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Abstract 

A steady signal exerts two complementary effects on a noisy acoustic environment: 
one is to add energy, the other is to create order. The ear has evolved mechanisms to 
detect both effects and encodes the fine temporal detail of a stimulus in sequences of 
auditory nerve discharges. Taking inspiration from these ideas, this thesis investigates 
the use of regular timing for sonar signal detection. Algorithms that operate on the 
temporal structure of a received signal are developed for the detection of merchant 
vessels. These ideas are explored by reappraising three areas traditionally associated 
with power-based detection. 

First of all, a time-frequency display based on timing instead of power is developed. 
Rather than inquiring of the display, "How much energy has been measured at this 
frequency? ", one would ask, "How structured is the signal at this frequency? Is this 
consistent with a target? " The auditory-motivated zero crossings with peak amplitudes 
(ZCPA) algorithm forms the starting-point for this study. 

Next, matters related to quantitative system performance analysis are addressed, such 
as how often a system will fail to detect a signal in particular conditions, or how much 
energy is required to guarantee a certain probability of detection. A suite of optimal 
temporal receivers is designed and is subsequently evaluated using the same kinds of 
synthetic signal used to assess power-based systems: Gaussian processes and sinusoids. 

The final area of work considers how discrete components on a sonar signal display, 
such as tonals and transients, can be identified and organised according to auditory 
scene analysis principles. Two algorithms are presented and evaluated using synthetic 
signals: one is designed to track a tonal through transient events, and the other attempts 
to identify groups of comodulated tonals against a noise background. A demonstration 
of each algorithm is provided for recorded sonar signals. 
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Chapter 

I Introduction 

Imagine you are asked to give a non-technical description of the car. How you would 
reply? You might respond that the ear turns sound waves into something that we can 
hear and understand. Alternatively, you could draw an analogy from the world of 
technology: microphones, telephones, audio surveillance devices and intercoms are all 
mechanical sound-receivers, and most people today would be content to view the ear 
(and perhaps other aspects of audition) as a biological mechanism for receiving sound. 
The starting point of this thesis is one such analogy: specifically, the analogy between 
hearing and passive sonar-a technology for receiving and analysing underwater sound 
waves. 

This introductory chapter falls into three parts. First, the analogy between hearing and 
sonar must be scrutinised more closely. Does it emerge naturally from the empirical 
results of two, largely-separate sciences, or is it being over-eagerly applied on the basis 

of similarities that appear on the surface'? The ear and passive sonar must also exhibit 
some differences as well as similarities, if aspects of the former are to inspire useful 
changes to the design of the latter. One such difference relates to how the temporal 
information in an acoustic signal is used. 

The central argument of this thesis is that the auditory system utilises temporal features 

of a signal encoded in the timing of auditory nerve spikes to aid signal analysis, 
whereas a conventional sonar system relies exclusively on power, and, furthermore, 

that the success of the ear is partially due to this use of temporal information and 
thus motivates the investigation of a sonar receiver built on similar principles. The 

second section reviews various mathematical interpretations of the timing information 
in signals (specifically, zero crossings), with a view to considering which frameworks 

might be useful in later chapters. The third section provides an overview of the thesis 
objectives and indicates how the remaining material is to be structured. 



1.1 The Groundwork for an Analogy 

1.1 The Groundwork for an Analogy 

We will shortly examine how a biological receiver-the ear-has already informed, 
and has the potential to inform further, the design of a passive sonar receiver. However, 
it is prudent to begin by exploring the historical basis for the ear-and-sonar-as-receiver 
analogy, given its foundational role in what is to follow. 

1.1.1 The Ear as a Receiver: Historical Perspectives 

The mechanicity and recipience of the ear is taken for granted today, but it has not 
always been so. Pythagorus (575-500 B. C. ) proposed that ears (and eyes) operate 
rather like the sense of touch, manipulating the environment directly from afar. 
Aristotle (384-322 B. C. ), who sought to integrate his understanding of the ear with the 
prevalent classical theory of the four elements-air, fire, earth and water-concluded 
that the ear was the "organ of the air". So influential was his theory, that the inner ear 
was still referred to as aer internus [Ltn. internal air] by some workers until the late 
18th Century. 

Volcher Coiter (1534-1600), towards the close of the 16th Century, published De 
auditus instrumento [Ltn. The Instrument of Audition], which summarised the work 
of the earlier anatomists, notably, Vesalius, Fallopius and Eustachio (Finger, 2001). 
This account, as well as naming several parts of the ear, described how sound was 
collected by the outer ear, amplified by the middle ear and set the eardrum in motion. 
It also speculated (correctly) that the nerve endings in the cochlea were responsible 
for detecting sound, although a role was reserved for the aer internus-a vestige of 
classical natural philosophy. A more detailed anatomical picture emerged over the next 
two centuries, spurred on by the advent of the microscope and more delicate techniques 
for preparing specimens for dissection (von Bekdsy and Rosenblith, 1948). 

An explanation of the mechanics of the ear was lacking in all but qualitative terms 
until relatively recently. Hippocrates (ca. 460-377 B. C. ) and his contemporaries had 
observed a hollow cavity within the ear and duly suggested that hearing was somehow 
mediated by echoes or resonance (de Cheveign6,2005; von Bek6sy and Rosenblith, 
1948). But it was not until the time of Helmholtz (1821-1894) that a sufficiently- 
advanced mathematics of acoustics was available to explain quantitatively how parts 
of the ear resonated at different frequencies and could thereby decompose a sound-a 
concept which is still foundational in modern hearing science today (Moore, 2004). 

Theories of hearing based on resonance were accepted slowly for various reasons. In 
the former half of the 19th Century, the empirical evidence was not compelling enough 
to settle the matter. As late as 1866, Rutherford (1839-1899), inspired by the latest 
advances in communications technology, proposed the telephone theory, which states 
that the ear transmits a copy of the stimulating waveform to the brain via impulses along 
the auditory nerve (Finger, 2001). This theory, in its original form, is now discredited; 
but a weaker version of the idea persists in the form of temporal coding theories, which 
allow that the auditory neural signal convey the vibration of resonating structures. 

2 



1.1 The Groundwork for an Analogy 

The abandonment of the telephone theory did not subdue comparisons between 
the ear and a telephone. In 1967, Zwicker and Feldtkeller published Das Ohr 

als Nachrichtenempfänger [Ger. The Ear as a Communication Receiver], with the 
following statement in the English translation of its preface (Zwicker and Feldtkeller, 
1967/1999): 

"These questions [about the ear] are relevant to communication 
technology, because telephones and radios serve to transmit speech and 
music. [... ] We would like to provide an understanding of how the auditory 
system performs as a receiver and as a measurement device. " 

The invention of analogue and digital hearing aids in the 20th Century undoubtedly did 
much to cement the notion of the ear as a mechanical receiver. The earliest devices 
selectively amplified a signal; later models used multiband signal processing. In the 
past thirty years, controlled stimulation of the auditory nerve via a cochlear implant 
has allowed partial restoration of hearing to those suffering from severe hearing loss 
(Moore, 2004). 

With the ear being variously referred to down the ages as an "instrument", "telephone", 
"communication receiver" and "effective signal processor" (Dau et al., 1996), the 
analogy between the ear and mechanical receiver appears to be a well-founded one. 
We must now proceed to the second subject of the receiver analogy: sonar. 

1.1.2 The Development of Sonar 

Early underwater acoustics experiments in the 1800s involved striking a submerged bell 
and measuring the time taken for the sound to arrive at a remote location by signalling 
with lights. Over the course of the century, the propagation of sound in the sea was 
exploited for communication, warning systems and the passive detection of ships. The 
receivers took the form of tubes or "trumpets", one end of which was placed in the 
water, the other at the ear. 

The discovery of the electrical generation of sound towards the end of the 19th Century 
naturally led to advances in underwater science and technology. In 1912, Fessenden 
(1866-1932) developed a single-frequency, electrical oscillator to replace the bell with 
a controlled, high-power source. The sinking of the Titanic ten years later prompted 
Fessenden to incorporate his electrical source into an echo-ranging system for detecting 
icebergs, a concept which still remains in modern-day active sonars. 

The eruption of World War I (1914-1918) created an urgent need for new acoustic 
technologies for use in warfare. The American SC tube employed a stethoscope-like 
device consisting of two listening tubes, which ran down a central column into the 
water and turned in opposite directions at their ends. The listener would place one 
tube in each ear and then rotate the column to discover the azimuthal bearing of a 
sound. Several elaborations of the SC device followed shortly, including the addition 
of multiple receivers and the towing of receivers at a distance to reduce self-noise. 

3 



1.1 The Groundwork for an Analogy 

Technological progress in underwater acoustics slowed considerably between the world 
wars but was revived by the outbreak of World War II (1939-1945) and continued into 

the postwar era. Advances were made on a number of fronts: surveys of ocean sound 
speed and noise characteristics were undertaken in different locations around the world 
during different seasons, and major theoretical results in statistical signal processing 
and information theory were published (including those of Rice, Wiener, Gabor and 
Shannon). It was shortly after the war that the acronym sonar-an abbreviation of 
sound, navigation and ranging-entered the international English vocabulary. 

The advent of electronics and digital signal processing led to radical improvements in 
sonar technology. Active sonar, which investigates the underwater environment by 
transmitting a transient pulse and analysing the returning echoes (like Fessenden's 
early echo-ranging device), was gradually abandoned during the Cold War in favour 
of silent, passive sonar, which listens for the sounds radiated by targets themselves 
(like the SC tube). The need to detect the tonal emissions of quiet submarines over long 
distances thus grew in importance, and the invention of the fast Fourier transform (FFT) 
(Cooley and Tukey, 1965)-a computationally-inexpensive form of the discrete Fourier 
transform (DFT)-made narrowband processing a practical possibility. In modern- 
day research, underwater sound is routinely recorded by a hydrophone array, digitised, 
copied, transported and post-processed using a computer. For a more detailed history 
of underwater acoustics, the reader is directed to the treatments of Lasky (1977) and 
Burdic (1984, Chapter 1). 

1.1.3 Points of Contact 

By now we have hopefully established that passive sonar and the ear are analogues 
inasmuch as they are both mechanical sound receivers. To rule out a merely superficial 
comparison, we shall attempt in this section to establish multiple points of contact 
between the two subjects-particular aspects in which sonar and the ear are alike. It 
bears emphasising that the similarities revealed in these very short case studies are, to 
the knowledge of the author, accidental; that is, there was no conscious attempt on the 
part of the sonar engineers to mimic aspects of audition. In some cases, we will take 
the opportunity to give passing mention to areas of common ground that have not been 
explored in the thesis. 

Passive and Active Listening 

For a system to be described as either a sonar or a listener, we require: a vibrating 
source, a fluid medium through which the vibrations can propagate, a transducer and 
a classifier. Sound cannot exist without the first and second of these; neither hearing 
nor sonar can exist without all four. A transducer is any device that converts the sound 
energy into another form, e. g., mechanical, electrical or chemical. A classifier, for our 
purposes, is a component that extracts useful information about the environment from 
the transducer output. 
The normal process of hearing compares most readily with passive sonar. Consider 
the example of one person listening to another speak: the speaker is the sound source; 
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1.1 The Groundwork for an Analogy 

the fluid medium is the air; the transducer is the ear, which converts sound waves into 
a neural signal; and the classifier is the brain of the listener, which extracts useful 
information from the neural signal. Passive sonar follows a similar pattern: the sound 
source is a target such as a ship; the fluid medium is the seawater; the transducer is 
a hydrophone, which converts sound waves into an electrical (digital) signal; and the 
classifier is a mixture of automated procedures and human decisions. 

An active sonar also fits the four-part model set out above; the only difference is that 
the sound source belongs the sonar system (e. g., a projector or a depth charge) rather 
than the target. Obvious analogues in the natural world include echolocation used by 
bats, dolphins and in isolated cases, humans (Au et al., 2000; Stroffregen and Pittenger, 
1995). Only passive sonar will receive attention in this thesis; active sonar will not. 

Locating Sound Sources 

The term localisation refers to the process by which a listener judges the distance and 
angle at which a source is located in relation to the head (Moore, 2004). Two analogous 
problems in passive sonar are ranging (i. e., determining distance) and target angle 
estimation. Passive ranging usually involves triangulation using two well-separated 
receivers, or timing the difference between the arrival of a sound via a direct path and a 
reflected path, such as the sea bottom or surface (Waite, 1998). There is evidence that 
listeners exploit room acoustics in a similar way (in combination with other cues) to 
judge distance (Mershon and Bowers, 1979). 

Modern passive sonars employ an array of receivers to resolve the angle of a target. 
The bearing of a source in relation to the array can be inferred from the time it 
takes for a sound pressure wave to travel the distance between hydrophones (Burdic, 
1984). Specifically, the constructive and destructive interference caused by the phase 
lag between receivers at a particular frequency is used to estimate the target angle, 
in a process called beamforming. Human hearing also makes use of two spatially- 
separated receivers: the ears on either side of the head. Interaural time differences assist 
the location of low-frequency and transient sounds in the horizontal plane (Moore, 
2004, Chapter 7). Although the similar strategies employed by sonar and hearing are 
noteworthy, the issue of source localisation is not considered any further. 

Frequency Analysis and Power-based Detection 

Frequency analysis, which in this case means breaking a sound up into its constituent 
frequencies, is a central aspect of both sonar and hearing, and it will be discussed at 
much greater length in later chapters. It suffices here to mention that the human ear 
contains a pliable membrane of non-uniform physical constitution, called the basilar 
membrane (BM), which responds to different frequencies at various points along its 
length. The discrete Fourier transform separates a signal in a similar fashion, namely, 
by exciting a resonance from frequency bins in response to a sound. 
Power-based detection and classification in sonar utilise the DFT power spectrum and 
disregard the phase spectrum. The total power in the sound (that is, energy per time) is 

5 



1.1 The Groundwork for an Analogy 

divided amongst componental frequencies, and particular target sounds are identified 
by the frequencies they contain. The closest analogue in hearing science is the place 
theory, which states that a sound is principally encoded by the extent to which the 
basilar membrane is displaced along its length-any other detail besides this is ignored, 
much as the phase samples of the DFT are ignored in power-based sonar. 

Spectral Normalisation 

The amount of energy that arrives at the ear (or hydrophone) from a sound source 
is generally dependent upon its distance from the head (or array), and the energy 
in the sound may not be evenly-distributed in frequency. Consequently, it is often 
difficult to decide whether a narrowband source is present at a particular frequency 
simply by taking an absolute measurement in the spectrum: low energy might indicate 
a strong signal far away; high energy might indicate a weak signal nearby. The 
engineering solution encountered most often compares the energy in a signal against 
its background; that is, it tests whether the energy at a particular frequency exceeds the 
average energy measured in adjacent bands of the spectrum. This procedure is referred 
to as spectral normalisation. 

Sonar processors perform spectral normalisation by dividing the energy of a DF F cell 
by the average energy of the neighbouring block of cells (or, equivalently, subtraction 
on a log-scale) (Waite, 1998; Grigorakis, 1997). A comparable effect is brought about 
in the auditory pathway by lateral inhibition amongst nerves cells in the cochlear 
nucleus (Pickles, 1988). The cells are ordered according to the frequencies at which 
they respond; they are driven by a log-like compression of the sound energy at that 
frequency; and the activity of a cell tends to reduce that of its neighbours via inhibitory 
synapses. This means that contiguous blocks of excited cells tend to mutually suppress 
each other, whereas tones and spectral edges are enhanced (Shamma, 1985b). This 
thesis will occasionally refer to spectral normalisation, but it is not a primary concern. 

Detection based on Fluctuations in Power 

Hearing scientists and sonar engineers have suggested-quite independently, it would 
seem-that fluctuations in the envelope of a received signal might be used to detect 
a steady signal against a noise background. The idea is that a clean tonal (i. e., one 
in which the amplitude remains constant over the period of analysis), when added to 
a noise signal, will tend to reduce the fluctuation in its envelope. It was along these 
lines that Wagstaff (1998) developed the Wagstaff's Integration Silencing Processor 
(WISPR) filter. This receiver measures variations in the energy of a DFT time history 
using the harmonic meant. The DFT bins that capture a steady signal fluctuate less, and 
this is used to aid signal detection or to distinguish "clutter" signals from stable tonals. 
The same concept motivated Schoonveldt and Moore (1989) to propose that human 
listeners use envelope fluctuation (or a lack thereof) as a cue for detecting a tone in 
noise. This principle extends to across-channel processing in comodulation masking 

'that is, E{X-1}-1 
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1.1 The Groundwork for an Analogy 

release (Hall et al., 1984). In this work, we are principally concerned with the effect of 
a steady signal upon fluctuations in fine timing structure rather than the envelope. 

Detection based on Timing 

Some researchers contend that the auditory system encodes information in the time 
intervals between the discharges of phase-locked fibres, which are then used in pitch 
analysis (Meddis and Hewitt, 1991) or signal detection (Moore, 2004, page 98): 

"A tone evokes neural firings with a well-defined temporal pattern; 
the time intervals between successive nerve spikes are close to integer 

multiples of the period of the tone. A noise evokes, in the same neurons, 
a much less regular pattern of neural firings. Thus a tone may be detected 

when the nerve fibres responding to it show a certain degree of temporal 
regularity in their patterns of firing. " 

In sonar analysis, Higgins (1980), citing no inspiration from the auditory system as 
such, attempted to use the steadying effect of a tonal signal upon the zero crossings of 
band-pass filtered signal as a means of detection. This is the temporal analogue of the 
envelope fluctuation-based approach described above. 

Higgins' experiment required the detection of a 9.9 kHz sinusoidal signal mixed with 
Gaussian noise, using the zero crossings recorded in the output of a linear filter centred 
on 9.9 kHz with a bandwidth of 5 kHz. The study concluded that the technique was 
only effective when the signal-to-noise ratio (which lacked a clear definition in the 
paper) was somewhat greater than -14 dB. 

1.1.4 Auditory-motivated Passive Sonar 

Several auditory-motivated sonar algorithms have been developed in recent years. 
Unlike the examples cited above, these represent attempts to reproduce the success of 
the biological ear in nature, and the success of imitative technologies (e. g., front-ends 
for automatic speech recognition), in the domain of passive sonar. 

Teolis and Shamma (1991), motivated by anecdotal evidence that human listeners 

are better able to identify transients than automated techniques based on the power 
spectrum, developed a sonar transient classifier based on a computational model of 
the human auditory system. The front-end simulates the auditory periphery using 
a wavelet transform, sigmoidal compression, spatial filtering and extrema sampling. 
The specific model used was that of Yang et al. (1991). The noise robustness of the 
signal representation it generates was subsequently investigated by Wang and Shamma 
(1992). 

A separate study that combined an auditory front-end with a machine learning classifier 
was carried out by Parks and Weisburn (1992). Two sets of features were extracted: 
one from the output of a constant-Q filterbank, which served as a cochlear model, 
and the other from the short-time Fourier transform. Fisher's linear discriminant was 
then applied to each feature set with the goal of classifying bowhead whale calls and ice 
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sounds recorded in the Arctic. The results obtained using the cochlear model compared 
favourably with those obtained using a power-spectrum model. 

Tucker and Brown (2005) described an auditory-motivated transient classifier which 
operates on three perceptually-motivated features: timbre (the quality of the sound), 
physical material, and temporal context (e. g., any rhythmic pattern surrounding the 
transient). The underlying acoustic features that listeners use when assessing timbre 
are discovered using a multi-dimensional scaling technique (Grey, 1977). Acoustic 
features relating to the material of the source are computed from the rate of exponential 
envelope decay measured for peaks in the output of a cochlear filterbank. The temporal 
context of the transient is characterised using features extracted from a multi-scale 
rhythmogram representation (Todd, 1994). 

Bleeck et al. (2008) have recently presented an application of the auditory image model 
(AIM) (Patterson et al., 1995) in active sonar, in which the size and shape of an object 
is determined from its simulated scattered signal. The AIM extracts a stabilised timing 
representation from the response of a population of model fibres using autocorrelation 
(reviewed in Section 2.2.4). A similar active sonar classification study, which uses an 
auditory model to analyse musical timbre, has been conducted by Young and Hines 
(2007). 

Finally, Pykett and Smith (2000), in a report examining how the ear, as a "highly 

successful biological signal processing system", might aid the design of passive sonar, 
suggest using the fine timing structure of harmonics as a cue for grouping them: 

"In passive sonar it is important to be able to assign frequency lines 
in a time-frequency display to membership of various harmonic series. 
These can then be related to acoustic generating mechanisms in a distant 
target. Because of the low signal-to-noise ratios frequently encountered[, ] 
it is sometimes difficult to identify all the components which belong to a 
particular series. [... ] 

[A model of the auditory system] produces spikes with intervals which 
are multiples of the period of a harmonic component of the signal. For 

coincidence to occur with the output of the oscillator circuit, modulation 
(fundamental) and carrier periods much match. Which harmonic relates 
to a particular fundamental, can then be determined by the coincidence 
neuron which fires. [... ] The ear seems to have struck an effective balance 
for its purpose, military systems may require different tuning. " 

The sixth objective of the thesis (cf. § 1.3.1) pursues this idea. 
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1.2 Assessing the Temporal Structure of a Signal 

1.2 Assessing the Temporal Structure of a Signal 

1.2.1 Temporal Coding 

A temporal code may be defined for our purposes as "a principled method for 

encoding information by non-uniformities in time". Many codes-written, biological 
or digital-encode information by varying the symbols in fixed time slots. A temporal 
code, by contrast, encodes information by the varied timing of fixed symbols. Acoustic 
signals can be characterised either way, and it is a matter of debate which kind of code 
the auditory system employs. 

An Illustration 

Consider a mass loaded on vertical spring, which is under the influence of gravity, like 
a Jack-in-the-box. If the mass is held at a certain height and released, then, assuming 
no losses, the energy in this system will remain constant, being perpetually converted 
between potential energy in the spring and kinetic energy in the mass' motion. If the 
mass encounters resistance proportional to its speed, the energy in the system will 
gradually drain away (Kinsler et al., 2000). 

(i) (ii) 

0.. 

000 

A graph of energy against time, as in (i) above, does not convey all the pertinent 
information about the system. For instance, it omits the frequency at which the mass 
bobs up and down. If, instead, we imagine that a switch is closed every time the 
mass passes its point of equilibrium (chosen to be zero here), and plot the output of 
the switch, then we obtain the kind of point process shown in (ii), which captures the 
upward and downward motion of the mass. Notice that it is the distribution of one 
symbol (o) in time that conveys information. 

Temporal Theories of Auditory Encoding 

The vibration of a section of the basilar membrane in response to a stimulus may be 
likened to the mass-loaded spring scenario above. A row of sensitive hair cells line 
the BM and these, like the switch on the spring, are depolarised at a particular phase 
of the membrane motion, causing a "spike" to cascade along the auditory nerve to the 
brain. If every cell discharged consistently, then the information communicated to the 
brain would resemble mode (ii) above: the temporal information would be entirely 
preserved, the envelope entirely lost. However, this tidy picture is complicated by the 
stochastic nature of cell firing. 
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Figure 1.1: The volley principle applied to randomly-generated data: (i) BM motion; 
(ii) half-wave rectified BM motion; iii) twelve noisy spike trains, where the spikes are 
distributed over the half-period in proportion to the BM amplitude; iv) net response; 
v) spikes generated when at least 1/4 of the population fire. The spike train in (v) is 
almost phase-locked to the peaks. Integrating more `fibres' would further improve the 
response. 

First, some fibres are more likely to discharge when the displacement of the BM is 
greater, leading some researchers to suggest that the net response of a population of 
hair cells encodes displacement (a correlate of the envelope). This rate coding theory, 
in its strongest form, denies the role of timing altogether. Second, fibres phase-lock 
to the stimulus in an approximate fashion, which means that individual spike trains 
communicate a rather degraded copy of the BM motion. The volley theory, proposed 
by Wever (1949), allows the fine structure to be recovered from many noisy spike trains 
by a process of integration, as Figure 1.1 illustrates. The relative merits of various 
coding theories are discussed in Chapter 2. 

1.2.2 Mathematical Analysis of Temporal Codes based on Zero Crossings 

Consider the task of detecting a weak sonar signal embedded in noise. If we are to 
design timing-based algorithms capable of competing with power-based algorithms in 
this regard, we must choose a suitable set of mathematical tools for interpreting the 
zero crossings of a signal. Much as the Fourier transform supplies a mathematical 
"bridge" for moving back and forth between the time and frequency domains, this 
section describes three frameworks for relating the samples of a signal to its zero 
crossings, for switching between non-temporal and temporal codes. 

Product Representations 

A product representation describes a signal entirely in terms of one scale factor 
and a set of zeroes in the complex time domain. This kind of representation has 
been successfully applied to spectral analysis (Kay and Sudhaker, 1986) and positive 
instantaneous frequency estimation. In the latter case, the literature mentions auditory 
inspiration (Kumaresan and Wang, 2001) and possible applications in sonar (Kirsteins 
et al., 2000), making this mathematical framework particularly worth exploring. 
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1.2 Assessing the Temporal Structure of a Signal 

The transformation of a time domain signal into a product of elementary signals can be 
described in three steps. First, a band-limited signal with period T, g(t), is expanded 
into a Fourier series with complex coefficients k [s], as follows 

S i27rst 
g(t) =E X[s] exp TJ 

(1.1) 
9=-S 

The highest frequency (or one-sided bandwidth) of the signal is dictated by S. Second, 
using the abbreviation = exp (i2irt/T), it is possible to write (1.1) as a polynomial 
in ý of degree 2S, i. e., 

g(t) = ý-s [k[_sI + X[1-sJý + x[2-S1 2 +... + X[s)ýZSI . (1.2) 
Note that the time parameter t can be complex, and evaluating g(t) along the real 
axis recovers the original signal. The fundamental theorem of algebra guarantees that 
a polynomial of degree 2S can be factorised into a product of 2S complex roots, 
r1,... , r2S. This leads to the third step: replacing the square-bracketed portion of 
(1.2) with a product: 

g(t) = ro ý-S(ý - ri)(C - r2) ... (ý - res) (1.3) 
2s 

= rod-Sjj(ý-r, ), (1.4) 

a-i 

where ro -X [S]. (1.4) is known as a product representation (Voelcker, 1966). Note 
that zeroes occur in the real (i. e., visible) signal for all ý= r8, ire I=1. 

This representation provides some fascinating insights into the nature of a signal, 
which are not apparent in the more traditional domains. These include the conditions 
under which a signal can be reconstructed from its zero crossings (Logan, 1977), 
techniques for modifying a signal so that its spectrum can be decoded from its zero 
crossings (Kay and Sudhaker, 1986), and methods for decomposing a signal into 
positive instantaneous frequency (PIF) and envelope signals (Kumaresan and Rao, 
1999). A product representation can decompose a deterministic signal in useful ways, 
but it is not clear how readily it can be applied to random signals. 

Perturbation Analysis 

The perturbation interpretation of zero crossings considers the effect of weak, Gaussian 
noise on the zero crossings of a determistic signal s(t) and has been adopted by a 
number of workers (Park and Stern, 2006; Sekhar and Sreenivas, 2005; Kim et al., 
1999; Sreenivas and Niederjohn, 1992). The noise samples are drawn from a Gaussian 
process n with a slow-varying envelope, zero mean and variance o. The received 
signal is modelled as the sum of the signal and noise: 

g(t) = s(t) + n. (1.5) 

Suppose that the clean signal contains a zero crossing at time t8. If we assume that 
the signal s(t) is smooth through its zero crossings, we can approximate the waveform 
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A. B. to C t9 
.ýV n 

s(t) 

e 

Figure 1.2: A) a short section of the clean waveform, s(t); B) the Taylor series 
expansion around a zero crossing of s(t) at time t9; C) the addition of a constant (n) to 
this line shifts the axis crossing by a proportional amount (e). 

around t9 using a first-order Taylor series expansion. 

s(t) = s(ts) + 
dsl 

(t - t9) (1.6) 
dt 

t_te 

_ 
ds 

(t 
dt t=te 

Now (1.7) is the equation for a line to which we shall add a constant noise sample n. 
Label the perturbed zero crossing time in the noise-added signal using t9. Then, 

(t9 - t9) +n=0. (1.8) 9(ts) 'ý% dt 
ds lt=te 

Rearranging (1.8), we observe that the perturbation (i. e., small difference) in the zero 
crossing time, e, is directly proportional to the additive noise sample: 

-1 

e° (t9 - t, ) 
dsl 

n. (1.9) 
dt 

t_te 

As n is Gaussian, e is also Gaussian, with zero mean and variance 
2 

l2 
a 

ds 
Un ae 

Clt 
=. 

t=te 

Having shown that the perturbation of a zero crossing is Gaussian, it is a short step 
to demonstrate that the perturbation of many zero crossings in the presence of weak 
white or coloured Gaussian noise is governed by a joint Gaussian distribution, as are 
the intervals between the crossings. 

This kind of mathematical treatment, though successful in other domains, is ill-suited 
to our purpose: firstly, because it refers primarily to the effect of noise upon a known 
signal, which we do not possess; and secondly, because the assumption that axis 
crossings are linearly-perturbed about a steady state requires a high SNR, which can 
by no means be guaranteed at sea. 
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0.2 

0.1 

Xa -5 -5 xs 

Figure 1.3: The stem plot on the left shows one possible sample function of a Gaussian 
process. Samples x4 and x9 are governed by a two-dimensional Gaussian distribution. 

Sign Changes in a Random Process 

Finally, zero crossings may be interpreted as sign changes in a random process from 
negative to positive or vice versa. The ideas reviewed next provide the framework in 
which the majority of the work in the thesis will be carried out. 

A Gaussian process is any random process for which all possible subsets of samples 
are governed by a joint Gaussian distribution, and a number of zero crossing-related 
results are available in this special case. For instance, Figure 1.3 illustrates how a pair 
of samples values, x4 and x9, are modelled as a bivariate Gaussian. In general, n 
samples are modelled by an n-variate Gaussian distribution. 

A wide-sense stationary random process is any process for which the mean sample 
value is a constant, and the covariance of pairs of samples is time-invariant, depending 
only on their separation. This implies that if the process depicted in Figure 1.3 were 
wide-sense stationary, then the density shown would govern not only (x4, x9), but also 
(xo, xs), (x1, xs) and, in general, (x, 

L, x, A zero mean, wide-sense stationary 
Gaussian process, X, is characterised entirely by its autocovariance function, 

-yx[k] = E{x? LXIL_k}. (1.10) 

For continuous-time processes we write 'y(r), where r is a time lag. In general, square 
brackets [] and round brackets () are used to indicate functions of a discrete argument 
and continuous argument, respectively. 

Kedem (1980) provides a derivation of the probability of a zero crossing in terms of 
the changes of sign in a wide-sense stationary Gaussian process. Pairs of consecutive 
samples, which for simplicity's sake we shall label xl and x2, are governed by a 
bivariate Gaussian distribution. The probability of observing a zero crossing on a 
sample in either direction is therefore given by 
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.................................... zc 
IN0: : OUTO 

< z-1 XOR 

..................................... 

Figure 1.4: A zero crossing detector block. 

P(C) 

= P(xl > 0, x2 < 0) + P(xl < 0, x2 > 0) (1.11) 

=2x 
12[01 - y2[1] %c i[OIX2 +'y[OIx2 - 2'y[1]xlx21 dxldx2 

27r Jý o 
exp 

-2('y2[O] _ Y2{1]) 

=2-- sin-1 p[1], (1.12) 

where p[k] denotes the autocorrelation function, which is the autocovariance function 

normalised by the variance', i. e., p[k] ry[k]/y[O]. 

Consider the zero crossing detector block diagram in Figure 1.4. If the input at INO 
is a wide-sense stationary, zero mean Gaussian process, and p[l] is known, then the 
probability that OUTO outputs 1 on a given time step can be found using (1.12). 
Furthermore, if the input signal is sampled at a rate of f, samples per second, then 
the expected number of output "spikes" per second is 

f9 
_ 

L. 
sin-1 p[1]. 2 ir 

If we imagine that the input signal is sampled at ever higher rates, then we can obtain 
a similar result for a continuous signal by taking a limit2: 

fl 
{ 28 

-e sin-1 P 
()}=! 

1? 
o. (1.13) 

. ýOo Ir 

The right-hand side of (1.13) relates the expected number of zero crossings in unit 
time for a zero mean, wide-sense stationary Gaussian process, and it is frequently 
referred to as Rice's Formula, after S. 0. Rice, who included it in his monumental 
work, Mathematical Analysis of Random Noise (Rice, 1944). 

Rather unhelpfully, the terms "autocovariance" and "autocorrelation" are often used interchangably in 
the literature. It must be emphasised that autocovariance here refers to the covariance of pairs of samples; 
autocorrelation refers to their Pearson product-moment correlation coefficient (i. e., -1 <p< 1). 

'Here, p'(") and p" (") are used to denote the first and second derivative of the autocorrelation function, 
respectively. 
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1.3 Thesis Overview 

1.3.1 Objectives 

Temporal Analysis of Sonar Signals 

The acoustic signal arriving at a single, omnidirectional hydrophone is an additive 
mixture of target signal and background noise. Conventionally, the ratio of signal 
power to noise power is the quantity of chief importance in sonar system performance 
analysis, and most components of the system can be viewed as attempts to improve it. 
Beamforming reduces the noise power arriving from unwanted angles; Fourier analysis 
reduces the noise power contributed in unwanted frequency bands; care is even taken 
to ensure that the window function applied prior to the DFT improves SNR. 

The human ear is not exclusively a power detector. According to temporal theories 
of encoding, patterns in the discharge times of auditory nerve fibres communicate 
information to the brain; that the phase-locking of fibres has at least the potential to 
encode features of a stimulus is uncontroversial. 

O Can timing-based auditory models be adapted to perform narrowband 
sonar analysis? What benefits might this offer? 

Statistical Timing-based Detectors 

One of the advantages of power-based detection is the existence of relatively simple 
statistical models for commonly-encountered random processes such as Gaussian noise 
and sinusoids (Whalen, 1971). This enables the construction of theoretical receivers, 
whose performance under certain conditions can be determined analytically, e. g., the 
rate of false alarm, or the sensitivity required to secure a 10% chance of detection. A 
pixel on a narrowband display can be tested for a signal in a principled way, if the 
transformations that the signal undergoes between the hydrophone and the display (or 
even its viewer) are correctly characterised. 
The second aim is to develop a suite of ideal temporal receivers: algorithms that 
operate on the fine structure of a signal rather than its envelope, and for which an 
input-output relationship can be formulated in statistical terms. For example, suppose 
there is a 50% chance that a unit-amplitude sinusoid has been added to a Gaussian 
noise background with unit variance. If a series of zero crossing measurements are 
taken, what is the theoretically-optimum decision concerning whether the sine wave is 
present? If we choose accordingly, what is the probability we are wrong? How many 
more zero crossings must we measure before there is a 95% chance we are right? Ideal 
temporal receivers will allow us to answer such questions. 

O How does the performance of an elementary interval detector, which 
2 operates on one zero crossing interval, compare to that of a power 

detector, which operates on one sample of the envelope? 
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Hopefully, the elementary interval detector will elucidate the mechanisms at work in 
the production of a timing-based display, much as the quadrature receiver provides 
theoretical support for more elaborate power-based displays. If this detection model is 
constructed successfully, then the following two questions must be addressed. 

Is it possible to develop a hybrid detector, which uses both power and O 
timing information? Do a sample of the squared-envelope and a zero 
crossing interval convey mutually-exclusive or equivalent information? 
Can the elementary interval detector be modified to incorporate multiple 
interval observations, analogous to a spike train? 

Adapting Computational Auditory Scene Analysis Methods to Sonar 

The first four objectives concern the design of sonar algorithms based on timing models 
of the peripheral auditory pathway. The remaining objectives take their inspiration 
from auditory scene analysis (ASA)-higher-level organisational principles, which 
govern how a listener groups components of a signal into perceptual wholes (Bregman, 
1990). The latter part of the thesis is driven by the broad aim of discovering a set 
of organisational principles applicable to sonar and designing algorithms to implement 
them. Two aspects of auditory scene analysis will receive particular attention, however. 

ASA causes a listener to perceive the continuation of a tone which is O 
masked momentarily by noise. Can a similar principle be used in sonar 
to reconstruct a tonal interrupted by a transient event? 
ASA promotes the fusion of partials exhibiting a common pattern of O 
modulation, especially those in a harmonic relationship. Can a similar 
principle be used to group engine tonals? 

1.3.2 Scope 

Having outlined the objectives of the thesis, we must state a couple of caveats. 
Although these algorithms draw inspiration from the physiology of the ear, there is 
no intention of closely modelling the ear in every respect. The general strategy will 
be to start out with an auditory-scale model and then adjust it so that it can be applied 
in realistic conditions. The human ear lacks the frequency-resolving power to carry 
out the kind of narrowband analysis required of a sonar receiver. Accordingly, in the 
detection tasks used to evaluate the timing-based detectors, the goal is not to match the 
performance of a human listener, but rather that of a power detector. 

This leads to the second caveat, which concerns optimality. When referring to the 
"optimal detector" for a particular measurement (e. g., the squared-envelope or a zero 
crossing interval), we mean that, from the set of all detectors which utilise this quantity, 
this detector maximises some performance criterion. It should not be taken to imply 
that it is impossible to construct a better detector of any kind. Whalen (1971, page 155) 
helpfully defines the optimal receiver as "a receiver which best satisfies a given criteria 
[sic] under a given set of assumptions: ' 
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1.3.3 Structure 

The remaining content of this thesis is divided across five chapters of approximately 
equal length, and the major findings are summarised in a final chapter. The entire thesis 
has been organised into the pyramidal structure drawn above. The internal structure of 
each chapter is described in its opening paragraphs. 

Conscious that the readership of this thesis will be drawn from two possibly disjoint 

camps-hearing scientists and sonar engineers-a substantial portion has been devoted 
to review: the second layer of the pyramid. Chapter 2 provides an overview of auditory 
physiology and psychology in its first half and describes computational models of 
hearing in its second half-particularly those based on timing. Chapter 3 provides an 
introduction to sonar and considers which of the auditory models in Chapter 2 might 
be most-readily adapted for sonar analysis. By the end of the third chapter, Objective I 

should have been addressed. 

Chapters 4 and 5, in layer three, concern the theory of ideal temporal receivers and 
attempt to address Objectives 2 and 3-4, respectively. Chapter 4 is restricted to 
very simple detectors (single intervals only) and noise models (stationary Gaussian 

processes). Chapter 5 moves beyond these restrictions to consider more advanced 
detectors (multiple intervals, joint detection based on timing and power) and noise 
models (sinusoids with constant and Rayleigh amplitude). 

The primary interest of Chapter 6 (and to some extent, Chapter 7) is application. One 

goal is to unify the material in the layers underneath. For instance, Chapters 4 and 5 

were written in response to the need for a formal understanding of the timing-based 
sonar displays in Chapter 3. This chapter will apply these theoretical findings to the 
practical design of sonar displays where possible. A second goal is to examine whether 
the auditory scene analysis techniques described in Chapter 2 can be incorporated into 
the new, timing-based sonar algorithms, in order to fulfil Objectives 5 and 6. 
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Chapter 

Physiology, Psychology and 
Computer Models of the Ear 

The ear is the most sophisticated audio signal processor known to man. It is also the 

chief source of inspiration for novel sonar signal processing techniques undertaken in 

this study and as such merits detailed examination. This chapter is structured as two 

sections in sequence. The first section focuses on the physiology of the ear and, to 

some extent, the psychology of the listener; the second section, building on the first, 

reviews the computational models that have been proposed to explain or reproduce 
various aspects of human hearing for scientific, clinical or technological ends. There 

are also parallel ties bridging the subsections: the first half is composed of subsections 
that trace an orderly progression from the exterior of the head (periphery) to the brain 
(centre); the discussion in the second half is organised so as to mirror the first half. 

Chapter 2 Outline 

peripheral ý Outer--Middle Ear (2 1.1) 

Cochlea (2.1.2) 

Auditory Nerve (2.1.3) 

Theories of Encoding (2.1.4) 

central I Auditory Scene Analysis (2.1.5) 

Interim Summary (2.1.6) 

Outer-Middle Ear Models (22 1) 

Basilar Membrane Models (2.2.2) 

Transduction Models (2.2.3) 

Models of Encoding (2.2.4) 

Computational ASA (2.2.5) 

physiology model 



This chapter accomplishes two stated aims. All auditory modelling studies necessarily 
make use of abstraction-the notion that auditory function is explicable at the level 

of the effective signal processing it performs. By the end of this chapter, I intend 
to have collected a number of "effective signal processing methods", each with some 
identifiable physiological basis, that can be carried over into Chapter 3 and evaluated 
with respect to their suitability for sonar applications. The second aim of the chapter is 
to isolate and critically investigate those aspects of auditory physiology and modelling 
that emphasise the use of fine temporal structure in signals, generally expressed- 
at least, in modelling terms-in the phase or autocorrelation of narrowband signals. 
Timing is an additional theme that will persist into the third chapter and beyond. 
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2.1 Physiology and Psychology 

2.1 Physiology and Psychology 

The sense of hearing enables an organism to explore its environment by analysing 
pressure waves. Identifying surrounding objects by the sounds they emit is one major 
aspect of this analysis and the focus of this section. The material is presented in five 

parts and expatiates the following brief description of the hearing process. First of 
all, the (typically) airborne sound is transmitted to fluid inside the cochlea (§2.1.1), 
then pressure in the fluid displaces flexible structures within the cochlea in such a 
way that certain parts move in response to particular frequencies and activate adjacent 
nerve fibres (§2.1.2). The response of an individual nerve fibre captures numerous 
properties of a simple sound stimulus (§2.1.3), and there are various theories regarding 
how a population of nerve fibres may encode a complex stimulus like speech (§2.1.4). 
Finally, auditory scene analysis is a theoretical framework that attempts to identify 
the principles by which a neural signal is organised if many sound sources are heard 
together (§2.1.5). For a comprehensive treatment of the physiology and psychology 
of hearing, the reader is encouraged to consult Pickles (1988) and Moore (2004), 
respectively. 

2.1.1 The Outer and Middle Ear 

Auditory processing in humans commences at the outer ear, which consists of the 
auricle (pinna) and external auditory canal (meatus). The auricle is the visible part 
of the ear that projects from the side of the head, and its principal role is to direct 
sound waves arriving at the head into the auditory canal, an air-filled duct leading 
to the eardrum or tympanic membrane (Pickles, 1988). In this way, sounds in the 
environment are reproduced as vibrations in the eardrum. The outer ear also serves to 
modify sound pressure at the tympanic membrane and assist in the spatial localisation 
of sound sources. 

The structures of the middle ear are located in a cavity between the eardrum and the 
oval window. The vibration of the eardrum is communicated to the oval window via 
three small, interlocking bones, referred to individually as incus, malleus and stapes, 
and collectively as ossicles. The purpose of the ossicles is to overcome the difference 
in acoustic impedance between the air in front of the eardrum and the fluid behind the 
oval window, the entrance to the cochlea. Were no such mechanism present, most of 
the energy in a wave incident upon the air-fluid boundary would be reflected. 

2.1.2 The Cochlea 

The cochlea is a distinctive snail shell-shaped cavity, which forms part of a larger 
network of fluid-filled canals called the inner ear. The cochlea is an integral component 
of the human auditory periphery, and its functions include both the frequency analysis 
of the vibrations received from the the middle ear and the transduction of those 
vibrations into a neural signal. It is customary to refer to the cochlea as though it were 
rolled out flat, labelling the ends corresponding to the edge and centre of the spiral the 
`base' and `apex', respectively. 
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A. base apex 

cochlear partition scala tympani 

B oval window scala vestibuli helicotrema 

travelling wave 

round window peak displacement 

Figure 2.1: A diagram of the cochlea. A) pressure applied to the oval window is 

transmitted through the cochlear fluid and released at the round window. B) the 
pressure difference between the scalae sets up a travelling wave in the the cochlear 
partition which, for a sinusoidal stimulus, reaches a peak displacement near its place 
of resonance. 

The cochlea is partitioned longitudinally into three chambers by two membranes: 
Reissner's membrane and the basilar membrane. The two outer chambers are called 
the scala vestibuli and scala tympani, and the chamber situated between the two 
membranes is called the scala media. A small aperture at the apical end of the cochlea, 
the helicotrema, permits the passage of fluid between the two outer chambers. At the 
base of the cochlea are located two membranes: the oval window, which projects onto 
the scala vestibuli, and to which the stapes of the middle ear adheres; and the round 
window, which projects onto the scala tympani. 

The vibration of the stapes is transmitted through the oval window and produces a 
longitudinal wave in the cochlear fluid, which propagates along the scala vestibuli and 
scala tympani and finds a pressure release at the round window, as Figure 2.1A shows. 
As this wave progresses, it creates a pressure difference across the cochlear partition- 
Reissner's membrane, the basilar membrane and intervening structures-causing it to 
move. If the stimulus applied to the oval window is a sinusoid, the entire cochlear 
partition vibrates at the stimulus frequency. However, the phase and amplitude of a 
vibrating point on the cochlear partition varies as a function of its distance measured 
from the stapes. 

Experiments conducted by von Bekesy (1947) demonstrated that the transverse motion 
of points along the cochlear partition describe a travelling wave, which originates at 
the base and proceeds towards the apex, as illustrated in Figure 2.1 B. As the travelling 
wave propagates along the basilar membrane, its envelope grows until reaching a peak, 
or resonance, after which it rapidly diminishes. For a sinusoidal stimulus, the place 
where the resonance occurs is related to the stimulus frequency. This relationship 
arises from the mechanical properties of the partition itself: a high-frequency sinusoid 
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produces a peak displacement near the base of the cochlea, where the membrane is 

stiff and narrow; conversely, a low-frequency sinusoid produces a peak displacement 
towards the apex, where the membrane is pliable and broad. 

Von Bekesy's initial studies of the vibration excited along the basilar membrane by 
a tone stimulus reported a broadly-tuned response, too insensitive to account for the 
ear's frequency selectivity. It is now appreciated that these experimental findings were 
affected by the poor condition of cochleae extracted from human cadavers and the 
measurement technology of the era (Moore, 2004). Subsequent research has shown 
that the live, mammalian cochlea incorporates a feedback mechanism, which sharpens 
the response of the basilar membrane to a sound stimulus. This mechanism is effected, 
at least in part, by an array of outer hair cells (OHC) inside the cochlear partition, 
each of which reacts to the velocity of the basilar membrane by actively reshaping its 
body and so influences the displacement magnitude and phase both along and across 
the basilar membrane (Nilsen and Russell, 2000). 

From a simplified perspective, the basilar membrane may be likened to a frequency 
analyser, resolving the spectral content of a sound along a spatial axis. The resolution 
of this frequency analysis is not perfect; a mixture of two tones closely spaced in 
frequency produces in the basilar membrane a single, broad resonance rather than 
two distinct peaks. However, a listener's ability to discern a difference in frequency 
between a pair of tones presented separately is rather more impressive, with changes 
as small as 1-2 Hz in aI kHz tone being detectable (Wier et al., 1977). The frequency- 
resolving power of the basilar membrane is also non-uniform; frequency discrimination 
is most effective in the 500-1000 Hz range and considerably worsens above 4 kHz 
(Greenberg and Ainsworth, 2006). A comprehensive review of cochlear mechanics is 
provided by Robles and Ruggero (2001). 

Hair Cell Transduction 

Like all sensory organs, the ear is responsible not only for reacting to external stimuli 
but also for converting those stimuli into neural activity-a process referred to as 
transduction. In the auditory system, the movement of the basilar membrane is 
transduced into nerve activity by inner hair cells (IHC), which are distributed along 
the interior of the cochlear partition. The displacement of the basilar membrane causes 
a shearing action between the basilar and tectorial membranes, deflecting the hairs or 
stereocilia that line the space inbetween. These hairs form part of the organ of Corti, a 
cross-section of which is illustrated in Figure 2.2. 

Each stereocilium is attached to either an inner hair cell or an outer hair cell. It 
is the inner hair cells which accomplish the transduction process; outer hair cells 
are implicated in the active basilar membrane tuning mechanism mentioned above 
and do not concern our present discussion. The deflection of IHC stereocilia opens 
transduction channels, releasing positively-charged potassium ions into the cell body, 
depolarising the cell. Between each deflection is a brief period of recovery, as the 
transduction channels close, restoring the potential difference across the cell to some 
degree. Oscillation of the basilar membrane modulates the cell voltage and steadily 
depolarises the cell. Each depolarisation of the cell is accompanied by the release 
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stereocilium 
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Figure 2.2: A diagram showing a cross-section of the organ of Corti. The tectorial 

membrane is free to move up and down in relation to the basilar membrane, to which it 

is `hinged' on one side (here, the left). When the two membranes are pressed together, 

the inner hair cell is activated and is more likely to transmit a spike along the auditory 

nerve. 

of neurotransmitter into the cleft between the IHC and the innervating auditory nerve 
fibre. A sufficient quantity of neurotransmitter evokes an action potential or spike in 

the latter, which is communicated to the brain via the auditory nerve. 

2.1.3 The Auditory Nerve 

We have examined thus far the various stages in which an acoustic wave arriving at the 

outer ear is transformed into spiking patterns in the auditory nerve cells innervating the 

cochlea. Physiological research in the last half-century has greatly contributed to our 

understanding of how the properties of a tone stimulus-its frequency, intensity and 

phase-are represented in the discharge patterns of individual fibres. Having reviewed 
the key results of these studies, we will be ready to discuss how a population of fibres 

might encode a complex stimulus, such as speech or music. 

Average Firing Rate and Spontaneous Activity 

The response of individual auditory nerve fibres to a stimulus was first investigated 
by Tasaki (1954) and remains the subject of ongoing research today. The majority 
of physiological experiments examining auditory nerve behaviour have adhered to the 

same basic format: a sound stimulus is applied to the cochlea-typically a sinusoid- 
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Class spikes per second % of sample 
low-spontaneous 0.5 or fewer 16% 

mid-spontaneous 0.5 - 18 23% 

high-spontaneous 18 or more 61% 

Table 2.1: Classification of auditory nerve fibres in the cat according to spontaneous 
rate (Liberman, 1978). 

and a microelectrode placed in contact with a nerve fibre records the time of each action 
potential (Moore, 2004). 

The average firing rate of an auditory nerve cell has been measured in response to 

sinusoids of various frequencies and intensities. The first thing to note is that nerve 
cells fire spontaneously in the absence of any stimulus. Liberman (1978) measured the 

spontaneous firing rate of 738 nerve cells in the cat and by inspecting a histogram of 
the sample, was able to identify three distinct groups of cell, characterised by a low, 

medium and high spontaneous firing rate. His results are summarised in Table 2.1. 
Spontaneous activity is evident in the left-hand plot of Figure 2.3 at very low sound 
pressures, particularly in the case of MCL 94-225. 

Cell Thresholds and Neural Tuning Curves 

The threshold of an auditory nerve fibre is a measure of its sensitivity to a stimulus. 
Kiang and Moxon (1974) define the threshold as the sound pressure level, in decibels, 

required to increase the firing rate of the cell above the spontaneous rate by ten spikes 
per second. The tuning curve for an auditory neuron is obtained by measuring the 

cell's threshold in response to sinusoidal stimuli over a range of frequencies. The 
frequency associated with the lowest threshold-the frequency to which the cell is 

most responsive-is termed the characteristic frequency. Examples of tuning curves 
for auditory nerve fibres with characteristic frequencies of approximately 1 kHz are 
shown in the right-hand plot of Figure 2.3. 

The profile of a fibre tuning curve around its characteristic frequency resembles the 
inverted magnitude response of a band-pass filter. The shape of the tuning curve derives 
from the mechanical tuning of the basilar membrane at the place where the fibre is sited, 
provided that active cochlear mechanisms are in effect. The threshold of a neuron 
at its characteristic frequency is related to its spontaneous firing rate, as reported by 
Liberman (1978) and more recently confirmed by Yates (1991). Specifically, fibres 

with a low threshold tend to be associated with a high spontaneous firing rate and vice 
versa (cf. Figure 2.3). From Table 2.1, one may infer that the majority of auditory nerve 
cells in the cat possess a low threshold. 

Saturation and Adaptation 

The sensitivity of a fibre to the particular stimulus frequencies was likened above to 
the effect of a band-pass filter upon the amplitude of a sinusoid. This analogy must be 
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Figure 2.3: Left: experimental rate-level curves showing the average spiking rate 
for a low- (dashed), medium- (dotted) and high-spontaneous rate fibre (solid), as a 
function of stimulus level. Right: neural tuning curves for the same three cells. Reused 
with permission from M. Charles Liberman, The Journal of the Acoustical Society of 
America, 63,442 (1978). Copyright 1978, Acoustical Society of America. 

applied with some care, as the relationship between the stimulus intensity and average 
firing rate is neither linear nor time-invariant. 

Studies examining how the average rate varies with the intensity of a sinusoidal 
stimulus have revealed a sigmoidal (rather than linear) relationship (Moore, 2004). 
This relationship is plotted as a rate-versus-level curve: at very low stimulus intensities, 
the curve is a constant, as the fibre is unresponsive and fires at its spontaneous rate; the 
mid-portion of the curve is monotonically increasing and relates an increase in intensity 
to an increase in spiking rate; beyond a certain sound intensity, the cell becomes 
saturated, and increases in intensity do not elicit any further increase in activity. 
Experimental rate-versus-level curves are shown in the left-hand plot of Figure 2.3. 
MC L9 4- 22 is a cell which fires spontaneously below - 10 dB and is saturated above 
-30 dB. 

The average firing rate of an auditory fibre, rather than being an instantaneous function 
of the stimulus frequency and intensity, displays a degree of adaptation over time. A 
helpful way to characterise this dynamic behaviour is a post-stimulus time histogram 
(PSTH), which divides the time immediately following the application of a stimulus 
into short time intervals, or `bins', and counts how many discharges occur during each 
one. Figure 2.4 shows a summary PSTH recorded from a fibre following a 180 ms 
tone burst at its characteristic frequency (Kiang, 1980). This PSTH is typical of most 
auditory nerve fibres: the introduction of a tonal stimulus produces an elevated firing 
rate, which gradually decays towards an adapted rate; when the stimulus is released, 
the cell activity returns to the spontaneous rate. 
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Figure 2.4: A post-stimulus time histogram for an auditory nerve cell in the cat. Reused 

with permission from Nelson Y S. Kiang, The Journal of the Acoustical Society of 
America, 68,830 (1980). Copyright 1980, Acoustical Society of America. 
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Figure 2.5: A) an illustrative period histogram showing the preference of an auditory 
nerve cell to fire in phase with the stimulus. B) a typical interspike interval histogram. 
See Pickles (1988, page 90). 

Phase Locking 

The features of a sound stimulus are represented not only in the average firing rate of 
an auditory fibre but also in the timing of individual discharges-the fine structure 
of the response. An auditory nerve fibre generates spikes randomly; however, the 
distribution of spikes in time is governed to a some extent by the stimulating waveform. 
Specifically, the nerve activity evoked in response to a tone is typically concentrated 
at a particular phase, in which case the fibre is said to be phase-locked. This section 
only considers the activity evoked in a single fibre by a tone; however, phase-locking 
is also observed in response to sub-threshold tones, two-tone stimuli (Brugge et al., 
1969), AM broadband noise envelope, fundamental frequency (Javel, 1980) and even 
complex signals, such as speech. 
The presence and degree of phase-locking in an auditory nerve fibre is revealed by a 
period histogram, a graph which relates how many spikes occur at each phase of a tone 
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Figure 2.6: A tone stimulus produces a peak displacement on the basilar membrane. 
The neighbouring inner hair cells transduce this motion into a neural signal, which is 

preserved tonotopically throughout the auditory pathway. 

basilar 
membrane IHCs auditory nerve brain 

stimulus. Figure 2.5A shows a period histogram-phase-locked in this case to 7/2- 
typical of those obtained in physiological experiments. Spikes are observed almost 
exclusively during one half-period of the stimulus, during which time the probability 
of a spike is related to the waveform. Consequently, in a time-averaged sense, the 

pattern of discharges proceeding from a fibre conveys a half-wave rectified version of 
the basilar membrane motion. 

A second means of characterising the fine structure of a fibre's response is to measure 
the timing of spikes in relation to each other, rather than in relation to the stimulus. 
One common approach is to form a histogram from the intervals between consecutive 
spikes, such as the one depicted in Figure 2.5B. The results conform to that which one 
might expect, given that spikes are generated intermittently and are phase-locked when 
they do occur. If a tone with frequency f Hz is presented, and a spike occurs in every 
cycle, then the interspike intervals will exhibit some variability around I/ f seconds- 
the first mode in Figure 2.5B. If spikes occur on alternate cycles, then the intervals will 
vary around 2/f seconds and so on. 

It is generally held that the natural variability in the discharge times of fibres leads to the 
deterioration of phase-locking at frequencies above around 4-5 kHz in most mammals 
(e. g., Palmer and Russell, 1986). This can be explained in terms of Figure 2.5B. If 
the tone frequency, f, is increased, but the variability in timing remains constant, 
then the peaks of the interval histogram merge together; consequently, the strong 
periodic component in the histogram is lost. (See the synchronisation index of Young 

and Sachs (1979) for one measure of the strength of phase-locking. ) The interspike 
interval histogram of a cell is also influenced by its refractors period, i. e., the duration 
following a discharge in which the cell is recovering and cannot fire. If the refractory 
period exceeds N/ f, the first N peaks of the interval histogram are absent. 
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2.1.4 The Encoding of Stimuli in the Auditory Nerve 

So far we have examined how both the average rate and fine structure in the firing 

of an isolated fibre are influenced by (and so might encode) the frequency, intensity 

and phase changes of a tone stimulus. In this section, we inquire how the pattern of 
excitation in a population of auditory nerve cells conveys features of a complex acoustic 
signal, such as speech, which the brain and, ultimately, the listener can interpret. 

The first thing to note is that cells in the auditory pathway are ordered tonotopically, 
that is, according to their characteristic frequency, at all levels of the auditory pathway. 
The rate-place coding theory holds that the spectral content of a signal is manifested 
as resonances along the basilar membrane, which in turn excite local populations of 
auditory neurons; as a result, the spectral envelope of a stimulus is preserved by the 

average firing rate in a cross-section of the auditory nerve. There is a substantial body 

of experimental evidence that supports the rate-place hypothesis. In studies of the cat, 
for example, Sachs and Young (1979) have shown that the formants of vowel sounds 
presented at low intensities are apparent in measurements of the average-rate profile. 

The rate-place theory is sufficient to explain how low-intensity sounds are represented 
in the auditory nerve; however, for stimulus intensities beyond 40 dB-a moderate 
sound intensity, equivalent to the level of quiet conversation-the majority of nerve 
cells are saturated (see Section 2.1.3 above) and the formant peaks are no longer 
discernable (Greenberg and Ainsworth, 2006). Furthermore, the two-tone suppression 
phenomenon, in which the stronger of two tones diminishes the response of the weaker 
(Moore, 2004; Sachs and Kiang, 1968), would seem to argue against the place encoding 
of a tone complex at high intensities. Current formulations of the rate-place theory rely 
upon the broader dynamic range of low-spontaneous fibres to preserve spectral features 

at higher sound intensities (Sachs et al., 2006). 

The apparent shortcomings of the rate-place theory have prompted some researchers to 
seek a complementary (or alternative) explanation, based on the fine timing of nerve 
discharges. These temporal coding theories maintain that phase-locking in auditory 
nerve fibres is exploited in frequency analysis, e. g., in the intervals between discharges. 
It is generally accepted that timing information in a neural signal degrades as it is 
transmitted via synapses along the auditory pathway. The trend, as one moves from 
the periphery to the central processing areas, is that cells exhibiting phase-locking are 
relatively fewer and can only encode lower frequencies (Meyer, 2006). 

Despite the lack of empirical evidence for widespread phase-locking in the higher 

centres of the auditory pathway, researchers have proposed several mechanisms by 

which temporal features may be preserved. First, the volley principle, first proposed 
by Wever (1949), suggests that greater precision in phase-locking may be achieved by 

summing the response over a population of fibres, each of which contributes phase- 
locked spikes intermittently. Second, it is possible (but not proven) that temporal 
features are encoded as an average rate signal at some early stage of the auditory 
processing chain. Interspike intervals are well-represented in the PSTH response of 
primary-like cells in the cochlear nucleus (Sachs et al., 1988); the auditory midbrain 
is also a candidate for this conversion process (Meyer, 2006). A recent remark from 
Moller (2006, page 115) suggests 
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"[the] assumption that phase-locking of neural discharges deteriorates 
in synaptic transmission may be incorrect and the need to convert the 
temporal code into a spike rate code or a spatial code is not as urgent 
as earlier assumed: ' 

The apparent phase-locking limitations of cells in the auditory nerve does not then 
imply that fine time structure is lost thereafter. On the contrary, data recorded 
from bushy cells located in cochlear nucleus has demonstrated the improvement of 
temporal resolution following the spatial integration of the neural signal over many 
input synapses (Joris et al., 1994). 

In summary, the extent to which the auditory system exploits spectral and temporal 
information is still unclear and remains the subject of ongoing experimentation 
and debate. Many researchers now support a duplex theory, which proposes a 
representation incorporating place-code information and fine temporal detail. To this 
effect, Moller (2006, page 118) writes: "Contemporary research indicates that both 
place and temporal coding are important for frequency discrimination in the auditory 
nervous system" 

2.1.5 Auditory Scene Analysis 

The sections above have sketched some theories concerning the way in which basic 
features of an acoustic signal-time, frequency and intensity-might be encoded in 
the auditory nerve. However, when listening in everyday mode (Gayer, 1993), we 
are principally aware not of signal properties, nor even their psychophysical correlates 
(loudness, pitch, etc. ), but rather whole entities. For instance, when we hear the word 
"car" spoken, our impression is that of a single perceptual unit, rather than a complex 
tone preceded by a noise burst. (We shall ignore the issue of analytical listening, in 
which the deliberate focus of attention is the acoustic signal itself. ) This supports the 
view of Gestalt psychologists, who argue for an innate, biological tendency to arrange 
a perceptual field, or raw sensory data, into whole objects (Koffka, 1935). 

Remarkably, the auditory system not only combines disparate acoustic features into a 
unified, auditory experience, but is also able to distinguish individual sources of sound 
within a mixture. This is a surprising fact considering that, in many contexts, sound 
reaching the ears contains energy contributed by different sources, which overlaps in 
time and frequency. Bregman (1990, page 2) provides the following example: 

"A friend's voice has the same perceived timbre in a quiet room as at 
a cocktail party. Yet at the party, the set of frequency components arising 
from that voice is mixed at the listener's ear with frequency components 
from other sources. The total spectrum of energy that reaches the ear 
may be quite different in different environments. To recognise the unique 
timbre of the voice we have to isolate the frequency components that are 
responsible for it from others that are present at the same time. A wrong 
choice of frequency components would change the perceived timbre of the 
voice. The fact that we can usually recognise the timbre implies that we 
regularly choose the right components in different contexts. " 
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similarity This principle says that elements with 
similar properties should be grouped. These 

properties may include a common fundamental 
frequency, spatial location, timbre, or modulation in 

envelope or frequency. 
a) 

C 

good continuity Smooth variation promotes the 

perception of a unified, changing sound. For instance, 
if two tones are presented separately, as shown in (a), time 
then they are perceived individually; if the tones are 
connected by a glissando, as shown in (b), then a b' U 
single, dynamic sound is perceived (Bregman and 
Dannenbring. 1973). 

time 

common fate This principle states that 

components which vary identically in some property C) 
should he grouped together. Of the four frequency 

components sketched in (c), three form a single 
stream on the basis of a common changes in 
fundamental frequency, and the fourth is heard time 
separately. 

proximity This principle refers to the tendency for 

elements which are close in time or frequency to be 

dt 
T 

perceptually fused. The alternating tone bursts 
depicted in (d) are heard as a single stream. When the time 
tone bursts are spaced closely in time, i. e., played 
rapidly, the low and high frequency tones form 

separate streams, as shown in (e). See van Noorden .---- 
(1975). 

time 
tý 

T 

closure The closure principle groups elements if 
L: jr they appear to be fragments of a continuous element 

which has been masked by noise. For example. (f) 

shows three tonal sweeps which are isolated from time 
each other by silent gaps. If these gaps are filled with 
noise bursts sufficiently intense to act as a masker, the 9) 

closure principle prefers a long, modulated tone 
obscured by occasional transient interruptions, as (g) 
illustrates (Ciocca and Bregman, 1987). 

time 

Table 2.2: Five primitive grouping cues. 
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The task the auditory system performs in "choosing the right components in different 

contexts" is called auditory scene analysis (ASA) (Bregman, 1990). When discussing 

sound, Bregman draws an important distinction at the outset between sources and 
streams. For example, when we say "the sound of a violin", to what are we referring? 
The term `sound' may be employed in a mechanical sense-the vibration of the strings 
and the surrounding air when the bow is drawn across-in which case the violin is 

a source, and each note is an acoustic event. Alternatively, `sound' may relate to a 
listener's mental impression of the violin sound, in which case the notes of the violin 
blend together into a single stream. Streams may also aggregate to form larger streams, 
in hierarchical fashion, depending on the mode of listening. For example, a violin, 
cello, flute and oboe may be attended as four individual streams or as one stream, e. g., 
a quartet. 

Bregman presents auditory scene analysis as a two-stage process: the acoustic signal is 

analysed into a collection of sensory elements, or segments (Wang and Brown, 2006), 
then perceptual streams are synthesised from disjoint subsets of segments on the basis 

of either top-down or primitive grouping principles, which we will examine shortly. 
Physiological accounts of either stage-presuming the analysis-synthesis concept of 
ASA is correct-are lacking in detail at present, although the segmentation stage would 
clearly require an auditory mechanism to identify and extract prominent features in a 
signal. The temporal-tonotopic encoding of a signal in the auditory nerve suggests that 
such a process might operate in the time-frequency domain; furthermore, the discovery 

of specialised neurons in the higher centres of the auditory pathway, which respond 
selectively to amplitude and frequency modulation (Eggermont, 1994; Phillips and 
Hall, 1987), onsets or offsets (e. g., Whitfield and Evans, 1965), and interaural time 
difference (Brugge and Merzenich, 1973), provide compelling evidence for some kind 
of 'feature extraction' layer. 

The synthesis stage in ASA forms collections of segments into streams using grouping 
cues. Top-down or schema-driven grouping cues bind features together if they match a 
learned perceptual pattern. In other words, top-down cues are drawn from a listener's 
previous experience of sound in order to assess which segments of a sound scene belong 
together. The influence of top-down processing in the auditory system is demonstrated 
by studies of the phoneme restoration effect. This phenomenon is observed when a 
short section of a word is replaced with noise, and the auditory system substitutes the 
noise for an alternative, meaningful sound, depending on the sentence in which the 
word is embedded. For example, the noise bursts (0) in "Oeel was on the shoe" and 
"feel was on the orange" are respectively heard as 'h' and `p' (Warren, 1970). The 
top-down cues operating in these experiments are clearly acquired from experience and 
may differ from person to person. 

Primitive or data-driven grouping cues refer to the association of segments based on the 
Gestalt principles of perceptual organisation. In the natural world, certain regularities 
are impressed upon sounds as a consequence of the physical laws at work in their 
production. For instance, many sounds are generated by one object striking another, 
e. g., tapping a pencil on a table top. From an acoustic perspective, such actions result in 
the simultaneous introduction of sound energy across many frequencies, giving rise to 
the principle: "sounds that share a common onset should be grouped". Another major 
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class of mechanical system encountered in nature, besides transient disturbances, is 

made up of oscillatory systems, which produce sounds by rapidly repeating the same 
action. Periodic sounds always possess a harmonic spectrum; thus, we obtain a second 
principle: "partials that share a common fundamental should be grouped". The Gestalt 
principles appear to be aligned with these tendencies and are considered innate rather 
than learned. Table 2.2 lists five abstract grouping principles for which experimental 
evidence exists. (See Bregman (1990) for a review. ) 

2.1.6 Interim Summary 

The hearing process begins with pressure variations at the ear, which propagate along 
the auditory canal and cause the membranous eardrum to vibrate. These vibrations 
are then communicated through three small bones (ossicles) onto another, smaller 
membrane called the oval window, which forms an opening at the base of the 
cochlea. The difference in size between the eardrum and oval window, along with 
the configuration of the ossicles, helps to overcome the impedance step encountered by 
a wave travelling from air to fluid. 

