Abstract

Variable Bit Rate (VBR) MPEG traffic is expected to be one of the widely
used traffic sources for high speed networks, along with voice and data traffic.
Encoded video traffic is a correlated and a bursty traffic with high value of peak
to mean ratio (burstiness). For efficient traffic management in a high speed
network, it is important to know the basic characteristics of such encoded video
traffic.

This thesis deals with three main issues regarding the management of VBR
MPEG traffic over ATM networks: Characterisation, Modelling and Multiplex-
ing of VBR MPEG traffic. The statistical characteristics of MPEG traffic have
been analysed. Our study is based on long and various video streams obtained
from real Mowvies, News and Sports events. The work explores three statistical
measures which are the main characteristics of MPEG streams, namely: Dis-
tribution, Autocorrelation Function (ACF) and Scene changes. Based on the
statistical analysis, two simple Markovian based models are introduced: the
histogram based model and the Detailed Markov Chain. Despite the simplic-
ity of the models, it is possible to show some improvement in the statistical
behaviour. The scene change measure is analysed in more detail because the
scene changes are important reason for the fluctuations in the overall bit rate
within the encoded video stream. This thesis presents two methods and algo-
rithms to identify scene changes within the MPEG stream. Then, the scene
change identification technique as well as the characteristics of scene changes
are used to propose a construction of an MPEG source model. The model cap-
tures accurately the statistical behaviour of the actual sequence at different
time scales.

For ATM networks, the challenge of QoS guarantees is to allocate an ef-
fective bandwidth for each video connection and a tradeoff should be achieved
between improving the network utilisation and providing QoS guarantees. An
allocation bandwidth approach based on a deterministic model for multiplexed
VBR MPEG streams is presented. An arrangement for the multiplexed VBR
MPEG streams is then presented. Furthermore, the impact of such arrange-
ments on the allocated bandwidth is shown. Finally, the impact of the stream
activity (amount of scene changes within MPEG stream) on the allocated

bandwidth and the network multiplexing gain is explored.
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Chapter 1

Introduction

1.1 Research Motivation

Asynchronous Transfer Mode (ATM) is an emerging standard for broadband
networks which allows a wide range of traffic types to be multiplexed in a
single physical network. The traffic types can range from real-time video to
best-effort data. One of the most important benefits of ATM technology is its
ability to provide Quality of Service (QoS) guarantees for applications. A QoS
guarantee can define the form of bounds for end to end delay and data loss
rate. ATM networks provide several classes of services to satisfy the QoS needs
of various applications. Each class provides different QoS guarantees, based on
application requirements. However, these requirements are quite difficult to
achieve, largely due to an inherent tradeoff [Ryu96]. For instance, the network
can always provide desirable QoS by allocating abundant network resources
(based on a peak allocation) at the expense of low network utilisation. But,
this is not always desirable, especially in the case of a burstiness traffic source
such as video traffic.

In order to overcome and resolve this problem, essential characteristics of
a traffic source must be extracted. Hence, for an efficient traffic management
in a high speed network, it is important to have a working knowledge of the
basic characteristics of multimedia traffic. This information can be used either
to study the network utilisation, or to develop appropriate control schemes for

handling multimedia traffic [Venturin95]. In order to achieve that, a real traffic
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For the future networks, there are three important traffic types:

CBR VBR ABR
Requirements ’ Dealy sensitive Dealy sensitive Best effort
Solution ’ Needs resource reservation Thereis NO agreement on which Congestion control agorithms
schemes strategy should be used based on feed-back and retransmission
( NOW )

We concentrate on VBR traffic (e.g. aVBR MPEG compressed video)

Pcm’ple ’ Resource reservation might work fine Feed-back could also be used

Solution
Why NOT ?*’ Bursty traffic, the network will be under-utilisation The algorithms can meet the performance

guarantees (e.g. delay bounds)
0. ’ Is it possible to provide performance guarantees for VBR traffic with a high network utilisation ?
Two typesof performance guarantee
Answer ... Yes
How ?By
Providing ...
Statistical Deterministic
What does it ’ Pbeabi”j‘iﬁ bouﬂds on delay Absolute bounds on delay and throughput, which
provide ? and throughput means that the performance guarantees are met
for ALL packets of the connection
Connection! % Statistical Multiplexing CAC Deterministic Multiplexing
L_NEAN RN |

Advantage. ’ Improve the network utilisation Better performance guarantee
What do we ’ A suitable traffic model (methodology) which is able to describe the bursty VBR traffic and
need ? capture natural properties of the traffic

Then ... ’ Client: atraffic connection should be specified to the network viathe traffic model descriptor

, ’ Reasonable utilisation can be achieved for compressed video, even when deterministic performance

Asaresult! guarantees are provided

Egk'\’ecgﬂé"’%*) Network utilisation improvement could be measured, and quantified, by finding out the Multiplexing Gain (MG)

Figure 1.1: An Overview of the Problem
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the QoS of VBR video traffic due to the compression technique which removes
the redundancy from the video images. One reason for cell losses are buffer
over-flows at a switching node [Onvural95|. The second requirement, the Cell
Transfer Delay (CTD), can be observed in various ways, including coding,
packetisation, propagation, transmission, switching, queueing and reassembly
delay. The CTD requirement can be described as a set of delay constraints (or
bounds). The delay constraints vary, according to video services. For instance,
interactive services (such as video conferencing) require a short delay, while
the delay bound is less important in the case of distribution services (such as
the video on demand system).

In order to provide a guaranteed QoS for VBR video traffic, it should
be managed efficiently and carefully. Managing VBR video traffic can be
very difficult, due to the statistical properties’ of the video stream, which
are dependent on the coding scheme and the content of the video sequence
[Kara97]. In addition, compressed video traffic (especially for multiple frame
coding, e.g. MPEG) exhibits complex patterns which vary from one stream to
another.

To evaluate the performance of ATM networks, and to provide a good guide
for the design of various network control schemes, such as traffic management
algorithms, it is important to have a good knowledge of the traffic source
behaviour. In order to achieve this objective, direct observations of real traf-
fic sources could be performed, or mathematical models could be constructed
INi96]. However, the first option introduces several difficulties in formulating
the real trace (which is obtained from a real traffic measurement) and apply-
ing a relevant analysis to it. On the other hand, a good mathematical model
can be employed to characterise the real traffic source precisely, and to ac-
cordingly, produce efficient analysis techniques. If the model is able to predict
the specific behaviour of a stochastic system accurately, then the model tends
to be a good one. A model can possibly predict one behaviour accurately,
while predicting another inaccurately. For instance, it is possible for a model
to predict cell losses accurately, but can not predict the cell delay. Thus, one
of the most important criteria for a model selection is based on the desired
system metrics. Traffic models can be classified using various criteria: simplic-

ity (number of parameters), modelling level (time scales) or according to the

'In this thesis, the terms “properties” and “characteristics” are used interchangeably.
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stochastic process.

The source model? can not only be used for the traffic characterisation,
but also to generate synthetic traffic, which is similar in behaviour to real traf-
fic. There are many advantages to be achieved from generating a synthetic
video traffic, especially in performance studies. Performance studies can not
be carried out without providing actual video traces. Furthermore, a stochas-
tic model encompasses many realisations (or sample paths) which represent
‘structurally’ similar, but not identical, streams [Krunz96]. Therefore, gener-
ated streams are ideal for statistical multiplexing studies.

Consequently, the challenge is to (1) introduce a traffic characterisation and
modelling considering the important/essential characteristics of VBR MPEG
traffic such as scene changes, (2) build a traffic model which captures the
MPEG traffic behaviour in terms of statistical and queueing performance.
Next section presents an overview of previous studies into the modelling of
VBR video traffic.

1.2 An Overview of Video Source Models

Classical models, based on a Poisson arrival process, are not adequate for
video traffic. The Poisson process assumes that the arrivals are independent,
whereas for encoded video they are not [Izquierdo96]. Hence, new models to
describe the encoded video traffic are needed. There are many traffic mod-
els which have been previously proposed for VBR video traffic, based on the
traffic characterisation, e.g. see [Conti96] [Heyman92] [Rose95b] and [Ven-
turin95]. Since the VBR of a video traffic depends largely on the compression
scheme, most traffic models do not characterise the scene changes within the
video stream. Moreover, some models were specifically developed for only low-
activity video streams, and thus, were not appropriate to other streams with
different levels of activity [Heymen92] [Li95] [Frost94].

One of the earlier models for VBR video traffic appeared in [Maglaris88].
A video source is described as a first order autoregressive process AR(1) with
both a Gaussian and an exponential autocorrelation function (ACF). The main
advantage of that model is simplicity. However, it is unable to capture accu-

rately the statistical behaviour of the video sources. Another, more sophis-

2In this thesis, the terms “source model” and “traffic model” are used interchangeably.
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ticated, model based on autoregressive moving average (ARMA) process was
proposed in [Gruenefelder91]. The model showed an improvement in capturing
the main statistical behaviour of the video source. However, a very short video
sequence (a few seconds) has been used for the traffic characterisation.

Heyman et. al. observed that the number of ATM cells within an encoded
video frame can be modelled along as Gamma distribution [Heyman92]. They
also suggested that a multi-state Markov chain can be used for video traffic
modelling in order to obtain more accurate results. However, their model was
based only on video teleconferencing sequences, and is not, therefore, suited
to more general video sources.

In [Skelly93], a histogram-based model was introduced to approximate the
arrival rate of variable bit rate video traffic. The model was used to predict the
queueing performance of a multiplexed stream at an ATM buffer such as the
buffer occupancy distribution and cell loss rates. The video model is modelled
as a Markov modulated Poisson process in order to investigate the approxima-
tion of the queueing performance. The model has been tested to approximate
the bit rate of different video sequences (NTSC and MPEG) at frame-by-frame
level. Experimental work has shown that the model approximates accurately
the behaviour of video traffic in an ATM multiplexer. It has been also shown
that the distribution and the presence of strong correlation are very important
for capturing the queueing behaviour of video traffic. However, the sequences
used in the simulation model were short (about 10 seconds), and hence do not
give enough information of the long range correlation feature of video traffic.

Krunz et. al developed an MPEG model in which the number of cells per
frame was determined by a Lognormal distribution [Krunz95]. This model
was tested by conducting several simulation experiments. The simulation re-
sults showed that the model could not capture the multiplexing performance
accurately especially at larger buffer sizes.

Transform Expand Sample (TES) processes are designed to match both
the fitted distribution and the autocorrelation function of the original traffic.
Melamed et. al. used TES processes to come up with a model for the number
of bits per group of blocks for an H.261 video encoder [Melamed92]. They
observed that there is a periodical component within the bit rate at the group
of blocks level. They extracted these components, and then applied the TES

processes on these extracted data sets. Their simulation results showed that
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the throughputs curve of the TES model performed slightly better than the
AR model for system loads higher than 0.6 (with the same amount of QoS
matrices). The model has been also used for a performance evaluation study
of an integrated network [Melamed94] .

Most of the models mentioned previously did not handle video sequences
with interpolated frames (such as ‘B’ frame in MPEG). Following the stan-
dardisation of the MPEG coding scheme, the characterisation of MPEG traffic
began to be investigated. Reininger et. al. presented a composite model for
MPEG traffic with three random processes associated with each frame type: I,
P and B [Reininger94]. The model was based on the prediction of the B and P
frames from the I frame within the same group of picture (frame). The model
was mainly proposed in order to determine the performance of a multiplexer
fed by a number of VBR MPEG sources in terms of multiplexing gains and cell
losses. They have found that the model captured the deterministic periodical
behaviour of MPEG sequences.

Generally, an MPEG video sequence contains scenes, groups of pictures,
frames and slices, each of them corresponding to a different time scale. Most
modelling studies have mainly focused on the statistical behaviour of MPEG
traffic as a sequence of frames (at a frame level) without considering the impact
of scene changes within the video stream; these are believed to introduce a large
variation in the overall bit rate [Lazar93]. In addition, most of the proposed
models were based on the characterisation of the three frame types of the
MPEG stream (i.e. I, P and B). The challenge, therefore, is to introduce a
model which captures the behaviour not only of one time scale, but several
ones [Lazar93).

Due to the way MPEG is designed, MPEG video traffic introduces a great
impact on the CLR when multiple video streams are multiplexing [Mashat98a].
The scene changes within the video stream are some of the most important
issues which affect the statistical behaviour of MPEG traffic. This can be ob-
served via the overall bit rate of an MPEG stream. Therefore, scene changes
should be incorporated for the characterisation, and modelling, of MPEG traf-
fic. Various models have been proposed for VBR MPEG traffic [Stamoulis94]
[Heyman92] [Frost94], but only a few incorporate scene changes [Krunz96]
[Lazar93] [Heyman96] [Rose95b]. In addition, some models are designed to

adjust only, as a general rule, the main statistical parameters such as mean,
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variance and some initial lags of the autocorrelation function (short range de-
pendency). However, these models tend to underestimate the losses ratio and
delay bounds when they are used in the queueing performance. This is due to
the fact that these models neglect the long range dependency which a video
traffic exhibits, since the main reason of this feature is the different level of
activities (scene changes).

Lazar et. al. developed a source model for an encoder sequence based
on a Generalisation of TES process (GTES) [Lazar93]. The video sequence
was modelled as a collection of subsequences. Each subsequence represented a
scene within the video sequence. The model used two of the traffic layers: slice
and frame. However, it considered only real time video sources and was applied
to assess the impact of real time video sources on scheduling algorithms. In
fact, the raw data which they used for the modelling was an encoded sequence
using a coding algorithm similar, but not identical to JPEG. However, MPEG
exposes different traffic characteristics. But these authors believed that the
model could be applied at the slice level of the MPEG sequence.

In [Heyman96|, a method was used to identify scene changes within several
video sequences which have been coded using DCT (i.e. one frame coding).
The work was an extension to their previous studies on modelling video confer-
ence traffic [Heyman92]. The video sequence was divided into several scenes.
The number of frames within each scene was modelled using different distri-
butions depending on the video sequence. Some sequences employed Weibull
distribution, some used Gamma, while for others no simple model could be
fitted. The video sequence was then modelled, primarily based on autore-
gressive models, in order to capture the autocorrelation features of the video
sequence (using autocorrelation coefficient for intra-scene frames). The model
used in Heyman’s simulation studies was designed to predict the cell losses.
Even though, the model was accurate for some sequences, but it overestimated
the cell losses of others.

Rose studied the MPEG sequence as a group of scene classes [Rose95a].
A simple Markov chain model was built to model the amount of variation (in
a group of frames) which could be tolerated for one scene. Each scene class
was simply presented as a Markov chain state. Therefore, in this case, the
number of states equaled the number of scene classes. However, this modelling

approach leads inextricably to very large matrices.
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In [Krunz96], the authors also used a method for identifying scene changes
within an MPEG video sequence. However, the identification method em-
ployed in this study was based on analysing the changes only in consecutive I’
frames, while the 'B” and 'P’ were ignored. The size of '’ frame was modelled
by the sum of two random components: a related scene which reflected the
overall level of scene activity, and an AR(2) component which accounted for
the fluctuations of I’ frames within a scene. The size of 'P’ and 'B’ frames
were modelled using two random processes. The traffic model was tested to fit
four empirical video sequences, and provided a good prediction of the queue-
ing performance. However, the model was only tested on a limited number of
video sequences, and did not cover a wide variety of video activities.

A new model for the simulation of MPEG video traffic was presented in
[Reyes97]. The model was implemented on neural networks to adjust the auto-
correlation and probability distribution functions of a given video traffic. The
model uses a neural network to learn the conditioned histogram of the given
traffic. By using neural networks, it is possible to benefit from their capacities
for working in real time and interpolating unknown functions. These inter-
polations avoid the need of searching in transition matrices and reduce the
amount of stored information. However, the model captures the autocorrela-

tion function of the given video traffic for only first lags.

1.3 Thesis Components

This thesis is looking at the characterisation of MPEG traffic, focusing on
different levels of activity. The major components of this thesis are as follows:
in the field of traffic modelling, we define the statistical characteristics of VBR
MPEG patterns in order to highlight the most important features of VBR
MPEG traffic. Two models for VBR MPEG traffic are presented, describing
the statistical behaviour of the traffic. We then extend our analysis of these
two simple models in order to generate synthetic VBR MPEG traffic.
Following the importance of scene changes within an MPEG stream, an
enhanced analysis on scene changes is conducted. In order to characterise VBR
MPEG traffic based on the impact of scene changes, we present a methodology
for classifying MPEG streams according to the amount of activities within each

stream. We analyse variations in the bit rate of the MPEG stream, followed
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by an extensive scene change characterisation for MPEG video traffic. Two
simple methods or techniques are offered in order to identify the scene changes
within an MPEG video stream.

For the purpose of our analysis, we have employed real empirical data sets
for various MPEG sequences to define and study the statistical characteristics.
Based on the amount of scene changes, a Scene Change Scale (SCS) will be
presented to exhibit the amount of activity within the MPEG stream. Fur-
thermore, the impact of scene changes on QoS requirements will be explored.
Our primary measure of interest is the CLR at an ATM multiplexer, because
the amount of scene changes affects cell losses when multiple MPEG streams
are multiplexing at an ATM multiplexer. Consequently, a novel scene-based
model for MPEG video traffic is constructed, based on the scene change char-
acterisation. The proposed model can be used to generate synthetic MPEG
streams to be used in many performance studies, including buffer dimensioning
and bandwidth allocation at video servers and network nodes.

The most important reason behind the use of VBR is the opportunity for
increased multiplexing gains [Izquierdo96]. However, VBR multiplexing may
cause data loss. This thesis deals with another issue regarding QoS guarantees
by presenting a deterministic model for VBR MPEG traffic. By using this
model, we analyse the multiplexing process of multiple MPEG streams. Next,
we introduce an approach for stream alignment, before entering the network,
to improve the network utilisation. Based on the classification results derived
from the scene changes analysis, we will study the impact of the scene changes
on the multiplexing gains for aligned streams, thereby showing the level of
improvement in the network utilisation. Furthermore, based on the analysis of
the stochastic behaviour of the statistical multiplexing for VBR traffic at the
ATM switch, we present some simulation results showing the amount of multi-
plexing gained when the First In First Out (FIFO) discipline is implemented.
We will be in a position to provide an answer to the question “Is it possible to
improve the network utilisation with deterministic guarantees of QoS?”. We
will also study the impact of the MPEG stream alignment on the network util-
isation improvement in terms of calculating the allocated bandwidth for each
multiplexed stream. Based on the scene change analysis, we will also study

the impact of scene changes on the bandwidth allocation process.
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1.4 Overview of the Thesis

In this thesis, three related problems, in the area of efficient management of
VBR MPEG video traffic, namely characterisation, modelling and multiplexing
of VBR MPEG traffic, are addressed. Most of the terminology used in this
thesis is specific to ATM networks. The remainder of the thesis is organised
as follows:

In chapter 2, a background study of the issues pertinent to the area of re-
search will be presented. In addition, we provide a context for the problems we
are exploring in this thesis. First, we cover several issues related to the ATM
framework, including the main services provided by ATM. We then present
several issues related to ATM networking, including the challenges of proving
network support for QoS guarantees. A brief overview of various multimedia
applications, including data types and their requirements are presented, fol-
lowed by an overview of multimedia traffic modelling. Several traffic models,
which have been proposed in the literature for the characterisation of multime-
dia traffic, are discussed. Some aspects dealing with the traffic management
in ATM networks are addressed. Then, some important concepts of ATM
switching and multiplexing processes will be given. We also present a tool for
the performance evaluation of multimedia systems: an application level traffic
generator.

Chapter 3 presents the statistical characterisation process of MPEG video
traffic. We start with a general overview of the MPEG standard. We then
present an analysis of various MPEG sequences, including a study of the sta-
tistical characteristics of VBR video traffic. We initially investigate some em-
pirical data sets of various traced VBR MPEG streams. We then define the
statistical characteristics of VBR MPEG patterns. In so doing, two main sta-
tistical features of an MPEG sequence will be explored: namely Distribution
and Correlation. We also discuss the burstiness measurement for MPEG traffic
including a presentation of various ways of analysing the burstiness within an
MPEG sequence.

In Chapter 4, we present a methodology for classifying MPEG streams
according to the amount of activity within each stream. We do so by analysing
the variations in the bit rate of the MPEG stream. Then we present two
methods in order to identify the scene changes within the MPEG stream.

Based on the classification process of MPEG streams, we introduce a Scene
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Change Scale (SCS) factor exhibiting the amount of activity within the MPEG
stream. We perform several experiments on an ATM multiplexer to show the
impact of scene changes on the performance of the multiplexer in relation to
the results of the SCS.

We analyse the statistical modelling of VBR MPEG traffic in chapter 5.
First, we present two simple and efficient models and try to describe the sta-
tistical behaviour of MPEG sequence. The traffic modelling approach is based
on the Markov Chain methodology. Our analysis is subsequently extended to
the design and implementation of a generator for synthetic traffic. In order to
improve the statistical behaviour of the model, a novel scene-based model is
proposed considering scene change characteristics.

In Chapter 6, we present a deterministic model for VBR MPEG traffic.
Based on this model, we analyse the multiplexing processes of multiple MPEG
streams. An approach for the stream alignment is introduced to achieve a
better improvement on the network utilisation. Based on the stream classifi-
cation results derived in Chapter 4, we study the impact of the scene changes
on the multiplexing gain for aligned streams. We also perform several experi-
ments on an ATM multiplexer to show the impact of multiple MPEG streams
multiplexing.

In Chapter 7, we discuss and evaluate the results obtained from the stud-
ies in this thesis. A summary and a conclusion are provided in Chapter 8,

including the future work.



Chapter 2

Multimedia Applications Over
ATM Networks

In this chapter, we provide an overview of multimedia applications over ATM
networks including their performance requirements. We begin with a short
introduction to the ATM network, and proceed to discuss the basic concepts
to ATM technology. We then provide a brief discussion of the various service
classes in ATM networks for supporting various traffic types, presenting several
issues regarding multimedia applications over ATM networks, including a brief
description of their network requirements. For efficient management of mul-
timedia traffic, a short introduction to various traffic models which are used
to describe the behaviour of multimedia traffic will be provided. Finally, we
introduce several issues relating to the traffic management algorithms and pro-
tocols, including the performance evaluation process using a realistic workload

generation.

2.1 Overview of ATM Networks

ATM uses a multiplexing and switching technique, which in turn, uses a short
and fixed size packet called a cell. It also called ‘cell relay’. The ATM cell is
53 bytes long. Each cell contains two parts: header (5 bytes long) and payload
(48 bytes long). The header contains information about the cell’s route, such
as virtual channel and path of the cell. The 48 bytes payload contains the used
data, which is formatted in one of the adaptation layer formats. Each cell is

tagged with a virtual channel identifier. Cells which belong to the same virtual

13
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channel will not important appear at periodic intervals. It is ‘asynchronous’
because different hosts connected to the same ATM line can transmit cells at
different rates and place them into transfer media whenever they want. At
an interval of time, the ATM line could include different cells belonging to
different hosts. Therefore, several different media could be sent at the same
time along the same ATM line without delay.

ATM is connection based. This means that, when an application wants
to communicate with another application, it must request that a connection
be made. The advantage of it being connection based is speed. Once the

connection is built, no other routing is necessary.

... A Host
Fiber to/from v attz_ached to
switch  ~~ *T switch

ATM\<SWitch
T T

Figure 2.1: ATM Network Connection

To form an ATM network, more than one host is connected through the
ATM line (fiber optic), using a special processor called an ATM switch. The
ATM switch is designed to transfer data at extremely high speed. It is com-
posed of a number of input and output ports, and the network which connects
these two ports is called the switch fabric. Cells arrive at the input ports, pass
through the fabric and exit through the output ports. A number of different
fabric types exist, including simple crossbars and batcher banyan networks
(section 2.9 presents an overview of ATM switch types). Figure 2.1 illustrates
the connection between a computer (host) and an ATM switch. Because an
ATM switch has finite capacity, multiple switches can be interconnected in
order to form a larger ATM network.

The connection between the host and the ATM switch will be through User

to Network Interface (UNT), where the connection between two ATM switches
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could be through either UNI or Network to Network Interface (NNI). Figure

2.2 illustrates the connections between multiple switches.

