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SUMMARY 

The response of steel-framed structures to applied loading depends to a large degree 

on the behaviour of the joints between the columns and beams. Traditionally 

designers have assumed that these joints act either as 'pinned', with no ability to 

transmit moments from beam to column, or as 'rigid', providing perfect continuity 

between the connected members. Advances in analysis, and developments in 

modem codes of practice, permit designers to account for the real behaviour of steel 

joints where this is known or can be predicted. Even though experimental studies of 

joints conducted at many research centres around the world have provided a large 

bank of test data, the vast number of variables in joints (beam and column sizes, plate 

thicknesses, bolt sizes and spacing, etc.) often means that data for a specific joint 

arrangement does not exist. As a result, researchers have turned their attention to 

ways of predicting the behaviour of such joints. One approach which has gained 

acceptance is based on the "Component Method" in which overall joint behaviour is 

assumed to be produced by the responses of its various simpler components. 

To date, data on the response of joints at elevated temperatures has been gathered 

from full-scale furnace tests on cruciform arrangements, which have concentrated 

exclusively on moment-rotation behaviour in the absence of axial thrusts. However, 

when steel-framed structures are subjected to fire, the behaviour of the joints within 

the overall frame response is greatly affected by the high axial forces which are 

created by restraint to the thermal expansion of unprotected beams. If moment­

rotation-thrust surfaces were to be generated this process would require prohibitive 

numbers of complex and expensive furnace tests for each joint configuration. The 

alternative, and more practical, method is to extend the Component Method to the 

elevated-temperature situation. 

The basic theme of the Component Method is to consider any joint as an assembly of 

individual simple components. Each of these components is simply a non-linear 

spring, possessing its own level of strength and stiffness in tension, compression or 

shear, and these will degrade as its temperature rises. The main objective of this 

study was to investigate experimentally and analytically the behaviour of tension and 

compression zones of end-plate connections at elevated temperatures. A series of 



experiments has been carried out and a simplified analytical model has been 

developed, and this has been validated against the tests and against detailed finite 

element simulations. The simplified model is shown to be very reliable for this very 

common type of joint, although similar methods will need to be developed for other 

configurations. The principles of the Component Method can be used directly in 

either simplified or finite element modelling, without attempting to predict of the 

overall joint behaviour in fire, to enable semi-rigid behaviour to be taken into 

account in the analytical fire engineering design of steel-framed and composite 

buildings. 
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Introduction 

Chapter 1 

Introduction 

1.1 INTRODUCTION 

Historically, concern with fire protection has tended to follow the occurrence of 

disasters, and the main objectives of fire prevention are seen as the protection of life 

and propertyl.l,1.2. Noticeable progress has been made in the understanding of 

structural fire protection since the earliest attempts to implement fire safety. The 

establishment of the British Fire Protection Committee (BFPC) at the end of the 19th 

century marks the beginning of a scientific approach to research into structural fire 

resistance. The first concern when considering structural fire protection was to 

ensure stability of the structure. However, over the years fire protection has 

developed into a strategy of which the five main objectives arel.1: 

a) Preventing the initiation of fire 

b) Restricting the growth and spread of fire 

c) Containment of fire within specified boundaries a compartment forming part 

of a building or the whole building 

d) Provision of means of escape for the occupants of the building, and 

e) The control of fire by automatic devices and by active fire fighting. 

The fire protection objectives are fulfilled by taking into account passive as well as 

active measures. Passive measures are part of the built system and are in operation at 

all times, whereas active measures come into operation only in the event of a fire. 

Passive measures include building layout, design and construction, while active 

measures comprise fire detection and fire control systems. 

Table 1.1 below shows the principal active and passive measures. 



introduction 

Table 1.1. Active and Passive measures 

Actire measures Passive measures 

Detection Contents and linings 

Alarms Escape provisions 

Sprinklers Compartmentation 

Fire fighting Structural Protection 

Looking closer into the structural fire protection, the main objectives are to: 

a) Maintain the integrity of safe areas in a building 

b) Restrict the size of fire and 

c) Prevent the building structure from becoming unstable. 

The second is concerned with the division of buildings into smaller compartments to 

enable an easier control of fire. The third objective has sometimes been considered 

to be the sole aim of structural fire protection. Retention of structural stability is 

essential to achieve the other objectives, as it allows an easier control of fire. 

1.2 STRUCTURAL FIRE PROTECTION 

For steel framed structures the most familiar method of providing adequate structural 

fire protection is to use some form of insulating material, with the aim of limiting the 

temperature of the steel so that sufficient strength is retained. This has led to the 

production of a variety of protective materials for coating, spraying or encasing 

members 1.3. 

Building Regulationsl.4,1.5 reqUIre that "The building shall be designed and 

constructed so that. ill the event of fire. its stability will be maintained for a 

reasonable period." Design codes for the structural fire resistance of steel structures 

have traditionally adopted a prescriptive approach for determining fire protection 

requirements 1.6, although more recent methodsJ.7.1.8 have introduced means to 

2 



Introduction 3 

calculate periods of fire resistance. These generally relate to isolated elements, and 

are based primarily on the results of experimental studies. 

The provision of fire protection is a costly aspect in the construction of steel 

structures. Also there are secondary costs associated with time delays because the 

application of fire protection may hinder the progress of construction. This offsets 

many of the advantages associated with steel-framed construction. 

From an engineering point of view it is more logical to design the structure to 

withstand fire without protection rather than designing the structure for normal 

conditions and then applying protection. Therefore in recent years there has been 

much interest in understanding the response of different structural elements under 

fire conditions, either in isolation or as a part of a more complete structure. This 

facilitates the development of new engineering methods of analysis and design taking 

into account any inherent fire resistance of the structural steel, reducing protection 

costs and construction time. This new engineering method, which is called Structural 

Fire Engineering, is a part of Fire Safety Engineering. 

1.2.1 Fire Safety Engineering 

The rapid changes in how buildings are designed, constructed and used by occupants 

has created a situation where it is sometimes difficult to satisfy the provisions of fire 

safety requirements, given in Approved Documents, Technical Standards and 

Technical Booklets. Increased understanding of the behaviour of elements or frames 

under fire conditions has led many authorities (e.g. building control, insurance and 

any other authorities which enforce safety legislations) to acknowledge that 

improvements in fire safety may now be possible by adopting analytical 

approaches 1.9. 

Fire safety engineering is an approach which uses, in the most effective way, all the 

available methods for preventing, controlling or limiting the consequences of fire. In 

terms of structural stability, Structural Fire Engineering uses a scientific approach, 

which ensures that fire resistance is provided where it is needed. There are three 

stages in the process of achieving safety and cost effectiveness in a Structural Fire 

Engineering design of a building; 
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a) Predicting the heating rate and maximum atmosphere temperature inside the 

compartment. This involves identifying and assessing the three main 

parameters which influence the severity of a fire in a given compartment, fire 

load (quantity, type, distribution), ventilation (area, height, location) and 

compartment (size-floor area, surface area, shape, thermal characteristics). 

b) Calculating the temperature of the steel member, which depends on the 

location, the section size and shape, and any protection applied. 

c) Analysing the stability of the structure, which depends not only on the 

temperature it reaches during a fire but also on the applied load and the 

effects of any composite action, restraint and continuity from the remainder 

of the structurel.lo. 

In light of the foregoing it is clear that designers and developers are looking for the 

most cost effective solutions, and these solutions could be the result of a better 

understanding of how the structural frame behaves under fire conditions without any 

fire protection to its members. In order to construct a frame, joints are necessary to 

provide continuity to the structure, and hence their behaviour affects the local and/or 

global behaviour of the structural frame. This conclusion leads to the purpose of the 

current study, which concerns the behaviour of steel beam-to-column joints in frames 

under fire conditions. 

1.3 BACKGROUND TO THE STUDY 

Part of a design process is to analyse a frame to determine its structural usefulness 

and to compare the predicted behaviour with the required performance in terms of 

loading and deformation. To construct load-deformation curves for each structure 

would be desirable, because these would contain all the information necessary for 

checking the structural behaviour. However such curves are more or less non-linear 

from the very beginning because of second order geometrical effects and material 

non-linearities. Later the slope of the curve is further reduced because of local 

plastification or of some instability phenomena. The situation becomes more 

complicated as structures contain real joints, which are different from the ideal ones, 
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hinged and rigid. Ten years ago the concept of using realistic joint behaviour in the 

design process at ambient temperature, now known as semi-rigid behaviour, first 

appeared in Eurocode 3. 

1.3.1 Ambient temperature semi-rigid design process 

Semi-rigid behaviour means that a joint can withstand levels of rotation and moment, 

in contrast to the "fixed" or "pinned" behaviour usually considered in the design 

process. This new concept resulted in the realisation that the joint behaviour is a 

valid part of the whole structural response and should not be ignored in a global 

frame analysis. Using the semi-rigid characteristics of joints, designers can perform 

global structural analyses and take into consideration the limit states' requirements, 

for both the members and the joints. The new modelling approach is desirable for 

several reasons, such as: 

a) Engineering efficiency 

b) Precision and accuracy, and 

c) Economics 

These reasons gave support for a very comprehensive study (COST Action Cl from 

1991 to 1999{1l which looked into establishing a unified approach for modelling the 

connection behaviour of joints in engineering structures. In COST Action C 1 

twenty-three countries participated, and the main objectives were to investigate semi­

rigid action experimentally and analytically, and finally propose simplified models 

for the joint behaviour in each of the material types (concrete, steel, timber and 

composite). The impact of COST Action Cl, especially in the field of steel and 

composite joints, was to establish code regulations such as EC3 Annex J 1.12 for steel 

joints. 

In summary, at ambient temperatures extensive experimental data, finite element 

analysis and simplified models now exist that describe the moment-rotation 

characteristics for different joint arrangements. Designers, with the help of EC3: 

Annex J can predict the moment-rotation characteristics for a steel joint, and 
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introduce this response into a global frame analysis to simulate the real behaviour of 

the frame. 

1.3.2 Elevated temperatures semi-rigid design process 

Unfortunately the same cannot be said for joints at elevated temperatures because 

there is a very small amount of experimental data1.13,1.l4,1.l5 that can help researchers 

understand the behaviour of joints, in order to develop simplified or analytical 

models. Also from the Cardingtonl.16 full-scale frame fire tests it was observed that 

large axial forces were developed in the beams due to restraint to thermal expansion. 

This observation suggests that it is inadequate to place reliance solely on moment­

rotation characteristics of steel joints, as found from furnace tests or numerical 

modelling. 

As a result the modelling of elevated-temperature joint response has not been 

addressed to date by any design standards or codes. Development of sufficiently 

accurate methods of predicting joint response will be instrumental in the future use of 

semi-rigid characteristics for fire limit state design. The number of tests required to 

define accurately moment-rotation-thrust-temperature characteristics by experimental 

means is prohibitive, even for a single joint. 

The modelling of elevated-temperature joint response may follow one of two paths: 

a) Developing joint models that allow the prediction of elevated-temperature 

behaviour, following the full range of joint response, 

b) Incorporating degradation characteristics into existing ambient -temperature 

test data. 

In the current study the former approach was adopted, and a simplified model has 

been derived that predicts the moment-rotation-temperature characteristics for a joint 

from only its geometrical and mechanical properties. The second approach is 

attractive, as it would use the extensive ambient temperature data that already exists. 

The only problem is that these ambient temperature tests do not include the axial 

forces which can develop at elevated temperatures. However, in both of these 
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approaches understanding the behaviour of the components within the joint's tension 

and compression zones is of primary importance. 

1.4 SCOPE OF RESEARCH 

Design codes do not address properly the behaviour of steel joints at elevated 

temperatures, due in part to the lack of experimental data. The use of numerical 

models is also limited, since the degradation of the joint characteristics at elevated 

temperatures has to be based on empirical relationships postulated either from 

ambient-temperature tests or from the small amount of elevated-temperature data 

currently available. 

Recent experimental studies1.14,1.15 on small-scale joint specimens (exclusively 

concentrated on moment-rotation-temperature behaviour in the absence of axial 

thrust due to thermal expansion restraint of the beam) have shown that it is possible 

to derive moment-rotation characteristics at elevated temperatures. However the 

large number of tests needed to achieve full moment-rotation-temperature 

relationships for a single joint demonstrated the inherent difficulty in this approach. 

The primary objective of the present investigation is to establish a simplified model 

that can predict full moment-rotation-temperature characteristics just from the 

geometrical and mechanical properties of a typical bare-steel joint, which will in 

principle establish the modelling technique for other types of joints. In order to fulfil 

the above objective the principles of the "Component Method,,1.12,1.l7 were used. The 

method considers any joint as a set of individual basic components, resulting 

principally from the action of tension and compression forces, and then these 

components are assembled in a way which models their interaction in the joint. 

The components within the tension and compression zone were investigated 

experimentally using a purpose-built testing technique and arrangement. 

Furthermore, analytical and simplified models were derived which predict the 

ultimate failure behaviour of individual or groups of components. Finally, a 

component-based model was developed, and moment-rotation-temperature 
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characteristics were evaluated and compared against test results 1.14.1.15 for a typical 

end plate joint. 

The results from such component tests will be of value to other researchers. 

especially those developing numerical modelling approaches to the behaviour of 

individual or groups of components at elevated temperatures. aiming to model the 

overall behaviour of a joint without resort to numerous tests for each type of joint at 

different temperatures. 

On the other hand, when real steel-framed structures are subjected to fire, the 

behaviour of the joints within the overall frame response is greatly affected by the 

high axial forces, which are created by restraint to the thermal expansion of 

unprotected beams. If now moment-rotation-thrust-temperature surfaces were to be 

generated this process would require prohibitive numbers of complex and expensive 

furnace tests and unlimited number of component-based model runs in order to 

predict the overall behaviour of a typical joint configuration. The ultimate goal of 

this study is to investigate the potential of using the principles of the "Component 

Method" in a way that the non-linear characteristics of each component can directly 

be used in either simplified or finite element modelling, without attempting to predict 

the overall joint behaviour in fire, enabling the semi-rigid behaviour to be taken into 

account in the analytical fire engineering design of steel-framed and composite 

buildings. 

1.5 THESIS LAYOUT 

The thesis consists of eight chapters as described below: 

Chapter 2 looks closely into the concepts of "connection" and "joint" and describes 

the meaning of "rigid", "simple" and "semi-rigid" joint action in the context of 

frame response when analytical methods are considered. A literature review is also 

presented for the semi-rigid joint action at ambient and elevated temperatures. 

Finally an introduction to the "Component Method" is made. 
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Chapter 3 describes the testing arrangement, and the development of a displacement 

measurement technique (image acquisition and processing technique) that was used 

to investigate experimentally the behaviour of components within a steel joint at 

elevated temperatures. The advantages of using an image acquisition and processing 

technique over more conventional methods of displacement measurements are 

discussed. 

Chapter 4 describes the test procedure and results for ten series of tests (tension zone 

components within a steel joint), where the main objective is to investigate the 

different ultimate failure modes of T -stub specimens. Also a simplified model is 

developed which is capable of predicting the ultimate behaviour of these T -stubs at 

elevated temperatures, and furthermore a 2-D finite element analysis is presented. 

Finally an experimental investigation of the behaviour of Grade 8.8 bolts under 

tension forces at elevated temperatures is described. 

Chapter 5 continues the experimental investigation into the behaviour of the column 

web component under transverse compression forces. An analytical investigation 

and a semi-empirical model are presented for the prediction of the column web 

component behaviour. 

In Chapter 6 a simple component-based model capable of defining the complete 

range of joint response is described. Comparison is made between the results 

obtained from the proposed model and those from the bare steel flexible end plate 

fire tests performed by Leston-Jones1.l4 and AI-Jabri1.l5. 

In Chapter 7 the influence of the axial forces developed in a heated beam due to the 

restraint to thermal expansion on joint response is highlighted. A small 2-D frame 

finite element analysis is also performed using VULCAN in order to show the 

influence of these axial forces on the frame response. 

Finally, in Chapter 8 general conclusions are drawn, and recommendations for future 

work are presented. 
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Chapter 2 

Beam-to-Column Steel Joints 

2. J INTRODUCTiON 

"A steel frame structure is a complex assembly of many individual members joined to 

form a working unit ill which component elements are designed to resist the factored 

loads acting 011 the structure". 2.1 

Structural steel frames usually consist of universal beams and columns assembled 

together by means of connections at points such as those shown in Figure 2.1. These 

connections are between columns, beams, column-and-beam and between column-

and-foundation. 

B A 

c 

A- Beam to column connection 
B- Beam to beam connection 
C- Column to column connection 
D- Column to foundation connection 

Figure 2.1 Different types of connections in a building frame 

As explained by J-P. Jaspart 2.2 in one of his lectures about designing and analysing 

joints, with today's understanding of frame response there is a need to define exactly 
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what is a "connection " and what is a 'joint " within a building frame. A connection 

is defined a "the set of the physical components which mechanically fasten the 

connected elements". One considers the connection to be concentrated at the 

location where the fa tening action occurs, for in tance at the beam end/column 

interface in a major-axi beam-to-column joint. When both the connection and the 

corre ponding zone of interaction between connected members are considered 

together, the wordingjoint is then used (Figure 2.2). 

--r.- Joint 
- --II 

II 
I I 

I I 
II 
II 
II 
I I 

Connection 

Figure 2.2 Joint and connections- ingle ided joint configuration 

Since frame members and joints are the basic and integrated parts of a teel frame, 

their behaviour and effect on the overall frame's performance cannot be ignored in 

the global analysi of the tnlcture. 

2.2 GLOBAL ANALYSIS OF FRAME STRUCTURES 

In conventional analysis and design of teel and composite frames, beam-to-column 

joint are a wned to behave either a "pinned" or a fully "rigid". Traditionally the 

engineer ha neglected the de ign and detailing of the actual joint and left this to the 

fabricator to complete2
.
3

,2.4. 
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Although the pinned or fixed a sumption simplifies significantly analysis and design 

procedures for the engineer, in practice the actual joint behaviour exhibit 

characteri tics over a wide spectrum between these two extremes. For example, 

mo t joints regarded as "pinned" possess some rotational stiffness, whilst joints 

which are regarded a "rigid" display some flexibility. Based on the above 

observation, the concept of" emi-rigid" joints has been born and continue to be the 

subject of re earch for engineer until today. 

The actual meaning of the tenns "rigid" "pinned" and "semi-rigid" and their effect 

on the tructural behaviour is summarised below: 

a) When all the different parts of the joint are sufficiently stiff, the joint i aid 

to be "rigid" and there is no difference between the respective rotations at the 

ends of the member connected at this joint. 

b) When the joint is without any stiffnes it is "pinned", and in thi case the 

beam will behave a simply supported whatever the behaviour of the other 

connected members. 

c) For intermediate "emi-rigid" cases, where non-zero and non-infinite 

stiffnes exists, the tran mitted moment will result in a difference in rotation 

cJ> between the ab olute rotations ofthe two connected member. 

For emi-rigid joints the load will result in both a bending moment and a relative 

rotation between the connected members as illustrated in Figure 2.3. 

M M M 

<J> <J> 

(a) Rigid Joint (<1>=0) (b) Pinned Joint (M=O) (c) em i-rigid Joint eM and <1>#0) 

Figure 2.3 Modelling joints for elastic global analysis 



Beam-to-Column Steel Joints 15 

The benefits of considering joints as "semi-rigid" are: 

a) Cheaper structures, because by considering "semi-rigid" joints allowances are 

made for the transfer of moments from the beam to the column, resulting in a 

reduction in the mid-span bending moment of the beam. Multi-bay frames 

this allows a reduction in the size of the beam section, with little consequence 

for the rest of the frame, except in cases where the beam frames into an 

external column, 

b) Cheaper and more simplified joints compared to rigid joints, 

c) Efficient structures because "semi-rigid" joints provide some restraint against 

column buckling2.s,2.6. 

With recent advances in structural codes and design standards the designer today can 

predict the behaviour of steel joints by taking into account only the mechanical and 

geometrical properties of the joint considered. However in order to achieve further 

reduction in the erection cost of a structural frame, according to Nethercot2.7, there is 

a very strong need for standardization of the joints so that fabricators can improve 

and develop their machinery and equipment in order to provide standard joints, hence 

cheaper fabrication. 

According to figures collected by British Steel (now CoruS)2.7, for multi-storey 

construction in the UK, the fabrication costs (the premium charged by fabrication 

companies to cover all their activities from receipt of information to handover on 

site) are upwards of 100% of the purchase price of the steel. It has further been 

estimated that over 60% of these additional costs are directly influenced by the need 

to make joints, with the exact arrangements selected affecting the fabricator's design, 

drawing, fabrication, transportation and site expenses through their influence on 

factors such as design time, drawing complexity, handling of steel in the works, site 

time etc. 

It has been shown above how the joints can be modelled, and the benefits from 

considering "semi-rigid" joints in a global frame analysis. It is also worth 

mentioning that the type of joint modelling to be adopted is dependent not only on 

the type of frame analysis to be used but also on the classification of the joint in 

terms of stiffness, and/or strength, and/or rotation capacity. 
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2.2.1 Joint classification 

The main objective of a classification system is to define appropriate boundaries for 

behavioural classes of joints as a function of the mechanical properties of the 

connected members2
.
8

. Classification boundaries provide some guidance for the 

choice of an adequate and economical joint. 

As mentioned above, beam-to-column joints could be classified in terms of stiffness 

and/or strength or by rotation capacity. 

a) Stiffness classification 

A joint within a structural steel frame could have a stiffness classification as "rigid", 

"semi-rigid" or "flexible", as shown in Figure 2.42
.
9

,2.10. By comparing the design 

joint stiffness to the two extreme stiffness boundaries of "rigid" and "flexible" joints 

a classification in terms of stiffness can be made. 

b) Strength classification 

The strength classification simply consists of comparing the joint design resisting 

moment to "full-strength" and "pinned" boundaries, as shown in Figure 2.5. 

c) Rotation capacity classification 

Plastic analysis implies not only plastic stress distribution within the cross-section 

(plastic hinge formation) but also a bending moment redistribution within the 

structure. To enable the moment redistribution, the sections must be able to undergo 

sufficiently large rotations before the resistance moment falls below the plastic 

value2
.
8

. This means that a section or joint must have the ability to go into the plastic 

region, and possess a certain rotation capacity while maintaining the design moment. 

This plastic rotation capacity is responsible for the moment redistribution in a 

system. Required rotation values derived from the system must be compared to 

'1 bI . al d' d f .. 2.10,2.11 aVaI a e rotatIOn v ues enve rom JOInt curves . 
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Figure 2.4 Typical beam-to-column joints and a diagrammatic stiffness classification 
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Figure 2.5 Strength classification boundaries 
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A brief summary of how to classify frames and joints for global analysis has been 

outlined above. The bullet point here is that the assumptions made in a global 

analysis should be consistent with the actual behaviour of joints (Rigid, Semi-rigid, 

Flexible)2.12,2.13. It is best to consider almost all structural joints as semi-rigid, and 

leave the rigid and flexible conditions as the two extreme conditions. Consider now 

the advances that have been made in understanding the behaviour of semi-rigid joints 

at ambient temperature and elevated temperatures. 

2.3 SEMI-RIGID JOINTS AT AMBIENT TEMPERATURES 

The concept of semi-rigid joints dates back many years in the USA, UK, Australia, 

Canada and the Netherlands. In other countries such as Italy, France, Spain and 

Greece this concept has not been introduced and therefore semi-rigid joints are not 

widely adopted, although they are included in Eurocode 32.10,2.14. 

Wilson and Moore2.15 were the first to try to determine the rigidity of riveted joints in 

steel structures and carried out the first semi-rigid joint experiments in 1917. 

According to a historical review on end plate design (prepared by Moore2.
4
) states 

that it was not until the 1930s that the need to understand the behaviour of joints 

became apparent and research in this area gathered momentum. Separate 

investigations were carried out in the UK, USA and Canada in order to provide a 

data base of experimental tests for semi-rigid design, and the first attempt to produce 

a set of design procedures for beam-to-column joints was made by the British 

Constructional Steelwork Association in the mid 1950s and early 1960s in their 

series of "Black books,,2.l6,2.17.2.18.2.19. 

The research interest in the behaviour of joints continued fairly slowly until the 

1970s because of the non-linearity of moment-rotation curves throughout the entire 

range of rotations, leading to complexities in modelling. 

In 1983, Jones et ap·20 reviewed the available test data obtained by many researchers 

concerning the performance of semi-rigid joints and pointed out the need for further 

investigation into the effect of semi-rigid end restraint on the behaviour of individual 
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beam-column members and complete frames. Since then many researchers have 

continued investigating the behaviour of steel joints, but the biggest research 

breakthrough involving different European countries was performed under the 

COST2
.
21 Project CI 2

.
22

. 

COST is the acronym for the French equivalent of "European Cooperation in the 

Field of Scientific and Technical Research". COST was the first instrument of 

European science cooperation going beyond the Community. The COST Project Cl, 

was the first in the field of civil engineering. It was established in September 1990 

and the objective was to improve knowledge on the behaviour of joints in order to: 

a) Be able to control the level of semi-rigidity in the structures, by developing 

practical analytical tools, using realistic connection behaviour, 

b) Determine what savings might be achieved using semi-rigid connections and 

simplifying accordingly the detailing of connections. 

COST Project CI was divided into seven subgroups (working groups) focused on 

specific topics, of which the most relevant to steel and composite joint behaviour 

were: 

• Working Group 2- Steel and Composite 

• Working Group 4- Database 

• Working Group 6 - Numerical Simulation 

The COST Project C 1 ceased operation in March 1999, but during the nine years of 

its activity produced about 125 individual projects, four books or conference 

proceedings, and nearly 400 individual papers and oral presentations. 

The main scientific result was a comprehensive approach to structural design 

including joint design (Fully Integrated Design), in contrast to the past when joint 

design was done as a separate process. 

The more advanced technical result was the participation of the Cost C 1 members in 

the writing of several chapters of the Eurocodes 3 & 4 (for Steel and Composite 

Structures) including directly the results of the research
2
.
23

,2.24. 

In the UK, the code for steel design BS 5950:Part 12
•
25 

does not define any method to 

determine the joint characteristics, but provides general guidelines to ensure that the 

joint satisfies the ultimate limit state design criteria. In the early 1990s the Steel 
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Construction Institute and BCSA 2.26,2.27,2.28 published design guides for simple and 

moment-resisting beam-to-column steel joints. These guides provide a simplified 

design procedure covering the various forms of joints, and are widely used in 

practice. 

2.4 SEMI-RIGID JOINTS AT ELEVATED TEMPERATURES 

During the last 30 years many advances have been made in the design of steel beam­

to-column joints at ambient temperature. Over the same period, researchers started 

to show an interest in the behaviour of steel joints at elevated temperatures. The first 

experimental fire tests on six different types of joints, ranging from "flexible" to 

"rigid", were conducted by CTICM2
.
29 in 1976. The purpose of the tests was to 

establish the performance of high strength bolts at elevated temperatures, so no 

attention was given to the actual behaviour of the steel joints. The results showed 

that due to the deformation of other elements the bolt failure was inevitable. 

Then it was the turn of British Steel2
.
3o (1982) to perform elevated-temperature tests 

on "rigid" moment resisting cleated joints in order to observe their behaviour. 

Although they carried out only two tests, the conclusion was that bolts and their 

connected elements could undergo considerable deformation in fire. 

The tests carried out by Lawson2
•
31 in 1990, were the first in which research interest 

moved away from just observing the steel joint's behaviour at elevated temperatures 

to actually measuring the behaviour. In total eight tests were carried out, five of 

them on non-composite beams, two on composite beams and one on a shelf angle 

floor beam. Three main types of joints have been studied: a) extended end plate b) 

flush end plate and c) double-sided web cleat. The aim of the programme was to 

develop a design approach for steel beams taking into consideration the rotational 

restraint provided by the joint. These tests once more demonstrated that failure of 

the connecting bolts or welds did not occur, despite relatively large deformations of 

the joints. Although measurements of moments and rotations were taken, the 

information recorded was not sufficient to describe the actual moment -rotation 

characteristics of the joint at different temperatures. To be able to measure moment-
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rotation-temperature characteristics, a typical joint arrangement needs to be tested 

several times at elevated temperatures, with different moment values applied to the 

joint each time. 

That was the primary objective for the experimental work carried out by Leston­

Jones et aI. 2.32,2.33,2.34,2.35. In total eleven tests were carried out on (small-scale) flush 

end plate joints, including two tests at ambient temperature one for bare-steel and 

one for composite joints. The results confirmed that the joint stiffness and moment 

capacity decreases with increasing temperature, especially in the range 500°C to 600 

0c. For the first time, a number of moment-rotation curves at different temperatures 

were derived, describing the full joint response at elevated temperatures. 

A follow up to Leston-Jones' work was carried out by AI-Jabri et aI. 2
.
36

,2.37. Leston­

Jones' work had concentrated on the behaviour of joints within the lower range of 

available section sizes (254x102UB22 connected to 152x152UC23) whereas AI-Jabri 

extended the scope of his work to study the influence of parameters such as member 

size, connection type and different failure mechanisms. In total twenty tests were 

conducted (flush and flexible end plate bare-steel joints and flexible end plate 

composite joints) with five different connection configurations. 