The motion of the oval window causes longitudinal waves in the fluid-filled chambers 
of the cochlea, which in turn excite traverse travelling waves in the basilar membrane. 
The mechanical properties of the basilar membrane vary along its length so that high 
frequencies produce a peak displacement at the base (near the oval window) and low 
frequencies produce a peak displacement near the apex. The local displacement of the 
basilar membrane results in the deflection of the hairs (stereocilia) attached to inner 
hair cells in that region. 

With each deflection of a hair, a small amount of neurotransmitter is released into the 
space between the inner hair cell and an auditory nerve fibre. When a sufficient quantity 
of transmitter has accumulated in the cleft, the fibre generates an action potential, 
which in turn causes a cascade of spikes to flow along the afferent pathway from the 
auditory periphery to the brain. There remains some disagreement concerning which 
mechanisms are responsible for the encoding of a complex stimulus in the auditory 
nerve. The rate-place theory holds that the average firing rate in a tonotopic array of 
cells provides a time-varying spectral representation. Temporal (and duplex) theories 
assign a role to the timing of cell discharges in frequency encoding, especially for 
intense stimuli, which saturate the average-rate response. 

The rate-place and timing theories of encoding broadly account for a listener's ability to 
interpret sounds presented in isolation; however, the physiological basis for the ability 
to organise a mixture of sounds into separate perceptual entities is less well-understood. 
Auditory scene analysis is a conceptual model which supposes that the auditory system 
segregates a signal into time-frequency segments and then reassembles those segments 
into streams according to a set of grouping cues. Top-down cues are established from 
experience and assign segments to the same stream if they resemble a learned pattern 
(or 'scheme'). Primitive cues associate segments according to Gestalt principles, such 
as similarity, proximity, closure, continuity and common fate. 
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2.2 Computational Models 

The remainder of this chapter is devoted to the subject of computational auditory 
models, namely, algorithms that are designed to mimic either the biological function 

of the ear, the behaviour of the listener, or both. The task of modelling the entire 
hearing process is usually presented as a matter of identifying functional blocks within 
the ear-these we described in the first half of the chapter, e. g., the outer-middle ear, 
the cochlea, the auditory nerve and so forth-along with their inputs and outputs, 
producing a computer program to simulate the behaviour of each one at a suitable 
level of abstraction, and then assembling the programs into a chain. The first goal of 
this section is to review the various auditory models that have been proposed for the 
following three major functional stages: the outer and middle ear (§2.2.1), the basilar 

membrane (§2.2.2) and neuro-mechanical transduction (§2.2.3). 

The second part of the section explores the various ways in which researchers have 
joined together the component auditory models to form complete systems, in particular, 
systems that emphasise the role of timing mechanisms in auditory processing. Five 

categories of temporal processing model are identified in the auditory modelling 
literature, which we shall enumerate in Section 2.2.4. The first three categories are 
presented as models of stimulus encoding in the auditory nerve (§2.2.4), and the final 

two are discussed in connection with computational auditory scene analysis (§2.2.5). 

2.2.1 Modelling the Outer and Middle Ear 

The combined effect of the outer and middle ear can be modelled by a linear filter that 

provides a broad resonance around 2.5 kHz and perhaps a second, lesser resonance at 
5.5 kHz due to the external ear (Pickles, 1988). The equal loudness contour provided 
by ISO suggests a transfer function which boosts frequencies in the 2-4 kHz range 
(ISO, 2003). Other researchers use a high-pass pre-emphasis filter, based on a transfer 
function originally measured by Lynch et al. (1982) in the cat, modified to match 
data obtained from humans (Kates, 1991; Slaney, 1988). In a more recent auditory 
model, Lopez-Poveda and Meddis (2001) combine two FIR filters in series, one which 
characterises the headphone pressure-to-eardrum pressure system, and the other the 
eardrum pressure-to-stapes velocity system. The impulse responses for both filters 

are obtained by applying an inverse discrete Fourier transform to empirical frequency 

responses (Pralong and Carlile, 1996; Goode et al., 1994). 

Unlike some components of the auditory system, the twin purposes of the outer and 
middle ear-(i) to increase the sound pressure at the oval window and (ii) to modify 
the incoming spectrum to pre-emphasise the band occupied by speech signals and to 

assist directional hearing (Moore, 2004)-appear to be highly system- (physiology) 

and signal- (speech) specific. This particular stage will therefore be excluded from any 
generalised model of auditory-style processing. 
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g[n] 

Figure 2.7: The goal is to reproduce computationally the system which transforms a 
time-varying pressure at the oval window, g[n], into the motion of a single point on the 
basilar membrane, x3 [n]. 

2.2.2 Modelling the Basilar Membrane 

The vibration at a given place on the basilar membrane in response to a stimulus derives 
from the physical properties of the membrane, primarily its stiffness and mass, and any 
active tuning mediated by the outer hair cells. An appropriate model for this behaviour 
is a digital filter, which transforms a stimulus signal, gin], into a signal representing 
the motion of the basilar membrane, x. q 

[n], at a place indexed by s, as illustrated in 
Figure 2.7. The output of a bank of filters, i. e., x1 [n], x2[n], ... , xM [n], then models 
the motion of the basilar membrane at discrete points along its length. 

Transmission Lines 

The earliest computer simulations of the motion of travelling waves along the basilar 
membrane employed the transmission line model (Zwislocki, 1948). The velocity of 
the stapes is modelled by the current density at the leftmost end of the transmission 
line, and the pressure differences between the scalae are modelled by the voltages 
across the terminal rails. The line is divided into small elements consisting of the 
RLC circuit depicted in Figure 1.1.1. The elemental inductance and resistance are 
assumed to be uniform throughout the transmission line; however, the capacitance 
grows exponentially with distance from the voltage source. In accordance with the 
analogy, the mass and friction of the basilar membrane are taken to be uniform, whilst 
its compliance increases with distance from the oval window (Allen, 1985). 

In these models, successive sections of the transmission line act like notch filters. The 
AC current enters each section, and the flow divides between the parallel and series 
branches in proportion to the admittance encountered at each: if the parallel branch 
resonates at the AC frequency, then charge preferentially flows there; if not, the charge 
flows along the series branch. Returning once again to the physical case, when pressure 
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Figure 2.8: Transmission line model of the cochlea. A) the transmission line is 
composed of a cascade of parallel sections. The inductances L1 and L2 model inertia 
in the fluid and basilar membrane, respectively. The resistance R models loss of energy 
due to friction. The capacitance C models the compliance of the basilar membrane; the 
C's increase exponentially along the transmission line (Zwislocki, 1948). B) simplified 
view of the mechanical forces in the cochlea. The downward facing arrows represent 
the forces due to inertia, the upward arrows represent the restoring forces due to 
stiffness, and the right-facing arrows denote fluid flow. C) A schematic showing the 
stages of filtering in a transmission line model (Lyon, 1982). 

is applied to the fluid it can either push against the basilar membrane and store mass 
in the displacement, or it can propagate along the chamber. If the inertial forces (due 
to mass) and the restoring forces (due to stiffness) are balanced in such a way that the 
section moves back and forth with the flow, then the pressure wave directed along the 
scala diminishes. 

The computational model of vibration in the cochlea presented by Lyon (1982), based 
on the earlier work of Schroeder (1973) and Zweig et al. (1976), utilises a cascade of 
notch filters to progressively remove the high frequency content from the fluid pressure 
wave; then, at each stage, a parallel `resonance' filter converts the pressure on the 
basilar membrane into displacement. A block diagram representing this process is 
shown in Figure 2.8C. The displacement of the basilar membrane is read off from the 
taps along the bottom of the transmission line. The centre frequencies of the sections 
descend in equal jumps on a quasi-logarithmic scale (Slaney, 1988), and there is a 
constant-Q relationship between bandwidth and frequency. The magnitude response 
for eight sections of the transmission line model are shown in Figure 2.9A. Note that, 
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Figure 2.9: Magnitude response of two basilar membrane models. A) eight filters 
from a transmission line basilar membrane model, produced using code from Malcolm 
Slaney's MAILAB Auditory Toolbox (Slaney, 1994). B) eight gammatone filters 
uniformly spaced on an ERB scale between 100 Hz and 6000 Hz. 

due to the cumulative low-pass filtering of the serial notch filters, the low-frequency 
filters exhibit a steep right-hand roll-off. 

Filterbank Models 

The second type of approach to characterising the response of the basilar membrane 
to a stimulus is a system identification approach. First, the system that transforms the 
input signal (the motion of the stapes) into the output signal (the vibration of a point on 
the basilar membrane) is assumed to be linear and time-invariant. Second, a standard 
experimental procedure is applied to obtain the impulse response of the linear system 
by measuring its response to, e. g., a click or white noise. A third, optional stage seeks 
an elegant analytical expression for the impulse response, in which the place on the 
basilar membrane is a parameter. 
The first two steps outlined above were carried out by de Boer and de Jongh (1978), 
who used a reverse correlation technique to discover the impulse responses relating 
an input stimulus to the firing rate of auditory neurons at various places on the basilar 
membrane of the cat. Shortly afterward, de Boer (1979, cited by Schofield) completed 
the third step, publishing a parametric version of the impulse response, called the 
'revcor function', which agreed closely with those obtained empirically. Nowadays, 
this function is referred to as the gammatone function and has the form 

h9t (t) = t"-' exp(-2irBt) cos 2ir f t, fort > 0, (2.1) 

where the parameters n, B and f, refer to filter order, bandwidth and centre frequency, 
respectively. The magnitude response corresponding to the impulse response (2.1) with 
order n=4, provides a good fit to psychoacoustic auditory filter shapes (Schofield, 
1985). 
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The transfer function of the nth-order gammatone filter can be obtained from (2.1) 
using some standard properties of the unilateral Laplace transform: 

(n-1)! 

[_1 gt(S) -2 (s + 27r(B - 2, fc))n 
+ 11 (2.2) (s+27r(B+ifc)) j 

For a discussion of the implementation of the gammatone filter in discrete time, see 
Cooke (1991/1993, Appendix A). 

The gammatone impulse response specifies the response at one place on the basilar 
membrane; a bank of gammatones is needed to model the basilar membrane in its 
entirety. To construct a filterbank, a principled way to choose the bandwidths (B) 
and centre frequencies (f, ) of the constituent filters must be found. The bandwidth 
of auditory filters can be measured using a notched-noise technique (Patterson, 1976). 
The equivalent rectangular bandwidth (ERB) (Moore, 2004) of an auditory filter has 
been found to share an approximately linear relationship with its centre frequency 
(Glasberg and Moore, 1990) and is given by the ERB functions: 

B= ERB (f, ) = 24.7(4.37f,, " 10-3 + 1), Hz. (2.3) 

The ERB function enables us to assign a bandwidth to all the filters in the gammatone 
filterbank, provided that their centre frequencies are known. The centre frequencies 
themselves can be chosen arbitrarily, e. g., distributed evenly on a linear scale. A better 
approach, however, is to space the centres evenly on an ERB scale (Moore, 2004), with 
the desirable consequence that the spacing between filters grows at the same rate as 
their bandwidths change. A frequency f, has a value on the ERB scale given by the 
formula (Glasberg and Moore, 1990) 

ERB number (fý) . 
(In 10) loglo(4.37 ff" 10-3+1) 

(2.4) 
24.7x4.37.10-3 

which is derived from (2.3). Figure 2.9B plots the magnitude response of a filterbank 
containing eight gammatone filters. Some notable features of the gammatone filter 
include its linearity, its relatively broad magnitude response which is symmetric2 
around the centre frequency fc, and the inexpensive implementation it offers in the 
form of a digital IIR filter with only 2n-1 coefficients (Cooke, 1991/1993). 

The first two properties of the gammatone filter named above, linearity and passband 
symmetry, are difficult to reconcile with empirical measurements of the basilar 
membrane, which reveal a level-dependent, asymmetric frequency response. Several 
alternative filterbanks have been developed to address these shortcomings. Two specific 
examples worth mentioning here because of their close relation to the gammatone filter 
are the dual-resonance nonlinear (DRNL) filter (Lopez-Poveda and Meddis, 2001) 
and the gammachirp filter (Irino and Patterson, 1997). Both simulate the broadening of 
auditory filter bandwidth that results from increasing the stimulus level (Glasberg and 
Moore, 2000). 

'For n=4, a correction factor of 1.019 is often applied to (2.3), following Patterson et al. (1988). 
2Strictly speaking, the general gammatone filter is asymmetric around fc. In an auditory filterbank, 

Bcf, where c is sufficiently small that the magnitude response may be considered symmetric around its 
peak for all practical purposes. 
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Figure 2.10: Zero crossing transduction models. A) deterministic zero crossing 
detector (ZCD); B) stochastic zero crossing detector (SZCD); discharges are noisy 
and intermittent; C) the output of several SZCDs is fed to an integrator (INT), 
which averages the crossing times of nearly-coincident spikes; D) multi-level crossing 
detector (MLCD); E) zero crossings weighted by the peak amplitude (ZCPA). 

2.2.3 Modelling Neuro-mechanical Transduction 

The next block in the auditory periphery model represents the transduction process, that 
is, the conversion of a mechanical signal to a neural signal by the inner hair cells. The 
displacement of points along the basilar membrane is supplied as input, and the output 
is a measure of nerve activity across an array of model inner hair cells. Depending on 
the implementation, the output of a single IHC model may be a spike train (a point 
process describing the timing of model discharges), a spike rate or a spike probability. 

Zero Crossing or Level Crossing Detector 

One simple approach to modelling the auditory-neural transduction process is a zero 
crossing detector, which generates a spike whenever the signal changes sign from 
negative to positive. This choice of model effectively discards information concerning 
the extent to which the basilar membrane is displaced and retains only the frequency 
(and phase) of its vibration. This is a suitable model insofar as it emphasises the 
preservation of timing in auditory nerve fibres; in this respect, the zero crossing detector 
may be considered the `ideal phase-locked unit'. Furthermore, as the majority of fibres 
are saturated at moderate stimulus levels, the zero crossing detector also represents the 
`ideal saturated unit' (Figure 2.10A). 
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The fidelity of the zero crossing model may be questioned on at least two grounds. 
First, the record of basilar membrane motion present in the spike train of an IHC is 
probabilistic and incomplete; a zero crossing detector, in contrast, is deterministic and 
generates a spike on every cycle. One possible response to this criticism is to introduce 
a stochastic element into the zero crossing detection process so that i) a spike only 
results from a crossing with probability p, and ii) a spike time is computed by adding 
a small amount of noise to the crossing time. This method yields a model spike train, 
which is less artificial in appearance (Figure 2.1OB). Alternatively, the zero crossing 
detector can be said to simulate the behaviour of fibres that integrate the response of a 
population of noisy cells-the volley theory (Figure 2.10C). 

A second, more serious objection to the zero crossing model is that a population of 
zero crossing detectors does not explicitly encode the envelope of the signal. In fact, 
all auditory neurons respond across some dynamic range; low-spontaneous rate cells, 
though in the minority, remain responsive even at high stimulus levels. One variant 
upon the zero crossing model uses a multi-level crossing detector (Ghitza, 1988) to 
encode both timing and amplitude information. This scheme encodes up-going level 
crossings, and the output of the unit is a spike train for each level (Figure 2.10D). 
A practical alternative to using multiple levels is to weight each spike by a function 
of peak amplitude across the previous interval; this is equivalent to a `continuum' of 
levels (Kim et al., 1999) (Figure 2.10E). The application of these models is discussed 
in greater detail in the next section. 

Half-wave Rectification, Compression and Automatic Gain Control 

The appeal of choosing a multi-level or weighted zero crossing detector lies in 
their ability to capture basic auditory transduction phenomena-phase-locking, level 
compression and saturation-using only very simple components. Another popular 
class of functional model combines half-wave rectification, compression and automatic 
gain control (AGC) to achieve a closer match to physiological data. For instance, the 
cochlear model of Lyon (1982) performs a half-wave rectification in each channel, 
followed by a three-stage adaptation process implemented by a series of automatic 
gain controls. The time constants on each AGC differ and account for various sources 
of adaptation in the ear. In Lyon's model, the compressive nonlinearity is included as 
the final stage, although its effect is incorporated into the AGC feedback. 

Seneff's model of the auditory periphery includes a similar hair cell transduction stage 
accomplished by a half-wave rectification, compression and AGC (Seneff, 1988). The 
half-wave rectification and compression take the form of a static nonlinearity; the 
adaptation stage is performed by two nonlinear time-invariant filters. The in-channel 
transduction model of Dau et al. (1996) consists of a half-wave rectifier and low-pass 
filter, followed by an adaptation stage implemented as a cascade of automatic gain 
controls with time constants ranging between 5 ms and 500 ms. 
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Figure 2.11: A diagram depicting the flow of transmitter between the three reservoirs of 
the Meddis model, along with a source (factory) and sink (loss), adapted from Meddis 
(1986,1988). 

Meddis' Hair Cell Model 

A widely-adopted model of the inner hair cell is that of Meddis (1986)1. Like Seneff's 
model, the Meddis hair cell (MHC) is able to reproduce a variety of characteristics, 
including phase-locking, compression, saturation, adaptation and spontaneous firing 
(Meddis, 1988). The MHC simulates the manufacture, transfer, recycling and loss 
of chemical transmitter substance within, and in the vicinity of, the inner hair cell, 
and specifies three `reservoirs' in which a quantity of transmitter may reside: the free 
transmitter pool, the cleft and the reprocessing store. These quantities are respectively 
represented by the state variables q, c and w, and differential equations describe how 
transmitter is exchanged between them. The physical understanding of these equations 
is described next and schematically presented in Figure 2.11. 

The free transmitter pool leaks into the cleft in proportion to the compressed, half-wave 
rectified motion of the basilar membrane, : i(t). At the same time, the free transmitter 
pool is replenished in proportion y to how empty it is (where q=1 is considered full), 
and a proportion k of substance in the reprocessing store is also recovered. This gives 
the first differential equation governing flow in and out of the free pool: 

dq 
= -x(t)q(t) + y(1-q(t)) + kw(t). (2.5) 

The fluid in the cleft arrives exclusively from the free transmitter pool, as described 
above, and from here, a proportion l is lost, and a proportion r is taken up into the 
reprocessing store. The reprocessing store simply returns transmitter fluid from the 
cleft to the free transmitter pool. (The rate at which fluid enters and exits reprocessing 
depends on the choice of r and k. ) From these statements follow two further differential 

For a more recent revision of this model, see Sumner et al. (2002). 

40 



2.2 Computational Models 

A. factory 

C. 

w 

factory 

t 

$. factory 

71) 

p D. factory 

tý-, 

I 

ww 

t 

tý 

Figure 2.12: An illustration of four qualitative stages of adaptation in the Meddis hair 

cell model for a medium-intensity tone burst: A) no stimulus, spontaneous activity; 
B) onset rate; C) adapted rate; D) offset and recovery of spontaneous activity. 

equations: 

dc 
d- c(t)q(t) - lc(t) - re(t) (2.6) 

dw 
- re(t) - kw(t). (2.7) 

dt 

The output of the MHC is a spike probability, directly proportional to the amount of 
transmitter in the cleft, c. The operation of the model can be understood as follows. 
Prior to the application of a stimulus, the free transmitter pool is almost full, and a 
small amount of transmitter fluid passes into the cleft, triggering spontaneous firing 
(Figure 2.12A). When the stimulus is initially presented, the free transmitter floods into 
the cleft, producing a sudden increase in firing probability (Figure 2.12B). Gradually, 

the cleft content is depleted through loss and reuptake, and the factory can only 
replenish it at a limited rate, via the free transmitter pool. This gives rise to the adapted 
rate (Figure 2.12C). When the stimulus is removed, spontaneous firing resumes at a 
reduced rate, as the free transmitter pool is now empty (Figure 2.12D). Once the factory 
has restored the free transmitter pool, the process can begin again. 

A MATLAB implementation of the MHC was used to produce Figure 2.13, which 
illustrates two aspects of the model's response to a 500 Hz tone burst, 180 ms in 
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Figure 2.13: Output of the Meddis' hair cell in response to a 500 Hz tone burst. A) a 
long-term plot shows adaptation of the mean firing rate; B) a short-term view reveals 
the probabilistic phase-locking to 500 Hz. The code used to produce this figure was 
adapted from Ostergaard (1990). 

duration, and preceded and followed by silence. The evolution of the average firing 
rate is represented by the envelope of the plot in Figure 2.13A and highlights the four 
stages of adaptation described in the preceding paragraph: spontaneous firing, onset, 
adaptation, and reduced spontaneity and recovery. The plot also closely resembles the 
experimental data of Kiang (1980), reproduced in Figure 2.4. Figure 2.13B magnifies 
a portion of the left-hand plot, to reveal how the fine structure of the firing probability 
is phase-locked to the tone frequency; specifically, there are ten peaks equally spaced 
over a twenty-millisecond period, indicative of a 500 Hz stimulus. 

2.2.4 Models of Stimulus Encoding in the Auditory Nerve 

Computer models of the auditory periphery simulate the sequence of transformations a 
signal undergoes from the moment it arrives at the ear as an acoustic wave to the point 
of its encoding in the auditory nerve as series of spikes. Section 2.1.4 reviewed some 
theories advanced to explain how the auditory-neural encoding relates to the original 
sound stimulus. Rate-place theories hold that sounds are encoded by the average 
firing rate of fibres associated with different places along the basilar membrane, whilst 
temporal theories emphasise the importance of precise timing preserved by individual 
nerve spikes. Five approaches to temporal processing are discussed over the next two 
sections, which we may briefly characterise in advance. 

1. joint synchrony -a model that represents the extent to which each of its channels 
is dominated by, or phase-locked to, a periodicity at its centre frequency. 

2. in-channel -a model that independently extracts frequency information from 
each of its channels, using the phase or (more specifically) zero crossings, 
without any reference to centre frequencies. This is sometimes referred to as 
a non-place approach (e. g., Ghitza, 1988). 
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Figure 2.14: Schematic of a joint synchrony / average-rate model. The output of 
the filterbank follows two independent pathways, which respectively compute (i) an 
average-rate representation and (ii) a temporal representation. Features from both 
representations are then supplied to a third stage, e. g., a decision rule or classifier. 

3. spatial-temporal -a model that extracts frequency or phase-locking information, 
but does so by comparing the output of many channels. (The term "spatial" does 
not relate to directional hearing, rather the spatial axis of the basilar membrane. ) 

4. synchrony strand (Cooke, 1991/1993) -a specific model for locating and 
tracking time-frequency structures using instantaneous frequency information, 
which is distinct from the three methods above, on account of its parametric 
output. 

5. correlogram (Slaney and Lyon, 1990) -a plot that represents timing information 
by showing the autocorrelation in every channel as a two-dimensional image. 

There are without doubt other categories or models that this list omits, and we may 
assume some degree of overlap amongst the approaches that are listed. 

I. Joint Synchrony /Average-rate Models 

Models that compute two separate representations from the output of a cochlear 
filterbank, one based on average firing rate, the other based on how closely the fine 
temporal structure is synchronised to the channel centre frequency, we designate joint 
synchrony / average-rate models' and schematise in Figure 2.14. 

The auditory model of Seneff (1988) adopts the joint-synchrony / average-rate format. 
The initial stage of the model is a half-wave rectification, compression and adaptation 
performed for each output of a forty-channel auditory filterbank. The average-rate 
spectrum is then calculated by smoothing this representation, whilst the synchrony 
spectrum is derived, in parallel, by processing the same data with a generalised 
synchrony detector (GSD). The output of the GSD in channel s is given by 

GSD, (t) = arctan 
((Ix9(t) + xe(t-'re)1)1 (2.8) 

(ix, (t) - x9(t-r3)1) J 

'following Seneff (1988). 
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Figure 2.15: A schematic of the EIH. The signal is first decomposed into 85 channels 
by a cochlear filterbank. Each channel is then processed by 7 level-crossing detectors 
and the reciprocals of the 20 most recent intervals from each level are compiled into a 
histogram. The EIH output is the sum of all the intermediate histograms. 

where 7-, is a delay corresponding to the reciprocal centre frequency of channel s, and 
(I " 1) denotes the time-averaged magnitude. Upon inspecting (2.8), the response of the 
GSD is seen to be greatest when the input contains a periodicity close to the centre 
frequency of the channel. 

A second auditory model that employs multiple representations is the rate-place and 
temporal-place encoding scheme proposed by Sachs et al. (1988). Their study bypasses 
the computational filterbank stage by directly supplying a record of the spike times 
measured in fibres on the (cat) basilar membrane as input to the algorithm. The rate- 
place representation plots the normalised average firing rate of each fibre against its 
characteristic frequency, thus presenting the degree of neural activity on a conventional 
frequency axis. As the properties of fibres vary considerably, the normalised average 
rate scales the firing rate into the range 0-1, where 0 and 1 respectively correspond to 
the spontaneous and saturated rate. 

The temporal-place representation is computed along a separate pathway and plots 
the average localised synchronised rate (ALSR) for each harmonic of a complex. 
The extent to which a single fibre is phase-locked to a harmonic is measured by the 
synchronisation index: the magnitude of the Fourier transform of the fibre's PSTH at 
the harmonic frequency, divided by the average rate. The ALSR for a given harmonic is 
then defined as the synchronisation index averaged across all fibres. For a more detailed 
discussion of synchronisation index and ALSR, with examples, see Young and Sachs 
(1979). 

II. (a) In-channel Temporal Processing: The Ensemble Interval Histogram 

The second class of auditory model reviewed in this section uses the zero crossings in 
the output of a cochlear filterbank to produce a frequency-domain representation of the 
signal. The frequency analysis performed by these models is therefore accomplished in 
two stages: i) each filter passes only a narrow range of frequencies-this is a standard, 
spectral analysis; ii) the intervals between the zero crossings in the filter output are 
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used to estimate the precise frequency of local, dominant components. Several auditory 
models conform to this scheme', e. g., Deng and Sheikhzadeh (2006); Fulop and Fitz 
(2006); Gardner and Magnasco (2006); Kim et al. (1999); Cooke (1991/1993). One of 
the earliest examples of this kind of auditory model is the ensemble interval histogram 
(EIH), proposed by Ghitza (1988) for noise-robust speech applications. It is instructive 
to examine the original algorithm in some detail (cf. Figure 2.15). 

The initial stage of processing in the EIH is a filterbank containing eighty-five cochlear 
filters, spaced logarithmically between 200 Hz and 3200 Hz, which decomposes the 
input signal into narrow bands. This simulates the displacement of points on the basilar 

membrane, as described in Section 2.2.2. The second stage models the transduction 
process in each channel using seven level crossing detectors, distributed evenly on a 
log-scale over the dynamic range of the signal (see Section 2.2.3 and Figure 2.1OD). 
Last of all, the EIH representation itself is computed at 5 ms intervals by pooling the 
reciprocal of the twenty most recent intervals from every level crossing detector into 

a histogram. The histogram spans the 0-3200 Hz range and is uniformly divided into 
one hundred bins. The result is a two-dimensional time-frequency representation, in 

which each histogram `time slice' is potentially compiled from 11,900 intervals. 

The representation of a signal in the EIH can be understood as follows. If a 100 Hz 
tone, e. g., is presented without noise, then every filter outputs upward level crossings 
at 10 ms intervals, which accumulate in the 100 Hz histogram bin (Figure 2.16A). How 
many intervals each filter contributes will depend on the distribution of the levels, the 
signal amplitude and the attenuation of the filter. A more complicated scenario arises 
when broadband noise is added to the input signal, so that every filter is driven by a 
mixture of tone and noise. The level crossing intervals of filters in the vicinity of the 
tone gravitate towards the tone frequency and produce a peak in the EIH. The remote 
filters, which are dominated by noise, generate a spread of intervals and together create 
a relatively flat response in the EIH (Figure 2.16B). 

Simple speech sounds are represented in the EIH in a similar way. Vowel sounds are 
produced when pressure pulses caused by the rapid opening and closing of the glottis 
excite resonances in the vocal tract (Gold and Morgan, 2000). For modelling purposes, 
the vocal tract is typically treated as an all-pole linear system. In the frequency domain, 
the vowel sound is the product of two spectra: a harmonic spectrum (associated with 
the glottal pulse train), and the response of the vocal tract filter, which consists of a 
number of resonant peaks orformants. Figures 2.17A and 2.17C display the amplitude 
spectrum for two synthetic vowel sounds: [ ar ] and [ er 1. The corresponding EIH 
plots are shown in Figures 2.17B and 2.17D. The vowel formants are marked on all the 
plots, although the fine structure (i. e., individual harmonics) is unresolved in the EIHs 
at high frequencies. The first formant of both [ ar ] and [ er ] are overresolved in the 
EIH. 

The spectrogram and a vareity of EIHs for a recorded speech signal ("set white with P2 
soon", spoken by a male voice) are shown in Figures 2.17E and 2.17F-H, respectively. 
The original EIH model (Ghitza, 1988) extracted a fixed number of the most recent 

i Some of these models do not extract component frequencies from zero crossing intervals per se, but rely 
on allied quantities such as inter-peak intervals or the phase-derivative. The principle is identical, however. 
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A. EIH Representation of a Clean Tone 

B. EIH Representation of a Tone in Noise 
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Figure 2.16: The encoding principle underlying the EIH representation. A) a 100 Hz 
tone causes all the cochlear filters to respond at the tone frequency; every interval 

contributes to a single frequency bin in the EIH. B) adding noise to the tone generates 
random output from each filter, except those close to the tone, which gravitate towards 
the dominant frequency and create a broad peak in the EIH. 
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Figure 2.17: A-D) Fourier magnitude spectrum and corresponding EIH for two vowel 
sounds: [ar] and [ er I. The first three formants are marked on using inverted 
triangles. E) spectrogram for the utterance "set white with P2 soon" alongside a variety 
of EIH plots (F-H). See text for details. 

47 



2.2 Computational Models 

A. Non-place 

TrT-n 
0 vi 
_O6 
öI 
M 

oIO5 N 

N 

ö ýO3 

o 

B. Place-dependent 

O2 
i 

I iO2 
i 

O2 

Figure 2.18: Time resolution in an EIH with four filters and three level-crossing 
detectors. A) in a non-place temporal coding scheme, intervals are formed from the 

most recent spikes prior to time t. B) a place-dependent scheme uses the intervals 

within a trailing window, whose length is inversely proportional to the channel centre 
frequency. The spikes that are counted are shown in heavy print. The localisation in 
time afforded by place-dependent coding is superior. 

intervals from each level crossing detector, in each channel, at each time step. This is a 
non-place approach, as the manner in which the intervals are chosen does not explicitly 
depend on the channel. One problem with this approach is that level crossing intervals 

remain the most recent intervals until they are replaced. For instance, a sufficiently 
high-energy noise burst will activate the entire array of level crossing detectors, and 
even if silence ensues, the most recent intervals will still contribute to the EIH, as 
no mechanism is included to cater for their removal. This results in the undesirable 
`smearing' along the time axis of the EIH evident in Figure 2.17F. 

A subsequent variant of the EIH algorithm addresses the smearing problem by adopting 
a place-dependent approach to interval selection (Ghitza, 1994). In this representation, 
the EIH is formed from the intervals that fall within a window K/ fc seconds long, 

where f, is the channel centre frequency and K is a constant parameter. With respect 
to time resolution, the non-place and place-dependent EIH behave very similarly when 
a level crossing detector registers intervals; but when no intervals are registered, the 
place-dependent version does not use outdated information. This principle is illustrated 
in Figure 2.18. Figure 2.17G presents the speech signal in the place-dependent EIH. 
Unlike the non-place EIH, the bright patches in this image are appropriately confined 
to regions of speech activity. The place-dependent EIH reproduces all the principal 
features of the spectrogram, whilst highlight some additional detail in low-frequency 
harmonic structure and formant transitions. 

Another problem associated with the EIH-non-place or place-dependent-relates to 
the distribution of the levels in each channel. The levels used to produce the EIH shown 
in Figure 2.17G had to be adjusted by trial-and-error before arriving at a reasonable 
contrast in the image. If the levels are set too high, then the level-crossing detectors 
are never triggered, and the EIH is empty; alternatively, if the level amplitudes are very 
small with respect to the output of the cochlear filterbank, then the multi-level crossing 
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Figure 2.19: A schematic of the ZCPA (cf. Fig. 2.15). Each output channel of a cochlear 
filterbank is processed by a peak detector and zero crossing detector. The contribution 
of each reciprocal interval to the histogram is weighted by a monotonically-increasing 
function (e. g., logarithm) of the peak amplitude across that interval. 

detector starts to behave like a zero crossing detector. In the latter case, the EIH is 
`saturated' and preserves only temporal information: Figure 2.17H shows the saturated 
EIH for the same speech signal. One can still trace in this representation a surprising 
amount of formant and harmonic detail, but it is no longer possible to discern energetic 
and noisy regions. 

The EIH parameters specified above were chosen to suit an ASR system operating 
on telephone speech band-limited between 100 and 3200 Hz and occupying a known 
dynamic range (Ghitza, 1988). Apart from this context, the EIH is a general-purpose 
signal processing routine and, with suitable calibration, could conceivably be tailored 
to other applications, including passive sonar. However, the dependence of the levels 
upon the signal, demonstrated above and in Figure 2.17, discourages the use of the EIH 
in contexts where the dynamic range of the signal is unknown. 

II. (b) In-channel Temporal Processing: Zero Crossings with Peak Amplitudes 

A variant of the EIH has been recently proposed by Kim et al. (1999), called the 
zero crossings with peak amplitudes (ZCPA) algorithm. The concept underlying this 
representation is almost identical to the EIH; however, differences in the way the 
amplitude is computed avoid at least three faults in the EIH: i) the problem of choosing 
levels, ii) spurious intervals, and iii) perturbation noise. In this section, we briefly 
examine how the ZCPA works and then consider each of these problems in turn-and 
their solution in the ZCPA. 

The first stage of the original ZCPA implementation is a bank of twenty cochlear filters 
(Kates, 1991). The signal in each channel follows two paths: one extracts the zero 
crossings; the other extracts the peak amplitudes between pairs of zero crossings, which 
are subsequently compressed using the function 

G(x) = log(x + 1). (2.9) 
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Figure 2.20: A moderately intense speech signal in the A) EIH and B) ZCPA 

representations. (The speech signal is that used to produce the EIH in Figure 2.17G. 
increased by a level of 20 dB. ) Whilst the EIH has become saturated, energetic regions 
are still apparent in the ZCPA. Increasing the signal level by a further 10 dB saturates 
both representations. (These examples use 85 cochlear filters. ) 

As with the place-dependent EIH, a histogram is formed from the reciprocal zero 
crossing intervals contained in a trailing window inversely proportional to the channel 
centre frequency. However, instead of using a multi-level crossing detector to encode 
the envelope, the contribution that each interval makes to the histogram is determined 
by a non-linear function of peak amplitude measured across that interval. The ZCPA 

thus encodes frequency and amplitude information within each channel independently: 
the former by the zero crossings, the latter by the peak amplitudes. The ZCPA output 
is a summary histogram found by adding the twenty minor histograms together. 

The paragraphs above identified the most serious drawback to using the EIH in a wider 
context, namely, the difficulty in assigning levels to the level crossing detectors in 

a principled way. It should be clear that the ZCPA, by relying on peak amplitudes 
rather than level crossings, is able to represent intensity on a continuous scale ranging 
from zero to infinity. In one sense, the peak amplitude can be likened to the joint 

contribution of a 'continuum' of level crossings detectors, spanning the entire positive 
range, the ZCPA is, in this view, an ideal implementation of the EIH, not constrained by 

the practical cost of computation associated with a super-dense array of level crossing 
detectors. 

In a biological ear, the majority of auditory nerve fibres are saturated by moderately 
intense sounds ((f: Section 2.1.3). Similarly, saturation, which in general terms refers 
to amplitude measurements being `clipped' in some way, is one of the consequences 
that follows from a poor choice of detector levels in the EIH. In this section, we must 
ask: Does the ZCPA become saturated as the input level increases'? Because the ZCPA 

encodes amplitude continuously and without upper limit, we might expect that the 
answer is no; however, because the ZCPA formulated in Kim et al. (1999) incorporates 

a log-compression, a form of saturation does take place. To see why this is the case, 
imagine that rn intervals of signal contributing to the bin k" have peaks P,; then the value 
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Figure 2.21: Two problems associated with level crossing detectors. A) a gently 
modulated envelope may cause level crossings to be omitted and introduce components 
into the EIH at submultiples of the component frequency. B) a signal with a rapidly 
modulated envelope may contain turning points between zero crossings, introducing 
high-frequency artefacts into the EIH. (Note that the zero crossings are unaffected by 
either type of variation in the envelope. ) 

of the kth ZCPA bin is 
n 

ZCPA[k] _E log P, 

(We neglect the +1 in the log argument for simplicity. ) If the signal is scaled wholesale 
by a factor A, then the contribution to the histogram bin becomes 

nn 

ZCPA[k] = log AP, =E log PP +n log A. 

Evidently, if A»P, then the chief influence upon the ZCPA spectrum becomes n: 
a simple count of the intervals, incorporating no amplitude information. We can now 
see that, for sufficiently intense input, the saturated ZCPA and EIH are identical, up to 
a scale factor. Despite exhibiting the same limiting behaviour, the ZCPA nevertheless 
remains superior to the EIH in a normal operating range: the ZCPA saturates less 
rapidly than the EIH (see Figure 2.20); and the ZCPA changes smoothly in response to 
intensity changes, whereas the EIH does not. It is important to note that it is not the 
ZCPA that brings about the saturation per se; rather, it is the log-compression of each 
peak prior to forming the histogram. Accordingly, if the ZCPA were computed directly 
from the peaks' (and the log-compression were perhaps performed on the ZCPA as a 
final step), then no saturation would result whatsoever. 
The second set of problems which arise in the EIH but not the ZCPA go under the 
heading "spurious intervals" and result directly from interaction between the level 
crossing detectors and the signal envelope. The first type of spurious interval we 
may designate a subharmonic interval. These occur when modulation in the envelope 
of a harmonic causes some level crossings to drop out, introducing subharmonics 

(this is equivalent to using G(x) = cx, where c is a positive constant. 
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Figure 2.22: A) the output of a broad channel centred at 2 kHz in response to a 
harmonic complex with a 100 Hz fundamental frequency. The fine structure and 
envelope are `phase-locked' to approximately 2 kHz and 100 Hz, respectively. B) a 
mixture of high-frequency harmonics contributes both short intervals (from the zero 
crossings) and period intervals (from the envelope) to the EIH. C) period intervals are 
absent from the ZCPA, which uses only zero crossings. 

into the EIH (Figure 2.21A). A second type of spurious interval, which we designate 
turn intervals, emerges as the result of turning points between zero crossings, which 
split intervals equal to the harmonic period into shorter intervals (Figure 2.21B). In 
summary, subharmonic intervals are due to the omission of level crossings and produce 
low-frequency artefacts; conversely, turn intervals are due to the insertion of level 
crossings and produce high-frequency artefacts. 
The third type of spurious interval we label period intervals. When a harmonic 
complex, such as the vowel sounds discussed above, forms the input to an EIH, 
several harmonics of the fundamental frequency are typically resolved in each filter, 
especially the broader filters covering the high-frequency region. The interaction of 
many harmonics in a channel gives rise to a periodic component in the envelope 
corresponding to the fundamental frequency (see, e. g., Figure 2.22A); and this has 
the potential to be captured by high-level crossing detectors as period intervals. This 
effect is observed in Figure 2.22B, which plots the EIH for a signal comprising four 
harmonics of a 100 Hz fundamental, namely, 2000 Hz, 2100 Hz, 2200 Hz and 2300 Hz. 
In addition to the high-frequency intervals and energy contributed by the harmonics 
themselves, the EIH registers a peak at 100 Hz, which is derived from the envelope 
of high-frequency filter outputs. This could be regarded as a low-level mechanism 
for demodulation of the envelope and may have some functional significance in the 
auditory system (Khanna and Teich, 1989). 

The three types of spurious interval we have identified above are all generated by 
the level crossing detectors and thus are absent from the ZCPA, which extracts only 
zero crossing intervals. It is clear, for example, in Figure 2.21A(i) and B(i), that 
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whilst level crossing intervals are sensitive to local fluctuations in the narrowband 
envelope, the zero crossing intervals accurately convey the dominant frequency'. For 
the same reason, the ZCPA representation of four closely-spaced harmonics does 

not contain pitch intervals, as the EIH does; rather, the harmonics are displayed as 
a mass of high-frequency activity (Figure 2.22C). Consequently, the remark made 
above that "[weighting by] the peak amplitude can be likened to the joint contribution 
of a `continuum' of level crossings detectors" applies only to amplitude encoding; 
a (theoretical) continuum of level crossing detectors and an upward zero crossing 
detector encode frequency in a markedly different manner. 

Finally, perturbation noise-listed above as item (iii)-is another problem associated 
with the extraction of frequency information from level crossing intervals, to which 
Kim et al. (1999) draw attention. Their analysis assumes that level crossings have 
neither been deleted nor inserted (in other words, the spurious interval errors referred to 
above are not an issue); rather, the study considers the effect of additive Gaussian noise 
on level crossing times that, prior to the addition of noise, provide a useful frequency 
estimate. Under a high-SNR assumption, it is shown that adding noise samples 
displaces the level crossings from their initial times by a small amount. Specifically, 
if one assumes that the signal is a sinusoid with amplitude A and radial frequency w 
added to a zero-mean Gaussian noise signal with variance 0'2 then the variance in the 
crossings of level 1 is given by 

ýE(l) 22a 
(2.10) 

Aw(1-l/A)2' 

(Kim et al., 1999) with zero crossings providing a trivial case: AE (0) =o (Aw)-2. 
(The result in (2.10) is obtained by replacing the signal surrounding the crossing time 
with a first-order Taylor series expansion and considering the effect of additive noise 
on the intersection of the line with the time axis; see Kim et al. (1999) or Section 5.2. ) 
Because the variance of level crossing perturbations has a global minimum when 1=0, 
we may safely conclude with Kim et al. that only zero crossings of the signal should 
be employed in frequency analysis, which is true of the ZCPA but not the EIH. 

III. Spatial-temporal Processing 

The third approach discussed here, spatial-temporal processing, detects the presence 
of signal components using time differences between neighbouring channel outputs. 
Algorithms in this category are relevant to the present study due, first of all, to the 
explicit reliance on temporal features of the signal, and secondly, to the auditory 
motivation claimed in their favour. This section briefly describes two such models: the 
lateral inhibition network (Shamma, 1985b) and the fine structure spectrogram (Dajani 
et al., 2005). 

Biological lateral inhibition networks (LINs) are assemblies of nerves cells that act 
to sharpen the discontinuities in the spatial excitation patterns by a process of mutual 
suppression, and are present in most sensory systems. An auditory model presented 

Isee Kedem (1986). 
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Figure 2.23: Processing in a lateral inhibition network. A) the phase of vibration 
changes more rapidly along the basilar membrane near resonant peaks [adapted from 
Shamma (1985a)]; B) the (non-recurrent) LIN exploits phase changes along the 
basilar membrane by implementing a form of spatial high-pass filter using simple, 
biologically-feasible units and inhibitory connections between the first and second 
layers to suppress the activity of in-phase regions [adapted from Shamma (1985b)]. 

by Shamma describes three stages of processing: analysis, transduction and reduction. 
The first two stages are familiar: "analysis" refers to cochlear filtering; "transduction" 
refers to the compression (possibly including half-wave rectification) and smoothing 
associated with the inner hair cells. In the original study (Shamma, 1985a, b), the 
initial stages were by-passed, and measurements were recorded directly from auditory 
fibres in the cat; only the reduction stage was simulated. In later studies (e. g., Wang 
and Shamma, 1994), all three stages were modelled. The details of the analysis and 
transduction steps are unimportant in this context; the only requirement is that the 
filterbank reproduce certain characteristics of the travelling wave along the basilar 
membrane. 

The reduction stage uses spatial phase changes along the basilar membrane to detect 
spectral prominences. Small phase differences accumulate in the travelling wave away 
from the resonant point; towards the peak displacement, the travelling wave slows 
down and its spatial phase changes rapidly (Pickles, 1988). Figure 2.23A illustrates 
how two adjacent points respond (i) out-of-phase around the peak displacement, and 
(ii) in-phase in remote regions. Figure 2.23B shows the schematic for a short section 
of non-recurrent lateral inhibition network. The time-varying inputs to the LIN, {xs}, 
are the outputs of the transduction stage-a process assumed to modify the basilar 
membrane motion in a way that preserves relative phase differences along the spatial 
axis, e. g., a static nonlinearity. The LIN processing itself is performed by two layers 
of units. Each LIN input excites a range of leaky integrator units in the first layer. The 
activation of a lower-level unit then excites the corresponding (non-leaky) unit in the 
layer above but inhibits its neighbours. (This is a non-recurrent LIN. A recurrent LIN 
consists of a single layer of units onto which inhibitory weights feed back. ) We may 
now consider the effect of the inhibitory profile at sites removed from the resonant peak. 
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Figure 2.24: Fine structure spectrogram flow diagram. 
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Figure 2.25: Fine structure spectrograms for A) a pure tone; B) a frequency-modulated 
tone; and C) an amplitude-modulated tone. Cf. Dajani et al. (2005), Fig. 2. 

In these regions, closely-spaced points vibrate in phase, and inhibition acts to cancel 
the coincident patterns of neural activity. Turning to the converse case: the inhibitory 
profiles boosts-or simply fails to inhibit, depending on the implementation-activity 
surrounding resonances. In this way, LIN processing accentuates spectral peaks using 
solely timing information. 

The second auditory-inspired approach to spatial-temporal processing discussed here 
is the fine structure spectrogram (FSS) proposed by Dajani et al. (2005). The fine 

structure spectrogram is not a temporal representation per se and hence demands 

only a cursory inspection. The stages in the production of the FSS are outlined 
Figure 2.24. The first block of processing is a densely-spaced bank of broadly 

overlapping filters. The output of each filter is full-wave rectified and smoothed, 
resulting in an approximation of the instantaneous subband envelope. These filters 

are linear-phase with equal group delay (including zero-phase as a special case) and 
peak gain. The final stage detects local peaks along the spatial axis (implicitly defined 
by the channel number) and plots them in a time-frequency space, taking the (x, y) 
coordinates from the sample time and channel centre frequency, respectively, and the 
colour value from the envelope. 
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Fine structure spectrograms for three types of elementary signal-a pure tone, a 
frequency-modulated (FM) tone and an (AM) amplitude-modulated tone-are shown 
in Figure 2.25. A pure tone at 500 Hz generates a peak in the wideband filter with 
the centre frequency closest to the tone and thus manifests itself in the FSS as a sharp, 
horizontal line. The spatial peak for an FM tone moves in a pattern resembling the 
modulating signal itself, provided that the frequency and depth of modulation are 
very much smaller than the filter analysis bandwidths. Finally, a carrier with an AM 
frequency considerably smaller than the analysis bandwidth is resolved in every filter 

as an AM signal, but the spatial peak consistently occurs at the carrier frequency. Such 

a signal is therefore represented in the FSS as a line of varying intensity in the colour 
map. Dajani et al. (2005) further demonstrate that the FSS provides a sharply-defined 
and meaningful depiction of AM-FM tones and full speech signals. 

We may question whether the FSS can rightly be labelled a temporal representation, 
as it relies on a quantity allied to time-varying instantaneous power, rather than phase. 
Against this it may be argued that the even group-delay across the filters, coupled 
with the very frequent (e. g., sample-level) probing interval of the wideband filters, is 
itself a form of temporal processing. A key difference between the spatial processing 
of the FSS and the LIN, to which Dajani et al. also draw attention, is the manner in 

which the phase differences between filters are utilised: the FSS requires the absence 
of spatial phase delays along the filter bank in order to correctly demodulate signals; in 
contrast, the LIN exploits spatial phase delays in order to detect components and does 
not function without them. 

2.2.5 Temporal Analysis in Computational ASA 

The computer models presented above seek to transform an acoustic signal into the 
kind of neural representation that the brain might exploit in hearing, according to 
various contemporary theories of encoding. To model how the brain then proceeds 
to organise a mixture of sound sources into streams-to adopt the language of 
Bregman's auditory scene analysis framework (see Section 2.1.5 above)-requires 
a qualitatively new kind of computational approach. The field of study concerned 
with embodying the segmentation and grouping principles of ASA in a computer 
program is called computational auditory scene analysis (CASA). The last two 
temporal representations to be examined in this chapter-synchrony strands and the 
correlogram-are associated with CASA models; but before attending to these, a brief 
summary of some milestone developments in CASA is in order. For extensive reviews, 
see Wang and Brown (2006) and Cooke and Ellis (2001). 

An early precursor to a CASA system was the speech separation algorithm developed 
by Parsons (1976) aimed at neutralising crosstalk on radio communications channels. 
This system operates on a frame-by-frame basis: harmonic peaks are detected in the 
Fourier frequency domain and compiled into a peak table; and, from here, fundamental 
frequencies are extracted using a histogram approach (Schroeder, 1968). Once the 
pitches of the talkers are available, the constituent voices are resynthesised from 
the peak tables using the pitch estimates as a guide. Although Parson's system is 
not based on auditory processing, it incorporates some important aspects of CASA: 
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Figure 2.26: Flow chart illustrating the main steps in signal separation using CASA. 
A) a model of the auditory periphery typicially represents the signal as a two- 
dimensional array of pixels (e. g., FFT, ZCPA, EIH, LIN, GSD, FSS, wavelet) akin to a 
bitmap; B) the signal is decomposed into parametric auditory objects that are `plotted' 
into an empty space; C) auditory objects are grouped together using Bregman's 

principles, such as common onset (as in 1,2) and frequency variation (as in 2); D) a 
resynthesis process allows the constituent signals to be recovered from the grouped 
components; E) residue and prediction-driven architectures incorporate a feedback 

pathway wherein the search for objects is informed by the current internal state of the 
model; and F) blackboard architectures cater for the inclusion of addition knowledge 

sources, such as a memory store. 
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acoustic elements are identified (harmonics) and then fused according to a grouping cue 
(common fundamental). Later, Weintraub (1985) developed a system that employed 
hidden Markov models (HMM) (Rabiner, 1989) to identify the number of voices 
in a mixture and track the state of each one: silent, periodic or non-periodic. The 
input to Weintraub's system is supplied by a model of cochlear processing and neural 
transduction (Lyon, 1982, see above), and pitch perception (Licklider, 1951); thus the 
system as a whole is more closely inspired by theories of audition than that of Parsons. 

In the 1990s, several data-driven systems were devised to separate a mixture of 
sounds using primitive grouping cues, as suggested by Bregman's analysis-synthesis 
presentation of ASA (Bregman, 1990, cf. Section 2.1.5), and it was in this context that 
the term "computational auditory scene analysis" first arose. The systems developed by 
Cooke (1991/1993) and Brown (1992) were directed at the segregation of speech from 
a noise background (possibly comprising other speech signals); and Mellinger (1991) 
contemporarily developed a system for isolating, tracking and grouping the harmonics 
of pitched musical instruments. Shortly afterward, Nakatani et al. (1995) proposed a 
residue-driven architecture, in which a collection of independent agents are invoked 
to explain various elements of the signal, e. g., each harmonic and a stationary noise 
background. Data-driven CASA models have four stages of processing in common: 
i) auditory-motivated pre-processing, ii) the formation of auditory objects, iii) the 
grouping of objects into streams, and iv) the assessment of resynthesised streams 
by, e. g., an ASR system or a human listener. These four representational stages are 
illustrated in Figure 2.26 and refer to a strict feed-forward process: the earlier stages 
function independently of the later ones, and no prior knowledge of the target signals 
informs any stage of processing, aside from the information inherent in the primitive 
grouping principles. 

The data-driven CASA architectures were followed up by the research of Ellis (1996), 
which reintroduced the notion of top-down information processing to create a scheme 
entitled prediction-driven CASA. In Ellis' system, the output of an auditory periphery 
model governs the formation, evolution and termination of three kinds of perceptually- 
motivated representational element: noise clouds (broadband noise), wefts (periodic 
wideband signals), and transients. This aspect is consistent with conventional CASA; 
the novel contribution lies in a prediction-reconciliation engine. Each element predicts 
the energy it will contribute to the next frame of input, according to various regularities: 
for example, a noise cloud is expected to add the same energy spectrum as it did to the 
preceding frame, and transients are expected to decay exponentially. Small deviations 
between the predicted and observed frames are used to modify the parameters of each 
element, which, in effect, hypothesises a changing element and implements a form 
of tracking. Failing this, the absence of expected energy generates a hypothesis that 
an element has disappeared, whilst the presence of unexpected energy signals the 
arrival of a new source that must be accounted for. It is the task of the reconciliation 
engine to choose amongst these hypotheses and to trigger an appropriate action, i. e., to 
create, update or discontinue representational elements. The prediction-reconciliation 
engine is implemented as a blackboard architecture, in which many independent 
knowledge sources, both data-driven and high-level (e. g., a database), execute actions 
and influence a globally-accessible "blackboard" of competing hypotheses. Wang and 
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Figure 2.27: The main stages by which place groups are formed for the [ oo ] sound 
in the phrase "set white with P two soon". A) filter centre frequencies-shown 
here on an ERB scale-are mapped to smoothed instantaneous frequency estimates. 
The appearance of "bunches" signals the existence of dominant spectral components 
coinciding with formants. B) plotting the difference between the IF output of a channel 
and its centre frequency reveals the direction towards which its output gravitates- 
positive denotes upward in frequency, so a downward zero crossing accompanies each 
bunch in (A). C) the extent of each place group is determined by differentiating (B) 

and examining the width between the zero crossings, shown here as grey blocks. Black 
lines identify the groups that contain a zero crossing. 

Brown (1999) have attempted to provide a physiological basis for the grouping and 
separation process using a circuit of model neural oscillators. 

IV. Synchrony Strands 

Cooke's CASA model computes a collection of auditory objects from the raw signal 
called synchrony strands, each of which represents the "time-frequency behaviour of 
a single spectral component (e. g. harmonic or speech formant)" (Cooke, 1991/1993). 
Each strand effectively traces one part of the signal deemed to have arisen from the 
same source, according to the principle of good continuity, described in Section 2.1.5. 
A complete set of strands constitutes a description of the entire signal. The computation 
of synchrony strands draws together aspects from all three temporal representations 
discussed in Section 2.2.4: joint-synchrony, in-channel (i. e., zero crossing) and spatial- 
temporal processing. We shall be in a better position to justify these comparisons after 
a closer examination synchrony strands themselves. 
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2.2 Computational Models 

Synchrony strands are computed from the unprocessed signal via an intermediate 
representation containing elements called place groups. Place groups are computed 
from the instantaneous frequency (IF) output of a cochlear filter bank in the following 

way. First, each filter centre frequency is mapped to the smoothed instantaneous 
frequency' of its output, as shown in Figure 2.27A. When a block of filters is driven 
by the same dominant component, the IF responses form a cluster. In this example, 
the first two clusters are occur at 6.4 and 8.4 ERB numbers. The next stages are 
directed at robustly identifying these clusters. To begin with, the difference between 
the IF and the centre frequency of each channel is computed as a function of centre 
frequency, labelled d(f ), resulting in the kind of plot shown in Figure 2.27B. If a filter 
is being driven by a component at a frequency lower or higher than its centre, then d (f ) 

will be negative or positive, respectively; hence the downward zero crossings of d (f ) 
highlight points of convergence. These locations are indicated on Figure 2.27B using 
solid markers. 

One possible means of obtaining a strand-like representation would be to repeat this 
process at short time intervals and plot the frequencies of the downward zero crossings 
in d(f) as they evolve over time. A more robust strategy, however, is to compute 
parameters using values averaged over the entire block of channels influenced by a 
dominance. Cooke (1991/1993) defines a place group as the range of frequencies 
between any consecutive local peak and trough in d(f), after smoothing with a 
Gaussian kernel; or, equivalently, the range of frequencies enclosed by consecutive 
negative-going and positive-going zero crossings in the smoothed derivative of d(t). 
(An optional further step might involve eliminating place groups that do not correspond 
to a downward zero crossing in d(t). This action would remove some `noisy' 
place groups, at the expense of deleting genuine place groups associated with weak 
components in the vicinity of much stronger spectral prominences. ) 

Two further stages are undertaken to convert place groups into synchrony strands. First, 
place groups are aggregated to form longer groups using frequency trajectories as a 
guide (Cooke, 1991/1993, page 42). Second, a set of attributes is calculated for each 
group, e. g., frequency, dominance (the breadth of the place group), amplitude and AM. 
Once all the strands have been computed, the grouping stage can commence. However, 
we can leave aside these later stages, as it is the initial formation of place groups that is 
most relevant to temporal processing. It is interesting to note, in closing, that synchrony 
strands incorporate aspects from all three types of timing representation presented in 
the previous section. Synchrony strand processing employs a similar idea to Seneff's 
joint-synchrony representation, as it measures the difference between the IF output 
of a channel and its centre frequency. It also resembles the EIH and ZCPA in two 
regards: i) the zero crossing intervals of a narrowband signal and its phase derivative 
convey the same quantity, namely, instantaneous frequency; and ii) both methods 
employ synchrony capture as a mode of detection2. Finally, we may firmly include 
the synchrony strand technique amongst other spatial-temporal processing methods, 
e. g., the LIN and FSS, as it evidently relies upon the concurrent output of many filters. 

'For details concerning the calculation and smoothing of the IF, see Cooke (1991/1993, page 40). 
2See the related work on in-synchrony bands by Ghitza (1988). 
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2.2 Computational Models 

V. Autocorrelation 

Several CASA models employ an autocorrelation technique to detect synchrony in 
an auditory filter as an alternative to instantaneous frequency (Brown and Cooke, 
1994; Brown, 1992). These models make extensive use of the correlogram: a two- 
dimensional representation whose rows contain the autocorrelation function measured 
in each channel at given time instant (Slaney and Lyon, 1990). It has the discrete-time 
definition [adapted from Wang and Brown (2006)]: 

00 
acf [n, s, k] =, 

w[t]i, [[] jýn [ G-k-t] 

in which x9 [n] is the output of the analysis-transduction model at sample time n, in 
the channel indexed s; k is a sampled time lag; and w[. ] is a tapered window function, 
included to localise the representation in time. Note that the correlogram is normalised 
to unity at lag time k=0; however, the formulation in (2.11) does not guarantee that all 
values in the correlogram are less than one. A column-wise average of the correlogram 
produces a summary correlogram, which highlights every vertical ridge as a peak. 

A frame-based approach to computing the autocorrelation extracts a frame of samples 
from channel s concluding on sample n into a vector x,,,, 9, and performs the following 
sequence of operations: 

IDFTk{IDFT{xn}j2} 
circ-acf [n, s, k] = 's (2.12) 

x Xna'Xns 

This procedure is based on a circular convolution and hence is equivalent to using 
(2.11) and assuming that the signal consists of the same frame concatenated endlessly. 
To avoid discontinuities at the frame boundaries, it is advisable to apply a smooth, 
tapered window to the frame prior to the DFT. Alternatively, an autocorrelation 
function can be obtained from the frame directly by convolving the time-domain signal 
with a reversed version of itself and dividing by the frame energy. This approach is 
equivalent to (2.11), if the signal is assumed to be zero everywhere except within the 
frame boundary. Both frame-based techniques guarantee a maximum at k=0. 

Figures 2.29A-C show, from top to bottom: a plot of the simulated auditory nerve 
activity-often referred to as a ratemap, a correlogram and a summary correlogram 
for a synthetic vowel sound [ ar ], with a fundamental frequency of 106 Hz. The 
magnitude spectrum of the vowel is plotted separately in Figure 2.28A. The ratemap 
is generated by applying a half-wave rectification and compression' to the output of a 
32-channel gammatone filter bank, i. e., 

9(t) = 
x9 (t) x9(i) >00 

otherwise 
1<s< 32. (2.13) 

The correlogram in (B) is computed from 50 ms Hamming-windowed sections of x, 
starting at 100 ms, using the DFT method (2.12). A peak is present in every channel at 

A cube-root or logarithmic compression function is often used to produce ratemaps. 
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Figure 2.28: Magnitude spectrum for two artificial vowel sounds, [ ar I and [ ee 1, 
synthesised for, and used in a study conducted by, Summerfield and Assmann (1991). 

approximately 9.4 ms, and the alignment of peaks creates the impression of a vertical 
ridge in the correlogram. In Figure 2.29C, the 9.4 ms peak is indicative of a 106 Hz 
fundamental frequency, and a second, weaker peak at 18.8 ms coincides with a time 
lag equal to two fundamental periods. (If the analysis window is lengthened, and the 
signal has a stationary pitch, peaks continue to recur at multiples of the fundamental 
period. ) 

The right-hand column of plots in Figure 2.29, D-F, display the ratemap, correlogram 
and summary correlogram after the vowel sound [ ar ] has been mixed with a second 
vowel sound, [ ee 1, with a fundamental frequency of 126 Hz. (The signals have equal 
power, and the magnitude spectrum for the vowel [ ee ] is plotted in Figure 2.28B. ) 
The correlogram (2.29E) now contains a few vertical ridges at various time lags, each 
localised to a different block of filters. From inspection, the channels with centre 
frequencies greater than 2200 Hz show broad ridges at 7.9 ms, 15.8 ms and 23.7 Hz- 
evidence for a 126 Hz pitch; channels in the range 500-2000 Hz continue to exhibit 
distinct ridges at 9.4 ms and 18.8 ms-evidence of a 106 Hz pitch. A visual assessment 
of the channels with frequencies below 500 Hz provides no evidence of a strong pitch 
component; however, there is clearly no longer any alignment at 9.4 ms, as there 
was in Figure 2.29B. The origin of these synchronised blocks can be traced to the 
magnitude spectra of each vowel, shown in Figure 2.28. In a given frequency band, 
the correlogram registers the pitch of the vowel with the dominant formant(s) in that 
region. For instance, [ar] has a prominent formant at 1 kHz, which is absent in [ ee 1, 
so the region surrounding I kHz is synchronised to 106 Hz in the correlogram. 

Subsequent research has sought to automate the process of identifying synchronised 
regions in the correlogram. One such approach is the correlation map: a mid-level 
representation in Brown's CASA model that forms periodicity groups by progressively 
merging channels into blocks according to a similarity metric (Brown, 1992). A simpler 
and conceptually equivalent approach computes the correlation coefficient for adjacent 
channels in the correlogram and reveals synchronised blocks by applying a threshold 
(Wang and Brown, 1999). 
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Figure 2.29: A) 32-channel rate map for the vowel sound [ ar ]; B) correlogram 
for the [ ar ] vowel; C) summary correlogram from (B). D-F) 32-channel rate map, 
correlogram and summary correlogram for the [ar]+[ee] vowel mixture. The 
magnitude spectra of the individual vowels are plotted in Figure 2.28. 
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2.3 Summary 

2.3 Summary 

For more than fifty years, experimenters have been able, in principle at least, to detect 
an acoustic signal by measuring the activity of a single auditory nerve fibre with a 
microelectrode. Physiological studies of the auditory-neural response to pure tones 
have convincingly demonstrated that a signal is encoded along a tonotopic axis by both 
the average firing rate (up to the point of saturation) and the synchronised pattern of 
firing. The average firing rate is related to the mechanical excitation of a place on 
the basilar membrane by energy in a critical band, whereas the temporal firing pattern 
reflects the fine structure of the stimulus, and captures both its frequency and AM/FM 
characteristics. 

Conventional passive sonar receivers operate on a similar principle to rate coding. 
The resonant character of a place on the basilar membrane is comparable to a tuned 
analogue or digital band-pass filter. The firing rate of inner hair cells monotonically 
increases with peak displacement of the BM, and thus conveys a quantity similar to 
a non-linear compression of the filtered signal envelope. A simplified model of rate 
coding, in which the brain detects a tone by thresholding the firing rate, is qualitatively 
identical to passive narrowband sonar; only the orders of magnitude differ. 

The remaining chapters carefully examine what form a passive narrowband sonar based 
on a simplified model of temporal coding might take. Just as a compressive function of 
the band-pass signal envelope has served the signal processing community as a simple 
model of peak displacement and compression on the BM, so the zero crossings of 
the band-pass signal have come to be identified with auditory nerve discharges in the 
auditory modelling literature. Furthermore, temporal theories that rely on the time 
interval between nerve discharges have translated into signal processing methods that 
measure zero crossing intervals. 

64 



Chapter 

Auditory-motivated Sonar 
Displays 

In the opening chapter we observed that passive sonar and the faculty of hearing employ 
broadly similar strategies, insofar as both infer information about the objects present 
in the environment according to some kind of time-frequency analysis of the sounds 
they produce. The preceding chapter described how the human ear analyses acoustic 
signals and concluded with a detailed review of five computational models of hearing, 
in particular, models inspired by temporal coding theories of audition. These models 
reflect a diverse range of opinion concerning how the timing of auditory nerve spikes 
encode information: spatial phase changes along the basilar membrane, inter-spike 
intervals, an average or time-varying measure of synchrony. and autocorrelation can all, 
in principle, be used to detect narrowband signals. In this chapter, we shall investigate 
the potential for auditory-inspired signal processing algorithms to assist narrowband 
sonar detection. 

The first section in this chapter reviews those aspects of sonar which are common 
to power-based and timing-based processing. This account includes the propagation 
of sound in the sea (t; 3.1.1), a brief survey of common sound sources (§3.1.2), and 
a general overview of Bayesian hypothesis testing (; 3.1.3). Rather than burden the 
text with a citation for every new term, the reader is directed to the chief sources of 
the material on acoustics, which include, in order of priority, Burdic (1994), Kinsler 

et al. (20(X)), Waite (1998) and Wright (2005), wherein a more complete and formal 
discussion can he found. Similarly, the optimal detection material draws heavily on 
Burdic (1984) and Whalen ( 1971). 

The second and third sections describe two techniques for detecting the presence of 
a sound source mixed with a noise background received at a hydrophone array: one 
based on power (3.2), the other on timing (3.3). In the conventional, power-based 
approach, the recorded underwater sound is passed through a linear filter, and the power 
at the output of the system is used to decide whether a signal is present. The challenge, 



ýý 

in many cases, is to choose the linear system that maximises detection performance 
according to some preferred criterion. In practice, the detection and classification 
decisions are made by human operators, who make use of spectrogram-like displays 
to visualise the power in multiple channels. However, the theoretical analysis of a 
sonar's performance normally refers to an automated procedure. 

The third section examines the possibility of adapting the zero crossing with peak 
amplitudes (ZCPA) representation to suit sonar applications. This project faces two 
significant challenges. First, it seems clear from the outset that the relatively low 
frequency resolution (i. e., wide bandwidth) of an auditory filter bank will be difficult to 
reconcile with attempts to detect tonal components at very low signal-to-noise ratios. 
Ultimately, the solution should mimic the style of processing observed in the auditory 
pathway and satisfy the practical requirements of a narrowband sonar application. 
Second, careful thought must be given to the problem of comparing the performance 
of a timing-based detector with that of a traditional, power-based solution, especially 
if the two approaches process the signal in a radically dissimilar manner. 
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3.1 Passive Sonar 

3.1 Passive Sonar 

3.1.1 Propagation of Sound in the Sea 

The propagation of a sound wave through the sea is determined by the physical laws 
that apply in a volume of sea water at any given instant. The discussion of wave motion 
in this section centres on two ideas conveyed in the preceding statement: the shape of 
a wave in space at a fixed time, and the changing properties of a wave in a fixed space. 
In seeking to understand more advanced concepts, we shall start with a very simple, 
and somewhat unrealistic, model of sound propagation and gradually refine it towards 
a more useful explanation of the way waves actually behave in the sea. 

