabilisation process was very intense 

during the stability test. The differences decreased for the stability tests applied to the bed 

formed by longer antecedent flow tests, with the least difference between curves found in 

experiment SF 1-12 (Figure 4.59). In stability test SF 1-12 only the distribution of bed surface 

elevation around the mean level changed whilst the bed surface elevation at the higher values 

above and below the mean level did not deviate markedly. 

4.5. SUMMARY OF EXPERIMENTS SF I 

The application of the identical stability tests to the beds fonned by different duration of 

antecedent flow shows that the longer the duration of antecedent constant flowrate the 

stronger the bed. This is supported by the threshold of motion data for individual size fraction 

collected during the stability tests. The bedload transport rate pattern suggests that the 

stability test SF 1-3 transported a significantly higher amount of bedload in comparison to the 

other stability tests. During the stability test SF 1-6 the transport rate was less than half of that 

in the stability test SF 1-3. The transport rate was then decreased almost linearly in the 

stability tests for the longer antecedent flow bed SF 1-9 and SF 1-12. This suggests that beds 

were expected to be in a relatively stable condition after they were exposed to at least 6 hours 

of constant flowrates at 0.0338 m3/s. 

It is worth noting that from the threshold of motion observations of all stability tests in 

Experiments SF I the finer grains seem to take a shorter time to gain the maximum stability 

than the coarser grains. In fact the threshold of motion of the coarse grains was still increasing 

even after 12 hours of constant flow. In general, the domination of coarse grains in transport 

during the stability test lasted 40 - 50 minutes. The weaker the bed, the earlier the period of 
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domination started. The considerably higher transport rates were found after the peak 

discharge and higher average bedload transport rate in the later half of stability tests was 

common to all tests. This pattern of behaviour demonstrates that in each stability test the bed 

is progressively becoming weaker once sediment starts to move. This shown by the fact that 

the bedload transport rates in the falling limbs were always larger than the transport rates in 

the rising limbs. Given that there was little or no transport at the end of each of the steady 

antecedent flow test, it is reasonable to assume only the flowrates about 0.0338 m3/s have 

caused significant disruption to the bed surface. Despite having similar hydro graphs, the level 

of disruption was different in each stability test. This was thought to be another characteristic 

of the different levels of bed stability inherent in the beds at the end of each steady antecedent 

flow test. 

The disruption caused by the higher flowrates in the stability test is also believed to 

characterise the changes in the bed surface elevations. The bed surface distribution curves 

before and after stability test are relatively similar compared to the distribution of original bed 

surface. This is very interesting because of the amounts of material transported during the 

stability test was considerably higher than that transported during the antecedent flow test. It 

is believed that the disruption not only eroded and then transported the bed material 

downstream, particularly the exposed grains, but also deposited the material from the 

upstream part. This suggests that the level of bed stability also appeared to be linked to the 

bed surface topography. The more stable beds were characterised by a closer distribution of 

bed surface elevations before and after the stability test. These identical bed surface 

distributions indicated that the variations of peaks and valleys are relatively balanced before 

and after the stability test. 

There are no significant changes in the average nearbed streamwise velocity throughout the 

antecedent flow tests. The average values of nearbed streamwise velocity are reduced slightly 

particularly for the shorter time interval between measurements. This pattern was found not 

only for the single measurement point in the centreline of the measurement area but also from 

measurements of different points in a grid. These measurements indicated that there could be 

spatial variation in average nearbed velocity. Although these variations reduced with time, 

they do not follow the transport rate pattern. A similar pattern was seen for the average bed 
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shear stress, but with a slightly wider variation. This is thought to be due to the distribution of 

instantaneous vertical velocity. There was a variation in the vertical velocity distribution as 

the bed surface structure was continually changing during the experiment. By looking at the 

flow behaviour in the bursting events, it was found that during the antecedent flow tests 

Experiment SF I the upward interactions or ejections were more frequent than the downward­

looking bed interactions or sweeps. The average duration of these events is relatively similar. 

This suggests that the duration of bursting events is not a good measure of their potential 

impact on transport. It was observed that the high momentum of ejections are responsible for 

transporting the coarse grains. The existence of ejections with high magnitude of momentum 

not only transports a considerable amount of bedload but also detennines which mode of 

transport (coarse or fine) dominates the bedload composition. 
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v. EXPERIMENTAL RESULTS OF UNSTEADY FLOW EXPERIMENTS UF II 

5.1. INTRODUCTION 

In this chapter three antecedent flow tests with a short steady flow and with different duration 

of declining flow are observed. The duration of the steady flow was 3 hours with a similar 

steady flow discharge of 0.0338 m3 Is. This was followed by declining flow of 3, 6 and 9 hours 

in duration to fonn experiments with total duration of 6, 9 and 12 hours respectively. The 

results of each experiment which have been identified as UF 2-6 (6 hours duration), UF 2-9 (9 

hours duration) and UF 2-12 (12 hours duration), are described and then discussed together 

with the observations made during their subsequent stability tests. 

The aim of these experiments was to examine the influence of different declining rates of flow 

discharge on grain sorting and bed stability. Similar to the Experiment SF I this chapter is also 

divided into four sections based on the type of observations made. This was intended to make 

a comprehensive comparison between different type of flow hydro graph. The first section is 

focused on stability analysis. It describes the results of short duration of 'standard' 

hydro graphs applied to all experiments to assess the stability of water worked bed at the end 

of the antecedent flow tests. The standard hydrograph used in these experiments is identical to 

that used in Experiment SF I. It has a peak discharge larger than the maximum discharge 

applied during the antecedent flow experiments. The discharge rose from a base flow of 

0.0075 m 3/s to a peak flowrate of 0.0375 m 3/s in a time of60 minutes. 

The second section describes the results of each antecedent flow to obtain the condition 

before the stability test is applied. The observations consist of transport pattern and bedload 

composition that characterise the bed surface at the end of antecedent flow test. In this section 

bursting events was also investigated, as well as the changes in the average "instantaneous" 

nearbed streamwise velocity and bed shear stress. The bed topography analysis was then 

carried out to complete this section. The third section is containing the comparative results of 

all antecedent flow and the stability test, which linked and discussed those observed in the 

first and the second section. The fourth section is the summary of Experiment UF II. 
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S.2. STABILITY TESTS OBSERVATIONS UF n 
5.2.1. Transport Rate Measurement UF n 
Different features than those found in stability test of steady antecedent flow are experienced 

by stability test of unsteady antecedent flow Experiment UF II. The result of stability tests in 

Figure 5.1 shows that the bed formed by 3 hours constant flow rate and 6 hours declining flow 

rate UF 2-9 is the weakest. The transport rate increased significantly after the flow reached its 

peak discharge. At this stage the amount of material removed at similar level of flow rate in 

the rising limb and the falling limb is noticeably different. The transport rate during the last 

10 minutes of the rising limb is 3.2 gls/m compared to 4.6 gls/m transported during the initial 

10 minutes of the falling limb. This means that after peak discharge passed the transport rate 

is 43.4 % higher within the same period of observation. The transport rate at different time 

elapsed during falling limb are also higher than those transported at the similar level of 

discharges during rising limb. 
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Figure 5.1. Bedload transport rate pattern during stability tests Experiments UF II 

Stability test applied to antecedent flow with shorter declining flow UF 2-6 shows that 

although the average transported bedload during falling limb is higher than rising limb, the 

peak discharge caused less disruption to the bed. The transport rate during the last 10 minutes 

of the rising limb is 2.0 gls/m compare to 2.8 gls/m transported during the initial 10 minutes 
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of the falling limb. This means the transport rate increased 39.3 % within the same period of 

observation shortly after the peak discharge passed. This is a lower rate than in the stability 

test UF 2-9, which indicates that the beds were more resistant to the fluid forces at the peak 

discharge for this experiment. The transport rate at different time elapsed during the falling 

limb are also higher than those transported at similar level of discharges during the rising 

limb. 

The most stable bed in this group was produced by the longest declining antecedent flow. A 

very low transport rate was measured during the stability test with the longest declining flow 

duration UF 2-12. This suggests the bed that previously exposed by the combination of 3 

hours constant flow and 9 hours of slowly declining flow was very stable. A mere transport 

rate of 0.099 g/s/m was produced during the last 10 minutes of the rising limb and slightly 

lower rate at 0.094 g/s/m during the first 10 minutes of falling limb. This is very interesting as 

the transport rate during the similar level of flow discharge before and after the peak 

discharge is slightly lower rather than significantly increased as experienced in the other two 

stability tests of Experiment UF 2-6 and UF 2-9. It is suspected that the declining flow with 

longer duration in antecedent flow Experiment UF 2-12 contributed to a strong reorganising 

process of the bed structure. Lower levels of declining flow may still contributed to the 

movement of finer grains but not in rigorous fashion allowing these grains to find numerous 

stable positions. However different features have been shown by stability test UF 2-6 and UF 

2-9, and therefore require further investigation. 

As shown in Figure 5.1 it is quite clear that although different levels of bed stability have 

been found, only the high levels of fluid forces at the peak discharge was able to destabilise 

the previously formed armoured bed. As mentioned earlier the transport rate is generally 

increased with increasing discharge but the rates of increase were sporadic when the flow 

passed its peak discharge. The stability test of UF 2-6 and UF 2-9 have indicated that the beds 

were intensely disrupted at the highest discharge and exhibit even higher transport rates 

shortly afterwards. Different features, which were experienced by the stability test Experiment 

UF 2-12, and the pattern that the duration of the antecedent flow test did not automatically 

coincide with the level of stability leads to the assumption that there is an influence of the 
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type of declining flow hydrograph on the bed stability. The influences of rapid declining flow 

in stability test UF 2-6, the medium duration of declining flow in stability test UF 2-9 and the 

longer duration of decline in stability test UF 2-12 will be examined further in the next section 

of this chapter. 

5.2.2. Grain Size Distribution of Transported Bedload UF II 

In order to compare the transport rate pattern and the grain size distribution, it is necessary to 

observe the pattern of transported bedload during the stability tests. This data for the stability 

test Experiment UP 2-6 suggests that at the initial stage of the stability flow only finer grains 

were carried. The grains in the coarse mode started to appear in transport at time elapsed 40 

minutes. It was when the flow reach its peak discharge at time elapsed 60 minutes the 

dominance of coarser grains is clearly apparent with 72.1 %. At this time only 17.3 % of 

transported bedload was the grains in the fine mode. At similar levels of flowrates in the 

falling limb, the amount of coarser grains in transport increased but the proportion is 

decreased because of the finer grains also increased considerably. At this time elapsed the 

proportion of grains in the coarse mode is 70.4 % while grains in the fine mode is 17.6 %. 

Interestingly grains in the coarse mode continuously dominated the transport from time 

elapsed 60 minutes to the end of the stability test. This underlines the importance of the 

coarser grains in determining the overall bed. It is believed that the rapid decrease during the 

antecedent flow stops all grains motion relatively quickly. This resulted in a low degree of 

sheltering of grains irrespective ofthe size. 

It is noticeable that the finer grain sizes of 0.25 mm, 0.355 mm and 0.5 mm gave a consistent 

and significant contribution during the initial stages of the stability test (Figure 5.2). From 

time elapsed 60 minutes, it was the tum of grains of size 4 mm, 5.6 mm and 8 mm to 

contribute most to the transported bedload. In terms of total bedload transport, the importance 

of larger grains during the stability test of experiment UF 2-6 becomes more apparent. Table 

5.1 shows that the percentage of grains in the coarse mode and grains in the fine mode of the 

total bedload transported during stability test are 67.4 % and 20.3 % respectively. The 

composition of the total bedload transported was also calculated so that the bed surface 

composition at the end of the test can be estimated. 
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Figure 5.2. Grain size distribution of transported bedload for stability flow 

Experiment UF 2-6 

10 

A different feature in transport pattern is experienced by stability test UF 2-9. The grain size 

distribution of transported bedload suggests that the coarse mode started to move at the lower 

level of flowrates in comparison to the stability test UF 2-6. The presence of grain of size 5.6 

mm in the coarse mode at time elapsed 10 minutes can be discounted as the possibility of only 

a single grain in this size fraction was accidentally transported and hence produced the "false" 

proportion in Figure 5.3. However this assumption is unlikely to be valid at other stages of 
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Table 5.1. Summary of the average fractional bedload composition produced by 

stability tests UF II 

Sieve Fractional transported bedload Estimated composition of surface layer 
size (%) (%) 

(mm) UF2-6 UF 2-9 UF 2-12 UF2-6 UF 2-9 UF 2-12 

10 0.214 0.854 0.000 1.773 1.778 1.733 

8 7.395 6.475 3.266 8.656 8.739 8.573 

5.6 38.074 37.153 32.419 34.744 34.855 34.710 

4 21.895 24.279 14.936 19.6l3 19.534 19.665 

2.8 4.747 4.924 4.420 6.931 6.962 6.892 

2 1.781 1.497 2.286 3.582 3.621 3.546 

1.4 1.136 0.921 1.916 2.547 2.580 2.522 

1 1.284 1.136 1.981 1.863 1.878 1.854 

0.71 2.065 1.949 2.939 2.678 2.684 2.679 

0.5 6.350 5.904 6.771 6.763 6.736 6.810 

0.355 9.l37 8.799 12.693 7.240 7.142 7.346 

0.25 4.797 4.949 10.647 2.589 2.496 2.652 

0.15 1.032 1.097 5.291 0.923 0.895 0.919 

receiver 0.093 0.062 0.435 0.099 0.100 0.098 

Total 100 100 100 100 100 100 

low flowrates at time elapsed 20 and 30 minutes because a number of grain sizes in the coarse 

mode are moving. The domination of grains in the coarse mode in transport lasted from time 

elapsed 20 minutes to time elapsed 90 minutes. The contribution of grains in the coarse mode 

continued until the last 10 minutes of observation in the falling limb. This means the 

corresponding low discharges at 100 and 110 minutes in the falling limb were also able to 

remove grains in the coarse mode but with very low transport rate. As shown in Figure 5.3 

only finer grains were transported during the last 10 minutes of the falling limb (time elapsed 

120 minutes). 

As experienced by stability test UF 2-6 the extreme increase of transport rate occurred in the 

last 10 minutes of the rising limb. The proportion of grains in the fine mode transported 

during this time elapsed is 16.6 %. This is almost similar to that transported during the same 

time in stability test UF 2-6. The proportion increased to 18.8 % during the corresponding 

flowrates in the falling limb. Stability test UF 2-9 also transported more material in the coarse 
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Figure 5.3. Grains size distribution of transported bedload for stability flow 

Experiment UF 2-9 
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mode than in stability test UF 2-6. The proportion at time elapsed 60 minutes is 72.8 %. The 

amount of the coarse mode at time elapsed 70 minutes increased significantly but the 

proportion is decreased to 68 .1 % as the result of an increase in the proportion of fine mode. 

This is an indication that the bed formed by antecedent flow UF 2-9 was less stable than the 

bed formed by antecedent flow UF 2-6 particularly in regard to the amount of coarse grains 

transported during the high flowrates . 
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In terms of the total amount of bedload transported during the stability flow of Experiment 

UF 2-9, grains in the coarser mode contributes 67.9 % while grains in the fine mode is 19.7 % 

(Table 5.1). These proportions are almost similar to those obtained in stability test UF 2-6 

with a slightly higher proportion in the coarse mode and slightly less proportion in the fine 

mode. 

The results of stability test of experiment UF 2-12 suggest the removal of grains both in the 

fine and coarse modes were extremely difficult. The stability test UF 2-12 defining a very low 

transport rate of bedload even at the peak flowrate that it is almost incomparable to the 

stability test experiment UF 2-6 and UF 2-9. The bedload transport rate decreased from the 

last 10 minutes of the rising limb to the corresponding discharge in the first 10 minutes of the 

falling limb. This pattern was not found in the stability tests UF 2-6 and UF 2-9. A 

considerably longer declining flowrates of 9 hours is believed to be the main factor in forming 

the strong and stable bed condition. The low transported rate suggests that both the finer and 

coarser grains were strongly bounded as the result of being exposed by longer antecedent 

flows. Although grains in the coarse mode started to move at time elapsed 40 minutes, its 

amount is extremely low. Even the peak flowrate of 0.0375 m3/s was unable to increase the 

amount of bedload both in the fine and the coarse mode. Proportionally, grains in the coarse 

mode dominated the transport until time elapsed 100 minutes. In the last 20 minutes it was 

hard to see bedload movement, either for grains in the fine mode or grains in the coarse mode. 

Unlike the other two stability tests which have different proportions of both fine and coarse 

mode transported during the whole duration, stability test UF 2-12 suggests different 

behaviour. The difference of the proportion between the fine mode and the coarse mode is 

narrowed. Grains in the fine mode contributed 30.1 % of the total bedload in comparison to 

50.6 % grains in the coarse mode. In the other two tests the proportion of fine sediment to 

coarse sediment in the bedload was almost constant with approximately 67 % in the coarse 

mode and 20 % in the fine mode. At the end of the rising limb of stability test UF 2-12 grains 

in the coarse mode were slightly more dominant than grains in the fine mode with the 

proportion of 43.2 % and 33.7 % respectively (Table 5.1). The proportion at the first 10 

minutes of the falling limb is 25.6 % for grains in the fine mode and 58.7 % for grains in the 

coarse mode. It is also noticed that grain diameter 8 mm in the coarse mode was absent in the 
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Figure 5.4. Grain size distribution of transported bedload for stability flow 

Experiment UF 2-12 
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transported bedload during the most time elapsed in this test. The only time when the 

appearance of this grain size was seen was at time elapsed 50 minutes, with only 1.5 grams 

were transported. This supported the condition that the bed formed by a long declining 

antecedent flow was very stable. The transport rate is very low with an increasing proportion 

of grains in the fine mode and significant reductions in the movement of coarse grains. 
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5.2.3. Fractional Threshold of Motion UF II 

The threshold of motion for the individual grain size fractions for each stability test was 

estimated using a similar method applied in the stability tests reported in Chapter 4 (Figure 

5.5, Figure 5.6 and Figure 5.7). As mentioned earlier in this chapter the bed formed by 

antecedent flow UF 2-9 is the weakest bed. This is a very interesting feature as the findings in 

the steady antecedent flow experiments underlined that longer antecedent flow durations 

formed the strongest beds. This is apparently not the case for the bed formed by this 

combination of constant and declining flow hydrograph. It is then very important to observe 

the factors or parameters causing these differences. The assumption is that the sediment 

behaviour in declining flow periods influenced the level of stability. 

Figure 5.5, Figure 5.6, Figure 5.7 and Table 5.2 show that the non dimensional shear stress 

parameter, 'tri*, for incipient motion of individual fractions decreases with increasing grain 

size. As found in the observation of the stability tests for steady antecedent flow, slightly 

diferent patterns were experienced by grain sizes 1 mm and 0.71 mm. This was thought to be 

primarily due to their very low availability in the original bed mixtures. As these grains have 

no significant influence on the amount of transport, further analysis was therefore focused on 

the grain sizes in both modes. The shear stress parameter, 'tri*, for stability test UF 2-9 are the 

lowest in comparison to those for stability test UF 2-6 and UF 2-12. It is also shown that some 

values ofUF 2-6 are very close to the values ofUF 2-12. More scattered values of shear stress 

parameter, 'tri*, for grain sizes 0.5 mm and 0.355 mm are found in the stability test UF 2-12 

(Figure 5.7). This suggests that there was a wider variation in the average bed shear stress 

estimated from ADV measurement in comparison to those in the stability tests UF 2-6 and UF 

2-9. In all stability tests the shear stress parameter, 'tri*, for grains of diameter 10 mm are not 

available as this grain size was absent in transport. Hence no experimental information was 

available to derive the parameter for this grain fraction. Similar problems for the grains of 

diameter 8 mm in stability test UF 2-12. In stability test UF 2-12 these grains existed in 

transport but only at very limited time elapsed so that there was insufficient data to draw a 

representative value for 'tri* (Table 5.2). 
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Table 5.2. Non dimensional shear stress parameter, 'tri*, and the error bounds 

for grain size fractions of stability tests UF II 

Grain size UF 2-6 UF2-9 UF 2-12 

(mm) 'tri* Error bounds trl* Error bounds trl* Error bounds 

10 - - - - - -

8 0.0092 0.0091 - 0.0092 0.0082 0.0081 - 0.0084 - -

5.6 0.0120 0.01 18 - 0.0126 0.0110 0.0107 - 0.01 14 0.0130 0.0122 - 0.0140 

4 0.0160 0.0156 - 0.0179 0.0130 0.0130 - 0.0136 0.0210 0.0210 - 0.0212 

2.8 0.0320 0.0310 - 0.0324 0.0230 0.0221 - 0.0232 0.0330 0.0317 - 0.0330 

2 0.0400 0.0400 - 0.0424 0.0310 0.0303 - 0.0323 0.0420 0.0409 - 0.0420 

1.4 0.0570 0.0570 - 0.0610 0.0440 0.0433 - 0.0463 0.0600 0.0555 - 0.0618 

1 0.0530 0.0530 - 0.0544 0.0430 0.0418 - 0.0430 0.0550 0.0524 - 0.0550 

0.71 0.1070 0.1014-0.1135 0.0710 0.0700 - 0.0734 0.1100 0.1100 - 0.1200 

0.5 0.l300 0.1230 - 0.1342 0.1000 0.0936 - 0.1071 0.1600 0.1540 - 0.1600 

0.355 0.2000 0.1852 - 0.2074 0.1300 0.1234 - 0.1324 0.2200 0.2123 - 0.2217 

0.25 0.2500 0.2420 - 0.2642 0.2100 0.2048 - 0.2200 0.2700 0.2450 - 0.3000 

0.15 0.4000 0.4000 - 0.4210 0.3000 0.2920 - 0.3100 0.4400 0.4250 - 0.4625 

Table 5.3. Critical shear stress, 'tei , and hiding function values, Els , 

for grain size fractions in stability tests UF II 

Grain size UF 2-6 UF2-9 UF 2-12 

(mm) tei (N/m2) Eis tel (N/m2) Els 'tel (N/m2) Eis 

10 - - - - - -
8 1.191 0.164 1.062 0.146 - -

5.6 1.088 0.214 0.997 0.196 1.178 0.232 

4 1.036 0.286 0.842 0.232 1.360 0.375 

2.8 1.450 0.571 1.042 0.411 1.496 0.589 

2 1.295 0.714 1.004 0.554 1.360 0.750 

1.4 1.292 1.018 0.997 0.786 1.360 1.071 

1 0.858 0.946 0.696 0.768 0.890 0.982 

0.71 1.230 1.911 0.816 1.268 1.264 1.964 

0.5 1.052 2.321 0.809 1.786 1.295 2.857 

0.355 1.149 3.571 0.747 2.321 1.264 3.929 

0.25 1.012 4.464 0.850 3.750 1.093 4.821 

0.15 0.971 7.143 0.728 5.357 1.068 7.857 
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The examination of the fractional critical shear stress 'rei found encouraging results. The 

different values of non dimensional shear stress parameter 'rri* in Table 5.2 produced different 

critical shear stress for each grain size fraction . It was expected that the mobility of finer 

grains decreased while the mobility of coarser grains increased in relation to their behaviour 

on uniform beds. It can be seen that the weakest bed that was formed by antecedent flow 

UF 2-9 is clearly supported by the lower threshold of motion of all the grain size fraction 

available on this bed (Table 5.3 and Figure 5.8). This is reflected in the amount of bedload 

transported during the stability test UF 2-9 being higher than the other two tests (Figure 5.1). 

It can be said that the bed formed by 3 hours constant flow and 6 hours declining flow 

hydrograph (UF 2-9) has the lowest thresholds of motion. The bed formed by the 

combination of 3 hours constant flow and 9 hours declining flow hydrograph (UF 2-12) has 

the highest thresholds of motion for all grain sizes measured. It was impossible to make an 

estimate for the thresholds of motion of 8 mrn grains in UF 2-12 due to the very small amount 

of bedload during the stability test. 
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Figure 5.8. The critical shear stress, 'rei , for grain size fraction in terms of grain size Di 

for the stability tests UF II 

10 

Figure 5.9 shows the "hiding function type" adjustment required to predict the variation in the 

threshold of motion. Hiding function is calculated using Equation 4.3. It is seen that there are 
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wide variations throughout the grain size range unlike the constant flowrate tests in which the 

finer grain sizes has reach a constant stability and the coarser grains ' stability varied directly 

with time. 

In the stability tests UF II the finer grains exhibit different thresholds of motion. In the 

stability tests UF 2-6 and UF 2-12 the thresholds of motion up to D/ Dso = 0.2 are very similar 

while in the stability test UF 2-9 the finer grains moved at considerably lower values of shear 

stress. In all the tests the coarser grains also exhibited different thresholds of motion. This 

pattern of grain size fraction thresholds suggests the following pattern of armour 

development. Initially only the very exposed coarse and fine grains moved. Once this has 

been accomplished the sediment left has a reasonable stability mainly due to the relative size 

of the grains, i.e. coarse grains physically shelter the fine grains. This is the end state ofUF 2-

6 . As the higher tlowrate section is extended, the flow now has a chance to sort the bed by 

removing the less stable fines. This also has the consequence of making the larger grains more 

exposed. These start to move and other deposit in more stable locations. However it is 

postulated that at the end of the higher tlow 'mobile' section of test UF 2-9 this point had only 

just been reached with very few of the coarser grains finding the more stable positions. In the 

10.0~-------------------------------------------------------' 

~ 1.0 

UF2-6 

• UF2-9 

• UF2-12 

0.5 1.0 1.5 2.0 

Figure 5.9. Hiding function, tis, derived from fractional threshold conditions 

for stability tests UF II 
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stability test UF 2-12 there was significantly more mobility with the coarser grains, which 

were able to find stable positions. The finer grains were now more abJe to find shelter and 

thus their threshold of motion also slightly increased. It is clear that the coarser grains only 

become more stable if they are given an extended period in which to find stable positions. If 

this period is further extended then the finer fractions can now find greater shelter behind 

these stable coarse grains. The weakest beds are formed when the fine grains are initially 

removed but the coarse grains have insufficient mobility to fmd their most stable posjtions. 

This picture of armour layer development will be confirmed by observations of bedload and 

composition made during the antecedent parts of the unsteady flow tests UF 2-6, UF 2-9 and 

UF 2-12. 

5.3. OBSERVATIONS OF ANTECEDENT FLOW EXPERIMENTS UF II 

5.3.1. UNSTEADY ANTECEDENT FLOW EXPERIMENT UF 2-6 

5.3.1.1. Bedload Transport Rate and Composition UF 2-6 

Initial stages of antecedent flow produced a low transport rate (Figure 5.10). After 30 minutes 

a relatively sharp increase is noted. In the first 60 minutes the average transport rate is 0.134 

gls/m. It increased in the next 120 minutes before reducing to a low value at about 240 

minutes. Although the bedload collected at djfferent time elapsed within the constant flow 

hydro graph, with the interval of 10 minutes, showed fluctuation in transport, the average 
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Figure 5.10. Time variation of transport rate for antecedent flow Experiment UP 2-6 
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hourly rates from 60 to 180 minutes are almost constant. The average transport rates at this 

period is 0.166 g/s/m between 60 to 120 minutes and 0.167 g/s/m between 120 to 180 minutes 

respectively. 

The transport rate analysis carried out in the previous chapter indicates that the bed was 

highly mobile during the first 180 minutes. Even though the flowrate was constant for the 

whole duration of experiment, the transport rate decreased after about 180 minutes. In this 

chapter a similar tendency is found but the declining transport rate following 180 minutes 

time elapsed is also due to the declining flow hydro graph. In Figure 5.10, as the flow 

hydro graph started to decline at time elapsed 180 minutes, the transport rate gradually 

decreased in the following hour. Within this period the average transport rate is 0.061 gls/m. 