NNI or UNI used
betweentwo ATM
switches

y
ATM ><Switch ATM X Switc] AT Switch

UNI used between
aswitch and a host

Figure 2.2: The Connections Between Multiple Switches.

An application request for a connection must specify the quality of service
(QoS) that is required so that the connection which is made will meet the
application’s requirements. There are many common metrics which are used
to define QoS, including Cell Loss Ratio (CLR), Latency Traffic Type (Class),
Mazimum Burst Rate and Sustained Burst Rate. This thesis will focus mainly
on the Cell Loss Ratio (CLR). CLR can be defined as the number of cells
which are dropped (due to buffer overflow in switches), before reaching their

destination, divided by the total number of transmitted cells.

2.1.1 ATM Advantages

ATM networks have many advantages over existing networking technologies.

The following lists only the more significant ones:

e ATM provides a high bandwidth through end-to-end switching topology.
Furthermore, an ATM switch can support greater switching capacity
than classical packet switches, and can support more applications simul-

taneously,

e ATM networks also support quality of service guarantees to applications.
This can be achieved using various resource reservation algorithms and

mechanisms,
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e Various types of applications, with very diverse traffic characteristics, can
be supported by using the switching and multiplexing methodologies of
ATM. This feature makes ATM more flexible in terms of dividing the

bandwidth into a number of virtual connections arbitrarily,

e Because ATM can support all types of application, a single networking
platform can be built over ATM in order to handle all the different types
of application. Therefore, an ATM network can be used as an integrated
platform to manage and deliver not only one type of application, but

multiple types; and

e The statistical multiplexing in ATM provides a significant gain when
bursty applications are multiplexed. By doing so, the available band-

width can be used efficiently in most cases.

2.1.2 ATM Adaptation Layer (AAL)

ATM adaptation layer (AAL) is a part of the ATM standard. AAL is directly
above the ATM layer to provide end-to-end service. The role of AAL is to
support different classes of application in the ATM network. It also has a
number of important functions that satisfy diverse application requirements.
In other words, it refines the QoS offered by the ATM layer, and offers some
limited flow control of the data. It may, therefore, enhance the service provided
by the ATM layer (a layer below the AAL layer). Thus, a computer (or user
application) interacts with ATM through an ATM adaptation layer, and is,
therefore, responsible for making the network behaviour transparent to the
application. AAL has the ability to detect and correct errors, such as lost or
corrupted cells [Comer95]. Information received by AAL from a higher layer
is segmented or packetised into ATM cells. Cells received by AAL from the
ATM layer are reassembled to form back the information.

There are different types of adaptation layer protocols, as different appli-
cations require different services and different QoS. Therefore, when a channel
is established, adaptation layer protocol must be specified and agreed between
the two hosts.

All AALs provide Segmentation and Reassemble (SAR) functions, which
split up user data into cells and deliver them to the ATM layer, and reassemble

them into user data at the receiving end to form back the user data. AAL can
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be described as two part or two sub-layer. The first sub-layer is SAR, while the
second provides a management of data flow from, and into, SAR. Four types
of AAL have been recommended by the Telecommunication standard sector
of International Telecommunications Union (ITU-U), namely AAL1, AAL2,
AAL3/4 and AAL5. The following provides a short description of these:

e AALI1: This type is for applications which require information trans-
mitted with a constant bit rate, as well as, strict timing control (such
as real time voice). AALI can also indicate lost or corrupt information,
which is not recoverable by the AAL itself.

e AAL2: It offers information transmission with a variable bit rate. It
also provides a timing information transmission between the source and

the destination.

e AAL3/4: This type is a combination of AAL3 and AAL4. It provides
a service for data applications in connection, or connectionless, modes.
It has been recommended by I'TU-T for the transfer of information with

loss-sensitive property, but not for delay.

e AALS5: This type is a simplified version of AATL3/4. It has been specified
by the ATM Forum to offer a service with less overhead and better error
detection. The ATM Forum also specified AAL5 for signalling the UNI
and NNI in the Broadband Integrated Service Digital Network (B-ISDN).

2.2 Classification of Services in ATM Networks

For future broadband networks, a large number of services must be provided
to support a variety of applications with a wide range of QoS requirements.
In general, these applications can be classified into real-time and non real-
time. The real-time application requires a bound on delivery delays of each
transmitting packet, while the non real-time application can usually be serviced
in the ‘best-effort’ mode, where the available network capacity is divided among
the applications sharing it. These applications are not usually sensitive to
delay.

Many different services classes have been defined by ATM Forum to meet

the various application requirements. For real-time services these are Constant
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Bit Rate (CBR) or Variable Bit Rate (VBR), for non real-time applications:
Available Bit Rate (ABR) and Unspecified Bit Rate (UBR).

CBR: With CBR service, a constant bandwidth is reserved for each connec-
tion throughout its duration. CBR service generates traffic at a constant
rate, and can be described by its peak rate. The burstiness of a CBR
traffic source is equal to one, as all periods are transmitted at the peak
rate, making the network easy to manage. However, this is an inefficient
use of the bandwidth resource (see Figure 2.3). Since the amount of
traffic generated by most applications varies over time, it is possible to

reserve less bandwidth in the network than the peak rate.

VBR: VBR service has been introduced to provide an efficient use of the
bandwidth resource and to achieve high resource utilisation (see Figure
2.3). Most multimedia applications are assumed to be VBR sources.
VBR traffic can be described as a bursty source. The peak-to-average
(burstiness) of a VBR source is often much greater than one. This service
can be classified into two classes: real-time VBR (rt-VBR) and no-real-
time VBR (nrt-VBR). The rt-VBR service is almost identical to the
CBR service, that it is for VBR instead of CBR applications. Real
time streaming applications which send at variable bit rates can use
this service. On other hand, the nrt-VBR service provides bandwidth

guarantee at a peak rate, but it provides no guarantee in delay bounds.

UBR: This service was proposed to support non-real time applications which
only need best-effort service. Therefore, it does not offer any service
guarantees. Thus, it has minimum priority among all the other classes.
The problem with the UBR is that there are no cell loss ratio guarantees
for these applications, while many of the non-real time applications ex-
pect a packet loss rate similar to existing Local Area Networks (LANS).
Thus, this is one of the key motivations behind the next service (ABR

service).

ABR: This service is an improvement of the UBR service, reducing cell loss
ratio and providing a more efficient use of the available network resources.
ABR service is intended for best-effort applications requiring a guaran-

teed minimum rate, and uses a rate-based feedback approach to control
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congestion. This service attempts to dynamically share the available
bandwidth among all ABR connections in a fair manner. The user con-
nection therefore, may send at the peak rate when the network has a low

load level. This will help to increase the network efficiency.

Source Rate Source Rate

Y Source 1 Saved Bandwidth

Source 2

Sayrce 3

Time Time
Bandwidth Reserved Based on Peak Rate Bandwidth Saved using VBR Service

Figure 2.3: Bandwidth Usage, employing CBR and VBR services.

2.3 QoS Support in ATM Networks

Quality of service is the most often used in network terminology, it is to be
used as a resource management tool within a computer network. The main
goal of QoS is to provide an infrastructure facilitating negotiation between the
client and the network for an acceptable connection within the capabilities of
a given network system.

Support for QoS guarantees traffic transmission over ATM networks and
is crucial to the success of many multimedia applications, including, for ex-
ample, video on demand. One of the most important problems facing the
network service provider is that of providing QoS guarantees to users, while
maintaining the network utilisation as efficiently as possible. The network can
be managed efficiently by performing a number of control techniques, including
routing, bandwidth allocation, call admission control (CAC) and scheduling
functions. Selecting appropriate paths for an incoming connection will improve
the network utilisation.

CAC controls the acceptance of connections into the network. A good

CAC algorithm should result in the maximum possible utilisation of resources.
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Scheduling policies manage the priority of the serving connection’s cells, based
on traffic class. For instance, a connection with stringent QoS requirements
will be served first over other connections, so that the QoS requirements can
be met.

Some of the problems in providing QoS guarantees, along with high re-
source utilisation in an ATM network with multiple connections, are as follows
[Rampal95]:

e 'Traffic burstiness: In the case of transmitting a bursty traffic, high effi-
ciency can be obtained mainly by statistically sharing out the network
resources. By doing so, the network utilisation is improved, but this can
lead to difficulties in characterising the performance of each multiplexed

connection,;

e Statistical resource sharing techniques rely on accurate source traffic
models. However, most of the multimedia sources are difficult to model.
Therefore, resource allocation techniques within the network may result
in performance levels different from those calculated using the source

model at connection request stage; and

e For each incoming connection, the admission control function has to be
done on the fly. The use of exhaustive numerical analysis is thus not

feasible.

2.4 Multimedia Application

Multimedia can be considered as a communication tool that can be used to
communicate almost anything. For instance, the first application of multi-
media was electronic games. In fact, multimedia applications can be used
by different sectors, such as education, training, industry, entertainment and
business [Bunzel94]. By incorporating animation and sound to an application,
the message, regardless of the content, has a far better chance of reaching its
users. As an example in the business sector, multimedia can serve a variety
of needs. It can be used in presentations, point-of-sale, video conference and
training. A list of multimedia applications has been classified by I'TU recom-
mendations [ITU93]. These applications introduce great requirements for the

communication network system. Table 2.1 presents some of the requirements
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for multimedia applications [Nahrstedt95]. Some of these requirements can
not be met for several reasons. According to [Herrtwich91], the requirements

of multimedia applications can not be met for three main reasons :

e System resources do not meet the needs of multimedia applications effi-
ciently: In the past, high-quality audio and video could not be handled
at all by standardised system resources. However, with the new tech-
nology, this has changed. Now, high performance resources meet the
requirements of multimedia applications. This is caused by having fast
processors (such as RISC), data compression schemes, optical disks and
fiber networks. Resources are already handling both audio and video,
but they need to be managed correctly to use them in a multimedia
environment. For instance, video needs a high bandwidth since video
frames must be displayed at a rate of 30 frames per second. Therefore,
video frames need to be transmitted in a compressed form. This implies
that, if the performance of resources is high, the use of the resources has
to be regulated to meet the needs of multimedia applications. Without
such a regulation, no guarantee on the behaviour of a given system can

be provided.

e The system resources are not scheduled carefully: Careful scheduling in
a multimedia system means the ability to multiplex a resource so that
the throughput and delay requirements of the multimedia applications
are met. The traditional scheduling techniques are not, in this sense,
carefully scheduled. Therefore, a multimedia application which uses more
than one resource at the same time needs a special scheduling technique

to support the throughput and the delay requirements.

e There is no reservation of the resource capacity according to individual
needs: The best scheduling method is useless if the system resources ex-
ceed its capacity. This means that resource reservation should be used
as a mechanism to control resource access. Therefore, if an application
makes a reservation, it will ensure that part of the resource capacity will
always be available. Also, the reservation will be denied if the applica-
tion does not need the reserved resources. By applying this mechanism,
conflicting applications will be avoided, nor will they be disturbed by

each other.
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‘ Application ‘ Data Type

Bit Rate Delay (End-To-End) Loss

Telephone/CD audio Audio 16-128 Kbps 0-150 ms 10~2
MPEG,H.261 or NTSC and PAL TV Video 1.86-20 Mbps ~ 250 ms 1072 — 10711

File Transfer Data 0.2-10 Mbps ~ 1 sec 1011

Table 2.1: Requirements of Multimedia Applications

However, reservation will cause some problems. First, reservation requires
the periodic workload to be foreseeable. Second, it should be known how
accurate the forecast can be. Third, it is not always possible to calculate or
monitor the duration of a task execution. A solution to this problem is possible
by reserving for the worst case, which is based on the assumed maximum
workload that may never occur in practice. Moreover, reservation could be
optimised to get a better resource utilisation, and avoid the rejection of a
reservation as much as possible. Also, the resource manager should have the
ability to recover any error, or conflict, caused by the reservation mechanism.

As a result, it should be taken into consideration that, in building a mul-
timedia platform, performance alone will not be a solution. This implies that
resource usage should be regulated by careful scheduling using, reservation

mechanisms [Mashat95].

2.5 Standards Supporting Multimedia Appli-

cations

It is widely predicted that multimedia applications, such as video conference,
will become widespread in the future. Without standards, products from dif-
ferent vendors will not be able to inter-operate, and therefore participate, in
the same system. The following are some organisations which help to pro-
duce and adopt a standardisation for multimedia data and application to be

provided to the vendors and system’s developer.

e ATM Forum: The ATM Forum is a non-profit organisation, formed in
1991. The objective of ATM Forum is to accelerate the use of ATM prod-
ucts and services through a rapid convergence of inter-operability spec-
ifications. Another of its objectives is promoting industry co-operation

and awareness.
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e IMTC: The IMTC stands for the International Multimedia Telecon-
ferencing Consortium, Inc. It is also a non-profit organisation. The
fundamental goal of IMTC is to bring all organisations involved in the
development of multimedia teleconferencing products and services to-
gether to help create and promote the adaptation of the required stan-
dards. The IMTC is trying to make consistent standards, such as the
ITU T.120 and H.320 suites. In addition, IMTC helps to educate the
end user to use open standards. This is done through public statements

and publications.

e ITU-T: The ITU-T is the Telecommunication standard sector of ITU
(International Telecommunications Union). ITU was formed in 1947,
under United Nation (UN). It has two committees which have a direct
impact on multimedia data transfer; the Consultative Committee on In-
ternational Radio (CCIR) and the Consultative Committee on Interna-
tional Telegraphy and Telecommunications (CCITT). The second com-
mittee was renamed by I'TU-T. This organisation is responsible for the
creation of several multimedia standards, such as H.261 (for video con-
ferencing). ITU provides some recommendations to help the cooperative
work to adopt consistent and reliable standards. These recommenda-
tions can be employed by a developer to create a system which could be

widespread in the future.

e MPEG: The Moving Picture Experts Group was established to develop
a common format for coding and storing digital video and associated
audio information. MPEG is a working group of ISO/IEC which is in
charge of the development of international standards for compression,
decompression, processing, and coded representation of moving pictures,
audio and their combination (more details could be found in the next

chapter).

2.6 Multimedia Traffic Types

In this section, we present the main classifications of multimedia traffic: Data,
Audio and Video. Each traffic class could be characterised according to traffic

behaviour and QoS requirements. Audio and video represent real-time traffic,
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while data represents non-real time traffic. Each traffic class differs from all the
others in its characteristics. We will now briefly itemise briefly these classes,

and their main characteristics.

2.6.1 Data Traffic

This type of traffic can be produced by computer-oriented services, such as
file transfer and terminal emulation. This includes interactive data traffic
(for example telnet) and bulk data traffic (for example FTP service). Traffic
behaviour varies from one type to another. For instance, the pattern of inter-
active traffic is extremely unconnected, with silent intervals, while bulk traffic
is a bursty traffic with large burst lengths [Liu92]. Data traffic is very sensitive
to cell loss, therefore it demands a very small cell loss rate, but delay require-
ments are not strict (in most cases). However, for some real time applications
(such as visualisation), data traffic could be sensitive to both data loss and

delay.

2.6.2 Awudio Traffic

This type of traffic includes any traffic that carries sound and voice informa-
tion. It differs from data traffic in its QoS requirements. Delay is the most
critical performance requirement (see Table 2.1), and the cell loss is also im-
portant with an acceptable cell loss probability 1072, However, the behaviour
and properties of audio traffic depends on the adapted encoding scheme [Sta-
moulis94]. For example, audio traffic can be transferred over the network in
various compressed modes such as Digital Speech Interpolation (DSI). This
type of traffic requires a low bit rate compared to video sources. It also pro-
duces short burst lengths [Liu92].

2.6.3 Video Traffic

Video traffic can be divided into two main groups: image retrieval and real-
time video. Each group is associated with certain QoS requirements. A typical
image retrieval application requires the transmission of a succession of images
at irregular intervals, while the bit rate of the video traffic varies. There
are two main factors that have influence on the behaviour of video traffic:

QoS requirements and the encoding schemes [Stamoulis94]. Video traffic is
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delay sensitive. The limit of real time services delay is 250 ms [Yousef97]. In
addition, it can be cell loss sensitive, with an acceptable cell loss probability
of 1072 to 1074

2.7 Multimedia Traffic Modelling

The traffic characterisation is used to develop a model which captures the main
features of the traffic. There are many traffic models that have been proposed,
starting from a basic model to more complex ones [Izquierdo96], [Conti96],
[Heyman92], [Doulamis96], [Rose95b], [Habib92], [Daigle86] and [Frost94]. The
more significant characteristics of most of the traffic models presented in the
literature are mean rate, peak rate and burst length. However, in the case of
encoded video traffic, there are more traffic characteristics that need to be
explored, due to the way video traffic is encoded. Most of the traffic models
are based on a stochastic process. The stochastic process can be classified into

three main types:

e Independent: A traffic source whose autocorrelation function decays

to zero at lag one (such as the Poisson process);

e Short-Range dependent (SRD): A traffic model tends to be de-
scribed as short range dependent if its autocorrelation function decays

to negative-exponentially fast; and

e Long-Range dependent (LRD): If the autocorrelation function does
not decay exponentially, then the traffic can be described as long range

dependent.

In most cases the validity or ‘goodness’ of a model is determined by comparing
the simulation results using the empirical data as the source, and results from
using the model [Izquierdo96]. In this thesis, we will follow this methodology

to validate our models.

2.7.1 The Importance of Traffic Characterisation

ATM networks are expected to support different types of applications, utilising
a wide range of characteristics. Unfortunately, there is no satisfactory agree-

ment on the characteristics of the various types of multimedia applications in
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accurate manner. The degree of understanding traffic characteristics for dif-
ferent types of applications varies widely. For instance, the characteristics of
audio sources have been studied for several decades and are reasonably well
understood, while VBR video sources still remain largely incomprehensible,
due to their unpredictable features.

For efficient traffic management in a high speed network, it is important
to know the basic characteristics of multimedia traffic. This information can
be used to study the network utilisation [Venturin95]. In addition, it can be
used to develop appropriate control schemes for handling multimedia traffic.
In order to achieve that, a traffic source model should be developed, based
on measurements of the existing multimedia applications. [Rose95a] presents

three main reasons why models for video traffic should be developed:

e The statistical properties of video traffic have a remarkable impact on
the network performance. By extracting these properties, we will be able

to decide which property is the cause of the performance problems;

e The computational complexity of simulations, especially long simulation
runs, can be reduced using traffic models and standard analytical tools

such as discrete time analysis; and

e A traffic model can be used to determine the traffic descriptors, which

are necessary at the connection phase.

2.7.2 Traffic Sources

There are many traffic models that have been proposed [lzquierdo96|, [Hey-
man92|, [Doulamis96], [Rose95b], [Habib92|, [Daigle86], [Frost94]. Some of
these are more appropriate than others for a given type of traffic. Generally,
the vast majority of multimedia traffic models are based on a stochastic pro-
cess and most of these models use Markov Chain (MC) method because of its
ease of use to characterise the alternating arrival process [Habib92]. The sim-
plest and the most commonly used traffic model is the simple Poisson model
which assumes that the arrival process is a Poisson process. However, for a
high speed network, the traffic is more bursty than in a Poisson process [Liu92]
[Paxson95]. Complex traffic models are useful only when their parameters can

be estimated accurately.
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In some models, it is possible to achieve different classes of traffic charac-
terisation by varying the model parameters, even when the model is simple (for
instance On/Off source model). An overview of these models can be found in
[Frost94], [Rose95a] and [Izquierdo96]. Table 2.2 shows some possible source
models for data, audio and video traffic. Some of these models will be pre-

sented briefly.

‘ Traffic Type Possible Traffic Source Model ‘

Bernoulli and Poisson Process
Data Compound Poisson Process
Train Model (Idle/Active)

Persistent Model (with a maximum permitted rate)

Audio ON/OFF

Two Markovian States Model

Autoregressive Model (AR)
Video Detailed Markov Chain Model

Markov Modulated Poisson Process

Self Similar (Fractal Process)

Table 2.2: Some Traffic Models

2.7.2.1 Poisson Process

The Poisson process is the oldest type of traffic model, dating back to the
advent of telephony. The model can be characterised by a random arrivals in
an interval of time ¢ while the interarrival time {4;} is a negative exponentially
distributed with a rate of \; P{A; <t} =1 — exp(—At) (see Figure 2.4). The
arrivals are independent from each other, meaning the past has no effect on

the future arrivals (memory-less).

Arriva: Poisson
Interarrival time (t -t ): negative exponential

| 1 1 11 ] |

t1,S1 2,52 t3,S3 UL Time

Figure 2.4: Poisson Arrivals Model
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2.7.2.2 Interrupted Poisson Process

The Interrupted Poisson Process model (IPP) is a commonly used traffic model
which can be used to model bursty traffic. This model is characterised by two
Markovian states: State 1 (Active) and State 2 (Idle), each being associated
with a bit rate A and 0 respectively and the Sojourn time (i.e. holding time) for
each state is exponentially distributed (see Figure 2.5). These states alternate
continuously. During the Active time, the interarrival times are exponentially
distributed (Cells arrive in a Poisson manner). This model can be described

by the parameters tg g1, Bstater and A as follows:

e The average time (duration) for the State 1 (Active) period (tsiate1):
Lstater1 = éa
e The average time (duration) for the State 2 (Idel) period (Bgiaze2): Bstatez =

1.

E, and

e Generation rate for Active state ().

Holding time: negative exponential

1/, 0

State 1 (Active) State 2 (Idle)

B

Figure 2.5: Interrupted Poisson Process

2.7.2.3 On/Off

This model is widely used to model many B-ISDN services (such as VBR). In
addition, it can be used to model various classes of traffic with various degrees
of burstiness [Stamoulis94]. It can be described as a two-state Markovian-based

model, which alternates continuously between Active and Idle. Each state
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presents a period of time, namely On and Off. The traffic will be generated
during the On periods, while no traffic is generated during the Off periods (see
Figure 2.6). In most cases, each period takes either exponential or geometric
random variables (depending upon the choice of the time axis as either being
continuous or discrete), with a mean i for the On period and % for the Off
period. During the On period, the interarrival time (7) is constant. The two
periods are independent of each other. Thus, the On/Off model cannot be used
to model the overall correlation of the traffic. However, it has been stated that
on/off model can be used to reflect some of the characteristics of a superposed
VBR video traffic [Helvik95]. In other hand, this model is unable to reflect
the periodicities feature of video traffic due to coding output pattern.

On/off model can be described by the parameters P, to, , and m as follows:

e Peak arrival rate (P): P =

)

Sl

-1

e The average of the On period (to,): to, = o *; and

e The fraction of time in which the system is in the On period (m): m =

a—l

Arrival Process: Poisson
Holding time: negative exponential or geometric

1/a, A 1/6,0

B
Figure 2.6: On - Off Model

2.7.2.4 MMPP

Markov Modulated Poisson Process (MMPP) is one of the most powerful mod-
els and has been used in many modelling research studies such as in [Frost94]
and [Izquierdo96]. MMPP is essentially an m-state continuous-time Markov
chain (see Figure 2.7). Each state i is associated with a bit rate A; and a mean
holding time 1/7;. The arrival process in each state is Poisson, and the holding

times are exponentially distributed. In fact the IPP model is a special case of
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the two-state MMPP model wherein State 1 represents Active with bit rate of
A and State 2 represents Idle with bit rate of 0. The two-state MMPP model
has been used to approximate the superposition of packetised voice sources,
together with data traffic arrival [Heyman92]. However, MMPP can only be

used to model a short-term correlation [Liu92]|.

A Un A, L A Urms

@ e w e

Figure 2.7: Markov Modulated Poisson Process

2.7.2.5 Deterministic

This is a very simple model based on generating traffic with a constant inter-
arrival period. Therefore, it has the ability to describe the constant bit rate
(CBR) service of the ATM network. This model can show better performance

reflections on the lower level of an ATM source [Helvik95].

2.7.2.6 Fluid Flow

The traffic source is viewed as a stream of fluid which is characterised by a
flow rate. This model always sends traffic with the maximum permitted rate.
This source model imposes heavy constraints on the network, therefore it is
appropriate for testing the fairness and the throughput of the traffic service
[Liu92]. The model eliminates statistical delays, which could be caused hy
random traffic generators. Thus, it would be possible to achieve deterministic

and reproducible simulation results.