Plane Waves 

Our discussion of waves opens with four basic working assumptions: i) that water 
extends infinitely in all directions; ii) that the medium is uniform in all aspects, with 
equal mean pressure (i. e., there is no gravity), and constant density and temperature; 
iii) the motion of particles in the medium is very small; and iv) no energy is lost from 
the system once introduced. With (i)-(iv) satisfied, we must now define some variables: 
a pressure scalar field p, a particle position vector field x, and two constants p and K, 
which respectively denote the density and bulk modulus of elasticity of the medium. In 
a pressurised medium, every element exerts an outward force (equal to the product of 
pressure and area) on its neighbours. From Newton's Second Law, it follows that 

a2X au vp - -pate -P- t, (3.1) 
where u is particle velocity. This result (3.1) is Euler's linear equation, and it furnishes 
us with the first physical law that must apply at every point and time in the system. A 
second relationship is described by the linear continuity equation and says that the 
compression of an element and the outward force it exerts are directly proportional to 
each other, i. e., 

Tt KV - u, (3.2) 
dt 

where K is the bulk modulus of elasticity, and we have differentiated both sides with 
respect to time. Combining the divergence of (3.1) and the time derivative of (3.2) 
and removing u results in the three-dimensional wave equation expressed in terms of 
pressure: 

T2 dt22 - 
VZp = 0' (3.3) 

where c2 = K/p. Solutions to (3.3) take the form 

p(t, r) = pl(t - 
i. r/c) + p2(t +k" r/c) (3.4) 

where r is a position vector (x, y, z). Here, pl (") is an arbitrary function of one variable 
representing a plane wave moving normal to the unit vector k with speed c m/s, and 
p2 () is another arbitrary function of one variable representing a plane wave moving in 
the opposite direction at the same speed. 
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A. Spherical Coordinates B. Cylindrical Coordinates 
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Figure 3.1: Two curvilinear coordinates systems: A) spherical coordinates (r, 0,0) and 
B) cylindrical coordinates (r, 0, z) (Kinsler et al., 2000). Note the usage of the radial 
coordinate, r, in spherical and cylindrical coordinates: in the former, r measures the 
distance from the origin; in the latter, it measures the distance from the z-axis. 

Spherical and Cylindrical Waves 

In order to describe waves that propagate in a non-planar fashion, we replace the 

coordinate lines along which x measures (i. e., x, y and z) with new coordinate lines 

which map the space in a different way, e. g., in concentric circles (cf. Figure 3.1). 
The linear Euler and continuity equations still apply, only now they are enforced along 
curves. The linear wave equation expressed in a spherical coordinate system is identical 
to (2.3), except the Laplacian operator, V2, is adjusted to operate along spherical, rather 
than Cartesian, coordinate lines. For a time-varying pressure at the origin, the linear 

wave equation can be shown to have the compact form 

1 d2(rp) 
_ 

a2(rp) 
= 0, (3.5) 

c2 dt2 dr2 

where r is the distance from the origin, and admits physically-realisable solutions of 
the form 

p(t, r) - 
pi (t - r/c) (3.6) 

r 
in which pi (") is an arbitrary function representing a spherical pressure wave 
propagating away from the origin with speed c m/s. The key result here is that wave 
pressure must decay with distance from the source. The mean power per unit area, or 
intensity, of a spherical wavefront of radius r metres is given by 

I9 h(r) _ 
ýrh 

Watts/m2, (3.7) r 4irr2 

where H 9ph is the average power passing across a reference sphere of one metre radius. 
If the source at the origin is harmonic, with amplitude A,, at a one metre distance from 
the origin, then flsph = 27rA2, 

t/(pc). 

68 

z r_ 
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Qualitative Illustration of Refraction Effects 

A. Sound Speed Profile 
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B. Snell's Law 
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Figure 3.2: Sketches of various refraction effects. Darker shades correspond to higher 

sound speed. A) a typical sound speed profile; B) a (i) positive or (ii) negative SSP 

gradient causes a ray to refract towards or away from the boundary, respectively. C) the 
shape of a sound speed profile (A), combined with Snell's law (B), can trap sound in 

an acoustic path. 

For cylindrical waves, the linear wave equation assumes the form 

1 d2p d2p 1 i) 1) 

c2 dt2 (ßr2 r ör 
0' (3.8) 

where r now represents the distance along coordinate lines perpendicular to the z-axis, 
as shown in Figure 3.1 B. Unlike plane and spherical waves, the analytic solution to 
(3.8) is non-trivial; intuitively, however, the solutions represent waves diverging from 
the z-axis (Kinsler et al., 2000). Once again, intensity decreases with distance: 

ncvl 
Watts/m2. (3.9) 

27rrh' 

where 11, y1 is the average power passing across a unit cylinder of height h. The 
spherical and cylindrical intensity formulae will be revisited in connection with the 
sonar equations discussed in Section 3.2.2. 

Refraction 

The equations derived above govern the propagation of a wave under a set of idealised 
and somewhat unrealistic conditions, which we enumerated at the outset. It is arguably 
assumption (ii)-the absence of gravity and an isothermal medium-that causes the 
greatest departure between the model and reality, so we shall address this aspect first. 
The speed of sound, c, was taken to be constant throughout the seawater; in fact, 
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the speed of sound in the sea varies appreciably, particularly with depth. The cause 
of variation of sound speed with depth can be sketched in terms of two principal, 
opposing factors: 1) the sun heats the upper layers of the sea, so sound speed increases 
towards the surface; 2) the effect of gravity causes an increase in pressure with depth, 
so sound speed decreases towards the surface (Waite, 1998). The net effect of changes 
in temperature and pressure lead to a sound speed profile (SSP) resembling the plot in 
Figure 3.2A. SSPs are determined experimentally and vary significantly with a host of 
factors, including the time of day (i. e., sunlight), season, climate and geography. 
We have already mentioned that the wave equations given in the preceding section 
fail to account for the influence of changing sound speed due to gravity or sunlight. 
Waite (1998) identifies two approaches to resolving this inadequacy: wave theory 
and ray theory. Solutions based on wave theory continue to use the wave equation, 
now introducing spatial dependency, so that c becomes c(x, y, z). This modified wave 
equation is considerably more difficult to solve in general (Kinsler et al., 2000, page 
135) but offers a complete, analytical solution at all frequencies and may be applied in a 
number of useful scenarios. The solutions based on ray theory consider the refraction of 
an acoustic ray at the boundaries between layers of different sound speed. Here, Snell's 
law (Burdic, 1984, page 114) is used to compute the angle of refraction at the interface 
of fluid layers. A point on a wavefront passing between two media is refracted, i. e., 
bent, towards the boundary if the sound speed increases, as in Figure 3.2B(i), and 
away from the boundary if the sound speed decreases, as in Figure 3.2B(ii). Where 
the SSP of the sea exhibits a steep negative gradient (due to the diminishing effect of 
the sun), followed by a gradual positive gradient (due to gravity) sound waves may 
become `trapped' in a cycle of upward and downward refraction. This gives rise to an 
acoustic channel, along which sound can propagate undisturbed over many thousands 
of kilometres (Figure 3.2C) (Burdic, 1984). 

Surfaces 

The previous section augmented the model of sound propagation to account for the 
change in sound speed with depth, at least on a qualitative level. We now question 
assumption (i)-that the sea continues infinitely in all directions. Whilst many practical 
modelling scenarios allow that the sea possess infinite extent in the horizontal plane, 
clearly the same cannot be said for the vertical axis, as abrupt changes occur at the sea 
surface and the sea floor. In this section we shall outline some of the main effects. 
The transition from water to air offers very little impedance against a pressure wave. A 
crude model of the sea surface is provided by a pressure release surface, along which 
the pressure is zero. If the surface is a horizontal plane at depth z9, the linear wave 
equation is now subject to the boundary condition p(t, x, y, z8) = 0. Solutions for a 
general plane wave then take the form 

plt+kix+key+k3(z-z9))_Pt+---- 
( 

(3.10) 
ccc 

where p(. ) is an arbitrary function of one variable. Figure 3.3A shows the interaction of 
a wave with a pressure release surface. Note that the reflected wave is a phase-inverted 
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Qualitative Illustration of Surface Effects 

A. Pressure Release Surface R. Rigid Surface 
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Figure 3.3: Sketches of various surface effects. Lighter shades correspond to higher 

pressures. A) reflection of a (partially drawn) plane wave from a pressure release 
surface; B) reflection of a plane wave from a rigid interface; C) the first five normal 
modes of standing waves between a soft and hard boundary; D) intuition underpinning 
the basis of cylindrical spreading in a layer. 

mirror image of the incident wave, and that the addition of the two waves maintains 
zero pressure along the boundary at all times. 

On the sea floor, the opposition to the flow of the water can be modelled by introducing 

a rigid boundary, that is, a surface at which the normal particle velocity component is 

zero. If the sea bed is a horizontal plane with depth Zd and normal vector i, then we 
enforce the boundary condition u(x, y, Zb) "z=0. Solutions for a general plane wave 
take the form 

k13ý 
+ 

k27, 
+) 

k3(z-2b)\ 
+pl 

/t 
+ 

k1x+ k2y 
+ 

_3\z6-Z) 
pt +---- (3.11) 

cc/\ccc 

where p(. ) is an arbitrary function of one variable. Figure 3.3B shows the interaction of 
a wave with a rigid surface. The incident and reflected waves are now in-phase, so that 
the pressure at the boundary is doubled. However, the pressure gradient with respect to 
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z is always zero, which guarantees that particle acceleration-and thus, in a scenario 
with no net flow, the velocity-normal to the surface is zero. 

In closing, we note a few consequences of rigid and pressure release surfaces for the 
transmission of sound in the sea. The linear wave equation predicts the emergence of 
standing waves in a channel enclosed by two surfaces of either kind described above. 
If the sea surface and sea bed are modelled as a pressure release surface and a rigid 
surface, at depths z9 and zb, respectively, then solutions to the linear wave equation 
must satisfy: 

P (t) = -p 
(t+ 2k3 (zs -zb)) 

. (3.12) 

Elementary functions that satisfy this equation and the boundary conditions are 
called normal modes of vibration. The first five normal modes are drawn on 
Figure 3.3C for k3 = ±1. The second consequence of surfaces-and perhaps the most 
relevant to the sonar equations introduced shortly-is that they dictate the spreading 
geometry. The sound radiating from a spherical source trapped between two parallel, 
reflective interfaces, e. g., shallow waters or the surface duct, spreads out in cylindrical 
wavefronts, as Figure 3.3D depicts. 

3.1.2 Sources of Sound in the Sea 

As we have seen, the signal recorded at a hydrophone is a mixture of pressure waves 
originating from number of sources over a wide geographical area. This section briefly 
catalogues some of these sources and their characteristics, working on the principle 
that a marine vessel is the target for detection and classification, and all other sound is 
noise. 

A large quantity of sound energy is radiated in the course of a ship or submarine being 
propelled through the water. A modern marine vessel incorporates a wide range of 
sonorous machinery of specific design and state of repair; these factors determine the 
sound generated by the vessel at a particular speed and depth. The acoustic signature 
of a target refers to its acoustic spectrum measured at a one metre reference distance 
(Burdic, 1984) and is highly individual. A passive sonar is therefore able to classify 
a received target signal by matching it against a list of acoustic signatures stored in a 
database (although, in practice, the classifier is often a human sonar operator). Our 
immediate focus concerns the spectral features that constitute the acoustic signature 
and their physical origin; the techniques for analysing the acoustic signature for the 
purposes of detection and classification are dealt with in Sections 3.2 and 3.3. 

Burdic (1984) identifies four principal sources of sound within the acoustic signature: 
the propulsion system, auxiliary machinery, the propeller and hydrodynamic noise. 
The propulsion system consists of the engine components responsible for driving the 
propeller, including shafts, gears, bearings, cylinders, turbines and motors. Each part 
emits a harmonic spectrum of machinery lines with a fundamental corresponding to 
the rotational frequency. As these components drive the propeller, their frequencies 
and amplitudes are typically related to the engine speed. Rotatory machines that 
function independently of the engine, such as on-board electrical generators and air 
conditioning, generate auxilliary machine lines, which are static in frequency and 
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Figure 3.4: Four representations of a merchant vessel signal: log-power waterfall 
spectrogram (top-left); linear envelope in the time domain (top-right); average power 
spectrum on a log scale (bottom left); spectral content of envelope (bottom-right). 

amplitude. The second component of the acoustic signature, besides the narrowband 
spectrum, is a continuous, broadband noise spectrum associated with hYdrodvnumic 

sound, that is, sound generated by the vessel interacting with the surrounding sea water. 
A major source of hydrodynamic noise is cavitation: the formation and collapse of air 
bubbles at the propeller and on the hull, particularly near the sea surface. Propeller 

noise is amplitude-modulated at the blade rate. 

In both passive and active sonar, the acoustic signatures of nearby vessels or the 
returning echoes of active pings must he received against a background of ambient 
noise contributed by the ocean environment as a whole. Ambient noise may be 
broadly assigned to the following categories: hydrodynamic noise, manmade noise 
and biological noise (Wenn, 1962). Hydrodynamic noise results from the disturbance 

oi' sea water, such as cavitation (bubbles), water droplets, surface waves and turbulence 
(Went, 1962). Hydrodynamic noise in the 100 Hr. -l0 kHz (mid-frequency) hand is 

correlated with wind speed (Knudsen et al., 1948) and rainfall (Bom, 1969; Scrimger 

et al., 1987). The principal source of manmade ambient noise is the cumulative noise 
spectrum arising from distant shipping. In remote ocean regions, shipping noise is 

confined to frequencies below 100 Hz due to the absorption of high-frequency energy 
over long distances (Burdic, 1984); in the vicinity of harbours and shipping lanes, the 
contribution of ocean traffic increases considerably in both bandwidth and intensity 
(Waite, 1998). Biological noise sources with broadband spectra include snapping 
shrimp and croakers (Wenn, 1962). 
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3.1 Passive Sonar 

3.1.3 Principles of Optimal Detection 

Having reviewed how sound waves originate in the ocean, and summarised the factors 
that influence how they propagate, it remains to discuss the detection process. The first 

step of this problem is to nominate a sound source, such as a ship, and account for 
any channel effects that might alter the sound between the source and receiver, such as 
those reviewed in Section 3.1.1. The second step is to decide whether the pressure wave 
recorded at a hydrophone is best explained by a mixture of the sound source with an 
ambient ocean background, or by ocean noise alone. For certain classes of source, e. g., 
transients, it is possible to allow a human listener to judge. However, other classes of 
source, imperceptible to humans in severe noise, such as tonals, require the incoming 
sound to be converted to a visual display. Because humans naturally vary in their ability 
to hear sounds and inspect displays, and because tonals and noise-like sounds possess 
a relatively simple analytical form, it is useful to consider the "ideal observer": the 
theoretically optimal test, when the signal and noise models are known completely. 

A binary hypothesis test is a statistical approach to choosing between two hypotheses 
on the basis of the available evidence. For example, a passive sonar detector performs 
a binary hypothesis test to decide whether or not the noise-corrupted measurements 
taken from a receiver array indicate the presence of a target signal. A detection scenario 
offers two hypotheses: the null hypothesis states that only noise has been received; the 
alternate hypothesis states that a mixture of target signal and noise has been received. 
These hypotheses are random events, which by convention are respectively labelled 
Ho and Hl. We can therefore assign a probability to each event, P(Ho) and P(H1)- 
As one hypothesis is always true to the exclusion of the other, we add the constraint 
P(H0) + P(H1) = 1. 

If the detector is furnished with no information besides the prior probabilities, the 
optimum decision rule simply chooses the most probable hypothesis: 

choose Hl iff P(HI) > P(HO), otherwise choose Ho. (3.13) 

As the detector's decision is uncertain, it is appropriate to characterise the selection 
of Ho or Hl as random events labelled Do and D1. Of course, the ground truth 
hypothesis, H, and the decision, D, may differ. There are two possible ground truths 
and two possible decisions, giving a total of four outcomes, which we tabulate below. 

Ground Truth 
Decision I Noise Only (Ho) I Signal and Noise (Hl) 
Noise Only (Do) I True Negative False Negative 
Signal and Noise (D1) False Positive True Positive 

Here, negative and positive refer to the detector's decision, i. e., that signal is absent or 
present, respectively; true and false indicate whether the decision is correct (not the 
ground truth). The expressions detection and false alarm are synonymous with true 
positive and false positive, respectively. These four random events are associated with 
the conditional probability P(Dj I H4), i. e., the probability that the detector chooses 
Dj, given that Hk is true. The decision is correct if and only if j=k. 
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A. P(Do I Ho) 

PAX I Ho) P(x I HI) 

C. P(Do I HI) 

lzo R1 

B. P(Di I Ho) 

D. P(D, 1 Hi) 

Figure 3.5: A threshold (thick black line) on x divides the x-axis into two decision 

regions RO and R1, indicated in plot (C). The shaded gray areas represent the following 

conditional probabilities: A) correct dismissal; B) false alarm; C) false dismissal; 
D) correct detection. 

Naturally, for a detector to be of practical use, it must incorporate observations into the 
decision process. The input supplied to the detector is typically some sort of summary 
value distilled from the raw data called a test statistic. For instance, in passive sonar, 
"raw data" might refer to the time-varying voltage output of a receiver and the test 
statistic its root-mean-square. Section 3.2 describes the use of test statistics based 

on power, and Section 3.3 explores the possibility of using a test statistic based on 
timing. Here, we designate a general test statistic x and assume it is governed by a 
random variable X. Using these definitions, any binary detector may be considered a 
deterministic function that maps every element in the domain of the test statistic (e. g., 
the real numbers) to a decision. 

The domain is split into two decision regions, Ro and 7Z1, which respectively contain 
the elements that map to Do and D1. Figure 3.5 shows the two distributions X assumes, 
given HOB or HI, and two decision regions formed by partitioning the number line 

with a single cut. The detection outcomes listed in the four table cells above, i. e., 
true/false positive/negative, can be found by integrating the conditional p. d. f. of X in 
the appropriate decision region: 

P(D. i 1 Hk) = 
fPx(x 

1 Hk)dx. (3.14) 

The final step, having defined the relevant symbols and quantities, is the adjustment of 
RO and 7ZI to maximise the performance of the detector according to some criterion. 
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Minimum Error Decision Criterion 

The minimum error decision rule employs the decision regions that minimise the 
probability of any kind of error occurring; false positives and false negatives are 
presumed to carry equal weight. As the minimum error decision rule is easy to 
obtain and used extensively throughout Chapter 4, we shall briefly trace the steps 
in its derivation here. We wish to minimise the total probability of events in which 
the detector decision and the ground truth are opposite, i. e., find decision regions that 
satisfy 

arg min {P(Do, Hl) + P(D1, Ho)} 
. (3.15) 

Using (3.14), we can write the probabilities as integrals, i. e., 

arg min { P(H1) J px(x 1 H1)dx + P(Ho) 
f 

px(x 1 Ho)dx} . (3.16) 
izi 111 iz. Tzl 

Evidently, any x will contribute to exactly one of the two additive terms in (3.16), 
depending on whether it is a member of 7? or R1. As we are free to choose these 
regions, we can minimise the braced expression by choosing R1 (and implicitly, R. o) 
so that x always contributes to the lesser of the two terms, i. e., 

7Z1 = Ix: P(H1)px(x 1 Hi) > P(Ho)px(x 1 Ho)}. (3.17) 

From (3.17), we arrive at the minimum error decision rule: 

choose Hl iff px( xxI HHod 
>1 

P((o)o 
otherwise choose Ho. (3.18) 

Assuming that the prior probabilities and p. d. f. s accurately describe the distribution of 
the data, the decision rule (3.18) is optimal in the sense that no other detector exists 
that commits fewer errors. Note that in the absence of any test statistic, the minimum 
error decision rule reduces to (3.13). 

Neyman-Pearson Decision Criterion 

Often, rather than minimising the overall probability of error, it is preferable to specify 
a fixed false positive probability, whilst simultaneously minimising the probability of 
false negatives. This is particularly useful in that it allows one to partially quantify 
the performance of an envelope or amplitude detector, even when the signal-and-noise 
(Hl) distribution is unknown (Burdic, 1984; Whalen, 1971). As before, we choose the 
decision region Rl, and its complement 7Zo, to satisfy 

arg min {P(D0, Hl) + P(D1, Ho)}, (3.19) 
iz1 

only this time include the constraint 

P(Di I Ho) = Pfa, (3.20) 

where pp, is a constant. Simultaneously solving (3.19) and (3.20) using the method of 
Lagrange multipliers (Whalen, 1971, page 133) obtains decision regions that describe 
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µo /Li 

P(x I Ho) p(x I Hi) 
(ii) 

x 

(i) 

x 

Figure 3.6: A sketch of two overlapping normal probability density functions with 
means go and pi, and identical variances, vo - vl = v. Note that neither (i) shifting 
nor (ii) dilating the distributions on the x-axis affects the separability of the classes. 

a generalised version of the minimum error rule, called the Neyman-Pearson decision 
rule: 

choose Hl if,, px(x i HÖH 
> rl, otherwise choose Ho. (3.21) 

The parameter 17 on the right-hand side of the inequality in (3.21) can be thought of as 
a "sliding threshold", which adjusts the sensitivity of the detector. At this juncture, it 
is appropriate to introduce ROC curves. 

ROC Curves and the Detection Index 

A receiver operating characteristic (ROC) curve provides a means of visualising the 
trade-off between detection and false alarm probability as the threshold ri is varied. 
Specifically, a ROC curve is defined by the locus 

ROC = {(pfa, Pd) : Pfa = P(Di { Ho; 71), pd = P(D1 ý H1ii1), Vr1 > 0} (3.22) 

and is plotted on a pair axes, each axis ranging from 0 to 1. Stated another way, a ROC 
curve is an explicit function mapping the probability of false alarm to the probability of 
detection (Burdic, 1984). We shall restrict the focus of this section to the ROC curves 
for Gaussian conditional p. d. f. s. 

The need to decide from which of two Gaussian distributions a sample has been drawn 
arises in many detection and classification applications, including passive sonar. If the 
variances of the two distributions are identical (or near-identical), then the inherent 
difficulty of the problem may be characterised by three parameters: the two means, po 
and pl, and the variance, v, as shown in Figure 3.6. For instance, one might express 
the probability of false alarm as a function, p fa(po, ti, v). Translating the conditional 
p. d. f. s along the x-axis by the same amount (i. e., shifting both means) does not affect 
the separability; hence we can equivalently write p f,, (0, µl -µo, v). Similarly, dividing 
the test statistic by a constant leaves the separability unaffected, and so we can obtain 
an equivalent parameterisation, ppo, (0,1, v/(pi-µo)2), or simply, pf , 

(d-1), where 

Po)'. (3.23) 
V 
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The normalised parameter d is referred to as a the detection index (Waite, 1998; Dawe, 
1997). Two detection tasks with identical detection indices are of the same intrinsic 
difficulty; for example, halving the separation between the distribution means creates a 
detection problem equivalent to that obtained by quadrupling the distribution variances. 
ROC curves for various detection indices are plotted in Figure 3.7. 
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3.2 Power-based Detection 

3.2 Power-based Detection 

3.2.1 Passive Broadband Detector 

A conventional passive broadband detector compares the mean-square of the signal 
envelope to a threshold in order to determine whether a signal is present. The receiver 
comprises four stages, shown as a block diagram in Figure 3.8. The first three stages 
take the form of an envelope detector sandwiched between two linear filters. The filter 
preceding the envelope detector is called predetection filter and has impulse response 
ha(t); the filter following the envelope detector is called the postdetection filter and 
has impulse response hb(t). The fourth stage is a threshold chosen according to suit a 
detection criterion, e. g., minimum error or Neyman-Pearson. 

Depending whether the input signal g(t) is a noise-only signal (Ho) or a mixture of 
signal and noise (H1), the power spectral density at the the output of the predetection 
filter is one of the following: 

-o(W) = (3.24) 
YlGo) = (3.25) 

where 5'� and 9e respectively denote the p. s. d. s of the signal and noise processes at 
the receiver input. The output of the predetection filter for hypothesis H3 is a Gaussian 
process with variance (i. e., power), 

00 
o21 (w) 2I 

I 

00 
Yj (w) dw. (3.26) 

The instantaneous output of the squared-envelope block is governed by an exponential 
distribution with mean it = 2o. 2 and variance v= 4o-1, if the input is a zero-mean 
stationary Gaussian process with variance o 2. According to the central limit theorem 
(Peebles, 1993), the average of n independent samples of the envelope follows an 

A 

x(t) Ix(t)1Z y(t) 
g(t) hn(t) 1.12 hb(t) compare decision 
input predetection square postdetection threshold 

filter envelope filter 

Figure 3.8: Passive broadband detector block diagram. The input signal g(t) is filtered 
and the squared-envelope is measured at the filter output; a second linear filter then 
averages the output of the envelope detector over a sufficiently long time period, so 
that the signal y(t) conforms to a Gaussian process. The final block is a decision rule 
based on Gaussian probability density functions, which compares a sample of y to the 
threshold A. 
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T hb(t) 

T-11 Q-ý 
................................ time -º 

Figure 3.9: Time-bandwidth product. If a noise process is conceived as arising from 

white noise samples convolved with an impulse response of duration 0-1, then a time 
window T seconds long provides at least QT independent Gaussian samples. 

approximately Gaussian distribution with 

mean =µ= 2a2, variance =v= 
44 

, n 

provided that n is large. It is the role of the postdetection filter to average independent 
samples of the squared-envelope in order to obtain Gaussian statistics. There are 
various possible choices of impulse response hb(t) that may achieve this; perhaps the 
most obvious is a rectangular pulse of unit area, i. e., T seconds in duration and 11T 
in amplitude. We can gain an idea of how many independent samples are combined in 
the decision rule by considering the effective bandwidth of the noise, Q Hz. Using 
the rule-of-thumb that the impulse response duration is reciprocally related to the 
bandwidth, the number of independent samples produced in time T is QT. The 
postdetection window shown in Figure 3.9, for instance, is long enough to contain 
three non-overlapping copies of the impulse response, so the time-bandwidth product 
is ßT=3. 

If Q1 C2, i. e., the signal-to-noise ratio after predetection filtering is low, then a good 
approximation to the detection index is found by placing these parameters into (3.23), 
yielding 

_z d~ 
ßT(2 

4QO 
2a )2 

_ QT 
(-). 

a 
(3.27) 

The detection index can be used in connection with the ROC curves in the preceding 
section to obtain suitable trade-off between false alarm rate and detection probability. 
It is also instructive to note that the detection index is a product of two meaningful 
factors: i) the signal-to noise ratio at the output of the predetection filter and ii) the 
number of independent samples that make up the test statistic-increasing either (i) or 
(ii) will improve the performance of the detector. 

3.2.2 Passive Broadband Sonar Equations 

In this section, we shall briefly demonstrate how the passive sonar equation can be 
used to predict some aspect of a sonar's performance under specific conditions. The 
sonar equation, in its most basic form, is a sum of decibel quantities: 
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SE=S- N -DT. (3.28) 

S and N respectively denote the signal and noise level following beamforming and 
predetection filtering; consequently, S-N is the signal-to-noise ratio in the receiver. 
The terms SE and DT correspond to signal excess and detection threshold: the signal 
excess relates the extent (in dBs) to which the SNR exceeds that required for some 
prestated performance, characterised by the detection threshold; when SE = DT there 
is no signal excess. SE and DT are reciprocal quantities: raising the detection threshold 
lowers the signal excess and vice versa. 

The signal level at the receiver, S, may be expanded further into two terms: the source 
level (SL) and the propagation loss (PL). To illustrate this principle, we can imagine 
that a target is radiating sound energy with intensity SL dB at one metre distance, and 
due to boundary effects in shallow water, the sound spreads away from the target in 
concentric cylinders. Applying the formula for the sound intensity on the surface of a 
cylinder of height h in (3.9), the source level expressed in decibels (with respect to a 
reference intensity 1, f ) is given by 

SL = lO loglo 
H i/(2irh) 

, 
dB. (3.29) 

Iref 

If the signal propagates over a range R metres before reaching the array, then the 
intensity at the received wavefront is 

S= 
II, yj log10 

/(2'r Rho 
dB. (3.30) 

'ref 

The propagation loss is defined as the ratio of source intensity to received intensity; 
thus, combining (3.29) and (3.30), we may express this relationship as a linear 
relationship between levels: 

PL = SL -S= 10log10R, dB. (3.31) 

The detection threshold is defined as the signal-to-noise ratio that results in prespecified 
detection and false alarm probabilities. If the test statistic is the averaged output of a 
squared-envelope detector, and the time-bandwidth product QT » 1, then the detection 
threshold DT shares the following relationship with the detection index d: 

DT = 5loglo d- 5loglo /3T, (3.32) 

found by rearranging (3.27). Replacing (3.31) and (3.32) in (3.28) gives an expanded 
form of the sonar equation for broadband detection, 

SE = SL - PL- N -5log10d+5log10ßT. (3.33) 

A brief example will demonstrate the utility of this sonar equation. Suppose the target 
radiates noise at 140 dB, eight kilometres from the receiver. What ambient noise level 
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9(t) 

input 

squared-magnitude FFT 
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compare decision 

compare decision 

compare decision 

- compare -º decision 

Figure 3.10: Passive narrowband detector block diagram. Each parallel pathway in the 
detector functions in the same way as a broadband detector (cf. Figure 3.8). The first 
two steps are performed for all channels by a squared magnitude fast Fourier transform. 

is required to secure a probability of detection of 50% and a probability of false alarm 
of 0.1 %, if samples are averaged over 10 seconds in aI kHz bandwidth? First of all, 

PL = 10loglo 8000 = 39 dB, [from (3.31)] 

QT= l0 x1000=10,000. 
Then, reading from the ROC curve in Figure 3.7B, the detection index corresponding 
to the desired performance is d=9. Placing these values into the sonar equation leaves 
an expression in N, 

0=140-39-N-4.77+20; 

therefore, the ambient noise level must not exceed 116 dB. 

3.2.3 Passive Narrowband Sonar Equations 

Passive narrowband sonar is used to detect tonals and operates on the same principle 
as broadband detection-i. e., a hypothesis test based on Gaussian statistics-with the 
exception that the incoming signal is prefiltered into many narrow bands. In practice, 
the signal is sampled at a rate f, Hz, and the narrowband filtering is accomplished in 
parallel by a fast Fourier transform (FFT) processor. Concerning performance analysis, 
it is helpful to note that the FFT magnitude samples are almost identical to the envelope 
that would be sampled across a bank of N filters with finite impulse responses 

he[n] - 
w[N-n-1] cos27rs N0<n< N-1 

(3.34) 
0 otherwise, 
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Figure 3.11: The effect of windowing upon the FFT bin squared magnitude response. 
Analysis bins are demarcated by dotted lines. A) a rectangular window causes spectral 
leakage in the frequency domain; B) the Blackman window offers good sidelobe 
attenuation and a broader passband. The effective noise bandwidth for each filters is 

superimposed in a heavy stroke. C) worst-case scalloping loss occurs halfway between 
bins, as indicated by the marker, where signal power is scaled by a factor of 0.7768 or 

-1.10 dB (Harris, 1978). 

where s is an integer indexing the bin with centre frequency sf, IN Hz, and w["] is the 
window function. The N-point FFT has an analysis binwidth given by 

B= fs/N, Hz (3.35) 

and a baseband bandwidth equal to 2 
f9 Hz. In a narrowband FFT, B is by definition 

small, so it is generally assumed that the noise power spectral density across the filter 
is sufficiently smooth that it can be modelled as a constant, N, referring to the power 
resolved in a1 Hz bandwidth. The average noise power contributed to an FFT cell is 
then given by N2, B. 

The frequency response of a 1024-point FFT bin is shown in Figure 3.1 IA. The sample 
rate is 16384 Hz, the bin centre frequency is 400 Hz, the binwidth is B= 16 Hz, 

and w[. ] is a rectangular window. The sharp edges of the rectangular window result 
in spectral leakage, manifested as sidelobe responses at ±23 Hz, ±39 Hz, etc. The 

response of the FFT bin can be smoothed out by selecting a tapered window for w["], 
prior to performing the FFT, at the expense of broadening the mainlobe. Harris (1978) 
has documented the key properties of a variety window functions, two of which are 
relevant here. The first is effective noise bandwidth: "the width of a rectangular filter 

with the same peak power gain that would accumulate the same noise power" (Harris, 
1978), which we designate Beff. For example, the Blackman window, whose frequency 
domain squared magnitude response is plotted in Figure 3.11B, has a bandwidth 1.73 
times wider than the analysis bandwidth, i. e., approximately 27.68 Hz. Naturally, the 
adjustment for effective noise bandwidth implies a decrease in SNR. 

The second property of the window function is scalloping loss, which is defined as 
the loss in signal power (or SNR) due to a sinusoid being resolved between FFT bins. 
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Scalloping loss is quantified in two ways. The maximum or worst-case scalloping loss 
refers to the reduction in signal power at the boundary between bins. For the Blackman 
window shown in Figure 3.11C, e. g., the ratio of the signal power at bin edge to that 
at the bin centre is 0.7768-'-equivalent to an attenuation of 1.1 dB. An alternative 
formulation is the average scalloping loss: the average (linear) attenuation of power 
measured over the analysis bandwidth B. Using Las to denote the average scalloping 
loss, the signal-to-noise ratio in the FFT bin is 

Sw/Las 
(3.36) 

NwBeff 

where S2� relates the signal power resolved in the analysis band without accounting for 
windowing. 

Statistical detection using the FFT follows the same principle as a broadband scheme 
described above: many consecutive, independent FFT bins are averaged in order to 
obtain Gaussian statistics. In a narrowband context, the number of FFT blocks that 
are averaged incoherently is referred to as the integration factor (IF) and is a quantity 
analogous to the time-bandwidth product in broadband sonar. If only Gaussian noise 
is present, then the mean of IF »1 squared magnitude samples of an FFT bin follows 
a Gaussian distribution with mean and variance respectively given by 

/10 = BefNw (3.37) 

v= (BeffNw)2/IF. (3.38) 

Ill = Sw/Las + BeffN,. (3.39) 
Consequently, under the assumption of a low signal-to-noise ratio, the detection index 
is found from (3.23) to be 

= 
IF (8)2 

(3.40) d 
I'sBff 

from which the expression for the detection threshold follows, 

DT =5 log10 d- 51og10IF + 10loglo Beg + 10log10 Las. (3.41) 

The passive narrowband sonar equation is obtained by replacing DT in (3.28). 

SE = SL,, - PL - Nw -5 log10 d+ 5 log10 IF -10log10 Beg - 10 log10 Las. (3.42) 

For a more thorough-going discussion of the quantities that appear in the narrowband 
sonar equation, see Waite (1998), Dawe (1997) or Burdic (1984, Chapters 13 and 14). 
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3.3 Timing-based Detection 

Chapters 1 and 2 introduced auditory-motivated and temporal signal representations 
from a physiological and signal processing perspective. Several examples of temporal 
representations were also reviewed: the zero crossing with peak amplitudes (ZCPA), 
the ensemble interval histogram (EIH), the generalised synchrony detector (GSD), 
synchrony strands and autocorrelation. Of these candidates, only the ZCPA shall 
be considered for adaptation to sonar applications. The rationale for this decision is 
twofold. 

First, of all the models, the ZCPA bears the closest resemblance to more contemporary 
time-frequency representations, such as the sparse time-frequency representation 
(Gardner and Magnasco, 2006) and the reassigned spectrogram (Fulop and Fitz, 2006; 
Kodera et al., 1976,1978). Note that both of these representations make use of the 
instantaneous frequency, of which a zero crossing interval is simply a measurement. 

Second, the ZCPA incorporates many features of the other models. Kim et al. (1999) 
explains how the ZCPA was developed from, and is in many regards superior to, the 
EIH. (See also Section 2.2.5. ) A synchrony strand (Cooke, 1991/1993) is formed when 
a block of auditory filters phase-locks to a single instantaneous frequency. This idea 
is analogous to peak tracking in the ZCPA, as a dominant component causes identical 
zero crossing intervals to be received across groups of channels, which then contribute 
to a single peak in the ZCPA histogram. 

3.3.1 ZCPA with Auditory-like Parameters 

The general purpose of this section is to address whether the zero crossings with peak 
amplitudes algorithm can be adapted to suit narrowband sonar applications and, if so, to 
identify the kinds of adjustment that are required. As a starting point, we will compute 
the ZCPA for the first four seconds of the sonar signal shown in Figure 3.4, using 
the same set of parameters that were used to produce the speech ZCPA in Figure 2.5. 
These parameters are tabulated in Table 3.1 and are fairly typical of those used in 
auditory models. The resulting ZCPA time-frequency display is shown in Figure 3.12 
in a waterfall format'. 

The ZCPA provides a broadband analysis of the sonar signal but is unable to resolve 
narrowband features such as tonals. (That the signal contains low-frequency tonals can 
be verified from the summary spectrogram in Figure 3.4, and later studies in this section 
confirm this. ) Although intermittent spectral lines are discernible at low frequencies, 
suggesting the presence of some tonal structure, the ZCPA retains too little detail to 
conclude anything further, and the time-averaged summary ZCPA does not exhibit any 
well-defined peaks. 

The inability of the ZCPA to resolve narrowband features can be traced to a number 
of factors, which are summarised in Table 3.2 and described now in detail. The first 

1 that is, frequency along the abscissa and time running down the ordinate. 
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Figure 3.12: A waterfall ZCPA for four seconds of a recorded sonar signal. The lower 

plot shows the summary pseudo-spectrum computed by averaging the ZCPA over time. 

and most obvious factor is the relatively wide bandwidths of the gammatone filters. 
The 3 dB bandwidths range from approximately 41 Hz to 328 Hz, and, in this regard, 
the frequency-resolving power of the ZCPA faccs the same limitations as a wideband 
Fourier analysis, specifically, a low post-analysis signal-to-noise ratio and the inability 
to separate closely-spaced components. 

Unlike an FFT, however, the frequency resolution of the ZCPA is enhanced by the fine 

structure analysis carried out by the zero crossing detection and histogram compilation. 
Following the analysis filterbank, the first trade-off is the number of intervals that are 
extracted fron each channel in order to form the histogram. A longer window adds 
more intervals to the ZCPA histogram, resulting in a smoother profile, but a shorter 
window measures frequency on a shorter time scale and is therefore better-suited to the 
analysis of non-stationary signals. 

AUDITORY-LIKE PARAMETERS 
Parameter Value 

channel range 200 Hr - 3200 Hz 

channel resolution 85 gammatones, ERB-spaced 

bandwidths ERB 

peak compression log(. r + 1) 

interval/peak window 20 most recent intervals 
histogram range 0 Hz - 3200 Hz 
histogram resolution 100 bins, linearly-spaced 

record ZCPA at intervals 5 ms 

Table 3.1: Auditory-like ZCPA parameter set, chosen to reflect values typically used in 
auditory modelling studies (Kim et al., 1999; Ghitza, 1988). 
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0.5 

0.5 

Figure 3.13: ZCPA analysis resolution. A) the squared magnitude response of the 
filterbank that results from using the parameter set in Table 3.1. The histogram bins 
are drawn above this. Note that, due to ERB spacing, the filters are somewhat narrower 
and more tightly-packed at lower frequencies, and broader and sparsely-distributed at 
higher frequencies. B) the squared magnitude response of the filterbank and histogram 
configuration that result from using the parameter set in Table 3.3. 

At each time-step in the ZCPA, once the intervals have been extracted, there remains 
the question of how to assign them to the histogram. If the histogram bin widths are 
too narrow, then even a small amount of noise tends to disperse peaks across a number 
of bins. On the other hand, if the bin widths are too wide, then the frequency selectivity 
of the ZCPA is reduced. For a noise-free pure tone, the frequency resolution depends 
entirely upon the resolution of the histogram. For instance, if the tone contributes to a 
histogram bin that spans 695 Hz - 727 Hz, then it is impossible to tell from the ZCPA 
which component in this range contributed to the spectrum. 

A. ZCPA configuration for Auditory-like Analysis 

3.3.2 ZCPA with Narrowband Parameters 

B. ZCPA configuration for Narrowband Analysis 

In order to configure the ZCPA to detect slow-varying tonals at low SNRs, it is quite 
clear that we must increase the frequency resolution of both the linear filterbank and 
zero crossing / interval histogram analyses. A modified parameter set is proposed in 
Table 3.3. The filterbank now covers the 0 kHz-1 kHz band and is uniform, with filter 
centres spaced 8 Hz apart. Similarly, the histogram is divided into 501 bins, each 2 Hz 
wide, and consequently, the fine structure analysis is four times denser than the initial 
filterbank analysis. 
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PARAMETER TRADE-OFFS IN THE ZCPA 

(Fourier) Highly-overlapping, wideband filters preserve rapid 
modulations in signal components, but have very a 
poor post-analysis SNR and are susceptible to 

f 
interference between components. 

-º 

A bank of narrowband filters maintains a high SNR 
and can resolve closely-spaced components. 
However, it may over-resolve modulated signals, has 

f poor time resolution, and is expensive to compute. 

(ZCPA) A ZCPA compiled from a few recent intervals shows 
an up-to-date snapshot of a component's frequency. 

rn 
However, in noisy conditions, a few intervals may be 

f- unreliable. 

A ZCPA compiled from many intervals reveals with 
greater clarity which intervals are more frequent. 
However, if the component frequency is moving, the 

f intervals may now be smeared over many bins. 

Very narrow histogram bins are able to resolve 
frequencies to arbitrarily fine precision. However, a 
small amount of jitter in the component frequency 

f causes peaks to disperse. 

Wide histogram bins collect similar intervals together 
into peaks, at the expense of reducing the final 
resolution of the ZCPA somewhat. 

f -º 

Table 3.2: An illustrated list describing the beneficial and adverse effects that 
accompany changes in the key parameters of the ZCPA. (The lower four plots are 
reciprocal-interval histograms. ) 
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NARROWBAND PARAMETERS 

Parameter Value 

channel range 8 Hz - 1000 Hz 

channel resolution 125 gammatones, linearly-spaced 
bandwidths uniform, 10 Hz 
histogram range 0 Hz - 1000 Hz 
histogram resolution 501 bins, linearly-spaced 

Table 3.3: Narrowband ZCPA parameters. (The interval window duration, compression 
function and ZCPA sampling interval are unchanged from Table 3.1. ) 

Figure 3.13 depicts graphically the difference in resolution between the auditory-like 
and narrowband parameter set for the 600 Hz-800 Hz section of the filterbank. The 
filter magnitude responses and histogram bins-plotted as an array of cells above the 
filterbank response-are considerably narrower in the latter. It should be noted that the 
final resolution of this ZCPA (i. e., 2 Hz cells) is still lower than that typically employed 
in a narrowband sonar FFT. Higher-resolution analyses will be discussed shortly. 

Figure 3.14B shows the ZCPA time-frequency image and summary pseudospectrum 
that result from applying the ZCPA with the parameter set given in Table 3.3 to the same 
four-second signal used to produce Figure 3.12. The tonal structure is now visible, and 
there is evidence of a harmonic complex with a 50 Hz fundamental. One may compare 
this with the log-magnitude spectrogram based on a short-time Hann-windowed FFT, 
shown in Figure 3.14A. 

The resolution of the FFT analysis is designed to be roughly commensurate with that 
of the gammatone filterbank, e. g., the 8 Hz-wide FFT bins match the spacing of the 
ZCPA filters. Because the magnitude responses of the Hann window and gammatone 
envelope differ in shape, there are various ways of aligning bandwidths'. In the present 
case, the 3 dB bandwidths of the Hann and gammatone windows are 11.25 Hz and 
8.68 Hz, respectively. The selectivity of the ZCPA filterbank therefore exceeds that 
of the FFT. However, the equivalent noise rectangular bandwidth of the Hann and 
gammatone windows are 12.00 Hz and 19.63 Hz, respectively. Thus, the post-analysis 
SNR of the FFT is higher than the ZCPA filterbank. 

Comparing Figures 3.14B and 3.14A, the ZCPA appears more sharply-defined than the 
FFT. This apparent increase in resolution can be attributed to the fact that each FFT 
filter indiscriminately assigns all energy measured in its output to a single, broad bin, 
whereas the ZCPA sub-differentiates on the basis of fine structure. Thus, while the 
FFT stops short of distinguishing between a bin driven by high-energy noise and a bin 
driven by a tone, the ZCPA goes on to draw this distinction effectively by detecting the 
ordering influence of a steady signal on the zero crossings of narrowband signals. 

'See Harris (1978) for a discussion of window functions and their properties. 
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Figure 3.14: Three waterfall time-frequency displays for the first four seconds of 
the signal shown in Figure 3.4 based on the A) narrowband log-magnitude DFT; 
B) narrowband ZCPA (log peak compression)-, and C) narrowband ZCPA (timing only). 
A summary pseudospectrum is plotted beneath each image. 
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Lastly, Figure 3.14C shows a narrowband ZCPA generated using a timing-only 
parameterisation. Specifically, every interval adds a unit value to the histogram bin 
rather than the compressed peak amplitude, log(x + 1). It must be emphasised that 
synchrony capture-inspired by the phase-locking of auditory nerve fibres-is the 
sole mechanism responsible for revealing narrowband components in the timing-only 
ZCPA. Quantities relating to power are discarded. 

3.3.3 A ZCPA algorithm based on the DFT 

Overview and Motivation 

The DFT based and ZCPA-based time-frequency displays have so far been presented 
as alternatives. This section describes a new kind of ZCPA implementation, in which 
the auditory filterbank is replaced with a short-time discrete Fourier transform, called 
the DFT-ZCPA. There are a few reasons to consider this kind of implementation. 

First, having reconfigured the gammatone filterbank to a uniform distribution of narrow 
filters in the preceding section, replacing the filterbank with a DFT at this stage only 
constitutes a rather minor change. In fact, by suitable choice of window function, the 
DFT could conceivably approximate a uniform gammatone filterbank, with some mild 
restriction on the filter centres and bandwidths. 

Second, as a particular instance of a linear transformation, the properties of the DFT 
are well understood and have been thoroughly documented (Oppenheim and Schafer, 
1989; Harris, 1978). A number of efficient implementations exist, for example, the fast 
Fourier transform (Cooley and Tukey, 1965), the sliding DFT (Jacobsen and Lyons, 
2003), the Goertzel algorithm (Goertzel, 1958) and fast Fourier sampling (Gilbert et al., 
2008). 

Third, comparing the performance of the DFT and ZCPA in a controlled manner will 
be more straight-forward, once the ZCPA incorporates the DFT as a front-end. Using 
the DFT for analysis in the ZCPA will remove any ambiguity concerning whether 
"commensurate bandwidth" refers to matching SNR (i. e., the rejection of noise) or 
scalloping loss (i. e., the attenuation of components between filters). 

The Sliding DFT 

In order for the DFT filterbank to serve as the front-end to the ZCPA, it is necessary to 
compute the short-time DFT with a one-sample frame-shift. Applying the fast Fourier 
transform to a block of time domain samples and shifting the frame by one sample 
in a repetitive fashion is a computationally expensive and rather wasteful process, 
especially if one is concerned only with a limited range of coefficients. The notion 
of updating the DFT coefficients using properties of the Fourier transform has already 
been presented as the sliding DFT algorithm, a overview of which is provided by 
Jacobsen and Lyons (2003). The stages of the sliding DFT are outlined next. 
First, a frame of time domain samples with the same length as the DFT, (i. e., N), is 
buffered, and it is assumed that this buffer runs from time n-N to n-1. In addition, 
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Figure 3.15: One step in the sliding discrete Fourier transform. Operations in the time 
domain that effectively shift the analysis window along one sample (left-hand side), 
and the corresponding operations in the frequency domain (right-hand side). 

we assume that the N-point DFT for these samples is available. The top row of 
Figure 3.15 portrays an 8-sample buffer running from n=2 to n=9. The goal 
is to shift the window along by one sample, and, with as little computational effort as 
possible, modify the DFT accordingly to match the new buffer content. 

The initial step is to set the first sample of the buffer to zero by subtracting a signal 
that is zero everywhere, except for the first sample, equal to x[n-N]. This gives the 
second row in Figure 3.15. Next, the samples in the buffer are rotated left-that is, 
one sample backward in time-so that the final sample is now zero, as the third row 
of Figure 3.15 depicts. Finally, the last sample in the buffer is set to x[n] by addition, 
producing the final row. Dropping a sample out the left-hand side of the buffer, shifting 
all the samples in the buffer to the left, and drawing in a new sample from the right, 
can either be interpreted as sliding the signal under the window, or sliding the window 
over the signal. 

The efficiency of the sliding DFT algorithm is due to the fact that the three elementary 
time-domain operations invoked above-subtraction, circular shift and addition-have 
simple counterparts in the frequency domain-namely, subtraction, multiplication by a 
linear phase shift and addition (Oppenheim and Schafer, 1989). Furthermore, because 
these operations can be carried out on individual coefficients, if it is only required to 
track a sub-bank of filters, then only the affected bins need to be updated, as opposed 
to the entire DFT. Thus, if the s-th complex DFT bin at time n-1 is denoted X1 [s], 
then, advancing one sample, the bin is updated according to the following rule: 

Xn[s] _ (&[s] - x[n-N]) exp(i27rs/N) + x[n] exp(i27rs/N) 

= (Xn, 
_1[s] - x[n-N] + x[n]) exp(i2irs/N). (3.43) 

Conventional DFT implementations, such as the FFT, reduce spectral leakage by 
multiplying the time domain samples by a tapered window function. The sliding 
DFT cannot practically accommodate this step, as it is not computed over an entire 
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Figure 3.16: A) the squared magnitude DFT and B) the DFT-based ZCPA. 

block, but rather sample by sample. Instead, by exploiting the fact that multiplication 
in the time domain is equivalent to convolution in the frequency domain, windowing 
is accomplished by convolving an unwindowed DFT with the DFT of the window 
function. 

A few comments about this windowing procedure are in order. First, the coefficients of 
the window function are generally complex; thus, the frequency-domain convolution 
entails the addition and multiplication of two complex sequences. (Alternatively, the 
window function can be carefully chosen to guarantee real DFT coefficients. ) Second, 
because the window function is, in effect, a long, moving-average filter, the magnitudes 
of the corresponding frequency domain coefficients tend to be significant only over 
a small region around zero; outside this region, the coefficients can be set to zero. 
The extent to which the convolution sequence is truncated represents a trade-off: a 
shorter sequence reduces computational work, but a longer sequence reduces overshoot 
in the impulse response. Finally, the sliding DFT implementation requires that the 
convolution be non-destructive, as the unwindowed DFT coefficients must be kept for 

subsequent iterations. 

Processing the Fine Structure 

Thus far we have examined (i) how the complex coefficients of the sliding DFT are 
continually updated as new samples arrive, and (ii) how windowing is effected in the 
frequency domain. In summary, the sliding DFT effectively provides an efficient, 
complex-valued, rolling spectrogram. In conventional narrowband sonar processing, 
the detector operates on the squared magnitude of a DFT sample, or the average squared 
magnitude of several samples. The test statistic provided to a power detector is drawn 
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DFT-ZCPA OPTIONS STRUCTURE 

Parameter Field name Value 

sample rate fs 16384 

FFT length N 16384 
FFT bins Ss [0: 511 ]' 
freq. domain window W (9-point Gaussian) 

circular buffer size intwin 20 
bin centres bins [0: 0.25: 512]' 

Table 3.4: Options and default values used to configure the MAT LAB implementation 
of the ZCPA. (See Listings 3.1 and 3.2. ) 

from the grey region of the flow diagram in Figure 3.16A. This kind of detector is a 
suitable baseline against which to compare the performance of DFT-ZCPA. 

In the ZCPA, the output of the filterbank undergoes a second stage of processing to 
extract a combination of temporal and amplitude information from the fine structure. 
Every time the windowed DFT is computed, each bin is checked to see whether a 
positive-going zero crossing has occurred in the real part. If so, the interval duration 
and peak squared amplitude are stored as a pair in a circular buffer associated with that 
bin. Finally, at regular intervals, the ZCPA histogram is compiled from the reciprocal 
intervals collected from all the circular buffers, each interval weighted by its peak 
squared amplitude. Figure 3.16B shows an abstract schematic representation of this 
algorithm. 

Structuring the Algorithm 

The DFT-ZCPA implementation discussed in this section comprises four parts: i) a 
set of options; ii) an internal state; iii) a function which updates the internal state as 
one sample arrives, and iv) a function which converts an internal state into a ZCPA 
spectrum, or series of successive ZCPA spectra. The fields of the options structure are 
set out in Table 3.4. The values in this structure govern the operation of the ZCPA and 
are not modified at any stage. The fields of the state structure are listed in Table 3.5. 
Unlike the options structure, the state structure is updated every time a new sample 
arrives, according to the sliding DFT and fine structure processing described above. 
This structure completely describes the internal state of the algorithm, so individual 
invocations of the ZCPA functions can be chained together to process long signals by 
passing the state structure between calls. 

Listing 3.1 describes a cut-down implementation of a MATLAB function, 
minzcpa_upd, which updates the state structure, st, following the arrival of a new 
time-domain sample, x. Note that this function implements the sliding DFT and 
updates the circular buffers, but does not compile the histogram. Instead, a second 
function, minzcpa_rec (Listing 3.2), generates the ZCPA using the contents of a 
state structure. The MATLAB code in Listings 3.1 and 3.2 is highly inefficient and is 
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DFT-ZCPA STATE STRUCTURE 

Parameter Field name Size 

sample buffer buf N 

complex, unwindowed DFT X Ss 

real part of windowed DFT Xw Iss 

coarse interval ci ISSI 
fine interpolation fi I SS 

recent maximum mx ISSI 
circular buffer (intervals) cb. ins[ ] ISsIxintwin 

circularbuffer(peaks) cb. pks[ ] ISstxintwin 

Table 3.5: State variables in the MATLAB implementation of the ZCPA. Every variable 
listed identifies an array whose size is initialised according to the options structure. 
Note that the circular buffers are two-dimensional arrays, e. g., each of 512 bins records 
20 intervals. The default options set is given in Table 3.4. 

written in this compact way in order to convey the basic processes to the reader in an 
accessible fashion. In fact, the algorithm used to produce all the subsequent ZCPA 
figures was coded in MATLAB-executable C (MEX) and made proper use of circular 
buffers, batch processing, appropriate data types and pre-tabulation of trigonometric 
values. Nevertheless, the C implementation is functionally equivalent to that given in 
Listings 3.1 and 3.2. 

Displaying the DFT-ZCPA for a Synthetic Signal 

Before proceeding further, it is appropriate to test the DFT-ZCPA implementation by 
synthesing a mixture of signal and noise and examining the resulting image. The test 
signal has been chosen to represent three classes of narrowband signal that are relevant 
to the analysis of engine tonals: a tone that is resolved between DFT bins, a tone 
that is weak in relation to the others (its power reduced by 6 dB), and a tone that 
is phase-modulated. The mixture is synthesised according to the following formula, 
where n=0, ... , 196607 and f., = 16384 Hz: 

9[ nl = sin(27r " 200.4n/fe) +1 2 sin(27r " 210 n/ f9) + cos 

(2/f 

eý ¢[ý] 

unresolved =0 
weak 

modulated 
(3.44) 

The instantaneous frequency of the third mixture term is given by 

¢[n] = 205 +2 sin(27r " 0.25 n/ f 9). (3.45) 

The function g[n] is added to white Gaussian noise samples with a variance of one 
hundred. As a guideline, this leads to a signal-to-noise ratio of approximately 16 dB, 
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function st = minzcpa_upd (x, opt , st ) 
% Update the ZCPA state. 
% MINZCPA_UPD(X, OPT, ST) computes a new state ST for 
% input sample X, options structure OPT and previous 
% state ST. 

% Perform sliding DFr 
st. X = (st. X - st. buf(1) + x) .* exp(i*2*pi*opt. Ss/opt. N); 
st. buf = [st. buf(2: end); x1; 

% Perform windowing 
I= floor (length( opt. W)/2); 
Xn = conv(st. X, opt. W); 
Xn = Xn(i+l: end-1 ); 

% Find zero crossings 
for n=1: length(opt. Ss) 

if st. Xw(n) <0 && real(Xn(n)) >= 0 
% Interpolate interval 
izc = st. Xw(n) / (st. Xw(n) - real (Xn(n ))); 
int = st. ci(n)+1-st. fi (n) + izc; 

% Store interval in circular buffer 
st. cb(n). ins = [st. cb(n). ins(2: end); opt. fs/int]; 
st. cb(n). pks = [st. cb(n). pks(2: end); st. mx(n)]; 

% Reset 
st. mx(n) = 0; 
st. ci (n) = 0; 
st. fi(n) = izc; 

else 
% Store maximum; increase coarse interval 
st. mx(n) = max(st. mx(n), real(Xn(n))"2); 
st. ci(n) = st. ci(n) + 1; 

end 
end 

% Store more recent windowed DFT 
st. Xw = real(Xn); 

Listing 3.1: A MAT LAB function that updates the ZCPA state structure, s t, according 
to a set of options (opt) and an incoming time domain sample (x). 
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function zcpa = minzcpa_rec (opt 
, st) 

% Record the ZCPA. 
% MINZCPAREC(OPT, ST) records the ZCPA corresponding to the 
% internal state ST and the set of options in OPT. 

% Reserve space for histogram 

zcpa = zeros(size(opt. bins)); 

% Access left bin centre and bin differences 
bl = opt. bins(1); 
bd = diff(opt. bins(1: 2)); 

% Compile all intervals into a weighted histogram 
for n=l: length (opt. Ss) 

for m=1: opt. intwin 
bi = floor ((st. cb(n). ins (m) - bl) / bd + 0.5); 
if bi >= 0 && bi < length( zcpa) 

zcpa(bi+l) = zcpa(bi+l) + st. cb(n). pks(m); 
end 

end 
end 

Listing 3.2: A MATLAB function that records a ZCPA pseudospectrum from the 
contents of the circular buffers in the state structure (st). The options structure (opt) 
is also required to specify the histogram configuration. 

for a tone with unit amplitude centered on an unwindowed DFT bin. (A more detailed 
mathematical treatment follows in later chapters. ) 

The power-based Fourier spectrogram, shown in Figure 3.17A, conforms to the image 
that one would anticipate, given the description of the signal and the resolution of the 
DFT. The tone with frequency 200.4 Hz falls between the DFT bins, the centres of 
which correspond to integer frequencies, so the energy is inevitability resolved across 
many bins-principally, the 200 Hz and 201 Hz cells. (The window function ensures 
that the energy is confined to a region around the tone frequency. ) The tone centred at 
210 Hz is resolved on the centre of a DFT cell but is four times less powerful and, as 
a result, disappears beneath the noise floor in some rows of the spectrogram. The third 
signal, a phase-modulated tone whose frequency varies sinusoidally around 205 Hz, is 
blurred over two or three analysis cells at each time step. 

Figure 3.17B shows the DFT-ZCPA image for the signal, in which the underlying 
analysis resolution is the same as the DFT analysis, and the intervals have been 
weighted with the peak squared amplitudes. The noise floor of the DFT-ZCPA seems 
better-suppressed than that of the Fourier spectrogram, in that the background of the 
colour image appears less mottled. This supports an earlier observation that the zero 
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Figure 3.17: Three time-frequency images generated for an additive mixture of the 

signal described in (3.44) and (3.45), and Gaussian noise. A) squared magnitude of the 

windowed DFT; B) DFT-ZCPA with squared peak amplitudes; C) DFT-ZCPA based 

exclusively on timing. 

crossing intervals of noise-driven filters are dispersed across many bins, whilst those 

of steady signals tend to reinforce peaks (cf. X2.2.5 and X3.3.1). 

A second notable feature of this particular DFT-ZCPA is the relative sharpness with 
which the narrowband components are resolved, including those whose frequency 
is non-stationary or falls between DFT bins. Although no such exercise has been 

undertaken as part of this study, it would be enlightening to compare the accuracy of 
frequency estimates based on inspection of the two types of image by human operators. 
A casual glance suggests-to the author, at least-that the delineation of components 
in the DIT-ZCPA is superior. 

The third, qualitative comment is warranted, concerning the effect of additive noise 
upon the appearance of the components in Figures 3.17A and 3.17B. It is well-known 
that adding white Gaussian noise to a signal in the time domain is equivalent to adding 
constant power to its mean squared magnitude Fourier spectrum. At no point is the 
frequency of a component in the spectrum ever altered as a result, although for a given 
sample function, the peak may be obscured by spurious peaks or reduced in magnitude 
by destructive interference. However, in the ZCPA, additive noise in the time domain is 

clearly capable of modifying both frequency (interval) and amplitude (peak) estimates. 

The 210 Hz tone demonstrates this point. In the DFT-based spectrogram, although 
the tonal varies in magnitude and is obscured at times, its frequency is never in 
doubt, because the signal consistently contributes to the coefficients of the same basis 
functions, the selection of which is independent of the signal. However, the 210 H. 
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tonal in the DFT ZCPA has a perceptibly unsteady frequency, which is a consequence 
of the fact that its frequency is derived from noisy data. 

The timing-only DFT-ZCPA, shown in Figure 3.17, relies solely on temporal features 

of the narrowband signals to reveal signal components. Although a background of 
short artifacts is now apparent in the image, the innate ability of human viewers to 
process patterns counteracts this disadvantage somewhat. In the terminology of Fulop 
and Fitz (2006): the signal "detaches" itself from the "froth". Remarkably, the weakest 
component in the mixture, centred at 210 Hz, appears as prominently as the other two 
do. In light of the discussion above, it seems likely that a low local SNR destabilises the 
fine structure of a weaker component and increases its breadth-and hence its visibility, 
whereas a high local SNR exerts little influence over the frequency of a component, so 
that stronger, more reliable components are displayed in greater detail. 

Having verified that the ZCPA implementation based on the DFT maps a test signal 
to an appropriate time-frequency image, we shall now apply it to a recorded sonar 
signal-with some modifications. 

3.3.4 Sonar Signals in the Multi-resolution DFT-ZCPA 

The demand for a uniform, narrowband analysis at low frequencies, combined with the 
appeal of the discrete Fourier transform, led to the abandonment of auditory-motivated 
filter centres and bandwidths, almost as a matter of practical necessity. Nevertheless, 
for a sonar processor, progressively wider analysis bands may still be favourable at 
higher frequencies, for at least two reasons. First, the bandwidth of a tonal is usually 
proportional to its frequency (Burdic, 1984), and Doppler shifts are more pronounced 
at higher frequencies. In both cases, wider analysis bandwidths are required at 
higher frequencies to ensure that modulated harmonics are not over-resolved. Second, 
although the detection of narrowband emissions has been emphasised thus far, a 
comprehensive sonar display should enable the visualisation of transient events and 
rapidly-changing high-frequency components, such as the vocalisations of marine 
mammals. Following these considerations, the multi-resolution DFT-ZCPA is now 
proposed. 

Description 

The multi-resolution DFT ZCPA is simply the concatenated output of several simple 
DFT-ZCPAs blocks, each with its own time-frequency configuration. The edges of 
the DFT and histogram bins of each block are chosen to align at the edges so that the 
resulting ZCPA histogram provides coverage of the full band. Many configurations 
are possible, but in view of the concerns mentioned above, the following guidelines 
are advisable: i) the DFT cells should grow wider with each block (i. e., the DFT 
length must be shortened), ii) the frequency with which the ZCPA is sampled should 
be increased by the same ratio to reflect the increased time resolution, and iii) the ratio 
of histogram bins should be held constant. Figure 3.18 schematically depicts both flow 
diagrams for the ZCPA blocks (in abstract) and a time-frequency tiling of the resulting 
image. 
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Figure 3.18: The multi-resolution ZCPA. The internal configuration of each ZCPA 
block (light grey) is designed to recall a 90° clockwise rotation of Figure 3.16B. 

A final issue regarding implementation relates to the rescaling of DFT coefficients to 

ensure an even response across the DFT-ZCPA (if desired). Because the DFT length 

varies from block to block, the amount of power delivered to the peak amplitude 
extraction block varies. The DFT output can be adjusted to ensure either: i) a flat 

tonal response, i. e., two tonals of equal power register equal height in the ZCPA; or 
ii) a flat white noise response, i. e., the time-averaged ZCPA for white noise input is 

roughly constant and does not contain jumps at the block boundaries. As sonar signals 
contain a large broadband component, the most natural choice is (ii). 

Displaying the Multi-resolution DFT-ZCPA for a Recorded Sonar Signal 

Figure 3.19 demonstrates the multi-resolution DFT-ZCPA for twelve seconds of a sonar 
recording, along with the summary ZCPA and a summary log-magnitude spectrogram. 
The parameter set used to produce the image is summarised in Table 3.6 and adheres 
to the general criteria set out above. The narrowband peaks are compressed using the 
log Ix+ 11 function. 

The tonals are visible in the DFT-ZCPA image as vertical lines, the faintness of which 
appears to result from their width, rather than their intensity. In the summary plot, 
the tonals stand out against the noise floor and their frequencies are located with 
greater precision than in the summary DFT spectrogram shown beneath. (The DFT 
spectrogram image has been omitted. ) 

3.3.5 Statistical Performance Analysis of the DFT-ZCPA 

Throughout this chapter, qualitative, visual assessments such as, "The tonals appear 
ill-defined in the DFT, " or, "The discrete lines are easier to spot against the noise 
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3.3 Timing-based Detection 

MULTI-RESOLUTION DFT-ZCPA 

Block Parameter Value 

1. DFT length 16384 
DFT range 0 Hz - 511 Hz 
DFT resolution 1 Hz 
Histogram resolution 0.25 Hz 

2. DFT length 4096 
DFT range 512 Hz -1024 Hz 

DFT resolution 4 Hz 
Histogram resolution 1 Hz 

3. DFT length 1024 
DFT range 1025 Hz - 2048 Hz 
DFT resolution 16 Hz 
Histogram resolution 4 Hz 

Table 3.6: Multi-resolution DFT ZCPA parameters used to produce Figure 3.19. 

background in the ZCPA, " have served to guide the development of the ZCPA 
towards a realistic sonar application. However, having arrived at the multi-resolution 
DFT ZCPA-a tentative, admissible, timing-based sonar processor-these kinds of 
subjective remark now form an obstacle. 

Many factors affect the visibility of tonals in a time-frequency display, for instance, 
i) the colour map and dynamic compression, ii) the zoom magnitude, iii) the means by 
which the image is viewed, whether on screen, in monochrome print or colour print; 
iv) prior knowledge that tonals are present; v) visual integration (i. e., the ability to 
spot lines and other patterns); vi) the fact that the DFT and ZCPA are often presented 
alongside each other, allowing the unwitting transfer of information; and vii) researcher 
bias'. 

A possible remedy against these factors is a perceptual study of the kind alluded to 
earlier, in which the responses of many viewers to specific questions are collected 
under controlled conditions. This option will not be explored any further in this work. 
For a review of studies concerning the effect of the image presentation and the state 
of the observer on detectability of components on narrowband sonar displays, consult 
Grigorakis (1997) and Dawe (1997). Instead, the analysis of the ZCPA carried out in 
the remaining chapters will proceed along the same lines as the performance analysis 
of a narrowband DFT display and consider the ideal observer test. 

To illustrate this aim, suppose that a single pixel of the DFT ZCPA image in Figure 3.19 
has been isolated from the remainder of the image, and we wish to find a mathematical 
procedure to decide, with as few mistakes as possible, whether its greyscale is most 

1 As Francis Bacon observed, "What a man had rather were true he more readily believes" 
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likely the result of a signal mixed with some noise, or just the noise background on its 

own. To achieve this, we require minimally: i) a statistical description of the pressure 
wave at the hydrophone for each hypothesis, and the prior probability of the hypothesis; 
ii) an understanding of the process by which the greyscale of the ZCPA cell in question 
is derived from the input signal; and finally, iii) a means to infer from the observed 
greyscale which hypothesis is most likely. 

The establishment of a basic framework to choose between signal hypotheses on the 
basis of ZCPA measurements opens up further possible applications, including multiple 
hypothesis testing (e. g., "Is there a 200 Hz signal, a 201 Hz signal or no signal? "), 

multiple-sample hypothesis testing (e. g., "Given the colour of these five ZCPA cells, 
should I say a signal is present? "), and, ultimately the estimation and tracking of signal 
parameters. 