After this period the bedload transport rate becomes very low. The bedload decreased with an 

average transport rate of 0.006 gls/m which was almost constant during the remaining hours 

of the test. 

Observation of the bedload composition transported during antecedent flow UF 2-6 shows 

that the bedload was dominated by grains in the fine mode. As can be seen from Figure 5.11, 

the samples collected from 10 to 150 minutes indicate that sediment in the fine mode 

transported more than the coarse mode. The rate of transport by the fine mode then reduced. 

At time elapsed 160 minutes the proportion of grains in the coarse mode was slightly higher 

than the grains in the fine mode. Interesting features are shown by the curve of time elapsed 

10-40 minutes. At this time the contribution of all grains in both modes are apparent. The 

wash-away process of fine grains is reflected by the curve representing the fine mode, which 

is skewed to the left indicating that even the smallest grains available on the bed was 

transported. This time elapsed also transported small numbers of the larger grains with 

diameter of 8 mm, which must have been very exposed. This grain size was absent for almost 

the remaining duration. It only appeared again in transport at time elapsed 190 minutes. This 

suggests that the level of exposure of this grain size progressively probably due to the 

movement of grains in the fine mode. The grains in the coarse mode had become less stable 

and no longer resistant to the available fluid forces even though at time elapsed 190 minutes 

the flow was declining. Another interesting feature is shown by the curves of time elapsed 

230-280 minutes. No grains in the coarse mode transported during these periods. Only grains 
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from diameter 2 mm to the finest were transported. The distribution curve representing these 

times only produced a single mode, the fine mode with a considerably high proportion. 
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Figure 5_11. Grain size distribution oftransported bedload for antecedent flow 

Experiment UF 2-6 

The active erosion depth was estimated based on the size of the largest grain dlOo and was 

used in the calculation of grain size composition left on the surface of the bed after antecedent 

flow. Table 5.4 shows that grains in the fine mode contributed more than grains in the coarse 
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mode to the transport rate as suggested by the distribution curve in Figure 5.11. The bed 

surface composition changed slightly but with larger variations in the finer size fractions. 

Little difference was noted in the surface proportions of the coarse grains. 

Table 5.4. Summary of the average fractional bedload composition 

produced by antecedent flow Experiment UF 2-6 

Grain size Original Fractional Estimated 

(mm) composition of transported composition of 
surface layer (%) bedload (%) surface layer (%) 

10 1.730 0.000 1.746 

8 8.570 1.803 8.634 

5.6 34.660 19.875 34.800 

4 19.600 14.184 19.651 

2.8 6.860 3.311 6.894 

2 3.530 1.245 3.552 

1.4 2.510 1.175 2.523 

1 1.850 1.481 1.854 

0.71 2.680 3.953 2.668 

0.5 6.840 15.721 6.756 

0.355 7.420 22.930 7.273 

0.25 2.710 11.526 2.626 

0.15 0.940 2.546 0.925 

receIver 0.100 0.250 0.099 

Total 100 100 100 

5.3.1.2. Variations of Average Nearbed Streamwise Velocity and Bed Shear Stress 

UF2-6 

In antecedent flow Experiment UF 2-6 measurement of nearbed streamwise velocities were 

also carried out at a number of times at the central point of the measurement grid. Figure 5.12 

shows that for the period of constant flowrate, limited observation were available because of 

the measurement and observation of nearbed streamwise velocity in the grid were also carried 

out during the course of the constant discharge section. 

It can be seen from Figure 5.12 that the average nearbed streamwise velocity is sensibly 

constant between the start to the time elapsed 180 minutes. It is understandable since the flow 
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applied over the bed was kept constant at the discharge of 0.0338 m3/s. The values of average 

velocity reduced slowly after 180 minutes corresponding to the declining flowrate. The 

variation in the average values of bed shear stress, roo , is very small and almost constant in the 

first 180 minutes. The bed shear stress was estimated using Equation 3.14 and the average 

values was calculated using Equation 3.16. From 180 to 270 minutes the average bed shear 

stress drops quickly and consistently as the flowrate reduces. However an inconsistent 

variation is found just before the last hour of experiment. This is thought to be due to the low 

flow depth where the possible failure to the ADV probe influenced the measurement. 
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Figure 5.12. Variation of time averaged nearbed streamwise velocity and bed shear stress 

during antecedent flow Experiment UF 2-6 

Data similar to those collected in the steady antecedent flow experiments were used to 

investigate the changes in the average nearbed stream wise flow velocity of the grid points by 

comparing the results of measurements at two series of different time elapsed. The constant 

flowrate lasted only 3 hours so that the time interval between measurement was relatively 

short (125 minutes). The results of the observations are presented in Table 5.5 and Figure 

5.13. It shows that the average nearbed streamwise flow velocity of each grid point was 

generally increased after 125 minutes but not very significant. The range of variations is 

between 1.4 to 6.8 % except at point El. This point experienced a high decrease in the 

average nearbed streamwise flow velocity. The second measurement gives the lowest values 

among all the other points. It is suspected that high fluctuation occurred at this point where 
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the individual values were dispersed from the mean as indicated by higher standard 

deviations. This pattern indicates the possibiUty of different distribution in the nearbed 

streamwise velocity over a relatively small area. As flow discharge was kept constant, it is 

suspected that the variations in average streamwise velocity at point El were SUbjected to the 

changes in the bed surface structure caused by temporal variation in sediment transport. The 

integrated effects of the fluid velocities over and around grains destabilise the sediment and 

produced movement to form different bed surface at different time. 

1 , 

Table 5.5. Variations of the average nearbed streamwise velocity and 

the standard deviation in antecedent flow Experiment UF 2-6 

First measurement Second measurement Changes 
Points (time elapsed 3 minutes) (time elapsed 128 minutes) ofVx 

Vx (m/s) cr (m/s) Vx (m/s) cr (m/s) (%) 

Al 0.477 0.095 0.497 0.100 4.193 (+) 

A3 0.559 0.094 0.578 0.094 3.399 (+) 

AS 0.496 0.097 0.513 0.100 30427 (+) 

E l 0.488 0.098 0.388 0.308 200492 (-) 

E3 0.567 0.095 0.585 0.092 3.175 (+) 

E5 0.512 0.098 0.528 0.097 3.125 (+) 

11 0.497 0.093 0.504 0.097 10408 (+) 

I3 0.559 0.097 0.575 0.092 2.862 (+) 

15 0.501 0.097 0.535 0.094 6.786 (+) 

Average 0.517 0.096 0.513 0.119 

A+- 120 mm ---.. E~ 120 mm -+ I 

-
0.488(0.388) 0.497(0.504) 

60mm 
0.477(0.497) ---, 

3 -, 
60 mm , 

5 

......0-
0.559(0.578) 0.567(0.585) 0.559(0.575) 

--------~O~---------~O----------OQ--------~~~ 
0.496(0.513) 0.512(0.528) 0.501 (0.535) 

Figure 5.13 . Distribution of average nearbed streamwise velocity (m/s) in antecedent flow 

Experiment UF 2-6 (first measurement in bold, second measurement in brackets) 

Table 5.6 and Figure 5.14 shows that the patterns of average bed shear stress do not 
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automatically follow the pattern in average nearbed velocity. The variations of these values 

are much wider. The increases and reductions at the grid points indicating no systematic 

pattern. The most possible factor for this variation is the variation in the vertical velocity. The 

level of fluctuation of bed shear stress increased with time, with the standard deviation 

increasing at each grid point. It is very clear that the wide and scattered values of the average 

bead shear stress in Table 5.5 is the indication that the fluctuation of flow velocity in vertical 

direction was continued during the observation in constant flowrates. Normally when the 

streamwise velocity experience a low variation, a small variation in bed shear stress was 

expected if the fluctuation in vertical velocity were also small. However this appeared not to 

be the case. 

1 

Table 5.6. Variations of the average bed shear stress and the standard deviation 

in antecedent flow Experiment UF 2-6 

First measurement Second measurement Changes 

Points (time elapsed 3 minutes) (time elapsed 128 minutes) ofi 
T ' (N/m2

) cr (N/m2
) T' (N/m2

) cr (N/m2
) (%) 

Al 0.761 14.658 -0.795 15 .154 204.468 (- ) 

A3 8.107 16.880 3.074 18.818 62.082 (- ) 

A5 3.433 16.562 1.498 17.621 56.365 (-) 

El 0.015 15.525 0.199 17.411 1226.667(+) 

E3 -0.890 16.964 6.992 18.466 885.618(+) 

E5 4.161 16.853 4.584 17.445 10.166 (+) 

II -2.184 15,630 -2.324 16.569 14,000 (- ) 

13 10.384 17.894 9.735 18.700 6.250 (- ) 

15 2.164 16.328 5.357 17.666 147.551(+) 

Average 2.883 16.366 1.890 17.539 

A+- 120 mm ---'E"- 120mm -+ I 

-
60mm 

0.761 (-0.795) 0.015(0.199) -2.184{-2.324) --3 -
8.1070.074) -0.890(6.992) 

60 mm 
" 5 a. 

3.433(].498) 4.161(4.584) 2.' 64(5.357) 

Figure 5.14. Distribution of average bed shear stress (N/m2
) in antecedent flow 

Experiment UF 2-6 (first measurement in bold, second measurement in brackets) 
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5.3.1.3. Bursting Events and Flow Momentum UF 2-6 

A different pattern of bursting events than those experienced in all steady flow experiments is 

shown in Experiment UF 2-6. It has been found that during the constant discharge of 

antecedent flow experiments the ejections are generally more common than sweeps. In 

antecedent flow Experiment UF 2-6 the number of occurrences of sweeps is higher than 

ejections (Table 5.7). The difference is even lower in the falling limb. In general the average 

duration of both events is observed to be almost similar throughout the antecedent flow 

Experiment UF 2-6. The variation in the average duration is very small particularly in the 

falling limb. The frequency of bursting events in the falling limb is slightly higher than in the 

constant flowrates section. This means that in the decelerating flow more events were 

observed. However it is unclear whether the declining flow is the reason for this phenomenon. 

Table 5.7. Time frequency and the proportion of occurrences of bursting events 

in antecedent flow Experiment UF 2-6 

Parameter descriptions Frequency Proportion Average 
(Hz) (%) duration (sec.) 

Constant flowrate 
Ejections 0.945 47.487 0.050 

Sweeps 1.045 52.513 0.053 

Falling limb 
Ejections 0.982 48.372 0.052 

Sweeps 1.048 51.628 0.051 

Four different time elapsed are selected to observe the pattern of momentum magnitude in 

relation to the change in the grain size distribution of transported bedload. The summary of 

those time elapsed are shown in Table 5.8. Although time elapsed 150 and 290 minutes have 

different pattern in the bursting events, the mode of transported bedload seems to be almost 

similar (Figure 5.15). It should also be noted that the mathematical definition of bursting 

events (see Equation 2.12) means that the threshold value declines as the flow velocity 

reduce. This means that the information on the frequency and duration of bursting events may 

not be as useful as in the steady flow tests. 

198 Y. Saadi 



-~ !-
"C 
CII 
c: 
iii -Ii! -c: 
CII 
u ... 
CII a.. 
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Table 5.8. Summary of bursting events at selected time elapsed in antecedent flow 

Experiment UF 2-6 

Parameter descriptions Time elapsed (minutes 
150 190 230 290 

Threshold values (m2/l) 0.0071 0.0074 0.0065 0.0049 
Number of ejections 197 189 209 206 
Number of sweeps 214 207 213 178 

Frequency of ejections (Hz) 0.985 0.945 1.045 1.030 
Frequency of sweeps (Hz) 1.070 1.035 1.065 0.890 
Average duration of ejections (s) 0.050 0.051 0.052 0.049 
Average duration of sweeps (s) 0.053 0.048 0.053 0.049 
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Figure 5.15. Grain size distribution of transported bedload at selected time elapsed in 

antecedent flow Experiment UF 2-6 

The general pattern found in steady flow experiments is that the high momentum of ejections 

is very important in transporting coarser grains. The similarity in the modes of transported 

bedload at time elapsed 150 and 290 minutes may be explained by examining the probability 

density of the momentum per unit area of both time elapsed (Figure 5.16). The earlier time 

produces more sweeps in the range between -9 to -3 kg/ms. However at both time elapsed the 

flows were able to remove the finer grains. A more noticeable difference is found in the 

upward interactions. During time elapsed 150 minutes the momentum was dominated by the 

values between 3 and 7 kg/ms whereas time elapsed 290 minutes was clearly dominated by 

the lower momentum (1 to 5 kg/ms). Time elapsed 150 minutes also had many values of 
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momentum in the range between 15 and 19 kg/ms while time elapsed 290 minutes had many 

values between 5 and 11 kg/ms. This is understandable as the earlier time elapsed was in the 

constant flow with the higher discharge and the latter time elapsed was in the falling limb of 

flow hydro graph with low and declining discharge. The average instantaneous streamwise 

velocity at time elapsed 150 minutes was 0.585 m/s whilst at time elapsed 290 minutes was 

0.384 mls. Although the proportion of transported bedload for both modes at time elapsed 

150 and 290 minutes were almost similar, the different pattern of momentum in bursting 

events influenced the amount of transport. At time elapsed 150 minutes 5.159 grams (33.4 %) 

of grains in the coarse mode and 8.226 grams (53 .3 %) of grains in the fine mode were 

transported. These are considerably higher than the amount transported at time elapsed 290 

minutes. At time elapsed 290 minutes only 0.086 grams (28.7 %) of grains in the coarse mode 

and 0.164 grams (54.8 %) of grains in the fine mode were transported. The higher momentum 

available during the earlier time elapsed were strong enough to remove higher amounts of 

coarser grams. 

Further investigation at time elapsed 190 and 230 minutes have been made. At time elapsed 

190 minutes the sweeps were prevalent than the ejections. However, proportion of transported 

grains in the coarse mode was still relatively high. The amount of grains in the coarse mode in 

transport is 3.576 gram (41.4 %) whilst grains in the fine mode is 3.749 gram (43.4 %). A 

noticeable proportion of the momentum of upward interactions with the magnitude between 

11 to 17 kg Ims is believed to be the contributor in transportation of grains in the coarse mode 

at time elapsed 190 minutes. A different distribution of momentum of the ejections is shown 

by time elapsed 230 minutes. Theoretically, the momentum with the values in the range 

between 9 and 13 kg/ms would contribute to the removal of coarser grains. In fact, the coarser 

grains were absence in transported bedload but replaced by a high proportion of finer grains. 

This indicates that the ejections require a momentum threshold of approximately 13 kg/ms 

before they can move the coarser grains. The general pattern of grain movement in relation to 

the momentum found in the steady antecedent flow tests was also found in the antecedent 

flow Experiment UP 2-6. High momentum ejections correlated with movement of coarse 

grains. The number and size of the ejections after 150 minutes reduces significantly with a 

clear reduction between 150 and 190 minutes. This suggests very low mobilities [or the 

coarser grains once the flowrate declines. 
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Figure 5.16. Probability distribution of momentum per unit area at selected time elapsed in 

antecedent flow Experiment UF 2-6 (ejections are positive and sweeps are negative) 

Figure 5.17, which is presented to provide information on the sequence of momentum per unit 

area along with its magnitude, shown that the high momentum in upward interactions 

occurred at time elapsed 150 and 190 minutes. It can also be seen that the seq~ence with low 

magnitude of momentum both in the ejections and sweeps were occurred at time elapsed 290 

minutes. At this time elapsed the flowrate was very low. A small variation in the streamwise 

and vertical flow velocity were expected and therefore low threshold value of bursting event 

was applied. 
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Figure 5.17. The sequence of momentum per unit area and its magnitude 

at selected time elapsed of antecedent flow Experiment UF 2-6 
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5.3.1.4. Bed Topography UF 2-6 

The pattern of the changes in bed surface structure for the series of experiment UF 2-6 can be 

recognised from Figures 5.18, 5.19 and 5.20 respectively. The initial bed surface shows that 

there are always some streamwise depressions left by scrapping process (Figure 5.18). This is 

inevitable as the bed composed of grains with considerable range in size and was then 

flattened by moving a metal scrapper downstream. 

Figure 5.18 indicates that a noticeable pattern is seen in the upstream right hand side of the 

grid. A lower surface area forms an area of approximately 100 mm long in the streamwise 

direction. This area enlarges after antecedent flow test was applied over the bed. The size is 

widened in the lateral direction and lengthened further downstream in the streamwise 

direction. It is also seen that the peaks formed in the middle of this area is an indication that 

the destabilisation process eroded the upstream adjacent bed, filling the lower level surface in 

front and forming another valley close to the original position. 

It is evident in Figure 5.19 representing bed surface after antecedent flow tests that the spread 

of valley-formed bed surface structures within the measurement grid increased particularly in 

the downstream part. This suggests that the bed surface re-arrangement took place as the 

erosion process continued. Although the antecedent flow test also formed high peaks in 

certain areas in the grid, e.g. area between x75 to xlOO and y19 to y25 and point (150,50), the 

highest peak was still less than the highest bed surface found in the original bed. The average 

bed surface level decreased from 1.755 mm above the zero datum before the antecedent flow 

test to 0.390 mm below the zero datum after 6 hours antecedent flow. The average bed surface 

after the stability test is 0.584 mm below the zero datum. This means the average bed surface 

elevation decreased less than 0.2 mm between the end of the antecedent and stability test. 

The level of grain exposure was investigated by the probability distribution curves as shown 

in Figure 5.21. The top curves representing the distribution of bed surface elevation about a 

zero datum suggest that for these tests, the distribution curve is shifted to the left. This is a 

clear indication that the overall bed surface level decreased. As previously seen in the figures 

of bed topography, a significant decrease in positive bed surface elevation is found after the 

antecedent flow test. As the antecedent flow eroded the original bed, there was a decrease in 
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Figure 5.18. Original bed surface topography of the measurement grid Experiment UF 2-6 
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Figure 5.19. Bed surface topography of the measurement grid after antecedent flow Experiment UF 2-6 
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Figure 5.20. Bed surface topography of the measurement grid after stability test Experiment UF 2-6 

275 

Q 
II) 

1 .. 
Ul 

t:l 
>'I 

1 
:I. 
E! 
II> 

[ 
: e. 
1: 
Q ... 
c::: 
'"l 

== 



Chapter 5 : Experimental Results of UF II 

the proportion of large positive values and an increased in the proportion of large negative 

values. The peak increased and the shape of the distribution curve becomes narrower. The 

continuing erosion is also shown by the curves with a slight decrease in the bed surface 

elevation before and after the stability test. The proportion of decrease in the postive elevation 

above the zero datum is followed by almost similar fashion below the zero datum. Both 

distribution curves produced an almost similar symmetrical shape as the distribution for the 

final bed surface elevation has higher peak, representing a flatter bed surface. 
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Figure 5.21. Probability distribution of bed surface elevation about zero and mean level 

for Experiment UF 2-6 

Looking at the distribution curve of the bed surface elevation about the average level, the 

proportion of the bed surface in the range of -1 mm to 1 mm is also becomes more apparent 

after antecedent flow test. The proportion was slightly increased at the end of stability test. 

The positive tails shown by the curve based on the mean bed level after the antecedent flow 
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test suggests that the exposed large grains on the bed increased. However this is most likely 

caused by the removal of the surface with the exposure between 1-4 mm above the mean 

level. This contributed to the increasing level of exposure for other grains above 4 mm. It can 

be predicted that the decrease of the bed surface elevation in the high positive values leads to 

a slight increase in the smaller elevations from the mean. The shape of distribution would 

have a high and more symmetrical peak around the zero. 

5.3.2. UNSTEADY ANTECEDENT FLOW EXPERIMENT UF 2-9 

5.3.2.1. Bedload Transport Rate and Composition UF 2-9 

The bedload transport rates variation in the first 60 minutes of antecedent flow test UF 2-9 

shows similar pattern to the antecedent flow Experiment UF 2-6. Low transport rates in the 

initial half-hour increased sharply in the next half (Figure 5.22). One noticeable thing is that 

the initial hour of observation suggests that the grains in the coarse mode were slightly more 

popular than grains in the fine mode (Figure 5.24). At the end of the first hour the transport 

rate was considerably higher with the proportion of grains in the fine mode dominated the 

transport throughout the antecedent flow. On average the transport rate within this period is 

0.199 gls/m, which was more than twice than that during the similar period in antecedent flow 

Experiment UF 2-6. Following this stage, a more complex pattern than that found in 

antecedent flow test UF 2-9 occurred. The transport rate dropped in the next 10 minutes and 

then rose rapidly with the transport rate being even higher than the previous rise. The high 

transport rate only lasted for another ten minutes before it dropped again. For the next 30 

minutes the transport rates were almost constant with a small decrease. Within this second 

hour the average transport rate is at its highest rate. This pattern of transport suggests that the 

bed was highly mobile. The average transport rate during the second hour is 0.286 gls/m. 

The next 60 minutes or the last hour of constant flow rate was characterised by a period of 

fairly erratic and fluctuating bedload transport rates. The average transport rate at this time is 

0.188 gls/m. Starting with a relatively high transport rate at the beginning of declining flow 

hydrograph, the transport rate was then decreased with a slight fluctuation at time elapsed 240 

minutes. After this stage a gradual decrease in transport was observed and eventually the 

bedload reached a relatively more stable bed. The hourly average transport rates in the 
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remaining duration are 0.032 gls/m, 0.011 gls/m, 0.007 gls/m and 0.001 gls/rn respectively. In 

the last hour when the flowrate was very small the average transport rate diminished to almost 

zero. 
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Figure 5.22. Time variation of transport rate for antecedent flow Experiment UF 2-9 

Initially grains in the coarse mode were slightly more dominant in transport than grains in the 

fme mode (Figure 5.23). After an hour of antecedent flow grains in the fine mode were 

dominant for the rest of the test. This underlined the importance of grains in the fine mode in 

antecedent flow test UF 2-9. At time elapsed 50 - 100 minutes more than 50 % of bedload 

consists of grains in the fme mode whilst grains in the coarse mode contributed less than 35 

%. The gap of the proportions between the two modes increased in almost all of the 

remaining observations indicating the dominance of grains in the fine mode throughout the 

rest of the experiment. It is worth noting that the observation at the last stage of constant 

flowrates (time elapsed 160 - 180 minutes) shows the existence oflarger grains with diameter 

8 rum. Only in this time elapsed were this grains found in the collection. The proportion of 

grains in the coarse mode increased to almost 44 % before dropped again following the 

decreased of flowrates in the falling limb. 

Apart from grain diameter 8 mm, the fluid forces were still able to transport grains in the finer 

mode until time elapsed 340 minutes. In the last 200 minutes or more than 3 hours, the fluid 
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Figure 5.23 . Grain size distribution of transported bedload for antecedent flow 

Experiment UF 2-9 

forces carried only the finer grains with diameter 1 mm and less. The coarser grains were 

strong enough not to be transported by the available fluid forces . They were totally absent in 

transport for the rest of the duration of antecedent flow test whilst grains in the fine mode 

were still exist with the lower amount than in the early time elapsed of antecedent flow test. 

Within the last 200 minutes the average proportion of grains in the fine mode is almost 80 %. 

The domination of grains in the fine mode transported in antecedent flow Experiment UF 2-9 
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is shown in Table 5.9. The grain size of 0.355 mm produced the highest contribution to the 

transported bedload compared to the nearest grain sizes of 0.5 mm and 0.15 mm respectively. 

More than 20 % of transported bedload containing 0.355 mm grain size. In total the 

proportion of the fine mode in transport is 53.8 % leaving the bed surface coarser. A different 

pattern is described by the coarse mode. The grain size of 5.6 mm is the dominant grains 

among this mode. It contributes to almost 17 % of total transported bedload. A moderately 

high contributions to the coarser mode of 5.6 and 4 mm grains indicates that the level of 

exposure established during antecedent was only sufficient enough to transport few coarse 

grains during the higher flowrates. 

Table 5.9. Summary ofthe average fractional bedload composition 

produced by antecedent flow Experiment UF 2-9 

Grain size Original Fractional Estimated 

(mm) composition of transported composition of 
surfacelayer(~) bedload (%) surface layer (~) 

10 1.730 0.000 1.754 

8 8.570 0.607 8.681 

5.6 34.660 16.337 34.915 

4 19.600 15.514 19.657 

2.8 6.860 3.289 6.910 

2 3.530 0.942 3.566 

1.4 2.510 0.546 2.537 

1 1.850 1.192 1.859 

0.71 2.680 3.767 2.665 

0.5 6.840 15.887 6.714 

0.355 7.420 24.383 7.184 

0.25 2.710 13.565 2.559 

0.15 0.940 3.770 0.901 

receiver 0.100 0.202 0.099 

Total 100 100 100 

5.3.2.2. Variations of Average Nearbed Streamwise Velocity and Bed Shear Stress 

UF2-9 

The average nearbed streamwise velocity and the average bed shear stress during the 

antecedent flow Experiment UF 2-9 are shown in Figure 5.24. Because of the measurement of 
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nearbed streamwise flow velocity at different point in the grid, few measurement points were 

obtained during the constant flowrate section of 180 minutes. The average nearbed stramwise 

velocities during tills period indicate relatively small differences in the first 180 minutes. The 

values were almost constant throughout the constant flowrates. It is apparent that the 

declining flowrates are shown by a steady decline of average nearbed streamwise velocity 

from time elapsed 180 minutes to 420 minutes. The last point available in Figure 5.24 

suggests that the value dropped considerably. This was because of the measurement carried 

out at a very low water flow so that a good observation with the ADV probe could not be 

obtained. 
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E 
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"C 2.0 c: 
IV • • • -- 1.5 • • • .!!? • •••• ••• 
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Figure 5.24. Variation of time averaged nearbed streamwise velocity and bed shear stress 

during antecedent flow Experiment UF 2-9 

Although there are few points showing higher values than expected the distribution of the 

average bed shear stress is generally a reflection of flow hydrograph. Little variation is shown 

in the first 180 minutes and then it generally decreased in the falJjng limb. No measurements 

were carried out in the last 2 hours or so. The flowrates and therefore water depths were very 

low with the water surface below the ADV probe position. 

The results of observation of the changes in average nearbed streamwise velocity for different 

points in the measurement grid in antecedent flow experiment UF 2-9 are presented in Table 

5.10 and Figure 5.25. It is apparent that the average nearbed streamwise velocity at all points 

in the measurement grid decreased after 125 minutes even though the discharge was constant. 
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The changes are relatively small with the range of decrease from 1.6 to 6.8 % of the original 

values. The small differences in standard deviations suggest that the distribution of nearbed 

streamwise velocity in the constant flowrates section of antecedent flow UF 2-9 were also 

constant throughout the observation. In the first measurement the variation of point average 

velocity to the average of all measurement points is ranging from -9.S % at point AS to +7.5 

% at point 13. In the second measurement the lowest and the highest average values are found 

at the same points observed in the first measurement with the range of variation between -7.8 

% below and +8.5 % above the average values of all grid points. 