2.7.3 Selection Criteria

In order to select the appropriate source model for an ATM network, a set of

selection criteria could be considered [Stamoulis94], and include:

e Actual Source Approximation: A model to be selected should ap-

proximate to the actual source. It is very important for the source model
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to capture the main statistical characteristics of the actual source which
would influence the performance of an ATM network when fed by such

a source.

e Simplicity: The model should be kept as simple as much as possible.
This could be achieved by using only a few parameters to describe the
source model. In addition, if the model employs Markov Chain method,

the number of states should be kept small.

e General Source: [t is preferred to construct a general source by which
one will be able to cover and fit a wide range of traffic types. For instance,
by varying the parameter values of the model, it is possible to capture
a different type of traffic. However, if one requires a general source,
and a simple model at the same time, then conflict will arise. Thus, a

tradeoff should be achieved between the simplicity and the generalisation

property.

e Ease of Implementation: The source model should be easy to imple-
ment in the case of simulation experiments. For instance, the model may
be incorporated into a simulation-based experiment. Thus, it has to be

implemented easily as a traffic source generator.

e Accuracy: The model should give accurate results when performance
measures are considered (such as delay and cell loss probability), corre-

sponding to the actual source .

2.8 Traffic Management in ATM Networks

Traffic management mechanisms are important processes in an ATM network
to protect the network against traffic congestion. In general, traffic manage-
ment can be considered at two different levels namely: connection level and
cell level. At the first level, topmost level, a process is performed in order to
give a decision to allow a new connection to be admitted to the network or not.
If the connection is allowed to enter the network then a bandwidth is allocated
to the connection based on the QoS requirements of the connection (it can be

described as a contract between the user and the network). At cell level, the
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policing mechanisms is performed to ensure that the contract between the user
and the network is not violated (such as leaky bucket algorithm).

Several proposals for resource management algorithms are currently emerg-
ing, or under development, to provide guaranteed performance communication
(the guarantee being either statistical or deterministic) [Gallasi90] [Belhaj97]
[Pancha93]. For instance, bandwidth allocation is one task of these algorithms
which determines the amount of bandwidth required by the connection to pro-
vide the required QoS. In the following sections, we present a brief definition

for some traffic management algorithms.

2.8.1 Bandwidth Allocation

In ATM, bandwidth allocation deals with the amount of bandwidth required
by a connection for the network to provide the required QoS. Mainly, there are
two approaches for bandwidth allocation, namely deterministic multiplexing
and statistical multiplexing. Peak bandwidth is allocated for deterministic
multiplexing. This approach can cause large amounts of bandwidth to be
wasted for a bursty connection. On the other hand, with multiplexing gains
can be achieved by employing the statistical multiplexing approach.

The allocated bandwidth for multiplexed connections is less than the sum
of their peak rates. Therefore, the statistical multiplexing allows more connec-
tions to be multiplexed in the network than deterministic multiplexing, thereby
allowing better network utilisation. However, QoS guarantees are satisfied in
the case of deterministic multiplexing, while they can be only statistically

guaranteed in the case of statistical multiplexing.

2.8.2 Call Admission Control (CAC)

One way of preventing the network congestion is to perform a process called
Call Admission Control (CAC). A new user connection with QoS requirements
should go through the CAC procedure to decide whether to accept the new
connection or not (i.e. reject it). If the new connection is accepted, a band-
width will be allocated for this connection. Thus, CAC determines the amount
of bandwidth required by a connection for the network, providing the required
QoS. In fact, bandwidth allocation works as apart of the call admission con-

trol algorithm. Because the allocated bandwidth should be done on the fly,
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the algorithm should be kept simple to meet the real time requirement.

Some of the CAC algorithms require a specific traffic model and some re-
quire only the traffic parameters such as peak rate and average rate. There
are many ways to classify the CAC schemes (algorithms). For instance, [Per-
ros96] classified the CAC schemes according to the principle that was used to
develop the schemes. Determining and calculating the required bandwidth for
each connection is one of the most important aspects to quantify any CAC

algorithm.

2.8.3 Effective Bandwidth

Statistical multiplexing improves network utilisation by allowing bursty sources
to share bandwidth on demand and allocate a bandwidth for each source (con-
nection). The allocated bandwidth should be less than the source peak rate.
In order to take advantages of statistical multiplexing, the network should be
able to approximate and determine the minimum required bandwidth for each
source as a function of QoS, buffer size (at the multiplexer) and the traffic
parameters. This bandwidth is commonly known as the effective bandwidth.

Therefore, the effective bandwidth allocation (equivalent capacity) can be
defined as the service rate with corresponding QoS requirements (such as cell
loss probability and minimum delay). The allocated effective bandwidth is
computed to be close to the long range average (mean) rate and far from the

peak rate.

2.9 ATM Switching and Multiplexing

In an ATM network, cells have to be merged from different sources and routed
to different destinations via switch paths. In this way, the cells will share the
transmission links for part of their journey. In fact, an input to an ATM switch
within a switching element could be an output from another multiplexer. The
process of multiplexing and switching cells involves temporary storage of cells
in a finite sized buffer and the arrival cells form a queue in order to be served.
Therefore, the main tasks for the switch and the multiplexer are to provide
a temporary storage for the arrival cells, and then route them to the correct

outgoing port while maintaining their QoS requirements. Another advantage
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of the multiplexing process is to enable a large number of sources to share
network resources, such as the buffer and link capacities.

An ATM switch can be either blocking or nonblocking switch. To under-
stand nonblocking switching, one needs to understand the role of blocking in
the switch. Block occurs in a switch when a cell can not immediately access
an idle outgoing port to which it would have access. This problem may occur
because a buffer in the succeeding stage is full or because a cell at the head of
the port of a queue can not be immediately switched. However, in nonblocking
switch, cell can always immediately access a desired idle outgoing port.

There are many ways to arrange a switch to provide temporary storage
[Perros96), depending on where buffers can be placed in the switch: Input
buffering, Output buffering and Cross-point matrix. In this thesis, we assume
that a non-blocking ATM switch is a multiplexer with an output buffering (see
Figure 2.8) whereby multiple sources have been multiplexed into a buffer with
one outgoing port (link). Then, the call admission control should be applied
through each outgoing port of the switch.

— i
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Figure 2.8: Outgoing Non-Blocking ATM Switch

Each outgoing port, and its buffer, could be represented as a queueing
process. This type of process is known as an ATM Multiplexer [Perros96]. We
usually consider a model where a number of sources emit their traffic streams
directly into the multiplexer which has one output port. This is an idealisation,
because in reality most source streams are multiplexed into a smaller number
of trunks when they enter a switch. It is obvious that this makes no significant
difference to the results [Roberts91].

Any queueing process could be described as arrival customers, service time
by the server, number of service channels and the buffer capacity. The arrival
customers can be specified as an input to the buffer with an average number
of arrivals per unit of time, or they could just as easily be described by the

average time between the arrivals. The arrival average time could be either
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constant (deterministic) or variable (stochastic). The service time can also be
described by a service rate (or link speed).

Through this thesis, we will study a case in which the arrival customers
are VBR MPEG streams and there is only one service channel to serve the
customers, while the system capacity is the waiting space (see Figure 2.9).
The waiting space could be finite or infinite, but in a real system the capacity
must be finite. If the system capacity has been exceeded, then any incoming
arrivals will be lost. Furthermore, larger buffer sizes will increase the waiting
time for arrivals to be served. Therefore, QoS guarantees should be satisfied

before establishing any new connection.

B
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Figure 2.9: Buffering at Outgoing Port

2.10 Performance Evaluation of Multimedia Sys-

tems

Several multimedia applications are emerging, due largely to recent advances
in fiber optics and hardware technology. An important issue in the success-
ful development and delivery of these future applications is a system platform
supporting the applications QoS requirements. Several proposals for resource
scheduling algorithms and protocols are currently emerging, or under devel-
opment to provide guaranteed performance communication support for these
platforms (the guarantee being statistical or deterministic).

An important factor in the performance evaluation process of these re-
source scheduling algorithms and protocols is the input workload selected. The
workload is made up of traffic flows generated by sources of different media
types (audio, video, text, etc.) with different characteristics determining their
behaviour and QoS requirements. Choosing the right workload for the perfor-
mance evaluation of algorithms and protocols is crucial as different workloads
will lead to selecting different algorithms and protocols (as well as their inter-

nal parameters). Most performance experiments tend to select traffic sources
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without considering profiles generated by applications, hence obtaining results
from system-level sources [Kara95]. While the best algorithms and protocols
would have been selected for the particular workload selected, it remains to be
seen how these will perform under the workload generated by real applications.

In this thesis, we propose source models reflecting the behaviour of a real
MPEG video traffic. We also provide steps required to integrate the MPEG
source onto the workload model in order to generate a synthetic traffic emu-
lating a realistic MPEG workload.

2.10.1 Workload Generation

Any study of high speed networks requires a workload to test the performance
of designs based on a particular traffic model [Liu92]. There are many traffic
models which approximate the traffic characteristics are used in these perfor-
mance studies [Schuler96] [Celandroni97]. Thus, a workload can be presented
as generated traffic with specific characteristics. Generally, two different ap-
proaches to generate traffic for measurement and simulation may be identified

as:

e Replay of saved traffic: This is a storage based generation, where
a pre-recorded or predefined traffic sequence is reproduced during the
measurement. This approach is suitable for initial functional testing
because of its determinism and simplicity. However, this approach is
limited due to the availability of reasonable memory. Therefore, this

approach is unsuitable for validation.

e Stochastic based: This approach can be regarded as a 'Black Box’
approach. The traffic is generated according to the class of the stochastic
process (e.g. renewal) or source (e.g. on-off). The traffic is generated
based on the process or source parameters. By using this approach,
it is possible to generate a long traffic stream with various behaviours.
However, the quality of the generated traffic depends on the how well

the selected traffic parameters are.

A number of models have been proposed as approximations of individual
and/or aggregate traffic sources in a a high speed network. However, it is

argued that complex traffic models are useful only when their parameters can
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be estimated accurately. In this thesis, we will focus to generate a synthetic
VBR video traffic based on the approximation of MPEG traffic behaviour.

2.10.2 An Application Level Traffic Generator

A more appropriate design for a realistic workload model is one that emulates
multimedia applications. An example of such a tool has been under develop-
ment at the University of Leeds, called an application level traffic generator
[Kara95]. This traffic generator distinguishes itself from other traffic generators
because it aims to capture the behaviour of these applications in its traffic gen-
eration. Two key design issues addressed in the traffic generator are calibration
and validation. The calibration process determines the profile and patterns of
the different media types required by an application. Validation is the process
of comparing the traffic generated by scenarios from the traffic generator with
those of real applications. An important part of this application-level traffic
generator is the availability of multimedia traffic sources. The traffic genera-
tor should provide a wide variety of multimedia applications, including video,
audio and data traffic. The architecture of the workload model in a greater
details can be found in [Kara95] and [Kara97]. However, the design objectives

of the traffic characterisation and generation architecture are:

e Application-oriented traffic generation: The aim of this architec-
ture is to provide a realistic set of scenarios to the algorithm and protocol

designer from which they can test their new designs.

e Calibration: The traffic pattern generated by applications needs to
be characterised as a set of services with temporal relationships. This
objective is to ensure that the architecture features a calibration process

that is in place to extract the essential features of an application.

e Validation: This is the process of verifying that the traffic generated
by the workload software reflects realistically what the real application
is emulating. A level of confidence as well as an interval of confidence
are usually provided with the validation process. The level of confidence,
placed upon this tool as a reliable instrument to drive experiments rests

in the validation objective.
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e To provide an interface for algorithms and protocols: This is to
ensure that the interface between the architecture and the algorithms
developers is (1) independent of any specific transport provider, (2) con-

forms to the OSI RM, (3) widely implemented across different platforms.
The traffic generator operates by specifying :

e The configuration of the network (i.e. the participating nodes),
e A profile of the scenarios, and

e A set of libraries of the algorithms and protocols to be tested.

A profile file contains the specification of the experiments, and acts as a binding
for the scenario, configuration, and algorithms and protocols required, as well

as experimental settings for repetitive experiments.



Chapter 3

Characterisation of VBR
MPEG Video Traffic

3.1 Introduction

Variable rate video traffic requires a careful treatment by the network. For
instance, a sufficient bandwidth (with a little wasted bandwidth) should be
provided, allowing a minor error for video traffic transmission. In the case of
MPEG traffic, cell losses are crucial because most of the original video redun-
dancy has been removed by the MPEG data compression process. Therefore,
as stated previously, the knowledge of traffic characterisation is an important
issue in ATM networks especially for efficient traffic controls. Some measures
are necessary for characterising the burstiness of an encoded video source.
For example, if the number of multiplexed sources are large and the traffic
intensity is low, then the performance of ATM networks depends largely on
the distribution information (such as average, deviation-to-average ratio and
peak-to-mean ratio). On the other hand, if the traffic intensity is high, other
information must be considered (such as autocorrelation and coefficient of vari-
ation) [Nomura89).

In the case of a compressed video traffic, three main measures can be in-
troduced, namely: Distribution, Autocorrelation and Coefficient of variation.
There are some other measures which characterise the overall variation (or
unsteadiness) of the encoded traffic, such as the duration of the peak and the
scene change durations. These measures provide a greater number of char-

acteristics of the traffic over a period of time. This chapter deals with the

39
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main statistical information of VBR MPEG traffic including, distribution and
correlation information, while the next chapter will examine the other traffic

measures.

3.2 MPEG Overview

Nowadays, video has become an increasingly important component of multi-
media communications because of increasing user demand for video and rapid
advances in coding algorithms. The focus of this thesis is on a particular coding
algorithm which has recently received a great deal of attention, namely the Mo-
tion Picture Experts Group (MPEG) standard. In 1988 MPEG was founded
under ISO/SC2, with a charter to standardise video coding algorithms aimed
for digital storage media having bit rates at up to about 1.5 Mbits/s.

MPEG is an example of variable bit rate video traffic. Generally speaking,
video sequences contain a significant amount of statistical and subjective re-
dundancy within, and between, frames. The ultimate goal of the video source
coding is the bit-rate reduction for the storage and transmission. This is done
by exploring both statistical and subjective redundancies, and to encode a
‘minimum set’ of information using entropy coding techniques. This usually
results in a compression of the coded video data when compared to the orig-
inal source data. The performance of video compression techniques depends
on the amount of redundancy contained in the image data, as well as, on the
actual compression techniques used for coding. With practical coding schemes,
a trade-off between the coding performance (high compression with sufficient
quality) and the implementation complexity is targeted [Sikora98].

The MPEG digital video coding techniques are statistical in nature. Usu-
ally, video sequences contain statistical redundancies in both temporal and
spatial directions. MPEG compression techniques rely upon a basic statisti-
cal property, namely inter-pel (or inter-pixel) correlation, including the simple
correlated translatory motion between consecutive frames. Thus, it is assumed
that the magnitude of a particular picture pel can be predicted from nearby
pels within the same frame (using Intra-frame coding techniques) or from pels
of a nearby frame (using Inter-frame techniques). Consequently, during scene
changes of a video sequence, it is clear that the temporal correlation between

pels in nearby frames is small (or even not exist), and the video scene assembles
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accordingly a collection of uncorrelated still pictures. In this case Intra-frame
coding techniques are appropriate to explore spatial correlation in order to
achieve efficient data compression. The MPEG compression algorithms em-
ploy Discrete Cosine Transform (DCT) coding techniques on image blocks of
8 x 8 pels to efficiently match spatial correlations between nearby pels within
the same picture. However, if the correlation between pels in nearby frames
is high, e.g. in cases where two consecutive frames have similar or identical
content, it is desirable to use Inter-frame DPCM coding techniques employ-
ing temporal prediction. In order to achieve high data compression (hybrid
DPCM/DCT coding of video), a combination of both temporal motion com-
pensated prediction followed by a transform coding of the remaining spatial
information is used . The basic units that the MPEG algorithm uses as follows

(see Figure 3.1):

e Block: A block is the smallest coding unit in the MPEG algorithms. It
is made up of 8 x 8 pels and it is the basic unit in the intraframe DCT

coded frames.
e Macroblock: A macroblock consists of a 16 x 16 pel segment.

e Slice: It is a horizontal strip within a frame, and is the main processing
unit in MPEG. The coding of a slice is done independently from its

adjacent slices.
e Picture: A picture is a single frame in a video sequence.

e Group of Pictures: The Group Of Pictures (GOP) is a small sequence

of a deterministic pattern of pictures.

e Sequence: A sequence contains a series of pictures (or GOPs).

3.2.1 MPEG Coding

The MPEG coding algorithm was developed initially to store a compressed
video on a digital-storage media [Pancha93]. MPEG is a flexible coding scheme
which makes this type of coding widely available, and the most frequently
used standard for video encoding [Bunzel94]. A variety of video applications

(including video conferencing) use the MPEG coding scheme for reducing the
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Figure 3.1: The Basic Units in MPEG

required bandwidth [Rose95a]. There are two main types of MPEG coding
schemes for video: MPEG-I and MPEG-II.

e MPEG-I: The first Draft International Standard (DIS) released by the
committee, ISO 11172 (MPEG-I), was drafted in 1991, and finally issued
in 1992. MPEG-I was intended to be generic (although the initial target
applications were constrained to digital storage media). The standard is
independent of a particular application and therefore is mainly described
as a toolbox. The user may decide which tools to select to suit the partic-
ular applications envisaged. This implies that only the coding syntax is
defined, and that the decoding scheme is standardised. MPEG-I defines
a hybrid DCT/DPCM coding scheme, with motion compensation simi-
lar to the H.261 coding standards. Further refinements in prediction and
subsequent processing were introduced to provide a level of functionality

required for random access in digital storage media.

e MPEG-II: Studies on MPEG-II started in 1990 with an initial aim of
issuing a standard for the coding of TV-pictures with CCIR Rec. 601
resolution at data rates below 10 Mbit/s. In 1992 the scope of MPEG-II
was enlarged to suit the coding of High Definition Television (HDTV).
The DIS for MPEG-II video was issued in early 1994. The video coding
scheme used in MPEG-II is again generic and similar to that of MPEG-I,
however, with further refinements and special consideration of interlaced

sources. Furthermore, many functionalities, such as ‘scalability’ were
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introduced. In order to keep the implementation complexity low for
products not requiring the full video input formats supported by the
standard (e.g. SIF to HDTV resolutions), so called ‘Profiles’, describing
functionalities, and ‘Levels’, describing resolutions, were introduced to

provide separate MPEG-II conformance levels.

‘ Coder ‘ Rate ‘ [-frame ‘ P-frame ‘ B-frame ‘ Average ‘

MPEG-I | 1.15 Mbit/sec | 150,000 | 50,000 | 20,000 | 38,000
MPEG-II | 4.00 Mbit/sec | 400,000 | 200,000 | 80,000 | 130,000

Table 3.1: Examples of Typical Frame Sizes (in bits) for MPEG-I and MPEG-
II

Table 3.1 shows the typical frame sizes for both MPEG-I and MPEG-II [MPEG99].
It is important to mention that MPEG-II was built on the powerful video com-
pression capabilities of MPEG-I standard. Therefore, MPEG-I and MPEG-II
specifications are similar [Gringeri98]. Since both MPEG types use the same
compression concept and our analysis is applicable to both types [Krunz97],
therefore, we will use MPEG-I throughout the thesis. However, the most im-
portant differences between MPEG-I and MPEG-II can be addressed in the

following points:

e MPEG-I is meant for progressive sequences, whereas MPEG-II is op-
timised for interlaced pictures, so that it can represent a progressive

sequence;
e MPEG-II supports a higher bit rate than MPEG-I; and

e MPEG-II has more profiles and layers depending on the targeted appli-

cation.

Two further types of MPEG are currently under development: MPEG-4, a
standard for multimedia applications, and MPEG-7, a content representa-
tion standard for information search [ISO/IEC97]. A project for developing
an MPEG-III was originally exist, intended for HDTV applications, but the
project was cancelled when HDTV was added to the MPEG-II standard.
The basic scheme of MPEG coding is to predict motion from frame to frame

in a temporal direction, and then to use DCTs to organise the redundancy in
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the spatial directions. Thus, MPEG coding is a combination of interframe and
intraframe coding techniques. Considering the output of an MPEG-I encoder,
the reduction can be achieved by producing three types of frames: I, P and B
(see Figure 3.2):

e I Frame (Intra frame): I frames are simply frames coded as a still
image. The coding of this type of frame does not need any reference to
another frame. Temporal redundancy is not taken into account. An ‘I’

frame is always an access point in the video sequence.

e P Frame (Predictive frame): P frames are predicted from the most
recently reconstructed I or P frame. This frame is coded using a mo-
tion compensated prediction mechanism which exploits both spatial and

temporal redundancies.

e B Frame (Bidirectional predictive): B frames are predicted from
the closest two I or P frames, one in the past and one in the future.

Coding B frame achieves the highest possible compression ratios.

As a result, MPEG-I can be distinguished from other encoding schemes by bi-
directional temporal prediction [Conti96]. Each of these frames uses a different
coding algorithm. An MPEG encoder repeats these frames periodically. Each
frame contains a two dimensional array of picture elements called pels. The
output of the encoded stream (the sequence of decoded frames) contains a
deterministic periodic sequence of frames such as [BBPBBPBBPBB| which
is called Group Of Pictures (GOP). The selection of the encoding sequence is
a tradeoff between latency, compression and error propagation. The B and P
frames are preferred to I frame in terms of reducing the overall data rate for
compressed video stream. However, | frame is necessary because it can be used
to terminate the propagation of error. This is due to the ability of decoding
the I frame without a reference to any other frames. Thus, it is typical to limit
the maximum length of the GOP.

Generally, an MPEG video stream can be classified into three main layers:
scene layer (containing similar images), GOP layer (containing a deterministic
periodic sequence of frames) and frame layer (with different types of frames).
The duration of these layers varies from several seconds to tens of milliseconds.

MPEG traffic can be characterised using different levels: macroblock, slide,
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frame, GOP, or even the entire MPEG stream. We will use the frame and

GOP levels for our statistical analysis.

GOP

Mpeg Frame

Figure 3.2: Encoded MPEG Video Sequence

3.3 VBR Codec Output

Generally, the overall bit rate of an encoded video stream depends on two
resolutions: the temporal resolution (frame/sec) and the spatial resolution
(pels/cm?). The bit rate can vary from tens of kilobits to hundreds of megabits
per second, based on the quality of the coded stream. Compression coding
schemes (e.g. interframe coding) reduce the amount of data transmission which
results in an essentially variable rate. The principle of interframe coding is
to realise changes between successive frames with respect to a base picture
(frame) predicted from previously received frames. Thus, the amount of data
per frame can vary substantially, according to the degree of movement in the
transmitted stream. Typically, characteristics of a video stream (sequence)
based on the amount of data in an encoded frame can be sketched as follows
(see Figure 3.3):

e According to the variation in the bit rate, sharp peaks can occur due to
large scene changes. However, rate variations are relatively slight within

the same scene.

e The shape of the bit rate distribution is typically bell shaped (or mound
shaped). However, the skewness direction is based on the type of video

stream (e.g. video conference, movie or sport).

e The autocorrelation function is another factor which can be used to char-
acterise the dependencies feature of successive frames within the same

video sequence.
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3.4 Statistical Analysis of an MPEG Pattern

In this section, we examine the characterisation of VBR MPEG streams in
terms of their statistical behaviour by employing the three measures (distribu-
tion, autocorrelation function and scene changes). These measures comprise
the focus of our statistical study because the distribution parameters are im-
portant to describe and understand the main features of MPEG traffic, while
the correlations have an enormous impact on the queueing performance of a
statistical multiplexer [Sriram86]. Furthermore, one of the major reasons for
fluctuations in the overall bit rate is scene changes within the video stream
[Lazar93]). The scene change will be discussed in greater detail in the next
chapter while, in this chapter, we analyse MPEG behaviours, and examine
some statistical characteristics of MPEG traffic using the first two measures
(distribution and correlation).