Finally, as the ideal observer test is unbiased, it allows us to compare the performance 
of the DFT and ZCPA in a way that is not contaminated by any of the human factors 
mentioned earlier. The goal of the next two chapters is to investigate whether this can 
be done. 
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3.4 Summary 

In an ocean model governed by the linear wave equation, two small forces act on a 
small volume of seawater at any given instant: inertial forces (due to elemental mass) 
and elastic forces (due to elemental deformation). A vibrating source communicates its 
motion to the surrounding water and causes longitudinal waves to radiate outwardly in 
planar, cylindrical or spherical wavefronts. The geometry of the propagation depends 
on the directivity of the source, the presence of reflective boundaries such as the sea 
floor and sea surface, and refraction effects. 
A passive sonar receiver stationed at a moderate distance from a target detects a portion 
of its radiated acoustic energy and uses the distribution of energy in frequency to 
classify the target. The spectral lines, or tonals, generated by rotating and oscillating 
engine components are particularly salient classification features. The overall acoustic 
signature must be received against a background of noise, arising from surface waves, 
rain, remote shipping, industry, sea life and self noise. 
Power-based sonar detection applies a threshold to the power measured at the receiver. 
A processing chain of spatial and frequency-dependent filters removes all the unwanted 
background noise energy, then statistically independent samples of the squared 
envelope are averaged together to obtain Gaussian statistics. Using the probability 
distribution for the power received under noise-only conditions, the probability of false 
alarm can be determined, then the probability of detection for a particular signal is 
modelled using the broadband and narrowband passive sonar equations. 
In temporal processing, both frequency and power are measured from the signal. This 
chapter has described the development of the discrete Fourier transform with zero 
crossings and peak amplitudes (DFT-ZCPA), as a possible technique for representing 
narrowband sonar signals. The DFT block provides a bank of narrow filters, and 
the ZCPA block uses the fine structure in the zero crossing intervals to generate a 
sharp spectrum. The question of optimal detection in this representation remains open. 
Rather than tackling the issue of signal detection in DFT-ZCPA algorithm wholesale, 
the next chapter examines the principle of detection using one atomic unit of temporal 
information: the zero crossing interval. 
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Chapter 

Elementary Interval 
Detectors 

The preceding chapter presented, in broad terms, the idea of using the iero crossing 
intervals in the output of an auditory filterbank as a means of detecting and tracking 
tonal components. The processing in a single pathway of the zero crossings with peak 
amplitudes algorithm includes a series of linear and non-linear transformations, such 
as zero crossing detection, log compression and histogram formation, making attempts 
to characterise optimal detection in the ZCPA rather ambitious. As an intermediate 

step, this chapter pursues the more modest goal of developing a simple class of interval 
detector and investigating its operation under highly idealised conditions, with a view 
to elaborating upon the basic model in later chapters. 

The detectors described in this chapter must choose exactly one of two hypotheses: 

under the first hypothesis, H. the input to the receiver is due to noise alone; and under 
the second hypothesis, HI, the input to the receiver is a mixture of signal and noise. 
The prior probabilities assigned to HO and H, are equal, and the receiver is a linear 

system with a known impulse response. The squared-envelope detector records a single 
observation of the envelope at the output of the receiver and must choose between HOB 

and If, in a way that minimises the probability of an incorrect decision. The interval 
detectors attempt the same classification using the time interval between two successive 
zero crossings as a test statistic. The quantities that make up the test statistic for the 
(squared) envelope detector and interval detectors are indicated on the diagrams below. 

envelope statistic interval statistic 



Chapter Scope and Outline 

The attention of this chapter is confined in at least five regards, which we shall make 
clear at the outset. First, the zero crossing with peak amplitudes algorithm forms a 
histogram using the output of many filters; here, the focus is restricted to the output 
of a single analysis filter. Second, the ZCPA constructs a histogram from many zero 
crossing intervals of a filter; the interval detectors in this chapter can only operate on a 
single interval. Third, the ZCPA weights the contribution of an interval to the histogram 
using a local estimate of the envelope, whereas the interval detectors presented next 
operate on timing information alone. Fourth, both the noise-only and signal-and-noise 
hypotheses must be governed by stationary Gaussian random processes with known 

parameters. Fifth, while it is customary to evaluate the performance of a detector with 
respect to a fixed probability of false alarm rate, e. g., using ROC curves and transition 
curves, the probability of error is the sole performance metric adopted in this chapter. 

This list of requirements may at first appear to limit the utility of interval detection; 
however, this chapter presents an opportunity to rigorously evaluate prototype detectors 
in noise conditions that are well-understood, before advancing their development any 
further. (Chapter 5 will examine the possibility of relaxing some of these constraints. ) 
In addition, there are a couple of conventions in this chapter that may potentially be 
mistaken for limitations of the detection routines themselves. First, the assumption of 
a white noise background is merely expedient; the detectors may be readily extended to 
accommodate coloured noise backgrounds on the basis of the material presented in this 
chapter alone. Second, the assumption of binary detection is particular to our concern, 
but the detectors can be configured to select one of several hypotheses and even, in that 
capacity, employed as estimators. (See Section 6.3.1 below. ) 

Chapter 4 Outline 

Detection Experiments (4.1) 

Squared-Envelope Detector (4.2) Overview 

Sampled Interval Detector (4.3) Probability Density Functions 

Continuous Interval Detector (4.4) Setting up the Experiments 

Interpolated Interval Detector (4.5) Experimental Results and Analysis 

Summary (4.6) 

The outline of this chapter is as follows. The first section introduces the detection 
experiments that are to be carried out in general terms. Four detectors are then 
constructed and evaluated in turn: the squared-envelope detector, which serves as a 
baseline; and three interval detectors, which differ chiefly in the manner by which they 
extract, and model the probability associated with, a zero crossing interval. 

107 



4.1 Detection Experiments 

4.1 Detection Experiments 

4.1.1 Analysis Filter and Noise Process 

The detection tasks reported in this chapter adhere to the same basic format. Each 
assumes that the signal (if present) and background noise form an additive mixture, 
which has been received via a linear analysis filter prior to detection. The impulse 
response of the analysis filter is a Gaussian-windowed sinusoid, 

ha[n] = exp -2 \(a°T/f9)2 cos(21rfa, n/f, ), (4.1) 
a 

parameterised by f9, Ta,, as and fn. The first parameter, f, is the sample rate, which 
is a constant 16384 Hz and may be assumed to represent this value wherever it appears 
in this chapter'. Ta, controls the overall length of the impulse response; specifically, the 
window is near zero for Inj > fsTa,. The tapering of the window is tuned separately 
by the caa parameter, a suitable choice being a,,, = 2.5. Finally, fa is the frequency 
of the fine structure, in Hertz. From the frequency domain perspective, To, controls the 
bandwidth of the filter, aa. regulates the side lobes and fa selects a centre frequency. 

yev a [s] 12. Figure 4.1A provides The squared-magnitude response of the filter is denoted J 
an example of an impulse response generated using (4.1); Figure 4.1B plots the 
corresponding squared-magnitude response. 

We assume in the first instance that the noise background against which the signal must 
be detected is white. If the noise variance (or, equivalently, total power) is denoted Qn, 
the power spectral density of the noise-only random process is given by the product of 
the noise p. s. d. with the squared-magnitude response of the analysis filter, i. e., 

-90131 =P ealslI201" (4.2) 

The noise power in a1 Hz band at both positive and negative frequencies, designated 
No, is found by dividing the total noise power by the baseband width and multiplying 
by two, i. e., No = 2Q2 

n/f,. A flow diagram depicting the synthesis of the noise process 
is shown in Figure 4.2A. The random processes at the input and output of the analysis 
filter are denoted G and X, respectively. 

4.1.2 Signal Process 

The target signal is a random process formed by convolving white Gaussian noise with 
another Gaussian-windowed sinusoid, associated with what we hereafter refer to as the 
signal filter, 

he[n] = A, exp -2 
(a'T/fs)2 

cos(27rfýn/f9). (4.3) 

1Most of the recorded signals provided by QinetiQ were sampled at a rate of 16384 Hz, and, as a power 
of two, it was a convenient value to continue using. 
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A. Impulse Response 
1 
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Figure 4.1: A) impulse response and B) squared-magnitude response of the analysis 
filter described by (4.1) with parameters f,,, = 200, Ta = is and as = 2.5. 

A. Noise only 
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G EVWIGN 

vn = f8No/2 ha 

B. Signal and Noise 
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2 as ha 

Figure 4.2: Demonstrates how the signals for Ho and Hl are generated. The WGN block 
generates white Gaussian noise with variance controlled by its lower input. The output 
in each case is a random process denoted G, which forms the input to the detector block 
diagrams shown in subsequent figures. 
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4.1 Detection Experiments 

(A random process generated by convolving white Gaussian samples with an impulse 
response is referred to by time series analysts as an auto-regressive moving average 
model. ) As before, T3 and as respectively control the duration and sharpness of the 
impulse response. The subscripts on T and a clarify to which signal model they belong 
('a' and `s' denote `analysis' and `signal', respectively) with one exception: f9 cannot 
refer to the signal frequency because it is reserved for the sample rate; instead f, is 
adopted, with `c' denoting `centre'. The constant A9 normalises the impulse response 
so that 

Y'h2[n] 
= 1. (4.4) 

Vn 

This simplifying measure ensures that the total power of the signal process is equal 
to the variance of the white noise process convolved with the signal filter, Qs. A flow 
diagram illustrating the stages undertaken to synthesise a signal-and-noise mixture is 
provided in Figure 4.2B. A narrow notch of noise will serve as a sinusoid-like process 
that satisfies stationary Gaussian assumptions, until the derivation of the interval 
distribution for a pure sinusoid is tackled in Chapter 5. 

4.1.3 Signal-to-Noise Ratio 

The signal-to-noise ratio (SNR) measures the relative contribution of signal and noise 
to an additive mixture in terms of their power. Various definitions of signal-to-noise 
ratio exist, but the usage is typically applied in one of two senses, depending on the 
application. In the first usage, signal-to-noise ratio is a quantity that measures how 
difficult it is to detect a signal in a specific noise background. This is generally the 
case in automatic speech recognition studies, where we are interested to inquire of 
a system's performance given a particular SNR. In the second usage, signal-to-noise 
ratio refers to a system's ability to reject noise and therefore indicates the quality of the 
receiver. In engineering a radio receiver, for example, one might speak of "adjusting the 
parameters of the receiver in order to maximise SNR". It is helpful to define explicitly 
what is meant by SNR in this chapter before moving on. 

Global SNR 

A pre-analysis SNR measures the relative contribution of signal and noise to the random 
process G. (See Figure 4.2. ) One possible choice of pre-analysis SNR is the global 
signal-to-noise ratio, which is defined here as the decibel ratio of total signal power to 
total noise power in a mixture prior to analysis, i. e., 

a 
SNR9 = 10 log10 2, dB. (4.5) 

n 

The global SNR is an appropriate expression of the signal-to-noise ratio for broadband 
detection and speech recognition studies. This definition also identifies the power of 
a sampled signal with the variance of its samples, and hence avoids several potential 
conflicts in language and mathematical notation. 
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Narrowband SNR 

The global signal-to-noise ratio is not a suitable quantity for measuring how difficult it 
is to detect a narrowband signal, as it provides no insight into the true signal and noise 
conditions, when removed from the context of a particular sample rate or baseband 
width. For example, doubling the sample rate causes a3 dB drop in the global SNR, 
although the difficulty in detecting the signal is unchanged. Accordingly, the definition 
of signal-to-noise ratio adopted in this chapter measures the ratio of the total signal 
power to the noise power in a1 Hz bandwidth: 

2 
SNR = 10loglo dB (4.6) 

No 
(; ztý SNRg + 39.13 dB, if fs = 16384. ) 

The quantity No is defined in Section 4.1.1 above. The narrowband SNR is completely 
invariant with respect to both the choice of sample rate and the analysis filter. Wherever 
the term SNR appears without any qualification, the pre-analysis, narrowband usage is 
intended. 

Post-analysis SNR 

The post-analysis SNR refers to the signal-to-noise ratio in the random process X, and 
it accounts for the effect of the analysis filter upon the mixture. The post-analysis 
SNR is frequently defined as either i) the ratio of resolved signal power to resolved 
noise power (Peebles, 1993), or alternatively, ii) the ratio of resolved signal power to 
resolved noise power in a1 Hz band (Dawe, 1997). The post-analysis signal-to-noise 
ratio is conventionally employed in the sonar literature. A pre-analysis (narrowband) 
SNR is the most suitable for this study, however, as this study investigates methods of 
detection that are not based on power. Nevertheless, it will occasionally be appropriate 
to refer to the post-analysis SNR when commenting on experimental results. 

4.1.4 Experimental Procedure 

The detectors described in the remainder of this chapter are to be evaluated in the same 
task: the detection of a narrowband signal process against a white noise background. 
In each experiment, two signals are synthesised and form the input to a detector. The 
first signal is a sample function of the noise-only process, so each decision of the 
detector corresponds to either a true negative or false positive. The second signal is 
a sample function of the signal-and-noise process, and the detector generates either 
true positives or false negatives. The empirical probability of error is calculated from 
the true positive, true negative, false positive and false negative counts, and recorded 
against the set of experimental parameters. 

The aim of these experiments is to establish the effect of the independent variables- 
signal-to-noise ratio, signal frequency and band frequency-upon the probability of 
error. When a parameter is held constant, it is assigned the value in Table 4.1. To 
maintain a uniform prior distribution, an equal number of test statistics is extracted for 
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A. Experimental Procedure 

SNR -f 
fl: EXPERIMENT P(error) 

f. 

B. C. D. 

Figure 4.3: A) independent and dependent variables of the experiment; B) detection of 

a signal at a high and low SNR (left and right); C) detection of a signal moved away 
from the band centre; D) detection at high frequencies. 

Ho and H1, and every detector is memoryless, so its performance does not depend 

upon the order in which the measurements are supplied. 

4.1.5 Research Questions 

How does the detector's performance vary with SNR? It is necessary to note how the 
detector performs when the noise level is changed. This will determine whether the 
detector is better-suited to low or high signal-to-noise ratio applications. In these 
experiments, fa and f, are fixed at the same value, 200 Hz, and the SNR is varied 
between 0 and 40 dB. This is shown pictorially in Figure 4.3B. 

What is the effect of displacing the signal from the band centre? This question is 

motivated by the apparent importance of 'synchrony capture' in auditory models. It 

will be addressed: i) by repeating the SNR experiment described above, with the signal 
displaced from the band centre by 10 Hz and 20 Hz, and ii) by holding the SNR fixed at 
20 dB and varying the signal frequency across the analysis bandwidth. See Figure 4.3C. 

Does the detection performance relate to the absolute frequency of the signal? The 

relative error introduced into envelope measurements by round-off error in the CPU is 
likely to be several orders of magnitude smaller than the relative error introduced into 
interval measurements by time-domain sampling. The effect of changes in the absolute 
signal frequency upon error will be investigated by repeating the on-centre detection 
task for a variety of signal and band centre frequencies across the range 200-1000 Hz. 
This idea is conveyed in Figure 4.3D. 

Is it possible to predict the performance of the detector? There are at least two clear 
reasons to pursue this question. First of all, if the analytical results agree with those 
obtained by random trials, it validates the theoretical foundations on which the detector 
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Parameter 

EXPERIMENTAL PARAMETERS 

Description Units Value 

Constant 
f8 sample rate Hz 16384 

2Ta analysis filter impulse response length seconds Ta = 1/16 

aa analysis filter window tuning parameter - 2.5 

2T8 signal filter impulse response length seconds T9 =1 
a9 signal filter window tuning parameter - 2.5 

Variable 
fa analysis band centre frequency Hz 200 
fr signal centre frequency Hz 200 
SNR signal-to-noise ratio (cf. §4.1.3) dB 20 

Table 4.1: A list of experimental parameters. 

was constructed; or, to state the reverse, if the detector performs better or worse than the 
theoretical work predicts, then errors in either the theory or the experimental procedure 
will be exposed at an early stage. Second, if it proves possible to predict the behaviour 
of the detector reliably, then additional, fine-grained results can be obtained without 
having recourse to random trials, which yield only approximate results and take a long 
time to complete. 

How do the results of the different detectors compare? One of the ultimate goals of 
this chapter is to compare the performance of interval-based detectors with that of 
a conventional power-based detector, with a view to improving on the latter. It is 
therefore necessary, in addressing this question, to identify the conditions under which 
the detector fails, to trace the cause of the failure and then, if possible, to design a better 
detector. 
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4.2 Squared Envelope Detector 

G 

ha 

Figure 4.4: Flow diagram for the squared-envelope detector. (The lower branch depicts 
the quadrature-phase signal as the convolution of the real input process, G, with the 
Hilbert transform (Whalen, 1971, Chapter 3) of the analysis filter impulse response, 
denoted ha. ) 

4.2 Squared Envelope Detector 

4.2.1 Overview 

A squared-envelope detector samples the signal envelope, squares it, and performs a 
hypothesis test to decide whether a signal is present in the noise. This type of detector 
provides an ideal baseline against which to compare the performance of the interval 
receivers presented in later sections. The essential narrowband passive sonar comprises 
a squared-magnitude DFT with an adjustable threshold, which is simply a bank of 
squared-envelope detectors operating within narrowband channels. Accordingly, the 
conclusions we draw about narrowband envelope detection below apply equally well 
to DFT detection at an equivalent resolution. 
The test statistic is computed by filtering the received signal through the analysis filter 
and measuring a single sample of the squared-envelope, as illustrated by the flow 
diagram in Figure 4.4. The envelope is governed by a random variable, E; we denote an 
observation using e. Assuming uniform prior probabilities, that is, that the probability 
of the target signal's presence is equal to that of its absence, the decision rule satisfying 
the minimum error criterion is 

choose Hl iff PE(e I Hl) 
> 1, otherwise choose Ho. (4.7) 

pE(e I Ho) 

In summary, the test statistic, e, is first computed by squaring and adding the in-phase 
and quadrature components of the narrowband filter output, and then supplied to the 
likelihood test in (4.7). This is shown schematically in Figure 4.4. The next step is to 
obtain the conditional probability density functions, pE(e I Hj), which make up the 
likelihood ratio. 
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4.2 Squared Envelope Detector 

4.2.2 Probability Density Functions 

It is well known that the probability density function governing the squared-envelope 
of a zero mean, wide-sense stationary Gaussian process is that of the exponential 
distribution (Whalen, 1971). This p. d. f. has the form 

PE(e; Q2) = Zag exp 
(-e)' 

(4.8) 
20,2 

in which the process variance, v. 2, is the only parameter. Let the variance of the random 
process X conditioned on Hj be denoted o. The likelihood ratio simplifies to the 
expression 

2 
A(e) 

ai 
exp 

(e2 

Lö0. i 1/ 
(4.9) 

Once the process variances have been determined, the likelihood ratio (4.9) is fully 
parameterised, and the detection process can begin. The random processes under 
consideration in this section are wide-sense stationary, so their variances are equivalent 
to the autocovariance functions evaluated at zero, i. e., 

aj- E{X2 1Hj1-y [0]. 

The -yj [0] can be found by application of the rules for determining the autocovariance 
functions and squared-magnitude responses for systems of linear filters combined in 
series or in parallel (Whalen, 1971). 

4.2.3 Setting up the Experiments 

To predict the performance of the squared-envelope detector, we must determine the 
decision regions and then appropriately integrate the conditional probability density 
functions in those regions to find the probability of false alarm and false dismissal. 
The performance metric adopted in this chapter is the average of these latter quantities: 
the probability of error. The decision region Ro we define as the set of all envelope 
measurements which lead the detector to choose Ho, i. e., to decide that only noise has 
been received, 

1o={eER: A(e)<1, e>0}; (4.10) 

similarly, we define IZl as the set containing all the values for the envelope for which 
the detector chooses H1, 

Ri={eER: A(e)>1, e>0}. (4.11) 

From (4.10), we can specify I ZO for the squared-envelope detector, as any real value e 
satisfying the following inequalities 

0,2 r 
exp 12Löi 

J/ 
< 1, (4.12) 

\e>0, 
(4.13) 
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4.2 Squared Envelope Detector 

which, together, can be re-arranged into 

0e<21no -21no0 
loo - 1/Qi 

(4.14) 

This indicates a single decision boundary at e=E. All the remaining possible values 
of the envelope, namely those which satisify e>e, constitute the decision region R1. 
Consequently, the probabilities of false alarm and false dismissal evaluate to 

00 
P(DI 1 Ho) 24 

f 
PE(e 1 Ho)de = exp 

-2Q 2) 
(4.15) 

P(Do 1 Hi) 
fE 

pE(e 1 H1)de =1- exp 
()' 

(4.16) 

respectively. Under the assumption of uniform priors, the probability of error is given 
by the average of (4.15) and (4.16), and is a function of Qö and o alone. 

4.2.4 Experimental Results and Analysis 

How does the detector's performance vary with SNR? The top three plots in Figure 4.5 
show that the probability of error decreases monotonically as the signal-to-noise ratio 
increases, regardless of whether the signal is placed at the band centre (left-hand plot) 
or the band-edge (right-hand plot). 

What is the effect of displacing the signal from the band centre? As the magnitude 
response of the analysis filter is bell-shaped, shifting the frequency of the signal further 
away from the centre of the analysis band attenuates the signal but passes the same 
noise power. The squared-envelope detector relies exclusively on power, so displacing 
the signal from the band centre lowers the post-analysis SNR and causes the probability 
of error to rise. This is revealed implicitly in the top three plots of Figure 4.5, 
where the probability of error is larger for greater displacements; and explicitly in the 
bottom right-hand plot of Figure 4.5, which plots the probability of error against signal 
frequency (fe). Recall that in each case, the detector has been calibrated to account for 
the change in frequency; in other words, these results are optimal, given full knowledge 
of the signal and noise conditions. 
Does the detection performance relate to the absolute frequency of the signal? No. The 
detection performance of the squared-envelope detector is only negligibly affected by 
a wholesale shift in frequency, provided that the analysis band and signal coincide and 
are shifted in frequency the same amount. This is confirmed in the bottom right-hand 
panel of Figure 4.5, which plots a constant probability of error with respect to band and 
signal frequency. 

Is it possible to predict the performance of the detector? Yes. The performance of the 
quadrature detector is well-documented (Dawe, 1997; Burdic, 1984; Whalen, 1971) 
and straight-forwardly predicted from the exponential probability density functions 
described in Section 4.2.3. In all five graphs of Figure 4.5, the analytical predictions, 
plotted as solid lines, provide a close match to the empirical measurements, which are 
superimposed as markers. 
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Figure 4.5: Probability of error in the squared-envelope detector: predicted values for 
squared-envelope detector (solid line); observed values for squared-envelope detector 
(solid circles "). 
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4.3 Sampled Interval Detector 

4.3 Sampled Interval Detector 

4.3.1 Overview 

Having established the squared-envelope detector as a baseline, we now turn to the first 

of the three interval detectors discussed in this chapter: the sampled interval detector 
(SID). The sampled interval detector extracts an interval test statistic, designated i, by 
differencing two consecutive zero crossing sample times in the output of a narrowband 
filter. This test statistic is then submitted to the minimum-error decision rule 

choose Hl if ßr[2 1 Hl] 
> 1, otherwise choose Ho. (4.17) 

pr [z I Ho] 

Construction of the sampled interval detector falls into two stages: formalising how a 
zero crossing interval is extracted and deriving the probability density functions that 
appear in the likelihood ratio. Once these tasks are complete, we shall be ready to 
compare the performance of the sampled interval detector against that of the squared 
envelope detector from the previous section. 

The Interval Statistic 

A zero crossing interval statistic is obtained whenever a zero crossing detector fires, 

so detection decisions coincide with the zero crossing times. (Contrast this with the 
squared-envelope detector, for which a test statistic is available at every sample. ) The 
interval is computed by differencing the current sample time with that of the previous 
zero crossing, which is held in a buffer. Figure 4.6 provides a block diagram for the 
sampled interval detector. A useful block to define is the `hold block', shown in 4.6A, 
which serves as a simple memory in all three interval detectors. If the input on IN1 
is zero, then the hold unit retains the currently stored value. When IN1 is non-zero, 
then the switch inside is `up', and the memory is updated with the input on INO. The 
sampled interval detector combines ZC and hold blocks to compute the zero crossing 
interval shown in 4.6B. 

A block diagram is not the only interpretation of a zero crossing interval statistic. 
Further clarification is provided by a some examples of binary waveforms such as those 
shown below. 

. ý. . r"ý. . r'+ti. 
i=1 i=2 i=3 

The question of how the value of the test statistic i relates to the number of samples in 
the waveform has an intuitive answer. Because the zero crossings are sampled, in the 
absence of additional information, it is natural to place the zero crossing time halfway 
between the samples; differencing these times then gives rise to the interval statistics 
shown. Note that i is always an integer greater than or equal to one. 
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A. INO hold 
OUTO 

x 

I 

B. + 

sample time ri hold -}- 

G ZC Decision 

no signal 

ha 

Figure 4.6: A. Hold block for buffering a value; B. block diagram for the sampled 
interval detector. 

4.3.2 Probability Density Functions 

The zero crossing interval i is derived from the samples of a random process and hence 
is governed itself by a random variable, labelled I. In this section, we determine the 
probability density for I given a particular hypothesis, pj [i I H3 ], as a key step towards 
completing the decision rule in (4.17), or, equivalently, appreciating the inner working 
of the `decision' block in Figure 4.6. The method employed to do this continues in the 
tradition of Kedem (1986), following Rice (1944), in determining the probability of a 
pattern of zero crossings by integrating the p. d. f. s governing the samples of an evolving 
process. 

Interval Probability in a Wide-sense Stationary Process 

Let us assume that the output of the analysis filter, x[n], is a zero mean, wide-sense 
stationary random process and predict the probability of a pattern of sign changes given 
by 

P(xn < 0, xn_1 > 0) xn-k-1 < 0). (4.18) 

This pattern corresponds to observing a zero crossing from positive to negative at 
sample time n, as well as a negative sample k+ 1 samples earlier. Given that the process 
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A. C/ 

n-ko n n-2ko n n-2ko n 

Figure 4.7: A) constrain the shortest possible interval to be ko samples; B) multiple 
crossings can only be obtained beyond 2ko; C) constrain the longest possible interval 
to be 2ko samples. 

is wide-sense stationary, we can assume that the probability of observing this pattern 
(4.18) is the same, regardless of n. This random event is illustrated in the sketch below: 
samples of known sign are shown as filled circles; unknown samples are open circles. 

n-1 

n-k-1 n 

If such a pattern is observed, then evidently at least one zero crossing must have 
occurred between n-1 and n-k-1 to effect the change of sign. More specifically, 
we can infer that there are an odd number of crossings in the unknown samples. 
Because the number of sign changes is unknown, the evidence from just three samples 
is ambiguous. We are not in a position to assign the probability to one long interval, as 
these samples could also indicate many short intervals. 

To remedy this, we impose a constraint upon the random variable, 

ko < I, (4.19) 

effectively stating that intervals shorter than or equal to ko are impossible. With (4.19) 
in place, it is certain for all k< 2ko that at most one zero crossing is present. The 
reasoning behind this is as follows: taking the shortest interval possible and placing 
two or more in sequence always extends to a point equal to or beyond 2ko, as shown in 
Figure 4.7B. 

Now we can write: 

P(13 < k) = 

2P(xn < O, xn-1 % O, xn-k-1 < 0) 0< k< 2k0 

0 
not determined 

k<0 (4.20) 
k> 2ko. 

where P(I8 < k) denotes the probability of an interval not exceeding length k on any 
given sample, and the probability mass is doubled to account for the same interval with 
the zero crossings in the opposite direction. 
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The probability that an interval longer than 2ko samples is observed remains difficult 

to determine, because it could still contain multiple crossings. A direct solution to this 

problem is to add an additional constraint, placing an upper limit on interval duration, 
i. e., 

ko <I< 2ko. (4.21) 

Let us take a moment to reflect on these constraints. First, observing an interval shorter 
than ko at any given sample is impossible. Second, because all intervals must be shorter 
than 2ko, it follows that the probability of observing an interval shorter than 2ko on a 
given sample is the same as the probability of observing any interval, which, in turn, is 
as probable as a zero crossing. Putting this together, 

P(I8 < k) = 

2P(xn < 0, x,, _1 
> O, xn, _k_1 < O) k0 <k< 2k0 

0 
P(I9 < 2ko) = P(C) 

k< ko (4.22) 
k> 2ko. 

(4.22) expresses the probability that: a zero crossing occurs on a given sample, and 
a second zero crossing occurs at most k samples earlier. The final step is to find the 
probability that an interval has a certain length, given that an interval has been received. 
Interval events coincide with zero crossings events, so 

P(C)P(I < k) - P(I9 < k). (4.23) 

Hence, the cumulative distribution function for I is shown to be 

2P(xn < 0, xn-1 >_ 0, xn-k-1 < 0) 
k0 <k< 2k0 

P(I < k) =0 
P(C) 

k< ko (4.24) 

1k> 2ko. 

Interval Probability in a Gaussian Process 

By placing suitable constraints on the duration of intervals, we obtained a cumulative 
distribution function for a general wide-sense stationary process. In order to determine 
the distribution of zero crossing intervals for a Gaussian process in particular, we must 
replace in (4.24) the quantities P(C) and 

2P(xn < 0, xn-1 ? 0, xn-k-1 < 0) (4.25) 

with expressions specific to joint Gaussian density functions. It has already been 
stated in (1.12) that, for a wide-sense stationary, zero mean Gaussian process with 
autocorrelation function p[k], 

P(C) =2-- sin-1 p[1]. (4.26) 

All that remains, then, is to evaluate (4.25). A useful procedure adopted by Kedem 
(1986) defines an indicator function for a sample 

1 x� >0 
do = 

xn, <o 
(4.27) 
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so that the probability P(x, ti > 0) can be written as an expectation of the indicator 
function, i. e., E{d,,, }. Using this notation, we can specify (4.25) as 

2P(xn < 0, x�-1 ý 0, xn-k-1 < 0) 

= P(xn < 0, xn-1 >_ 0, Xn-k-1 < 0) 

+ P(xi, > 0, xn-1 < 0, xn-k-1 ? 0) (4.28) 

= E{(1 - dn)dn_1(1 - dn, 
_k_1)} + E{dn(1 - dn_1)dn-k-1} (4.29) 

= E{dam, } - E{d�dn_i} - E{ddn_k} + E{dndn_k_1}. (4.30) 

Notice that all the terms in (4.30) express two-dimensional orthant probabilities, 
with the exception of the first, which evaluates to 2. Replacing each of the orthant 
probabilities with an appropriate expression of the form 

14+1 
sin-1 p['] 

(Kedem, 1980), gives 

2P(xn < O, xn-1 ý 01 xn-k-1 < 0) 

2- 
L4 

+ 
27r sin-1 p[1]1 

sin-1 p[k]1 + 14 +1 sin-1 p[k+1]1 (4.31) L4 +1 77r 27r 

11 
=4+2 (sin-' p[k+1] - sin-1 p[l] - sin-1 p[k]) . 

(4.32) 

Finally, placing (4.26) and (4.30) into (4.24) and cancelling terms results in an 
expression for the cumulative distribution function of the intervals for a Gaussian 
random process, exclusively in terms of its autocorrelation function: 

2+ sin-1 p[k2 
s] 

sin-' p[k] k<k< 2ko 
P(I < k) _ 

-' p[i] 
0 k<ko 
1k> 2ko. 

The probability density function for I is obtained by differencing (4.33) 

PI[i] = P(I < i) - P(1 < i), 

to give 

pr [2] = 

sin-1 p[i+1] -2 sin-1 p[i] + sin-1 p[i-1] ko <i< 2k0 
it -2 sin-1 p[1] 

0 otherwise. 

(4.33) 

(4.34) 

(4.35) 

We are now in a position to compute the autocorrelation function for a wide-sense 
stationary (Gaussian) process, using the techniques described at the beginning of this 
chapter, and, by applying (4.35), to find the probability density function governing the 
intervals. 
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A. Impulse Response 
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Figure 4.8: Stages in computing the interval probability density function. A) System 
impulse response; B) squared-magnitude response (dB attenuation with respect to the 
peak); C) autocorrelation function; D) analytical (solid line) and empirical (solid circle) 
c. d. f.; E) analytical (solid line) and empirical (solid circle) p. d. f.. 

Comparing the Analytical and Empirical Distributions 

The analytical probability density function for I is first determined by combining the 
steps described earlier and then compared to a histogram formed by random trials. The 
comparisons that follow are not intended to validate the preceding working formally, 
but rather to provide a collection of examples as a visual aid. 

The procedure involves convolving white Gaussian noise with a linear filter and 
comparing the analytical and empirical distribution and density functions. Our earlier 
working demands that the intervals be confined to the range ko <I< 2ko for some 
ko, according to (4.21). For now we shall rely on the intuition that narrow band-pass 
filtered noise centered at fo, Hz generates intervals in a correspondingly narrow range 
surrounding 

mean interval 21 
Q 

seconds. (4.36) 

B. Magnitude Response 
0 
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Frequency (Hz) 
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4.3 Sampled Interval Detector 

A straight-forward method of constructing the impulse response for a finite impulse 
response (FIR) filter is to apply a tapered window, w[n], to a sinusoid at the filter centre 
frequency. The window length and bandwidth are inversely related, and the choice of 
window dictates the filter shape in the frequency domain. This gives rise to an impulse 
response whose general form is 

ha, [n] = w[n] sin(2ir fo, n/ f, ). (4.37) 

The following example employs f,, = 90 Hz as the centre frequency, f, = 16384 Hz 
as the sample rate, and the Hann window (Oppenheim and Schafer, 1989) as WH [n], 
defined by 

0.5[1-cos(N-1)] 
27m 

O<n<N-1 
WH [n] _'-- (4.38) 

0 otherwise. 

where N= 2048 samples. The impulse response (4.38) is plotted in Figure 4.8A. The 
squared magnitude response of the filter is computed from its impulse response (using 
2N samples to avoid aliasing), i. e., 

2N-1 2 

a[s1l2 = ha[nje-is7rn/N ,0<s< 2N-1 (4.39) 
n=0 

and is plotted in Figure 4.8B on a logarithmic scale. If the white noise input to the filter 
has power v-2, then it follows that the power spectral density of the output process, here 
designated X, is 

SAX [s} = QZ I A'.. [s] 12 (4.40) 

from which, via the Wiener-Khinchin relations (Shanmugan and Breipohl, 1988), are 
obtained the autocovariance and autocorrelation functions: 

and 

2N-1 
Ey 

x[S]eiisirk/N I)CI <N 
'Yx [k] = 2N 

8=0 
(4.41) 

0 otherwise 

Px [k] _ 
'Yx [k] 

(4.42) 
7x [0] 

respectively. The autocorrelation function px [k] is shown in Figure 4.8C for positive 
values of k. As a final step, the interval cumulative distribution function and interval 
probability density function are found by placing px[k] into (4.33) and (4.35), the 
results of which are plotted in Figures 4.8D and 4.8E as solid lines. 

The empirical distribution function is simply generated by passing white Gaussian 
noise through the linear filter with the impulse response ha, [n], recording the zero 
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crossing intervals in the output, and using the estimate 

P(I < k) = 
number of intervals less than or equal to k 

N 
(4.43) 

where P(") denotes an estimated probability and N is the number intervals measured 
(Shanmugan and Breipohl, 1988). Intervals whose separation in time is shorter than 
the length of the impulse response are statistically dependent; however, the estimated 
distribution converges upon the true population distribution when N is sufficiently 
large. 

Similarly, the probability density function may be estimated from the data itself 

number of intervals equal to i 
pr ý2ý =N (4.44) 

or found by differencing the empirical cumulative distribution. Figures 4.8D and 4.8E 
plot the empirical cumulative distribution and probability density function obtained 
from 200,000 measurements using solid circles. 
The analytical and empirical distributions align closely at all points except the tail of 
the distribution corresponding to long intervals. The departure is most clearly evident 
in the cumulative distribution function for intervals around 120-130 samples, in which 
the analytical function appears to form a plateau prematurely at approximately 0.96, 
whilst the empirical version approaches one. Aside from this discrepancy, the cause 
of which will be examined in the next section, the predicted and observed density 
functions appear to be a close match. To provide a broader perspective, the analytical 
and empirical interval p. d. f. s were obtained by the same procedure for a variety of 
linear systems with a narrow band-pass frequency response. The results included 
in Figure 4.9 indicate that the proposed method for obtaining the analytical density 
function applies to other filter shapes, centre frequencies and bandwidths. 

4.3.3 Interval Aliasing 

In the previous section, we arrived at the cumulative distribution function for the 
intervals for a Gaussian process by two distinct approaches. The first was an analytical 
solution obtained from the autocorrelation function of the process; the second was 
an empirical solution found by synthesising the Gaussian process and measuring its 
intervals. In some cases, the distribution functions were noticed to differ slightly in 
the tail, an artifact which is most evident in Figure 4.8D. In the following section, we 
investigate cause of this discrepancy. 

Recall that, when deriving the probability of an interval, we considered the probability 
that a zero crossing is preceded by a sign change k-1 samples earlier. This sign 
change is sufficient to indicate that an interval shorter than, or equal to k samples has 
occurred; indeed, at first, it might appear that we have found the cumulative distribution 
function for 1. Such an analysis would be mistaken, however. The sign change could 
signal the presence of many intervals, not one-and we have no information about the 
intermediate samples by which to judge. 
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Figure 4.9: Interval probability density functions for various band-pass filter shapes. 
The log-magnitude responses for each filter, normalised so that peak response has unit 
gain, are plotted on the left. The interval p. d. f. associated with each filter is shown 
on the right: the solid line shows the analytical p. d. f., and the solid markers plot the 
histogram. All the window functions are provided by the MATLAB signal processing 
toolbox, with the exception of the gammatone filter, whose impulse response is 
ha, [n] = n4e-n/70 sin(2ir fan/fe). 
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A. No Aliasing on First Interval 

(i) waveform 

B. First Interval Aliased 

(i) waveform 

t=0 t_ý 

(ii) P(negative I crossing) (ii) P(negative I crossing) 

............... 

Figure 4.10: Ambiguity in zero crossings. A) the third interval is aliased; B) the first 
interval is aliased. Top plots: white regions are guaranteed to be zero crossing-free, 
grey regions indicate where a zero crossing might fall, and overlapping regions are 
highlighted in darker shades. Bottom plots: the probability of a negative sample waxes 
and wanes according to the zero crossing regions. 

Let us take the example k=5; that is, at a particular sample, a zero crossing has been 
observed and the reversal of sign occurs six samples earlier. There are five ways to 
interpret the samples which yield a single interval (i. e., iE {1,2,3,4,5}). These are 
sketched below. 

There are also eleven alternative interpretations which include multiple intervals. 

To prevent the multiple interval ambiguity from arising, we introduce constraints, 
limiting the intervals to the range k0 <I< 2ko, for some k0. In regard to the example 
above, by enforcing 3<I<6, no sample functions in the second collection can ever 
emerge. The signal will contain only the intervals iE {4,5} and their probability can 
be determined unambiguously using the 'three-sample' approach. 
It is useful to consider the waveforms (or, more properly, sample functions) that are 
typical of a band-pass random process, in order to gain an insight into whether the 
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three-sample approach will be successful. In a band-pass random process, samples 
that are closer in time exhibit strong statistical dependency; or, stated another way, a 
linear filter has the effect of correlating samples on a local time scale. If a zero crossing 
occurs in a narrowband process at time t=0, and we assume with no loss of generality 
that the zero crossing is from negative to positive, then we can plot the probability that 
a particular sample later on is negative using the trivariate orthant probability. 

If the envelope of the autocorrelation function decays slowly, then the next zero 
crossing is (probabilistically) restricted to a small region, which Figure 4.10A(i) 
highlights as a thin grey patch. Correspondingly, Figure 4.10A(ii) shows how the 
probability of observing a negative sample increases sharply from zero to one in this 
region. At times further removed from t=0, the dependency of the zero crossing 
times on the initial crossing grows progressively weaker, until eventually a crucial point 
is reached at which the function P(x, < 0) no longer consists of sharp transitions 
between zero and one, but takes the form a decaying, oscillatory function. Figures B(i) 
and B(ii) illustrate a more severe form of this effect, in which the first zero crossing 
may be mistaken for the second. 

With these principles in mind, one can observe the detrimental effect of zero crossing 
ambiguity upon the analytical and empirical interval c. d. f. and p. d. f. of a synthesised 
random process, as shown in Figure 4.11. The impulse response used to generate 
plots A-D is a Gaussian-windowed sinusoid with frequency 90 Hz and duration 
1/8 seconds. The spectral bandwidth is sufficiently narrow that almost all ambiguity 
in zero crossings is suppressed. The analytical cumulative distribution function (C) 
is well-formed within the distribution's support, 60-120 samples, and matches the 
empirically-derived version (A). 

For illustrative purposes, the region beyond i= 120 is included in the plot, at which 
point the function oscillates around 2 as anticipated. These oscillations correspond to 
probabilistic changes in the sign of the waveform beyond the first crossing. Informally, 
the function relates `probably positive', `probably negative', and so forth. When i 
exceeds the length of the impulse response, the probabilities of a positive and negative 
sample are both 2. In the function's derivative (D), the oscillations appear as alternating 
positive and negative peaks. The first peak is the probability density function. 

The impulse response used to generate plots E-H is a Gaussian-windowed sinusoid 
with frequency 90 Hz and duration 1/16 seconds. In this case, the spectral bandwidth 
is doubled so that the process contains significant energy outside the octave band, 
resulting in the kind of zero crossing ambiguity discussed earlier. Figure 4.11G shows 
that the c. d. f. fails to reach one and decreases prematurely. The derivative of the c. d. f. 
(H) is once again an oscillating function of i; under this condition, however, the peaks 
are somewhat broader. Consequently, the first negative peak merges with the first 
positive peak, so that the tail of the probability density function is negative, reflecting 
the change of slope in the cumulative distribution function. 

It seems appropriate to name this undesirable effect interval aliasing, as it recalls the 
overlap seen in frequency domain aliasing when components with frequencies higher 
than the Nyquist frequency are manifested at lower frequencies. In the present context, 
aliasing refers to the probability associated with the next sign change being accounted 
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Figure 4.11: Interval cumulative distribution and probability density functions for two 
random processes, the first without (or with very little) aliasing (A-D), the second with 
an appreciable amount of aliasing (E-H). The dotted vertical lines show the upper limit 
of the interval p. d. f. support (2k0). Notice that the c. d. f. in (G) does not reach one and 
the corresponding p. d. f. (H) contains negative values. 
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for along with the probability of later sign changes. As the preceding examples reveal, 
interval aliasing tends to lead to invalid analytical distributions, in particular, those 
with negative probability density. For the remainder of this thesis, we shall assume for 

convenience that an octave-band linear filter accomplishes the task of conditioning the 
zero crossings of a random process so that its zero crossing intervals satisfy a similar 
octave requirement. 

4.3.4 Setting up the Experiments 

Assuming that Ho and Hl are assigned equal prior probability, the sampled interval 
detector operates according to the rule 

choose Hi iff pI I I; 
Hi] > 1, otherwise choose Ho. 

The likelihood functions in this case are the conditional probability density functions 
for i, which were determined in Section 4.3.2 for a Gaussian process, subject to 
reasonable bandwidth requirements. Such a detector is guaranteed to produce the 
fewest errors out of all the detectors that exclusively use i. 

The probability of error for the sampled interval detector may be predicted for any 
particular task by summing the relevant portions of the density functions. Using Do 

and Dl to respectively denote the event that Ho and Hl is chosen, the probability of a 
false alarm is 

P(D1 I Ho) =E pl[i I Ho], where 1Z1 = {i : pi[i I Ho] < pr[i j Hl]} (4.45) 
iE7Z1 

and, similarly, the probability of a false dismissal is given by 

P(Do I Hi) =E Pr [i I Hi], where ? Zo = {i : pr [i I Ho] ? pi [i I Hl]}. (4.46) 
iE92o 

The probability of error, assuming uniform priors, is then found by averaging the two 
types of error 

P(error) = 
P(D1 I Ho) + P(Do I Hi) 

(4.47) 

4.3.5 Experimental Results and Analysis 

The probability of error for the sampled interval detector and squared-envelope detector 
is shown for a variety of conditions in Figure 4.12. For each condition, the control 
parameters were set to those listed in Table 4.1 and a chosen parameter, or set of 
parameters, was varied according to the experiment design set out in Section 4.1.4. 

How does the detector's performance vary with SNR? In the first experiment, the 
signal was placed at the centre of a 200 Hz analysis band and the effect upon the 
probability of error of changing the global signal-to-noise ratio was recorded for both 
the power and sampled interval detector. The results indicate that the interval detector 
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Figure 4.12: Probability of error in the sampled interval detector: predicted values 
for squared-envelope detector (solid line) and sampled interval detector (dotted line); 
observed values for squared-envelope detector (solid circles ") and sampled interval 
detector (crosses x). 

performs consistently worse than the squared-envelope detector, in that the probability 
of error is lower for the former than the latter in every condition. This difference is 
particularly pronounced when the SNR is high. For example, with the SNR set at 
40 dB, the squared-envelope detector is almost free of errors, whereas the sampled 
interval detector has an error probability of 0.2, relating the misclassification of one in 
five intervals. 

What is the effect of displacing the signal from the band centre? Subsequent 
experiments investigated the effect of moving the signal away from the band centre. 
The procedure described above was repeated with the signal placed at 210 Hz. As the 
top-centre plot in Figure 4.12 reveals, when the signal is displaced from the band centre 
by 10 Hz, the squared-envelope detector's performance worsens, that is, the probability 
of error is seen to increase. This result is to be anticipated: the analysis filter has a bell- 
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shaped magnitude response, so signals with frequencies removed from the band centre 
achieve a lower post-analysis SNR. The sampled interval detector, on the other hand, 
displays the opposite behaviour: displacing the signal increases the performance (i. e., 
lowers the probability of error). In fact, for signal-to-noise ratios lower than 20 dB, the 
interval detector starts to outperform the squared-envelope detector to a small extent. 
(The probability of error differs at most by about 0.01. ) 

To establish whether this trend persisted, another experiment was performed with the 
signal at 220 Hz-a displacement of 20 Hz. The top-right panel of Figure 4.12 plots 
the resulting error curves. Again, the probability of error for the squared-envelope 
detector increases at all SNRs. This time, however, the effect upon the interval detector 
is more complicated. In relation to the 210 Hz signal, the probability of error drops 
at high signal-to-noise ratios, e. g., 40 dB, whilst at low signal-to-noise ratios, e. g., 
20 dB, the probability increases. Clearly then, there is no simple rule stating that 
increasing the displacement of the signal improves interval detection at all SNRs. (Such 
a result would be most counter-intuitive, suggesting that detection is optimal when the 
signal is severely attenuated. ) Although the sampled interval detector shows a mixture 
of improvement and deterioration when compared to its own performance at 210 Hz, 
the improvement in performance of the interval detector over the squared-envelope 
detector is significant, with differences in error probability as large as 0.09. 

These considerations give rise to the general question: How does the displacement of a 
signal from the band centre impact the probability of error? (For now, we shall assume 
that other parameters such as the band centre frequency and bandwidths remain fixed. ) 
For the squared-envelope detector, with a unimodal analysis filter magnitude response, 
the relationship is evident: displacement increases the probability of error. As far as the 
sampled interval detector is concerned, the three experiments-with signal frequencies 
200,210 and 220 Hz-relate the signal displacement to probability of error at only 
three points: not enough to provide the complete picture. So, in the fourth experiment, 
the signal-to-noise ratio was held constant at 20 dB, and the probability of error was 
measured (and predicted) as a function of signal frequency. The curve that results is 
shown in the bottom left-hand plot of Figure 4.12. 

The curve relating error to signal displacement appears to undergo two phases: the first 
corresponds to small displacements and a decrease in error; the second corresponds 
to larger displacements and an increase in error. The shape of the curve can be 
identified as arising from an interaction between two competing effects. To illustrate 
this requires returning to the conditional density functions involved. If the signal is 
placed at the centre of the band, then the conditional means for Ho and Hl coincide, 
in which case the higher-order moments, e. g., the variance, of the distributions must be 
called upon to distinguish the hypotheses. As the signal is moved away from the band 
centre, the means diverge and, as a result, the conditional p. d. f. s are better separated, 
leading to a performance improvement. At the same time, if the signal frequency 
becomes attenuated by the analysis filter, then the post-analysis SNR is lower, and the 
signal exerts a weaker effect over the p. d. f.. The degree of performance improvement 
at a particular frequency displacement depends on which of these two factors-the 
separation of conditional means or signal attenuation-dominates, as exemplified by 
the changing shape of the probability density functions in Figure 4.13. 
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Figure 4.13: Probability density functions as signal frequency changes. Three distinct 
phases are identifiable: i) signal is centred on the band (200 Hz); ii) signal frequency 
increased, shorter intervals are received (205-215 Hz); iii) signal is attenuated and the 
p. d. f. for Hl approaches that of Ho (220 Hz and beyond). 

Does the detection performance relate to the absolute frequency of the signal? The 
experiments reported so far describe the detection of a signal in noise within a band 
centred on 200 Hz, for various signal-to-noise ratios and signal frequencies. To 
determine whether the interval detector was effective at higher frequencies, further 
experiments were performed in which the signal and band frequency were varied 
together over the range 200 Hz-1 kHz. The bottom-right plot in Figure 4.12 confirms 
that the squared-envelope detector performs consistently: the expected outcome, given 
that the detections are made on the basis of power-unaffected by a shift in frequency. 
Meanwhile, the performance of the sampled interval detector is seen to degrade rapidly 
with increasing frequency. As before, this result can be interpreted by exploring the 
effect of the change in band frequency upon the conditional interval probability density 
functions. (See Figure 4.14. ) 

It is helpful to adopt the zero crossing intervals of the sinusoids corresponding to the 
analysis filter band edges (nominally, the -3 dB points) as a rough guide to the support 
of the interval p. d. f.. For instance, if the high-frequency cut-off falls at 500 Hz, then 
the shortest interval with non-zero probability would be estimated at 0.001 seconds. If 
we designate the filter bandwidth B Hz, the shortest and longest zero crossing intervals 
are 

2fa B seconds, f 

respectively. The interval distribution range is then approximated by the difference in 
these two values: 

11_ 2B 
2fa-B 2fa+B ¢fä+B2. 

(4.48) 

Ostensibly, this analysis shows that the range and variance of the interval distribution 
is inversely proportional to a quadratic function of the band centre frequency, which 
implies that even modestly increasing the band frequency concentrates the probability 
mass in the discrete density functions over only a very few samples. Consequently, the 
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Figure 4.14: Varying the band and signal frequency affects the conditional probability 
density functions so that they are almost indistinguishable at higher frequencies. 

performance of the sampled interval detector drastically diminishes as the band (and 
signal) are shifted up in frequency. 

The resolution of the interval p. d. f. is based on the autocorrelation, so a direct approach 
to remedy this problem would be up-sampling the signal. In theory, this is a possibility; 
however, in order to maintain performance, doubling the band centre frequency would 
demand quadrupling the sample rate, and so on-an impractical suggestion. Another 
modification to counteract the effect of the increasing filter frequency could be to 
concomitantly increase the filter bandwidth with the centre frequency. Enforcing the 
relationship 

QB = fa 

where Q is a positive constant, the approximation for the interval distribution range 
becomes 

2B 
_ 

2Q2 
4f, + B2 (4Q2 + 1)fa, ' 

(4.49) 

Hence, for a constant-Q filter, the centre frequency and interval range are inversely 
proportional. Admittedly, this is less severe than the inverse-quadratic relationship 
arising from a constant bandwidth; nevertheless, using a constant-Q filter represents an 
unacceptable concession in terms of SNR, especially if a high-frequency, narrowband 
application is intended. 

Is it possible to predict the performance of the detector? Inspecting Figure 4.12, the 
empirical probabilities of error match the predicted probabilities for both the squared- 
envelope and sampled interval detectors. 

How do the results of the different detectors compare? Two main results have emerged 
from this study. First, the sampled interval detector commits fewer errors than the 
squared-envelope detector, when the signal is away from the centre of the analysis 
band; but the reverse is true when the signal is near the centre. Second, the sampled 
interval detector performs very poorly at modestly high frequencies, whereas the 
squared-envelope detector is naturally unaffected by a shift in frequency. It is suggested 
that the rounding of zero crossing times reduces the information available to the interval 
detector so that it fails to discriminate between signal and noise. 

134 



4.4 Continuous Interval Detector 

4.4 Continuous Interval Detector 

4.4.1 Overview 

The continuous interval detector (CID) operates on the same principle as the sampled 
interval detector, except that each hypothesis is modelled as a continuous-time process 
which is realised in a sampled domain. The performance of the sampled interval 
detector presented in the last section was shown to depend critically upon the hand 
frequency and sample rate. Setting the band frequency too high or the sample rate 
too low, even to a modest extent, rendered the detector completely ineffective. The 

continuous interval detector constitutes an attempt to nullify this problem without 
resorting to wholesale up-sampling or other costly processing. 

The motivation behind the continuous interval detector originates in consideration of 
the crucial role played by the sample rate in the detector performance. If the signal 
were up-sampled by a factor of two, then the resolution of the density functions would 
double and their intersection would be more accurately sampled. Pursuing this line of 
thought to its limit raises the question: Can the detection problem be formulated as 
though the signal were continuous'? The next two sections answer this question in the 
affirmative: others have also successfully modelled the interval between the zeros of a 
continuous Gaussian process, notably Rice (1944). 

The Continuous Interval Statistic 

Having established that it is possible to reformulate the model in continuous time, we 
are left with the problem of having, in reality, to work with a sampled signal. However, 
there is no longer any requirement that the signal be up-sampled in its entirety: we only 
require accurate estimates of the zero crossing times. One possibility is to interpolate 
linearly between the samples of a zero crossing. For the two samples values . i" ý. ý, and 
: r1 1 which make up the j-th crossing, the fractional crossing time is 

ä'ß. o Zý _ (4.50) 

from which a continuous estimate for the interval duration, I(., is found: 

I, = (I - Z0 + Zi)At. (4.51) 

Here, At denotes the sampling interval, in seconds. The relationships amongst these 
quantities is depicted in Figure 4.15. Assuming that HOB and Hl are equiprobable, the 
continuous interval detector operates according to the rule 

choose Hi iff 1 44 
(i` HIý )>1. 

otherwise choose HOB. (4.52) 
p1, (1( HO) 

't'he extraction of the test statistic prior to the decision rule is shown as a block 
diagram in Figure 4.16. Here, another specialised block has been introduced, labelled 
'i nterp', which corresponds to (4.50). 
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Figure 4.15: Linear interpolation of zero crossings. 

4.4.2 Continuous-time Random Processes 

The sampled interval detector dealt with sampled impulse responses, power spectral 
densities and autocorrelation functions. The aim of this section is to review how these 
quantities are translated into their continuous-time counterparts. In order to maintain 
a distinction between the two domains-sampled and continuous-the convention of 
surrounding discrete and continuous arguments with square and round parentheses was 
adopted, e. g., h[n] and h(t). 

Two impulse responses characterise the simple systems considered so far: the impulse 
response of the analysis filter and the impulse response used to generate the signal 
process. The impulse response of the analysis filter is specified by ha(t), and the 
signal process is formed by convolving a white Gaussian noise signal with the impulse 
response h, (t), where, as before, 

h2(t)dt = 1. (4.53) 
00 

The continuous system defined by these impulse responses can be converted to a 
discrete-time system using an impulse invariant transform, a procedure which replaces 
the continuous impulse responses with sampled versions, i. e., 

ha[n] = ho, (At " n) (4.54) 
h,, [n] = he(At " n). (4.55) 

The squared-magnitude response of the analysis filter, expressed in angular frequency, 
is related to the impulse response by 

I 
nýw\12 = 

If 
halte-"tdtI(4.56) 

0 
\1 

and that of the signal filter, is obtained from h,, (t) in the same way. The 
power spectral density for the noise-only hypothesis, Ho, is the product of a white 
spectrum and I) (w)l2, that is, 

ý°o(w) = 
o-1Jea(w)12, 

(4.57) 
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where No/2 is a constant noise power spectral density. Meanwhile, the power spectral 
density for the signal-and-noise hypothesis, Hl, is 

a (w)12 
1 No 

+ a, (w) ý2, , 
(4.58) 

where o is the total signal power, implying the signal-to-noise ratio 
2 

SNR = 10 log10 No 
, dB. (4.59) 

As before, the autocovariance functions for hypothesis Hj is obtained via the inverse 
Fourier transform (an application of the Wiener-Khinchin relation) 

00 
Yj ýT) = 27r `ýý 

ýw)ezý, t (4.60) 

and we arrive at the autocorrelation function p; (T) by dividing (4.60) by ryj (0). For the 
sampled interval detector, the conditional interval c. d. f. and p. d. f. were shown to rely 
solely upon the conditional autocorrelation, i. e., p, [i 4 Hj] - pi [k]. The next section 
takes the same step in the continuous domain: acquiring plc (ic I Hj) from pj (T). 

4.4.3 Probability Density Functions 

In Section 4.3.2, the cumulative distribution function for sampled intervals was found 
to be 

1+ sin-' p[k+1] - sin' p[k] k<k< 2k 2 7r -2 sin-1 p[1] (4.61) PI<k =0 k<ko 

1k> 2ko. 

Assuming a particular sampling intervalOt, by making use of rule p[k] :., p(Lt " k), 
rr = At " k, the portion of (4.61) for which ko <k< 2ko can be rewritten 

P(I <_ T) =21+ 
sin-1 p(ýr+Lt) - sin-1 p(r) 

, T/At E N. (4.62) 
-2 sin-1 p(Lt) 

The expression for the continuous c. d. f. emerges as the sampling interval tends to zero 
(i. e., At -0 and f, -+ oo); we may therefore state the c. d. f. as the limit 

P(I, < T) = lim 
j1+ sin-1 p(T+tt) - sin-1 p(r) } 

(4.63) 
At-. o l2 ir -2 sin-1 p(Lt) 

=1+ lim sin-1 p(T+, Lt) - sin-1 p(r) (4.64) 
2 otýo 

I 

7r -2 sin-1 p(At) 

I 
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When solving the limit, it helps to multiply firstly the numerator and denominator by 

, Lt and then split it into a product of limits, 

1r it(sin-1 p(ýr+Lt) - sin-1 p(r)) 1 
P(Iý < T) _-+ lim Sl 1J 

(4.65) 
2 of-o pt(7r -2 sin_ p(At)) 

=1+ lim 
At 

2 nt-. o it -2 sin-1 p(At) 

} 

x 
olimo 

! sin-1 p(r+At) - sin-1 p(rr) (4.66) 

Rice's Formula for the expected number of zero crossings in unit time (Rice, 1944) 
asserts the following as part of its solution: 

Jim 2- sin-1 p(At) 
=1_ 

70) (4.67) 
'W-o At 7r 

The first limit in (4.66) can be reworked using (4.67) to give 

11 sin-1 p(r +L t) - sin-1 p(r) lim P(I, < T) =2+2p At, 0 

1 
At 

(4.68) 

The second limit expresses the derivative of the arcsine of the autocorrelation function 

and may be solved directly', leaving the continuous cumulative distribution function in 
terms of the autocorrelation function p(rr) and its first two derivatives: 

1 p'(T) 

P(Iý < T) -2+2 
ph1(O)(p2(T) - 1)) 

Tp <k< 27-0 

(4.69) 0T< To 

1 T> 2Tp 
. 

The continuous interval probability density function is found by differentiating (4.69), 
with respect to interval duration ic , applying the quotient rule2, 

pig (i) = 

(p2(ic) - 1)Pit(ic) - P(ir , 
)(Pt(zc))2 

To < ic < 2To 
2(P2(ic) - 1)3/2 Pýý(O) (4.70) 

0 otherwise. 

Comparing the Analytical and Empirical Distributions 

The previous two sections outlined the stages required to transform the impulse 
responses of the system into interval probability density functions. In this section, 
a controlled random signal is generated and a histogram is formed from continuous 

using 
d {sin-1 x} =1 dx 1-x2. 

2for numerical stability, compute the denominator using 2(p2 (ia) - 1) pýý(0)(p (ia) - 1). 
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Figure 4.17: Analytical and empirical probability density for continuous and sampled 
intervals: continuous (solid, dash-dotted lines) and sampled (dotted line, solid circles). 

intervals estimated by linear interpolation. The histogram is then compared with the 
continuous interval density function predicted by (4.70), as was done for the sampled 
interval detector in Section 4.3.2. The purpose of this comparison is to determine 
whether the analytical probability density function agrees with observed data, and, if 

so, whether it offers high resolution at high frequencies. 

The continuous model filter used to generate the random process in question has the 
impulse response 

ha(t) = exp(-2(40t)2) cos(2ir fa, t) (4.71) 

in which fa is set to either 200 Hz or 400 Hz. For the sample rate f3 = 16384, an 
impulse-invariant transform yields a sampled (and truncated) version of the impulse 
response 

ha. [n] _ 

200 Hz 400 Hz 

exp(-2(40n f f9)2) cos(27rfa, n/ f9) -1024 <n< 1024 

0 otherwise. 
(4.72) 

The discrete-time random process used to produce the histogram is generated by 
convolving white Gaussian noise with hn[n]. The continuous model autocorrelation 
function is very closely approximated by 

p(r) = exp(-(40T)2) cos(27tfo, T). (4.73) 

The continuous interval p. d. f. is found by placing p(r) above into (4.70). The analytical 
and empirical probability density functions for the continuous interval statistic it are 
plotted in Figure 4.17 for band frequencies 200 Hz and 400 Hz at a resolution, i. e, 
histogram bin width, of 5 µs. The analytical sampled interval p. d. f. s, obtained from 
(4.35), are resealed and overlaid for comparison with a resolution of At 62 bis. 
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4.4.4 Modulated Gaussian Mixture Models (MGMMs) 

The interval cumulative distribution and probability density functions for a hypothesis 
H; are defined exclusively in terms of the autocorrelation function pj (T) and its first 
two derivatives, p'ý (ir) and p, (r). In order to determine the autocorrelation function 
of the entire system in response to white Gaussian noise (or, indeed, any wide-sense 
stationary random processes), the impulse responses of all its subsystems must undergo 
several transformations. A detailed treatment of signals and systems has been provided 
by many other authors and is omitted here. 

In principle, the autocorrelation function of the signal at any point in a linear system can 
always be determined analytically for jointly wide-sense stationary inputs. In practice, 
finding an expression for the autocorrelation depends on the availability of closed-form 
expressions for the Fourier transform or convolution integrals that necessarily arise. 
The following discussion offers a parametric format for a continuous linear system, 
which guarantees that an exact, closed-form expression exists for the autocorrelation, 
interval cumulative distribution and probability density functions. 

The basic building-block of the model described next is the modulated Gaussian 
component (MGC). A MGC W consists of five parameters 

T_ (A, c, µ, W, 0) 

where C>0, and is realised as a complex signal by 

x(t) =A exp(-2(C(t - µ))2) " exp(iwt + iq). (4.74) 

This is readily recognised as a complex modulated Gaussian pulse, encountered widely 
in the sonar literature (Burdic, 1984). All the parameters have a physical interpretation: 
A controls amplitude; C controls the width of the pulse; It specifies a shift in time; w 
is the radial frequency; 0 is a phase shift. The models symbol (=) is adopted here as a 
convenient means of switching, in either direction, between the description of a model 
and its realisation as a signal. The identity of two MGCs is established on the basis of 
whether they realise the same signal, as opposed to whether their parameters are the 
same. The set of all MGCs is denoted '. 

A modulated Gaussian mixture model (MGMM) is a sum of modulated Gaussian 
components and is described by the set of its components 

A= { 
, TN}, Vi E 1... N, Tj E %F 

and is realised by the sum: 

N 
A x(t) _E Aj exp(-2(Cj (t - µj))2) " exp(i jt + i0j) A, (4.75) 

j=1 

where the subscript j references the parameter of the j-th component. It should be 
noted that the term "modulated Gaussian mixture model" has a separate interpretation 
to the "Gaussian mixture model" (GMM) frequently employed as a model distribution. 
A Gaussian mixture model is a parametric description of a probability density function 
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(Bishop and Hinton, 1995), whereas an MGMM is intended to model a signal rather 
than a density function. That the terminology should resurface in another context is 
largely due to the convenient properties of the Gaussian function itself. We shall denote 
the set of all possible MGMMs using A. Two MGMMs are considered identical if they 
realise identical signals. (It is tentatively suggested that a "canonical" form exists for 
any MGMM, in which every component satisfies A>0, and no two components have 
identical w. ) 

The following sections define a series of operators for MGCs and MGMMs. These 
operators have been implemented in MATLAB as functions which perform operations 
on data structure arrays with the fields A, C, mu, w and phi. The advantage here is 

extensibility. For instance, deriving the autocorrelation function for a linear system 
comprising many subsystems is laborious, owing in particular to the large number of 
cross-terms that emerge during the working. Constraining the impulse response of each 
system to a MGMM permits functions such as the autocorrelation to be computed in 
"short-hand" and in a mechanical fashion. 

Scaling 

The scaling of a MGC IQ 1 by a real constant a produces another MGC 412. 

aWl E' =a (Al, Cl, µl, (Dl, 01) (4.76) 

aAl exp(-2(Cl (t - µl))2) " exp(iwlt + i0l) (4.77) 
(A2 = aAi, Ci, µi, Wi, 01) E `F (4.78) 

_ T2 E. (4.79) 

Multiplying a MGMM by a real constant scales each of its components, so MGMMs 
are closed on the operation of scalar multiplication. It is easy to show that both MGCs 
and MGMMs are also closed on multiplication by a complex constant. 

Addition and Subtraction 

The addition of two MGMMs Ai and A2 produces a third MGMM. The rule used to 
add them together is defined recursively: 

Al+O = Al 
Al + A2 = (Al ®A2) + {(2A, C, µ, w, O) : (A, C, µ, w, q) E Al n A2}. 

where e denotes mutual set difference. Simply taking a union of components would 
imply that duplicates appear only once in the resulting MGMM. This definition ensures 
that duplicate elements are added. A simple example can illustrate this point: 

{(4,10,0,200,0), (2,10,0,200,0)} + j(3,12,0,100,6), (2,10,0,200,0)l 

_ {(4,10,0,200,0), (3,12,0,100,6)l+{(4,10,0,200,0)} 

_ f(3,12,0,100,6)1+1(8,10,0,200,0)} 

_ l(3,12,0,100,6), (8,10,0,200,0)}+0 
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Because it is possible to multiply a MGMM by -1, MGMMs are closed on subtraction 
as well as addition. 

Multiplication 

It is slightly more difficult to demonstrate that the product of two MGCs is a MGC. 
The best way is to split the product up into its scalar, Gaussian and phasor factors: 

1 "'I'2 
[AlA2] [exp(-2(Cl(t - µi))2) exp(-2(C2(t - /L2))2)] 
x [exp(iwlt + i0 j) exp(iw2t + i02)] (4.80) 

= A1A2 [exp(-2(C1(t 
-t l))2) exp(-2(C2(t - A2))2), 

x exp(i(wl+0'2)t + i(t1 + c2)). (4.81) 

The scalar factors multiply to give a scalar; the phasor factors multiply to give a phasor; 
what of the Gaussian factor? This shall be tackled separately: 

exp(-2(Ci(t - µi))2) exp(-2(C2(t - µ2))2) (4.82) 

= exp (-2 [Ci(t - µi)2 +C2(t - p2)2)]ý (4.83) 

= exp (-2 [C2(t2 + ui - 2pit) + C2 22 (t2 + p2 - 2p2t)]) (4.84) 

= exp (-2 [(C1 +C2)t2 - 2(C1µ1 +CZµ2)t+Clµ1 +C22 2 µ2]) (4.85) 

Using the abbreviation D= Cl + C2 and completing the square in the exponential 
term gives 

exp 
(-2D f 

t2 -2-1 
+DC2µ2)t] 

-2 [Cil, 
i +C21ý2] (4.86) 

= exp 2D 
`t- (C1µ1 +C2µ2)12 
LDJ 

xexp(2(Ciµi+D 
C2lýa)2 

-2[C1 1+C2µ2] ). (4.87) 

We see that (4.87) has Gaussian form. Therefore, the product of two MGCs' 1 and W2 
is another MGC, I3 = 

Cl 
(A3 = AiA2 exp 

(2(C? i + Cz )z 
2 22 + 

/l2 
_2 

[G'1 
1+ 

C2 /L2] 

C3 = Cl + 2, 

A3 = 
C1 Al +C2µ2 

C2 + C2 1 
03 = 01 + 021 

03 = 01+Q2). 