The definition of elevated-temperature moment-rotation response is complicated by 

the introduction of the further variable. In order to define accurately the response of 

steel joints for the fire limit state, it is necessary to perform research in more detail 

into the available analytical models, which can be classified (as at ambient 

temperature) into three main categories: 

1) Global models, 

2) Joint modelling by finite elements, 

3) Component-based models. 

Global models involve approaches which are based on fitting mathematical 

expressions to experimentally obtained data for the joint type considered. Leston­

Jones2•35 and AI_Jabri2•37 have used this type of approach. They have fitted a 

modified form of Ramberg Osgood equation2
.
34 into their experimental results. The 

advantage of this approach is that it can give accurate results. On the other hand the 

main disadvantage is that it could be very expensive and time consuming in 

performing the actual tests and collecting the data for a wide range of configurations. 
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Joint modelling by finite elements2.38,2.39,2.40 has the advantage that it can provide 

information on the deformational behaviour of components, accounting also for the 

effects of their complex interaction. When considering frame analysis, this method 

could prove to be costly and time consuming. 

A component-based model involves identifying the different components within a 

joint and representing their behaviour in terms of strength and stiffness. Assembling 

the different components can produce whole ranges of moment-rotation curves. 

Leston-Jones and AI-Jabri included a component-based model (exclusively 

concentrated on moment-rotation-temperature behaviour in the absence of axial 

thrust due to thermal expansion restraint of the beam) in their analysis, based on the 

ambient-temperature model from EC3 Annex J2.41, by taking into account the 

degradation of mechanical properties of steel at elevated temperatures according to 

EC3: Part 1.22.42. The advantage of this analysis is that it relies on the mechanical 

and geometrical properties of the joint components. Another advantage is that it is 

faster and cheaper to apply, provided that the designer understands the behaviour of 

single components within a joint, which have to be modelled separately. Once this is 

achieved, the method is capable of predicting the variation in failure modes due to 

change in the joint geometrical and material properties, as well as loading conditions. 

Finally component-based models can easily be implemented into frame analysis 

d 1· . d h d 1· . 2.35 2.37· h programs. To ate a very Imite researc an exp oratIon eXIsts . m t e 

application of the component-based models at elevated temperatures. 

One of the objectives of the current study is to examine experimentally and 

analytically the behaviour of these components at elevated temperatures and finally 

produce the moment-rotation-temperature characteristics for the joint considered. 

Furthermore the preparation of a component-based model for joints, at elevated 

temperatures can be very complex due to the high axial forces that can be developed 

because of the thermal expansion restraint of the unprotected beams. This can be 

overcome by using the non-linear behaviour of each component, without attempting 

to predict the overall joint behaviour, into a simplified or finite element model for the 

design of frame structures under fire conditions. 

A summary of the "Component Method" principles (at ambient temperature, EC3 

Annex J2.41) is outlined next. 
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2.5 "COMPONENT METHOD " AT AMBIENT TEMPERATURE 

As already di cus ed, the component-based approach compares favourably with all 

other analytical method , ince it combines economy with effective and predictive 

application. The originality of the "component method ,,2.43 i to consider any joint 

a a et of individual basic components. In the particular case of Figure 2.6, which 

illu trates a joint with an extended end-plate connection ubjected to bending, the 

joint is divided into the three major zones (tension, shear and compression) and then 

each zone is divided into the relevant components as shown in Figure 2.6 and Table 

2.1 below. 

Column web in hear 

Bolt in tension 

Column flange and 

end plate in bending 

Beam flange in 

compre ion 

••• Tension Zone 

Compression Zo ne 

hear Zone 

Figure 2.6 The three zone and their component within an end-plate teel joint 

Each of the e ba ic component posses es it own level of strength and stiffness in 

ten ion, compres ion or shear. 

The column web ubjected to compre lon, ten ion and shear tre e 

imultaneou Iy. Thi interaction of tre e i likely to decrease the resi tance of the 

individual component. The application of the component method require the 

fi II . hr t 2.2,2.44 o oWlTIg t ee ep . 

a) Identification of th active component in the joint being considered, 
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b) Evaluation ofthe stiffness and/or resistance characteristics for each individual 

basic component (specific characteristics being initial stiffness and design 

resistance ), 

c) Assembly of all the components and evaluation of the whole joint stiffness 

and/or resistance characteristics. 

Table 2.1. Zones within the joint and their components 

Tension Zone Compression Zone Shear Zone 

End p late in bending Column web Column web panel 

Column flange in bending Beam flange and web 

Column web 

Beam web 

Bolts 

Welds 

Figure 2.7 shows a typical welded joint, and a summary of the three steps followed in 

the component method as described by Jaspart 2.2. The component method is an 

elastic perfectly plastic analysis of each component, and the assembly procedure 

consists of deriving the mechanical properties of the whole joint from those of all the 

individual constituent components. This requires a preliminary distribution of the 

forces acting on the joint into internal forces acting on the components in a way that 

satisfies equilibrium. 

The advantages of using the "Component Method" in this study is that it provides a 

tool to predict the behaviour of steel joints without going into an impractical attempt 

to test the full range of steel joint combinations. Secondly, by predicting the non­

linear behaviour of individual components at elevated temperatures they could then 

be represented as springs which in effect can take the high axial forces in the joint 

generated by the thermal expansion against restraint to the beams. 
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Three steps 

First step: 

Identification of the 

components 

Second step: 

Response of the 

components 

Third step: 

Assembly of the 

components 

COMPONENT METHOD 

t======:::l.­
F 

)M=FZ 

Typical components within a joint 

Column web 

in shear 

Column web 

in compression 

Column web 

in tension 

F ~~ F .~ F j~ 

FRdt FRd2 FRd.l 

/AEk. ~k' ~k' ... _ .. 
Ai Ai 

Stiffness coefficient ki and resistance FRdi of each 

component 

.. 
<t> 

Stiffness of the joint Si.ini=Ez
2
/Lki 

Resistance of the joint MRd=min(FRdi).z 

.. 
Ai 

Figure 2.7 Application of the component method to a welded joint (after J aspart
2

.
2

) 
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Because the current study is the first in the field which tries to use the "Component 

Method" principles at elevated temperatures, the initial task was to experimentally 

investigate the components or group of components at different temperatures and try 

to observe and predict the non-linear behaviour of these components in terms of 

strength and stiffness. To do so a test arrangement was developed in order to 

perform the component tests at elevated temperatures. The test apparatus and 

associated instrumentation are described in the next chapter. 
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Chapter 3 

Test Apparatus for Elevated Temperature Testing 

3.1 INTRODUCTION 

When steel-framed structures are subjected to fire their ability to sustain load is 

severely impaired and the action of the joints is of particular concern. To date, data 

on the response of joints at high temperatures has been gathered from full-scale 

furnace tests 3.1,3.2,3.3. The data bank collected so far is rather small compared to the 

number of possible steel joint arrangements and the variation in temperatures, but it 

is clearly impractical to test all the joint arrangements at different temperatures. The 

application of the "Component Method" has been proposed, but to date there were no 

component tests at elevated temperatures so the primary task of this research is to 

perform tests on single components (column webs in compression) or groups of 

components (T-stubs in tension) at elevated temperatures. 

Most of the components are fairly small, so their testing is fairly simple to carry out, 

taking into account also that they should be loaded uniaxially in tension or 

compression. The only major problem was that at high temperatures the 

conventional types of force and displacement measurement devices could not be 

applied, due to the hostile environmental conditions inside a furnace. 

3.2 MEASUREMENT DEVICES USED AT ELEVATED TEMPERATURE TESTS 

Several full-scale fire tests on frames have been performed 3.4 during the last decade 

or so. The objectives of these tests varied. In some cases they were performed in 

order to observe the efficiency of fire safety systems installed in a frame, and in other 
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cases to actually measure maximum steel temperatures and maximum beam 

deflections. The use of mechanical measurement devices was very limited, and the 

maximum beam deflections recorded in some tests were mostly taken after the end of 

the test. 

The most comprehensive frame full-scale fire tests were performed at the Building 

Research Establishment's (BRE) Cardington Laboratory in 1995 and 19963.4,3.5,3.6,3.7. 

The tests were carried out on an 8-storey composite steel framed building which had 

been constructed as a typical multi-storey office building. The programme was 

jointly coordinated by BRE and British Steel, and was supported by the European 

Coal and Steel Community and the UK Government's Department of the 

Environment. Other organizations involved in the programme included TNO 

Building and Construction Research, Centre Technique Industrial de la Construction 

Metallique (CITCM), the Steel Construction Institute (SCI) and the University of 

Sheffield. 

The purpose of the tests was to investigate the behaviour of real structures under fire 

conditions, and to collect data that would allow computer programs for analysing 

structures under fire conditions to be verified. The data W({S collected by using 

numerous thermocouples, strain gauges, displacement transducers and inclinometers. 

Loads were applied using sandbags and most of the displacement readings were 

taken by referring the readings to the floor above the actual fire compartment. 

Looking at smaller scale furnace tests, such as those performed by Lawson3
.
1

, 

Leston-Jones3
.
2 and AI-Jabri3

•
3 on steel joints, the instruments used varied from 

rotation devices such as "dumb-bells" and "inclinometers" to displacement 

transducers, dial gauges, thermocouples and load control devices. 

The rotation devices mentioned above are very sensitive, and accurately measure 

rotational movements of beam-to-column joints. The main difficulty is in using 

these devices inside a furnace where the atmosphere temperature could reach 

temperatures over 900°C. To overcome this problem the researchers placed 

inclinometers inside a fire-protected box and at the same time cool air was pumped 

through the box by means of a compressor. 

To allow for possible failure of the inclinometers, displacement transducers were 

placed outside the furnace. These transducers were connected to the beam flange by 
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means of quartz rods (which have relatively low thermal conductivity and expansion 

characteristics). The loads, applied on the beams, were measured using load cells, 

which were attached to hydraulic jacks outside the furnace. 

For the current study, a more robust, reliable and less time and effort consuming 

measuring device was needed in order to carry out a large number of component tests 

at elevated temperatures. Another factor, which influenced the choice on the 

equipment to be used was the need to observe the behaviour of the components under 

different load and temperature conditions. For these reasons the principles of 

photogrammetry were investigated as a tool to measure displacements. Additionally 

real video recordings could be made of the actual behaviour of the components at 

elevated temperatures. 

3.3 DEVELOPMENT OF THE IMAGE ACQUISITION AND PROCESSING 

SYSTEM 

"Photogrammetry is the art, science, and technology of obtaining reliable 

information from no-contact imaging systems through recording, measuring, 

analysing and representation" 3.8. 

The term of photogrammetry was first used in published work in 1867 3.8 when the 

art and science of photography itself was still in its infancy. Over the last 80 years 

the principal application of photogrammetry has been the compilation of maps from 

aerial photographs. There has been in addition a continuing development of 

applications of photogrammetric close-range techniques to many other fields such as 

engineering, architecture, archaeology, medicine, industrial quality control, robotics 

etc. 

In engineering, several papers describe the use of image acquisition and processing 

techniques, not only at ambient temperature 3.9.3.10,3.11 but at elevated temperatures as 

well 3.12.3.13,3.14. McEnteggart 3.15 reported that real time analysis of video images is 

expected to generate exciting possibilities for non-contacting extensometry at ultra­

high temperatures (1200 °C-2000 °C). 
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3.3.1 Pilot tests 

In order to assess the capabilities of photogrammetry and the feasibility of using 

image acquisition and processing techniques at elevated temperatures, two very 

simple and quick pilot tests were performed. 

The objectives of these two pilot tests were to: 

a) Check the viability of imaging techniques for measuring axial displacements 

under increasing tensile axial force, and compare the displacement readings 

of aT-stub assembly (discussed in more detail at a later stage) using two 

different measurement techniques. One technique used conventional linear 

voltage displacement transducers (L VDTs), and the second used a digital 

camera. The specimen arrangement is shown in Figure 3.l. 

b) Check that, at elevated temperatures, the images taken contain enough 

information to measure displacements and/or observe the behaviour of the 

specimen. 

The specimens were made by bolting together two T -stub elements obtained from 

a rolled I-beam profile (305x I 65x40UB), steel grade S275, cutting it along the 

web plane. These T -stubs were connected through the flanges by means of four 

MI2 Grade 4.6 bolts. 
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p 

Figure 3.1 The T-stub model used in ambient temperature pilot tests 

The specimens were subjected to a tensile axial force applied to the webs by the jaws 

of a 1000 kN capacity A very testing machine. As these were pilot tests, readily 

available equipment-rather than bespoke apparatus was used to prove the techniques 

before purchasing more sophisticated cameras and image processing software. The 

axial displacements were measured in two ways: 

1. S8FLPlOAa LVDTs with 38mm length and lOmm mechanical stroke, which 

provide an electrical signal directly proportional to a linear mechanical 

movement of the shaft, were attached directly to the specimen. This kind of 

arrangement gives the opportunity to use electronic logging devices, which 

can accurately record large amounts of experimental data automatically. 

2. A Casio QV -7000SX LCD digital camera was used to capture images of the 

deflected shape for subsequent analysis using image-processing software. 

The digital camera was placed on one side of the T-stub assembly at a 

distance of 300mm. 

a "Sakae", Techni Measure, www.techni-measure.co.uk 
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When the test started the experimental data from the LVDT was automatically 

recorded. The L VDT was connected to an Orion Delta logging system, which 

recorded all the data, converted the readings into Engineering units, and stored it 

directly on computer. Using the LCD Digital Camera, pictures had to be taken 

manually at given load intervals (every 20kN in the elastic region and every 2kN in 

the plastic region). At the end of the test, the images were analysed using image 

processing demonstration software in order to give the displacement readings. 

The procedure to analy e the images using the software was very simple. Before the 

tests were carried out reference horizontal and vertical distances were measured. 

Using a Vernier gauge, the flange thickness was measured in the vertical direction 

and the web thickness in the horizontal direction. The next step was to scale these 

readings according to the initial image. The two edges of the flange on the initial 

image were identified by eye, and using the mouse the measured distance (10.SSrnm) 

was entered. As the picture was already divided into pixels this automatically 

generated a scaling factor between pixels and millimetres. With this conversion, any 

vertical distance could be measured simply by picking up with the mouse pointer any 

two points in the vertical direction. The software counts the number of pixels 

between the locations and transforms the distance into millimetres. The same 

procedure was used to cale the horizontal readings. 

During loading of the specimens a number of deflected images were recorded for 

each test. These were then analysed using the software and the results compared 

with the measurements obtained from the LVDTs. An image of the I-stub's 

deflected shape is shown in Figure 3.2. 

Figure 3.2 Typical defonnation ofa T- tub specimen at ambient temperature 
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3.3.2 Experimental results 

The resolution of the recorded image at the time of Test No. 1 was 640x480 pixels. 

The field of view of the camera was 117mm in the vertical direction and 126mm in 

the horizontal direction and a total of fourteen images were captured. The 

relationship between the L VDT readings and the image processing results is shown 

in Figure 3.3. 

It is obvious from Figure 3.3 that there is good correlation between the readings 

made by the camera with image processing software and the L VDTs. The sensitivity 

of readings taken from L VDTs was 20J.1m. The standard accuracy from the software, 

for these specific images, was up to 243.75J.1m, obtained by dividing the value in the 

vertical direction (117mm), which is the direction of displacement, by the 480 pixels 

in that direction. The software, on the other hand, uses linear sub-pixel division in 

order to interpolate maximum accuracy from the images. Also from Figure 3.3 it can 

be seen that the L VDT ran out of travel distance at about 4mm. The imaging 

technique however is capable of reading data over a wide range of deformation. 

160 
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Figure 3.3 Force deflection curve for pilot test No.1 
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A second test was conducted with the image resolution set at 1280x960 pixels. This 

time the field of view of the camera was 74mm in the vertical direction and 121mm 

in the horizontal direction, and a total of twelve images were captured. The 

relationship between the L VDT readings and the image processing results is shown 

in Figure 3.4. 
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Figure 3.4 Force deflection curve for pilot test No.2 

In this test the implied accuracy obtainable from the software was 77.08~m, but 

again sub-pixeJ division accuracy was used to get the maximum accuracy out of the 

Images. 

Three factors affect the accuracy of the tests, namely: 

a) Resolution of the image taken, in pixels; 

b) Field of view of the camera. The smaller the field of view, the larger the 

number of pixels in that field, and as a result better accuracy; 

c) The capabilities of the image processing software (sub-pixel division may 

sometimes give an increase in the accuracy extracted from a particular 

image). 

A further concern, which might affect the accuracy of the tests, is the quality of the 

images taken at elevated temperatures, when above a certain temperature everything 

inside the furnace is glowing. In order to test this, another pilot test was performed 

by heating the already deflected T-stub specimens up to 750°C. Figure 3.5 shows 
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two images of the T -stub specimen inside the furnace, one at lOOoe and the other at 

700°C. 

Figure 3.5 T-stub specimen at lOOoe and at 7000 e 

From these images it is clear that well-defined edges are still visible in the image at 

700oe, and these can be used to measure the displacement between the deflected 

flanges. 

3.4 DEVELOPMENT OF THE rEST PROGRAMME 

Encouraged by the results from the pilot tests it was decided to use imaging 

techniques in the test programme to find the characteristics of components at 

elevated temperature. A specially designed experimental arrangement was 

constructed, including a furnace and an image acquisition and proces ing system, and 

this is described in detail below. 
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3.4.1 CCD-Camera and Digital Image Processing 

Developments in video camera and digital image processing technology have led to 

the possibility of producing a real-time displacement measurement from a video 

Image. A solid state CCD (Charge-Coupled Device) camera produces the video 

signal. The CCD is made of many charge-coupled cells, or picture elements, which 

are arranged in a rectangular array. Each picture element, also called a pixel of the 

array, converts incoming light into a charge directly proportional to the amount of 

light received. This charge is then clocked (shifted) from cell to cell, to be finally 

converted to a video signal that represents the original image as the output of the 

CCO. 

The CCD image sensors are stable and accurate devices, and the resolution for the 

current tests is selected typically to be of an array of 768x576 individual light­

sensitive elements or pixels. The signal from the camera is digitised, stored and 

processed by a microprocessor in order to locate the position of the optical targets 

within the image to sub-pixel accuracy. 

The above technique measures displacements by tracking two contrasting targets. 

However, unlike most non-contact optical systems, which measure along one axis, 

the video extensometer is an area-scan device. Due to this it is possible to track the 

position of the target more precisely, so that the measurement is less sensitive to 

target distortion, test-piece lateral movement or bending. In addition, image 

processing enables the test-piece shape to be monitored continuously and offers the 

potential for observing the development of surface features. 
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• 

Frame grabber oftware Computer 

Cameras 

Figure 3.6 Schematic diagram of the image acquisition and processing system. 

3.4.2 Furnace 

A purpose-built furnaceb
, with an internal capacity of 1m3

, was commissioned with 

view-ports to accommodate three video cameras. It was convenient to use an electric 

fan-assisted furnace in order to avoid any flames within the field of view of the video 

cameras. The fan also ensures a uniform distribution of atmosphere temperature up 

to 11 DDoe. Two view-ports were used to accommodate the three video cameras. 

One was at the front of the furnace, perpendicular to the axis of loading, facing in the 

horizontal direction where there is movement of the flanges. The other was at the 

top of the furnace, facing in the vertical direction (Figure 3.7). The first view-port 

accommodated two video cameras, one for accurate measurements and the other for 

general observation of the T-stub distortion. The other view-port accommodated 

another video camera, again for measurement of the T -stub distortion. There were 

also two opposed holes in the sides of the furnace to allow a hydraulic jack to apply 

force to the specimens. 

The image acquisition and processing system had to be carefully selected. First, the 

required accuracy of the deflection measurement was set at 4D)lm without any sub­

pixel division. Then the camera field of view needed to be investigated, depending 
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upon the position of the video cameras relative to the specimen and the type of lenses 

to be used; this was set at 30x30mrn. Another step was to investigate the resolution 

of the video cameras in combination with frame grabbers. 

Loading 

Top and ide view ports 

Figure 3.7 Furnace with the view-ports 

Three monochrome analogue video cameras, manufactured by JAI (model: CV-MSO) 

and a colour frame grabber, manufactured by Imagenation (model: PXC200) were 

selected, together giving a capture resolution of 768 x 576 pixels. The lmagenation 

PXC200 frame grabber features precision video capturing hardware for applications 

that requires high colour accuracy. Features of the precision hardware design 

include: 

• High colour accuracy 

• Image capture resolution up to full-size:768x576 (PAL and SECAM video 

format) 

• Continuous, software initiated and triggered image captures, and 

• Four multiplexed composite video inputs. 

b MANNING , Thermal & Environmental Engineers 
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Reaction Frame 

Figure 3.8 Arrangement for the experimental work. 

The image processing software was designed to include the change of information in 

an image from low to high temperatures, and the capability of controlling the sub­

pixel division. Figure 3.6 shows a schematic diagram of the image acquisition and 

processing system and Figure 3.8 the arrangement for the experiments. 

3.4.3 Loading device 

The load was applied to the specimen by the use of a 500 kN capacity hydraulic jack, 

which was attached to a reaction frame outside the furnace. The jack was connected 

to a Kelsey control device capable of controlling the movement of the hydraulic jack 

either in load or displacement mode. A fire-protected grabbing device was designed 

in order to keep the hydraulic jack outside the furnace but at the same time applying 

the tension or compression forces to the specimen effectively. 
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3.4.4 Pilot te t to check the accuracy of the image processing software 

A further pilot test was necessary to check the accuracy of the purpose built image 

processing software taking into account the lenses which were to be used at elevated 

temperature tests, and the distance of the cameras from the specimen. Also the 

influence of a linear sub-pixel division on accuracy was explored. 

A digital calibration device was used with accuracy in the displacement readings of 

± 1 )lm. The test procedure was to drive the displacement rod and capture images in 

O.50mm steps. The device is shown in Figure 3.9(a) and a typical image used for 

measurement is presented in Figure 3.9(b). Camera One, used to capture images for 

measuring the displacements, was placed 850mm away from the targets giving a 

field of view of 32.74x21.85mm. In order to capture that field of view, a 75mm lens 

and a doubling extension tube, which effectively transforms the 75mm lens into a 

150mm lens, were used. 

(a) Calibration device (b) Measurement image 

Figure 3.9 Calibration device and a typical measurement image from camera one 

On the calibration device a set of targets was placed and the difference between them 

was measured during the image processing. The targets are the two black dots 

shown in Figure 3.9(b). The calibration device adjusted the right-hand dot while the 

left-hand dot remained stationary. The initial displacement of the two dots was 

mea ured (13.386rnm) and used to calibrate the processing method in order to give 
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the actual di placement (in millimetre ) of the targets when they started moving 

apart. 

The calibration procedure of the proces ing method first involves the selection of the 

area of the left-hand ide target a shown in Figure 3.1O(a). Then an edge detector 

filter wa applied to the image in order to identify the right-hand side target, u ing 

the elected area hown in Figure 3.1O(b). The di tance between the two bottom left­

hand corner wa calculated in pixels and transformed into mjJlimetres using the 

calibration reading above (l3.386rrun). 

(a) Left hand- ide target (b) Edge detection filter 

Figure 3.10 Calibration of the processing ystem 

According to the above information the accuracy of the oftware without any sub­

pixel divi ion wa up to ±42.63/lm and a total of 20 images were captured. 

The result of the real reading compared with the readings from the image 

proce ing are hown in Figure 3.11. It is clear that there is a good correlation 

between the di placement readings . 



Test Appara/us for Elevated Temperature Testing 

E 
E 
.... 
c: 

10 

9 

8 

7 

GI 6 
E 
8 5 
C1 
Q. 4 
1/1 
is 

3 
C1 

~ 2 

46 

o 2 3 4 5 6 7 8 9 10 

Image Processing Displacement mm 

Figure 3.11 Comparison of the real readings with the image processing readings 

The largest difference in the displacement readings was O.038mm without any sub 

pixel division. With a sub-pixel division of two, which means linear interpolation 

between the pixels, the largest difference in the readings was O.025mm. 

A vailable image processing software specifications suggest that by performing sub­

pixel divisions to the captured images the accuracy obtained can be increased. For 

this reason a further investigation was performed, and Figure 3.12 below shows the 

results of this investigation. 

It is clear by comparing the polygons with the origin (black circle) that there is some 

improvement in the accuracy by using linear sub-pixel division of two (for the 

majority of the readings) but the readings do not become more accurate for linear 

sub-pixel divisions above two. 
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However in order to examine the efficiency of the image acquisition and processing 

system, another set of displacements (3mm, 5mm and 10mm) were measured (twelve 

times for each), using the same calibration device, and Table 3.1 shows the statistics 

of this exercise. 

The standard deviation is a measure of how widely values are dispersed from the 

average value (the mean). The higher this becomes the more data points need to be 

collected in order to be confident that the sample is representative of the population. 

From the standard deviation values shown in Table 3.1 below it is clear that the 

displacements measured in the actual tests were accurate enough for the purpose of 

the current experimental investigation. 

The standard error of the mean it is the standard deviation of the sampling 

distribution of the mean, which again comes out as a very small value. 
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Table 3.1. Mean value, Standard deviation and Standard error with and without 

sub-pixel division. 

Displacement 
3mm Smm IOmm 

Readings 

Sub-pixel 
xl x2 xlO xl x2 xlO xl x2 xlO 

Division 

Mean Value 
2.98 2.98 2.98 4.98 4.99 4.99 10.01 10.01 \0.01 

(mm) 

Standard 

Deviation 10.36 10.30 1l.71 8.88 9.05 11.43 12.61 12.89 10.33 

(~) 

Standard 

Error of 
2.99 2.97 3.38 2.56 2.61 3.29 3.64 3.72 2.98 

sample means 

(~) 

3.5 TEST PROCEDURE AT ELEVATED TEMPERATURES 

The procedure followed during the elevated-temperature tests was first to take the 

specimens up to the desired temperature and then apply the load. Thermocouples 

were positioned around the specimens in order to monitor the temperature, and as 

soon as the specimen reached the desired temperature a load step was applied using 

the control panel of the hydraulic jack. According to the geometry of each specimen, 

images were captured at different load steps, sometimes every 1 IeN in the elastic 

region, O.5kN in the elastoplastic region and back to lIeN in the plastic region, and 

sometimes every 5kN in the elastic, lIeN in the elastoplastic and 2.5IeN in the plastic 

region. 

48 
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3.6 DISCUSSION 

The accuracy of the image acquisition and processing system seems to be adequate. 

The use of this technique has many advantages in comparison with conventional 

mechanical instruments and offers a wide range of testing applications and benefits. 

Some of the benefits of using this technique are: 

a) Direct and non-contacting measurements means that nothing need be attached 

to the specimen, 

b) Multiple choice of gauge length and operating range because of the flexibility 

in choosing the field of view for the camera (the limitation here is the 

resolution of the picture which is dependent on the required accuracy of the 

measurements ), 

c) Used in connection with furnaces (elevated temperatures) or within a hostile 

environment the video camera can be set some distance away from the test 

specimen, 

d) The entire testing procedure can be observed on a monitor and even recorded, 

so it is possible to go back and collect more information by replaying images 

of the behaviour of the specimen, 

e) The advantage of processing a picture is the availability of information in two 

dimensions, so it is possible to measure displacements in the transverse 

direction simultaneously, if necessary, 

f) The system permits comparison of the deflected shapes of the specimen at 

elevated temperatures with deflected shapes from finite element analysis. 

An experimental study of bolted T -stub assemblies (the group of components within 

the tension zone of a steel joint) is outlined next in order to measure the force­

displacement characteristics at elevated temperatures representative of those 

achieved in building fires. Also a simplified mathematical model has been derived 

and verified against elevated-temperature test results, thus extending the component 

approach for use in fire engineering studies. 
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Chapter 4 

Tension Zone 

4.1 INTRODUCTiON 

It has been emphasized in the previous chapters that it is important to be able to 

predict the overall behaviour of beam-to-column joints based on their geometrical 

and mechanical properties. This can be achieved by means of the so-called 

component method 4.1,4.2, which was introduced in Chapter 2 with reference to the 

simplest case represented by a fully welded joint. The main objective is to evaluate 

the stiffness and resistance characteristics of individual or groups of components. 

In a bolted joint the major components within the tension zone (Figure 4.1) are the 

end plate in bending, the column flange in bending and the bolts in tension. All these 

components are modelled using an equivalent T-stub, i.e., two T-elements connected 

through the flanges by means of one or more bolt rows as shown in Figure 4.2 below. 

Tension zone 

Shear zone 

.. ~ompression 'zone 

Figure 4.1 The three zones in an end-plate joint 



Tension Zone 

Column flange End plate 

1-.....,..-' 
...... , ... .... ; .... , 

, 
I· 

~= 

Figure 4.2 T-stub identification and orientation for extended end-plate joint 
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Early attempts,,·3 to design end plate connections assumed the column flange to be 

infinitely stiff and proceeded to estimate the minimum required end plate thickness 

by calculating the plastic moment capacity using various collapse mechanisms. In 

the early 1970s researchers realised that the flexibility of the column flanges could 

affect the behaviour of the connecting tension bolts by inducing prying action. 