It is difficult to characterise video traffic by using a short sequence of real
data (of only a few seconds). For our statistical analysis, we use a long (about
30 minutes) sequence of real MPEG video which contains 40000 frames. Em-
pirical data sets for MPEG video streams have been retrieved from the ftp
site [Wurzburg9s]. The video sequences have been encoded at the Institute
of Computer science, University of Wurzburg. These sets represent frame size
traces from MPEG-I encoded video sequences. Each frame consists blocks
with an encoder input of 384x288 pels (Berkeley MPEG-encoder ver. 1.3 has
been used with 12 bit colour information). The traced videos were captured
in motion-JPEG format from VCR (VHS) with a captured rate between 19 to
25 fps. Table 3.2 summarises the encoding parameters. The traffic prameters

(shown in the table) have been taken from [Wurzburg95].

Encoder MPEG ver. 1.3
No. of Frames 40000 frames
Quantization Values | [=10, P=14 and B=18
Encoded Pattern 'IBBPBBPBBPBB’

GOP Size 12 frames
Encoder Input 384X288 pel
No. of Slices 1
Rate 19-25

Table 3.2: Parameters of the Encoded Sequence
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In order to characterise the statistical behaviour of MPEG streams, we
describe the number of cells per frame as a time series {X;,7 > 0}. In that

way, the statistical parameters can be defined as follows:

A = supi>o{ X;}

n = E[X]

o = Var[X;]

where A, V, u, and o are the peak rate , minimum rate, mean and standard

deviation of { X} respectively.

Table 3.3 presents the most important statistical parameters (frame-based)
that we have obtained for some video sequence classes, including movies, sports
events, TV shows and video conference. The table gives a general picture of
the video sequence in terms of the variation and burstiness features. From
this table, we can observe that some events (such as ‘Race’) lead to an MPEG
sequence with a high peak. Moreover, some other events (such as ‘Star Wars’)
have a high peak-to-mean ratio. The statistical properties of these video se-
quences are different, depending on the moving activities of the sequence. For
example, the size of B frames in the sports sequences has a large amount of
change (in some cases it has the same size as P frames (see Figure 3.4 (b)). This
indicates a large number of movements in the input encoded sequence. As the
result, the amount of activity within the video stream affects the frame sizes
of the same GOP. Therefore, the amount of activities need to be considered at
the statistical analysis process.

Generally speaking, it is possible to classify an MPEG sequence into three
classifications, according to the amount of movements during the video se-
quence: namely High, Moderate and Low activity classes. The behaviour of

the video sequences for the same class is almost the same, therefore ‘Race’,
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‘Dino’ and ‘video conference’ sequences have been chosen and they will be
analysed in detail. The ‘Race’ sequence represents the High activity class,
the ’Dino’ sequence is representative of the Moderate activity class, while the

‘video conference’ represents the Low activity class.

Video Sequence Sequence Type Mean (u) CoV(%) Stdev(o) Peak Peak/Mean
Cell/frame Cell/frame Cell/frame

Dino Jurassic Park Movie 35 1.13 39 312 9.14
StarWars Star Wars Movie 25 1.38 34 325 13.4
Race Formula 1 car race 80 0.69 55 527 6.58
News TV News 40 1.27 51 495 12.36
Talk TV Talk show 38 1.14 43 279 7.34
video Conference Set-top Conference 16 1.93 30 121 7.66

Table 3.3: Simple Statistical Parameters for Some MPEG Sequences (Frame-
Based)
Where : CoV is the Coefficient of Variation% And Stdev is Standard
Deviation o.

The size of GOP (summation of the frame sizes for every 12 consecutive
frames) is influenced by the video activity within the same video sequence.
For instance, if there is a lot of movement within a scene, the GOP size will
be high; if there is minimum movement, the GOP size will be low. Figures 3.4
(a-c) show the time series plots for some video sequences compared at frame
sizes. A high level of activity causes the sizes of both P and B frames to be
enlarged. For instance, the frame size of type I is very large in the ‘Race’
sequence (Figure 3.4 (b)). In comparison, the B and P frames in the ‘video
conference’ sequence are small compared to the I frames. This is because the
amount of movement in the video sequence is not large. In other words, there
is a small amount of scene changes.

The GOP plays the most important role concerning the autocorrelation
effects of an MPEG video stream coded with different frame types, because
it fixes the periodic nature of the stream. This unique property of an MPEG
coded video prevents us from using video models which are based on statistical

data from video sequences which have only one frame type, or ignore the GOP

'In this thesis, ‘video conference’ and ‘Settop’ are referred to the same video stream
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structure altogether. Thus, we focus on the GOP level for our characterisation

process.
Video Sequence Sequence Type Mean (u) Stdev(o) Peak COV(%) Peak/Mean
Cell/GOP Cell/GOP Cell/GOP

Asterix Cartoon 698 325 2811 0.46 4.02
Atp ATP Tennis Final 684 255 2052 0.37 2.99
Bond Movie 759 284 2490 0.37 3.27
Dino Jurassic Park Movie 408 164 1634 0.40 4.00
Fuss Football Game 847 322 3336 0.38 3.93
Lambs Movie 228 138 1203 0.60 5.26
Movie Movie 446 224 1776 0.50 3.97
Mr Bean TV Series 550 275 2248 0.49 4.08
MTV Musical Program 769 358 3335 0.46 4.33
News News 645 282 2472 0.43 3.82
Race Formula 1 Race 961 362 3470 0.37 3.61
Sbowl Sport 734 270 2213 0.36 3.01
Simpson Cartoon 580 247 2182 0.42 3.75
Soccer Soccer Game 784 376 3050 0.48 3.88
Starwar Movie 290 167 1170 0.57 4.02
Talk Talk Show Program 454 147 1225 0.32 2.69
Term Movie 340 117 1061 0.34 3.11
Settop Video Conference 187 32 372 0.17 1.98

Table 3.4: Simple Statistical Parameters for MPEG Sequences (GOP-Based)
Where : CoV is the Coefficient of VariationZ And Stdev is Standard

u
Deviation o.

Table 3.4 shows the most important statistical parameters of several MPEG
sequences at GOP level. This table includes various types of MPEG sequences
such as movies, sports and even news and ‘video conference’ events. This
means that we cover wide range of MPEG sequences. What is obvious from
the table is the great diversity of statistical parameters of the sequences. The
sequences are similar in that they use the same coding parameters and picture
format, and were retrieved in the same way from analog video tape. Thus, even
though the streams contain the same amount of data before the coding took
place, the outcome varies widely. From the table, it is possible to describe the
general behaviour of an MPEG sequence in terms of its mean rate (Cell/GOP)
and burstiness. From the table, we can also conclude that some sequence types

(such as sport and movie events) lead to MPEG sequence with a high peak bit
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rate and a high peak-to-mean ration. However, even the statistical parameters
of the sequence of the same type are not stable. This leads to difficulties in
finding traffic classes for MPEG sequences. In the following sections, MPEG
sequences can be described by two main factors: statistical distribution of each

frame type, and the dependency between them.

3.4.1 Sequence Distribution

In this section, we discuss the statistical distribution of the empirical data sets
in order to discover the best distribution. The statistical distribution param-
eters can be used in the process of approximating the frame and GOP sizes.
Figure 3.5 shows the corresponding histogram for the empirical data set of
‘Dino’” sequence. The shape of the histograms suggest that the true under-
lying distribution is skewed to the right. Since the densities of the Gamma,
Weibull and Lognormal distributions can all take on shapes similar to that of
the histogram, we propose them as candidates for the desired distribution. In
order to use these distributions in our analysis, we need first to determine the
parameters of the three proposed distributions. It is important to note that
both Gamma and Weibull distributions with their shape parameters have an
appearance similar to the typical histograms of these two distributions while
the Lognormal distribution always has this general shape [Law91]. We will
now assess how well our three particular distributions represent the actual
distribution of the MPEG empirical data sets.

There are many ways to test the ‘Goodness’ of the data. One way to test
the Goodness is to fit the data histogram with the distribution curve. Previous
studies have shown that the frame size of video sequences with various (vary
from low to moderate) number of movements could be described by either a
Gamma or a Lognormal distribution [Rose95a] [Hyman92]. In this section, we
discuss the fitting of video sequences (at GOP level) to the three distributions.
The study considers a wide range of MPEG sequences (with different amount
of activities). The Gamma density function is given by:

)\axafl
= e M za,A>0
7 (a)

fa ()

where z is the random variable (a GOP size in bits), aand A are the shape
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Figure 3.5: The Data Histograms and The Corresponding Gamma Curve

and scale parameters, and ? () is the Gamma function and is defined as:

() = /0 t* et dt.

The mean and the variance are defined as:

and
Var[r] = a- \*

while the Lognormal density function is given by:

1 1(lnz=py2

flz) = ——e"2

Then, the mean and the variance are defined as:

Elz] = eln+30%)
and

Var[r] = w(w — 1)e*"
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where

w=e€

The Weibull density function is defined as follows:
fl@)=ar e 3w aand >0

Accordingly, the mean and the variance are further defined as:

and

Var(e) = 2 {2? -1 k (é)r}

Figure 3.5 shows that there is an agreement between the data histogram and
the curve of the corresponding Gamma distribution (for ‘Dino’ sequence). The
data represents the GOP sizes. In [Rose95a], It has also been confirmed that
frame size (for I, P and B) gives the same results to fit Gamma distribution.
In many cases, comparing the histogram and the curve of the corresponding
distribution is not enough. Thus, we need to use a more accurate method to
fit the data distribution.

The fractile diagram method (Quantile-Quantile plot or Q-Q plot) is an-
other way to find the closest distribution for an empirical data set (I, P and B
frames or GOP size) [Doulamis96]. The method plots the quantiles of the data
versus the quantiles of the fitted known distributions (more details on Q-Q plot
can be found in [Law91]). The Q-Q plot can be used to amplify the differences
which exist between the tails of the data and the fitted distribution. We have
used a statistical software called MINITAB to analyse, calculate and plot the
Q-Q plot [Minitabh89]. Figure 3.6 shows an example of the MINITAB macro

for plotting Q-Q. The following algorithm was employed for our calculations:

{X;, N > i > 0} contains an empirical data set
LET a AND X arethe shape and scale parameters of the data set { X;}
{Xsortedl} = Sort {XZ}

Calculate the Empirical Cumulative Distribution Function :
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(ECDF({X,}))of the data set
PLOT *\[{X ortea,} . *\/ECDF({X;}); N > i >0

In order to test the Q-Q plot on one of the frame types, Figure 3.7 (a)
shows Q-Q plot for I frames of the ‘Dino’ sequence and fitting the Gamma
distribution. The Q-Q plot shows that there is an agreement with the Gamma
distribution because most of the data plot is ‘nearly’ linear shaped. However,
Figure 3.7 (b) shows that GOP sizes for ‘Dino’ have a better agreement with
the Gamma distribution than the ‘video conference’ sequence in Figure 3.7 (c).
This is because some of the data do not fit Gamma distribution.

In order to examine the 'Goodness’ of the data to the Lognormal distribu-
tion, we draw a normal probability plot for the Log(X;), where X; for i < N
are the GOP sizes. The method is based on the fact that a variable X has a
Lognormal distribution if log(z) has a Normal distribution with a mean p and
a standard deviation o [Monk91]. We have used again MINITAB to draw the
normal probability plot for various MPEG sequences at the GOP level. The
plot uses Anderson-Darling test for the normality test [Minitab89]. Figures 3.8
(a-d) show the normal probability plots of the Log(GOP)s for ‘Dino’, ‘Race’,
‘Movie’ and ‘video conference’ sequences. The vertical axis represents a prob-
ability scale while the horizontal axis represents a data scale. MINITAB fits
and draws a least-squares line to the points (GOP) that estimate the cumula-
tive distribution function for the population from which data are drawn. If the
Log(GOP) fits the Normal distribution then the data points should be over
the line. We have observed from the Figures that the ‘Race’ sequence shows an
agreement with the line while a better agreement can be observed in the case of
the ‘Dino’ sequence. However, the ‘Movie’ sequence shows less agreement and
the ‘video conference’ sequence shows a poor agreement with the line. Thus,
generally speaking, Lognormal distribution can be used to describe GOP sizes
of MPEG sequence.

Weibull distribution has been also suggested to describe video sequences
[Heyman96]. We have used the Weibull plot to test the ‘Goodness’ of the data
set. Similar to the normal probability plot, the vertical axis has a probabil-
ity scale and the horizontal axis has a data scale. Figures 3.9 (a-c) show the
Weibull probability plot for the ‘Dino’, ‘Race’ and ‘video conference’ sequence.

From the Figures, we can observe that Weibull distribution exhibits a weak
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# Macro for Gamma Quantile-Quantile Plot

# This Macro is a nodification ver. of the original Macro which
was witten by Terry Zienmer, Mnitab, Inc.

# You will be pronpted for the number of the colum where your
data

# is stored. The data will be sorted and an Enpirical Cunulative

# Distribution Function (ECDF) calcul ated. Both the sorted data
and

# ECDF will be stored by the macro. The sorted data will be
stored in

# colum 99 and the ECDF in colum 100. In addition, the nmacro
uses

# colums 95-98. If you don’t have enough colums in your environnent,

# edit the macro and change the values of k1-k6.

noecho

oh 0

let k1 = 95

let k2 = 96

let k3 = 97

let k4 = 98

let k5 = 99

let k6 = 100

note

note Enter the nunmber of the columm which contains the input
data

note

set 'terminal’ ¢100;

nobs 1.

note

copy ¢100 k7

note Enter the Gamma Shape Paraneter
note

set 'terminal’ ¢100;

nobs 1.

copy c¢100 k8

sort ck7 ck5

let k10 = count(ck7)

set c100

1:k10

let ck6 = (c100 - (3/8))/(k10 + (1/4))
invedf ck6 ck4;

gamma k8 25291. 689.

let ck4 = ckd**(1/3)

let ck3 = ck5**(1/3)

pl ot ck3 ck4;

Figure 3.6: Q-Q Macro
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Figure 3.8: Examining Lognormal Distribution Using Normal Probability Plot

agreement for the GOP sizes of MPEG sequence. However, only the middle
points (i.e. the GOPs which are close to the mean value) approximate the cor-
responding Weibull distribution in the case of the ‘Dino’” and ‘Race’ sequence,
while the ’video conference’ sequence does not approximate the corresponding
Weibull distribution.

Consequently, there is not yet a good agreement for the most fitting distri-
bution of all MPEG video traffic due to the different degrees of activity or the
amount of movement within the video stream. Generally speaking, Gamma or
Lognormal distributions can be used to approximate the frame sizes and GOP
size of most of the types. In most cases, there is no large difference between
Gamma and Lognormal distributions [Rose95a]. However, perfect agreement
of the histogram and the approximation can not be achieved because the data
set is finite. Heyman et al. suggest that the Gamma distribution is a good
fit for a low activity video sequence (based on one frame coding scheme) and

may not depend on the coding algorithm used [Hyman92].
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3.4.2 Sequence Correlation (Dependency Feature)

In this section, we examine the dependency features of the MPEG sequence.
This information comprises one of the most important features of an MPEG
sequence. The analysis of any video sequence shows dependencies between
the frames, and between the GOPs within the same video sequence. We have
measured the correlation between the summation of each frame type for each
GOP within the same MPEG sequence. Table 3.5 depicts the statistical results
that we obtained. It shows that dependency exists among the three frame
types, and therefore they should not be represented with three independent
processes. It can be seen that there is a strong correlation between B and
P frames while there is a weaker correlation between I and B, and , I and
P. Another result that is shown in table 3.5 is that the correlation factor is
negative due to the lack of activities within the ‘video conference’ stream.
Also, these dependencies can be measured by using the autocorrelation
function (ACF). We compute the autocorrelation of the frame sizes {Z; : i =

1,2,3,...}. ACF can be given by the following equation:
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‘ Sequence ‘ I and > P ‘ Iand >B ‘ S>B and P ‘
Dino 0.352 0.306 0.896
Video Conference (Settop) | -0.274 -0.278 -0.964

Table 3.5: Correlation Between I, P and B frames

_ Zivzlﬂ»l (2t—Z)(Zi—1—Z)
Zivzl (Zt77)2

Tk

We plot the r; against lag k:

{k : k =1...N, where N is the number of data frames}

Figures 3.10 and 3.11 illustrate the correlation between I, P and B frames
for the ‘Dino’ and ‘video conference’ sequences. It is clear that the I frames
cause a large positive peak, followed by another smaller positive peak from the
P frames, while B frames cause the negative and smallest peaks.

In Figures 3.10 and 3.11, the shape of the curve is the result of the periodic
coding pattern (the pattern [IBBPBBPBBPBB] is repeated) and the different
mean sizes of the frame types. The pattern between two I frame peaks is
repeated with slow decaying behaviour. In addition, correlation exists between
the GOPs within the same sequence. In the case of the ‘Dino’ sequence (see
Figure 3.12), the GOP correlation curve shows a slow decay behaviour for
larger lags, meaning that there is a long-range dependency (LRD) between
the GOPs sequence [Izquierdo96]. In contrast, the GOP correlation curve for
‘video conference’ (Settop) and ‘Race’ sequences exhibit rapid decay behaviour
for small lags. Therefore, they have a short-range dependency (SRD).

Another parameter that can be used to approximate the long range de-
pendencies is the Hurst exponents (H) for the video sequence [Rose95a). The
value of the H parameter gives an indicator of the dependencies power. The
value of the Hurst parameter is ranged from 0.5 to 1. If the sequence does
not have long-range dependencies, then the H parameter will be 0.5 (as in
Poisson process). In contrast, a larger value for the H parameter means a
greater amount of movement in the video sequence. Table 3.6 indicates the H
parameter for some video sequences. For instance, ‘video conference’ own low
value for the H parameter, meaning that there are no long range dependencies.

It is interesting to note that the ‘Race’ sequence has high H value, while the
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Figure 3.12: Autocorrelation Function for Several Sequence at GOP Level

autocorrelation function of its GOP decays rapidly in small lags (see Figure
3.12). There are many ways of estimating the H parameter, and most of them
do not give the same value [Izquierdo96]|. Thus, the H parameter is beyond the
scope of this current studies. However, it can be used here just as an indicator

to show the level of dependencies in the sequence.

| Video Sequence | Sequence Type | Hurst Exponent (H) |

Dino Movie 0.88
Talk_1 TV talk show 0.87
News TV news 0.79
Starwars Movie 0.74
Race TV sports event 0.99
Settop Video conferencing 0.53

Table 3.6: Hurst Parameter (from [Rose95a])
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3.5 Burstiness Measurement for MPEG Traf-
fic

Burstiness is an important measurement for traffic characterisation. It plays a
critical role in determining the network performance [Onvural94]. For instance,
burstiness affects the queueing behaviour at an ATM multiplexer. However,
there is not a single and widely-accepted notion of burstiness of video traffic
[Molnar97]. In fact, burstiness is one of the connection parameter that a user
might be expected to declare in order to provide the network management
with information which can help to achieve an efficient network control as
well as high resource utilisation. In other words, burstiness is one of the most
effective factors in using the bandwidth of a network efficiently with the VBR
service. In addition, exploring the burstiness of the traffic provides a better
understanding of the correlation characteristic for the video traffic. Moreover,
the burstiness information helps us to locate a suitable traffic model. For
instance, the traditional traffic models (such as Poisson) cannot be used to
model bursty traffic because bursty traffic tends to have a large coefficient
of variation (CoV) value (larger than the Poisson process). In the literature,
there are several methods have been proposed in order to measure the traffic
burstiness. Let A;,7 > 0 be the inter-arrival rate (in cell/GOP), u = E[A4,]
and 02 = Var[4;], where o is the standard deviation. Burstiness degree can
be estimated in different way as follows: (Table 3.7 shows these measures for
several MPEG streams):

e The ratio between the peak and the mean (u) rate (PMR) is one of the
most widely used measures of burstiness . However, the definition and
the applicability of a peak is not at all clear [Molnar97|. Is depends on
the used time scale. Generally, PMR can be defined as follows:

Peak rate

PMR= ————
Mean rate

If the burstiness (or PMR) is equal to one, then the traffic does not have

burstiness.

e The ratio between the standard deviation (o) and the the mean (u) rate

(Coefficient of variation):
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o
CoV = —
1
This measure gives more information than the peak to average ration since
the traffic variation is a function of the C'oV. Thus, the traffic is not bursty if

the coefficient of variation is equal to zero.

e The density of bursts within the traffic cell stream. In this way, the
burstiness is the statistical average of the burst length. Thus, this mea-
sure takes account only the first-order property of the traffic (it is a

function of the marginal distribution of the interarrival times only).

e The index of dispersion for counts (IDC) parameter. It is related to the
sequence of counts of arrivals in consecutive time units. The IDC shows
the variability of a process over different time scales. It is defined so that
it is constant (1) for the Poisson process. For a given interval, the index
of dispersion is the variance-to-mean ration of the number of arrivals (in
cell) in that interval (for instance a GOP time) [Frost94]; whereby:

Var(N)

IDC = E(N)

where Var(N) and E(N)are the variance and the mean value of the arrival

process.

e The Squared Coefficient of Variation(SCoV). This measure is also widely
used which includes information from the first two moment of the traffic

process and is defined as:

Var[4;] o?
SCoV = ———— = —
0 B[4, 2

If SCoV > 1, then the traffic is more bursty.

3.6 Summary

Given a good understanding of the statistical behaviour of MPEG traffic will

help to handle bursty traffic in an efficient way. In this chapter, we have
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‘ Sequence ‘ PMR ‘ CoV ‘ ID ‘ SCoV ‘
Dino 4.00 | 0.401 | 65.86 | 0.161
Race 3.61 | 0.37 | 136.55 | 0.142
Settop 1.98 | 0.17 | 5.62 | 0.029
Movie 3.97 | 0.50 | 113.23 | 0.253

Table 3.7: Burstiness Measures for Several MPEG Streams.

presented a description of the statistical analysis of various MPEG streams in
order to cover a wide range of video classes (in terms of stream activities). Em-
pirical data sets have been obtained from different real video streams which
are originally encoded using MPEG encoder. We have presented a general
description of the main statistical parameters for various MPEG streams in
order to show the variations of the bit rate of an MPEG stream. By compar-
ing the statistical parameters, one can notice that there is a vast variety of
the statistical properties even for streams belonging to the same video class
(e.g. sport or movie). We have also shown that a high level of activity in
the sequence results in large sizes of both ‘P’ and ‘B’ frames. The statistical
analysis also addressed two main measures: distribution and correlation (de-
pendency) properties of MPEG video sequences (based on an empirical data
sets of encoded video streams).

We have studied the distribution of the empirical data sets in order to find
the fittest distribution. Three distributions: Gamma, Weibull and Lognormal
have been selected due to their similarities in shaping the typical histogram of
the actual data set. The data sets have been tested using different statistical
methods to assess how well these distributions represent the actual distribution
of the MPEG empirical data sets. It has been observed that there is not yet a
good agreement for the most distribution of all video traffic due to the amount
of movements within the video stream.

We then studied the impact of the GOP structure, a strong correlation
(roughly 0.9) has been shown between ‘P’ ‘B’ and a weaker correlation be-
tween (P, B and I). Therefore, ‘P’, ‘B’ and ‘I’ cannot be represented by inde-
pendent processes. The ACF of the GOP sequence is also addressed in order to
show the degree of dependencies between the GOPs within the same sequence.
A sequence with a moderate activity exhibits a slow decay behaviour for the
ACF curve (or long range dependency) while a sequence with large or low

activities exhibits a rapid decay behaviour for the ACF curve (or short range
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dependency). As a result, we have found that scene changes have a substantial

impact on the characteristic behaviour of an encoded MPEG video traffic.



