
AbstractVariable Bit Rate (VBR) MPEG tra�c is expected to be one of the widelyused tra�c sources for high speed networks, along with voice and data tra�c.Encoded video tra�c is a correlated and a bursty tra�c with high value of peakto mean ratio (burstiness). For e�cient tra�c management in a high speednetwork, it is important to know the basic characteristics of such encoded videotra�c.This thesis deals with three main issues regarding the management of VBRMPEG tra�c over ATM networks: Characterisation, Modelling and Multiplex-ing of VBR MPEG tra�c. The statistical characteristics of MPEG tra�c havebeen analysed. Our study is based on long and various video streams obtainedfrom real Movies, News and Sports events. The work explores three statisticalmeasures which are the main characteristics of MPEG streams, namely: Dis-tribution, Autocorrelation Function (ACF) and Scene changes. Based on thestatistical analysis, two simple Markovian based models are introduced: thehistogram based model and the Detailed Markov Chain. Despite the simplic-ity of the models, it is possible to show some improvement in the statisticalbehaviour. The scene change measure is analysed in more detail because thescene changes are important reason for the 
uctuations in the overall bit ratewithin the encoded video stream. This thesis presents two methods and algo-rithms to identify scene changes within the MPEG stream. Then, the scenechange identi�cation technique as well as the characteristics of scene changesare used to propose a construction of an MPEG source model. The model cap-tures accurately the statistical behaviour of the actual sequence at di�erenttime scales.For ATM networks, the challenge of QoS guarantees is to allocate an ef-fective bandwidth for each video connection and a tradeo� should be achievedbetween improving the network utilisation and providing QoS guarantees. Anallocation bandwidth approach based on a deterministic model for multiplexedVBR MPEG streams is presented. An arrangement for the multiplexed VBRMPEG streams is then presented. Furthermore, the impact of such arrange-ments on the allocated bandwidth is shown. Finally, the impact of the streamactivity (amount of scene changes within MPEG stream) on the allocatedbandwidth and the network multiplexing gain is explored.i
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Chapter 1Introduction11.1 Research MotivationAsynchronous Transfer Mode (ATM) is an emerging standard for broadbandnetworks which allows a wide range of tra�c types to be multiplexed in asingle physical network. The tra�c types can range from real-time video tobest-e�ort data. One of the most important bene�ts of ATM technology is itsability to provide Quality of Service (QoS) guarantees for applications. A QoSguarantee can de�ne the form of bounds for end to end delay and data lossrate. ATM networks provide several classes of services to satisfy the QoS needsof various applications. Each class provides di�erent QoS guarantees, based onapplication requirements. However, these requirements are quite di�cult toachieve, largely due to an inherent tradeo� [Ryu96]. For instance, the networkcan always provide desirable QoS by allocating abundant network resources(based on a peak allocation) at the expense of low network utilisation. But,this is not always desirable, especially in the case of a burstiness tra�c sourcesuch as video tra�c.In order to overcome and resolve this problem, essential characteristics ofa tra�c source must be extracted. Hence, for an e�cient tra�c managementin a high speed network, it is important to have a working knowledge of thebasic characteristics of multimedia tra�c. This information can be used eitherto study the network utilisation, or to develop appropriate control schemes forhandling multimedia tra�c [Venturin95]. In order to achieve that, a real tra�c1
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Figure 1.1: An Overview of the Problem



CHAPTER 1. INTRODUCTION 4the QoS of VBR video tra�c due to the compression technique which removesthe redundancy from the video images. One reason for cell losses are bu�erover-
ows at a switching node [Onvural95]. The second requirement, the CellTransfer Delay (CTD), can be observed in various ways, including coding,packetisation, propagation, transmission, switching, queueing and reassemblydelay. The CTD requirement can be described as a set of delay constraints (orbounds). The delay constraints vary, according to video services. For instance,interactive services (such as video conferencing) require a short delay, whilethe delay bound is less important in the case of distribution services (such asthe video on demand system).In order to provide a guaranteed QoS for VBR video tra�c, it shouldbe managed e�ciently and carefully. Managing VBR video tra�c can bevery di�cult, due to the statistical properties1 of the video stream, whichare dependent on the coding scheme and the content of the video sequence[Kara97]. In addition, compressed video tra�c (especially for multiple framecoding, e.g. MPEG) exhibits complex patterns which vary from one stream toanother.To evaluate the performance of ATM networks, and to provide a good guidefor the design of various network control schemes, such as tra�c managementalgorithms, it is important to have a good knowledge of the tra�c sourcebehaviour. In order to achieve this objective, direct observations of real traf-�c sources could be performed, or mathematical models could be constructed[Ni96]. However, the �rst option introduces several di�culties in formulatingthe real trace (which is obtained from a real tra�c measurement) and apply-ing a relevant analysis to it. On the other hand, a good mathematical modelcan be employed to characterise the real tra�c source precisely, and to ac-cordingly, produce e�cient analysis techniques. If the model is able to predictthe speci�c behaviour of a stochastic system accurately, then the model tendsto be a good one. A model can possibly predict one behaviour accurately,while predicting another inaccurately. For instance, it is possible for a modelto predict cell losses accurately, but can not predict the cell delay. Thus, oneof the most important criteria for a model selection is based on the desiredsystem metrics. Tra�c models can be classi�ed using various criteria: simplic-ity (number of parameters), modelling level (time scales) or according to the1In this thesis, the terms \properties" and \characteristics" are used interchangeably.



CHAPTER 1. INTRODUCTION 5stochastic process.The source model2 can not only be used for the tra�c characterisation,but also to generate synthetic tra�c, which is similar in behaviour to real traf-�c. There are many advantages to be achieved from generating a syntheticvideo tra�c, especially in performance studies. Performance studies can notbe carried out without providing actual video traces. Furthermore, a stochas-tic model encompasses many realisations (or sample paths) which represent`structurally' similar, but not identical, streams [Krunz96]. Therefore, gener-ated streams are ideal for statistical multiplexing studies.Consequently, the challenge is to (1) introduce a tra�c characterisation andmodelling considering the important/essential characteristics of VBR MPEGtra�c such as scene changes, (2) build a tra�c model which captures theMPEG tra�c behaviour in terms of statistical and queueing performance.Next section presents an overview of previous studies into the modelling ofVBR video tra�c.1.2 An Overview of Video Source ModelsClassical models, based on a Poisson arrival process, are not adequate forvideo tra�c. The Poisson process assumes that the arrivals are independent,whereas for encoded video they are not [Izquierdo96]. Hence, new models todescribe the encoded video tra�c are needed. There are many tra�c mod-els which have been previously proposed for VBR video tra�c, based on thetra�c characterisation, e.g. see [Conti96] [Heyman92] [Rose95b] and [Ven-turin95]. Since the VBR of a video tra�c depends largely on the compressionscheme, most tra�c models do not characterise the scene changes within thevideo stream. Moreover, some models were speci�cally developed for only low-activity video streams, and thus, were not appropriate to other streams withdi�erent levels of activity [Heymen92] [Li95] [Frost94].One of the earlier models for VBR video tra�c appeared in [Maglaris88].A video source is described as a �rst order autoregressive process AR(1) withboth a Gaussian and an exponential autocorrelation function (ACF). The mainadvantage of that model is simplicity. However, it is unable to capture accu-rately the statistical behaviour of the video sources. Another, more sophis-2In this thesis, the terms \source model" and \tra�c model" are used interchangeably.



CHAPTER 1. INTRODUCTION 6ticated, model based on autoregressive moving average (ARMA) process wasproposed in [Gruenefelder91]. The model showed an improvement in capturingthe main statistical behaviour of the video source. However, a very short videosequence (a few seconds) has been used for the tra�c characterisation.Heyman et. al. observed that the number of ATM cells within an encodedvideo frame can be modelled along as Gamma distribution [Heyman92]. Theyalso suggested that a multi-state Markov chain can be used for video tra�cmodelling in order to obtain more accurate results. However, their model wasbased only on video teleconferencing sequences, and is not, therefore, suitedto more general video sources.In [Skelly93], a histogram-based model was introduced to approximate thearrival rate of variable bit rate video tra�c. The model was used to predict thequeueing performance of a multiplexed stream at an ATM bu�er such as thebu�er occupancy distribution and cell loss rates. The video model is modelledas a Markov modulated Poisson process in order to investigate the approxima-tion of the queueing performance. The model has been tested to approximatethe bit rate of di�erent video sequences (NTSC and MPEG) at frame-by-framelevel. Experimental work has shown that the model approximates accuratelythe behaviour of video tra�c in an ATM multiplexer. It has been also shownthat the distribution and the presence of strong correlation are very importantfor capturing the queueing behaviour of video tra�c. However, the sequencesused in the simulation model were short (about 10 seconds), and hence do notgive enough information of the long range correlation feature of video tra�c.Krunz et. al developed an MPEG model in which the number of cells perframe was determined by a Lognormal distribution [Krunz95]. This modelwas tested by conducting several simulation experiments. The simulation re-sults showed that the model could not capture the multiplexing performanceaccurately especially at larger bu�er sizes.Transform Expand Sample (TES) processes are designed to match boththe �tted distribution and the autocorrelation function of the original tra�c.Melamed et. al. used TES processes to come up with a model for the numberof bits per group of blocks for an H.261 video encoder [Melamed92]. Theyobserved that there is a periodical component within the bit rate at the groupof blocks level. They extracted these components, and then applied the TESprocesses on these extracted data sets. Their simulation results showed that



CHAPTER 1. INTRODUCTION 7the throughputs curve of the TES model performed slightly better than theAR model for system loads higher than 0.6 (with the same amount of QoSmatrices). The model has been also used for a performance evaluation studyof an integrated network [Melamed94] .Most of the models mentioned previously did not handle video sequenceswith interpolated frames (such as 'B' frame in MPEG). Following the stan-dardisation of the MPEG coding scheme, the characterisation of MPEG tra�cbegan to be investigated. Reininger et. al. presented a composite model forMPEG tra�c with three random processes associated with each frame type: I,P and B [Reininger94]. The model was based on the prediction of the B and Pframes from the I frame within the same group of picture (frame). The modelwas mainly proposed in order to determine the performance of a multiplexerfed by a number of VBR MPEG sources in terms of multiplexing gains and celllosses. They have found that the model captured the deterministic periodicalbehaviour of MPEG sequences.Generally, an MPEG video sequence contains scenes, groups of pictures,frames and slices, each of them corresponding to a di�erent time scale. Mostmodelling studies have mainly focused on the statistical behaviour of MPEGtra�c as a sequence of frames (at a frame level) without considering the impactof scene changes within the video stream; these are believed to introduce a largevariation in the overall bit rate [Lazar93]. In addition, most of the proposedmodels were based on the characterisation of the three frame types of theMPEG stream (i.e. I, P and B). The challenge, therefore, is to introduce amodel which captures the behaviour not only of one time scale, but severalones [Lazar93].Due to the way MPEG is designed, MPEG video tra�c introduces a greatimpact on the CLR when multiple video streams are multiplexing [Mashat98a].The scene changes within the video stream are some of the most importantissues which a�ect the statistical behaviour of MPEG tra�c. This can be ob-served via the overall bit rate of an MPEG stream. Therefore, scene changesshould be incorporated for the characterisation, and modelling, of MPEG traf-�c. Various models have been proposed for VBR MPEG tra�c [Stamoulis94][Heyman92] [Frost94], but only a few incorporate scene changes [Krunz96][Lazar93] [Heyman96] [Rose95b]. In addition, some models are designed toadjust only, as a general rule, the main statistical parameters such as mean,



CHAPTER 1. INTRODUCTION 8variance and some initial lags of the autocorrelation function (short range de-pendency). However, these models tend to underestimate the losses ratio anddelay bounds when they are used in the queueing performance. This is due tothe fact that these models neglect the long range dependency which a videotra�c exhibits, since the main reason of this feature is the di�erent level ofactivities (scene changes).Lazar et. al. developed a source model for an encoder sequence basedon a Generalisation of TES process (GTES) [Lazar93]. The video sequencewas modelled as a collection of subsequences. Each subsequence represented ascene within the video sequence. The model used two of the tra�c layers: sliceand frame. However, it considered only real time video sources and was appliedto assess the impact of real time video sources on scheduling algorithms. Infact, the raw data which they used for the modelling was an encoded sequenceusing a coding algorithm similar, but not identical to JPEG. However, MPEGexposes di�erent tra�c characteristics. But these authors believed that themodel could be applied at the slice level of the MPEG sequence.In [Heyman96], a method was used to identify scene changes within severalvideo sequences which have been coded using DCT (i.e. one frame coding).The work was an extension to their previous studies on modelling video confer-ence tra�c [Heyman92]. The video sequence was divided into several scenes.The number of frames within each scene was modelled using di�erent distri-butions depending on the video sequence. Some sequences employed Weibulldistribution, some used Gamma, while for others no simple model could be�tted. The video sequence was then modelled, primarily based on autore-gressive models, in order to capture the autocorrelation features of the videosequence (using autocorrelation coe�cient for intra-scene frames). The modelused in Heyman's simulation studies was designed to predict the cell losses.Even though, the model was accurate for some sequences, but it overestimatedthe cell losses of others.Rose studied the MPEG sequence as a group of scene classes [Rose95a].A simple Markov chain model was built to model the amount of variation (ina group of frames) which could be tolerated for one scene. Each scene classwas simply presented as a Markov chain state. Therefore, in this case, thenumber of states equaled the number of scene classes. However, this modellingapproach leads inextricably to very large matrices.



CHAPTER 1. INTRODUCTION 9In [Krunz96], the authors also used a method for identifying scene changeswithin an MPEG video sequence. However, the identi�cation method em-ployed in this study was based on analysing the changes only in consecutive 'I'frames, while the 'B' and 'P' were ignored. The size of 'I' frame was modelledby the sum of two random components: a related scene which re
ected theoverall level of scene activity, and an AR(2) component which accounted forthe 
uctuations of 'I' frames within a scene. The size of 'P' and 'B' frameswere modelled using two random processes. The tra�c model was tested to �tfour empirical video sequences, and provided a good prediction of the queue-ing performance. However, the model was only tested on a limited number ofvideo sequences, and did not cover a wide variety of video activities.A new model for the simulation of MPEG video tra�c was presented in[Reyes97]. The model was implemented on neural networks to adjust the auto-correlation and probability distribution functions of a given video tra�c. Themodel uses a neural network to learn the conditioned histogram of the giventra�c. By using neural networks, it is possible to bene�t from their capacitiesfor working in real time and interpolating unknown functions. These inter-polations avoid the need of searching in transition matrices and reduce theamount of stored information. However, the model captures the autocorrela-tion function of the given video tra�c for only �rst lags.1.3 Thesis ComponentsThis thesis is looking at the characterisation of MPEG tra�c, focusing ondi�erent levels of activity. The major components of this thesis are as follows:in the �eld of tra�c modelling, we de�ne the statistical characteristics of VBRMPEG patterns in order to highlight the most important features of VBRMPEG tra�c. Two models for VBR MPEG tra�c are presented, describingthe statistical behaviour of the tra�c. We then extend our analysis of thesetwo simple models in order to generate synthetic VBR MPEG tra�c.Following the importance of scene changes within an MPEG stream, anenhanced analysis on scene changes is conducted. In order to characterise VBRMPEG tra�c based on the impact of scene changes, we present a methodologyfor classifying MPEG streams according to the amount of activities within eachstream. We analyse variations in the bit rate of the MPEG stream, followed



CHAPTER 1. INTRODUCTION 10by an extensive scene change characterisation for MPEG video tra�c. Twosimple methods or techniques are o�ered in order to identify the scene changeswithin an MPEG video stream.For the purpose of our analysis, we have employed real empirical data setsfor various MPEG sequences to de�ne and study the statistical characteristics.Based on the amount of scene changes, a Scene Change Scale (SCS) will bepresented to exhibit the amount of activity within the MPEG stream. Fur-thermore, the impact of scene changes on QoS requirements will be explored.Our primary measure of interest is the CLR at an ATM multiplexer, becausethe amount of scene changes a�ects cell losses when multiple MPEG streamsare multiplexing at an ATM multiplexer. Consequently, a novel scene-basedmodel for MPEG video tra�c is constructed, based on the scene change char-acterisation. The proposed model can be used to generate synthetic MPEGstreams to be used in many performance studies, including bu�er dimensioningand bandwidth allocation at video servers and network nodes.The most important reason behind the use of VBR is the opportunity forincreased multiplexing gains [Izquierdo96]. However, VBR multiplexing maycause data loss. This thesis deals with another issue regarding QoS guaranteesby presenting a deterministic model for VBR MPEG tra�c. By using thismodel, we analyse the multiplexing process of multiple MPEG streams. Next,we introduce an approach for stream alignment, before entering the network,to improve the network utilisation. Based on the classi�cation results derivedfrom the scene changes analysis, we will study the impact of the scene changeson the multiplexing gains for aligned streams, thereby showing the level ofimprovement in the network utilisation. Furthermore, based on the analysis ofthe stochastic behaviour of the statistical multiplexing for VBR tra�c at theATM switch, we present some simulation results showing the amount of multi-plexing gained when the First In First Out (FIFO) discipline is implemented.We will be in a position to provide an answer to the question \Is it possible toimprove the network utilisation with deterministic guarantees of QoS?". Wewill also study the impact of the MPEG stream alignment on the network util-isation improvement in terms of calculating the allocated bandwidth for eachmultiplexed stream. Based on the scene change analysis, we will also studythe impact of scene changes on the bandwidth allocation process.



CHAPTER 1. INTRODUCTION 111.4 Overview of the ThesisIn this thesis, three related problems, in the area of e�cient management ofVBRMPEG video tra�c, namely characterisation, modelling and multiplexingof VBR MPEG tra�c, are addressed. Most of the terminology used in thisthesis is speci�c to ATM networks. The remainder of the thesis is organisedas follows:In chapter 2, a background study of the issues pertinent to the area of re-search will be presented. In addition, we provide a context for the problems weare exploring in this thesis. First, we cover several issues related to the ATMframework, including the main services provided by ATM. We then presentseveral issues related to ATM networking, including the challenges of provingnetwork support for QoS guarantees. A brief overview of various multimediaapplications, including data types and their requirements are presented, fol-lowed by an overview of multimedia tra�c modelling. Several tra�c models,which have been proposed in the literature for the characterisation of multime-dia tra�c, are discussed. Some aspects dealing with the tra�c managementin ATM networks are addressed. Then, some important concepts of ATMswitching and multiplexing processes will be given. We also present a tool forthe performance evaluation of multimedia systems: an application level tra�cgenerator.Chapter 3 presents the statistical characterisation process of MPEG videotra�c. We start with a general overview of the MPEG standard. We thenpresent an analysis of various MPEG sequences, including a study of the sta-tistical characteristics of VBR video tra�c. We initially investigate some em-pirical data sets of various traced VBR MPEG streams. We then de�ne thestatistical characteristics of VBR MPEG patterns. In so doing, two main sta-tistical features of an MPEG sequence will be explored: namely Distributionand Correlation. We also discuss the burstiness measurement for MPEG tra�cincluding a presentation of various ways of analysing the burstiness within anMPEG sequence.In Chapter 4, we present a methodology for classifying MPEG streamsaccording to the amount of activity within each stream. We do so by analysingthe variations in the bit rate of the MPEG stream. Then we present twomethods in order to identify the scene changes within the MPEG stream.Based on the classi�cation process of MPEG streams, we introduce a Scene



CHAPTER 1. INTRODUCTION 12Change Scale (SCS) factor exhibiting the amount of activity within the MPEGstream. We perform several experiments on an ATM multiplexer to show theimpact of scene changes on the performance of the multiplexer in relation tothe results of the SCS.We analyse the statistical modelling of VBR MPEG tra�c in chapter 5.First, we present two simple and e�cient models and try to describe the sta-tistical behaviour of MPEG sequence. The tra�c modelling approach is basedon the Markov Chain methodology. Our analysis is subsequently extended tothe design and implementation of a generator for synthetic tra�c. In order toimprove the statistical behaviour of the model, a novel scene-based model isproposed considering scene change characteristics.In Chapter 6, we present a deterministic model for VBR MPEG tra�c.Based on this model, we analyse the multiplexing processes of multiple MPEGstreams. An approach for the stream alignment is introduced to achieve abetter improvement on the network utilisation. Based on the stream classi�-cation results derived in Chapter 4, we study the impact of the scene changeson the multiplexing gain for aligned streams. We also perform several experi-ments on an ATM multiplexer to show the impact of multiple MPEG streamsmultiplexing.In Chapter 7, we discuss and evaluate the results obtained from the stud-ies in this thesis. A summary and a conclusion are provided in Chapter 8,including the future work.



Chapter 2Multimedia Applications OverATM NetworksIn this chapter, we provide an overview of multimedia applications over ATMnetworks including their performance requirements. We begin with a shortintroduction to the ATM network, and proceed to discuss the basic conceptsto ATM technology. We then provide a brief discussion of the various serviceclasses in ATM networks for supporting various tra�c types, presenting severalissues regarding multimedia applications over ATM networks, including a briefdescription of their network requirements. For e�cient management of mul-timedia tra�c, a short introduction to various tra�c models which are usedto describe the behaviour of multimedia tra�c will be provided. Finally, weintroduce several issues relating to the tra�c management algorithms and pro-tocols, including the performance evaluation process using a realistic workloadgeneration.2.1 Overview of ATM NetworksATM uses a multiplexing and switching technique, which in turn, uses a shortand �xed size packet called a cell. It also called `cell relay'. The ATM cell is53 bytes long. Each cell contains two parts: header (5 bytes long) and payload(48 bytes long). The header contains information about the cell's route, suchas virtual channel and path of the cell. The 48 bytes payload contains the useddata, which is formatted in one of the adaptation layer formats. Each cell istagged with a virtual channel identi�er. Cells which belong to the same virtual13



Multimedia Applications Over ATM Networks 14channel will not important appear at periodic intervals. It is `asynchronous'because di�erent hosts connected to the same ATM line can transmit cells atdi�erent rates and place them into transfer media whenever they want. Atan interval of time, the ATM line could include di�erent cells belonging todi�erent hosts. Therefore, several di�erent media could be sent at the sametime along the same ATM line without delay.ATM is connection based. This means that, when an application wantsto communicate with another application, it must request that a connectionbe made. The advantage of it being connection based is speed. Once theconnection is built, no other routing is necessary.
A  Host
attached  to
switch

Fiber to/from
switch

ATM      Switch

Figure 2.1: ATM Network ConnectionTo form an ATM network, more than one host is connected through theATM line (�ber optic), using a special processor called an ATM switch. TheATM switch is designed to transfer data at extremely high speed. It is com-posed of a number of input and output ports, and the network which connectsthese two ports is called the switch fabric. Cells arrive at the input ports, passthrough the fabric and exit through the output ports. A number of di�erentfabric types exist, including simple crossbars and batcher banyan networks(section 2.9 presents an overview of ATM switch types). Figure 2.1 illustratesthe connection between a computer (host) and an ATM switch. Because anATM switch has �nite capacity, multiple switches can be interconnected inorder to form a larger ATM network.The connection between the host and the ATM switch will be through Userto Network Interface (UNI), where the connection between two ATM switches



Multimedia Applications Over ATM Networks 15could be through either UNI or Network to Network Interface (NNI). Figure2.2 illustrates the connections between multiple switches.