Prying action is the force generated between the contact surfaces of the end plate and 

the column flange resulting from the resultant tension force and the reaction of the 

bolts. Zoetemeijer,,·4 took into account the inter-dependence between these 

components and produced straight-line yield patterns to represent the failure of both 

end plate and column flange T-stubs in bending. 

Packer and Morris"'s (1977) used curved yield lines to predict the column flange 

capacity in both stiffened and unstiffened joints. A year earlier Agerskov,,·6 used the 

principles of simple bending theory to analyse T-stub behaviour. Based on the same 

principles Yee and Melchers4.1 ca1culated the elastic stiffuess response of the T -stub 

assembly, but Zoetemeijer's,,·7 work is of most importance, because contains the 

basic principles of the component method which is extensively applied today 

throughout Europe. 

Simple bending theory is the basis for the simplified formulae given in Eurocode 3: 

Annex J4.8 and British design guides4.9 for calculating the elastic stiffuess, and the 

perfectly plastic ultimate strength of the T-stub assembly. The elasto-plastic 

response of T-stub assemblies was not one of the primary objectives in the 

preparation of any design codes or standards, so information is limited to a handful 
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of papers extending the model up to complete failure of the T-stub 

specimen 4.10,4.11,4.12,4.13,4.14. 

This chapter reports an experimental study of bolted T -stub assemblies conducted at 

elevated temperatures in order to measure the force-displacement characteristics at 

temperatures representative of those achieved in building fires. Also a simplified 

mathematical model has been derived in order to predict the elastic-plastic behaviour 

of the T -stub assemblies and verified against elevated-temperature test results, thus 

extending the component approach for use in fire engineering studies. 

4.2 SIMPLIFIED MATHEMATICAL MODEL 

The deformation of each equivalent T -stub assembly (either end plate or column 

flange such as that shown in Figure 4.3) may be induced by the eJastic and plastic 

flexure of the column flange and end plate, and by the elastic and plastic elongation 

of the bolts. In Figure 4.3 the effective width (LetT) has been shown, as described by 

Faella et at·15 assuming a 45° spread of the bolt action starting from the washer edge 

and finishing at O.8r or O.8a/v2 (where r is the root radius of the colunm flange and af 

the weld thickness for the end plate) from the face ofthe web. 

This assumption leads to effective width values different from those suggested in the 

current draft of Eurocode 3:Annex J, but for the current study, even though the same 

assumption was made for the effective width (Faella et al. 4
•
(5

) it happened, for almost 

all the test cases, that the values were very close to the EC3: Annex J values. 
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Figure 4.3 Equivalent Column Flange and End Plate T-stubs respectively 

It is well known that these T- tub a semblies can fail according to three possible 

collapse mechanisms, as shown in Figure 4.4 below: 

a) First yielding in the T - tub flange, and tben yielding and fracture of the bolts 

(Failure Mode 1), 

b) Complete yielding of the T -stub flange (Failure Mode 2), 

ss 
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c) The T-stub flange remains elastic and failure occurs due to the fracture of the 

bolts (Failure Mode 3). 

Failure Mode 1 Failure Mode 2 FaiJure Mode 3 

Figure 4.4 Failure modes for the T-stub flange 

In order to research the deformation mode, for a T-stub assembly, under various 

bending moments, a mathematical model has been developed in this study to consider 

the elasto-plastic deformations. 

From classica14
.
16 beam theory, if the tension force acting on a T-stub assembly 

(Figure 4.5) is F, in order to obtain the deflection bep the bending moment expressions 

in each part of the flange must be determined. 

Figure 4.5 Forces on T-stub assembly 

The bending moment expressions at the three intervals moving from left to right 

across the T- tub are: 
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Elv" = Qx = wkx- Fx 
2 

EI " _ Q w(x - III 
v - x-

Fx w(x - III 
wkx-- - --'--":"'" 

2 2 2 

/ 
Fx / Elv" = Qx - wk[ X - (11 + k 2)] = wkx - - - wk[ X - (n + k 2)] 
2 

Integration of these equations gives 

, wkx2 Fx 2 
Elv =-----+C 

2 4 1 

223 
Elv' = wkx _ Fx _ w(x - n) + C 

2 4 6 2 

Elv' = wkx2 _ Fx
2 

_ wk[x - (11 + k/2 )/ + C 
2 4 2 3 

Performing a second integration the deflection equations are: 

wkx3 F./ 
Elv=----+C X+C 

6 12 1 4 

334 
Elv = wkx _ Fx _ w(x - II) + C x + C 

6 12 24 2 5 

Elv= wkx3 _ Fx3 _ wk[x-(II+k/2)]3 +c X+C 
6 12 6 3 6 

(O:S; x:S; n) 

[(n+k) ~ x:S; (n+k +m)] 

The six constants of integration appearing in the preceding equations can be found 

from the following boundary conditions: 

a) at x=O the deflection is equal to zero; 

57 
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b) at x=n and x=(n+k) the slope and deflection for the two parts of the beam 

must be equal; 

c) at x=(n+k+m) the slope is equal to zero. 

Using the above boundary conditions the constants can be found and the deflection 

Del' at x=(n+k+m) can be determined. 

o :::FL/ _Wk[Le 3 +fm +(kh)]3 _fm+(kh)]2Le_k2fn+(k/2)]] 
ep 48EI EI 24 6 4 24 .. .4.1 

Where E is the T-stub flange Young's Modulus; I = 2Leff t/I12, LeU is the effective 

length for the T-stub flange (Figure 4.3); F is the tension force applied to the T-stub; 

wk is the bolt tension force; and n, k and m are defined in Figure 4.3. 

To use the equation above, the bolt force wk needs to be expressed in terms of the T­

stub force F. This can be obtained from the compatibility condition requiring that at 

the bolt line (x=n+k/2), the deflection of the T -stub flange must be equal to the bolt 

elongation. From beam bending theory the deflection at the bolt line x=n+(k/2) can 

be given by: 

Dbl :::~[[n+(k/2)]Le2 _ [n+(kh)}3]+ ........... . 
EI 16 12 

+-- + + 
Wk[fn +(kh )}3 k 2 [n+(k/2)] [n+(k/2)]fm+(kh)}2 

EI 6 24 2 

which should be equal to the bolt elongation given by 

.. .4.2 

fn+(kh)]Le
2 -~] 

8 384 

.. .4.3 

Where Lb is the effective length of the bolt (Figure 4.6); Eb is the Young's Modulus of 

the bolt and A.f is the shaft area of the bolt. 
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Bolt Head 
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---..' Nut I 
Nt/2j Wt 

I 

Lb* 
.j 

* The value for Lb is taken 
from EC3:AnnexJ 

Washer 

Figure 4.6 Detail of a bolt within an end plate to column T-stub connection 

Therefore, from equations 4.2 and 4.3 above, the bolt force wk can be expressed as: 

EI 16 12 
~[{n+(kh)]Le2 _ {n+(k/2)}3] 

wk-------~~----------~------------------_7~------~------~ 

-~ _ ~[In + (k/ 2)}3 + k 2 
(n + (k/2)] + (n + (k/2)] {m + (k/ 2)j2 _ In + (k/ 2)}Le2 _ k3 ] 

E A EI 6 24 2 8 384 
b s 

.. .4.4 

Further simplification of the formula above gives the bolt force as a ratio p of the 

total T -stub force F. 
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wk = pF ... 4.5 

And the prying force Q as shown in Figure 4.5 is given by: 

Q = wk - F = F( P - 1 ) . ..4.6 

By substituting equation 4.4 into 4.1 the maximum deflection Dep in the middle span 

of the T -stub flange can be written as a function of F. 

The next step in the calculation procedure is to determine the magnitude of the total 

T -stub force F and the position of the first plastic hinge. The first plastic hinge will 

appear when the maximum bending moment in the T -stub flange exceeds the plastic 

moment resistance Mp given by: 

2 
M = (2L~ff )1/ f 

p 4 
.. .4.7 

Where Iv is the yield stress of the T -stub flange; Let! is the effective length as shown in 

Figure 4.3 and tf is the flange thickness. 

In order to calculate the tension force in the T -stub flange and the position of the first 

plastic hinge, the minimum value for the flange forces is taken from equations 4.8, 

4.9 and 4.10. These equations represent: 

a) The flange moment in the middle of the T-stub assembly, at x=(n+k+m) 

b) The flange moment at the bolt line of the T-stub assembly, at x=n+(kI2) 

c) T -stub force due to yielding of the bolts 

.. .4.8 
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Fm [n+(k/2)] k 
M h =wk[n+(k/2)] . -wk-=M 

2 8 p 
.. .4.9 

wk = 2A, !hy = pFfl3 .. .4.10 

Where Mf = wk[m+(kJ2)]- Q(n+k+m), Mb = Q[n+(k12)]-(wk)kl8 and!bv is the yield 

stress for the bolt. By substituting Q = wk-(Ffl/2) and wk with equation 4.5 the T­

stub force Ffl can be calculated. 

The minimum value of those three T-stub forces will give the total tension force and 

also the position of the first plastic hinge. 

. . .4.11 

After the formation of the first plastic hinge, which for Failure Modes 1 and 2 always 

happens in the middle of the T-stub flange, at x=(n+k+m), a failure may develop in 

one of the two ways below, and whichever happens first will define the failure mode 

of the T -sub flange. Either: 

a) The bolts start to yield (Failure Mode 1), or 

b) A second plastic hinge forms in the T-stub flange at x=n+(k12) (Failure Mode 

2) 

4.2.1 Failure Model-Bolts start to yield after the first plastic hinge has formed 

After the formation of the first plastic hinge, if the bolts start to yield then part of the 

flange remains elastic and the total T -stub force FI7b is given by: 

( 

(F fl + .dF fl )] 
M P =(wk+.dwkAm+(k/2)]- (wk+.dwk)- 2 (n+k+m) 

2M p + l(wk + .dwk)[11 +( k/2)] 

Fflb = (Ffl + .dFfl ) = 
(11 + k + m) 

. ..4.12 

.. .4.13 



Tension Zone 62 

where L(wk+t1wk)=4AJby and Mpe is given by equation 4.7. 

The total bolt force and the total prying force are given below as functions of the T­

stub force from equation 4.12 above. 

(F j7 + iJF j7 ) 
---'---""--- (11 + k + m) - M 

(wk) = wk + Llwk = __ ..::..2 ___ ..,--__ ----!p_ 
b (1l+(k/2)] 

.. .4.14 

(Q)b =Q+LlQ= / 
{n+(k 2)J 

(F + LJF ) 
j7 fl (m+(k/2)J-M 

2 P .. .4.15 

The deflection when the bolts start to yield can be calculated using the same analysis 

as in the calculation of initial deflection Oep. In this case though the total bolt and T­

stub forces have to be taken into account in the bending moment equations as well as 

the plastic moment Mp at the middle of the flange, x=(n+k+m). By integrating the 

bending moment equations twice, the constants can be calculated using the same 

boundary conditions as before, except at x=[n+(k/2)] where the total bolt deflection 

The total deflection of the T-stub flange at 

x=(n+k+m) is given below: 

( ) 

(Wk+.1Wk)[(1l+k+m)3 {m+(k/2)]3] 
D = Dep + .1Dep = - 6 -

ep b El 6 .. .4.16 

(F fl + LJF fl ) (11 + k + m/ A( n + k + m) B 
+ +-

2El 6 El El 

Where the constants A and Bare: 

[ 

k3 [11+(k/2)]2 k 2 ] (Ffl +LJFfl) {1I+(k/2)J
2 

A = (wk + L1wk) - - - + + 
384{1l+(k/2)! 6 24 2 6 

E1Db .1wkEJLb + I + ______ ~~_ 
/n+(k/2)] E

b
A

s
{n+(k/2)J 
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By substituting (wk+.1wk) from equation 4.14 into the displacement equation 4.16 

the total displacement (Oeph at which the bolts yield can be expressed as a function of 

the T -stub force (Fj7)b. 

4.2.2 Failure Mode I-Fracture of the bolts after they yield 

After yielding of the bolts, the prying force Q cannot be increased any further and the 

bolts take any increase of the T-stub force until they fracture. Hence, 

.. .4.17 

.. .4.18 

Where !bu is the ultimate stress of the bolt. 

The incremental deflection due to the final incremental force (Mjl)b on the T -stub 

flange can be calculated using beam theory again, but with the system as shown in 

Figure 4.7. 

I 
0lil( 

kl2 m I 
) 

Figure 4.7 System for calculating the final displacement 
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The bending moment expressions are: 

(.1w) x 2 
Elv' = _ b 

2 

, (.1wk)b[x-(k/4)] 
Elv = - -----'''------

2 

Integration of these equations gives 

Elv' = 

(.1wk)b [x - (k/4)]2 
Elv' = - + C 

4 2 

Performing a second integration the deflection equations are 

(J.wk)b[x-(k/4)]3 
Elv = - + C x+ C 

12 2 4 

[0 $; x$; (kl2)! 

{(k/2) $; x $; (k/2)+ m] 

The four constants of integration appearing in the preceding equations can be found 

from the following boundary conditions: 

a) At x=O the deflection v=(L1wk)dLi/EtAs), 

b) At x=kJ2 the slope and deflection for the two parts of the beam must be equal, 

c) At x=m+(kJ2) the slope is equal to zero. 

Using the above boundary conditions the constants can be found and the incremental 

displacement ( L1Dep)b at x=m+( kJ2) determined. 

64 
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([1(5 ) = (flFfl)b [[m + (k/4)/[m + (k/2)} _ [m+(k/4)/ +~+ E1Lb J 
ep b EI 8 24 1536 2EbA 

.. .4.19 
t s 

Note that Etb is taken as 1.0% of the bolt elastic Young's Modulus Eb (205 kN/mm\ 

Shi et at·lO report that the Tangent Modulus for the bolt should be taken as 5% of the 

elastic Young's Modulus, and this value is derived from an ambient-temperature 

finite element analysis. Studies performed at Sheffield University by Theodorou4
.
17 

(described later in the chapter in more detail) on Grade 8.8 bolts at elevated 

temperatures concluded that the value of 1.0% could be used for defining the bolt 

Tangent Modulus value. 

For the T-stub flange, Piluso et at·12 performed 12 coupon tests and reported that the 

Tangent Modulus of the flange (up to ultimate stress) was ranging from 1.0-1.6% of 

the elastic Young's Modulus. For the current study a value of 1.5% was chosen 

because it best fits all the experimental results. 

4.2.3 Failure Mode 2-Formation of a second plastic hinge at the bolt line 

The formation of the first plastic hinge is analysed as described in section 4.2. If a 

second plastic hinge is formed in the flange at the bolt line, x=[n+(kI2)] the T-stub 

force Fflf can be calculated as shown below: 

C=-.... -..... ~D 
Q+L1Q n kl2 kl2 I m 

Figure 4.8 Free body diagram for half of the T -stub flange 

By taking IMA =0 then Mfle is equal to: 
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(F +LlF ) 
M p =(wk+Llwk)[n+(3k/8)J- fl fl [n+(k/2)J .. .4.20 

2 

and for the other part of the T -stub flange (Figure 4.8), when lAfc=O the total force 

is equal to; 

k 
4M + 2(wk + Llwk)-

(F ) = F + LlF = P 8 
fl f fl fl [m+(k/2)J 

.. .4.21 

Solving equation 4.20 with respect to wk+.1wk and substituting into equation 4.21 

the T -stub force when the second plastic hinge forms is given by: 

2M [2n + (7k/ 8)J 
pe 

(Ffl) =Ffl+LlFfl= 
f [mn + (3 km/ 8)+ ( 3kn/8) + (k 2/8)] 

.. .4.22 

The bolt force and prying force increments are given by the following formulae: 

LlFfl [[m+(k/2)] ] 
Llwk =-- +1 

2 [n+(k/2)] 
.. .4.23 

LlQ= LlFfl [[m+(k/2)]] 
2 [n+(k/2)] 

.. .4.24 

The total bolt force is equal to (wk)j=wk+.1wk and the total prying force is equal to 

(Q)FQ+.1Q. The deflection at x=(n+k+m) can be calculated using the same 

bending equations as in the calculation of initial deflection Dep but this time using the 

incremental forces. After the second integration the constants can be calculated 

using the same boundary conditions as before except at x=n+(k/2) where the bolt 
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d fl' d' . L1wkLb e ectlOn accor mg to the mcremental bolt force is equal to A6bl =----..:;;... The 
EbAs 

incremental deflection .10el' of the T-stub flange at x=(n+k+m) is given below: 

t:;.8 = .1Q [(n + k + m)3] _ Llwk {m + (k/2)]3 + C(1l + k + m) +.!!.... 
ep EI 6 EI 6 EI EI 

in which the constants C and D are given as: 

[
k 2 [/I + ( k/2)J] 

D = Awk ----'---
24 

.. .4.25 

By substituting equations 4.23 and 4.24 into the equations for constants C and D and 

then those into equation 4.25 the deflection .10ep can be calculated according to the 

incremental T -stub force LlF'fl· 

4.2.4 Failure Mode 2-Yielding of the bolts after the second plastic hinge at the 

bolt line 

After the appearance of the second plastic hinge in the fillet at x=n+(k/2) the prying 

force Q cannot be increased any further and any increase of the T -stub force is taken 

by the bolts until they yield. Hence, 
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... 4.26 

.1Q = 0 
b 

.. .4.27 

where (wkJ]=wk +L1wk, A\' is the yield stress for the bolt, the total bolt force is equal 

to (WkJ}b=(wk)j+(L1wkJ], and the total T-stub force is equal to (Fjl)jb=(Fj1J]+(L1FjlJ]~ 

The procedure to calculate the deflection (L18ep)j due to the incremental force (L1F/1)j 

is the same as described in section 4.2.1. 

(
110 ) = h, )j [[m + (k/4)]2 [m + (k/2)] _ {m + (k/4)]3 + ~ + E/Lb] .. .4.28 

ep f E I 8 24 1536 2EbA 
f S 

Where Et is taken as 1.5% of the flange elastic Young's Modulus E. 

4.2.5 Failure Mode 2-Fracture of the bolts after they yielded 

The incremental T -stub force, between yielding and fracture of the bolts is given 

below: 

.. .4.29 

.. .4.30 

where !bu is the ultimate stress for the bolt, the total bolt force is equal to 

(Wk)jb/=(Wk)jb+(.1Wkhb and the total T-stub flange force is equal to 
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(Fjl)jbl =( F'.f7)tb+( i1F'j7)jh .. The deflection (L1bephh due to the incremental force (L1Fj1){/J is 

given by: 

.. .4.31 

Where Et is taken as 1.5% of the flange Young's Modulus E and Etb is taken as 1.0% 

of the bolt Young's Modulus Eb. 

4.2.6 Failure Mode 3-Yielding and fracture of the bolts 

In this failure mode the T -stub flange remains elastic and the bolts cause the failure. 

The procedure to calculate the force and displacement up to fracture of the bolts is 

the same as described in section 4.2.5. 

The incremental T-stub force is given by equation 4.29 and the displacement is given 

by equation 4.31. The value for Etb is taken as 1.0% of the bolt Young's Modulus Eb. 
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4.3 ELEVATED TEMPERATURES MODEL 

Steel weakens with increasing temperature, and eventually failure occurs in a 

member as a result of its inability to sustain the applied load. In order to model the 

T -stub flange behaviour at elevated temperatures the variation of yield stress and 

Young's modulus for bolts and for structural steel need to be taken into account. 

4.3.1 Degradation of steel strength 

Design codes have adopted the concept of " Strength Reduction Factor-SRF" (which 

is really a strength retention factor) to present the degradation of material strength at 

elevated temperatures. This is basically the residual strength of the steel at a 

particular temperature relative to its basic yield strength at room temperature. At 

ambient temperature, the stress-strain characteristics of steel are approximately bi­

linear with a distinct yield plateau. At high temperatures, however, the stress-strain 

curves degrade and lose their bi-linear nature, making it difficult to define the exact 

yield point and elastic modulus. 

To overcome the problem a limiting strain is specified and the relationship between 

strength reduction factor and temperature will depend on the limit chosen. The 

design codes BS5950: Part 84
.
18 and EC3: Part 1.24

.
19 have adopted 0.5%, 1.5% and 

2.0% strain limits for the fire limit state. The appropriate limit depends on whether 

the steel is bare or composite and the strain limit of any protective material used. 

4.3.2 Degradation of steel stiffness 

The stiffness of steel is defined by Young's (elastic) Modulus, which is the slope of 

the tangent of the stress-strain curve at zero stress. At elevated temperature the 

tangent modulus must be used because of the non-linear nature of the curves. 

However this depends on the proof strain at which the elastic modulus is measured. 

Therefore, a bi-linear relationship is often used, with the elastic modulus expressed 
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as function of temperature. The difference in the strength and stiffness reduction 

factors between the BS5950: Part 8 code and EC3: Part 1.2 is very small. 

Table 4.1 shows the Strength Reduction Factors for S275 steel at 2% strain and the 

Stiffness Reduction Factor taken from EC3: Part 1.2. These are the SRF values used 

in the mathematical model at elevated temperatures in order to model the behaviour 

of the T -stub assemblies. 

Table 4.1 Reduction factors for stress-strain curves of steel at elevated temperatures 

Reduction factors for yield stress/y, 

Steel and Young's modulus E,I' at steel 

Temperature, Os temperature 8.1 

ky, e= /y, £Ify kE,e=Es,£IEs 

20°C 1.000 1.000 

100°C 1.000 1.000 

200°C 1.000 0.900 

300°C 1.000 0.800 

4000e 1.000 0.700 

500°C 0.780 0.600 

6000e 0.470 0.310 

700°C 0.230 0.130 

8000e 0.110 0.090 

9000e 0.060 0.0675 

IOOOoC 0.040 0.0450 

11000e 0.020 0.0225 

12000e 0.000 0.000 
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4.3.3 Degradation of bolts at elevated temperature 

Unfortunately, little is known about the deterioration of bolts in fire and this is 

insufficiently addressed in design codes. In order to determine the deterioration of 

the strength of bolts in fire a eries of tests was conducted by Kirb/·2o on Grade 8.8 

bolts which are widely used in steel construction. The bolts suffer a significant 

decrease in capacity in the temperature range 300°C to 700°C. Based on these 

results, the following tri-linear relationship has been proposed for the trength 

Reduction Factor- RF describing the degradation of bolt strength at elevated 

temperatures: 

° - 4 ()b < 680°C ~ 1000 C then SRF = 0.17 -(()b -680)5./3X/0 

where Bb is the temperature of the bolt. 

.... 
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Figur 4.9 Compari on between bolt and steel Strength Reduction Factors 
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There is no information about the degradation of stiffness for Grade 8.8 bolts at 

elevated temperature. For this reason Theodorou4
•
17 carried out a separate study in 

association with this project in order to study the behaviour of these bolts. 

4.3.3.1 Experimental Investigation of Grade 8.8 Bolts at Elevated Temperatures 

A number of tensile te t under steady-state heating conditions between 20°-1 OOOoC 

were conducted to establish the degradation of stiffness and strength of Grade 8.8 

bolts. The intention was to define the mechanical properties in order to understand 

the overall behaviour of connection and T -stub assemblies. The test arrangement is 

illustrated in Figure 4.10. 

/ / 

AndOJ..le ccrrera; 

12V 

~ 
D 
1 

o 000 r-----, 

"~8~8~88~!~IOIOlo~ LU~~~~~~ ______ ~~IIIQOOO 

Data a:qJis 11i0l s ys tern 

D 1 

PC fa vid90 recadng D 
PC fa cbta recadng 

Figure 4.10 Diagram for the instrumentation system adopted for the experiments on 

Grade 8.8 bolt steel 

The test arrangement consi ted of a small portable furnace (internal capacity 

715cm3). The inner furnace walls were covered with a thick layer of insulating 

material, to facilitate rapid heating and to keep the temperature inside the furnace 

constant. A tangential halogen lamp (lOOOW, 230V) wa placed in the upper part of 

the furnace in order to achieve uniform distribution of the heating and rapid growth 
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of temperature up to 1000 °C4
.
21

. A general layout of the furnace is illustrated in 

Figure 4.11. Two slots in the opposite ends of the furnace allowed the loads to be 

applied to the specimen. 

Two equal angles (200x200x16) placed on either side of the furnace provided the 

reaction frame for the test arrangement. Loads were applied to the specimen via a 

hydraulic jack loading system. The loads were recorded using a hollow load cell 

placed between the reaction frame and specimen as shown in Figure 4.10 above. 

At the front of the furnace two circular holes, of l5mm diameter, were drilled. These 

were perpendicular to the axis of loading, facing the specimen axis. These two view­

ports were used to accommodate video cameras used for optical monitoring of the 

specimen and for measuring the strains from the captured images. 

The instrumentation system was designed to capture all the necessary data. The 

general arrangement included thermocouples, a load cell, and an image acquisition 

and processing system. The temperature and load data from all the tests was recorded 

using an Orion Delta data logger, which was in turn controlled through a personal 

computer. All the data was recorded directly onto the computer's hard disk drive. 

Steady-state (or isothermal) tests were conducted by heating up unloaded test 

specimens to a certain temperature and then performing a tensile test. This was the 

testing procedure followed in order to perform 16 tensile tests on Grade 8.8 bolts at 

elevated temperatures. 

The results of this study verified the Strength Reduction Factors proposed by 

Kirby4.20 and the Stiffness Reduction Factors of EC3: Part 1.2 and BS5950: Part 8, 

which are for S275 steel. Furthermore the bolt specimens produced very large 

strains as the temperature was increased (values ranging from 8-16%). Full details of 

the test programme and results have been reported by Theodorou
4
•
17

. 



Tension Zone 

specimen 

specimen 

halogen lamp 

110 

targets 

.... 

o 
60 ~ () 

Cros s -S ectlon of Furnace 

halogen lamp 

Cros s -S ectlon of Furnace 

co 
co 

:f 

Figure 4.11 Tangential halogen lamp furnace 
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4. 4 EXPERIMENTAL PROGRAM 

The main objective of the experimental investigation was to collect data on the 

behaviour of the T-stub assemblies at elevated temperatures and to investigate the 

three failure modes resulting from the different geometrical properties of each 

specimen. The three failure modes are summarised below, with illustrations of the 

T-stub specimens from the actual elevated-temperatures tests. 

a) Failure Mode 1-The T -stub specimen fIrst forms a plastic runge in the flange 

next to the web (1), and then the bolts start to yield and fInally fracture (2,3). 

Figure 4.12 shows a typical test image for failure mode 1. 

Failure Mode 1 

Figure 4.12 Typical test image for Failure Mode 1 

b) Failure Mode 2-The T -stub specimen fIrst forms a plastic runge in the flange 

next to the web (1), then it forms another plastic hinge in the flange at the bolt 

line (2), and then the bolts start to yield and finally fracture (3,4). Figure 4.13 

shows a typical test image for Failure Mode 2. 
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Failure Mode 2 

Figure 4.13 Typical test image for Failure Mode 2 

c) Failure Mode 3-In this failure mode the T-stub flange remains elastic and 

essentially flat, but the bolts start to yield and finally fracture (1 ,2). Figure 

4.14 shows a typical test image for Failure Mode 3. 

Failure Mode 3 

Figure 4.14 Typical test image for Failure Mode 3 

A total of 45 T-stub specimen tests were conducted at elevated temperatures divided 

into three phases (phase A, B and C). All the geometrical and mechanical properties 

of each T -stub specimens can be found in Appendix B. Also in Appendix B all the 
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test data have been included, for example the ultimate tensile force for each test, the 

number of images taken and the accuracy of the image processing technique. 

The first tests were performed on T -stub arrangements similar to that shown in 

Figure 4.15, which is different from what might be expected in a real joint (Figure 

4.2) which would have one of the T -stubs rotated through 90° relative to the other. 

However this is the arrangement that other researchers around the world have used 

for tests at ambient temperature. This arrangement is achieved by connecting the 

flanges of the specimens by one or two bolt rows and keeping the orientations of the 

T -stubs in the same direction. 

4.4.1 Phase A-T -stub configurations 

The initial phase (Phase A) included twelve tests and the arrangement of the T -stub 

elements, with the positions of the thermocouples, is shown in Figure 4.15 below. 

The thermocouples, (type K, 3mm in diameter and 2.0m long), were placed in 

position by drilling 3mm holes at the root radius (No 1 and 3) and in front and at the 

back of each T-stub flange (No 2 and 4). 

According to the specimen geometrical properties, Phase A was further divided into 

three sub-categories (M with four tests using Grade 8.8 M20 bolts, AB with five 

tests, and AC with three tests, both of the latter using High Strength Friction Grip­

HSFG M16 bolts). 