Chapter 4

Scene Changes in MPEG VBR
Video Traffic

4.1 Introduction

An important reason for fluctuations in the overall bit rate is the fact that
scene changes take place within the video stream. As a result, an MPEG
stream may have several spikes (peaks) due to scene changes. These may
cause cell losses when multiple streams are multiplexed at an ATM switch.
Furthermore, managing VBR video traffic is a very difficult problem due to the
statistical properties of the video stream which, in turn, are dependent on the
coding scheme and the content of the video sequence [Kara97]. Therefore, we
need to analyse the magnitude of scene changes in order to achieve an efficient
management for this type of traffic. This could be achieved by managing and
classifying the video streams according to the amount of movement within the
same stream. This chapter presents a technique designed to classify MPEG
streams using the amount of activity within each stream. Firstly, we present
two methods and associated algorithms to identify the scene changes within the
MPEG stream. Based on the classification process of MPEG streams, we then
introduce a ’Scene Change Scale’ (SCS) exhibiting (or grading) the amount
of activity within the MPEG stream. The scale is used to demonstrate the
impact of scene changes on QoS requirements. Our prime measurer of interest
is the CLR at an ATM multiplexer. This means that we are considering the
amount and magnitude of scene changes within the MPEG sequence in our

analysis.

67
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This chapter is organised as follows: In the next section, we present two
methods to identify the scene changes within an MPEG stream. Then, SCS
will be presented in section 4.3 . In section 4.4, we undertake several simula-
tion experiments in order to demonstrate the extent of the performance of a

multiplexed MPEG stream at a statistical multiplexer.

4.2 Scene Change Identifier

This section presents two methods that allow us to detect and measure the
amount of overall bit rate fluctuations. We then use these methods to identify
the amount (magnitude) of scene changes within an MPEG stream.

In a visual sense, a scene can be defined as that part of a movie which
does not have sudden changes of view. As mentioned above, one of the more
important reasons for fluctuations in the overall bit rate are the scene changes
within the video stream. Thus, the scene change should be incorporated at the
traffic characterisation process. In an empirical data set for a traced MPEG
traffic, a significant change in the size of two consecutive GOPs is an indica-
tion of a scene change. We have used GOP sizes for our analysis because a
GOP contains most of the picture’s details (for our data trace, every GOP is
composed of one "I’ frame which contains most of the picture information and
three 'P’ frames. In addition, there are 8 frames of type 'B’ which contain

information of any changes in relation to previous GOPs).

4.2.1 Scene Change Identification Using the Outlier Method

The basic idea of MPEG is that when a new scene begins, the size of the
frames will be larger than the previous frame sizes. In other words, within
the same data set, the changes in the size of two consecutive GOPs can be
an indication of a scene change. The amount of change can be measured
by using one of the most commonly used measurements of data variation (or
variability), namely: the variance and the standard deviation. However, these
parameters provide only the overall measurement of the data variation, and
cannot be used as a measurement of location relating to the rest of the data
set. In order to overcome this, we will use another statistical parameter, called
outlier, to describe each element relative to the other elements in the same

data set [Mendenhall94]. The outlier is an element value which seems to be
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unusual (or abnormal) compared to the other elements within the same data
set. Within an empirical data set, outliers can be detected by using either a
numerical method, based on a z-score measure, or a graphical technique called
Boz Plot [Groeneveld88].

The z-score measure can be used to describe the location of a Y; relative
to the mean in units of the standard deviation {Y;, 0 < i < N — 2}, where
Y; = X411 — X, and X; is number of cells in the --th GOP and N is the number

of GOPs. As such, z-score can be calculated as follows:

Vi E[Y]

z_Sscore; —
! v/ Var[Y]

EY]=p

VarlY] = o?

According to the z-score definition, negative z-score values indicate that
Y; lies to the left of the mean, while positive values indicate that Y; lies to
the right of the mean. Therefore, Y; is called outlier if Y; is unusually large
relative to the other values of {Y'} in the empirical data set. We use the Rule
of Thumb for detecting outliers within an empirical data set [Mendenhall94].
The rule states that if the z-score value is greater than a Threshold (), usually

7 < 3, then an outlier is identified; thus:

If z_score; > T

Then Y; is considered to be an outier at location i

For the sake of illustration, we can demonstrate the technique using only
one empirical set (the 'Dino’ sequence). However, this technique can be
adopted to any empirical data set. We have plotted the z-scores for the 'Dino’
sequence (see Figure 4.1). The Figure shows many spikes that are caused by
large changes in GOP sizes (i.e. large scene changes). Every spike over the 7

value is considered to be an outlier. Consequently, each outlier is an indication



Scene Changes in MPEG VBR Video 'Traffic 70

of a significant scene change. It is important to notice that the smaller value
of 7 allows it to capture more scene changes, and vice versa. The following
algorithm can be used to identify the starting point of a scene change within

an MPEG sequence:

START

Let 7 be a Threshold value

For i=1 To N-1
Let X; be number of cells in 4-th GOP, 0<:< N —1
Yi=Xip — X,

Calculate z-score (V;)= Yi—E[Y]

v/ Var[Y]

If 2z score; > 1 Then a starting point of a new scene is identified

at location 7.

End Loop i
END
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Figure 4.1: z-score Plots for the ‘Dino’ Sequence

A similar method can be used to detect an outlier by constructing the box

plot of the empirical data set (see Figure 4.2). First, the method constructs
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Figure 4.2: Box Plot for 'Dino’ Sequence

two intervals based on a quantity value called the Interquartile Range (IQR):

IQR = Q. — Q

where ), and @), are the upper and lower quartiles respectively.

Next, we construct two sets of limits out of IQR called Inner fences (I f)
and Outer fences (Of). Inner fence values are located a distance of 1.5IQR
below @; and above @),, whereas Outer fence values are located a distance
of 3IQR below the (); and above (),. Similarly, according to the statistical
theory of the Rule of Thumb for detecting outliers, every {Y;,i > 0} which
falls between the inner and outer fences is called suspect outlier. But, if Y} is
located outside the outer fences it is called a highly suspect outlier. In other
words, every suspect outlier could be a moderate scene change while every
highly suspect outlier could be a significant scene change.

The outlier method has been applied on various MPEG sequences. Table
4.1 presents several statistical parameters of outliers for three MPEG sequences

representing various levels of activity.

Sequence

Mean(GOP)

cell

Number of Outliers

Max(outlier)

cell

Mean(outlier)

cell

Stdev(outlier)

cell

Dino

408

242

1634

809

160

Movie

446

262

1777

963

189

Video Conference

188

39

373

266

30

Table 4.1: Outlier for Various MPEG Sequences

These two methods produce similar results. However, the presence of one or
more large outlier in a data set can inflate the value of the standard deviation
(o) used to calculate the z-score. Consequently, it will be less likely to be able

to detect an element value with a high z-score. In contrast to this, the value
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of the quartiles used to calculate the fences for a box plot are not affected by
the presence of outliers.

As a result, both methods can be used to identify the significant scene
changes within an MPEG video stream. The scene change identifying process
also helps to detect the most abnormal part of an MPEG video stream which
may cause cell loss in most cases. This type of information is useful in clas-
sifying MPEG streams in terms of the amount of activity within each stream

(as we will demonstrate later).

4.2.2 Scene Change Identifier Using Second Different
Method

The last two methods identified scene changes based on the differences between
only two consecutive GOPs. In order to impose more accuracy on the scene
change identification results, it is desirable to compare a GOP with the previ-
ous and the next GOPs. Therefore, we will employ a method which is based
on the Second Difference. The method can be used for any MPEG sequence
to identify the scene changes within the sequence. Similarly, we shall use the
'Dino’ stream to demonstrate our method. The time series plot (see Figure
4.3) indicates several spikes (peaks) due to possible scene changes. In order to
determine which spike represents a true scene change, we need to analyse its
magnitude. This can be achieved by relating each GOP spike with its neigh-
bours (GOPs on both sides), according to the amount of movement within the
same stream. As described before, a scene change occurs when a GOP size is
abnormally larger than its neighbours. Based on this fact, we can quantify the
scene change in the following way:

Let us assume that {X;} is the size of a GOP: {X; : i = 1,2,..., N}. At
a scene change, the second difference (Dif,) will be large in magnitude and

negative in sign [Hyman96]. The Second Difference is given by:
Dify = ((Xip1 — X;) — (Xi — Xi1))

Figure 4.4 shows the plot of the second difference for the ‘Dino’ stream.
Every large negative spike could be an indicator of a scene change. In order to
quantify only the significant scene changes, we divide the second difference by

the average of the past few seconds (¢). The period of the last few seconds, t,
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might vary. In some studies, the average length of a scene might range from 3
to 7 seconds [Krunz96]. We have tested various values for ¢, all of them giving

similar results for {Y;}:
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Figure 4.5: Scene Change Identification

A significant scene change can be identified with every negative large spike
when we plot the division result Y; from the above equation. We chose a
threshold (T) as a critical value, where 0 < |T| < Maxy. The number of
spikes below the threshold indicates the amount of large movements within the
same MPEG stream (see Figure 4.5). Lower values for the threshold , |T |,
capture more scene changes. In order to capture only the large scene changes,
it is more obvious when 7" is below the mean value of {Y'}. The following algo-
rithm depicts the method which identifies the scene changes within an MPEG

traced stream:
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START
READ X, from a traced GOP file of size N
Threshold = T
FOR i =1TON
Dify = (Xips — Xi) = (Xi = Xiy)
CALCULATE ;= 3! X,

Y; = Dify
I
IF Y, <T THEN Scene Changeisidentified
End Loop i
END

In order to justify our criteria, see Figure 4.6 in which we plot { X;} time series
and the second difference Dify . It is clear that there is a good match between
the two series. Every large and negative spike in the Dif, is associated with a

large spike in the GOP time series plot.

T T T T T T
Diff2 —
GOP Time Series -----

0 500 1000 1500 2000 2500 3000 3500
GOP

Figure 4.6: The Time Series Plot of GOP Associated With Dif,
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4.3 The Scene Change Scale (SCS)

In the last two sections, two methods were offered in order to provide indi-
cations on the fluctuations in the overall bit rate of an MPEG video stream.
These indications could vary from one stream to another due to the amount
of activities within the stream. In addition, the scene change identification
process analyses the magnitude of each scene change. Thus, this type of in-
formation plays a crucial role in achieving an efficient modelling as well as
management of MPEG traffic.

In [Kara97] and [Mashat98a], we showed that the amount of activities
within an MPEG stream affects not only the traffic model but also the queue-
ing performance at an ATM multiplexer. In order to classify MPEG streams
according to the amount of activity and movement within the stream, we map
the output of the scene change identification method to a scale which gives a
more precise indication on the amount (or level) and the strength of the bit
rate variation. This can be done by scanning the entire MPEG stream and
thereby, detecting all significant scene changes {Scy, k > 0} within the MPEG
stream. We can then analyse and quantify their magnitude. By scaling the
scene changes {Sc,} with the entire sequence, it is possible to calculate a ra-
tion (or scale) of the activities. According to the second difference method,

the scale for an MPEG sequence can be found via the following equation:

22:1 Scy

SCS =
S (X — Xa) — (X — Xi)

In addition, by using the outlier method, it is possible to derive the scale
through the following: .
SO = k1 2%
im0 Yi
where n is the number of scene changes.

By using the last two equations, we are able to obtain and assess the level
of activities within the sequence. Either of the two scene change identification
methods can be used, as both give close results. However, the second difference

method gives more accurate results in terms of identifying only the significant
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scene changes (as mentioned previously). Thus, the second difference method
will be used for the purposes of our classification.

Based on the second difference method, 21 various traced MPEG streams
have been tested and scanned using our method in order to define and classify
the amount of activity for each stream. For a given threshold value, these
streams are scaled to be presented in a 'Scene Change Scale’ (SCS), with a
range from 0 to 1 (i.e.0 < SCS < 1). If the amount of activity within the
stream is limited, then the stream will be allocated nearer to 0. Conversely,
if the stream is highly active, then it will be allocated nearer to 1. Figure 4.7
shows these streams on the SCS with two different values for the threshold. 1t
is important to note that with a lower threshold value, the strength value of

the stream on the SCS will be increased.

MPEG Streams Scene Change Scale

mor\:‘llel Threshold

star2 B data1

simpsons B data2
mtv2
term
asterix
lambs
news2
dino
atp
sbowl!
talk2
newsl
soccer
race_
mrbean
fuss
bond
talk_

video : : : : :
0 0.2 0.4 0.6 0.8 1
Scale[0:1]

Figure 4.7: Scene Change Scale

4.4 Experimental Evaluation

In the ATM traffic management context, it is common to test the QoS perfor-
mance at a statistical multiplexer, and to efficiently allocate the buffer size and
bandwidth resources [Krunz96]. This section describes several simulation ex-
periments, and presents the simulation results when multiple MPEG streams,
with various scene activities, are multiplexed. The main objective of these

experiments is to demonstrate the impact of scene changes activities on QoS
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requirements, and then relate these results to the SCS. This can be achieved
by simulating the multiplexing of various streams, with different SCS values.

We have simulated the transmission of various video connections on an
ATM multiplexer with a single link, and a buffer whose size B was determined
by the delay constraints (D) on data transmissions out of the multiplexer:
B = D - C, where C is the link speed. In other words, the maximum queue
length is bounded by the link speed and delay constraints [Zhang94]. In our
simulation, the cells arrive at the multiplexer from a number of real video
MPEG connections (based on the empirical data sets). Each connection gen-
erates a frame consisting of a variable number of cells (see Figure 4.8). For our
sequence, the connection rate is 24 frames/sec. The FIFO service discipline
policy is employed at the multiplexer. For each experiment, the link speed was

adjusted to satisfy a system load of 80% (0.8 system utilisation).

iy

| Service Rate C

Buffer sizeB

Figure 4.8: Multiplexing of Multiple MPEG Streams

If the system capacity (i.e. the buffer is full) is exceeded, then any incoming
arrivals will be lost. Furthermore, larger buffer sizes will increase the waiting
time for arrivals to be served. Therefore, a trade-off between the delay and
cell loss requirements should be achieved. However, the cell losses in most
cases are very important, because standard coding schemes (such as MPEG-I,
H.261) are not designed for the compression of video, which are transmitted
on a medium where a loss of data is possible [Rose94b]. Thus, our primary
measure of interest is the CLR. However, the multiplexer may implement a
particular frame (packet) discard policy, called Pushout, where in the event of
one or more cell losses the whole frame (or packet) of which the lost cells are
part of is dropped. Studies have shown that such a policy improves both the
throughput performance and network efficiency [Romanow94] [Manthorpe96].
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We have studied the case when multiple sources, at GOP process, are
multiplexed into an ATM multiplexer with one server (link). We also assume
that GOP sizes presents the same activity of the real trace at frame sizes
[Chiotis97].

For the sake of explanation, results of three chosen traces from the real
MPEG sequences are presented, namely: the ‘Movie’, ‘Dino’ and ‘Talk’ se-
quence. In order to obtain consistent results, we have selected only one Thresh-
old value (-0.5) throughout the experiments for the calculation of the SCS.
According to the SCS, the three chosen traces represent three various classes
of VBR MPEG streams: high, moderate and low amounts of activity. It can
be seen from Figure 4.9, for all buffer sizes studied, the losses resulting from
the use of these sequences are compared. It is clear that the ‘Movie’ sequence
produced the highest CLR while the ‘Talk’ sequence produced the lowest. For
small buffers, the CLR is quite high. As the buffer increases, the CLR values
start to decrease slightly. The delay bound (D) gives a similar performance,
because the buffer size is a function of the delay constraints. Furthermore, it is
important to note that the ‘Movie’ sequence has the highest value on the SCS.
We have tested the same simulation using other various MPEG sequences.
We have found that there is a strong positive correlation (about +0.73) be-
tween the CLR obtained from the sequence performance and its associated
position on the SCS. The correlation has been calculated using the correlation
coefficient factor as follows:

Corr(SCS,CLR) = C@SCSCLR) 1 < Corr(SCS,CLR) < +1

0SCS OCLR

Cov(SCS,CLR) = E[(SCS — jscs)(CLR — ucrr)]

In order to demonstrate the multiplexing behaviour for different system
loads, we have compared the losses resulting from various loads. In other
words, the service rate for the output link is adjusted to obtain different levels
of utilisation (U) or system load. The system load can be defined as the ratio
of the arrival rate to the service rate [Pitts96]. Figure 4.10 shows the perfor-
mance of the ‘Movie’ sequence at different loads, namely U=50%, U=60% and
U=70%. 1t is clear that the higher the load, the greater the value of CLR.
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4.5 Summary

Because the scene change is the most important factor which affects not only
the complexity of traffic characteristics, but also the long range dependency
feature of MPEG streams, we need to analyse the magnitude of scene changes
which cause the bit rate variations of an MPEG stream. In order to explore the
fluctuations in the overall bit rate for an MPEG stream, we have introduced
two simple methods and algorithms to identify the scene changes within an
MPEG stream. As a result, we have mapped the amount of scene changes
onto a Scene Change Scale (SCS) which can be used to exhibit the amount of
activity within the overall MPEG stream. We have also explored the impact of
scene changes on QoS requirements. The primary measure of interest was the
CLR. We have related the CLR results obtained from several simulations with
the SCS, and have found that there is a strong positive correlation between the
CLR results and the Scale. In other words, SCS can be used as an assessment
of QoS guarantees over ATM networks. For instance, a high CLR is associated
with an MPEG stream with a high value on the scale. Therefore, more care

should be applied in handling such a stream having a high value on the scale.



Chapter 5

VBR MPEG Statistical
Modelling

5.1 Introduction

In order to achieve an accurate and effective evaluation of the performance of
an ATM network, and to provide worthwhile guidance for the design of traffic
management and control schemes, we need to have a good knowledge of various
traffic sources. Generally speaking, there are two possible ways to achieve this
aim [Ni96], by direct observation of a real video trace, or by constructing a
mathematical model for the video source. The first option is quite simple.
However, despite its simplicity, it is difficult to be formulated and applied to a
relevant analysis. The second option helps to characterise the real video source
more precisely. In addition, it produces effective and efficient mathematically
analytical techniques.

An encoded video, as shown in the previous chapters, is not independent
traffic. Thus, simple traffic model (such as Poisson) is not adequate to model
video traffic. Video source models (e.g. MPEG traffic source models) play a

variety of roles, including:

e The model can be used to identify effective sets of traffic descriptors for
QoS parameters at call set-up. These descriptors are used to describe

the traffic behaviour through the entire call (or connection);

e In order to test and compare different control schemes (for instance, end-

to-end rate control), a source model can be used to exercise the degree to
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which QoS guarantees are provided [Rampal95]. In addition, the source
model can be used to evaluate alternative policing mechanisms, such as
the D-BIND traffic descriptors proposed in [Knightly96]; and

e It can also be used to predict the level of QoS that a particular application

might experience at different levels of network congestion.

This chapter is organised as follows: we first address the main modelling ap-
proaches for VBR video traffic, including a Markovian based. Two simple
source models for VBR MPEG, the Histogram-based and Detailed Markov
chain model, are presented. Due to the significant role of scene changes, we
will perform a further analysis on the scene changes. We present an extensive
scene-based model and its performance. The models will be used to generate
a synthetic workload representing VBR MPEG traffic. In order to validate
these models, the statistical behaviour of the model as well as the queueing
performance are compared with the original traffic. In turn, some experiments

were performed to study the model’s performance at an ATM multiplexer.

5.2 Modelling Approaches

A series of MPEG source models have been proposed in the literature, reflect-
ing increasing insight into the nature and variety of MPEG source dynamics.
Typically, there are three approaches that can be used to model MPEG video
traffic [Izquierdo96]:

e Markov chains [Daigle86] [Chu95]: Video traffic can be approximated
by a two-state Markov chain, one state represents the peak rate, while
the other represents the minimum rate. A simulation experiment showed
that the two-state Markov chain model is not accurate enough for statis-
tical studies [Heyman92|. However, a detailed Markov chain model, with

more finite states, provides a sufficient level of accuracy to be useful in
traffic studies [Chu95].

e A video model based on Autoregressive processes [Maglaris88|
[Doulamis96]: This type of model matches the features of video traf-
fic: the distribution and the autocorrelation function. An autoregressive
model of order 2 fits the data well in a statistical sense, but it does not

produce enough large values to be useful for traffic studies.
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e Self-similar or fractal models [Izquierdo96] [Yao97]: These models are
based on a self-similar process. Such a process is called self-similar if the
samples for that process appear to be ‘similar’, regardless of the duration
of the sampling interval. One of the most important characteristics of

this process is long range dependency.

There are many proposed models for video traffic. Before we select a model
for VBR video traffic, it is necessary to examine the attributes of the video
source. Another matter requiring consideration is the purpose of the traffic
model, which should be defined to determine the proper model. In this re-
gards, many factors should be considered, including the following [Stamoulis94]
[Izquierdo96]:

e The traffic (source) activities in terms of the amount of scene changes. If
the traffic sequence contains significant scene changes, then a hierarchical

model is required;

e The encoding scheme. For example, if the encoded sequence contains dif-
ferent frame types, then the traffic model should consider the attributes

of each frame; and

e The selected level of modelling within the video sequence. It is possible
to create a model for MPEG at different levels (GOP, frame, slide or
even cell level). Having decided on the level, the statistical properties of
that level should be defined. Furthermore, we need to lay down the way
the levels depend on each other. For instance, if we want to use the cell
level as the modelling level, we need to decide how frames are broken
into cells. However, this depends on the considered ATM AALs, and on
the existence of the shaping facilities between the video source and ATM
network [Roberts96] .

5.3 Statistical Modelling of MPEG Using MC

This section describes the statistical models which are used to characterise
an MPEG sequence. The main objective is to find a suitable and simple
model to capture the statistical behaviour of VBR MPEG sequences. The
model will be used to generate a synthetic workload representing VBR MPEG
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traffic. We describe two Markovian based models, namely Histogram-based
and Detailed Markov Chain (DMC). These models are based on the results
of the statistical analysis which were obtained in the previous chapters. The
models will be used to approximate the statistical behaviour of the MPEG
sequence. Both models are well known. However, with a degree of modification
and the consideration of the scene change, it is possible to be tuned for a
particular type of VBR MPEG sequencing in order to improve the actual
traffic approximation. Another improvement can be added to these models
is when they are used with the generation process or generation process (see
section 5.5.1) to perform multiple levels of correlations (GOP-by-GOP and
frame-by-frame).

The Markov chain method can be used to model different layers of an
MPEG sequence (scene, GOP, frame or slide). It has been also used to model
one layer codec stream [Murphy94]. It is very difficult to find a model that
covers all layers [Rose95b]. Therefore, we have to decide which layer will
be used. A higher layer will add more complexity to the model, but it will
also improve the long-range dependency behaviour. The GOP layer can be
used for our modelling without the need for modelling the frame-by-frame
correlation and the only correlation used is the GOP-by-GOP (frame-by-frame
correlation will be employed at the traffic generation process). In addition, an
experimental result showed that frame-by-frame correlation has no influence
on cell loss results [Rose95b]. Therefore, in some cases, it is adequate to use
only one level of correlation. In addition, the GOP plays the most crucial
role concerning the autocorrelation effects of an MPEG video sequence, due
to the periodic nature of the MPEG sequence (which is caused by the GOP
structure).

For the Histogram model, an 0-order Markov chain method has been used
and an 1st-order Markov chain for the DMC. Both models have a finite number
of states and will be used to generate a GOP size process. The range of GOP
sizes of the empirical MPEG sequence will be divided into several quantization
intervals. Each interval is related to a state of the Markov chain. Therefore, the
number of states is equal to the number of GOP intervals. For each state, there
is a mean value of the GOP interval associated with it. In the Markov chain
model, the transition from one state to another is controlled by a transition

matrix. With each state transition (entrance from its current state into the
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next state) a GOP size will be generated according to the mean value of the

next state.

5.3.1 Histogram Model

The Histogram model can be described by a simple Markov chain with a finite
number of states (M) which is equal to the number of the quantization inter-
vals (see Figure 5.1). The transition from one state to another is completely
independent, and the transition matrix of size 1 x M for the Histogram model

is defined as:

P Number of GOPswithin interval
Yo Total number of GOPs

The Histogram model can be used to estimate the distribution of the em-
pirical GOP size. However, this model does not approximate the GOP cor-
relation. This is because each GOP sample is generated according to the
histogram bins which are independent from each other. We found from our
experimental work that there is almost no correlation between the generated
GOPs (see Figure 5.3). Therefore a model which is based on the distribution
function only cannot approximate the dependencies behaviour of the MPEG
sequence. However, a probability density function (pdf) can be used in other
models such as the Discrete Autoregressive (DAR) model [Doulamis96]. The
DAR model requires to know the pdf of the source. It is very important to
notice that the Histogram model can be useful when there is no agreement
on the fitted distribution. This is the case for VBR video traffic, due to QoS

requirements for the encoded scheme.