UNI used between
a switch and  a  host

NNI or UNI used
between two  ATM
switches

ATM         SwitchATM     SwitchATM        Switch

Figure 2.2: The Connections Between Multiple Switches.An application request for a connection must specify the quality of service(QoS) that is required so that the connection which is made will meet theapplication's requirements. There are many common metrics which are usedto de�ne QoS, including Cell Loss Ratio (CLR), Latency Tra�c Type (Class),Maximum Burst Rate and Sustained Burst Rate. This thesis will focus mainlyon the Cell Loss Ratio (CLR). CLR can be de�ned as the number of cellswhich are dropped (due to bu�er over
ow in switches), before reaching theirdestination, divided by the total number of transmitted cells.2.1.1 ATM AdvantagesATM networks have many advantages over existing networking technologies.The following lists only the more signi�cant ones:� ATM provides a high bandwidth through end-to-end switching topology.Furthermore, an ATM switch can support greater switching capacitythan classical packet switches, and can support more applications simul-taneously,� ATM networks also support quality of service guarantees to applications.This can be achieved using various resource reservation algorithms andmechanisms,



Multimedia Applications Over ATM Networks 16� Various types of applications, with very diverse tra�c characteristics, canbe supported by using the switching and multiplexing methodologies ofATM. This feature makes ATM more 
exible in terms of dividing thebandwidth into a number of virtual connections arbitrarily,� Because ATM can support all types of application, a single networkingplatform can be built over ATM in order to handle all the di�erent typesof application. Therefore, an ATM network can be used as an integratedplatform to manage and deliver not only one type of application, butmultiple types; and� The statistical multiplexing in ATM provides a signi�cant gain whenbursty applications are multiplexed. By doing so, the available band-width can be used e�ciently in most cases.2.1.2 ATM Adaptation Layer (AAL)ATM adaptation layer (AAL) is a part of the ATM standard. AAL is directlyabove the ATM layer to provide end-to-end service. The role of AAL is tosupport di�erent classes of application in the ATM network. It also has anumber of important functions that satisfy diverse application requirements.In other words, it re�nes the QoS o�ered by the ATM layer, and o�ers somelimited 
ow control of the data. It may, therefore, enhance the service providedby the ATM layer (a layer below the AAL layer). Thus, a computer (or userapplication) interacts with ATM through an ATM adaptation layer, and is,therefore, responsible for making the network behaviour transparent to theapplication. AAL has the ability to detect and correct errors, such as lost orcorrupted cells [Comer95]. Information received by AAL from a higher layeris segmented or packetised into ATM cells. Cells received by AAL from theATM layer are reassembled to form back the information.There are di�erent types of adaptation layer protocols, as di�erent appli-cations require di�erent services and di�erent QoS. Therefore, when a channelis established, adaptation layer protocol must be speci�ed and agreed betweenthe two hosts.All AALs provide Segmentation and Reassemble (SAR) functions, whichsplit up user data into cells and deliver them to the ATM layer, and reassemblethem into user data at the receiving end to form back the user data. AAL can



Multimedia Applications Over ATM Networks 17be described as two part or two sub-layer. The �rst sub-layer is SAR, while thesecond provides a management of data 
ow from, and into, SAR. Four typesof AAL have been recommended by the Telecommunication standard sectorof International Telecommunications Union (ITU-U), namely AAL1, AAL2,AAL3/4 and AAL5. The following provides a short description of these:� AAL1: This type is for applications which require information trans-mitted with a constant bit rate, as well as, strict timing control (suchas real time voice). AAL1 can also indicate lost or corrupt information,which is not recoverable by the AAL itself.� AAL2: It o�ers information transmission with a variable bit rate. Italso provides a timing information transmission between the source andthe destination.� AAL3/4: This type is a combination of AAL3 and AAL4. It providesa service for data applications in connection, or connectionless, modes.It has been recommended by ITU-T for the transfer of information withloss-sensitive property, but not for delay.� AAL5: This type is a simpli�ed version of AAL3/4. It has been speci�edby the ATM Forum to o�er a service with less overhead and better errordetection. The ATM Forum also speci�ed AAL5 for signalling the UNIand NNI in the Broadband Integrated Service Digital Network (B-ISDN).2.2 Classi�cation of Services in ATMNetworksFor future broadband networks, a large number of services must be providedto support a variety of applications with a wide range of QoS requirements.In general, these applications can be classi�ed into real-time and non real-time. The real-time application requires a bound on delivery delays of eachtransmitting packet, while the non real-time application can usually be servicedin the `best-e�ort' mode, where the available network capacity is divided amongthe applications sharing it. These applications are not usually sensitive todelay.Many di�erent services classes have been de�ned by ATM Forum to meetthe various application requirements. For real-time services these are Constant



Multimedia Applications Over ATM Networks 18Bit Rate (CBR) or Variable Bit Rate (VBR), for non real-time applications:Available Bit Rate (ABR) and Unspeci�ed Bit Rate (UBR).CBR: With CBR service, a constant bandwidth is reserved for each connec-tion throughout its duration. CBR service generates tra�c at a constantrate, and can be described by its peak rate. The burstiness of a CBRtra�c source is equal to one, as all periods are transmitted at the peakrate, making the network easy to manage. However, this is an ine�cientuse of the bandwidth resource (see Figure 2.3). Since the amount oftra�c generated by most applications varies over time, it is possible toreserve less bandwidth in the network than the peak rate.VBR: VBR service has been introduced to provide an e�cient use of thebandwidth resource and to achieve high resource utilisation (see Figure2.3). Most multimedia applications are assumed to be VBR sources.VBR tra�c can be described as a bursty source. The peak-to-average(burstiness) of a VBR source is often much greater than one. This servicecan be classi�ed into two classes: real-time VBR (rt-VBR) and no-real-time VBR (nrt-VBR). The rt-VBR service is almost identical to theCBR service, that it is for VBR instead of CBR applications. Realtime streaming applications which send at variable bit rates can usethis service. On other hand, the nrt-VBR service provides bandwidthguarantee at a peak rate, but it provides no guarantee in delay bounds.UBR: This service was proposed to support non-real time applications whichonly need best-e�ort service. Therefore, it does not o�er any serviceguarantees. Thus, it has minimum priority among all the other classes.The problem with the UBR is that there are no cell loss ratio guaranteesfor these applications, while many of the non-real time applications ex-pect a packet loss rate similar to existing Local Area Networks (LANs).Thus, this is one of the key motivations behind the next service (ABRservice).ABR: This service is an improvement of the UBR service, reducing cell lossratio and providing a more e�cient use of the available network resources.ABR service is intended for best-e�ort applications requiring a guaran-teed minimum rate, and uses a rate-based feedback approach to control



Multimedia Applications Over ATM Networks 19congestion. This service attempts to dynamically share the availablebandwidth among all ABR connections in a fair manner. The user con-nection therefore, may send at the peak rate when the network has a lowload level. This will help to increase the network e�ciency.
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Saved Bandwidth Source 1

Source 2

Source 3

Bandwidth Reserved  Based on Peak  Rate Bandwidth Saved using VBR ServiceFigure 2.3: Bandwidth Usage, employing CBR and VBR services.2.3 QoS Support in ATM NetworksQuality of service is the most often used in network terminology, it is to beused as a resource management tool within a computer network. The maingoal of QoS is to provide an infrastructure facilitating negotiation between theclient and the network for an acceptable connection within the capabilities ofa given network system.Support for QoS guarantees tra�c transmission over ATM networks andis crucial to the success of many multimedia applications, including, for ex-ample, video on demand. One of the most important problems facing thenetwork service provider is that of providing QoS guarantees to users, whilemaintaining the network utilisation as e�ciently as possible. The network canbe managed e�ciently by performing a number of control techniques, includingrouting, bandwidth allocation, call admission control (CAC) and schedulingfunctions. Selecting appropriate paths for an incoming connection will improvethe network utilisation.CAC controls the acceptance of connections into the network. A goodCAC algorithm should result in the maximum possible utilisation of resources.



Multimedia Applications Over ATM Networks 20Scheduling policies manage the priority of the serving connection's cells, basedon tra�c class. For instance, a connection with stringent QoS requirementswill be served �rst over other connections, so that the QoS requirements canbe met.Some of the problems in providing QoS guarantees, along with high re-source utilisation in an ATM network with multiple connections, are as follows[Rampal95]:� Tra�c burstiness: In the case of transmitting a bursty tra�c, high e�-ciency can be obtained mainly by statistically sharing out the networkresources. By doing so, the network utilisation is improved, but this canlead to di�culties in characterising the performance of each multiplexedconnection;� Statistical resource sharing techniques rely on accurate source tra�cmodels. However, most of the multimedia sources are di�cult to model.Therefore, resource allocation techniques within the network may resultin performance levels di�erent from those calculated using the sourcemodel at connection request stage; and� For each incoming connection, the admission control function has to bedone on the 
y. The use of exhaustive numerical analysis is thus notfeasible.2.4 Multimedia ApplicationMultimedia can be considered as a communication tool that can be used tocommunicate almost anything. For instance, the �rst application of multi-media was electronic games. In fact, multimedia applications can be usedby di�erent sectors, such as education, training, industry, entertainment andbusiness [Bunzel94]. By incorporating animation and sound to an application,the message, regardless of the content, has a far better chance of reaching itsusers. As an example in the business sector, multimedia can serve a varietyof needs. It can be used in presentations, point-of-sale, video conference andtraining. A list of multimedia applications has been classi�ed by ITU recom-mendations [ITU93]. These applications introduce great requirements for thecommunication network system. Table 2.1 presents some of the requirements



Multimedia Applications Over ATM Networks 21for multimedia applications [Nahrstedt95]. Some of these requirements cannot be met for several reasons. According to [Herrtwich91], the requirementsof multimedia applications can not be met for three main reasons :� System resources do not meet the needs of multimedia applications e�-ciently: In the past, high-quality audio and video could not be handledat all by standardised system resources. However, with the new tech-nology, this has changed. Now, high performance resources meet therequirements of multimedia applications. This is caused by having fastprocessors (such as RISC), data compression schemes, optical disks and�ber networks. Resources are already handling both audio and video,but they need to be managed correctly to use them in a multimediaenvironment. For instance, video needs a high bandwidth since videoframes must be displayed at a rate of 30 frames per second. Therefore,video frames need to be transmitted in a compressed form. This impliesthat, if the performance of resources is high, the use of the resources hasto be regulated to meet the needs of multimedia applications. Withoutsuch a regulation, no guarantee on the behaviour of a given system canbe provided.� The system resources are not scheduled carefully: Careful scheduling ina multimedia system means the ability to multiplex a resource so thatthe throughput and delay requirements of the multimedia applicationsare met. The traditional scheduling techniques are not, in this sense,carefully scheduled. Therefore, a multimedia application which uses morethan one resource at the same time needs a special scheduling techniqueto support the throughput and the delay requirements.� There is no reservation of the resource capacity according to individualneeds: The best scheduling method is useless if the system resources ex-ceed its capacity. This means that resource reservation should be usedas a mechanism to control resource access. Therefore, if an applicationmakes a reservation, it will ensure that part of the resource capacity willalways be available. Also, the reservation will be denied if the applica-tion does not need the reserved resources. By applying this mechanism,con
icting applications will be avoided, nor will they be disturbed byeach other.



Multimedia Applications Over ATM Networks 22Application Data Type Bit Rate Delay (End-To-End) LossTelephone/CD audio Audio 16-128 Kbps 0-150 ms 10�2MPEG,H.261 or NTSC and PAL TV Video 1.86-20 Mbps � 250 ms 10�2 � 10�11File Transfer Data 0.2-10 Mbps � 1 sec 10�11Table 2.1: Requirements of Multimedia ApplicationsHowever, reservation will cause some problems. First, reservation requiresthe periodic workload to be foreseeable. Second, it should be known howaccurate the forecast can be. Third, it is not always possible to calculate ormonitor the duration of a task execution. A solution to this problem is possibleby reserving for the worst case, which is based on the assumed maximumworkload that may never occur in practice. Moreover, reservation could beoptimised to get a better resource utilisation, and avoid the rejection of areservation as much as possible. Also, the resource manager should have theability to recover any error, or con
ict, caused by the reservation mechanism.As a result, it should be taken into consideration that, in building a mul-timedia platform, performance alone will not be a solution. This implies thatresource usage should be regulated by careful scheduling using, reservationmechanisms [Mashat95].2.5 Standards Supporting Multimedia Appli-cationsIt is widely predicted that multimedia applications, such as video conference,will become widespread in the future. Without standards, products from dif-ferent vendors will not be able to inter-operate, and therefore participate, inthe same system. The following are some organisations which help to pro-duce and adopt a standardisation for multimedia data and application to beprovided to the vendors and system's developer.� ATM Forum: The ATM Forum is a non-pro�t organisation, formed in1991. The objective of ATM Forum is to accelerate the use of ATM prod-ucts and services through a rapid convergence of inter-operability spec-i�cations. Another of its objectives is promoting industry co-operationand awareness.



Multimedia Applications Over ATM Networks 23� IMTC: The IMTC stands for the International Multimedia Telecon-ferencing Consortium, Inc. It is also a non-pro�t organisation. Thefundamental goal of IMTC is to bring all organisations involved in thedevelopment of multimedia teleconferencing products and services to-gether to help create and promote the adaptation of the required stan-dards. The IMTC is trying to make consistent standards, such as theITU T.120 and H.320 suites. In addition, IMTC helps to educate theend user to use open standards. This is done through public statementsand publications.� ITU-T: The ITU-T is the Telecommunication standard sector of ITU(International Telecommunications Union). ITU was formed in 1947,under United Nation (UN). It has two committees which have a directimpact on multimedia data transfer; the Consultative Committee on In-ternational Radio (CCIR) and the Consultative Committee on Interna-tional Telegraphy and Telecommunications (CCITT). The second com-mittee was renamed by ITU-T. This organisation is responsible for thecreation of several multimedia standards, such as H.261 (for video con-ferencing). ITU provides some recommendations to help the cooperativework to adopt consistent and reliable standards. These recommenda-tions can be employed by a developer to create a system which could bewidespread in the future.� MPEG: The Moving Picture Experts Group was established to developa common format for coding and storing digital video and associatedaudio information. MPEG is a working group of ISO/IEC which is incharge of the development of international standards for compression,decompression, processing, and coded representation of moving pictures,audio and their combination (more details could be found in the nextchapter).2.6 Multimedia Tra�c TypesIn this section, we present the main classi�cations of multimedia tra�c: Data,Audio and Video. Each tra�c class could be characterised according to tra�cbehaviour and QoS requirements. Audio and video represent real-time tra�c,



Multimedia Applications Over ATM Networks 24while data represents non-real time tra�c. Each tra�c class di�ers from all theothers in its characteristics. We will now brie
y itemise brie
y these classes,and their main characteristics.2.6.1 Data Tra�cThis type of tra�c can be produced by computer-oriented services, such as�le transfer and terminal emulation. This includes interactive data tra�c(for example telnet) and bulk data tra�c (for example FTP service). Tra�cbehaviour varies from one type to another. For instance, the pattern of inter-active tra�c is extremely unconnected, with silent intervals, while bulk tra�cis a bursty tra�c with large burst lengths [Liu92]. Data tra�c is very sensitiveto cell loss, therefore it demands a very small cell loss rate, but delay require-ments are not strict (in most cases). However, for some real time applications(such as visualisation), data tra�c could be sensitive to both data loss anddelay.2.6.2 Audio Tra�cThis type of tra�c includes any tra�c that carries sound and voice informa-tion. It di�ers from data tra�c in its QoS requirements. Delay is the mostcritical performance requirement (see Table 2.1), and the cell loss is also im-portant with an acceptable cell loss probability 10�2. However, the behaviourand properties of audio tra�c depends on the adapted encoding scheme [Sta-moulis94]. For example, audio tra�c can be transferred over the network invarious compressed modes such as Digital Speech Interpolation (DSI). Thistype of tra�c requires a low bit rate compared to video sources. It also pro-duces short burst lengths [Liu92].2.6.3 Video Tra�cVideo tra�c can be divided into two main groups: image retrieval and real-time video. Each group is associated with certain QoS requirements. A typicalimage retrieval application requires the transmission of a succession of imagesat irregular intervals, while the bit rate of the video tra�c varies. Thereare two main factors that have in
uence on the behaviour of video tra�c:QoS requirements and the encoding schemes [Stamoulis94]. Video tra�c is



Multimedia Applications Over ATM Networks 25delay sensitive. The limit of real time services delay is 250 ms [Yousef97]. Inaddition, it can be cell loss sensitive, with an acceptable cell loss probabilityof 10�2 to 10�11.2.7 Multimedia Tra�c ModellingThe tra�c characterisation is used to develop a model which captures the mainfeatures of the tra�c. There are many tra�c models that have been proposed,starting from a basic model to more complex ones [Izquierdo96], [Conti96],[Heyman92], [Doulamis96], [Rose95b], [Habib92], [Daigle86] and [Frost94]. Themore signi�cant characteristics of most of the tra�c models presented in theliterature are mean rate, peak rate and burst length. However, in the case ofencoded video tra�c, there are more tra�c characteristics that need to beexplored, due to the way video tra�c is encoded. Most of the tra�c modelsare based on a stochastic process. The stochastic process can be classi�ed intothree main types:� Independent: A tra�c source whose autocorrelation function decaysto zero at lag one (such as the Poisson process);� Short-Range dependent (SRD): A tra�c model tends to be de-scribed as short range dependent if its autocorrelation function decaysto negative-exponentially fast; and� Long-Range dependent (LRD): If the autocorrelation function doesnot decay exponentially, then the tra�c can be described as long rangedependent.In most cases the validity or `goodness' of a model is determined by comparingthe simulation results using the empirical data as the source, and results fromusing the model [Izquierdo96]. In this thesis, we will follow this methodologyto validate our models.2.7.1 The Importance of Tra�c CharacterisationATM networks are expected to support di�erent types of applications, utilisinga wide range of characteristics. Unfortunately, there is no satisfactory agree-ment on the characteristics of the various types of multimedia applications in



Multimedia Applications Over ATM Networks 26accurate manner. The degree of understanding tra�c characteristics for dif-ferent types of applications varies widely. For instance, the characteristics ofaudio sources have been studied for several decades and are reasonably wellunderstood, while VBR video sources still remain largely incomprehensible,due to their unpredictable features.For e�cient tra�c management in a high speed network, it is importantto know the basic characteristics of multimedia tra�c. This information canbe used to study the network utilisation [Venturin95]. In addition, it can beused to develop appropriate control schemes for handling multimedia tra�c.In order to achieve that, a tra�c source model should be developed, basedon measurements of the existing multimedia applications. [Rose95a] presentsthree main reasons why models for video tra�c should be developed:� The statistical properties of video tra�c have a remarkable impact onthe network performance. By extracting these properties, we will be ableto decide which property is the cause of the performance problems;� The computational complexity of simulations, especially long simulationruns, can be reduced using tra�c models and standard analytical toolssuch as discrete time analysis; and� A tra�c model can be used to determine the tra�c descriptors, whichare necessary at the connection phase.2.7.2 Tra�c SourcesThere are many tra�c models that have been proposed [Izquierdo96], [Hey-man92], [Doulamis96], [Rose95b], [Habib92], [Daigle86], [Frost94]. Some ofthese are more appropriate than others for a given type of tra�c. Generally,the vast majority of multimedia tra�c models are based on a stochastic pro-cess and most of these models use Markov Chain (MC) method because of itsease of use to characterise the alternating arrival process [Habib92]. The sim-plest and the most commonly used tra�c model is the simple Poisson modelwhich assumes that the arrival process is a Poisson process. However, for ahigh speed network, the tra�c is more bursty than in a Poisson process [Liu92][Paxson95]. Complex tra�c models are useful only when their parameters canbe estimated accurately.



Multimedia Applications Over ATM Networks 27In some models, it is possible to achieve di�erent classes of tra�c charac-terisation by varying the model parameters, even when the model is simple (forinstance On/O� source model). An overview of these models can be found in[Frost94], [Rose95a] and [Izquierdo96]. Table 2.2 shows some possible sourcemodels for data, audio and video tra�c. Some of these models will be pre-sented brie
y. Tra�c Type Possible Tra�c Source ModelBernoulli and Poisson ProcessData Compound Poisson ProcessTrain Model (Idle/Active)Persistent Model (with a maximum permitted rate)Audio ON/OFFTwo Markovian States ModelAutoregressive Model (AR)Video Detailed Markov Chain ModelMarkov Modulated Poisson ProcessSelf Similar (Fractal Process)Table 2.2: Some Tra�c Models
2.7.2.1 Poisson ProcessThe Poisson process is the oldest type of tra�c model, dating back to theadvent of telephony. The model can be characterised by a random arrivals inan interval of time t while the interarrival time fAig is a negative exponentiallydistributed with a rate of �; PfAi � tg = 1� exp(��t) (see Figure 2.4). Thearrivals are independent from each other, meaning the past has no e�ect onthe future arrivals (memory-less).
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TimeFigure 2.4: Poisson Arrivals Model



Multimedia Applications Over ATM Networks 282.7.2.2 Interrupted Poisson ProcessThe Interrupted Poisson Process model (IPP) is a commonly used tra�c modelwhich can be used to model bursty tra�c. This model is characterised by twoMarkovian states: State 1 (Active) and State 2 (Idle), each being associatedwith a bit rate � and 0 respectively and the Sojourn time (i.e. holding time) foreach state is exponentially distributed (see Figure 2.5). These states alternatecontinuously. During the Active time, the interarrival times are exponentiallydistributed (Cells arrive in a Poisson manner). This model can be describedby the parameters tstate1; Bstate1 and � as follows:� The average time (duration) for the State 1 (Active) period (tstate1):tstate1 = 1� ;� The average time (duration) for the State 2 (Idel) period (Bstate2): Bstate2 =1� ; and� Generation rate for Active state (�).
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Figure 2.5: Interrupted Poisson Process2.7.2.3 On/O�This model is widely used to model many B-ISDN services (such as VBR). Inaddition, it can be used to model various classes of tra�c with various degreesof burstiness [Stamoulis94]. It can be described as a two-state Markovian-basedmodel, which alternates continuously between Active and Idle. Each state



Multimedia Applications Over ATM Networks 29presents a period of time, namely On and O�. The tra�c will be generatedduring the On periods, while no tra�c is generated during the O� periods (seeFigure 2.6). In most cases, each period takes either exponential or geometricrandom variables (depending upon the choice of the time axis as either beingcontinuous or discrete), with a mean 1� for the On period and 1� for the O�period. During the On period, the interarrival time (T ) is constant. The twoperiods are independent of each other. Thus, the On/O� model cannot be usedto model the overall correlation of the tra�c. However, it has been stated thaton/o� model can be used to re
ect some of the characteristics of a superposedVBR video tra�c [Helvik95]. In other hand, this model is unable to re
ectthe periodicities feature of video tra�c due to coding output pattern.On/o� model can be described by the parameters P; tOn ; andm as follows:� Peak arrival rate (P ): P = 1T ;� The average of the On period (tOn): tOn = ��1; and� The fraction of time in which the system is in the On period (m): m =��1��1+��1 .
Holding time: negative exponential or geometric α

β

1/β,1/α, λ
0

Arrival Process: Poisson

On Off

Figure 2.6: On - O� Model2.7.2.4 MMPPMarkov Modulated Poisson Process (MMPP) is one of the most powerful mod-els and has been used in many modelling research studies such as in [Frost94]and [Izquierdo96]. MMPP is essentially an m-state continuous-time Markovchain (see Figure 2.7). Each state i is associated with a bit rate �i and a meanholding time 1=ri. The arrival process in each state is Poisson, and the holdingtimes are exponentially distributed. In fact the IPP model is a special case of



Multimedia Applications Over ATM Networks 30the two-state MMPP model wherein State 1 represents Active with bit rate of� and State 2 represents Idle with bit rate of 0. The two-state MMPP modelhas been used to approximate the superposition of packetised voice sources,together with data tra�c arrival [Heyman92]. However, MMPP can only beused to model a short-term correlation [Liu92].
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Figure 2.7: Markov Modulated Poisson Process2.7.2.5 DeterministicThis is a very simple model based on generating tra�c with a constant inter-arrival period. Therefore, it has the ability to describe the constant bit rate(CBR) service of the ATM network. This model can show better performancere
ections on the lower level of an ATM source [Helvik95].2.7.2.6 Fluid FlowThe tra�c source is viewed as a stream of 
uid which is characterised by a
ow rate. This model always sends tra�c with the maximum permitted rate.This source model imposes heavy constraints on the network, therefore it isappropriate for testing the fairness and the throughput of the tra�c service[Liu92]. The model eliminates statistical delays, which could be caused byrandom tra�c generators. Thus, it would be possible to achieve deterministicand reproducible simulation results.2.7.3 Selection CriteriaIn order to select the appropriate source model for an ATM network, a set ofselection criteria could be considered [Stamoulis94], and include:� Actual Source Approximation: A model to be selected should ap-proximate to the actual source. It is very important for the source model