Thermocouple 

N04 
Thermocouple No 3 

F F Thermocouple F 
Thermocouple No No 1 

Z allbe back Thennocouple No 1 

Figure 4.15 Typical T -stub assembly used in Phase A experiments 
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The tests were carried out using two video cameras placed in the front view-port of 

the furnace. The ftrst camera captured images for accurate displacement 

measurements and the other for general observation of the T -stub distortion. Typical 

distorted images at 570°C taken from the two cameras are shown in Figure 4.16. 

(a) Image from ftrst camera (b) Image from second camera 

Figure 4.16 Typical distorted images at 570°C 

The targets used to measure displacements are shown (boxed) in Figure 4.l6(a). 

They were made using a 0.5mm drill and the distance between them was measured 

using a Vernier calliper, before placing the specimen in the furnace . 

4.4.1.1 Test results and comments 

The test results compared with the mathematical model results are presented in 

Figures 4.16-4.18 for Test Groups AA, AB and AC respectively. 
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Figure 4.17 Force-deflection curves for test programme AA 
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Failure mode 2 

Complete yielding of 
flange followed by bolt 
fracture . 

A is the first plastic 
hinge in the fillet next 
to the web. 

B is the second plastic 
hinge in the flange at 
the bolt line . 

C is yielding of the bolts . 
D is fracture of the bolts . 
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Figure 4.18 Force-deflection curves for test programme AB 

Failure mode 2 

Complete yielding of 
flange followed by bolt 
fracture. 

A is the first plastic 
hinge in the fillet next 
to the web. 

B is the second plastic 
hinge in the flange at 
the bolt line. 

C is yielding of the bolts. 
D is fracture of the bolts. 
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Figure 4.19 Force-deflection curves for test programme AC 

Failure mode 2 

Complete yielding of 
flange followed by bolt 
fracture. 

A is the first plastic 
hinge in the fillet next 
to the web . 

B is the second plastic 
hinge in the flange at 
the bolt line. 

C is yielding of the bolts. 
D is fracture of the bolts. 
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For the Test Group AA (Figure 4.17) the simplified model analysis suggest that the 

failure mode would be complete yielding of the T-stub flange and then yielding and 

fracture of the bolts (Failure Mode 2). In tead, the actual failure mode con isted of 

complete yielding of the T-stub flange and then some kind of shear failure of the T­

stub flange wa u pected to follow. The rea on for thi was that the bolts (M20) 

were quite large compared to the T-stub flange thickness (9.50mm). 

For Test Group AB (Figure 4.18) a different bolt size (M 16) wa used in order to 

verify that the failure mode predicted from the simplified model, as in Test Group 

AA, could be reasonably modelled. During these tests, Failure Mode 2 occurred and 

this can be verified by a typical image (Figure 4.20) taken during one of the tests at 

460°C ju t before bolt failure. 

Test Group AC used the same bolt size (Ml6) but a different geometry for the flange 

T- tub specimen. During these te t the same failure mode occurred, as for the two 

te t phases previously, except for the last test at 600 °C in which Failure Mode J 

happened. Failure Mode 1 ugge ts that the fir t plastic hinge forms in the flange 

next to the web, and then the bolt tart to yield and finally fracture. 

A is the lirst plastic hinge in the fillet next 
to the web. 

B is the second plastic hinge in the flange at 
the bolt line. 

C i yielding of the bolts. 
D is fracture of the bolls. 

Failure Mode 2 

Complete yielding of 
flange followed by 

bolt fracture . 

Failure Mode 2 

Figure 4.20 Typical image showing Failure Mode 2 
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The initial ob ervations at the end of Phase A, were that the experimental 

arrangement (including furnace, loading device and image acquisition and proce ing 

technique) eemed to be reliable and efficient, permitting testing at a rate of one test 

per day. 

Comparing the simplified mathematical model results with the actual te t result 

demon trated clearly that the model could predict the failure mode (only Failure 

Mode 2 occurred during the e tests) with an acceptable accuracy in terms of strength 

and stiffness. 

4.4.2 Phase B-tests to inve tigate realistic configurations 

At the end of Phase A it was decided that a new arrangement for the T-stub 

pecimens (Figure 4.21) should be investigated in order to examine the real 

behaviour of the tension zone within realistic beam-to-column joints. Another 

objective wa to inve tigate further the three different failure modes acro s a range of 

plate thicknesse and bolt sizes. Figure 4.21 also hows the po ition of the 

thermocouple ; two were placed in the end plate (No.3 in front and No.4 in root 

radius) and three in the column T-stub pecimen (No.1 on top, No.5 between the 

bolts and No.2 in the web). 

F 

ThemlOCOUI>le No I 
4-----.--------,-,-, 

~ ThernlOroup'e I 0 2 . 

• nU~_mlOCOup't: No 3 F 

Thern~p'e 0 1 :~ 

F 
TIlennocou pic 0: S: . 

:~ • n,em1OOOuple No 3 

Figure 4.21 Typical T - tub as embly used in Phase Band C experiments 
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Phase B included eight te t in total at elevated temperatures, and again was divided 

into two ub-categorie (BA included six tests, using a column section 

UC203x203x52 and an end plate 200x200x20mm for the two T - tub element and 

BB included two test using an end plate of 200x200x20mm for both T-stub 

elements). In Figure 4.21 above, the left-hand side represents the column T-stub and 

the right-hand side the end plate T- tub pecimen. Their geometrical and mechanical 

properties can be found in Appendix B. 

In order to carry out the e test three cameras were u ed. The first camera recorded 

the di placement of the column T- tub, the second camera recorded the displacement 

of the end plate T - tub and the third camera recorded the overall behaviour of the 

column T- tub. The viewing directions of the cameras are shown in Figure 4.22 

below. 

4.4.2.1 

Direction of 
Camera 2 

Figure 4.22 Orientation of the cameras 

Test results and comments 

The test result compared with the mathematical model results are pre ented in 

Figures 4.23-4.26 for Te t Groups BA and BB re pectively. 
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Figure 4.23 Force-deflection curves for the column T-stub for test programme BA. 

Failllre Mode 2 

Complete yielding of 
flange followed by bolt 
fracture . 

A is the first plastic 
hinge in the fillet next 
to the web. 

B is the second plastic 
hinge in the flange at 
the bolt line. 

C is yielding of the bolts. 
D is fracture of the bolts. 
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Figure 4.24 Force-deflection curves for end plate T -stub for test programme BA. 

Failure MOlle 1 

First yielding of the 
flange followed by bolt 
fracture. 

A is the first plastic 
hinge in the fillet next 
to the web. 

B is the second plastic 
hinge in the flange at 
the bolt line. 

C is yielding of the bolts. 
D is fracture of the bolts. 
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Figure 4.25 Force-deflection curves for the column T-stub for test programme BB. 

Failure Mode I 

First yielding of the 
flange followed by bolt 
fracture. 

A is the first plastic 
hinge in the fillet next 
to the web. 

B is the second plastic 
hinge in the flange at 
the bolt line. 

C is yielding of the bolts. 
D is fracture of the bolts. 

88 



Tel/siol/ ZOl/e 

250 

C 

200 

I • 
A 

Z 150 I. 

..'aC: 

II) 
(J 
~ 

~ 100 

50 

o 
o 

------- D 
• •• Fr~} ~ 

Failure mode 1 

- --J 
2 3 4 5 6 7 8 9 10 1 1 12 13 14 

Displacement mm 

Test " 620 C " --Model " 620 C" Test " 710C" ---Model " 710C " 

Figure 4.26 Force-deflection curves for end plate T-stub for test programme BB. 
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Failure mode I 

First yielding of the 
flange followed by bolt 
fracture. 

A is the first plastic 
hinge in the fillet next 
to the web. 

B is the second plastic 
hinge in the flange at 
the bolt line. 

C is yielding ofthe bolts. 
D is fracture of the bolts. 
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Failure Modes 1 and 2 dominated Test Group BA. The end plate failed in Mode I, 

(yielding of the flange followed by yielding and fracture of the bolts) and the column 

T-stub failed in Mode 2, (complete yielding of the flange followed by yielding and 

fracture of the bolts). Test Group BB included only two tests, and concentrated on 

Failure Mode 1 in both the end plate and column T-stub. 

Again, by comparing results from the simplified model and tests, it seems that the 

model predicts the failure mode of the T -stub specimen with reasonable accuracy in 

terms of strength and stiffness values. It was also observed that the right-hand side 

and left-hand side T-stub specimens developed their failure mode even if they were 

aligned in different directions (Figure 4.21). 

4.4.3 Phase C-Investigation each of failure mode in more detail 

For Phase C the thermocouple arrangement was similar to Phase BlI. Phase C was a 

more detailed investigation of each of the three failure modes that a T-stub assembly 

can adopt. This was achieved by keeping the geometrical properties of the right­

hand side T -stub element the same (using a steel plate 200x200x20mm to represent 

the end plate found in real joints) and changing the geometrical properties of the left­

hand side T -stub specimen by using different column sections. 

A total of twenty-five tests were performed, and each sub-category (CA, CB, CC, 

CD and CE) included five tests at elevated temperatures. Test Groups CA, CC and 

CD investigated Failure Mode 2 for different column sizes, and this was observed in 

the images taken from the tests. One typical image demonstrating Failure Mode 1 is 

shown in Figure 4.27 below. 

a For Phase C another two thermocouples were placed in the bolts (No.6 in one of the top bolts on the 

end plate side and No.7 opposite No.6 at a bottom bolt on the column side). Also No.2 was placed 

bel \',,~en the top bolts of the end plate T -stub specimen. 
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A is the first plastic hinge in the fillet next 
to the web. 

B is the second plastic hinge in the nange at 
the bolt line. 

C is yielding of the bolts. 
D is fracture of the bolts. 

Failure Mode 1 

Failure Mode 1 

First yielding of the 
flange followed by 
bolt fracture. 

Figure 4.27 Typical image showing Failure Mode 1 

Test Group CE investigated Failure Mode 3 at elevated temperatures. In order to 

achieve complete failure of the bolts without any plastic hinges forming in the T-stub 

flanges. a smaller bolt size (M12) was used. 

Finally Test Group CB examined Failure Mode 2. but because of the extensive 

deformation of the column T-stub the bolts failed in a combination of shear and 

tension force. Figure 4.28 shows the failure mechanism of the bolts. 

Figure 4.28 Bolt failure in a combination of shear and tension force 
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In order to include this combined shear and tension bolt failure mechanism in the 

simplified model the last image from each test was taken and the approximate shear 

force value applied to the bolts was calculated. 

Figure 4.29 shows the last image, just before bolt failure, taken from a test at 650°C. 

For this image the actual tension force on the column T-stub flange is known (160 

kN). The tensile strength of the bolt is calculated from 2/ub, o4s (120.16 kN) where /r,b. 0 

is the ultimate stress of the bolt at a certain temperature and As is the shank area of 

the bolt. The deformation of the T-stub flange at the bolt line (Figure 4.29) was 

measured using the image processing software and from that the shear force could be 

calculated (50.47 kN). 

160 kL T 

ng 

3226 

Figure 4.29 Image at 650°C just before bolt failure at 160 kN 

Using the following equation4
•
23 

, which is applicable when the threads of the bolt are 

in the shear plane, the ratio of the applied tension to tensile strength can be calculated 

and then implemented into the simplified model in order to take into account the 

shear and tensile forces acting on the bolts. 
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pp Ie tensIOn Applied shear (A I'd 'J2 ( J2 + = 1.0 .. .4.32 
Tensile strength 0.63xTensile strength 

and when the shank of the bolts is in the shear plane: 

Applied tension Applied shear 

( )

2 2 

+ = 1.0 
Tm"i/n'''''R,h ( a. 79xT""i/"'''''g,h ) 

.. .4.33 

The 0.79 coefficient in the latter equation is simply 0.63/0.80, where 0.8 IS the 

average ratio of the tensile area to shank area. 

Using equation 4.32 above, the ratio of the applied tension to tensile strength can be 

calculated as: 

(

Applied tension) = 0.846 
Tensile strength 

By reducing the yield and ultimate stress of the bolt by a factor of 0.846 the shear 

effect is taken into account when using the simplified model. 

Two tests from Test Group CB were conducted using HSFG bolts and the failure 

shear plane occurred in the bolt shank (using equation 4.33). For the remaining three 

tests, Grade 8.8 bolts were used and the shear plane occurred in the bolt threads 

(using equation 4.32). Using the same procedure the new value of the applied 

tension to tensile strength can be calculated, which works out as the same value 

(0.846) as that for HSFG bolts. 

4.4.3.1 Test results and comments 

The test results compared with the mathematical model results are presented in 

Figures 4.30-4.37 for Test Groups CA, CB, CC, CD and CE respectively. Note that 
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CC, CD and CE the results for column flange failure and end plate failure are shown 

separately. 
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Figure 4.30 Force-deflection curves for the column T-stub for test programme CA 

Failure mode I 

First yielding of the 
flange followed by bolt 
fracture. 

A is the first plastic 
hinge in the fillet next 
to the web. 

B is the second plastic 
hinge in the flange at 
the bolt line. 

e is yielding of the bolts. 
D is fracture of the bolts. 
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Figure 4.31 Force-deflection curves for the column T -stub for test programme CB 

Failure mode 2 

Complete yielding of 
flange followed by boIt 
fracture . 

A is the first plastic 
hinge in the fi llet next 
to the web. 

B is the second plastic 
hinge in the flange at 
the bolt line. 

C is yielding of the bolts. 
D is fracture of the bolts. 
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Figure 4.32 Force-deflection curves for the column T-stub for test programme CC 
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Failure mode I 

First yielding of the 
flange followed by bolt 
fracture. 

A is the first plastic 
hinge in the fillet next 
to the web. 

B is the second plastic 
hinge in the flange at 
the bolt line. 

e is yield ing of the bolts. 
D is fracture of the bolts. 
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Figure 4,33 Force-deflection curves for end plate T-stub for test programme CC 
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Failure mode J 

First yielding of the 
fl ange fo llowed by bolt 
fracture . 

A is the fll'st plastic 
hinge in the fill et next 
to the web. 
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Figure 4.34 Force-deflection curves for the column T-stub for test programme CD 

Failure mode I 

First yielding of the 
flange followed by bolt 
fracture. 

A is the first plastic 
hinge in the fillet next 
to the web. 

B is the second plastic 
hinge in the flange at 
the bolt line. 

e is yielding of the bolts. 
D is fracture of the bolts. 
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Figure 4.35 Force-deflection curves for end plate T-stub for test programme CD 
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Failure mode 1 

First yielding of the 
flange followed by bolt 
fracture. 

A is the first plastic 
hinge in the fillet next 
to the web. 

B is the second plastic 
hinge in the flange at 
the bolt line. 

C is yielding of the bolts. 
D is fracture of the bolts. 
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Figure 4.36 Force-deflection curves for the column T-stub for test programme CE 

Failure mode 3 

Yielding and fracture of 
the bolts. 

A is the first plastic 
hinge in the fillet next 
to the web . 

B is the second plastic 
hinge in the flange at 
the bolt line. 

C is yielding of the bolts. 
D is fracture of the bolts. 
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Figure 4.37 Force-deflection curves for end plate T-stub for test programme CE 

Failure mode 3 

Yielding and fracture of 
the bolts. 

A is the first plastic 
hinge in the fillet next 
to the web. 

B is the second plastic 
hinge in the flange at 
the bolt line. 

C is yielding of the bolts. 
D is fracture of the bolts. 
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Looking through the results above the simplified mathematical model predicts the 

behaviour of the T-stub as emblie reasonably accurately at elevated temperatures. 

Also the image acquisition and processing technique prove to be a very important 

tool to carry out tests at elevated temperature successfully. 

The next step in the inve tigation wa to perform finite element analysis using 

ANSYS in order to compare the predicted behaviour of T- tubs at elevated 

temperatures with the test re ults. 

4.5 FINITE ELEMENT ANALYSIS 

Several re earchers4.24,4.25,4.26 have investigated the behaviour of T-stub specimen at 

ambient temperature. Most of the work was done by the COST Cl Work group 

No. 6b, which was responsible for the numerical simulation of components within 

steel joints. Workgroup WG6 was heavily involved in the 2D and 3D finite element 

analysis of T -stub as emblies. 

4.5.1 Ambient-temperature finite element analysis 

A typical analysis for a te t at ambient temperature (from Test Group CE) is outlined 

below. The 2-D model i shown in Figure 4.38 using the ANSYS finite element 

analysis program. 

All the geometrical and material propertie of the column T -stub pecimen are given 

in Appendix B. Finite element di cretisation was used to model a quarter of the T­

stub by taking advantage of the two symmetry axes. In total 1313 node and 387 

"plane tre s with thicknes 'quadrilateral 8-noded elements and another 57 "point to 

surface contact elements" were u ed. 

b For detail of the CO T re earch programme refer to Chapter 2. 
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Figure 4.38 Finite element discretisation of the T-stub model 

The structure under investigation consists of three different bodies, the bolt, the 

washer and the column T-stub. The thickness of the plane stress elements was 

adjusted as shown in Figure 4.39 in order to take into account the three-dimensional 

properties of the model. A half-thickness of99.275mm was given to the column T­

stub except in the region of the bolthole. For the nut, the shank, the washer and the 

region of the column T-stub bolthole, the thickness of the corresponding finite 

elements was assigned according to Figure 4.39. 

From the figure above it can be seen that a rough estimation of the thickness was 

made. In the region of the hole, the two bodies are overlapping. The interaction 

between these bod ies is taken into account by considering contact cond itions 

between them (elements were created between the two contact surfaces). These 

contact elements have an important influence on the fmite element analysis and three 

parameters need to be input into ANSYS to define their characteristics. These are 

the normal contact stiffuess, the sticking contact stiffuess and the penetration 
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tolerance. Parametric studies were necessary in order to detennine suitable values 

for these coefficients (i.e. to ensure that the bolts stayed in contact with the T-stub 

flange). It is not practical to include values for these parameters in this section, 

because they were changed according to the dimensions of the T-stub model and the 

temperature at which the analysis was perfonned. Also the parameters for one 

contact element differed from those of the one next to it. 

®: .. , 
I . : 
i : : 

i I j 
; i 

Bolt hank Bolt head 

W
'i 

: i !. ' i i : ! 

i . i j 
~ . i j 
i i 1 i . 

Hole Washer 

Figure 4.39 Thickness values of the finite element mesh 

Typical stress-strain curves for the T-stub flange material at elevated temperatures 

are shown in Figure 4.40, according to EC3: Part 1.2. Similar curves were produced 

for the bolts using the reduction factors from Kirb/·
20 

(strength) and EC3: Part 

1.24.19 for the modulus. In the [mite element analysis the corresponding stress strain 

curves were used for the T-stub flange and bolts. The model was analysed using 

symmetry boundary conditions at the mid-web and bolt line, with one supp0I1 free to 

move in the x-direction (horizontal) in the region where the prying force is acting. 

The analysis options included contact surfaces, plasticity and large defonnations. 
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Figure 4.40 Typical stress-strain curve for the T-stub flange at elevated temperatures 

according to EC3: Part 1.2 

The force-displacement curves (Figure 4.41) obtained from the analysis show good 

agreement with both the experimental and simplified model results. The elastic part 

of the analysis is close to the test results but the non-linear part has a different 

inclination. It is obvious that the shape of the adopted stress-strain diagram is 

significant. 
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Figure 4.41 Force-deflection curves for a column T-stub from Test Group CE 
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From the finite element von-Misses stress diagram (Figure 4.42) it is clear that 

Failure Mode 3 is justified. Failure mode 3 suggests that no plasticity is happening 

in the T -stub flange, but the bolts dominate the failure mechanism. 

Figure 4.42 Von-Misses stresses for a 240kN tension load 

4.5.2 Elevated-temperatures fmite element analysis 

For the finite element analysis at elevated temperatures a modified stress-strain curve 

according to EC3: Part 1.2 for the column T-stub and bolts has been introduced. 

The results presented below are from Test Group CE at 410°C and from Test Group 

CA at 660 °C respectively. 
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Figure 4.45 below shows the von-Misses stresses at a 660°C for a T-stub specimen 

from Group CA, which has been loaded at 170 kN in tension 

Figure 4.45 Von-Misses stresses for a 170kN tension load at 660°C for Test Group 

CA 

There is a discrepancy between the finite element analysis results and the actual test 

results. This is not a surprise because COST Cl Workgroup WG6 performed studies 

on 2-D versus 3-D modelling, and concluded4
.
27 that 2-D modelling is not 

satisfactory, giving factors which can affect a 2-D finite element analysis. Factors 

include the meshing of the model (the optimum mesh size), simulation of bolts (to 

model the bolt as a flexural element is not an easy task), choice of elements, material 

behaviour, and most importantly the modelling of contact and gap elements. 
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4.6 DISCUSSION 

4.6.1 Image acquisition and processing technique 

The accuracy of the image proces ing oftware for T -stub tests is adequate for the 

purpo e of studying their deformation re ponse to applied tensile loading. The u e of 

image acquisition and proce sing techniques ha many advantage in comparison 

with conventional mechanical instruments and could be used for a wide range of 

testing application. The benefit of this technique have been listed previously in 

section 3.6. 

4.6.2 Test and Theoretical Results 

There is a good correlation between the test re ult and simplified modelling. During 

the tests it wa ob erved that, when using Grade 8.8 bolts and nuts, the nuts were 

failing by stripping their thread a hown in Figure 4.46 below, in which a normal 

nut i compared again t two failed nut . 

ormal nut 

L-__________ '---_ Tested nuts 

Figure 4.46 Nut tripping failure mechanism 
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This nut-stripping failure happened in Test Group CA for specimens tested at 530 ° 
and 740°C. As a result, for all the other tests it was decided to use HSFG nuts in 

order to avoid this kind of failure. 

During the experimental investigation of the tension zone it was very clear from the 

beginning that bolts could influence the T-stub specimen behaviour significantly. 

The same behaviour is highlighted by the simplified model results. As a conclusion, 

the bolt material properties at elevated temperatures need to be modelled correctly. 

Another observation from the test and simplified model results is the importance of 

predicting the failure mode of the T -stub specimen. This is because, according to the 

failure mode, the total deformation of the T-stub flange varies significantly. This is 

demonstrated by plotting the three failure modes taken from different test 

programmes at 505 °C, as shown in Figure 4.47 below. 
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Figure 4.47 Failure modes compared at 505°C 
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4.7 CONCLUSION 

This study has de cribed the use of an image acquisition and processing technique 

and the development of a simplified mathematical model for T-stub te ts at elevated 

temperatures. The image acquisition and processing tech..'1ique is particularly 

interesting because, aside from obtaining displacement readings at high temperatures, 

it also records the behaviour of the specimen as soon as the load is applied. This is 

an advantage becau e, by careful observation of the recorded test, it is possible to 

recognise the failure mechanism of the specimen. Thi information also makes the 

image acquisition and processing technique attractive for ambient-temperature 

tensile or compre ive te ts for steel or concrete. 

The simplified model gives acceptable results when compared with test results. It is 

a mathematical model which can easily be used by designers or researcher in order 

to predict the tension zone behaviour at elevated temperatures within a steel beam-to­

column joint. 
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Chapter 5 

Compression Zone 

5.1 INTRODUCTION 

The previous chapter outlined an experimental and analytical investigation into the 

behaviour of components within the tension zone of a steel beam-to-column joint. 

This chapter investigates the column web subjected to transverse compression forces, 

which is the most important component within the compression zone of a typical 

steel joint (Figure 5.]). 

At ambient temperatures researchers5
.
1
,5.2,5.3 focused on producing simplified models 

in order to predict the ultimate capacity of a column web subjected to transverse 

compressive forces and thereby assist engineers to design steel joints efficiently. 

Another reason for producing these models was to eliminate the use of column web 

stiffeners, which are expensive to install and interfere with the weak-axis framing of 

beams into the column. 

- . 
- - -

M M 
- .-

-

Figure 5.1 Extended endplate joint showing the column web component (shaded) 
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The resistance to concentrated forces is a problem of a very complex nature in which 

it is almost impossible to derive closed theoretical solutions. Therefore, studies 

aiming at predicting the ultimate resistance of column webs to concentrated forces 

tend towards empirical solutions. 

Everything becomes more complicated when another variable, such as temperature, 

is introduced into the problem. For this reason a closer look into existing empirical 

models at ambient temperature, contained in design codes and standards, is outlined 

next with a view to applying the principles at elevated temperatures. 

5.2 EXISTING ANALYTICAL MODELS AT AMBIENT TEMPERATURE 

When the web of a section is sUbjected to compressive loads applied through the 

flanges it may fail in one of three ways: 

a) For webs that are relatively thin compared to their height it is possible that 

failure could be by buckling as a strut. The resistance to this form of failure 

may be predicted by considering a portion of the web as a strut and 

calculating its buckling resistance. Although this form of failure may occur in 

a beam section subjected to point loading it is unlikely for a column section, 

as the web height tends to be small compared to the web thickness. 

b) For slender webs some foml of local instability may occur. This failure is 

known as web crippling. Again this form of failure is unlikely in column 

webs. 

c) The most likely foml of failure for a column section is web crushing 

(bearing). Here the local stresses developed in the web exceed the yield 

strength of the steel. 
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5.2.1 British Standard-BSS9S0 

The 1990 edition of BS5950s.4 covered crushing (which it referred to as bearing 

failure) and buckling only; web crippling was not included. In the recent revision to 

BS5950
s
.
s 

the web buckling clause has been significantly modified, and is now 

calculated based on a modification to the bearing capacity. The same formulae are 

used for both beam webs under concentrated loads and column webs subjected to 

transverse loads arising from connection moments. Only in cases where the rotation 

of the web, or lateral movement relative to the flanges, is not assured is the problem 

addressed as strut buckling. No reductions in crushing or buckling resistance are 

made to account for axial load in the column. 

5.2.1.1 British Standard-BS5950 for column webs 

The history of the clauses used for column web buckling and bearing date back to 

BS449, and they appear to be empirical. For web bearing BS449s.6 assumed that the 

force was distributed through the flange and root of the web at an angle of 30°. 

According to Morriss." when BS5950s.8 appeared it followed the American practice 

for the criterion for yielding (crushing) of the column web when subjected to a 

compression force arising from an end plate connection. That is, the force from the 

beam flange is assumed to disperse at a 1: 1 gradient within the end plate and at a 

1 :2.5 slope within the column flange as far as the junction of the root fillet and the 

web (Figure 5.2). 

According to Hendrick et a/S•2 the 1 :2.5 dispersion of the compression force was the 

result of an experimental investigation in the USA (conducted in 1959) which 

considered the behaviour of column webs within a welded joint. The authors 

suggested an alternative design criterion for bolted end-plate joints, namely a 1: 1 

gradient within the end plate and a 1:3 dispersion of the compression force within the 

column web. The difference was due to the effects of the end plate and the fillet 

weld connecting the beam to the end plate. 

The same recommendation was made by Bose et a/S
•
l but in BS5950s.4 it remains as 

a 1 :2.5 dispersion of the compression force as shown in Figure 5.2. 
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Figure 5.2 Assumed distribution offorce for web crushing according to BS5950 

The maximum crushing force that can be resisted by the column web is calculated as: 

.. .5.1 

where Iwe is the column web thickness, P Y'II is the yield strength, h, is the length of 

stiff bearing and m is the length obtained by dispersion through the flange to the toe 

of the fillet, as shown in Figure 5.3 (a) below. 

The web buckling resistance is given by: 

... 5.2 

in which n, is the length obtained by dispersion at 45° through half the depth of the 

section as illustrated in Figure 5.3 (b) below; Pe is the compressive strength as 

obtained from table 27c ofB 5950. 
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The buclding length of the compression member should be determined from the 

conditions of lateral and rotational restraint at the flanges where the force is applied. 

In the case of end plate connections, the ends of the web may be assumed as 

restrained against both rotation and relative lateral movement, and an effective length 

/=0.7 de may be considered. The radius of gyration i is given by ~. and the 
",12 

slenderness ratio A is determined from 

A = ~ = 0.7dc = 2.42 de 
i t/JIi t 

... 5.3 

In BS 5950 a conservative value of A=2.5dclt is specified for convenience. 
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5.2.2 Eurocode 3:Annex J 

Eurocode 3 covers each of the three failure modes (buckling, crippling, crushing) 

when applied to beam sections, either fabricated or rolled. Reductions in crushing 

resistance are made to account for the longitudinal stress in the flange. Furthermore, 

Eurocode 3 considers the behaviour of a column web under compression induced 

from a joint (as shown in Figure 5.1) as a special case and covers this in Annex J, 

which deals with connection design in detail. In EC3: Revised Annex J5.9 the 

approach used to calculate the compression resistance of a web is different from that 

found in the main document. Rather than explicitly considering all three modes of 

failure and selecting the least favourable, Annex J uses a single formula to calculate 

the crushing resistance, which may then be reduced for webs which are relatively 

slender, as defined by a plate slenderness parameter. Further reductions in capacity 

are made when the axial load in the column exceeds 50% of the squash load, and for 

the effects of panel shear. 