5.3.2 Detailed Markov Chain Model (DMC)

The Markov chain process has been used because its parameters can be identi-
fied easily and it can also be easily analysed. This is helpful in finding the most
appropriate model. For long range dependency sequences the Markov chain is
not adequate because its autocorrelation function decays exponentially. How-
ever, with some effort, it is possible to obtain a Markov chain model with
a high coefficient of autocorrelation even for large lags. This can be done

by increasing the number of states to a reasonable number (see Figure 5.2).
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Figure 5.1: Histogram Model

The number of states (M) is derived by dividing the maximum value of the
GOP size (GOP,,4;) by the standard deviation of GOP sizes (STDEVgop)
[Rose95b] where A;, i > 1 is the associated bit rate. Therefore the quantization
intervals of this model are dependent on the standard deviation value. It is
possible to increase the number of states by dividing GOP,,,, by a smaller
value than ST DEVgop . The transition matrix of size M x M can be found

as follows:

P Number of transition from stateito state j
ij =

Total transition out from interval i

It is important to note that the current state, ¢ , depends on the previous
state and not on neighbouring ones. Therefore, it is not necessary that the

next state be a neighbouring state.

5.3.3 Model Validation (Markovian-based Models)

To examine both the appropriateness and the limitations of the presented
Markovian-based models, we need to know whether or not the models are
able to approximate the behaviour of the real MPEG sequence. This can be
achieved by comparing the behaviour of the model and the original empiri-

cal data in terms of the statistical distribution and the sequence correlation
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Figure 5.2: The Detailed Markov Chain Model (DMC)

[Izquierdo96]. For the GOP level, we first compare the distribution parameters
for both models. Tables 5.1, 5.2 and 5.3 show that the parameters for both
models have values that are close to those of the empirical data. However, the
simulation results indicate that the DMC model is a good source model for
approximating a sequence with a short range dependency feature even for large
lags (about 15), as in the case for the ‘Race’ and ‘video conference’ sequences.
This can be shown when we compare the curve of the autocorrelation function
for the model with real traffic (see Figure 5.4 and 5.5). However, the DMC
model shows better approximating for the "Race’ sequence than the video con-
ference’ sequence. In contrast, we found that there is almost no correlation
between the generated GOPs in the case of the Histogram model (see Figure
5.3). Thus, the Histogram model does not approximate the autocorrelation
function, because each GOP sample is based on the histogram bins which are
independent from each other. However, the DMC model captures only few

lags (about 5) for a long range dependency sequence (see Figure 5.3).
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Data Sets Mean(p) | STDEV (o) | Min | Max (Peak)
Cells Cells Cells Cells
Real Sequence 408 164 129 1634
Histogram Model 410 160 173 1270
DMC Model 402 162 152 1634

Table 5.1: The simple statistical parameters for "Dino’ sequence and the models

Data Sets Mean(u) | STDEV(0) | Min | Max(Peak)
Cells Cells Cells Cells
Real Sequence 188 32 144 373
DMC Model 186 29 162 328

Y

Table 5.2: The simple statistical parameters for the *video conference” se-

quence and the model

Data Sets Mean | STDEV | Min | Max
Cells Cells Cells | Cells

Real Sequence | 961 362 292 | 3470
DMC Model 969 350 538 | 3019

Table 5.3: The simple statistical parameters for the 'Race’ sequence and the
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Figure 5.5: Autocorrelation Function Comparison (Race)

5.4 Scene Change Based Model for VBR MPEG
Traffic

Various models have been proposed for VBR MPEG traffic [Kara97] [Rose95b]
[Stamoulis94] [Heyman92] and [Frost94], but there are few models that incor-
porate scene changes [Krunz96] [Lazar93] and [Heyman96]. As shown in the
previous section, the Markovian models were not adequate to capture the long
range dependency feature. In this section, a new form of scene-based model
is introduced, based on characterising MPEG traffic as a collection of scenes.
The model is used to capture the long range dependency feature of MPEG
traffic.

As shown in the last chapter, the main reason for the overall bit rate vari-
ation is scene change, which leads to dramatic increases in the queue length
statistics of the multiplexer . Consequently, scene changes should be incorpo-
rated in such traffic modelling approach. In order to model VBR MPEG traffic
based on the scene change, we need a functional definition of scene duration
based on the bit rate variations. From chapter 4, we are able to identify, and

quantify, scene changes within an MPEG sequence. As illustrated in Figure
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5.6, an MPEG stream can be characterised using two processes, namely:

scene

length {SI;,7 > 0} and the scene fluctuations process {S¢;, i > 0}.

| MPEG Stream Bit Rate Variations
-t

n

Mean Bit Rate

4 Starting point of a Scene Change

GOP Index

Figure 5.6: Scene Change Model
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Figure 5.7: The Fitted Curve for Scene Length Distribution

The first process {Sl;, i = 1,2,3,...,n} can be defined as the scene length
duration within the MPEG sequence, where n is the number of scene changes.
In other words, SI; is the number of GOPs in the i-th scene. The scene length

can be easily calculated (as showed in chapter 4) by adding the number of

GOPs between the starting points of two consecutive scenes. The statistical

characteristics of the scene length were examined. Then, the fitted curve for

the histogram of the scene change length process was drawn (see Figure 5.7).

The figure shows that the scene length can be modelled by a geometric dis-

tribution. The shape of the probability density function (pdf) in the figure

was also observed on all other analysed MPEG sequences. In [Lazar93], it has
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also been confirmed that scene length for VBR video traffic can be modelled
as a geometric distribution. Therefore, we use the pdf with a parameter ¢ for
this distribution as the basis for our model. The scene length process can be

described as follows:

Pr{Sli=n}=q¢"""'"p, p=1—q forn=12.3,..

p
| Sequence | Number of Scenes | Mean (GOP) |
Dino 569 11.27
Race 579 13.41
Movie 670 5.3
Video Conference 65 20.2

Table 5.4: Statistical Parameters of Scene Change Durations

The average size of the scene changes can be used as another indicator
of the video stream activity. Table 5.4 presents simple statistical parameters
of the scene change duration for various MPEG sequences. For our analysed
trace (Dino), the average of the scene length is about 11 GOPs (5 seconds). In
addition, we calculated the autocorrelation function (ACF) for scene lengths.
Figure 5.8 shows that the shape of the ACF for {Si} alternates very closely on
either sides around the O-line. In other words, there is a very weak presence of
correlations among scene lengths (we could say it is uncorrelated). Therefore,
the main issue is characterising only the distribution of the scene change.
Consequently, the scene lengths constitute a sequence of idd random variables
with a geometric distribution.

The second process {S¢;} is based on the fact that a significant difference
between two consecutive GOPs is an indication of a scene change. Hence,
we modelled the GOP variation using {S¢;} and the mean value of GOPs for
the previous scene (gop;, , k¥ > 0). From our observation of the {Sc¢} histogram
shape (see Figure 5.9), we have found that the GOP variation could possibly be
described using one of the three distributions (or even a Normal distribution)
which are presented in section 3.4.1. Furthermore, the autocorrelation function
of scene variations process exhibits weak correlations a part from the first few

lags (see Figure 5.10). Therefore, the process could be modelled based on the
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Figure 5.8: Autocorrelation Function of The Scene Length

distribution properties only. However, due to the difficulties in finding the
most fitted distribution, {Sc} process is modelled using the Histogram-based
model with a transition matrix [P] and M states (see section 5.3.1 for more
details on the Histogram-based model). Thus, the th GOP size (within the

k-th scene) can be found as follows:

Xi=gop, 1+ Sci, 0<i<N and k=1,2,...n

where N is the number of GOPs in the sequence and n is the number of scenes

within the sequence.

5.4.1 Model Validation (Scene-based Model)

As shown in section 5.3.3, we performed the same method for the model val-
idation in order to examine the appropriateness and the limitations of the
scene-based model. A synthetic sequence should be generated to allow us to
examine whether the model is able to approximate the behaviour of the real
MPEG sequence or not.

The synthetic GOP sequence has been generated using the proposed model.
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The generated sequence was based on the fitting of the original ‘Dino’ se-
quence!. Firstly, a scene length is determined using a given geometric distri-
bution. The GOPs are then generated with association of the scene variation
process. The following algorithm describes the method which generates a GOP

sequence of size N :

START
N = number of scenes
Scenevariation {Sc} = Histogram(pg,;1 <t < M)
Fori=1To N
Get Scene; length = sl
Fork=1 To sl
{Sc} = Histogram(u,, )
GOP;, = gop;_, + {Sc}
End Loop k
End Loop 1t
END

In order to validate the proposed model, we need to compare the most
important statistical behaviour of the original sequence, with that of the gen-
erated sequence. Table 5.5 shows the important statistical attributes (or pa-
rameters) for both sequences. By comparing the statistical behaviour of the
model-based sequence with the original sequence, we can see that the model
captures most of the main statistical parameters of the original sequence ac-
curately.

Because the long range dependency (LRD) is another important feature of
an MPEG sequence which can be described by the ACF [Izquierdo96]. Thus,
we can examine the ACF of the generated sequence and the original one (see
Figure 5.11). By comparing both curves, it is clear that the model captures
the ACF of the actual sequence (the curves follow the same pattern for lags
over 60). However, ACF values (but only for the first lags) in the model are
slightly less than the ACF values in the original sequence, mainly because
of simplification in the model. Apart from that, the model provides a good

approximation of the LRD feature.

!The Dino sequence has been selected due to its long range dependency feature.
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Video Sequence | Mean (p) | CoV(7) | Stdev(o) Peak Peak/Mean
Cell/GOP Cell/GOP | Cell/GOP
Real Sequence 408 0.40 164 1634 4.001
Model-Based 408 0.42 173 1845 4.5

Table 5.5: Simple Statistical Parameters For The Real and Model-Based Se-
quences (GOP-Based)

Where : CoV is the Coefficient of Variation% And Stdev is Standard
deviation o.
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In order to add more accuracy to the model validation, simulation experi-
ments were conducted to study the performance of an ATM multiplexer using
the generated (or synthetic) sequence based on the scene-based model and the
original traffic This will help us to examine the performance of the model in
terms of the queueing performance. The simulation results obtained from the
performance of the model should then be compared with that obtained from
the original sequence. An ATM simulator called YATS has been used to per-
form our experiments [Baumann97]. YATS is a small discrete-time simulation
tool tailored for investigations of ATM networks. It expects the name of an
input file, which contains a description of the simulation configuration and
commands to the simulation kernel and to the simulation objects. The ex-
periment (simulation) model can be described as an ATM multiplexer, with a
finite buffer size that accepts ATM cells from MPEG sources, and then trans-
mits them through a link speed C (i.e. single server). First, the MPEG frame
sizes are packetised into ATM cells with a payload of 48 bytes. We have used
AALSD for the transmission of MPEG stream because the ATM Forum recom-
mends using AAL5 as the preferred transport protocol [Gringeri98]. The cell
stream is assumed to be suitably spaced during a frame duration. The spacing
between the cells within a frame duration in turn should vary based on the
frame bit rate. However, the spacing within each frame duration is the same.
At the multiplexer, the incoming cells are served based on the FIFO manner.
A cell loss occurs when the multiplexer buffer becomes full. Incoming cells
which arrive during such a buffer-full condition are discarded.

The performance of the simulation system was studied for different buffer
sizes at 0.8 system load (system utilisation). Since networks under congestion
are the subject of interest, a sufficient load is needed to result in congestion.
Figure 5.12 depicts the cell loss ratio against different buffer sizes; it was mea-
sured in accordance with the simulation of the generated and original sequences
based on the ‘Dino’ stream. For most buffer sizes, it was observed that the gen-
erated sequence shows a good agreement of the losses curve especially with a
moderate buffer sizes (300-400 cells). In other words, the model approximates

the queueing performance of the original MPEG traffic.
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Figure 5.12: Comparison of CLR for 10 Multiplexed Stream (Dino)

5.5 The Overall Model’s Comparison

In this section, we summarise the overall comparison of the three presented
MPEG models to examine whether the models are able to approximate the
long range dependency behaviour of the real MPEG sequences or not. In other
words, we consider the relative strengths and the limitations of the model
with respect to several statistical properties and the ability to capture ACF
of VBR MPEG traffic. In order to validate a model, the statistical analysis
results of the model should be compared with the empirical data in terms of
the statistical distribution and the sequence correlation (ACF). The ‘Dino’
sequence has been selected for our comparison because it has the long range
dependency feature.

Table 5.6 shows the comparison of the most important moments of GOP
sizes for the models and the original sequence. It is interesting to observe that
scene-based model matches exactly the original sequence in terms of the mean
value. However, for network dimensioning purposes, it is more convenient to
use a model which behaves worse than the real traffic [Rose95b]. This was the
case for the scene-based model which overestimates the peak value. Thus, it

gives a higher value of burstiness parameter.
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Data Sets Mean(u) | STDEV(0) | CoV | Max (Peak) | Peak/Mean

Cells Cells (2) Cells Burstiness
Real Sequence (Dino) 408 164 0.401 1634 4.00
Histogram Model 410 166 0.404 1270 3.09
DMC Model 402 162 0.402 1634 4.06
Scene Based Model 408 173 0.420 1845 4.52

Table 5.6: The Simple Statistical Parameters for the 'Dino’ Sequence compared
to the Models

The main difference between the models is their capability to approximate
the autocorrelation function (or dependence feature) of the original MPEG
sequence (empirical MPEG data set). Figure 5.13 plots the ACF curves of
the generated sequences using the three proposed models at the GOP level.
Comparing these curves leads us to a conclusion that the scene-based model
with a multiple level of modelling shows a better agreement with the empirical
(or original) data sets. The simpler models, on the other hand, are unable
to model the correlation feature of the data sets over a longer period of time
(lags).

In order to compare the queueing performance of the generated traffic us-
ing the presented models, we have simulated the multiplexing of multiple se-
quences at an ATM multiplexer. Simulation experiments have been conducted
to examine the CLR performance based on the three models. We have used a
similar simulation model used in section 5.4.1. However, the link speed (output
link) was fixed (50 Mbits) to achieve consistent results from the simulation of
the different models. The number of stream were selected to adjust the system
load at 0.8.

The simulation results obtained from the performance of each model are
shown in Figure 5.14. This Figure depicts the cell loss ratio (CLR) against
different buffer sizes. The figure shows only the mean values for the several
simulations which have been conducted in order to achieve a 95% confidence
interval. The cell loss ratio results were obtained from the simulation of the
generated IPB sequences which were originally generated based on the three
presented models (The IPB sequence has been generated from the GOP se-

quence using the scaling factor process which will be described in 5.5.1). The
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Figure 5.13: ACF for Real and the Three Models for ‘Dino’ Stream

CLR curve for the original sequence is also plotted based on ‘Dino’ stream
for the sake of overall comparison. For small buffer sizes, it was observed
that all generated sequences show close/good agreement of the losses curve
of the original sequence. However, for larger buffer sizes, the CLR curve for
the scene-based model is performed more closer to the original sequence than
others.

As results, we point out that all traffic models have their advantages and
disadvantages, and that some care has to be taken as to what type of model

is chosen for the performance analysis.

5.5.1 The Scaling Factor Process

This process is used to derive a periodical sequence of frame sizes for different
types (I, P and B) from the generated GOP sequence. Figure 5.15 depicts
the overall picture of the scaling factor process (generation process). It has
been observed that this method gives a reasonable approximation for cell loss
probability [Rose95a].

In order to produce a synthetic sequence of MPEG frame sizes (I, P and
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Figure 5.14: CLR Performance Evaluation (Fixed Link Capacity)

B) similar to a real MPEG frame sequence, we use the following method: the

frame sizes could be derived from GOP sizes by scaling the frame sizes of

different types with GOP sizes. This process uses a scaling parameter called

the Scaling Factor (f). The parameter, f,x : I, Por B | is calculated by

dividing the mean value for the frame type by the mean value of the GOP:
fr = E‘[?g([)}ll‘}] fr= Eﬁggg}] f = Eﬁggg}]

For each generated GOP, a frame of type [, P or B is multiplied by the
corresponding f parameter. We have generated frame sequences from the
generated GOP sequences (based on the three presented models). Table 5.7
shows two examples of the scaling factors (f) for both the ‘Dino’ and ‘video
conference’ sequences. It is clear that the scaling factor for B frames (fg) is
the smallest, while the scaling factor for I frames (f7) is the largest. This is due
to the fact that I frames represent most of the GOP size. Another observation
that can be seen from the table, is that fz for the ‘video conference’ sequence
is very small compared to the fg for the ‘Dino’ sequence. In contrast, f; for the
‘video conference’ is larger (twice as large) than the f; for the ‘Dino’ sequence.

This is due to the limited amount of activities within the ‘video conference’
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sequence, which makes the I frame sizes very large and the B frames somewhat

smaller.

Generated GOPs 1,Pand B Lists

Using the scaling M \ Aggregate of the

factorsfor I, Pand — | | =/ ( threelistsintoone %
B frame sequence with pattern

\ = / IBBPBBPBBPBB]

Generated |, P and B sequence

L

Figure 5.15: The Scaling Factor Process

Previously, the model has been validated at the GOP level. Now, we val-
idate the model at the frame level. Because the dependency feature is exist
among MPEG frames (as we discussed in the previous chapters), we have fo-
cused on the evaluation of this feature in this section. The correlations have
been calculated between the generated sequence and the empirical sequence
(original sequence). Table 5.7 depicts a strong correlation in the case of the
‘Dino’ sequence, with an even stronger one for the ‘video conference’ sequence
(based on the DMC model). The correlations have also been calculated be-
tween the three generated sequences based on both Markovian models and the
scene-based model, and the original 'Dino’ sequence. Table 5.8 shows a strong
correlation for both Markovian models, but an even stronger one for the scene-
based model. On the other hand, we plotted the autocorrelation function of
I, P and B frames for both the generated and the actual data. Figures 5.17
and 5.16 show the ACF of the ‘video conference’ and the ‘Dino’ sequences for
both: the generated and the original data. The top points represent I frames,
the middle points represent P frames, while the bottom points represent B
frames. In the case of ‘Dino’, there is a good agreement between the ACF
of the three frame types (I, P and B) for the generated and the original se-
quences. In contrast, a stronger agreement could be shown in the case of the
‘video conference’.

In order to compare the ACF of the three formulated models, Figure 5.18
shows the ACF curves for the actual ‘Dino’ sequence and the generated se-
quence using the presented models. In the case of the DMC and the scene-
based models, there is a good agreement between the ACF curves of the three
frame types (I, P and B) for the generated and the actual sequence. However, a

weaker agreement can be shown in the case of the Histogram model (especially
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Sequence Scaling factor Scaling factor Scaling factor Corr(Empirical,Generated)
for 1T frame for P frame for B frame
Dino 0.351 0.092 0.047 0.768
Video Conference 0.611 0.053 0.029 0.977

Table 5.7: Correlation factors between the generated and original sequences

| [/, =0351 f»=0.092 fz—=0.047 |

‘ Model ‘ Corr(Empirical, Generated) ‘
Scene-based 0.864
DMC 0.768
Histogram 0.771

Table 5.8: Correlation factor between the generated and actual sequence
(Dino)

Autocorrelation Function for Video Conference and Model sequences
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Figure 5.16: Autocorrelation Function Validation (Video Conference)
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Autocorrelation Function for Dino and Model sequences
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Figure 5.17: Autocorrelation Function Validation (Dino)

in the capturing the ACF of I frames).

5.6 Integrating MPEG Stream into the Work-
load Model

In order to test and evaluate the performance of a network system or an ATM
switch, it is necessary to provide an artificial traffic (as a workload into the
system) closely resembling the real traffic. Recording and producing the real
traffic can be difficult and expensive because this process requires large storage
space and high processing speed [Chu95]. The alternative is to use a traffic
source model to imitate the behaviour of the real traffic. In this section, we
describe the steps required to integrate the MPEG sources onto a realistic
multimedia workload model. In order to do so , we have to use a traffic model
that is able to describe the statistical behaviour of the empirical data sets.
The traffic modelling is an important aspect of any network simulation
study. Outputs from a simulation model are highly dependent on the inputs
provided to the model, and without realistic input workload models, the sim-

ulation results are of little value. The traffic characterisation and the analysis
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Figure 5.18: ACF for I, P and B Frames (Generated-based and Actual Se-
quences)

process (which are part of the traffic modelling) can be used to develop a traffic
model which captures the main features of that traffic. There are many traffic
models which have been constructed to be used within a workload model as
representative examples of multimedia traffic. It is important to mention that,
as a synthetic workload , we need a simple and efficient model with a small
number of parameters. More complex models require more accurate parame-
ters. Therefore, the choice of the models to be used will depend entirely on
the performance measurements of the realistic traffic.

The goal is to provide a simple source model for VBR MPEG traffic in
order to generate a synthetic traffic for the application level traffic genera-
tor. Generating a synthetic workload eliminates the need to store voluminous
frame-level traces representing MPEG traffic. Such an approach also offers
flexibility, tunability and reproducibility in the generated traffic. Figure 5.19
depicts the complete overview of the modelling process, as well as, the gener-
ation process which can be described through three main tasks as follows (the

first two tasks were discussed in the previous chapters):

1. Analysing empirical data sets for various MPEG sequences to define
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the statistical characteristics. This included defining the characteris-
tics of VBR MPEG streams in terms of their statistical behaviour. We
used three statistical measures: Distribution, Autocorrelation Function
(ACF) and Scene change;

2. We then formulated the statistical results, using a suitable model which
captures the statistical behaviour of the empirical data (at GOP level).
In order to evaluate the model, we needed to examine whether the model
was able to approximate the statistical behaviour of the real MPEG
sequences or not. We then compared the simulation results of the model
with the real empirical data in order to examine the performance impact;

and

3. Lastly, we used the model to generate a synthetic traffic (at frame level)
with similar characteristics of the real traffic. This process included
an integration of VBR MPEG sources to the workload model. Then,
a periodical frame sequence is generated representing an actual video
stream. The output of this task is a synthetic traffic which can be used

for any performance evaluation study as a system workload

5.6.1 An Example of Generating a Synthetic MPEG
Traffic

This section illustrates a full process of generating a synthetic MPEG sequence
(or a pattern, including I, P and B frames) based on a traffic model. The main
objective is to give (demonstrate) an idea on how a source model can be used
in order to provide synthetic traffic representations of a realistic workload. In
this section, the Markovian based model are used to illustrate the example of
generating a synthetic MPEG traffic. However, the generation using the scene
based model was discussed previously in section 5.4.

Firstly, we use the simple traffic models (see sections 5.3 and 5.4 ) to
generate the GOP layer. Then, the scaling factor process is used to generate
an MPEG video pattern (stream) from the GOP sequence. As an application
level traffic generator, it is important to notice that we have to use simple

models in order to characterise an MPEG sequence. Consequently, the models
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will be parameterised to generate synthetic workloads that closely match the
actual MPEG stream ( the original empirical data sets).

The integration of the MPEG source process starts with an empirical data
set of an MPEG sequence. The empirical data set contains frame sizes for the
MPEG sequence. A GOP layer will be used for our modelling as a first level
of capturing the GOP-GOP correlation. The GOP sizes could be calculated
by summing up every 12 consecutive frames. First of all, we need to find some
statistical parameters (for example mean, variance, peak ...) to describe the
data distribution. The range of GOP sizes is divided into several quantization
intervals {¢; : i = 1,2,3, ..., M} where M is the number of quantization inter-
vals and the number of the intervals depends on the formulated model. The
mean value of the interval 7 , 11 ,, should be found to represent the size of the
quantization interval.

In the Histogram model, the number of quantization intervals is based
on the selected number of the histogram bins. As shown in section 5.3, the
Histogram model can be described as 0-order Markov chain process. The num-
ber of Markov states is equal to the number of the quantization intervals. It
is possible to improve the distribution feature of the model by increasing the
number of quantization intervals, but this will led to an increase in the number
of states. Each state ¢ is associated with the Mean value p,, of that interval.
The transition from a state to another is controlled by the transition matrix.