1 

Table 5.10. Variations of the average nearbed streamwise velocity and 

the standard deviation in antecedent flow Experiment UF 2-9 

First measurement Second measurement Changes of 
Points (time elapsed 3 minutes) (time elapsed 128 minutes) Vx 

Vx (mls) cr (mls) Vx (mls) cr (mls) (%) 

Al 0.548 0.093 0.536 0.099 2.190 (-) 

A3 0.S82 0.092 0.552 0.097 5.155 (-) 

A5 0.493 0.093 0.485 0.092 1.623 (-) 

E1 0.558 0.092 0.527 0.096 5.556 (-) 

E3 0.575 0.101 0.561 0.094 2.435 (-) 

E5 0.508 0.091 0.490 0.087 3.543 (-) 

II 0.551 0.097 0.529 0.096 3.993 (-) 

13 0.586 0.091 0.571 0.092 2.560 (-) 

15 0.501 0.099 0.467 0.100 6.786 (-) 

Average 0.545 0.094 0.526 0.095 

A ~ 120mm ~E"- 120 mm -'1 

-
0.548(0.536) 0.558(0.527) 0.55 .1 (0.529) 

60mm , --3 -, 0.575(0.561 ) 0.586ro.571 ) 
60mm , 

5 --------~o~---------no-----------~o--------~~ 0.493(0.485) 0.508(0.4901 0.50 I (0.46 7) 

Figure 5.25. Distribution of average nearbed streamwise velocity (m/s) in antecedent flow 

Experiment UP 2-9 (first measurement in bold, second measurement in brackets) 

213 Y. oadi 



Chapter 5 : Experimental Result of F II 

Wide variations in the average bed shear stress, calculated using Equations 3.9 and 3.15, 

within the measurement grid occurred in antecedent flow UP 2-6 are also found in antecedent 

flow UP 2-9 (Table 5.11 and Figure 5.26). Although most points exhibit a decrease after 125 

minutes from the first measurement, no systematic pattern in the changes of average bed shear 

stress is observed. The highest increase occurred at point E3 . Negative values obtained at the 

first measurement and increased to highly positive values in the second measurement taken 

after 125 minutes from the first measurement. Point AS exhibits different features than point 

E3 . Negative values in the second measurement indicating the average bed shear stress 

decreased after 125 minutes from the first measurement. 

1 
" 

Table 5.11. Variations of the average bed shear stress and the standard deviation 

in antecedent flow Experiment UF 2-9 

First measurement Second measurement Changes of 
Points (time elapsed 3 minutes) (time elapsed 128 minutes) -: 

T 

i (N/m2
) cr (N/m2

) i (N/m2
) cr (N/m2

) (%) 

Al 4.023 18.252 5.546 17.969 37.857 (+) 

A3 13.764 19.150 6.521 18.509 52.623 (- ) 

A5 3.699 16.341 -0.981 15.130 126.521 (-) 

El 5.998 17.835 4.726 17.400 2l.207 (- ) 

E3 -0.599 18.821 9.590 18.611 1701.002 (+) 

E5 6.684 16.399 5.527 14.854 17.310 (-) 

It 3.456 18.273 7.458 18.122 115.799 (+) 

13 9.678 19.708 7.923 19.222 18.134(- ) 

15 3.334 16.934 1.523 15.384 54.319 (- ) 

Average 5.560 17.968 5.484 17.245 

A+- 120mm 4E+- 120mm -+1 

- oawo()w== """"'0= - .. 
60mm 

3.456(7.458) ---" 3 - ~ .. 
" 13.764(6.521) -- -0.599(9.590) 9.678(7.925) 
60mm 

" 5 - -.....0 
3.699(-0.98 n 6.684(5.52 7) 3.3340.523) 

Figure 5.26. Distribution of average bed shear stress (N/m2
) in antecedent flow 

Experiment UP 2-9 (first measurement in bold, second measurement in brackets) 

). 
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5.3.2.3. Bursting Events and Flow Momentum UF 2-9 

The number of downward-looking bed interactions during the antecedent flow Experiment UF 

2-9 is more than the upward interactions (Table 5.12). This is similar to the Experiment UF 2-

6 in that the number of ejections exceeds the number of sweeps. Interestingly the proportion 

of the ejections in the constant flowrate section is lower than the proportion in the falling limb 

whilst the proportions of sweeps suggest otherwise. While the time frequency of the ejections 

increased in the falling limb, the sweeps is observed to experience a similar frequency 

irrespective of the phase of the flow hydrograph. With 1.013 ejections per second, the falling 

limb section of antecedent flow Experiment UF 2-9 produced more frequent upward 

interactions than the corresponding section of antecedent flow Experiment UF 2-6. 

Interestingly this section also produced more downward-looking bed interactions indicating 

that the bursting events are relatively more frequent than in the falling limb of antecedent flow 

Experiment UP 2-6. It is also observed that the average duration of ejections and sweeps is 

similar both in the constant flowrate section and in the falling limb. 

Table 5.12. Time frequency and the proportion of occurrences of bursting events 

in antecedent flow Experiment UP 2-9 

Parameter descriptions Frequency Proportion Average 
(Hz) (%) duration (sec) 

Constant flowrate 
Ejections 0.940 46.192 0.051 

Sweeps 1.095 53.808 0.050 

Falling limb 
Ejections 1.013 48.033 0.053 

Sweeps 1.095 51.967 0.052 

Similar to the antecedent flow Experiment UF 2-6, selected time elapsed were observed in an 

attempt to investigate the correlation between the changes in the grains size distribution and 

the magnitude of momentum within the bursting events. Five different time elapsed were 

chosen for closer observation to represent different parts of the antecedent flow Experiment 

UF 2-9 (Table 5.13). The selection is based on different features in the distribution of 

fractional transported bedload produced by these time elapsed (Figure 5.27). 
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Chapter 5: Experimental Results ofUF II 

Table 5.13. Summary of bursting events at selected time elapsed in antecedent flow 

Experiment UF 2-9 

Parameter descriptions Time elapsed (minutes) 

150 190 280 390 410 

Threshold values (m2/s2
) 0.0072 0.0072 0.0062 0.0041 0.0038 

Number of eiections 200 207 215 179 200 

Number of sweeps 218 206 230 217 222 

Frequency of ejections (Hz) 1.000 1.035 1.075 0.895 1.000 

Frequencv of sweeps (Hz) 1.090 1.030 1.150 1.085 1.110 

Average duration of ejections (s) 0.050 0.050 0.053 0.053 0.051 

Average duration of sweeps (s) 0.050 0.052 0.056 0.049 0.049 

50 
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0 0.15 0.25 0.355 0.5 0.71 1.4 2 2.8 4 5.6 8 10 

Sieve Size (mm) 

Figure 5.27. Grain size distribution of transported bedload at selected time elapsed 

in antecedent flow Experiment UF 2-9 

Time elapsed 150 minutes has been chosen to represent the constant flow section while the 

others are the representatives of times during the falling limb. As shown in Figure 5.27, the 

transported bedload was clearly dominated by grains in the finer mode. Time elapsed 150 

minutes transported more grains in the fine mode than time elapsed 190 minutes. This is 

likely because of the proportion of the downward-looking bed interactions (sweeps) with the 

momentum per unit area in the range between -11 and -3 kg/ms during this time elapsed was 

more frequent than in time elapsed 190 minutes (Figure 5.28). The proportion of upward 

interactions (ejections) with the magnitude of momentum per unit area between 11 to 17 
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kg/ms at time elapsed 150 minutes are also higher than all the other times. This is suspected 

as the main contributor to the larger amount and higher modal grain size in the coarse mode 

found in transported bedload (Figure 5.27). During time elapsed 150 minutes 5.269 grams of 

grains in the coarse mode were transported in comparison to 4.531 grams and 1.070 grams 

during time elapsed 190 and 280 minutes respectively. This also suggests that although the 

flowrates started to decline at time elapsed 190 minutes, the amount of grains in the coarse 

mode was still reasonably high. Although the amounts of grains in the coarse mode is slightly 

less than that transported at time elapsed 150 minutes and the modal grain size reduced to 4 

mm, the proportion is increased. By looking at the probability distribution of momentum 

magnitude, it was seen that the ejections with momentum in the range between 17 and 19 

kg/ms at time elapsed 190 minutes was more frequent. The existence of these momentum 

maintained the ability of the flow to carry the grains in the coarse mode. 
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Figure 5.28. Probability distribution of momentum per unit area at selected time elapsed 

in antecedent flow Experiment UF 2-9 (ejections are positive and sweeps are negative) 
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Extended observation shows the similarity in the proportion of negative momentum between 

time elapsed 280 minutes and time elapsed 150 minutes (Figure 5.28). This coincides with the 

closeness of grain distribution in the finer mode at these two times shown in Figure 5.27. The 

frequency of positive momentum of higher magnitudes in the range between 11 to 13 kg/ms is 

the most likely factor in the production of grains in the coarse mode which still appear at time 

elapsed 280 minutes but with reducing quantities. As the discharge decreased, the proportion 

of strong momentum events both in the upward and downward-looking bed direction was also 

reduced. It is very clear from Figure 5.27 that the coarser grains were no longer be 

transported. This was seen at time elapsed 390 and 410 minutes where the distribution of 

ejections momentum is relatively similar, with no events above a 17 kg/ms threshold (Figure 

5.28). At this stage, the momentum available in the flow removed only finer grains with a 

considerably high proportion. 

The sequence and the magnitude of momentum both in upward and downward looking-bed 

interactions are presented in Figure 5.29. It is evident that the higher flowrates produced more 

rigorous interactions, particularly ejections at time elapsed 150, 190 and 280 minutes. As the 

flow decreased the interactions still exist but produced relatively low magnitude of 

momentum (time elapsed 390 and 410 minutes). These lower momentum were still able to 

move the finer grains. 
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Figure 5.29. The sequence of momentum per unit area and its magnitude 

at selected time elapsed in antecedent flow Experiment UF 2-9 
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5.4.3.4. Bed Topography UF 2-9 

The application of the UF 2-9 antecedent flow hydro graph consists of 3 hours constant flow 

and 6 hours of declining flowrate produce significant changes in the bed surface structure 

(Figure 5.31). A considerable amount of bed material is eroded during this test producing a 

low mean bed surface elevation. It can be seen from Figure 5.31 that after antecedent flow the 

bed were covered with valley type structures over almost all of the measurement grid. The 

darker areas indicate the area of the high levels of degradation. This degradation covered the 

centre part of the measurement grid mainly in the streamwise direction. On the rest of the 

surface smaller scale the undulations are observed. By looking at the average bed surface 

elevation before and after antecedent flow (Figures 5.30 and 5.31) it is very clear that the 

reduction in bed level is much higher than in the same test applied to the bed formed by 6 

hours antecedent flow of UF 2-6 (Figures 5.18 and 5.19). The average bed surface elevation 

reduced almost 5 mm from the original bed. This suggests that significantly more erosion 

occurred in the longer declining flow phase. 

At the end of experiment the bed topography indicated further erosion during the stability test, 

which had changed the bed surface arrangement. Less "deep valleys" are shown in Figure 

5.32 indicating re-organisation of the bed surface structure. The movement of some grains 

downstream from the upstream edge of the valley covered the previously eroded surface. This 

resulted in the valley structure appearing to "translate" in an upstream duration. Meanwhile 

new valley type structure also formed in different area of the bed due to the same process. 

This suggests that a relatively high transport rate was experienced during the stability test of 

experiment UF 2-9 so that further erosion not only removed the exposed grains but also 

continuously eroded the previously low bed surface formed by the antecedent flow 

experiment. An interesting feature in Figure 5.32 is the diagonal valley extended to the left 

hand side of the measurement area. Similar valleys can be recognised after the stability test 

(Figure 5.32) with new and parallel bed features appearing. Some of the exposed large grains 

deposited before and after the stability test also tend to create diagonal undulations with a 

small angle to the stream wise direction. 
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Figure 5,31 . Original bed surface topography of the measurement grid after antecedent flow Experiment UF 2-9 

275 

Q .. 
-= ;-., 
U1 

t:l .. 
-; 
g' 
g 
a 
~ e. 
11 
o .., 
~ 

"" == 



tv 
tv 
W 

:< 
:: 
:: e: 

E 
S 10 
c:: 0 o 
10 -10 
i; 
G) 

'0 
G) 

CD 

. , 
. ' 

La1eral direction (mm) 

-8 -6 -4 ·2 0 

.. 

Experiment UF 2-9 : Bed Surface after Stability Test 
" 

., . 
..-

. ( 

. , 

200 

125 

175 Streamwise direction (mm) 

6 8 

Figure 5.32. Bed surface topography of the measurement grid after stability test Experiment UF 2-9 

275 

~ .., 
;-.., 
UI 

~ .. 
"; 
:::L 
3 
to 

= [ 
::0 
I: 
Eo 
E: 
Q ..., 
~ 
~ .... .... 



Chapter 5 : Experimental Results of UF II 

The examination of probability distribution of bed surface elevatiosn shows a distinct pattern. 

In Figure 5.33 the curve is not only shifted far to the left but also has an irregular form. The 

original curve is transformed into a distribution curve with more than one peak. The 

proportion of bed level with elevation of 9 mrn below the zero datum increased to form a 

second peak of distribution. This coincides with the high transport rate during antecedent flow 

test. The curve also suggests that the positive distribution of bed surface level above zero 

datum is reduced as observed in the bed topography which shows the high level of erosion 

apart from a few isolated positions. 

12 

11 UF2·9 

10 

9 r l 8 

~ 7 

6 

~ 5 
i l 4 

J 

0 
·10 · 9 · 8 5 6 7 8 10 

12 

11 UF2· 9 

10 

9 

g 8 

7 

6 

i 5 
.l! 4 I! 
11. 

3 

~10 .9 ..fl ·7 ·6 ·5 .. -3 · 1 0 2 J 4 5 6 8 10 
Bed SLIfIIce EIoviIIIon aboul M .. n lllYeI (1m1) 

Figure 5.33 . Probability distribution of bed surface elevation about zero and mean level 

for Experiment UF 2-9 

The bed surface elevation distributions at the end of experiment UF 2-9 indicates a different 

pattern to that observed at the end of the antecedent flow test. The proportion of "deep 

valleys" with the elevation of -9 mm below the zero datum has decreased. It can be assumed 
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that during the stability test the degradational process removed bedload that moved into 

adjacent valleys, thus reducing their. This is reflected by the increasing proportion of the bed 

surface level in the height range between -7 mm to -4 mm about the zero datum level. 

The bed surface distribution about the average level clearly indicates the existence of a 

considerable proportion of large exposed grains with the elevation of at least 3.5 mm above 

the average after the antecedent flow experiment. The eroded bed surface with the low 

elevation at least 2 mm below the average also increased after the antecedent flow 

experiment. The significant increase in the elevation of 4.5 mm below the average (Figure 

5.33) representing the darker spots in Figure 5.31. After stability test the exposed larger 

grains was slightly decreased and the deep-valleys were considerably less than before. The 

peak of distribution increased indicating the bed surface to be more flatter at the end of the 

stability test. 

5.3.3. UNSTEADY ANTECEDENT FLOW EXPERIMENT UF 2-12 

5.3.3.1. Bedload Transport Rate and Composition UF 2-12 

The bedload transport rates variation in the early part of antecedent flow experiment UF 2-12 

indicated a different pattern to that found in antecedent flow experiment UF 2-6 and UF 2-9. 

Initially the transport rate declined significantly with a sharp decrease after time elapsed 10 

minutes (Figure 5.34). In the first 10 minutes the transport rate was 0.268 gls/m and dropped 

to almost half within the same period to 0.136 gls/m. The transport rate was then relatively 

constant for half an hour before it decreased and increased periodically. The average transport 

rate during the first hour is 0.145 gls/m. In the second hour with the fluctuations in transport, 
• 

the average rate is 0.076 gls/m. The average transport rate then steadily decreased to 0.060 

g/s/m in the last hour of the constant flowrate. As the flowrates decreased in the falling limb 

of hydrograph, the transport rate continued to decrease. The average transport rate in the 

fourth, fifth and sixth hours are 0.034 gls/m, 0.013 gls/m and 0.017 g/s/m respectively. After 

this period, the transport rates were considerably low with the average rate within the 

corresponding duration are 0.008 gls/m, 0.003 gls/m and 0.001 gls/m for the seventh, eighth 

and ninth hour respectively. The transport rate almost diminished to zero in the remaining 3 

hours. 
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Figure 5.34. Time variation of transport rate for antecedent flow Experiment UF 2-12 

The grain distribution of bedload in antecedent flow experiment UP 2-12 indjcated more 

complex pattern than the antecedent flow experiment UP 2-6 and UF 2-9. In Figure 5.35 the 

transport was initially dominated by grains in the coarse mode. More than 63 % of collection 

at time elapsed 10 - 40 minutes was grains in the coarse mode whilst the proportion of grains 

in the fine mode is a mere 16 %. In the second period of observation covering time elapsed 

between 50 - 100 minutes the contribution of the coarse mode decreased to 34 % with an 

increase to 50 % in the fine mode. The contribution of the coarse mode increased again and 

dominated the transport in the period of time elapsed 110 and 150 minutes. At this stage the 

comparison between the coarse and the fine mode is 60 % to 32 %. Within the next 30 

minutes of observation it was grains in the fine mode that are dominant in transport. In the 

following 40 minutes (time elapsed 190 - 220 minutes) the proportion of both modes changed 

again with the domination of the coarse mode shown. In the declining flowrates the dominant 

mode was always changing. Time elapsed 230 to 280 minutes was dominated by grains in the 

fine mode whereas the next 50 minutes was dominated by grains in the coarse mode. After 

this time elapsed grains in the fine mode dominated the transport for almost 2 hours. An 

interesting feature was found at time elapsed 410 to 460 minutes where the grains in the 

coarse mode were totally absent. This is an indication that the larger grains were at a stable 

condition. However, in the following hour grains diameter 5.6 appeared and dominated the 

relatively low transport rate at time elapsed 470 - 520 minutes. As the other grains in the 

coarse mode were not found in transport, this may be assumed that a small amount of grains 

of diameter 5.6 mm had become more exposed and were therefore transported. After time 
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elapsed 520 minutes, no grains in the coarse mode were found in transported bedload. For the 

remaining 3 hours the transport was clearly dominated by the finer grains. 
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Figure 5.35. Grain size distribution of transported bedload for antecedent flow 

Experiment UF 2-12 

By examtntng the composition of the total bedload, it is found in Table 5.14 that the 

antecedent flow experiment UF 2-12 proportionally transported more grains in the coarse 

mode than the antecedent flow experiments UF 2-6 and UF 2-9. The opposite pattern IS 

shown by grains in the fine mode where less proportion than that in experiment UF 2-6 and 

UF 2-9 was transported during the antecedent flow Experiment UF 2-12. 
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Table 5.14. Summary of the average fractional bedload composition produced by 

antecedent flow Experiment UP 2-12 

Grain size Original Fractional Estimated 
(mm) composition of transported composition of 

surfacelayer(~) bedload (~) surface layer (~) 
10 1.730 1.575 1.731 
8 8.570 8.986 8.567 

5.6 34.660 27.825 34.707 

4 19.600 10.997 19.660 

2.8 6.860 2.696 6.889 

2 3.530 1.498 3.544 

1.4 2.510 0.908 2.521 

1 1.850 1.242 1.854 

0.71 2.680 2.750 2.680 

0.5 6.840 11.118 6.810 

0.355 7.420 17.165 7.352 

0.25 2.710 9.722 2.661 

0.15 0.940 3.236 0.924 

receIver 0.100 0.280 0.099 

Total 100 100 100 

5.3.3.2. Variations of Average Nearbed Streamwise Velocity and Bed Shear Stress 

UF 2-12 

The measurements of nearbed streamwise flow velocity during the constant flowrate were 

carried out at different times along with the similar measurement at different grid points. As 

the result of two different measurement in the relatively short period, few results were 

obtained and used to describe the pattern of the average nearbed streamwise velocities and the 

average bed shear stress in the constant flowrate section. Again, similar patterns of those 

found in the antecedent flow experiment UF 2-9 were found to exist in experiment UF 2-12. 

In Figure 5.36 the values of the average nearbed streamwise velocity were almost constant 

throughout the constant flowrate. It is apparent that in the declining flowrates the of average 

nearbed streamwise velocity decreased from time elapsed 180 minutes onwards. The data 

form a declining line indicates a steady decrease in average velocity values. As experienced in 

antecedent flow experiment UF 2-9 the last point available in Figure 5.36 suggests that the 

value dropped considerably. However, this low value was because of the measurement was 
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carried out at a very low flowrate. At this water depth it was difficult to obtain good results 

from the ADV probe. 
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Figure 5.36. Variation oftime averaged nearbed streamwise velocity and bed shear stre s 

during antecedent flow Experiment UF 2-12 

In Figure 5.36 a slightly different pattern than the average nearbed streamwise velocity is 

experienced by the average bed shear stress. Time elapsed 140 minutes shows a lower value 

than the other points in the constant flow hydro graph. By examining the transport rate it is 

found that there is coincidence that the lower amount of bedload were transported at this time 

elapsed in comparison to the adjacent time elapsed. In the falling limb there are also few 

points showing higher values of bed shear stress than expected. However, the distribution of 

the average bed shear stress is generally decreasing in accordance to the decreasing tlowrates 

in the falling limb of hydro graph. No measurements were carried out in the last 160 minutes 

as the flowrate was very low and the water surface was below the position of ADV probe. 

Observation to the average nearbed streamwise velocity of different points In the 

measurement grid indicates that in the antecedent flow experiment UF 2-12 the average 

values in the second measurement were generally decreased after 125 minutes from the first 

measurement (Table 5.15 and Figure 5.37). Although one point (ll) showed a significant 

increase, the standard deviation of nearbed strearnwise velocity at each point is also seen to 

remain fairly constant. In the first measurement the range of variation is ranging from -10.9 % 

below and +3.6 % above the average values of all points. The range is decreased in the s cond 
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measurement from -2.8 % to +5.1 % from the average grid values. 

1 , 

Table 5.15. Variations of the average nearbed streamwise velocity and 

the standard deviation in antecedent flow Experiment UF 2-12 

First measurement Second measurement Changes of 
Points (time elapsed 3 minutes) (time elapsed 128 minutes) Vx 

Vx (mls) cr (mls) Vx (mls) cr (mls) (%) 

At 0.504 0.096 0.486 0.101 3.571 (-) 

A3 0.498 0.095 0.495 0.098 0.602 (- ) 

A5 0.497 0.091 0.479 0.089 3.622 (- ) 

El 0.504 0.089 0.481 0.092 4.563 (- ) 

E3 0.513 0.096 0.480 0.091 6.433 (-) 

E5 0.490 0.093 0.500 0.092 2.041 (+) 

11 0.441 0.089 0.518 0.095 17.460 (+) 

13 0.501 0.095 0.501 0.094 0 

15 0.507 0.097 0.497 0.096 1.972 (- ) 

Average 0.495 0.093 0.493 0.094 

A'- 120 mm --'E ~ 120 mm --'1 

-
60mm 

0.504(0.486) 0.504(0.481) 0.441(0.518) --, 
3 -, 

60mm , 
5 -- aocoO== 

0.498(0.495) 0.513(0.480) 0.50lfO.50J) 

----------_o~-------~-o~------_o~~------~~~ 
0.496(0.479) 0.490(0.500) 0.507(0.497) 

Figure 5.37. Distribution of average nearbed streamwise velocity (m/s) in antecedent flow 

Experiment UF 2-12 (first measurement in bold, second measurement in brackets) 

Table 5.16 and Figure 5.38 shows the average bed shear stress, estimated using Equation 3.4, 

at different grid points. It can be seen that the average bed shear stresses are generally 

increased in the second measurement. After 125 minutes only three points exhibit a decrease. 

Another two points had negative values in the first measurement but increased quite 

significantly in the second measurement. The standard deviation at each point is quite 

considerable and like the mean values of bed shear stress show no consistent temporal pattern. 
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Table 5.16. Variations of the average bed shear stress and the standard deviation 

in antecedent flow Experiment UF 2-12 

First measurement Second measurement Changes of 
Points (time elapsed 3 minutes) (time elapsed 128 minutes) -; 

• 
T' (N/m2

) (J (N/m2
) i (N/m2

) (J (N/m2
) (%) 

Al 3.614 14.807 1.090 15.451 69.840 (- ) 

A3 5.588 15.238 6.109 15.122 9.324 (+) 

A5 1.571 13.537 5.150 14.211 227 .817(+) 

El -0.230 14.244 0.317 13 .670 237.826 (+) 

E3 3.337 15 .669 4.741 14.187 42.074 (+) 

E5 1.451 13.906 5.773 14.991 297.864 (+) 

II -1.125 10.290 5.682 15.321 605 .067 (+) 

13 5.471 14.880 2.856 15.155 47.797 (- ) 

15 6.128 16.765 0.645 15 .065 89.475 (- ) 

Average 2.867 14.371 3.596 14.797 

A+-- 120 mm ---. B +- 120 mm --+ C 

-
60mm -- '""*"<>-"" 

3.614(J.09OJ 

~ 

-0.230m.3/ 7) 

'-

3 -
'- 5.588(6.109) 3.337(4. UJ) 5.47)(2.856) 
60mm 

'-
5 o 

1.571 (5.1501 1.451 (5. 773) 6.128(0.6451 

Figure 5.38. Distribution of average bed shear stress (N/m 2
) in antecedent flow 

Experiment UF 2-12 (ftrst measurement in bold, second measurement in brackets) 

5.3.3.3. Bursting Events and Flow Momentum UF 2-12 

Different flow features than those in the antecedent flow experiments UF 2-6 and UF 2-9 

were found in antecedent flow Experiment UF 2-12. In this antecedent flow experiment the 

declining flow hydrograph was flatter in comparison to the previous two experiments. The 

flowrates decelerated from constant discharge of 0.0338 m 3/s to zero in the longest duration of 

9 hours. It can be seen in Table 5.17 that the bursting events contained more sweeps than 

ejections either in the constant flowrates section or in the falling limb. Thjs means the 

occurrence of downward-looking bed interactions is more frequent than the upward 

interactions throughout the antecedent flow. The wider variation occurred in the constant 
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flowrates section with the lower time frequency of ejections and the higher frequency of 

sweeps than in the falling limb. In this constant flowrate section the average duration of 

ejection is slightly longer than the average duration of sweeps. As the proportion of ejections 

in the falling limb increased and the sweeps decreased, the gap of proportion become closer 

indicating a relatively more stable bursting events where the upward interactions occurred as 

frequent as the downward-looking bed interactions (less than 1 % difference). In the falling 

limb the average duration of both ejections and sweeps are relatively similar. 

Table 5.17. Time frequency and the proportion of occurrences of bursting events 

in antecedent flow Experiment UF 2-12 

Parameter descriptions Frequency Proportion Average 
(Hz) (%) duration (sec.) 