One can immediately infer from this result, that the product of two MGMMs is a 
MGMM. Any MGMM equals the sum of its individual components, as defined by 
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4.4 Continuous Interval Detector 

MGMM addition above. Hence, expanding the brackets, 

Al " 
A2 = (W1,1 + W1,2 + 

... 
+ W1, N) (W2,1 + W2,2 + 

... 
+ W2, M) 

_ T1,1 'F2,1 +'F1,2 " 12,1 + 
... 

+'1, N " W1, M (4.88) 

= A3. (4.89) 

The product of two MGMMs with M and N components may contain as many as 
MN components, although a canonical version may contain fewer. Note that the 
multiplicative identity element for multiplication is (A=1, C=O, u=0,0=0,0=0) and 
that division is not defined for MGMMs in general. 

Real Part, Imaginary Part and Squared-Magnitude 

By applying Euler's formula to each component, the real part of a MGMM can be 
shown to be a MGMM: 

Re{A1} Re EAj 
exp(-2(Cj(t -4j))2) exp(iWjt + ilpj) (4.90) 

j=1 

N 

_ EAjexp(-2(Cj(t-µj))2)cos(wjt+0j) (4.91) 
j=1 

N 

_ 
Aj 

exp(-2(Cj(t - Fýj))2)[ezw, t+'Oi +e-i4,3t-'Oj] (4.92) ý 
j=1 

A2. (4.93) 

The imaginary part, Im{Al}, is also a MGMM. As both the real and imaginary parts 
are both MGMMs, it follows that the squared magnitude is also a MGMM, 

JA212 = Re{A2}2 + Im{A2}2 = A3. 

Fourier Transform 

(4.94) 

The Fourier transform is linear so we need only consider the effect of the transform 
upon an individual MGC. The Fourier transform of a zero-mean Gaussian is another 
zero-mean Gaussian, 

, 'r{exp(-2(Ct)2)} 
f. 

exp(-2(Ct)2)e-ti"tdt (4.95) 

00 
=J exp 

(_2C2 [t2 
+C 

tý dt (4.96) 

_I exp -2C2 It+ 
C212 2C2 

dt (4.97) 
0. L 

2C exp 
( 

2C2) . (4.98) 
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4.4 Continuous Interval Detector 

Using this result, in conjunction with the Fourier time and frequency shift theorems, it 
is a straight-forward matter to show that 

A2 = Al 2-ir/(2C1), 
C2 = 1/(4Ci), 

{A1(i)} = µ2 = Oll = A2(w). (4.99) 

W2 = -µi, 
02 01 

Hence, the Fourier transform of a MGMM is another MGMM with the same number of 
components, expressed in the frequency domain (in radial units w). Note that in order 
for the Fourier transform to be defined for components with C=0, we must allow that 
C= +oo, which in effect models a Dirac delta. 

Further Operations 

It has been shown that MGMMs are closed on multiplication by a scalar, addition (also 
subtraction and negation), multiplication, the real, imaginary and squared-magnitude 
operations, and the Fourier transform. By combining these, it is immediately evident 
that MGMMs are also closed on the following operations: raising to a positive integer 
power (repeated application of multiplication); the inverse Fourier transform (apply 
the duality property of the Fourier transform); and convolution (forward and inverse 
Fourier transform; multiplication). 

In addition, the form of the MGMM itself caters for standard transformations such as 
reversal, shifting, dilation and complex conjugation in the time or frequency domain. 
Also, integrating any MGMM on the bounds [-oo, oo] is a simple matter. Thus we 
arrive at our goal: if the impulse responses of continuous sub-systems within a larger 
linear system are specified as MGMMs, then combinations of the operations described 
above are guaranteed to find closed-form expressions for the system impulse response, 
autocovariance and autocorrelation functions, power spectral densities, complex and 
squared-magnitude responses, and ultimately, the continuous interval p. d. f.. 

4.4.5 Setting up the Experiments 

The narrowband detection experiments described in Section 4.1 can now be performed 
for the continuous interval detector under the same conditions as the squared-envelope 
and sampled interval detectors. Formerly, obtaining the autocorrelation function for 
the signal-and-noise hypothesis would have been quite tedious; now, we can specify 
the impulse responses as MGMMs and utilise the MGMM operations to transform the 
model as required. 
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4.4 Continuous Interval Detector 

Analysis Filter, Signal Process and Hypotheses 

The model impulse response used to generate the signal is 
2 

h3(t) = exp -2 
(a, 

t) cos(2i " fat) (4.100) 

`2T9,2ýf,, 0,0)+(2, f., 
-27rf,, 0,0) (4.101) 

= 
Ahs 

./\ 

/// 
(4.102) 

which is then normalised to pass unit power, as before, 

Ah, F- 
Ah� (4.103) 

f iAh, ýdt 

The analysis filter impulse response has an identical form, but is parameterised by a., 
Ta, and fa,. The power spectral density models for Ho and Hl are then found by 

Ay0 = I. F{Aha}I2 
2 

(4.104) 

Ate, _ IF{Aha}I2 I 
2° 

+v9I. F{Ahe}12 1, (4.105) 

as are the model autocovariance and autocorrelation functions, 

Alf; = -1 {AS } (4.106) 
Api - AA 

ý0) 
. (4.107) 

Constructing the Continuous Interval Detector 

Assuming that Ho and Hl are equiprobable, the continuous interval detector operates 
according to the rule 

choose Hl if PI° (20 Hl) 
> 1, otherwise choose Ho, 

PIc(ic Ho) 
where i, is a continuous interval test statistic computed from linear-interpolated zero 
crossings and p', (i, 

. 
jHj) are conditional probability density functions obtained by 

evaluating AP, in (4.70). 

The probability of error can be calculated analytically by finding the decision regions 
corresponding to the minimum error criterion and then integrating the p. d. f. in these 
regions using the continuous cumulative distributions function (4.70). Computing the 
minimum error decision boundaries is difficult however, as it requires the intersections 
of the conditional p. d. f. s to be located. A better strategy is to closely approximate 
the analytical probability of error by numerical integration. The analytical predictions 
presented next are obtained by applying (4.45) and (4.46) to the continuous interval 
p. d. f. s and using a very fine integration step, namely, 0.1 µs. 
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Figure 4.18: Probability of error in the detectors presented so far. The predicted and 
observed values are shown using lines and markers, according to the following key: 
squared-envelope detector (solid line; solid circle "); sampled interval detector (dotted 
line; cross x) and continuous interval detector (dash-dotted line; open circle o). 

4.4.6 Experimental Results and Analysis 

The results of the experiment above are provided in Figure 4.18, alongside those of the 
squared-envelope and sampled interval detectors. 

How does the detector's performance vary with SNR? For the experiments in which 
the SNR is varied-the top three plots-the error probability curves for the continuous 
interval detector resemble, in terms of overall shape, those of the sampled interval 
detector. The continuous interval detector outperforms the sampled interval detector in 
all conditions, but the difference in performance is most pronounced when the signal 
is centred on the band, especially at high SNRs. 

What is the effect of displacing the signal from the band centre? The bottom left-hand 
plot of Figure 4.18 shows that, as the signal frequency is removed from the band centre, 
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4.4 Continuous Interval Detector 

the error probability initially drops and then rises again with larger displacements. The 
trend in these results was explained in Section 4.3.5 for the sampled interval detector, 

and the same explanation applies to the continuous interval detector. Shifting the signal 
away from the centre of the analysis band causes the means of the conditional interval 
distributions to move apart, which initially reduces the probability of error. At the same 
time, however, the signal is attenuated further from the band centre and this leads to an 
increase in probability of error. 

Does the detection performance relate to the absolute frequency of the signal? The 
unacceptably low performance of the sampled interval detector at high frequencies 
was discussed in Section 4.3.5 and shown there to result from the poor resolution of the 
interval probability density functions. The continuous interval detector was designed 
in response to this deficiency and, by assuming continuous models of the underlying 
random processes, replaces the sampled interval p. d. f. s with continuous versions. The 
results shown in the bottom right-hand graph of Figure 4.18 suggest that the solution 
works: the probability of error in the continuous interval detector is constant over the 
range 200-1000 Hz, unlike its sampled counterpart. 

Is it possible to predict the performance of the detector? Yes. From a visual inspection 
of Figure 4.18, the empirical probability of error for the continuous interval detector 
appears to be correctly predicted by the numerical integration of the probability density 
functions described in Section 4.4.5 above. 

How do the results of the different detectors compare? The squared-envelope detector 
still outperforms both interval detectors when the target signal is placed near the 
centre of the analysis band. The continuous interval detector improves upon the 
sampled interval detector in that its performance is unaffected by absolute shifts in 
frequency. It is reasonable to conjecture that the continuous interval detector represents 
the best single-interval, single-filter, timing-only detector that it is possible to construct, 
notwithstanding small errors incurred by the linear interpolation of zero crossing times. 
In light of this final remark, we turn our attention to the interpolated interval detector, 
which models the interpolation of zero crossings explicitly. 
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4.5 Interpolated Interval Detector 

4.5 Interpolated Interval Detector 

The sampled interval detector was shown to perform poorly at high frequencies, owing 
to rounding errors introduced by sampling intervals. The continuous interval detector 
offered an improved solution, generating continuous interval estimates by interpolating 
zero crossings and modelling the signal as a continuous-time process. This section 
introduces the interpolated interval detector (IID) as a hybrid: the test statistic is 
derived from linear interpolations; the likelihood test, however, explicitly models 
the conditional probability of linear-interpolated zero crossings in a sampled domain. 
Whether modelling the interpolations explicitly will lead to a detector that outperforms 
the continuous interval detector is unclear. 

The interpolated interval detector is supplied with three measurements: the sampled 
zero crossing interval i, and the fractional zero crossing time of each zero crossing 
given by a linear interpolation, zo and zl. The likelihood test has the following form 

choose Hl iff PIZ°Zl (i, zo, zl Hl) 
> 1, otherwise choose Ho. (4.108) 

PIZOZ1(z, zo, zi Ho) 

This decision rule is recognisable as that of the sampled interval detector, augmented 
with the fractional crossing times, zj, to provide the information otherwise lost through 
rounding error. These quantities are indicated on the diagram in Figure 4.15. The 
task of building a minimum error detector amounts to determining the joint probability 
density for an observation (i, zo, zl). The sampled interval and fractional crossing 
times are extracted in the same manner as the continuous interval detector, except that, 
instead of subtracting and adding the fractional crossing times to form the continuous 
interval statistic, the three components are fed separately to the decision rule, as the 
block diagram in Figure 4.19 shows. 

4.5.1 Interpolated Crossing Probability 

Before considering intervals, we examine the simpler problem of determining the 
probability (density) associated with a linear interpolation placing a zero crossing 
at fractional sample time Z. Two consecutive samples, xo and xi, with respective 
sample times to and ti are taken, and it is assumed that they are jointly Gaussian, 
with unit variance and correlation coefficient p[1]. Initially, we relax the constraint 
that the samples must form a crossing and permit extrapolations (see below). A linear 
interpolation of the two samples gives the fractional zero crossing time 

Z= x0 (4.109) 
XO - X1 

A zero crossing only occurs when xo and xl are unequal. If the product of xo and xi is 
negative or zero, then 0<Z <_ 1, and the zero crossing is interpolated (Figure 4.20A); 
otherwise the zero crossing is extrapolated (Figure 4.20B). The cumulative distribution 
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A. Interpolation 
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B. Extrapolation 
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x0 

Figure 4.20: A) an interpolation; B) an extrapolation (the zero crossing is placed prior 
to to); C) the grey region indicates the event that corresponds to Z< [1 - tan O]-1. 
The ellipse represents a contour of the p. d. f., the slope of the solid line is 0, and the 
dashed line corresponds to xl = xo. 

function for Z is given by 

P(Z < z) =P 
x0 < zý (4.110) 

(01 

P (xi < (Ixo, xo > xi) 
+P(xl > axo, xo <x, ) z>0 

= P(xl<0, xo>x, )+P(xl>0, xo<x, ) z=0 
P (xi > axo, xo > xi) 
+P (xi 5 axo, xo < x, ) z<0, 

where (v =1- 1/z, and represents the gradient of a straight line in xoxl-space 
which passes through the origin. The probability in (4.110) is evaluated by integrating 
the bivariate probability density function for px,, x, 

(") in the shaded region shown in 
Figure 4.20C, following a change to polar co-ordinates: 

P(Z < z) _ (4.111) 

1JE; 
+ 

fir e+" 

Jr ex 
( r2 (1 - p[1] sin 20)) 

drdB 
27f 1- p2[1] ýr/4 /4+n 0p( -2(1 - p2[1]) J 

where 0= arctan a. Note that, due to symmetry, this simplifies to 

P(Z < z) =12ýIr exp 
r'(1 - p[l] sin 20) 

drdO. (4.112) 
7r 1-p [1] , r/4 0 -2(1 -p [1]) 
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4.5 Interpolated Interval Detector 

Next, integrate' to remove r, 

re 
sin2B 

(4.113) P(Z < z) _1- p2[1) J1- p[ýB , r/4 

The probability density function is found by differentiating the cumulative distribution 
function using the chain rule. 

pZ(z) _ 
dP(Z < z) 

_ 
dP(Z < z) d4 da (4.114) 

dz d0 da dz 
The last two factors together evaluate to 

d0 
_1 (4.115) 

dz 2z2 - 2z + 1' 

whilst the first factor-the derivative of the c. d. f. with respect to angle-is 

2e p2 [J 
1- -p2 

d© 

{j4 

1- p[1] sin 20 ir(1 - p[1} sin 20) 
(4.116) 

Putting (4.115) and (4.116) together gives 

V-1 p2[1] 
PZ(z) = 

rr(2z2-2z+1)(1 - p[1 ] sin(2 arctan(1 - 1/z))) 
(4.117) 

This is the p. d. f. that governs the fractional zero crossing time Z, including 
interpolations and extrapolations. If z is only considered when a zero crossing 
has occurred, then interval conditioning (Peebles, 1993) can be applied to find the 
probability density function: 

F1 
- p2[1] [2 -7r sin-1 p[1]]-1 

pz(z I crossing) _ ir(2z2-2z+1)(1 - p[1] sin(2arctan(1 - 1/z))) ZE [0,11 

0 otherwise. 
(4.118) 

To recapitulate: for a wide-sense stationary Gaussian process, (4.118) is the p. d. f. that 
describes where a linear interpolation places the zero crossing between two samples. 
The sole parameter in this distribution is p[1], the correlation between successive 
samples. 

Comparing the Analytical and Empirical Distributions 

Before proceeding any further, it is prudent, as an aside, to perform a brief check to 
confirm that (4.117) (and hence 4.118) has been derived properly. This is accomplished 
by convolving white noise with a simple, seven-sample impulse response 

h[n] =10.5 -0.3 0.2 -0.3 -0.2 -0.1, (4.119) 

using the rule f °O re-a*'2 dr = ZQ 
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Figure 4.21: Analytical (solid) and empirical (dotted) probability density function for 
fractional zero crossings. The two curves are overlaid very closely. The width of the 

grey patch indicates the region corresponding to an interpolation. 

measuring a large sample of fractional zero crossing times (permitting extrapolations), 
and compiling them into a histogram. Figure 4.21 overlays the histogram that results 
from this procedure onto the analytical probability density function computed using 
(4.117). The two curves are indistinguishable. 

4.5.2 Probability Density Functions 

Combining geometry with the bivariate Gaussian density function allowed us to arrive 
at the p. d. f. for fractional sample crossing time for a linear interpolation without too 
much difficulty. Formally, a (linear) interpolated interval we define as the random 
event corresponding to two successive zero crossings, I samples apart, with fractional 
crossing times Zo and Zl. What is the probability of such an event? 

First, let us designate the samples of the k-th sample of the j-th zero crossing Xjk. An 
interval consists of four samples xo. o, 10.1,11.0, x 1j. (Refer again to the diagram in 
Figure 4.15. ) The probability density governing these samples-maintaining the same 
assumptions used up to this point-is quadrivariate Gaussian: 

px(X Hj) - 4,2,,:,, ,2 exp 
ýX T -2 1 Xý (4.120) 

where, for Hj, 

1 pj [1] P3 [z] Pj I[i+1] 

Y: 
,v __ 

p3 [1] 1 Pj [i-1] pi [i] (4.121) 
Pi [2] Pi [i-1] 1 P3 [1] 

Pi [i+1] Pi [z] Pi [1] 1 

The fractional crossing time for the j-th zero crossing is 

zj- = 
xj, o (4.122) 

xj, o - xj, i 
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4.5 Interpolated Interval Detector 

Note that it is not yet assumed that z is in the range [0,1], i. e., the zero crossing might 
be extrapolated rather than interpolated. There is a homogeneous linear relationship 
between x. 7, o and x3,1, which may be expressed via a gradient a or angle 0, as in the 
previous section. Hence 

aj =1- l/z3 (4.123) 

and 
0, = arctan(caj) = arctan(1 - 1/zj). (4.124) 

It is worth taking a moment to review what these quantities represent. The probability 
space for two consecutive sample values has two dimensions. Without any knowledge 
concerning what these values are, the event can lie anywhere in this space. If it is at 
least known that a zero crossing has occurred, then the samples have opposite sign and 
the event must lie in quadrant II or IV. (For the sampled interval detector, this is the 
extent of the crossing information conveyed by the test statistic. ) 

If the interpolated zero crossing time is available, then the first sample is proportional 
to the second by a constant a, determined from the crossing time. This means that the 
random event must lie along a line with gradient a. Because the function relating z to 
a is smooth for all values z 0, it follows that a small interval in z corresponds to a 
small interval in a; furthermore, an interval in a, is an interval in 0 because arctan is a 
smooth function. Therefore, intuitively, a small region in z is a small (wedge-shaped) 
region in probability space, and the problem of finding the probability of z reduces to 
the problem of transforming differential areas in the Gaussian density function. 

In the case of two interpolated zero crossings, there is a four-dimensional space: two 
dimensions belonging to each crossing. If the both zero crossing times are known, then 
the random event must lie on two lines, one passing through the first pair of dimensions, 
the other passing through the second pair of dimensions. In terms of differential areas, 
the probability of a small region [zo, z+özo], [zl, z+6zl] transforms to wedge-shaped 
regions in four dimensions [Bo, 0+8001, [O1 9+6011. 

The first step is to rotate the space X in such a way that the events align with the axes. 
The scale-invariant rotation which achieves this is associated to the block diagonal 
matrix 

cos 00 sin O 

- sin 0o cos Bo 
to 0 

00 

o0 
00 

cos 61 sin B1 

- sin Bl cos 91 

(4.125) 

Transforming the probability space X using Tl gives a new probability space y, where 

y= Tlx (4.126) 

and the elements of the random vector y are joint Gaussian-distributed, with zero mean 
and covariance matrix (Peebles, 1993; Whalen, 1971) 

Ey = T1EXT1 . (4.127) 

Random events corresponding to a pair of interpolated crossings at (zo, zl) lie on the 
plane yo, l = yl, l = 0. To find the probability mass associated with a small wedge 
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surrounding this plane, it is necessary to transform the space y into a space R. defined 
by a pair of polar co-ordinate systems. The transformation is accomplished by 

yo, o = Ro cos ¢o (4.128) 

yo, 1 = Ro sin Oo (4.129) 

yl, o = Rl cos 01 (4.130) 

yl, i = Rlsinoi (4.131) 

and has Jacobian J= ýRoR11. The probability mass associated with the observed 
interpolated zero crossing times lies along the plane with polar angles 00 = 0, ir and 
01 = 0, ir (alternatively expressed in Y-space above). Point conditioning on 00=01=0 
yields a probability density function in Ro and R1, which measure the distance along 
the wedges, for the case where the first sample in each crossing is positive. (We shall 
return to the alternative cases shortly. ) This gives a p. d. f. in R-space 

pu(Ro, Ri, Oo = 0,01 = 0) _ 
1+ k3,3Ri + 2r13RoR1 

4z1/2RoRlexp 
(iciiR 

_2 
(4.132) 

where ici, j is the (i, j) -th element of Ei'. At this point it becomes clear why it was 
desirable to rotate the X-space at an earlier stage to align the events with the axes. All 
the terms in the exponent following conversion to polar co-ordinates contain products 
of two trigonometric functions, e. g., cos Oo sin 01, sin Oo cos 00. Then, because the 
conditioning is on Oj = 0, every term containing a sine function disappears, leaving 
only those in (4.132) whose coefficients are ic's. 
The next step is to turn (4.132) into a quantity independent of Ro and R1. Considering 
once again the signal from which these quantities were derived, we see that the Rj 
relate to the samples by Rý = xß, 0 + xj2j; in other words, the R3 convey the root 
mean square of the zero crossing samples. In a timing-only scheme, these quantities 
are unknown and must be marginalised by performing the integration 

pjz (0o = 0,01 = 0) = (4.133) 
I 00 fo"O r-i, lRo + k3,3Ri + 2, c1,3RAR1\ dRodRi. 47r2IEX11/2 

Jo RoR1 exp 
-2 

This integration is made difficult by the coupling of Ro and Rl in the exponential 
(i. e., the existence of the 2k1,3ROR1 term). Employing an eigenvalue decomposition 
to decouple terms in a Gaussian exponential is standard practice (see, e. g., Peebles 
(1993); Shanmugan and Breipohl (1988); Whalen (1971)) and is demonstrated next. 
Employing the abbreviations 

Nl, l 1'4,3 )Q 

ý1 3 /c3,3 
and r= 

R° 
(4.134) 

we can write (4.134) as 

p7 z(00 = 0,01 = 0) _ (4.135) 
1 °° °° (rTQr) 

4ir2JEx11/2 Jo JRoR1 exp dRodR1. 
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To decouple (and rescale) the variables it is necessary to find a transform T2 so that 
(T2r)T Q(T2r) = rT (T2 QT2)r 

and 
T2 QT2 =I (4.136) 

where I is the 2x2 identity matrix. Let U and D respectively denote a column matrix 
of eigenvectors and a diagonal matrix of eigenvalues for Q so that QU = DU and 

U-lQU = D. (4.137) 

Using D= NIDVD-, we can write 

-, ID-iU-'QUfD-i 
= I, (4.138) 

then because i) U is an orthogonal matrix, U-1 = UT and ii) D is a diagonal matrix, 
D-1 = (D-1)T, it follows that 

(VfD- i)T UTQUVD-1 = 
(U D-1)T QU D-1 = I. (4.139) 

Using this result in (4.136), it is seen that the transform required to decouple the 
exponentiated variables is T2 =U D-i. In the working that follows, it will prove 
useful to label the individual elements of T2 using 

ab T2 =cd (4.140) 

The space resulting from this transform is designated 7Z'. In this space, the integration 
has the formulation 

Pit, (Oo = 0,01 = 0) _ (4.141) 

ad - be Rý2 ý2 
4ý2IExI'/2 

ff (aR' + bR')(cR' + dR') exp ° 2R 1 dRodRi. 

This integral is readily transformed into polar co-ordinates using the transformed 
variables 

Rö =r cos (4.142) 
Ri =r sin C (4.143) 

with Jacobian jr 
, whereupon the angular bounds become 

co=L ((l, i)T2 1(0,1)T) (4.144) 

S21 =L ((l, i)Tz 1(l, 0)T) . (4.145) 

The final integration is performed in r-space, in which the variables may be separated 
completely 

Pr (Oo = 0,01 = 0) = (4.146) 

ad - be c' f°° 
4 7r2lEx/2 

(acos+bsin)(ccos+dsin)dr e 1-9 dr. 
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which has the closed-form solution 

ad - be ((ac - bd) sin 2dý 2 
4lr2IEX I V2 I2+ (ac + bd)ý + (ad + bc) sin ý1 

0o 
(4.147) 

Here, (4.147) is the probability density function for 00 and 0 in the region where both 

are positive. This is equivalent to the probability mass associated with two crossings 
whose first sample is positive. 

As it stands, (4.147) provides only limited information. Ultimately, we want to know 
the probability of two fractional zero crossings zo and zl, spaced i samples apart, 
regardless of their direction, that is, p(zo, zl I i). The result is found to be 

p(zo, zi (i) = 
2piz(00 = 0,0i = 0) + 2piz(Oo = 0,0i = ir) (4.148) (2 - sin-1 p[1]) (2z0 - 2zo + 1) (2z1 - 2z1 + 1) 

The term p7z(4o=0,01=0) is the probability of two zero crossings whose first samples 
are positive; the probability is the same if the first samples are negative, so it is doubled. 
The term pjz(Oo=0,41=ir) is the probability that the first sample of the first crossing 
is positive and the first sample of the second crossing is negative. This is computed by 
proceeding from (4.134) and negating rc1,3. This quantity is also doubled to account 
for the reverse scenario. Finally, the factors in the denominator are familiar: the first 
factor conditions on a crossing event; the second two factors result from the Jacobian 
determinant for replacing (zo, zl) with (9o, Or). 

Comparing the Analytical and Empirical Distributions 

Formulae are now available for the joint probability density of two zero crossing 
angles Oj and two zero crossing fractional times zo and z1, given the separation of 
i samples between the crossings. It is worth checking that these probability density 
functions resemble histograms generated using random data. The angles and fractional 
times are computed for white Gaussian noise convolved with the seven-sample impulse 
response' 

h[n] =10.5 -0.3 0.2 -0.3 -0.2 -0.1, (4.149) 

when the samples are separated by i=6. The two-dimensional probability densities 
are shown in Figure 4.22 as images. The density function for two crossings angles is 
shown in two formats: the first (A) uses the four-quadrant inverse tangent function, 
implying some knowledge of the sign of the samples, i. e., 93 = atan2(x;, l, x;, o); 
the second (B) uses the principal value of the angle computed from the zero crossing 
time, arctan(1-1/zj). Figures 4.22C and 4.22D respectively show the analytical and 
empirical probability density for two fractional crossing times. The visual agreement 
between the two images suggests that the analytical approach works. All that remains is 
to incorporate this procedure into the decision rule of the interpolated interval detector 
and to repeat the evaluation experiment a final time. 

1A narrowband filter impulse response produces a two-dimensional probability density function that 
appears as a thin sliver when plotted as a two-dimensional image, and this makes it difficult to assess 
visually whether the empirical and analytical p. d. f. s match. For this reason, an impulse response that weakly 
correlated the samples was used. It is the same impulse response as (4.119). 
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Figure 4.22: Probability density function for a pair of interpolated crossings (. see text). 
A) the p. d. f. for two angles; B) the p. d. f. for two principal-valued angles: C) the p. d. f. 

for two zero crossing fractional times; D) the histogram corresponding to (C). 

4.5.3 Setting up the Experiments 

The narrowband detection experiment described in Section 4.1 is repeated once again 
for the interpolated interval detector. One of the main interests, as with the continuous 
interval detector, is to see whether the interpolated interval detector overcomes the 
problem of performance degradation at high frequencies by incorporating additional 
information from the fractional zero crossings. 

The procedure for finding the likelihood functions for Hoy and Hl is straight-forward. 
The autocorrelation function for each system is found in the same manner as the 

sampled interval detector. As each interval is received, the values for i, zo and :. º 
are computed and submitted to the function (4.147) conditioned on p kj and pi [V 

. 
Whichever hypothesis associates the most probability density with the measurements is 

selected. An alternative and equivalent implementation of this likelihood test operates 
on i. and 01. 

In the three earlier experiments, little effort was required to predict the probability 
of error before experimental results were obtained. Predicting the performance of 
the interpolated interval detector is substantially more time-consuming because the 
likelihood functions must be integrated effectively in three dimensions rather than one. 
For this reason, only the experimental probability of error is considered. 
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Figure 4.23: Probability of error in the detectors presented so far. The predicted and 
observed values are shown using lines and markers, according to the following key: 
squared-envelope detector (solid line; solid circle "); sampled interval detector (dotted; 
cross x); continuous interval detector (dash-dotted; open circle o) and interpolated 
interval detector (no analytical results; plus +). 

4.5.4 Experimental Results and Analysis 

Figure 4.23 reveals a close correspondance between the results of the continuous 
interval detector and those of the interpolated interval detector. We shall not, therefore, 
explicitly address the first three research questions advanced in Section 4.1.5, except to 
note that the answers are identical to those given for the continuous interval detector in 
Section 4.18. 

Is it possible to predict the performance of the detector? It is presumably possible to 
predict the performance of the interpolated interval detector by a fine-grained numerical 
integration of the probability density functions. The main intention behind this question 
was to ensure that the theory and experimental results were in accordance, as a means 
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4.5 Interpolated Interval Detector 

of mutual validation. The close match between the results of the CID and III) serves to 
validate the latter. 

How do the results of the different detectors compare? The similarity between the 

performance of the continuous and interpolated interval detector is expected, given that 
both detectors have access to the similar information, expressed in a slightly different 
form. Concerning the small differences in performance where they do appear: at 
most data points, the interpolated interval detector performs slightly worse than the 
continuous interval detector (e. g., the top left-hand plot of Figure 4.23). It is rather 
surprising that the performance of the III) is worse than that of the CID, considering 
that i) the III) ideally commits no model errors, and the CID certainly does; and 
ii) the continuous interval statistic, i, provides less information than the test statistic 
(i, zo, zi) " 
There are at least two reasons why the probability of error estimated for the interpolated 
interval detector might appear higher than that given for the continuous interval 
detector. First, these results were obtained by measuring the outcome of a finite 
number of trials-a standard approach to estimating population statistics. If too few 
trials were conducted (i. e., the detectors were evaluated in too few instances) then it 
is possible that the results did not converge adequately, and that, given further trials, 
the III) might be shown eventually to outperform the CID. A second possibility- 
and the more likely, in this author's opinion-is that numerical instability in the linear 
transformations required to obtain the III) likelihood functions (cf. Section 4.5.2) led to 
a mild degradation in performance. (Specifically, the matrix Ey is badly-conditioned 
for narrowband processes. ) 
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4.6 Summary 

This chapter has developed three elementary interval detectors and evaluated each one 
in a simple task requiring the detection of a narrowband Gaussian process against a 
background of white noise. Each detector extracts one zero crossing interval from the 
output of an analysis filter and then decides on the basis of this measurement whether 
or not the signal is present. 

The sampled interval detector chooses between a signal-and-noise and noise-only 
model on the basis of the number of samples between two zero crossings. This detector 
was generally only effective at low frequencies where the intervals were sufficiently 
sampled to resolve frequency information. For a sample rate of 16384 Hz, the detector 
performed poorly above about 200 Hz. 

The continuous interval detector was developed as the first solution to the sampling 
problem and uses continuous signal models in conjunction with interpolated zero 
crossings. The detector has been shown to perform consistently at all frequencies tested 
(200 Hz-1 kHz). 

Another solution to the sampling problem was the interpolated interval detector, which 
uses a coarse measure of the interval, like the sampled interval detector, but augments 
the detection decision with additional information from the fractional zero crossing 
times computed by a linear interpolation. This detector achieved a similar probability 
of error to the continuous interval detector. 

At each stage, the performance of the interval detectors was compared with that of 
a squared-envelope detector. The two were shown to behave quite differently. The 
envelope detection is dependent exclusively upon the attenuation of the signal and the 
SNR, whereas interval detection is sensitive to the frequencies and bandwidths of the 
signals concerned. If the centre of the analysis filter and the signal frequency coincide, 
then detections must be made solely on the basis of interval variance; if the signal is 
displaced from the band centre, the mean interval is affected and detection improves. 
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Chapter 

Further Developments of 
the Interval Detector 

In order to place this chapter in its context, it is helpful to retrace the steps that 
have led up to this point. In Chapter 2, we reviewed sonne of the leading theories 

concerning the encoding of acoustic signals in the auditory nerve and provided a 

survey of computational models that generate auditory-style signal representations. 
Chapter 3 opened with a short account of conventional, power-based sonar detection 

and proceeded to investigate whether spectrograms generated by auditory-motivated 
algorithms could be adapted to narrowband sonar applications. It was difficult to judge 

the superiority of one algorithm over another simply by viewing the spectrograms, and 
it seemed evident that an evaluation based on statistical detection theory would deliver 

more robust conclusions. To this end Chapter 4 considered the most elementary unit 
of information in most timing-based representations-the zero crossing interval-and 
developed an optimal detector to operate on this test statistic. 

Looking ahead, our ultimate intention is to develop auditory-motivated algorithms 
to detect, track and group tonal components in real sonar signals, and ideally this 
development should be guided by a comprehensive account of the statistics of temporal 
representations, such as the EIH and ZCPA. However, there remains a gulf between the 
modest results of Chapter 4 and the full-blown description implied above. The purpose 
of Chapter 5 is to bridge this gap by extending the detection routines of Chapter 4 in 

a number of useful directions. These extensions each attempt to remove a restriction 
imposed at the beginning of the previous chapter. 

First, the probability of error was the sole performance metric, whereas conventional 
sonar system performance analysis more often considers the probability of detection 

when the false alarm rate is held fixed (Burdic, 1984). The decision rule of the interval 
detector must be modified to maximise the probability of detection rather than to 
minimise the probability of error. This will allow us to present the performance of 
an interval detector in a more familar way (e. g., via ROC curves). 



Second, we assumed that the signal was a stationary Gaussian random process. The 

most appropriate model for a clean tonal is a sinusoid with constant amplitude and 
frequency, and random phase. This kind of process is non-Gaussian and therefore 
demands separate treatment. 

Third, we assumed that the detectors operated on timing information alone; all 
information concerning the envelope was discarded. By contrast, the auditory system 
appears to preserve information about timing and power, as do models such as the EIH 
and ZCPA. The results from Chapter 4 demonstrate that the power detector is superior 
if the signal in placed near the band centre, but the interval detector is superior if the 
signal is sufficiently displaced from the band centre. This clearly motivates the search 
for a hybrid detector, which capitalises on the information in both the zero crossing 
intervals and the envelope. 
Fourth and fifth, we assumed that the detector operated on a single interval recorded 
from a single analysis filter. Power-based sonars integrate information over long time 
periods, in a process referred to as post-detection integration, in order to secure a high 
performance at a low signal-to-noise ratio. If timing-only or hybrid detectors are to 
compete at similar SNRs, we will need to understand how to combine information from 
many zero crossings as they arrive. The topic of detection using multiple intervals on 
short times scales falls under a single heading (§5.4). Detection using intervals that are 
sufficiently removed in time to be independent and identically-distributed is discussed 
under a separate heading (§5.5). 

Chapter 5 Outline 
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5.1 Performance Metrics 

The probability of error (PE) figured prominently in Chapter 4, in at least three senses. 
First, the PE was the target quantity that the decision rule of every detector was 
designed to minimise. Second, the probability of error was the only dependent variable 
considered. In each experiment, a parameter such as the SNR or signal frequency was 
varied, and the effect upon a detector's PE was recorded in the form of a graph (e. g., 
Figures 4.5,4.12,4.18 and 4.23). And third, the PE was the sole evaluation metric for 

comparing the performance of detectors. 

Detectors that minimise the probability of error assign an equal cost to false alarms 
and false dismissals. In many sonar applications, however, it is desirable to assign a 
different cost to each kind of error, usually in order to maintain a constant false alarm 
rate (CFAR). The false alarm probability depends entirely on the noise-only likelihood 
function. Finding the optimal decision regions for a power detector is straight-forward, 
because in most circumstances, the addition of a signal consistently raises the average 
received power. At its simplest, a power detector need only threshold any test statistic 
that varies monotonically with power, such as the envelope or squared-envelope. 

Incorporating CFAR into interval detection is less obvious. Adding a narrowband 
signal to band-pass noise causes the zero crossing intervals to gravitate towards a 
central value related to the signal frequency. This in turn implies (at least) two 
thresholds: one threshold rejects intervals that are too short, the other rejects intervals 
that are too long. It is possible to set the probability of false alarm by sliding the first 
threshold to adjust the sensitivity of the detector to short intervals. Alternatively, one 
could modify the second threshold and adjust the sensitivity of the detector to long 
intervals. Either approach will affect the probability of detection differently, and the 
question naturally arises: What combination of thresholds fixes the probability of false 
alarm at the desired value and maximises the probability of detection? To answer this 
question, we must revisit the Neyman-Pearson criterion. 
It was seen in Chapter 3 that the Neyman-Pearson criterion fixes the probability of false 
alarm at a prespecified value, p f, and then proceeds to maximise the probability of 
detection. (The prior probabilities are assumed to be uniform. ) The Neyman-Pearson 
criterion is satisfied by the decision rule 

choose Hl if pl° ýi j Höh 
> 77, otherwise choose Ho. (5.1) 

pi is 

The decision regions can be calculated for a variety of 71 by inserting the appropriate 
conditional interval probability density functions into (5.1). The values of i, that cause 
the likelihood ratio to exceed the likelihood threshold are assigned to R1; the remainder 
are assigned to 7Z0. Once the decision regions have been determined, the probability 
of detection and false alarm may be found by integration. 
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Figure 5.1: Decision regions for an interval detector computed using MGMMs. The 

area of the light grey region corresponds to p f,,; the dark grey area corresponds to the 
probability of false dismissal (pfd), or equivalently, 1- Pd. The parameter r? adjusts 
the trade-off between false alarms and false dismissals. A) minimum error decision 

regions; B) lowered likelihood threshold, fewer false alarms, increased specificity; 
C) raised likelihood threshold, fewer false dismissals, increased sensitivity. 

5.1.1 Examining the Decision Regions 

The decision regions of interval and power detectors are qualitatively different. 
Most importantly, the likelihood functions of a squared-envelope detector intersect at 
exactly one point-provided that there is some difference in power between the two 
hypotheses-whereas those of a continuous interval detector generally intersect at two 
points. This restates the earlier observation that adding a narrowband signal to noise 
(primarily) increases the mean of the squared-envelope but decreases the spread of the 
zero crossing intervals. 

Figure 5.1 A marks the intersections of a noise-only and signal-and-noise interval p. d. f. 
when 71 is set to one. One can see from (5.1) that varying q effectively rescales the 
noise-only likelihood function: decreasing rl causes the intersections to move apart 
(Figure 5.1B), and increasing rI causes the intersections to close together (Figure 5.1 C). 
The corresponding effect upon the probability of false dismissal (i. e., 1- Pd) and 
probability of false alarm (p fa) is conveyed by the lower row of plots of Figure 5.1. 
Decreasing 71 causes the probability of false alarm (light shaded region) to increase and 
the probability of false dismissal (dark shaded region) to decrease, and vice versa. 
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Figure 5.2: A) receiver operating characteristic (ROC) curves for the continuous 
interval detector for signal-to-noise ratios from 10 dB to 40 dB in 5 dB steps; B) ROC 

curve relating detection performance at 10 dB SNR, plotted on a log-log scale. 

5.1.2 Producing ROC Curves for Interval Detectors 

To produce a ROC curve for the continuous interval detector, we repeat the following 
two steps for a variety of 77: i) compute the decision regions Ro and Ri by finding the 
intersections of r)pi, (i, I Ho) and pl, (i, I Hl); ii) determine the true positive and false 
positive probabilities by integration. 

Pd =f 
IZi (n) 

pig (ic j Hi )di,, (5.2) 

Pfa =J plý(i, I Ho)di,. (5.3) 
Rl (n) 

There are at least three implementational issues to consider here: first, how to choose 
the set of n's; second, how to find the intersections between the p. d. f. s; and third, 
how to perform the integrations. The MATLAB script written to generate the figures 
in this section chooses the rd's in two steps: the first, "coarse" step distributes 100 
points evenly on a log scale between 10-2 and 102, and a second, "refinement" step 
then interpolates 100 points into the regions of the ROC curve that are least smooth, 
i. e., where the differences in ppa or pd are greatest. The script performs the second and 
third stages numerically: the conditional p. d. f. s are discretised, the decision regions are 
determined by point-wise comparisons, incorporating the i factor, and the integrations 
are replaced by summations with an integration step of 0.1 As. (This procedure directly 
corresponds to that suggested by Figure 5.1. ) 
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Figure 5.2A shows a set of ROC curves for a continuous interval detector. The signal 
is a random process formed by convolving white noise with the impulse response with 
MGMM definition 

Ahe = (A1, C=2.5, µ=0, w=2ir"400,0=0) (5.4) 

+ (Al, C=2.5, p=0, w= -27r " 400,0 = 0), (5.5) 

where Al is included to scale the process to unit power. The signal must be detected 

against a background of white noise with power spectral density No/2. The impulse 

response of the analysis filter has the MGMM definition 

Aha = (A=1, C=40, Fc=0, w=2ir"400, c =0) (5.6) 

+ (A=1, C=40, µ=0, (D =-2ir"400, -0 = O. (5.7) 

To produce an ROC curve in Figure 5.2, a signal-to-noise ratio is chosen, and the 
true positive and false positive probabilities are computed analytically for two-hundred 
values of 77, spaced logarithmically between 10-2 and 102 (see above). A set of ROC 
curves is obtained by varying the signal-to-noise ratio. 

A ROC curve provides an overall picture of a detector's performance at a particular 
SNR. The top-left hand corner (0,1) is the perfect classifier; the points on the dotted 
line, pd = pp, are equivalent to chance performance. For example, the probability of 
detecting a signal when the signal-to-noise ratio is 30 dB, constraining the probability 
of false alarm to 0.1, is read off from the graph as 0.52. Similarly, to secure a false 
alarm probability of 0.2 and a detection probability of 0.4, an SNR of approximately 
20 dB is required. For very small p f,,, it is often appropriate to plot the ROC curve on 
a log-log or log-linear scale. Figure 5.2B shows the ROC for the 10 dB SNR condition 
plotted on a log-log scale. The interval probability density functions are imperfect in 
the tail due to ill-conditioning (cf. Section 4.3.3); consequently, obtaining an estimate 
of pd for very low p f,, is often impossible unless the SNR is very low. For this reason, 
the ROC curves included here are plotted on a linear scale. 

Computing ROC Curves for the Envelope Detector 

The continuous interval detector ROC curves were determined implicitly by computing 
(pfa, pd) pairs, whilst varying the free parameter 77. We turn now to the production of 
ROC curves for the baseline power detector, which operates on a single sample of the 
squared-envelope. In this case, an explicit function pd(p fa) is readily available. It can 
be shown that two exponential probability density functions with o> oö intersect at 
exactly one point, e=e, and that Rl = {e :e> e}. The probability of false alarm is 
therefore given by 

pfa = P(Di Ho) -f 2ýa exp 
-2ýde, 

(5.8) 2 

which does not depend on the signal-and-noise distribution. The threshold on the test 
statistic, E, can be computed for a given probability of false alarm by solving and 
rearranging (5.8), i. e., 

E_ -2oö 1ogp fa. (5.9) 
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Finally, placing (5.9) into the expression for the probability of detection, we arrive at 
an expression for the relationship between pfa and pd, which can be used to construct 
a ROC curve directly. 

Pd = I'(Di Hi) = 
100 

2Qi exp 1-e 2o, 2 
1) 

de (5.10) 

2 
\\ 

= exp 
ý 

vý2 
logPfa I (5.11) 

/ 

=0 1" (5.12) Pfa 

Figure 5.3 plots four sets of ROC curves for the squared-envelope and continuous 
interval detectors, in which the signal frequency is respectively set to 400,410,420 
and 430 Hz. The narrowband SNR is the family parameter and assumes the values 10, 
20,30 and 40 dB. 

5.1.3 Identifying Regions of Superior Performance 

It is difficult to gain an overall insight into the conditions under which the continuous 
interval detector outperforms the squared-envelope detector, simply by examining the 
collection of ROC curves in Figure 5.3. The family parameter in a set of ROC curves 
must be discretised in order to present the data as a series of curves--or on separate 
axes altogether-whereas one is often interested to know how performance is affected 
as a parameter is varied smoothly. With this in mind, we shall define a superiority 
measure, p'd, which relates the benefit of using an interval detector, if any there is any, 
in teams of the increase in detection probability: 

_ 
Pd, cid(c) - Pd, sed(') Pd, cid(c) > Pd, sed(C) Pd(C) 0 otherwise. 

(5.13) 

Here, c abbreviates a set of conditions, e. g., pfa,, SNR and f,; and pd, cid(. ) and 
pd, sed(. ) refer to the corresponding probability of detection for the continuous interval 
and squared-envelope detector, respectively. Note that p'd is zero whenever the interval 
detector is inferior to the squared-envelope detector. 

Each image in the top row of Figure 5.4 displays a two-dimensional representation of 
p'd(p fa, SNR), with f, held fixed at five different frequencies. Grey areas highlight the 
regions in which an interval detector is superior, with brighter regions indicating larger 
increases in performance'. The black areas represent regions of inferior performance. 
Similarly, each image in the bottom row of Figure 5.4 displays a two-dimensional 

1 It should be noted that the values in each image of Figure 5.4 are scaled to occupy the full colour map 
in order to maximise contrast. The peak values of pd across each image are tabulated below. The layout of 
the cells corresponds to the layout of the subfigures. 

0.0076 0.0555 0.1239 0.1891 0.2450 
0.0059 0.0453 0.1538 0.2442 0.1009 
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representation of p'd(p fa,, f, ), with the SNR held fixed at five different values. This 
kind of image allows one to choose which detector to employ in specific circumstances. 
For instance, if the probability of false alarm is to be fixed at 0.25, the SNR is 10 dB 

and the signal frequency is 415 Hz, then a continuous interval detector is preferable. It 
is also seen that if the signal frequency is 405 Hz, then the continuous interval detector 
is inadmissible for all but a very narrow range of parameters in which Pf n is very high. 

5.1.4 Producing Transition Curves for Interval Detectors 

Another alternative to using a ROC curve to present detection performance is a 
transition curve. A transition curve plots detection probability against signal excess, 
whilst maintaining a fixed probability of false alarm. Signal excess (SE) is defined as 
the difference between the true signal level and the signal level required to achieve a 
nominal probability of detection (usually 50%), with respect to a particular choice of 
detection threshold (Dawe, 1997; Urick, 1976). A transition curve would typically be 

used as follows. The probability of false alarm is set to some suitably small value, and 
the probability of detection is set at 50%. A particular choice of pp, and pd dictates 
the detection index and the detection threshold, DT, that is, the lowest SNR at which it 
is possible to achieve the preset performance. Of course, the signal-to-noise conditions 
vary greatly at sea, and the transition curve shows how the probability of detection 
improves when the SNR is higher than expected (SE >0 dB), or deterioriates when 
lower than expected (SE <0 dB). By definition, all transition curves pass through the 
point (0,50%). 

Whilst one can generate a transition curve for a power-based detector with relative ease, 
the production of transition curves for an interval detector requires a rather awkward 
series of computations. Ideally, the manner in which the transition curve is employed 
would suggest how it is to be computed: first, the SNR required to achieve pp, and 
pd = 0.5 is calculated (i. e., DT); next, the decision regions are identified and held in 
place; and lastly, the probability of detection is plotted as the signal excess is varied. It 
is difficult to carry out the first step because there is no practical, analytical means of 
mapping a (Pf ai pd) pair to a detection threshold. 

A more circuitous solution is to fix the detection threshold and then find a likelihood 
threshold, 7750%, which approximately satisfies pd = 0.5 using an iterative scheme, 
such as interval bisection. The probability of false alarm is calculated for the 1)50%o 
parameter and subsequently used to label the transition curve. The decision boundaries 
are identified by zero crossings in the function 

, 
Hi) - 7750% pry (ic Ho) Prc (zc 

An upward crossing reveals the lower decision boundary, i, 0, and a downward crossing 
reveals the upper decision boundary, il. Finally, the signal-and-noise cumulative 
distribution function is computed for a variety of signal excesses, and then differenced 
at the upper and lower decision boundaries in order to compute the modified probability 
of detection, i. e., 

Pd(SE) = P(Ic <- iii) - P(I, < ioo)" 
Figure 5.5 presents a collection of four transition curves generated in this way. 
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Figure 5.5: Transition curves for a continuous interval detector, calibrated to give a 4%, 
9%, 24% and 44% probability of false alarm. In each case, when the signal excess is 
0 dB, a 50% detection probability is assured. The legend lists the detection thresholds 
from which the probability of false alarms were derived at SE = 0. 
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5.2 Detection of a Sinusoid 

5.2 Detection of a Sinusoid 

In the derivations and detection studies reported earlier, we assumed that the target 
signal and background noise were zero-mean stationary Gaussian processes. This 

assumption was made largely to ease the derivation of the conditional probability 
density functions upon which the detectors rely, but at the expense of restricting the 
application of the detector to just one class of signal model. 

The passive sonar literature is chiefly concerned with the detection of sinusoidal target 
signals against a Gaussian noise background, making the detection of a sinusoid in 

noise the most relevant line of enquiry when first venturing beyond the stationary 
Gaussian targets considered so far. In this section, the signal to be detected is a random 
process of the form 

A cos(w, t + 0), (5.14) 

where A and wc are constants that set the amplitude and frequency, respectively, and 
0- Uniform{-ir, 7r}. Random processes of the form given in (5.14) are referred to 
hereafter as randomly-phased sinusoids. The goal, then, is to detect a randomly-phased 
sinusoid in the presence of additive stationary Gaussian noise using a zero crossing 
interval. 

A pure, noise-free sinusoid with radial frequency w only generates intervals equal to 
its half-period, so the continuous interval p. d. f. in this special case is self-evidently 

'r 5 15 Prr (zc) =6 it - WC 

Deriving the interval p. d. f. for a sinusoid mixed with noise presents a greater challenge 
however. If the sinusoid has uniformly-random phase, then the process is stationary 
but non-Gaussian; if the phase of the sinusoid is fixed, then the process is Gaussian 
but non-stationary: either case violates one of the requirements set out above (Whalen, 
1971). As our main focus is on the first case, we must either: i) re-derive the interval 
distribution for a sinusoid in noise from first principles; ii) disregard the Gaussian 
assumption and proceed as though the target process were Gaussian, incurring some 
penalty from the mismatch between the model and real data; or iii) adapt the method or 
process in such a way that the two become mutually compatible. The three approaches 
that are presented next examine each of these options in turn. 

5.2.1 A Derivation Specific to a Sinusoid in Noise 

Earlier, we arrived at the interval density function by considering the probability of sign 
changes in a random process. The probability of a particular pattern of sign changes 
was evaluated by integrating the joint density function for the samples of the process 
in an orthant region. We shall take the same approach in this section, only this time 
the distribution governing a set of samples will be non-Gaussian. Other approaches 
to determining the probability of an interval, i. e., those based on something other than 
the sign changes of a stationary random process, are not considered here (but review 
Section 1.2.2 above). 
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The cumulative distribution function governing the zero crossing interval for a general 
wide-sense stationary process was determined in Section 4.3.2 (with intervals restricted 
to ko <i< 2ko for some ko) in terms of two orthant probabilities: 

n-1 

n-k-1 n 

2P(xn < 0, xn_1 01 xn-k-1 < 0) 

P(I < k) =1- 
2P(xn > 0, xn_1 > 0) 

ko <k< 2ko 
(5.16) 

0 k<ko 
1k> 2ko. 

Note that the formulation in (5.16) also assumes that a sequence of sign changes and 
its negation (i. e., the same sequence "upside-down") are equiprobable. Tackling this 
problem for a sinusoid in noise requires first obtaining an expression for the joint p. d. f. 
for two and three samples then integrating the appropriate orthant. We shall start by 
obtaining the distribution for a single sample in the random process. 

The received process X is an additive mixture of a sine wave S and Gaussian noise 
samples V. The distribution governing the samples of a clean sinusoid with amplitude 
A>0 can be found by considering a single cosine period, normalised between -ir 
and 7r. Consulting the sketch in Figure 5.6, the cumulative distribution function of S is 
seen to be (Bendat and Piersol, 2000) 

1- arccos(Ä) -A<s<A 
P(S<s; A) 0 s< -A 

(5.17) 

1 s>A. 

The probability density function governing S is the derivative of (5.17). 

dP(S<s; A) 1 
-A<s<A ps(s; A) == A2 - s2 (5.18) 

ds 0 otherwise. 

The individual samples of the noise process V are governed by a Gaussian distribution 
with variance v2, i. e., 

( 
pv (v) - 2ýQ2 

exp 
2 

I 
-2Q2 

) 
(5.19) 

The probability density function governing the sum of two independent random 
variables is found by convolving the p. d. f. s of the individual variables (Peebles, 1993). 
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A 
s 

Figure 5.6: A single cosine period. 

As the sinusoid and noise samples are independent, it follows that the p. d. f. of the 
noise-added sinusoid is given by the convolution integral 

px(x; A) =1 
exP(-(x - e)2/(2a2)) de, A= (-A, A). (5.20) 

27r3Q2 

fA 
A2 %- e2 

An alternative approach to finding the probability density function, outlined by Whalen 
(1971), is determined by means of characteristic functions and takes the form of two 
nested infinite series'. For an alternative expression, see Bendat and Piersol (2000). 

For our purposes, it seems that neither the integral solution given in (5.20) nor the 
infinite series provided by Whalen is a workable option, especially considering that 
up to now we have only dealt with individual samples. Looking ahead to the joint 
probability density for two or three samples, the author surmises that it is possible 
to write down an expression for these p. d. f. s in integral form 2, but integration of the 
resulting expression for the p. d. f. in an orthant region, by all but numerical methods, 
lies firmly beyond reach. 

5.2.2 Treating a Sinusoid in Noise as a Gaussian Process 

As directly deriving the interval distribution fails, the second option is to employ the 
interval density function derived for Gaussian processes, ignore the fact that a sinusoid 
in noise is non-Gaussian, and tolerate a certain loss in performance. If the analytical 
and empirical interval p. d. f. s appear to compare favourably, then some formal work 
can be undertaken to establish bounds on the model error; if not, the method will be 

'See Whalen (1971), page 100. 
2For instance, the solution to the joint p. d. f. for two samples is 

12212 S+E-13+ STE-IS_ 
PXnXn+k(' Xn+k) = 

47r2IEl1/2 

f 

A(A 
-ý )- 

lexp 

-2 
+exp 

-2 
dý 

where, given the covariance matrix E, sampling interval At and sinusoid frequency we, 

_f (_ ) sý e cos(wcnAt 

1, 
A=A, A. 

)T 1-£2 sin(wcnOt)) 
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A. Autocorrelation 

0.5 

E 
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0 20 40 60 

B. Interval Probability Density 

Figure 5.7: Autocorrelation function (A) found empirically (solid line) and analytically 
(obscured dotted line); interval probability density function (B) obtained empirically 
(solid line) and analytically, using a limiting approach (dotted line). 

deemed inadmissable. The first step is to decide upon a Gaussian process that is a 
suitable candidate for replacing a sinusoid. 

A pure sinusoid of infinite duration manifests in the frequency domain as two Dirac 
delta functions at a positive and negative frequency. An impulse of this form may be 
obtained as the limit of a Gaussian function as its width tends to zero, whilst its area 
is held constant (Peebles, 1993). This suggests modelling a sinusoidal process as a 
concentration of energy at a single frequency, or as noise passed through a filter whose 
width is vanishingly small. If we convolve white Gaussian noise with the familiar 
impulse response 

h3(t) = exp(-2(C(t - µ))2) coswCt (5.21) 

and allow C -> 0, then the autocorrelation function becomes 

p(r) = COS wr (5.22) 

in the limit, and for the c. d. f. for the interval distribution from (4.69) we get 

1 sin w, i, 1 
sin W2) 

T0 <i< 2Tp 

T) 
Z 

= , 1(5.23) 
0 is<To 
1i! 2ro. 

This cumulative distribution (5.23) constitutes a step function from 0 to 1, in which the 
discontinuity occurs at tic = 7r/w,. This is of course consistent with the intervals of a 
pure sinusoid with frequency f, = 21rw, Unfortunately, a sinusoid added to band-pass 
Gaussian noise cannot be modelled in this naive fashion. The equations governing the 
changes of sign in a Gaussian process, derived earlier, hold when the filter is extremely 
narrow but become degenerate in the limit. 

Figure 5.7 compares the interval distribution obtained by modelling a sinusoid as an 
infinitely-narrowband Gaussian process with a histogram formed from the intervals of 
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P(x) P(a) 
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Gaussian sine 

Figure 5.8: Illustrative probability density functions for the samples of a narrowband 

process measured over a short (dark grey) and long (light grey) time scale. 

a random signal. In this case, the random signal is a 420 Hz sinusoid added to white 

noise with a narrowband SNR of 30 dB, filtered with a band-pass filter whose impulse 

response has the MGMM description 

(1,40,0, +27r . 400,0) + (2 , 40,0, -27r . 400,0) . (5.24) 

The procedure for finding a time-invariant autocorrelation function generalises to 
any wide-sense stationary process, including those whose samples are non-Gaussian 
distributed, so the agreement between the analytical and empirical autocorrelation 
functions in Figure 5.7A is expected. On the other hand, Figure 5.7B reveals a marked 
difference between the analytical and observed interval probability density functions; 
in particular, the true p. d. f. exhibits a greater degree of asymmetry than the model. 
These differences must be attributed to the non-Gaussian distribution of the signal 
samples, because the autocorrelation functions are identical, and the interval p. d. f. is a 
function only of the autocorrelation. Maximum likelihood detectors rely upon a good 
match between the model conditional distributions and the true distribution of the data 
to perform well, so the results in Figure 5.7B clearly rule out the approach attempted 
in this section. 
Consideration of the envelope of a Gaussian process offers a further insight into why 
the limiting approach fails. A narrowband Gaussian process can be envisaged as a 
sinusoid with a slowly fluctuating envelope and phase: in the short term, the samples 
of the process show a sinusoidal distribution, but in the long term, the samples are 
Gaussian-distributed (Figure 5.8). If such a signal is mixed with a band-pass process, 
then, during the wax of the signal envelope, the mixture and its intervals will be 
dominated by the signal; conversely, during the wane of the signal envelope, the 
mixture will be dominated by noise, and the intervals will exhibit higher variance. If the 
signal bandwidth is reduced, the envelope varies at a lower frequency, i. e., the waxes 
and wanes drift further apart, and it becomes necessary to observe a longer window of 
the signal before the empirical interval distribution and the true population distribution 

converge. If the signal bandwidth is infinitesimal-our present strategy for modelling 
a sinusoid-then the signal envelope is constant, and the samples of the process never 
converge to a Gaussian distribution. 
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5.2.3 A Sinusoid with a Rayleigh-distributed Random Amplitude 

In the third and final study, we tackle the problem of finding the interval distribution 
for a sinusoid in noise by considering a closely-related random process, 

G(t) = AI cos w, t + AQ sin wet, (5.25) 

where AI and AQ are independent Gaussian random variables with zero mean and 
equal variance v2, and we is a constant parameter controlling frequency. This type of 
process is both Gaussian and wide-sense stationary, and is mentioned in connection 
with the zero crossing rate by Kedem (1986). For a given time t, the cosine and sine 
terms are constant, so G(t) is the weighted sum of two independent Gaussian variables. 
Also, the mean of the process G is a constant, 

E{G} = E{Ar cos wit + AQ sin w, t} (5.26) 

= E{AI} cosw, t + E{AQ}sinw, t (5.27) 

= 0, (5.28) 

and its autocovariance is time-invariant (i. e., does not depend on t), 

E{GtGt_T} = E{(AI cosw, t + AQ sin wet) x 
(Al cosw, (t-rr)) + AQ sinw, (t-rr))} (5.29) 

= E{AI} cos(wct) cos(wC(t--r)) 
+ E{A2 } sin(wct) sin(w, (t-7-)) (5.30) 

= v2 cos WCT, (5.31) 

so the process is wide-sense stationary. Because this random process fulfils these two 
key requirements, its autocorrelation function (5.31) can be used to find the distribution 
of its zero crossing intervals, by application of (4.70). 

The Rayleigh Density Function 

The random process described by (5.25) closely resembles the type of process we 
are aiming to model-a randomly-phased sinusoid-but it is not quite the same. The 
randomly-phased sinusoid described in (5.14) can be expanded into 

A cos(w, t + 0) =A sin 0 cos wit +A cos 0 sin wt, (5.32) 

which is identical in format to (5.25), setting AI =A sin B and AQ =A cos 0. The 
joint distribution of AI and AQ is bivariate Gaussian with p. d. f. 

pa, AQ (at, aQ) =21 
7rv2 

ale + aQ2 
exp 

-2v2 
(5.33) 

Transforming (5.33) into polar coordinates, we obtain the joint probability density for 
Aand0, 

a a2 
Pae (a, e) = 2; v2 

exp 
-2v2 ,a>0, 

(5.34) 
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with the marginal densities 

z 
pa(a) = 

vz 
exp 

-2v2, 
a>0 (5.35) 

p®(9) = 
-. (5.36) 

The random process in (5.25) is equivalent to a sinusoid with uniform-random phase, 
as the marginal density (5.36) makes plain. However, the amplitude of the sinusoid is 

now a random variable, governed by the well-known Rayleigh distribution (Peebles, 
1993). The Rayleigh distribution has a single parameter, v2, and to indicate that A is a 
Rayleigh variable, the following notation is used. 

A- Rayleigh{v2} (orR{v2}) 

a a2 
PA(a; v2) = v2 exp 

-2v2' 
a>0. 

We shall now stand back for a moment and review the various random processes 
we have encountered. Our initial aim was to discover the distribution governing the 
intervals of a sinusoid with fixed amplitude, A, and unknown phase, 0, in Gaussian 
noise. However, because that process is non-Gaussian, it is hard to reconcile with 
the theoretical framework laid out already, which strongly rests on the assumption of 
Gaussian distribution. In this section, another sinusoidal random process has been 
introduced, G(t), whose properties include stationarity, Gaussian distribution and 
uniform random phase. Now, however, the amplitude of the sinusoid is random. 
Note that here `random' does not imply that the envelope of a sample function varies 
randomly with time, rather that it is fixed at a random value from the outset (drawn 
from a Rayleigh distribution), and we would like it to be fixed at some constant. 

5.2.4 A Sinusoid with a Constant Amplitude 

Our goal is to find the probability density function that governs the intervals of a 
randomly-phased sinusoid with amplitude A, mixed with a Gaussian noise process. We 
do not yet have a means of evaluating this p. d. f. if A is fixed. However, we concluded 
above that if A is drawn from a Rayleigh distribution, the probability density function 
governing I, is known: 

00 
Pic (i cIA, R{v2}) =f Pic ji, IA= a)PA(a; v2)da. (5.37) 

0 
The expression (5.37) corresponds to the probability density function governing the 
intervals of a sinusoid in noise, whose amplitude is initially chosen according to a 
Rayleigh distribution with parameter v2. Next, let us for a moment imagine that it is 
possible to find a function w(v) which satisfies 

00 fJ w(v)pA(a; v2)dv = S(a - ao). (5.38) 
0 
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A constant amplitude ao, and a random amplitude whose p. d. f., 6(a - ao), concentrates 
all the probability mass upon a single value ao, are equivalent. Hence, 

pr, (zc IA= ao) _ f 
00 

Jo 
00 

0 

Prc(Zc IA= a)*5(a - ao)da (5.39) 

pi (ic A= a) 
[000 

w(v)pA(a; v2)dv] da (5.40) 

w(v) 
[J 

ptý(ic 1A= a)pA(a; v2)da dv. (5.41) 
0 

The bracketed expression in (5.41) is the same as the right-hand side of (5.37), for 

which we possess a solution; all that remains is to find w(v). 

It is not clear whether it is possible to obtain a continuous function w(v) that satisfies 
(5.38). The practical alternative pursued here is to solve for an approximation using 
sampled Rayleigh density functions, 

PA [a; v2] = 
v2 

exp 
-2z v2 , 

(5.42) 

and weighting function, w[v], in which a and v are discrete. In the following analysis, 
the target amplitude has been set, without loss of generality, to ao = 1, and a and v 
have been chosen by hand to assume the values 

ati = 0.01i, 1<i< 200 (5.43) 

vj = 0.02j, 1<j< 25. (5.44) 

A discrete approximation of (5.38) may be expressed in matrix form: 

Rw = t, (5.45) 

where R is a 200 x 25 matrix, whose columns are populated with Rayleigh density 
functions, 

a 
[R,, j] = v; exp 2vß , 

(5.46) 

w is the 25 x1 weight vector that we wish to find, and t is the 200 x1 "target" vector, 
whose entries represent the amplitude density function we wish to approximate, i. e., 

ti 
100 if ai =1 

= 0 otherwise. 
(5.47) 

Generally, there does not exist a vector w that precisely satisfies (5.45); instead a 
standard least-mean squares (LMS) technique is used to minimise a cost function 
expressing the squared-error between the weighted sum of Rayleigh p. d. f. s and the 
target p. d. f., i. e., 

J(w) = (Rw - t)2. (5.48) 

The procedure for choosing w to minimise J(w) is ubiquitous and is described in, e. g., 
Bishop and Hinton (1995). As the steps required are few, we will reproduce them here 
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Figure 5.9: A. a spike at ao; B. an approximation of the spike (by a sum of twenty-five 
Rayleigh p. d. f. s); C. a narrow pulse at ao; D. an approximation of the pulse. 

for completeness. The cost function J(w) is convex, so the cost-minimum * occurs at 
its (unique) turning point, i. e., 

Ow{J}(w) = 0. (5.49) 

So first differentiate with respect to w, 

O,, {J(w)} = V,,, {(Rw - t)2} (5.50) 

_ VT�{(Rw - t)T (Rw - t)} (5.51) 

= 0, � {wT RT Rw + tTt - 2wT RT t} (5.52) 

= 2RTRw - 2RTt. (5.53) 

then equate the solution with zero to find the LMS optimum *: 

RT Rw = RT t (5.54) 
*= (RTR)-1RTt. (5.55) 

The quantity (RT R)-1RT is the pseudoinverse of R (Bishop and Hinton, 1995), often 
denoted Rt or R+, and is computed efficiently by the MATLAB function pinv. 
The target p. d. f., t, is plotted in Figure 5.9A, accompanied by the approximation Rw 
in Figure 5.9B. The approximated p. d. f. succeeds in concentrating the probability mass 
around ao = 1, but there are also a few unwanted oscillations on either side, making 
R* inadmissable, as negative values relate negative probability mass. 
This "ringing" effect is a consequence of trying to model the sharp discontinuity in t 
as the sum of a finite number of smooth functions, similar to that which arises when 
approximating a square pulse with a low-order Fourier series. One solution, in either 
scenario, is to replace the sharp function with a smoother version; in this case, we 
employ a Gaussian pulse centred on ao =1 instead of a spike: 

{t9]2 =1 exp 
(0.01i2q 1)2 

,1<i< 200, (5.56) 

where q controls the width of the pulse and is set at 0.01. The elements of the vector t9 
are plotted in Figure 5.9C. (One informal interpretation of this solution says, "If there 
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is any departure from zero, we would rather it were in the vicinity of ao. ") A new set 
of weights is then computed using 

*9 = (RTR)-'R Tt9, (5.57) 

leading to the approximation R*9, which is shown in Figure 5.9D. From a visual 
inspection, Rw9 is a close approximation of t9, and negative probability mass is no 
longer a serious problem. (A narrower pulse is obtained by setting q=0.005, but a 
small amount of ringing reappears. ) By using different values for a1 and vj, it may 
be possible to find a better approximation; however, the particular solution presented 
above will suffice, as its application in the next section demonstrates. 