Multimedia Applications Over ATM Networks 31to capture the main statistical characteristics of the actual source whichwould in
uence the performance of an ATM network when fed by sucha source.� Simplicity: The model should be kept as simple as much as possible.This could be achieved by using only a few parameters to describe thesource model. In addition, if the model employs Markov Chain method,the number of states should be kept small.� General Source: It is preferred to construct a general source by whichone will be able to cover and �t a wide range of tra�c types. For instance,by varying the parameter values of the model, it is possible to capturea di�erent type of tra�c. However, if one requires a general source,and a simple model at the same time, then con
ict will arise. Thus, atradeo� should be achieved between the simplicity and the generalisationproperty.� Ease of Implementation: The source model should be easy to imple-ment in the case of simulation experiments. For instance, the model maybe incorporated into a simulation-based experiment. Thus, it has to beimplemented easily as a tra�c source generator.� Accuracy: The model should give accurate results when performancemeasures are considered (such as delay and cell loss probability), corre-sponding to the actual source .2.8 Tra�c Management in ATM NetworksTra�c management mechanisms are important processes in an ATM networkto protect the network against tra�c congestion. In general, tra�c manage-ment can be considered at two di�erent levels namely: connection level andcell level. At the �rst level, topmost level, a process is performed in order togive a decision to allow a new connection to be admitted to the network or not.If the connection is allowed to enter the network then a bandwidth is allocatedto the connection based on the QoS requirements of the connection (it can bedescribed as a contract between the user and the network). At cell level, the



Multimedia Applications Over ATM Networks 32policing mechanisms is performed to ensure that the contract between the userand the network is not violated (such as leaky bucket algorithm).Several proposals for resource management algorithms are currently emerg-ing, or under development, to provide guaranteed performance communication(the guarantee being either statistical or deterministic) [Gallasi90] [Belhaj97][Pancha93]. For instance, bandwidth allocation is one task of these algorithmswhich determines the amount of bandwidth required by the connection to pro-vide the required QoS. In the following sections, we present a brief de�nitionfor some tra�c management algorithms.2.8.1 Bandwidth AllocationIn ATM, bandwidth allocation deals with the amount of bandwidth requiredby a connection for the network to provide the required QoS. Mainly, there aretwo approaches for bandwidth allocation, namely deterministic multiplexingand statistical multiplexing. Peak bandwidth is allocated for deterministicmultiplexing. This approach can cause large amounts of bandwidth to bewasted for a bursty connection. On the other hand, with multiplexing gainscan be achieved by employing the statistical multiplexing approach.The allocated bandwidth for multiplexed connections is less than the sumof their peak rates. Therefore, the statistical multiplexing allows more connec-tions to be multiplexed in the network than deterministic multiplexing, therebyallowing better network utilisation. However, QoS guarantees are satis�ed inthe case of deterministic multiplexing, while they can be only statisticallyguaranteed in the case of statistical multiplexing.2.8.2 Call Admission Control (CAC)One way of preventing the network congestion is to perform a process calledCall Admission Control (CAC). A new user connection with QoS requirementsshould go through the CAC procedure to decide whether to accept the newconnection or not (i.e. reject it). If the new connection is accepted, a band-width will be allocated for this connection. Thus, CAC determines the amountof bandwidth required by a connection for the network, providing the requiredQoS. In fact, bandwidth allocation works as apart of the call admission con-trol algorithm. Because the allocated bandwidth should be done on the 
y,



Multimedia Applications Over ATM Networks 33the algorithm should be kept simple to meet the real time requirement.Some of the CAC algorithms require a speci�c tra�c model and some re-quire only the tra�c parameters such as peak rate and average rate. Thereare many ways to classify the CAC schemes (algorithms). For instance, [Per-ros96] classi�ed the CAC schemes according to the principle that was used todevelop the schemes. Determining and calculating the required bandwidth foreach connection is one of the most important aspects to quantify any CACalgorithm.2.8.3 E�ective BandwidthStatistical multiplexing improves network utilisation by allowing bursty sourcesto share bandwidth on demand and allocate a bandwidth for each source (con-nection). The allocated bandwidth should be less than the source peak rate.In order to take advantages of statistical multiplexing, the network should beable to approximate and determine the minimum required bandwidth for eachsource as a function of QoS, bu�er size (at the multiplexer) and the tra�cparameters. This bandwidth is commonly known as the e�ective bandwidth.Therefore, the e�ective bandwidth allocation (equivalent capacity) can bede�ned as the service rate with corresponding QoS requirements (such as cellloss probability and minimum delay). The allocated e�ective bandwidth iscomputed to be close to the long range average (mean) rate and far from thepeak rate.2.9 ATM Switching and MultiplexingIn an ATM network, cells have to be merged from di�erent sources and routedto di�erent destinations via switch paths. In this way, the cells will share thetransmission links for part of their journey. In fact, an input to an ATM switchwithin a switching element could be an output from another multiplexer. Theprocess of multiplexing and switching cells involves temporary storage of cellsin a �nite sized bu�er and the arrival cells form a queue in order to be served.Therefore, the main tasks for the switch and the multiplexer are to providea temporary storage for the arrival cells, and then route them to the correctoutgoing port while maintaining their QoS requirements. Another advantage



Multimedia Applications Over ATM Networks 34of the multiplexing process is to enable a large number of sources to sharenetwork resources, such as the bu�er and link capacities.An ATM switch can be either blocking or nonblocking switch. To under-stand nonblocking switching, one needs to understand the role of blocking inthe switch. Block occurs in a switch when a cell can not immediately accessan idle outgoing port to which it would have access. This problem may occurbecause a bu�er in the succeeding stage is full or because a cell at the head ofthe port of a queue can not be immediately switched. However, in nonblockingswitch, cell can always immediately access a desired idle outgoing port.There are many ways to arrange a switch to provide temporary storage[Perros96], depending on where bu�ers can be placed in the switch: Inputbu�ering, Output bu�ering and Cross-point matrix. In this thesis, we assumethat a non-blocking ATM switch is a multiplexer with an output bu�ering (seeFigure 2.8) whereby multiple sources have been multiplexed into a bu�er withone outgoing port (link). Then, the call admission control should be appliedthrough each outgoing port of the switch.
Figure 2.8: Outgoing Non-Blocking ATM SwitchEach outgoing port, and its bu�er, could be represented as a queueingprocess. This type of process is known as an ATM Multiplexer [Perros96]. Weusually consider a model where a number of sources emit their tra�c streamsdirectly into the multiplexer which has one output port. This is an idealisation,because in reality most source streams are multiplexed into a smaller numberof trunks when they enter a switch. It is obvious that this makes no signi�cantdi�erence to the results [Roberts91].Any queueing process could be described as arrival customers, service timeby the server, number of service channels and the bu�er capacity. The arrivalcustomers can be speci�ed as an input to the bu�er with an average numberof arrivals per unit of time, or they could just as easily be described by theaverage time between the arrivals. The arrival average time could be either



Multimedia Applications Over ATM Networks 35constant (deterministic) or variable (stochastic). The service time can also bedescribed by a service rate (or link speed).Through this thesis, we will study a case in which the arrival customersare VBR MPEG streams and there is only one service channel to serve thecustomers, while the system capacity is the waiting space (see Figure 2.9).The waiting space could be �nite or in�nite, but in a real system the capacitymust be �nite. If the system capacity has been exceeded, then any incomingarrivals will be lost. Furthermore, larger bu�er sizes will increase the waitingtime for arrivals to be served. Therefore, QoS guarantees should be satis�edbefore establishing any new connection.
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Figure 2.9: Bu�ering at Outgoing Port2.10 Performance Evaluation of Multimedia Sys-temsSeveral multimedia applications are emerging, due largely to recent advancesin �ber optics and hardware technology. An important issue in the success-ful development and delivery of these future applications is a system platformsupporting the applications QoS requirements. Several proposals for resourcescheduling algorithms and protocols are currently emerging, or under devel-opment to provide guaranteed performance communication support for theseplatforms (the guarantee being statistical or deterministic).An important factor in the performance evaluation process of these re-source scheduling algorithms and protocols is the input workload selected. Theworkload is made up of tra�c 
ows generated by sources of di�erent mediatypes (audio, video, text, etc.) with di�erent characteristics determining theirbehaviour and QoS requirements. Choosing the right workload for the perfor-mance evaluation of algorithms and protocols is crucial as di�erent workloadswill lead to selecting di�erent algorithms and protocols (as well as their inter-nal parameters). Most performance experiments tend to select tra�c sources



Multimedia Applications Over ATM Networks 36without considering pro�les generated by applications, hence obtaining resultsfrom system-level sources [Kara95]. While the best algorithms and protocolswould have been selected for the particular workload selected, it remains to beseen how these will perform under the workload generated by real applications.In this thesis, we propose source models re
ecting the behaviour of a realMPEG video tra�c. We also provide steps required to integrate the MPEGsource onto the workload model in order to generate a synthetic tra�c emu-lating a realistic MPEG workload.2.10.1 Workload GenerationAny study of high speed networks requires a workload to test the performanceof designs based on a particular tra�c model [Liu92]. There are many tra�cmodels which approximate the tra�c characteristics are used in these perfor-mance studies [Schuler96] [Celandroni97]. Thus, a workload can be presentedas generated tra�c with speci�c characteristics. Generally, two di�erent ap-proaches to generate tra�c for measurement and simulation may be identi�edas: � Replay of saved tra�c: This is a storage based generation, wherea pre-recorded or prede�ned tra�c sequence is reproduced during themeasurement. This approach is suitable for initial functional testingbecause of its determinism and simplicity. However, this approach islimited due to the availability of reasonable memory. Therefore, thisapproach is unsuitable for validation.� Stochastic based: This approach can be regarded as a 'Black Box'approach. The tra�c is generated according to the class of the stochasticprocess (e.g. renewal) or source (e.g. on-o�). The tra�c is generatedbased on the process or source parameters. By using this approach,it is possible to generate a long tra�c stream with various behaviours.However, the quality of the generated tra�c depends on the how wellthe selected tra�c parameters are.A number of models have been proposed as approximations of individualand/or aggregate tra�c sources in a a high speed network. However, it isargued that complex tra�c models are useful only when their parameters can



Multimedia Applications Over ATM Networks 37be estimated accurately. In this thesis, we will focus to generate a syntheticVBR video tra�c based on the approximation of MPEG tra�c behaviour.2.10.2 An Application Level Tra�c GeneratorA more appropriate design for a realistic workload model is one that emulatesmultimedia applications. An example of such a tool has been under develop-ment at the University of Leeds, called an application level tra�c generator[Kara95]. This tra�c generator distinguishes itself from other tra�c generatorsbecause it aims to capture the behaviour of these applications in its tra�c gen-eration. Two key design issues addressed in the tra�c generator are calibrationand validation. The calibration process determines the pro�le and patterns ofthe di�erent media types required by an application. Validation is the processof comparing the tra�c generated by scenarios from the tra�c generator withthose of real applications. An important part of this application-level tra�cgenerator is the availability of multimedia tra�c sources. The tra�c genera-tor should provide a wide variety of multimedia applications, including video,audio and data tra�c. The architecture of the workload model in a greaterdetails can be found in [Kara95] and [Kara97]. However, the design objectivesof the tra�c characterisation and generation architecture are:� Application-oriented tra�c generation: The aim of this architec-ture is to provide a realistic set of scenarios to the algorithm and protocoldesigner from which they can test their new designs.� Calibration: The tra�c pattern generated by applications needs tobe characterised as a set of services with temporal relationships. Thisobjective is to ensure that the architecture features a calibration processthat is in place to extract the essential features of an application.� Validation: This is the process of verifying that the tra�c generatedby the workload software re
ects realistically what the real applicationis emulating. A level of con�dence as well as an interval of con�denceare usually provided with the validation process. The level of con�dence,placed upon this tool as a reliable instrument to drive experiments restsin the validation objective.



Multimedia Applications Over ATM Networks 38� To provide an interface for algorithms and protocols: This is toensure that the interface between the architecture and the algorithmsdevelopers is (1) independent of any speci�c transport provider, (2) con-forms to the OSI RM, (3) widely implemented across di�erent platforms.The tra�c generator operates by specifying :� The con�guration of the network (i.e. the participating nodes),� A pro�le of the scenarios, and� A set of libraries of the algorithms and protocols to be tested.A pro�le �le contains the speci�cation of the experiments, and acts as a bindingfor the scenario, con�guration, and algorithms and protocols required, as wellas experimental settings for repetitive experiments.



Chapter 3Characterisation of VBRMPEG Video Tra�c
3.1 IntroductionVariable rate video tra�c requires a careful treatment by the network. Forinstance, a su�cient bandwidth (with a little wasted bandwidth) should beprovided, allowing a minor error for video tra�c transmission. In the case ofMPEG tra�c, cell losses are crucial because most of the original video redun-dancy has been removed by the MPEG data compression process. Therefore,as stated previously, the knowledge of tra�c characterisation is an importantissue in ATM networks especially for e�cient tra�c controls. Some measuresare necessary for characterising the burstiness of an encoded video source.For example, if the number of multiplexed sources are large and the tra�cintensity is low, then the performance of ATM networks depends largely onthe distribution information (such as average, deviation-to-average ratio andpeak-to-mean ratio). On the other hand, if the tra�c intensity is high, otherinformation must be considered (such as autocorrelation and coe�cient of vari-ation) [Nomura89].In the case of a compressed video tra�c, three main measures can be in-troduced, namely: Distribution, Autocorrelation and Coe�cient of variation.There are some other measures which characterise the overall variation (orunsteadiness) of the encoded tra�c, such as the duration of the peak and thescene change durations. These measures provide a greater number of char-acteristics of the tra�c over a period of time. This chapter deals with the39



Characterisation of VBR MPEG Video Tra�c 40main statistical information of VBR MPEG tra�c including, distribution andcorrelation information, while the next chapter will examine the other tra�cmeasures.3.2 MPEG OverviewNowadays, video has become an increasingly important component of multi-media communications because of increasing user demand for video and rapidadvances in coding algorithms. The focus of this thesis is on a particular codingalgorithmwhich has recently received a great deal of attention, namely the Mo-tion Picture Experts Group (MPEG) standard. In 1988 MPEG was foundedunder ISO/SC2, with a charter to standardise video coding algorithms aimedfor digital storage media having bit rates at up to about 1.5 Mbits/s.MPEG is an example of variable bit rate video tra�c. Generally speaking,video sequences contain a signi�cant amount of statistical and subjective re-dundancy within, and between, frames. The ultimate goal of the video sourcecoding is the bit-rate reduction for the storage and transmission. This is doneby exploring both statistical and subjective redundancies, and to encode a`minimum set' of information using entropy coding techniques. This usuallyresults in a compression of the coded video data when compared to the orig-inal source data. The performance of video compression techniques dependson the amount of redundancy contained in the image data, as well as, on theactual compression techniques used for coding. With practical coding schemes,a trade-o� between the coding performance (high compression with su�cientquality) and the implementation complexity is targeted [Sikora98].The MPEG digital video coding techniques are statistical in nature. Usu-ally, video sequences contain statistical redundancies in both temporal andspatial directions. MPEG compression techniques rely upon a basic statisti-cal property, namely inter-pel (or inter-pixel) correlation, including the simplecorrelated translatory motion between consecutive frames. Thus, it is assumedthat the magnitude of a particular picture pel can be predicted from nearbypels within the same frame (using Intra-frame coding techniques) or from pelsof a nearby frame (using Inter-frame techniques). Consequently, during scenechanges of a video sequence, it is clear that the temporal correlation betweenpels in nearby frames is small (or even not exist), and the video scene assembles



Characterisation of VBR MPEG Video Tra�c 41accordingly a collection of uncorrelated still pictures. In this case Intra-framecoding techniques are appropriate to explore spatial correlation in order toachieve e�cient data compression. The MPEG compression algorithms em-ploy Discrete Cosine Transform (DCT) coding techniques on image blocks of8� 8 pels to e�ciently match spatial correlations between nearby pels withinthe same picture. However, if the correlation between pels in nearby framesis high, e.g. in cases where two consecutive frames have similar or identicalcontent, it is desirable to use Inter-frame DPCM coding techniques employ-ing temporal prediction. In order to achieve high data compression (hybridDPCM/DCT coding of video), a combination of both temporal motion com-pensated prediction followed by a transform coding of the remaining spatialinformation is used . The basic units that the MPEG algorithm uses as follows(see Figure 3.1):� Block: A block is the smallest coding unit in the MPEG algorithms. Itis made up of 8� 8 pels and it is the basic unit in the intraframe DCTcoded frames.� Macroblock: A macroblock consists of a 16� 16 pel segment.� Slice: It is a horizontal strip within a frame, and is the main processingunit in MPEG. The coding of a slice is done independently from itsadjacent slices.� Picture: A picture is a single frame in a video sequence.� Group of Pictures: The Group Of Pictures (GOP) is a small sequenceof a deterministic pattern of pictures.� Sequence: A sequence contains a series of pictures (or GOPs).3.2.1 MPEG CodingThe MPEG coding algorithm was developed initially to store a compressedvideo on a digital-storage media [Pancha93]. MPEG is a 
exible coding schemewhich makes this type of coding widely available, and the most frequentlyused standard for video encoding [Bunzel94]. A variety of video applications(including video conferencing) use the MPEG coding scheme for reducing the
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Figure 3.1: The Basic Units in MPEGrequired bandwidth [Rose95a]. There are two main types of MPEG codingschemes for video: MPEG-I and MPEG-II.� MPEG-I: The �rst Draft International Standard (DIS) released by thecommittee, ISO 11172 (MPEG-I), was drafted in 1991, and �nally issuedin 1992. MPEG-I was intended to be generic (although the initial targetapplications were constrained to digital storage media). The standard isindependent of a particular application and therefore is mainly describedas a toolbox. The user may decide which tools to select to suit the partic-ular applications envisaged. This implies that only the coding syntax isde�ned, and that the decoding scheme is standardised. MPEG-I de�nesa hybrid DCT/DPCM coding scheme, with motion compensation simi-lar to the H.261 coding standards. Further re�nements in prediction andsubsequent processing were introduced to provide a level of functionalityrequired for random access in digital storage media.� MPEG-II: Studies on MPEG-II started in 1990 with an initial aim ofissuing a standard for the coding of TV-pictures with CCIR Rec. 601resolution at data rates below 10 Mbit/s. In 1992 the scope of MPEG-IIwas enlarged to suit the coding of High De�nition Television (HDTV).The DIS for MPEG-II video was issued in early 1994. The video codingscheme used in MPEG-II is again generic and similar to that of MPEG-I,however, with further re�nements and special consideration of interlacedsources. Furthermore, many functionalities, such as `scalability' were



Characterisation of VBR MPEG Video Tra�c 43introduced. In order to keep the implementation complexity low forproducts not requiring the full video input formats supported by thestandard (e.g. SIF to HDTV resolutions), so called `Pro�les', describingfunctionalities, and `Levels', describing resolutions, were introduced toprovide separate MPEG-II conformance levels.Coder Rate I-frame P-frame B-frame AverageMPEG-I 1.15 Mbit/sec 150,000 50,000 20,000 38,000MPEG-II 4.00 Mbit/sec 400,000 200,000 80,000 130,000Table 3.1: Examples of Typical Frame Sizes (in bits) for MPEG-I and MPEG-IITable 3.1 shows the typical frame sizes for both MPEG-I and MPEG-II [MPEG99].It is important to mention that MPEG-II was built on the powerful video com-pression capabilities of MPEG-I standard. Therefore, MPEG-I and MPEG-IIspeci�cations are similar [Gringeri98]. Since both MPEG types use the samecompression concept and our analysis is applicable to both types [Krunz97],therefore, we will use MPEG-I throughout the thesis. However, the most im-portant di�erences between MPEG-I and MPEG-II can be addressed in thefollowing points:� MPEG-I is meant for progressive sequences, whereas MPEG-II is op-timised for interlaced pictures, so that it can represent a progressivesequence;� MPEG-II supports a higher bit rate than MPEG-I; and� MPEG-II has more pro�les and layers depending on the targeted appli-cation.Two further types of MPEG are currently under development: MPEG-4, astandard for multimedia applications, and MPEG-7, a content representa-tion standard for information search [ISO/IEC97]. A project for developingan MPEG-III was originally exist, intended for HDTV applications, but theproject was cancelled when HDTV was added to the MPEG-II standard.The basic scheme of MPEG coding is to predict motion from frame to framein a temporal direction, and then to use DCTs to organise the redundancy in



Characterisation of VBR MPEG Video Tra�c 44the spatial directions. Thus, MPEG coding is a combination of interframe andintraframe coding techniques. Considering the output of an MPEG-I encoder,the reduction can be achieved by producing three types of frames: I, P and B(see Figure 3.2):� I Frame (Intra frame): I frames are simply frames coded as a stillimage. The coding of this type of frame does not need any reference toanother frame. Temporal redundancy is not taken into account. An `I'frame is always an access point in the video sequence.� P Frame (Predictive frame): P frames are predicted from the mostrecently reconstructed I or P frame. This frame is coded using a mo-tion compensated prediction mechanism which exploits both spatial andtemporal redundancies.� B Frame (Bidirectional predictive): B frames are predicted fromthe closest two I or P frames, one in the past and one in the future.Coding B frame achieves the highest possible compression ratios.As a result, MPEG-I can be distinguished from other encoding schemes by bi-directional temporal prediction [Conti96]. Each of these frames uses a di�erentcoding algorithm. An MPEG encoder repeats these frames periodically. Eachframe contains a two dimensional array of picture elements called pels. Theoutput of the encoded stream (the sequence of decoded frames) contains adeterministic periodic sequence of frames such as [IBBPBBPBBPBB] whichis called Group Of Pictures (GOP). The selection of the encoding sequence isa tradeo� between latency, compression and error propagation. The B and Pframes are preferred to I frame in terms of reducing the overall data rate forcompressed video stream. However, I frame is necessary because it can be usedto terminate the propagation of error. This is due to the ability of decodingthe I frame without a reference to any other frames. Thus, it is typical to limitthe maximum length of the GOP.Generally, an MPEG video stream can be classi�ed into three main layers:scene layer (containing similar images), GOP layer (containing a deterministicperiodic sequence of frames) and frame layer (with di�erent types of frames).The duration of these layers varies from several seconds to tens of milliseconds.MPEG tra�c can be characterised using di�erent levels: macroblock, slide,



Characterisation of VBR MPEG Video Tra�c 45frame, GOP, or even the entire MPEG stream. We will use the frame andGOP levels for our statistical analysis.
B B P B B P B B P B B

I B

I

GOP

Mpeg FrameFigure 3.2: Encoded MPEG Video Sequence3.3 VBR Codec OutputGenerally, the overall bit rate of an encoded video stream depends on tworesolutions: the temporal resolution (frame/sec) and the spatial resolution(pels/cm2). The bit rate can vary from tens of kilobits to hundreds of megabitsper second, based on the quality of the coded stream. Compression codingschemes (e.g. interframe coding) reduce the amount of data transmission whichresults in an essentially variable rate. The principle of interframe coding isto realise changes between successive frames with respect to a base picture(frame) predicted from previously received frames. Thus, the amount of dataper frame can vary substantially, according to the degree of movement in thetransmitted stream. Typically, characteristics of a video stream (sequence)based on the amount of data in an encoded frame can be sketched as follows(see Figure 3.3):� According to the variation in the bit rate, sharp peaks can occur due tolarge scene changes. However, rate variations are relatively slight withinthe same scene.� The shape of the bit rate distribution is typically bell shaped (or moundshaped). However, the skewness direction is based on the type of videostream (e.g. video conference, movie or sport).� The autocorrelation function is another factor which can be used to char-acterise the dependencies feature of successive frames within the samevideo sequence.
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Figure 3.3: Characteristics of VBR video output