5.2.2.1 Eurocode 3:Annex J for column webs 

In EC3: Annex J the resistance of an unstiffened column web subjected to transverse 

compression is given by: 

pb~fft wef),. we 
F,. we Rd = --"'---"---

. . YMO 

... 5.4 

.. .5.5 

where 
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.. .5.6 

and if A. ~ 0.67 then equation 5.4 is applied, which gives the crushing resistance of 

the column web. Otherwise equation 5.5 will give the buckling resistance of the 

column web. The notation fwe is the column web thickness,/y,we is the yield strength, 

E the Young's Modulus, p is a reduction factor (taken as 1.0) to do with the shear 

effects in the column web, YMO is a material safety factor, de is the depth of the 

column web and beff = ~h; + s; as shown in Figure 5.4 below. 

--+1 
1 

End plate 

Column flange 

tp 
,+­
I 

hJ2 

Figure 5.4 Effective breadth for web buckling resistance in Eurocode 3 

What is described above are the differences between BS5950 and Eurocode 3 for 

designing section webs (column or beam) when subjected to compressive loads 

applied through the flanges. The differences (and similarities) of column web 

compression in these approaches are highlighted in the Table 5.1. 
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Table 5.1 Comparison of column web compression resistances (in kN) for a point load (S275 steel) 

Buckling I Resistance 
With 
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From the table it is clear that, according to BS5950, crushing controls the 

compression resistance of the web in all cases. For these column sections, the 

BS5950:2oo0 revised calculation of Px (buckling resistance) results in a smaller 

value than previously in only a handful of cases (shaded in the table) but these are of 

academic interest as the controlling factor is the crushing resistance. 

Considering the values calculated using EC3, the buckling resistance is the lowest of 

the three resistances (crushing-Ry.Rd, crippling-Ra.Rd, buckling- Rb.Rd) calculated in 

accordance with the clauses shown in the main body of the code. However Annex J, 

which should be used for calculating compression zone resistance gives higher 

capacities, most of which agree with the BS5950 crushing values. In a few cases 

(shaded in the table) the Annex J calculation is less than BS5950's Pbw (bearing). 

These are for webs where the plate slenderness of the weba exceeds 0.673. The final 

column in the table shows the reduction in compression resistance when the axial 

load is 70% of the squash load. As shown in the table above, Eurocode 3 Annex J 

uses essentially the same approach for web crushing 

Since the compression resistance in both BS5950 and EC3 is controlled by crushing 

(bearing) resistance it is obviously important that a design formula accurately 

predicts this capacity. To verify the accuracy of the formulas described earlier, 

Bailey et aZS•IO compared test result from a wide range of sources with design results. 

Figures 5.5 and 5.6 below compare the predicted failure loads with a large number of 

test results. Considerable scatter exists, with no one method being particularly 

accurate. Both EC3 and the BS5950 show very conservative results at the dwc/twc 

ratios appropriate for rolled column sections (typically below 20). It is suggested that 

this scatter arises because the EC3 and BS5950 methods of calculating the crushing 

resistance do not properly account for all the parameters which influence the 

behaviour. 

a ~p = 
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As a concluding remark, the current design codes for the UK and Europe provide a 

very conservative recommendation for calculating the ultimate resistance of a 

column web under compression force at ambient temperature. It was decided that a 

new empirical model should be investigated, which would not only provide the 

ultimate capacity of the column web at elevated temperatures but also determine the 

stiffuess of the column web in the elastic and plastic regions. 

For this reason the experimental investigation was carried out first and then, based on 

the test observations and results, a simplified empirical model was deVeloped. 

60 
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5.3 EXPERIMENTAL PROGRAM 

The tests were carried out in the purpose-built furnace described in Chapter 3. The 

procedure followed was to heat the column specimens up to the required 

temperature, and then continue by applying compression forces and capturing images 

in order to measure displacements. Figure 5.7 below shows the test arrangement. 

Furnace 
Reaction Frame I~I ~Ii 

~I 1'1 

II ,I 
1 ,I 

S ecimen L it 

Figure 5.7 Arrangement for compression zone tests 

The column specimen was loosely supported on a steel base plate inside the furnace. 

In order to prevent the specimen from rotating freely in space as soon as the 

compression force was applied, it was bolted (finger tight) on the reaction frame 

below the compression force contact point. Figure 5.8 shows the specimen inside the 

furnace and the details of the support. 
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Support of the specimen 
on the reaction frame 

Figure 5.8 Column specimen inside the furnace 

Images were taken at different load increments and the out-of-plane (web) and flange 

displacements were measured. The displacement was then the difference between 

the targets (made using a O.5mm diameter drill) for the column web and flanges as 

shown in Figure 5.9. The distance between the two targets on one steel rod was 

5mm. That distance was also measured (using a Vernier) and the average was taken 

in order to calibrate the image acquisition and processing system. 

Figure 5.9 Displacement measurement 



Compression Zone 128 

The final important measurement was the temperature of the column specimen. Six 

thermocouples were placed on the specimen and another three around the specimen 

to measure the atmospheric temperature. As soon as the specimen was up to 

temperature the tests were carried out. The locations of the thermocouples are shown 

in Figure 5.10. The temperature from each thermocouple was recorded several times 

during each test and the average temperature was taken as the design temperature. 

Thermocouples 2 and 5 were placed just at the end of the root radius, 3 and 4 in the 

root radius, 1 in the middle of the column web and 6 in the flange. From the recorded 

temperatures it was concluded that thermocouples 2, 5 and 6 had the same 

temperatures and there was a difference of 15-20 °c between thermocouples 3, 5 

and 1. 
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Figure 5.10 Thermocouple positions 

5.3.1 Experimental investigation 
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The purpose of this experimental work was to investigate the behaviour of the 

compression component (column web) within a steel beam-to-column joint at 

elevated temperatures. It was very important to choose a variety of column sections, 

which would have different geometrical properties and as a result might behave 

differently in terms of strength and stiffness. The important influencing parameters 

to be investigated were the slenderness of the column web and the thickness of the 
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flanges. Table 5.2 below shows the different column sections and geometrical 

properties of the specimens that were tested at elevated temperatures. 

Table 5.2 Different column sections tested at elevated temperatures 

Depth Width Thickness Thickness 
Root 

Ratio for 

Column of of of of 
Radius 

web 
Test Section section Web Flange 

Number 
Sections local 

h b 
r of tests 

s t Buckling 

mm mm mm mm mm dis 

A 152UC30 157.6 152.9 6.5 9.4 7.6 19.0 8 
B 203UC46 203.2 203.6 7.2 11.0 10.2 22.3 7 
C 203UC71 215.8 206.4 10.0 17.3 10.2 16.1 4 
D 203UC86 222.2 209.1 12.7 20.5 10.2 12.7 6 

In addition to the specImens tabulated above, another one (UC203x203x52) was 

tested at 600 Dc. Another 3 column specimens were tested at ambient temperatures 

in order to collect a larger number of test results, as the calculation of the ultimate 

compressive force was not an easy task, even at ambient temperature. The three 

column sections were UC203x203x86, UC203x203x60 and UC254x254x107. All 

four additional column specimens were taken from the T -stub investigation at 

elevated temperatures. 

In total 29 tests at ambient and elevated temperatures were investigated and the 

actual dimensions (average), mechanical properties and experimental data of the 

column specimens are given in detail in Appendix C. 

The actual test results will be presented in the following sections in which an 

investigation is carried out in order to produce an empirical model for calculating the 

ultimate strength and stiffness of the compression component (column web). In 

order to do this, a 2D finite element analysis has been performed to investigate the 

stress distribution and the behaviour of the column web under transverse 

compressive forces at elevated temperatures. 
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5.4 2D-FINITE ELEME T A 'ALYSIS 

Finite element in e tigation have been performed by different author 5. 1,5.2 in order 

to validate their empirical model for calculating the ultimate capacity of a column 

web under compre ion. e eral report 5.11,5.12 how that the empirical formu lation 

presented in Eurocode 3: Annex J wa upported by a 3D finite element ana lysi 

performed on a welded joint. The finite element analy i de cribed her ha been 

performed by Blocks.13 and the purpo e wa to under tand the behaviour of the 

compres ion component wHhin a teel b am-to-column joint. 

Observation from the experimental te t at elevated temperature ugge ted that the 

column web failure wa due to a trength reduction effect rather than a buckling 

problem. For thi rea on it wa decided to tart the finite element analysis with a 2D 

model as shown in Figure 5.11. Typical finite lement re ult are al 0 included in 

this ection for a 203x203x46 pecimen, although finite element re ult exi t for 

all of the pecimen . 
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Figure 5.11 Finite elem nt di creti ation of the compre ion model 
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5.4.1 Finite element model 

Taking advantage of symmetry, only half of the UC203x203x46 specimen was 

modelled. All the geometrical and material properties are given in Tables 4 and 5 in 

the following section. The model included 8930 nodes and 3133 plane stress 

elements with thickness. Two types of elements were used: 

a) PLANE 183 which are quadrilateral, two-dimensional 8-noded, and 

b) PLANE2 which are triangular 6-noded elements (for the root radius). 

"Plane stress with thickness" elements were used in order to take into account the 

three-dimensional properties of the model. The thickness detail around the root 

radius is shown in Figure 5.12. 

,- _._.-.-.-_._1_1, 
... _' 

I 
QoC • 

~ I 
... -

I - •• -- I 

... t = thickness of the 

elements in rom 
I_I _ -_ • 

Figure 5.12 Thickness values used in the finite element mesh 

The load is applied to the centre of the column section as a small patch area under 

uniformly distributed load over a length of 11.92mm. This length is approximately 

equal to the one used for the tests in the form of a 22mm diameter roller. Having 

measured the contact indentation length after each test the value was between 10 and 

l3mm. 

The stress-strain curves for the particular column section, UC203x203x46, are shown 

in Figure 5.13. These were calculated from Eurocode 3 Part 1.2. The analysis 

options included plasticity and large deformations. 
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Figure 5.13 The stress-strain curves for the colwnn flange and web 

5.4.2 Finite element re ult 
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The results from finite element analysis showed yielding first occurred in the column 

web. Figure 5.4 shows the von-Mis es stress distributions for different loading 

cases. 

Figure 5.14 Von-Misses stress distributions for 112,5 leN and 125 leN at 610°C 

By looking at the stre s distribution figures and comparing the stress results from the 

ANSYS output file at certain elements and nodes it was clear that there was a 
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uniform yielding of the web over a length of 20-22mm at both ambient and elevated 

temperatures. This length is approximately equal to 2*tan30*(t.r+r) from the centre 

point of the uniformly distributed load applied to the column flange where t.r is the 

flange thickness and r the root radius. 

After the first yield, the column web continues to yield further out from the centr 

point of the uniformly distributed load until a plastic binge forms in the flange under 

the applied load. The yielded length of the column web at this stage is 

approximately equal to the length found by Roberts5. 14,5.1 5,5.1 6. After this point 

further increase in load results in a second plastic hinge in the flange, as shown in 

Figure 5.15. 

Figure 5.15 Y-direction (vertical) stress showing the plastic binges in the flange 

S.4.3 Comparison of te t and finite element result 

TypicaJ test and finite element results are presented in Figures 5.16-5.21 for 6 test 

on the UC203x203x46 column section at elevated temperatures. 
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Comparing ANSYS and test results it is evident that a 2-D finite element analysis 

predicts the behaviour of the compression component within a steel beam-to-column 

joint very accurately. Although the results presented are for only one column 

section, similar responses occurred for all the column sections testeds.13
, except from 

the UC152x152x30 group of tests for which ANSYS predicted the behaviour of the 

column specimens on the conservative side when compared with the test results. 

This is believed to be associated with the material properties of the specimen as 

modelled in the finite element analysis. 

The 2D finite element analysis obviously cannot account for out-of-plane buckling, 

yet good correspondence with the test results was obtained. This suggests that the 

major effect is concerned with membrane yielding, and the out-of-plane 

displacements, which occurred in the tests, were a secondary structural effect at large 

strain levels. 

Further investigation of this complex problem should be carried out with the help of 

finite element analysis in order to accurately predict the ultimate capacity and the 

stiffness of the compression component within a steel beam-to-column joint. Within 

steel joints, because of the end plate, the length of the uniformly distributed patch 

load on the column flange (the value of c in Figure 5.22) depends on the thickness of 

the end plate, the weld between the beam flange and the end plate, and the thickness 

of the beam flange. 

. ............................................. , .......................................................... . 

:>111( C .: . . .......................................... ~ ........................ : ...................................... . 

Figure 5.22 Column web subjected to patch loads 
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A further finite element anal sis bas already been carried outS
•
13 in order to 

investigate the effect of changing the alue of c in Figure 5.22 on the stiffuess and 

strength of the column section. 

The results from this investigation are shown in Figure 5.23. 
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Figure 5.23 Different values of uniform distributed load length c at ambient 

temperature 

From the graph above it is obviou that, by changing the length c of the uniformly 

distributed load, the stifIiless and strength of the colwnn ection under investigation 

are affected. This requires further inve tigation, but it is important to bear in mind 

that the contact length c is likely to be small for steel joints (up to 50mm). 

5.5 SIMPLIFIED MODEL 

The information coUected from the 2D finite element analysis and test results was 

used to produce a simplified model for predi ting the behaviour of the column web 

under compressive forces. Another important source of information was previous 

research on plate girder subjected to patch loading. The development of an 
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analytical model to predict column web capacity at elevated temperatures is 

described in detail below. 

5.5.1 Analytical model at elevated temperatures 

As the web thickness i increased the ratio of out-of-plane bending stiffuess to the 

compressive membrane tiffue s also increa es. RobertsS.14,5.15,5.16 has shown that the 

failure mechanism which occurs in tocky girders under compressive patch loading is 

that of direct yielding of the web. This ituation can be analysed by considering the 

failure mechanism shown in Figure 5.24. 

Plastic binge 

c B 

Figure 5.24 As umed m chanism of web yielding 

It is assumed that pIa tic hinge form in the flange and that the length of web 

between the outer plastic binge (binges 1 and 4) yields in compression. Equating 

external and internal work as the load moves vertically through a small distance Dw 

gives 

(
4MpfCJ (D) P = + a ~ .. ..,I ... c V' + c 

U j9 . 
. .. 5.7 

Energy dissipation around the boundary of the a sumed plastic region is neglected. 

Minimizing P u with respect to j9 give 
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[32 = 4M pfe 

(J.nJ",c ... 5.8 

where M pfc is the plastic moment of the column flange which is given by 

Mpfc=( CJ.vpjlij (.)I4 and (J\j; (J,,\\, are the column flange and web yield stresses 

respectively, hi<" is the column flange width and ft(-, and twe are respectively the 

column flange and web thicknesses. 

The total length of a beam, L,=(2/3+c), which is going to be analysed in order to 

calculate the stiffness of the compression zone, is given by the equations above. 

From finite element analysis it was observed that a small area of the web yielded 

first, and that area then increased until the second yielding occurred in the middle 

part of the flange (hinges 2 and 3) under the load, and then a third yielding (hinges I 

and 4) occurred further out from the applied load in order to form the failure 

mechanism shown in Figure 5.24. 

a) Yielding (squashing) of the column web 

Figure 5.25 shows schematically what happens at the early stages of application of 

the compressive force, according to the finite element analysis. 



Compression Zone 140 

'Y 

Figure 5.25 First yielding of the column web 

An area of web with length e reaches its yield point. The length is approximately 

equal to e = 2 tan 3D" (I fh + r), where r is the root radius and fjb the flange thickness of 

the column section. 

The initial force PI=WC required to yield the web is taken to be equal to the reaction 

created on the web, as shown in Figure 5.25. Hence, 

... 5.9 

Where wand WI are defined in Figure 5.25. 

The deflection under this load can be calculated by considering an effective area 

(taken as Lejjfwc) of the column web under compression. 

8 I = PI d we = (J ''H.t we ( e + r )d we 

Ewe AWl Ewe Leff t IH' 

... 5.10 
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where dwe is the depth between the fillets of the column section, Ewe is the web 

Young's Modulus and Leffis as shown in Figure 5.26. 

c 
~~ 

1.(---------------~~: ~.(--------------~»~: 

will 
-f-

y e y 

LetFe+(y/5) 

Figure 5.26 Effective length oftbe compressed web 

b) Yielding ofthe column flange (creating hinges 2 and 3) 

After the first yield of the column web, continuing to increase the compression force 

the area of the web that is now yielded is approximately equal to 

e' = 2 tan65°(t jb + r). At this stage yield of the column flange has occurred in the 

middle under the compressive load. The situation now looks like that shown in 

Figure 5.27. 

WI 

( »~ ~:~ » 
y' e' y' 

( » 
L\ 

Figur 5.27 econd yielding of the sy tern 
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... 5.11 

The total deflection as this second yielding occurs is calculated in the same way as 

before. The difference in the current formula is that the Young's Modulus has been 

divided by an empirically derived value, in order to account for the initially yielded 

area of the web. 

...5.12 

, 
where LefJ = e' + (y'/5) 

c) Yielding of the column flange (creating hinges 1 and 4) 

After causing hinges to form in the flange beneath the patch load, any further 

increase in the load creates plastic hinges further along the column flange. 

/),.w' 

~ 
l c/2 

Figure 5.28 Yielding mechanism 
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By using mechanics and an effective length approximation (Figure 5.28 above) a 

semi-empirical formula is derived which calculates the force needed in order to 

create the two final plastic hinges in the flange: 

... 5.13 

where M pfc = (0' _,f b fc t }, )/4 and O'\j is the column flange yield stress, btl- is the 

column flange width and tic is the column flange thickness. 

The total deflection at this load is given by calculating the incremental deflection 

derived by assuming the system in Figure 5.28 is a cantilever with a uniformly 

distributed patch load at its end, plus the deflection derived from the earlier yielding 

of the column flange ~. 

J, = ((~ - P2 )/2 )[8fJ3 + 18fJ 2 (c/4) + 12fJ(c/4Y + 3(c/4Y J+ 8
2 . 24EfJfc 

... 5.14 

Where Ifc=(bfcr~fc)/12 and Eii-is the column flange Young's Modulus. 

Normally the yielding force P3 should give the ultimate capacity of the column web 

under transverse compressive forces. From tests it was observed that the ultimate 

force was higher than this. The final formula, which gives the ultimate force, is 

derived from theories on plate girders subjected to patch loading. 

The stability problems and ultimate load behaviour of steel plate girders have 

attracted a lot of attention from research workersS•16,S.17,S.18,5.19,5.20. The behaviour of 

steel plate girders under patch loading presents complex stability and elasto-plastic 

problems. Many experimental results and extensive theoretical work have 

established some empirical and semi empirical formulae for calculating the ultimate 

capacity of a plate girder subjected to patch loading. 
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The work of Markovic et a/S•
21 gives an assessment of the applicability of existing 

formulae from different authors for predicting the ultimate load on plate girders 

subjected to patch loading and the influence of longitudinal stiffeners. 

A total of 11 formulae were investigated using a large number of tests (318 girders 

without longitudinal stiffeners and 133 girders with longitudinal stiffeners), and 

values of the ratios of predicted to experimental capacity were determined to enable 

an assessment of the accuracy of these formulae. 

All the formulae are for slender plate girders (having values of dcltwc around 75) 

except for one, which is for rather thick plate girder webss.22
• The column specimens 

tested have dcltwc values ranging from 6.10 to a maximum value of 27.9. 

The formulas.22 by Drdacky is: 

... 5.15 

Where Ewe and awe are the Young's Modulus and yield strength respectively of the 

column web, and twe is the thickness of the web. All the other parameters are shown 

in Figure 5.22. 

Furthermore equation 5.15 has been compared with a large number (451) of tests and 

as a result the authors, Markovic et al suggested that the mean value for the ratio of 

predicted to experimental capacity should be equal to 0.72. This means that, instead 

of using a factor of 0.55 at the beginning of the equation 5.15, a new value of 0.76 

could be used. 

The above formula gave good correlation with the tests results from the current 

study, but when compared with finite element results performed in order to 

investigate the significance of the c value (uniformly distributed patch length) on the 

behaviour of the column web (Figures 5.22 and 5.23) it was found that equation 5.15 

gave un-conservative values for the ultimate capacity of the column web. 

For this reason a new empirical formula has been derived, based on the Drdacky 

formula: 
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p - 2 ~ FIh { [(1.6C r 2{3 )~} /I - t we Ewe a I<'e -t -, 0.65 + --
w, d we 2{3 +c 

... 5.16 

and the comparison with experimental results is shown in the next section. Finally 

the total deflection of the system is given by: 

... 5.17 

The calculation of the final deflection 84 is very complicated because of the out-of­

plane deflection of the web. Nevertheless, as is shown in the next section equation 

5.17 it is not a bad approximation. 

Summarising, in this section a new simplified semi-empirical model has been 

produced to simulate the behaviour of a column web within a steel joint up to the 

ultimate capacity of the column section under compression. Also a new formula has 

been derived which estimates the ultimate capacity of the column web taking into 

account the variation in the length c of the uniformly distributed patch load. The 

model can be used at ambient temperature, and at elevated temperatures by reducing 

the strength and Young's Modulus of the steel according to EC3: Part 1.2
5
.
23

. 

The following section reports the test results and comments on the comparisons with 

the simplified model. 
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5.6 RESULTS AND COMMENTS 

The reason for developing a new simplified model to predict the behaviour of the 

compression component at elevated temperatures was because the current codes 

(BS5950 and EC3:Annex J) underestimate the capacity of the component even at 

ambient temperature. More attention is given to EC3: Annex J because it uses the 

principles of the component method in order to predict the response of a beam-to­

column steel joint. If this code underestimates the capacity of a column section by a 

factor of 2.0 as shown in Table 5.3 and Figure 5.29, then inefficient design is 

inevitable. 

Table 5.3 shows the crushing and buckling resistances at ambient temperature 

calculated from Eurocode 3:Annex 1. The lower of these resistances is the design 

ultimate load. These values were calculated without using the material safety factor 

"(MO. If this factor is taken into account it will reduce the values further. 



Compre,(Sion Zone 147 

Table 5.3 Comparison of tests and EC3: Annex J results at ambient temperature 

Te ts Eurocode 3-Annex J 

No. Column Design Ratio 
ection Ultimate Crusbing Buckling Re istance 

F'c.!F'rd 
Load Re i tane Re i tance Min.(crusbing: 

buckJin2) 
kN kN kN kN 

] UC 1 52x 152x30 320 180.92 197.40 180.92 1.76 

2 UC203x203x46 405 251.39 259.17 251.39 1.61 

3 UC203x203x60 736 394.45 436.80 394.45 1.86 

4 UC203x203x71 844 433.65 483.02 433.65 1.94 

5 UC203x203x86 1278 639.53 726.95 639.53 1.99 

6 UC203x203x86 1286 635.53 722.15 635.53 2.02 

7 UC203 x203 x86 1125 577.80 656.19 577.80 1.94 

8 UC254x254 107 1158 656. 17 722.10 656. 17 1.76 

When reduction factors for strength and stiffness are used in the Eurocode 3 :Annex J 

ambient temperature formula, the results found are also very conservative compared 

with the elevated temperature test as seen in Figure 5.29. 
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Figure 5.29 Typical test and Eurocode 3:Annex J results for UC152x152x30 
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Furthermore, for some tests at elevated temperatures the results from the above 

calculation procedure predicted that the column web will fail by buckling, which did 

not occur. Because of the stockiness of the column web, its bearing capacity 

(crushing) rather than buckling governs the design. 

Another important comparison is between equation 5.15 giving the ultimate capacity 

of a plate girder under patch loading and the new empirical equation 5.16 derived by 

the author to predict the ultimate capacity of the compression component within a 

steel joint. Figures 5.30-5.33 how this comparison, giving the conclusion that the 

new empirical formula can predict the ultimate capacity with acceptable accuracy for 

the purposes of the current study. 
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Figure 5.30 Test, Equation 5.15 and new Equation 5.16 results for UC152xl 52x30 
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Figure 5.31 Test, Equation 5.15 and new Equation 5.16 results for UC203x203x46 
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Figure 5.32 Test, Equation 5.15 and new Equation 5.16 results for UC203x203x71 
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Figure 5.33 Test, Equation 5.15 and new Equation 5.16 results for UC203x203x86 
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From the designer's point of view an easier way, described below, to calculate the 

ultimate capacity of a column web under compression forces at elevated 

temperatures is to modify the ultimate capacity at ambient temperature (assuming 

this can be accurately predicted). Figure 5.34 shows the nonnalised force against 

temperature with all the test results and the curves for the Strength, Young's 

Modulus and the average of the two, reduction factors. The test results were 

normalised by dividing the ultimate load at elevated temperature by the ambient 

temperature ultimate load for this section and the curves were calculated by 

multiplying the ultimate load at ambient temperature with the corresponding 

reduction factor at elevated temperatures. The reduction factors were taken from 

Eurocode 3 Part 1.25.23 . 
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Figure 5.34 Normalised force against temperature 

Looking at Figure 5.34 it can be seen that the curve resulting from Young's Modulus 

reduction factor gives a lower bound olution and the one for the Strength Reduction 

Factor gives an upper bound olution for the calculation of the ultimate capacity of 

the column web at elevated temperatures. The average curve of the two gives good 

results when compared against the tests. This is a very simple and straightforward 

calculation of the ultimate load at elevated temperatures. 

Up to this point the ultimate capacity of the compression component has been 

compared against the empirical formula at elevated temperatures. The next step is to 
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compare the full response (strength and stiffness) of the compression component 

derived from the simplified model against the test results at elevated temperatures. 

5.6.1 Phase A Test Results 

Phase A included eight tests at elevated temperatures on a UC152x152x30 coJumn 

section. Each graph shows the out-of-plane displacements of the web, the column 

flange displacements and the displacements calculated from the simplified model. 

These tests were the first to be made at elevated temperatures so some of them 

included stiffeners in the column web. These stiffeners were placed at a minimum 

distance of 170mm each side from the centerline of the applied Joad. It was decided 

to use them because it was thought that by doing so this would stop the column 

specimen from rotating horizontally when the load started to be applied. In fact, 

from the early stages it was observed that by fixing the column as shown in Figure 

5.8 the rotation was prevented to a large degree. So for all the subsequent 

specimens, in the other Phases, it was decided not to use any stiffeners in the web. 
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Figure 5.35 Force-deflection curve at 20 °c 
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Figure 5.36 Force-deflection curves at 410°C 
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Figure 5.37 Force-deflection curves at 500°C 
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Figure 5.38 Force-deflection curves at 500°C 
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Figure 5.39 Force-deflection curves at 600 °C 
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Figure 5.40 Force-deflection curves at 610 °c 
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Figure 5.41 Force-deflection curves at 710 °c 
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Figure 5.42 Force-deflection curves at 755 DC 

154 

The simplified analysis results are reasonable considering the complexity of the 

problem, although some of the out-of-plane displacements (web) seem very strange. 

For example, in Figure 5.38 the web appears to have no out of plane displacement. 

This is because the web deflected in an S-shaped mode and, because the 

measurement was taken exactly at the middle of the column web, it appears to have 

no displacement. The S-shape effect is shown in Figure 5.43 (a) below. This S-shape 

mode of failure was the reason for conducting some tests in Phase A with stiffener 

on the web in order to avoid this twisting phenomenon, as it was thought at the time 

that the behaviour occurred was because the web was not properly restrained. 

(a) (b) 

Figure 5.43 (a) -shape buckling deflection and (b) Local buckling deflection of the 

column web 
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Also Figures 5.41 and 5.42 show web displacements to be very small, and this is 

because of the failure mode shown in Figure 5.43 (b), where there is a local buckling 

of the column web. 

5.6.2 Phase B Test Re uJt 

Phase B included seven tests at elevated temperatures on a UC203x203x46 column 

section, the results of which are illustrated in Figures 5.44-5.50. 

(Note: the vertical axes in these figures are shown at different scales for clarity. 

There was a very significant reduction in capacity as temperatures were increased) 

450 
400 
350 

z 300 
~ 

B 
250 

~ 200 
0 150 u.. 

100 
50 • 
0 

0 1 2 3 4 5 6 7 8 9 10 

400 

350 
300 

z 
250 x. 

g: 
u.. 

Displacement mm 

• Web • Range --Analysis 

Figure 5.44 Force-deflection curves at 20°C 
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Figure 5.45 Force-deflection curves at 280°C 
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Figure 5.46 Force-deflection curves at 400°C 
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Figure 5.47 Force-deflection curves at 520°C 
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Figure 5.48 Force-deflection curves at 610 °c 
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Figure 5.49 Force-deflection curves at 670°C 
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Figure 5.50 Force-deflection curves at 765°C 
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For some tests the failure mode described in Figure 5.43 (b) was observed for the 

out-of-plane displacements (web). The web displacement of the test at 20°C seems 

to be starting in the opposite direction and then towards the end of the test turns in 

the other direction. The same effect seems to be happening in the tests at 280°C and 

765 Dc. This phenomenon also occurred for other column specimens at ambient and 

elevated temperature. 

Once again the simplified model is predicting the behaviour of the system reasonably 

accurately. 