5.2.5 The Interval Distribution for a Sinusoid in Noise 

Combining the results up to this point, the probability density function for the intervals 
of a sinusoid with unit amplitude in noise is seen to have the approximations 

25 00 

pjý (zý IA= 1) E[*9]3 f 
ptý (i IA= a)7ýa(a; vý )da (5.58) 

-1 o 
25 

_ 
E[*9]j" pr,, (ic A- R{v, 2}), (5.59) 
j_1 

where w9 is computed according to the previous section, pA(") is the Rayleigh p. d. f., 
and the braced expression is computed using MGMMs (and incorporates the details 
of the noise distribution). This procedure can be extended to a sinusoid with general 
amplitude, ao, by appropriately dilating the Rayleigh p. d. f. s: 

25 

pic(i IA= ao) [ý'ý'9]j - ptý(ic IA, R{aövý }). (5.60) 
j=1 

Note that the coefficients * are unchanged and therefore need only be calculated once. 
Section 5.2.2 described an attempt to derive an interval probability density function 
by ignoring the non-Gaussian distribution of the samples. A comparison of the p. d. f. 
with an interval histogram in Figure 5.9 demonstrated the failure of this approach. 
In this section, we carry out a similar evaluation of the "Rayleigh-sum" technique 
that we have just described. The random process is once again a 420 Hz tone mixed 
with white noise at 30 dB narrowband SNR, and the impulse response of the analysis 
filter is specified in (5.24). Figure 5.10A plots three interval probability density 
functions: a histogram formed by measuring the intervals of a synthesised process, 
which represents the ground truth (solid line); the analytical approximation computed 
using the Rayleigh-sum method (dash-dotted line); and the analytical approximation 
based on the naive assumption of Gaussian distribution (dotted line). The analytical 

This particular spacing of twenty-five Rayleigh p. d. f. s was the result of trial-and-error. Including more 
curves appeared to confer little benefit; reducing the number of curves led to degradation. 
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A. Interval Probability Density B. Approximated Probability Density 
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Q 

Figure 5.10: Interval probability density function for a sinusoid in noise. A) empirical 
(solid), analytical using Rayleigh-sum approach (dash-dotted / obscured) and a limiting 

approach (dotted); B) Rayleigh-sum analytical p. d. f. reproduced from (A). 

p. d. f. produced using the Rayleigh-sum method is virtually indistinguishable from the 
histogram, and constitutes a significant improvement over the naive p. d. f., most notably 
in its ability to reproduce the asymmetrical character of the distribution. (The analytical 
p. d. f. is difficult to discern, so it is plotted again in Figure 5.1OB. ) 

5.2.6 An Interval-based Sinusoid Detector 

The interval-based sinusoid detector is a maximum-likelihood detector, and it operates 
according to the minimum error decision rule: 

choose Hl if PL (2° i Höh 
> 1, otherwise choose Ho. 

pryi 

The only difference between this detector and the continuous interval detector is that 
the conditional probability density function pi, (i, I Hl) in the decision rule uses (5.60) 
instead of (4.70). 

Before we can compare the interval and power-based approaches to sinusoid detection, 
it is necessary to formulate a new squared-envelope detector to use as a baseline. 
Specifically, the likelihood function PE (e I Hl) must model the squared-envelope of 
an additive mixture of a sinusoid and a Gaussian process, rather than a mixture of two 
Gaussian processes. The relevant distributions are widely published (originally, Rice, 
1944), and the main results are summarised below without derivation. 
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5.2 Detection of a Sinusoid 

Sinusoid Detection based on the Squared Envelope 

We recall from Section 4.2 that the distribution of the squared-envelope of a wide-sense 
stationary Gaussian noise process is described by the exponential p. d. f., 

pE(e; a2) = 2ý2 exp 
(-2o. e 

2) ' 
(5.61) 

where Q2 = y(0), and y(") is the process autocovariance function. 

Following the addition of a sinusoid of amplitude A to the mixture, the probability 
density function governing the squared-envelope becomes 

2 12 ýe+ Ia(w2)12``12ý 
(5.62) pE(e; Q A) - exp 

-2Q 

(I('c)IAV'), 

where w, is the signal frequency, Q(") is the frequency response of the analysis filter 

and Io(") is the modified Bessel function with order zero'. This probability density 
function is associated with the non-central chi-squared distribution2 and its derivation 
in this context is explained in Whalen (1971). In closing, we note that Io(z) -º 1 as 
z -- 0, which reassures us that if either A or 4(w, ) is very small, corresponding 
to the case of a weak signal or severe attenuation, respectively, the signal-and noise 
density (5.62) approaches the noise-only density (5.61). 

5.2.7 Experimental Results and Analysis 

Two interval-based sinusoid detectors have been constructed and evaluated, along with 
an optimal sinusoid detector that operates on a sample of the squared-envelope. The 
detection tasks are the same as those carried out in Chapter 4, except that the signal 
is now a sinusoid rather than a narrow notch of noise. The results are plotted in 
Figure 5.11. The test statistic supplied to both interval detectors is computed by 
differencing two linearly-interpolated zero crossing times (cf. Figure 4.16). The first 
detector models the distribution of the intervals of a sinusoid in noise by assuming 
that a sinusoid can be modelled as a Gaussian process with vanishingly narrow 
bandwidth, according to Section 5.2.2. The second detector models the distribution of 
the intervals using the Rayleigh-sum approach described in Section 5.2.5. Theoretical 
considerations and the probability density functions plotted in Figure 5.10 both suggest 
that the second interval detector will outperform the first. 

Two comments are in order concerning the results presented in Figure 5.11. First, any 
significant benefit of using the Rayleigh-sum approach instead of the limiting approach 
appears to be restricted to signal-to-noise ratios in excess of 20 dB. At lower SNRs, 

'The integral definition according to Abramowitz and Stegun (1972,9.6.16) is 

etzcosBd0. 
7r 0 

2or alternatively, a modified version of the Rician distribution. 
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Figure 5.11: Probability of error for the interval-based sinusoid detectors. The 
predicted and observed values are shown using lines and markers, according to the 
following key: squared-envelope detector based on non-central chi-squared distribution 
(solid line; solid circle "); sinusoid interval detector using limits (no analytical results; 
pentagram) and sinusoid detector using sum of Rayleigh densities (dashed line; triangle 
A). 

treating a sinusoid as a Gaussian process incurs very little penalty-in terms of the 
difference in the probability of error visible in the figure, at least-and could be an 
acceptable compromise. Second, and incidentally, comparing these results with those 
in Figure 4.18, it appears that the probability of error is significantly lower when the 
target signal is a sinusoid rather than a narrowband Gaussian process, despite the fact 
that the signal-to-noise ratio is identical. Most of this discrepancy arises because the 
results are given with respect to the pre-analysis SNR, which does not take into account 
the effect of the analysis filter on the signal, as opposed to the post-analysis SNR, which 
does. (The difference was explained in Section 4.1.3. ) 
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5.3 Combining Power and Timing Detection 

5.3 Combining Power and Timing Detection 

All the detectors described so far may be assigned to one of two categories: detection 
based exclusively on power, and detection based exclusively on timing. In an effort 
to contrast the two modes of detection, they have been discussed in separate sections 
and evaluated competitively; but this does not imply that power and timing detection 
are irreconcilable. In fact, we may recall from Chapter 2 that the duplex theory 
of auditory processing, which tentatively reserves a role for both average-rate and 
timing mechanisms, receives considerable support in the physiological literature and 
has consequently found expression in several computational models, including the EIH 

and ZCPA. Kim et al. (1999) have shown that incorporating intensity information into 
a signal representation based solely on zero crossings improves the performance of 
a speech recogniser. The aim of this section is to develop a detector that processes 
information from both the envelope and the zero crossing intervals-if possible, in 
an optimal fashion-as a step towards assessing the detectability of signals in joint 
representations such as the ZCPA. 

The joint detectors described next combine two optimal detectors from the previous 
chapter. The first branch consists of the continuous interval detector, chosen because 
it outperforms the sampled interval detector and is more elegant than the interpolated 
interval detector. The second branch consists of a squared-envelope detector, chosen on 
account of its ubiquity and low-SNR performance (Whalen, 1984). The likelihood test 
for the minimum-error joint interval-peak detector uses the ratio of the joint conditional 
density functions: 

choose Hl iff PI ̀ E 
(Z" e Hl) 

> 1, otherwise choose Ho. (5.63) 
PIýE(ic, e Ho) 

In (5.63), I, is the random variable governing the time between successive zero 
crossings of a continuous random process, and a continuous interval observation, 
denoted ic 

,, 
is computed by differencing the zero crossing times of a sampled process 

estimated via linear interpolation. E is the random variable governing the squared- 
envelope of the process. In what follows, we measure the peak squared-amplitude 
across an interval instead of the peak squared-envelope, which is harder to compute, but 
continue to denote the measurement using e. The justification for this approximation 
is explored more closely in Section 5.3.4. 

5.3.1 Naive Joint Interval-Peak Detector 

The naive approach to modelling a joint density funtion is to replace it with the product 
of the marginal densities, which assumes, often incorrectly, that the variables concerned 
are statistically independent. In the present case, we assume that the duration of a 
continuous interval and its peak squared-amplitude are independent, allowing us to 
write 

PI E (ic, eI Hä) = P1c (2c I Hj)PE (e I H3). (5.64) 

The marginal conditional p. d. f. s, p7, () and pE("), are readily available, so the naive 
joint interval-peak detector can in principle be constructed without further effort. 
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A. Empirical B. Naive 

rf) 

C 
-ji 

Figure 5.12: A) empirical joint probability density function governing interval duration 

and peak squared-amplitude, based on 250,000 samples and plotted as an image. B) the 
nave joint p. d. f. formed by a product of marginals. 

The empirical joint probability density function governing the envelope is shown in 
Figure 5.12A next to the nave analytical version in Figure 5.128. The two surfaces 
differ considerably, but there is some resemblance in the broad, triangular shape. 

The performance of the naive joint interval-peak detector has been evaluated under 
the same experimental conditions as the detectors presented in earlier sections, and 
the results are shown in Figure 5.13. The graphs show the change in error associated 
with i) changes in signal-to-noise ratio (top row of plots), ii) moving the signal away 
from the band centre whilst the SNR prior to analysis is fixed at -20 dB (bottom-left 
plot), and iii) changing both the band centre frequency and signal frequency together 
(bottom-right plot). Because the true joint distribution of the intervals and peaks is 
not yet known, it is impossible to predict the performance of the nave joint detector, 
so only empirical results are shown. The joint detector outperforms the interval and 
envelope detectors under all conditions, except those in which the signal is centred 
on the hand. For signals at the centre of the analysis band, the probability of error 
exceeds that associated with the envelope detector operating on its own, despite the 
fact that the test statistic supplied to the joint detector is augmented with information 
besides the peak squared-amplitude (namely, the interval duration). Along with the 
comparison between the probability density functions, this result confirms that the 
naive assumption is inadequate and motivates the search for a better solution. 

5.3.2 Capturing the Statistical Dependency between Intervals and Peaks 

The failure of the naive detector can be traced to the fact that a zero crossing interval 
and its peak squared-amplitude are statistically dependent. We can make some progress 
towards modelling this statistical dependency by assuming that the peak across an 
interval occurs exactly halfway between the zero crossings and then considering how 
the samples in a Gaussian process can be conditioned. 
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Figure 5.13: Probability of error in the naive joint interval-peak detector. The predicted 
and observed values are shown using lines and markers, according to the following 
key: squared-envelope detector (solid line; solid circle "); continuous interval detector 
(dash-dotted; open circle o) and naive joint interval-peak detector (no analytical results; 
open square O). 

Conditioning on Zero Values 

Our key aim in this section is to find the probability density function governing the 
square of a sample in a Gaussian process, X, given that it is observed in the middle 
of a zero crossing interval of duration i,. Three samples of a zero-mean stationary 
Gaussian process, when separated by intervals of 2 i, (see Figure 5.14A) are governed 
by the density function 

1 xTEj-lx 
PAX(A, xi, x2; zc) - (27r)3/2IE1 1/2 exp 

-2 , (5.65) 
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Figure 5.14: A) Three samples are separated by i, /2, and candidate waveforms are 
unconstrained. B) When the first and third samples are zero, candidate waveforms 
contain a zero crossing interval of duration i, and, in narrowband processes, the middle 
sample A is a nominal peak (or trough). 

where x =- (A, xl , X"2)' and, with 'yx denoting the autocovariance function, 

'Yx(O) 'Yx(2ic) 'Yx(2ic) 
Ei = yx(2zc) Yx(0) 'Yx(ic) (5.66) 

'Yx(22c) 'Yx(ic) 'Yx(0) 

The p. d. f. in (5.65) describes the distribution that one would expect three samples of a 
Gaussian process to follow in the absence of any constraint besides the separation in 
time prescribed by i,. 

In the next step, we modify the probability density function by securing the first and last 
sample to the time axis by conditioning on X1 = X2 = 0, as shown in Figure 5.14B. 
The p. d. f. ' that results is a function of the middle sample alone, or nominal peak 
amplitude, namely, 

in which 

1 A2 
paIrý(A I 2c) = ý27rýý2I)1/2 exp 

-2E2' 
(5.67) 

E2 = 
'& (o) + Yx (o)'Yx (zc )- 2'Y3C 2 

(5.68) 
-(x (0) +'Yx(2c) 

Hence we have shown that the question, "If two samples in a Gaussian process are 
observed to be zero, what distribution governs the sample halfway between them? " 
has the answer, "A Gaussian distribution with zero mean and variance E2: " One final 
step remains: A refers to the value of a Gaussian sample, whereas our goal is to find the 
distribution governing its square. Using the replacement E= A2, the new conditional 
p. d. f. is found to be 

1 PEII, (e I io) _ (2ýeIý2I)1/2 exp 
e 
2E2. 

(5.69) 

1 The tilde above p is a reminder that the p. d. f. has been approximated. 
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Representing Zero Crossings by Naively Conditioning on Zeros 

We have now obtained an expression for the probability density function governing 
the (squared) sample at the midpoint between two zero values in a Gaussian random 
process. From this result, one might be led to reason as follows. 

1. From the previous chapter, we understand that the probability density associated 
with the observation of an interval of duration i,, i. e., pi, (ia), can be computed. 

2. The observation of an interval of duration ic implies two zeros in the signal at 
times to -2i, and to +2i,, with sample values denoted xl and x2, respectively. 
The midpoint of the interval falls at time to, and we label its value A. 

3. Because xl and x2 are fixed, we can determine the probability density function 
that describes the square of the midpoint, i. e., E, by application of (5.69). The 
joint p. d. f. is then given by the product of the marginal and conditional densities: 

PI. E(ic, e) 'PIe(ZO)PEJI, (e I ic)" (5.70) 

This route to finding the joint probability density function is invalid for reasons that 
will be addressed after a couple of remarks in connection with the immediate result. 
First, this expression does fulfil the two basic requirements of a probability density 
function, namely, it is nonnegative for all pairs (ia, e) and the total volume under the 
p. d. f. is one. Second, and by definition, one obtains the correct marginal p. d. f. for i, 

- by integration, i. e., 
00 

Pi. (i) = 
fPIE(ice)de, 

though the same does not hold for the marginal p. d. f. in E. The probability density 
function pIcE(') is shown in Figure 5.15B, alongside the empirical version. The two 
images are clearly quite dissimilar, which indicates a fault in the latest approach. 

Adjusting for Differential Areas when Representing Zero Crossings 

The failure of the zero-conditioning approach presented above stems from the 
conflation of two quantities: the probability density associated with Xl and X2, 
and that associated with I, Properly speaking, the function p... x(... , x1=0) x2=0) 
expresses the probability that the sample values xl and x2 lie in a vanishingly small 
region close to zero (in conjunction with whatever replaces the ellipses); the difference 
between the sample times is fixed at i.. The function ply (i, ) bears the converse 
description: it expresses the probability that the difference in sample times occupies 
a vanishingly small region surrounding i,, whilst the values of the samples are fixed 
at zero. Considering one of the crossings, a small region of probability density 
associated with a small change in X around zero, which we label 6X, corresponds 
to the probability density associated with a small change in interval duration, 6I, as 
shown in Figures 5.16A and 5.16B. It is evident from the diagram, and the discussion 
of perturbation analysis in Section 1.2.2, that the ratio between the two depends on the 
slope of the signal through the zero crossing. 
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A. Empirical B. Zero Conditioned (Naive) 

Cr 

C 

C 

C) 

Figure 5.15: A) empirical joint probability density function governing interval duration 

and peak squared-amplitude, based on 250,000 samples and plotted as an image; B) the 
joint p. d. f. formed by conditioning the peak sample on zero values either side (eqn. 
5.70). 
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Figure 5.16: A) a small variation in a sample value around zero: B) the corresponding 
small variation in the zero crossing time, dependent upon the slope of the waveform 
near the crossing; C) an estimate of the slope of the waveform is found by stereotyping 
the waveform to a cosine period around to. 

The derivatives at the zero crossing times must be known before the probability density 
functions can be corrected. unfortunately, they are not. This problem is addressed 
by stereotyping the waveform on very short timescales to a sinusoidal form. (See 
Figure 5.16C. ) This seems to be a reasonable assumption for a narrowband process with 
a slow-varying envelope. If the nominal (signed) peak value, A, occurs at time toi. and 
is preceded and followed by zero crossings at times toi - 

!, i,. and 1O+ z i,., respectively, 
then the signal is approximated locally by 

((t_ to) x(t) Acoý 
). 

(5.71) 
1ý 

(' 1 
Ic 
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5.3 Combining Power and Timing Detection 

Using this relationship, it is possible to eliminate any reference to SX1 or 8X2 via the 
following change of variables 

A=A (5.72) 

oXl = 6I1 dx I= 
61, 

A- (5.73) 
dt 4t-to- zý 

2c 

= öle 
Air 

(5.74) SX2 = -612 
dx lt=to+ 
dt 2 Zc 

which has the Jacobian determinant 

BA ? ti 8 aXa O 1 b11 U2 a A A A'ý 
_ as aaxl aax ( ` 

(5.75) aärý aale zc as 
' 496X2 4945X2 00 Air 0612 (9612 49(512 iý 

The transformed probability density function is 

A2, /2- 
yTEi ly 

pAl(A, Ji11 ail; ic) - 4i2lF (1/2 exp 
-2 

(5.76) 

where E1 is defined in the same way as (5.66), and 

A7r Air 

/T 
y 

\A, z, 
5i1,2c ai2 

We can now condition appropriately on bIl = 812 = 0, and effect the change of 
variables E= A2, so that the probability density function governing the square of the 
nominal peak is given by the approximation 

ýEjIýýe i) = 2IrlE2, s exp 
-2E2' 

(5.77) 

where the definition of E2 has not changed from (5.68). The adjusted joint p. d. f. is 
once again given by the product of the conditional and marginal density functions, this 
time using the expression for the conditional p. d. f. derived in (5.77): 

PIE (i 
, e) i Pty (ic)PEII, (e I ic). (5.78) 

Figures 5.17A and 5.17B provide an image of the empirical probability density function 
and the analytical p. d. f. according to PIcE("), respectively. The visible similarity 
between the images-including the slight asymmetry-is encouraging, and suggests 
that an optimal detector that incorporates these likelihood functions will outperform 
the naive version, and possibly both marginal detectors. 
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A. Empirical B. Zero Conditioned (Adjusted) 

Cr 

ü 

Q) 

Figure 5.17: A) empirical joint probability density function governing interval duration 

and peak squared-amplitude. based on 250,000 samples and plotted as an image; B) the 

analytical joint p. d. f., which takes into account the resealing of differential areas (eqn. 
5.78). 

5.3.3 Experimental Results and Analysis 

The adjusted joint interval-peak detector was constructed and evaluated according to a 
minimum error criterion. The likelihood functions are given by (5.78) and placed into 

the decision rule (5.63). The empirical results are plotted in Figure 5.18, along with the 

results for the naive interval detector, and the squared-envelope and continuous interval 
detectors. The adjusted joint interval-peak detector outperforms the other detectors 

when the signal is displaced from the band centre. When the signal is centred on 
the hand, the performance of the joint detector matches that of the squared-envelope 
detector. 

It is notable that the error curve for the adjusted joint interval-peak detector falls below 
the convex hull formed by the error curves of the individual continuous interval and 
squared-envelope detectors. (The same can be said for the nave joint detector at some 
data points. ) Hence, the duration of a zero crossing interval provides information 
that the peak amplitude across that interval does not, and rice versa. This result is 

quite notable in that it shows that the information contributed by i, still reduces the 
probability of error significantly, even when the signal is located near (but not precisely 
on) the band centre. 
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Figure 5.18: Probability of error in the adjusted joint interval-peak detector. The 
predicted and observed values are shown using lines and markers, according to the 
following key: squared-envelope detector (solid line; no marker); continuous interval 
detector (dash-dotted line; no marker), nave joint interval-peak detector (no analytical 
results; open square 0); and adjusted joint interval-peak detector (no analytical results; 
diamond o). 
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AI 

22 

Figure 5.19: Four samples in an analytical time-domain signal. The samples xl, x2 
and AI appear in the in-phase component (solid line); the fourth, AQ, appears in the 
quadrature component (dashed line). The samples Al and AQ coincide at time t and 
together determine the instantaneous envelope and phase of the nominal peak. The 
samples xi and x2 are fixed at zero. (See also Figure 5.14. ) 

5.3.4 Conditioning the Squared-Envelope on Zero Crossings 

In order to simplify the working, we have assumed throughout this section that the 
squared-envelope can be modelled by the square of the signal amplitude halfway 
between the zero crossings. In these closing remarks, we shall derive results concerning 
the distribution of the actual squared-envelope, in order to determine whether the 
squared-amplitude is a suitable replacement. (We still assume that the peak falls exactly 
halfway between the zero crossings. ) 

The squared-envelope, e(t), of an analytical signal is defined as 

e(t) = xl (t) + xQ (t) (5.79) 

where xI and xQ are its in-phase and quadrature components. It is governed by the 
random variable E. We shall designate the in-phase sample and the quadrature sample 
at time t, AI and AQ, respectively. Let us in addition identify two samples in the in- 
phase signal, xl and x2, which occur at times t- 2i, and t+ 2iß, respectively. The 
four samples x =- (AI, AQ, x1i X2 )T are joint Gaussian-distributed with covariance 
matrix' 

'Y(O) 0 'Y(2ic) 'Y(2ic) 

E3 =0 
1'(0) N_ 120 y(2ic) (5.80) 

'Y(2ic) 2iß) '1(0) 'Y(ic) 
'Y(ic) 5'(2io) -Y(ic) 'Y(0) 

Notice that we are pursuing a similar strategy to before-conditioning the midpoint on 
the presence of zero values either side-only this time we are taking into account the 

'The subscripts on -y have been dropped. 
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contribution of the quadrature component to the envelope. The relevant quantities are 
sketched in Figure 5.19. 

The autocovariance function -y(rr) is defined as usual, with the exception that we have 

made explicit the fact we are referring to the covariance of two samples of the in-phase 
signal: 

7ýTý = E{xl(t)xl(t -T)}. 

We have also defined a modified autocovariance function, ry("), which the computes the 
covariance of two samples, if the first appears in the in-phase signal, and the second in 
the quadrature signal: 

ry(T) = E{xI(t)xQ(t -, r)}. 
Note that '(O) = 0, and ý (T) = 
It can be shown that, when AI and AQ are conditioned on X1 = X2 = 0, they are 
joint Gaussian-distributed, with zero mean and diagonal covariance matrix, 

272(220 

7(0) - E4 7(0) + 7(i ) = 

0 

0 
22(i) 

'Yýý) - 
'Y(O) - 'Y(ic) 

a0 
0ß 

(5.81) 

If the diagonal elements of the inverse matrix, E41, are individually labelled a and Q, 
then the joint density function of AI and AQ can be written 

I& ßI'12 (&A3ýßA)Q 
PArAQ (At, AQ) = 27r exp 

-2 
(5.82) 

Performing the change of variables 

AI = �E cos 9 (5.83) 
AQ = V'E sin 0 (5.84) 

in (5.82) provides a new distribution in terms of the squared-envelope, E, and 
instantaneous phase, ©: 

pEe(e, B) = 
la4I1/2 

exp 
`e(acost 6 

-2 
0sine 

B)1 
(5.85) 

L JI 
Lastly, we integrate to obtain the marginal probability density function that governs the 
squared-envelope, irrespective of phase. 

a, ß 1/2 re(a + p)l /'2" e ý3 - a) cos 2B1 
pE(e) -I 4ý eXp L _4 1J exp 

(4) 
dB 

0 

- 
(aß11/2 

exp 
Ie(a 4 ß)1 

Io 
f e(Q 

4 
a) 1. 

(5.86) 

In summary, (5.86) is the probability density function governing the squared-envelope 
of the midpoint between two sample values, if those values occupy a vanishingly small 
region surrounding zero. 
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No conditioning 

Consider the case in which there is no zero value conditioning, or the conditioned 
samples are independent of the mid-point sample. In this case, it is easy to verify that 

_1_1 

and (5.86) reduces to 

pE(e) = 21 exp 
(_; 

�. 2). 
(5.87) 

Thus our expression for the squared-envelope correctly reduces to the exponential 
probability density function that governs an individual sample of the squared-envelope 
of a Gaussian process. 

Conditioning with a Narrowband Assumption 

Second, consider the narrowband case in which the interval duration, i,, is close to the 
zero crossing interval of the channel centre frequency, i. e., 2ic ;. 1 If, Under these 
circumstances, y(2ic) .. 0 and =y(2i, ) y(0), and it may be shown that 1/a = E2 
and 1/, 3 0. 

Because p is very large, the modified Bessel function, Io(") can be approximated by its 
first-order asymptotic series expansions (Abramowitz and Stegun, 1972,9.7.1), 

jo(z) N 
exp(z) (5.88) 

27rz 

Replacing Io(. ) with (5.88) in (5.86) gives 

e(a + Q)1 
exp 

e(ß - a) (5.89) PEII, (e 
uß11/2 

exp 
I 

i) 
J 27re(ß - a) -4 4 

/ 
_ 

ý27re 
l1-Q 

)1-1/2 
exp 

(a 2 (5.90) 
\a // 
1 

(27reE2)1/2 exp 
( 

-2E2) . (5.91) 

This conforms to the probability density function in (5.67). 

Adjusting for Differential Areas 

Thirdly, we consider the case in which the differential areas have been adjusted to 
account for the slope of the line through the zero crossings, having assumed that the 

1 For a discussion of asymptotic expansions consult Self (2005). 
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in-phase signal is locally sinusoidal and has a peak AI at time to. In this case, it can be 

shown that 

PET (e I zc) =e4 
3ß 

exp 
f eßß 4 a) {i [e(ß_ a) + Il 

reiß 
4 

a) 11 

LJL 
(5.92) 

where Il (") is the modified Bessel function of order one'. 

The asymptotic expansion of I, (") is the same as that of Io (), i. e., 

Il(z) N 
ex27 

z 
(5.93) 

(Abramowitz and Stegun, 1972,9.7.1). Using (5.88) and (5.93) in (5.92) results in 

PEII, (e zý) a-, Fe 
[27r 

\1 a 

15)]-1/2 
exp 

[ae 

-2, . 
(5.94) 

If we assume, as in the section above, that the interval durations are close to those of 
the channel centre frequency, i. e., 2i, ;: zý 11f, such that 1/0 ; z: ý 0, then 

e pEIr, (e i) : 27 E3 exp 
-2E2j 

(5.95) 
2 

This conforms to the probability density function in (5.77). 

The integral definition according to Abramowitz and Stegun (1972,9.6.19) is 

n In (z) =- 
IT 

fe080cos(nO)dO. 
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5.4 Detection using Multiple Intervals 

5.4 Detection using Multiple Intervals 

The elementary interval detectors of the previous chapter focussed on detection using a 
single zero crossing interval received in a narrowband channel. This section addresses 
the detection of a signal using a number of consecutive intervals. Drawing again on 
the analogy between zero crossings and auditory nerve spikes, the multiple interval 
detector may be said to model a cell which responds to certain patterns of intervals. 

A sampled detector operating on N intervals employs the rule: 

choose Hl iff PI'". IN [21, Z2, .' iN I H11 
> 1, otherwise choose Ho. 

PI1... bN[ii, i2,..., iN I Ho] 

We have assumed here, without loss of generality, that the decision rule of the multiple 
interval detector minimises error, that is, a detection is made whenever the sequence of 
intervals is more likely given that the signal is present (Hl) than that it is absent (Ho). 
As usual, the first step is to determine the conditional probability density functions by 
which the detector makes decisions; in this case, we are interested in the joint p. d. f. 
governing N consecutive zero crossing intervals of a Gaussian process. 

The multiple interval event is associated with a pattern of sign changes which coincide 
with the zero crossings. A multiple interval event consisting of N intervals is composed 
of N+1 consecutive zero crossings with alternating direction. Provided that each 
interval is longer than one sample, we must determine the probability that 2N +2 
samples are of a certain sign. This is the dimensionality of the problem, d= 2N + 2. 

We can illustrate our technique with an example. Consider the binary time series 
sketched below. 

i2=4 i4 

i1=5 3=7 

This corresponds to the multiple interval event (i1 = 5, i2 = 4, i3 = 7, i4 = 4). The 
probability of this interval sequence is equal to twice the probability of the pattern of 
sample signs shown above, as there is exactly one, equally-probable pattern of sign 
changes associated with this multiple interval event: namely, the same pattern with the 
zero crossings in the opposite direction. 

If the octave constraint described in Chapter 4 is enforced, then we may marginalise to 
remove the samples which do not form part of a crossing, and consider only those that 
do. 

n-21 

n 
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If the process that generates the samples is Gaussian, then to find the probability of 
the multiple interval event (il = 5, i2 = 4, i3 = 7, i4 = 4), we only integrate over the 

samples n, n-1, n-4, n-5, n-11, n-12, n-15, n-16, n-20 and n-21; the signs of 
the other samples are implicit from the crossings. In this example, there are N=4 
intervals, and d= 10; thus the probability of this event is twice the ten-dimensional 
orthant probability 

00 00 T1 

(2ý)5iE I1/2 ... 
f% 

exp 
(X -2 X)dxdx_1... dx_2i, (5.96) 

00 00 
/0 

where E is the 10 x 10 autocovariance matrix for the samples in the crossings. Pursuing 
this type of analysis-interpreting intervals as sign changes in a random process-will 
inevitably require the evaluation of d-dimensional orthant probabilities. Any orthant 
probability can be re-expressed in terms of a sum of all-positive orthant probabilities. 
Accordingly, in the sections that follow, we concentrate our effort on the more general 
problem of the all-positive orthant probability. 

5.4.1 A Recursive Solution 

Our first attempt to analyse the problem of the d-dimensional orthant probability 
examines the possibility of decomposing high-dimensional orthant probabilities into 
more manageable orthant probabilities of lower dimension, for which a solution is 

readily available, starting with the three dimensional case. Kedem (1980) explains 
the bridge between the two- and three-dimensional orthants algebraically (applying 
Boole's formula-see below). We shall now demonstrate the procedure using Venn 
diagrams. 

The Three-dimensional Case 

Consider three distinct samples, and let D1, D2 and D3 respectively denote the event 
that the sample is non-negative. The Venn diagram in Figure 5.20A plots the three 
events as intersecting circles, dividing the total area into eight regions, each of which 
corresponds to a combination of events. The area of a region (schematically) relates 
the probability of its associated event, so the total area of the Venn diagram is one, i. e., 
a certain event. Thus, our interest-the all-positive orthant probability-is equal to the 
area of the central region. 
In the remaining four Venn diagrams, we adopt the convention of labelling each region 
to keep track of how many times it has been counted; in Figure 5.20B, each region is 
counted once. With the knowledge that the total area is unity, our goal is to successively 
remove regions until only the central region remains. We first subtract the outer region, 
leaving only the region formed by the union of the three circles (Figure 5.20C), whose 
area is 

1- P(b1D2D3). 
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A. B. 

D. E. 

C_ 

Figure 5.20: Relating 2D and 3D orthant probabilities via Venn diagrams. A) three 
events D1, D2 and D3, drawn as intersecting circles; B) initially, every event is counted 
once; C) subtract the event that none of D1, D2 or D3, occur; D) subtract each circle 
once, causing regions where two circles overlap to be subtracted twice, and the central 
region, where all three circles intersect, to be subtracted three times; D) add the regions 
where any two circles intersect back on, and only the central region remains. 

An overbar denotes the complement of a region. ' 

Next, we subtract the region occupied by each circle, giving the area 

- P(D1D2D3) - P(D1) - P(D2) - P(D3). 

This causes some overlapping regions to be subtracted more than once (Figure 5.20D). 
The oval-shaped regions are subtracted twice; the central region is subtracted three 
times. 

Finally, we add all regions contained within exactly two circles back on, so that only 
the central (orthant) region remains, as Figure 5.20E shows, yielding an equation: 

P(D1D2D3) =1- P(DAD2D3) 

- P(D1) - P(D2) - P(D3) 

+ P(D1D2) + P(D1D3) + P(D2D3). (5.97) 

Note that Dl DZ D3 and Dl D2 D3 have distinct meanings. Informally, the former reads, "all the 
samples are negative, " whilst the latter reads, "it is not true that all the samples are positive or zero" 
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In the case of a stationary zero-mean Gaussian process, the probability of observing 
three negative samples is equal to that of observing three non-negative samples, so we 
obtain 

2P(D1D2D3) _ (5.98) 

1- P(D1) - P(D2) - P(D3) + P(D1D2) + P(D1D3) + P(D2D3). 

Hence, in (5.98), we have successfully reduced the three-dimensional orthant 
probability to a sum of two- and one-dimensional orthant probabilities. 

The General Case 

In view of (5.98), one might expect that a d-dimensional orthant probability can be 

computed recursively. However, as Kedem (1980), referring to David (1953), points 
out, this is not the case. A general formula, due to Boole', exists for relating orthant 
probabilities of differing dimension: 

P(D1D2 ... 
Dd) 

1- P(Di) +> P(DiDj) -> P(DiDjDk) 
O<i<d O<i<j<d O<i<j<k<d 

+ .. + (-1)dP(DiDj 
... Dd). (5.99) 

The identity (5.99) may be derived in the same way as the three-dimensional case, viz., 
by conceptually adding and subtracting regions in a Venn diagram. Note that (5.98) is 
a special case of (5.99) when d=3. 

David (1953) dedicated a short paper to a property of (5.99), which is relevant to our 
present enquiry. Let us grant that P(D1 ... DN) = P(DA ... Dd). If d is odd, the 
d-dimensional orthant probability on the right-hand side is preceded by (-1), so that 
adding P(D1 ... Dd) to both sides causes the orthant probability to double up on the 
left-hand side, as in (5.98). However, for even d, the orthant term is added to both sides 
and so cancels via subtraction. As a result, David notes, it is not possible to construct 
a recurrence relation to reduce even-dimensional orthant probabilities into a sum of 
lower-dimensional cases. 

In light of the above, it is instructive to consider the only even-dimensional orthant 
probability for which we do possess an expression: the bivariate case. Knowledge of 
P(Di) and P(D2), even with the constraint P(D1D2) = P(D1D2), does not provide 
enough information to determine P(D1D2). This is the most trivial example in which 
an even-dimensional orthant probability fails to yield a recurrence relation; and yet a 
solution is known, and this suggests a route to finding orthant probabilities that is not 
based on recursion. 
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A. B. 
X2 

R 

0 

C. X3 0. R 

X2 

01 

Figure 5.21: A. 2D orthant in Cartesian coordinates. B. 2D orthant in polar coordinates. 
C. 3D orthant in Cartesian coordinates. D. 3D orthant in spherical coordinates. 

5.4.2 Direction Integration 

Our next strategy is to directly evaluate (5.96) by changing variables and performing 
the integration in a hyperspherical coordinate system-a natural extension of polar 
(2D) and spherical (3D) coordinates into higher dimensions. To illustrate this idea, 
Figure 5.21A shows a contour of a two-dimensional Gaussian density function and 
sketches the Cartesian coordinate lines covering the region of integration. Figure 5.21 B 

shows how an equivalent integration can be performed in polar coordinates, where an 
angle, 61, spans one quarter of the plane, and a radius, R, ranges from 0 to +oc. 
Similarly, the three-dimensional orthant region can be integrated with reference to 
Cartesian coordinates (Figure 5.21 C) or spherical coordinates (Figure 5.21 D). To reach 
every point within a d-dimensional polar coordinate system, a radius and d-1 angular 
coordinates are needed. 

1A slightly modified version of (5.99) tends to be attributed to Boole (David. 1953). Kedem (1980, p34) 
refers to the result as -Boole's formula". It can be derived using binomial coefficients (or Pascal's triangle). 
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Hyperspherical Coordinates 

We shall define the relationship between the d-dimensional Cartesian coordinates and 
the d-dimensional hyperspherical coordinates, as follows: 

x, = Rcos01, 
X2 =R sin B1 cos 92, 

x3 =R sin B1 sin 82 cos O3 i 
(5.100) 

Xd_ 1=R sin 91 sin 02 sin 03 """ COS Od_ 1, 
Xd =R sin 01 sin 02 sin 03 """ sin 9d_ 1. 

The scale factors of this transformation may be shown to be 

hR =1 (5.101) 
a-1 

h9, =R 
11 sin Oj . 

(5.102) 

The Jacobian is then given by the product of scale factors, 

d-1 
J= hR JJ het = 

IRd-1 
sind-2 81 sind-3 B2 

... sin2 Od-3 Slrl Od-2I 
. 

(5.103) 

i=1 

The all-positive d-dimensional orthant probability for a Gaussian distribution with zero 
mean and covariance matrix E is found by integrating over the region of the p. d. f. in 
which all the variables are positive, i. e., 

1 00 ao (T1 

(27r)d/2 IE 1/2 
Jo 

0 
exp 

-2 -2 

Xl dxl ... did. (5.104) 

Replacing the variables x1, x2, ... , Xd with the variables R, 01,02, ... , 6d_1, including 
the Jacobian J, and changing the bounds, this probability can be expressed 

1 it/2 it/2 00 jý 
`R1 

sin2 0 
... Sn2 9d_3 Sin(21r`/2E1/2 

O JO 

x exp 
(( E_2 R2 )dRdOl... dOd_l(5.1o5) 

where 
cos 01 

sin 01 cos 02 

O= (5.106) 

sin B1 sin 92 sin 63 """ cos Od_ 1 
sin 91 sin B2 sin B3 """ sin Od 

_1 
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Using the following general solution for odd n, found by repeated integration, 

n+1 

f a2222 (5.107) 
\/ 

we can solve the innermost integral in (5.105), for even d, leaving 

(d/2 - 1)! "/2 'r/2 sind-2 Bl ... sine Bd_3 sin Bd_2 
dBl ... dBd_1. (5.108) 

(eTE-10)d/2 27rd/21EI1/2 
I Jo 

The expression for the orthant probability given in (5.108) is a ratio of polynomials in 
exp iOl, exp i01, ... , exp i°d_ 1. A general analytical solution for this kind of integral 
does not appear to be reported in the literature, and (5.108) seems as insoluble as 
the original multiple integral given in (5.96). In closing, however, we may note two 
apparent advantages of the hyperspherical approach: i) the order of the multiple integral 
has been reduced from d to d-1, and ii) the bounds on every integral are finite rather 
than infinite, which may facilitate a numerical integration approach. 

5.4.3 An Exact Solution from Geometry: 2D and 3D 

The direct integration approach attempted above faces a difficult integrand (namely, 
the multivariate Gaussian p. d. f. ), but a simple region of integration (i. e., the positive 
orthant). We shall now tackle the problem from a geometric perspective, and in so 
doing, simplify the integrand at the expense of complicating the region of integration. 
This is analogous to solving fö (x + 1)dx by finding the area enclosed by the lines 
x=0, x=4, y=0 and y-x-1=0, as opposed to using antiderivatives. 
The integration we are looking to perform is 

P(X1 > 0,..., xd > 0) - 

(2)d/2EX1/2 exp 
-2 

dxi ... dxd. (5.109) 
1 1000 (xTE 1x) 

The kind of procedure we are about to employ should by now be familiar to the reader 
from earlier sections. We first replace the variables xT °_ (Xi, 

... , xd)T with another 
set of uncorrelated and normalised variables yT ° (yl, 

... , yd)T using 

y= Tx, (5.110) 

where T= UD-1, and U and D are the matrix of eigenvectors (in columns) and 
eigenvalues (along the diagonal) of Ei', respectively. Ey' is the dxd identity matrix. 
Performing the change of variables in (5.109) gives 

/ P(xl > 0, ... , xd > 0) _T (2ý)d/21EX117 2 
ýý' 

exp I YT2) dyl ... dyd, (5.111) 

where new region of integration is denoted R. 
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Three important results can be combined to our advantage. First, the new integrand 
is unaffected by rotations about the origin. To show this briefly, if we assume that a 
vector Y2 has been obtained by rotating an arbitrary vector, yl, around the origin using 
the rotation matrix TR, i. e., 

Y2 = TRY1, 

then, because a rotation matrix is orthonormal, 

Yä Y2 = (TRY1)T (TRY1) = Yi (TRTR)Y1 = Yi Yi (5.112) 

Second, the region of integration is a cone formed by d half-lines, which converge at 
the origin and extend outwards infinitely. The unit vectors that point along the edges 
of this cone are the column vectors of T-1 rescaled to unit magnitude. (The region is 

said to be subtended by the vectors. ) 

Third, the directions in which the unit eigenvectors point do not affect the angles 
between the column vectors of T-1, which is essential, because the behaviour of 
eigenvalue solvers such as eig in MATLAB do not specify the direction of the output 
eigenvectors. 

Two-dimensional Example 

Suppose we wish to compute the probability that two consecutive samples, xi and x2, 
of a zero mean wide-sense stationary Gaussian process are both positive. If it is known 
(e. g. ) that p[1] is 0.9, then the correlation matrix governing the pair of samples is 

Ex 
1 0.9 

= 0.9 1 

When the samples are correlated, a contour of the probability density function appears 
oval-shaped, as in Figure 5.22A. The region of integration is subtended by the column 
vectors of the 2x2 identity matrix. By appropriately reshaping the integrand, we can 
effectively transfer the difficulty of the problem into the region of integration instead. 

The linear transform which correlates the samples is associated to the matrix 

T-1 -0.5130 -0.5130 = 
-2.2361 2.2361 

Multiplying the identity matrix (i. e., our spanning vectors) by T -1 simply leaves T -'. 
Figure 5.22B shows how, although the integrand is now radially uniform, its contours 
having been stretched from ovals into circles. The column vectors of T-1 now enclose 
the transformed orthant region. 
We normalise the columns of T-' to unit length and place them into a new matrix, 

V= (Vl 
V2 

)_ -0.2236 -0.2236 ) 
l 

-0.9747 0.9747 
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Figure 5.22: A) Two vectors subtend the positive orthant of a correlated bivariate p. d. f.; 
B) the transformed vectors span a new region in the decorrelated p. d. f.. C) Three 

vectors subtend the positive orthant of a correlated trivariate p. d. f.; D) the transformed 
vectors span a new region in the decorrelated p. d. f.. The contours shown are the 

solutions to xTEx1x =1 in the case of (A) and (C), and yTy =1 in the case of 
(B) and (D). The spanning vectors, though unit vectors in practice, have been doubled 
in magnitude in order to make them visible. 

The orthant probability corresponds to the ratio of the arc segment cut in the unit circle 
by vl and v2 to the length of the entire unit circle, i. e., 

COS-1(V1 " V2) 
P(xl > 0, x2 > 0) = 27r = 0.4282. 

The probability of a zero crossing is defined as 

2P(xl > 0, x2 < 0) =2 [P(xl > 0) - P(xl > 0, x2 > 0)] 

= 0.1436. 

This is identical to the result found using (1.12). 
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Three-dimensional Example 

We now repeat the same procedure in three dimensions. Suppose we wish to find 

the probability that three samples in the process described above are positive, and the 
correlation matrix governing the samples is 

1 0.9 -0.22 
E3 = 0.9 1 -0.2 

-0.22 0.2 1 

The correlation between the samples means that a contour of the probability density 
function is ellipsoidal (or informally, a flattened rugby ball shape), as shown in 
Figure 5.22C. The decorrelation procedure reforms the ellipsoid into a sphere of unit 
radius; and the new subtending vectors, computed using MATLAB, are 

0.2089 0.2088 -0.1989 
V=( V1 V2 V3 = 0.0871 0.0983 0.9787 

-0.9741 0.9730 -0.0513 

Both the new integrand and region of integration, as delineated by v1, v2 and v3, are 
plotted in Figure 5.22D. 

The endpoints of the three vectors form a triangle. The three-dimensional orthant 
probability is given by the ratio of the area of this triangle when projected onto the 
surface of the unit sphere-a spherical triangle-to the total surface area of the sphere. 
This ratio is referred to as a solid angle. 

b2,3 

V1 qq 

v 
V2 

3 

01,2 

Vectors Planar Triangle Spherical Triangle 

W1,3 

According to Girard's theorem, the area, A, of a spherical triangle is given by the 
following formula: 

A=R 2 (V)1,2 + 7P2,3 +, 1,3 - 7r), (5.113) 

where 411,2, VJ2,3 and 11,3 are the interior angles of the triangle, in radians, as it appears 
inscribed on the sphere's surface, and R is the radius of the sphere (i. e., R= 1). These 
angles are found to be 

V)1,2 = 2.6906 
'1)2,3 = 1.3694 

01,3 = 1.3490. 
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The orthant probability is then determined: 

P(xi 10, x2>O, x3>0)= 
2.6906 + 1.3694 + 1.3490 - it 

= 0.1804. 
4ir 

This result is identical to that given by the recurrence relation in (5.98) when applied 
to two-dimensional orthant probabilities. 

5.4.4 An Exact Solution from Geometry: The General Case 

The geometric approach taken in the two- and three-dimensional cases have proven to 
be successful, and it is natural to pursue next the question of whether the procedure 
extends to higher dimensions. It is sufficient for our purposes to develop, or adapt 
from the geometry literature, a subset of simple geometric principles that allow us to 
intuitively define and manipulate the unseen, high-dimensional analogues of spheres 
and triangles in a manner that augments the lower-dimensional examples above. 

There are two separate considerations: 

1. Does the notion of a line projected onto the perimeter of a circle, or a triangle 
projected onto the surface of a sphere continue into higher dimensions? Is this 
the shape that results when the decorrelating transformation (T-1) is applied to 
the all-positive orthant? 

2. If such a shape can be identified, does the ratio of its hyper-area to the total 
hyperspherical surface express to the orthant probability? If so, can both areas 
be evaluated in order to find the orthant probability? 

To address these questions, we shall start with a series of definitions. 

Definitions 

Definition 1. The d-dimensional Euclidean space, Ed, is defined as the set of all 
ordered d-tuples whose components are real numbers, i. e., 

Ed = {(Pl? P2,... Pd) : P1, P27... 7Pd E ]E8}. 

An element of Ed is called a point We shall adopt the convention of identifying a 
point P with the column vector OP =p= (pl, p2, ... , pd)T . The Euclidean distance 
between two points, pi and p2, is defined as 

dist(Pi, P2) _ (Pi - P2)T(Pi - P2)" 

Definition 2. The d-dimensional (Euclidean) positive orthant, ®d C ]Ed, is defined as 
the set of all ordered d-tuples whose components are all non-negative real numbers. 

Definition 3. We define the unit n-sphere as 
Sn-7P EE'+1: IPI=1}. 
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Note that n refers to the dimensionality of the boundary of the shape. For example, a 
circle is a 1-sphere, and the usual sphere in three dimensions is a 2-sphere. The points 
on the interior of the n-sphere are not members. 

Many shapes can be constructed by specifying the parameters of a set comprehension. 
The definitions often include a predicate to check whether a certain parameterisation 
results in a valid construction. 

Definition 4. Let [p1, p2] denote the closed line segment between p1 i p2 E lEd. 

Definition 5. Let pE En, p#0. We define a half-line as 

halfline(p) = {ap :aE IR, a> 0} . 

Line segments and half-lines are one-dimensional, regardless of the dimensionality of 
the space in which they are embedded. 

Definition 6. Let P denote a set of n+1 points, pl,... , pes, +l E Ed, d >_ n, such that 
P is not a subset of a (n-1)-hyperplane. We define the n-simplex for points (vertices) 
P as follows. 

Pi n=0 
simplex(P) _ [Pl, P2] n=1 

{q E [11,12] : 11,12 E bd(T)} n>1. 

where we define the boundary, bd(T), of a simplex T with vertices P as follows. 

bd(T) = {q E simplex(Q) :QCP, IQj = IPI - 1}. 

Definition 7. Let P denote a set of n+1 points, pi.... , pn+1 E ]Ed, d>n, such that 
P is not a subset of a (n-1)-hyperplane, and 0V simplex(P), and no two vertices 
P1, P2 EP are members of the same halffine. Let T= simplex(P). We define the 
n-cone specified by T as 

cone(T) = {h E halfline (q) :qE T}. 

Furthermore, we define the boundary of the n-cone specified by T as 

bd(cone(T)) _ {h E halfline (q) :qE bd(T)}. 

The analogue of spherical triangle is now described simply by a set intersection. 

Definition 8. Let P denote a set of n+1 points, p1, ... , pn+t E Ed, d>n, such that 
P is not a subset of a (n-1)-hyperplane, and 0ý simplex(P), and no two vertices 
P1, P2 EP are members of the same halfiine. Let T= simplex(P). We define the 
unit n-spherical simplex with vertices P as 

sphsimplex(T) = cone(T) fl Sn, 

and its boundary as 

bd(sphsimplex(T)) = bd(cone(T)) fl Sn. 
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Definition 9. Let Q denote a linear transformation associated to matrix Q. Let SC 
]E" denote a space (e. g., a simplex or half-line). Let pE Ed. The application of Q to 
p has the following definition. 

Q(P) =QP. 

The application of Q to S is similarly defined. 

Q(s)={Q(q): gES}. 

Propositions 

Proposition 1. Let Q denote an invertible linear transformation. If pE Ed and p0 
then Q(p) 0. 

Proposition 2. Let f- = [11,12], 11 # 12, and let Q denote an invertible linear 
transformation. It follows that 

PECH R(P) E Q(G). 

Proposition 3. Let Q denote an invertible linear transformation and P denote a set of 
points {pl, ... , Pd+1}. That no two members of P are members of the same halfline 
implies that no two members of Q(P) are members of the same halfline. 

Proposition 4. Let C denote a cone. For any constant, a>0, 

pEC4-+apEC. 

Proposition 5. Let P denote a set of points in ]Ed for which exactly one coordinate is 
one and the rest are zero. It follows that 

cone(simplex(P)) = ®d \ {0}. 

Theorems 

Lemma 1. Let T denote an n-simplex, such that TC Ed, d >_ n. Choose a point 
pE lEd. Let Q denote an invertible linear transformation. The following must hold. 

PET-Q(P)cQ(T)" 

Proof. For n=1, this theorem is proven by Proposition 2. 

For n>1, assume the theorem holds for n -1. 
By Definition 6, pET implies the existence of a line segment f- = [ii, 121, such that 
11,12 E bd(T). Let li = Q(11) and 1'2 = Q(12) and T' = Q(T). 

From Definition 6, bd(T) is a set of (n-1)-simplices. Using the inductive hypothesis 
and Definition 9,11,12 E bd(T) implies that l , 12 E bd(T'). 

Let p' = Q(p). By Proposition 2, pEG implies that p' E [11,12]. By Definition 6, the 
existence of such a line segment with end points in bd(T') implies that p' E V. Q 
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Lemma 2. Let T denote an n-simplex, such that Tc Ed, d>n. Choose a point 
pE Ed. Let Q denote an invertible linear transformation. The following must hold. 

PST-'Q(P)ýQ(T) 

Proof. Let Q-1 refer to the inverse of Q. From Lemma 1, 

Q(P) E Q(T) - Q-'(Q(P)) E Q-1(Q(T)); 

thus, Q(p) E Q(T) --º pET. r-l 

Lemma 3. Let P denote a set of n+1 points, pi, ... , pn+1 E Ed, d >_ n, such that 
P is not a subset of a (n-1)-hyperplane, and 0V simplex(? ), and no two vertices 
Pi, P2 EP are members of the same halfline. Let T= simplex(/). Let Q denote an 
invertible linear transformation. The following must hold. 

Q(cone(T)) = cone(Q(T)). 

Proof. The following is a direct proof. 

From Definitions 7 and 9, 

Q(C) = Q({hEhalfline(q): gET}) 

= {h E Q(halfline(q)) :qE T}. 

From Definition 5, Proposition 1, and Lemmas 1 and 2, along with the fact that Q is 
linear, 

Q(C) = {hEQ({aq: a¬R, a>0}): qET} 
_ {hc({caQ(q): aER, a>0}): qET} 
= {h E ({aq: aEl[8, a>0}): Q(q) ET} 

= {hE({aq: aEIR, a>0}): gEQ(T)} 
= cone(Q(T)). 

13 

Theorem 1. Let Q denote an invertible linear transformation. There always exists a 
simplex T, such that 

{q/Iql :qE Q(®d), q 0} = sphsimplex(T). 

Proof. From Proposition 5 and Lemma 3, 

{q/lqj :qE Q(cone(simplex(P)))} 

= {q/lql: qE cone(Q(simplex(P)))} 

= {q/lql: qE cone(T))} 
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where T= Q(simplex(P)) and T is a (d-1)-simplex (by Lemmas 1 and 2). By 
Proposition 5, P is a set of points in Ed, for which exactly one coordinate is one and 
the rest are zero. 

From Definition 8, sphsimplex(T) = cone(T) rl Sd-1 

From Definition 3, q/Iql E Sd-1 because Iq/Iql I=1 and q/Iql E Ed. 

From Proposition 4, noting that Iql is a constant satisifying Iqi > 0, 

pE {q/lqj :qE cone(T)} «-+ pE cone(? ). 

In consequence, {q/lql :qE Q((Dd), q 0} = sphsimplex(T). Q 

Theorem 2. Adapted from Muller (1959); see also Marsaglia (1972). If Y1,. .. , 
Yd 

are standard normal variates, put S= Yl + ... + Yd and form 

Yi Yd T 

vs, 
The random vector pis uniformly distributed over the surface of the (d-1)-sphere. 

Closing Remarks 

From Theorem 1, the probability that the non-zero random vector x in ]Ed is a member 
of the positive orthant is equal to the probability that the random vector y/jyI is a 
member of the spherical-simplicial region on the (d-1)-sphere, because y is obtained 
from x via an invertible linear transformation, T. 

The first of the two questions set out at the start of this section has been answered 
conclusively. An analogous relationship does exist between the triangle and sphere 
in three dimensions, and the (d-1)-simplex and (d-1)-sphere in d dimensions. It 
remains to address the second question. 

From Theorem 2, we see that y/jyj is distributed uniformly over the surface of the 
(d- 1)-sphere, because the elements of y are Gaussian with zero mean, zero covariance 
and unit variance. Consequently, the ratio of the content (i. e., hypervolume) of the 
spherical-simplex to that of the entire hyperspherical surface is equal to the orthant 
probability. This ratio is the high-dimensional analogue of a solid angle. 
At the present time, the solution for the general solid angle in lEd is elusive for d>3. 
Ribando (2006) comments, "there appears to be no closed form expression for the 
measure of an n-dimensional solid angle for n> 3". This agrees with the earlier 
assessment of David (1953) that "an exact expression for this solid angle appears 
to be known for three dimensions only". Concerning d=4, Abrahamson (1964) 
asserts that "the orthant probability, i. e., the probability that all the [variables] will be 
simultaneously positive, is not, in general, given by a closed expression. " 

Although an exact analytical solution is unavailable, several workers have suggested 
approximations, including series expansions (Ribando, 2006) and decomposition into 
orthoschemes (Abrahamson, 1964). Interestingly, Hajja and Walker (2002) tackle the 
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B. 

A. 
OD. ID. 2D. 

OD. ID. 2D. 3D. 

1 

. 11,11, 
A 

6.490 
Figure 5.23: Conceptual illustration of how A) a unit d-simplex is constructed and 
B) its content is evaluated, in 0,1,2 and 3 dimensions. 

four-dimensional solid angle problem by re-expressing it as a multiple integral similar 
to the one which appears in (5.108) and solving it numerically. In light of the lack of 
a generally-approved approach to finding the solid angles in high dimensions, we shall 
examine the possibility of approximating the content of the (d-1)-spherical simplex 
in Ed by decomposing it into simpler regions that can be readily integrated. 

5.4.5 An Approximate Solution from Geometry 

If the unit (1-spherical simplex is small, in the sense that its vertices are relatively 
closely-spaced on the d-sphere, then it may be acceptable to approximate its content 
by measuring the content of the (hyper-)planar simplex from which it is projected. 

zn. 3n. 

ýQýQ 

Content of the d-Simplex 

We shall first consider the content of a simplex formed by joining the vertices of a unit 
hypercube. The vertex set of such a (d-1)-simplex can be generated by starting at the 
origin and moving a unit distance into each orthogonal dimension. The vertices then 
correspond to the column vectors of a (d-1) x (d-1) upper-triangular matrix of ones, 
i. e., 

11 """ 1 
01... 1 

U= (5.114) 

00.. 1 

A graphical depiction of this process is provided in Figure 5.23A. 
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A. B. C. 

ýZ_ L", 
", 1 2ýý- 10 

Figure 5.24: To evaluate the content of the general (d-1)-simplex in Ed, for d=3: 
A) the simplex in general position, B) consider the triangle in the plane and translate 
one vertex to the origin; C) deform the triangle onto a unit-triangle by mapping each of 
its vertices to the points described in (5.114). The determinant of this transformation 
relates the change in area. 

The content of the (closure of the) (d-1)-simplex is found by integration. 

1 0d1 
Jo 

jXj ý 
dxd dxd_1 . dxl = (5.115) 

The rationale behind this integral is conveyed in Figure 5.23B, which illustrates how 
the closure of a simplex is divided into small hypercubes. 

Having determined the content of a unit (d-1)-simplex, it remains to discover the 
content of an arbitrary (d-1)-simplex, embedded in a d-dimensional space. To 
achieve this, we will deform the arbitrary simplex onto a unit simplex and allow the 
determinant of the transformation to inform us of the change in content. Let the vectors 
corresponding to the vertices of the (d- 1)-simplex in Ed be denoted vi , v2 i ... Vd, and 
form the column matrix V from these vectors, i. e., 

V=( V1 V2 ... Vd 1. 
It is next necessary that we project these points into a (d-1)-plane parallel to the one 
which passes through them. To do this, we subtract the first column of V (i. e., v1) from 
every other column, to form a modified dx (d-1) matrix, 

V= V2-Vl V3-Vi ... Vd-Vl 1, 

Let W denote adx (d-1) matrix whose columns are the set of orthonormal vectors that 
span the same space as the column vectors of V. The columns of the matrix WTVI 
describe the vertices of the figure as it appears in the (d-1)-dimensional hyperplane 
that passes through it. (See Figure 5.24B. ) 

Let U denote the (d-1) x (d-1) upper-triangular matrix of ones from (5.114). The 
linear transform which maps the arbitrary simplex onto a unit simplex is associated to 
the matrix WT V'U-1. (See Figure 5.24. ) Consequently, the content, C, of the simplex 
is given by 

C=1I lWT V'u-l l (5.116) 

where II"II denotes the magnitude of the determinant. 
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A. B. C. 

Figure 5.25: A) the length of a line segment constructed under a circular arc is a 

good approximation to the arc-length, if the angle is small; B) for larger angles, this 

approximation is very poor; C) the solution is to split the line into two, shorter parts 

at point v, extend these line segments out to the surface, and sum their length. One 

obtains ever-finer approximations by repeating (C) on the shorter segments; eventually 
(it is conjectured) this approximation will converge onto the exact solution. 

The Cayley-Menger Determinant 

The standard approach to evaluating the content of a simplex is the Cayley-Menger 
determinant. First, we define a matrix of squared Euclidean distances, 

dist(vl, vl)2 dist(vl, v2)2 """ dist(vl, v(j)2 

dist(v2i vi)2 dist(v2, v2)2 ". " dist(v2, v(j)2 
A (5.117) 

dist(vd, vl )2 dist(vd, v2)2 "" dist(vd, vd)2 

It is clear that A is symmetric and has zeros along its main diagonal and positive 
elements everywhere else. Next, B is the (d+1) x (d+1) matrix formed by bordering 
A with ones, such that 

0 1T B= (5.11 ö) 
1A' 

where 1 denotes adx1 column vector of ones. The content of the (d-1)-simplex is 
given by 

C= 
(-1)dlBl 

5 119) 
2d-iýd - 1)! 2' (' 

Approximation with Subdivision 

The method presented in the section above approximates, in three dimensions, the 
surface area of a triangle projected onto the surface of a sphere-that is, a spherical 
triangle-as the area of the original planar triangle. The method also extends naturally 
to d dimensions; so, by analogy: it approximates the content of a (d-1)-simplex 
projected onto the surface of a (d-1)-sphere, as the content of the original hyperplanar 
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simplex. Evidently, this approximation is poor if the vertices are not clustered in a 
small region of the hypersphere to begin with. 

Figures 5.25A and 5.25B respectively show that, in the two dimensional case, a linear 

approximation is adequate if the vectors are closely-spaced (A), but much too low if 
they are widely-spaced (B). An obvious solution, stated informally, is to break the line 
into two shorter, connected lines, by adding a vertex, v,,, to its mid-point, and pushing 
v* out onto the surface of the circle, as Figure 5.25C shows. One can readily imagine 
that the same idea applies to a planar triangle situated under the surface of a sphere. 
If the triangle is split into two smaller triangles by introducing a new vertex along one 
edge, and this vertex is projected onto the spherical surface, then the summed area 
of the two triangles provides a better approximation to the spherical triangle than the 
original, planar triangle. 

We can extend this principle to any number of dimensions with relative ease. Let V 
denote the set of vertices vi, ... , Vd of a (d-1)-simplex (and the associated spherical 
simplex). We shall denote the simplicial content, computed using either (5.116) or 
(5.119), using content(V). 

Let vi and vj denote the vectors in V that maximise dist(vi, v, ). It seems heuristically 
appropriate to assume that the longest edge makes one of the largest contributions to 
the defect between the planar and spherical contents. The mid-point of the edge from 
vi to vj is 

vmid = (5.120) 
2 

The projection of this point onto the surface of the sphere is associated with the vector 

_ 
Vmid 

IVmidl " 
5.121) 

We shall propose that, if content(V) is an approximation of the content of the 
hyperspherical simplex specified by the vertices in V, then 

content((V \ {v%}) U {v*}) +content ((V \ {v3}) U {v. }) 
is consistently a better approximation. 

5.4.6 Implementing a Subdivision Algorithm 

The goal of this section is to add a subdivision block to the detector to approximate the 
conditional probabilities, given Ho and H1, of multiple interval events as they arrive. 
To approximate the orthant probability, the content of the (d-1)-spherical simplex- 
approximated by summing the content of many, smaller simplices-is divided by the 
(surface) content of the (d-1)-sphere that contains it. The content of the surface of the 
(d-1)-sphere is 

27rd/2 
C9ýh = r(d/2), 

(5.122) 

where r(") is the Gamma function. 
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Figure 5.26: Top row: subdividing a line segment until it converges onto an arc 

segment. Bottom row: subdividing a plane triangle until it converges onto a spherical 
triangle. 

The main difficulty in verifying that the subdivision approach works is that we cannot, 
in the general case, compare the approximation with any analytical results that have not 
themselves been approximated. However, at least four ways to proceed remain open: 
I) plot the subdivision of the simplicies in two and three dimensions using MATLAB, to 
confirm that the algorithm at least carries out the expected geometric transformations; 
2) compare the approximation with analytical results for a problem having a non- 
trivial covariance matrix and trivial dimensionality; 3) compare the approximation 
with analytical results for a problem having a non-trivial dimensionality and trivial 
covariance matrix; 4) compare the approximation with an empirical value. 

Visualising Subdivision in Two and Three Dimensions 

Figure 5.26 shows the subdivision of a line segment into progressively shorter line 

segments. After sixteen subdivisions, the chain of lines resembles a circular arc. 
Similarly, the subdivision of a plane triangle into progressively smaller triangles 
eventually resembles a spherical triangle. The algorithm behaves as expected and can 
now be applied to specific orthant probability and zero crossing problems. 

219 



5.4 Detection using Multiple Intervals 
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Three Correlated Samples 

Figure 5.27: The subdivision algorithm used to solve the three-dimensional orthant 
probability for the covariance matrix in (5.123). The solid line plots the approximation 
against the number of subdivisions. The dashed line indicates the exact solution. 

Three-sample Orthant Probability 

We shall start by revisiting the three-dimensional orthant probability example worked 
out in Section 5.4.3. Let three samples of a Gaussian process, x1, x2 and x3, have zero 
mean and covariance matrix 

1 0.9 -0.22 
Ex = 0.9 1 -0.2 (5.123) 

-0.22 0.2 1 

It can be verified by numerous methods that 

P(xl > 0, x2 > 0, x3 > 0) = 2.2674. 

Figure 5.27 illustrates how the approximation converges onto the true solution, as the 
simplex is subdivided four hundred times (i. e., there are 401 planar simplices at the 
end). The slow convergence to the solution is not encouraging. 

Six-sample Orthant Probability 

Let six samples of a Gaussian process, xl, ... , X6, have zero mean and zero covariance; 
in other words, the process is white. Because the samples are independent, we have the 
trivial result: 

P(1 _1_ xl > 0,..., x6 > 0) = 26 64 "' 
0.0156. 

Figure 5.28 illustrates how the approximated orthant probability converges towards the 
true solution, as the simplex is subdivided ten thousand times. However, even after 
such a large number of iterations, the solution is clearly inadequate. 
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Figure 5.28: The subdivision algorithm used to solve the six-dimensional orthant 
probability for uncorrelated variables. The solid line plots the approximation against 
the number of subdivisions. The dashed line indicates the exact solution. 

ö 0.25 
12 
CL Q 0. ý 

0 
0.1E 

ýs 
Z 

0. ' c 

A o. o 
ö 

0.5 1 1.5 2 
Subdivisions 

X 104 

Figure 5.29: The subdivision algorithm used to solve the probability that, given a zero 
crossing has been observed, it is preceded by a 41-sample interval and a 40-sample 
interval. The solid line plots the approximation against the number of subdivisions. 
The dashed line indicates an empirical solution. 

Joint Probability of Two Consecutive Intervals 

Last of all, we shall attempt to utilise the subdivision technique to approximate the 
probability of the multiple interval event (il = 40, i2 = 41) in a Gaussian process 
described by the MGMM 

C1,40,0, +27r-200,0 )+ (2 , 40,0, -21r " 200,0) . 

In other words, we wish to determine the probability that, given a zero crossing has 
just been received, it is immediately preceded by an interval 41 samples long, and a 
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second interval 40 samples long. (Note that we are dealing only with the noise-only 
hypothesis; there is no signal present. ) 

The detector responds to the following pattern of signed samples, or the same pattern 
with the signs reversed. (Empty circles effectively represent samples that are ignored. ) 

n-82 n-41 n-1 

�-e-" co-a' 
n-81 n-42 n 

Labelling the six filled samples from right-to-left, i. e., x1 = x[n], ... , x6 = x[n-82], 
the correlation matrix governing the samples is 

1 Px [1] Px [41] Px [42] Px [81] Px [82] 

px [1] 1 px [40] px [41] Px [80] Px [81] 

Ex __ 
Px [41] px [40] 1 Px [1] Px [40] px [41] 

, (5.124) 
Px [42] Px [41] Px [1] 1 px [39] Px [40] 
Px [81] px [80] px [40] px[391 1 px [1] 

px [82] px [81] px[411 px [40] px [1] 1 

where px[. is the sampled autocorrelation function for the process. The probability 
that all the filled samples are positive is the all-positive orthant probability computed for 
Ex. However, we should like to determine the probability that the samples form the 
pattern (-, +, +, -, -, +) or (+, -, -, +, +, -), as opposed to (+, +, +, +, +, +). 
This is equivalent to twice the all-positive orthant probability for the correlation matrix 

L negLXETnegl 

where EReg is the diagonal matrix 

1 

-1 

Eneg = -1 
1 

(5.125) 

1 

-1 

Figure 5.29 shows how the approximation evolves as the simplices are subdivided 
twenty thousand times. Two surprising features are present in this graph. First, the 
approximation exceeds the true solution throughout most of the run. In two and three 
dimensions, this is impossible, and it seems reasonable to conjecture that the same 
ought to be true for all dimensionalities. Second, in many iterations, the subdivision of 
a simplex leads the approximation to grow smaller; this, too, is impossible in two and 
three dimensions. 
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The condition numbers of the matrices used to evaluate the Cayley-Menger determinant 
upon examination are, in most cases, far to high to permit accurate computation of the 
determinant. In summary, the inaccuracies that arise during the process of evaluating 
simplicial contents accumulate to the point where this kind of approach becomes 
highly impractical on a standard desktop computer. Besides, even if the approximation 
were to converge succesfully, the computational cost of evaluating the probability of 
a short sequence of intervals every time a zero crossing arrives rules out most likely 
applications in sonar. 