Characterisation of VBR MPEG Video Tra�c 473.4 Statistical Analysis of an MPEG PatternIn this section, we examine the characterisation of VBR MPEG streams interms of their statistical behaviour by employing the three measures (distribu-tion, autocorrelation function and scene changes). These measures comprisethe focus of our statistical study because the distribution parameters are im-portant to describe and understand the main features of MPEG tra�c, whilethe correlations have an enormous impact on the queueing performance of astatistical multiplexer [Sriram86]. Furthermore, one of the major reasons for
uctuations in the overall bit rate is scene changes within the video stream[Lazar93]. The scene change will be discussed in greater detail in the nextchapter while, in this chapter, we analyse MPEG behaviours, and examinesome statistical characteristics of MPEG tra�c using the �rst two measures(distribution and correlation).It is di�cult to characterise video tra�c by using a short sequence of realdata (of only a few seconds). For our statistical analysis, we use a long (about30 minutes) sequence of real MPEG video which contains 40000 frames. Em-pirical data sets for MPEG video streams have been retrieved from the ftpsite [Wurzburg95]. The video sequences have been encoded at the Instituteof Computer science, University of Wurzburg. These sets represent frame sizetraces from MPEG-I encoded video sequences. Each frame consists blockswith an encoder input of 384x288 pels (Berkeley MPEG-encoder ver. 1.3 hasbeen used with 12 bit colour information). The traced videos were capturedin motion-JPEG format from VCR (VHS) with a captured rate between 19 to25 fps. Table 3.2 summarises the encoding parameters. The tra�c prameters(shown in the table) have been taken from [Wurzburg95].Encoder MPEG ver. 1.3No. of Frames 40000 framesQuantization Values I=10, P=14 and B=18Encoded Pattern 'IBBPBBPBBPBB'GOP Size 12 framesEncoder Input 384X288 pelNo. of Slices 1Rate 19-25Table 3.2: Parameters of the Encoded Sequence



Characterisation of VBR MPEG Video Tra�c 48In order to characterise the statistical behaviour of MPEG streams, wedescribe the number of cells per frame as a time series fXi; i � 0g. In thatway, the statistical parameters can be de�ned as follows:� = supi�0fXigr = infi�0fXig� = E[Xi]�2 = V ar[Xi]where �; r; �; and � are the peak rate , minimum rate, mean and standarddeviation of fXg respectively.Table 3.3 presents the most important statistical parameters (frame-based)that we have obtained for some video sequence classes, including movies, sportsevents, TV shows and video conference. The table gives a general picture ofthe video sequence in terms of the variation and burstiness features. Fromthis table, we can observe that some events (such as `Race') lead to an MPEGsequence with a high peak. Moreover, some other events (such as `Star Wars')have a high peak-to-mean ratio. The statistical properties of these video se-quences are di�erent, depending on the moving activities of the sequence. Forexample, the size of B frames in the sports sequences has a large amount ofchange (in some cases it has the same size as P frames (see Figure 3.4 (b)). Thisindicates a large number of movements in the input encoded sequence. As theresult, the amount of activity within the video stream a�ects the frame sizesof the same GOP. Therefore, the amount of activities need to be considered atthe statistical analysis process.Generally speaking, it is possible to classify an MPEG sequence into threeclassi�cations, according to the amount of movements during the video se-quence: namely High, Moderate and Low activity classes. The behaviour ofthe video sequences for the same class is almost the same, therefore `Race',



Characterisation of VBR MPEG Video Tra�c 49`Dino' and `video conference'1 sequences have been chosen and they will beanalysed in detail. The `Race' sequence represents the High activity class,the 'Dino' sequence is representative of the Moderate activity class, while the`video conference' represents the Low activity class.Video Sequence Sequence Type Mean (�) CoV(�� ) Stdev(�) Peak Peak/MeanCell/frame Cell/frame Cell/frameDino Jurassic Park Movie 35 1.13 39 312 9.14StarWars Star Wars Movie 25 1.38 34 325 13.4Race Formula 1 car race 80 0.69 55 527 6.58News TV News 40 1.27 51 495 12.36Talk TV Talk show 38 1.14 43 279 7.34video Conference Set-top Conference 16 1.93 30 121 7.66Table 3.3: Simple Statistical Parameters for Some MPEG Sequences (Frame-Based)Where : CoV is the Coe�cient of Variation�� And Stdev is StandardDeviation �.The size of GOP (summation of the frame sizes for every 12 consecutiveframes) is in
uenced by the video activity within the same video sequence.For instance, if there is a lot of movement within a scene, the GOP size willbe high; if there is minimum movement, the GOP size will be low. Figures 3.4(a-c) show the time series plots for some video sequences compared at framesizes. A high level of activity causes the sizes of both P and B frames to beenlarged. For instance, the frame size of type I is very large in the `Race'sequence (Figure 3.4 (b)). In comparison, the B and P frames in the `videoconference' sequence are small compared to the I frames. This is because theamount of movement in the video sequence is not large. In other words, thereis a small amount of scene changes.The GOP plays the most important role concerning the autocorrelatione�ects of an MPEG video stream coded with di�erent frame types, becauseit �xes the periodic nature of the stream. This unique property of an MPEGcoded video prevents us from using video models which are based on statisticaldata from video sequences which have only one frame type, or ignore the GOP1In this thesis, `video conference' and `Settop' are referred to the same video stream
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Characterisation of VBR MPEG Video Tra�c 51structure altogether. Thus, we focus on the GOP level for our characterisationprocess.Video Sequence Sequence Type Mean (�) Stdev(�) Peak CoV(�� ) Peak/MeanCell/GOP Cell/GOP Cell/GOPAsterix Cartoon 698 325 2811 0.46 4.02Atp ATP Tennis Final 684 255 2052 0.37 2.99Bond Movie 759 284 2490 0.37 3.27Dino Jurassic Park Movie 408 164 1634 0.40 4.00Fuss Football Game 847 322 3336 0.38 3.93Lambs Movie 228 138 1203 0.60 5.26Movie Movie 446 224 1776 0.50 3.97Mr Bean TV Series 550 275 2248 0.49 4.08MTV Musical Program 769 358 3335 0.46 4.33News News 645 282 2472 0.43 3.82Race Formula 1 Race 961 362 3470 0.37 3.61Sbowl Sport 734 270 2213 0.36 3.01Simpson Cartoon 580 247 2182 0.42 3.75Soccer Soccer Game 784 376 3050 0.48 3.88Starwar Movie 290 167 1170 0.57 4.02Talk Talk Show Program 454 147 1225 0.32 2.69Term Movie 340 117 1061 0.34 3.11Settop Video Conference 187 32 372 0.17 1.98Table 3.4: Simple Statistical Parameters for MPEG Sequences (GOP-Based)Where : CoV is the Coe�cient of Variation�� And Stdev is StandardDeviation �.Table 3.4 shows the most important statistical parameters of several MPEGsequences at GOP level. This table includes various types of MPEG sequencessuch as movies, sports and even news and `video conference' events. Thismeans that we cover wide range of MPEG sequences. What is obvious fromthe table is the great diversity of statistical parameters of the sequences. Thesequences are similar in that they use the same coding parameters and pictureformat, and were retrieved in the same way from analog video tape. Thus, eventhough the streams contain the same amount of data before the coding tookplace, the outcome varies widely. From the table, it is possible to describe thegeneral behaviour of an MPEG sequence in terms of its mean rate (Cell/GOP)and burstiness. From the table, we can also conclude that some sequence types(such as sport and movie events) lead to MPEG sequence with a high peak bit



Characterisation of VBR MPEG Video Tra�c 52rate and a high peak-to-mean ration. However, even the statistical parametersof the sequence of the same type are not stable. This leads to di�culties in�nding tra�c classes for MPEG sequences. In the following sections, MPEGsequences can be described by two main factors: statistical distribution of eachframe type, and the dependency between them.3.4.1 Sequence DistributionIn this section, we discuss the statistical distribution of the empirical data setsin order to discover the best distribution. The statistical distribution param-eters can be used in the process of approximating the frame and GOP sizes.Figure 3.5 shows the corresponding histogram for the empirical data set of`Dino' sequence. The shape of the histograms suggest that the true under-lying distribution is skewed to the right. Since the densities of the Gamma,Weibull and Lognormal distributions can all take on shapes similar to that ofthe histogram, we propose them as candidates for the desired distribution. Inorder to use these distributions in our analysis, we need �rst to determine theparameters of the three proposed distributions. It is important to note thatboth Gamma and Weibull distributions with their shape parameters have anappearance similar to the typical histograms of these two distributions whilethe Lognormal distribution always has this general shape [Law91]. We willnow assess how well our three particular distributions represent the actualdistribution of the MPEG empirical data sets.There are many ways to test the `Goodness' of the data. One way to testthe Goodness is to �t the data histogram with the distribution curve. Previousstudies have shown that the frame size of video sequences with various (varyfrom low to moderate) number of movements could be described by either aGamma or a Lognormal distribution [Rose95a] [Hyman92]. In this section, wediscuss the �tting of video sequences (at GOP level) to the three distributions.The study considers a wide range of MPEG sequences (with di�erent amountof activities). The Gamma density function is given by:fx(x) = ��x��1�(�) e��x ; x; �; � > 0where x is the random variable (a GOP size in bits), � and � are the shape
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Figure 3.5: The Data Histograms and The Corresponding Gamma Curveand scale parameters, and �(�) is the Gamma function and is de�ned as:�(�) = Z 10 t��1e�t dt:The mean and the variance are de�ned as:E[x] = � � �and V ar[x] = � � �2while the Lognormal density function is given by:f(x) = 1xp2��e� 12 ( lnx��� )2Then, the mean and the variance are de�ned as:E[x] = e(�+ 12�2)and V ar[x] = w(w � 1)e2�



Characterisation of VBR MPEG Video Tra�c 54where w = e�2The Weibull density function is de�ned as follows:f(x) = ����x��1e�( x� )� ; x; � and � > 0Accordingly, the mean and the variance are further de�ned as:E[X] = ���( 1�)and V ar(x) = �2� (2�( 2�)� 1� ��( 1�)�2)Figure 3.5 shows that there is an agreement between the data histogram andthe curve of the corresponding Gamma distribution (for `Dino' sequence). Thedata represents the GOP sizes. In [Rose95a], It has also been con�rmed thatframe size (for I, P and B) gives the same results to �t Gamma distribution.In many cases, comparing the histogram and the curve of the correspondingdistribution is not enough. Thus, we need to use a more accurate method to�t the data distribution.The fractile diagram method (Quantile-Quantile plot or Q-Q plot) is an-other way to �nd the closest distribution for an empirical data set (I, P and Bframes or GOP size) [Doulamis96]. The method plots the quantiles of the dataversus the quantiles of the �tted known distributions (more details on Q-Q plotcan be found in [Law91]). The Q-Q plot can be used to amplify the di�erenceswhich exist between the tails of the data and the �tted distribution. We haveused a statistical software called MINITAB to analyse, calculate and plot theQ-Q plot [Minitab89]. Figure 3.6 shows an example of the MINITAB macrofor plotting Q-Q. The following algorithm was employed for our calculations:fXi ; N > i > 0g contains an empirical data setLET �AND� are the shape and scale parameters of the data set fXigfXsorted1g = Sort fXigCalculate theEmpirical CumulativeDistribution Function :



Characterisation of VBR MPEG Video Tra�c 55(ECDF (fXig)) of the data setPLOT 3qfXsortedig ; 3qECDF (fXig) ; N > i > 0In order to test the Q-Q plot on one of the frame types, Figure 3.7 (a)shows Q-Q plot for I frames of the `Dino' sequence and �tting the Gammadistribution. The Q-Q plot shows that there is an agreement with the Gammadistribution because most of the data plot is `nearly' linear shaped. However,Figure 3.7 (b) shows that GOP sizes for `Dino' have a better agreement withthe Gamma distribution than the `video conference' sequence in Figure 3.7 (c).This is because some of the data do not �t Gamma distribution.In order to examine the 'Goodness' of the data to the Lognormal distribu-tion, we draw a normal probability plot for the Log(Xi), where Xi for i < Nare the GOP sizes. The method is based on the fact that a variable X has aLognormal distribution if log(x) has a Normal distribution with a mean � anda standard deviation � [Monk91]. We have used again MINITAB to draw thenormal probability plot for various MPEG sequences at the GOP level. Theplot uses Anderson-Darling test for the normality test [Minitab89]. Figures 3.8(a-d) show the normal probability plots of the Log(GOP )s for `Dino', `Race',`Movie' and `video conference' sequences. The vertical axis represents a prob-ability scale while the horizontal axis represents a data scale. MINITAB �tsand draws a least-squares line to the points (GOP) that estimate the cumula-tive distribution function for the population from which data are drawn. If theLog(GOP ) �ts the Normal distribution then the data points should be overthe line. We have observed from the Figures that the `Race' sequence shows anagreement with the line while a better agreement can be observed in the case ofthe `Dino' sequence. However, the `Movie' sequence shows less agreement andthe `video conference' sequence shows a poor agreement with the line. Thus,generally speaking, Lognormal distribution can be used to describe GOP sizesof MPEG sequence.Weibull distribution has been also suggested to describe video sequences[Heyman96]. We have used the Weibull plot to test the 'Goodness' of the dataset. Similar to the normal probability plot, the vertical axis has a probabil-ity scale and the horizontal axis has a data scale. Figures 3.9 (a-c) show theWeibull probability plot for the `Dino', `Race' and `video conference' sequence.From the Figures, we can observe that Weibull distribution exhibits a weak
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# Macro for Gamma Quantile-Quantile Plot

# This Macro is a modification ver. of the original Macro which

was written by Terry Ziemer, Minitab, Inc.

# You will be prompted for the number of the column where your

data

# is stored. The data will be sorted and an Empirical Cumulative

# Distribution Function (ECDF) calculated. Both the sorted data

and

# ECDF will be stored by the macro. The sorted data will be

stored in

# column 99 and the ECDF in column 100. In addition, the macro

uses

# columns 95-98. If you don’t have enough columns in your environment,

# edit the macro and change the values of k1-k6.

noecho

oh 0

let k1 = 95

let k2 = 96

let k3 = 97

let k4 = 98

let k5 = 99

let k6 = 100

note

note Enter the number of the column which contains the input

data

note

set ’terminal’ c100;

nobs 1.

note

copy c100 k7

note Enter the Gamma Shape Parameter

note

set ’terminal’ c100;

nobs 1.

copy c100 k8

sort ck7 ck5

let k10 = count(ck7)

set c100

1:k10

let ck6 = (c100 - (3/8))/(k10 + (1/4))

invcdf ck6 ck4;

gamma k8 25291.689.

let ck4 = ck4**(1/3)

let ck3 = ck5**(1/3)

plot ck3 ck4; Figure 3.6: Q-Q Macro
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(c) `Movie' Sequence (d) `Dino' SequenceFigure 3.8: Examining Lognormal Distribution Using Normal Probability Plotagreement for the GOP sizes of MPEG sequence. However, only the middlepoints (i.e. the GOPs which are close to the mean value) approximate the cor-responding Weibull distribution in the case of the `Dino' and `Race' sequence,while the 'video conference' sequence does not approximate the correspondingWeibull distribution.Consequently, there is not yet a good agreement for the most �tting distri-bution of all MPEG video tra�c due to the di�erent degrees of activity or theamount of movement within the video stream. Generally speaking, Gamma orLognormal distributions can be used to approximate the frame sizes and GOPsize of most of the types. In most cases, there is no large di�erence betweenGamma and Lognormal distributions [Rose95a]. However, perfect agreementof the histogram and the approximation can not be achieved because the dataset is �nite. Heyman et al. suggest that the Gamma distribution is a good�t for a low activity video sequence (based on one frame coding scheme) andmay not depend on the coding algorithm used [Hyman92].
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GOP Size(c) Video ConferenceFigure 3.9: Weibull Probability Plot3.4.2 Sequence Correlation (Dependency Feature)In this section, we examine the dependency features of the MPEG sequence.This information comprises one of the most important features of an MPEGsequence. The analysis of any video sequence shows dependencies betweenthe frames, and between the GOPs within the same video sequence. We havemeasured the correlation between the summation of each frame type for eachGOP within the same MPEG sequence. Table 3.5 depicts the statistical resultsthat we obtained. It shows that dependency exists among the three frametypes, and therefore they should not be represented with three independentprocesses. It can be seen that there is a strong correlation between B andP frames while there is a weaker correlation between I and B, and , I andP. Another result that is shown in table 3.5 is that the correlation factor isnegative due to the lack of activities within the `video conference' stream.Also, these dependencies can be measured by using the autocorrelationfunction (ACF). We compute the autocorrelation of the frame sizes fZi : i =1; 2; 3; :::g. ACF can be given by the following equation:



Characterisation of VBR MPEG Video Tra�c 60Sequence I and PP I and PB PB and PPDino 0.352 0.306 0.896Video Conference (Settop) -0.274 -0.278 -0.964Table 3.5: Correlation Between I, P and B framesrk = PNt=k+1(Zt�Z)(Zt�k�Z)PNt=1(Zt�Z)2We plot the rk against lag k:fk : k = 1:::N; whereN is the number of data framesgFigures 3.10 and 3.11 illustrate the correlation between I, P and B framesfor the `Dino' and `video conference' sequences. It is clear that the I framescause a large positive peak, followed by another smaller positive peak from theP frames, while B frames cause the negative and smallest peaks.In Figures 3.10 and 3.11, the shape of the curve is the result of the periodiccoding pattern (the pattern [IBBPBBPBBPBB] is repeated) and the di�erentmean sizes of the frame types. The pattern between two I frame peaks isrepeated with slow decaying behaviour. In addition, correlation exists betweenthe GOPs within the same sequence. In the case of the `Dino' sequence (seeFigure 3.12), the GOP correlation curve shows a slow decay behaviour forlarger lags, meaning that there is a long-range dependency (LRD) betweenthe GOPs sequence [Izquierdo96]. In contrast, the GOP correlation curve for`video conference' (Settop) and `Race' sequences exhibit rapid decay behaviourfor small lags. Therefore, they have a short-range dependency (SRD).Another parameter that can be used to approximate the long range de-pendencies is the Hurst exponents (H) for the video sequence [Rose95a]. Thevalue of the H parameter gives an indicator of the dependencies power. Thevalue of the Hurst parameter is ranged from 0.5 to 1. If the sequence doesnot have long-range dependencies, then the H parameter will be 0.5 (as inPoisson process). In contrast, a larger value for the H parameter means agreater amount of movement in the video sequence. Table 3.6 indicates the Hparameter for some video sequences. For instance, `video conference' own lowvalue for the H parameter, meaning that there are no long range dependencies.It is interesting to note that the `Race' sequence has high H value, while the
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Figure 3.12: Autocorrelation Function for Several Sequence at GOP Levelautocorrelation function of its GOP decays rapidly in small lags (see Figure3.12). There are many ways of estimating the H parameter, and most of themdo not give the same value [Izquierdo96]. Thus, the H parameter is beyond thescope of this current studies. However, it can be used here just as an indicatorto show the level of dependencies in the sequence.Video Sequence Sequence Type Hurst Exponent (H)Dino Movie 0.88Talk 1 TV talk show 0.87News TV news 0.79Starwars Movie 0.74Race TV sports event 0.99Settop Video conferencing 0.53Table 3.6: Hurst Parameter (from [Rose95a])



Characterisation of VBR MPEG Video Tra�c 633.5 Burstiness Measurement for MPEG Traf-�cBurstiness is an important measurement for tra�c characterisation. It plays acritical role in determining the network performance [Onvural94]. For instance,burstiness a�ects the queueing behaviour at an ATM multiplexer. However,there is not a single and widely-accepted notion of burstiness of video tra�c[Molnar97]. In fact, burstiness is one of the connection parameter that a usermight be expected to declare in order to provide the network managementwith information which can help to achieve an e�cient network control aswell as high resource utilisation. In other words, burstiness is one of the moste�ective factors in using the bandwidth of a network e�ciently with the VBRservice. In addition, exploring the burstiness of the tra�c provides a betterunderstanding of the correlation characteristic for the video tra�c. Moreover,the burstiness information helps us to locate a suitable tra�c model. Forinstance, the traditional tra�c models (such as Poisson) cannot be used tomodel bursty tra�c because bursty tra�c tends to have a large coe�cientof variation (CoV) value (larger than the Poisson process). In the literature,there are several methods have been proposed in order to measure the tra�cburstiness. Let Ai; i > 0 be the inter-arrival rate (in cell/GOP), � = E[Ai]and �2 = V ar[Ai], where � is the standard deviation. Burstiness degree canbe estimated in di�erent way as follows: (Table 3.7 shows these measures forseveral MPEG streams):� The ratio between the peak and the mean (�) rate (PMR) is one of themost widely used measures of burstiness . However, the de�nition andthe applicability of a peak is not at all clear [Molnar97]. Is depends onthe used time scale. Generally, PMR can be de�ned as follows:PMR = Peak rateMean rateIf the burstiness (or PMR) is equal to one, then the tra�c does not haveburstiness.� The ratio between the standard deviation (�) and the the mean (�) rate(Coe�cient of variation):
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CoV = ��This measure gives more information than the peak to average ration sincethe tra�c variation is a function of the CoV . Thus, the tra�c is not bursty ifthe coe�cient of variation is equal to zero.� The density of bursts within the tra�c cell stream. In this way, theburstiness is the statistical average of the burst length. Thus, this mea-sure takes account only the �rst-order property of the tra�c (it is afunction of the marginal distribution of the interarrival times only).� The index of dispersion for counts (IDC) parameter. It is related to thesequence of counts of arrivals in consecutive time units. The IDC showsthe variability of a process over di�erent time scales. It is de�ned so thatit is constant (1) for the Poisson process. For a given interval, the indexof dispersion is the variance-to-mean ration of the number of arrivals (incell) in that interval (for instance a GOP time) [Frost94]; whereby:IDC = V ar(N)E(N)where V ar(N) and E(N)are the variance and the mean value of the arrivalprocess.� The Squared Coe�cient of Variation(SCoV). This measure is also widelyused which includes information from the �rst two moment of the tra�cprocess and is de�ned as:SCoV = V ar[Ai]E2[Ai] = �2�2If SCoV > 1, then the tra�c is more bursty.3.6 SummaryGiven a good understanding of the statistical behaviour of MPEG tra�c willhelp to handle bursty tra�c in an e�cient way. In this chapter, we have



Characterisation of VBR MPEG Video Tra�c 65Sequence PMR CoV ID SCoVDino 4.00 0.401 65.86 0.161Race 3.61 0.37 136.55 0.142Settop 1.98 0.17 5.62 0.029Movie 3.97 0.50 113.23 0.253Table 3.7: Burstiness Measures for Several MPEG Streams.presented a description of the statistical analysis of various MPEG streams inorder to cover a wide range of video classes (in terms of stream activities). Em-pirical data sets have been obtained from di�erent real video streams whichare originally encoded using MPEG encoder. We have presented a generaldescription of the main statistical parameters for various MPEG streams inorder to show the variations of the bit rate of an MPEG stream. By compar-ing the statistical parameters, one can notice that there is a vast variety ofthe statistical properties even for streams belonging to the same video class(e.g. sport or movie). We have also shown that a high level of activity inthe sequence results in large sizes of both `P' and `B' frames. The statisticalanalysis also addressed two main measures: distribution and correlation (de-pendency) properties of MPEG video sequences (based on an empirical datasets of encoded video streams).We have studied the distribution of the empirical data sets in order to �ndthe �ttest distribution. Three distributions: Gamma, Weibull and Lognormalhave been selected due to their similarities in shaping the typical histogram ofthe actual data set. The data sets have been tested using di�erent statisticalmethods to assess how well these distributions represent the actual distributionof the MPEG empirical data sets. It has been observed that there is not yet agood agreement for the most distribution of all video tra�c due to the amountof movements within the video stream.We then studied the impact of the GOP structure, a strong correlation(roughly 0.9) has been shown between `P', `B', and a weaker correlation be-tween (P, B and I). Therefore, `P', `B' and `I' cannot be represented by inde-pendent processes. The ACF of the GOP sequence is also addressed in order toshow the degree of dependencies between the GOPs within the same sequence.A sequence with a moderate activity exhibits a slow decay behaviour for theACF curve (or long range dependency) while a sequence with large or lowactivities exhibits a rapid decay behaviour for the ACF curve (or short range



Characterisation of VBR MPEG Video Tra�c 66dependency). As a result, we have found that scene changes have a substantialimpact on the characteristic behaviour of an encoded MPEG video tra�c.