Compression Zon~ /58 

5.6.3 Phase C Test ResuJt 

In this Phase only four tests were performed at elevated temperatures on a 

UC203x203x71 column section. These are shown in Figures 5.51-5.54. 
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Figure 5.51 Force-deflection curves at 20°C 

2 3 4 5 6 7 8 9 10 11 12 13 14 

Displacement mm 

• Aange --Analysis 

Figure 5.52 Force-deflection curves at 535°C 
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Figure 5.53 Force-deflection curves at 635°C 
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Figure 5.54 Force-deflection curves at 755 DC 

/59 

The tests at ambient temperature were performed in a universal compression-testing 

machine and the displacements were measured using L VDT's as shown in Figures 

5.55 (a) and (b) respectively . 

.--_ Comprc shoc 
macbine 

pecimen 

(a) Test Arrangement (b) Positions ofthe LVDTs 

Figure 5.55 Test at Ambient Temperatures 

The L VDT for measuring the flange displacement was placed on the roller which 

was used to apply the compres ive force, as shown in Figure 5.56. Comparing the 
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test results with the simplified model results it can be seen that towards the final 

steps of any test in this Phase the model does not predict the behaviour of the 

specimen as accurately as before. It is the author's opinion that it is necessary to 

predict the force when the web starts to move out of plane (i.e. the load where so­

called "plastic buckling' starts to happen). In any case this is a better prediction, and 

step forward from, the model used in Eurocode 3-Annex 1. 

Figure 5.56 Position of the flange LVDT on the roller 

5.6.4 Phase D Test Result 

A total of six tests (Figures 5.57-5.62) were performed ill this Phase on a 

UC203x203x86 column section. 
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Figure 5.57 Force-deflection curves at 20°C 
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Figure 5.58 Force-deflection curves at 20°C 
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Figure 5.59 Force-deflection curves at 585°C 
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Figure 5.60 Force-deflection curves at 650°C 
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Figure 5.61 Force-deflection curves at 705°C 
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Figure 5.62 Force-deflection curves at 750°C 
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In this phase the simplified model predicts the behaviour of the compression 

Component to be rather stiffer in the plastic region. Nevertheless the comparison is 

within acceptable limits for the purposes of the current study. 

5.6.5 Random specimen te t resuJt 

Most of these tests were done in order to collect more test resuJts at ambient 

temperature after it was realized that both Eurocode 3:Annex J and BS5950 were 

under-predicting the ultimate capacity of the column web under compressive forces 

at ambient temperature. 
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Figure 5.63 Force-deflection curves for UC203x203x52 at 6]0 °c 
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Figure 5.64 Force-deflection curves for UC203x203x60 at 20°C 
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Figure 5.65 Force-deflection curves for UC203x203x86 at 20°C 
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Figure 5.66 Force-deflection curves for UC254x254x107 at 20°C 

The model is empirical in nature and has been developed and validated against te t 

data based on universal column sections, which by design have non-slender webs. 

For beam sections used as columns the method may not be applicable, but this has 

not been investigated. 

Finally another important observation was the influence of increase in the length of 

the uniformly distributed compressive load patch on the column flange (c value as 

shown in Figures 5.22 and 5.23). It has been mentioned before that this is an 

important value when calculating the ultimate capacity of the compression 

component for an end plate joint. The spread of the compressive force created by th 

beam flange depends on the end plate thickness bottom flange thickness and th 

weld, according to the design codes B 5950 and EC3:Annex J, and as shown in 

Figures 5.3 and 5.4. 

Hendrick et af·2 reported that the presence of a cover plate on a column flange could 

increase the capacity of a column web by 3] %. A parametric study conducted by 

Blocks.IJ arrived at a similar conclusion, and the finite element results of his analysis 

are compared with the simplified model results in Figures 5.67 and 5.68 below. 
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Figure 5.67 Influence of the c value on the UC203x203x46 specimen at ambient 

temperature 
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From the figures above it is clear that the simplified model is not so accurate at 

ambient temperature in terms of stiffness. However, looking the results at 610°C 

there is a good correlation between the finite element and simplified model results. 

Although no comments can be made about the ultimate capacity of the column web 

from the 2D finite element analysis results, it is very clear that further investigation is 

necessary in order to fully understand the behaviour of the column web under 

compressive force. 

5.7 CONCLUSIONS 

In joint design it is necessary to ensure ductility and therefore failure in the 

compression zone must be avoided. Where a column web is unstiffened, the web 

resistance may be critical. In such cases the designer has two options; to use a 

heavier column section to ensure that an alternative more ductile failure mode 

becomes critical, or to strengthen the web using stiffeners or web plates. 

Strengthening the column adds considerable cost to fabrication and IS not 

recommended. Increasing the column weight may avoid the problem but is not 

efficient in terms of use of materials, as the whole length of column has to be 

increased in area to overcome a localised problem. 

Research into the behaviour of steel frames in fire has shown that large axial forces 

may arise in beams as a result of thermal expansion, and the column web must resist 

these forces. An accurate prediction of the capacity of a column web to sustain 

transverse forces is needed. In this chapter, the results of a finite element analysis 

have been reported and a simplified model is described. Both models provide 

reasonably accurate results when compared with test results at elevated temperatures. 

Investigation of the compression component at elevated temperatures has: 

a) For the first time produced experimental results for column webs under 

transverse compressive forces at elevated temperatures, 

b) Shown discrepancies between the current standards and the calculated and 

tested column web capacities, even at ambient temperature, 
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c) Demonstrated that 2D finite element analysis gives good correlation with the 

test results at elevated temperatures, which makes further investigation into 

the compression component easier, less expensive and less time consuming, 

d) Led to a simplified empirical model that predicts not only the ultimate 

capacity of the column web under compression but also the full behaviour of 

the component in terms of strength and stiffness, 

e) lllustrated the influence of increase of the uniformly distributed load patch 

length on calculated compressive resistance, 

f) Proved the image acquisition and processing technique to be a very useful 

tool for carrying out elevated-temperatures tests. 

In the author's opinion, the most important achievement from this part of the current 

study was the prediction of the ultimate capacity of the column web under 

compressive forces at ambient and elevated temperatures. 



Comeression Zone 168 

5.8 REFERENCES 

5.1 Bose, S.K., McNeice, G.M., and Sherbourne, A.N., "Column webs in steel 

beam to column connections Parts I and II", Computers and Structures. Vol. 

2, pp. 253-279. 281-301,1972. 

5.2 Hendrick, A., and Murray. T., "Column web compression strength at end 

plate connections", AISC, Engineering Journal, 3rd Quarter, pp. 161-169, 

1984. 

5.3 Bose. B., "Design resistance of unstiffened column web subject to transverse 

compression in beam to column joints", Journal of Constructional Steel 

Research, Vol. 45, No.1, pp 1-15, 1998. 

5.4 British Standards Institution, BS5950: Part 1: Structural use of steelwork in 

building: Code of practice for design: rolled and welded sections, BSI, 

London, England, 1990. 

5.5 British Standards Institution, BS5950-1:2000 Structural use of steelwork in 

building Part 1 : Code of practice for design: rolled and welded sections, BSI, 

2000. 

5.6 BS449: Part 2: 1969 Specification for the use of structural steel in building, 

British Standards Institution. 

5.7 Morris, L.J., "Design Rulesfor Connections in the United Kingdom", Journal 

of Constructional Steel Research, Vol. 10, pp. 375-413,1988. 

5.8 British Standards Institution, BS5950: Part 1: Structural use of steelwork ill 

building. BSI, London, England, 1985. 

5.9 ENV 1993-1-1: 1992/prA2: 1994, Eurocode 3: Part 1.1, Revised Anllex J: 

Joints in buildings frame, European Committee for Standardization (CEN). 

5.10 Bailey, C. G., and Moore, D. B., "The influence of local and global forces 011 

column design", Final report for DETR, Partners in Technology Contract No. 

CC 1494, September 1999. 



Compression Zone 169 

5.11 "Semi-Rigid Action in Steel Frame Structures", Technical Reports No.2, and 

No.4, C.E.C Agreement No. 721O-SAl507, Luxembourg, 1988-1989. 

5.12 Guisse, S., and Jaspart, J.P., "Influence on Structural Frame Behaviour Oil 

Joint Design ", Connections in Steel Structures ill: Behaviour, Strength & 

Design, Proceedings of the Third International Workshop, Italy, 1995. 

5.13 Block, F., "2D and 3D Finite Element Analysis of a Column Web under 

Transverse Compressive Forces at Elevated Temperatures", Internal Report, 

University of Sheffield, 200 1. 

5.14 Roberts T.M., and Rockey K.c., "A mechanism solution for predicting the 

collapse loads of slender plate girders when subjected to in-plane patch 

loading", Proc. Instn Civ. Engrs, Part 2, 67, pp. 155-175, 1979. 

5.15 Roberts T.M., "Slender plate girders subjected to edge loading", Proc. Instn 

Civ. Engrs, Part 2, 71, pp. 805-819, 1981. 

5.16 Roberts T.M., and Newark A.c.B., "Strength of webs subjected to 

compressive edge loading", Journal of Structural Engineering, Vol. 123, No. 

2, pp. 176-183, 1997. 

5.17 Shimizu, S., Horii, S., and Yoshida, S., "The Collapse Mechanism of Patch 

Loaded Web Plates", Journal of Constructional Steel Research, Vol. 14, pp. 

321-337, 1989. 

5.18 Shimizu, S., Yabana, H., and Yoshida, S., "A new Collapse Modelfor Patch 

Loaded Web Plates", Journal of Constructional Steel Research, Vol. 13, pp. 

61-73, 1989. 

5.19 Johansson, B., and Lagerqvist, 0., "Resistance of Plate Edges to 

Concentrated Forces", Journal of Constructional Steel Research, Vol. 32, pp. 

69-105, 1995. 

5.20 Johansson, B., and Lagerqvist, 0., "Resistance of I-girders to Concentrated 

Loads", Journal of Constructional Steel Research, Vol. 39, pp. 87-119,1996. 



Compression Zone 170 

5.21 Markovic, N., and Hajdin, N., "A contribution to the analysis rl the 

behaviour of plate girders subject to patch loading ", lournal of 

Constructional Steel Research, Vol. 21, pp. 163-173, 1992. 

5.22 Drdacky, M., and Novotny, R., "Partial Edge Loading-Carrying Capacity 

Tests of Thick Plate Girder Webs ", Acta Technika CSAV, Vol. S, pp. 614-20, 

1977. 

5.23 "EC3:Design of Steel Structures, Part 1.2:General Rules for Structural Fire 

Design", (Draft), ENV 1993-1-2, European Committee for Standardization, 

1995. 



Steel loint Modelling 17I 

Chapter 6 

Steel Joint Modelling 

6.1 INTRODUCTION 

The importance of considering semi-rigid joint action when analysing the behaviour 

of a steel frame has already been discussed in a previous chapter. In early studies of 

steel frame response the most appropriate means of including the effects of semi­

rigid joint action relied on representations of test data. Whilst this is the best way of 

representing the joint response, and in early studies that resulted in a better 

understanding of the role of the steel joints within a steel frame, there are several 

limitations associated with the use of experimentally derived joint characteristics: 

a) Expense associated with testing, 

b) Wide range of steel joint types commonly adopted, 

c) Limited availability of carefully documented existing test data. 

As a result there is a real need to consider ways in which joint characteristics may be 

generated analytically. 

Forms of joint modelling range from simple curve fitting, through semi-empirical 

relationships, to finite element analysis. Existing models for both bare-steel and 

composite joints are commonly classified according to their theoretical basis into 

three main categories: 

a) Global models, 

b) Mechanical models, 

c) Finite element analysis. 
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The various forms of model described have been discussed by several 
athours6.1,6.2,6.3,6.4,6.5 A b d 

. summary, ase on their reports is outlined in the following 

sections. 

6.1.1 Global models 

Global models can be further classified into two categories: 

i) Mathematical expressions 

These approaches are based on fitting mathematical expressions to experimentally 

obtained data for the considered joint type. Initial attempts to model experimental 

work by Baker
6
.
6 

and Rathburn6.7 date back to the 1930s, and a single straight line 

corresponding to the initial tangent-stiffness (Z) of the joint was used. 

...6. I 

The linear modelling of joint behaviour may be satisfactory for ambient-temperature 

studies in which joint characteristics might be expected to remain within the elastic 

range of response. At elevated temperatures it may be anticipated that the joint 

would enter the plastic range of response at low levels of moment. 

It was not until the 1970s that bi-linear representations were introduced6.8,6.9, 

recognising the reduced stiffness of joints at high levels of rotation. Bi-linear forms 

of curve fit typically consist of a linear portion following the initial tangent stiffness, 

which is intersected by a line of reduced plastic stiffness. This assumption of a 

constant plastic stiffness may result in an un-conservative assessment of moment 

capacity at high levels of rotation. 

In the early 1980s tri-linear relationships6.10 were proposed as a result of these 

limitations. Initial and strain-hardening slopes of the moment-rotation curve were 

connected by the addition of an intermediate linear branch between the elastic limit 

and yield moment. 
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At a similar time to the introduction of bi-linear forms of curve-fit, polynomial 

models6
.
11 were developed in an attempt to account for the curved nature of the 

moment rotation relationship. 

. .. 6.2 

where k depends on the main geometrical parameters of the particular joint type 

under consideration, and c/, C2 and C3 are curve fitting constants. The limitation of 

this method is that it may sometimes yield negative values of joint stiffness, which is 

physically unacceptable. 

As a result of the above limitation, B-spline techniques6
•
12 were developed in the 

early 1980s, in which continuity was enforced for the first and second derivatives at 

the intersections of experimental data. This technique represents the joint response 

very closely but on the other hand a large quantity of experimental data is required to 

achieve an acceptable fit. 

As an alternative, a Ramberg and Osgood6
.
13 expression developed to define the non­

linear nature of stress-strain curves in terms of three simple parameters, may replace 

the polynomial of equation 6.2. Ang and Morris6
.14 extended the expression to 

describe moment-rotation characteristics and EI_Rimawi
6
.
15 

modified the expression 

to include high temperatures. When applied to moment-rotation curves, the model 

has the advantage of always yielding a positive slope, corresponding with the 

tangent-stiffness of the joint. The modified version of the Ramberg-Osgood 

expression states that: 

l/J = Me +O.Ol(Me )n 
cAB 

... 6.3 

Where cIJc is the joint rotation, Me is the corresponding level of moment, and A, Band 

n are temperature-dependent factors. 
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The above equation 6.3 has been used by Leston-Jones6
.
3 and Al-Jabri6

.
4 to express 

their test data for bare steel and composite joints at elevated temperatures. It can be 

applied at elevated temperatures by modifying the terms A and B, which control the 

stiffness and capacity of the joint respectively, and index Il which defines the shape 

of the moment-rotation curve. 

The limitations of the above expression are that a considerable amount of test data is 

needed in order to accurately represent the joint behaviour at elevated temperatures 

and it is not possible from this type of curve-fit to define the ultimate moment 

capacity or rotation limit of the joint. The models already described are based on 

calibration against experimental data. 

ii) Simplified analytical models 

These are based on prediction of the key parameters within the joint response, such 

as initial stiffness and moment capacity, and fitting a curve through these points. 

The initial stiffness is calculated by elastic analysis of the most flexible component 

and the joint moment capacity is calculated by plastic mechanism analysis of the 

same key component. For this reason simplified analytical models are typically 

restricted to the more flexible arrangements where deformation may easily be 

attributed to an isolated component. 

In the early 1950s an elastic model was developed for prediction of the initial 

flexibility of double-web-cleat joints, whilst ignoring all forms of deformation other 

than bending of the cleats. The expression given by Lothers
6

.
16 

was: 

K _ Eht3/(4g + gJ) 
(J - 6 g 3 (g + g J ) 

... 6.4 

Where E is the Young's Modulus for steel, g and g J are the gauge lengths of the 

angle legs, t is the angle thickness and y relates the neutral axis to the depth h of the 

joint. 
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In the late 1960s formulae were developed for the initial elastic and final plastic 

phases of the load-deformation behaviour of double web-angle segments. 

concentrating on the response of the angles under tension6
.17. 

Almost twenty years later another model6
.
18 was developed which considered the 

behaviour of web-cleats, flange-cleats, and combined web-and-flange-cleat joints, 

utilising a power expression, as shown in equation 6.5, to generate the resultant 

moment-rotation response. 

. .. 6.5 

Where kp is the plastic stiffness of the joint, kj=kj-kp, kj is the elastic stiffness, eo is 

the plastic rotation and n is a shape parameter derived from test data. The above 

model focuses attention on the flexibility of the connecting components (angle T­

stubs only), assuming that the connected members are themselves rigid. However, 

with today's knowledge of the overall behaviour of steel joints, deformation of the 

column components (flange and web) is known to take place, contributing to the 

joint flexibility. If it is assumed that the interaction between different joint 

components does not affect considerably the response of a single component, the 

overall behaviour of a joint may be obtained by super imposing the flexibilities of the 

jOint components. 

Recognising the influence of connectivity to a "flexible" column on the response of a 

flush end plate joint, a model was developed in the early 1980s
6

.
19

. The joint 

response was expressed in terms of initial stiffness and plastic capacity, with the 

simplified assumption of an elastic-perfectly plastic form of curve-fit. 

Yee and Melchers6•2o developed a method, based on the same principles, for the 

analysis of bolted end plate eaves connections. The exponential representation: 
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M = M 1- exp I P + K cP [ [
-(K -K +CCP)PJ~ 

P M f! ... 6.6 
f! 

was assumed, where Mp is the plastic joint resistance, K; and Kp define the initial and 

strain-hardening stiffnesses respectively, and C is an empirical coefficient for 

calibrating the equation against test data. 

Methods based on simplified analyses of the main joint components show that it is 

possible to estimate the moment-rotation curves without resorting to testing. 

Eurocode 3:Annex J6.21 contains a simplified analytical model for predicting the joint 

behaviour. Mechanical models have been developed to calculate the ultimate joint 

capacity and empirical equations adopted for the description of the elasto-plastic 

joint stiffnesses. 

6.1.2 Mechanical models 

This group of models can represent the joint behaviour throughout the whole range 

of the moment-rotation curve, relying only on theoretical considerations. This can be 

achieved by assembling the contributions of sets of rigid and deformable components 

which exist in a joint arrangement. The non-linearity of the whole joint is then 

accounted for by analytically derived inelastic force-displacement relationships. The 

accuracy with which mechanical models can predict joint response is related to the 

number of components incorporated. 

Wales and Rossow6.
22 considered the major zones (tension, compression) within a 

double-web-angle joint and developed a component-based model. The joint was 

idealised as two rigid bars linked by a homogeneous continuum of independent non­

linear springs, which simulate segments of the double web-angle. The trilinear load­

displacement relationships for the tension and compression springs were determined 

by simply analysing the segments under tension and compression forces. The model 

incorporates the coupling effects between moment and axial force applied to the 

joint. The ability of the model to account for axial forces is an important feature, 
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since it may influence the characteristics of the moment-rotation curve, especially at 

elevated temperatures when these forces are unavoidable. 

Treating the tension and compression zones as aT-stub model, Kennedy and 

Hafez6
•
23 describe the response of a partial-depth end plate joint. The analytical 

formulation deri ved for the T -stub models was validated against test data. In order to 

define the moment-rotation characteristics of the joint, a trial and error location of 

the centre of rotation was carried out. When compared with test results, conducted 

by the same researchers, a close agreement in terms of ultimate capacity occurred, 

but in terms of the corresponding level of rotation the results were rather erratic. 

Towards the mid-1980s the model by Wales and Rossow had been extended to 

predict the behaviour of all types of angle joints, subjected to bending and shear. 

The angle segments within the joint were modelled using mathematical expressions 

(in the form of equation 6.5) and then calibrated by curve fitting against experimental 

results. A limitation of the approach is that the validity of the results is restricted to 

the range of the calibration data. 

Tschemmernegg et al.6.24.6.25 used the component-based approach in combination 

with empirical functions in order to describe the behaviour of steel and composite 

joints. The model consisted of an arrangement of springs describing the tension, 

compression and shear zones within a joint. The springs were calibrated against 

experimental data. By superposition of the deformability of the springs the moment-

rotation curve was obtained. 

Madas6•2 has developed a series of spring-stiffness models for a range of both bare 

steel and composite joints. The form of model adopted was similar to that described 

by Wales, Rossow and Tschemmernegg et al. but also included the effects of axial 

forces developed as a result of a cyclic loading. A close correlation was observed 

with existing test data in terms of both the overall form of response and the observed 

mechanisms of failure. 

De Stefano et al. 6.26 developed a mechanical model in order to simulate the 

behaviour of double-angle joints subjected to large inelastic cyclic bending. The 

model is purely mechanical and needs only the stress-strain law of the material and 

the geometric properties of the joint. The joint is simulated by a series of rigid and 

deformable elements, where the constitutive relationship of the deformable elements 



Steel loint Modelling 
178 

is derived from the response of beam elements subjected to bending. By using the 

kinematic hardening rule the model was extended into the cyclic range. 

In EC3: Part 1.1 Annex J6.21 the component-based model is used for defining key 

parameters which control the joint behaviour. These parameters are the initial 

stiffness, moment and rotational capacity. However, due to the lack of experimental 

data to describe the component or even the joint response at elevated temperatures, 

elevated-temperature component-based models are limited and restricted to single 

joint types. Based upon EC3 component approach, Leston-Jones6.3 and AI-Jabri6.4 

proposed a component model for bare steel and composite flush end-plate joints at 

elevated temperatures. 

6.1.3 Finite element analysis 

Finite element analysis of steel joints at ambient or elevated temperatures is the most 

accurate way of representing the joint characteristics. The use of finite element 

analysis models permits the complex representation of components and the full non­

linear joint response, incorporating the influence of welds and contact zones. 

However, its application is complex and requires careful construction of the finite 

element joint representation. The effects of bolt slippage or contact surfaces between 

bolts and flange are complex to model and require a new finite element formulation 

(Baniotopoulos6.27
). Nevertheless, the method has the potential to describe in great 

detail the joint behaviour. The use of finite element modelling for studying the joint 

behaviour started in the early 1970s, as the application of computers in solving 

structural problems developed. 

Initially Bose et al. 6.28,6.29 studied the behaviour of fully welded beam-to-column 

joints at ambient temperature. It was considered that the column web under 

compression was the critical component, and it was analysed in isolation as a plate 

strength problem for internal and external joints. The effects of strain-hardening, 

buckling and material plasticity were accounted for in the analysis and the results 

compared against experimental results in terms of critical loads only. 

The investigation of the column web under compressive forces, using finite element 

analysis, attracted the attention of other researchers. Hendrick and Murray6.30 
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performed a 2D inelastic finite element analysis in order to determine stress 

distributions and yield patterns in the column web of an end plate joint. Patel and 

Chen6
.
31 investigated the behaviour of joints where the beam was either fully or 

partially welded to the unstiffened column. The joints were analysed using a 

general-purpose finite element package (NONSAP) in a 2D model with plane stress 

isoparametric elements. Three-dimensional finite element analyses were conducted 

by Atamiaz and Fre/·32 on unstiffened welded joints using shell elements. The 

studies compared satisfactorily against experimental results, suggesting that finite 

element analysis presents a tool of sufficient accuracy to model the response of 

welded joints. 

When considering bolted connections within steel joints, the finite element analysis 

becomes more complicated. The reason lies in the influence of complex boundary 

conditions, including friction, slip and interface contact, all of which interact in a 

manner that is not yet fully understood and remains difficult to monitor 

experimentally. An attempt to tackle the problem was performed by Richard et al. 6.33 

who considered the response of a single web-plate joint, modelling the response of 

the joint in its entirety, along with the connected beam. An inelastic finite element 

was developed to simulate bolt behaviour based on statistical evaluation of tests on 

single bolts. 

The contact surfaces generated by the tensile force action in a bolted joint create the 

need to use more complex bolt models. Krishnamurth/
34 

developed a sophisticated 

finite element model that incorporates the influence of changes in the contact zone 

between end plate and an idealized rigid support, and bolt pre-loading. The close 

correlation between the numerical results and experimental data demonstrated the 

importance of including the bolt heads and welds in the numerical models in order to 

define accurately the joint response. 

More recently various software companies have developed codes that have the ability 

to model the behaviour of joints in terms of complex boundary conditions such as 

slip, friction and interface contact between elements. Sherbourne and Bahaari
6

.
35 

developed a methodology based on finite element modelling to investigate the 

behaviour of bolted joints using the ANSYS code for equivalent 3D analysis. The 

model was examined for end plate joints with commonly used end plate thicknesses 

and the predicted results were within the range of accuracy of experimental values. 
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Choi and Chung
6

.
36 

used the ADINA code to model extended end plate joints with 

and without stiffeners in the column web. The effect of bolt pretensioning and the 

shapes of the bolt shank, head and nut were taken into consideration in the 

modelling. A simple yet efficient algorithm with a new gap element was employed 

to simulate the interaction between the end plate and column flange. Again the 

analytical results were compared against test results and the conclusion was that the 

proposed model could properly simulate the actual behaviour of end plate joints. 

Bursi and Jaspart6
•
37 used ABAQUS, initially for calibration of finite element 

analysis against test data and then to set up a 3D model to predict both the 

displacement and stress fields of isolated extended end plate steel connections. The 

numerical results, which were compared with the experimental ones in terms of 

stiffness and strength, allow the reliability of finite element models to be assessed 

and commented upon. A similar analysis was performed by Troup et al.6
•
38 using 

ANSYS. Simplified bi-linear stress-strain curves for the steel sections and bolt 

shank were adopted. Material non-linearity has been considered for steel members 

and connecting components, together with geometric non-linearity due to the 

changing area of contact between faces of the end plate or T -stubs. An encouraging 

correlation between the model and test was observed, with good comparisons of the 

stiffnesses in both thick and thin plate conditions. 

In terms of modelling the behaviour of different joints at elevated temperatures the 

work conducted so far is limited, due to the large number of parameters which need 

to be considered and due to the small number of fire tests conducted to date. 

Based on an ambient-temperature end plate model, Liu6
.
39

,6.40 developed an elevated 

temperature model incorporating material plasticity and deterioration with 

temperature, non-uniform thermal expansion across a section, and large deformation 

at high temperatures. The response of bolts and the contact 'link' between the 

column flange and end plate was simulated using a beam element with special 

characteristics to take into account the behaviour of bolts during the course of 

expansion at elevated temperatures. Verification of the described model was based 

mainly on two tests of extended end plate joints by Lawson
6
•
41

• A reasonable 

simulation of joint response was achieved for both joints, and failure was defined by 

the joint rotation exceeding 100 millirads. The cause of any discrepancy between the 
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results was suggested as being the limited information about temperature 

distributions and actual stress-strain relationships. 

More recently EI-Houssienl·42 has performed analytical studies to evaluate the 

moment-rotation stiffness, bolt forces and stresses for semi-rigid extended end plate 

joints at ambient and elevated temperatures. The objective was to develop simple 

prediction equations, which would contribute to the understanding of the behaviour 

of different joint components at elevated temperatures. These equations could be 

used for design of common joint types under the effect of different thermal loads 

with considerable accuracy. 

6.1.4 Summary of joint modelling techniques and approaches methods 

The behaviour of steel joints may be represented by various types of models. These 

have been considered in some detail for two reasons: 

a) It is necessary to incorporate the non-linear form of moment-rotation 

response observed for joints within numerical frame analysis models, to 

ascertain the resultant influence on frame behaviour. The models must be 

sufficiently accurate, and compatible with the frame analysis tools. 

b) Due to the difficulties in performing actual steel joint tests, especially at 

elevated temperatures, there is a need to develop forms of joint models which 

can predict the moment-rotation response of a broad range of commonly used 

steel joint types without recourse to testing. 

Global models result in expressions which describe joint behaviour very accurately, 

but the limitation is that they cannot be used outside the range of their calibration 

data. In addition, because they are calibrated against specific test data, it is very 

difficult to follow a different failure mode when the material and geometrical 

properties of the joint are changed. Nevertheless, global models are very effective 

for design purposes as well as for implementation in frame analysis programs. 

Existing mechanical models are, in principle, the most suitable provided that the 

load-deformation characteristics of the key components within steel joints are 

known. Their advantage over global models is that moment-rotation curves can be 
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predicted for a range of joint parameters, without using experimental data. To date 

the application of spring-stiffness models at elevated temperatures has not been 

considered. It is felt that the use of spring-stiffness models compares favourably 

with other forms of modelling due to the combination of efficiency and the ability to 

accurately follow the full non-linear range of joint response. 

In terms of joint complexity, finite element analysis models can lead to accurate 

results, taking into account the complex interaction between joint components, bolt 

action, boundary conditions and contact zones. Therefore, modelling of joints by 

finite elements can save money and time against actual testing for collecting data 

over a wide range of joints. However, for frame analysis the use of finite element 

models, including the joints, would be prohibitively expensive in time and money. 

Mathematical relationships can be implemented more easily in frame analysis 

programs. Recent work by Liu has extended the scope of finite element modelling to 

include the effects of temperature. The results from experimental fire tests6
.
3

,6.4 

compared with his finite element results have demonstrated the applicability of the 

model. The down-side of this kind of modelling is its complexity and computational 

requirements, which make its use in design very limited. 