We estimate and define the transition matrix as follows:

‘ M-1
P = % where N = Z n; andmn; = number of GOP's in g;
i=1

With every transition from 4 to 7 + 1 state, the p, value of next state is
generated. It is very important to mention that the transition from a state to
another is completely independent from the previous transition.

The DMC differs from the Histogram model in two main ways: the number
of quantization intervals and the transition matrix. The number of quantiza-
tion intervals is based on the standard deviation value of GOP sizes. The
larger the number of states, the better the results, but a large number makes
the model more complicated, and needs more memory in the generating pro-

cess. Therefore, a careful selection of the number of states should be made. We
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used the standard deviation of the GOPs as a scale to find a suitable number
of states. The first quantization interval, ¢;, starts with the minimum value
of GOP. Another way of finding the size of the quantization interval could be

achieved by employing the following calculation:

Maxgop—Mingop

Size, =
where Maxcop and Mingop are the maximum and the minimum value of the
GOP and £k is a selected quantization value.

The calculation of the transition matrix shows that the transition from
one state to another depends on the previous transition. With every transi-
tion from state ¢toj , p,, is generated. The transition matrix is defined and

estimated as follows :

P = 7;\}: where N; =S "n;; and Zj]vigl Pj=1 fori=0,1,...M-1
where n;; is the number of transitions from state ¢ to state j , N; is the total
number of transitions out from state i. For instance, Table 5.9 shows the

transition matrix for the ‘video conference’ sequence.

(MJ o [t [2 ]3[4 [5[6]7][8][9]
0 068/020]003] 0 ] 0 | 0] 0] 0] 00
1 020063013 |002]002] 0 | 0 | 0 | 0 |0
2 [0.02 041|033 019]003|002] 0 | 0 | 0 |0
3 [0.03|0.15| 029 0.09] 006|009 0 | 0 | 0 |0
10 | 0 [014]033]024]019]005]005] 0 |0
50 | 0 |011]011]056]022] 0 | 0 | 0 |0
6 0 | 0 | 0 [014]043] 0 |029] 0 0140
710 0] 0 0] 000 ] 0] 0|1
S0 00 0] 001 ]0] 00
9 0 | 0| 1] 0] 000 ] 0] 0|0

Table 5.9: Transition Probability Matrix for ‘video conference’ sequence

Consequently, a sequence of GOPs is generated using the above process
either based on the Histogram-based or DMC model. In order to integrate
the statistical model to our workload model, we need to produce a sequence
of frame sizes. The frame sizes could be calculated from GOP sizes by the

Scaling Factor process which has been presented in section 5.5.1.
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Because the traffic generator is expecting to be worked at an application
level, the frame rate, at particular rate (for instance 25 frames/sec), could
be generated in order to represent an MPEG source. For our purpose, we
could have three traffic sources which represent the three classes of the MPEG
sequences: a sequence with a large number of movements (a high activity
sequence); one with an average number of movements (a moderate activity
sequence) and a third sequence with a small number of movements (a low
activity sequence). These three types of traffic can be integrated into the
workload model for the video traffic representation. For the traffic generation
process, there are two ways to transmit traffic units: either at the maximum
rate of the input link, to the network, or they could be transmitted with a
constant interarrival time. [Heyman92] used the first one while [Rose95b] used
the second.

In order to compare the impact of the generated sequence and the actual
sequence on the system performance, simulation experiments are conducted
to study the performance of an ATM multiplexer using the generated (or
synthetic) sequence based on the traffic models (DMC has been selected to
demonstrate this simulation experiment). The multiplexer is modelled as a fi-
nite capacity queueing system with, buffer size B, and one server with service
rate C'. A FIFO service discipline is assumed. The input of the multiplexer
consists of MPEG sequences (or frame level). Two simulation experiments
are conducted. The simulation uses the actual MPEG sequence, while the
second experiment employs the generated sequence based on the proposed
models. In both experiments, the traffic source (multiplexing input) consists
of a large number of frames arranged according to the compression pattern
[IBBPBBPBBPBB|. Bits in each frame are packetised into ATM cells (in ad-
dition to 5 bytes as a cell header) and the cells are transmitted using fluid flow
approach [Knightly96].

To examine the performance of the simulation operating at heavy load,
a sufficient load is needed. A low load level is not interesting because the
probability of congestion is too low, and a very high load level is an unrealistic
network operation [Liu92]. Thus, the service rate is adjusted in order to obtain
an 80% of system load (or 0.8 load). Figure 5.20 shows the cell loss ratio (CLR)
versus the buffer size for both sequences (actual, generated). For the sake of

elucidation, we show the simulation results for the ‘video conference’ sequence



VBR MPEG Statistical Modelling 112
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Figure 5.20: Cell Loss Ratio Results

only. It is clear that there is an improvement in the CLR performance with a
larger buffer size. Another observation is a clear agreement between the results
obtained using the model and the results from the actual sequence. Thus, the
traffic model can be used to emulate a realistic MPEG traffic for simulation

experiments for the sake of the performance evaluation testing.

5.7 Summary

In this chapter, we have described the statistical analysis and modelling of
MPEG sources. The aim of this analysis and modelling is two-folds (1) to
characterise an MPEG sequence using an appropriated model to determine a
simple model to capture the statistical behaviour of a VBR MPEG sequence,
and (2) to derive traffic models to be generated by programs (library of traffic
model functions). In turn, these programs are used for a multimedia workload
model. In the statistical analysis and modelling, we have used several MPEG
data sets (e.g. ‘Dino’, ‘Race’, ‘video conference’ sequences), to cover as wide
range of scenario types as possible, and to ensure that the workload model

delivers realistic scenarios.
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Based on the results of the statistic analysis, we have used two Markovian
based models (the Histogram based model and the Detailed Markov chain
model (DMC)) to approximate the statistical behaviour of the MPEG se-
quence. We have shown that the DMC model can be used to approximate
two classes of MPEG sequences (high activity and low activity sequences).
Based on the analysis of scene change within an MPEG stream, we presented
an extensive scene change based model. We used the scene change identifying
techniques and the characteristics of the scene changes to construct an MPEG
source model. We have examined the statistical behaviour of the generated
sequence from the model and the original sequence. We observed that the
model captures the main statistical parameters of the actual sequence at dif-
ferent time scales (for both GOP and frame). We also showed that the model
captures the dependency features of the original sequence. We have also de-
scribed the modelling process component of this work; that is, once the models
are identified, what is the process of translating these into programs. In addi-
tion, we have explored the steps of integrating the MPEG traffic model within

the multimedia workload model.



Chapter 6

Multiplexing of VBR MPEG
Traffic

6.1 Introduction

As mentioned before, an encoded video traffic is a correlated and bursty traffic
with a high degree of peak to mean ratio (or burstiness). For ATM networks,
the challenge of QoS guarantees is to allocate an effective bandwidth for each
video connection; a tradeoff should be achieved between improving the net-
work utilisation and providing QoS guarantees. A number of algorithms have
been proposed to calculate the effective bandwidth for VBR traffic [Belhaj97]
[Zhang94] or for a general traffic for high speed networks [Guerin91]. Generally
speaking, the effective bandwidth allocation can be defined as the service rate
corresponding to the cell loss probability. The effective bandwidth is computed
to be close to the long range average (mean) rate and far from the peak rate.
The bandwidth allocation algorithm works as a part of the call admission con-
trol and should be done on the fly. Therefore, the algorithm should be kept
simple in order to meet real time requirements. The allocated bandwidth could
be based on either deterministic multiplexing or statistical multiplexing. De-
terministic multiplexing provides stringent bounds on QoS guarantees, while
statistical multiplexing provides probability based bounds on QoS guarantees.
However, statistical multiplexing improves the network utilisation, while de-
terministic multiplexing improves performance guarantees. Thus, a tradeoff
should be achieved between the network utilisation, and delivering the desired

level of QoS guarantees.

114
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In this chapter, we use the characteristics of VBR MPEG streams to study
and then improve the network utilisation. Several models have been proposed
for the characterisation of MPEG traffic. The model can be based either on
stochastic processes [Kara97] [Rose95a] [Venturin95] or deterministic processes
(or models) [Knightly95] [Krunz97]. A deterministic model for MPEG traffic
will be used for our study. An MPEG stream is a deterministic periodical
pattern. Thus, the advantage of this deterministic pattern will be used to
achieve a stream synchronisation (stream arrangement) for the multiplexed
MPEG connections. In other words, we define an arrangement! to multiplex
multiple MPEG streams before entering the network. The process of the ar-
rangement will be analysed and described for multiplexing MPEG connections.
The multiplexing gain (mg) factor is used to quantify the network gain. This
factor will be used to measure the improvement in the network utilisation. To
demonstrate the multiplexing gain, we use several sequences of real MPEG
video streams which contain empirical data sets of MPEG frame sizes. In or-
der to study the impact of the scene changes on the multiplexing gain (mg)
for synchronised streams, the data sets represent a variety of video streams
including video conference, sports events and TV programs.

This chapter is organised as follows: In the following sections, we describe
a deterministic multiplexing framework based on an arrangement for multi-
plexed VBR MPEG streams. We then describe a method by which we can
estimate the allocated bandwidth for each multiplexed stream. Lastly, we
undertake several simulation experiments in order to show the impact of the
stream arrangement and the scene changes on the allocated bandwidth, and

the multiplexing gain.

6.2 Deterministic Multiplexing of MPEG Streams

In this section, we present a deterministic multiplexing framework with no
data loss and very small delay bound at an ATM multiplexer. In chapter 4,
we explored the characteristics of the burstiness behaviour for MPEG traffic,
which enabled us to define the amount of activity within the MPEG stream. In
this section, we relate the traffic behaviour and the deterministic multiplexing.

This can be achieved by describing the deterministic model that we used to

'In this chapter, the terms ‘arrangement’ and ‘synchronisation’ are used interchangeably.
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characterise an MPEG sequence. The main objective of this is to find a suit-
able model to capture the deterministic behaviour of a VBR MPEG sequence
(or pattern). We then present a stream synchronisation way for multiplexing
MPEG streams. Based on this synchronisation, we will be able to calculate
and allocate the effective bandwidth for a number of multiplexed VBR MPEG
sources with guaranteed QoS. Lastly, we demonstrate the impact of both the
synchronisation, and the scene changes, on the allocated bandwidth and the

multiplexing gain.

6.2.1 Deterministic Model

Several traffic models were proposed for the characterisation of compressed
video traffic starting from a simple model (such as stochastic) up to a more
sophisticated one (such as self-similar). Because most of these are probabilistic
in nature, they cannot be used to provide deterministic guarantees.

We explore the case when N homogeneous VBR video sources, {Sr; : 0 <
i < N — 1}, are multiplexing and transmitting VBR MPEG streams. We con-
sider a network with non-blocking switches, where queueing happens at the
output link of each switch. The service rate (or link speed) is constant and
the arrival rate for each stream is equal to the frame rate of MPEG encoder.
We use a deterministic model for the MPEG source [Krunz97] which was first
mentioned in [Knightly95]. We extend the analysis of the deterministic mul-
tiplexing in terms of providing a guaranteed (QoS. The model uses a traffic
envelope which provides an upper bound on the bit rate. VBR MPEG traffic
is very bursty. Thus, the traffic envelope is varied for every stream according
to the statistical behaviour of the traffic and the amount of activity within
the stream. Therefore, we need to know in advance the upper bound of each
multiplexed stream.

The deterministic model can be defined, using five simple parameters (see
Figure 6.1) for characterising VBR MPEG traffic:

e L: is the size of GOP or the number of frames between two ‘I’ frames
within the same MPEG pattern.

e (Q: is the number of frames between P’ frames within the same MPEG

pattern.
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e [ is the maximum size of ‘I’ frames.
o Py is the maximum size of ‘P’ frames.

e Byp: is the maximum size of ‘B’ frames.

L Ub

A Typical VBR MPEG Pattern

Figure 6.1: The Deterministic Model For VBR MPEG Streams

A traffic constraint function, Ub(t), bounds the actual bit rate where ¢ is
measured in frame period. In the case of one MPEG stream, by using these
parameters, Ub(t) can be defined as Iy, Pyyor By, for a given t. As a re-
sult, the traffic can be characterised by a traffic envelope (I, Py, Bup, L, Q).
In the next section, we will show that the constraint function and the peri-
odical deterministic structure of the MPEG stream can help to provide and
support the deterministic QoS guarantees with conjunction with the statistical

multiplexing.

6.2.2 A Synchronisation Structure for MPEG Streams

This section describes the possible arrangements for multiplexed MPEG streams.
There are various ways to arrange the starting time of each multiplexed stream.
For instance, all streams may start at the same time (i.e. all streams transmit
their 'T"P’ and 'B’ frames at the same time). Alternatively, the starting time
of each stream could be chosen randomly. However, when a CAC function is
executed without considering the starting time, there always exists the pos-

sibility of not meeting the QoS requirements [Roh97]. Thus, the cell losses
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are provided only as a function of the number of connected sources, regardless
starting time arrangements.

For the statistical multiplexing, [Rose95b] presented the impact of the var-
ious ways of multiplexing on cell losses. Generally speaking, the stream ar-
rangement could be achieved by enforcing the starting time of multiplexed
MPEG streams.

Now, let us assume that N homogeneous MPEG streams are multiplexing.
Each stream is characterised, as specified in the last section, by the following
traffic descriptor: (Iyy, Pyy, Bus, L, Q)

If the starting time for the stream 7 is u; where u; € U which is a set of
possible starting times (frame based), the starting time for each stream could
be one of the following integer values: {0,1,2,3,..., L —1}. The starting time,
u;, could be specified as a counter which increases with every incoming stream.
If N > L, then the starting time for stream .J, where Mod;.J = 0, restarts
again to 0 and so on. The U, which is the synchronised set of N streams, can

be defined as follows:

U= {311,11,2,11,3,114, ULy UL, - L UN}

~~

m = {uy, us, Uz, Uy, ..., Uz}

Where Uq :O,UQ = 1,U3 :2,U4:3,...,UL,1 :L—Q,UL =L - 1;UL+1 =
0,...,uy = N — 2. The set m can be defined as a repeated sequence, m C U

where 1 < number of m sets < %

6.2.3 Bandwidth Allocation For Multiplexed MPEG Streams

In this section, the allocated bandwidth for each multiplexed MPEG stream
(deterministic multiplexing is considered) is described when multiple MPEG
connections are multiplexed. We will then demonstrate how we can achieve
bandwidth gains when a number of MPEG streams are multiplexed with the
stream synchronisation U.

Most of the compressed video traffic requires very restricted QoS guarantees
with no losses and very short queueing delays. Such deterministic guarantees
can be provided by allocating a bandwidth based on the peak bit rate for each
traffic source. However, this methodology reduces the network utilisation,

which can be improved by using the statistical multiplexing technique. More-
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over, statistical multiplexing is typically used for statistical guarantees not for
deterministic guarantees. However, if the stream synchronisation approach is
employed, it is possible to maintain deterministic guarantees in conjunction
with statistical multiplexing.

For the deterministic guarantees, an effective bandwidth (C) can be al-
located using the constraint function {Ub(¢), t > 0} which is the maximum
boundary of the stream [Krunz97]. In order to estimate the effective bandwidth
for multiplexed MPEG streams, let us first demonstrate only two multiplexed
streams. The following example demonstrates the benefits of the statistical
multiplexing with two MPEG streams. The two MPEG streams are homoge-
neous and the second stream starts just one frame duration after the first one.

The maximum value of the constraint function for the aggregated stream can
be defined as:

Ubaggregated(t) = Ub(t) + Ub(t + 1) < 2meaz(t > 0)

where Ubypq(t), t > 0 is the maximum bound of the stream (which is frame
based). For deterministic guarantees (no loss and very short queueing delays)
an effective (or equivalent) bandwidth should be allocated for each stream.
The effective bandwidth, C, can therefore be defined as:

. MCL(E{Ub(t),Ub(t + 1)} . IUb+BUb
N 2 N 2

C

Iy

C could be measured in cells per frame period. It is clear that the effec-
tive bandwidth, which needs to be allocated for each stream is less than the
peak. In some cases, a small buffer is needed when two cells arrive at the
multiplexer simultaneously. It is important to note that the bandwidth gains
from the statistical multiplexing obtained from the spatial averaging (or pat-
tern synchronisation), not from temporal averaging (or buffering). Therefore,
the arrangement of the starting time of each MPEG stream has an impact on
the effective bandwidth allocation. The arrangement could be placed either at
the MPEG source before the multiplexing (such as at the Video On Demand
(VoD) server node) or at the intermediate network node (such as the inter-
mediate switch). In the first case, a small amount of delay (in term of frame

period) could be imposed on the starting time of the MPEG stream. In the
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second case, a small buffer could be needed to arrange the frame.

In order to estimate the effective bandwidth of N multiplexed homogeneous
streams associated with a stream arrangement, let us suppose that w; is the
difference between the arrival time of the ‘I’ frame for stream 7 and the arrival
time of an ‘I’ frame for the last recent stream (e.g. i — 1). By doing so, the

synchronisation of the streams can be specified as:
u; € {17 s (w1, ug, ug, ..., uy)} whereu; =0

Consequently, the effective bandwidth (cells/frame) for each stream with a

given U set can be defined as [Krunz97]:

Mal‘tzo(zi]il Ub(t + ul))

C(u, N) = ~

Let ny, np, andnpg be the number of MPEG streams that send ‘I’, ‘P’ or
‘B’ frames simultaneously, where n; + np + ng = N. Then, the effective

bandwidth can be written as:

nrlyy +np Pyy + np By
N

C(u,N) =

Similarly, C' is measured in cells per frame period. It is clear that C(u, N)
is less than the peak Zi]\il Iy,

In the case of multiplexing heterogeneous streams, Iy, Py, and By, are
determined as the maximum values of these parameters from the various mul-
tiplexed streams. However, this will reduce the utilisation if there is a vast
variation between the peak values of the multiplexed streams. For instance,

when the 'video conference’ streams are multiplexed with the "Movie’ streams.

6.2.4 The Impact of The Stream Arrangement and Scene
Changes

In this section, we explore the impact of scene changes within the same MPEG
stream on the allocated bandwidth when several MPEG streams are multi-
plexed with arbitrary arrangements. First, in order to show the impact of
the stream arrangement on the bandwidth gains, we multiplex three MPEG

streams with various starting times wu; (except the first stream, u; which is
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always 0). To demonstrate a realistic MPEG stream, and for the sake of il-
lustration, we employ a real traced data for only two MPEG video streams
‘Dino’ and ‘video conference’. These streams have been chosen because they
represent different classes of VBR MPEG sequences (see chapter 3).

We will demonstrate how much bandwidth gain can be achieved with var-
ious arrangement sets. When three MPEG streams are multiplexed with var-

ious starting times, u;, the arrangement set can be presented as the following:
U=1{0,j,i}where, 0<i<L - 1and0<j<3

In the case of the ‘Dino’ sequence, see Figure 6.2(a), it is clear that with
some stream arrangements we can reduce the bandwidth requirements even
when bounded deterministic guarantees are provided. It is possible to reduce
the allocated bandwidth for each stream up to 28% off peak (i.e. 72% of
peak). There is only one exception, (0, 0, 0), when all streams have the same
starting time (0), the allocated bandwidth is equal to the peak. Therefore,
the amount of reduction depends first on the arrangement set U. The scene
change is another factor which has an impact on the amount of reduction
on the bandwidth requirement. This can be observed when we demonstrate
the last example with the ‘video conference’ stream. Figure 6.2(b) shows the
amount of reduction on the bandwidth requirement. In the case of this class
of sequence, it is clear that we can achieve up to 54% off peak (i.e. 46%
of peak). This amount of reduction has been achieved because of the ratio
between Iy, and Byp,. Due to the amount (or level) of activity within the
sequence (see section 4.3), the ‘video conference’ sequence has a small amount
of scene change. Therefore, the size of its ‘I’ frames are much bigger than
the size of its ‘B’ frames; while in the case of the ‘Dino’ sequence, there are
a moderate number of movements. As a result, the amount of activity within
an MPEG stream has a noticeable impact on the bandwidth allocation.

In another experiment, we observed that the amount of allocated band-
width for each multiplexed stream decreases when the number of the streams
increases. It is important to notice that there is a limit to the number of
multiplexing streams needed to achieve the minimum allocated bandwidth;

therefore, we have

1
Cox—,1<60<n
n
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where n is the maximum number of streams to achieve the minimum band-
width Cy. The minimum allocated bandwidth is limited by the relation be-
tween the VBR MPEG stream descriptors and the number of multiplexed
streams. Figure 6.3 depicts a decay in the amount of the allocated bandwidth
in relation to the increasing number of multiplexed streams. This shows the
efficiency sharing of the link capacity. However, if there is only one stream,
the peak rate is allocated. Furthermore, the curve decays very rapidly until it
reaches the minimum bandwidth. There are other smaller peaks in the curve,
which appear when Mod;, N = 0. As a result, the allocated bandwidth can
be related to both the stream descriptor and the number of the multiplexing

streams, as follows:

B Int(F + DIy + §Pos + N(7 + 5)Bus)
B N
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Figure 6.3: Allocated Bandwidth Gain For N MPEG Streams

6.2.5 Multiplexing Gain

This section evaluates the statistical multiplexing for VBR MPEG streams

and describes another factor (mg) that can be used to measure the gain in the
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utilisation above the peak rate allocation. This multiplexing gain factor will be
used to quantify the improvement of the network utilisation. The multiplexing

gain (mg) could be defined as:

Ny
C

In order to show the amount of multiplexing gain, we have multiplexed sev-

mg =

eral MPEG streams with a given U arrangement. Figures 6.4 (a) and (b) depict
the multiplexing gain for the ‘video Conference’ and the ‘Dino’ sequences. The
value of the multiplexing gain starts with 0 , then it starts to increase with
the increasing number of multiplexed streams. Another observation from these
figures is that the value of mgy;4e, is higher (up to 3.2) than that for mgpn.
(up to 1.56). Consequently, the amount of activity has also an impact on the
value of mg. In addition, the figures show several peaks when Mod, N = 0.
In other words, when I’ frames are overlapped. Furthermore, there is a limit
to the multiplexing gain value even though the number of the multiplexed

streams is increasing.

6.3 Influence of Stream Arrangement on Queue-

ing Performance

In order to explore the performance of the stream arrangement on an ATM
multiplexer, simulation experiments are presented in this section for the multi-
plexing of multiple ‘Dino’ sequences at different level system loads, and through
different buffer sizes. Then, cell losses result for the multiplexer buffer are also
presented in this section.

The simulation results showed which property of MPEG video stream has a
major impact on the multiplexer performance (YATS simulator was used). For
example, these experiments helped to show the influence of GOP pattern on the
cell losses. We have chosen two approaches of multiplexing: arranged and non-
arranged streams. The simulation experiments have been conducted with both,
arranged and non-arranged streams, approaches. In the arranged streams,
the offset (or the starting time) of each stream was synchronised one frame
period after the previous stream, thereby ensuring a minimum overlapping
of ‘I frames (which did not have identical multiplexing). While in the non-
arranged streams, all streams start the GOP at the same time, i.e. all streams

transmit their I, P and B frames during the same time intervals.
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The simulation model can be described as N MPEG streams which are mul-
tiplexed through a single multiplexer with an output link of 50 Mbits capacity.
The number of multiplexed streams determines the system load. Various buffer
sizes were used for the multiplexer in order to smooth out the fluctuations of
the multiplexed streams when the system’s load is increased (i.e. relating the
buffer size with the maximum delay). An FIFO discipline was considered.
Each frame was packetised into the payload of ATM cells with an evenly dis-
tributed (within the same frame period). Thus, the interarrival times are equal
within the frame duration.