Constant flowrate 
Ejections 0.960 47.291 0.061 

Sweeps 1.070 52.709 0.051 

Falling limb 
Ejections 0.996 49.529 0.055 

Sweeps 1.015 50.471 0.052 

As the antecedent flow Experiment UF 2-12 lasted longer, more representative times have 

been selected for detailed observations. Six different time elapsed with different level of 

flowrate in the falling limb were observed while the constant flowrate section is represented 

by one available data set (see Table 5.18 and Figure 5.39). Similar to the observation made in 

the previous antecedent flow experiments the selection of time elapsed was based on the 

pattern of grains size distribution of the transported bedload. This was intended to observe the 

Table 5.18. Summary of bursting events at selected time elapsed in antecedent flow 

Experiment UF 2-12 

Parameter descriptions Time elapsed (minutes) 
30 190 270 320 400 480 570 

Threshold values (m2/s2
) 0.0081 0.0079 0.0073 0.0067 0.0056 0.0048 0.0025 

Number of ejections 192 204 204 197 219 200 156 

Number of sweeps 214 196 205 187 219 205 164 

FreQuencv of ejections (Hz) 0.960 1.020 1.020 0.985 1.095 1.000 0.780 

Frequency of sweeps (Hz) 1.070 0.980 1.025 0.935 1.095 1.025 0.820 

Average duration of ejections (s) 0.061 0.056 0.056 0.055 0.053 0,056 0.045 

Average duration of sweeps (s) 0.051 0.054 0.051 0.053 0.056 0.052 0.045 
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influence of momentum in the bursting events on the changes of grains size distribution of 

transported bedload. 
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Figure 5.39. Grain size distribution of transported bedload at selected time elapsed in 

antecedent flow Experiment UF 2-12 

At the earliest time elapsed (30 minutes) more grains in the coarse mode were tran ported 

than grains in the fine mode. Figure 5.39 shows that even grains with diameters 8 and 10 mm 

were removed and transported during this time. Closer observation on the probability 

distribution of momentum in Figure 5.40 found the answer to this pattern. It is apparently 

shown that the proportion of momentum with the magnitude in the range between 15 and 19 

kg/ms during this time elapsed exceeds any other times. The frequency of the moderately 

sized ejections (11 - 15 kg/ms) is also high. It is believed that the ejections with high levels of 

momentum contribute to the removal of grains in the coarse mode. More than 64 % of grain 

in the coarse mode and almost 17 % of grains in the fine mode were transported at this time 

elapsed (30 minutes). 

At time elapsed 190 minutes when the declining hydrograph had started, the domination of 

grains in the coarse mode in transport was still apparent. This coincides with data from the 

probability distribution curve in Figure 5.40 that shows that ejections with momentum 
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magnitude between 13 - 15 kg/ms is still quite frequent. The probability is almost 3 %. The 

transporting coarse grains phase continued until the latter time of 480 minutes in which an 

increasing amount of coarser grains was found in transported bedload. This coincided with an 

increase in ejections in the 15 - 19 kg/ms size range. This phenomenon is now reasonably 

well-accepted as there were high proportions of high momentum ejections established for 

quite long period of observations, i.e. time elapsed 190, 270, 320, 400 and 480 minutes 

respectively. It can be seen that during time elapsed 570 minutes, the coarser grains 

diminished and the transported bedload was clearly finer grains-dominated. This coincides 

with almost total reduction in high momentum ejections. 
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Figure 5.40. Probability distribution of momentum per unit area at selected time elapsed in 

antecedent flow Experiment UF 2-12 (ejections are positive and sweeps are negative) 

A noticeable feature is presented by time elapsed 480 minutes. The proportion of grains in the 

coarse mode is extremely higher than grains in the fine mode. Although this time elapsed was 

in a low discharge with the average streamwise velocity of 0.380 mis, it still produced a 
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considerable proportion of upward interactions with a magnitude of momentum in the range 

between 5 and 11 kg/ms and a measurable number of events in 15 - 19 kg/ms range. No 

wonder that a high proportion of coarser grains were transported during this time elapsed. 

Coarse grains contributes to almost 70 % of total transported bedload during this time 

elapsed. However, without arguing the important role of upward interactions to the 

entrainment process of coarser grains, it has to be remembered that there is always a 

possibility when the bed has reached its armouring state, i.e. time elapsed 480 minutes, only a 

small portion of transport in existence. At this stage the removal of a small number of 

exposed large grains can make a considerable proportion in the small amount of transported 

bedload. 

The sequence of bursting events with the magnitude of momentum both in upward and 

downward looking-bed interactions are shown in Figure 5.41. It is apparently shown that 

rigorous interactions occurred at relatively high flowrate. At this stages the high magnitude of 

momentum particularly in upward interactions (ejections) were expected to presence. It is also 

shown that the downward looking-bed interactions (sweeps) with the magnitude of 

momentum less than 5 kg/ms are the most common as indicated by the highest frequency at 

all observed time elapsed. 
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Figure 5.41. The sequence of momentum per unit area and its magnjtude 

at selected time elapsed in antecedent flow Experiment UP 2-12 
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5.3.3.4. Bed Topography UF 2-12 

The original bed surface distribution of Experiment UF 2-12 (Figure 5.42) has a similar 

pattern to the original bed observed in experiment UF 2-9. Both distributions produced almost 

an identical curve. The difference is that the distribution curve of original bed experiment UF 

2-12 contains more positive elevation indicating that generally this bed has a higher average 

bed level than the original bed surface of experiment UF 2-9. The average original bed 

surface elevation of Experiment UF 2-12 was 0.477 mm above the zero datum whilst 

Experiment UF 2-9 was 0.0178 mm. 

The degradational process caused by this antecedent flow produced a more organised bed 

structure. The peaks and valleys are more wide spread within the measurement grid. It is 

believed that during the long declining flow the continued low level of transport allowed the 

bed grains to re-arranging themselves properly. The mode of transport shows that the 

transportation of grains in the coarse mode only lasted for the first half of the duration of 

antecedent flow. However the continuous existence of grains of fine mode in transport helped 

to re-organised the bed surface. To some extent the fine grains filled the pockets left by and 

adjacent to the coarse grains while the exposed surface experienced two conditions, either a 

further decrease in the local elevation of the valleys or an increase in the elevations of the 

peaks. The existence of valleys and peaks on the bed can be seen in Figure 5.43 representing 

the bed surface topography after the antecedent flow test. 

Considering that a lower transport rate was found during the UF 2-12 antecedent flow, it was 

expected that the level of bed stability was high so that the changes in bed surface topography 

would be relatively small during the stability test. By examining the bed surface topography 

after the stability flow in Figure 5.44 it was found that the degradational process still 

occurred. In some areas the valley-formed features widened and became more visible. The 

level of bed stability may be explained in the way that some of the bed surface before and 

after stability test remained unchanged. If there were changes, they may be in the form of 

dislocation of patches and bed surface undulations. A clear example is shown by area in the 

right hand side of the downstream part of the measurement grid. The exposed surface at point 

(130,100) created by antecedent flow test remain in existence after stability test whilst the bed 

surface undulation adjacent to it and those located further downstream and other areas show 
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small dislocation. 

The changes in the bed surface level after the antecedent flow is shown by the distribution 

curve in Figure 5.45. The distribution curve is shifted to the left indicating the considerable 

decreased in the bed surface level. A distinct feature is shown in which the existence of 

valley-formed bed with many elevations up to 9 mm below the zero level is apparent. The 

existence of these valleys must be taken into account as they formed a second peak, which 

clearly marked the left tail and changes the shape of distribution. After the stability test the 

distribution is shifted to the right and parallel to the distribution of bed surface elevation 

formed by antecedent flow experiment. This suggests that there was continuing process of 

erosion although the bed surface structure was not significantly changed. 

The observation of the distribution about mean level shows that after antecedent flow the 

large tail exist in the right hand side of the distribution. This is the indication that a number of 

grains resting on the bed surface increased. After the stability test, the tail was almost 

unchanged. The bed surface formed by antecedent flow test was relatively stable. The 

increased of the peak caused by the increasing proportion of the bed surface close to the mean 

level indicated that the bed surface become flatter. The second peak, which is skewed to the 

right after the stability test, is a reflection of the decrease in the depth of valley-type 

bedforms. The antecedent flow experiment eroded the bed surface and formed a noticeable 

amount of valleys with elevation of 5.5 mm below the average. During the stability test some 

grains were deposited in these valleys. The elevation of the valley was then increased to 

become closer to the average bed surface. This is indicated by the second peak that is shi fled 

to the right hand side suggesting the less variation of the bed surface from the average level. 
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Figure 5.42. Original bed surface topography of the measurement grid Experiment UF 2-12 
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Figure 5.43 . Bed surface topography of the measurement grid after antecedent flow Experiment UF 2-12 
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Figure 5.45. Probability distribution of bed surface elevation about zero and mean level 

for Experiment UF 2-12 

5.4. COMPARATIVE RESULTS AND DISCUSSIONS OF UF 11 

5.4.1. Transport Mode of Declining Antecedent Flow Experiments UF II 

Antecedent flow experiments with time varying flowrates exhibit complex pattern . A 

relatively sharp increase in transport rate was noted after time elapsed 30 minut In 

antecedent flow experiments UF 2-6 and UF 2-9. A different pattern was experienced by 

antecedent flow experiment UF 2-12 with the highest transport rate occurring in the fir t 10 

minutes of observation. Within 180 minutes of constant flowrate the transport rates for all 

three antecedent flow experiments fluctuated . Fairly erratic curves were established before the 

decreasing trend in transport found in all the falling limb sections. 

In the initial hour of the constant flowrate section, antecedent flow experiment UF 2-6 

transported more grains in the fine mode than grains in the coarse mode whilst antecedent 

flow experiment UF 2-9 and UF 2-12 are vice versa (Figure 5.46). Throughout the antecedent 
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flow experiment UF 2-6 and UF 2-9, transport was dominated by the grains in the fine mode 

with only one observation showing a slight domination of grains in the coarse mode. This 

observation occurred at different time elapsed but still in the constant flowrate section. This 

means that the transport in the declining flowrate section of both antecedent flow experiments 

UF 2-6 and UF 2-9 were clearly fine mode dominated. After 9 hours of flow exposure, grains 

in the coarse mode were relatively stable so that the available fluid forces in the falling limb 

were unable to transport them. In the last 3 hours of declining flowrates of the antecedent fl w 

experiment UF 2-9 grains in the coarse mode did not exist in transport. Only finer grain were 

removed during the lower flowrates . 
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Figure 5.46. Proportion of two modes during the unsteady antecedent flow Experiments 1I 

(coarse and fine mode are represented by solid and dotted line) 

A more complex pattern was experienced by antecedent flow experiment UP 2-12. The 

dominant mode of transport changed every hour of observation including in the first 3 hour 

of declining flowrates . After time elapsed 430 minutes the available fluid forces were unable 

to transport grains in the coarse mode. However this was not lasted very long. The domination 

of grains in the coarse mode was seen again at time elapsed 490 minutes but with a very small 
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amount. In the remaining hours after time elapsed 490 minutes grains in the coarse mode were 

not exist in transport (Figure 5.46). 

Table 5.19 shows that the antecedent flow Experiment UF 2-9 transported more materi al than 

antecedent flow experiments UF 2-6 and UF 2-12. Interesting feature shown in constant 

flowrates section. Both antecedent flow experiments UF 2-6 and UF 2-9 transported more 

grains in the fine mode than the coarse mode. This coincides with the early explanation that 

grains in the fine mode dominated the transport in the two antecedent flow experiments. 

Antecedent flow experiment UF 2-12 shows a different pattern in which the transport is not 

only very low in comparison to the other two experiments but also has more grains moving in 

the coarse mode than in the fine mode. 

Table 5.19. Summary of bedload for unsteady antecedent flow Experiments UF II 

Experiment Mass transported bedload of mode (g) Transport rate (g/s/m) 

No. Constant flowrates Falling limb Constant Falling 

Fine Coarse Fine Coarse flowrates limb 

UF 2-6 157.830 116.700 35.282 21.330 0.15532 0.03225 

UF2-9 240.760 154.870 60.958 27.050 0.22441 0.02436 

UF 2-12 64.390 98.510 24.254 22.839 0.09355 0.00859 

In the constant flowrate section the transport rate of antecedent flow experiment UF 2-9 was 

significantly higher than experiment UF 2-6 and UF 2-12. Although a relatively higher 

amount of grains was transported in the declining flowrate section of antecedent flow 

experiment UF 2-9, the transport rate is lower than that in the declining flowrate section of 

antecedent flow experiment UF 2-6. These results indicate that the unsteadiness of the flow 

influences the transport. Table 5.24 suggests that the maximum transport rate is highest when 

the duration of the falling limb is short. In antecedent flow experiment UF 2-6, the declining 

flowrate dropped in a very short time. It is suspected that after the destabilisation process in 

the relatively high constant flowrate, the grains have not sufficient time and mobility to find 

shelter in the falling limb. When the declining flowrate reduced at slower pace, the fluid 

forces decreased very slowly allowing the moving grains time to find shelter. It was expected 

that in the falling limb of antecedent flow experiment UF 2-12 the slower transition of the 
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flow allowed the grains moving in a rolling fashion more chance to find shelter and develop 

stability. Therefore the sheltering processes were more likely to occur in the slower declining 

flowrates where the transport rate was low but lasted for a long duration. 

As shown in Table 5.20 the composition of both modes of transport in antecedent flow 

experiments UP 2-6 and UF 2-9 are relatively close with the domination of grains in the fine 

mode. Meanwhile, the antecedent flow experiment UF 2-12 has a different pattern where the 

grains in the coarse mode clearly dominated the transport during the antecedent flow 

experiment. 

Table 5.20. Total mass and proportion of sediment modes for unsteady antecedent flow 

Experiments UF II 

Experiment Bedload transport Mass and proportion of mode 

No. Mass Rate Fine mode Coarse mode 
(g) (gls/m) (g) (%) (~) (%) 

UF 2-6 384.860 0.094 193.120 50.179 138.020 35.862 

UF 2-9 560.480 0.091 301.730 53.834 181.920 32.458 

UF 2-12 244.850 0.030 88.630 36.198 121.340 49.557 

5.4.2. Stability of the Antecedent Flow Beds and Mode of Transport UF II 

The importance of high fluid forces in mobilising the surface can be described in terms of the 

pattern of bedload transported in the stability tests. At the lower discharges the transport rate 

was very low indicating an inability of available fluid forces to destabilise the armoured bed. 

The transport rate was considerably increased when the flowrate was about 0.0300 m
3
/s. After 

the peak flowrates of 0.0375 m3/s passed, the transport rates increased significantly. Even at 

corresponding discharges the transport rates in the falling limb were still higher than in the 

rising limb. 

Investigation on transport rates suggest that the bed formed by the combination of 3 hours 

constant flowrates and 6 hours declining flow hydro graph (antecedent flow experiment UF 2-

9) is the weakest. The amount of bedload transported in the stability test applied to this bed is 

1040.78 grams. A similar stability test applied to the bed formed by antecedent flow 
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experiment UF 2-6 and UF 2-12 eroded 690.06 grams and 45.93 grams respectively. In the 

stability test UF 2-6 and UF 2-9, a large increase in transport rates found after the peak 

flowrate of 0.0375 m 3/s. Significant increases from the last 10 minutes of the rising limb to 

the corresponding flowrates (first 10 minutes of falling limb) were noticed. 

Stability test UF 2-12 suggests a different pattern. The amount of bedload transported in the 

first 10 minutes of the falling limb shortly after the peak flowrates was not increased. The 

transport rate was slightly lower. The difference in the transport rate is even lower in the next 

10 minutes in comparison to the corresponding discharge in the rising limb. This suggested 

that the longer duration of declining antecedent flow formed a strong pavement. The peak 

flowrate of this stability test was unable to destabilise the armoured bed. The increasing 

proportion of grains in the fine mode and the decreasing proportion in the coarse mode for the 

whole duration of the stability test UF 2-12 as presented in Table 5.21 also indicates that the 

bed formed by a long declining hydrograph is the most stable one. 

Table 5.21. Transport mode of the stability tests applied to antecedent flow-formed bed UF II 

Time elapsed Mass of bedload and proportion To t a I 
Stability of coarse grain Fine mode Coarse mode Fine Coarse Test domination 

(mins) Rising Falling Rising Falling mode mode 

@60 - @120 
52.45 gr 87.52 gr 172.49 gr 292.36 gr 139.97 gr 464.85 gr 

UF2-6 
7.601 % 12.683 % 24.996 % 42.367 % 20.284 % 67.364 % 

67.94 gr 136.60 gr 275.22 gr 431.54 gr 204.54 gr 706.76 gr 
UF2-9 @20-@90 

6.528 % 13.125 % 26.444 % 41.463 % 19.653 % 67.907 'Xl 

9.44 gr 4.39 gr 13.16 gr 10.09 gr 13.83 gr 23.25 gr 
UF 2-12 @40-@90 

20.553 % 9.558 % 28.652 % 21.968 % 30.111 % 50.621 % 

It is also seen in Table 5.21 that there are differences in the period of domination of coarse 

mode in transport. The weakest bed formed by antecedent flow UF 2-9 is clearly indicated by 

the early appearance of grains in the coarse mode in transport. The grains in the coarse mode 

started to dominate the transport at time elapsed 20 minutes. This means the exposed coarse 

grains on the bed were not stable enough to resist the small fluid forces produced at the low 
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flowrates. Although the domination of grains in the coarse mode established earlier in the 

stability test UF 2-12 than in the stability test UF 2-6, the bed formed by antecedent flow 

experiment UF 2-12 is more stable than the bed formed by antecedent flow UF 2-6. The 

period of domination of grains in the coarse mode was shorter in UF 2-12 with very low 

transport rates. Meanwhile the stability test UP 2-6 indicates the influence of peak flowrates 

on the destabilisation of the bed surface structure. It is believed that this bed structure was 

composed of many exposed and isolated larger grains resting on the bed so that the low fluid 

forces at time elapsed 120 minutes were still able to transport grains in the coarse mode. It is 

also seen in Table 5.21 that the transport with the domination of grains in the coarse mode 

was over a longer period in the stability tests UP 2-9 than the other two stability tests. 

5.4.3. The Distribution of Average Nearbed Streamwise Flow Velocity and Average Bed 

Shear Stress UF II 

The average nearbed streamwise velocity in antecedent flow Experiment UF 2-6, UF 2-9 and 

UF 2-12 are sensibly constant throughout the constant flowrate section (Figure 5.47). The 

observation of three different time elapsed representing every hour of constant tlowratc 

section indicated that the range of variation of time averaged nearbed streamwise velocity 

from the average values of all measurement is less than 4 %. The narrowest range is found in 

the constant flowrate section of UF 2-6 with the range of ± 2 % while in the constant flowratc 

section of UP 2-9 the range slightly increased to ± 3 %. In constant tlowrate section of UF 2-

12 the variation has a range between +4 % and -3 %. These variations correlate with the 

observation in the steady antecedent flow Experiment SF I that the range of variation for the 

shorter interval between time elapsed is very low. The time averaged nearbed strcamwisc 

velocities are also generally decreased at the later time elapsed indicating an increased in the 

hydraulic roughness of the bed. 

In the average bed shear stress the variation in the unsteady antecedent tlow UF 2-6 is also 

small and has relatively similar range with the variation in the average nearbed streamwisc 

velocity. The range of variation is wider in the unsteady antecedent tlow UF 2-9 and UF 2-12 

where the variations are ranging from -11 to +8 % and +7 to -12 % respectively (Figure 5.48). 

The increase in the variation of the average bed shear stress in comparison to the variation of 
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the average nearbed streamwise velocity is thought to be caused by the variation In the 

distribution of "instantaneous" vertical velocity. 
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Figure 5.47. Variation of time averaged nearbed streamwise velocity during the con tant 
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Similar observation to different grid points in the measurement area show that the variation 

in the average bed shear stress (Figure 5.50) do not automatically folIow the pattern of 
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average nearbed streamwise velocity (Figure 5.49). The variations have no systematic pattern 

as some points exhibited decreasing values whilst other points increased in the second 

measurement. Again the most likely factor for the variation in bed shear stress is the variation 

in the distribution of "instantaneous" vertical velocity. The level of fluctuation influenced the 

level of bed shear stress and produced inconsistency in the spread of bed shear stress over the 
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observation area. It is very clear that the scattered values of bed shear stress are the indication 

that the fluctuation of flow velocity in vertical direction continued during each test. Nonnally 

when the streamwise velocity experienced a low variation, a smaller variation in bed shear 

stress was produced only if the fluctuation in vertical velocity were also small. It is then 

assumed that the variation of bed shear stress in antecedent flow Experiment UF 2-6, UF 2-9 

and UF 2-12 within an interval of 125 minutes between the measurements are primarily 

caused by the local fluctuation in "instantaneous" vertical velocity. 

5.4.4. Bursting Events and Flow Momentum UF II 

Observation of the bursting events in antecedent flow experiments with the time varying flow 

hydro graphs suggested that sweeps (the downward looking bed interactions) were more 

common than ejections (the upward interactions). The differences between the proportion of 

sweeps and the proportion of ejections in the constant flowrate section are higher than in the 

falling limb section (Table 5.22). This is an indication that the downward-looking bed 

interactions are more frequent in the constant flowrates than in the falling limbs even though 

the flow decelerated in the latter sections. At the beginning it was assumed that the 

decelerating flow tended to produce more downward looking-bed interactions than upward 

interactions and hence dominated the bursting events in the duration of each antecedent flow 

experiment. However, careful examination at different time elapsed in all three antecedent 

flow experiments suggested that the importance of the ejections also found in certain time 

elapsed. This means that in the decelerating flow the upward interactions have the opportunity 

Table 5.22. Summary of bursting events of antecedent flow Experiments UF II 

UF 2-6 UF 2-9 UF 2-12 
Parameter descriptions Constant Falling Constant Falling Constant Falling 

Flowrate Limb Flowrate Limb Flowrate Limb 

Proportion (%) 47.487 48.372 46.192 48.033 47.291 49.529 
Ejections Frequency (Hz) 0.945 0.982 0.940 1.013 0.960 0.996 

Average duration (s) 0.050 0.052 0.051 0.053 0.061 0.055 
Proportion (%) 52.513 51.628 53.808 51.967 52.709 50.471 

Sweeps Frequency (Hz) 1.045 1.048 1.095 1.095 1.070 1.015 
Average duration (s) 0.053 0.051 0.050 0.052 0.051 0.052 

250 Y. Saadi 



Chapter 5 : Experimental Results of llF II 

to dominate the bursting events in certain periods although this may not be as frequent as the 

downward looking-bed interactions. 

In antecedent flow experiments UF 2-6 and UF 2-12 the proportion of events for both types 0 f 

interactions are almost the same in the constant flowrate sections whilst in the antecedent flow 

Experiment UP 2-9 the proportion of ejections is slightly lower and the proportion of sweeps 

is slightly higher. However the frequency of occurrences for both interactions are relatively 

similar for all antecedent flow experiments with very close values in the constant flowratc 

sections. It is also seen that the average duration of both events are similar in all tests. In 

Table 5.22 the frequency of ejections in the falling limb section of antecedent flow 

Experiment UP 2-9 is higher than the antecedent flow experiments UF 2-6 and UF 2-12. It is 

likely that the more numerous ejections ocurring in the falling limb of Experiment UF 2-9 

coincides with the pattern of transport in Table 5.19. This shows higher bedload in the coarse 

mode transported during antecedent flow Experiment UF 2-9 than in other two tests. 

5.4.5. Bed Topography UF II 

The original bed of Experiment UF 2-9 was aggressively eroded by the antecedent flow. A 

significantly higher amount of bedload in comparison to the other two tests was transported 

during the constant flowrates and during the falling limb (see Table 5.19). This is the main 

factor that the bed surface topography before and after antecedent flow shows a significant 

difference. The bed surface elevation distribution shows that there was a significant quantity 

of large grains resting on the bed after antecedent flow (Figure 5.51). It is also believed that 

during antecedent flow UF 2-9 further erosion increased the number of valleys, most notably 

in the surface elevation range between 4 to 5 mm below the mean bed level as shown by the 

bed surface distribution curve in Figure 5.51. The bed surface after antecedent flow UF 2-9 

less flatter and the exposed larger grains more spread. The application of stability flow with 

peak flowrate higher than the maximum discharge in the antecedent flow destabilisc the bed 

and the exposed large grains were less easy to move and transported downstream. This 

stability test produced extremely high transport in comparison to the other two stability tests 

applied to the bed formed by antecedent flow experiments UF 2-6 and UF 2-12. 
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A relatively high number exposed grain was also found after antecedent flow e prim nt 

2-12. Irregular shape of distribution curve in the negative values exist but with the I w r 

proportion than in experiment UF 2-9. After the stability test was introduced to thi bed th 

distribution curves showing relatively little change. There is an increase in the pr p rti n r 
the bed surface about the mean level but not to the extent experienced after the tabilit te t 

experiment UF 2-9. The bed formed by antecedent flow with the combination r 
constant flowrates and 9 hours declining flowrates is more stable. It is believed that {i r a long 

time period the stability test was only able to remove the coarser grains in a rolling fa hi n 

rather than in saltation so that the structures in the bed surface became progre iv Iy b tt r 

developed and stronger. This is indicated by the final curves, most notably the irregular h p , 

which was shifted to the right indicating the eroded fine materials were not tran ported far 

away downstream but moved to and increased the bed surface elevation in adjacent 

neighbouring areas. 

A different pattern of bed surface distribution is presented by experiment • 2-6. h 

distribution curve is quite symmetrical. The distribution after antecedent flow indicat d a 

lower number of isolated larger grains resting on the bed than in UF 2-9 and UF 2-12. Th 

grains were relatively not in stable condition as the shorter period of decelerating flowrat did 

252 . SlIudl 



Chapter 5 : Experimental Results ofllF II 

not allow the bed to be properly annoured. The application of stability test removed these 

grains, either being transported further downstream into the collection box or moved to 

different location. The sequence of bed topography showed that there are some dislocations of 

exposed grains as well as continuing decreased in the previously formed valleys bed before 

and after stability test. 

5.5. SUMMARY OF EXPERIMENTS UF II 

Different patterns to those found in the stability tests for steady antecedent flow were 

experienced. The appearance of the coarse mode grains in transport was generally found in 

the period of 180 minutes with the constant flowrate. In this section, the proportion of the 

coarse mode in the antecedent flow experiments UF 2-6 and UF 2-9 show a decrease while 

UF 2-12 indicates a fluctuation. In the falling limb the contribution of the fine mode was 

generally increased while the coarse mode decreases in all the tests. The higher transport rates 

after the peak discharge of stability tests found in two experiments with the declining flow 

sections of 3 and 6 hours (UF 2-6 and UF 2-9). It is found that the bed formed by the medium 

duration of decelerating flowrate UF 2-9 is the weakest followed by the bed formed by 

antecedent flow with the shortest declining flow section (UF 2-6). In stability test UF 2-12 

where identical stability hydro graph was applied to the bed formed by antecedent flow with 9 

hours declining flowrates, the transport rate was very small. This underlines the importance of 

a relatively long duration of decelerating antecedent flow. The decelerating flows of 

antecedent flow were found to have transported mostly grains in the fine mode but coarse 

grains were also mobile. At this stage the armouring process was expected to properly 

develop. The coarse grains first became more organised and then the finer grains became 

more sheltered. This is indicated in the changes in the empirical hiding functions. The hiding 

function of grain size fractions in the stability tests UF 2-12 are slightly higher than UF 2-6 

while in the stability test UF 2-9 the hiding function values are considerably lower. The 

thresholds of motion for finer grains in the stability tests UP 2-6 and UF 2-12 are relatively 

similar. In the stability test UF 2-9 the finer grains moved at considerably lower values of 

shear stress. Coarser grains also exhibited different thresholds of motion. It seemed that at the 

end of 6 hours decelerating flowrate large grains more exposed but an extended period 

allowed these grains to find more stable position. The finer fractions also found greater shelter 
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behind the stable coarse grains. 

The observation of bursting events suggested that the downward looking bed interactions are 

more common in the antecedent flow with declining flowrates. The pattern found in 

antecedent flow experiment is that the high momentum of upward interactions is very 

important in transporting coarser grains. The frequency of occurrences and momentum 

magnitude determines the mode of transport. If the frequency of ejections higher than sweeps 

and the magnitude of momentum ejections is also high, it is expected that the transport is 

coarser grains-dominated. This pattern is similar to that found in the steady antecedent flow 

tests. 