Chapter 4Scene Changes in MPEG VBRVideo Tra�c
4.1 IntroductionAn important reason for 
uctuations in the overall bit rate is the fact thatscene changes take place within the video stream. As a result, an MPEGstream may have several spikes (peaks) due to scene changes. These maycause cell losses when multiple streams are multiplexed at an ATM switch.Furthermore, managing VBR video tra�c is a very di�cult problem due to thestatistical properties of the video stream which, in turn, are dependent on thecoding scheme and the content of the video sequence [Kara97]. Therefore, weneed to analyse the magnitude of scene changes in order to achieve an e�cientmanagement for this type of tra�c. This could be achieved by managing andclassifying the video streams according to the amount of movement within thesame stream. This chapter presents a technique designed to classify MPEGstreams using the amount of activity within each stream. Firstly, we presenttwo methods and associated algorithms to identify the scene changes within theMPEG stream. Based on the classi�cation process of MPEG streams, we thenintroduce a 'Scene Change Scale' (SCS) exhibiting (or grading) the amountof activity within the MPEG stream. The scale is used to demonstrate theimpact of scene changes on QoS requirements. Our prime measurer of interestis the CLR at an ATM multiplexer. This means that we are considering theamount and magnitude of scene changes within the MPEG sequence in ouranalysis. 67



Scene Changes in MPEG VBR Video Tra�c 68This chapter is organised as follows: In the next section, we present twomethods to identify the scene changes within an MPEG stream. Then, SCSwill be presented in section 4.3 . In section 4.4, we undertake several simula-tion experiments in order to demonstrate the extent of the performance of amultiplexed MPEG stream at a statistical multiplexer.4.2 Scene Change Identi�erThis section presents two methods that allow us to detect and measure theamount of overall bit rate 
uctuations. We then use these methods to identifythe amount (magnitude) of scene changes within an MPEG stream.In a visual sense, a scene can be de�ned as that part of a movie whichdoes not have sudden changes of view. As mentioned above, one of the moreimportant reasons for 
uctuations in the overall bit rate are the scene changeswithin the video stream. Thus, the scene change should be incorporated at thetra�c characterisation process. In an empirical data set for a traced MPEGtra�c, a signi�cant change in the size of two consecutive GOPs is an indica-tion of a scene change. We have used GOP sizes for our analysis because aGOP contains most of the picture's details (for our data trace, every GOP iscomposed of one 'I' frame which contains most of the picture information andthree 'P' frames. In addition, there are 8 frames of type 'B' which containinformation of any changes in relation to previous GOPs).4.2.1 Scene Change Identi�cation Using the Outlier MethodThe basic idea of MPEG is that when a new scene begins, the size of theframes will be larger than the previous frame sizes. In other words, withinthe same data set, the changes in the size of two consecutive GOPs can bean indication of a scene change. The amount of change can be measuredby using one of the most commonly used measurements of data variation (orvariability), namely: the variance and the standard deviation. However, theseparameters provide only the overall measurement of the data variation, andcannot be used as a measurement of location relating to the rest of the dataset. In order to overcome this, we will use another statistical parameter, calledoutlier, to describe each element relative to the other elements in the samedata set [Mendenhall94]. The outlier is an element value which seems to be



Scene Changes in MPEG VBR Video Tra�c 69unusual (or abnormal) compared to the other elements within the same dataset. Within an empirical data set, outliers can be detected by using either anumerical method, based on a z-score measure, or a graphical technique calledBox Plot [Groeneveld88].The z-score measure can be used to describe the location of a Yi relativeto the mean in units of the standard deviation fYi ; 0 � i � N � 2g, whereYi = Xi+1�Xi and Xi is number of cells in the i-th GOP and N is the numberof GOPs. As such, z-score can be calculated as follows:z�scorei = Yi�E[Y ]pV ar[Y ]E[Y ] = �V ar[Y ] = �2According to the z-score de�nition, negative z-score values indicate thatYi lies to the left of the mean, while positive values indicate that Yi lies tothe right of the mean. Therefore, Yi is called outlier if Yi is unusually largerelative to the other values of fY g in the empirical data set. We use the Ruleof Thumb for detecting outliers within an empirical data set [Mendenhall94].The rule states that if the z-score value is greater than a Threshold (�), usually� � 3, then an outlier is identi�ed; thus:If z�scorei � �Then Yi is considered to be an outier at location iFor the sake of illustration, we can demonstrate the technique using onlyone empirical set (the 'Dino' sequence). However, this technique can beadopted to any empirical data set. We have plotted the z-scores for the 'Dino'sequence (see Figure 4.1). The Figure shows many spikes that are caused bylarge changes in GOP sizes (i.e. large scene changes). Every spike over the �value is considered to be an outlier. Consequently, each outlier is an indication



Scene Changes in MPEG VBR Video Tra�c 70of a signi�cant scene change. It is important to notice that the smaller valueof � allows it to capture more scene changes, and vice versa. The followingalgorithm can be used to identify the starting point of a scene change withinan MPEG sequence:STARTLet � be a Threshold valueFor i=1 To N-1Let Xi be number of cells in i-th GOP, 0 � i � N � 1Yi = Xi+1 �XiCalculate z-score (Yi)=) Yi�E[Y ]pV ar[Y ]If z�scorei � � Then a starting point of a new scene is identifiedat location i.End Loop iEND
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Figure 4.1: z-score Plots for the `Dino' SequenceA similar method can be used to detect an outlier by constructing the boxplot of the empirical data set (see Figure 4.2). First, the method constructs
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Figure 4.2: Box Plot for 'Dino' Sequencetwo intervals based on a quantity value called the Interquartile Range (IQR):IQR = Qu �Qlwhere Qu and Ql are the upper and lower quartiles respectively.Next, we construct two sets of limits out of IQR called Inner fences (If)and Outer fences (Of). Inner fence values are located a distance of 1:5IQRbelow Ql and above Qu, whereas Outer fence values are located a distanceof 3IQR below the Ql and above Qu. Similarly, according to the statisticaltheory of the Rule of Thumb for detecting outliers, every fYi; i � 0g whichfalls between the inner and outer fences is called suspect outlier. But, if Yi islocated outside the outer fences it is called a highly suspect outlier. In otherwords, every suspect outlier could be a moderate scene change while everyhighly suspect outlier could be a signi�cant scene change.The outlier method has been applied on various MPEG sequences. Table4.1 presents several statistical parameters of outliers for three MPEG sequencesrepresenting various levels of activity.Sequence Mean(GOP) Number of Outliers Max(outlier) Mean(outlier) Stdev(outlier)cell cell cell cellDino 408 242 1634 809 160Movie 446 262 1777 963 189Video Conference 188 39 373 266 30Table 4.1: Outlier for Various MPEG SequencesThese two methods produce similar results. However, the presence of one ormore large outlier in a data set can in
ate the value of the standard deviation(�) used to calculate the z-score. Consequently, it will be less likely to be ableto detect an element value with a high z-score. In contrast to this, the value



Scene Changes in MPEG VBR Video Tra�c 72of the quartiles used to calculate the fences for a box plot are not a�ected bythe presence of outliers.As a result, both methods can be used to identify the signi�cant scenechanges within an MPEG video stream. The scene change identifying processalso helps to detect the most abnormal part of an MPEG video stream whichmay cause cell loss in most cases. This type of information is useful in clas-sifying MPEG streams in terms of the amount of activity within each stream(as we will demonstrate later).4.2.2 Scene Change Identi�er Using Second Di�erentMethodThe last two methods identi�ed scene changes based on the di�erences betweenonly two consecutive GOPs. In order to impose more accuracy on the scenechange identi�cation results, it is desirable to compare a GOP with the previ-ous and the next GOPs. Therefore, we will employ a method which is basedon the Second Di�erence. The method can be used for any MPEG sequenceto identify the scene changes within the sequence. Similarly, we shall use the'Dino' stream to demonstrate our method. The time series plot (see Figure4.3) indicates several spikes (peaks) due to possible scene changes. In order todetermine which spike represents a true scene change, we need to analyse itsmagnitude. This can be achieved by relating each GOP spike with its neigh-bours (GOPs on both sides), according to the amount of movement within thesame stream. As described before, a scene change occurs when a GOP size isabnormally larger than its neighbours. Based on this fact, we can quantify thescene change in the following way:Let us assume that fXig is the size of a GOP: fXi : i = 1; 2; :::; Ng. Ata scene change, the second di�erence (Dif2) will be large in magnitude andnegative in sign [Hyman96]. The Second Di�erence is given by:Dif2 = ((Xi+1 �Xi)� (Xi �Xi�1))Figure 4.4 shows the plot of the second di�erence for the `Dino' stream.Every large negative spike could be an indicator of a scene change. In order toquantify only the signi�cant scene changes, we divide the second di�erence bythe average of the past few seconds (t). The period of the last few seconds, t,
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Scene Changes in MPEG VBR Video Tra�c 74might vary. In some studies, the average length of a scene might range from 3to 7 seconds [Krunz96]. We have tested various values for t, all of them givingsimilar results for fYig:Yi = (Xi+1 �Xi)� (Xi �Xi�1)1t Pij=i�tXj ; i = 2; 3; ; ::; N � 1
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Figure 4.5: Scene Change Identi�cationA signi�cant scene change can be identi�ed with every negative large spikewhen we plot the division result Yi from the above equation. We chose athreshold (T ) as a critical value, where 0 < jT j < MaxY . The number ofspikes below the threshold indicates the amount of large movements within thesame MPEG stream (see Figure 4.5). Lower values for the threshold , jT j,capture more scene changes. In order to capture only the large scene changes,it is more obvious when T is below the mean value of fY g. The following algo-rithm depicts the method which identi�es the scene changes within an MPEGtraced stream:



Scene Changes in MPEG VBR Video Tra�c 75STARTREAD Xi from a traced GOP file of size NThreshold = TFOR i = 1TONDif2 = (Xi+1 �Xi)� (Xi �Xi�1)CALCULATE � = 1t�ii�tXiYi = Dif2�IF Yi < T THEN SceneChange is identifiedEnd Loop iENDIn order to justify our criteria, see Figure 4.6 in which we plot fXig time seriesand the second di�erence Dif2 . It is clear that there is a good match betweenthe two series. Every large and negative spike in the Dif2 is associated with alarge spike in the GOP time series plot.
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Scene Changes in MPEG VBR Video Tra�c 764.3 The Scene Change Scale (SCS)In the last two sections, two methods were o�ered in order to provide indi-cations on the 
uctuations in the overall bit rate of an MPEG video stream.These indications could vary from one stream to another due to the amountof activities within the stream. In addition, the scene change identi�cationprocess analyses the magnitude of each scene change. Thus, this type of in-formation plays a crucial role in achieving an e�cient modelling as well asmanagement of MPEG tra�c.In [Kara97] and [Mashat98a], we showed that the amount of activitieswithin an MPEG stream a�ects not only the tra�c model but also the queue-ing performance at an ATM multiplexer. In order to classify MPEG streamsaccording to the amount of activity and movement within the stream, we mapthe output of the scene change identi�cation method to a scale which gives amore precise indication on the amount (or level) and the strength of the bitrate variation. This can be done by scanning the entire MPEG stream andthereby, detecting all signi�cant scene changes fSck; k > 0g within the MPEGstream. We can then analyse and quantify their magnitude. By scaling thescene changes fSckg with the entire sequence, it is possible to calculate a ra-tion (or scale) of the activities. According to the second di�erence method,the scale for an MPEG sequence can be found via the following equation:SCS = Pnk=1 SckPN�1i=1 (Xi+1 �Xi)� (Xi �Xi�1)In addition, by using the outlier method, it is possible to derive the scalethrough the following: SCS = Pnk=1 SckPN�1i=0 Yiwhere n is the number of scene changes.By using the last two equations, we are able to obtain and assess the levelof activities within the sequence. Either of the two scene change identi�cationmethods can be used, as both give close results. However, the second di�erencemethod gives more accurate results in terms of identifying only the signi�cant



Scene Changes in MPEG VBR Video Tra�c 77scene changes (as mentioned previously). Thus, the second di�erence methodwill be used for the purposes of our classi�cation.Based on the second di�erence method, 21 various traced MPEG streamshave been tested and scanned using our method in order to de�ne and classifythe amount of activity for each stream. For a given threshold value, thesestreams are scaled to be presented in a 'Scene Change Scale' (SCS), with arange from 0 to 1 (i:e: 0 < SCS < 1). If the amount of activity within thestream is limited, then the stream will be allocated nearer to 0. Conversely,if the stream is highly active, then it will be allocated nearer to 1. Figure 4.7shows these streams on the SCS with two di�erent values for the threshold. Itis important to note that with a lower threshold value, the strength value ofthe stream on the SCS will be increased.
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4.4 Experimental EvaluationIn the ATM tra�c management context, it is common to test the QoS perfor-mance at a statistical multiplexer, and to e�ciently allocate the bu�er size andbandwidth resources [Krunz96]. This section describes several simulation ex-periments, and presents the simulation results when multiple MPEG streams,with various scene activities, are multiplexed. The main objective of theseexperiments is to demonstrate the impact of scene changes activities on QoS



Scene Changes in MPEG VBR Video Tra�c 78requirements, and then relate these results to the SCS. This can be achievedby simulating the multiplexing of various streams, with di�erent SCS values.We have simulated the transmission of various video connections on anATM multiplexer with a single link, and a bu�er whose size B was determinedby the delay constraints (D) on data transmissions out of the multiplexer:B = D � C, where C is the link speed. In other words, the maximum queuelength is bounded by the link speed and delay constraints [Zhang94]. In oursimulation, the cells arrive at the multiplexer from a number of real videoMPEG connections (based on the empirical data sets). Each connection gen-erates a frame consisting of a variable number of cells (see Figure 4.8). For oursequence, the connection rate is 24 frames/sec. The FIFO service disciplinepolicy is employed at the multiplexer. For each experiment, the link speed wasadjusted to satisfy a system load of 80% (0.8 system utilisation).
CellCellCellCellCell

Buffer size B

Service Rate C

Figure 4.8: Multiplexing of Multiple MPEG StreamsIf the system capacity (i.e. the bu�er is full) is exceeded, then any incomingarrivals will be lost. Furthermore, larger bu�er sizes will increase the waitingtime for arrivals to be served. Therefore, a trade-o� between the delay andcell loss requirements should be achieved. However, the cell losses in mostcases are very important, because standard coding schemes (such as MPEG-I,H.261) are not designed for the compression of video, which are transmittedon a medium where a loss of data is possible [Rose94b]. Thus, our primarymeasure of interest is the CLR. However, the multiplexer may implement aparticular frame (packet) discard policy, called Pushout, where in the event ofone or more cell losses the whole frame (or packet) of which the lost cells arepart of is dropped. Studies have shown that such a policy improves both thethroughput performance and network e�ciency [Romanow94] [Manthorpe96].



Scene Changes in MPEG VBR Video Tra�c 79We have studied the case when multiple sources, at GOP process, aremultiplexed into an ATM multiplexer with one server (link). We also assumethat GOP sizes presents the same activity of the real trace at frame sizes[Chiotis97].For the sake of explanation, results of three chosen traces from the realMPEG sequences are presented, namely: the `Movie', `Dino' and `Talk' se-quence. In order to obtain consistent results, we have selected only one Thresh-old value (-0.5) throughout the experiments for the calculation of the SCS.According to the SCS, the three chosen traces represent three various classesof VBR MPEG streams: high, moderate and low amounts of activity. It canbe seen from Figure 4.9, for all bu�er sizes studied, the losses resulting fromthe use of these sequences are compared. It is clear that the `Movie' sequenceproduced the highest CLR while the `Talk' sequence produced the lowest. Forsmall bu�ers, the CLR is quite high. As the bu�er increases, the CLR valuesstart to decrease slightly. The delay bound (D) gives a similar performance,because the bu�er size is a function of the delay constraints. Furthermore, it isimportant to note that the `Movie' sequence has the highest value on the SCS.We have tested the same simulation using other various MPEG sequences.We have found that there is a strong positive correlation (about +0:73) be-tween the CLR obtained from the sequence performance and its associatedposition on the SCS. The correlation has been calculated using the correlationcoe�cient factor as follows:Corr(SCS;CLR) = Cov(SCS;CLR)�SCS �CLR ; �1 � Corr(SCS;CLR) � +1Cov(SCS;CLR) = E[(SCS � �SCS)(CLR� �CLR)]In order to demonstrate the multiplexing behaviour for di�erent systemloads, we have compared the losses resulting from various loads. In otherwords, the service rate for the output link is adjusted to obtain di�erent levelsof utilisation (U) or system load. The system load can be de�ned as the ratioof the arrival rate to the service rate [Pitts96]. Figure 4.10 shows the perfor-mance of the `Movie' sequence at di�erent loads, namely U=50%, U=60% andU=70%. It is clear that the higher the load, the greater the value of CLR.
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Scene Changes in MPEG VBR Video Tra�c 814.5 SummaryBecause the scene change is the most important factor which a�ects not onlythe complexity of tra�c characteristics, but also the long range dependencyfeature of MPEG streams, we need to analyse the magnitude of scene changeswhich cause the bit rate variations of an MPEG stream. In order to explore the
uctuations in the overall bit rate for an MPEG stream, we have introducedtwo simple methods and algorithms to identify the scene changes within anMPEG stream. As a result, we have mapped the amount of scene changesonto a Scene Change Scale (SCS) which can be used to exhibit the amount ofactivity within the overall MPEG stream. We have also explored the impact ofscene changes on QoS requirements. The primary measure of interest was theCLR. We have related the CLR results obtained from several simulations withthe SCS, and have found that there is a strong positive correlation between theCLR results and the Scale. In other words, SCS can be used as an assessmentof QoS guarantees over ATM networks. For instance, a high CLR is associatedwith an MPEG stream with a high value on the scale. Therefore, more careshould be applied in handling such a stream having a high value on the scale.



Chapter 5VBR MPEG StatisticalModelling
5.1 IntroductionIn order to achieve an accurate and e�ective evaluation of the performance ofan ATM network, and to provide worthwhile guidance for the design of tra�cmanagement and control schemes, we need to have a good knowledge of varioustra�c sources. Generally speaking, there are two possible ways to achieve thisaim [Ni96], by direct observation of a real video trace, or by constructing amathematical model for the video source. The �rst option is quite simple.However, despite its simplicity, it is di�cult to be formulated and applied to arelevant analysis. The second option helps to characterise the real video sourcemore precisely. In addition, it produces e�ective and e�cient mathematicallyanalytical techniques.An encoded video, as shown in the previous chapters, is not independenttra�c. Thus, simple tra�c model (such as Poisson) is not adequate to modelvideo tra�c. Video source models (e.g. MPEG tra�c source models) play avariety of roles, including:� The model can be used to identify e�ective sets of tra�c descriptors forQoS parameters at call set-up. These descriptors are used to describethe tra�c behaviour through the entire call (or connection);� In order to test and compare di�erent control schemes (for instance, end-to-end rate control), a source model can be used to exercise the degree to82



VBR MPEG Statistical Modelling 83which QoS guarantees are provided [Rampal95]. In addition, the sourcemodel can be used to evaluate alternative policing mechanisms, such asthe D-BIND tra�c descriptors proposed in [Knightly96]; and� It can also be used to predict the level of QoS that a particular applicationmight experience at di�erent levels of network congestion.This chapter is organised as follows: we �rst address the main modelling ap-proaches for VBR video tra�c, including a Markovian based. Two simplesource models for VBR MPEG, the Histogram-based and Detailed Markovchain model, are presented. Due to the signi�cant role of scene changes, wewill perform a further analysis on the scene changes. We present an extensivescene-based model and its performance. The models will be used to generatea synthetic workload representing VBR MPEG tra�c. In order to validatethese models, the statistical behaviour of the model as well as the queueingperformance are compared with the original tra�c. In turn, some experimentswere performed to study the model's performance at an ATM multiplexer.5.2 Modelling ApproachesA series of MPEG source models have been proposed in the literature, re
ect-ing increasing insight into the nature and variety of MPEG source dynamics.Typically, there are three approaches that can be used to model MPEG videotra�c [Izquierdo96]:� Markov chains [Daigle86] [Chu95]: Video tra�c can be approximatedby a two-state Markov chain, one state represents the peak rate, whilethe other represents the minimum rate. A simulation experiment showedthat the two-state Markov chain model is not accurate enough for statis-tical studies [Heyman92]. However, a detailed Markov chain model, withmore �nite states, provides a su�cient level of accuracy to be useful intra�c studies [Chu95].� A video model based on Autoregressive processes [Maglaris88][Doulamis96]: This type of model matches the features of video traf-�c: the distribution and the autocorrelation function. An autoregressivemodel of order 2 �ts the data well in a statistical sense, but it does notproduce enough large values to be useful for tra�c studies.



VBR MPEG Statistical Modelling 84� Self-similar or fractal models [Izquierdo96] [Yao97]: These models arebased on a self-similar process. Such a process is called self-similar if thesamples for that process appear to be `similar', regardless of the durationof the sampling interval. One of the most important characteristics ofthis process is long range dependency.There are many proposed models for video tra�c. Before we select a modelfor VBR video tra�c, it is necessary to examine the attributes of the videosource. Another matter requiring consideration is the purpose of the tra�cmodel, which should be de�ned to determine the proper model. In this re-gards, many factors should be considered, including the following [Stamoulis94][Izquierdo96]:� The tra�c (source) activities in terms of the amount of scene changes. Ifthe tra�c sequence contains signi�cant scene changes, then a hierarchicalmodel is required;� The encoding scheme. For example, if the encoded sequence contains dif-ferent frame types, then the tra�c model should consider the attributesof each frame; and� The selected level of modelling within the video sequence. It is possibleto create a model for MPEG at di�erent levels (GOP, frame, slide oreven cell level). Having decided on the level, the statistical properties ofthat level should be de�ned. Furthermore, we need to lay down the waythe levels depend on each other. For instance, if we want to use the celllevel as the modelling level, we need to decide how frames are brokeninto cells. However, this depends on the considered ATM AALs, and onthe existence of the shaping facilities between the video source and ATMnetwork [Roberts96] .5.3 Statistical Modelling of MPEG Using MCThis section describes the statistical models which are used to characterisean MPEG sequence. The main objective is to �nd a suitable and simplemodel to capture the statistical behaviour of VBR MPEG sequences. Themodel will be used to generate a synthetic workload representing VBR MPEG



VBR MPEG Statistical Modelling 85tra�c. We describe two Markovian based models, namely Histogram-basedand Detailed Markov Chain (DMC). These models are based on the resultsof the statistical analysis which were obtained in the previous chapters. Themodels will be used to approximate the statistical behaviour of the MPEGsequence. Both models are well known. However, with a degree of modi�cationand the consideration of the scene change, it is possible to be tuned for aparticular type of VBR MPEG sequencing in order to improve the actualtra�c approximation. Another improvement can be added to these modelsis when they are used with the generation process or generation process (seesection 5.5.1) to perform multiple levels of correlations (GOP-by-GOP andframe-by-frame).The Markov chain method can be used to model di�erent layers of anMPEG sequence (scene, GOP, frame or slide). It has been also used to modelone layer codec stream [Murphy94]. It is very di�cult to �nd a model thatcovers all layers [Rose95b]. Therefore, we have to decide which layer willbe used. A higher layer will add more complexity to the model, but it willalso improve the long-range dependency behaviour. The GOP layer can beused for our modelling without the need for modelling the frame-by-framecorrelation and the only correlation used is the GOP-by-GOP (frame-by-framecorrelation will be employed at the tra�c generation process). In addition, anexperimental result showed that frame-by-frame correlation has no in
uenceon cell loss results [Rose95b]. Therefore, in some cases, it is adequate to useonly one level of correlation. In addition, the GOP plays the most crucialrole concerning the autocorrelation e�ects of an MPEG video sequence, dueto the periodic nature of the MPEG sequence (which is caused by the GOPstructure).For the Histogram model, an 0-order Markov chain method has been usedand an 1st-order Markov chain for the DMC. Both models have a �nite numberof states and will be used to generate a GOP size process. The range of GOPsizes of the empirical MPEG sequence will be divided into several quantizationintervals. Each interval is related to a state of the Markov chain. Therefore, thenumber of states is equal to the number of GOP intervals. For each state, thereis a mean value of the GOP interval associated with it. In the Markov chainmodel, the transition from one state to another is controlled by a transitionmatrix. With each state transition (entrance from its current state into the