6.2 ELEVATED-TEMPERATURE SPRING STIFFNESS MODEL 

As already discussed, the component-based approach compares favourably with all 

other analytical methods since it combines economy with effective and predictive 

application. As explained earlier in Chapter 2 the joint behaviour can be modelled 

by assembling the contributions of individual components, representing the joint as a 

set of rigid and deformable elements. The behaviour of a joint as a whole may be 

obtained by super imposing the stiffnesses of individual components in the 

compression and tension zones, if it is assumed that the interaction between 

connected components has a negligible effect on the response of individual 

components. As a result, the components are analysed in isolation as described in 

Chapters 4 and 5, and due to their non-linear response it is then possible to predict 

variations in joint failure modes and deformations resulting from changes in 
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geometry, material properties and temperature distributions. At elevated 

temperatures, the influence of thermal expansion is neglected (this will be 

investigated and discussed in a later chapter in this study). The joint model to be 

presented applies to a balanced two-sided joint, in which there is no shear 

deformation due to out-of-balance moments. 

The joint is modelled principally as a two-dimensional problem and the rotation is 

assumed to occur about the centre-line of the lower beam flange. Individual springs 

are used to simulate the stiffnesses of the individual components, and in order to 

simplify the solution process the stiffnesses of all components acting in the tension 

zone are grouped and considered as a single spring of equivalent stiffness. The 

idealised representation of a flush end plate joint is illustrated in Figure 6.1, where 

the components contributing towards overall joint stiffness may be summarised as in 

Table 6.1 below: 

Table 6.1 Principal zones within a steel joint 

Tension Zone (Kt) 

First bolt row T-stub stiffness, KJ (Bolt, end 

plate and column flange stiffness) 

Second bolt row T-stub stiffness, K2 (Bolt, 

end plate and column flange stiffness) 

Compression Zone (Kc) 

Column web stiffness, K(, 
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According to EC3:Annex t·ll the final step in the procedure, as described in Chapter 

2, is the assembly of the components in order to determine the moment-rotation 

characteristics of the joint. This means calculating the ultimate resistance of the 

joint, which is given by: 

... 6.7 

where z is the lever arm corresponding to the equivalent tension spring as shown in 

Figure 6.1 and given by the equation below: 

t(K;h/) 
Z=..:...I=:.:....I_-

t(KA) 
... 6.8 

1=1 

The overall rotation of the joint is expressed by: 
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... 6.9 

According to the EC3:Annex J component model, which is based on linear-perfectly 

plastic behaviour of a steel joint, it is inevitable that some discrepancies between the 

actual non-linear test results and predicted values will occur. This is not the case for 

the current model simply because the component models were developed up to 

failure and exhibit non-linear behaviour. 

The component model results have been validated against test results performed by 

Leston-Jemes6.3 and AI-Jabri6.4 in studies of bare-steel flush end plate joints at 

elevated temperatures. Details of the comparisons are presented in the following 

section. 

6.3 VALIDATION OF JOINT MODEL 

AI-Jabri performed several tests on bare steel and composite joints at elevated 

temperatures. A cruciform arrangement was used consisting of two 254x 102x22UB 

Grade 43 beams 1700mm long, symmetrically framing into the flanges of a single 

152x152x23 UC Grade 43 column 2700mm in length as shown in Figure 6.2 below. 

The test programme included flush end plate joints; these tests were used for 

comparison with the component model. 
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Figure 6.2 Elevated temperature flush end plate joint test arrangement
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3

,6.4 

This is a popular type of joint, being simple to fabricate and neatly contained within 

the beam depth. In order to obtain an accurate representation of the joint 

characteristics over a reasonable range of temperatures, four tests were conducted at 

constant load levels (4, 8, 13 and 17 kNm respectively) where the temperature was 

constantly increasing by 10 DC/minute. The load levels were selected based on the 

calculated moment capacity according to EC3:Annex J. AI-Jabri carried out the tests 

by applying a constant moment, and then applied temperature by following a 

standard fire curve. During the fire tests rotations were measured using 

inclinometers and displacement transducers, and temperatures were measured using 

thermocouples attached at different locations in the joint. The moment applied on 

each side of the joint was kept constant. The geometrical details of the joints are 

shown in Figure 6.3 below and full details of the tests are given by the AI_Jabri
6

•
4

,6.43. 
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-

A simplified model analysis was carried out on T -stubs, as described in Chapter 4, 

taking into account the difference in temperatures between the flange and the bolts. 

The T-stubs were analysed as arrangements with four bolts (Figure 6.3, two top bolt 

rows), as shown in Figure 6.4 below. The column T-stub arrangements treated in the 

analysis, consisted of the column flange and web, and for the end plate consisted of 

the end plate and beam web. In order to calculate the resisting forces and 

deflections, the concept of effective length was used as given in EC3:Annex J6.21. 

The response of the column web under compressive forces was also determined as 

described in Chapter 5. 



Steel Joint Modelling 

F 

F F 

Figure 6.4 Plan and overall view of the effective T-stub arrangements used for the 

simplified analysis 

As explained earlier, the test results were presented in terms of rotation and 

temperature at a constant moment on both sides of the joint, eliminating the effects of 

shear in the column web. By taking into account the four components emerging 

from the joint arrangement (Table 6.2), three in the tension zone and one in the 

compression zone, the joint response could be determined by the analytical 

procedure. 

Table 6.2 Principal components within the compression and tension zone 

of a steel joint 

Tension Zone Compression Zone 

Column web in bending (bolts in tension) Column web in compression 

End plate in bending (bolts in tension) 

Column web in tension 

The comparison between the component model and the test results are presented in 

Figure 6.5, and it can be seen that there is a good correlation between them. From 

the comparison it can also be seen that initially the simplified model over-predicts 

188 
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The results obtained from the component model at ambient temperature are shown in 

Figure 6.6 below. Two test curve are hown' one relates to rotations measured 

directly using an inclinom ter and the other is the rotation calculated from 

displacement reading . 
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E 
0 
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Rotation: Millirads 

- Model Tes t-Clinom ete rs - Test-Dis placem ents 

Figure 6.6 Comparison of ambient temperature model results with Leston-Jone's 

flush end plate tests 

It is obvious that th re is a go d agreement between the results over the full range 

(elastic and elasto-plastic regions) of the joint response. In Figures 6.7-6.11 the 

results at elevated temp rature are plotted against the component model results. The 

accuracy seems to be within acceptable limits for design purposes. Once again, 

where the moment is large (15, 20 and 25 kNm), slip appears to have occurred. 
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6.4 CONCLUSION. 
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Due to the large number of joint types and arrangements used in building 

construction it is unrealistic to develop characteristics for each by testing. A 

simplified spring-stiffuess model (component model) has been presented for a flush 

end plate joint. The simplified component model offers an alternative solution to 

minimise the reliance on experimentation to investigate the joint response (and thus 

reduce the expense and time) a well as easing the numerical complexities associated 

with finite element modelling. The model was assembled by considering the 

contributions of individual elements and representing the joint as a set of rigid and 

deformable components. Multi-linear modelling was adopted, neglecting the 

interaction between connected elements. 

Comparing first the simplified model results with Al-Jabri's fire tests, as shown in 

Figure 6.5, the model generates good results, and also accurately predicts the failur 

mode in all cases. The failure mode observed from the actual fire tests included end 

plate local deformations, particularly around the top bolt row, and this was 

accompanied by deformation of the column flange in the tension zone and significant 

deformation of the column web in the compression zone. The model predicted the 

same failure mode. The ultimate temperature that each test could sustain was due to 
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the ultimate capacity of the column web under compressive forces. The presentation 

of the results in a temperature-rotation curve form (see Figure 6.5) is rather unusual, 

but there was too little information to produce moment-rotation curves at elevated 

temperatures. Leston-Jones and AI-Jabri both gave Ramberg-Osgood curve-fit 

values to produce elevated-temperature moment-rotation curves, but some of these 

were based on only two test points. 

The failure mode observed by Leston-Jones was different from that observed by Al­

Jabri, because a thicker end plate (l2mm) was used. The failure mode included 

significant deformation of the column web in the compression zone and the column 

flange in the tension zone, whilst there was little damage either to the beams or the 

end plate. The simplified model was able to show the same failure mode. From the 

test results shown in Figures 6.6-6.11 it is obvious that the accuracy of the simplified 

model is within acceptable limits for design purposes. 

The novelty of this simplified model is that it can predict the ultimate capacity and 

also, with acceptable accuracy, the rotations within a steel flush end plate joint at 

elevated temperatures. It is also worth mentioning that it provides a better 

representation of the joint behaviour if it is compared with EC3:Annex J analysis at 

ambient temperature. In EC3: Annex J the ultimate moment capacity of this 

particular flush end plate joint was calculated to be 19 kNm with unlimited rotation 

capacity. Using the current model this is 45 kNm. In fact the actual joint reached a 

moment of 40kNm and around 100 millirads rotation. In contrast some fire tests 

were conducted with moments above 19 kNm (Leston-Jone's tests; one at 20 kNm 

and one at 25 kNm constant moment). 

A further attraction of this model is that different temperatures can be used for the 

elements in the simplified model (i.e. bolts, column flange, end plate and column 

web). Therefore, when the components are assembled in order to predict the overall 

moment-rotation behaviour, the actual temperature profile measured around the joint 

during a fire test may be used. 

The use of component-based models has proved desirable due to their simplicity, 

efficiency and the advantage that they can easily be modified to account for 

alternative arrangements. 
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Chapter 7 

Steel Joint Moment-Rotation-Thrust Response 

7.1 INTRODUCTiON 

In the analysis of a frame, joints are routinely idealised as being either perfectly rigid 

or perfectly pinned. However, the real behaviour of a joint (the semi-rigid response) 

cannot be incorporated into an analysis unless it can be quantified accurately, which 

has proved to be a difficult task. 

Studies of the response of steel frames to loading, not only at ambient temperature 

but also at elevated temperatures, have required experimental and analytical 

investigations of the behaviour of steel joints. It is well known that a complete 

structure behaves better than its individual members in isolation due to the influence 

of frame continuity. Unfortunately new fire resistance design codes have posed their 

basic calculation methods in terms of isolated members, and as a result the issue of 

restraint to thermal expansion has not been addressed at all. They do, however, 

allow designers to establish fire resistance, within their general principles, using 

validated procedures or suitable software. To examine the differences in behaviour 

between isolated members and members as parts of a completed frame, in particular 

the effect of restraint to thermal expansion, an 8-storey full-scale building frame was 

constructed in 1994 at BRE's Large Building Test Facility at Cardington,·l".2".3. 

Observations during the fire tests at Cardington suggest that it is inadequate to place 

reliance solely on the purely rotational characteristics of steel or composite joints, as 

found from furnace tests or numerical modelling. Local inelastic buckling of the 

lower flanges of the steel beams was seen on several occasions in heated zones 

which experience combined hogging action and axial compression due to restraint to 

thermal expansion. In some cases, again in zones of high restraint to thermal 
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expansion, partial-depth end plates have fractured adjacent to the weld during 

cooling when a member which has undergone considerable compressive strain due 

to restrained thermal expansion in heating, contracts as it regains stiffuess. The axjal 

forces developed in the beam due to restraint to thennal expansion can change 

dramatically the frame re ponse and it has become clear that the rotational behaviour 

of a joint depends on the local responses to the net axial forces in its parts, which 

provide the greate t contributions to trength and stiffuess. 

The main objectives of this chapter are to highlight and describe: 

a) The influence that an axial force can have on the moment-rotation 

characteristic of a steel joint 

b) The frame re ponse re ulting from a finite element analysis that takes into 

account moment-rotati n-thrust characteristics for the joints. 

To fulfil the abo e obje ti e, fir t a simplified component-based model was 

developed to predict the m m nt-rotation-thrust characteristics for a steel joint, and 

secondly a finite elem nt analy is was perfonned on a 2D frame, using the finite 

element packag VUL de eloped at the University of Sheffield in order to 

model frame beha i ur in fir nditions. The two different joint configurations that 

were taken into account in th finite lement analysis are shown in Figure 7.1 below. 

M 
M 

/ 

(a) pplied Moment (b) Moment-Axial Force 

Figure 7.1 Moment-Rotati nand Moment-Rotation-Thrust configuration of a steel 

joint 
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7.2 MOMENT-ROTA TlON-THRUST MODEL 

When considering frame response at elevated temperatures it is necessary to consider 

axial forces which are developed due to the restraint to expansion of the heated beam 

because of the adjacent cooler frame elements. These mdal forces are transferred 

through the joints, resulting in modification of their moment-rotation characteristics. 

One simple way to include these axial forces into the component-based model (as 

described in Chapter 6) is outlined next. Ideally, an analysis would permit the use of 

non-linear horizontal "springs" directly in modelling of structural sub frames, rather 

than using them to attempt to construct four-dimensional moment-rotation-thrust­

temperature surfaces for each type of steel joint. However, in the finite element 

program VULCAN used to observe the response of a steel sub frame under fire 

conditions. it was necessary to input a moment-rotation curve, modified if necessary 

for the effects of temperature and axial force. 

Considering the joint arrangement described 10 Chapter 6, the component-based 

model (as shown in Figure 7.2) idealises the beam-to-column joint as two rigid bars 

connected by two non-linear springs simulating the tension and the compression 

zones. In this figure K, and Kc are the tension and compression zone spring 

stiffnesses respectively. ~ is the lever arm and the subscripts t and c denotes tension 

and compression respectively. The load-deformation characteristics of the two 

springs are shown in Figure 7.3. The moment-rotation-thrust response is predicted 

by considering first the effect of an axial force (calculated from VULCAN) on the 

"spring" arrangement. as shown in Figure 7.4(a), where the tension and compression 

zones each take half of the axial load (P-axial force). The sign convention of the 

forces is compression=negative and tension=positive. 
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Figure 7.2 Idealised bare-steel spring stiffuess model 

Ft. 1----------­

Fo 

Fa 

Fu 

FC2 

Kc _ __ ~-----l FC3 

FC4 

Figure 7.3 Load-deformation characteristics of the tension and compression zones 

202 

The next step is to consider an applied moment, which generates another set of 

tension and compres ion fore s as hown in Figure 7.4(b). 
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p 
. _._ ........... -

z z 

(a) Applied Axial Force (b) Applied Moment 

Figure 7.4 Idealised bare-steel moment-axial force model 

The resultant tension and compres ion forces will generate the final steel joint 

moment and rotatio~ which are given by the expressions: 

M+>(~)]; +:+(;)]; =(F,;r:} ... 7.1 

... 7.2 

In summary the calculation procedure involves the assumption of an axial force (or 

an estimate from an analy is using VULCAN) and then for a given moment value the 

resultant tension and c mpre sion forces can be calculated. The displacements 

corresponding to tho e force are predicted from the Load-Deformation 

characteristics of each zon (Figure 7.3) within a joint, and finally the rotation is 

calculated according to tho e di placem nts. 
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Figure 7.S shows the influence of the axial force (P=-70 leN in compression and 

P=70 leN in tension) on the joint response when it is compared against Leston­

Jone's7.4 test at ambient temperature (P=O). 

60 ----------________________________________________ ~ 

50 

P=O 
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~ 30 
• E 
o 
~ 20 
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O --~-_-

o 10 20 30 40 50 80 70 60 90 100 110 120 130 140 150 

Rotation: Millirads 

Test-Inclinometer 

Figure 7.5 Influence of axial force on rotation behaviour at ambient temperature 

It is obvious from Figure 7.S that the axial force P has a significant influence on the 

moment-rotation characteristics of the joint. The differences are in terms ofstiffuess, 

ultimate moment and rotational capacity of the joint. 

7.3 DE 'RlPTlON OF THE Fl ITE ELEMENT PROGRAM VULCAN 

Despite the availabilit of general-purpo e finite element packages that can simulate 

the effect of joints within tructural frames at elevated temperatures, research­

oriented models are often preferable due to their reduced computing requirements. 

During the last few year , ignificant ad ance have been made at the University of 

Sheffield in two and thr -dimensional computer modelling of structural frame 

behaviour under fire conditions u ing the finite element program developed by 

Bailey7.5. 
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The program was originally based on an eXIstmg two-dimensional program, 

INSTAF, developed by El-Zanaty and Murray'·6 to investigate the response of steel 

frames at ambient temperatures, incorporating geometrical non-linearity and the 

spread of yield. It was subsequently extended by Saab7.7 in 1990 to include elevated 

temperature material properties and Najjar7.S proceeded to include three-dimensional 

behaviour of bare steel frames in fire. 

Significant advances were made by Bailey'·S,7.9 who incorporated simple slab 

elements, spring elements, lateral torsional buckling and the effects of cooling by 

allowing extensive strain reversal within the material's constitutive relationship7.1o. 

Furthermore he introduced the temperature-dependent joint characteristics. More 

recently Haung7.11.7.12 has made major improvements to the slab model, incorporating 

material and geometric non-linearity within laminated flat shell elements. At each 

stage of development validation has been conducted against experimental data. 

Semi-rigid joint elements were included in the program, essentially as spring 

elements to which non-linear characteristics could be assigned to any degree of 

freedom at a node and which could degrade with temperature. So far only rotational 

characteristics have been assigned to these joint elements in frame modelling. The 

same spring elements have been used in the current parametric study which 

investigates steel frame response at elevated temperatures, but the moment-rotation 

characteristics were calculated using the component model as described in Chapter 6, 

except that on this occasion the axial forces due to thermal expansion of the beam 

were taken into account. 

7.3.1 Parametric studies on sub-frame arrangement 

The analysis of sub-frames, as opposed to complete structures, is preferable in terms 

of computational requirements. Also the number of runs required to investigate fully 

the influence of semi-rigid joint characteristics on sub-frame behaviour is smaller 

than for a complete frame. For these reasons, when conducting a parametric study it 

is very useful to consider "representative" sub-frames instead of a complete frame. 

A number of sub-frames have been suggested as being suitable for modelling beam 

response in rigidly jointed frames in 8S5950
7
.
13 

as shown in Figure 7.6. 
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r----+- Span Considered 

Sub-frame 1 (Inner Beam) Sub-frame 2 (Outer Beam) 

Figure 7.6 Sub-frame idealisations considered in BS5950 

EI-Rimawi
7

.
14 

performed analytical studies to demonstrate that the forms of sub­

frames shown in Figure 7.6 are capable of producing results that are reasonably 

comparable with those from fuU-frame analysis, based on studies of the response of 

the Cardington full-scale frame7
.
1 subjected to elevated temperatures. 

Further extensive parametric studies have been conducted7
.4,7.6,7.15 using similar sub­

frame arrangements to investigate the influence of joint characteristics on beam 

performance at elevated temperatures, using either experimental or postulated 

moment -rotation characteristics. 

A sub-frame layout used in an experimental and analytical study conducted by 

Sheffield and Manchester Universities7
.l

6
,7.17, which investigated the behaviour of 

axially restrained steel beams in fire, has been adopted in the present study in order 

to observe the influence of coupling between axial force and moment on the 

behaviour of the frame under increasing temperatures. 

The experimental investigation was performed on a "rugby" goal-post structure 

arrangement, shown in Figure 7.7. The main objective was to measure axial forces 

due to the restraint to expansion of the heated steel beam, so the columns and joints 

were weJJ protected against temperature rise to avoid local failures. The tests did not 

provide enough information to compare the test results with the current finite 

element results, taking into account the joint moment-rotation-thrust characteristics. 
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However it was considered an advantage to use the same joint configuration 

because the magnitude of the beam axial force obtained from the elevated 

temperature tests had been validated against VULCAN finite element results. 

AU dimen ion in mm 

3000 

Protected Loading jacks 

P'roltected Column 
I+-~t-f--f 

152x152x30UC 

Figure 7.7 Testing arrangement 

The columns of the "rugby" goal-post structure arrangement were secured in position 

at the top and bottom by four pin load-cells and the transverse load on the beam was 

applied using two independent hydraulic jacks. The joint configuration used in the 

experimental investigation is shown in Figure 7.8. 
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Figure 7.8 Flu h end plate joint configuration 
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For the above joint details. the moment-rotation characteristics at elevated 

temperatures were calculated using the component-based model as described in th 

previous Chapters 4-6. The joint behaviour was simulated in VULCAN as a 

rotational spring element and the moment-rotation characteristics of the pflng wer 

presented as Ramberg-Osgood functions, shown in Figure 7.9. 
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Figure 7.9 Ramberg-Osgood curves at elevated temperatures 
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From frame finite element analysis using VULCAN, keeping the joints unprotected 

during the frame analysis, a set of compression and tension beam axial forces were 

calculated (Figure 7.1 0). 
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Figure 7.10 Axial forces in beam at elevated temperatures (positive=tension) 

Using these axial forces in the component-based model described earlier in this 

chapter, which takes into account the axial forces, a new set of moment-rotation­

thrust curves were predicted at elevated temperatures. A typical comparison of joint 

characteristics with and without axial force at 500°C is shown in Figure 7.11. 
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Figure 7.11 Influence of axial force on joint behaviour at 500°C 
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From the comparison above it is obvious that for this particular joint there no 

significant difference in the joint stiffiless when the axial compression force of 

P=-111 leN is considered. The differences are more obvious in. terms of ultimate 

moment capacity and, more importantly, in terms of joint rotational capacity. 

By implementing the new set of moment-rotation-thrust curves in the finite element 

analysis the frame response is compared in terms of beam mid-span deflections in 

Figure 7.12 below, against the frame behaviour without any axial forces influencing 

the joint behaviour. 
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-200 

-250 L---------------------------------------------~ 
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Figure 7.12 Comparison of frame response when axial forces are considered 

The difference in the frame response between the two cases is not very large, but this 

is as expected because the joint response was more or less the same in terms of 

stiffness as described earlier. The obvious difference was in the joint rotational 

capacity, as shown in Figure 7.11 , which in some cases could prove to be a very 

critical factor. The reason that VULCAN is not picking up this limitation is because 

the joint response was presented as a Ramberg-Osgood function, which results in an 

infinite value for rotation as the ultimate capacity is reached. It is also believed that 

for this particular frame, in which the restraint to thermal expansion was prevented 

only by the bending stiffuess of the columns, the axial forces developed in the beam 
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(Figure 7.10) were not of sufficient magnitude to create a significant change in the 

overall behaviour of the frame under fire conditions. 

The failure mode for this particular joint, predicted from the component analysis, 

was by yielding of the column web under transverse compressive forces. It is very 

important to notice the rotational capacity of the joint, which is limited to 58 

millirads when P=-111.48 kN (compressive force) is applied to the joint. From the 

designer's point of view it is very important to recognise these limitations in order to 

be in a position to decide whether to fire-protect the column web or any other critical 

component in order to avoid plastic hinges in the joints of the structural frame. 

7.4 CONCLUSIONS 

It has been shown in this chapter that there is a difference in the joint response when 

axial forces are considered, and that when incorporating this behaviour into a finite 

element frame analysis the frame response will also be affected. 

It is very important to consider rotational capacity when simulating moment-rotation­

thrust joint characteristics, because in some cases this could prove to be a limiting 

factor in the overall frame response. These limitations should be avoided, and the 

advantage of using a component-based model is that it can predict the failure mode 

of a joint with reasonable accuracy so that the critical components can be identified 

and fire-protected in real fire scenarios. 

As a concluding remark, further finite element studies should be performed, with and 

without fire-protected joints, in order to understand better the overall behaviour of a 

structural frame. The use of non-linear horizontal "springs", to represent the major 

zones within a joint, would in fact be a better simulation of a joint if used directly in 

a finite element analysis of structural sub frames, rather than using only one 

rotational spring element per joint. 
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Chapter 8 

Conclusions and Further Recommendations 

8.1 INTRODUCTION 

To date the provision of adequate fire resistance for steel and composite framed 

structures has involved the use of insulating material for the protection of structural 

members such as beams. columns, slabs etc. Engineers design the structural frame 

for normal conditions and then apply fire protection, resulting in an increase of the 

structure's overall cost. This is analogous to designing a building to withstand wind 

loading by enclosing it within a four-sided wall. 

It is more logical from an engineering perspective to design the structure to withstand 

fire. A new design approach is emerging in which buildings are designed on the 

basis of the real strength of the structure under fire conditions, as is done for other 

limit states. This design approach comes under the new Fire Safety Engineering 

concept and as Green et al. 8.1 highlights, the potential benefits are many and varied: 

a) Opportunities to reduce capital cost whilst maintaining safety, 

b) The development of design solutions that enable the speed of construction to 

be increased, 

c) Improvement of safety in the most cost effective way, 

d) Opportunity to create a closer relationship and synergy between the design 

and the management of a building, 

e) Support for the concept of construction as a manufacturing process, 

f) A simple means for construction and for clients to innovate. 

In the last two decades this concept has been applied to investigations on different 

isolated structural elements under fire conditions. It was soon realised that real 
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frames, both bare-steel and composite, survive better under fire scenarios than the 

responses of isolated members would suggest. This is partly because structural 

members such as beams, columns and floor slabs interact with each other, enhancing 

the frame resistance. 

The above remark indicates the importance of structural joints on the overall 

response of a frame under fire conditions, and when one considers that the behaviour 

of a joint is still the product of the responses of different zones within it under the 

effects, basically, of horizontal tension or compression, it becomes apparent that a 

breakdown of the joint into "components" (EC3: Annex J8.2) would be very 

advantageous. 

The current study has concentrated on investigating experimentally and analytically 

the different zones and the components within these zones in order to develop a 

component-based model to represent the behaviour of end-plate joints in fire 

conditions. The principles will establish the initial steps in a modelling technique for 

other types of joints, avoiding large numbers of tests in order to collect data on one 

particular joint arrangement. 

8.2 EXPERIMENTAL AND ANALYTICAL INVESTIGATION ON COMPONENTS 

Initially a series of furnace tests were carried out on simple components 

representative of the major zones of tension and compression within a typical end­

plate joint. These were kept fairly small, and were not very complex to perform. 

being tested in uniaxial tension or compression. The complex part was to develop an 

efficient testing arrangement and a robust instrumentation layout in order to carry out 

the large number of high-temperature component tests. 

8.2.1 Instrumentation and testing arrangement 

The experimental investigation was carried out using a testing arrangement and 

instrumentation which were purpose-designed by the author. Although initially 
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designed specifically for the current high-temperature study, the instrumentation 

system provides a good alternative for ambient-temperature testing as well. 

To date, testing of structural elements or frames at elevated temperatures has 

involved the use of displacement transducers, dial gauges, "dumb bells" or 

inclinometers in order to measure displacements and rotations. The advantage of 

using these devices is that they provide accurate and sensitive measurements. On the 

other hand much effort and time has been devoted to fire protection, not only of the 

actual device but also of the wiring which connects the device to the data logger, and 

often several devices are lost during a fire test due to the hostile environment found 

inside a furnace. 

For this reason a displacement measurement device8
•
3
,8.4 which is new to fire 

engineering testing was investigated and applied. This gave the accuracy, sensitivity 

and robustness needed to carry out successfully the numerous elevated-temperature 

component tests. The image acquisition and processing technique involved taking 

images at different load steps, for a particular high-temperature component test, and 

then processing the images using image processing software, and finally recording 

the displacement results in an output file. 

In order to use this technique, the furnace needed to be purpose-built and designed, 

to give a clear view of the specimen and to accommodate the video cameras for 

capturing the images. An electric furnace capable of reaching 1100 °c was used, 

with one cubic metre capacity and view-ports in front and on top for the video 

cameras. It also included a fan, which helped to keep the temperature inside the 

furnace uniform. The tension and compression forces were applied, using a 

hydraulic jack having 500 kN capacity, driven by a Kelsey controller. The actual 

testing procedure was to take the specimen up to temperature, and then to apply the 

load steps and at the same time capture the images. 

This technique works in favour of long-term elevated-temperature testing because no 

devices are placed inside the furnace so that they are not exposed to the very high 

temperatures, and also nothing is attached to the specimen which could alter the 

properties of the specimen. 

The advantages of using the image acquisition and processing technique are: 
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a) The availability of information in two directions, so it is possible to measure 

displacements in the transverse direction simultaneously, if needed, 

b) The entire testing procedure can be video-recorded, making it possible to go 

back and collect more information by re-examining the behaviour of the 

specimen, 

c) It offers the possibility of better long-term stability than contacting methods 

(no creep of rods). 

The technique worked well, performing reliably and accurately throughout the whole 

experimental investigation. It also provides extra information, such as the failure 

path of the specimen, by reviewing the images at different load steps. This 

information would otherwise be difficult to capture. 

Another important remark concerning the instrumentation and testing arrangement 

was the development of the halogen lamp furnace, which was used to study the 

behaviour of Grade 8.8 bolts at elevated temperatures8
.
5

. The furnace was very cheap 

to construct and was able to reach a specimen temperature of around 1200 Dc. 
Although it was developed for an MSc. project and could perform only isothermal 

tests, (where the specimen was subjected to a constant temperature, stabilized, and 

then tensile load was applied) the furnace has the potential for development and 

further calibration, using a temperature controller and a voltage-control dimmer, in 

order to follow a standard fire curve. In this wayan anisothermal (transient) test 

could be performed, where the specimen is subjected to a constant load and the 

temperature is increased at a pre-determined-rate, with the resulting strains being 

recorded. 