The bed topography observations displayed a similarity in which the erosion caused by the 

antecedent flow tends to form diagonal patches on the surface. The patches are stretched to 

the downstream and left side direction of the measurement grid. Although further erosion 

occurred in the stability tests the patches were maintained and still exist at the end of the final 

tests. The bed topography before and after the stability tests are relatively similar although the 

amount of bedload transported in this tests is higher than in the longer duration of the 

antecedent flow tests. This can be explained that the coarse grains dominated the transport 

during stability test and their movement did not considerably change the bed surface level. 

The distribution curves were slightly narrowed as the bed surface becoming relatively flatter. 

Similar to observation in the steady antecedent flow tests, it is found that the average nearbed 

streamwise velocities were relatively constant throughout the constant flowrate sections. Only 

a small variation is noticed with the tendency to slightly decreases at the later time elapsed. 

Observation of the points in the measurement grid also has a similar pattern. Most points 

displayed a decrease in the average nearbed streamwise velocity and the average values of 

different measurement indicate that the second measurements always have slightly lower 

values. This is strongly supported the statement that as the constant flowrate progressed the 

average nearbed streamwise velocity would decrease slightly. In the average bed shear stress 

the tendency of decrease is also observed. This is thought to be due to the variation in the 

distribution of "instantaneous" vertical velocity as the hydraulic roughness of the bed 

increased. 
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VI. EXPERIMENTAL RESULTS OF UNSTEADY FLOW EXPERIMENTS UF III 

6.1. INTRODUCTION 

In this chapter three antecedent flow experiments run with three different hydrographs are 

reported. The hydro graphs were a combination of different duration of increasing flow 

sections followed by 3 hours declining flowrate, which was the same in each test. The 

duration of the rising limbs were 3,6 and 9 hours with a maximum discharge of 0.0338 m3/s. 

This was followed by declining flow with the duration of 3 hours to form experiments with 

total durations of 6, 9 and 12 hours respectively. The results of each experiment, which have 

been identified as UF 3-6 (6 hours duration), UF 3-9 (9 hours duration) and UF 3-12 (12 

hours duration), are described and then discussed together with the observations made during 

the subsequent stability tests. 

The aim of these experiments was to examine the influence of different increasing rates of 

flow discharges on grain sorting and the stability of water worked sediment bed. For a 

comprehensive comparison between these experiments and others, which have previously 

been reported in Chapter 4 and Chapter 5 (Experiment SF I and Experiment UF II), this 

chapter is divided into four sections. The first section is focused on the stability analysis 

where the results of a short duration of 'standard' hydrographs applied at the end of all 

experiments were described. The standard hydrograph lasted 120 minutes and had a peak 

discharge of 0.0375 m3/s, which was larger than the maximum discharge applied during the 

antecedent flows. The application of the standard hydro graph was intended to assess the 

stability of water worked bed at the end of each of the antecedent flow experiment. 

The second section describes the observations made during each antecedent flow before the 

stability tests were applied. The observations consist of bedload transport pattern and 

composition, nearbed flow observations including the investigation of bursting events and bed 

topography analysis. The comparative results of all antecedent flow and stability tests form 

the third section in which links between the observation in the first and the second section are 

examined. The final part of this chapter comprises a summary or short conclusion section. 
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6.2. STABILITY TESTS OBSERVATIONS UF III 

6.2.1. Transport Rate Measurement UF III 

Chapter 6 : Experimental Results of lJF III 

It has been found that the results of stability tests in Chapter 5 produced a different pattern 

from the results of the stability tests in Chapter 4, which showed that the bed formed by the 

longest constant flowrate is the strongest. Although at the end of each of these antecedent 

flow experiments the transport rate was very low indicating a stable bed condition, the level 

of armouring is believed to be different. This was proved by the stability test results. For the 

conditions where the constant flowrates were applied, it can be assumed that the stability of 

the bed is a function of time. However stability tests to beds forn1ed by hydrographs, which 

combine constant flowrates and different durations of decelerating flowrates have suggested a 

different pattern. These findings led to the initial conclusion that the application of di fferent 

types oftime varying antecedent flow is likely to result in another pattern of stability in water 

worked beds. Because of this pattern it was decided to examine the stability of beds formed 

by different types of antecedent flow hydrographs, principally one with different durations of 

rising limb. 

Figure 6.1 shows that the weakest bed was the one formed by antecedent flow test UF 3-6. 

Surprisingly it was the antecedent flow test UF 3-9 that formed the strongest bed. It suggests 

the possibility that medium duration of rising limbs sufficiently reorganised the bed structure 

so that the following identical falling limb strengthens the stability of the bed. However, it is 

too early to come to a conclusion as further investigation is necessary. It can be seen from 

Figure 6.1 that the transport rate of stability test UF 3-6 was extremely high in comparison to 

those during stability tests UF 3-12 and UF 3-9. A relatively small transport rate is evident 

during the early stages of rising limb. As flow strength increased, an increasing proportion of 

bedload was entrained into transport. This is the common pattern that was also found in the 

stability tests examined in the previous chapters. The transport rate was significantly 

increased when the flowrate was approaching its peak at 60 minutes. The bed formed by all 

antecedent flows were weakened at the highest discharge (time elapsed 60 minutes). It is 

believed that the destabilisation process took place during this particular time as the 

corresponding discharges after the peak flowrate produced even higher transport rates. 
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Figure 6.1. Bedload transport rate pattern during stability tests UF III 

In terms of proportion of increased bedload for corresponding discharge in the rising and the 

falling limb, stability test UF 3-12 experienced the highest changes. Between time elapsed 50 

to 60 minutes the transport rate is 0.704 gls/m. This was increased more than threefold to 

2.945 gls/m during the time elapsed 60 - 70 minutes. The level of increased was even higher 

at latter times in comparison to the corresponding discharge in the rising limb. The bedload 

diminished to an almost-zero transport rate in the last ten minutes of the falling limb. 

However, the highest transport rate among the test is observed in the stability test UF 3-6 at 

time elapsed 60 - 70 minutes. At this time elapsed, the transport rate was 4.813 gls/m while 

stability test UF 3-9 had 2.286 gls/m and UF 3-12 had 2.945 gls/m. 

Although the stability test indicated that the antecedent flow experiments produced different 

levels of bed stability, Figure 6.1 confirms that only the higher discharges were able to 

destabilise the previously formed armoured bed. This is supported by the observation that the 

average transport rates in the falling limb are significantly higher than the transport rates in 

the rising limb. The average transport rates in the rising limb are 0.663 gls/m for UF 3-6, 

0.163 gls/m for UF 3-9 and 0.149 gls/m for UF 3-12. This suggest that the bedload transport 

rates for stability tests UF 3-9 and UF 3-12 are relatively similar in the rising limb . However 

different level of increase in transport after the peak flowrate was attained indicating that each 

bed has different level of stability. The average transport rate in the falling limbs of stability 
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tests UP 3-6, UP 3-9 and UP 3-12 are 1.026 gls/m, 0.528 gls/m and 0.865 gls/m respectively. 

6.2.2. Grain Size Distribution of Transported Bedload UF III 

Observation of the grain size distribution of transported bedload during the stability test for 

Experiment UP 3-6 suggests that at the low discharges in the initial stages only finer grains 

were carried. The grains in the fine mode were transported during the whole duration of this 

experiment. Figure 6.2 shows that at time elapsed 10 and 20 minutes no grains in the coarse 

mode were transported. The appearance of grains in the coarse mode in transport was first 

noticed at time elapsed 30 minutes. However the fluid forces were not able to remove grains 

of diameter 8 mm. The higher fluid forces at time elapsed 40 minutes were also removed only 

grains with diameter 5.6 mm and 4 mm without diameter 8 mm. The dominance of the coarse 

mode was started at time elapsed 50 minutes and continued until 90 minutes. The fluid forces 

at time elapsed 100 minutes were still able to transport all grain sizes in the coarse mode 

whilst at time elapsed 110 and 120 minutes only grains of diameter 5.6 and 4 mm were 

transported. 

It is apparent that during the stability test of experiment UF 3-6 the movement of grains in the 

coarse mode is more important than the movement of grains in the fine mode. Although the 

domination of grains in the coarse mode in transport lasted only 40 minutes with grains 

diameter 8 mm did not make a regular contribution and only started to move downstream 

when the fluid forces was sufficient enough, i.e. at time elapsed 50 minutes (Figure 6.2), their 

contribution to the total amount of bedload is considerably high. This is shown in Table 6.1 

where a significant amount of the transported bedload was of grains in the coarse mode. More 

than 65 % of the total transported bedload is grains in the coarse mode whilst the proportion 

of grains in the fine mode is less than 20 %. 

The grain size distribution of transported bedload during stability hydro graph of experiment 

UF 3-9 shown in Figure 6.3 suggests that grains in the coarse mode started to move at time 

elapsed 40 minutes, 10 minutes after the time in UF 3-6. Although the grains in the fine mode 

appeared from the early times with low flowrates, the amount is very small. At time elapsed 

40 minutes only grains of diameter 4 mm were found in the coarse mode. The larger grains 
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Figure 6.2. Grain size distribution of transported bedload for stability flow 

Experiment UF 3-6 

10 

were stable and remained so until 60 minutes. AJI grains in the coarse mode appeared in 

transport at time elapsed 60 minutes. The peak flowrates disrupted the armoured bed and 

transported all grain sizes in the coarse mode. The disruption caused by the peak flowrates 

allowed the lower fluid forces in the falling limb to remove the coarser grains. This is 

indicated by the appearances of all grain sizes in the coarse mode for a continuous period of 
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40 minutes. At 90 minutes the flow was capable of transporting all grain sizes in the coarse 

mode whilst at the corresponding discharge in the rising limb grains of diameter 8 mm were 

not seen in transport. In the following 10 minutes the flowrates were still able to transport the 

coarser grains (diameter 5.6 and 4 mm) although the larger grains (diameter 8 mm) were 

absent. The existence of all grains in the coarse mode was found again at time elapsed 110 

minutes before they disappeared at the end of the falling limb (time elapsed 120 minutes). 

Table 6.1. Summary of the average fractional bedload composition produced by 

stability tests UF III 

Sieve size Fractional transported bedload Estimated composition of surface layer 

(mm) (%) (%) 

UF 2-6 UF 3-9 UF 3-12 UF 2-6 UF 3-9 UF 3-12 

10 1.005 0.857 0.879 1.760 1.741 1.746 

8 5.978 8.583 7.577 8.716 8.571 8.595 

5.6 37.208 46.904 44.886 34.694 34.525 34.491 

4 23.997 27.994 30.188 19.495 19.506 19.424 

2.8 4.782 4.259 5.163 6.949 6.892 6.891 

2 1.777 0.641 0.949 3.603 3.565 3.575 

1.4 1.253 0.305 0.284 2.562 2.536 2.550 

1 1.463 0.311 0.277 1.864 1.868 1.877 

0.71 2.392 0.521 0.851 2.676 2.706 2.712 

0.5 6.695 1.774 1.833 6.775 6.900 6.925 

0.355 8.735 3.520 3.253 7.264 7.462 7.485 

0.25 3.920 3.048 2.725 2.608 2.699 2.699 

0.15 0.721 1.168 1.064 0.933 0.932 0.931 

receiver 0.074 0.114 0.072 0.100 0.099 0.099 

Total 100 100 100 100 100 100 

The transport at the higher discharges contained substantial amounts of grains in the coarse 

mode. As previously mentioned the corresponding flowrates in the rising limb and falling 

limb do not automatically feature similar compositions in transport. For instance, it can be 

seen in Figure 6.3 that the cumulative distribution curves for time elapsed 50 and 80 minutes 

are significantly different. Time elapsed 50 minutes indicates the dominant of grains in the 

fine mode whilst time elapsed 80 minutes indicates the domination of grains in the coarse 

mode. The plateau in both distributions is a reflections of bimodality of the bedload. 
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Figure 6.3. Grains size distribution of transported bedload for stability flow 

Experiment UF 3-9 
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In terms of the total amount of bedload transport, the stability flow Experiment UF 3-9 

transported considerably more material in the coarse mode than in the fine mode. As shown in 

Table 6.1 the transported bedload consists more than 80 % of grains in the coarse mode and 

less than 10 % of grains in the fine mode. The grain size of 5.6 mm contributes almost half of 
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the total amount of transported bedload (47 %). The most popular grains transported in the 

fine mode is diameter 0.355 mm with 3.5 % of the total bedload. This suggests that although 

the stability test UF 3-9 was effectively transporting grains in the fine mode during the whole 

duration, the movement of grains in the coarse mode is more important. The disruption at the 

peak flowrates removed the coarser grains and change the pattern of transport in the falling 

limb with grains in both modes were found in transport. 

The results of stability test UF 3-12 indicate a different pattern of domination of the coarse 

mode than that produced by stability tests UF 3-6 and UF 3-9. It is very clear that the curves 

described in Figure 6.4 show high proportions of grains in the coarse mode. The absence of 

grains in the coarse mode was found only at the first and the last 10 minutes of flow. The 

coarse mode appeared at time elapsed 20 minutes and dominated the transport until time 

elapsed 110 minutes. At time elapsed 20 and 30 minutes in the rising limb and time elapsed 

100 and 110 minutes in the falling limb the flows were still capable of moving grains in the 

coarse mode although grains of diameter 8 mm were not available in the bedload. The low 

proportion of grains in the fine mode is also apparent in Figure 6.4. Only at time elapsed 10 

and 120 minutes are the higher proportions of grains in the fine mode seen. At time elapsed 

10 minutes the maximum grain size found in transport is 2 mm whilst at time elapsed 120 

minutes no grains with the size more than 1 mm were moving. 

The pattern mentioned above is reflected in the cumulative grain distribution curves. It is 

shown that at time elapsed 10 and 120 minutes a sharp increase in the finer sizes is seen with 

the opposite pattern displayed at the times between 20 and 110 minutes. Again the relative 

paucity of grains in the range from 0.71 to 2.8 mm are indicated by the plateau in the size 

distribution curve reflecting the bimodality of the bedload. The importance of coarse mode 

during stability test UF 3-12 has clearly been shown in Table 6.1. More than 82 % of the total 

transported bedload contains grains in the coarse mode (diameter 4 mm, 5.6 mm and 8 mm) in 

comparison to less than 8 % contribution of grains in the fine mode (0.25 mm, 0.355 mm and 

0.5 mm). 
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Figure 6.4. Grain size distribution of transported bedload for stability flow 

Experiment UF 3-12 

6.2.3. Fractional Threshold of Motion UF ill 

Similar to the observations in the previous two chapters the threshold of motion for individual 

grain size fraction for each stability test was examined using the reference transport method. 

This method has been used in several previous studies (e.g. Parker et ai, 1982 ; Wilcock and 

Southard, 1988 ; Kuhnle, 1993a ; Wilcock and McArdell, 1993 ; Shvidchenko et ai, 2001) as 

it relies upon the extrapolation of gathered sediment transport measurement to a low reference 
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transport level, thereby standardizing the critical entrainment shear stress for each size 

fraction in the mixture. 

As observed earlier in this chapter the bed formed by antecedent flow UF 3-6 is the weakest 

bed. This is an interesting feature as the findings of the stability observations of beds formed 

by different durations of declining antecedent flow hydrograph showed that the bed stability 

was not a simple function of time as indicated by the stability tests applied to the bed formed 

by the different duration of steady antecedent flow experiments. It underlines that different 

durations of either accelerating or decelerating flows can influence the bed armouring 

processes. The following analysis is carried out to examine how accelerating flows influence 

the level of bed stability. 

The non dimensional shear stress parameter, 'tri*, estimated from Figure 6.5, Figure 6.6 and 

Figure 6.7, where the values of tri* is defined such that the non dimensional reference 

transport, W ri*, equals to a low reference value of 0.002 for each grain size fraction. The 

results of estimation are presented in Table 6.2 together with the error bounds. It is shown 

that the non dimensional shear stress parameter, tri*' for incipient motion of individual 

fractions generally decrease in value with increasing grain size. Diferent patterns are 

experienced by grain sizes 1 mm and 0.71 mm. This pattern was also found in the 

observations for the stability test in the previous two chapters. In stability test UF 3-12 the 

non dimensional shear stress parameter, tri*, for grain size 1.4 mm was more scattered and 

the slightly steeper trend in Figure 6.7 produces higher shear stress parameter than grain size 

1.0 mm. This inconsistency is thought to be due to their low availability in the mixtures. As 

these grains have no significance influence on transport, further analyses are focused on the 

more popular grains in the fine and coarse mode. 

It can be seen in Table 6.2 that the shear stress parameters for stability test UF 3-6 are the 

lowest in comparison to those for stability test UF 3-9 and UF 3-12. It is also shown that the 

values of shear stress parameter of individual grain size fraction are generally very similar in 

each stability test in particular tests UF 3-9 and UF 3-12. In all stability tests the non 

dimensional shear stress parameter, tri*, of grains of diameter 10 mm are not available as 

these grains were not transported in all the observed time elapsed. 
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Chapter 6: Experimental Results of lJF III 

Table 6.2. Non dimensional shear stress parameter, 'tri*, and the error bounds 

for grain size fractions of stability tests UF III 

Grain size UF 3-6 UF 3-9 UF 3-12 

(mm) 'trl* Error bounds 'tri* Error bounds 'trl* Error bounds 

10 - - - - - -
8 0.0071 0.0062 - 0.0076 0.0090 0.0084 - 0.0091 0.0080 0.0075 - 0.0082 

5.6 0.0100 0.0095 - 0.0107 0.0109 0.0106 - 0.0110 0.0103 0.0100 - 0.0107 

4 0.0140 0.0136 - 0.1463 0.0151 0.0144 - 0.0160 0.0141 0.0136 - 0.0144 

2.8 0.0220 0.0214 - 0.0224 0.0240 0.0233 - 0.0240 0.0224 0.0220 - 0.0232 

2 0.0340 0.0334 - 0.0340 0.0360 0.0350 - 0.0370 0.0350 0.0340 - 0.0371 

1.4 0.0410 0.0400 - 0.0418 0.0500 0.0484 - 0.0500 0.0490 0.0484 - 0.0515 

1 0.0360 0.0360 - 0.0363 0.0460 0.0445 - 0.0460 0.0463 0.0445 - 0.0463 

0.71 0.0720 0.0700 - 0.0734 0.0822 0.0808 - 0.0853 0.0745 0.0734 - 0.0817 

0.5 0.1040 0.1014 - 0.1085 0.1142 0.1113 - 0.1207 0.1100 0.1099 - 0.1200 

0.355 0.1267 0.1226 - 0.1275 0.1500 0.1426 - 0.1530 0.1400 0.1355 - 0.1500 

0.25 0.1700 0.1609 - 0.2000 0.2000 0.1926 - 0.2010 0.1900 0.1800 - 0.2049 

0.15 0.3200 0.3100 - 0.3500 0.3400 0.3370 - 0.3430 0.3200 OJ I 00 - 0.3400 

The different values of non dimensional shear stress parameter, 'tri*, in Table 6.2 produced 

different critical shear stresses, 'tei , for each grain size available on the bed. The variation in 

the critical shear stresses, 'tei , values determines the value of hiding function, Eis , which was 

defined using Equation 4.3. Both the critical shear stresses 'tei and the hiding function Cis for 

each grain size fraction are presented in Table 6.3. It is observed that the shear stress 

thresholds are slightly lower for the finer grains than the coarse grains. The weakest bed was 

formed by antecedent flow OF 3-6, which clearly has the lowest threshold of motion for all 

grain sizes available on the bed (Table 6.3). It can also be seen in Table 6.3 that the stability 

increases from UF 3-6 to UF 3-9 but seems to decline after that in UF 3-12. However the 

declines from UF 3-9 to UF 3-12 are very low and the shear stress threshold of UF 3-12 was 

still generally higher than UF 3-6. This indicates that the strongest bed is the bed formed by 

the combination of 6 hours increasing flow and 3 hours declining flow hydrograph (UF 3-9). 

This demonstrates that either a maximum level of stability had been attained by the flow 

hydro graph in UF 3-9 and this was maintained for the longer duration UF 3-12, or that the 

stability of the bed had declined slightly as the duration of the rising limb was extended 

longer than 6 hours. 
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Table 6.3. Critical shear stress, 'tci , and hiding function values, Cis , 

for grain size fractions in stability tests UF III 

Grain size UF 3-6 UF 3-9 UF 3-12 

(mm) 'tei (N/m2
) Eis 'td (N/m2

) Eis 'tci (N/m2
) Eis 

10 - - - - - -
8 0.919 0.127 1.140 0.157 1.036 0. 143 

5.6 0.906 0.179 0.988 0.195 0.934 0.184 

4 0.906 0.250 0.978 0.270 0.913 0.252 

2.8 0.997 0.393 1.088 0.429 1.015 0.400 

2 1.101 0.607 1.165 0.643 1.133 0.625 

l.4 0.929 0.732 1.133 0.893 1.110 0.875 

I 0.583 0.643 0.745 0.821 0.749 0.827 

0 .71 0.827 1.286 0.942 1.464 0.856 1.330 

0.5 0.842 1.857 0.924 2.039 0.890 l.964 

0.355 0.728 2.263 0.862 2.679 0.804 2.500 

0 .25 0.688 3.036 0.809 3.571 0.769 3.393 

0 .15 0.777 5.714 0.826 6.071 0.777 5.714 

The grains in the fine mode for all stability tests have a relatively similar stability. It can be 

seen in Figure 6.8 that the grains of sizes less than 0.71 mm have a very close shear stress 

threshold. The difference in the shear stress thresholds increased for the larger grains where 

the most stable grains found in the stability test UF 3-9. 
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In Figure 6.9 the size ratio of each grain size fraction (D/D50) was used to observed the hiding 

function . As applied by Wilcock and Southard (1988), the size ratio of the fraction is one of 

variables used to describe the relative grain size, which has a central role in mixed size 

sediment transport because of the size of each grain relative to others in the mixture controls 

the variation from fraction to fraction of both the value of bed shear stress acting on 

individual grains and the resistance of those grains to movement. It can be seen in Figure 6.9 

that the hiding functions in the region D/D50 < 0.15 are similar for stability tests OF 3-6, UF 

3-9 and UF 3-12. The hjding function value reduces in the region ofD/D5o > 0.15 . However 

the decrease was not correspond with time. The lowest hiding function values in the region of 

D/D50 > 0.15 are observed in the stability test of the bed formed by shortest antecedent flow 

duration (UF 3-6) and the highest values are found in the stability test applied to the bed 

formed by the medium duration of antecedent flow (OF 3-9). 

6.3. OBSERVATIO S OF ANTECEDE T FLOW EXPERIMENTS 

6.3.1. UNSTEADY ANTECEDENT FLOW EXPERIMENT UF 3-6 

6.3.1.1. Bedload Transport Rate and Composition UF 3-6 

The accelerating flow in antecedent flow experiment UF 3-6 transported no material in the 

fIrst 20 minutes. The appearances of sediment in transport were started at time elapsed 30 
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minutes where the observed flowrates was 0.0056 m3 Is. As shown in Figure 6.10 the absence 

of sediment in the early period of rising limb caused a low average transport rate in the initial 

hour of antecedent flow Experiment UF 3-6. The average transport rate in the first hour is 

0.001 gls/m and this increased almost fivefold in the following hour. In the third hour, with 

relatively higher flowrates within the range between 0.0225 m3 Is and 0.0338 m3 Is, the average 

transport rate was significantly increased to 0.219 gls/m. The increasing and decreasing 

transport rates in Figure 6.10 are generally a reflection of the changes in flow hydro graph. 

However it is shown that the transport rates in the falling limb are higher than those found in 

the corresponding flowrate in the rising limb. In the falling limb the hourly average transport 

rates for the fourth, fifth and sixth hours are 0.313 gls/m, 0.031 gls/m and 0.028 gls/m 

respectively. Overall the transport rate during the rising limb of antecedent flow experiment 

UF 3-6 is 0.075 gls/m and increased in the falling limb to 0.124 gls/m. 
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Figure 6.10. Time variation of transport rate for antecedent flow Experiment UF 3-6 

The composition of the transported bedload observed during the antecedent flow UF 3-6 was 

dominated by grains in the fine mode. As can be seen from Figure 6.11, from the start to the 

time elapsed 160 minutes of observation, grains in the fine mode were transported more than 

grains in the coarse mode. It is noted that grains in the coarse mode did not appear in transport 

until time elapsed 110 minutes. In the following time elapsed (between 120 to 160 minutes) 

the amount of grains in the fine mode increased but proportionally decreased because of the 
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existence of coarse grains in transport. It was during the latter stage of rising limb and in the 

initial stage of falling limb when the transport were dominated by grains in the coarse mode 

(time elapsed 170 to 21 0 minutes). This means that the removal of considerable amounts of 

grains in the coarse mode only occurred for a relatively short period around the peak flowrate . 

In this case the coarse mode domination only occurred when the discharge was at least 0.0300 

m3/s. It is found that the amount of grains in the coarse mode was higher in the corresponding 

flowrates of the falling limb. This increase in amount was coupled with an increase in the 

proportion of grains in the coarse mode, which resulted in the contribution of grains in the 

fine mode being significantly less than at the corresponding flowrates in the rising limb. 
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The domination of grains in the fine mode in transport started again at time elapsed 220 

minutes and then continued for the rest of the falling limb except at time elapsed 270-290 

minutes where slightly more than half of transport contains grains in the coarse mode. This is 

suspected to be caused by the increasing exposure of the coarse grains as grains in the fine 

mode were continually transported. The loss of finer grains around the coarser grains 

increased the instability of larger grains so that the relatively low fluid forces were still able to 

transport them. The appearance of grains in the coarse mode continued in the following half­

hour with a lower proportion and then diminished in the last 20 minutes of falling limb. The 

period or time elapsed with the domination of grains either in the fine or coarse mode in the 

transport can also be seen in the cumulative distribution curves where the three curves in the 

bottom indicating the domination of grains in the coarse mode (time elapsed 170-180, 190-

210 and 270-290 minutes), and the rest indicate a domination by grains in the fine mode. 

Table 6.4. Summary ofthe average fractional bedload composition produced by 

antecedent flow Experiment UF 3-6 

Grain size Original Fractional Estimated 

(mm) composition of transported composition of 
surface layer (%) bedload (%) surface layer (%) 

10 1.730 0.851 1.739 
8 8.570 1.834 8.638 

5.6 34.660 24.168 34.766 
4 19.600 17.327 19.623 

2.8 6.860 4.128 6.888 
2 3.530 1.431 3.551 

1.4 2.510 1.018 2.525 
1 1.850 1.609 1.852 

0.71 2.680 3.877 2.668 
0.5 6.840 13.548 6.772 

0.355 7.420 18.683 7.306 
0.25 2.710 9.139 2.645 
0.15 0.940 2.191 0.927 

receiver 0.100 0.197 0.099 
Total 100 100 100 

Overall considering the whole test, the proportion of grains in the fine mode is slightly less 

than the proportion of grains in the coarse mode. In Table 6.4 the proportion of the fine mode 
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is 41 % whilst the proportion of the coarse mode is 43 %. Although the domination of the 

coarse mode in transport was limjted to 80 minutes, the amount transported during this period 

was considerable. This removal assumed to be caused by the assumption that the continuous 

transport of grains in the fme mode increased the level of exposure of grains in the coarse 

mode. The increase in the fluid forces at the higher flowrates coupled with the increased 

exposure and of larger grains resulted in the high amount of grains in the coarse mode being 

transported at this particular stage of hydrograph. It can be seen in Table 6.4 that the bed 

surface slightly coarsened after the antecedent flow. 