VBR MPEG Statistical Modelling 86next state) a GOP size will be generated according to the mean value of thenext state.5.3.1 Histogram ModelThe Histogram model can be described by a simple Markov chain with a �nitenumber of states (M) which is equal to the number of the quantization inter-vals (see Figure 5.1). The transition from one state to another is completelyindependent, and the transition matrix of size 1�M for the Histogram modelis de�ned as: Pij = Number of GOPswithin interval iTotal number of GOPsThe Histogram model can be used to estimate the distribution of the em-pirical GOP size. However, this model does not approximate the GOP cor-relation. This is because each GOP sample is generated according to thehistogram bins which are independent from each other. We found from ourexperimental work that there is almost no correlation between the generatedGOPs (see Figure 5.3). Therefore a model which is based on the distributionfunction only cannot approximate the dependencies behaviour of the MPEGsequence. However, a probability density function (pdf) can be used in othermodels such as the Discrete Autoregressive (DAR) model [Doulamis96]. TheDAR model requires to know the pdf of the source. It is very important tonotice that the Histogram model can be useful when there is no agreementon the �tted distribution. This is the case for VBR video tra�c, due to QoSrequirements for the encoded scheme.5.3.2 Detailed Markov Chain Model (DMC)The Markov chain process has been used because its parameters can be identi-�ed easily and it can also be easily analysed. This is helpful in �nding the mostappropriate model. For long range dependency sequences the Markov chain isnot adequate because its autocorrelation function decays exponentially. How-ever, with some e�ort, it is possible to obtain a Markov chain model witha high coe�cient of autocorrelation even for large lags. This can be doneby increasing the number of states to a reasonable number (see Figure 5.2).
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Figure 5.2: The Detailed Markov Chain Model (DMC)[Izquierdo96]. For the GOP level, we �rst compare the distribution parametersfor both models. Tables 5.1, 5.2 and 5.3 show that the parameters for bothmodels have values that are close to those of the empirical data. However, thesimulation results indicate that the DMC model is a good source model forapproximating a sequence with a short range dependency feature even for largelags (about 15), as in the case for the `Race' and `video conference' sequences.This can be shown when we compare the curve of the autocorrelation functionfor the model with real tra�c (see Figure 5.4 and 5.5). However, the DMCmodel shows better approximating for the 'Race' sequence than the 'video con-ference' sequence. In contrast, we found that there is almost no correlationbetween the generated GOPs in the case of the Histogram model (see Figure5.3). Thus, the Histogram model does not approximate the autocorrelationfunction, because each GOP sample is based on the histogram bins which areindependent from each other. However, the DMC model captures only fewlags (about 5) for a long range dependency sequence (see Figure 5.3).
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Data Sets Mean(�) STDEV(�) Min Max (Peak)Cells Cells Cells CellsReal Sequence 408 164 129 1634Histogram Model 410 160 173 1270DMC Model 402 162 152 1634Table 5.1: The simple statistical parameters for 'Dino' sequence and the models
Data Sets Mean(�) STDEV(�) Min Max(Peak)Cells Cells Cells CellsReal Sequence 188 32 144 373DMC Model 186 29 162 328Table 5.2: The simple statistical parameters for the '`video conference" se-quence and the model

Data Sets Mean STDEV Min MaxCells Cells Cells CellsReal Sequence 961 362 292 3470DMC Model 969 350 538 3019Table 5.3: The simple statistical parameters for the 'Race' sequence and themodel
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Figure 5.3: Autocorrelation Function Comparison (Dino)
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Figure 5.5: Autocorrelation Function Comparison (Race)5.4 Scene Change BasedModel for VBRMPEGTra�cVarious models have been proposed for VBR MPEG tra�c [Kara97] [Rose95b][Stamoulis94] [Heyman92] and [Frost94], but there are few models that incor-porate scene changes [Krunz96] [Lazar93] and [Heyman96]. As shown in theprevious section, the Markovian models were not adequate to capture the longrange dependency feature. In this section, a new form of scene-based modelis introduced, based on characterising MPEG tra�c as a collection of scenes.The model is used to capture the long range dependency feature of MPEGtra�c.As shown in the last chapter, the main reason for the overall bit rate vari-ation is scene change, which leads to dramatic increases in the queue lengthstatistics of the multiplexer . Consequently, scene changes should be incorpo-rated in such tra�c modelling approach. In order to model VBR MPEG tra�cbased on the scene change, we need a functional de�nition of scene durationbased on the bit rate variations. From chapter 4, we are able to identify, andquantify, scene changes within an MPEG sequence. As illustrated in Figure



VBR MPEG Statistical Modelling 925.6, an MPEG stream can be characterised using two processes, namely: scenelength fSli; i > 0g and the scene 
uctuations process fSci; i > 0g.
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Figure 5.7: The Fitted Curve for Scene Length DistributionThe �rst process fSli; i = 1; 2; 3; :::; ng can be de�ned as the scene lengthduration within the MPEG sequence, where n is the number of scene changes.In other words, Sli is the number of GOPs in the i-th scene. The scene lengthcan be easily calculated (as showed in chapter 4) by adding the number ofGOPs between the starting points of two consecutive scenes. The statisticalcharacteristics of the scene length were examined. Then, the �tted curve forthe histogram of the scene change length process was drawn (see Figure 5.7).The �gure shows that the scene length can be modelled by a geometric dis-tribution. The shape of the probability density function (pdf) in the �gurewas also observed on all other analysed MPEG sequences. In [Lazar93], it has



VBR MPEG Statistical Modelling 93also been con�rmed that scene length for VBR video tra�c can be modelledas a geometric distribution. Therefore, we use the pdf with a parameter q forthis distribution as the basis for our model. The scene length process can bedescribed as follows:PrfSli = ng = qn�1p ; p = 1� q for n = 1; 2; 3; :::E[Sli] = 1pSequence Number of Scenes Mean (GOP)Dino 569 11.27Race 579 13.41Movie 670 5.3Video Conference 65 20.2Table 5.4: Statistical Parameters of Scene Change DurationsThe average size of the scene changes can be used as another indicatorof the video stream activity. Table 5.4 presents simple statistical parametersof the scene change duration for various MPEG sequences. For our analysedtrace (Dino), the average of the scene length is about 11 GOPs (5 seconds). Inaddition, we calculated the autocorrelation function (ACF) for scene lengths.Figure 5.8 shows that the shape of the ACF for fSlg alternates very closely oneither sides around the 0-line. In other words, there is a very weak presence ofcorrelations among scene lengths (we could say it is uncorrelated). Therefore,the main issue is characterising only the distribution of the scene change.Consequently, the scene lengths constitute a sequence of idd random variableswith a geometric distribution.The second process fScig is based on the fact that a signi�cant di�erencebetween two consecutive GOPs is an indication of a scene change. Hence,we modelled the GOP variation using fScig and the mean value of GOPs forthe previous scene (ggopk ; k > 0). From our observation of the fScg histogramshape (see Figure 5.9), we have found that the GOP variation could possibly bedescribed using one of the three distributions (or even a Normal distribution)which are presented in section 3.4.1. Furthermore, the autocorrelation functionof scene variations process exhibits weak correlations a part from the �rst fewlags (see Figure 5.10). Therefore, the process could be modelled based on the
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LagFigure 5.8: Autocorrelation Function of The Scene Lengthdistribution properties only. However, due to the di�culties in �nding themost �tted distribution, fScg process is modelled using the Histogram-basedmodel with a transition matrix [P ] and M states (see section 5.3.1 for moredetails on the Histogram-based model). Thus, the i-th GOP size (within thek-th scene) can be found as follows:Xi = ggopk�1 + Sci ; 0 < i < N and k = 1; 2; :::; nwhere N is the number of GOPs in the sequence and n is the number of sceneswithin the sequence.5.4.1 Model Validation (Scene-based Model)As shown in section 5.3.3, we performed the same method for the model val-idation in order to examine the appropriateness and the limitations of thescene-based model. A synthetic sequence should be generated to allow us toexamine whether the model is able to approximate the behaviour of the realMPEG sequence or not.The synthetic GOP sequence has been generated using the proposed model.
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VBR MPEG Statistical Modelling 96The generated sequence was based on the �tting of the original `Dino' se-quence1. Firstly, a scene length is determined using a given geometric distri-bution. The GOPs are then generated with association of the scene variationprocess. The following algorithm describes the method which generates a GOPsequence of size N :STARTN = number of scenesScene variation fScg � Histogram(�qt; 1 � t �M)For i = 1 To NGet Scenei length = slFor k = 1 To slfScg = Histogram(�qt )GOPi+k = ggopi�1 + fScgEndLoop kEndLoop iENDIn order to validate the proposed model, we need to compare the mostimportant statistical behaviour of the original sequence, with that of the gen-erated sequence. Table 5.5 shows the important statistical attributes (or pa-rameters) for both sequences. By comparing the statistical behaviour of themodel-based sequence with the original sequence, we can see that the modelcaptures most of the main statistical parameters of the original sequence ac-curately.Because the long range dependency (LRD) is another important feature ofan MPEG sequence which can be described by the ACF [Izquierdo96]. Thus,we can examine the ACF of the generated sequence and the original one (seeFigure 5.11). By comparing both curves, it is clear that the model capturesthe ACF of the actual sequence (the curves follow the same pattern for lagsover 60). However, ACF values (but only for the �rst lags) in the model areslightly less than the ACF values in the original sequence, mainly becauseof simpli�cation in the model. Apart from that, the model provides a goodapproximation of the LRD feature.1The Dino sequence has been selected due to its long range dependency feature.
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Figure 5.11: ACF for Real and Model-based Sequence (Dino Stream)
Video Sequence Mean (�) CoV(��) Stdev(�) Peak Peak/MeanCell/GOP Cell/GOP Cell/GOPReal Sequence 408 0.40 164 1634 4.001Model-Based 408 0.42 173 1845 4.5Table 5.5: Simple Statistical Parameters For The Real and Model-Based Se-quences (GOP-Based)Where : CoV is the Coe�cient of Variation�� And Stdev is Standarddeviation �.



VBR MPEG Statistical Modelling 98In order to add more accuracy to the model validation, simulation experi-ments were conducted to study the performance of an ATM multiplexer usingthe generated (or synthetic) sequence based on the scene-based model and theoriginal tra�c This will help us to examine the performance of the model interms of the queueing performance. The simulation results obtained from theperformance of the model should then be compared with that obtained fromthe original sequence. An ATM simulator called YATS has been used to per-form our experiments [Baumann97]. YATS is a small discrete-time simulationtool tailored for investigations of ATM networks. It expects the name of aninput �le, which contains a description of the simulation con�guration andcommands to the simulation kernel and to the simulation objects. The ex-periment (simulation) model can be described as an ATM multiplexer, with a�nite bu�er size that accepts ATM cells from MPEG sources, and then trans-mits them through a link speed C (i.e. single server). First, the MPEG framesizes are packetised into ATM cells with a payload of 48 bytes. We have usedAAL5 for the transmission of MPEG stream because the ATM Forum recom-mends using AAL5 as the preferred transport protocol [Gringeri98]. The cellstream is assumed to be suitably spaced during a frame duration. The spacingbetween the cells within a frame duration in turn should vary based on theframe bit rate. However, the spacing within each frame duration is the same.At the multiplexer, the incoming cells are served based on the FIFO manner.A cell loss occurs when the multiplexer bu�er becomes full. Incoming cellswhich arrive during such a bu�er-full condition are discarded.The performance of the simulation system was studied for di�erent bu�ersizes at 0.8 system load (system utilisation). Since networks under congestionare the subject of interest, a su�cient load is needed to result in congestion.Figure 5.12 depicts the cell loss ratio against di�erent bu�er sizes; it was mea-sured in accordance with the simulation of the generated and original sequencesbased on the `Dino' stream. For most bu�er sizes, it was observed that the gen-erated sequence shows a good agreement of the losses curve especially with amoderate bu�er sizes (300-400 cells). In other words, the model approximatesthe queueing performance of the original MPEG tra�c.
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Figure 5.12: Comparison of CLR for 10 Multiplexed Stream (Dino)5.5 The Overall Model's ComparisonIn this section, we summarise the overall comparison of the three presentedMPEG models to examine whether the models are able to approximate thelong range dependency behaviour of the real MPEG sequences or not. In otherwords, we consider the relative strengths and the limitations of the modelwith respect to several statistical properties and the ability to capture ACFof VBR MPEG tra�c. In order to validate a model, the statistical analysisresults of the model should be compared with the empirical data in terms ofthe statistical distribution and the sequence correlation (ACF). The `Dino'sequence has been selected for our comparison because it has the long rangedependency feature.Table 5.6 shows the comparison of the most important moments of GOPsizes for the models and the original sequence. It is interesting to observe thatscene-based model matches exactly the original sequence in terms of the meanvalue. However, for network dimensioning purposes, it is more convenient touse a model which behaves worse than the real tra�c [Rose95b]. This was thecase for the scene-based model which overestimates the peak value. Thus, itgives a higher value of burstiness parameter.
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Data Sets Mean(�) STDEV(�) CoV Max (Peak) Peak/MeanCells Cells (�� ) Cells BurstinessReal Sequence (Dino) 408 164 0.401 1634 4.00Histogram Model 410 166 0.404 1270 3.09DMC Model 402 162 0.402 1634 4.06Scene Based Model 408 173 0.420 1845 4.52Table 5.6: The Simple Statistical Parameters for the 'Dino' Sequence comparedto the ModelsThe main di�erence between the models is their capability to approximatethe autocorrelation function (or dependence feature) of the original MPEGsequence (empirical MPEG data set). Figure 5.13 plots the ACF curves ofthe generated sequences using the three proposed models at the GOP level.Comparing these curves leads us to a conclusion that the scene-based modelwith a multiple level of modelling shows a better agreement with the empirical(or original) data sets. The simpler models, on the other hand, are unableto model the correlation feature of the data sets over a longer period of time(lags).In order to compare the queueing performance of the generated tra�c us-ing the presented models, we have simulated the multiplexing of multiple se-quences at an ATM multiplexer. Simulation experiments have been conductedto examine the CLR performance based on the three models. We have used asimilar simulation model used in section 5.4.1. However, the link speed (outputlink) was �xed (50 Mbits) to achieve consistent results from the simulation ofthe di�erent models. The number of stream were selected to adjust the systemload at 0.8.The simulation results obtained from the performance of each model areshown in Figure 5.14. This Figure depicts the cell loss ratio (CLR) againstdi�erent bu�er sizes. The �gure shows only the mean values for the severalsimulations which have been conducted in order to achieve a 95% con�denceinterval. The cell loss ratio results were obtained from the simulation of thegenerated IPB sequences which were originally generated based on the threepresented models (The IPB sequence has been generated from the GOP se-quence using the scaling factor process which will be described in 5.5.1). The
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Figure 5.13: ACF for Real and the Three Models for `Dino' StreamCLR curve for the original sequence is also plotted based on `Dino' streamfor the sake of overall comparison. For small bu�er sizes, it was observedthat all generated sequences show close/good agreement of the losses curveof the original sequence. However, for larger bu�er sizes, the CLR curve forthe scene-based model is performed more closer to the original sequence thanothers.As results, we point out that all tra�c models have their advantages anddisadvantages, and that some care has to be taken as to what type of modelis chosen for the performance analysis.5.5.1 The Scaling Factor ProcessThis process is used to derive a periodical sequence of frame sizes for di�erenttypes (I, P and B) from the generated GOP sequence. Figure 5.15 depictsthe overall picture of the scaling factor process (generation process). It hasbeen observed that this method gives a reasonable approximation for cell lossprobability [Rose95a].In order to produce a synthetic sequence of MPEG frame sizes (I, P and
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Figure 5.14: CLR Performance Evaluation (Fixed Link Capacity)B) similar to a real MPEG frame sequence, we use the following method: theframe sizes could be derived from GOP sizes by scaling the frame sizes ofdi�erent types with GOP sizes. This process uses a scaling parameter calledthe Scaling Factor (f). The parameter, fx x : I; P or B , is calculated bydividing the mean value for the frame type by the mean value of the GOP:fI = E[fIg]E[fGOPg] fP = E[fPg]E[fGOPg] fB = E[fBg]E[fGOPg]For each generated GOP, a frame of type I, P or B is multiplied by thecorresponding f parameter. We have generated frame sequences from thegenerated GOP sequences (based on the three presented models). Table 5.7shows two examples of the scaling factors (f) for both the `Dino' and `videoconference' sequences. It is clear that the scaling factor for B frames (fB) isthe smallest, while the scaling factor for I frames (fI) is the largest. This is dueto the fact that I frames represent most of the GOP size. Another observationthat can be seen from the table, is that fB for the `video conference' sequenceis very small compared to the fB for the `Dino' sequence. In contrast, fI for the`video conference' is larger (twice as large) than the fI for the `Dino' sequence.This is due to the limited amount of activities within the `video conference'



VBR MPEG Statistical Modelling 103sequence, which makes the I frame sizes very large and the B frames somewhatsmaller.
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factors for I, P and 
B frame

Aggregate of the
three lists into one
sequence with pattern

[IBBPBBPBBPBB]

Using the scaling

Figure 5.15: The Scaling Factor ProcessPreviously, the model has been validated at the GOP level. Now, we val-idate the model at the frame level. Because the dependency feature is existamong MPEG frames (as we discussed in the previous chapters), we have fo-cused on the evaluation of this feature in this section. The correlations havebeen calculated between the generated sequence and the empirical sequence(original sequence). Table 5.7 depicts a strong correlation in the case of the`Dino' sequence, with an even stronger one for the `video conference' sequence(based on the DMC model). The correlations have also been calculated be-tween the three generated sequences based on both Markovian models and thescene-based model, and the original 'Dino' sequence. Table 5.8 shows a strongcorrelation for both Markovian models, but an even stronger one for the scene-based model. On the other hand, we plotted the autocorrelation function ofI, P and B frames for both the generated and the actual data. Figures 5.17and 5.16 show the ACF of the `video conference' and the `Dino' sequences forboth: the generated and the original data. The top points represent I frames,the middle points represent P frames, while the bottom points represent Bframes. In the case of `Dino', there is a good agreement between the ACFof the three frame types (I, P and B) for the generated and the original se-quences. In contrast, a stronger agreement could be shown in the case of the`video conference'.In order to compare the ACF of the three formulated models, Figure 5.18shows the ACF curves for the actual `Dino' sequence and the generated se-quence using the presented models. In the case of the DMC and the scene-based models, there is a good agreement between the ACF curves of the threeframe types (I, P and B) for the generated and the actual sequence. However, aweaker agreement can be shown in the case of the Histogram model (especially
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Sequence Scaling factor Scaling factor Scaling factor Corr(Empirical,Generated)for I frame for P frame for B frameDino 0.351 0.092 0.047 0.768Video Conference 0.611 0.053 0.029 0.977Table 5.7: Correlation factors between the generated and original sequences

fI = 0:351 fP = 0:092 fB = 0:047Model Corr(Empirical,Generated)Scene-based 0.864DMC 0.768Histogram 0.771Table 5.8: Correlation factor between the generated and actual sequence(Dino)
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Figure 5.17: Autocorrelation Function Validation (Dino)in the capturing the ACF of I frames).5.6 Integrating MPEG Stream into the Work-load ModelIn order to test and evaluate the performance of a network system or an ATMswitch, it is necessary to provide an arti�cial tra�c (as a workload into thesystem) closely resembling the real tra�c. Recording and producing the realtra�c can be di�cult and expensive because this process requires large storagespace and high processing speed [Chu95]. The alternative is to use a tra�csource model to imitate the behaviour of the real tra�c. In this section, wedescribe the steps required to integrate the MPEG sources onto a realisticmultimedia workload model. In order to do so , we have to use a tra�c modelthat is able to describe the statistical behaviour of the empirical data sets.The tra�c modelling is an important aspect of any network simulationstudy. Outputs from a simulation model are highly dependent on the inputsprovided to the model, and without realistic input workload models, the sim-ulation results are of little value. The tra�c characterisation and the analysis
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Figure 5.18: ACF for I, P and B Frames (Generated-based and Actual Se-quences)process (which are part of the tra�c modelling) can be used to develop a tra�cmodel which captures the main features of that tra�c. There are many tra�cmodels which have been constructed to be used within a workload model asrepresentative examples of multimedia tra�c. It is important to mention that,as a synthetic workload , we need a simple and e�cient model with a smallnumber of parameters. More complex models require more accurate parame-ters. Therefore, the choice of the models to be used will depend entirely onthe performance measurements of the realistic tra�c.The goal is to provide a simple source model for VBR MPEG tra�c inorder to generate a synthetic tra�c for the application level tra�c genera-tor. Generating a synthetic workload eliminates the need to store voluminousframe-level traces representing MPEG tra�c. Such an approach also o�ers
exibility, tunability and reproducibility in the generated tra�c. Figure 5.19depicts the complete overview of the modelling process, as well as, the gener-ation process which can be described through three main tasks as follows (the�rst two tasks were discussed in the previous chapters):1. Analysing empirical data sets for various MPEG sequences to de�ne



VBR MPEG Statistical Modelling 107the statistical characteristics. This included de�ning the characteris-tics of VBR MPEG streams in terms of their statistical behaviour. Weused three statistical measures: Distribution, Autocorrelation Function(ACF) and Scene change;2. We then formulated the statistical results, using a suitable model whichcaptures the statistical behaviour of the empirical data (at GOP level).In order to evaluate the model, we needed to examine whether the modelwas able to approximate the statistical behaviour of the real MPEGsequences or not. We then compared the simulation results of the modelwith the real empirical data in order to examine the performance impact;and3. Lastly, we used the model to generate a synthetic tra�c (at frame level)with similar characteristics of the real tra�c. This process includedan integration of VBR MPEG sources to the workload model. Then,a periodical frame sequence is generated representing an actual videostream. The output of this task is a synthetic tra�c which can be usedfor any performance evaluation study as a system workload5.6.1 An Example of Generating a Synthetic MPEGTra�cThis section illustrates a full process of generating a synthetic MPEG sequence(or a pattern, including I, P and B frames) based on a tra�c model. The mainobjective is to give (demonstrate) an idea on how a source model can be usedin order to provide synthetic tra�c representations of a realistic workload. Inthis section, the Markovian based model are used to illustrate the example ofgenerating a synthetic MPEG tra�c. However, the generation using the scenebased model was discussed previously in section 5.4.Firstly, we use the simple tra�c models (see sections 5.3 and 5.4 ) togenerate the GOP layer. Then, the scaling factor process is used to generatean MPEG video pattern (stream) from the GOP sequence. As an applicationlevel tra�c generator, it is important to notice that we have to use simplemodels in order to characterise an MPEG sequence. Consequently, the models
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VBR MPEG Statistical Modelling 109will be parameterised to generate synthetic workloads that closely match theactual MPEG stream ( the original empirical data sets).The integration of the MPEG source process starts with an empirical dataset of an MPEG sequence. The empirical data set contains frame sizes for theMPEG sequence. A GOP layer will be used for our modelling as a �rst levelof capturing the GOP-GOP correlation. The GOP sizes could be calculatedby summing up every 12 consecutive frames. First of all, we need to �nd somestatistical parameters (for example mean, variance, peak ...) to describe thedata distribution. The range of GOP sizes is divided into several quantizationintervals fqi : i = 1; 2; 3; :::;Mg where M is the number of quantization inter-vals and the number of the intervals depends on the formulated model. Themean value of the interval i , �qi, should be found to represent the size of thequantization interval.In the Histogram model, the number of quantization intervals is basedon the selected number of the histogram bins. As shown in section 5.3, theHistogram model can be described as 0-order Markov chain process. The num-ber of Markov states is equal to the number of the quantization intervals. Itis possible to improve the distribution feature of the model by increasing thenumber of quantization intervals, but this will led to an increase in the numberof states. Each state i is associated with the Mean value �qi of that interval.The transition from a state to another is controlled by the transition matrix.We estimate and de�ne the transition matrix as follows:Pij = niN where N = M�1Xi=1 ni and ni = number of GOP 0s in qiWith every transition from i to i + 1 state, the �qi value of next state isgenerated. It is very important to mention that the transition from a state toanother is completely independent from the previous transition.The DMC di�ers from the Histogram model in two main ways: the numberof quantization intervals and the transition matrix. The number of quantiza-tion intervals is based on the standard deviation value of GOP sizes. Thelarger the number of states, the better the results, but a large number makesthe model more complicated, and needs more memory in the generating pro-cess. Therefore, a careful selection of the number of states should be made. We



VBR MPEG Statistical Modelling 110used the standard deviation of the GOPs as a scale to �nd a suitable numberof states. The �rst quantization interval, q1, starts with the minimum valueof GOP. Another way of �nding the size of the quantization interval could beachieved by employing the following calculation:Sizeq = MaxGOP�MinGOPkwhere MaxGOP andMinGOP are the maximum and the minimum value of theGOP and k is a selected quantization value.The calculation of the transition matrix shows that the transition fromone state to another depends on the previous transition. With every transi-tion from state i to j , �qi is generated. The transition matrix is de�ned andestimated as follows :Pij = nijNi where Ni = PM�1i=0 nij and PM�1j=0 Pij = 1 for i = 0; 1; :::;M � 1where nij is the number of transitions from state i to state j , Ni is the totalnumber of transitions out from state i. For instance, Table 5.9 shows thetransition matrix for the `video conference' sequence.M 0 1 2 3 4 5 6 7 8 90 0.68 0.29 0.03 0 0 0 0 0 0 01 0.20 0.63 0.13 0.02 0.02 0 0 0 0 02 0.02 0.41 0.33 0.19 0.03 0.02 0 0 0 03 0.03 0.15 0.29 0.09 0.06 0.09 0 0 0 04 0 0 0.14 0.33 0.24 0.19 0.05 0.05 0 05 0 0 0.11 0.11 0.56 0.22 0 0 0 06 0 0 0 0.14 0.43 0 0.29 0 0.14 07 0 0 0 0 0 0 0 0 0 18 0 0 0 0 0 0 1 0 0 09 0 0 1 0 0 0 0 0 0 0Table 5.9: Transition Probability Matrix for `video conference' sequenceConsequently, a sequence of GOPs is generated using the above processeither based on the Histogram-based or DMC model. In order to integratethe statistical model to our workload model, we need to produce a sequenceof frame sizes. The frame sizes could be calculated from GOP sizes by theScaling Factor process which has been presented in section 5.5.1.