8.2.2 Tension zone 

The first elevated temperature tests were performed on T -stub specimens which 

simulate the tension zone within a steel joint. The three major components within a 

tension zone are: 

a) End plate in bending, 

b) Column flange in bending, 
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c) Bolts in ten ion. 

In total 45 pecimens were tested at elevated temperatures, the main objective b mg 

to investigate the three failure modes shown in Figure 8.1. 

W'//.UhWU~U& 
Failure Mode 1 Failure Mode 2 Failure Mode 3 

Figure .1 Failure modes for the T-stub flange 

The specimen temperature ranged from 20°C to 800°C and were measured u ing 

Type K thermocouple placed at different positions within the flange and bolt . The 

last 25 T -stub pecimens were connected in the arrangement shown in Figure .2 

below, that could be found in a real frame. 

\ .... 
" ...... 

1 ••. •· 
", 

End plate 

J----.--, , , 
...... ' 

" ~ " . .... / 

\ 

I' 

~== 

Figure 8.2 T - tub identification and orientation for extended end-plate joint 

With the above arrangement prying force can still be developed, and due to th 

different geometrical and mechanical properties of the end plate and column flange 
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T-stubs, the failure modes can sometimes be different between them. These failure 

modes were recorded and measured, in both directions, by the use of the image 

acquisition and processing technique. 

From the first tests at elevated temperatures it was obvious that bolt flexibility was a 

key parameter in the behaviour of aT-stub specimen. The use of Grade 8.8 bolts and 

nuts resulted in a nut-stripping failure, so instead High Strength Friction Grip nuts 

were used for the subsequent tests. In order to investigate the mechanical properties 

of Grade 8.8 bolts at elevated temperatures a separate study was carried out, which 

included 16 tensile tests8.5 at elevated temperatures. The results of the study verified 

the use of Kirby's8.6 Strength Reduction Factors and EC3's:Part 1.28.7 Stiffness 

Reduction Factors for analytical studies of the behaviour of T-stubs at elevated 

temperatures. 

From the analytical part of the investigation, a simplified model has been developed 

using plastic theory and mechanics8
.
8,8.9. The model has been extended to predict the 

three failure modes of the T -stub specimen from the geometrical and mechanical 

properties at ambient and elevated temperatures. Furthermore the load-deflection 

results, when compared against the actual elevated-temperature tests, were in 

acceptable agreement considering the complexity of the problem resulting from the 

interaction of flange and bolt forces and the added elevated-temperature factor. 

In contrast the 2D finite element analysis using ANSYS did not generate very good 

results when compared with the actual test results. COST Cl Workgroup (WG6), 

which performed studies comparing 2D versus 3D modelling on T-stubs at ambient 

temperature8.tO, also concluded that 2D finite element analysis is not adequate to 

simulate the overall behaviour of aT-stub under tension force. Factors influencing 

the accuracy of a finite element analysis are: 

a) Mesh of the model (the optimum mesh size), 

b) Simulation of the bolts, 

c) Choice of elements, 

d) Material behaviour, 

e) The contact and gap element simulation between bolts and flange (the most 

important factor). 
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8.2.3 Compression zone 

One of the most important components when investigating steel joints at elevated 

temperatures is the column web under transverse compression forces. 

The main objective during the compression component investigation was to 

determine the ultimate capacity and observe the behaviour of the column web under 

fire conditions. For this reason a total of 29 column tests were performed at ambient 

and elevated temperatures covering a broad range of web local buckling ratios (dis, 

where d is the depth between fillets and s is the web thickness) from 12.7 to 22.38
•
11

• 

By the early stages of this experimental investigation it was realized that the ultimate 

load capacity of the column web was determined by the strength characteristics of 

the specimen. The column sections have thick webs compared to their height, so 

elastic buckling was unlikely to happen. 

It was also realized that the current design codes, BS59508
.
12 and EC3:Annex J8.13 

gave very conservative results for the ultimate capacity of the column section under 

compression forces at ambient temperature when compared with test results. That 

was a major disadvantage, especially when it was proven later in the experimental 

investigation that the ultimate capacity of a column section at elevated temperatures 

could be calculated by mUltiplying the ultimate force at ambient temperature by the 

average value of the two reduction factors, one for strength (at 2% strain) and the 

second for stiffness, given in EC3:Part 1.2
8
•
9
• 

As a result of the discrepancies between the current design codes and the test results, 

a simplified semi-empirical model has been described in Chapter 5, which predicts 

the overall behaviour of the column web at ambient and elevated temperatures. A 

revised empirical formula has also been proposed, based on the results from studies 

of partial edge loading on thick plate girder webs8
.
14

. The formula predicts the 

ultimate web capacity, and correlates well with the actual elevated-temperature test 

results. 

Most importantly the results from a 2D finite element analysis
8

.
15 

of column webs 

under transverse compressive forces highlighted the advantage of using 2D models in 

order to predict accurately the behaviour of the column web component at elevated 

temperatures, without resorting to expensive and complex testing. 
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8.3 JOINT MODELLING AND FRAME RESPONSE 

Defining a suitable expression to represent the joint characteristics at elevated 

temperatures is important for incorporation within analytical analysis. The form of 

expression should represent the joint response in terms of the main parameters, such 

as initial stiffness and moment capacity, and should have the capability of 

representing the entire non-linear moment-rotation response. 

Having investigated experimentally and analytically the main components within the 

tension and compression zones, the principles of the component-based model were 

applied to predict the moment-rotation behaviour of a joint at elevated temperatures. 

The behaviour of a joint as a whole may be obtained by superposing the stiffnesses 

of individual components in the compression and tension zones. This assumes that 

the interaction between connected components has a negligible effect on the response 

of individual components. 

The moment-rotation results obtained from the component-based model, when 

compared against ten elevated-temperature tests conducted by AI-Jabri
8
.
16 

and 

Leston-Jones8.17, were very encouraging. Two flush end plate joint arrangements 

were tested, and these arrangements represent a large percentage of joints used in 

real steel frame buildings. 

The joint components were tested and analytically investigated up to their failure 

point, giving an advantage to the component-based model in accurately predicting 

the failure mechanism and the level of moment and rotation that a particular joint can 

sustain. 

Another advantage of analysing a steel joint at elevated temperatures by dividing the 

different zones into components is that a full temperature profile can be implemented 

into the component-based model. making the representation of moment-rotation 

characteristics more accurate and realistic. 

Finally the influence of axial forces on joint response and overall frame behaviour is 

highlighted in Chapter 7. It is important to consider these tensile or compressive 

axial forces when predicting steel joint behaviour, because they could reduce the 

rotational ductility of the joint and limit the ductility of the structural frame. The 

problem is more pronounced at elevated temperatures where high axial compression 
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forces could be developed in the initial stages of a fire scenario and thus reduces joint 

ductility to a minimum. It is very important for designers to recognise these critical 

ductile components in order to fire-protect them and thus avoid premature failure of 

the steel joints when frame analysis is carried out at elevated temperatures. The 

component-based model, described in this study, is capable of providing this 

information with acceptable accuracy. 

8.4 RECOMMENDATIONS FOR FURTHER WORK 

The current study was the first step in demonstrating the potential for incorporating 

component-based models in order to predict steel joint behaviour at elevated 

temperatures. Having the advantage of being able to predict the behaviour of any 

joint arrangement under fire conditions from geometrical and mechanical properties 

minimises the need to carry out costly, time consuming and complex tests at elevated 

temperatures. 

Major components within a steel joint, in the tension and compression zones, were 

tested and analytically investigated. Furthermore load-deformation characteristics 

for individual or groups of components at elevated temperatures have been collected 

for the first time. There remain other components, which will need experimental and 

analytical investigation. These are the beam flange in compression, the beam web in 

tension and compression, and finally the column panel in shear. 

The influence of compressive axial force on joint response is very important, 

especially when this force could result in column web or beam bottom flange local 

inelastic buckling failure. The latter failure has been observed in the Cardington fire 

tests in several cases, proving that high axial compression forces can be developed at 

elevated temperatures. This local inelastic buckling of the lower flange of the beam 

needs to be further investigated experimentally and analytically because in some 

cases it could limit the ductility of a steel joint. 

The assessment of the influence of joint response on the frame behaviour has been 

limited by the quantity of available test data, although initial studies based on 

postulated moment-rotation-temperature characteristics concluded that this would be 
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beneficial to the fire re i tance of teel structures due to the rigidity of " imple" 

joints. Future experimental and analytical research into the re pon e of joint at 

elevated temperature hould take into consideration the effects of tructuraJ 

continuity and re traint to thermal expansion. Al 0 analytical studie on the fram 

response under fire condition hould be carried out considering the zones invo] d 

within a joint arrangement (tension, compression and shear zone) as " pring" with 

predetermined force-deflection characteristics re ulting from component tudie a 

shown in Figure 8.3 below. 

.... 

-/ 
\ 
\ 
\~ 

. .... -.. -... .... 
..... \: .............................. > 

M 

....................... / 

Figure 8.3 Joint modelling for finite element analysis of frames under fire condition 

Future developments could al 0 be made in the image acquisition and proce ing 

technique. With today' fast technological advance in video camera and digital 

imaging it is fea ible to build a y tern within a reasonable budget and benefit from a 

very fast image acqui ition frame grabber obtaining frames very quickJy, and m t 

importantly having the ad antage of high resolution imaging which result in b tt r 

accuracy when di placement or rotation mea urements are considered . It i al 

possible to fully automate the te ts by making the frame grabber which i 

responsible for triggering the video camera, to interact with the hydrau lic ja k 

controller in order to follow a certain load or di placement controlled path. The rno t 

advanced development would be the u e of photogrammetry principle in ord r to 

produce three-dimen ional data on deformations from purely two-dim n ional 

Images. This could prove to be an advantage when local buckling i inve tigated at 

ambient or elevated temperature. 

The u e of commercial finite element programs such a ANSYS and ABAQU In 

modelling joint at ambient and elevated temperature have become popular in r nt 



Conclusions and Further Recommendations 224 

years. These models could provide good predictions for the joint response at 

elevated temperatures. It is envisaged that the use of such programs could offer a 

cheap alternative to testing, providing improved understanding of the joint behaviour 

by studying the influence of various parameters. Results from such models can also 

enrich the database of joint behaviour at elevated temperatures. 

A future development of the Fire Safety Engineering concept, as reported by 

DowlingS
.
1S

, is the development of methods which allow engineers to calculate the 

actual temperatures which steel sections are likely to reach in a real fire and 

implement different fire scenarios into finite element packages. This moves fire 

design away from dependence on the standard fire and into calculation based on real 

events, moving towards more functional solutions for steel buildings in fire. 
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Appendix A 

Test Apparatus for Elevated Temperature Testing 

A.I Te ling Arrangement 

Reaction 
fram 

Figure A.I (a) Furnac and reaction frame layout (b) Loading de ice and J W P 11 

[or the id 0 camera aJTangem nt 
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Figure A.3 Reaction frame and hydraulic jack fabrication details 
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A.2 Image acquisition and processing system details and specifications 
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Cameras 

~ 
..... 
JIll""" 

v 
Frame grabber Software Computer 

Figure A.4 Schematic diagram of the image acquisition and processing system 
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Table A.I Monochrome video cameras specifications 

Monochrome Cameras JAI CV-MSO 

Industrial Monochrome CCO Camera 

ensing area: 
Picture elements eff. 

ell size: 
Resolution: 
orizontal 
ertical 

CV-M50 C 
625 lines 

752 

560 TV lines 
575 TV lines 

CV-M50 E 

570 TV lines 
485 TV lines 

>56 dB AGC off, Gamma 1.0 
Composite VBS signal 1.0 Vpp, 75 Ohm 

12V DC 2.5W 
40 x 50 x80mm 

245 g 

Features 

3 High resolution monochrome 1/2" Hyper HAD IT CCO sensor 

4 CCIR: 752 (h) x 582 (v) pixels. EIA: 768 (h) X 494 (v) pixels 

5 Extreme sensitivity· Improved dynamic range and smear performance 

6 High SIN ratio >56 dB 

7 Interlaced or non-interlaced scanning 

8 Field or frame integration mode 

9 Electronic or asynchronous shutter 

10 Long time exposure with extemal VO pulses 

11 HONO synchronization input or output. - TIL level 

12 Exposure enable (EEN) and write enable (WEN) output 

13 Sub-pixel accuracy possible 

14 Frame grabber friendly interface 

15 Rugged and compact construction 
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Table A.2 Frame Grabber specifications 

Frame Grabber PXC200 

The PXC200 Color Frame Grabber combines 
high quality color and monochrome video 

Ai!j~. capture with a Peripheral Component 
Interface (PCI) at an unusually affordable 
price. High accuracy, low pixel jitter and 
other leading features offer solid support for 
the most demanding industrial and 
commercial applications. 

FEATURES & BENEFITS 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

Compact, PCI short card, pcn 04-Plus core module and CompactPCI3U 

PCI bus master design for real-time image capture 

Support for YCrCb, RGB and Y8 (gray scale) output formats 

High color accuracy with low pixel jitter 

Standard capture resolutions of 640 x 480 (NTSC) and 768 x 576 (PAL) 

Four multiplexed video inputs (NTSC/PAUS-video) 

Real-time image scaling with interpolation, plus horizontal and vertical cropping 

Continuous, software-initiated and triggered capture of frames 

External TTL-level trigger 

+ 12 VOC camera power supply 

Simple software interface 

Software development support for ~OS , Watcom DOS/4GW extender, Windows 
3.1, Windows 95, Windows NT applications, QNX 

Support for C/C++, Visual Basic and Delphi 

Software and manual included 

DAC reference generator eliminates inconsistency of AGC 

Acting as a PCI bus master, the PXC200 achieves real-time video capture to 
system memory. It handles data transfers while the main CPU is free to run other 
parts of your application or other applications. Image data can be transferred to a 
buffer in main memory or directly to another PCI device. 

Four multiplexed video inputs can accept color video from NTSC and PAL video 
sources.One of these can also be reserved for S-video.Color output formats 
supported include YCrCb and RGB, while YB is supported for monochrome 
applications. Also included are real-time image scaling with interpolation, plus 
horizontal and vertical cropping to minimize memory and bus bandwidth 

requirements. 
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Table A.3 C-Mount Lenses specifications 

Standard C Mount Lenses 

• 

• 

• 

• 

• 

Fitted with Locking Screws 

Typical MTF at centre of 60-100 Ip/mm 

Ideal for most standard resolution 
cameras standard C mount lenses for 
machine vision use glass elements and 
a rugged construction. Firstsight have 
detailed specification data on all our C 
mount lenses, for further details please 
contact sales. 

Typical MTF at format edge 30-50 Ip/mm 

Typical Distortion 1-3% at format edge 

Thread for attaching filters 

Below is a selection guide for lenses 

Focal Aperture Iris & Minimum Filter Max . Overall 
Model Manufacturer length Range Focus 

Object Max 
t Threa d Dia . length 

(mm) (C=Close) Operation 
Distane e Forma 

(0.5) (mm ) (mm) 
(mm) 

VC3514 VORTEX 3.5 Fl.4-C Manual/Lock 200 1/2" None 31 39 

VC4514 VORTEX 4.5 Fl .4-C ManuallLock 200 1/2" M25.5 31 37.6 

VC6514 VORTEX 6 Fl .4-C Manual/Lock 200 213" M27 30 30 

VC8013 VORTEX 8 Fl .3-C ManuallLock 200 213" M25.5 29 34.5 

219HB TAMRON 8 F14-16 Manual/Lock 300 213" M25.5 29 27 

VC1214 VORTEX 12 Fl .4-C ManuallLock 300 213" M27 30 34.5 

25HB TAMRON 12 Fl .8-16 ManuallLock 300 2/3" M25.5 29 27 

17HF TAMRON 16 Fl .4-16 Manuaillock 300 213" M25.5 30.5 25 

VC1614 VORTEX 16 Fl .4-C Manuaillock 400 213" M27 30 24.5 

20HC TAMRON 25 1.6-16 Manual/lock 250 112· M25.5 30.5 25.5 

VC2514 VORTEX 25 Fl .4-C Manual/Lock 500 213" M27 30 24.5 

VC3514 VORTEX 25 Fl .4-C ManuallLock 500 213" MJO.5 35 37.5 

21HC TAMRON 50 2.8--22 Manual/lock 500 112· M25.5 30.5 38.5 

VC5018 VORTEX 50 F16-C ManuallLock 1000 213" M30.5 32 375 

lA1HB TAMRON 75 3 .9-32 Manualllock 500 112· M25.5 30.5 65.5 

VC7527 VORTEX 75 F2.7-c Manuaillock 1000 213" M30.5 32 42.5 

VC10035 VORTEX 100 F35-c Manualllock 1000 2/3" M30.5 32 44.2 
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The image processing software was purpose built and calibrated against the image 

acquisition equipment used in the current study. It is based on the Edison, general 

purpose 32 bit image processing package for Windows 951NT, which can be 

dOwnloaded for free from the h tr>. II \\\nv.invention~.1I-net.co111/ web page. 
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Appendix 8 

Geometrical, Mechanical Properties and Test Data for the T­

Stub Specimens 

B.l Geometrical Properties 

The geometrical properties for each T-stub specimen and bolts are given below in 

Figures B.I-B.3 and Tables B.I-B.7. 

Figure B.l Arrangement of the T -stub specimen 

. \f). 

. (1). 

~. n )'4( k)l. m )' 

:4( 
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. \f) . 

.\f) . 

Figure 8.2 Plan view arrangement of the T -stub specimen 
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Bolt Head 

'. 

Figure 8.3 Bolts, Nuts and Washers 
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Table B.t Geometrical Properties of specimens for Phase A 

h 
mm 

AA\ 153.00 \65.60 22.00 25.00 6.60 9.60 8.90 No 

AA2 153.55 165.50 22.00 25.00 6.55 9.60 8.90 No 

AA3 153.00 165.80 22.00 25.00 6.70 9.50 8.90 No 

AA4 153.20 166.30 22.00 25.00 6.55 9.80 8.90 No 

AAI 153.00 165.60 20.00 25.00 6.60 9.60 8.90 No 

AA2 153.55 165.50 22.00 25.00 6.55 9.60 8.90 No 

AA3 \53 .00 165.80 22.00 25.00 6.70 9.50 8.90 N 

AA4 153.20 \66.30 22.00 25.00 6.55 9.80 8.90 No 

AS\ \53 .00 \66.00 18.00 45 .00 6.60 9.67 8.90 

AS2 153.00 166.00 18.00 45.00 6.65 9.50 8.90 

AS3 153.00 165.85 18.00 45.00 6.90 9.50 8.90 

AS4 153 .00 166.20 \8.00 45 .00 6.75 9.52 8.90 

AS5 153.00 166.17 18.00 45.00 6.82 9.60 8.90 No 

ASI 153.00 166.00 18.00 45.00 6.60 9.67 8. 0 No 

AB2 153.00 \66.00 18.00 45.00 6.65 9.50 8.90 No 

AS3 153.00 165.85 18.00 45.00 6.90 9.50 8.90 No 

153.00 166.20 18.00 45.00 6.75 9.52 8.90 No 

153.00 166.17 18.00 45.00 6.82 9.60 8.90 No 

153.00 165.55 18.00 25.00 6.80 9.52 8.90 No 

AC2 \53.00 166.00 18.00 25.00 6.75 9.52 8.90 No 

153.00 165.85 18.00 25.00 6.60 9.50 8.90 No 

ACI \53.00 165.55 ] 8.00 25.00 6.80 9.52 8.90 N 

AC2 \53.00 166.00 ]8.00 25.00 6.75 9.52 8.90 No 

AC3 153.00 165.85 18.00 25.00 6.60 9.50 8.90 No 
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Table B.2 Geometrical Properties of specimens for Phase B 

b 
mm 

160.40 205.85 22.40 57.15 7.42 12.03 10.20 No 

161.25 205.70 22.20 57.30 7.42 12.10 10.20 No 

160.35 206.00 22.17 57.75 7.55 12.15 10.20 No 

160.65 206.05 22.22 56.92 7.65 12.15 10.20 No 

159.65 205.90 22.45 57.65 7.55 12.25 10.20 No 

159.80 205.85 22.30 57.67 7.50 11.90 10.20 No 

196.05 201.90 22.00 50.00 10.25 19.20 No 10.00 

193.45 200.70 22.50 50.00 10.00 19.50 No 10.00 

193.50 201.00 22.50 50.00 9.90 19.55 No 10.00 

193.60 202.30 22.75 50.00 9.95 19.65 No 10.00 

193.45 200.70 22.50 50.00 10.00 19.55 No 10.00 

196.20 200.60 23.00 50.00 10.10 19.50 No 10.00 

168.55 201.42 23 .10 50.00 11.80 19.55 No 10.00 

BB2 168.20 200.20 22.80 55.00 11.85 19.60 No 10.00 

198.80 200.90 23.04 55.00 11.95 20.20 No 10.00 

199.30 200.00 22.70 50.00 11.90 20.32 No 10.00 
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Table B.3 Geometrical Properties of specimens for Phase C 
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Table B.3 Continue 
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Table B.4 Geometrical Properties of specimens for Phase A 

.@ .@ 

~ .@ ® 
n k m 

Le 

DtDl 

AAI 6.85 

AA2 6.85 36.30 29.70 25.00 100.00 M20 G 8.8 

AA3 6.85 36.30 29.28 25.00 100.80 M20 G 8.8 

AA4 6.85 36.30 29.60 25.00 100.50 M20 G 8.8 

AAI 6.85 36.30 29.23 25.00 101.00 M20 G 8.8 

AA2 6.85 36.30 29.70 25.00 100.00 M20 G 8.8 HSFG 

AA3 6.85 36.30 29.28 25.00 100.80 M20 G8.8 

AA4 6.85 36.30 29.60 25.00 100.50 M20 G 8.8 

ABl 30.17 29.65 12.75 35.00 140.00 MI6 HSFG 

30.17 29.65 12.73 35.00 141.28 M16 HSFG 

AB3 30.17 29.65 12.53 35.00 141.20 MI6 HSFG 

AB4 30.17 29.65 12.78 35.00 138.60 MI6 HSFG 

ABS 30.17 29.65 12.70 35.00 142.85 MI6 HSFG 

ABI 30.17 29.65 12.75 35.00 140.00 M16 HSFG 

30.17 29.65 12.73 35.00 141.28 M16 HSFG 

AB3 30.17 29.65 12.53 35.00 141.20 MI6 HSFG HSFG 

30.17 29.65 12.78 35.00 138.60 MI6 

AS5 30.17 29.65 12.70 3S.00 142.85 MI6 

ACI 10.17 29.65 32.43 40.00 218.70 MI6 

10.17 29.65 32.58 40.00 219.50 M16 

AC3 10.17 29.65 32.50 40.00 219.00 MI6 

10.17 29.65 32.43 40.00 218.70 MI6 

AC2 10.17 29.65 32.58 40.00 219.50 MI6 

AC3 10.17 29.65 32.50 40.00 219.00 M16 

Where HSFG is High Strength Friction Grip and G 8.8 is Grade 8.8 bolts and nuts. 
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Table B.S Geometrical Properties of specimens for Phase B 

,--:-.@_. ~_'@_'.'--l~!IJ (f) <f) ~ 
n k m 

Le 

n 
mm 

BAl 39.00 36.30 15.75 50.00 200.70 M20 HSFG 

BA2 39.15 36.30 15.53 50.00 200.35 M20 HSFG 

BA3 39.60 36.30 15.16 50.00 199.80 M20 HSFG 

BA4 38.77 36.30 15.96 50.00 200.65 M20 HSFG HSFG 

BA5 39.50 36.30 15.21 50.00 199.50 M20 HSFG HSFG 

BA6 39.52 36.30 15.19 50.00 200.00 M20 HSFG HSFG 

BAI 31.85 36.30 16.36 55.00 201.55 M20 HSFG H FG 

BA2 31.85 36.30 15.88 55.00 201. 10 M20 HSFG HSFG 

BA3 31.85 36.30 16.08 55.00 201.00 M20 HSFG HSFG 

BA4 31.85 36.30 16.71 55.00 202.20 M20 HSFG HSFG 

BAS 31.85 36.30 15.88 55.00 200.60 M20 HSFG HSFG 

BA6 31.85 36.30 15.78 55.00 200.50 M20 HSFG HSFG 

BBI 31.85 36.30 15.34 55.00 202.00 M20 HSFG 

36.85 36.30 9.71 50.00 201.30 M20 HSFG 

36.85 36.30 10.01 50.00 200.70 M20 HSFG 

31.85 36.30 14.58 55.00 202.50 M20 HSFG 
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Table B.6 Geometrical Properties of specimens for Phase C 

® .@ it .@ .@ 

n k m 
J 

Le 
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Table B.6 Continue 
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Table B.7 Bolt Geometrical Properties for all the specimens 

Bolt 
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B.2 Actual Test Data and Material Properties 

Table B.8, shows the test data for Phases A,B and C. It includes the temperatures of 

the T-stub specimens and bolts, the maximum force applied, the number of images 

taken from the first camera, which is the one used for displacement measurements, 

and finally the accuracy of the readings from the image processing technique without 

any sub-pixel division. 

Table B.9 shows the material properties for the column and end plate T-stub 

specimens and for the bolts. These values were taken from the actual coupon tests 

performed on each set of T -stub specimens. A private company called Allvac Ltd 

performed the coupon tests. 
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Table B.8 Test Data 

Temperature ·C 
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Table B.9 Material Properties 
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Geometrical, Mechanical Properties and Test Data for the 

Column Web specimens 

C.l Geometrical. Mechanical and Experimental Data 

249 

The geometrical mechanical properties and experimental data for each column 

specimen tested are given below in Figures C.l and Tables C.l-C.3. 

b 

h 
s 

Figure C.l Universal Column Section 
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Table C.l Geometrical Data 

I. ~I 
b 

r~~ h r-+~s 

,...£.---, 
t 

Depth Width Thickness Thickness 
Root Ratio for 

Column of of of of 
Radius web Temper 

Phase 
Sections 

Section section Web Flange local ature 
h b 

r 
s t Buckling 

mm mm mm mm mm dIs Uc 
159.00 15 \.61 6.60 8.85 7.60 19.10 20 
160.70 151.60 6.35 9.09 7.60 20.05 410 
156.90 153.75 6.10 9.10 7.60 20.24 500 

A 
UC 152x 152x30 

157.10 152.40 6.65 8.95 7.60 18.64 500 
158.20 152.05 6.60 8.90 7.60 18.96 600 
158.55 152.01 6.75 9.10 7.60 18.54 610 
159.90 151.60 6.40 9.15 7.60 19.75 710 
160.70 151.75 6.33 9.01 7.60 20.14 755 
203.85 203.58 7.22 11.20 10.20 22.30 20 
204.03 203.54 7.22 11.20 10.20 22.33 280 

B 203.95 203.39 7.26 11.16 10.20 22.20 400 
UC203x203x46 202.20 203.41 7.29 11.23 10.20 21.85 520 

203.05 203.66 7.27 I I. 10 10.20 22.07 610 
202.75 203.50 7.56 11.05 10.20 21.19 670 
203.90 203.51 7.18 11.12 10.20 22.45 765 
216.02 205.62 9.94 17.36 10.20 16.18 20 

C 
UC203x203x71 

215.65 205.24 9.95 17.46 10.20 16.11 535 

215.73 205.21 10.13 17.41 10.20 15.84 635 

215.84 204.74 9.86 17.08 10.20 16.35 755 
223.70 208.47 12.66 19.97 10.20 12.90 20 
223.68 208.58 12.71 20.02 10.20 12.84 20 

D 
UC203x203x86 

223.86 208.52 12.60 20.03 10.20 12.96 585 

223.44 208.52 12.70 20.07 10.20 12.82 650 

223.26 208.46 12.63 20.13 10.20 12.87 705 

223.59 208.43 12.65 20.02 10.20 12.89 750 

I UC203x203x52 210.77 206.02 7.65 12.20 10.20 21.69 610 

2 UC203x203x60 212.30 206.15 9.95 13.72 10.20 16.52 20 

3 UC203x203x86 223.71 207.54 12.61 19.55 10.20 13.02 20 

4 UC254x254x I 07 267.37 260.34 12.87 20.95 12.70 15.54 20 
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Table C.2 Mechanical Properties 

Web Flange 

Phase Column 
Sections Yield Ultimate Young Yield Ultimate Young 

Strength Strength Modulus Strength Strength Modulus 

N/mm- N/mm- kN/mm· N/mml N/mm- kN/mm-
A UC 152x 152x30 293 474 233 274 467 227 
B UC203x203x46 301 450 234 275 445 230 
C UC203x203x71 294 500 230 273 481 220 
D UC203x203x86 312 492 225 265 492 220 
I UC203x203x52 365 519 202.10 - - -
2 UC203x203x60 304 527 204 - - -
3 UC203x203x86 285 501 20 I. \0 - - -
4 UC254x254x 1 07 288 488 189.30 - - -
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