6.3.1.2. Bursting Events and Flow Momentum UF 3-6 

During antecedent flow Experiment UF 3-6 only the measurement of average nearbed 

streamwise velocity at the central point of measurement area was carried out. There was no 

flow velocity observation at different grid points because of the continuous changes in th 

flowrates where no section in the hydro graph contained a constant discharge. Th results of 

observations of the average nearbed streamwise velocity are displayed in Figure 6.12. 1t can 

be seen that the average values of nearbed streamwise velocity were generally increased in 

line with the flowrates. It is also shown that although the average bed shear stress at time 

elapsed 180 and 210 mjnutes are noticeably smaller, the values generally increased with the 

increasing flowrates. This is indicated by the pattern of the average bed shear stress which 

follow the shape of hydro graph to some extent (Figure 6.12). 
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Figure 6.12. Variation of time averaged nearbed streamwise velocity and bed shear stress 

during antecedent flow of Experiment UP 3-6 
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The observation of the mean flow variables, average nearbed streamwise velocity and bed 

shear stress indicated a dependence with flowrate. More careful observations were made of 

the turbulence to examine more subtle links with the movement of the bedload. The bursting 

events in antecedent flow experiment UF 3-6 suggests that overall the occurrence of sweeps is 

higher than ejections. In the rising limb where the flowrates increased in a relatively short 

period, the proportion of ejections is less than the proportion in the falling limb. This is 

reflected in that the frequency of occurrence of ejections in the rising limb is higher than the 

frequency in the falling limb. However the average duration of both events either in the rising 

limb or in the falling limb are similar. This suggest that in the antecedent flow Experiment UF 

3-6 the duration of upward and downward-looking bed interactions were not affected by the 

type of flow hydro graph. The accelerating and decelerating flowrates section produced events 

with identical duration. 

Table 6.5. Time frequency and the proportion of occurrences of bursting events 

in antecedent flow Experiment UF 3-6 

Parameter descriptions Frequency Proportion Average 
(Hz) (%) duration (sec.) 

Rising limb 
Eiections 1.049 48.596 0.052 

Sweeps 1.110 51.404 0.054 

Falling limb 
Eiections 0.999 49.019 0.052 

Sweeps 1.039 50.981 0.053 

In order to observe the relationships between the magnitude of momentum of ejections and 

sweeps, and the changes in the grains size distribution, four different time elapsed have been 

selected (Table 6.6). These time elapsed are representative of different types of grains size 

distributions observed during antecedent flow Experiment UF 3-6 which are shown in Figure 

6.11. Two of the times correspond to the rising limb and two to the falling limb. It can be seen 

that in the four times elapsed the pattern of ejections and sweeps are different. At the 

relatively low flowrates (time elapsed 100 and 250 minutes) the sweeps dominate but at the 

higher flowrates this may not be the case. At time elapsed 180 minutes sweeps are more 

frequent than ejections while at time elapsed 220 minutes the ejections are more popular than 

sweeps. It is also observed that the average duration of both events are generally similar. 

Again no coincidence between the average duration and the level of flowrates are observed. 
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However the summary in Table 6.6 is not sufficient to describe the influence of ejections and 

sweeps to the grains size distribution as the magnitude of momentum produced in the bursting 

events are not known. Therefore further investigation on the probability of momentum per 

unit area is carried out. 

Table 6.6. Summary of bursting events at selected time elapsed in antecedent flow 

Experiment UF 3-6 

Parameter descriptions Time elapsed (minutes) 
100 180 220 250 

Threshold values (m2/s2
) 0.0059 0.0078 0.0072 0.0062 

Number of ejections 203 207 211 188 

Number of sweeps 243 218 200 225 

Frequency of ejections (Hz) 1.015 1.035 1.055 0.940 

Frequency of sweeps (Hz) 1.215 1.090 1.000 1.125 

Average duration of ejection (s) 0.051 0.053 0.051 0.053 
Average duration of sweeps (s) 0.052 0.053 0.057 0.052 
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Figure 6.13 . Grain size distribution of transported bedload at selected time elapsed in 

antecedent flow Experiment UF 3-6 

The pattern found in the previous investigations of different antecedent flow experiments was 

that the high momentum of upward interactions (ejections) is the controlling factor in 

transporting coarser grains. This pattern was also found in this analysis. The absence of grains 

in the coarse mode in transport at time elapsed 100 minutes can be explained by examining 

the probability distribution of momentum per unit area presented in Figure 6.14. It is believed 
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that only momentum with the magnitude higher than 13 kg/ms was able to transport grains in 

the coarse mode. At time elapsed 100 minutes there were practically no ejections with 

momentum above this level and so the flow bursting events were sufficient enough to 

transport larger grains. As compensation, a high proportion of grains in the fine mode existed 

at this time elapsed (see Figure 6.13). Meanwhile at time elapsed 180 minutes a higher 

proportion of ejections with momentum magnitude between 13 and 15 kg/ms is noticed 

(Figure 6.14). It was observed that the grains in the coarse mode dominated the transport at 
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Figure 6.14. Probability distribution of momentum per unit area at selected time elapsed in 

antecedent flow Experiment UF 3-6 (ejections are positive and sweeps are negative) 

this time elapsed. It is believed that this large transport of coarse grains was due to the 

occurrence of ejections with a momentum magnitude of 13 kg/ms or larger. The existence of 

momentum with similar magnitude but with lower proportion at time elapsed 220 and 250 

minutes transported grains in the coarse mode but at the lower proportion and amount than at 

time elapsed 180 minutes. An interesting aspect of this plot is that the very high momentum 
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ejections were still present even when the flowrate had started to decline rapidly, e.g. time 

elapsed 220 minutes in the falling limb of the hydro graph. Figure 6.14 also shows that at all 

of the time elapsed, the distribution of the sweeps events seems similar, even thought there are 

large changes in the amount and composition of the bedload. This confirms previous thoughts 

that the role of sweeps in the grain entrainment process is not substantial. 

Figure 6.15 shows the sequence of ejections and sweeps for selected time elapsed. All time 

elapsed show the continuous occurrences of momentum of low magnitude either in the 

upward or the downward-looking bed interactions. It was expected that the higher level of 

turbulence occurred at higher flowrates. More rigorous bursting events were experienced by 

time elapsed 180 minutes, the period of observation with the highest flowrates at the end of 

the rising limb. High numbers of vigorous ejections are still seen at 220 minutes, that is 40 

minutes into the falling limb of the hydrograph. 

6.3.1.3. Bed Topography UF 3-6 

The changes in the bed surface structure of antecedent flow experiment UF 3-6 are observed 

by examining the bed topography plots presented in Figure 6.16, Figure 6.17 and Figure 6.18 

respectively. The first figure indicates that the original bed surface was fairly flat. The 

topographical features of note are the stretch marks with a relatively lower surface elevation 

on the right hand side of the measurement grid. This was due to the scrapping process applied 

to sediment deposit, which contained variation of grain sizes. Therefore the existence of such 

marks was inevitable. 

Figure 6.17 which shows the bed topography after the original bed was exposed to the 6 hours 

of antecedent flow indicates a large drop in the general bed level. The bed had eroded with 

some prominent grains starting to appear on the bed surface. It is also seen that the vallcy-type 

structures form in certain areas of the measurement grid indicating that the bed surface 

exhibits more irregularity than before. Note the appearance of the diagonal linear structure 

that divides the measurement grid into two areas, one with an exposed surface and the other 

with a generally lower level of bed surface. Having observed that the proportion of grains in 

the both modes transported during antecedent flow experiment UF 3-6 was almost in balance 
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Figure 6.16. Original bed surface topography of the measurement grid Experiment UF 3-6 
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Figure 6.17. Bed surface topography of the measurement grid after antecedent flow Experiment UP 3-6 
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Chapter 6 : Experimental Results oflJF III 

(the coarse mode had a slightly higher proportion), the combination of low elevation valleys 

and more areas of higher exposed beds is expected. The transportation of the finer grains 

coarsened the bed leaving more exposed larger grains, which were then subsequently. These 

coarse grain movements left bed areas with lower surface levels. Many of the dislodged 

coarse grains relocated in adjacent areas to form new areas of high exposed surfaces. 

It is very interesting to find out that the diagonal line is maintained and becomes more 

apparent after the stability test. This did not occur in the previous steady and time varying test 

in which such structures seemed to move "upstream" during the stability tests. In Figure 6.18 

the areal coverage of the darker zones increased indicating that the stability test had eroded 

the bed. This seems to correspond well with the transport pattern during the stability test in 

which transport was dominated by grains in the coarse mode. The number of highly exposed 

grains or areas in the valley-type structures has decreased whilst on the other side of the 

diagonal line the exposed surfaces are more organised than before as the valley can be clearly 

identified and is now located in the right comer of downstream part of the measurement grid. 

The level of grains exposure was investigated by plotting the probability distribution curve as 

shown in Figure 6.19. The distributions are quite revealing as to how the variation in the bed 

surface developed both after antecedent flow experiment and the stability test. The level of 

exposure either about zero level or the average bed level before and after stability test 

produced a noticeably different curve. The initial bed shows an unsymmetrical distribution 

with higher positive variations from the mean. The steep curve in the high positive values 

indicates that the bed generally formed by a scrapping process. After the antecedent flow the 

distribution is relatively more symmetrical with the large exposed grains resting on the bed 

appearing. This is indicated by the positive tail of the distribution exceeding the curve of 

original bed surface distribution. 

The continuous erosion during the stability test is reflected by significant changes in the 

distribution curve of the bed surface elevation after this test. The distribution becomes flatter 

and more spread. The number of bed elevation closed to the mean level decreased indicating 

significant reorganisation of the bed surface during the stability tests. The positive tail 

continues to exceed the previous distribution indicating more large exposed grams were 
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Figure 6.19. Probability distribution of bed surface elevation about zero and mean level 

for Experiment UF 3-6 

presence. Another noticeable feature of the distribution of bed urface elevation after the 

stability test is that the proportion of negative elevations is also higher. Thi typ of 

distribution is the characteristic of a bed with a greater number low level of valleys in the 

measurement area. The erosion and removal of larger grains formed new valley as well a 

increasing the depth of the previously formed valleys. Most importantly the change in the 

last distribution curve correlates with the transport rate observed during the stability te t. 

6.3.2. UNSTEADY ANTECEDENT FLOW EXPERIMENT UF 3-9 

6.3.2.1. Bedload Transport Rate and Composition UF 3-9 

The longer duration of rising limb in antecedent flow experiment UF 3-9 delayed the start 

time of transport. Material trapped in the collection box was only found at time elap ed 50 

minutes or 20 minutes after the first collection in antecedent flow experiment UF 3-6. 
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However, the observed flowrates shows that the initial transport in antecedent flow 

experiment UF 3-9 occurred at lower flowrates than that in antecedent flow experiment UF 3-

6. The discharge was 0.0047 m3/s at the time of the first collection. 

It is apparently shown in Figure 6.20 that the transport rates are generally very low throughout 

the antecedent flow experiment UF 3-9. Despite the slower start, the average rates in the fir t 

hour was similar to that observed in the corresponding time of antecedent flow experiment UF 

3-6. The average transport rate at this period is 0.001 gls/m. However a different pattem was 

found in which the average transport rates was decreased in the next 2 hours before it 

increased again in the fourth hour. There was no significant increase at this stage (fourth hour) 

as the transport rates had a similar level to that in the first hour. The average transport rates in 

the fifth and sixth hour are 0.002 and 0.015 gls/m respectively. 

Closer observations around the peak flowrate indicated that there was a disruption to the bed 

at the peak flowrates. As shown in Figure 6.20 there is a noticeable increase in transport rate 

at time elapsed 360 minutes. From 0.011 gls/m at time elapsed 350 minutes the transport rate 

increased to 0.062 gls/m at time elapsed 360 minutes. It was expected that the transport rate 

would be relatively high in the following time elapsed. However there was no further impact 

of the peak flowrates. In the initial stage of falling limb the transport rate dropped quite 

significantly. The transport rate at time elapsed 370 minutes is 0.012 gls/m and tim 

subsequently decreased as the flowrates decreased. 
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Figure 6.20. Time variation of transport rate for antecedent flow Experiment UF 3-9 
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moving in the following time elapsed but not in considerable amounts. At this time the 

transport was dominated by grains in the fine mode. The domination of grains in the coarse 

mode also found at time elapsed 50-60 minutes and 220-260 minutes. 

The inconsistency in the pattern of the domination of the coarse mode may be a reflection of 

the stabilising armouring processes. It is believed that the movement of large amounts of 

coarse grains reorganised the bed structure. To some extent the fluctuation between the 

movement of coarse grains and then fine grains caused the bed to become more stabilised. It 

is believed that the initial transport of fine grains increased the level of exposure of the coarse 

grains causing them to move at shear stress levels below that than would be expected. These 

coarse grains then move in such numbers to form bed stabilising structures. The rising limb is 

sufficiently long to ensure enough coarse grains have moved to stabilise the bed. In periods 

where coarse grains do not dominate, fine grains are then removed increasing the coarse grain 

exposure starting the cycle again. 

--

Table 6.7. Summary of the average fractional bedload composition produced by 

antecedent flow Experiment UF 3-9 

Grain size Original Fractional Estimated 
(mm) composition of transported composition of 

surface layer (%) bedload (%) surface layer (%) 

10 1.730 0.000 1.731 

8 8.570 7.135 8.571 

5.6 34.660 18.402 34.668 

4 19.600 12.632 19.603 

2.8 6.860 4.343 6.861 

2 3.530 1.157 3.531 

1.4 2.510 2.198 2.510 

1 1.850 1.159 1.850 

0.71 2.680 1.801 2.680 

0.5 6.840 5.303 6.841 

0.355 7.420 14.153 7.417 

0.25 2.710 17.721 2.703 

0.15 0.940 12.535 0.934 

receiver 0.100 1.460 0.099 

Total 100 100 100 
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As mentioned earlier, the occasionally transported grains in the coarse mode contributed 

slightly more than grains in the fine mode. This can be seen in Table 6.7 where the 

proportion of the total transport in the coarse mode is 38.2 % in comparison to 37.2 % of 

grains in the fine mode. It can also be seen that the grains of diameter 0.15 mm have a 

relatively high proportion in transport with more than 12 %. This supports the earlier 

assumption that the periodic transports of grains in the coarse mode were primarily due to the 

increasing exposure caused by the continuing transport of the finer grains surrounding them. 

6.3.2.2. Bursting Events and Flow Momentum UF 3-9 

The observations to the average nearbed stream wise velocity indicate that the average values 

generally increased with increasing flowrates and decreased with the decreasing flowrates 

(Figure 6.22). These values confirm satisfactorily to the form of the antecedent flow 

hydro graph with the maximum average values is obtained at time elapsed 360 minutes. It is 

also shown in Figure 6.22 that the average bed shear stress at certain time elapsed did not 

follow a totally consistent pattern but generally followed the trend i.n which the values 

increased as the flowrate increased in the rising limb and decreased as the flowrate decreased 

in the falling limb. Before time elapsed 140 minutes and after time elapsed 470 minutes the 

water depths were below the operating depth of the ADV probe and thus no measurements 

were possible at these stages. 
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Figure 6.22. Variation of time averaged nearbed streamwise velocity and bed shear stress 

during antecedent flow Experiment UF 3-9 
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Again given that the pattern of the average nearbed streamwise velocity and average bed 

shear stress do not follow the patterns in the composition of the bedload it was decided to 

examine the nearbed flow in more detail. The observation of bursting event in the antecedent 

flow Experiment UF 3-9 indicates that the number of downward-looking bed interactions both 

in the rising limb and in the falling limb is higher than the upward interactions. The frequency 

of sweeps is higher than the frequency of ejections. The sweeps frequency is fairly constant 

while the frequency of ejections increase in the falling limb. With 47.3 % of the total bursting 

events, the frequency of ejections in the rising limb of antecedent flow experiment UF 3-9 is 

relatively low. This coincides with the early observation that the grains in the coarse mode in 

transport were rarely seen in the rising limb. The periodical existence of coarse grains was 

due to the increasing exposure rather than the frequency of ejections. In Table 6.8 it can also 

be seen that the frequency of ejections in the falling limb increased to 1.031 Hz. The 

proportion of ejections also increased to 48.2 % whilst the proportion of sweeps decreased 

from 52.7 % in the rising limb to 51.8 % in the falling limb. The average duration of both 

events is similar throughout the antecedent flow. 

Table 6.8. Time frequency and the proportion of occurrences of bursting events 

in antecedent flow Experiment UF 3-9 

Parameter descriptions Frequency Proportion Average 
(Hz) (%) duration (sec.) 

Rising limb 
Eiections 0.990 47.343 0.055 

Sweeps 1.102 52.657 0.056 

Falling limb 
Ejections 1.031 48.189 0.053 

Sweeps 1.108 51.811 0.054 

Similar to the previous analysis, in the antecedent flow Experiment UF 3-9 five different time 

elapsed were observed with the consideration that each time had different features in the grain 

size distributions (Figure 6.23). In the rising limb three time elapsed were selected. The first 

one is time elapsed 190 minutes where no grains in the coarse mode exist. The second time 

elapsed is 250 minutes where grains in the coarse mode dominate and the third selection is 

time elapsed 360 minutes which is the final time elapsed in the rising limb. In the falling limb, 
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which had shorter duration than the rising limb, two different time elapsed of 430 and 460 

minutes were selected. At the e times only finer grains moved. A summary of the 

characteristics of the bur ting events for all the selected time elapsed is presented in Table 6.9. 

Table 6.9. ummary of bursting e ents at selected time elapsed in antecedent flow 

Experiment UF 3-9 

Parameter descriptions Time elapsed (minutes) 

190 250 360 430 460 

Threshold values (m2/l) 0.0044 0.0056 0.0063 0.0051 0.0040 

Number of ejections 185 206 192 216 201 

Number of sweeps 222 214 220 209 214 

Frequency of ejections (Hz) 0.925 1.030 0.960 1.080 1.005 

Frequency of sweeps (Hz) 1.110 l.070 1.100 1.045 1.070 

Average duration of ejections (s) 0.054 0.052 0.054 0.054 0.051 

Average duration of sweeps (s) 0.051 0.052 0.057 0.051 0.053 

~~==========================~----------I 
@43> -+-@460 I 

40 
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Figure 6.23 . Grain size di tribution of transported bedload at selected time elapsed in 

antecedent flow Experiment UF 3-9 

It has been discussed in pre lOUS sections that the proportion of grains in the coarse mode of 

the total bedload i slight! higher than the proportion of grains in the fine mode. However 

there were certain time elapsed which contained only grains in the fine mode. At time elapsed 

190, 430 and 460 minute only fine grains are observed (Figure 6.23). In Table 6.9 although 
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there is similarit between time elapsed 190 and 250 minutes in which the occurrence of 

ejections is less than the frequency of sweeps the pattern in transported grains size is 

different. It is believed that the higher proportion of momentum with the magnitude in the 

range between 9 and 15 kg/ms were the main factor in the transportation of grains in the 

coarse mode at time elap ed 250 minutes (Figure 6.24). Time elapsed 190 minutes has a 

relatively high proportion of ejections with the magnitude of momentum ranging from 7 to 9 

kg/ms. This Ie el of magnitude i not sufficient to transport grains in the coarse mode. Time 

elapsed 460 minutes has a relati ely similar distribution to that found in time elapsed 190 

minutes and again no grains in the coarse mode were in transport. 

50 

-2 

45 

40 

35 

30 

l 
25 

~ 

120 

l 
15 

t 
10 ) 

(; 

.V 
0 

-20 - 15 - 10 -6 0 6 10 15 20 25 3D 35 40 
Mo-m.m pit Unft At .. , cllMIA (k;llns) 

Figure 6.24 . Probability distribution of momentum per unit area at selected time elapsed 

in antecedent flow Experiment UF 3-9 (ejections are positive and sweeps are negative) 

In Figure 6.24 time elap ed 360 minutes has considerable proportion of ejections with 

magnitude of momentum in the range between 11 and 15 kg/ms. This is believed to be the 

main factor that causes grains in the coarse mode to be transported at this time elapsed. A 
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noticeable proportion of momentum with the magnitude ranging from 9 to 13 kg/ms occurred 

at time elapsed 430 minutes. However as the bed becoming more stable, only grains of 

diameter 1.4 mm were transported along with grains in the fine mode and other finer grains 

available in the mixture. 

Overall the probability distribution of momentum shown in Figure 6.24 indicate that the 

bursting events with low momentum are a common feature. The downward-looking bed 

interactions always exist irrespective of the flowrates and that their magnitude is strongly 

linked to flowrate. A different pattern is established by the ejections (upward interactions). 

The lower flowrates also produced a considerable proportion of low magnitude momentum 

events. However at these low flowrates high momentum ejections could occur but with a 

much reduced occurrence. This is indicated by the distribution of ejections that is shifted to 

the left. The distribution of momentum per unit area can also be seen in Figure 6.25 with the 

spread of low magnitude through out the observation are apparently shown. The regular 

appearance of higher magnitude are noticed at time elapsed with the higher flowrates, most 

notably at time elapsed 360 minutes. 
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at selected time elapsed in antecedent flow Experiment UF 3-9 
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6.3.2.3. Bed Topography UF 3-9 

The comparison between the original bed surface topography (Figure 6.26) and the 

topography after antecedent flow experiment UP 3-9 (Figure 6.27) indicated that a more 

organised bed structure had been produced by the combination of 6 hours of accelerating 

flows and 3 hours of decelerating flows. The first figure indicates that the original bed was 

fairly flat with the absolute values of surface elevations being generally relatively high. 

Following the application of 9 hours of flow the bed topography in Figure 6.27 indicates a 

drop in the general bed surface level. A more varied topography is seen to spread over the 

whole measurement grid. Several valleys are formed especially in the upstream right hand 

side of the measurement grid, which formed a diagonal patch towards the centre of the 

measurement grid. It is also noticed that some prominent grains are at rest on the bed surface. 

Among others are those in the area between co-ordinate 200 and 225 mm in the streamwise or 

x-direction and 150 mm in the lateral or y-direction and also along the upstream edge of the 

measurement grid between co-ordinate 50 and 75 mm in the lateral direction. 

The final bed topography in Figure 6.28 indicated that further erosion occurred during the 

stability test. The bed now exhibits not just high and low points but also areas of different 

surface elevation, most notably the existence of the valleys. The diagonally aligned valleys 

are spread over a larger area and not just in the upstream right hand side of the grid as 

previously found after the antecedent flow experiment. Although the erosion process took 

place it can be seen from Figure 6.28 that some exposed grains found before stability test 

(Figure 6.27) are still in existence on the final bed surface. For example the exposed grains 

along the upstream edge of measurement grid after antecedent flow, which already mentioned 

earlier, were relatively stable and still exist after the stability test (Figure 6.28). This suggests 

the bed was relatively stable especially in particular areas of the measurement grid. The 

erosion had continued but only in areas of the beds with less stability. This is indicated by the 

increasing coverage of valley bed structures on the bed after the stability test. Notable features 

are shown on the downstream right hand side part of the measurement grid. More large 

exposed grains have appeared and are clearly visible on the bed. In this case the valleys at the 

end of the antecedent flow test have been covered by grains from upstream. This has 

increased the local surface elevation. Another good example of this pattern is on the left-hand 

side of the measurement grid, which covered by the area of 200 to 225 mm in streamwise 
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direction. After antecedent flow experiment this area has a relatively identical bed surface but 

after the application of the stability test the bed surface is considerably different with 

degradation occurring at the upstream edge which has led to aggradation in this area. 

Observation of the probability density of the bed surface elevations (Figure 6.29) correlates 

with the previous explanation that the original bed was fairly flat with the surface elevations 

were generally relatively high. A decreased in the overall bed surfaces level after antecedent 

floW is shown by the distribution curve that is shifted to the left. The symmetrical shape of the 

curve indicates that the valley and the exposed grains were relatively balanced. Further 

erosion and the larger spread of valleys is represented by the distribution curve after stability 

test. The curve is furtherly shifted to the left indicating the lower bed surface level established 

on the bed. 

Examinations of the bed surface elevation distribution about the average level suggest that 

after antecedent flow experiment there was exposed grains resting on the bed. The distribution 

curve narrowed with an increased in the proportion of elevation closed to the average bed 

level. This is the indication that the bed surface in general became more flatter. However after 

the application of stability test, the distribution lowered and widened. Further destabilisation 

of the bed during stability test not only increased the spread of the lower bed elevation but 

also more exposed grains were established. 
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6.3.3. UNSTEADY ANTECEDENT FLOW E PERIMENT U 3-12 

6.3.3.1. Bedload Transport Rate and Composition UF 3-12 

9 10 

In antecedent flow Experiment UF 3-12 the flow hydrograph c ntain d a I ng r dur ti n r 
rising limb. Another 20 minutes than that in antecedent fl w prim nt 

before the grains were transported for the first time in anteced nt fl w ~ - 12. 

This means the grains started to appear in transport at time lap ed 70 minut 

were transported in the flrst hour of experiment. imilar to th patt m fI und pr i u Iy in 

antecedent flow experiment UF 3-9, the first collection in th I ng r durati n r ri in ) lim 

occurred at a slightly lower flowrate than that in the horter dw·ation of ri in) lim 

collection of sediment in antecedent flow experiment UF 3-12 wa tak n wh n th 

was 0.0044 m3/s in tead of 0.0047 m
3
1 in antecedent flow xperim nt - . Thi a) in i 
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thought to be due to the longer flow exposure allowing the less stable grains to be transported 

at a relatively lower flowrates. 

Bedload transport rate variation in Figure 6.30 indicates that the antecedent flow experim nt 

UF 3-12 eroded relatively small amounts of sediment. It is shown that the transport rates are 

generally very low throughout the duration of the antecedent flow test. After th ab ence f 

transport in the first hour, the average transport rate in the second hour was still very low. Th 

average transport rate at this period is less than 0.001 gls/m. The average trail port rat 

continued to increase until the fifth hour where the rate reached 0.013 gls/m. 111 th n xt h ur 

the transport rate decreased before it gradually increased again. However at time elap d 

and 530 minutes noticeably higher transport rates were seen. At these time lap ed th 

transport rates are 0.031 gls/m and 0.020 gls/m which are relatively low in com pari n t that 

experienced in the antecedent flow experiment UF 3-6 and UF 3-9, but still higher than in the 

rest of this test. 
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Figure 6.30. Time variation of transport rate for antecedent flow Experiment UF 3-12 

One important point to note was that no significant peaks in transport rate occurred, ev n at 

the peak flowrate. By looking at the time elapsed around the peak :tlowrate no significant 

changes in transport rates were observed. Only a relatively small increase and decrease were 

experienced. For instance the transport rates at time elapsed 540 minutes is 0.018 gr/s/m and 

this decreased to 0.012 gr/s/m in the following 10 minutes at the start of the falling limb of the 
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hydrograph. Having observed this pattern it can be said that the bed structure was ufficiently 

stable as the peak: flowrates were not able to transport considerable amounts of grains a in the 

previous tests. 

In order to examine the pattern mentioned above, more depth observation to the chang In 

the compositions of bedload transported in antecedent flow experiment UF 3-12 wa carri d 

out (Figure 6.31). A different pattern than that seen in antecedent flow experiment UF 3-6 and 
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UF 3-9 is observed where the existence of grains in the coarse mode was more frequent. 

Initially only grains in the fine mode were transported at time elapsed 70-160 minutes. In the 

next observation at time elapsed 170-210 minutes grains of diameter 5.6 mm were found and 

started to dominate the transport. The flowrate at this particular time elapsed was 0.0106 m3/s. 

This is less than in the previous test so that the removal of the 5.6 mm grains is thought to 

higher levels of exposure than in the previous test. The continuous transportation of grains in 

the fine mode in the previous time elapsed increased the level of exposure for the larger 

grains. An interesting feature is shown by time elapsed 300-390 minutes where the grains in 

the coarse mode disappeared in transport even thought the flowrate and average bed shear 

stress are still increasing. It is suspected that the number of exposed, isolated larger grains on 

the bed decreased as the previously moving coarse grains have found stable resting positions. 