Attempts to evaluate the probability of many zero crossing intervals in a short time 
period is hindered by the intractable relationship between i) the correlation amongst 
the amplitude samples of a process and ii) the correlation amongst its zero crossing 
intervals. As we have seen, this relationship can be fully described with reference to 
the analogues of triangles and spheres in high dimensions, but an analytical method to 
discover the content of these shapes is lacking. In the final section, we shall take the 
opposite approach: measure fewer, independent intervals over a longer time period. 
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5.5 Post-detection Integration 

5.5 Post-detection Integration 

The first four sections of this chapter each independently tackled a particular problem 
or restriction facing the detection routines carried over from Chapter 4. In this fifth 

and final section, we shall attempt to combine the best aspects of these modifications 
into a single receiver, i. e., one which i) fixes the false alarm rate; ii) detects sinusoids; 
iii) incorporates information from the envelope and fine structure and iv) incorporates 
information from many intervals. 

The key idea that will allow us to draw these four strands together is post-detection 
integration: the averaging of many independent, identically-distributed samples to 
obtain Gaussian statistics by the central limit theorem (Peebles, 1993). Averaging 
samples until they converge upon a normal distribution is a standard aspect of 
conventional sonar detection and permits the construction of detectors capable of 
operating at arbitrarily low SNRs. (This topic was briefly discussed in Chapter 3. ) 
Our failure in the preceding section to find an expression for the joint p. d. f. governing 
a sequence of zero crossing intervals on short time scales adds to the motivation for an 
averaging approach. 

The prototypical narrowband power detector consists of four components: a linear 
analysis filter, a square-law device (a block whose output is the squared-envelope 
of its input), a linear post-detection filter, and a threshold (Burdic, 1984). We shall 
augment this model by adding a pathway that measures the zero crossing intervals 
of the analysis filter output and supplies them to a second post-detection filter. The 
likelihood functions that make up the decision rule will then be bivariate Gaussian 
probability density functions. These considerations give rise to the kind of assembly 
schematically illustrated in Figure 5.30. 

The post-detection filters are designed to average the input signal to produce an 
output signal whose samples are Gaussian-distributed; however, the input samples- 
whether from a square-law device or a zero crossing interval device-are generally 
correlated on short time scales. The means and variances of the Gaussian likelihood 
functions must be known before they can be placed into a decision rule. In theoretical 
terms, the variance of the samples at the post-detection filter output is minimised 
when the samples are statistically independent. The simplest means of guaranteeing 
independence between samples is to insert suitably long waiting periods between each 
measurement. 

We shall examine the components of the algorithm depicted in Figure 5.30 in the 
following order: the upper branch, which extracts and averages the squared envelope; 
the lower branch, which extracts and averages zero crossing intervals; and lastly, the 
decision rule block, which combines both envelope and timing information to decide 
whether or not a signal is present. Once the detector has been fully developed, a 
series of experiments can be undertaken to assess its performance. The results will 
be presented as ROC curves. 
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Figure 5.30: Joint interval detector with post-detection averaging. The upper branch 

averages N independent samples of the squared-envelope. The lower branch averages 
N independent zero crossing intervals. 

5.5.1 Squared-envelope Detection Branch 

Noise Only 

If the input to the analysis filter is noise with autocovariance function ryX (r), then the 
probability density function governing the squared-envelope output, prior to averaging, 
is that of the exponential distribution. 

pE(e) = 2yx 
1 

(0) exp 2'Yx (O) J 
(5.126) 

The mean and variance of this distribution are as follows (Peebles, 1993). 

mean{E I Ho} = 2yx(0) (5.127) 

y(). var{E Ho} = 4X (5.128) 

The p. d. f. is shown as a solid line in the top-left plot of Figure 5.31. 

The next block averages N samples. When N is large, the averaged statistic starts to 
converge towards a Gaussian distribution with mean 2 yx (0) and variance 4'y (0) IN. 
The top row of plots in Figure 5.31 show how the probability density function tends 
towards a Gaussian shape as N increases. 

Using Ea, to denote the averaged sample, when N»1, 

(_2 

PE. (ea) ̂  
27.471 (0)/N exp 

( 
8'y(O)/N 

)). 
(5.129) 

Signal and Noise 

When a sinusoid with amplitude A is added to the input signal, the samples at the 
output of the analysis filter are non-central chi-squared-distributed (Whalen, 1971, see 
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also § 1.1.1). In this case, the probability density function governing E is 

PE(e) -2e ._ 
(e +l (wc)I2A2l 

Io 
(deý(wc)JAVIe) 

2 
(5.130) 

27x(0) \ -2'Yx(0) / 7x0) 

where I 2a (w) I is the linear magnitude response of the analysis filter at the sinusoid 
frequency. The mean and variance of this distribution are as follows. 

mean{E I Hi} = 2ryx(0) + A2 (5.131) 

var{E j Hl} = 4ryx(0)['yx(0) + A2]. (5.132) 

Naturally, (5.131) and (5.132) reduce to (5.127) and (5.128), respectively, when the 
signal amplitude is zero. The test statistic E,,,, produced by averaging N independent 
samples, has mean 2yx(0)+A2 and variance 4ryx(0)[ryx(0)+A2]/N, and approaches 
a Gaussian distribution when N»1. 

5.5.2 Continuous Interval Detection Branch 

We now turn our attention to the lower branch of Figure 5.30, which extracts N+1 
consecutive zero crossing times using linear interpolation and computes the average of 
the N resulting intervals. This random variable is designated Ica, (i. e., I, averaged). 

Noise Only 

The probability density and cumulative distribution functions governing a single zero 
crossing interval of a continuous-time, wide-sense stationary Gaussian noise process 
were approximated in Section 4.4.3, and the former was found to be 

pi (ic) = 

(PZ(Zc) - 1)Pýý(iý) - P(ic)(P'(ic))2 
TO <ic< 2To 

2(P2(ic) - 1)3/2 PTi(ö) (5.133) 

0 otherwise. 
Allowing for the moment that (5.133) is precisely correct, the mean and variance of the 
distribution are as follows. 

2T0 

mean{III Ho} =f is pr, (ic)di, (5.134) 
Tp 

2'rp r2TO 
2 

(ic )di - ic var{Ic I Hl} = 
fr" 

i pIC 
(J 

, pry (ic)dic) (5.135) 

Neither of these integrals has an immediately evident analytical solutions, but a suitable 
approximation can be obtained by numerical means. The mean and variance of the 

I According to Rice's formula (Rice, 1944), the average number of zero crossings per unit time for a 
wide-sense stationary Gaussian process is -ý -p"(0). Consequently, the mean zero crossing interval is 
exactly 

mean{Ic I Ho} _ 
7r 

There is no similar formula for the variance. 
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A. True p. d. f. 

To 2r0 

EI- 2zý=u c23: 3- 
B. Approximate p. d. f C. Ac3jutitcd p. d. f. 

Figure 5.32: Mitigating the effect of interval aliasing on estimates of the mean and 
variance. A) illustration of the true distribution; B) the tails of the analytical distribution 
are inaccurate, but the majority of its support is accurate (grey blocks); C) assume that 
intervals are only received in the valid region, and normalise this region to unit area. 

distributions are found by evaluating the integrals as summations, using a sufficiently 
fine-grained integration step. Before a suitable approximation of the mean and variance 
can be computed, the probability density function in (5.133) must be normalised to unit 
area, to overcome the adverse effects of interval aliasing. (See Figure 5.32 and caption. ) 

Once the mean and variance of the interval distribution have been determined, they can 
be used to parameterise a Gaussian distribution. For a single sample (i. e., N= 1), 
there is a discrepancy between the Gaussian density function and the interval density 
function; most notably, the latter is more peaked than the former. The lower row of 
plots in Figure 5.31 show that, as N increases, the distribution of I, o, begins to approach 
Gaussian. 

Signal and Noise 

The signal-and-noise hypothesis, Hl, assumes that a sinusoid of amplitude A has been 

received in addition to noise. Two practical techniques for determining the interval 
distribution for a sine-in-noise mixture were discussed in Section 5.2. First, the 
sinusoid could be treated as though it were an ultra-narrowband Gaussian process. This 
approach inevitably introduces modelling errors, as the samples of a sinusoid do not 
follow a Gaussian distribution. However, the results of simple detection experiments 
in Section 5.2.7 suggest that the approach is acceptable if the signal-to-noise ratio is 
suitably low (< 20 dB). And second, a "Rayleigh-sum approach", the details of which 
are described in Section 5.2.5, can be used to approximate the probability density 
function with greater accuracy. This method of finding the interval distribution does 
not require the assumption of a particularly high or low SNR. but it is more costly in 
computational terms. 

It is left to the designer of the detector to decide which of the two options above will be 
used to generate the signal-and-noise distribution. The first option is admissible for low 
or high signal-to-noise ratio applications, respectively, and requires less computational 
effort than the second option. However, the sole purpose of computing the signal- 
and-noise distribution is to obtain its first two moments, i. e., the mean and variance, 
which are then used to construct Gaussian likelihood functions. Both the computation 
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of the p. d. f. and its subsequent numerical integration are undertaken during the initial 

calibration phase, rather than during the operational loop, so the computational cost 
of producing the density function is a minor consideration. For this reason, the 
second option-the Rayleigh-sum approach-is to be preferred, as it produces the most 
reliable probability density functions and does so for any SNR. 

5.5.3 Decision Rule 

The decision rule operates on the average squared-envelope (peak squared-amplitude) 
and zero crossing interval received from the upper and lower pathways in Figure 5.30. 
As we have noted, when N is sufficiently large, Ea, and Ica converge to univariate 
Gaussian distributions. The central limit theorem also states that the joint statistic, 
(Ea, Ica), will converge to a bivariate Gaussian distribution. For the hypothesis Hj, 
the bivariate Gaussian distribution, PIcaEa (ica,, ea, I Hj), is completely described by a 
2-element mean vector, µj and a2x2 covariance matrix, Ej. The decision rule of the 
detector is a hypothesis test that chooses Hl if 

PIcQE. (Zca, ea Hi) 
(5.136) 

PIcoE. (zca, ea Ho) > ý, 

or, after placing Gaussian p. d. f. s in (5.136) and taking logs, 

(x - ßo) 
TEo 1(x 

- µo) - 
(X 

- ai)T E1 1(X 
- µi) > In 

iEö` 
+ 21nß, (5.137) 

and Ho otherwise. 

The conditional means and variances of the distribution are computed according to 
Sections 5.5.1 and 5.5.2 above. The off-diagonal elements of the covariance matrix 
are the covariance of a zero crossing interval and its peak squared-amplitude. In the 
experiments that follow, the covariances are set to zero, so that peaks and intervals are 
modelled as statistically independent. Although this simplification could decrease the 
performance of the detector, there are at least two reasons to suppose that a diagonal 
covariance matrix is acceptable. First, empirical measurements of the covariance 
between intervals and peaks show that their correlation coefficient' is quite low under 
most circumstances (ý-_ 0.01). Second, it is difficult to estimate the covariance between 
intervals and peaks to a suitable degree of accuracy, when the estimates are computed 
numerically from the joint probability density function, which has in the first instance 
been obtained using a series of approximations (cf. Section 5.2). 

It could be objected that modelling the statistical dependency between intervals and peaks significantly 
improved detection performance under some conditions (e. g., see Figure 5.18), and that by neglecting the 
covariance term, this benefit will be lost. Against this, it must be remembered that although the intervals and 
peaks exhibit a strong statistical dependence, they do not share a strong linear relationship. Considering an 
alternative example, X and Y are statistically dependent if 

pX Y(x'y) 
1/(10x) x>0 and 4 

_> x2 + y2 >6 
0 otherwise. 

Nevertheless, X and Y are uncorrelated, i. e., E{XY} = 0. 
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A. SNR=0dB, ä=1/8s B. SNR=10dB, ä=118s C. SNR=13 dB, ä=1/16s 

1.5 

0.5 

1.5 

05 

1.5 

0.5 

Frequency (Hz) Frequency (Hz) Frequency (Hz) 

Figure 5.33: Signal and noise conditions. A) On-centre and off-centre detection at 
0 dB narrowband SNR; for results, see Figs. 5.36 and 5.37. B) Identical to (A), but 

with SNR raised to 10 dB; for results, see Fig. 5.38. C) Identical to (B), but with 
bandwidth doubled and pre-analysis SNR adjusted to match post-analysis SNR; for 

results, see Fig. 5.39. 

5.5.4 Experimental Results and Analysis 

The performance of the joint interval-peak detector with post-detection integration was 
assessed by a signal detection task. Two signals were synthesised, the first consisting of 
white noise with no signal (H0), and the second a mixture of a sinusoid and noise (HI), 
and the detector was configured to choose Ho or Hl according to a fixed likelihood 
threshold. The empirical true positive and false positive probabilities sampled from 
400,000 trials' were used to generate each ROC curve. In order to compare the 
performance of the joint interval detector with that of a purely power-based approach, 
the ROC curves for peak squared-amplitude detector were also plotted. (This detector 
effectively omits the lower branch of the diagram in Figure 5.30. ) 

On-centre Detection 

The first detection task required the detection of a sinusoid centred on an analysis band 
with an impulse response described by the MGMM 

1 
, 20,0, +27r " 500,0) + 

(2O. 
O. -27r . 500,0 }. (5.138) 

The squared-magnitude response of this filter, normalised to unit peak gain, is plotted 
in Figure 5.33A, along with the (pre-filter) signal and noise power spectral densities. 
The integration stage averages N= 64 independent samples (i. e., interval-peak pairs) 
before applying the decision rule. The ROC curves that result are plotted in Figure 5.36. 
No consistent difference in performance between the joint interval-peak detector and 

Equivalent to about seven hours of sound, or approximately 25 million zero crossing intervals. 
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A. Joint p. d. f. 

H1 

Ho 

B. Conditional p. d. f. 

"N 

Zia 

tca 

Figure 5.34: The decision based on (ea, i, Q) can be envisaged as two separate stages. 
A) Illustrative contours of the joint conditional p. d. f. s for Ho and Hl; B) once ea. has 
been measured, the interval p. d. f. conditioned on E=e,, ought to add to enhance the 
decision. This is tantamount to choosing j to maximise P(ea I Hj)P(ica I ea, H)). 

power detector is apparent, which is unsurprising in light of the results from earlier 
experiments that considered detection of a signal on the band centre. We also observe 
that by combining multiple samples in the detector, it is possible to secure lower false 

alarm probabilities than for an individual interval. 

The second detection task held the narrowband signal-to-noise ratio fixed at 0 dB and 
varied the number of independent samples combined prior to the decision rule (N). The 
ROC curves that result are plotted in Figure 5.37. Once again, the signal is centred on 
the analysis band, so there is no significant processing gain afforded by incorporating 
temporal information. For moderate false alarm rates (e. g., 10-2), it is possible to 
gain large increases in detection probability by increasing N, at the expense of longer 
integration periods. 

There is one anomolous result concerning the on-centre (500 Hz) signal condition that 
must be accounted for, before proceeding to the final experiment. We know that the 
variance of the zero crossing intervals is reduced when a signal is added at the centre 
of the analysis band. This can be confirmed analytically and empirically. Furthermore, 
because the intervals and peaks are (almost) uncorrelated, the difference in interval 
variance between Ho and H1 must, in theoretical terms, assist the detector to some 
degree, as the diagram in Figure 5.34 illustrates. Yet this improvement is not visible in 
Figure 5.38. 

This apparent contradiction is resolved if the improvement in detection performance 
is negligible-and hence literally invisible in the figure-as opposed to non-existent. 
It can be shown that this is in fact the case for on-centre detection with post-detection 
averaging. The conditional means for the on-centre condition may be treated as equal', 
with the counterintuitive consequence that averaging many intervals fails to increase 

1 Adding a signal to the band centre causes the mean interval to change by an exceedingly small amount. 
For the on-centre condition shown in Figure 5.33A, the difference is approximately 3 µs. 
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N=1 N=4 N=16 N=32 
to 

N=1 N=4 N=16 N=32 
N 

fC 

W 

Figure 5.35: A) If the means of two conditional distributions are unequal, then 
averaging N samples improves detection. The probability density functions grow 
narrower and more Gaussian-like, but their means remain separated by the same 
amount; thereby, the detector can more reliably separate incoming samples into two 
classes. B) If the means of the distributions are equal, then averaging N samples merely 
causes both distributions to shrink onto the same centre; separability is unaffected. 

detection performance to any extent. On the other hand, the conditional means of 
the envelope test statistic, e, are unequal; thus, increasing N monotonically improves 
detection performance. The graphs in Figure 5.35 illustrate how a separation in 

conditional means is required, if averaging multiple samples is to improve the quality 
of the detector. Placing the signal away from the band centre causes the conditional 
mean intervals to diverge. The final experiments investigate the detection of a signal 
that has been displaced from the band centre. 

Off-centre Detection 

In the third detection task, the signal-to-noise ratio was held at 0 dB, and 64 samples 
were averaged. The performance of the detectors was recorded for various signal 
displacements, specifically, 0 Hz (no displacement), +5 Hz, +10 Hz and +15 Hz. 
The power spectral densities for these four signals are shown in Figure 5.33A. The 
ROC curves that were produced are shown in Figure 5.38, with each condition plotted 
on a separate set of axes. There is no appreciable difference in performance between 
the two detectors when the signal is located at 500 Hz or 515 Hz, but the joint interval- 
peak detector achieves a small increase in performance over the power detector when 
the signal frequency is 505 Hz or 510 Hz. Evidently, at 500 Hz, the performance 
increase contributed by temporal information is negligible-as explained above-and 
at 515 Hz, signal attenuation reduces the detector to near-chance performance. 
For signal and noise mixed at 0 dB narrowband SNR, only a marginal performance 
increase follows from incorporating temporal statistics into the detection process. In 
order to accentuate this benefit, either the number of samples, N, could be increased, 
or the signal-to-noise ratio could be raised. The fourth detection task pursues the 
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Figure 5.36: ROC curves for on-centre detection with 64 independent samples. The 

curves shown are for narrowband SNRs -10 dB (lowest curve), -5 dB, 0 dB, 3 dB, 
5 dB, 7 dB, and 10 dB (uppermost curve), where a solid line indicates the performance 
of the power ("peak-only") detector and a dashed line indicates the performance of the 
joint interval-peak detector. 
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Figure 5.37: ROC curves for on-centre detection with 0 dB narrowband SNR. The 
curves shown are for 16 (lowest curve), 32,64,128,256 and 512 (uppermost curve) 
samples, respectively. See Figure 5.36 caption above for key. 
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5.5 Post-detection Integration 

second of these options. Figure 5.38 plots the performance of the joint interval-peak 
and power detector when the SNR is raised to 10 dB. The signal and noise conditions 
are plotted in Figure 5.33B. Supplying evidence from zero crossing intervals to the 
decision rule leads to a pronounced increase in detection probability when the signal 
is placed at 505 Hz or 510 Hz. In the 505 Hz signal frequency condition, at low false 
alarm probabilities (< 0.0005), the joint peak-interval detector is inferior to the power 
detector (Figure 5.39, top-right). The failure of the detector in this instance can be 
attributed to a poor approximation of the tail of the interval distribution. Some model 
error is unavoidable: the Gaussian distribution has infinite support, which means that 
some probability must be assigned to negative zero crossing intervals. 

The fifth and final detection task required the detection of a signal in a wider analysis 
bandwidth. The signal-to-noise ratio was adjusted so that the post-analysis noise power 
was matched with the preceding experiment, which equates to a pre-analysis SNR of 
approximately 13 dB for the on-centre condition. The signal and noise conditions are 
shown in Figure 5.33C, and the corresponding ROC curves are plotted in Figure 5.40. It 
is seen that, except for the model errors introduced by fixing the false alarm probability 
too low, off-centre detection improves considerably when envelope and zero crossing 
interval measurements are combined in the detector. 
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5.6 Summary 

5.6 Summary 

The aim of this chapter was to bridge the conceptual gap between the capabilities of the 
elementary interval detectors in Chapter 4, and the envisaged practical requirements of 
ZCPA-based applications in Chapter 6. Four assumptions from the previous chapter 
have been reappraised. 

The first assumption concerned the metric used to evaluate the performance of a 
detector. Chapter 4 considered only minimum error detectors, namely, receivers which 
assign an equal cost to false alarms and false dismissals. This chapter investigated 
interval detectors that fulfil the Neyman-Pearson criterion, that is, to maximise the 
detection probability for a constant false alarm rate. Whereas a power detector applies 
a single threshold to its test statistic, an interval detector requires two: one to reject 
intervals which are too short, the other to reject intervals which are too long. 

The second assumption related to the kind of random process that the detector could 
choose between. Chapter 4 required that each hypothesis be a wide sense stationary 
Gaussian process, and the derivation of the interval distribution incorporated this 
assumption. The most important random process discussed in the sonar literature, after 
pure Gaussian noise, is a randomly-phased sinusoid in Gaussian noise. This process has 
non-Gaussian samples, and consequently, the distribution of its zero crossing intervals 
could not be found using the techniques in Chapter 4. 

In this chapter, we exploited the fact that a closely-related random process, namely, a 
randomly-phased sinusoid with a Rayleigh-distributed amplitude, was both stationary 
and Gaussian. By choosing a suitable linear combination of the interval distributions 
for this type of process, the distribution for a sinusoid with a constant amplitude was 
approximated. The interval detector based on this likelihood function was able to 
optimally detect a sinusoid in noise and outperform a squared-envelope detector when 
the signal was sufficiently displaced from the band centre. 
The third restriction in Chapter 4 stated that an interval detector should operate on 
timing information alone. It was apparent from the experiments in that chapter that 
the squared-envelope detector performs better under some conditions (near centre 
detection), and the interval detector performs better under others (off-centre detection). 
This chapter developed a joint interval-peak detector which, when given both pieces 
of information together, outperforms, or at least matches the performence of, both the 
squared-envelope and interval detectors. 

Finally, whereas the previous chapter had only considered detection using a single 
zero crossing interval received in one channel, this chapter tackled the problem of 
combining the information from many intervals. Attempts to extend the elementary 
interval detector to process multiple intervals led to the need for accurate and 
rapid evaluation of high-dimensional orthant probabilities; unfortunately, there is 
no technique available to do this at the present time. Instead, a (single-channel) 
multiple interval detector was developed using conventional post-integration methods: 
independent zero crossing intervals were sampled at regular intervals and averaged to 
form a Gaussian statistic. 
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Chapter 

Tracking and Grouping 
Tonals in the ZCPA 

The purpose of this chapter is somewhat broader than those of earlier chapters, as it 

moves beyond timing-based detection (e. g., deciding whether a signal is present using 
zero crossings) to consider estimation, i. e, the problem of determining an unknown 
signal quantity; tracking, which is the extension of estimation over time; and grouping, 
i. e., deciding whether two or more tracks indicate a common source. There is also an 
opportunity to re-examine the ZCPA presented in Chapter 3 in light of the theoretical 
work on zero crossing intervals immediately above. The chapter draws to a close many 
aspects of the preceding work, as well as opening up some new directions to explore, 
which inevitably results in a change of emphasis. 

First, there is a focus on reconciliation: an attempt to relate the rather abstract 
discussion of interval distributions, and the highly-controlled evaluation of model 
detectors using synthetic signals in Chapters 4 and 5. to the practical problem of 
deciding how to calibrate the ZCPA to best represent real-world sonar signals, over 
which we have little or no control. Several experiments have been conducted to 
determine the performance of optimal detectors in model scenarios, but a real sonar 
recording will contain numerous departures from ideal conditions. In many cases, 
even basic quantities such as overall signal gain, which heretofore have been taken for 
granted, will be unknown. 

Second, there is a steady progression towards object-orientation. Auditory scene 
analysis is an attempt to describe how a listener, upon hearing a mixture of sounds, 
perceives whole "auditory objects" and groups them into streams (Bregman, 1990), but 
it is predicated upon, and constrained by. the findings of psychological hearing studies. 
One analogous goal of the following work is, by building on lower representational 
levels, to uncover simple elements in the raw sonar signal waveform, such as peaks. 
tracks and transients, and, if possible, to group them together on the basis of common 
features. 



Third, the studies pay closer attention to application. Although using an elementary 
interval detector to detect a tonal in noise could be considered an application, in this 
chapter we will often speak in terms of the kind of activity a human sonar operator 
might perform: for example, "setting" a threshold for signal detection, "clicking" on a 
tonal track, "zooming in" on its fine structure, or "comparing" one track with another 
on a display. 

Having overviewed the purpose, we turn now to the material of the chapter, which 
consists of five germinal studies, spanning three interlocking themes: the ZCPA, 
track formation and fine structure processing. The first study addresses the problem 
of placing a threshold on a ZCPA bin to decide whether or not a signal is present 
(§6.1). The second study examines whether, by applying this threshold on a frame- 
by-frame basis, it is possible to track signals that persist over time (§6.2). Having 
obtained a track, the third study investigates how one might estimate its time-varying 
frequency using timing-based methods (§6.3). The fourth study proposes a rudimentary 
transient detector and modifies the frequency estimation routine to dismiss unreliable 
measurements during transient events, such as knocks (§6.4). The fifth and final study 
describes a grouping algorithm for fusing frequency tracks that show a common pattern 
of modulation (§6.5). 

tracking 
I 

Chapter 6 Outline 
M ME 

I Setting a Threshold on the ZCPA (6.1) 

Tracking Peaks in the ZCPA (6.2) 

Timing-based Fine Structure Estimation (6.3) 

Repairing Fine Tracks through Transients (6.4) 

Grouping Fine Tracks (6.5) 

Summary (6.6) 

ZCPA 

fine structure 
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6.1 Setting a Threshold on the ZCPA 

The DFT and ZCPA spectrograms are similar in that both consist of a two-dimensional 
array of cells spaced uniformly in time and frequency, and a higher value in a cell 
always makes the presence of a signal at that time and frequency more likely, albeit 
via different mechanisms. There are well-established distributions governing the DFT 
magnitude for simple classes of signal and noise, such as Gaussian processes and 
sinusoids. Ultimately, these are derived by considering how individual time-domain 
samples with simple statistical behaviour are combined in the DFT processor. We must 
now ask, "Can a similar philosophy be used to derive the distribution of a ZCPA bin? " 

The value stored in a ZCPA bin is a random variable found by summing the contribution 
of intervals across a block of filters. Let us consider the ZCPA bin indexed k. The set 
Sk contains only the indices of the filters that are capable of contributing to bin k. The 
set I consists of the indices of the most recent interval-peak pairs used to form the 
histogram. As the ZCPA bin value is derived from many, individual intervals, we shall 
attempt to draw on the earlier work regarding the distribution of a single interval (and 
its peak value) as a route to finding the mean, variance, and possibly higher moments, 
of the ZCPA bin. 

Mean 

Let Ck (t, s) denote a contribution function, that is, the amount by which the t-th interval 
of the s-th channel increases the k-th histogram bin. (The specific interpretation of this 
function will become apparent shortly. ) In this case, the mean value of ZCPA bin k is 
given by 

E{ZCPA[k}} =EE ECk(c, s) (6.1) 
SESk r. EZ 

_E1: E {Ck (t, s) } (6.2) 
SESk 1 , EZ' 

_ 1I EE {Ck(s)} 
. (6.3) 

SESk 

Having assumed that the input signal is stationary, the expected value of an interval is 
independent of its index, so step (6.3) makes use of E{Ck(t, s)} = E{Ck(s)}. (We 
write IIl for the cardinality of the set 1. ) 

Variance 

The derivation of the bin mean above essentially reduced the expectation of a sum to 
the sum of an expectation, and the same approach can be attempted to find the bin 
variance. The variance is obtained by subtracting the square of the mean from the 
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second raw moment. The second raw moment is written as follows. 

E{ZCPA2[k]} =EZ 
ECk(c, s)2 (6.4) 

sESk tEZ 
EEEE {Ck(t1, si)Ck(t2, s2)} . (6.5) 

81ESk c1 EI82ESk taEZ 

The summand, E {Ck(tl, sl)Ck(t2, s2)}, expresses the raw covariance of interval 
contributions measured at different times and in different channels. 

There appear to be severe difficulties facing the evaluation of these covariances, except 
in the trivial cases, in which either (i) the indices s1,82, cl and c2 conspire to make the 
intervals independent, in which case 

E {Ck(tl, 81)Ck(L21 S2) I=E {Ck(sl)}E{Ck(s2)} 

or (ii) the raw covariances are in fact raw second moments, i. e., Si = s2, G1 = G2. 

An expression for the multiple interval probability distribution is required to evaluate 
these expectations explicitly, and as we observed in the previous chapter, a convenient, 
analytical form of this distribution is lacking at present. It is notable that even the 
specific problem of determining the joint distribution for two successive intervals of 
a Gaussian process-disregarding of the peak amplitude-has received attention as a 
problem in its own right (Rychlik, 1987). 

6.1.1 Mean Noise Profile of the Timing-only ZCPA 

The mean profile of the ZCPA refers to the shape produced by averaging the ZCPA over 
a theoretically infinite number of rows; or, stated another way, it is a graph plotting the 
expected value of a bin against the bin frequency. The mean profile given noise-only 
conditions is a useful guide for placing an absolute threshold for signal detection, as 
the addition of a signal on the bin centre always raises its average value. 
The preceding section introduced the contribution function, Ck(t, s), to describe the 
increase in ZCPA bin k following the arrival of the interval t in channel s. Let us 
consider the bin k, depicted in Figure 6.1, with lower and upper edges denoted fko and 
fkl, respectively. A bin in the timing-only ZCPA is incremented by one, if and only if 
the time difference between two consecutive zero crossings in the same direction, ip, 
falls into the bin's range, i. e., 

Ck(t, s) _ 

1, AO < 
ip(t, s) 

< Al 
(6.6) 

0, otherwise. 

Exploiting the fact that intervals in a narrowband channel vary slowly, we can assume 
that ip : 2i,. The expected value of the contribution function can then be written in 
terms of the cumulative distribution function governing ic, that is, 

E{Ck(s)} =Pi, < 
21 given sI-P 

(ir 
< 

2f 
I 

given sl . (6.7) 
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Figure 6.1: Deriving the contribution function for the timing-only ZCPA from the 
interval distribution. A) The expected contribution of an interval to bin k is the same 
as B) the probability that the interval between two upward zero crossings (i,, ) falls into 
the bin range, which is approximately equal to C) the probability that twice the interval 
between two successive zero crossings (i, ) falls into the bin range, which can be found 
by D) differencing the cumulative interval distribution function. 

A suitable approximation for the interval c. d. f. of a wide-sense stationary Gaussian 

process was derived in Chapter 4. Applying this in (6.7) and then (6.3), we can find the 
mean ZCPA spectrum for a white or coloured Gaussian noise signal. 

Figure 6.2A shows the analytical mean profile of the timing-only ZCPA in response to 
white noise input. The analysis filters of the ZCPA are spaced 1 Hz apart, cover a range 
of 190 Hz-210 Hz, have tuning parameter aa, = 2.5, and each contribute 20 intervals. 
The histogram bins are 0.25 Hz wide. An empirical mean profile generated from five 
thousand seconds of a white noise signal is provided in Figure 6.2B for comparison. 
The slight differences between the analytical and empirical profiles can be dismissed as 
the result of the accumulation of approximation errors ; the overall similarity between 
the two is sufficiently compelling at this stage. 

More interestingly, the ZCPA profile itself (whether analytically or empirically derived) 
fluctuates around a steady state of 5 intervals. This is the desired response for white 
noise signal, as every filter contributes 20 intervals, and the filters and histogram bins 
are in a 4: 1 ratio. However, the spiky fluctuation around the steady state, which we 
shall henceforth term ZCPA ripple, is a poor representation of a white noise spectrum, 
and we must devote a short section to discussing means to counteract its appearance. 

Such errors arise from the truncation of the impulse response, the interpolation of zero crossings, the 
(false) assumption of perfect interval conditioning when computing the interval p. d. f., and so on. 
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A. Approximate Analytical Mean ZCPA 
6r 

Q 
a- 
0 

Figure 6.2: Mean timing-only ZCPA profile for white noise. A) analytical profile, with 
contributions from individual filters is shown in grey; B) empirical profile. 

B. Empirical Mean ZCPA 

Timing-only ZCPA Ripple 

ZCPA ripple is a consequence of the fact that whilst every analysis filter produces a 
range of zero crossing intervals roughly commensurate with its magnitude response, 
each has an increased tendency to output intervals nearer to its centre frequency. The 
mean contributions of individual analysis filters are plotted in Figure 6.2A as a series 
of grey `spikes'; the final mean profile is found by adding these together. Evidently 
the (reciprocal) interval distribution of every analysis filter is decidedly sharper than 
its squared-magnitude response, which is Gaussian-shaped, and the ZCPA bins which 
coincide with filter centres draw more intervals than those those which fall inbetween. 

The most natural solution to the ripple problem is to increase the bandwidth of the 
analysis filters so that their respective interval distributions grow wider and sum to 
form a flatter profile. We may recall from earlier chapters that the filter bandwidth 
is controlled by two parameters: the impulse response duration, To,, and the tuning 
parameter, aa,. When modelling a theoretical Gaussian window of infinite duration, 
the two parameters combine to form a single parameter, C= aQ/Ta. In the DFT, 
however, Ta, is fixed according to the DFT length, and as controls the sharpness of the 
window function. In general, larger values of as correspond to wider bandwidths. 

Having traced the cause of the ripple and noted the relevant parameters, we shall select 
a few values for as and monitor their effect upon the ZCPA profile. Figure 6.2 above 
was produced by setting aa, = 2.5; Figures 6.3A-C show the profiles for as = 2.0 
(narrower bandwidth), and aa, = 4.0 and caq, = 6.0 (wider bandwidths), respectively. 
The suppression of ZCPA ripple for larger values of as is apparent from these figures 
and supports our earlier reasoning. It should be remembered that, because an controls 
analysis bandwidth, it has an impact on the signal-to-noise ratio and resolution of the 
ZCPA, in addition to ripple in the mean profile. Although one could, in principle, 
choose a very large value of cao, to suppress ripple almost entirely, in practice, it would 
also lower the post-analysis SNR and lead to interference between closely-spaced 
components. 

In order to establish a suitable trade-off, we shall quantify ripple as a function of aa and 
then attempt to find the smallest value of as for which the level of ripple is tolerable. 
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Figure 6.3: The upper panels plots the mean timing-only ZCPA profile for various a,,. 
The lower panel plots ripple factor (dB, solid line) and relative bandwidth (ratio of 3 dB 
bandwidth to binwidth, dashed line) as a function of aQ. 

Ripple in the band-pass portion of a filter magnitude response is usually measured using 
the decibel ratio of peak to trough levels (Oppenheim and Schafer, 1989). Adopting a 
similar approach here, the lower panel of Figure 6.3 writes the ripple factor (in dB) on 
the left-hand ordinate, the scaled filter bandwidth on the right-hand ordinate, and a4 
on the abscissa. From these curves, it appears that aQ = 4.0 is a good choice, as it 
roughly matches the 3 dB bandwidth with the DFT bandwidth and leaves only a very 
small amount of ripple (see also Figure 6.3B); at the expense of a small increase in 
bandwidth, aa, = 5.0 suppresses ripple almost entirely; there is negligible ripple for all 
aa, > 5.0. 

Figure 6.4 shows the timing-only ZCPA for one minute of sonar recording, computed 
with aq, = 4.0, and plots the mean profile underneath. A flat profile of five intervals 
is apparent in regions of the noise, even though the energetic noise floor is certainly 
not flat (cf. Fig. 3.4); dominant components appear as spikes of varying height, flanked 
by small troughs. (The significance of this shape is discussed in Section 6.1.3. ) The 
appearance of the profile suggests placing a detection threshold at ten intervals; this is 
marked on the figure as a dotted line. The key result here is that, in the case of the 
timing-only ZCPA, the expected height of the noise floor is known in advance, being 
determined from the ZCPA configuration rather than the data. 
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Figure 6.4: ZCPA and mean ZCPA profile for a minute-long recording of an oil tanker. 
(See Figure 3.19 and caption. ) 

6.1.2 Mean Noise Profile of the Peak Squared Amplitude ZCPA 

The standard ZCPA weights the contribution of an interval to the histogram according 
to some nonlinear compression of its peak amplitude. The contribution function of 
the timing-only ZCPA only accounted for the probability that an interval is assigned 
to a particular bin. For the peak squared amplitude ZCPA, we must consider not only 
the probability that (i) an interval is assigned to given bin, but also (ii) the expected 
value of its peak squared amplitude, given the bin to which it is assigned. Using 
E(t, s) to denote the peak squared amplitude for the interval indexed t in channel s, 
the contribution function is modified accordingly. 

E(t, s), fko <_ .1< 
Al Ck (t, S) = 2p(t, S) (6.8) 

1 0, otherwise. 

The expected value of this function can be found by integration the joint p. d. f., i. e., 

1/(2fko) 00 f 
pr, E(Zc, e) dedic (6.9) E{Ck(t, s)} = 

1/(2fki) 
/0 

/'1/(2fko) o0 1 

=J [10 PEI I. (e I ic) del pJ0 (ic)dic. (6.10) 
1/(2fki) 

The expression in squared brackets is the expected value of the squared amplitude, E, 
given that the interval over which it occurs has duration i0. We can evaluate the inner 
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6.1 Setting a Threshold on the ZCPA 

integral using the approximation for pEIIý (") given in (5.77), i. e., 

f 
pEIr. (e 1 i0)de =f 2ýIEI3 exp 12E de = 3E, (6.11) 

where 
^Y2 (0) +'Yx(0)'Yx(zc) - 2yX(2ic) (6.12) 'Yx(0) +'Yx(zc) 

Then, placing (6.11) and (6.12) into (6.10), we get 

f/(2fk1 l/(2sko ) ((0) +'yx(0)'Yx(i) - 27(ic)1 E{cý(ý, S)} = x(0) +x(i) ) ýý(i) aZý. 
(6.13) 

It will be difficult obtain a closed-form solution to this integral. However, because the 
bins are relatively narrow, we can assume that both i, and E{E IQ change very 
gradually over the region of integration. One possible way forward involves expanding 
the integrand using a first- or second-order Taylor series; another is to assume that the 
expected value of the envelope varies so slowly with i. that it can be replaced with 
a constant equal to its value at the mid-point of the integral'. The latter approach 
produces the rather ungainly but conceptually simple expression, 

7X (o) + 7x (o)tix (fko+fkl) - 2-yX (. c 4fkofkl BfkOfkl 
(6 14) E{Ck(ti s)} 

ý 
ryX «» + ryX 

(fkQ+fkI) 

4fk+fk1 

xP 
(ic 

< 
2f 

1 

ko 
given s) -P (zý <1 

2 given s)] 

All the quantities in (6.14) are known, and the mean ZCPA profile can now be found. 

Figures 6.5A and 6.5B respectively plot the analyical and empirical mean ZCPA profile 
for a white Gaussian noise signal with unit power spectral density. The analysis filters 
and histogram bins are the identical to those used for the timing-only ZCPA study 
above, and aa. = 2.5. As before, the dissimilarity between the two profiles can be 
attributed to cumulative approximation errors (in particular, it seems, the truncation of 
the impulse response for small aa). 

Peak Squared Amplitude ZCPA Ripple 

The lower panel of Figure 6.6 plots the ripple factor in the peak squared amplitude 
ZCPA profile (that is, the decibel peak-to-trough ratio) as a function of aa. As with 
the timing-only ZCPA, the ripple in the mean peak squared amplitude ZCPA profile 

1 This is tantamount to replacing the first part of the integral with a zeroth-order Taylor series expansion 
around the centre interval, 

1 11+ fk0+Al 

2 2fko 2fk1/ 4fkOfkl 
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Figure 6.5: Mean peak squared amplitude ZCPA profile for white noise. A) analytical 
profile, with contributions from individual filters is shown in grey; B) empirical profile. 
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Figure 6.6: The upper panels plots the mean peak squared amplitude ZCPA profile for 
various aa" The lower panel plots ripple factor (dB, solid line) and relative bandwidth 
(ratio of 3 dB bandwidth to binwidth, dashed line) as a function of aa,. The ripple factor 
of the timing-only ZCPA is included for comparison (dotted line). 
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Figure 6.7: A) mean timing-only ZCPA profile and B) mean peak squared amplitude 
ZCPA profile for a narrowband signal in noise, with components plotted in light grey. 

is due to the tendency of the analysis filters to output intervals close to their centre 
frequencies when driven by white noise. Increasing caa, broadens the response of the 
analysis filters and the associated interval probability density functions, thus flattening 
the average ZCPA response. It should also be noted that, unlike the timing-only ZCPA, 
the increase in attenuation due to larger aa, rescales the mean profile. 

Figure 6.6 plots the ripple factor of the peak squared amplitude profile against that of 
the timing-only profile with a solid and dotted line, respectively. A comparison of the 
curves reveals that the ripple factor is worse in the former than in the latter. As we 
have noted, an analysis filter contributes intervals near its centre frequency more often 
(due to the dominant frequency principle); however, the intervals near the centre are 
also weighted by larger peak amplitudes, as there is less attenuation in the band near its 
centre. This combination of effects means that larger value of as is required to match 
the ripple factor of the peak squared amplitude ZCPA against that of the timing-only 
ZCPA. A value of aa, = 5.0 appears to be a sensible compromise. 

6.1.3 Mean Signal-and-Noise Profile of the ZCPA 

Although only white noise processes have been considered so far in this section, we are 
able, in principle, to calculate the mean ZCPA profile for a number of signal and noise 
configurations, including additive mixtures of sinusoidal, notched noise and coloured 
noise processes. In drawing this topic to a close, we shall examine the mean ZCPA 
profile of just one type of mixture: the narrowband signal in noise configuration which 
featured in Chapter 4. 

The signal process consists of white noise with unit power spectral density convolved 
with an impulse response whose MGMM description is 

Ah, = (A = 2.5, C=0.625, µ=0, (D = 27r " 200,0 = 0) 
+ (A = 2.5, C=0.625, µ=0, w= -2ir " 200,0 = 0) , 

A. Mean ZCPA (timing only) B. Mean ZCPA (peak sq. ampl. ) 
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A. B. 

(i) (ii) (iii) (i) (ii) (iii) (iv) 

Figure 6.8: A) synchronised regions in the timing-only ZCPA: (i) synchrony excess; 
(ii) synchrony deficit; (iii) no synchrony (noise floor); B) energised and synchronised 
regions in the peak squared amplitude ZCPA: (i) synchrony excess and energy excess; 
(ii) energy excess and synchrony deficit; (iii) synchrony deficit and no energy excess; 
(iv) no synchrony and no energy excess (noise floor). 

This is added to a white noise background with unit power spectral density, giving a 
narrowband signal-to-noise ratio' of approximately 9.5 dB. 

The mean timing-only ZCPA profile (caa = 4.0) is shown in Figure 6.7A. It is clear 
from the mean profile components, shown in light grey, that the spectral dominance 
at 200 Hz has drawn intervals from the surrounding channels. The intervals of the 
(200 ± 1) Hz channels gravitate signficantly away from their own centres, towards the 
signal frequency; those of the (200 ± 2) Hz channels are moderately affected; those of 
the (200 ± 3) Hz channels are negligibly affected; and beyond this, the signal exerts 
no influence. The intervals of the adjacent filters that are captured by the signal do not 
contribute to their "local" bins, and, consequently, two grooves are etched in the mean 
profile either side of the peak. 

The mean peak squared amplitude ZCPA profile (a,, = 4.0), shown in Figure 6.7B, 
exhibits a small amount of synchrony capture. In the locations where the grooves would 
ordinarily appear in the timing-only ZCPA, there is a small bump, due to the fact that 
although the neighbouring filters do not capture as many intervals, the intervals they do 
capture also receive some energy from the component. The unusual shape of the peak 
squared amplitude ZCPA profile is caused by an interaction between energetic and 
synchronised regions-an interaction which is not present in the timing-only ZCPA, or 
indeed the "energy-only" DFT. A speculative attempt to label the characteristic features 
of the ZCPA profiles is related in Figure 6.8. 

The mean ZCPA noise profile and the shape of the synchrony profile-both of which 
we must recall are derived from the interval (and joint interval-peak) distribution in 
earlier chapters-will to some extent inform the design of the peak tracking routines 
that follow. 

The narrowband SNR was defined as the dB ratio of total signal power to noise power in a1 Hz band. 
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6.2 Tracking Peaks in the ZCPA 

The automated detection of narrowband signals in the ZCPA can be accomplished on 
a frame-by-frame basis using a suitably-chosen threshold, perhaps one placed at some 
multiple of the mean ZCPA noise profile. Figure 6.9A shows the result of applying a 
threshold to the timing-only ZCPA displayed in Figure 5.4: values exceeding fifteen are 
mapped to black pixels; the rest are mapped to white. (The mean noise profile is five. ) 
The threshold highlights the tonal peaks at the cost of introducing many thousands of 
spurious peaks. One principle for discerning whether a peak is genuine-and also one 
of the Gestalt principles mentioned in Chapter 2-is continuity, that is, the persistence 
(or transience) of a peak over time. 

The final problem to be tackled here is that of distilling from the two-dimensional grid 
of "peak candidates" a set of continuous tonal tracks. This constitutes the first attempt 
in this work to move from a data-oriented representation to an object-oriented one, and 
it requires some care. Although the human eye is well-adapted to spot even the vaguest 
of structured features in an image (e. g., a line at 450 Hz in Fig. 6.9A), an automated 
peak tracker is susceptible to a number of faults. First, peaks frequently disappear and 
reappear as result of fluctuations in the noise floor or signal level. Similarly, peaks 
vary infrequency due to changes in the source, the influence of the channel, or simply 
as the result of noise. In addition, there may be competing interpretations of how to 
extend a track, e. g., should the algorithm opt for the nearest peak or the tallest peak? 
What happens if two tracks collide or cross? 

Tracking algorithms of varying degrees of sophistication and auditory inspiration have 
been proposed in recent years and are often presented as one component in a larger 
system. Amongst those which track sinusoids (also called partials or harmonics) we 
include the CASA models of Cooke (1991/1993), Mellinger (1991) and Nakatani 
(2002), the spectral peak tracker of McAulay and Quatieri (1986), the HMM-based 
partial tracker of Depalle et al. (1993), the Kalman filter-based CASA system of Unoki 
and Akagi (1999) and the linear prediction-based model of Lagrange et al. (2004). Any 
of these solutions could, in principle, be applied to the problem of tracking tonal peaks 
in the ZCPA. In this work, we shall consider just one: the birth-death peak tracker of 
McAulay and Quatieri (1986). 

6.2.1 Birth-Death Peak Tracking (McAulay and Quatieri) 

The birth-death peak tracking scheme of McAulay and Quatieri (1986) can be 
described in high-level terms as follows. The routine maintains a set of time-frequency 
tracks, which are created, extended and terminated in an online fashion. A set of peaks 
is determined for each spectral frame on its arrival and then processed. If a peak is 
sufficiently close to the end-point of a "live" track, the track is extended accordingly 
and the peak is removed from the set. The remaining peaks, which cannot be joined to 
a track, each give "birth" to a new, live track. Conversely, the inability of any live track 
to perpetuate itself by connecting to an arriving peak causes its "death". 
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Figure 6.10: Simple peak detection. A) peaks in the ZCPA above threshold (dashed 
line); B) peaks in the smoothed ZCPA above threshold. C) time-frequency convolution 
kernel used in the production of Figures 6.9B and 6.9C. 

The McAulay-Quatieri algorithm is well-suited to our present task for two reasons. 
First, each module of the algorithm-that is, the spectral analyser, peak detector and 
peak tracker-is interchangeable, in the sense that it can be replaced with a different 
implementation without requiring changes in the other modules. Second, the modules 
function in a strictly feed forward and online fashion, which leaves open the possibility 
of tracking peaks in the ZCPA as it is processed. Here, the ZCPA constitutes the first 

module of the three-module architecture (rather than the Fourier spectrum); we shall 
now describe the implementation of the second and third modules. 

Peak Detection 

The most direct method for detecting peaks is to apply a simple criterion to each ZCPA 
bin, labelling it as a peak if it is strictly greater than both its immediate neighbours 
and the detection threshold. The peak detection aspect of this criterion is equivalent to 
finding negative-going sign changes in the spectral / ZCPA derivative (i. e., a transition 
from positive to negative slope). The main objection to this approach is its sensitivity 
to spurious peaks above the detection threshold and secondary peaks that occur in what 
a human viewer would label as a single, broad peak. Referring to Figure 6. IOA, for 

example, an observer might judge that peaks 1,3 &6 are due to the noise floor, peak 2 
is genuine, and peaks 4&5 are part of the same peak. 

Convolving the ZCPA with a two-dimensional low-pass filter prior to peak detection 
can assist the suppression of spurious peaks and aid the detection of broad peaks. The 
effect of a three-point, uniform spatial filter (i. e., [1, 

,3,3 
]) on the ZCPA plotted in 

Figure 6.1OA is shown in Figure 6.1OB. Here, peaks 1,3 &6 have been smoothed to the 
extent that they fall under the detection threshold, peak 7 is a slightly shifted version of 
peak 2, and peaks 4&5 have been merged into peak 8. Simply smoothing the ZCPA is 
enough to address both problems cited above-spurious and divided peaks-although 
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6.2 Tracking Peaks in the ZCPA 

in practice, a smoother, wider window would probably be employed (e. g., Gaussian or 
Blackman). 

The procedure for detecting peaks we have just described requires some modification 
before it can be applied successfully to the ZCPA. First, using a low-pass smoothing 
window on the timing-only ZCPA is problematic, as an intense tonal signal reassigns 
intervals from the surrounding bins to its centre frequency; it does not add to the peak, 
as it would to a peak in the magnitude DFT. This could mean, for instance, that a tonal 

contributes twenty intervals to the centre of the Gaussian window but nothing to its 

sides, whilst the noise floor contributes five intervals uniformly across the window. In 

other words, such a window has the undesirable effect of responding to peaks and noise 
in equal measure. A better choice of window is a difference of Gaussians: a narrow 
Gaussian pulse, whose breadth matches the expected peak breadth (due to noise or 
signal bandwidth), from which is subtracted a wider Gaussian pulse, whose breadth 

matches the expected trough breadth (due to the capture of intervals). The shape of this 

spatial filter recalls that of the mean ZCPA profile shown in Figure 6.8A. 

A second, lesser problem with spatial averaging is its capacity to move peaks. This is 
illustrated incidentally in Figure 6.10, where the unsmoothed peaks 2 and 4 correspond 
to the smoothed peaks 7 and 8-the latter shifted upward in frequency very slightly. 
Peak-shifting occurs when the spectral mass surrounding a peak is distributed unevenly. 
As the ZCPA is a concerted effort to locate peaks accurately, it would be regretful if 
imprecision in the peak tracker were to nullify this benefit. The course of action taken 
here is to find peaks in the smoothed ZCPA and then relate them to the maximum in a 
small neighbourhood of the unsmoothed ZCPA; thus, peaks 7 and 8 would be mapped 
back to peaks 2 and 4, respectively. Such a scheme exploits spatial averaging to remove 
spurious peaks and detect broad peaks, but does not sacrifice precision. 

Temporal integration can also enforce genuine peaks, provided that the signals in 
question vary reasonably slowly in time. The peak detector used in this chapter operates 
on the output of a leaky integrator, I, which is governed by the difference equation 

a! jk, t] = ! [k, t-1] + ZCPA[k, t]. (6.15) 
The leak rate is controlled by the parameter a, which is set to 0.5 in this work 
and corresponds to a time constant of approximately 100 ms, if frames are recorded 
16 times a second. Using larger values for a increases the integration window, and 
vice versa. If the temporal leaky integration is followed by spatial smoothing with 
a difference of Gaussians, the entire operation is equivalent to a two-dimensional 
convolution with the kernel shown in Figure 6.1OC. 

Peak Tracking 

The output of the peak detection module, specifically, a set of peak frequencies and 
their respective values, forms the input to the tracker module, which uses the peaks 
to extend existing tracks or instantiate new ones. It is the track-formation aspect of 
McAulay and Quatieri's algorithm to which we most closely adhere in this work. The 
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A. frame t-1 Ti T2 T3 T4 

death 
frame t 

P1 P2 P3 P4 P5 

B. frame t-1 Ti T2 T3 

birth 
frame t 

17- \ZY '17 
P1 P2 P3 P4 P5 

Figure 6.11: McAulay and Quatieri (1986) track formation. Dots show possible peak 
locations; open circles show locations of peaks; dashed lines show candidate matches; 
solid lines show definitive matches; inverted triangles mark the first peak of a new 
track; crosses mark the final peak of a dead track. 

routine consists of three steps, which were sketched above, but will now be described 
in more detail. ' 

In the first step, every live track is provisionally matched against the nearest peak to 
fall within a matching interval, which typically extends a short distance either side 

of the track's end-point. Figure 6.11A shows how tracks form when the matching 
interval spans two bins either side: Tracks TI and T2 form candidate matches with 
peak P3; track T3 forms a candidate match with peak P4, and track T4 dies, as it is 

unable to match to any peak. This mechanism tolerates frequency modulation in tracks 
below a certain depth (measured in bins per frame, or Hertz per second) and vets any 
unconnected tracks. 

In the second step, tracks which are competing to connect to the same peak are 
resolved. The candidate matches with tracks in the previous frame are examined for 

every peak, and a definitive match is made with the nearest of these. Once a track and 
peak are definitively matched, both are removed from active consideration. Steps I 

and 2 are repeated until no further matches are possible. Returning to the example in 
Figure 6.11, a definitive match is made between T2 and P3, and T3 and P4. Step I must 

For a more formal account of the algorithm, see McAulay and Quatieri (1986). 
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ZCPA PEAK TRACKER PARAMETERS 

Parameter Value 

time-frequency convolution [see Figure 6.1 OCI 

birth threshold 10 

continuity threshold 25 

matching interval 3 bins 

minimum track length 10 frames 

Table 6.1: ZCPA peak tracker parameter set. 

be repeated to find an alternative match for T1. In this case, it connects to P2 instead. 
(If no further matches had been available, it would have been terminated. ) 

In the third step, which is only reached when all tracks in the preceding frame have 

either been extended or terminated, there may be peaks remaining that do not form part 
of a track. Each of these forms the first element in a new track. Figure 6.11 B shows the 
final state of every peak and track in Figure 6.11A after step 3 has completed. Peaks 
P2, P3 and P4 are used to extend tracks T1, T2 and T3, respectively; peaks P1 and P5 
instantiate new tracks; track T4 is discontinued. 

Added and Proposed Features 

The McAulay-Quatieri algorithm was designed for processing relatively clean speech 
signals, in which most spectral peaks, no matter how energetic, would be identified with 
the harmonics of voiced speech. However, many of the peaks in a sonar recording arise 
from a continuous noise background, and we have seen that a threshold is required to 
reject all but the most prominent. If this threshold is too low, many spurious tracks are 
born; if it is too high, genuine tracks tend to disintegrate into short strands, and weak 
signals do not register at all. To overcome this problem, the ZCPA tracker employs two 
thresholds: the birth threshold and the continuation threshold. A much higher peak 
value is required to start a track than to sustain it. 

A further feature of the ZCPA peak tracker is the deletion of dead tracks that are 
considered too short-lived to have arisen from a genuine signal. This measure helps 
to prevent the time-frequency display and computer memory becoming cluttered with 
tracks that arise from momentary peaks in the noise floor. However, the removal 
of short tracks is not always beneficial: sometimes, to a human viewer, a stream of 
fragmentary tracks is clear evidence of a weak tonal. One possible remedy, which has 
not been pursued here, is to design a higher-level process, which only disposes of short 
tracks if they cannot be shown to belong to a larger context. 
Table 6.1 summarises the set of parameters that govern the behaviour of the ZCPA peak 
tracker. Suggested values for each parameter are also listed. These options were used 
to produce the tracks in Figures 6.9B and 6.9C. 
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6.3 Timing-based Fine Structure Estimation 

A peak tracking algorithm that employs time-frequency continuity as a constraint 
provides a helpful means of highlighting candidate tonal structure in the surface of 
the ZCPA. The fine structure of these tonals, which might be useful for deciding how 

to group them together-for example, very shallow and slow-varying modulations 
in frequency--omannot be measured in the ZCPA, as the frequency histogram fails to 
preserve this fine detail. However, the information needed for a finer reconstruction 
still resides in the strata below the histogram, and we may descend into these as far as 
necessary to recover it, starting with the circular buffers which feed the histogram, then 
the output of the zero crossing (and peak) detectors, then the narrowband signals, and 
ultimately the raw waveform. 

We will return to the idea of "ZCPA strata" in the final chapter. For now, it is 

sufficient to imagine that an operator selects a coarse track in the ZCPA, and an 
unspecified mechanism locates the relevant detail in one or more layers beneath. 
Methods for constructing a phase or frequency modulation track from zero crossings 
divide naturally into two categories: model-based and data-driven. A model-based 
approach proceeds along the same lines as the detection routines in the previous two 
chapters: we devise a model of the channel, possible signals, noise background, etc., 
and attempt to make the statistically optimal choice with respect to some cost function. 
A data-driven solution makes few assumptions about the process that produced the data 
and employs a more generic approach, e. g., a curve-fitting routine. 

Two timing-based approaches to frequency tracking are investigated in this section. 
The first is model-based and draws on the material in Chapters 4 and 5. The second is 
data-driven and attempts to fit more closely the framework of the ZCPA, as presented 
in Chapter 3 and in the sections immediately above. These methods will be applied to 
artificial, rather than recorded, signals. The techniques deemed to be most successful 
will then be used to analyse recorded signals in Sections 6.4 and 6.5. 

6.3.1 Model-based Frequency Tracking 

The dominant frequency principle states that "the normalised zero crossing rate is a 
weighted average of the spectral mass" (Kedem, 1986). That is, the zero crossing 
rate of a Gaussian process locks to the most dominant component in the channel and, 
for a white noise signal, tends to gravitate towards the band centre frequency. In 
earlier chapters we encountered the dominant frequency principle as it pertains to zero 
crossing intervals, where analytical and experimental work showed that the interval 
distribution reflects the contribution of the signal and noise, weighted according to the 
signal-to-noise ratio. 

Many algorithms extract a component frequency from the zero crossings directly, by 
halving the reciprocal of the interval between two consecutive crossings, or something 
similar (Sekhar and Sreenivas, 2005; Kim et al., 1999; Ghitza, 1988). The dominant 
frequency principle evidently has implications for the estimation of frequency using 
zero crossing intervals or the phase derivative, especially at low SNRs. We could ask, 
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for example, "What frequency does a five millisecond interval between two successive 
zero crossings suggest? " In the naive scheme, a5 ms interval would map to a frequency 

of 100 Hz. However, knowing further that the interval was received in severe noise, 
in a band-pass channel centred at 110 Hz, we might instead conjecture that the noisy 
channel "bent" the true frequency towards its centre and adjust our estimate downwards 
accordingly. The next two sections explore how such an adjustment might be achieved 
in a principled fashion using results from the preceding chapters. 

6.3.2 Maximum Likelihood Frequency Estimation 

The interval detectors described earlier chose between two hypotheses on the basis 
of an observed zero crossing interval: Ho, the interval is due to noise; or ii) H1, the 
interval is due to a mixture of signal and noise. In each case, the hypothesis selected 
was given by 

arg max P(H3 I i, ) 
J 

We can of course extend this principle to choose amongst any number of hypotheses. In 
particular, we can label each possible signal frequency as a hypothesis, e. g., Hf0=loo, 
Hf0-toi, Hf0=io2, and then the maximum a posteriori hypothesis becomes 

argmaxP (Hf, = fI i) (6.16) 
f 

= argmax ply (i Hff) P(Hfc=f). (6.17) 
f 

The essence of statistical estimation is therefore identical to that of detection. In fact, 
detection can be thought of as an estimation problem, in which the only parameter 
refers to the signal's presence and can assume the values "yes" or "no". 

One possibility at this stage is to assume that all frequencies are equally probable, thus 
rendering P(H fp) constant so that it does not affect the argument of the maximum. 
This leads to the maximum likelihood estimate for frequency, 

fc ML = argmaxpj, (i 1 Hf, 
=f). 

(6.18) 
f 

Maximum likelihood estimation is useful in many instances because it does not refer to 
the prior distribution of the variable to be estimated. However, the maximum likelihood 
estimate does not always optimise a continuous parameter in a satisfying way, as we can 
demonstrate in the present scenario. Suppose the true frequency of a signal is 700 Hz. 
A maximum likelihood method will maximise the occurrence of an exact estimate of 
700 Hz; in that sense it is optimal. However, all incorrect estimates, including, e. g., 
699 Hz and 7 kHz, are considered to carry an equal cost. This is clearly an unacceptable 
criterion for frequency estimation, as we really intend the estimate to be optimal in the 
sense of being close to the true frequency as often as possible. This is the target of the 
Bayes estimate discussed next. 
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6.3.3 Bayes Optimum Frequency Estimation 

In the most basic formulation of this problem, all the signal properties are known except 
the tonal frequency, for which a prior distribution is available. The Bayesian frequency 

estimate minimises the expected value of a risk function, given i) an observation or 
series of observations, and ii) a set of fixed conditions, 4. In this case, the risk function 
is chosen to be the squared difference between the estimated frequency and the true 
frequency. The fixed conditions include the noise power spectral density, signal level 
and the analysis filter squared magnitude response. Whalen (1971, page 322) describes 
the procedure for finding the (minimum mean squared error) Bayes estimate for an 
unknown signal parameter, if all the other parameters are known. 

Let .7 denote the set of frequencies that it is possible for the component to assume. The 
objective is to minimise the expected squared error between the true frequency, f, and 
our estimate, fý, that isl 

fr-= arg min [E{(f - fc)2 1 i-, O, }] (6.19) 

= arg min 
[f2 

- 2f 
f 

f, P(f, 1 ic, 0)df, 1 . (6.20) 

As the function to be minimised is quadratic and convex with respect to f, it has a 
single global minimum at 

fý _ fcp(fc I ic, 0)df,. (6.21) 

The distribution for fe conditioned on is has not arisen in this work; nevertheless, 
we possess the distribution for i, conditioned on fc, namely, the interval distribution 
encountered in Chapter 4, in which fe is a parameter. Bayes theorem can be used to 
rewrite (6.21) in terms of the interval distribution and a prior distribution governing 
frequency, p(f f). If the prior frequency distribution is uniform, then the Bayes 
optimum frequency estimate is 

fc = 
JF fcp\Zc fog B)p(fc) dfc 

, 1, f P(i i fc, ©) dfo 
(6.22) 

p(ic ©) f' p(ic 1 f, e) df, 

The integral in (6.22) takes the form of a centroid2, which, in this case, is difficult to 
solve analytically. The fact that it is a centroid does, however, suggest a numerical 
approach: populate the rows of a matrix with interval probability density functions, 
p(ic fc, ®), for a series of fc uniformly-spaced over the range of F, and evaluate the 
centroids of the columns. The latter is a function that maps an observation, i, to the 
(approximate) Bayes estimate, f, and is referred to as an adjustment curve. This is to 
be contrasted with the naive mapping, 

(naive (6.23) 22ý 
) 

We shall now drop the notation P(Hfý=f) in favour of p(ff). 
2The centroid is a generalisation of the mean. The centroid of f (x) is xf(x)dx 

f(x)dx 
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Figure 6.12: A-C) interval-frequency joint probability density: lighter regions show 

more probable pairings; D-F) interval-to-frequency adjustment curves: Bayes (solid) 

and nave (dotted). 

Visualising the Adjustment Curves 

The images in Figures 6.12A-C show the joint probability density function for tonal 
frequency (ordinate) and interval duration (abscissa), for a tonal signal received against 
a white Gaussian noise background, where the frequency is uniformly distributed in the 
381 Hz-419 Hz range', and the intervals are measured in the output of a narrowband 
filter. The impulse response of the analysis filter is constructed according to the 
MGMM in (5.24), which, in the frequency domain, places the the centre frequency 

at 400 Hz and provides a3 dB bandwidth of approximately 21 Hz. The narrowband 
signal-to-noise ratios are intended to reflect, respectively, noise-dominated (0 dB), 

evenly-mixed (20 dB) and signal-dominated (40 dB) scenarios. 

A row of pixels in each image is proportional to the conditional interval probability 
density function. The density function shown in Figure 6. l2A corresponds to a mixture 
dominated by noise. As the signal exerts very little effect upon the intervals, the interval 

p. d. f. in each row is the same. Consequently, the centroids taken along the columns 
always fall at the centre frequency, and the adjustment curve, shown underneath in 
Figure 6.12D, is (almost) a constant 400 Hr. This is an intuitive result: in the absence 

These values were arbitrarily chosen to match the 10 dB bandwidth of the analysis filter. In the context 
of a bank of filters. the crossing points could be used instead. Alternatively, a separate probabilistic model 
could be used to predict the signal frequencies. 
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of any evidence concerning the signal frequency, the mean squared error is minimised 
by choosing the prior expected frequency. 

Figure 6.12B displays the joint density function associated with a moderate SNR. In 
this scenario, the signal influences the intervals to some extent, and the p. d. f. in each 
row is spread around the dominant interval. There is little spread in the intervals for 
frequencies around the channel centre, where the post-analysis SNR is high, but at the 
filter edges, the intervals are distributed more broadly. Computing the column-wise 
centroids gives the adjustment curve based on the Bayes estimate. The backward S- 
like shape of the adjustment curve in Figure 6.12E can be explained in terms of the 
dominant frequency principle. 

At the centre, i. e., about 1.25 ms, the adjustment curve maps intervals fairly directly. 
Intervals slightly longer than the centre interval are mapped to frequencies slightly 
lower than a naive mapping would suggest, and vice versa. (The naive mapping is 
shown as a dotted line. ) As noted earlier, the estimator acts according to the principle 
that the noise has biased the intervals towards the filter centre and makes an appropriate 
adjustment. However, at frequencies further removed from the centre, the adjustment 
curve starts to generate estimates towards the centre, rather than away. Intervals in this 
remote domain are more likely to be the result of noise; consequently, the estimator is 
less certain and thus more inclined to choose frequencies closer to the centre, in order 
to minimise mean squared error as described above. (Were this curve to be extended in 
both directions, each extreme would eventually converge to 400 Hz. ) 

Lastly, the joint probability density function for the 40 dB SNR mixture is plotted in 
Figure 6.12C. In this scenario, the signal is dominant and the noise affects the intervals 
only very mildly-a reversal of the situation in Figure 6.12A. This too leads to an 
intuitive result: in the absence of any noise, the mean squared error is minimised by a 
naive mapping. The adjustment curve in Figure 6.12F takes the form of a reciprocal 
function everywhere except at the very edges, where the signal is attenuated and the 
noise becomes influential. Even in the low and high SNR cases, the adjustment curves 
retain some evidence of a sigmoidal shape. 

Visualising Adjustments in the Estimates over Time 

Adjustment curves such as those in Figures 6.12D-F provide a static impression of how 
intervals are mapped to frequencies at a particular SNR. One can gain an alternative 
insight into this process by synthesising a mixture of tone and noise, passing the 
mixture through an analysis filter, and recording two time series: the intervals of the 
process mapped to frequencies by i) a naYve approach and ii) a Bayesian approach. 
Figure 6.13B plots the frequency estimates for one-second of a synthetic 402 Hz tone 
mixed with Gaussian noise at 20 dB narrowband SNR. We identify the time of an 
interval by its centre. 

Naturally, most of the comments that apply to the two frequency tracks in Figure 6.13B 
we already made in connection with the adjustment curve in Figure 6.12E. The series 
always intersect around 400 Hz where the naive and Bayes estimates coincide, and 
for small variations around the centre, the Bayes estimates tend to "exaggerate" 
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Figure 6.13: A) (not to scale) noise in the filter causes the true signal component (light 

blue, thick) to be measured nearer the filter centre (black, thin); 13) in an effort to 

undo this effect, the nave time-varying frequency track (black, thin) can he adjusted to 

account for the noise floor, giving the Bayes track (light blue, thick). 

the directly-measured frequencies to counteract the effect of the noise floor. For 

outlying measurements, such as the peak around 2.9 seconds, the Bayesian method 

underestimates the displacement of the component from the centre in order to minimise 

mean squared error. 