VBR MPEG Statistical Modelling 111Because the tra�c generator is expecting to be worked at an applicationlevel, the frame rate, at particular rate (for instance 25 frames/sec), couldbe generated in order to represent an MPEG source. For our purpose, wecould have three tra�c sources which represent the three classes of the MPEGsequences: a sequence with a large number of movements (a high activitysequence); one with an average number of movements (a moderate activitysequence) and a third sequence with a small number of movements (a lowactivity sequence). These three types of tra�c can be integrated into theworkload model for the video tra�c representation. For the tra�c generationprocess, there are two ways to transmit tra�c units: either at the maximumrate of the input link, to the network, or they could be transmitted with aconstant interarrival time. [Heyman92] used the �rst one while [Rose95b] usedthe second.In order to compare the impact of the generated sequence and the actualsequence on the system performance, simulation experiments are conductedto study the performance of an ATM multiplexer using the generated (orsynthetic) sequence based on the tra�c models (DMC has been selected todemonstrate this simulation experiment). The multiplexer is modelled as a �-nite capacity queueing system with, bu�er size B, and one server with servicerate C. A FIFO service discipline is assumed. The input of the multiplexerconsists of MPEG sequences (or frame level). Two simulation experimentsare conducted. The simulation uses the actual MPEG sequence, while thesecond experiment employs the generated sequence based on the proposedmodels. In both experiments, the tra�c source (multiplexing input) consistsof a large number of frames arranged according to the compression pattern[IBBPBBPBBPBB]. Bits in each frame are packetised into ATM cells (in ad-dition to 5 bytes as a cell header) and the cells are transmitted using 
uid 
owapproach [Knightly96].To examine the performance of the simulation operating at heavy load,a su�cient load is needed. A low load level is not interesting because theprobability of congestion is too low, and a very high load level is an unrealisticnetwork operation [Liu92]. Thus, the service rate is adjusted in order to obtainan 80% of system load (or 0.8 load). Figure 5.20 shows the cell loss ratio (CLR)versus the bu�er size for both sequences (actual, generated). For the sake ofelucidation, we show the simulation results for the `video conference' sequence



VBR MPEG Statistical Modelling 112

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

100 200 300 400 500 600 700 800 900 1000

C
LR

Buffer Size (Cells)

Cell Loss Ratio for the Generated and Real Traffic of Video Conference stream

Generated Traffic
Real Traffic

Figure 5.20: Cell Loss Ratio Resultsonly. It is clear that there is an improvement in the CLR performance with alarger bu�er size. Another observation is a clear agreement between the resultsobtained using the model and the results from the actual sequence. Thus, thetra�c model can be used to emulate a realistic MPEG tra�c for simulationexperiments for the sake of the performance evaluation testing.5.7 SummaryIn this chapter, we have described the statistical analysis and modelling ofMPEG sources. The aim of this analysis and modelling is two-folds (1) tocharacterise an MPEG sequence using an appropriated model to determine asimple model to capture the statistical behaviour of a VBR MPEG sequence,and (2) to derive tra�c models to be generated by programs (library of tra�cmodel functions). In turn, these programs are used for a multimedia workloadmodel. In the statistical analysis and modelling, we have used several MPEGdata sets (e.g. `Dino', `Race', `video conference' sequences), to cover as widerange of scenario types as possible, and to ensure that the workload modeldelivers realistic scenarios.



VBR MPEG Statistical Modelling 113Based on the results of the statistic analysis, we have used two Markovianbased models (the Histogram based model and the Detailed Markov chainmodel (DMC)) to approximate the statistical behaviour of the MPEG se-quence. We have shown that the DMC model can be used to approximatetwo classes of MPEG sequences (high activity and low activity sequences).Based on the analysis of scene change within an MPEG stream, we presentedan extensive scene change based model. We used the scene change identifyingtechniques and the characteristics of the scene changes to construct an MPEGsource model. We have examined the statistical behaviour of the generatedsequence from the model and the original sequence. We observed that themodel captures the main statistical parameters of the actual sequence at dif-ferent time scales (for both GOP and frame). We also showed that the modelcaptures the dependency features of the original sequence. We have also de-scribed the modelling process component of this work; that is, once the modelsare identi�ed, what is the process of translating these into programs. In addi-tion, we have explored the steps of integrating the MPEG tra�c model withinthe multimedia workload model.



Chapter 6Multiplexing of VBR MPEGTra�c
6.1 IntroductionAs mentioned before, an encoded video tra�c is a correlated and bursty tra�cwith a high degree of peak to mean ratio (or burstiness). For ATM networks,the challenge of QoS guarantees is to allocate an e�ective bandwidth for eachvideo connection; a tradeo� should be achieved between improving the net-work utilisation and providing QoS guarantees. A number of algorithms havebeen proposed to calculate the e�ective bandwidth for VBR tra�c [Belhaj97][Zhang94] or for a general tra�c for high speed networks [Guerin91]. Generallyspeaking, the e�ective bandwidth allocation can be de�ned as the service ratecorresponding to the cell loss probability. The e�ective bandwidth is computedto be close to the long range average (mean) rate and far from the peak rate.The bandwidth allocation algorithm works as a part of the call admission con-trol and should be done on the 
y. Therefore, the algorithm should be keptsimple in order to meet real time requirements. The allocated bandwidth couldbe based on either deterministic multiplexing or statistical multiplexing. De-terministic multiplexing provides stringent bounds on QoS guarantees, whilestatistical multiplexing provides probability based bounds on QoS guarantees.However, statistical multiplexing improves the network utilisation, while de-terministic multiplexing improves performance guarantees. Thus, a tradeo�should be achieved between the network utilisation, and delivering the desiredlevel of QoS guarantees. 114



Multiplexing of VBR MPEG Tra�c 115In this chapter, we use the characteristics of VBR MPEG streams to studyand then improve the network utilisation. Several models have been proposedfor the characterisation of MPEG tra�c. The model can be based either onstochastic processes [Kara97] [Rose95a] [Venturin95] or deterministic processes(or models) [Knightly95] [Krunz97]. A deterministic model for MPEG tra�cwill be used for our study. An MPEG stream is a deterministic periodicalpattern. Thus, the advantage of this deterministic pattern will be used toachieve a stream synchronisation (stream arrangement) for the multiplexedMPEG connections. In other words, we de�ne an arrangement1 to multiplexmultiple MPEG streams before entering the network. The process of the ar-rangement will be analysed and described for multiplexing MPEG connections.The multiplexing gain (mg) factor is used to quantify the network gain. Thisfactor will be used to measure the improvement in the network utilisation. Todemonstrate the multiplexing gain, we use several sequences of real MPEGvideo streams which contain empirical data sets of MPEG frame sizes. In or-der to study the impact of the scene changes on the multiplexing gain (mg)for synchronised streams, the data sets represent a variety of video streamsincluding video conference, sports events and TV programs.This chapter is organised as follows: In the following sections, we describea deterministic multiplexing framework based on an arrangement for multi-plexed VBR MPEG streams. We then describe a method by which we canestimate the allocated bandwidth for each multiplexed stream. Lastly, weundertake several simulation experiments in order to show the impact of thestream arrangement and the scene changes on the allocated bandwidth, andthe multiplexing gain.6.2 Deterministic Multiplexing of MPEG StreamsIn this section, we present a deterministic multiplexing framework with nodata loss and very small delay bound at an ATM multiplexer. In chapter 4,we explored the characteristics of the burstiness behaviour for MPEG tra�c,which enabled us to de�ne the amount of activity within the MPEG stream. Inthis section, we relate the tra�c behaviour and the deterministic multiplexing.This can be achieved by describing the deterministic model that we used to1In this chapter, the terms `arrangement' and `synchronisation' are used interchangeably.



Multiplexing of VBR MPEG Tra�c 116characterise an MPEG sequence. The main objective of this is to �nd a suit-able model to capture the deterministic behaviour of a VBR MPEG sequence(or pattern). We then present a stream synchronisation way for multiplexingMPEG streams. Based on this synchronisation, we will be able to calculateand allocate the e�ective bandwidth for a number of multiplexed VBR MPEGsources with guaranteed QoS. Lastly, we demonstrate the impact of both thesynchronisation, and the scene changes, on the allocated bandwidth and themultiplexing gain.6.2.1 Deterministic ModelSeveral tra�c models were proposed for the characterisation of compressedvideo tra�c starting from a simple model (such as stochastic) up to a moresophisticated one (such as self-similar). Because most of these are probabilisticin nature, they cannot be used to provide deterministic guarantees.We explore the case when N homogeneous VBR video sources, fSri : 0 �i � N � 1g, are multiplexing and transmitting VBR MPEG streams. We con-sider a network with non-blocking switches, where queueing happens at theoutput link of each switch. The service rate (or link speed) is constant andthe arrival rate for each stream is equal to the frame rate of MPEG encoder.We use a deterministic model for the MPEG source [Krunz97] which was �rstmentioned in [Knightly95]. We extend the analysis of the deterministic mul-tiplexing in terms of providing a guaranteed QoS. The model uses a tra�cenvelope which provides an upper bound on the bit rate. VBR MPEG tra�cis very bursty. Thus, the tra�c envelope is varied for every stream accordingto the statistical behaviour of the tra�c and the amount of activity withinthe stream. Therefore, we need to know in advance the upper bound of eachmultiplexed stream.The deterministic model can be de�ned, using �ve simple parameters (seeFigure 6.1) for characterising VBR MPEG tra�c:� L: is the size of GOP or the number of frames between two `I' frameswithin the same MPEG pattern.� Q: is the number of frames between 'P' frames within the same MPEGpattern.



Multiplexing of VBR MPEG Tra�c 117� IUb: is the maximum size of `I' frames.� PUb: is the maximum size of `P' frames.� BUb: is the maximum size of `B' frames.
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Figure 6.1: The Deterministic Model For VBR MPEG StreamsA tra�c constraint function, Ub(t), bounds the actual bit rate where t ismeasured in frame period. In the case of one MPEG stream, by using theseparameters, Ub(t) can be de�ned as IUb; PUb or BUb for a given t. As a re-sult, the tra�c can be characterised by a tra�c envelope (IUb; PUb; BUb; L;Q).In the next section, we will show that the constraint function and the peri-odical deterministic structure of the MPEG stream can help to provide andsupport the deterministic QoS guarantees with conjunction with the statisticalmultiplexing.6.2.2 A Synchronisation Structure for MPEG StreamsThis section describes the possible arrangements for multiplexedMPEG streams.There are various ways to arrange the starting time of each multiplexed stream.For instance, all streams may start at the same time (i.e. all streams transmittheir 'I','P' and 'B' frames at the same time). Alternatively, the starting timeof each stream could be chosen randomly. However, when a CAC function isexecuted without considering the starting time, there always exists the pos-sibility of not meeting the QoS requirements [Roh97]. Thus, the cell losses



Multiplexing of VBR MPEG Tra�c 118are provided only as a function of the number of connected sources, regardlessstarting time arrangements.For the statistical multiplexing, [Rose95b] presented the impact of the var-ious ways of multiplexing on cell losses. Generally speaking, the stream ar-rangement could be achieved by enforcing the starting time of multiplexedMPEG streams.Now, let us assume that N homogeneous MPEG streams are multiplexing.Each stream is characterised, as speci�ed in the last section, by the followingtra�c descriptor: (IUb; PUb; BUb; L;Q)If the starting time for the stream i is ui where ui 2 U which is a set ofpossible starting times (frame based), the starting time for each stream couldbe one of the following integer values: f0; 1; 2; 3; :::; L� 1g. The starting time,ui, could be speci�ed as a counter which increases with every incoming stream.If N � L, then the starting time for stream J , where ModLJ = 0, restartsagain to 0 and so on. The eU , which is the synchronised set of N streams, canbe de�ned as follows:eU = fu1; u2; u3; u4; ::: ; uL| {z }; uL+1; ::: ; uNgm = fu1; u2; u3; u4; :::; uLgWhere u1 = 0; u2 = 1; u3 = 2; u4 = 3; :::; uL�1 = L� 2; uL = L� 1; uL+1 =0; :::; uN = N � 2. The set m can be de�ned as a repeated sequence, m � Uwhere 1 � number of m sets � NL .6.2.3 Bandwidth Allocation For Multiplexed MPEG StreamsIn this section, the allocated bandwidth for each multiplexed MPEG stream(deterministic multiplexing is considered) is described when multiple MPEGconnections are multiplexed. We will then demonstrate how we can achievebandwidth gains when a number of MPEG streams are multiplexed with thestream synchronisation eU .Most of the compressed video tra�c requires very restricted QoS guaranteeswith no losses and very short queueing delays. Such deterministic guaranteescan be provided by allocating a bandwidth based on the peak bit rate for eachtra�c source. However, this methodology reduces the network utilisation,which can be improved by using the statistical multiplexing technique. More-



Multiplexing of VBR MPEG Tra�c 119over, statistical multiplexing is typically used for statistical guarantees not fordeterministic guarantees. However, if the stream synchronisation approach isemployed, it is possible to maintain deterministic guarantees in conjunctionwith statistical multiplexing.For the deterministic guarantees, an e�ective bandwidth (C) can be al-located using the constraint function fUb(t), t � 0g which is the maximumboundary of the stream [Krunz97]. In order to estimate the e�ective bandwidthfor multiplexed MPEG streams, let us �rst demonstrate only two multiplexedstreams. The following example demonstrates the bene�ts of the statisticalmultiplexing with two MPEG streams. The two MPEG streams are homoge-neous and the second stream starts just one frame duration after the �rst one.The maximum value of the constraint function for the aggregated stream canbe de�ned as:Ubaggregated(t) = Ub(t) + Ub(t + 1) < 2Ubmax(t � 0)where Ubmax(t), t � 0 is the maximum bound of the stream (which is framebased). For deterministic guarantees (no loss and very short queueing delays)an e�ective (or equivalent) bandwidth should be allocated for each stream.The e�ective bandwidth, C, can therefore be de�ned as:C = MaxfUb(t); Ub(t + 1)g2 = IUb +BUb2 < IUbC could be measured in cells per frame period. It is clear that the e�ec-tive bandwidth, which needs to be allocated for each stream is less than thepeak. In some cases, a small bu�er is needed when two cells arrive at themultiplexer simultaneously. It is important to note that the bandwidth gainsfrom the statistical multiplexing obtained from the spatial averaging (or pat-tern synchronisation), not from temporal averaging (or bu�ering). Therefore,the arrangement of the starting time of each MPEG stream has an impact onthe e�ective bandwidth allocation. The arrangement could be placed either atthe MPEG source before the multiplexing (such as at the Video On Demand(VoD) server node) or at the intermediate network node (such as the inter-mediate switch). In the �rst case, a small amount of delay (in term of frameperiod) could be imposed on the starting time of the MPEG stream. In the



Multiplexing of VBR MPEG Tra�c 120second case, a small bu�er could be needed to arrange the frame.In order to estimate the e�ective bandwidth of N multiplexed homogeneousstreams associated with a stream arrangement, let us suppose that ui is thedi�erence between the arrival time of the `I' frame for stream i and the arrivaltime of an `I' frame for the last recent stream (e.g. i � 1). By doing so, thesynchronisation of the streams can be speci�ed as:ui 2 f eU : (u1; u2; u3; :::; uN)g where u1 = 0Consequently, the e�ective bandwidth (cells/frame) for each stream with agiven eU set can be de�ned as [Krunz97]:C(u;N) = Maxt�0(PNi=1 Ub(t + ui))NLet nI ; nP ; and nB be the number of MPEG streams that send `I', `P' or`B' frames simultaneously, where nI + nP + nB = N . Then, the e�ectivebandwidth can be written as:C(u;N) = nI IUb + nP PUb + nB BUbNSimilarly, C is measured in cells per frame period. It is clear that C(u;N)is less than the peak PNi=1 IUb.In the case of multiplexing heterogeneous streams, IUb, PUb and BUb aredetermined as the maximum values of these parameters from the various mul-tiplexed streams. However, this will reduce the utilisation if there is a vastvariation between the peak values of the multiplexed streams. For instance,when the 'video conference' streams are multiplexed with the 'Movie' streams.6.2.4 The Impact of The Stream Arrangement and SceneChangesIn this section, we explore the impact of scene changes within the same MPEGstream on the allocated bandwidth when several MPEG streams are multi-plexed with arbitrary arrangements. First, in order to show the impact ofthe stream arrangement on the bandwidth gains, we multiplex three MPEGstreams with various starting times ui (except the �rst stream, u1 which is



Multiplexing of VBR MPEG Tra�c 121always 0). To demonstrate a realistic MPEG stream, and for the sake of il-lustration, we employ a real traced data for only two MPEG video streams`Dino' and `video conference'. These streams have been chosen because theyrepresent di�erent classes of VBR MPEG sequences (see chapter 3).We will demonstrate how much bandwidth gain can be achieved with var-ious arrangement sets. When three MPEG streams are multiplexed with var-ious starting times, ui, the arrangement set can be presented as the following:eU = f0 ; j ; igwhere ; 0 � i � L� 1 and 0 � j � 3In the case of the `Dino' sequence, see Figure 6.2(a), it is clear that withsome stream arrangements we can reduce the bandwidth requirements evenwhen bounded deterministic guarantees are provided. It is possible to reducethe allocated bandwidth for each stream up to 28% o� peak (i.e. 72% ofpeak). There is only one exception, (0, 0, 0), when all streams have the samestarting time (0), the allocated bandwidth is equal to the peak. Therefore,the amount of reduction depends �rst on the arrangement set eU . The scenechange is another factor which has an impact on the amount of reductionon the bandwidth requirement. This can be observed when we demonstratethe last example with the `video conference' stream. Figure 6.2(b) shows theamount of reduction on the bandwidth requirement. In the case of this classof sequence, it is clear that we can achieve up to 54% o� peak (i.e. 46%of peak). This amount of reduction has been achieved because of the ratiobetween IUb and BUb. Due to the amount (or level) of activity within thesequence (see section 4.3), the `video conference' sequence has a small amountof scene change. Therefore, the size of its `I' frames are much bigger thanthe size of its `B' frames; while in the case of the `Dino' sequence, there area moderate number of movements. As a result, the amount of activity withinan MPEG stream has a noticeable impact on the bandwidth allocation.In another experiment, we observed that the amount of allocated band-width for each multiplexed stream decreases when the number of the streamsincreases. It is important to notice that there is a limit to the number ofmultiplexing streams needed to achieve the minimum allocated bandwidth;therefore, we have C� / 1n ; 1 � � � n
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(b)Figure 6.2: Bandwidth Gain (the `Dino' and `video conference' Streams)



Multiplexing of VBR MPEG Tra�c 123where n is the maximum number of streams to achieve the minimum band-width C�. The minimum allocated bandwidth is limited by the relation be-tween the VBR MPEG stream descriptors and the number of multiplexedstreams. Figure 6.3 depicts a decay in the amount of the allocated bandwidthin relation to the increasing number of multiplexed streams. This shows thee�ciency sharing of the link capacity. However, if there is only one stream,the peak rate is allocated. Furthermore, the curve decays very rapidly until itreaches the minimum bandwidth. There are other smaller peaks in the curve,which appear when ModLN = 0. As a result, the allocated bandwidth canbe related to both the stream descriptor and the number of the multiplexingstreams, as follows:C = Int(NL + 1)IUb + NQPUb +N( 1L + 1Q)BUb)N
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Figure 6.3: Allocated Bandwidth Gain For N MPEG Streams6.2.5 Multiplexing GainThis section evaluates the statistical multiplexing for VBR MPEG streamsand describes another factor (mg) that can be used to measure the gain in the



Multiplexing of VBR MPEG Tra�c 124utilisation above the peak rate allocation. This multiplexing gain factor will beused to quantify the improvement of the network utilisation. The multiplexinggain (mg) could be de�ned as: mg = NIUbCIn order to show the amount of multiplexing gain, we have multiplexed sev-eral MPEG streams with a given eU arrangement. Figures 6.4 (a) and (b) depictthe multiplexing gain for the `video Conference' and the `Dino' sequences. Thevalue of the multiplexing gain starts with 0 , then it starts to increase withthe increasing number of multiplexed streams. Another observation from these�gures is that the value of mgvideo is higher (up to 3.2) than that for mgDino(up to 1.56). Consequently, the amount of activity has also an impact on thevalue of mg. In addition, the �gures show several peaks when ModLN = 0.In other words, when 'I' frames are overlapped. Furthermore, there is a limitto the multiplexing gain value even though the number of the multiplexedstreams is increasing.6.3 In
uence of Stream Arrangement on Queue-ing PerformanceIn order to explore the performance of the stream arrangement on an ATMmultiplexer, simulation experiments are presented in this section for the multi-plexing of multiple `Dino' sequences at di�erent level system loads, and throughdi�erent bu�er sizes. Then, cell losses result for the multiplexer bu�er are alsopresented in this section.The simulation results showed which property of MPEG video stream has amajor impact on the multiplexer performance (YATS simulator was used). Forexample, these experiments helped to show the in
uence of GOP pattern on thecell losses. We have chosen two approaches of multiplexing: arranged and non-arranged streams. The simulation experiments have been conducted with both,arranged and non-arranged streams, approaches. In the arranged streams,the o�set (or the starting time) of each stream was synchronised one frameperiod after the previous stream, thereby ensuring a minimum overlappingof `I' frames (which did not have identical multiplexing). While in the non-arranged streams, all streams start the GOP at the same time, i.e. all streamstransmit their I, P and B frames during the same time intervals.
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(b)Figure 6.4: Scene Change and Multiplexing Gain



Multiplexing of VBR MPEG Tra�c 126The simulation model can be described as N MPEG streams which are mul-tiplexed through a single multiplexer with an output link of 50 Mbits capacity.The number of multiplexed streams determines the system load. Various bu�ersizes were used for the multiplexer in order to smooth out the 
uctuations ofthe multiplexed streams when the system's load is increased (i.e. relating thebu�er size with the maximum delay). An FIFO discipline was considered.Each frame was packetised into the payload of ATM cells with an evenly dis-tributed (within the same frame period). Thus, the interarrival times are equalwithin the frame duration.
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Figure 6.5: CLR for N Multiplexed Streams (Dino)Figure 6.5 illustrates the cell loss ratio against the number of multiplexedstreams for both arranged, and identical stream, multiplexing at bu�er size1000 cells. It is clear that the CLR curve in the case of arranged streams isbelow the CLR curve for the identical stream multiplexing. This occurs mainlybecause of `I' frame overlapping, which leads to bursts of cell transmissionsduring `I' frame durations. On the other hand, the CLR is reduced whenthe multiplexed streams are arranged. Therefore, the number of multiplexedstreams can be increased with the arranged multiplexing approach.Increasing the bu�er size reduces the CLR, but at the cost of increasingqueueing delay. We have also conducted simulation experiments on the mul-