This resulted in increasing the amount of finer grains in transport. This is reflected by a 

noticeable increased in transport rates at time elapsed 300 minutes as shown in Figure 6.30. 

After the removal of finer grains, the domination of grains in the coarse mode again becomes 

apparent at time elapsed 400-470 minutes. The relatively similar length in the period between 

changes of the dominant mode in transport indicates that the bed needed a moderately long 

time of between 1 to 2 hours to form a new bed state of larger exposed grains spread over the 

bed. This is supported by the fact that grains in the coarse mode again dominated the transport 

at time elapsed 520-540 minutes. The transport rate at this time elapsed was relatively high as 

indicated in Figure 6.30. This period is the collection time just before the flowrate attained its 

peak. Grains both in the fine and the coarse mode now existed in transport. The existence of 

both modes continued after the peak flowrate was passed (time elapsed 550-580). In the next 

time elapsed of 590-620 minutes the largest grains size found in transport was 1.4 mm. As the 

flowrate decreased only grains in the fine mode (maximum grain size of 0.5 mm) were 

transported in the remaining time elapsed (630-720 minutes). 

In Table 6.10 it can be seen that the proportion of grains in the fine mode in the total amount 

transported is slightly higher than the proportion of grains in the coarse mode. This is 

different than the proportions of transported sediments in the antecedent flow experiments UF 

3-6 and UF 3-9 where the proportion of grains in the fine mode are slightly less than the 

proportion of grains in the coarse mode. In antecedent flow experiment UF 3-12 the fine 
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mode has contribution of38.7 % whilst the coarse mode contributes 37.8 %. Table 6.10 also 

shows that the available fluid forces in antecedent flow experiment UF 3-12 were unable to 

transport the grains of diameter 8 mm. This means there is a possibility that the bed formed by 

antecedent flow experiment UF 3-12 is coarser than the bed formed by antecedent flow 

experiment UF 3-6 and UF 3-9. 

Table 6.10. Summary of the average fractional bedload composition produced by 

antecedent flow Experiment UF 3-12 

Grain size Original Fractional Estimated 
(mm) composition of transported composition of 

surface layer (%) bedload (%) surface layer (%) 

10 1.730 0.000 1.732 

8 8.570 0.000 8.578 

5.6 34.660 25.873 34.668 

4 19.600 11.924 19.607 

2.8 6.860 5.426 6.861 

2 3.530 2.707 3.531 

1.4 2.510 1.275 2.511 

1 1.850 1.976 1.850 

0.71 2.680 2.399 2.680 

0.5 6.840 8.702 6.838 

0.355 7.420 15.310 7.413 

0.25 2.710 14.735 2.699 

0.15 0.940 8.216 0.934 

receiver 0.100 1.457 0.099 

Total 100 100 100 

6.3.3.2. Bursting Events and Flow Momentum UF 3-12 

As expected Figure 6.32 shows that the average values of instantaneous nearbed streamwise 

velocity and the average instantaneous bed shear stress were generally increased with 

increasing flowrates and decreased with the decreasing flowrates. The average instantaneous 

streamwise velocity distribution coincides with the increasing and decreasing sections of the 

floW hydrograph. It is also shown that the peak of distribution is at time elapsed 540 minutes, 

the time which the peak flowrates was attained. Although there are some points at which the 
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average instantaneous bed shear stress was lower than expected, most notably at time elapsed 

640 minutes, the average values generally following the trend. Similar to the antecedent flow 

experiments UF 3-6 and UF 3-9 all distribution values presented in Figure 6.32 accommodat 

only the measurement at sufficient water depths. Because of the slower increased of the rising 

limb and, thus a slower increased in water depths, a relatively long duration of 220 minutes in 

the early period is not presented as the water depth was still below the ADV probe position. In 

the falling limb of antecedent flow experiment UF 3-12 the measurement were possible until 

time elapsed 650 minutes. 
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Figure 6.32. Variation of time averaged nearbed streamwise velocity and bed shear stress 

during antecedent flow Experiment UF 3-12 

Closer observation on the nearbed flow was carried out as the information on the average 

nearbed streamwise velocity and bed shear stress do not provide an infonnation on how the 

composition changes in relations to the pattern of near bed flow. A similar pattern in whkh the 

occurrences of downward-looking bed interactions (sweeps) are more frequent than the 

upward interactions (ejections) were also experienced in antecedent flow Experiment UF 3-

12. The proportion of the ejections in the rising and falling limb are relatively stable with less 

than a 0.5 % decrease in the falling limb. This decrease is matched by a decrease in the 

frequency of occurrence. In the rising limb the ejections are slightly more frequent with the 

time frequency of 1.015 Hz and this decreased in the falling limb to 0.976 Hz. It is clear in 

Table 6.11 that the frequency of sweeps is slightly less in the falling limb than in the rising 
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limb. It decreased from 1.108 to 1.083 Hz. However the decrease is not matched by a 

decrease in the proportion. In the falling limb the proportion of sweeps in the falling limb is 

more frequent than in the rising limb. 

Table 6.11. Time frequency and the proportion of occurrences of bursting events 

in antecedent flow Experiment UF 3-12 

Parameter descriptions Frequency Proportion Average 
(Hz) (%) duration (sec.) 

Rising limb 
Ejections 1.015 47.811 0.051 

Sweeps 1.108 52.189 0.053 

Falling limb 
Ejections 0.976 47.405 0.053 

Sweeps 1.083 52.595 0.052 

Seven different times elapsed of antecedent flow experiment UF 3-12 have been selected for 

detail observations (Table 6.12). As this antecedent flow experiment had a period of 

increasing flow longer than the previous two experiments, four time elapsed are chosen to 

represent the rising limb and three others to represent the falling limb. The reason behind the 

selection was different types of distribution of grain size were produced at each time elapsed 

particularly changes of the mode in transport. The grain size distribution curves for the 

observed time elapsed are presented in Figure 6.33. 

Table 6.12. Summary of bursting events at selected time elapsed in antecedent flow 

Experiment UP 3-12 

Parameter descriptions Time elapsed (minutes) 
250 300 370 430 550 620 650 

Threshold values (m2/s2
) 0.0043 0.0051 0.0055 0.0059 0.0071 0.0049 0.0059 

Number of eiections 190 217 192 220 195 194 141 

Number of sweeps 196 235 225 241 233 229 163 

Frequency of ejections (Hz) 0.950 1.085 0.960 1.100 0.975 0.970 0.705 

Frequency of sweeps (Hz) 0.980 1.175 1.125 1.205 1.165 1.145 0.815 

Average duration of ejections (s) 0.052 0.050 0.051 0.054 0.053 0.053 0.048 

Average duration of sweeps (s) 0.051 0.049 0.053 0.053 0.050 0.053 0.055 
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It can be seen in Figure 6.33 that at time elapsed 250 minutes the transport i dominat d b 

grains in the coarse mode. Although the flowrates was relatively low at 0.0150 m / , th 

factor behind the transportation of grains in the coarse mode wa not lely du t th 

instability ofthe grains caused by the early and continuous tran port of fin r grain increa ing 

the level of exposure of the larger grains. Ob ervation to the probability di tributi n 

momentum per unit area shown in Figure 6.34, suggests a con iderable pr p rti n r 
momentum in the range between 5 and 9 kg/ms established at time elap ed 250 minut 

the previous finding shows that grains in the coarse mode were tran p rted by a high r I v 

of momentum of ejections, i.e. at least 13 kg/ms, it is believed that the coar e grain wer 

relatively unstable. This suggests that the level of exposure of the coar e grain wa higher 

that the momentum ejections in the range of 5 and 9 kg/ms were able to tran p rt the e grain . 

Interesting features is shown by time elapsed 300 minutes. In Figure 6.34 it i very clear that a 

considerable proportion of ejections have momentum with magnitude ranging ITom 7 - 9 

kg/ms. It was expected that such momentum would also be able to transport coar er grain 

similar to time elapsed 250 minutes. In fact only finer grain were tran ported at thi tim 

elapsed. By looking at the pattern of transport at different time elap ed, which ha b n 

discussed in sub chapter 6.4.1, it can be explained that the domination of grain in the care 
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mode for 2 hours prior to time elapsed 300 minutes, i.e. time elap ed 170 - 2 0 minute , 
reduced the number of exposed larger grains resting on the bed. In this ca e it i difficult t 

remove and transport grains in the coarse mode or larger grains size available in th mi tur . 

As the result ofthis condition, the magnitude of momentum removed a large am unt f grain 

in the fine mode including grains size of2 mm rather than any more coar e grain which n w 

had normal levels of exposure. The removal of a large amount of finer grain rc ult d In a 

significantly higher transport rate at this time elapsed than at the adjacent time clap d 

Figure 6.30). 
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In Figure 6.34 time elapsed 430 minutes there was a mea urable proportion of high r 

momentum ejections ranging from 9 to 13 kg/ms. These momentum level were suffici ntl 
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high to remove and transported a high proportion of larger grains including grains of diameter 

5.6 nun in the coarse mode (see Figure 6.33). It was expected that the higher flowrates would 

produce bursting events with higher magnitudes of momentum. The observation at time 

elapsed 550 minutes, which was the initial stage of falling limb, indicates that the momentum 

of ejections with the magnitude ranging from 5 to 7 kg/ms is considerably more frequent than 

at any other time elapsed. It is also noticed that the distribution of momentum ejections with 

the magnitude between 3 and 7 kg/ms are apparent as indicated by the position of the curve, 

which is slightly shifted to the right hand side. Although grains of diameter 4 and 5.6 mm 

existed in transport at this time elapsed, the amount is very small and only weak coarse grains 

were transported by the momentum ejections with the magnitude between 5 and 7 kg/ms. 

Having observed in the earlier discussion that only grains in the fine mode were transported in 

the remaining time elapsed in the falling limb. This is supported by the probability 

distribution of momentum ejections for time elapsed 620 and 650 minutes. Both time elapsed 

have the ejections momentum with the magnitude in the range between 9 and 11 kg/ms with 

the proportion of around 2 %. The momentum with such proportion removed and carried 

only grains in the fine mode including the finest grains available in the mixture. 

The sequence of momentum in the upward and downward-looking bed interactions for the 

selected time elapsed can be observed in Figure 6.35. The difference between the bursting 

event in a relatively low and higher flowrates is quite clear. The bursting events at low 

flowrates are dominated by low magnitude of momentum ejections and sweeps with very few 

large events values. As the flowrates increased, the existence of momentum with higher 

magnitude also increased throughout the period of observation. It is noticeable that the 

presence of a strong coarse mode in the bedload (Figure 6.33) coincides with the times at 

which there are a few very large ejections at time elapsed 430 and 550 minutes and to some 

extent at 250 minutes. 
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6.3.3.3. Bed Topography UF 3-12 

The original bed topography in Figure 6.36 shows the existence of the "holes" spread over the 

measurement area. When the scrapper was used to flatten the bed surface the "holes" were 

established in the bed by the movement of surrounding larger grains. This irregularity 

contributed to the initial transportation of material as these features influenced the resistance 

of adjacent grains. Any exposed larger grains were removed whilst the finer grains re-filled 

the holes. Earlier discussion on transport rate during antecedent flow Experiment UF 3-12 

suggested that a relatively high proportion of grains both in the fine and the coarse mode were 

transported in the rising limb. In the falling limb the proportion was significantly decreased 

with the domination of grains in the fine mode in transport. This means the disruption of the 

bed took place in the initial stages and the finer grains dominated the transport in the later 

stages of antecedent flow Experiment UF 3-12. Therefore a coarser bed surface was expected. 

This is shown by the bed topography in Figure 6.37, which represents the bed surface after the 

antecedent flow experiment. The range of bed elevations is larger and there are also a number 

of larger exposed grains resting on the bed. 

When the comparison is made between the bed topography after antecedent flow (Figure 

6.37) and the bed topography after stability test (Figure 6.38), it is found that the positions of 

the exposed larger grains are not permanent features on the bed. The area of erosion has 

enlarged. More large grains were removed and transported during the stability test because of 

the configuration of the bed structure after antecedent flow had left numerous exposed larger 

grains. As the transportation continued the bed surface exhibited more irregularity in bed 

surface elevation structure than before. 

Closer observations of the bed topography in Figure 6.37 and Figure 6.38 suggest that there is 

also a small area of bed that was relatively unchanged during the stability test UF 3-12. The 

exposed bed surface in the downstream right hand corner, which was found after antecedent 

flow experiment UF 3-12, remains in existence after stability test. The higher bed surface 

level in this section is still prominent and distinctive even at the end of stabi lity test. 
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The observation of the probability distributions of the bed surface elevation reveal th 

development of the variation in the bed surface after the antecedent flow xp rim nt and th 

stability test (Figure 6.39). The distribution curve of the original bed surface indicate that th 

high bed surface elevations were generally spread throughout the mea urement area. fier 

antecedent flow the distributions are more symmetrical with a reduction ab ut th m d I 

value peale. The bed surface elevation distribution about zero level ugge t that afier th 

antecedent flow the distributions are negatively skewed indicating ignificant area f r 

The positive side of the distribution shows a small number of more expo ed area pr abl 

more exposed larger grains. The continued erosion during the stability te t i indicat d th 

final distribution curve that is further skewed to the negative side. Thi distributi n 

flatter and wider by increasing the areas of erosion and the number of e p d grain . hi ' 

type of distribution is the characteristic of the bed with the spread of valley 

measurement area as well as the existence of exposed surface grain on the bed . 
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Chapter 6: Experimental Results ofllF III 

By looking at the distribution of bed surface elevation about the average level, it is apparent 

that after antecedent flow experiment a considerable number of larger exposed grains are 

resting on the bed. This is indicated by the gap in the positive tail of the distribution, which 

exhibits a substantial number of positive bed variations from the mean. The drop in the bed 

surface is also shown in Figure 6.39. The distribution of bed surface elevation after antecedent 

flow is wider not only with the positive elevations but also with the negative levels indicating 

the spread of areas of eroded bed. After the stability test the distribution is more symmetrical 

with the extreme high and low bed surfaces decreasing slightly. The peak distribution is 

lowered and the bed surface around 2 and 4 mm above and below the mean level are 

proportionately increased. It is also noticed that the bed surface level around I and 2 mm 

above and below the mean was increased indicating a more organised bed surface is obtained 

at the end of the stability test. 

6.4. COMPARATIVE RESULTS AND DISCUSSONS OF UF III 

6.4.1. Transport Mode of Antecedent Flow Experiments UF III 

Different duration of the rising limb applied in antecedent flow experiments UF 3 exhibits 

different pattern in transport. The different level of accelerating flow at different time elapsed 

in antecedent flow experiments UF 3-6, UF 3-9 and UF 3-12 produced relatively similar 

strength of fluid forces. This was indicated by the first collection of bedload for each 

antecedent flow experiment. In antecedent flow experiment UF 3-6 the first collection was 

taken at time elapsed 30 minutes in the rising limb. The incremental increased in duration of 

rising limb delayed the first collection of bedload in antecedent flow experiments UF 3-9 and 

UF 3-12. The first collection of bedload in the rising limb of antecedent flow UF 3-9 was 

taken at time elapsed 50 minutes whilst in antecedent flow experiment UF 3-12 the bedload 

started to appear in the bedload trap at time elapsed 70 minutes. This suggested that the 

incremental 3 hours of increased in the duration of rising limb correlates with 20 minutes 

delay of the first bedload collection. 

Despite each antecedent flow experiment starting to transport bedload at di fferent time 

elapsed, it was expected that this would occur at similar level of flowrates. It is found that the 

minimum flowrate, which was able to transport bedload was 0.0038 m3/s. This flow contained 
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only finer grains in UF 3-6 and 3-12 (Figure 6.40). However a different pattern wa 

in UF 3-9 where the existence of grains in the coarse mode was found in the fir t b dl d 

collection. Grains in the coarse mode dominated the transport at this time elap ed but th fa t 

that with only a mere of 0.492 gram it is believed that these grain were ac id ntal1 

transported and dropped into bedload trap. This is supported by the tran p rt P tt m 

following this time elapsed where grains in the coarse mode were ab enc almo t in ntire 

period of rising limb. The small amount of grains in the coar e m d in th ri ing limb r 
antecedent flow experiment UF 3-9 was found again at time elap ed 220 minut . r 

disappeared in the following period, the existence of grain In the coar m d w r 

considerably dominant at time elapsed 340 minute or relatively p k 

flowrate was attained. The general pattern seen in Figure 6.40 i that th fin m d 

with a relatively high proportion and then dropped after about 120 minute . Th pr p rti n 

increased again from 240 minutes toward the end of each te t. Meanwhil th c ar til 

experiments UF 3-9 and UF 3-12 shows an erratic pattern in the ri ing limb whil nt 

UF 3-6 has a period of coarse mode domination just before the peak fl wrat . In th initi I 

and the final stages of each test the coarse mode were generally not tran ported altl1 LJ 'h in 

certain time elapsed it is occasionally existed in transport. 
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By looking at the hourly average transport rate it can be seen that in antecedent flow 

Experiment UF 3-6 the hourly average transport rate was relatively high (Table 6.13). This is 

thought to be due to the relatively higher level of accelerating flows. An interesting feature is 

that the transport rate in the falling limb is higher than in the rising limb. It is believed that the 

accelerating flows with short duration have the capability to destabilise the bed structure. 

However, the short duration limits the time to transport all materials available on the bed. 

This resulted in unstable materials resting on the surface at the end of the test. The condition 

ofthe bed was weakened by the peak flowrate so that the corresponding flowrate in the falling 

limb were able to transport more grains both in the fine and the coarse mode. As seen in Table 

6.13 the transport rate in the falling limb of antecedent flow Experiment UF 3-6 is extremely 

higher than the transport rate in the rising limb. 

Table 6.13. Summary of bedload for unsteady antecedent flow Experiments UF III 

Experiment Mass transported bedload of mode (g) Transport rate (g/s/m) 

No. Risin limb Falling limb Rising Falling 

Fine Coarse Fine Coarse limb limb 

UF 3-6 64.059 63.980 105.159 113.252 0.07535 0.12399 

UF 3-9 3.949 6.939 3.461 0.668 0.00351 0.00269 --
UF 3-12 10.324 12.497 3.556 1.042 0.00474 0.00279 

Different patterns of sediment behaviour are displayed by antecedent flow experiments UF 3-

9 and UF 3-12. Interestingly both antecedent flow experiments show lower transport rate in 

the falling limb. Although the destabilisation process occurred during the rising limb it is 

thought that lower level of unsteadiness allowed the grains to adjust themselves into the 

better-sheltered positions. They were in the position to be removed but the low level of 

disruption was only able to re-arrange rather than to transport them. This movement formed a 

strong-bounded state in the bed. When the peak flowrate arrived, the bed was already in a 

stable position so that no significant erosion continued. This is apparently shown in Table 

6.14 where the transport rate was lower in the falling limbs. 

In tenus of bedload proportion, antecedent flow Experiment UF 3-6 transported more grains 

in the fine and in the coarse modes. Although grains in the coarse mode were hardly seen in 
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the individual time elapsed, their domination at the higher flowrate ensures a high proportion 

of total transport (Table 6.13). Meanwhile experiments UF 3-9 and UF 3-12 transported 

grains at very low transport rates in comparison to the Experiment UF 3-6. They also have 

lower proportions of sediment in both modes. Quite interestingly the antecedent flow 

experiments UF 3-9 and UP 3-12 have a relatively similar proportion in both modes with 

slightly less proportion of grains in the coarse mode transported throughout experiment UF 3-

12 than in experiment UF 3-9. This suggests that longer exposure of the bed to the flow 

carried grains in both modes but in the coarse mode not all of the grains size were 

represented. In antecedent flow UF 3-12 the maximum size of grains in transport was 5.6 mm. 

In antecedent flow UF 3-9 grains with sieve size 8 mm existed in transport which and had a 

proportion of more than 7 % of the total bedload. 

6.4.2. Stability of the Antecedent Flow Beds and Mode of Transport 

From data collected in the stability tests UF 3 it is found that the bed formed by antecedent 

flow UF 3-6 is the weakest. Generally there was a significant increase in transport rate when 

the flowrates approached their peak. In all the stability tests the highest transport rate was 

found at time elapsed 70 minutes, shortly after the peak flowrates was attained. The transport 

rate is much higher than at the corresponding flowrates in the rising limb (see Figure 6.1). 

This suggests the importance of the high fluid forces in destabilising the bed structure. 

Observation of the stability test UF 3-9 indicated that the average transport dropped 

dramatically in comparison to that in stability test UF 3-6, although a similar trend in the 

transport rates around the peak flowrates was seen. The average transport rates for the whole 

duration of stability test UF 3-9 is less than half of the amount transported during the stability 

test UF 3-6. 

Having observed this pattern it was thought that the level of bed stability would increase for 

the longer duration of accelerating flowrates and hence a lower transport rate than those 

observed in the stability tests UF 3-6 and UF 3-9 was expected in the stability test UF 3-12. 

In fact the data from experiment UF 3-12 exhibits a different pattern. The average transport 

rate is lower than the stability test UF 3-6 but slightly higher than in the stability test UF 3-9. 

For the whole duration of stability test UF 3-12 the average transport rate is 0.507 grls/m 
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compared with an average transport rate of 0.345 grlslm for UF 3-9. It could be argued that 

the levels of sediment mobility were similar. 

The transport pattern established by stability test UF 3-12 suggests that the bed fonned by 

antecedent flow Experiment UF 3-12 was slightly less stable than the bed fonned by 

antecedent flow Experiment UF 3-9. It is believed that the inability of antecedent flow 

Experiment UF 3-12 to carry the larger grains and therefore the presence of more larger, 

exposed grains on this bed is the main factor behind this phenomenon. In the previous 

discussion it was found that there was an absence of larger grains in the bedload in the 

antecedent flow experiment UF 3-12. This is indicated by the early transport of coarse grains 

in the stability test UF 3-12. The transport of finer grains for the whole duration increased the 

exposure of larger grains. This correlates with the transport pattern during stability test as 

presented in Table 6.14. It is very clear that the larger grains were transported and were 

dominant from the relatively low discharges. The larger grains dominated the transport from 

time elapsed 20 minutes when the flowrates was only 0.0063 m3 Is and thus lasted for 90 

minutes. 

Stability 
Test 

OF 3-6 

UF 3-9 

UF 3-12 

Table 6.14. Transport mode of the stability tests applied to 

unsteady antecedent flow-formed bed UF III 

Time elapsed Mass of bedload (g) and proportion (%) To t a I 
of coarse grain Fine mode Coarse mode Fine Coarse 

domination 
(mins) Rising Falling Rising Falling mode mode 

@50-@90 82.35 g 141.14g 315.13 g 460.80 g 223.49 g 775.93 g 

&@120 7.130 % 12.220 % 27.285 % 39.897 % 19.350 % 67.182 (Yo 

14.80 g 24.61 g 90.62 g 303.79 g 39.41 g 394.41 g 
@60 - @110 

3.133 % 5.209 % 19.181 % 64.301 % 8.342 % 83.482 % 

@20 - @110 
11.83 g 42.34 g 84.52 g 488.73 g 54.17 g 573.25 g 

1.706 % 6.105 % 12.186% 70.465 % 7.810 % 82.651 %1 

It is apparent in Table 6.14 that in all tests the transport rate is always higher in the falling 

limb than in the rising limb irrespective of the bed stability level. It is clear that the high 

flowrates around the peak of the flow hydrographs roughly disrupted and then weakened the 
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bed. Stable coarse grains were dislodged and the instability of the grains increased. As a result 

of these conditions, more grains were transported in the falling limb even at lower fluid 

discharges. 

6.4.3. Bursting Events and Flow Momentum UF III 

Observation of the bursting events for all the antecedent flow experiments suggested that 

sweeps (downward-looking bed interactions) were more common than ejections (upward 

interactions). Initially it was assumed that the accelerating flows tend to produce more upward 

interactions than downward looking-bed interactions. This is based on the findings in the 

previous chapter in which the decelerating flows produced more downward-looking bed 

interactions than upward interactions. Detailed examination on different time elapsed in all 

these antecedent flow experiments showed that the domination of ejections occasionally 

occurred both in the rising and in the falling limb. This means the ejections have the 

opportunity to dominate at certain periods although overall they are not as frequent as the 

sweeps. 

Table 6.15. Summary of bursting events of unsteady antecedent flow Experiments UF III 

UF 3-6 UF 3-9 UF 3-12 

Parameter descriptions Rising Falling Rising Falling Rising Falling 
limb limb limb limb limb limb 

Frequency (Hz) 1.049 0.999 0.990 1.031 1.015 0.976 

Ejections Proportion (%) 48.596 49.019 47.343 48.189 47.811 47.405 

Average duration (s) 0.052 0.052 0.055 0.053 0.051 0.053 

Frequency (Hz) 1.110 1.039 1.102 1.108 1.108 1.083 

Sweeps Proportion (%) 51.404 50.981 52.657 51.811 52.189 52.595 

Average duration (s) 0.054 0.053 0.056 0.054 0.053 0.052 

It can be seen from Table 6.15 that the bursting events in the rising limb of antecedent flow 

Experiment UF 3-9 contains less frequent ejections than in the rising limb of antecedent flow 

experiments UF 3-6 and UF 3-12 while the frequency of sweeps is relatively constant. More 

frequent ejections were established during antecedent flow Experiment UF 3-12. Higher 

frequencies are found in the rising limb of antecedent flow Experiment UF 3-6. To some 

extent these pattern are believed to correlate with the transport rate pattern in which the rising 
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limb of antecedent flow Experiment UF 3-6 has the highest rate followed by the rising limb of 

antecedent flow Experiment UF 3-12. The lowest frequency of bursting events was observed 

in the rising limb of antecedent flow Experiment UF 3-9 and this produced the lowest 

transport rate. 

Different and more complex patterns are shown in the falling limb. In antecedent flow 

Experiment UF 3-9 the falling limb contains more frequent events than in the same section of 

antecedent flow experiments UF 3-6 and UF 3-12. These patterns are very interesting as the 

transport rate patterns exhibit different features indicating no coincidence. This suggests that 

the link between event frequency and transport is slight or that the bed stability level fonned 

by different level of unsteadiness in each accelerating flowrate section was the controlling 

factor. The shorter rising limb caused a higher disruption to the bed increasing the instability 

of the grains. The fluid forces in the following decelerating flowrate section transported these 

grains more easily. Longer period of accelerating flowrate allowed the bed to properly rc­

organise so that grains obtained stable positions. 

It is also noticed that the existence of bursting events with the momentum magnitude less than 

5 kg/ms were very popular and most common throughout the antecedent flow experiments 

irrespective of the fonn and duration of the hydro graph. Given that each antecedent flow has 

different pattern in transport, it is believed that the high transport mostly causcd by the 

rigorous bursting events with high magnitude of momentum ejections. As the amloured or 

stable bed condition progressed the contribution of bursting event in transport may be 

decreased. The influence of high momentum of upward interactions may not be as signi fkant 

as the early period of experiment where the bed were just started to re-arranging themselves 

and relatively less stable. In this case the ability of the relatively higher momentum to 

transport materials is also depending on the bed states. One important thing is that the 

existence of high momentum especially in the upward interactions detennines the modes of 

transported bedload. The proportion of occurrences seems to be less important as all the 

antecedent flow tests have relatively similar proportion both in ejections and sweeps. It can 

also be seen that the duration of events is similar so that it is unlikely that this factor 

influenced the transport rate pattern. In this case it is very clear that the more the momentum 

of ejections with high magnitude, i.e. 13 kg/ms or higher, the more the grains in the coarse 
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mode are removed and then dominate the transport. 