05 ; : .
Arranged Streams ——

Not Arranged Streams ----
0.45 - R

0.4 | i
0.35 |- -

0.3 - i

CLR
o
N
a

T
1

0 I //// I I
0 5 10 15 20
Number of Streams

Figure 6.5: CLR for N Multiplexed Streams (Dino)

Figure 6.5 illustrates the cell loss ratio against the number of multiplexed
streams for both arranged, and identical stream, multiplexing at buffer size
1000 cells. It is clear that the CLR curve in the case of arranged streams is
below the CLR curve for the identical stream multiplexing. This occurs mainly
because of ‘I’ frame overlapping, which leads to bursts of cell transmissions
during ‘I’ frame durations. On the other hand, the CLR is reduced when
the multiplexed streams are arranged. Therefore, the number of multiplexed
streams can be increased with the arranged multiplexing approach.

Increasing the buffer size reduces the CLR, but at the cost of increasing

queueing delay. We have also conducted simulation experiments on the mul-
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tiplexing of N MPEG streams, with the identical approach at different buffer
sizes. Figure 6.6 shows the effect of buffer size on cell loss performance. Clearly,
buffers can reduce the cell loss to great degree. For instance, with buffer sizes
of 500 and 200 cells, the CLR increases with a smaller buffer size. However, a
larger buffer size increases the waiting time in the buffer (i.e. maximum delay).
The cell loss increases sharply when the number of stream is increased due to
such bursty traffic (particularly from I’ frame transmission). However, when
the number of streams is more than 10, the curve of the cell loss starts to take
more horizontal shape. Thus, the buffer size increase has very little impact
on cell loss performance when the increase passes a certain point. This means
that just increasing the buffer size, for instance at an ATM switch, cannot
solve the problem of cell loss satisfactory when traffic is highly bursty such as
MPEG and burst durations are long ('I’ frame).
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Figure 6.6: CLR for N Multiplexed Streams at Different Buffer Sizes (Dino)

Consequently, ATM uses statistical multiplexing as a means for resource
sharing. For instance, the link capacity, at an ATM multiplexer, is shared
by cells from various traffic streams. Thus, the bandwidth is dynamically
allocated so that if a stream is temporarily idle, its bandwidth is given to other
active streams. As a result, statistical multiplexing improves significantly the

bandwidth utilisation. However, the QoS guarantees are offered only on a
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statistical basis.

In order to investigate the feasibility and efficiency of resource sharing in
the case of the statistical multiplexing, we have focused on an ATM multiplexer
with multiple VBR MPEG video streams at its input. Although a general ATM
network will be more complex, the consideration of a simple ATM multiplexer
model is useful to understand the behaviour and the impact of the statistical
multiplexing of VBR MPEG streams with respect to the system configuration
(i.e. system capacity and link speed). Other important issues which can
be considered are the measurement of the cell loss ratio and the throughput

estimation (allocated bandwidth) in such systems.

6.4 Summary

In this chapter, we showed that it is possible to achieve multiplexing gains even
when we provide deterministic QoS guarantees. We described an arrangement
for multiple multiplexed MPEG streams called stream synchronisation. The
arrangement could be achieved by enforcing the starting time of each multi-
plexed stream. Taking advantage of MPEG coding (spatial averaging), we are
able to reduce the amount of the allocated bandwidth for each multiplexed
stream. In addition, we showed that the synchronisation of the streams affects
the calculation of an effective bandwidth.

We also showed that it is important to notice that multiplexing gains do
not only depend on the stream’s synchronisation, but also depends on the
amount of activities within the multiplexed streams. Consequently, the results
obtained in this work are important in terms of demonstrating the effect of
stream activities on the network utilisation. This has be achieved when we
employed the multiplexing gain factor, mg, which quantifies the network gain.
Several simulation experiments are performed to show the influence of MPEG
properties on the performance of an ATM multiplexer. The simulation results
showed that GOP structure has a major impact on the multiplexer perfor-
mance in terms of increasing the cell losses. In other words, when multiple
MPEG stream are multiplexed with an arrangement approach, the cell loss
performance improves. The impact of increasing the buffer size is also studied.
Due to the burstiness of MPEG traffic, the buffer size increase does not have

much impact on the cell loss performance when the increase passes a certain
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point. Furthermore, a tradeoff should be achieved between having a large

buffer and increasing the waiting time at the buffer (corresponding delay).



Chapter 7

Evaluation

7.1 Introduction

This thesis deals with the characterisation, modelling and multiplexing of VBR
MPEG traffic over an ATM network. The encoded MPEG traffic introduces
several issues that must be addressed in order to attack the problem of the traf-
fic modelling. This includes analysing the statistical characteristics of MPEG,
predicting the traffic behaviour, and then formulating the characteristics as
a traffic model. Modelling the VBR MPEG traffic requires an understanding
of its statistical characteristics. The complexity involved in modelling MPEG
coded video traffic increases as the movement activity. Furthermore, the peri-
odic characteristics associated with the MPEG encoder increase the complexity
involved in modelling as well. However, from the way MPEG is designed, net-
work utilisation improvement and multiplexing gains can be achieved from the
MPEG sequence by forcing a sort of arrangement for the multiplexed streams.
This chapter presents an overall evaluation of the results which were obtained

from our analysis and modelling of MPEG throughout the thesis.

7.2 FEvaluation

In this thesis, extensive traffic characterisation and modelling processes were
introduced. An evaluation of this work can be presented through three major
topics: statistical analysis of VBR MPEG traffic, VBR MPEG modelling and
the statistical multiplexing of multiple MPEG streams at an ATM multiplexer.

130
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7.2.1 Statistical Analysis of VBR MPEG

Supporting such a complex traffic (as MPEG) requires a good understanding of
traffic behaviour. Thus, properties of the analysed MPEG streams have been

taken into consideration in order to achieve an accurate traffic characterisation.

7.2.1.1 Video Streams

In many previous studies, the video streams used for the analysis were either
short (such as [Gruenefelder91]) or employed only one type of traffic activity
(such as [Heyman92]). However, the study in this thesis was based on long
(40000 frames) and various video streams (21 different streams) obtained from
actual Mowvies, News and Sports events. This means that a wide range of
traffic activity was covered in order to achieve a better understanding of the
stream behaviour, especially the long range dependency feature. Moreover,
many characterisation studies of MPEG video traffic tended to characterise
MPEG at low levels, such as cell or frame [Venturin95] [Reininger94], while
ignoring the higher levels, such as GOP, which play the most important role
concerning the autocorrelation effects of an MPEG video stream behaviour
(as shown in chapter 3). However, the characterisation process in this thesis
considers the higher levels of MPEG as well as the lower ones. Therefore, it
is challenging to introduce a traffic model which captures the behaviour not

only of one time scale, but several ones.

7.2.1.2 Statistical Measures

To ensure a proper traffic characterisation, the most significant properties of
video traffic were considered for the characterisation process . Three statisti-
cal measures were explored, namely distribution, autocorrelation function and
scene changes. As discussed previously, each of these measures has an im-
pact on the traffic behaviour. Therefore, extensive studies were performed on
various MPEG streams in order to gain a degree of insight as to how such

compressed video traffic behaved.

e Distribution: The probability function of video traffic is believed to
play an essential role in approximating the queueing behaviour [Casi-
lari98|. However, in the case of MPEG traffic, it has been observed that

there is no good agreement yet on which the ideal distribution could be
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used to approximate the GOPs. Thus, the probability density function
can not be used as a basis to characterise GOP sequences. However,
Gamma distribution was found to be the closest one among the other
(Lognormal and Weibull). The observations of the main statistical pa-
rameters, such as the mean and standard deviation values, on various
MPEG sequences showed that their characteristics vary vastly from one

to another depending upon their contents.

e Dependency: The dependency feature was explored at different time
scales of MPEG traffic. Correlations (or dependencies) between arrivals
were found to cause considerable degradation in network performance
(as measured by cell loss rate). We have demonstrated that an MPEG
traffic sequence exhibits a periodical and complicated correlation struc-
ture due to the presence of three different types of frame in one sequence.
The dependency was also explored at the GOP level. It was observed
that the autocorrelation function of the GOPs sequence may has various
decaying shapes. For example, some sequences, such as ‘Race’ and ‘video
conference’ have a negative exponential shape (exponentially decaying),
while some others, such as ‘Dino’, exhibit a slowly decaying shape (hy-
perbolically decaying) as lag increases. Given these observations, we have
assumed that a sequence with a high or low amount of activity exhibits
a short range dependency, while a sequence with a moderate amount of

activity experiences a long range dependency.

e Scene Change: Unlike that of previous studies, the scene change mea-
sure was analysed here in great detail because it is seen as an important
reason for fluctuations in the overall bit rate within the video stream.
Thus, an extensive scene change analysis was undertaken in order to de-
tect the impact of scene changes on the traffic behaviour. A heuristic
approach was used for the scene change characterisation, based on the
fact that a significant change in the size of consecutive GOPs is an in-
dication of the start of a new scene. Two techniques were introduced
to identify a scene change within an MPEG sequence, namely Qutlier
and Second difference. These techniques were used in order to view an
MPEG sequence as a collection of scenes. As the result, the MPEG se-

quence can be broken down into smaller portions (scenes) which reflect
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the amount of activity within each MPEG sequence. A large number of
scenes means a high level of activity. The identification technique by the
way of conclusion, is used to classify various MPEG streams in terms of

the sequence activity.

7.2.2 VBR MPEG Modelling

Although the modelling of VBR video sources has recently received significant
attentions, there is still no commonly acceptable model which captures the
behaviour of a wide variety of video streams, ranging from a very low active
stream to higher ones [Izquierdo96]. The main reasons behind this are the
existences of different encoding schemes and various activity sequences. We
reviewed the contribution of our research with respect to VBR MPEG mod-

elling, using the criteria of an appropriate model defined in section 2.7.3.

7.2.2.1 The Modelling Approach

In this thesis, we have focused on different modelling approaches for VBR
MPEG traffic in order to find an adequate model with respect to the simplic-
ity and generality properties of the model. The Markov chain process is widely
used in several studies to capture the behaviour of video traffic [Heyman92]
[Stamoulis94]. However, a simple Markovian model shows a lack in captur-
ing the dependency feature of video traffic at various time scales [Rose94a].
Therefore, the ability of the Markov chain process was examined in order to
better capture the behaviour of MPEG traffic at GOP time scale. Two Marko-
vian based models which are of different complexity have been studied here,
namely Histogram based model and Detailed Markov Chain model (DMC).
The Markov chain approach was also considered in [Heyman96] to formulate
a video model. This model overestimated cell losses, due to the simplicity of
the model and to the level of modelling (frame). As extracted from the statis-
tical characterisation analysis of a variety of MPEG sequences, the latter may
exhibit two types of dependency: both short range and long range. The two
Markovian based models were employed in order to approximate the statistical
behaviour of the MPEG sequence. With some effort, we have shown that the
DMC model can be used to approximate two classes of MPEG sequences (high

activity and low activity), even with a small number of states (about 9 states).
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We have also presented a better assessment on the number of states required
by the Markov chain model. This was done in order to ensure a greater degree
of accuracy.

Most modelling studies have focused mainly on the statistical behaviour of
MPEG traffic as a sequence of frames (at a frame level) without considering
the impact of scene changes within the video stream. These are believed to
introduce a large variation in the overall bit rate [Lazar93]. The scene change
characterisation process was used to formulate a new scene-based model. The
novel element of our modelling approach is the introduction of a new model
for VBR video traffic which captures MPEG traffic behaviours at three time
scales: frame, GOP and scene. The importance of the scene changes was
incorporated into the traffic modelling because of its impact on the traffic
behaviour (as stated previously). For the sake of comparison, scene changes
were also considered for modelling MPEG traffic in [Krunz96]. However, the
scene changes in that study were based only on ‘I’ frames, while changes in all
frame types were considered in this thesis. This has improved the behaviour

of the model, especially in relation to queueing performance.

7.2.2.2 Ease of Implementation

The simplicity of the introduced models helped to keep the models easy to
implement in case of generating a synthetic traffic. The number of parame-
ters used to describe the model was deliberately kept low. For instance, nine
Markov chains as well as one dimension transition matrix were used to de-
scribe the Markovian models, while the scene based model is described using
two processes, namely the scene length and scene variation. The former pro-
cess needs only one parameter (¢) while the latter one can be described as a

Markovian model.

7.2.2.3 Model Appropriateness and Limitations

The suitability as well as the limitations of the models have been validated by
comparing the behaviour of the generated traffic and the original one in terms
of the statistical and queueing performance [Lazar93]. Due to the different
approaches of modelling, it is possible for the model to predict one behaviour
accurately, while inaccurately predicting another. The two Markovian models

as well as the proposed one were validated to assess their ability in capturing
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the desirable traffic behaviour. The ability of models can be assessed using

three main criteria as follows:

e Statistical Parameters: Statistical analysis was performed on gener-
ated sequences (GOPs) using both Markovian traffic models. Despite
the simplicity of the modelling approach, both models have shown a
good agreement in terms of capturing the main statistical parameters
of the original MPEG sequence. The scene-based model was validated
by analysing their suitability to capture the statistical behaviour of the
original MPEG sequence, as well as the multiplexing performance. The
model was used to generate a synthetic MPEG sequence. By comparing
the statistical behaviour of the sequence (based on the proposed model)
and the original one, it has been observed that the model can capture
the statistical behaviour of the actual sequence accurately. The main
statistical (or distribution) parameters of the generated sequence were

much closer to that of the original sequence.

e Long and Short Dependency: The correlation feature of MPEG was
also examined at different time scales (GOP and frame). The DMC
model showed an ability to capture only a sequence with a high or low
level of activity (i.e. sequences with short range dependency), while
the Histogram model showed no correlation at all, due to its concept,
which is based only on the distribution properties. However, both models
demonstrated a good agreement in capturing the periodical correlation
shape of the MPEG sequence at frame level. The frame sequence was
obtained from the generated GOP sequence by using a process called
Scaling Factor. Therefore, an improvement is achievable when the mod-
elling approach is based on a higher level (such as GOP), while a smaller
level (frame) can, accordingly, be derived. Due to the limitations of
the Markovian based models in capturing the dependency feature, a new
scene-based model has been proposed to capture the statistical behaviour
of MPEG traffic, especially the sequence with a long range dependency
feature. The importance of the scene changes in incorporating traffic
modelling is due to its impact on the traffic behaviour (as stated previ-
ously). In addition, the model exhibits ideally the long range depen-

dency feature of the traffic. For the sake of comparison, it has also been



Evaluation 136

found that the ACF curve of the generated sequence fits the ACF curve

of the original sequence.

e Queueing Performance: In most cases the validity or ‘goodness’ of a
model is determined by comparing the multiplexing performance of the
model to the original traffic at an ATM multiplexer [Lazar93]. Simula-
tion experiments were conducted to study the performance of an ATM
multiplexer using the generated (or synthetic) sequence based on the
proposed model and the original MPEG sequence. The outcome of these
simulation results showed that the scene based model showed a better
performance in capturing the queueing behaviour of the original MPEG

traffic at an ATM multiplexer over the two Markovian models.

7.2.2.4 Model Usability

Another aim of the analysis and modelling of MPEG traffic was to derive a
simple, as well as an efficient, traffic model to be employed by simulation pro-
grams (through the library of traffic model functions). In turn, these programs
are used for a multimedia workload model to cover as wide a range of scenario
types as possible, and to ensure that the workload model can deliver realis-
tic scenarios. We have explored the steps required for integrating the MPEG
traffic model within the multimedia workload model. An example of generat-
ing a synthetic MPEG traffic was presented in this work, based on one of the
MPEG traffic models. The generated traffic showed a massive performance
compared to the original traffic. Therefore, the synthetic traffic can be used
for the performance evaluation process of an ATM multiplexer when multiple

MPEG streams are multiplexed.

7.2.3 Multiplexing Gains

With such bursty and complex traffic, we have shown that it is possible to
achieve a multiplexing gain (up to 3.4 over peak) even when deterministic QoS
guarantees are provided. The beauty of MPEG compressed traffic is that it is
more ‘regular’ and ‘structured’ than any other data types. Another significant
benefit of the way MPEG is designed is that a large ‘I’ frame is followed by
a small ‘B’ frame. This reduces the traffic burstiness caused mainly by the

presence of ‘I’ frames.
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An arrangement was described for multiple multiplexed MPEG streams
called stream synchronisation. This arrangement was achieved by enforcing
the starting time of each multiplexed stream. By taking advantage of MPEG
coding (spatial averaging), the amount of the allocated bandwidth can be
reduced for each multiplexed stream (up to 54% off peak). In addition, it has
been observed that the synchronisation of the streams affects the calculation
of the effective bandwidth.

Furthermore, it has been shown that the multiplexing gain does not depend
only on the stream synchronisation, but also on the amount of activities within
the multiplexed streams. Another factor which has an impact on multiplex-
ing gains is the scene changes and their magnitude within the VBR MPEG
stream. We have shown the amount of saving in terms of bandwidths over
peak. Consequently, the results obtained in this work are important in terms
of demonstrating the effects of the stream activities on the network utilisation.
Beside, the multiplexing gain factor (mg) was used in order to quantify the

overall network gains.
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Conclusions and Further Work

8.1 Conclusion

This thesis has covered three main issues regarding the management of VBR
MPEG traffic over ATM networks. The traffic characterisation process is an
important issue for studying the performance of traffic transmission through-
out the network. It can also be used to develop appropriate traffic management
and control schemes. In addition to analysing the statistical behaviour (dis-
tribution, dependencies) of various MPEG sequences, the scene changes have
been explored within an MPEG sequence. Long and various video streams
have been studied in order to cover a range as wide as possible of MPEG
sequences, including real Movies, News and Sports events.

The results of the statistical analysis carried out in this study suggest that
the MPEG traffic is correlated, bursty and exhibits complex patterns which
vary from one stream to another. MPEG traffic cannot, therefore, be de-
scribed as independent traffic. In addition, it has been observed that one of
the most important reasons for the fluctuations in the overall bit rate of MPEG
is because of the scene changes within the video stream. Consequently, scene
changes have been analysed in details in order to explore the behaviour and
the impact of scene changes within an MPEG stream. Two methods have
been presented to identify the scene changes: the Qutlier and second differ-
ence. Once the amount of scene changes are identified, it would be possible to
assess the degree of activity within the video stream. A ‘Scene Change Scale’
(SCS) has been introduced to exhibit the amount of activity within the MPEG

stream. The scale has been used to demonstrate the impact of scene changes
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on QoS requirements. Several experiments have been performed to show the
impact of multiple MPEG streams multiplexing at an ATM multiplexer, re-
lating the simulation results to SCS. The scale has been correlated with the
results obtained from simulation experiments. It has been shown that this
scale can be used to assess the impact of scene changes on the QoS guarantees
in terms of cell loss ratio (CLR) for multiplexed MPEG video streams.

Another thread that has been explored is a source model construction for
VBR MPEG traffic based on our statistical analysis. The GOP level of mod-
elling has been chosen in order to improve the model performance. From the
statistical analysis of various MPEG streams, it has been shown that both long
and short range dependencies can be seen as being based on the amount of ac-
tivity within the stream. Due to the fact that the Markovian approach exhibits
short range dependency, two Markovian based models have been introduced in-
corporating the Histogram based model and the Detailed Markov Chain model
(DMC). To examine the appropriateness and limitations of the models, simu-
lation experiments have been conducted to study the performance of an ATM
multiplexer using the generated (or synthetic) sequence based on the models
and the real traffic. It has been observed that the generated sequences using
these models capture the main distribution parameters accurately. However,
in terms of dependency feature, it has been shown that the DMC model can
be used to approximate two classes of MPEG sequence (high activity and low
activity sequences). Furthermore, this thesis has presented two steps neces-
sary to integrate the MPEG streams to the multimedia workload model. The
first step was a statistical modelling process which captured the individual
behaviour of MPEG sources. The second step was the integration process
(through a histogram based and/or Detailed Markov Chain model) to link
these (MPEG) statistical distributions to the workload model.

Based on the extensive characterisation of the scene change within an
MPEG stream, this thesis proposed a scene change based model. The scene
change identifying techniques and the characteristics of the scene changes have
been used to construct a composition MPEG source model. The statistical be-
haviour of the generated sequence from the model and the original sequence
have been examined. It has been observed that the model captures the main
statistical parameters of the actual sequence at different time scales (GOP

and frame). It has also been shown that the model exhibits the long range
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dependency feature of the original sequence due to the incorporation of scene
change characteristics.

In order to compare the overall achievements of MPEG traffic modelling,
it has been shown that the Histogram model does not approximate the depen-
dency feature while DMC'is only adequate for capturing the short range de-
pendency feature of the real MPEG stream. By contrast, the proposed model
(Scene-based) is capable of capturing the long range dependency feature of
such traffic.

This thesis has explored the tradeoff between providing QoS guarantees
and improving the network utilisation when multiple VBR MPEG streams are
multiplexing at an ATM multiplexer. A deterministic framework has been
presented for MPEG traffic. An allocation bandwidth approach based on a
deterministic model for multiplexed VBR MPEG streams has also been pre-
sented. Different arrangements have been described for the multiplexed VBR
MPEG streams. The impact of such arrangements on the allocated bandwidth
has been shown as well. As a result, it has been concluded that it is possible
to improve the network utilisation with statistical multiplexing, even in the
case of providing deterministic QoS guarantees. Finally, the impact of the
stream activity (the amount of scene changes within MPEG stream) has been
explored on the allocated bandwidth and the network multiplexing gains. Con-
sequently, it has been shown that it is important to notice that multiplexing
gain does not only depend on the stream’s synchronisation, but also on the

amount of activities within the multiplexed streams; this is due to the way
MPEG is designed.

8.2 Further Work

The research presented in this thesis can be extended in many ways. These

may include:

e The statistical multiplexing helps to improve the network utilisation, es-
pecially in the case of bursty traffic. As shown in this thesis, MPEG
traffic exhibits various degrees of burstiness, based on the video class
(activity). The management process of such a complex traffic is an im-
portant aspect for any efficient use of the available bandwidth. One way

of gaining greater insight into the proposed model (scene-based) would be
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by deriving a better way of calculating the effective bandwidth required
for each multiplexed MPEG connection, with respect to the desired QoS

requirements.

e The study of the effect of traffic behaviour in this thesis shows that
traffic characteristics have a significant impact on the performance of
an ATM multiplexer. It might be desirable to study the multiplexing
under a queueing system more complicated than the discipline FIFO,
as presented in this thesis. For example, the Weighted Fair Queueing
(WFQ) or Strict Priority Control (SPC) could be of interest. The latter
provides guarantees on bandwidth and delay for real time VBR traffic,
while the former only provides guarantees on the share of available band-
width [Kara99]. It might be also desirable to conduct a simulation with
a more complex network system, including multiple switches and cross
sources, in order to explore the impact of the cross traffic on end-to-end

performance.

e This thesis study has concentrated on video traffic characterisation and
modelling, without taking into account any smoothing technique. This
would reduce traffic variations and hence improve the traffic handling
methods. Therefore, it would be desirable to explore the impact of the

traffic smoothing on the performance of the Markovian based models.

e One way of gaining greater insight into the delivery of QoS guarantees
could be by studying end-to-end QoS for the transmission of MPEG
streams, and then comparing the actual scene errors (the relation be-
tween the QoS parameters and the user view). Exploring the effects of
CLR and jitter on the picture quality from the end user visual point of

view would help to improve QoS guarantees.

e Due to the existence of various encoding schemes, it is difficult to find
a generic source model representing an encoded video traffic. The scene
change based model exhibits an accurate approximation of MPEG video
traffic. It would be possible to make an extensive use of the scene change
characterisation processes so that they can be applied to other encoding

schemes, such as H261.

e In this thesis, it has been observed that the scene changes affect not
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only the complexity of the traffic characteristics, but also the long range
dependency feature of the video traffic. There is a general belief that the
long range dependency has an effect on the queueing performance at an
ATM multiplexer. However, some high activity MPEG streams exhibit
a short range dependency feature. The relationship between the impact
of the dependency features, long and short, of various MPEG streams
on the queueing performance should be investigated in more detail in
order to demonstrate the relationship between the stream activity and

the dependency feature.

e To test and evaluate the performance of a network system, or an ATM
switch, it is necessary to provide artificial traffic which closely resembles
real traffic. This thesis has presented the steps needed to integrate the
MPEG source model into a multimedia workload model. It would be
possible to build a prototype for the workload model as a representative

example of multimedia traffic.
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