Multiplexing of VBR MPEG Tra�c 127tiplexing of N MPEG streams, with the identical approach at di�erent bu�ersizes. Figure 6.6 shows the e�ect of bu�er size on cell loss performance. Clearly,bu�ers can reduce the cell loss to great degree. For instance, with bu�er sizesof 500 and 200 cells, the CLR increases with a smaller bu�er size. However, alarger bu�er size increases the waiting time in the bu�er (i.e. maximum delay).The cell loss increases sharply when the number of stream is increased due tosuch bursty tra�c (particularly from 'I' frame transmission). However, whenthe number of streams is more than 10, the curve of the cell loss starts to takemore horizontal shape. Thus, the bu�er size increase has very little impacton cell loss performance when the increase passes a certain point. This meansthat just increasing the bu�er size, for instance at an ATM switch, cannotsolve the problem of cell loss satisfactory when tra�c is highly bursty such asMPEG and burst durations are long ('I' frame).
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Figure 6.6: CLR for N Multiplexed Streams at Di�erent Bu�er Sizes (Dino)Consequently, ATM uses statistical multiplexing as a means for resourcesharing. For instance, the link capacity, at an ATM multiplexer, is sharedby cells from various tra�c streams. Thus, the bandwidth is dynamicallyallocated so that if a stream is temporarily idle, its bandwidth is given to otheractive streams. As a result, statistical multiplexing improves signi�cantly thebandwidth utilisation. However, the QoS guarantees are o�ered only on a



Multiplexing of VBR MPEG Tra�c 128statistical basis.In order to investigate the feasibility and e�ciency of resource sharing inthe case of the statistical multiplexing, we have focused on an ATM multiplexerwith multiple VBRMPEG video streams at its input. Although a general ATMnetwork will be more complex, the consideration of a simple ATM multiplexermodel is useful to understand the behaviour and the impact of the statisticalmultiplexing of VBR MPEG streams with respect to the system con�guration(i.e. system capacity and link speed). Other important issues which canbe considered are the measurement of the cell loss ratio and the throughputestimation (allocated bandwidth) in such systems.6.4 SummaryIn this chapter, we showed that it is possible to achieve multiplexing gains evenwhen we provide deterministic QoS guarantees. We described an arrangementfor multiple multiplexed MPEG streams called stream synchronisation. Thearrangement could be achieved by enforcing the starting time of each multi-plexed stream. Taking advantage of MPEG coding (spatial averaging), we areable to reduce the amount of the allocated bandwidth for each multiplexedstream. In addition, we showed that the synchronisation of the streams a�ectsthe calculation of an e�ective bandwidth.We also showed that it is important to notice that multiplexing gains donot only depend on the stream's synchronisation, but also depends on theamount of activities within the multiplexed streams. Consequently, the resultsobtained in this work are important in terms of demonstrating the e�ect ofstream activities on the network utilisation. This has be achieved when weemployed the multiplexing gain factor, mg, which quanti�es the network gain.Several simulation experiments are performed to show the in
uence of MPEGproperties on the performance of an ATM multiplexer. The simulation resultsshowed that GOP structure has a major impact on the multiplexer perfor-mance in terms of increasing the cell losses. In other words, when multipleMPEG stream are multiplexed with an arrangement approach, the cell lossperformance improves. The impact of increasing the bu�er size is also studied.Due to the burstiness of MPEG tra�c, the bu�er size increase does not havemuch impact on the cell loss performance when the increase passes a certain



Multiplexing of VBR MPEG Tra�c 129point. Furthermore, a tradeo� should be achieved between having a largebu�er and increasing the waiting time at the bu�er (corresponding delay).



Chapter 7Evaluation
7.1 IntroductionThis thesis deals with the characterisation, modelling and multiplexing of VBRMPEG tra�c over an ATM network. The encoded MPEG tra�c introducesseveral issues that must be addressed in order to attack the problem of the traf-�c modelling. This includes analysing the statistical characteristics of MPEG,predicting the tra�c behaviour, and then formulating the characteristics asa tra�c model. Modelling the VBR MPEG tra�c requires an understandingof its statistical characteristics. The complexity involved in modelling MPEGcoded video tra�c increases as the movement activity. Furthermore, the peri-odic characteristics associated with the MPEG encoder increase the complexityinvolved in modelling as well. However, from the way MPEG is designed, net-work utilisation improvement and multiplexing gains can be achieved from theMPEG sequence by forcing a sort of arrangement for the multiplexed streams.This chapter presents an overall evaluation of the results which were obtainedfrom our analysis and modelling of MPEG throughout the thesis.7.2 EvaluationIn this thesis, extensive tra�c characterisation and modelling processes wereintroduced. An evaluation of this work can be presented through three majortopics: statistical analysis of VBR MPEG tra�c, VBR MPEG modelling andthe statistical multiplexing of multiple MPEG streams at an ATM multiplexer.130



Evaluation 1317.2.1 Statistical Analysis of VBR MPEGSupporting such a complex tra�c (as MPEG) requires a good understanding oftra�c behaviour. Thus, properties of the analysed MPEG streams have beentaken into consideration in order to achieve an accurate tra�c characterisation.7.2.1.1 Video StreamsIn many previous studies, the video streams used for the analysis were eithershort (such as [Gruenefelder91]) or employed only one type of tra�c activity(such as [Heyman92]). However, the study in this thesis was based on long(40000 frames) and various video streams (21 di�erent streams) obtained fromactual Movies, News and Sports events. This means that a wide range oftra�c activity was covered in order to achieve a better understanding of thestream behaviour, especially the long range dependency feature. Moreover,many characterisation studies of MPEG video tra�c tended to characteriseMPEG at low levels, such as cell or frame [Venturin95] [Reininger94], whileignoring the higher levels, such as GOP, which play the most important roleconcerning the autocorrelation e�ects of an MPEG video stream behaviour(as shown in chapter 3). However, the characterisation process in this thesisconsiders the higher levels of MPEG as well as the lower ones. Therefore, itis challenging to introduce a tra�c model which captures the behaviour notonly of one time scale, but several ones.7.2.1.2 Statistical MeasuresTo ensure a proper tra�c characterisation, the most signi�cant properties ofvideo tra�c were considered for the characterisation process . Three statisti-cal measures were explored, namely distribution, autocorrelation function andscene changes. As discussed previously, each of these measures has an im-pact on the tra�c behaviour. Therefore, extensive studies were performed onvarious MPEG streams in order to gain a degree of insight as to how suchcompressed video tra�c behaved.� Distribution: The probability function of video tra�c is believed toplay an essential role in approximating the queueing behaviour [Casi-lari98]. However, in the case of MPEG tra�c, it has been observed thatthere is no good agreement yet on which the ideal distribution could be



Evaluation 132used to approximate the GOPs. Thus, the probability density functioncan not be used as a basis to characterise GOP sequences. However,Gamma distribution was found to be the closest one among the other(Lognormal and Weibull). The observations of the main statistical pa-rameters, such as the mean and standard deviation values, on variousMPEG sequences showed that their characteristics vary vastly from oneto another depending upon their contents.� Dependency: The dependency feature was explored at di�erent timescales of MPEG tra�c. Correlations (or dependencies) between arrivalswere found to cause considerable degradation in network performance(as measured by cell loss rate). We have demonstrated that an MPEGtra�c sequence exhibits a periodical and complicated correlation struc-ture due to the presence of three di�erent types of frame in one sequence.The dependency was also explored at the GOP level. It was observedthat the autocorrelation function of the GOPs sequence may has variousdecaying shapes. For example, some sequences, such as `Race' and `videoconference' have a negative exponential shape (exponentially decaying),while some others, such as `Dino', exhibit a slowly decaying shape (hy-perbolically decaying) as lag increases. Given these observations, we haveassumed that a sequence with a high or low amount of activity exhibitsa short range dependency, while a sequence with a moderate amount ofactivity experiences a long range dependency.� Scene Change: Unlike that of previous studies, the scene change mea-sure was analysed here in great detail because it is seen as an importantreason for 
uctuations in the overall bit rate within the video stream.Thus, an extensive scene change analysis was undertaken in order to de-tect the impact of scene changes on the tra�c behaviour. A heuristicapproach was used for the scene change characterisation, based on thefact that a signi�cant change in the size of consecutive GOPs is an in-dication of the start of a new scene. Two techniques were introducedto identify a scene change within an MPEG sequence, namely Outlierand Second di�erence. These techniques were used in order to view anMPEG sequence as a collection of scenes. As the result, the MPEG se-quence can be broken down into smaller portions (scenes) which re
ect



Evaluation 133the amount of activity within each MPEG sequence. A large number ofscenes means a high level of activity. The identi�cation technique by theway of conclusion, is used to classify various MPEG streams in terms ofthe sequence activity.7.2.2 VBR MPEG ModellingAlthough the modelling of VBR video sources has recently received signi�cantattentions, there is still no commonly acceptable model which captures thebehaviour of a wide variety of video streams, ranging from a very low activestream to higher ones [Izquierdo96]. The main reasons behind this are theexistences of di�erent encoding schemes and various activity sequences. Wereviewed the contribution of our research with respect to VBR MPEG mod-elling, using the criteria of an appropriate model de�ned in section 2.7.3.7.2.2.1 The Modelling ApproachIn this thesis, we have focused on di�erent modelling approaches for VBRMPEG tra�c in order to �nd an adequate model with respect to the simplic-ity and generality properties of the model. The Markov chain process is widelyused in several studies to capture the behaviour of video tra�c [Heyman92][Stamoulis94]. However, a simple Markovian model shows a lack in captur-ing the dependency feature of video tra�c at various time scales [Rose94a].Therefore, the ability of the Markov chain process was examined in order tobetter capture the behaviour of MPEG tra�c at GOP time scale. Two Marko-vian based models which are of di�erent complexity have been studied here,namely Histogram based model and Detailed Markov Chain model (DMC).The Markov chain approach was also considered in [Heyman96] to formulatea video model. This model overestimated cell losses, due to the simplicity ofthe model and to the level of modelling (frame). As extracted from the statis-tical characterisation analysis of a variety of MPEG sequences, the latter mayexhibit two types of dependency: both short range and long range. The twoMarkovian based models were employed in order to approximate the statisticalbehaviour of the MPEG sequence. With some e�ort, we have shown that theDMC model can be used to approximate two classes of MPEG sequences (highactivity and low activity), even with a small number of states (about 9 states).



Evaluation 134We have also presented a better assessment on the number of states requiredby the Markov chain model. This was done in order to ensure a greater degreeof accuracy.Most modelling studies have focused mainly on the statistical behaviour ofMPEG tra�c as a sequence of frames (at a frame level) without consideringthe impact of scene changes within the video stream. These are believed tointroduce a large variation in the overall bit rate [Lazar93]. The scene changecharacterisation process was used to formulate a new scene-based model. Thenovel element of our modelling approach is the introduction of a new modelfor VBR video tra�c which captures MPEG tra�c behaviours at three timescales: frame, GOP and scene. The importance of the scene changes wasincorporated into the tra�c modelling because of its impact on the tra�cbehaviour (as stated previously). For the sake of comparison, scene changeswere also considered for modelling MPEG tra�c in [Krunz96]. However, thescene changes in that study were based only on `I' frames, while changes in allframe types were considered in this thesis. This has improved the behaviourof the model, especially in relation to queueing performance.7.2.2.2 Ease of ImplementationThe simplicity of the introduced models helped to keep the models easy toimplement in case of generating a synthetic tra�c. The number of parame-ters used to describe the model was deliberately kept low. For instance, nineMarkov chains as well as one dimension transition matrix were used to de-scribe the Markovian models, while the scene based model is described usingtwo processes, namely the scene length and scene variation. The former pro-cess needs only one parameter (q) while the latter one can be described as aMarkovian model.7.2.2.3 Model Appropriateness and LimitationsThe suitability as well as the limitations of the models have been validated bycomparing the behaviour of the generated tra�c and the original one in termsof the statistical and queueing performance [Lazar93]. Due to the di�erentapproaches of modelling, it is possible for the model to predict one behaviouraccurately, while inaccurately predicting another. The two Markovian modelsas well as the proposed one were validated to assess their ability in capturing



Evaluation 135the desirable tra�c behaviour. The ability of models can be assessed usingthree main criteria as follows:� Statistical Parameters: Statistical analysis was performed on gener-ated sequences (GOPs) using both Markovian tra�c models. Despitethe simplicity of the modelling approach, both models have shown agood agreement in terms of capturing the main statistical parametersof the original MPEG sequence. The scene-based model was validatedby analysing their suitability to capture the statistical behaviour of theoriginal MPEG sequence, as well as the multiplexing performance. Themodel was used to generate a synthetic MPEG sequence. By comparingthe statistical behaviour of the sequence (based on the proposed model)and the original one, it has been observed that the model can capturethe statistical behaviour of the actual sequence accurately. The mainstatistical (or distribution) parameters of the generated sequence weremuch closer to that of the original sequence.� Long and Short Dependency: The correlation feature of MPEG wasalso examined at di�erent time scales (GOP and frame). The DMCmodel showed an ability to capture only a sequence with a high or lowlevel of activity (i.e. sequences with short range dependency), whilethe Histogram model showed no correlation at all, due to its concept,which is based only on the distribution properties. However, both modelsdemonstrated a good agreement in capturing the periodical correlationshape of the MPEG sequence at frame level. The frame sequence wasobtained from the generated GOP sequence by using a process calledScaling Factor. Therefore, an improvement is achievable when the mod-elling approach is based on a higher level (such as GOP), while a smallerlevel (frame) can, accordingly, be derived. Due to the limitations ofthe Markovian based models in capturing the dependency feature, a newscene-based model has been proposed to capture the statistical behaviourof MPEG tra�c, especially the sequence with a long range dependencyfeature. The importance of the scene changes in incorporating tra�cmodelling is due to its impact on the tra�c behaviour (as stated previ-ously). In addition, the model exhibits ideally the long range depen-dency feature of the tra�c. For the sake of comparison, it has also been



Evaluation 136found that the ACF curve of the generated sequence �ts the ACF curveof the original sequence.� Queueing Performance: In most cases the validity or `goodness' of amodel is determined by comparing the multiplexing performance of themodel to the original tra�c at an ATM multiplexer [Lazar93]. Simula-tion experiments were conducted to study the performance of an ATMmultiplexer using the generated (or synthetic) sequence based on theproposed model and the original MPEG sequence. The outcome of thesesimulation results showed that the scene based model showed a betterperformance in capturing the queueing behaviour of the original MPEGtra�c at an ATM multiplexer over the two Markovian models.7.2.2.4 Model UsabilityAnother aim of the analysis and modelling of MPEG tra�c was to derive asimple, as well as an e�cient, tra�c model to be employed by simulation pro-grams (through the library of tra�c model functions). In turn, these programsare used for a multimedia workload model to cover as wide a range of scenariotypes as possible, and to ensure that the workload model can deliver realis-tic scenarios. We have explored the steps required for integrating the MPEGtra�c model within the multimedia workload model. An example of generat-ing a synthetic MPEG tra�c was presented in this work, based on one of theMPEG tra�c models. The generated tra�c showed a massive performancecompared to the original tra�c. Therefore, the synthetic tra�c can be usedfor the performance evaluation process of an ATM multiplexer when multipleMPEG streams are multiplexed.7.2.3 Multiplexing GainsWith such bursty and complex tra�c, we have shown that it is possible toachieve a multiplexing gain (up to 3.4 over peak) even when deterministic QoSguarantees are provided. The beauty of MPEG compressed tra�c is that it ismore `regular' and `structured' than any other data types. Another signi�cantbene�t of the way MPEG is designed is that a large `I' frame is followed bya small `B' frame. This reduces the tra�c burstiness caused mainly by thepresence of `I' frames.



Evaluation 137An arrangement was described for multiple multiplexed MPEG streamscalled stream synchronisation. This arrangement was achieved by enforcingthe starting time of each multiplexed stream. By taking advantage of MPEGcoding (spatial averaging), the amount of the allocated bandwidth can bereduced for each multiplexed stream (up to 54% o� peak). In addition, it hasbeen observed that the synchronisation of the streams a�ects the calculationof the e�ective bandwidth.Furthermore, it has been shown that the multiplexing gain does not dependonly on the stream synchronisation, but also on the amount of activities withinthe multiplexed streams. Another factor which has an impact on multiplex-ing gains is the scene changes and their magnitude within the VBR MPEGstream. We have shown the amount of saving in terms of bandwidths overpeak. Consequently, the results obtained in this work are important in termsof demonstrating the e�ects of the stream activities on the network utilisation.Beside, the multiplexing gain factor (mg) was used in order to quantify theoverall network gains.



Chapter 8Conclusions and Further Work
8.1 ConclusionThis thesis has covered three main issues regarding the management of VBRMPEG tra�c over ATM networks. The tra�c characterisation process is animportant issue for studying the performance of tra�c transmission through-out the network. It can also be used to develop appropriate tra�c managementand control schemes. In addition to analysing the statistical behaviour (dis-tribution, dependencies) of various MPEG sequences, the scene changes havebeen explored within an MPEG sequence. Long and various video streamshave been studied in order to cover a range as wide as possible of MPEGsequences, including real Movies, News and Sports events.The results of the statistical analysis carried out in this study suggest thatthe MPEG tra�c is correlated, bursty and exhibits complex patterns whichvary from one stream to another. MPEG tra�c cannot, therefore, be de-scribed as independent tra�c. In addition, it has been observed that one ofthe most important reasons for the 
uctuations in the overall bit rate of MPEGis because of the scene changes within the video stream. Consequently, scenechanges have been analysed in details in order to explore the behaviour andthe impact of scene changes within an MPEG stream. Two methods havebeen presented to identify the scene changes: the Outlier and second di�er-ence. Once the amount of scene changes are identi�ed, it would be possible toassess the degree of activity within the video stream. A `Scene Change Scale'(SCS) has been introduced to exhibit the amount of activity within the MPEGstream. The scale has been used to demonstrate the impact of scene changes138



Conclusions and Further Work 139on QoS requirements. Several experiments have been performed to show theimpact of multiple MPEG streams multiplexing at an ATM multiplexer, re-lating the simulation results to SCS. The scale has been correlated with theresults obtained from simulation experiments. It has been shown that thisscale can be used to assess the impact of scene changes on the QoS guaranteesin terms of cell loss ratio (CLR) for multiplexed MPEG video streams.Another thread that has been explored is a source model construction forVBR MPEG tra�c based on our statistical analysis. The GOP level of mod-elling has been chosen in order to improve the model performance. From thestatistical analysis of various MPEG streams, it has been shown that both longand short range dependencies can be seen as being based on the amount of ac-tivity within the stream. Due to the fact that the Markovian approach exhibitsshort range dependency, two Markovian based models have been introduced in-corporating the Histogram based model and the Detailed Markov Chain model(DMC). To examine the appropriateness and limitations of the models, simu-lation experiments have been conducted to study the performance of an ATMmultiplexer using the generated (or synthetic) sequence based on the modelsand the real tra�c. It has been observed that the generated sequences usingthese models capture the main distribution parameters accurately. However,in terms of dependency feature, it has been shown that the DMC model canbe used to approximate two classes of MPEG sequence (high activity and lowactivity sequences). Furthermore, this thesis has presented two steps neces-sary to integrate the MPEG streams to the multimedia workload model. The�rst step was a statistical modelling process which captured the individualbehaviour of MPEG sources. The second step was the integration process(through a histogram based and/or Detailed Markov Chain model) to linkthese (MPEG) statistical distributions to the workload model.Based on the extensive characterisation of the scene change within anMPEG stream, this thesis proposed a scene change based model. The scenechange identifying techniques and the characteristics of the scene changes havebeen used to construct a composition MPEG source model. The statistical be-haviour of the generated sequence from the model and the original sequencehave been examined. It has been observed that the model captures the mainstatistical parameters of the actual sequence at di�erent time scales (GOPand frame). It has also been shown that the model exhibits the long range



Conclusions and Further Work 140dependency feature of the original sequence due to the incorporation of scenechange characteristics.In order to compare the overall achievements of MPEG tra�c modelling,it has been shown that the Histogram model does not approximate the depen-dency feature while DMC is only adequate for capturing the short range de-pendency feature of the real MPEG stream. By contrast, the proposed model(Scene-based) is capable of capturing the long range dependency feature ofsuch tra�c.This thesis has explored the tradeo� between providing QoS guaranteesand improving the network utilisation when multiple VBR MPEG streams aremultiplexing at an ATM multiplexer. A deterministic framework has beenpresented for MPEG tra�c. An allocation bandwidth approach based on adeterministic model for multiplexed VBR MPEG streams has also been pre-sented. Di�erent arrangements have been described for the multiplexed VBRMPEG streams. The impact of such arrangements on the allocated bandwidthhas been shown as well. As a result, it has been concluded that it is possibleto improve the network utilisation with statistical multiplexing, even in thecase of providing deterministic QoS guarantees. Finally, the impact of thestream activity (the amount of scene changes within MPEG stream) has beenexplored on the allocated bandwidth and the network multiplexing gains. Con-sequently, it has been shown that it is important to notice that multiplexinggain does not only depend on the stream's synchronisation, but also on theamount of activities within the multiplexed streams; this is due to the wayMPEG is designed.8.2 Further WorkThe research presented in this thesis can be extended in many ways. Thesemay include:� The statistical multiplexing helps to improve the network utilisation, es-pecially in the case of bursty tra�c. As shown in this thesis, MPEGtra�c exhibits various degrees of burstiness, based on the video class(activity). The management process of such a complex tra�c is an im-portant aspect for any e�cient use of the available bandwidth. One wayof gaining greater insight into the proposed model (scene-based) would be



Conclusions and Further Work 141by deriving a better way of calculating the e�ective bandwidth requiredfor each multiplexed MPEG connection, with respect to the desired QoSrequirements.� The study of the e�ect of tra�c behaviour in this thesis shows thattra�c characteristics have a signi�cant impact on the performance ofan ATM multiplexer. It might be desirable to study the multiplexingunder a queueing system more complicated than the discipline FIFO,as presented in this thesis. For example, the Weighted Fair Queueing(WFQ) or Strict Priority Control (SPC) could be of interest. The latterprovides guarantees on bandwidth and delay for real time VBR tra�c,while the former only provides guarantees on the share of available band-width [Kara99]. It might be also desirable to conduct a simulation witha more complex network system, including multiple switches and crosssources, in order to explore the impact of the cross tra�c on end-to-endperformance.� This thesis study has concentrated on video tra�c characterisation andmodelling, without taking into account any smoothing technique. Thiswould reduce tra�c variations and hence improve the tra�c handlingmethods. Therefore, it would be desirable to explore the impact of thetra�c smoothing on the performance of the Markovian based models.� One way of gaining greater insight into the delivery of QoS guaranteescould be by studying end-to-end QoS for the transmission of MPEGstreams, and then comparing the actual scene errors (the relation be-tween the QoS parameters and the user view). Exploring the e�ects ofCLR and jitter on the picture quality from the end user visual point ofview would help to improve QoS guarantees.� Due to the existence of various encoding schemes, it is di�cult to �nda generic source model representing an encoded video tra�c. The scenechange based model exhibits an accurate approximation of MPEG videotra�c. It would be possible to make an extensive use of the scene changecharacterisation processes so that they can be applied to other encodingschemes, such as H261.� In this thesis, it has been observed that the scene changes a�ect not



Conclusions and Further Work 142only the complexity of the tra�c characteristics, but also the long rangedependency feature of the video tra�c. There is a general belief that thelong range dependency has an e�ect on the queueing performance at anATM multiplexer. However, some high activity MPEG streams exhibita short range dependency feature. The relationship between the impactof the dependency features, long and short, of various MPEG streamson the queueing performance should be investigated in more detail inorder to demonstrate the relationship between the stream activity andthe dependency feature.� To test and evaluate the performance of a network system, or an ATMswitch, it is necessary to provide arti�cial tra�c which closely resemblesreal tra�c. This thesis has presented the steps needed to integrate theMPEG source model into a multimedia workload model. It would bepossible to build a prototype for the workload model as a representativeexample of multimedia tra�c.
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