6.4.4. Bed Topography F ill 

The bed topography observations of the Experiments UF 3 clearly indicated that the original 

beds were changed. In experiment UF 3-6 it can be seen that an area of erosion spread and 

that numerous large e po ed grains were found on the bed (Figure 6.17). This was indicated 

by the distribution curve of the bed surface level after the antecedent flow. The curve was 

more symmetrical with the tails on both sides are widened indicating more valleys and more 

peaks had appeared on the bed (Figure 6.41). 
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Figure 6.41 . The comparison of the bed surface elevation distribution about mean level 

after antecedent flow Experiments UF ill 

The bed topography produced by antecedent flow experiments UF 3-9 and UF 3-12 are very 

different than the bed topography produced by antecedent flow experiments UF 3-6. Less 

erosion is hown, particular) after the antecedent flow Experiment UF 3-9. This is due to 

only mall amounts of materials being transported during the antecedent flow experiment. The 

valleys are more spread over the bed after antecedent flow Experiment UF 3-12 in 

comparison to the bed after the antecedent flow Experiment UF 3-9. Isolated larger grains 

also appeared on more locations. This higher proportion is shown by the distribution curve. It 
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also noticed that the distribution of bed surface elevations after antecedent flow Experiment 

OF 3-9 is narrowed with an increased in the peak. This type of distribution is the 

characteristic of a flatter bed as the proportion of the surface close to the average level 

increased. 

The highly unstable bed formed by antecedent flow Experiment UF 3-6 was the main factor 

why the bed surface topography after the stability test show significant further degradation. 

The exposed grains transported by available fluid forces increasing the level of erosion. The 

bed topography plots display darker areas reflecting the lower level of valleys formed in the 

bed. This is supported by the changes in the distribution curve. Although the peak of the curve 

decreased, both tails especially in the negative side are widened indicating the existence of 

deeper valleys (Figure 6.41). 

The bed topography after the stability test UF 3-9 indicates some changes with still the 

relatively more organised structure. The higher level exposed areas before the stability test 

still exist indicating the bed was a relatively in stable condition. This is clearly supported by 

the distribution curve (Figure 6.41), which has widened its tail in the positive side. The 

widening of the tail in negative side is an indication that further erosion also took place during 

the stability test. A relatively similar pattern is shown by the distribution curve of bed surface 

level of UF 3-12. Although the distribution curve is widened in both tails, the peak is lowered 

slighter than the distribution after stability test UF 3-9. This correlates with the pattern of 

transport during the stability test where the proportion of grains in the fine mode in transport 

is higher than the proportion of grains in the coarse mode. This means the transportation of 

finer grains were not changing the average bed surface as much as the change in the stability 

test UF 3-6 and UF 3-9. This understandable as in these two stability tests grains in the coarse 

mode transported most than grains in the fine mode leaving more gaps or valleys at the end of 

the stability tests. 

6.5. SUMMARY OF EXPERIMENTS UF III 

complex patterns in transport were observed. In antecedent flow Experiment UF 3-6 large 

amounts of material were transported in comparison to the antecedent flow experiments UF 3-
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9 and UF 3-12. The lowest transport rate was experienced by UF 3-9. These patterns 

continued in the stability tests. The bed fonned by antecedent flow experiments UF 3-9 and 

UF 3-12 which contained longer periods of acceleration in the rising limb exhibited relatively 

stable beds. Low transport rates in the rising limb of stability tests were shown by these 

experiments. The transport rates significantly increased in the falling limb indicating the 

influences of the peak flowrate. 

Three stages of stabilisation process in the accelerating flowrate section were experienced. 

Three hours of accelerating flowrate in UF 3-6 roughly disrupted the bed. The instabilities of 

the grains increased. The short duration did not allow the grains to find stable positions and 

the flowrate easily transported them into the bedload trap. This is indicated by the stability 

tests in that the weakest bed was fonned by the shortest accelerating tlowrate. The first 

thought that the longer duration of accelerating flowrates formed the most stable bed are 

dismissed by the fact that the bed fonned by antecedent tlow Experiment UF 3-12 is slightly 

less stable than the bed fonned by antecedent flow Experiment UF 3-9. This suggests that the 

duration of accelerating flowrate is important in the bed stabilisation process. It is believed 

that the level of unsteadiness in the 6 hours accelerating tlowrate was sufficient to move 

coarse and then fine grains to fonn strong bounds between different fraction in the mixtures. 

The grains were dislodged and dislocated but the tlows were not strong enough to carry 

considerable amounts downstream. As indicated by the bed surface distribution curves these 

grains were sheltered and obtained better and more stable positions instead. They formed 

relatively flat surfaces and were less exposed. The stability test was still able to destabilise 

and transported the grains but not in the same level to the other stability tests. It is suspected 

that a similar way of stabilisation occurred in the accelerating tlowrates section of antecedent 

flow Experiment UF 3-12. However longer exposure to the high tlowrate re-adjusted the 

positioning of some of these grains. More exposed grains were left on the bed. which were 

more easily transported during the stability test UF 3-12 than in the stability test UF 3-9. 

These stages suggest that a maximum level of bed stability had been attained by 6 hours 

accelerating tlowrate but the stability declined slightly as the duration of the rising limb was 

extended more than 6 hours. The shear stress threshold of grain size fractions considerably 

increased from UF 3-6 to UF 3-9. In UF 3-12 the shear stress threshold declined but the 

values were still generally higher than UF 3-6. 
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Interesting features were found in the observation of bursting events. The downward looking 

bed interactions were more common in the antecedent flow experiments, even in the 

accelerating flowrates sections. However no strong link was found between event frequency 

and transport. The duration of events is also found to be relatively similar in all tests. In this 

case it is proven that the high magnitude of momentum ejections, particularly those in the 

range higher than 13 kg/ms, are very important in transporting coarser grains. The transport is 

coarser grains-dominated if the bursting events contained the momentum ejections with high 

magnitude. However the ability of the relatively high magnitude of momentum to destabilise 

and transported the larger grains was also depending on the bed stability. As the armoured bed 

progressed and developed the stable condition the ability of momentum ejections decreased 

accordingly. 

There is distinct pattern found in the bed topography observations after antecedent flow 

Experiment UF 3-6 in which diagonal patches existed on the bed. The patches are stretched to 

the downstream left-hand side of the measurement grid dividing the grid into two sections. 

These patches were more apparent after the stability test. To some extent diagonal patches are 

also found in the bed topography after antecedent flow experiments UF 3-9 and UF 3-12. 

However these patches are less organised and not much in existence even after stability test 

UP 3-9 and UF 3-12 were applied. 

It is evident that the bed formation after the antecedent flow determined the level of stability 

of the bed. The probability distribution of bed surface level after antecedent flow test UF 3-6 

indicated more exposed larger grains resting on the bed. This caused the instability as the 

exposed grains were less stable to resist a similar level of flowrate applied in the stability test. 

The less exposed bed surface produced by antecedent flow UF 2-9 contributed to the more 

stable bed during the stability test. In all the test the bed topography before and after the 

stability tests are seen to have small changes in comparison to the original bed although the 

amounts of bedload transported during the stability test were higher than during the 

antecedent flow tests. In fact, the changes are not as extreme as the changes in the previous 

stage as indicated by smaller different in the distribution curve before and after stability test. 
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VII. CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER RESEARCH 

7.1. CONCLUSIONS 

The works presented in this thesis comprises an attempt to compare the influence of different 

type of hydrographs on the stability of mixed grain size bed. The following is a review of the 

conclusions that have been drawn from the work within this thesis and the potential 

implications for river engineering. 

7.1.1. Stability Tests 

Considering all the stability tests it is seen that the most stable bed is the bed formed by 

antecedent flow Experiment UF 2-12 followed by SF 1-12, SF 1-9 and SF 1-6. Less stable 

bed is formed by antecedent flow UF 3-9 followed by UF 2-6, UF 3-12, SF 1-3 and UF 2-9. 

The weakest bed is the bed formed by antecedent flow Experiment UF 3-6. These differences 

underlined the importance of the antecedent flow hydro graph in determining the stability of 

water worked bed. The low level of unsteadiness with 9 hours duration of decelerating 

flowrates in UF 2-12 caused less disruption to the bed. It is most likely that the grains move in 

the rolling fashion allowing the grains to re-adjust their position and become better sheltered. 

On the contrary, the high level of unsteadiness in UF 3-6 (3 hours of increase and 3 hours of 

decline) caused much more disruption to the bed. The grains were suspected to be moving in 

suspension but the rapid decrease dropped them back to the bed surface. It is believed that 

these processes leave the bed surface in a disorganised condition with very low resistance 

level when the identical stability flow applied over the bed. These findings oppose the 

conclusion by Graf and Suszka (1985) who claimed that the rising branch of a hydrograph 

bears all the important information no matter what the slope of the descending branch. In fact 

the observation of different duration of accelerating flow hydrographs in this experiment 

produced different behaviour of transport as well as different level of bed stability. 

The stability of the bed formed by antecedent flow with constant flowrates correlates with the 

duration. It was believed that the longer duration of constant flowrate allowed the larger 

grains more time to attain more stable positions so that the longer the duration the stronger the 
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bed. The bed fonned by antecedent flow Experiment SF 1-3 is the weakest followed by the 

bed fonned by antecedent flow experiments SF 1-6, SF 1-9 and SF 1-12. It is also seen that 

the constant flowrate of 0.0338 m3/s needed more than 3 hours of flow exposure to produce a 

relatively stable bed. This is indicated by the almost similar increased in the amount of 

transport for the stability tests applied to the bed fonned by 6, 9 and 12 hours of antecedent 

flow. 

The stability of the bed fonned by the combination of 3 hours constant flowratcs followed by 

different durations of decelerating flowrates indicated that UF 2-9 with the medium duration 

of decelerating flowrates is weaker than the bed fonned by UF 2-6 and UF 2-12. This is 

caused by the fact that bed surface was coarser than the other two as the antecedent flow 

Experiment UF 2-9 transported more amount of grains in the fine mode. It is believed that the 

coarse grains in antecedent flow Experiment UF 2-9 had been mobilised but had insufficient 

time to find stable positions as the finer grains, which expected to "cement" the coarser grains 

into a well developed armoured layer were washed away during this test. This resulted in the 

formation of less stable coarse grains in which more exposed larger grains resting on the bed 

and had lower resistance to the high fluid forces in the subsequent stability test. This is 

indicated by the pattern that in the stability test UF 2-9 grains in the coarse mode was 

transported earlier than in the stability test UF 2-6 and UF 2-12. 

Similar conditions were experienced in the stability tests applied to the bed formed by 

antecedent flows with different level of accelerating flowrates. The bed fornled by antecedent 

flow Experiment UF 3-12 was stronger than UF 3-6 but less stable than the bed fornled by 

antecedent flow Experiment UF 3-9. The proportion of both grains in the fine mode and in 

the coarse mode were relatively closed but antecedent flow UF 3-12 transported more grains 

in the fine mode than grains in the coarse mode. The bed fonned by antecedent flow UF 3-12 

is slightly coarser than the bed formed by antecedent flow UF 3-9. In the stability test UF 3-

12 the domination of grains in the coarse mode in transport started earlier than in the stability 

test UF 3-9. This characterised the pattern of bed stability for each bed. 

In the stability tests the higher transport rates were found after the peak discharge and higher 

average bedload transport rate in the later half was common to all tests except in the stability 
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test UF 2-12. This pattern of behaviour demonstrates that in each stability test the bed is 

progressively becoming weaker once the flowrates were close to the peak. Given that there 

was little transport at the end of each of the steady antecedent flow test, it is reasonable to 

assume only the flowrates about 0.0338 m3/s have caused significant disruption to the bed 

surface. Despite having similar hydrographs, the level of disruption was different in each 

stability test. This was thought to be due to the different levels of bed stability inherent in the 

beds at the end of each steady antecedent flow test. 

The order of stability of the test in each series of experiments match with the fractional 

threshold of motion. In the stability test applied to the bed formed by steady antecedent flow. 

all grains size fractions in the stability test SF 1-3 moved at lower threshold of motions. This 

suggests that the shorter antecedent flow test formed an unstable bed with the grain size 

fraction has a lower critical shear stress. The threshold of motion are generally increased in 

the stability test for the bed formed by longer antecedent flow of SF 1-6, SF 1-9 and SF 1-12 

respectively. In the stability test SF 1-9 and SF 1-12 grains in the fine mode of diameter 0.5 

and 0.25 mm have a similar level of hiding whereas the modal grain size of fine mode (0.355 

mm) has a larger value of hiding. This fraction was less mobile in stability test SF 1-9 than in 

stability test SF 1-12. In this series it is shown that the hiding function of finer grains stay thc 

same after 3 hours exposed to the constant flowrate in antecedent flow test. The fine grains 

stabilised between 3 and 6 hours whereas the stability of the coarse grains were still 

continuing in the longer tests. 

In the second series, the stability test applied to the bed formed by medium duration of 

decelerating flow UF 2-9 indicated a lower threshold of motion for all grain size fractions. 

The threshold of motion increased in the stability test UF 2-6 and UF 2-12. In stabi lity tests 

UP 2-6 and UF 2-12 the level of hiding for finer grains are relatively similar while for the 

coarser grains the values are closed in both stability tests. In the stability test UF 2-9 all 

grains have a lower level of hiding. This resulted in the large amounts of grains in both modes 

transported during the stability test UF 2-9 compared to UF 2-6 and UF 2-12. 

In the third series of experiments, the stability test UF 3-6 had lower values of threshold of 

motion. The beds were less stable and fractional grain size started to move at lower critical 
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shear stresses. This also suggests that although the threshold of motion of grains in the 

stability test UF 3-12 are higher than UF 3-6, the values are still lower than the stability test 

UF 3-9 indicating that the individual grain size in the stability test UF 3-9 are the most stable 

in this series. Only grain size fraction of 1 mm was more mobile in stability test UF 3-9 than 

UF 3-12 as indicated by the lower critical shear stress and lower level of hiding for this grain. 

Again, similar to the findings in the other series of stability tests, the stability tests U F III also 

indicated that the finer grains gained their stability within the period of 6 hours while the 

increase in stability of the coarser grains were continuing. 

7.1.2. Antecedent Flow Experiments 

Initially high transport rates were experienced in all the constant flow antecedent Experiments 

SF I. With no upstream sediment feed, and the same original bed composition and formation, 

the transport rate was a function of time. These experiments indicated that the bed started to 

stabilise after 3 hours of constant flow and as the experiments continued a progressively more 

stable bed condition was achieved. However later on in some tests the transport rates started 

to slightly increase. It is believed that after around 9 hours a less stable bed condition was 

present as finer grains were continually transported increasing the exposure of the coarser 

grains. This resulted in the periodic release of small amounts of coarser grains. This is the 

most likely factor that caused the average transport rates of SF 1-12 not to follow the trend in 

which average transport rate was slightly higher than SF 1-9. 

The decelerating flowrate sections of antecedent flow Experiments UF II produced a trend in 

which the average transport rate correlates with the level of flow unsteadiness. This is not the 

case in the accelerating flowrate section of the antecedent flow Experiments UF III where the 

average transport rate patterns are more complex. The most rapid increase in flowratc 

produced the highest transport. However the rate of increase of flowrate in the other tests did 

not match the rate of change in transport. 

The importance of the duration of the antecedent flow on the composition of the bedload is 

also noted. The application of relatively high constant discharges to the freshly laid sediment 

bed had different impact in the mode of transport. In the first 3 hours the transport contained 
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large amounts of grains both in the fine and the coarse mode in comparison to the same 

periods later on in the tests. In these cases, the first three hours of constant tlowrate 

transported either the fine or coarse mode was dominant in the bedload. This pattern also 

applied to the 3 hours of constant flowrate in antecedent flow experiments UF 2-6, UF 2-9 

and UF 2-12. After 3 hours lower transport rate were established with the domination of 

grains in the fine mode. Proportionally antecedent flow Experiment SF 1-3 transported more 

grains in the coarse mode than in the fine mode whilst the longer antecedent tlow experiments 

SF 1-6, SF 1-9 and SF 1-12 transported more grains in the fine mode than in the coarse mode. 

Three stages of stabilisation process in the accelerating flowrates were experienced. Three 

hours of accelerating flowrates roughly disrupted the bed. The short duration did not allow the 

grains to settle and the increasing flowrates comfortably transported sediment into the bedload 

trap. This is indicated by the stability tests that the weakest bed was fonned by the shortest 

accelerating flowrates. Initially it was thought that the longest duration of accelerating 

flowrate in UF 3-12 fonned the most stable bed. This was dismissed by the fact that the bed 

fonned by antecedent flow Experiment UF 3-12 is slightly less stable than the bed formed by 

antecedent flow Experiment UF 3-9. This suggests certain duration of accelerating tlowrate is 

able to form a particular level of bed stabilisation. It is believed that the level of unsteadiness 

in the 6 hours accelerating flowrate was sufficiently enough to form a strong bound between 

different fractions in the bed mixture. The coarse grains dislodged and moved but the flows 

were not strong enough to carry considerable amounts downstream. As the flowrate declined 

mostly finer grains moved. These grains were then sheltered behind the coarse grains so that 

fine and coarse grains obtained better and more stable positions. They fonned relatively flat 

surfaces and the fine and coarse grains were less exposed as demonstrated by the more 

'peaked' bed elevation distribution curves. The stability test was able to destabilise and 

transported these grains but not in a similar fashion to the other stability tests. It is suspected 

that the similar process occurred in the accelerating flowrate section of antecedent flow 

Experiment UF 3-12. However longer duration of the high increasing flowrate caused the 

grains to reposition and making them slightly less stable than in antecedent flow Experiment 

UF 3-9. More exposed grains spread on the bed, which were easier to be brought into 

saltation and then were transported during the stability test. 
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7.1.3. Bursting Events and Flow Momentum 

The average nearbed streamwise velocities are sensibly constant throughout the sections of 

constant flow hydro graph. The time averaged nearbed streamwise velocities tend to decrease 

as the test progressed but the range of variation is still relatively small. Similar observations to 

the grid points also suggest that the variations of average nearbed streamwise velocity are 

smaller if the time interval between two series of measurement is shorter. 

In the observation of bursting events interesting features were found. In most of the ante­

cedent flow experiments the downward looking bed interactions (sweeps) were more common 

than the upward interactions (ejections), even in the accelerating and decelerating flowrate 

sections. Only in antecedent flow experiments SF 1-6 and SF 1-12 ejections were slightly 

more frequent than sweeps. 

The most popular level of momentum is associated with flow structures with magnitudes less 

than 5 kg/ms both in the upward and downward-looking bed interactions. More than 70 % of 

the bursting events contain momentum of this magnitude. These features existed in all 

antecedent flow tests with similar shape of distribution although the levels of momentum 

reduced with flowrate. The different patterns in transport suggest that the downward-looking 

bed interactions are not important factors in determining the transport. This dismissed the 

findings of Nelson et al (1995) who claimed that downward-looking bed interactions 

collectively move more sediment than upward interactions, primarily because the downward 

looking-bed interactions are more common. 

The magnitude of momentum caused by ejections in the range between 5 and 20 kg/ms is a 

distinct feature, which is apparent in different proportions in the observations in every test. 

The different proportion of the higher magnitude of momentum ejections observed at different 

time elapsed is believed to have a very important role in determining the mode of transport. 

Comparison of several simultaneous experimental observations of bedload composition and 

flowrate demonstrated that the proportion of high momentum of ejections is very important in 

transporting the coarser grains. The ability of the relatively high magnitude of momentum to 

destabilise and transport the larger grains was also depending on the bed stability. As the 

annoured bed progressed and developed stable conditions the abi lity of momentum from 
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these ejections decreased accordingly. To some extent the transport may be more coarse 

grains-dominated if the time frequency of the ejections sweeps in the bursting events is higher 

than sweeps. However it can generally be said that the transport was relatively insensitive to 

the frequency and the proportion of both types of events. It is also found that the duration of 

events has no influence in determining the transport pattern as the observations indicated a 

relatively similar duration of both types of events in each antecedent flow test. 

7.1.4. Bed Topography 

The bed stability is closely linked with the bed structure formed by the antecedent flow tests. 

It is observed that at the end of each antecedent flow test the transport rate is very low and 

almost diminished to zero. The different level of bed stability showed by each stability tcst is 

characterised by a different formation on the bed surface at the end of antecedent flow test. 

The examination of the distribution of bed surface elevations suggests that the bed formations 

that contain more larger grains with high level of exposure are likely to be the weaker beds. 

This is indicated by the probability distribution curves from the different series of experiment. 

Although the bed surface elevation distributions after steady antecedent flow display 

relatively similar curves, closer observation shows that there is a difference in the level of 

grain exposure for SF 1-3, SF 1-6, SF 1-9 and SF 1-12, particularly in the surface elevation 

above the mean level. 

The weakest bed observed in the second series of stability tests (UF II) has a distribution 

curve of bed surface elevations which indicates more numerous exposed large grains appeared 

in UP 2-9 than in UF 2-6 and UP 2-12. In the third series of experiment (UF III), the 

instability of the bed in the stability test UF 3-6 is also reflected by high numbers of exposed 

large grains left on the bed after the antecedent flow test. These exposed larger grains are less 

stable and contributed to considerable amounts of transport in the stability tests. 

In all the tests the bed topography observations displayed a similarity in the areal pattern. The 

erosion caused by the antecedent flow tends to form diagonal patches on the surface. The 

patches are stretched to the downstream direction of the measurement grid. Although further 
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erosion occurred in the stability tests the patches were maintained and still exist at the end of 

the final tests. The bed topography before and after stability test have relatively no significant 

differences in pattern although the amount of bedload transported in these tests are higher 

than in the longer duration antecedent flow tests. This can be explained in that the coarse 

grains dominated the transport during stability test and their movement did not considerably 

change the bed surface level or its surface organisations. 

The bed topography plots indicated considerable decreases in the bed surface elevation at the 

end of the antecedent flow experiments. It is believed that during antecedent flow vertical 

sorting and horizontal sorting occurred simultaneously to characterise the development of the 

bed surface structure. Vertical sorting is indicated by the bed surface coarsening which is the 

accumulation of larger particles on the bed surface whilst the smaller or finer grains lay 

beneath them. Horizontal sorting is characterised by the different patterns of movement and 

deposition of the fine and coarse grains. During the antecedent flow it was found that the 

proportion of grains in the fine mode was dominant in transport. After stability tests the bed 

topographies are seen to have produced small changes although the amount of bedload 

transported in the stability tests were higher than in the antecedent flow experiments. This is 

the characteristic that the intense transport processes were followed by re-organisation of bed 

surface. Peak: flowrates brought grains into saltation and then transported them downstream. 

As the flowrates decreased the grains in saltation started to move in a rolling fashion allowing 

the valleys to be re-filled again. Eventually the bed topography is seen to have small changes 

in its pattern. In fact, the changes in bed elevation are not as extreme as the changes in the 

antecedent flow tests as indicated by the smaller differences in the distribution curves before 

and after the stability tests. 

7.2. RECOMMENDED FURTHER RESEARCH 

7.2.1. Type of Flow Hydrograpb 

Constant flow is unlikely to be seen in natural rivers. This study has shown that mixed grain 

sediment beds of similar surface composition but formed by unsteady time varying flows 

produce water worked beds of highly variable stability. It is therefore suggested that further 

observations should be focused on time varying flows. Shorter tests, with higher value of 
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flowrate acceleration and deceleration are required to more closely simulate the conditions of 

natural rivers with small catchment areas. 

Because of the complex pattern of changes in bed stability in the tests with different 

decelerating and accelerating flows, there is a need for further tests with similar patterns of 

hydro graphs but with intennediate durations. It is recommended that the measurement should 

cover this duration so that every level of unsteadiness could be examined to identify how the 

bed stabilises as well as how the period of destabilisation is affected. In this case a detailed 

method of investigation should be developed to assess those variables affecting the bed 

strength. 

7.2.2. Flow Measurement 

It has been identified by the author that the changes in the time averaged nearbcd streamwise 

flow velocity within a relatively small grid are relatively small. However the spatial variation 

in the average bed shear stress at different grid points was much larger and thus must be 

considered for further observation. The existing data could be re-examined with a view to 

detennining the different flow structures that exist in different parts of the flow cross section. 

The measurement of the spatial variation of the flow behaviour, e.g. bursting events, could be 

correlated to the transport pattern. Therefore an important recommendation for future work is 

that the flow measurements should not be focused on a single point to represent the flow 

conditions at different time elapsed. 

7.2.3. Composition of Bed Sediment Mixtures and Sediment Feed 

The bimodal mixture used in these experiments was based on the assumption that many 

natural rivers contain materials with such distribution of grain size (Shaw and Kellerhals, 

1982). However it is very interesting to discover if the pattern between the two modes would 

be significantly different if the grain size distance between modes and/or the relative 

proportion of the modes of the bimodal sediment bed was significantly changed. By applying 

such mixtures, not only would data be collected to check calculations of the sediment 

transport rate based on the availability of the size fraction in the surface layer (Suzuki and 
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Hano, 1991) but also different grain sorting mechanisms which may occur can be 

investigated. 

It is also recommended to investigate whether feeding sediment has an effect on the bursting 

events and hence the magnitude of flow momentum. This is based on the possibility that 

feeding sediments may be transported downstream in saltation rather than in a rolling fashion. 

It is therefore very interesting to observe whether the saltating grains of the feed material are 

less or more easy to move further by changing the magnitude of momentum of the nearbed 

ejections or whether the grain saltations from the recirculated sediment may reduce or 

increase the level of bursting events. 

7.2.4. Bed Topography Analysis 

A large amount of detailed bed topography data within a grid was collected using the LDM 

and this was used solely to calculate the distribution of bed surface elevation both from the 

arbitrary zero datum and the average bed level. The bed topography plot could only be used to 

recognise the general pattern of erosion without detailed information on the grain exposure 

and the protrusion of individual grains relative to adjacent grains or surrounding areas. It is 

therefore envisaged that the available data could be re-examined using methods to quanti fy 

the spatial distribution of grain protrusion. It will also be beneficial if the information on how 

the particles on the surface are aligned and orientated over a range of scales can be obtained. 

This may be possible using techniques such as the 2-D structure functions as proposed by 

Goring et al (1999). 

7.2.5. Impliactions for Natural Rivers 

A numerical simulation method should be developed based on the physical mechanisms of 

bedload transport identified in this study. It is found that the relatively short duration of 

accelerating flowrate had a significant impact on the stability of mixed grain size sediment 

beds. Experiments indicated that the stabilisation process was not propcrly established in a 

relatively short period of accelerating flowrate. This resulted in many exposed coarse grains 

resting on the bed surface forming generally unstable and weak beds. 
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Having observed this condition it is emphasised that the findings in this experiment could be 

beneficial in the application or investigation of bedload transport behaviour in natural rivers 

with small and medium catchment area, as these type of rivers normally have a rapid rise of 

discharge during the flood flows with relatively short recession limbs. 

The most stable beds appeared to be formed by tests in which the coarse grains rolled for long 

periods followed by periods where the fine grains also had the appropriate conditions to roll 

over the bed. This pattern was found in the tests with the long durations of decelerating 

flowrate. This phenomenon can be associated with lowland rivers, which normally have 

relatively longer recession limbs following storm events. It is therefore necessary to design a 

modelling technique which will be able to recognise the contribution of rolling processes of 

the coarse and fine grains over a length of time in forming a stable bed condition. 
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