Experimental Results and Analysis 

The first experiment measures the mean squared error between the estimated frequency 

and the true frequency as a function of narrowband SNR. The analysis filter is centred 

on 400 Hz and the sinusoid frequency is chosen according to a uniform distribution 

spanning the 10 dB bandwidth of the filter, namely, 380.68 Hz-119.32 Hz. In both 

the naive and Bayes schemes, the intervals exiting the analysis filter are gated into this 
bandwidth prior to estimation to prevent large spikes affecting the mean squared error. 
The results of this experiment are plotted in Figure 6.14A. From this graph it is clear 
that the Bayes estimate consistently matches or improves upon the nave estimate at all 
signal-to-noise ratios. 

The second experiment examines more closely the particular conditions under which 
the Bayes estimator outperforms the naive estimator. This task involves holding the 

signal-to-noise ratio fixed and measuring the squared error at particular frequencies, 

as opposed to averaging the error over all frequencies. Figure 6.14E shows the mean 
squared error when the pre-filter SNR is 0 dB. As the post-filter SNR is much lower, 

the naive estimator is essentially measuring (gated) random intervals and mapping 
them directly to frequencies. The error is lower when the true frequency is nearer 
400 Hz, simply by virtue of the fact that the random intervals are distributed around 
this value-the signal has little effect. Informally speaking, the Bayes estimator has 

already "realised" this, and for that reason, always chooses 400 Hz. (We shall return to 
this issue shortly. ) 

The results obtained for the 20 dB and 40 dB SNR scenarios are of greater interest. In 

the 20 dB case, the squared error in the Bayes estimate is smaller than that of the naive 
estimate when the signal is placed away from the band centre. but the converse holds for 
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Figure 6.14: Estimation of a tonal frequency, when tonal is placed uniformly at random 
in the bandwidth of an analysis filter and the SNR is fixed and known (see text). A) the 
mean squared error between the true and estimated frequencies for the naive (solid) 
and Bayes (dashed) estimators; B-D) break-down of the mean squared error in terms 
of frequency at three SNRs. 

signals near the band centre. The reason for these differences can be explained in terms 
of the dominant frequency principle: the presence of white noise in the filter causing 
intervals to gravitate towards the band centre. Consider first the situation in which 
the signal is near the centre. The naive estimator will (rightly) convert the interval 
to a frequency in direct fashion, but the Bayes estimator will be inclined to view the 
interval as having been corrupted by noise, and (wrongly) adjust it away from the 
centre. Consider now the situation in which the signal has been placed away from 
the band centre, at either a lower or higher frequency. This time, the naive estimate 
fails to adjust for noise floor, incurring a large penalty in squared error, whereas the 
Bayes estimate accounts for the effect of the noise upon the intervals by means of the 
adjustment curve. 
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Critical Discussion 

In closing, several objections may be raised against Bayesian frequency estimation 
based on zero crossing intervals, despite the fact that the results in Figure 6.14A suggest 
an improvement over the naive estimate. 

First, to compute a Bayes estimate effectively requires a comprehensive description of 
the signal and noise model, and a prior distribution over frequency. It is unlikely that 
such a model would be available in practice, although one could estimate the latent 

variables of the model in an online fashion'. A considerable number of computations 
are needed to compute an adjustment curve. 

Second, at low SNRs, the Bayes estimate achieves a large part of its gain in 

performance by choosing the expected frequency a priori, whereas at high SNRs, 
there is only a negligible difference in performance. This implies that there is only a 
narrow range of signal-to-noise ratios over which Bayes estimation can be considered 
worthwhile. It is questionable whether an estimator which returns a 400 Hz frequency 
track in severe noise conditions simply to minimise an average cost function is actually 
very helpful, even if it is technically optimal. 

Third, a notable feature of Figures 6.14C and 6.14D is that most of the performance 
gain is associated with signal frequencies in the band edges. In the context of tracking 
in the ZCPA, given that the analysis filters exhibit a certain degree of overlap, it seems 
likely that a dominant component would be tracked near the centre of a proximate 
filter, rather than in the edge of a remote filter. Furthermore, a ZCPA parameterisation 
suitable for sonar analysis employs a DFT with a much narrower bandwidth than the 
filter used in this example. In narrowband channels, the dominant frequency principle 
exerts very little influence over the intervals. 

6.3.4 Interpolating Intervals with a Cubic Spline 

The data-driven approach that we shall consider next is based on spline interpolation. 
The circular buffers of the ZCPA, the contents of which are periodically used to produce 
the histogram, hold the most recent intervals and peaks recorded in each channel. The 
size of each buffer is equal to the interval-peak window (cf. §3.3.3). This layer of the 
ZCPA thus stores potential data points through which to reconstruct a frequency track. 
This fine structure estimation is a two-part process: first data points are computed, then 
a polynomial function is fitted to them. 

Retrieving Data Points from the Circular Buffers 

At every time step in which the ZCPA is recorded, there resides in each channel buffer 
a certain population of intervals and peaks. Let us assume that at a particular time step 
a coarse peak track is live and, furthermore, there is a mechanism for associating the 
high-level track with a low-level buffer. Several ways to form a data point, d, from the 

Refer to Whalen's discussion of generalized likelihood ratio detection (Whalen, 1971, page 352). 
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intervals in the circular buffer suggest themselves. These we may straight-forwardly 
list, using it[t] and e[l] to denote respectively the l-th interval and peak in a buffer of 
length L: 

1. the mean interval, 
1 

d=L iý(l]; 
t=i 

2. the peak-weighted mean interval, 

L 
=ie[l]i, 

{l1 

E1=1 e[1] 

3. the harmonic mean interval, 

4. the median interval; 

L -1 1 
d 

5. or any of summary statistics 1-4, formed from intervals that have been adjusted 
to account for the dominant frequency principle, using the material set out above. 

Any of these five options are a possibility (although the fifth demands a rather exact 
knowledge of the signal and noise statistics), and many more are conceivable. As we 
are primarily interested in temporal processing, and there is not space for a detailed 
appraisal of each alternative, we shall elect the simplest of these: the mean interval. 

Fitting a Polynomial Curve 

Having obtained a series of interval measurements for each frame of the ZCPA, there 
remains the problem of finding a smooth function which passes through or near each 
data point, and provides a frequency estimate at all times between the first and last data 
point. One course of action is to fit an nth-order polynomial curve through all the data 
points, leading to a function of the form 

is(t) = ante + an_lt"-1 +... + at + ao, (6.24) 

in which ao, ... , a,, are optimised coefficients', and there is a corresponding naive 
continuous-time frequency track, 

J(t)_ 
ant's+an-itn-1+... +a, tt+ao 

(6.25) 

This can be carried out quite easily, using the least mean squares approach described in Section 5.2.4. 
Rather than finding a linear combination of Rayleigh density functions to minimise a cost function, we find 
a linear combination of monomials in t, i. e., 1, t, t2, and so on. This kind of polynomial curve fitting is 
ubiquitous; for a particular application to zero crossing intervals, see Sekhar and Sreenivas (2005). 
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Figure 6.15: Spline interpolation. A) data points; B) linear spline; C) cubic spline. 

Alternatively, one could fit the polynomial through the reciprocals of the data points 
to obtain a track for fc(t) directly. Note that this track would not be identical to that 
obtained using (6.25), but both are admissible solutions. 

There is good justification to reject a polynomial fitting of a fine frequency track. The 
first problem arises when an otherwise-smooth series of data points is interrupted by 
one or more outlying values, e. g., shot noise. Least mean squares approaches are based 
on minimising an average cost, so a sample displaced from the smooth curve by a 
large magnitude severely affects the fit. As outlying values can be removed in advance, 
for instance, by a median filter or threshold, this problem is not insurmountable. (The 
strategy of removing untrustworthy data points from the series is considered in the next 
section. ) 

A second, more serious problem concerns model order selection, that is, the choice of 
whether the function to fit to the data points is to be linear, quadratic, cubic, and so 
on. If the model order is too low, then the curve will be too inflexible to represent the 
data; on the other hand, if the model order is too high, the curve might follow random 
fluctuations in the data. Selecting a model order on the basis of the data points alone, 
without any knowledge of the underlying, real-world process that produced them, is an 
advanced problem beyond the scope of this work. 

Fitting Cubic Splines: Background 

Spline interpolation fits a string of low-order polynomials (placed end-to-end) to the 
data points of a series, which in this context are referred to as knots. (Contrast this with 
the approach described above, which attempts to fit one, high-order polynomial to the 
entire series. ) A linear spline interpolation, for instance, interpolates a linear segment 
between successive pairs of samples; the entire series is therefore a piecewise linear 
function defined everywhere between the first and last knot. Figure 6.15B illustrates a 
linear spline. 

A cubic spline is extends this principle to generate a smooth' curve: between every pair 
of consecutive samples a cubic function of time is interpolated. There are only two 
equations to secure each cubic polynomial, i. e., the values at the knots; so, initially, 
each polynomial is underdetermined. This underdetermination is solved by insisting 

The interpolant appears smooth in a visual sense. In a technical sense, the first and second derivatives 
of a cubic spline are continuous, but generally, the third derivative is not. 
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Figure 6.16: Cubic spline interpolation through interval data points. A) appearance of 
tonal in the ZCPA; B) twenty intervals recorded at each time step (grey dots), mean 
interval data points (black dots), and a cubic spline through the data points (solid line); 
C) naive frequency track (reciprocal of spline). Note the various units and ranges used 
on the abscissae. 

that the first and second derivatives at the end points of successive segments match, as 
well as including a constraint that states that the second derivatives at the first and last 
knot are zero. This formulation results in the natural cubic spline, an example of which 
is sketched in Figure 6.15C. 

The procedure for determining the coefficients of a cubic spline, and its theoretical 
justification, are described in numerous texts and need not detain us here (Ayyub and 
McCuen, 1995; Press et al., 1992). In MATLAB spline interpolation is carried out by 
the interpl or spline functions. 

Fitting Cubic Splines: Example 

Figure 6.16A shows how a tonal appears in the timing-only ZCPA over a one-second 
duration, when i) the tonal is centred at 400 Hz in white Gaussian noise, ii) the 
narrowband SNR is 36 dB, and iii) the parameters of the analysis filter within the 
ZCPA are configured to match that used in the Bayes estimation study above. The 
DFT analysis cell in which the signal is principally resolved is 16 Hz wide and centred 
on 400 Hz. 

In Figure 6.16B, the intervals extracted at each time step of the ZCPA are plotted as 
twenty grey dots, and the mean interval is plotted as a larger, black dot. The mean 
interval dots form the knots of a natural cubic spline, which is drawn on the figure 
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6.3 Timing-based Fine Structure Estimation 

as a thin curve that passes through the knots. Figure 6.16C plots the naive frequency 
estimate corresponding to these intervals, that is, the reciprocal of the spline curve in 
(B). 

The frequency variation of the tonal apparent in the figure is due solely to noise. The 
bandwidth of the filter used in this illustration is sixteen times wider than the lowest 
DFT analysis width that would realistically be applied in a narrowband sonar analysis 
(i. e., 1 Hz). The large bandwidth employed here was chosen to conform with the other 
work in this section and to produce figures which demonstrate the key principles on a 
more visible scale. In the material that remains, the spline-fitting algorithm will operate 
on the intervals of narrowband signals and at lower signal-to-noise ratios. 
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6.4 Repairing Fine Structure Tracks through 
Transients 

The spline interpolation scheme proposed above involves connected a series of knots 

with low-order polynomials to form a twice-differentiable continuous track. If the 
instantaneous frequency track is disturbed momentarily, for instance, by a transient 

event or a drop in SNR (e. g.. due to envelope fluctuation), then we can consider 
discarding unreliable knots to produce a non-uniform spline. The goal of this section is 

to develop a transient detector to automate the process of removing potentially damaged 
knots, and then to demonstrate this algorithm working in realistic noise conditions. 

A Cautious Analogy from Auditory Scene Analysis 

Before designing an algorithm, it is appropriate to recall from Chapter 2 the Gestalt 

principle of closure. Closure refers to the perceptual completion of a form that has 
been obscured by another object. The particular instance of closure which is relevant 
to the present discussion is tonal completion-the perceptual restoration of harmonics 
that have been interrupted by noise. For example, speech is perceived as a continuous 
stream when interrupted by noise bursts. Auditory scene analysis "interpolates" the 
missing harmonic segments (Bregman, 1990), as Figure 6.17A illustrates. There is also 
evidence that the tone entering and exiting the obscured region must form a smooth, 
continuous track to be reconstructed (Ciocca and Bregman, 1987). 

There are, however, important differences between the tonal interpolation procedures 
proposed next and the psychophysical effect of closure. Gestalt closure only occurs 
where there is evidence that a tonal has been obscured; silent interruptions in a tone 
are not restored (Figure 6.17B). The algorithm in this section does not decide where 
tonal segments occur, nor how to connect them together, nor whether good continuity is 
maintained. (If anything, the ZCPA peak tracker and spline interpolation block would 

A. B. 

V 

11 ýý Nt 

Figure 6.17: A) completion of three tones through two noise bursts-what Miller and 
Licklider (1950) refer to figuratively as the "picket fence effect"; B) tonals interrupted 
by (i) silence or (ii) a weak noise burst are not completed. 
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input from 
gammatone 

3 dB output to multi-band detector 

Figure 6.18: Block diagram for the in-band transient detector (IBTD). The grey region 
is an IIR filter designed to monitor the recent average level. 

be responsible for this. ) It is simply intended to fill in the corrupted portions of a tonal 
frequency track during transient events. The analogy is therefore a partial one. 

6.4.1 A Rudimentary Transient Detector 

A number of auditory-motivated sonar transient detectors and classifiers have been 
proposed in the literature (Tucker, 2003, Chapter 2). This section proposes a very basic 
detector to identify transients by a sudden, coincident increase energy across many 
channels. The detector is built upon on an auditory-style filterbank with relatively wide 
bandwidths and short impulse responses, which responds in advance of the narrowband 
surveillance channels. Exploiting this time lag, the transient detector sends a signal to 
the frequency tracker, instructing it to reject frequency estimates that are about to arrive, 
as they may be corrupted. 

In-band Transient Detector 

The front end of the transient detector is a bank of twenty gammatone filters, spaced 
evenly on an ERB scale between 32 Hz and 4096 Hz. The output of each filter is 
supplied to an in-band transient detector (IBTD), a schematic of which is provided in 
Figure 6.18. The operation the IBTD is best described sequentially, starting with the 
gammatone input at the top left-hand corner of the diagram. 
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gammatone 1 IBTD 
(lowest freq. ) 

gammatone 2 -0-1 IBTD delay 2 

gammatone 19 - *1 IBTD F--'i delay 19 

gammatone 20 IBTD delay 20 
(highest freq. ) 

frequency track from ZCPA --º knot builder 
1-* 

spline 

Figure 6.19: Block diagram for the multi-band transient detector. Note that the pathway 
exiting the lowest-frequency IBTD does not contain a time delay. 

The first block computes the envelope of the band-pass signal; the second converts its 

value to a decibel level. The purpose of the remaining blocks is detect jumps in the 
log-envelope of the signal that may be indicative of a transient. For instance, an excess 
of 3 dB above the steady level is equivalent to the linear envelope doubling. The mean 
signal level is frequency and time dependent, and varies in an unpredictable manner, 
making it necessary to establish a moving baseline in each channel. The baseline in 
an IBTD is continually re-estimated by a cascade of two simple one-pole IIR filters, 
which tracks the mean level in a trailing window. (These components are marked by a 
grey box in Figure 6.18. ) The length of the averaging window is controlled by the a 
parameter and, in this model, is configured to be in direct proportion with the length of 
the channel impulse response. At 1 kHz, a=0.99. 

The final stage of the IBTD is a hard clip that outputs the extent to which the difference 
between the rapidly-varying log-envelope and the slow-varying dynamic threshold 
exceeds 3 dB, or zero if the difference is less than 3 dB. Equivalently, the IBTD does 
not respond when the linear envelope drops, or jumps by a factor less than two. The 
detector is therefore sensitive neither to natural undulations in the envelope due to noise 
nor to low-frequency amplitude modulations; only sudden changes in level, which the 
adaptive threshold cannot absorb rapidly enough, generate output. 
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6.4 Repairing Fine Structure Tracks through Transients 

Multi-band Transient Detector 

The peak impulse response in each channel of the gammatone filterbank occurs later at 
lower frequencies, so an ideal wideband impulse will elicit a stream of responses from 

the IBTDs, which begins at the high-frequency channels and progresses down to the 
low-frequency channels. Given this lack of synchrony, it is evident that a static sum 
across channels will fail to form a global peak response, as the contributions arrive at 
different times. The output of the multi-band transient detector is therefore a delayed 

sum of the outputs taken across the bank of in-band transient detectors. The need 
to envelope-align the filterbank can be addressed in two similar ways. The first is 
to employ a set of non-causal gammatone filters, the peak responses of which have 
been aligned to time zero by a introducing an appropriate negative delay (i. e. a lead) 
(Brown, 1992; Patterson et al., 1988). From a design perspective, the only situations 
that demand a non-causal approach are those in which the filterbank must respond at 
precisely the moment of the impulse. 

The present application does not require an instant response from the filterbank, only 
that: i) all the gammatones respond in unison to a transient, and ii) they do so far 
enough in advance of the spline builder to suspend it in real time during an interruption. 
This leads to the second option: delaying all the IBTD outputs in order that the 
peaks coincide with the lowest-frequency filter, as Figure 6.19 shows. The gammatone 
impulse response is given in (2.1). Let Be denote the parameter B used in the impulse 
response of channel s. To align the peak response of all the filters with that of channel 
one, we must delay channel s by 

(n - 1) 
(2 1 

3-21 
seconds, (6.26) 

7Bi) 

where n is the filter order. 

In the current model, the lowest-frequency IBTD has a peak delay of about 107 ms. 
Theoretically, a fine frequency estimate in a frame arriving from a ZCPA with 1 Hz 
DFT bins is delayed by about 500 ms, as the impulse response is one-second long and 
the peak of the Gaussian window occurs at its centre, although frequency estimates 
may be affected wherever the analysis window and the transient overlap. 

6.4.2 Proof of Concept 

To demonstrate the principle of tonal repair, a synthetic 401 Hz tone has been added 
to a single hydrophone recording containing a transient knock. The mixed signal is 
plotted in Figures 6.20A and 6.20B, in the time and frequency domains, respectively. 
The signal is two seconds in duration: the first second is included to ensure that any 
ringing from the analysis filters--either in the transient detector or the ZCPA-has 
subsided; only the remaining second, which contains the transient event at about 1.2 s, 
is shown in the figure. 

Figure 6.20C displays the response of all twenty in band transient detectors over the 
1-2 s period. The channel centre frequency for each line is measured on the ordinate 
in ERBs; the height of each bump above this line is measured in decibels, and is scaled 
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Figure 6.20: A) signal in the time domain; B) signal in the frequency domain; 
C) response of twenty in-band transient detectors with the summary response beneath; 
D) damaged track; E) repaired track; F) spline with all knots; G) spline with damaged 
knots removed. 
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6.4 Repairing Fine Structure Tracks through Transients 

so that the space between two lines corresponds to 5 dB. The abscissa measures time, 
and the signal in each band has been shifted to account for any artificial delay. All the 
channels intermittently generate spikes', but a significant volley of synchronised spikes 
occurs between 1.1 s and 1.2 s, during the knock. These coincident spikes contribute 
to a peak in the summary plot, shown in the lower portion of Figure 6.20C, which 
is chiefly concentrated around 1.17 s. We shall assume that the multi-band detector 
generates a "transient warning signal", whenever the summary output exceeds tent. 

The destructive effect of the transient on the frequency track is apparent in 
Figure 6.20D, which is, in turn, based on the spline drawn in Figure 6.20F. (In these 
figures, time is marked down the ordinate and frequency along the abscissa, reflecting 
the organisation of a ZCPA display. ) Momentarily, the zero crossing intervals in the 
ZCPA are those of the transient, not the tonal, and this causes the track to be displaced 
by as much as 1.5 Hz at 1.3 s. Beyond 1.5 s, the track reverts to a steady 401 Hz, with 
mild fluctuations due to stationary, additive noise. 
The final step in this discussion simply unites the comments set forth in the preceding 
two paragraphs: the multi-band detector finds a transient at approximately 1.17 s, and 
the spline is damaged because knots placed during the 1.1 s-1.5 s period are unreliable. 
The transient warning signal from the detector--corresponding to the wide arrow on 
the diagram in Figure 6.19-has the effect of suppressing knots for 500 ms, which is 
equal to half the impulse response duration of the ZCPA analysis. The restored spline 
is plotted in Figure 6.20G, and this is, in turn, used to construct the repaired frequency 
track shown in Figure 6.20E. 

1Here, the term "spikes" is used of the curve and need not refer to nerve action potentials. 2A threshold of ten has admittedly been chosen after inspecting the data. It is not signal-dependent, however, but rather depends on the time constants and thresholds in the IBTDs, and the number of channels. 
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6.5 Grouping Fine Structure Tracks 

Once a set of tonal fine frequency tracks has been extracted (and restored), we may 
search for subsets that exhibit a common modulation pattern, in order to show that they 
have arisen from a common source or channel. The work presented in this section 
proceeds in two different directions. The first involves extracting as many frequency 
tracks from the noisy signal as possible, and then grouping them according to some 
similarity metric. The second involves extracting just one or two reliable frequency 
tracks and then actively searching for similar tracks in the noisy signal. 

6.5.1 Passive Comparison to Find Similar Tracks 

Non-uniform Sampling 

Measuring phase variations using zero crossings is rather different to approaches based 

on the Hilbert transform or DFT, as it relies on non-uniform sampling (Sekhar and 
Sreenivas, 2005). Standard uniform sampling schemes measure how much the phase 
has changed at fixed points in time. (For an overview of standard techniques, see 
Cohen (1995). ) By contrast, non-uniform sampling schemes measure how much time 
has elapsed at fixed points in the signal phase (i. e., zero crossings). 

The ZCPA examples described above compute each frame from the twenty most recent 
upward zero crossing intervals. In the time span over which these intervals occur, the 
signal phase has advanced by 40ir, which is equivalent to stating that the signal phase 
has advanced by 27r across the duration of a mean interval. If the mean interval is 
0.01 s, e. g., then the instantaneous frequency is approximately 

2L 
0.01 = 200x, radians per second, or 100 Hz. 

Evidently we are still working with a measure of instantaneous frequency, only rather 
than fixing the denominator at the sampling rate, the numerator is fixed at 2ir. 

A graph that plots the mean-interval data points, dt, against the frame time, t, should be 
read as, "the expected amount of time it takes to traverse 27r radians of the signal phase 
at this point in time. " A graph of this kind is shown in Figure 6.21A for a recorded 
tonal. It is difficult to perceive any gradual trend in this series because of noise. 

Accumulation and Detrending 

The variation of zero crossing interval duration tends to be very small in relation to 
the mean interval duration. One means of reducing the visual noisiness of the curve in 
Figure 6.21A is to plot the cumulative phase traversal, which we define as the sum of 
all mean intervals up to and including time step t: 

t 
1t dt. (6.27) 
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Figure 6.21: A) mean interval data points extracted from a 150 Hz tonal; B) cumulative 
sum of the data points; C) cumulative sum of the data points with the linear trend 
removed. A rescaled version of this curve is shown in Figure 6.22D. 

The function t can be interpreted as, "the expected amount of time it is takes to 
traverse 2irt radians of the signal phase, based on the evidence of all the frames up to 
and including time step t. " 

Figure 6.21B shows the cumulative phase traversal corresponding to the mean interval 
data points in (A). Frequency variations are now encoded as small changes in the slope 
of a near-linear trend. The trend grows gradually steeper towards the end, indicating a 
very slight reduction in component frequency over the course of one minute, although 
this is almost impossible to see, and extra processing is required to enhance it. The 

modulation impression around the steady state can be emphasised by subtracting the 
linear trend away from the cumulative phase traversals, resulting in the type of curve 
shown in Figure 6.21C. (The detrend function in MAT LAB carries out this operation. ) 

Comparing Detrended Series 

Fluctuations about the steady tonal frequency are perceived more readily in 
Figure 6.22C than in Figures 6.22A or 6.22B. The detrended cumulative phase 
traversal curves could form the basis of an operator aid for grouping tonals visually. 
Figures 6.22B-M plot twelve phase tracks associated with twelve tonal components in 
a minute-long sonar recording of a merchant vessel. In this case, the tonal components 
have been picked out manually from the mean power spectrum in Figure 6.22A. (In 
practice, one would expect a complete system to automate this task using the sort 
of ZCPA peak tracker described in Section 6.2. ) The detrended series have been 
normalised by their steady frequency. 

A casual inspection of Figure 6.22 suggests that the 50 Hz, 150 Hz, 200 Hz and 250 Hz 
tonals belong together. The 100 Hz and 300 Hz tonals may also belong to this group, 
as it appears that in both cases large phase jumps have disrupted the accumulation and 

' The idea of removing the linear trend from a series of phase samples is indebted to QinetiQ (Halse 
et al., 2005). In that work, the trend is removed from an unwrapped phase track obtained from the DFT 
(uniform sampling); in this work, the trend is removed from a phase traversal rate track obtained from zero 
crossing intervals (non-uniform sampling). 
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Figure 6.22: A) mean power spectrum with tracked peaks marked using solid circles. 
B-M) detrended cumulative phase traversal tracks associated with the peaks in (A). 
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detrending process. Similarly, it appears that the 360 Hz and 420 Hz tonals may have 

arisen from the same source-perhaps one with a 60 Hz fundamental frequency- 

although the 360 Hz track is damaged, making an assured judgement difficult. The 
300 Hz tonal, which could belong to the 50 Hz or 60 Hz harmonic set, is also 
interrupted by a phase jump, but its similarity to the 360 Hz track seems to promote the 
latter association. The 245 Hz, 400 Hz and 450 Hz tracks are too noisy to utilise. 

6.5.2 Active Search to Find Similar Tracks 

One of the most serious problems facing the grouping of tonals by a passive comparison 
of phase tracks is that many of these tracks are of very poor quality. Whilst it is possible 
to identify and remove isolated phase errors in some tracks (cf. Figs. 6.22C, H, I and J), 
other phase tracks are unusable. The most reliable approach to detecting a known, weak 
signal in white noise is a matched filter' (Whalen, 1971). In this section, we explore 
the idea of finding one, clean tonal track and then using robust detection methods to 
find other tracks like it. 

One conceivable problem with the search for a gently-modulated tonal is that a matched 
filter approach will inevitably find many other tonals present in the recording due to 
the similarity in their steady frequency-albeit with slightly reduced responses. One 
challenge is to devise a means of distinguishing between signals with the sought-after 
modulation and signals with different (or no) modulation. Because the null hypothesis 
encompasses the set of all "other" modulations, and furthermore we lack a model to 
describe how tonals are expected to behave, we shall choose a pure tonal as the null 
hypothesis; that is, we shall inquire, "Is this tonal modulated or clean? " 

Modulation prominence seems an apposite term for referring to the degree to which a 
modulated tonal explanation is preferred over a clean tonal explanation. Distinguishing 
harmonics by FM prominence recalls a study conducted by Marin and McAdams 
(1991), which demonstrated that human listeners, when presented with an additive 
mixture of synthetic vowel sounds, assign a higher subjective prominence to a vowel 
whose harmonics have coherent subaudio frequency modulation. From a mathematical 
perspective, searching for prominent components in a signal by projecting it onto an 
overly-rich family of basis functions bears a superficial similarity to the technique of 
matching pursuits (Mallat and Zhang, 1993). 

Constructing a Phase Track 

Let fi(t) be a relatively clean frequency track estimated using the spline interpolation 
method of Section 6.3.4. We can construct a keyed phase track from j, #) as follows: 

% 
Okey(t) 

t 

gVg(. fc) I 1, (T) dr, (6.28) 

o 

I alternatively, a correlation receiver. 
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where avg(ff) is some measure of the average frequency of the track (e. g., mean or 
median). The function ckey contains the phase track of a unit-frequency signal with 
the phase variation of f, impressed upon it. We now wish to search for phase signals 
at different frequencies, which are modulated in the same manner. 

Matched Filter 

To determine the extent to which the phase signal COS (f 0key) appears in the received 
signal g(t), we suppose that the remainder of the signal is a zero mean additive noise 
signal, N(t), and then attempt to find the A that minimises 

EJfT [A cos(f gkey (t)) + N(t) - g(t)J2 dt (6.29) 

It can be shown that, provided Okey is slow-varying and T is large, the estimate for A 

which minimises (6.29) has the approximation 

T 
Ä(f) Tj 

g(t) cos(f Okey(t)) dt. (6.30) 
0 

When the initial phase of the signal is unknown, we can estimate the contribution of 
two components-one in-phase, the other quadrature. This means finding the AI and 
AQ which best explain 

AI COS(f Okey(t)) + AQ Slri(f Okey(t)) + N(t) = 9(t), 

if g(t) is an observed record. In this case, the optimum estimates, in the minimum 
mean squared error sense, are 

pT 
Ai(f) 

TJ 
9(t)cos(fgkey(t))dt (6.31) 

0 

AQ(. f) 2 fT 
(6.32) (t) Sin (f4key(t)) dt. 9 

When the phase trend is linear, these operations reduce to a frequency-dilated Fourier 
transform. This assembly forms the basis of the quadrature receiver (Whalen, 1971). 

6.5.3 A Non-competitive Explanation 

The section above described a method for converting a spline-based frequency track to 
a nominal phase track and then contructing matched filters to find similarly-modulated 
phase signals. To test whether this technique could correctly identify whether tonals 
belonged together, a 70 Hz synthetic tonal complex was mixed with an ocean noise 
background. Some of the harmonics possessed the unit-frequency-normalised phase 
track 

t 
0, (t) = 2irt + 2n 

J 
0.0001 sin(27r " 0.02 r), drr; (6.33) 

0 
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Figure 6.23: Active search for modulated and clean tonals allowing non-competitive 
explanations. The keyed phase track was extracted from the 210 Hz tonal. A) mean 
power spectrum measured over one minute; B) response to modulated matched filters; 
C) response to non-modulated matched filters (Fourier transform). 

the others were based on a plain phase track, consistent with a non-modulated tone, 
i. e., 02 (t) = 21rt. The former group are marked with open circles on Figure 6.23A, the 
latter group with crosses. In this experiment, the amplitude of the 210 Hz tonal was 
increased by 3 dB in order to establish a "clean" track to follow. The phase track key 
was estimated from this tonal, and one would expect it resemble a noisy version of 01. 

Figure 6.23B plots the function 10loglo BAI + A2Q 1, when Al and AQ are estimated 
using Okey. Figure 6.23C plots the same function, except the estimates AI and AQ 
are generated according to plain phase tracks, making the plot equivalent to a squared 
magnitude Fourier transform. The intention for this algorithm was that the 1st-3rd, 
6th and 7th tracks would appear prominently in (B), and the 4th and 5th tracks would 
appear prominently in (C), thus effecting a form of separation. However, very little 
difference can be discerned between the spectral. 

1Some small differences are perceptible when the data are presented on a linear magnitude scale. 
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The failure of this algorithm can be attributed to the fact that it offers two isolated, 

non-competitive explanations of the signal g(t). Because the phase signals based 

on the modulated and non-modulated tracks are very similar, the respective matching 
procedures give near-identical results. 

6.5.4 A Competitive Explanation 

A competitive explanation procedure, as we shall term it, attempts to account for the 
received signal in terms of an additive mixture containing both types of track, that is, 

g(t) = N(t) +E [AI, m cos(f Om (t)) + AQ, m sin(f qm (t))]. (6.34) 
mE{key, plain} 

In order to estimate the parameters in this equation, it is helpful to abbreviate the 
quantities cos(fom(t)) and sin(fom, (t)) to c, n(t) and sm(t), respectively, and the 
labels key and plain to 1 and 2, respectively. 

Minimising the mean squared error function, 

J=E 

JT 
[Allcl(t) +AQ1sl(t) +A12c2(t) +AQ2s2(t+N(t) - g(t)]2 dt 

0 

with respect to all A, we arrive at a set of four simultaneous equations, 

Arg cl " c1 + AQl s1 " cl + Ail c2 " c1 + AQ2 s2 " cl = ci "g (6.35) 
Ari cl " sl + AQl sl " sl + A72 c2 " sl + AQ2 s2 " sl = sl "g (6.36) 
Ari cl " c2 + AQl s1 " c2 + A72 c2 " c2 + AQ2 s2 " c2 = c2 "g (6.37) 
All cl " s2 + AQl 1" s2 + A! 2 c2 " s2 + AQ2 s2 " s2 = s2 " g, (6.38) 

where a"b denotes the inner product, fö a(t)b(t)dt. Once the inner products have 
been computed, (6.35)-(6.38) can be solved using standard methods to yield the four 
mixing coefficients AJ, key, AQ, key, A1, pl,, and AQ, pz,,. 

Synthetic Signal Mixed with Recorded Ocean Noise 

The active search method has been applied to the mixture of synthetic tones and ocean 
noise used in the previous section, and the results are set out in Figure 6.24. Now 
the modulated components-70 Hz, 140 Hz, 210 Hz, 420 Hz and 490 Hz-appear in 
plot (B) but are missing from plot (C), whilst the unmodulated components-280 Hz, 
350 Hz and most of the noise floor-are present in both (B) and (C). 

The two spectra are also compared on a linear magnitude scale in Figure 6.24D: the 
responses of the modulated matched filters are orientated upwards, and the responses of 
the unmodulated (sinusoidal) matched filters are orientated downwards. Components 
that are comodulated with the 210 Hz track are absent from the reflection 1. In addition, 

For this reason, the name Dracula plot was considered for this kind of display. "This time there could 
be no error, for the man was close to me, and I could see him over my shoulder. But there was no reflection 
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Figure 6.24: Active search for modulated and clean tonals allowing competitive 
explanations. The keyed phase track was extracted from the 210 Hz tonal. A) mean 
power spectrum measured over one minute; B) response to modulated matched filters; 
C) response to non-modulated matched filters (Fourier transform); D) a reflection plot 
showing the magnitude response to modulated and clean tonals, facing upwards and 
downwards, respectively. 
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Figure 6.25: Active search for modulated and clean tonals in a minute-long recording 
of a merchant vessel (with competitive explanations). The keyed phase track was 
extracted from the 150 Hz tonal. A) mean power spectrum; B) phase track extracted 
from 150 Hz tonal (grey line) and a fourth-order polynomial fit (heavy, black line); C) a 
reflection plot obtained for a non-interpolated track; D) a reflection plot obtained for 

an interpolated track. 

the ocean noise recording contains a number of weak tonals, which appear in the 
reflection. Thus, in principle, even if the constitution of the signal mixture were 
unknown, this method could be used to determine that the 70 Hz harmonics belonged 
together. 

Recorded Sonar Signal 

Lastly, as a final evaluation, we will attempt to use this technique to group the tonals 
in the merchant vessel recording used in Section 6.5.1. There is no ground truth 
available for this recording, so judgements concerning the accuracy of the active search 

of him in the mirror! The whole room behind me was displayed, but there was no sign of a man in it, except 
myself. " (Dracula, Chapter 11, Bram Stoker) 
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6.5 Grouping Fine Structure Tracks 

algorithm must remain tentative. The modulation spectrum is keyed to the 150 Hz 
tonal-the component which, from a visual inspection of the mean power spectrum in 
Figure 6.25A, appears to possess the highest signal to noise ratio. The phase track of 
this component is plotted in Figure 6.25B as a grey line. 

Figure 6.25C shows the reflection plot returned by the routine. The tonals of the 50 Hz 
harmonic complex register in both spectra. Although most of the lines exhibit a greater 
response to the modulated search, those at 50 Hz and 300 Hz do not. It was pointed 
out in Section 6.5.1 that the phase modulation of the 300 Hz tonal is unclear-it could 
influenced by a 60 Hz complex. However, it would seem that the 50 Hz tonal should 
be grouped along with the 50 Hz complex, as suggested by i) the detrended cumulative 
phase traversal in Figure 6.22B, and ii) an educated guess that the complex arises from 
an AC electrical current. 

One possible explanation for the lack of a decisive separation between modulated and 
non-modulated components is noise in the keyed phase track. This scenario can be 
sketched as follows. Suppose that the complex is, in fact, composed of near-sinusoidal 
tracks. The keyed phase track extracted from the zero crossing intervals may be 
corrupted by noise to the extent that a plain sinusoidal track, which in our model serves 
as a null hypothesis, is actually closer to the embedded signal than the modulated phase 
signal based on Okey. This highlights the importance of a clean keyed phase track. 

In a closing attempt to the salvage this technique, the noise in the keyed phase track 
has been removed by replacing the series with a fourth-order polynomial, shown as a 
thick, black line superimposed on Figure 6.25B. (The risks associated with a low-order 
polynomial interpolation are well-documented and were alluded to in Section 6.3.4; 
however, an inspection of the resulting fit suggests a reasonable approximation in this 
instance. ) The reflection plot generated using the cleaned keyed phase track is provided 
in Figure 6.25D. Here, the tonals of the 50 Hz harmonic set appear very little in the 
reflection, if at all, which suggests that some attempt to de-noise the keyed phase track 
prior to an active search is beneficial. 
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6.6 Summary 

The first goal of this chapter was to assess whether the theoretical work of Chapters 4 

and 5 offered any insight into the timing-based processing of the ZCPA-DFF described 
in Chapter 3. We are now able to assign a random variable to the value that a channel 
contributes to a ZCPA bin, either with or without peak amplitude weighting, for 

stationary Gaussian and sinusoidal input signals. By plotting the summary expected 
contribution of all the filters to all the ZCPA bins, a mean ZCPA profile is obtained, 
which is useful in at least two regards. 

The analysis filters tend to generate intervals closer to their centre frequencies, which 
can give the white ZCPA mean profile an undesirable comb-like appearance, called 
ZCPA ripple. One response to this problem is to widen the bandwidth of the analysis 
filters; however, doing so reduces post-filter signal-to-noise ratio. The mean ZCPA 

profile allows a principled trade-off between SNR and ZCPA ripple to be made without 
the need for experimental white noise testing. 

The mean profile can also be used to visualise how a signal or noise background will 
be manifested in the ZCPA on an absolute scale, which allows a threshold-perhaps 
one which varies with frequency-to be placed across the ZCPA for signal detection. 
Unfortunately, in order to perform optimal detection, the variance of the ZCPA bins 
must be known in addition to the mean. Because this parameter relies on the multiple 
interval distribution, it is hard to quantify along theoretical lines. This is an important 

result in itself, however, as it is the work in Chapter 5 which really exposes the difficulty 
of the problem. 

The second goal of the chapter was to investigate the frequency estimation, tracking 
and grouping of tonal components in sonar recordings using auditory scene analysis 
principles. The timing-only ZCPA was the representational substrate in which these 
features were sought. Coarse tracks were formed by joining together closely-spaced 
peaks in successive ZCPA frames. Two methods for computing the fine frequency 
estimates "underneath" a coarse track were then discussed. The first approach extended 
the optimal detection principle from Chapters 4 and 5 to perform optimal estimation. 
Although this method works, it was deemed impractical, because it requires an 
unreasonably detailed knowledge of the signal and noise conditions. The second 
approach fitted a cubic spline through ZCPA data to generate frequency estimates at 
each sample. 

Having chosen the cubic spline method to obtain a set of fine frequency tracks, the 
problem of grouping tracks together was considered. First, a separate, transient 
detection pathway was used to reject knots in the spline that were likely to have 
been corrupted by brief, noisy interruptions. After that, algorithms for grouping 
tonals were developed, according to two distinct philosophies: the first algorithm 
involved extracting as many tonals as possible and spotting similar frequency tracks; 
the remaining algorithms extracted just one or two reliable tonals and actively searched 
for similar signals. 
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Chapter 

I 
Conclusions and 
Future Work 

7.1 Summary 

We started by drawing attention to the analogy between a human ear and a passive 
sonar in functioning as an acoustic receiver and classifier. A closer examination of this 
analogy revealed that the forms of signal processing effected by these two systems 
broadly correspond at a number of points, including the mechanisms underlying 
spatial filtering, ranging, frequency analysis and spectral normalisation, and-more 
tentatively, in both cases-the measurement of variations in either power or timing to 
aid signal detection. 

The second chapter provided an overview of hearing in humans and placed a particular 
emphasis on temporal coding theories and auditory scene analysis (ASA). Temporal 
coding theories hold that the sequences of neural impulses transmitted to the brain 
are temporally correlated with the motion of the basilar membrane and are capable of 
preserving the fine structure of dominant spectral components within a signal. Auditory 
scene analysis is a conceptual framework for describing and investigating how the 
auditory system decomposes a sound into sensory elements and then recombines them 
into perceptual streams. 

Several computer models of the auditory periphery and ASA based on temporal coding 
theories were then surveyed, including the generalised synchrony detector (GSD), 
ensemble interval histogram (EIH). zero crossings with peak amplitudes (ZCPA), 
lateral inhibition network (LIN), fine structure spectrogram (FSS), synchrony strands 
and the autocorrelogram (with other algorithms receiving a passing mention). It was 
left to the third chapter to decide which of these could best be modified to suit the 
passive narrowband analysis of sonar signals. 



7.1 Summary 

Chapter 3 considered both conventional sonar systems based on power and potential 
sonar systems based on a temporal analysis. A traditional narrowband spectral analysis 
displays the signal in the form of a waterfall spectrogram, each row of which is a 
Fourier magnitude spectrum. An alternative time-frequency representation was sought 
from one of the timing-based auditory models presented in the preceding chapter, either 
as a sonar display or as the input format for an ASA model. The ZCPA was chosen on 
account of its superior resolution, the availability of a robust implementation based on 
the DFT, and its resemblance to various general-purpose, non-Fourier time-frequency 
distributions recently proposed'. 

The earliest stages of the project involved a cycle of applying an auditory model to a 
sonar signal, inspecting its output, observing where a signal was poorly delineated, and 
finding a way to modify the algorithm to overcome this problem, whilst maintaining 
its essence. The ZCPA, having survived several iterations of this cycle, appeared to 
represent simple signals in noise to the naked eye as well as a similarly-configured 
DFT spectrogram, at which point a new approach was required. Recalling that the 
theoretical performance of a narrowband sonar display is derived from the DFT, and 
the magnitude samples of the DFT are, in turn, the output of an envelope detector, 
it was natural to inquire whether a similar kind of "elementary detector" existed for 
temporal analyses. 

Chapter 4 described the invention of three elementary interval detectors: theoretical 
models which, when supplied with one zero crossing interval, can discriminate 

optimally between signal and noise hypotheses, much as a squared-envelope detector 

can with one sample of the envelope. The hypotheses in this case were wide-sense 
stationary Gaussian processes. The sampled interval detector measures the number 
of samples between two sign changes in a discrete-time process (i. e., a zero crossing 
interval) and then uses a Bayesian probability model to decide which hypothesis was 
most likely to have generated the observation. 

It was observed that the performance of the sampled interval detector was overly 
dependent on a high sample rate, and the continuous interval detector was developed as 
a solution. This detector models the various signal and noise hypotheses in continuous 
time. The zero crossings of the sampled signal are converted to a continuous time scale 
using interpolation. The interpolated interval detector was proposed as an alternative 
solution and explicitly models the probability of a random variable consisting of three 
parts: the (whole) number of samples between two sign changes, and two fractional 
samples generated by a linear interpolation at each sign change. 

The performances of all three elementary interval detectors were compared with that 
of a squared-envelope detector in a minimum error detection task. (The signal in 
these experiments was a narrow notch of Gaussian noise. ) The interval detectors 
outperformed the squared-envelope detector when the signal was displaced from the 
centre of the analysis filter by a certain amount, whereas signals nearer the centre were 
more reliably detected using power. 

e. g., the sparse time-frequency representation, reassigned spectrogram and, of course, the ZCPA itself. 
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The continuous and interpolated interval detectors performed consistently better than 
the sampled interval detector on account of the finer sampling of zero crossings. 
Although these two detectors performed almost identically in every task to which 
they were applied, the former was much simpler than the latter-both conceptually 
and in terms of its implementation-so the detectors developed in later chapters were 
all descendents of the continuous interval detector. The continuous interval detector, 
despite being the best of the three elementary interval detectors described, remained 
ill-suited to practical scenarios for at least two reasons. 

First, it cannot be configured to optimally detect a pure tone in noise, because the model 
hypotheses must be wide-sense stationary Gaussian processes. A tone is typically 
modelled with a constant amplitude and either known phase (in which case it is 

non-stationary) or uniformly-random phase (in which case it is non-Gaussian). The 

problem was solved in Chapter 5 by considering the detection of a sinusoid with a fixed 
but random (Rayleigh-distributed) amplitude and random phase-a Gaussian process. 
The p. d. f. of the amplitude was then manipulated until the probability density was 
concentrated around a constant value. 

Second, the continuous interval detector can only operate at relatively high SNRs 
because it processes just one zero crossing interval. One course of action taken to 
improve the detector was the development of a joint interval-peak detector, which uses 
the information in both a zero crossing interval and its peak squared amplitude. The 
joint interval-peak detector matched or outperformed both the elementary interval and 
squared-envelope detectors under all conditions. Another strategy to improve detection 
involved the processing of multiple intervals. The successes and failures of multiple 
interval detection are summarised in the next section. 

Chapter 6 returned to the DFT-based ZCPA and investigated whether the theoretical 
interval detectors could offer any insight into its configuration or further development. 
Whilst it was possible to discover the mean of a DFT bin, both in the timing-only and 
amplitude-weighted ZCPAs, a calculation of the variance was intractable, due to the 
lack of a multiple interval model. This is unfortunate, because knowledge of the mean 
and variance, combined with post-detection integration of the ZCPA samples, would 
have led to a Gaussian model. As it is, possessing the mean without the variance still 
offers some benefits. Specifically, it reveals the average ZCPA noise floor and permits 
a principled choice of detection threshold. Further, it allows one to view the shape of 
the mean ZCPA profile in response to noise input and ensure that it is configured to 
suppress artifacts (e. g., ZCPA ripple). 

The latter part of the sixth chapter discussed possible ASA-like processes that could 
operate above the ZCPA layer. Using the mean profile to choose a suitable narrowband 
detection threshold for the ZCPA, a peak tracker with a simple continuity constraint 
was implemented, based on the work of McAulay and Quatieri (1986). The output of 
this stage was a set of "coarse tracks", which, when superimposed on the ZCPA image, 
could serve as an operator aid. However, these tracks did not communicate enough 
fine detail to allow a human user to group them on the basis of low-frequency, shallow 
modulations. 
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7.1 Summary 

Given the limited usefulness of coarse tracks for detailed analysis, it was suggested 
that an operator could manually select a coarse track, and the system would search for 

a "fine structure track" in the zero crossing information extracted at an earlier stage of 
the ZCPA. A couple of fine-structure tracking methods were advanced. The first was a 
model-based solution, which used the interval distributions derived in earlier sections 
to generate optimal frequency estimates as each zero crossing arrived. A second, data- 
driven approach formed clumps of zero crossing intervals into the knots of a cubic 
spline, which was then converted to a frequency track. 

The fine frequency tracks obtained using the spline method were incorporated into three 
algorithms inspired by auditory scene analysis. The first algorithm modelled certain 
aspects of the "continuity effect", in which a tone is perceived to continue through a 
brief interruption, such as a noise burst. The algorithm employed a multi-band transient 
detector, which responds to sudden, energetic, wideband events, to instruct the spline 
builder to disregard potentially-noisy intervals measured during these periods. 

The second and third algorithms were designed to fuse tonals with a common pattern 
of frequency variation together. The second simply extracted as many fine frequency 
tracks from the signal as it could find' and then plotted the frequency variation of 
each one so a human inspector could judge which belonged together. Because tonal 
frequencies vary so gradually, it was necessary to perform some detrending prior to 
display. The third algorithm, rather than comparing a set of phase tracks, some of 
which were very noisy, found a single, intense tonal (i. e., one likely to offer a high 
SNR) and used this as a key to actively search in the signal for similarly-modulated 
tonals at other frequencies. 

' In this case, the locations of the tonals were supplied to the algorithm in an a priori fashion. However, 
one would expect an integrated system to highlight features of interest using the coarse tracks in the ZCPA. 
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7.2 Review of Objectives and Novel Contributions 

Each of the objectives from Section 1.3.1 is restated in this section, along with both a 
cursory reply and a more extended analysis. In some cases, it will be appropriate to 
point to similar work carried out by others and to highlight the novel aspects of this 
research. 

O Can timing-based auditory models be adapted to perform narrowband 
sonar analysis? What benefits might this offer? 
Yes. One benefit is adaptive resolution. 

The zero crossings with peak amplitudes (ZCPA) algorithm can be used for narrowband 
sonar signal analysis. The only significant adaptation required to the original model (of 
Kim et al., 1999) is a reduction in the bandwidths of the analysis filters-from auditory 
resolutions (min. 20 Hz-several kHz) to sub-Hertz resolutions. The initial modification 
of the filterbank is accompanied by changes to the histogram bins, interval window, and 
so on. It should be noted that these changes are all quantitative; the essential behaviour 

of the ZCPA is unchanged. 

Although a bank of model auditory filters (e. g., gammatone) could be constructed 
with equal centres and bandwidths, it seems more appropriate to use a sliding DFT 
filterbank. The most obvious benefit of the zero crossing post-processing carried out 
by the ZCPA is the increase in nominal resolution. The ZCPA resolution can afford to 
be a few times higher than the filterbank analysis, depending on the overlap in the filter 
passbands. (See Section 6.1.1 on ZCPA ripple. ) 

A more subtle benefit of the ZCPA relates to what seems sensible to loosely 
designate the "time-frequency-SNR uncertainty principle". In the absence of noise, 
an appropriately-configured ZCPA is able to resolve the time-frequency behaviour of 
several monocomponent signals to an almost arbitrarily-high degree of precision. The 
failure to resolve well-separated tonals using extremely fine histogram bins / time steps 
is due to background noise, which forces us to widen the ZCPA bins to capture variation 
on a coarser scale. The fact that the ZCPA does not suppress interference amongst 
closely-spaced components need not be classed as a failure, as the ZCPA will typically 
represent the whole group as a single, amplitude-modulated component. (We note 
that the human ear must decide between the "three closely-spaced partials" or "one 
modulated tone" hypotheses on a regular basis. ) 

Another helpful feature of time-frequency-SNR uncertainty relates to the precision 
with which tonals are rendered in the ZCPA image. At a high SNR, the intervals of 
a steady tonal are relatively undisturbed by the noise, in which case the tonal appears 
as a sharply-etched, vertical line. At a low SNR, the intervals of a tonal are buffeted 
by the noise and scattered across a range of histogram bins. In this case, the tonal 
is manifested in the ZCPA as a less-intense, but broader, swathe. Two advantages 
emerge from this kind of processing: first, the ZCPA delineates a tonal with a sharpness 
proportional to the certainty of its frequency; second, and relatedly, a weaker tonal is 
made easier for the human eye to detect, on account of its breadth, whilst a stronger 
tonal is made easier to measure, on account of its narrowness. 
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How does the performance of an elementary interval detector, which O 
operates on one zero crossing interval, compare to that of a power 
detector, which operates on one sample of the envelope? 
Interval detectors only perform better when the signal is sufficiently 
displaced from the band centre. 

cf. Figs. 4.5,4.12,4.18,4.23,5.11. 

To address this question, both the elementary interval detector and squared-envelope 
detector were required to detect a narrowband Gaussian process against a white 
Gaussian noise background. The performance of each detector was measured in terms 
of the proportion of its decisions that resulted in an error, either a false alarm or false 
dismissal. In Chapter 4, the parameters of the signal and noise distribution were 
incorporated into the decision rules, and each detector had only to infer whether the 
signal was present in the received mixture. 

The summary response to this objective is correct; but it is also capable of misleading, 
as it suggests that the signal might appear anywhere in the band, and the interval 
detector is more likely to detect it when it is off-centre. In fact, it means that when 
the squared-envelope and interval detectors are primed to detect a signal at a particular 
frequency in the analysis band, the interval detector commits fewer errors when the 
signal is off-centre. Regardless of the signal frequency, the squared-envelope detector 
always responds to elevated mean energy in the mixture. The interval detector uses 
zero crossing intervals to refine its response to particular frequency components. 

Whence the Interval Distribution? 

Objective 2 was written under the assumption that something similar to an elementary 
interval detector already existed. In fact, references to the notion of optimal detection 
using zero crossing intervals are surprisingly sparse in the literature, although a great 
deal of abstract theoretical work is available to anyone wishing to pursue the question. 
Chief amongst the sources used to produce the elementary interval detector described in 
this thesis were A. D. Whalen's book, Detection of Signals in Noise (1971), B. Kedem's 
paper, Spectral analysis and discrimination by zero crossings (1986), and S. O. Rice's 
report, Mathematical Analysis of Random Noise (1944). Of these, only Rice (1944) 
suggests a formula to approximate the distribution of the time interval between zero 
crossings. 

Although the circuit taken to arrive at the interval distribution in this work was 
independent to that of Rice, it is nevertheless indirectly indebted to his work in some 
places. Aiming to find the distribution governing intervals, the present author utilised 
Kedem's idea-inherited from Rice-of a sign change in a Gaussian time series to 
indicate a zero crossing, and extended the concept to three signed samples, which, 
in suitably band-limited conditions, would imply a zero crossing interval. To find 
the probability of an interval event required the derivation of the three-dimensional 
Gaussian orthant probability, a result which has been known to mathematicians for 
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over a century', and was reworked once again. The limiting process that converted the 

sampled interval distribution to the continuous interval distribution made an oblique 
use of Rice's Formula, although this result could itself be found by taking limits. 

In answer to the question of whether the continuous interval distribution constitutes a 
novel contribution, it is certainly fair to say that it is a novel expression of the interval 
distribution, which derives from some of Rice's original ideas, filtered through six 
decades of later research. Consequently, the interval distribution given in this thesis 
appears nowhere else in the literature and is markedly different to that of Rice. Other 
derivations of the interval distribution often mentioned include those of McFadden 
(1958,1956) and Longuet-Higgins (1961). The experimental work of Rainal (1962) 
is also of some relevance. 

The studies cited above did not derive or measure the zero crossing interval distribution 
for the purposes of signal detection. Some later studies explored the possibility of using 
zero crossings for optimal-like signal detection (e. g., Bae et al., 1996; Higgins, 1980; 
Bom and Conoly, 1970; Rainal, 1967,1966), but there is only a passing similarity 
between these implementations and the elementary interval detectors described in 
Chapters 4 and 5. A combination of three aspects (italicised)-optimal signal detection 
using the zero crossing intervals in narmwband signals-appears to constitute a novel 
approach. 

Modulated Gaussian Mixture Models (MGMMs) 

A modulated Gaussian mixture model is a parametric description of a one-dimensional 
function, expressed as a sum of Gaussian-windowed sinusoids (see Section 4.4.4). A 
suite of MAT LAB functions was designed to operate on MGMMs, in order to ease the 
laborious task of manipulating (on paper) the various signals and systems presented 
in this thesis-especially where a large number of crossterms appear as the result of 
multiplication. 

Technically speaking, no particular one of the routines used to transform MGMMs is 
novel, and in principle, all of the work presented in this thesis could have been carried 
out without MGMMs. Nevertheless, the suite as a whole is original and has proven 
extremely helpful in saving time that would otherwise have been spent writing out 
(and correcting) Fourier transforms, convolutions, products, squared-magnitudes and 
so forth. 

Although MATLAB offers a symbolic tool-box (as does Maple), the constrained form 
of the expressions being handled meant that a set of small, fast, specialised routines 
operating on one data type was preferred. 

Kedem (1980) reproduces this result in isolation but does not connect it to zero crossing intervals. 
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Placing Sinusoids in the Context of MGMMs 

The problem of finding a probability distribution to govern the zero crossing intervals 

of a sinusoid in filtered Gaussian noise has been tackled before. Cobb (1965), for 

example, has proposed an approximation in double integral form, which extends the 
work of Longuet-Higgins and Rice, and relies on series expansions. The approach to 
modelling this distribution set out in Chapter 5 is, to the knowledge of the author, a 
novel one, and relies upon a more general result concerning Gaussian processes, which 
we shall summarise below. 

Let px (x ý 9, A) be the probability density function which governs a random quantity 
X derived from a wide-sense stationary Gaussian process G by means of the action 
A. In this case, A would refer to the extraction of a zero crossing interval. Also, 
let 9' denote the random process consisting of G added to a sinusoid with constant 
amplitude, constant frequency and uniformly-random phase-a non-Gaussian process. 
Then, it is suggested, there exists a general procedure for approximating the density 
function px (x 1 C9', A). 

An explanation of this procedure is given in Section 5.2.5 in the context of zero crossing 
intervals and MGMMs. This concept is believed to be novel, and researchers in 
practical signal processing will no doubt find it useful in a wide range of applications. 

Is it possible to develop a hybrid detector, which uses both power and O 
timing information? Do a sample of the squared-envelope and a zero 
crossing interval convey mutually-exclusive or equivalent information? 
Yes. Partially-exclusive information. 

cf. Figs. 5.13,5.18. 

The naive joint interval-peak detector simply formed a decision rule based on a product 
of likelihood ratios. This detector outperformed both the continuous interval detector 
and squared-envelope detector at all frequencies tried, except those near the centre of 
the analysis filter, where the squared-envelope detector remained superior. Evidently, 
the information conveyed in an envelope sample and an interval is not statistically 
independent, because there are frequencies for which the naive interval detector has a 
higher probability of error than the squared envelope detector. 

On the other hand, it is also clear that the variables neither convey identical information 
to each other, nor does the information about one variable consume the other, because 
there are frequencies for which a naive joint decision is more accurate than either 
elementary decision taken alone. We can depict these different possibilities using Venn 
diagrams, as in Figure 7.1. Of the five interpretations shown in Figure 7.1, only (E) is 
correct, namely, that the respective measures of information communicated by a sample 
of the envelope and a zero crossing interval partially overlap. 

The adjusted joint interval-peak detector, described in Sections 5.3.2-5.3.4 attempts to 
exploit this overlap to satisify a minimum-error criterion. This likelihood functions in 
this detector were based on the joint probability density function governing the peaks 
and intervals of a Gaussian process. 

293 



7.2 Review of Objectives and Novel Contributions 
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Figure 7.1: Possible information shared by an interval and its peak envelope: A) we 
cannot know anything about an interval by observing a peak, or vice versa; B) if an 
interval is observed, its peak is known precisely, and vice versa; C) an interval tells 
us everything about its peak but not vice versa; D) a peak tells us everything about its 
interval but not vice versa; E) an interval supplies partial information about its peak, 
and vice versa. 

A joint distribution of this kind has appeared previously in the literature as it relates to 
ocean surface waves (Longuet-Higgins, 1983,1975; Lindgren and Rychlik, 1982). The 
formula in Chapter 5 was derived by the author independently, as a direct extension 
of Rice's work and in the context of a particular application (i. e., detection). The 

contours of the probability density function obtained by the researchers cited above 
closely resemble Figure 5.17, and these workers also draw attention to the asymmetry 
exhibited. 

O Can the elementary interval detector be modified to incorporate multiple 
interval observations, analogous to a spike train? 
In practical terms, only when the intervals are independent. 

cf. Figs. 5.29,5.36 - 5.40. 

To understand the principle behind this objective, it is helpful to imagine that one has 
lost contact with the world outside the head and can only observe the sequence of 
impulses arriving at the brain at one tonotopic location. What decisions can made 
on the basis of these observations? Using the present receiver model, the basilar 
membrane (and perhaps the outer-middle ear) is modelled as a band-pass linear system, 
and neural transduction is modelled as a zero crossing detector. The elementary interval 
detector addressed the question of how two successive model spikes relate to Gaussian 
or sinusoidal input. This objective considers a train of N successive spikes. 

As each zero crossing contains two samples, a particular pattern of N intervals is 
minimally indicated by the signs of d= 2N+2 samples. This orthant probability 
cannot at present be efficiently computed for large dimensionality d without recourse 
to large series expansions, and a precise solution is known only for d <_ 3. An 
expression for this quantity can be written down from several perspectives, however: 
as a d-dimensional integral in Cartesian coordinates; as a (d-1)-dimensional integral 
in hyperspherical coordinates; as a d-dimensional solid angle; or, geometrically, in 
the form of a very-slowly converging sum of simplicial contents. Although numerical 
solutions for the d-dimensional orthant probability have been published, it was decided 
that a certain degree of parsimony is desirable in a practical sonar receiver, and 
alternatives were investigated. 
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Standard, DFT-based sonar detectors do not process statistically-dependent samples 
of the envelope, but integrate a series of independent, identically-distributed samples 
to obtain a Gaussian-distributed test statistic. A similar approach to joint interval- 

peak detection was taken to satisfy Objective 4. Several independent peak-interval 
pairs were sampled and averaged, resulting in a two-dimensional Gaussian vector 
test statistic. To form a decision rule, the means, variances and covariance of the 
joint interval-peak distribution were computed and duly modified to reflect an average 
of N independent samples; these were used to parameterise two bivariate Gaussian 
likelihood functions. The performance of a detector based on this joint statistic 
exceeded that of a power detector whenever the signal occupied a certain position in 
the analysis bandwidth (neither near the centre, nor in the filter tail); otherwise the 
performance matched. 

ASA causes a listener to perceive the continuation of a tone which is 
masked momentarily by noise. Can a similar principle be used in sonar 
to reconstruct a tonal interrupted by a transient event? 
Yes. 

cf. Fig. 6.20. 

Section 6.4 described how a frequency track can be formed by fitting a cubic spline 
through the interval data points stored in the ZCPA circular buffers. The mean intervals 
in each ZCPA frame are used as knots in a spline function, and taking the reciprocal 
of this function converts interval durations into units of frequency, thus obtaining a 
frequency track. 

To prove the concept of tonal restoration, a synthetic tonal at a constant frequency 
(401 Hz) was added to a background of recorded ocean noise containing a transient 
knock. The corresponding frequency track was perturbed during the transient event, 
as expected, and the repair of the tonal frequency track was subsequently achieved by 
removing corrupted knots from the spline and recalculating the frequency track. The 
set of unreliable knots was flagged up by a separate pathway in the algorithm containing 
a multi-band transient detector. 

This stand-alone demonstration can be placed in the more general framework of the 
interval distribution work that preceded it. When the signal-to-noise ratio in the channel 
is significantly lowered by the reception of a transient event, the intervals which 
proceed from the channel are principally determined by the shape of the analysis filter 
in combination with the colour of the transient spectrum. Under these circumstances, 
it is best to disregard any affected intervals, rather than to assume that they have been 
corrupted by Gaussian noise (as, e. g., a perturbation analysis would insist). 

ASA promotes the fusion of partials exhibiting a common pattern of O6 
modulation, especially those in a harmonic relationship. Can a similar 
principle be used to group engine tonals? 
Yes. 

cf. Figs. 6.22,6.23,6.24,6.25. 
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A passive, comparative approach was used to group a set of tonals according to how 
similarly their rate of phase traversal varied about a steady mean. This so-called phase 
traversal rate is the reciprocal of instantaneous frequency: it relates the time taken to 
traverse one unit (2ir) of phase, rather than the phase traversed in unit time. A similar 
method for associating tonals, which relied upon coherent variation in the phase of DFT 
bins, was proposed in a QinetiQ technical report (Halse et al., 2005). One illustration 
of the principle behind both these algorithms envisages a series of dials, each of which 
measures the phase of a tonal in relation to its nominal frequency. Any dials that speed 
up and slow down in unison belong to the same source. 

A second means of addressing Objective 6 rested on the idea of "active grouping". 
Instead of passively comparing the phase trends extracted from potential tonals, an 
active method uses the phase track of the most reliable tonal to search for other tonals 
with similar FM against a noise background. Within active methods, a distinction was 
drawn between non-competitive and competitive explanations. 

A non-competitive explanation gives two completely separate accounts of the signal. 
The first is a graph plotting how the total' signal energy can be distributed amongst 
modulated components. The second is a graph showing how the same energy can be 
divided between non-modulated components (i. e., a Fourier analysis). The intention 
was that peaks corresponding to comodulated tonals would appear stronger in the first 
graph than in the second. However, the alternate and null hypotheses are often so 
similar that this intended difference is unappreciable. 

A competitive explanation, to overcome this problem, attempts to reconstruct the 
signal using an additive mixture of modulated and non-modulated components. This 
technique appeared to be more successful at highlighting the modulated components 
in a sonar recording than either the non-competitive active or passive comparative 
approaches, and was applied to both part-synthetic/part-recorded and fully-recorded 
input signals. 

(This division of energy is not exact. There will inevitably be some leakage across frequencies, as the modulated basis functions are not quite orthogonal in many cases. 

296 



7.3 Future Work 

7.3 Future Work 

One potential programme of research concerns how the various algorithms described 
in the thesis could be chained together to form a larger framework for sonar signal 
analysis. An attractive feature of the proposed system is that it is modular and maintains 
strict interfaces between modules. One possible modularisation scheme is depicted in 
Figure 7.2. 

Let us consider the zero crossing and peak extraction block as an example. This 

module relies solely on the output of the filter bank; it does not have access to the 

raw signal. In addition, its operation is concealed from the layers above. For instance, 

the circular buffers store the intervals and peaks exiting this block, regardless of the 
interpolation scheme used to locate crossings, the direction of the crossings detected, 

the compression function applied to the peaks (and perhaps troughs), and any automatic 
gain control or lateral inhibition effected. 

Similar principles apply to the other blocks. The ZCPA constructs a histogram using 
the contents of the circular buffers, and the fine structure tracker uses this information 
to build accurate frequency tracks; but neither block inquires how the circular buffers 

come to be populated. The coarse peak tracker monitors tonals in the ZCPA without 
access to the circular buffers, and the human operator monitors the coarse peak tracks, 
with the option (in this setup) of inspecting the ZCPA and DFT underneath. The only 

Figure 7.2: An integrated modular system incorporating major aspects of the work 
carried out in this thesis. Each module only accesses the layer directly beneath. 
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aspect of this configuration that is not strictly feed-forward is the user's ability to select 
one or more coarse tracks for surveillance. 

Selecting a coarse track has the effect of computing a fine structure track. A cubic 
spline interpolation algorithm, of the kind proposed in the previous chapter, requires 
access to the circular buffers to construct knots, as well as a signal from the transient 
detector to inform which knots, if any, should be discarded. Finally, the grouping 
algorithm is supplied with a set of fine structure tracks. It selects the cleanest one or 
few of these and uses them as a pattern to search the input signal for similar components 
at other frequencies. 

7.4 Conclusion 

This chapter has provided a summary of the work carried out in this thesis and proposed 
a scheme for unifying the components described in earlier chapters into an integrated 

system. The relevance of both low-level mechanisms in the auditory system (such as 
the basilar membrane and inner hair cells) and high-level organisational principles in 
hearing (described by auditory scene analysis) have been discussed in relation to sonar. 
Where possible, computational models of these systems have been adapted to perform 
sonar analysis and evaluated using synthetic and recorded sonar data. 

At present there is a growing interest in non-Fourier time-frequency representations 
that utilise the phase of narrowband signals to extract the frequencies of dominant 
components. As we have noted regularly throughout the thesis, this is reminscient 
of the effective signal processing in the human ear, which encodes the fine structure 
of the basilar membrane's motion in the temporal firing patterns of auditory neurons. 
The modest outcome (or failure) of earlier attempts to perform sonar analysis using 
zero crossings in the output of broad analysis filters should not discourage future 
researchers from investigating the incorporation of these new, Subband zero crossing 
analysis methods into sonar technology. 

This thesis has decisively demonstrated that temporal analysis in the context of 
narrowband sonar is theoretically robust, has biological precedent, is conceptually 
elegant and parsimonious in that it exploits features readily available and cheaply 
extracted from the signal, is capable of improving on power-based methods, and can be 
profitably reconciled with Fourier analysis in implementations such as the DFT-ZCPA. 
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